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Abstract

The recent developments in quantum technology enable us to realize and control isolated
quantum systems with multiple particles and spins with high precision. These systems
are called the Noisy Intermediate-Scale Quantum (NISQ) devices and consist of tens
to hundreds of qubits. Although the size of these devices suggests computational power
superior to their classical counterparts, errors associated with system imperfections seem to
be an obstacle to performing advanced quantum processing tasks. Itis an open fundamental
question of how such devices could harness this expected computational power if that is
possible.

In this thesis, we address this question with two different approaches. In these ap-
proaches, we will focus on Floquet systems, which are periodically driven quantum systems
that have been experimentally demonstrated in many physical systems. Floquet systems
are expected to exhibit new phenomena that cannot be seen in equilibrium quantum sys-
tems and could be exploited for quantum processors. In particular, we use discrete-time
crystals (DTCs), which break the discrete-time translational symmetry (DTTS).

In Chapter 2, we briefly explain DTTS breaking and DTCs in Floquet spin networks
and provide the physical concepts and mathematical tools for the following Chapters. We
primarily consider 2T-DTCs, which are widely applied to other theoretical models and
experimentally demonstrated with several NISQ devices. To simplify the discussion, we
introduce its minimum model and carefully derive its 2T-effective Hamiltonian, essential
for analyzing DTCs. Using this Hamiltonian, we show the Z,-Ising symmetry plays an
essential role in 2T-DTCs. After that, we explain two different approaches, MBL-DTCs,
and pre-thermal-DTCs to understand the stability of the sub-harmonic oscillation on the
spin networks, which is a signal of the DTTS breaking. Further, to understand the DTC
and its phase transition, we introduce a mapping between the Ising model and the effective
Hamiltonian, which governs stroboscopic dynamics. At the end of the Chapter, we review
two crucial experiments on DTTS breaking and realizing DTCs using trapped ions and
NV centers.

The first part of the thesis proposes two new quantum phases that break the DTTS using
a spin network. Chapter 3 shows how regional driving can break the DTTS regionally.
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Due to this regionally broken DTTS, two different phases of matter can coexist in one
quantum system, despite the interactions throughout the quantum system. We named this
novel quantum state "chimeric time crystal" as an analogy to the classical chimeric state.
We investigate the chimera time crystal from a microscopic perspective by employing
its entanglement entropy at stroboscopic times. We found that while a network exhibits
the chimera phase, the entanglement growth is highly suppressed despite long-range
interaction. Our results could contribute to the design of the quantum simulator and
quantum memories using Floquet systems.

In DTCs, besides the Z,-Ising symmetry, the spin network has the U(1)-symmetry
at stroboscopic times. Chapter 4 introduces a new DTC model breaking the local U(1)-
symmetry. We show that as long as the global U(1)-symmetry is preserved, the network
can exhibit DTCs for specific initial states. We analyze this model with and without
environmental effects and show that the network can exhibit sub-harmonic oscillation
with sufficiently long periods, even when the environmental effects being present.

Next, we discuss our discovery that breaking the local U(1)-symmetry in the network
induces the time crystal growth that does not appear in the conventional model. We show
that time crystal growth can be stabilized due to the environmental effect. To understand
its mechanism, we analyze the spectrum of the 2T-effective Liouvillian operator, which
governs the stroboscopic dynamics of the dissipative systems. The analysis shows that
the time scale of time crystal growth can be estimated by the Liouvillian gap. Further,
we investigate negativity (a measure of entanglement commonly used in open systems)
of the spin network to understand crystal growth from the microscopic perspective. Our
new model allows us to understand the dynamical quantum phases of matter coupled to
the environment.

The second part of the thesis proposes a new quantum processor using such dynamically
driven systems. Our model is a quantum neural network (QNN) based on two classical
computational models, reservoir computation and extreme learning machine. It mainly
consists of a classical input layer, a quantum layer, and a classical output layer. The
quantum layer is a quantum reservoir providing a huge neural network. The classical input
is to pre-process the classical data and then efficiently encodes the data into the quantum
reservoir as its initial state. We employ a DTC for the quantum reservoir. To connect the
quantum layer to the classical output layer, we insert M-layer, which is a measurement
layer to convert the quantum output information to the classical information. The learning
process optimizes the classical network between the M-layer and the output layer.

We then apply this new QNN model to classification problems. In particular, we
extensively investigate how this model enables pattern recognition of handwritten digits
using the MNIST data set and demonstrate that the accuracy reaches 98% with only 14
qubits. We efficiently encode images into quantum states using classical data compression
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with only single-qubit operations. Unlike the variational quantum algorithms, our model
does not require optimization on the quantum system. This dramatically simplifies the
quantum device and its control, and it contributes a significant speed-up of the learning
processes. Using DTCs as the quantum layer, we reveal the essential relationship between
the quantum neural network’s performance and the system’s symmetry.
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Chapter 1

Introduction

1.1 Background

At the end of the 19th century, Max Planck proposed that emitted electromagnetic energy
should be quantized to solve the problem of black-body radiation [5]. Soon after, Albert
Einstein expanded Planck’s idea into quantizing the energy of light. He proposed that
light, which in classical mechanics was a wave, behaves like a particle in some cases [6].
Nowadays, it is recognized that their idea was a revolutionary discovery in physics and
opened the door to quantum mechanics. In the early stage of quantum mechanics, single
and few-body systems such as atoms and elementary particles have played an essential
role in discovering these fundamental laws in quantum physics. Niels Bohr, Werner
Heisenberg, Erwin Schrodinger, and others revealed unique mechanical laws of quantum
mechanics that are unthinkable in classical mechanics [7, 8, 9, 10]. For example, it was
shown that atomic energy is discretized in quantum mechanics using a hydrogen atom [7].

At the same time that the fundamental laws of quantum mechanics were being revealed,
many new discoveries were founded in studies of many-body systems that follow those new
laws. For example, in contrast to classical mechanics, in quantum mechanics, particles are
identical [11]. It means that one can not distinguish between each particle. Furthermore,
due to the symmetry of quantum states, there are two types of particles: boson particles and
Fermi particles. Consequently, the spin-statistics theorem shows two statistical properties:
boson statistics [12] and Dirac statistics. Due to the difference in statistical properties,
phenomena that cannot be seen in classical systems occur in quantum systems. For
instance, a quantum many-body system that obeys boson statistics shows Bose-Einstein
condensation [12] in which particles behave as an ideal gas rather than as an individual
at ultra-low temperatures. In fact, when helium-4 is cooled to below 2.2K, superfluidity
is observed [13]. At present, this superfluidity is considered a kind of Bose-Einstein
condensation [13]. Furthermore, since the latter half of the 20th century, Bose-Einstein
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condensation has been realized in the laboratory by cooling an ensemble with 103 to 107
particles to an ultra-low temperature 2 x 107K [14].

With the fusion of new physical laws, quantum mechanics, and statistical physics,
the 20th century has seen a significant improvement in quantum statistical physics, both
theoretical and experimental, such as discovering quantum phase transitions. In contrast,
it was challenging to control quantum dynamics experimentally for a long time. However,
in the 21st century, as technology has improved further, it has become possible to control
isolated quantum systems with high precision [15, 16, 17, 18, 19]. It indicates one can use
these quantum systems as information processors like classical processors in our computer.
Thus, these devices are called quantum processors or, commonly said, quantum computers.
At the current level of technology, quantum processors can have tens to hundreds of qubits
(quantum version of bits). Because these qubits are still affected by the environment, these
devices are called the Noisy Intermediate-Scale Quantum (NISQ) devices. So far, several
physical systems are proposed as NISQ devices, e.g., superconducting qubits [20, 18, 21],
trapped ions [22, 23, 24, 16], cold atoms [25], and others [26]. We have entered the NISQ
era, where enough qubits can be controlled with high precision.

1.2 Topic and scope of this thesis

Although NISQ devices have succeeded in performing small quantum computations with
quantum gates [27, 28], it is challenging to perform practical algorithms using quantum
gate decomposition at the current level due to noise and their scaling. Therefore, it is
crucial to explore new applications and new computational models that effectively use the
computational power of these devices.

Importantly, NISQ devices have successfully realized quantum many-body systems and
dynamics [29, 30, 31, 32]. For example, it can be used to realize states out of equilibrium
using the periodically driven systems. These quantum non-equilibrium states are expected
to exhibit new and rich physical phenomena that cannot be seen in equilibrium quantum
systems [29, 33, 34, 35]. Thus, it indicates that NISQ devices may play an essential role
in exploring dynamical quantum phases and new physics with many-body systems.

In addition to exploring new physical phenomena such as the dynamical phases of mat-
ter, driven systems are expected to be applied to information processors based on quantum
mechanics. Since it is out of the equilibrium system, a state would sufficiently explore the
Hilbert space [36]. In other words, such a quantum system is difficult to calculate with a
classical computer. In fact, it has been suggested that there is a relationship between phase
transitions in non-equilibrium quantum systems and quantum supremacy [36]. However,
their application to practical problems remains open-question. Recently, it has been shown
that the dynamical phase transition can efficiently perform reservoir computing, one of
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the machines [36, 37].

The present thesis addresses the above two different possibilities of NISQ applications
by focusing on the symmetry of periodically driven quantum systems. Among the phases
of matter in non-equilibrium systems, we employ a discrete-time crystal (DTC) breaking
discrete-time translational symmetry (DTTS) [33]. First, it has opened a new possibility
of driven systems. Thus, it is expected that they can use it to explore new physics and to
design new quantum phases or non-trivial dynamics. Additionally, because it has been
shown that they have a type of network structure with non-trivial complexity in DTCs [38],
it is expected to be used as a new type of quantum information processing based on
a quantum neural network. Lastly, because this new crystal has been experimentally
realized with different platforms [2, 3, 39, 40, 41, 42, 43, 44], our applications would be
demonstrated with NISQ devices in the feature.

1.3 Outline of this thesis

This thesis mainly addresses two subjects. In the first part, we propose new phases of
matter and exotic phenomena in periodic drive systems breaking DTTS. The second part
will propose a new quantum information processing using driven quantum systems for
practical problems. The former is discussed in Chapters 3 and 4, and the latter is discussed
in Chapter 5.

To help the readers understand our main works, Chapter 2 briefly explains the DTTS
breaking and 2T-DTCs in the Floquet spin network using the minimal model, which has
been experimentally realized. This Chapter provides the physical concepts and mathemati-
cal tools necessary for the following Chapters. For example, to understand the stroboscopic
dynamics of the driven network, the Floquet theorem is introduced and applied to find the
effective Hamiltonian. Using this Hamiltonian, we show the Z,-Ising symmetry plays an
essential role in 2T-DTCs. Then we explain two different approaches, MBL-DTCs, and
pre-thermal-DTCs to show the stability of the DTC phase against parameter fluctuation of
the system. In addition, we introduce a mapping between the Ising model and the effective
Hamiltonian, which helps to understand the phase transition of the DTC. At the end of the
Chapter, we review two crucial experiments on DTTS breaking and realizing DTCs using
trapped ions [2] and NV centers [3].

Part 1: Proposal for new dynamical phase of matter breaking the
DTTS

Chapter 3 proposes a new exotic phase of matter called a chimera DTC [45], in which two
different phases of matter can coexist in one quantum system. We will explain how the
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chimer DTC appears using the periodically driven system. In addition, we will consider
the von Neumann entropy to understand this chimeric state from a quantum information
perspective.

Next, Chapter 4 proposes the new DTC model breaking the local U(1)-symmetry on a
spin network. Then, we report a new essential phenomenon called DTC growth due to this
symmetry breaking, which is not seen in the conventional model [4]. In this growth, the
DTC region at the initial state expands with time, just like the growth of a spatial crystal.
Furthermore, we will extend this model to spin networks coupled to an environment.
In general, the effects of environmental systems are noise and do not help stabilize the
quantum phase. However, we show that the environment can stabilize the DTC growth by
considering the symmetry of the whole system, including the environment.

Part 2: Proposal of new application based on quantum dynamics

The second part of the thesis proposes a new quantum processing based on machine
learning using such dynamically driven systems. Chapter 5 will show that a quantum
system can be used as a reservoir that provides a huge neural network. Then, we will show
how to apply such a quantum neural network to pattern recognition’s practical problem
using the handwritten digits called MNIST dataset [46]. We will see that our algorithm
is fully operational even on NISQ devices. Our results predict that quantum information
processing with a quantum reservoir will be applied to various practical problems in the
future.
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Chapter 2

2T-Discrete time crystals (2T-DTCs)

In both classic and quantum physics, the spontaneous symmetry breaking of microscopic
levels has yielded significant results in understanding the transitions between phases of
matter which is a state’s appearance at macroscopic scales [47, 48]. In closed systems,
energy conservation is directly related to invariance under continuous translations in time.
For a long time, with the exception of relativistic quantum physics [49, 50], space and
time have been treated differently in terms of symmetries. However, recently the idea
of applying spontaneous symmetry breaking to the time direction symmetry has been
proposed.

Subsequently, the symmetry breaking along the time-axis has been proposed on pe-
riodically driven quantum systems (or Floquet systems) [33, 51]. In the systems, its
Hamiltonian is time periodic with a period 7'. In other words, the Hamiltonian is invari-
ant under the discrete time-translational symmetry (DTTS) with 7". Thus, it allow us
to consider an exotic state spontaneously breaking breaks the DTTS. In the situation, a
macroscopic observable should show the sub-harmonic response with a longer period n g1’
(ng > 1,nq € Z). This new phase of matter in the Floquet system is referred to as the
discrete-time crystal (DTC). In particular, when the period of sub-harmonic oscillation
is two times larger than 7" (ngy = 2), it is called the 2T-DTC.

Later Chapters use the DTTS breaking and the 2T-DTC to introduce new models and
apply them to quantum information processing. Thus, in the present Chapter, we briefly
explain the DTTS and the 2T-DTC using a simple model to understand its physics and
introduce mathematical tools for the late Chapters. In the last section, we also show the
recent experiments on DTCs. Several review papers have been published on time-axis
symmetry breaking and the resulting time crystals, including the DTCs [52, 53, 54]. We
refer to the interested reader to these References for more details.
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CHAPTER 2. 2T-DISCRETE TIME CRYSTALS (2T-DTCS)

2.1 Symmetry breaking and quantum Ising model

Before considering the symmetry breaking along the temporal axis, let us briefly re-
view concepts of symmetry and symmetry breaking in this section. Two concepts are
fundamental and play essential roles in revealing physics in many areas ranging from con-
densed matter physics to particle physics [55, 56, 57]. For example, in quantum physics,
symmetries determined a transition between states.

2.1.1 Basic idea of symmetry breaking in quantum mechanics

In quantum mechanics, symmetry is determined by the Hamiltonian of the system. When
the system’s Hamiltonian is invariant under some unitary operator, the system has sym-
metry related to the operation. Similarly, if a state is invariant under this operator, the
state has this symmetry. Similar to the symmetry, the Hamiltonian determines its steady
states. For example, the ground state is the steady-state with the lowest energy. Thus, it is
natural to assume that these states have the same system symmetry. However, surprisingly,
even if a system has symmetry, its ground state does not have symmetry. It is known as
spontaneous symmetry breaking at the ground state.

The concept of symmetry breaking is mainly used in quantum phases of matter and
particle physics. For example, spontaneous symmetry breaking plays an essential role in
Cooper pairs of superconductivity [56] and the Higgs mechanism giving weight to ele-
mentary particles [57]. A phase of matter is a way of describing a state at the macroscopic
scale. While symmetry lies on the microscopic scale. Usually, due to the different scales,
these physical laws are independent of each other. However, spontaneous symmetry break-
ing of states leads to phase transitions at macroscopic scales. Therefore, understanding
the symmetry of quantum states is significant at the microscopic and macroscopic scales.

2.1.2 Symmetry breaking using the Ising-model

To understand the basic concepts of spontaneous symmetry breaking at the ground state, let
us see it using the simplest model. As an example, we employ a quantum one-dimensional
Ising model with N-spins. It is given by,

. N-1 N
Higing = —J Y _ 0707, — Jg ) 07, 2.1)
=1 =1

where o} with 1 € {x,y, 2} are the usual Pauli operators at the I-th site. Here, a parameter
J is a coupling constant. Next, the second term of Hgy,, represents transverse-field, and
the parameter ¢ is a dimensional coupling. In this section, we consider both parameters
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are positive (J, g > 0). To find the symmetry of the ﬁlsmg, let us consider a following
transformation,
XO';CXT = o7, XUfXT = —oy, (2.2)

where X = [I; off is a unitary operator. Thus, under this transformation, the Hamiltonian
is invariant, [Hmng, X } = 0. In other words, the system Hmng has the Z,-Ising symmetry

given by the operator X. This symmetry is crucial in this thesis, which will appear in
2T-DTCs discussed next and in the new models introduced in later Chapters.

Now, let us find the ground state of ﬁISing. To simplify the discussion, we consider the
two opposing extreme limits g > 1 and g < 1.

First, when g > 1, the transverse-field is dominant. Thus, in the extreme limit, its
ground state is simply,

90) = |[+)o @+ @ - @)y = |+ +--- ), (2.3)

where |[+); = (|0); +|1);)/+/2 is the eigenstate of of . Here, |0); and |1); are eigenstates of
o; with eigenvalues £1. Thus, the ground state is invariant under the Z,-Ising symmetry
transformation.

Next, when g < 1, since the first term is dominant, in the extreme limit, there are two
ground states, as follows,

91) = 100---0), [g2) = [11---1). (2.4)

Importantly, two ground states are connected by the Z,-Ising symmetry transformation,
X|g1) = |g2). At the thermodynamic limits, the system will always choose one or other
of the states as its ground state, thus, the Zs-Ising symmetry is broken. In general, it is
refereed to as a spontaneous breaking of the Z,-Ising symmetry at the ground state.

In this Ising model, the spontaneous symmetry breaking shows ordering along the
z-axis at the macroscopic scale. To see this, let us consider the total magnetization along
the z-axis: M, = (>-; 07)/N. First, when the ground state has the Z,-Ising symmetry, its
magnetization is close to zero, for instance, (go|M.|go) = 0. Thus, when g >> 1, the z-axis
component of the magnetization is disordered. On the contrary, when g < 1, it is ordered.
For example, when either |g;) or |g2) is realized as the ground state, magnetizations are
non-zero: (g|M.|g1) = 1and (gs|M.|g2) = —1. It can be interpreted as a phase transition
from a disordered phase to an ordered phase due to spontaneous symmetry breaking.

For more details on spontaneous symmetry breaking in quantum systems and quantum
phase transitions, see the textbook [58].
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2.2 Time translational symmetry breaking (TTSB)

In the introduction, we have briefly explained the intimate relation between DTTS and
DTCs. However, here, we explain it again and more precisely.

2.2.1 Continuous Time Transnational Symmetry (CTTS) breaking

The first idea of the symmetry breaking for the temporal axis (¢-axis) and the resulting
new crystalline order referred to as the time crystal have been proposed by Frank Wilczek
as the analogy to crystalline order in space [59]. Thus, initially, it was considered as a
phase of matter in thermal equilibrium. However, soon it was analytically shown that such
an exotic phase of matter predicted by original Wilczek’s model could not be realized
as the ground state of a manybody Hamiltonian. Furthermore, Bruno proposed a no-go
theorem that theoretically rules out the existence of time crystals in equilibrium systems,
as originally proposed by Wilczek [60].

Since Bruno’s no-go theorem is restricted to a specific model, and does not rules out
the general idea of the time crystals, a new type of the time crystalls were proposed by
Wilzeck and others [61, 62]. However, the no-go theorem is generalized by Watanabe
and Oshikawa [63]. Until then, the definition of time translation symmetry was a bit
ambiguous. So they gave a precise definition based on spatial translational symmetry
which is a important aspect for crystalline order in space. They define the continuous-
time translational symmetry (CTTS) by using the following correlation function of the
integrated order parameter & = [, dzl¢(Z, 0),

L i (@Y s f(1) (2.5)

where gg(f ,0) is a local order parameter, V" is the volume and H is the Hamiltonian of the
system in d 4+ 1 dimensions. Note that the order parameter is the spatial average over d
spatial dimensions. Now, when the state breaks the CTTS, then the correlation function
should show the periodic oscillation with time ¢. However, they also shown that at zero
temperature, when the interactions decay with a power-law 7 with o > 0, the ground-state
correlation function satisfies the following inequality,

1 A A A 2 t
(0] @e ™= D 0) — (0]@2|0)] < O (2.6)

where E is the ground energy and C' is a constant dependent on & and H but not on ¢ and
V. This means that for any fixed time t, the correlation function f(¢) remains constant in
the thermal limit V' — oo.
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2.2.2 Discrete Time Transnational Symmetry (CTTS) breaking

However, the generalized no-go theorem that forbids spontaneous CTTS breaking at
equilibrium systems does not exclude the possibility of the time-translational symmetry
breaking in non-equilibrium quantum systems. Actually, some time after it has been
proposed a new time crystal using a Floquet system whose Hamiltonian is time-periodic
with period T H(t) = H(t+T). The system is described by a time-periodic Hamiltonian
and thus, it is not invariant under CTTS. Instead of that, it has a discrete-time translational
symmetry (DTTS) with the period 7'. Thus, in the new phase, the state breaks the DTTS,
and as a result, some observable shows the sub-harmonic response with a period n,47" that
is multiple integer of the driving period T, as follows,

(U(ngT)|O¥(ngT)) = (¥(0)|O¥(0)) 2.7)

where |W(0)) is an initial state. Such a new time crystal is referred to as discrete time
crystal (DTC) or Floquet time crystal.

2.3 Minimal model of 2T-DTCs

To understand the 2T-DTC in more details, let us consider a simple and more concrete
model. As the model, we employ a periodically spin network with /N-sites and its time-
periodic Hamiltonian with a period 7' = T + 15,

H =hg(l1—e)X o} O0<t<T)
H(t)=1{ . l (2.8)
Hy =Y Ji,0f0, + > Wiof (Th <t<T),
Im l

where o} with € {z,y, 2} are the usual Pauli operators at the [-th site. The above
model has been widely demonstrated in several papers [1, 64] and, furthermore it has
been experimentally realized using trapped ions [2]. Obviously, the above Hamiltonian is
invariant under the DTTS.

Now, let us see more details of the system governed Eq. 5.31. The first Hamiltonian
H, is the individual spin rotation along the z-axis over the entire network with uniform
angle 0 = g(1 — €)1 /2, as follows,
—z‘ezljaf

e

= H (COS (0) f[l — i sin (0) Uf) ) (2.9)

Now, to obtain a sub-harmonic response from the time-dependent Hamiltonian H (1), in
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general one should set g to be 2g7) = 7. Letter we will see the reason. When € = 0, the
above rotation gives the perfect 7-rotation, as follows,

,iﬂzgﬂv R
e T = (=)N][[oF = X, (2.10)
l

and it is the same as the spin flips by operator X. Here, we note that the square of the
operator returns the identity ( X? = I ). In addition, under the operator X, the Pauli
matrices transforms as,

XUfXT:Uf, XalyXTzaly, XJZZXT:—UIZ. (2.11)

It means that X is a representation of the Z,-Ising symmetry transformation [58]. Here,
we note that it is the same operator defined in section 2.1 for the Z,-Ising symmetry
transformation the except for the phase. Later we will see that this symmetry is intimately
related to the discrete-time translational symmetry.

Next, the second Hamiltonian F, represents the spin network with the long-range
interactions with a disorder potential. Here, .J;, is the coupling constant between [-th
and m-th sites and defines the connectivity of the network. Because the interaction
term consists of two sigma operators along the z-axis, it is invariant under the Z,-Ising
symmetry. Next, I7 is the on-site energy at [-th site and is randomly chosen from the
uniform distribution W; € [0, W] with the strength of the disorder 1¥. Because of the
diagonal disorder, the network H, breaks the Z5-1sing (parity) symmetry.

2.4 Effective Hamiltonian and Symmetry

Due to the DTTS breaking, the stroboscopic dynamics of the system governed by Eq 5.31
will exhibit the sub-harmonic oscillation with 2T. Thus, to understand the stroboscopic
dynamic, we employ the Floquet theory which is discussed in detail in Appendix B.2.

In the Floquet theory, the stroboscopic dynamics given by a unitary operator for one
periods called the Floquet operator,

A~ ) T i fre
F =T exp (—;/0 H(T)dT) = e w17 (2.12)

where 7 is a time ordering operator. Here, the exponent argument HeT is a Hermitian
operator and can be interpreted as the Hamiltonian, which governs the dynamics at the
stroboscopic times t = n’I' with aninteger n. Thus, Hef s called the effective Hamiltonian.
This approach to understanding the stroboscopic dynamics of periodically driven quantum
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systems, using the effective Hamiltonian, will be used throughout this thesis.

Now, because of the interesting in the sub-harmonic oscillation with 27, let us derive
the effective Hamiltonian for double periods, which governs the dynamics stroboscopic
times ¢, = 2n" with an integer n. Because the square of the Floquet operator maps a
state to the state two periods later, the Hamiltonian can be obtained from FQ, as follows,
H2Te — ip1n(F?)/2T. Now, 2 is given by

A

F? = exp [—;ﬁng] exp [—;]fllTl] exp [_;ﬁQTQ] exp [—;]fllTl]. (2.13)

However, generally, it is not easy to write the above unitary in terms of the single Hamil-
tonian, which is necessary to find the effective Hamiltonian.

2.4.1 Trivial case (¢ = 0)

To get some intuition of 2T-DTCs, here let us consider the trivial case in which e = 0. As
we saw in the above section, now the time evolution under the first Hamiltonian H; is the
same as the spin flip operator X. As a result, the square of the Floquet operator £ can be

written as,
F? = exp —%ﬁ?l'gﬁ(ZT)
= exXp _%ﬁQTQ exp —;ﬁ1T1:| exp [-;E[QTQ} exp [—;ﬁ1T1:|
— exp —%ﬁQTQ X exp {—%E@T ]X (2.14)
— exp —%FIQTQ exp —hXHQXT}
—exp |1 (i + XXT) T3

where we use X7 = X except a phase, and [ﬁg, XIA{QXT} = 0. Here, in XﬁgXT, we see
the spin-flip, as follows,

X (Z Wfaf) Xt =S WiXoi Xt = =Y Wioj. (2.15)
l l l

It means that the perfect m-rotation (X) changes the sign of the disorder term. As a result,
one can analytically obtain the effective Hamiltonian H>T¢T, as follows,

KT
e = 2 Z Jimoic (2.16)
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Now, we see that the effective Hamiltonian derived in the above has the Z,-Ising symmetry
(parity) which was absent in H,. It indicates that parity is conserved at every even (odd)
period.

2.4.2 Presence of a small error (¢ < 1)

Above, we have derived the effective Hamiltonian for ¢ = 0 and seen it has the parity
symmetry. To see the imperfect driving effect, let us consider the presence of the small
error € < 1. Using the high-frequency expansion, one can approximately derive the
effective Hamiltonian, as follows,

th hrels hme

J? —=N " JE otoY — — 0, + 1) oF + sin 6,07
Z fille} oT zl: filesos T zl:[(cos 1+ 1) o) + sin 6,07 |
2.17)

HZT eff

where, 8, = 2W,15.

Here, we assume that J; e < 1 to ignore the second term in the above effective
Hamiltonian. Later, we will see that the error is responsible for melting the DTC order. To
understand the symmetry of the above Hamiltonian, we decompose it into two components,
HZT eff _ HZT eff + H

H = —T; > [(cos 6, + 1) of + sin 6,07 (2.18)
I

By comparing it to Eq. (2.16), we see that the small error e induces the transverse
magnetic field (H.) along the x and y-axis. We see that H. breaks the Zo-Ising symmetry
of Eq. (2.11). Despite of it, in a rotated frame, the system can recover the symmetry. To
find the frame, first let us simplify the Hamiltonian, as follows,

i 1)
= ’Z;fzm[ I
\/ + cos z \/ + cos z (2.19)

h7r6 Z \/m {cos 0,07 + sin elo'l:|

where the new angle él satisfies the relation tan él = sin él / (cos 9~l + 1). Now, let us
consider an unitary operator,

V; = exp [—i 3 9]0?] (2.20)
1
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In the rotated frame defined by f/(;, the induced field H, can be written as

A A A e
GH. gT =~ Z \/2(1 + cos 0;)o} (2.21)

We see that it has parity symmetry. Here, we note that H 2Tt does not change under the
this transformation. Thus, in the frame, the effective Hamiltonian A" = V;H ST“’HV(;
has the Z,-Ising symmetry. Correspondingly, the Hamiltonian H 2Tl has the Z, Ising-like
symmetry given by Vaf( Vg.

2.5 2T-DTCs

Now, let us see emergence of the 2T-DTC in our system by using the effective Hamiltonian
derived above. To get some intuition, we first consider the trivial case (¢ = 0). Using it, we
will show that the magnetization dynamics can be used as an order parameter for 2T-DTC,
and an initial state should break the parity for the system to exhibit the sub-harmonic
response. Then, we will examine how the periodicity of the sub-harmonic response is
robust against the error e.

2.5.1 Trivial case (¢ = 0)

Previously, we have derived the 2T-effective Hamiltonian H 622'5’“ for ¢ = 0 and seen that it
has the Z,-Ising symmetry. It means that the parity is preserved at every even (t = 2nT)
and odd (t = (2n + 1)T') periods, and can use parity as an order parameter to observe the
DTC. One of the measures of parity is the expectation value of the magnetization, and we
employ it.

Now, let us see the dynamics of the local magnetization (¢ (nT')). Suppose, we have
a initial state | (0)), then the magnetization at even periods is the same as its initial value,
as follows,

— Ty [e—%fﬂie“ LT ﬂ (2.22)

where p = |¥(0))(¥(0)| and we used {ﬁfl‘oeﬁ, alz} = 0. At odd periods, the expectation
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value of the magnetization is given by,

(o7 (2n+1)T)) =Tr

o) (1) o
= Tn [F5(0) (F*) Flo P (2.23)
= —(07(0))

where we used Xan = —o7.

The above result means that when the initial state, e.g. |W) = |00---), breaks the
parity and initial magnetization is no-zero, the magnetization dynamics exhibits the sub-
harmonic oscillation with two times longer periods of the Hamiltonian [33, 38]. Itindicates
that breaking the Z,-Ising symmetry leads to the sub-harmonic oscillation with period 2T.
In other words, the dynamics of the magnetization breaks the DTTS, and such the state
is called the DTC or 2T-DTC. Furthermore, we have seen that the spin-flip operator or
the parity operator in the Hamiltonian Eq. (5.31) plays an essential role for the system to
break the DTTS and to exhibit the sub-harmonic oscillation with period 2T.

2.5.2 MBL-DTCs

When € = 0, as seen in above, the magnetisation dynamics of the system governed by
Eq. (5.31) shows a sub-harmonic oscillation. However, to conclude that this system is
a DTC, we need to show that the periodicity of the sub-harmonic oscillations of the
magnetization stable against parameter changes in the Hamiltonian.

Here, let us see the sub-harmonic response of the model Eq. (5.31) discussed in above
in a different way by looking at the eigenstates of the Floquet operator. Here, to simplify the
discussion, we assume that there is only nearest neighbours interactions and the absence
of the disorder W = 0. It means that the second Hamiltonian of Eq. (5.31) is simply given
by

Hy=Y" Jioio%. (2.24)
(i.5)

where (i, 7) means only taking the nearest neighbour pair of ¢, j. Now, when € = 0, the
Floquet operator is given by

F = exp [—i 3 J;nTzafafn] X. (2.25)
(i.d)

To find its eigenstate, first let us see the eigenstates of H,. Because there is only
o; operators in the interactions [y, eigenstates of 5 can be labelled by its eigenstates
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|0/1); and the eigenvalue m; = +1. Among them, we focus on the two eigenstates
lm) = [00---0) and |—=m) = [11--- 1) with the same eigenvalue Ejy = > ; ;) J;. Next,
using the two states, let us introduce two new states |£),, = (|m) £+ |—m)). Here, these
states |+),, are the eigenstates of X, as follows,

X|£)m = X (Im) £ [-m)) = (|-m) = |m)) = +[=)m (2.26)

where we used X' |+ m) = | Fm). Finally, we conclude that the eigenstates of the Floquet
operator F are given by |4),, with eigenvalues ¢ ~*¥mT2  These states are cat states,
which are a superposition of two microscopically distinct states. As a result, when the
initial state is either |m) and |—m), it evolves periodically with a period 27

Now, how stable is its periodicity against perturbations such as an error ¢? Here,
the strong disorder induces many-body localization (Floquet MBL) in driven systems
[65, 66, 67] and plays an important role. In general, a periodically driven system is
eventually thermalized to the thermal state with the infinite temperature [68, 69, 70, 71,
72,73, 74, 75, 76] where the time-averaged expectation value of the system for longer
times is the same as the expectation value using the thermal state. This indicates that if the
cat states mentioned above are fragile, the DTC phase may become unstable. However, in
the presence of the strong disorder, it is shown that the system can avoid heating and does
not thermalize. Furthermore, when the system shows the (Floquet) MBL, the change of
eigenstates due to perturbation is small within a local length scale [77, 78, 79]. Therefore,
Floquet MBL protects the cat states being the eigenstates of the Floquet operator. Hence,
the system with the strong disorder exhibits a stable and rigid DTC, and the state is
specifically called the MBL-DTC [33]. More details on MBLs are available from Ref.
[33, 1].

2.5.3 Prethermal DTCs

In this present section, let us reconsider the DTCs in terms of an effective Hamiltonian.
The effective Hamiltonian of the Floquet operator tells us the dynamics of a periodically
driven system at stroboscopic times. However, in general, it is impossible to find the exact
effective Hamiltonian (1) analytically from the Floquet operator. Here, we note that in
the present section we use A and Hp with the same meaning, which is the exponential
argument of the Floquet operator. Thus, one should use a series expansion to find the
effective Hamiltonian (f] °) or the Floquet Hamiltonian (f] r). Generally, to keep the
unitary, the Magnus expansion is used. It is given by,

He =Y Q,(T)T", (2.27)
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where 7' is a driving period, and (2, is an expansion coefficient. Its details are discussed
in Appendix B.2.2. For example, the Hamiltonian of the lowest order is referred to as
the time-averaged Hamiltonian. The expansion has been widely used to predict new
phenomena in periodically driven quantum systems.

However, in the limit where the system’s size becomes infinity, such as the scenario of
quantum phases of matter, the Magnus expansion does not converge and diverge, except
for some trivial cases such as a non-interaction system. Furthermore, because of the
breaking of the energy conservation in Floquet systems, it is thermalized and reaches an
equilibrium state at infinite temperature, known as Floquet ETH (see Appendix B.2.3).
Thus, in MBL-DTCs, the strong disorder is crucial in avoiding this thermalization due to
the MBL effect. As a result, as we saw above, a strong disorder system can exhibit DTC
even in driven systems.

However, there is not always a strong disorder in a system. For example, when the
strength of the interaction is stronger than that of the disorder, it may not be possible to
get the MBL effect. Thus, we will show that even in the absence of the strong disorder,
systems can exhibit a sub-harmonic oscillation or show the DTC phase.

When the frequency of the driven system is sufficiently high, importantly, it is shown
that there is an order n, at where one can assume exp (—iHpT) ~ exp (—i]f[}(fO)T),
where lffl(;"O) = >0, Q,T" is a Magnus expansion up to the ng-order. Here, we note
that the assumption is valid within a time scale ¢ < e®“), where w is the frequency of a
system. Therefore, as long as a time within this scale, the state seems to be thermalized
through the effective Hamiltonian up to the n(-th order. Furthermore, since the time scale
is exponentially long, it can reach its thermalized state. Since this thermalized state is
not an actual thermal state, after a time beyond this time scale, the state relaxes to an
equilibrium state at an infinite temperature. This two-step thermalization is called Floquet
pre-thermalization. [80, 81, 82, 83, 84].

Now, the prethermal regime may allow the system with errors to exhibit the stable
sub-harmonic oscillation with two periods. To see it, let us see the magnetization at even
periods (¢t = 2nT") with a small error € < 1,

(07(2nT)) = Tr :FQ"ﬁ(O) (£ Jf}

[~ i 772T-e A A 1 T-ei T i
~ Tr |V e HER20T ) 5 0) (7 (o #HI"20T V~O—Z}
(O ( ) Viei (2.28)

- [ i freTefig, 2 _ipareigp\T o ot
~ Tr |e 7R P(0)<€ men )Véalvé

36



CHAPTER 2. 2T-DISCRETE TIME CRYSTALS (2T-DTCS)

where we used [Vg, of] = 0. Here we use the following transformation,
V2V = e #HR2T, (2.29)

Thus, the state p(0) = Vgﬁ(O)Vg is the initial state in the rotating frame and its time-
evolution is given by the effective Hamiltonian A2,

We now consider that the system immediately relaxes to the thermal state of the
effective Hamiltonian with the lower order, as follows

(07 (2nT)) ~ Tr | fpe0 | (2.30)

where 5pm is the thermal density matrix for f[?‘eff at some temperature 7 # oo. Here
we empathize that it does not mean that the state itself is the same as the pre thermal
state. As we saw, the thermal state is different from the true thermal state of the Floquet
system, and it is stable state with a exponentially longer time (~ ¢°()). It means that the
magnetization can be represented by the thermal state ﬁpre. Now, using the pre-thermal
state, the magnetization at the odd periods can be obtained by,

(o7 ((2n + 1)T)) = Tr (F 1 p(0)(F2+ o)
~ Tt (ppre 107 F) (2.31)
~ — (o7 (2nT))

where we use [H,, 0] = 0 and X7 Xt = —o7.

We have seen that in the system Eq. (5.31), the magnetization dynamics breaks the
discrete-time translational symmetry of the Hamiltonian with the period 7'. As a result, it
shows two times longer periods (27'). Furthermore, the periodicity is robust to the small
error €. We can conclude that the system (5.31) shows the DTC phase when the initial
state breaks parity. Here, the method used to show the existence of DTCs assumes that the
state is in a pre-thermal regime. Hence, such DTCs are called the prethermal DTCs [85].

2.6 Simple theoretical description of 2T-DTCs

In this section, let us reconsider 2T-DTCs analytically. As we saw above, we have assumed
that after a certain time 7,,., states at even periods ¢t = 2nT" reaches the state 5}77‘6, which
is the (pre-) thermal state of the Hamiltonian HZ. As a result, its magnetization can be
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given by (07 (2nT)) ~ Tr {ﬁpreaﬂ. Here, H2 is given by

N hT: h
T = T2 S Jioion = i 2 eos)ar, @32)
L,m !

for J;,T' < 1. Thus, to understand its phase transition and reveal the physics behind
2T-DTCs, let us first investigate the dynamics of Eq. (2.32).

2.6.1 Dynamics and characteristic parameters of the Ising model

To understand the dynamics of Eq. (2.32), let us simplify it by assuming the nearest-
neighborhood interactions with the coupling constant JJ; > 0 and the absence of the
disorder (W = 0). As a result, the Hamiltonian becomes the simplest model referred to as
the ZZ-Ising model [86], similar to the system defined in Section 2.1. Thus, it is given by

Hyz1ing = 1T Y 0707, — hg ¥ o, (2.33)
l l

where J(= J§T,/T) is the coupling constant, and g(= me/27") is the amplitude of the
transverse magnetic field. The driving error € induces the transverse magnetic field in this
model.

Here, we note that, unlike in Section 2.1, the signs of the parameters .J, g are different.
Thus, to make the following discussion easier, let us consider a non-trivial transformation
of the Hamiltonian [:fzz-lsing, where these parameters are reversed (J,g — —J, —g).
Because the dynamics of this system are not given by the Hamiltonian ﬁzz_lsing, but by its
unitary U = exp(—iﬁzz_lsingt), where ¢ is a time, one can consider the inversion of the
time parameter t — —t, as follows,

A

U= eXp(-iﬁzz_ISingt) = exp {—Z (_ﬁZZ-Ising) (—t)} . (234)

Here, we note it is not a strict time-reversal operation for spin systems defined in quantum
mechanics [11]. The above transformation indicates that as long as we keep in mind that
the time parameter is reversed, the system’s dynamics can be characterized by —ﬁzz-lsing-
Furthermore, we will expand on this. Thus, as long as the Hamiltonian is used to investigate
the dynamical properties, one can use the reversed Hamiltonian (_ﬁZZ—Ising)~ Thus, now,
it is identical to the Ising model in Section 2.1 (ﬁlsing = _I:[ZZ—Ising)-

To investigate its dynamics, we need to choose an initial state. Previous works have
suggested that to obtain 2T-DTCs, the initial state has to break the parity symmetry in
the case of short-range interactions. Thus, we consider the simplest initial state |¥(0)) =
|00 - - - 0) which maximally breaks the parity, as an example.
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As we saw in Section 2.1, its eigenstates can be characterized by parity symmetry.
Similarly, this symmetry can be used to understand its dynamics. First, when J > g,
there are parity symmetric eigenstates, i.e., [00---0) and |11 --- 1) for g = 0. It indicates
that the initial state |¥(0)) is almost dynamically frozen in this regime (J > g). As
a result, parity or magnetization is preserved for a long time. Contrary, if J < g, its
eigenstates become parity symmetric, i.e., | ++---+) and | — —--- —) for J = 0. Thus,
the dynamics of initial states breaking the parity symmetry such as |¥(0)) can not be
stable. Consequently, its magnetization dynamics are also not stable.

The above analysis indicates that the magnetization dynamics of the Ising model can
be characterized by a parameter di5ing ~ ¢/J that is the balance between the transverse
magnetic field and the two-body interaction. And there is a critical point: Ogging ~ 1.

2.6.2 Characteristic parameter o, for 2T-DTCs

From the above estimation, one can characterise 2T-DTC phase by a parameter 9,,

€T
YRy

(2.35)

We see that as the interaction strength increases, the DTC phase becomes more stable.
Furthermore, it indicates that to get the 2T-DTC, the system should be the many-body spin
system in which spins are interacting.

Previously, we have assumed the absence of the disorder. Here, let us expand the
parameter ¢, to that of a system with the disorder. From Eq. (2.32), the magnetization
dynamics at a [-the site can be characterised by a parameter 6\"), as follows,

5O I

2(1 2WT5). 2.36
T 4|J5‘T2\/ ( =+ cos l 2) ( )

We note here that the above parameters are site-dependent. Therefore, we introduce the
concept of ensemble and define the parameters of the disordered system as the ensemble
average of the above parameters over the disorder as follows,

5, = <5§”> (2.37)

where (- - - ) means taking the ensemble average over the disorder realization.

2.6.3 Initial state of 2T-DTCs and the total number of domain walls

Next, let us reconsider the requirement for the initial state to get a stable 2T-DTC. In
conventional models, the total magnetization is used to measure the parity symmetry
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breaking. Furthermore, it is used to measure the initial states of 2T-DTCs. However, this
measure does not work for some initial states. For example, consider two initial states
|[W); = [0105---0p1119---1;) and |¥)y = |01110215---0,1y), where 2L = N. The
total magnetizations of both initial states are the same M, = 0. However, the dynamics
of the initial state | V), show the stable sub-harmonic oscillation with 2T, but that of the
state |W); is unstable [64, 44].

Let us use the inference based on the Ising model again to get a better measure. When
J < g, the stability of the state dynamics would be characterized by the number of spin
flips in the initial state. Thus, let us use the total number of domain walls of the basis
states A [38] to evaluate initial states. Here, it tells us the number of spin flips in states.
Therefore, we believe that when it is smaller, the sub-harmonic oscillation of the system
is more stable. For instance, the total number of domain walls for the initial states, | V),
and |W),, are N; = 1 and Ny = (N — 1)/2, respectively. Thus, the state |¥); is available
as the initial state of 2T-DTC. Contrary, the state |¥), will show random dynamics [64].
Thus, N can be used to evaluate the initial stat of 2T-DTCs.

2.6.4 Phase diagram of 2T-DTCs

Now, there is a critical point at ¢, ~ 1, after and before, where the dynamics would
dramatically be changed. If §, < 1, the system should show the stable DTC with a
longer lifetime due to the presence of cat eigenstates of the Floquet operator. Contrary,
when d, > 1, the state does not show a stable sub-harmonic response or it collapses
rapidly. However, because of the presence of the Z,-Ising like symmetry of the 2T-
effective Hamiltonian, the state at the longer time should be different from the thermal
state. Thus, in the presence of the strong disorder case, the state is called the symmetry
unbroken MBL [1, 87].

Lastly, let us consider the second term effect in Eq. (2.17). Previously, when both the
interaction strength and the error are small, we can assume that the second term effect
is much smaller than the transverse magnetic field H.. Contrary, if both parameters are
large, we can expect that it contributes to dynamics dominantly. Here, we see that the
term is complicated two-body interaction and breaks the both Z,-Ising symmetry and the
U(1)-symmetry. As a result, we expect that the state will be thermalized in €|.J§| > 1
regime.

The above results can be summarized in a phase diagram as shown in Fig. 2.1. Here,
the blue line shows the critical line (&, ~ €/|J°| ~ 1) between the 2T-DTC phase and the
symmetry unbroken MBL phase. Similarly, the red line (¢|.J§| ~ 1) divides the thermal
phase and the other two phases. We note that the diagram is a very rough drawing based
on a simplistic model of our effective Hamiltonian. Nevertheless, our theoretical results
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Figure 2.1: Phase diagram of the 2T-Discrete time crystal: (a) Exhibits the phase diagram
as a function of the coupling strength |J§| and the rotational error e. The result is
theoretically obtained using the simple 2T-DTC model defined by Eq. (5.31). The red
(blue) line shows the critical line between the 2T-DTC and the symmetry unbroken MBL.
(thermal). (b) Illustrates the phase diagram numerically obtained [1].

nicely reflect the characteristics of the diagrams obtained from numerical calculations [1].
They used the same model we used to obtain the numerical results, but note that the
parameter definitions are a bit different from ours.

Here, we also mention the recent research on the phase diagram investigated by N. V.
Yao, et al [1] . In 2021, a comment to the paper that introduced this phase diagram was
appeared on the arXiv [64]. In the original work [1], they assumed that the initial state
can take a generic state as long as it breaks the parity and is short correlated. However,
recent work [64] numerically demonstrated that for some initial states such as a random
state 01011 - - - 01), the two-period sub-harmonic response rapidly disappears, even when
the parameter values of the system are in the region giving rise to the MBL-DTC phase.
Furthermore, they claim that their results indicate the absence of MBL-DTCs using trapped
ions reported in 2017 [2]. N.V. Yao and et al. have recently put a reply to this on the
arXiv [88]. From these discussions, it can be said that DTC research is a very hot topic
and is very active.

In this Chapter, we have seen 2T-DTCs with respect to two different models, MBL-
DTCs and prethermal DTCs. Here, we briefly note that several models breaking the
discrete (continuous) time translation symmetry have been proposed:e.g., disordered pho-
tonic time crystals [89], quantum time crystals on isolated Heisenberg magnet [90]. For
example, it has been reported that a time-crystal structure appears as a symmetry protected
topological phase using a topological insulator, called Topological Time Crystals [91]. In
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addition, there are researches on DTC coupled with the environment system [92, 93, 94].
Furthermore, there is a proposal of the new DTC caused the environment effect [95].

2.7 Recent experiments on 2T-DTCs

Previously we have investigated the 2T-DTC both analytically and numerically. Now,
let us briefly review the recent experiments on the 2T-DTCs. Recently, as quantum
technology has improved, it has become possible to realize quantum systems that can be
controlled at a sufficient level. As a result, quantum systems exhibiting sub-harmonic
responses have been observed on several experimental platforms: e.g., nuclear spins in
molecules [39], super-fluid quantum gases [40], ordered dipolar many-body systems [41],
and silicon doped with phosphorus. Furthermore, recently, the realization of DTCs using
quantum gates on superconducting qubits has been reported [42, 43, 44]. Google group
used a programmable superconducting circuit and demonstrated the 2T-DTCs for random
Bit-strings (initial states). In the next section, among them, we will review the two first
DTC experiments on trapped ions [2] and NV-centers [3] reported in 2017.

2.7.1 Trapped ions

In 2017, J. Zhang. et al. reported the first observation of discrete-time crystals in a
spin chain using trapped atomic ions [2]. They used hyperfine clock states of a 1"'Yb™
ion, |FF = 0,mp = 0) and |F' = 0,mpr = 1), to prepare the effective spin-1/2 states
denoted | 1), and || )., where F and m are the hyper-fine and Zeeman quantum numbers,
respectively. They prepared a chain with ten ions in a linear radiofrequency Paul trap.

To observe the DTC, they experimentally realized the system governed by the following
Hamiltonian,

Hy=g(1—¢) Zl:af/ time 7}

H(t) = § He = S Jimotoy,  time T (2.38)
Hy =Y Dot time T5.
l

Here, the first Hamiltonian is the strong driving, and it can be performed by using the
optical Raman transition between two spin states. To break the DTTS, they tuned the Rabi
frequency g to be 2g77 = m with the error €. Next, the second term has the spin-spin
interaction. Using the spin-dependent optical dipole force, they approximately generate
the a tun-able long-range Ising interaction .J;,,, < Jy/|l —m/|®, where a ranges from o = 0
to o = 3 [96]. Finally, the third Hamiltonian represents a program-able strong disorder
along the z-axis encoded by the AC Stark Shift using the off-resonant tightly focused laser
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Figure 2.2: Observation of the 2T-DTC using trapped ions. The top panels shows the
magnetization dynamics at stroboscopic times. The corresponding Fourier spectrum are
shown in the bottom panels. In the experiment, to see the rigidity of the sub-harmonic
response to imperfection of the rotation pulse, they set € to be € = 0.03. In the experiment,
to get the MBL effect, they used the diagonal disorder WT5 = m. Finally, to get the
long-range interaction, they set 2.Jy7, = 0.072 with o = 1.51. The plot is take from
Ref [2].

beam [97].

To observe the DTC, they initialized a state to be |¥(0)) = |+) = % (10) +|1)) and
observed a magnetization along the z-axis at the stroboscopic times ¢t = n’" which gives
the time-correlation function,

(o7 (nT)) = (¥(0)]o7 (nT)a7 (0)|¥(0)). (2.39)

They measured the magnetization with 100 Floquet periods. The experimental results of
the magnetization dynamics and its Fourier spectrum for several conditions are shown in
Fig. 2.2.

In the absence of disorder and interaction, the sub-harmonic oscillations of the magne-
tization are very brittle to spin-flip errors, as shown in the leftmost panel of Fig. 2.2. While,
in the presence of the interactions, magnetization dynamics shows the sub-harmonic oscil-
lation, and as a result, its Fourier spectrum peaks at 1/2-frequency (1/T). It indicates that
the interacting spin system can break the DTTS, unlike the non-interaction spin ensemble.

Their results measured the DTTS breaking and the resulting DTC signal in trapped
ions. The experiment was performed with high precision. Thus, even with the small
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Figure 2.3: Experimental set-up and observation of the DTC in NV-centers. (a) Ex-
hibits the N'V-centers in a nanobeam fabricated from black diamond and the pulse se-
quence to generate the DTC phase. In the experiment, they prepared the initial state
|¥(0)) = (|ms = 0) + |m, = —1)) /+/2 using a microwave. Panels (b) and (c) show the
stroboscopic dynamics of the spin polarization along the x-axis and corresponding Fourier
spectrum with imperfect rotation (6§ = 1.034x). The plot is take from Ref [3].

size of the system, the results are very important for comparison with the theoretical
aspects. However, the analysis of the experimental results with trapped ions is still under
debate [64].

2.7.2 NYV Centers in diamond

Here, we present the experimental observation of the DTTS breaking and the DTC in a
platform with numerous spins, which is closer to a true many-body system. Choi. et al.
realized the 2T-DTC in 2017 using the nitrogen-vacancy (NV) spin impurities in diamond
at room temperature [3]. In NV-center, each nitrogen-vacancy has an S = 1 spin, and
they used external driving to prepare an effective two-level sub-system. States of their
two-level system are spanned by states |m, = 0) and |m; = —1). Their diamond samples
have a high purity of nitrogen-vacancy (45 p.p.m.), and as a result, they have realizes the
system with about one million spins (~ 10°NV).

Using strong resonant microwave filed to control the individual spins, they prepared
the following effective time-dependent Hamiltonian,

Z Qu(1)SF + Q) ()5 + AS7 + 3 2 i grge 4 gvgr — 755y (2.40)

Im Tlm

where S/ (1 = x,y, 2) are general Pauli matrices. Here, €2, /, are the Rabi frequency of
the microwave driving, and they use §2,,(¢) with 7, = 6/, to rotate the spin ensemble with
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nearly perfect 7 pulses (/ ~ 7). And, 4, is a disordered on-site field with approximate
standard deviation. During 73 < 79, the spin ensemble is coupled via the long range
interactions J,, /7. Thus, these two pulses define the Floquet operator with the total
period T' = 71 + 75. Fig. 2.3(a) illustrates the pulse sequence used in the experiment.

To break the DTTS, they prepared a superposition state as an initial state: |¥(0)) =
(|ms = 0) + |m, = —1)) /+/2 and measured the the normalized polarization P(nT) along
the x-axis with 100 Floquet periods.

The results of polarization with imperfect m-rotation (6 = 1.0347) are exhibited in
Fig. 2.3 (b). They also found the corresponding Fourier spectra S(v) = 3, P(nT)e?™
shown in Fig. 2.3 (c). They successfully observed the signal of the DTC phase breaking
the DTTS using NV-centers even with the error in the rotation. Hence, the important point
of their experiment is that they measured the DTTS breaking and the 2T-DTC in the large
system (~ 10 NV) that is closer to true many-body systems.

2.8 Conclusion

In the present Chapter, we have briefly reviewed the DTTS breaking, and the resulting new
phase of matter called the DTC phase. We have demonstrated the simple model of the
2T-DTC and shown its magnetization dynamics exhibits the sub-harmonic response with
2T concerning two different ways, such as the MBL effects and the pre-thermalization.
We have seen that for DTTS breaking, and the appearance of DTCs, the parity symmetry
(or Zs-Ising symmetry) of the 2T-effective Hamiltonian of the Floquet system and the
initial state are essential. We also have reviewed the experiments on the 2T-DTC. The
tools used in this Chapter will be essential in the following Chapters to understand the
DTTS breaking in those proposed models.

Furthermore, we have shown that in this simple model, the collapse of the DTC
phase leads to the two different phases of matter, such as the symmetry broken MBL and
the thermal state. In particular, the existence of this thermalized phase is essential in
scenarios where the complexity of this quantum system is applied. The existence of these
different classes of quantum phases will be meaningful when considering applications of
the complexity of this periodically driven system.
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Chapter 3

Chimera Discrete Time Crystal

In periodically driven systems, one can realize a state spontaneously breaking the discrete-
time translational symmetry (DTTS), and consequently, some observable show sub-
harmonic response with integer times longer period of the driving. For example, as we saw
in the previous Chapter, in a periodically driven spin network with the ZZ-interactions, by
applying the spin-rotation pulse, the magnetization dynamics exhibits the periodic oscil-
lation with two times longer period of the driving, so-called the 2T-Discrete Time Crystal
(2T-DTC) phase.

When a state shows the DTC phase, the periodicity of the sub-harmonic response is
rigid to slight changes of parameters in the Hamiltonian. For instance, in the 2T-DTC
case, the 2T-periodicity of the magnetization dynamics is robust to a rotational error. In
the previous models, it has been considered that the rotational error is uniform across the
entire system.

However, the present Chapter considers the spin network under periodic driving with
site-dependent errors. This new freedom allows us to break the DTTS differently and
design a new phase of matter. In classical mechanics, the non-linear dynamics show an
exotic phase of matter in which synchronized and unsynchronized phases coexist [98], and
it is known as the chimera phase. Similarly, such exotic phases of matter have been found
in the semi-classical regime [99]. However, because of the absence of non-linearity in
the quantum dynamics, it is challenging to make the chimera phase in the fully quantum
domain.

Nevertheless, the periodically driven network allows one to make a chimera in which
multiple phases coexist within the whole system. Here, one of the phases is the DTC
phase, and thus, we refer to it as a chimera DTC [45]. In the present Chapter, we employ
a spin network with two regions and demonstrate the chimera DTC for the extreme case
in which regions A and B’s error is are drastically different.
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Figure 3.1: Diagram of the chimera DTC on the spin network governed by Eq. (3.1). (a)
shows the spin network under the periodic driving. The spin network has two or more
regions labeled by the rotational error, such as € 4,5. These regions have different errors,
and site errors are uniform in each region. In panel (a), the network has two regions A
and B, in which we set rotational errors to be close to zero and one, respectively. (b)
shows the phases of matter in the network. When the initial state in region A breaks the
Zo-Ising symmetry, region A exhibits a DTC phase. On the contrary, region B is the MBL
ferromagnetic state. As a result of two different regional rotational errors, two regions are
effectively decoupled at the stroboscopic times.

3.1 Model

As mentioned in the introduction, we are interested in periodically driven spin networks
with two domains under the effect of by different errors in the driving (so-called the
regional error). Thus, we consider the following time-dependent Hamiltonian with period
T = T1 + T5 for the periodically driven spin network with /V-sites,

H o =hg(l—es) Y of+hg(l—ep) X oF (0<t<Ty)
Hit)={ . leA leB (3.1)
Hy =hY J},0f0, + hY Wiof (T <t<T),

Im [

where o} with © € {x,y, 2z} are the usual Pauli operators at the [-th site. The first
Hamiltonian represents the individual spin rotation along the z-axis with the same
amplitude g. To break the discrete time translational symmetry, we set g to be 297 = ,
similarly to other 2T-DTC models [33, 2, 3]. Now, as we mentioned, to define two regions
in the network, we put two different regional errors €4 and €p in the driving, as shown
in Fig. 3.1. As a result, two regions are characterized by the different rotation angle. In
this Chapter, to see the effect of the regional error efficiently, we assume that the error
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€4 1s close to zero (e4 < 1), contrary, the error ep is close to one (eg ~ 1). When the
regional error in region A is exactly zero (e4 = 0), then the time evolution under the first
Hamiltonian flips spins in region A,

Xp=eBliea’m =[] o7, (3.2)

leA

where [ € A means sites in region A. This operator can be seen as the reg10nal spin-flip
operator and regional Z»-Ising symmetry (parity) ore region A with XA X! A= =1

Next, .J;;,, defines the connectivity between [-th and m-th sites over the network. Here,
we emphasize that there is no restriction on the range of couplings between sites; in other
words, there is the interaction between the two regions. Next, W is the on-site energy at
[-th site and is uniformly distributed [0, V] with the strength of the disorder W. In later
sections, we will see that the MBL effect of this diagonal disorder stabilizes the phases in
this network.

3.2 Effective Hamiltonian and Symmetry

Due to the time-periodicity of the system, we can apply Floquet theory to it to understand
its physics and dynamics at stroboscopic times. Since our model is similar to the DTC
model discussed in the previous Chapter, we expect that our system shows sub-harmonic
oscillation with a period that is twice the driving period T. Given the 2T-periodicity of the
DTC phase, we find the effective Hamiltonian for two periods, HZefo ea.cp» Which gives the

dynamics at the stroboscopic times ¢t = 2n’I". The Hamiltonian can be obtained from the
square of Floquet as follows, 27T — ;i 1n(£?2)/2T. In our model, £ is given by,

€AEB

F? = exp {—;E&TQ exp {—;EHTJ exp {—;E&TQ} exp —;EHTJ. 3.3)

But, in general, it is difficult to obtain the effective Hamiltonian from the above equa-
tion. Therefore, in the following, we will look at the effective Hamiltonian for several
combination of €4 and ep.

3.2.1 Trivialcase (¢4 =0and eg = 1)

Since we are interested in the parameter regime €4 < 1 and e ~ 1, to get some intuition
let us first consider the extreme case in which €4 = 0 and e = 1. Then the time evolution
under the first Hamiltonian H; is the same as the spin flip operator (X4) of region A
defined in Eq. (3.2). As a result, the square of the Floquet operator (F) can be written
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as,
F? = exp —;ilfloijl'eff@T)}
= exp —%[:IQTQ exp I:_;FIITI] exp _;ﬁQTQ] exp I:_;iﬁlTl]
= exp _%ﬁQTQ XA exp |:_;_H2T2:|XA (3.4)
= exXp —%ﬁQTQ exp l:—;XAﬁQXATQ
—exp | —1 (Mo + XalL X)) Ty

where we used )A(L =X A except a phase, and [_Hg, X A}AIQ)A(H = 0. Similarly to the
2T-DTCs previously discussed, in X AFIQXL, we see that the operator X4 generates spin
flip in region A, as follows,

%4 (z Wﬁcrf) R = S W or € = - S Wi 55

leA leA leA

Furthermore, we also see that,

Xa| X Jiwoion, | X=X g (RaoiXh) of, = = > Ji0i0s, (3.6)

leA leA leA

meB meB meB
The above results means that the regional 7-rotation generates the effective time reversal
transformation to the interaction between two region A and B. As a result, one can exactly

obtain the effective Hamiltonian, as follows,

. hT
a2t = =2 N R ofor, +— SN JEoiar, +—ZWf z (3.7)

I,meA l,meB leB

Due to the effective time-reversal, the interactions between two regions disappears in the
above effective Hamiltonian. In other words, the two regions are completely decoupled at
even periods.

Now, let us explore the symmetries of the above Hamiltonian. First, due to the
diagonal disorder, the original Hamiltonian breaks the Zs-Ising symmetry generated by
the operator X = I, of. However, the 2T-effective Hamiltonian above has a Z,-Ising
symmetry generated by the operator Xy = [l;ca0f. As aresult, the system preserves
the regional parity of X4 at even or odd periods. On the contrary, region B breaks the
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regional Z,-Ising symmetry generated by Xp = [I;cp of due to the remaining diagonal
disorder W, in Eq. (3.7), unlike 2T-DTCs previously discussed.

3.2.2 Presence of a small error (¢4 < 1)

The next step is to consider a small error in region A (¢4 < 1), which acts as a pertur-
bation. Using the high-frequency expansion, one can approximately obtain the effective
Hamiltonian as follows,

hT h T
Hez;r,eff = Z S0 WEA 2 Z S o,
I,mcA I,meA
l#m
FLT
2 Z Ji.o000 —|——ZVVZJZ (3.8)
l,meB leB
A . .
_ I;A Z (cos O, + 1>Jf + sin @laiy},

leA

where O, = 2W/ Ty +2 ¥ Ji, T>o?,. In the previous section, we saw that when J; €4 >
meB
1, the second interaction term breaks the 2T-DTC order and consequently the state is

eventually thermalized. Thus, in the following discussion, we assume that J; e4 < 1
unless otherwise, similarly to the similar to 2T-DTCs in the previous Chapter.
Here, to make it simple, we decompose the above Hamiltonian into three components,

i hT
= Y Jinoi
I,meA
P hT ﬁT
= Y Jinion 7 > Wi (3.9)
I,meB leB
~ h A A
foy— TEA Z [(cos O, + 1) o} + sin @loly} ,
4T ica

where H A/ are Hamiltonian for each region, and H Ap represent the induced interaction
between two regions due to the driving. Note that the interaction is highly nontrivial,
because the O, contains only operators in region B. We see that the interaction H,p due to
the small error €4 is very similar to the effective transverse field in the 2T-DTC effective
Hamiltonian of (2.17). And, since —1 < sin#,cosf < 1 for any 6, in the Hamiltonian
H g, the interaction term of i , dominates over that of o} ,. However, we can see the
difference between them. In the presence model, the interaction term induced by the small
error € 4 is not only single operator but also two-body interactions between two region.
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Now, in the presence of the small error €4, the Zs-Ising symmetry of region A is
broken due to the effective interaction H Ap. However, in a rotated frame, the Hamiltonian
recovers the Z,-Ising symmetry. To see it, first let us simplify the induced interaction
H AR, as follows,

hmey
4T

Hap = — > [(cos O, + 1) o/ +sin (:)laﬂ

leA

FL / 6, +1 6
7reA Z 9 1 1 cos @l cos ©; + x sin O
leA \/2 1 + cos @l \/ 1+ cos @l
h
MA Z ~/2 1 + cos @l (cos ©,07 + sin @laly,>

leA
(3.10)
where the new angle él reads
2 1 (:)
tan @) = — 2L G.11)
cos®; +1

Here we would like to emphasize that all the previous algebraic manipulations are possible
because ©; commutes with operators in region A. Let us consider a rotated frame given
by the unitary operator V4,

Vi = exp [—2’ Z C:)laf (3.12)

leA

In that frame, the Hamiltonians H 4 and H p in the 27-effective Hamiltonian do not change,
but the induced interaction H 45 iS now written as

HY = VaHasV)

s (s O

leA

Thus, in the frame, the effective Hamiltonian has the Z,-Ising symmetry. Consequently,
the effective Hamiltonian (3.1) in the original frame has the Z, Ising like symmetry
generated by X5 = V, X, V1.

Previously, we have seen the symmetry of region B by looking at the effective Hamil-
tonian Eq. (3.7) for e4 = 0 and e = 1. Here, we consider the own symmetry of region
B for small error €4 < 1. Surprisingly, region B has local U(1)-symmetry at any time,
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independent of the regional error € 4. This means that the local magnetization of region B

A

is preserved at any times, [0/, 5, H (t)] = 0.

3.2.3 Presence of the driving in region B (e5 ~ 1)

Now, let us consider that e is not exactly one, has a small value (eg < 1). Because
the corresponding rotation angle is too small, @ < 1, its effect to the Hamiltonian
should be small, as follows,

poTeft _ fp2Teff | ;—LM

€AEB €a,l 2T

> o (3.14)

leB

where we use the high-frequency expansion again. As a result of the second term, the
U(1)-symmetry of region B is broken. Consequently, the local magnetisation is not the
conserved quantity anymore.

3.3 Chimera Discrete Time Crystalline Order (Chimera
DTC)

Previously, we have derived the effective Hamiltonian for two periods and seen emergent
symmetries. In this section, let us investigate the phases of matter in the two regions
based on these symmetries. Since we are interested in quantum phases in non-equilibrium
quantum systems, the choice of the initial state is also important. Here, we assume
that there is no correlation between the two regions at the initial time. The assumption
is experimentally reasonable because it can be easily realized in many devices, such as
trapped ions and superconducting qubits. Thus, the initial state can be written as the tensor
product of the two states: |¥(0)) = |¥(0))s ® |¥(0))p, where [¥(0))a,p are the initial
states of regions A and B, respectively.

3.3.1 Trivial case (e4 =0,eg = 1)

To understand the phase of matter in two regions, let us first consider the extreme case
where €4 = 0 and eg = 1 as we discussed in section 3.2.1. In this case, the effective
Hamiltonian for two periods is given by Eq. (3.7). Due to the perfect 7-rotation in region
A, the two regions are completely decoupled at the stroboscopic times. It means that
since there is no correlation between the two regions initially, we can investigate the time
evolution of the two regions separately.
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First, let us see the phase of matter in region B. Since its regional error is precisely
one (eg = 1) or there is no drive acting on A, there is the local U(1)-symmetry at any time
in region B, and thus the local magnetization is preserved. Thus, there are two possible
quantum phases in region B in terms of the initial state. When the initial state of region
B, |¥(0))g, breaks the parity symmetry and has a non-zero longitudinal magnetization,
the phase of matter of region B is ferromagnetic. On the contrary, if the initial state is
s symmetric under parity transformations, the longitudinal magnetization is zero and the
system is in the paramagnetic phase.

Next, let us explore which kind of phase of matter is present in region A. Given the
similarity between our model and the DTC model discussed in the previous Chapter, we
expect region A exhibits the DTC phase. Thus, as similar to the previous DTC model, we
consider the initial state of region A, |¥(0))a breaking the parity symmetry and having
the non-zero longitudinal magnetization (o7) # 0. Now, at even periods ¢t = 2nT’, the
local magnetization in region A returns to the initial value, as follows,

(07ea(2nT)) = Tr (E2p(0) (F*") o)
Ty ( R, 20T ) A lmalzeA) (3.15)
= (072 (0))
where we have used [H e 07 A} = 0. Contrary, at odd periods t = (2n + 1)T', the
magnetization change it sign, as follows

(e (20 +1)T)) = Tr (F?”“ﬁ(@)@?”“) )
— Tr( (2nT)Floj  F) (3.16)
—(07ea(0))
where we have used [Hy, 07.,] = 0 and X 407, X} = —o7.,. These results indicate

that the local magnetization dynamics shows a sub-harmonic oscillation with period 27'.
This means that in region A the magnetization dynamics breaks the discrete translational
symmetry in time from the time-periodic Hamiltonian Eq. (3.1) and the system is in the
DTC phase, as we expected.

The above results indicate that there are two completely different phases of matter in
the same network: the DTC phase for region A and the ferromagnetic/paramagnetic phase
for region B. Remarkably, two phases of matter stably coexist in space despite there are
long-range interactions across the network. Here, we refer to such a unique DTC phase
as the chimera DTC [45], analogous to Chimera states of classical systems in which
synchronized and unsynchronized phases coexist [98, 100, 101, 102]. However, in this
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section, we have considered a minimal example to simplify the discussion. So, in the
following sections, we will discuss each quantum phase in more detail.

3.3.2 Absence of the disorder (W1 = 0)

Previously, we have considered the trivial case with e4 = 0 to get some intuition of the
phase in region A and shown that it exhibits a DTC phase. Here, let us consider the
presence of a small error ¢4 < 1. At the even periods, ¢t = 2n7T’, the order parameter or
the expectation value of the magnetization in region A is given by

My (2nT) =Tr (FQ”/S(O (ﬁQn)TUZZGA)
~Tr (V Tem w7 )Y 5(0)Vlen 7T, o2 n (3.17)

~ Tr (ﬁ(QnT)erA>

where we have used [V4, 07 4] = 0 and [V4, 5(0)] = 0. Here, we have used the following

transformation, _
VaF?V = e w27 (3.18)

In other wards, f]?‘eff is the 2T-effective Hamiltonian in the rotated frame by VA. Thus,
p(0) = Vap(0)V1 is the initial state in the rotated frame and its time-evolution is given by
the new effective Hamiltonian A2,

We now assume that as similar to the DTC phase discussed in the previous Chapter [85],
the system immediately relaxes to the thermal state of the H 2 with the lower order, as
follows,

A

Ma(2nT) = Tr (p(2nT)0jn) ~ Tr (fpre0ica) (3.19)

where fyr is the thermal density matrix for %" at some temperature 7 # oo [80, 81,
82, 83, 84]. It means that the macroscopic observable of the system after the certain time
can be given by the thermal state ﬁpre: M4(2nT) =~ Tr (ﬁpreafe A). Here, we note that it
does not mean that the state is the same as the thermal state.

Now, at the odd periods ¢ = 2n + 1, the expectation value is given by

Ma(2n + 1) = Tr (F 1 (0)(F2 o)

=T (Ppref 07 s F) (3.20)
~ —MA(2TL>
where we use [Ha,07-4] = 0 and X407 4,X} = —oi,. Thus, from the above results,
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we see that the expectation value of the magnetization has a period 2T and it breaks the
discrete-time translational symmetry of the Hamiltonian (3.1) with period 7'. It indicates
that when the initial state of region A breaks the Z,-Ising symmetry of the effective
Hamiltonian, there is the DTC phase in region A.

3.3.3 Ciritical point of Chimera DTCs

Previously, we have shown that region A exhibits the DTC phase, and the phase is robust to
a small error €4 < 1. Furthermore, as we saw, the magnetization dynamics is effectively
governed by the Hamiltonian f[ﬁT‘eff being parity symmetric. Here, let us investigate a
critical point of the DTC phase at which the discrete crystalline order start melting. To
explore this point, we apply the same approach used in section 2.6, in which the effective
Hamiltonian is mapped to the Ising model to chimeric DTCs. When €4 < 1, the dynamics
in region A is given by the following terms of the effective Hamiltonian in the rotated
frame:

Tl frR | fTR
ra = Hi+ Hjp

RT: h A 3.21
%TQ > J@afa%—?Z( 2(1—|—cos@l)> of. G2
I,meA leA

Now, similarly to the 2T-DTC, the dynamics in region A can be characterized by a
parameter 0.,

5O~ AT o (4 ) 322
LT ( + cos 1) (3.22)

where J; is the order scale of the spin-spin interactions. A similar analysis can be
seen in the research on phase transitions in the random Ising model [103, 104]. In
absence of the disorder, the region B has an effect on region A through the parameter,
O, = 27T, Y meB Jim0i,- To understand this in more detail, let us suppose the interaction
is the nearest neighbor. Consequently, the value of ©, should be small and can be ignored.
Then, the above parameter is approximately given by

€EATT

Oz ~ S
2|J5|T>

(3.23)
Here, we note that unlike Eq.(3.22) it is site-independent. In general, the interaction is
not only nearest neighbor, but also long-range with exponential decay. When there are
long-range interactions in the system, it is known that the critical point shifts in the Ising
model [105].

Finally, as the Hamiltonian Eq. (3.21) looks like a one dimensional quantum Ising
chain with a transverse field modulated by the region B, there is a critical point at 5 ~ 1.
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Thus, it is expected that the behavior of DTC changes dramatically before and after this
critical point. If J, < 1, region A should show the stable DTC phase with a longer
lifetime, which is associated with the ferromagnetic phase. Contrary, when §, > 1: i.e.,
€4 > 1, region A should be quickly thermalized, and the sub-harmonic response can not
be because the effective Hamiltonian Eq. (3.21) is in the paramagnetic phase and there is
no long-range order. While if € ~ 1, the magnetization dynamics in region A may show
the sub-harmonic oscillation. However, even if that, the oscillation is unstable, and the
DTC phase collapses rapidly.

3.3.4 Strong diagonal disorder and MBL phases

Previously, we have shown that there is a pre-thermal DTC in region A in the absence of
the diagonal disorder. Here, let us consider the disorder effect. As we saw above, when
the interaction J;, is small, the DTC in region A might not be stable. However, in the
presence of a strong disorder, it is expected that the DTC gets stable due to many-body
localization (MBL) [65, 66, 67].

In the previous section, we introduce the parameter d, to characterise the DTC phase
in region A. However, in the presence of the strong disorder, we need to take into account
its randomness. Thus, we update the parameter as follows,

B~ 1o (V2+5in26) (3.24)
ol+2

where (- - -) is the ensemble average over the disorder realizations.

Next, let us investigate the disorder effect in region B. If the error of region B is close
to one but not exactly one (e ~ 1), there is a driving in region B. In the absence of the
disorder, because the periodic driving heats up the region B, the ferromagnetic phase in
region B is unstable. However, in the presence of a strong disorder, the phase becomes
the MBL phase and it is stable.

3.4 Numerical results

Previously, we have analytically investigated our model and shown that two different
phases of matter that coexist in the same network, so-called the chimera DTC. Here,
we numerically investigate the chimera DTC to understand its stability to the parameter
changes in the Hamiltonian and reveal the physics behind the model.
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3.4.1 Parameter setting

First, let us define the parameters used in our numerical calculations. We employed a spin
system arranged in a one-dimensional array, as shown in Fig. 3.2. Here, we consider long-
range interactions between the spins given by J7, = Jy/|l — m/|* at sites [ and m , where
Jy 1s the coupling constant and o determines the range of the interaction. The parameter
« can be chosen between 0 to oo and allows us to consider various network’s connectivity,
e.g., the nearest-neighbor networks (v = oo) and the fully connected network (o = 0).
Furthermore, as it is illustrated in Fig. 3.2, we consider a spin network with N = § sites
where sites [ = 0, 1, 2, 3 belong to region A while the remaining sites belong to region B.
Unless otherwise stated, we use the spin network.

€A €RB

RegionA

Figure 3.2: A N = 8§ sites spin chain where we apply regional drives with errors labeled
by €4/p. A m-rotation with small error ¢4 < 1 is applied on region A having sites
[ =0,1,2,3. While a small rotation pulse is applied on the reaming spites (region B).
On the chain, sites are under the effect of diagonal disorder W, and are coupled via the
long-range interaction JZ,, = J§ /|l — m|®, where J, is the coupling constant and « is the
interaction decay rate.

3.4.2 Absence of the disorder (W71 = 0)

First, let us investigate the stability of the chimera DTC phase in the absence of the
disorder. To simplify the discussion, we assume ez = 1 and explore the stability of
the DTC phase of region A. Here, we consider a initial state fully polarized along the
z-axis: |¥(0)), = [00---0)o ® |00---0)p. In this case, region B preserves the local
magnetization at the stroboscopic times. Thus region B shows the static ferromagnetic
phase, as we discussed above.

As we saw, the DTC phase in region A can be characterized by the parameter ¢
defined in the above section. Here, in our numerical model, J; is the strength of the
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Figure 3.3:  Short time-scale dynamics (a) of the local magnetization o7 (nT’) for the
chimera DTC with a small error €4 = 0.01 and a strong error ¢4 = 0.1. Here, we set ¢p
to be eg = 1. And we have chosen ¢7' = 7, JyT = 0.2 with o« = 1.51 and WT = 0.
(b) shows the long time-scale dynamics of the regional magnetization M7}, for different
errors €4 = 0.01,0.03 and 0.1.

spin-spin interaction. In the following sections, we will investigate DTC robustness with
respect to the rotational error ¢4, the interaction strength and the interaction range

().

3.4.2.1 Robust against drive imperfections (¢ 4) and size effect (V)

The parameter ¢, is proportional to the rotational error € 4. It means that as €4 increases,
the parameter J,. gets larger. Consequently, the effective Hamiltonian Eq. (3.21) undergoes
a transition from ferromagnetic to paramagnetic phase and the DTC becomes unstable.
To see it, we calculate the local magnetization dynamics at the stroboscopic times in a
short time-scale for small and large errors (e4 = 0.01,0.1) and show the results in Fig 3.3
(a). Here, we consider the strongly interacting (Jo 7' = 0.1) spin-network. First, as we
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Figure 3.4: The long-time dynamics of regional magnetization M7 ; for different system
sizes N = 6,8 and 10. Here, we have chosen €4 = 0.01, ez = 1, J§T' = 0.2 with
a=151land WT = 0.

expected, region B exhibits the ferromagnetic phase. When the error €4 is sufficiently
small, the effective Hamiltonian Eq. (3.21) is in the ferromagnetic phase and region A
clearly shows the sub-harmonic oscillation in the magnetization dynamics with 2T. As a
result, two different phases of matter coexist in the same network. Contrary, when the
error is large, the sub-harmonic osculation rapidly decays, and consequently, the time
crystalline order in region A melts.

To explore the dynamics in more detail, we calculate the stroboscopic dynamics of the
regional magnetization defined by,
> (o7 (nT))

leA/B

M5, 5(nT) = (3.25)

Na/B

where N4, p is the number of sites in each region. The results of regional magnetization
in long-times with three different error (¢4 = 0.01,0.03 and 0.1) are shown in Fig 3.3 (b).
It is clearly shown that the sub-harmonic response in region A becomes more unstable as
the error increases. If the error is small, the DTC phase has an exponentially long lifetime.
However, as the error increases, the lifetime of the DTC gets smaller, and the DTC phase
melts quickly.

In the context of the phases of matter, it is crucial to investigate the long-time dynamics
for different system sizes to investigate finite size effects. The results of the regional
magnetization for the several sizes N = 6,8 and 10 are shown in Fig 3.4. It is clear that
as the system size increases, the DTC becomes more stable and has a longer lifetime.
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Figure 3.5: (a) shows the long-time dynamics of the regional magnetization M}, for
weak (J§T' = 0.06) and strong (J57' = 0.1) interactions . (b) illustrates the long- time
dynamics of the regional magnetization M7}, for strong interaction with v = 0, 1.51 and
a = o0. In both panels, we have chosen €4 = 0.01, eg =1 and WT = 0.

3.4.2.2 Interaction strength (.Jy) and its range («)

Above, we have investigated the resilience of the Chimera DTCs against driving errors.
Here, we will see that the manybody effects can stabilize the chimeric DTCs. As the
strength of the interaction increases, the parameter ¢, becomes smaller. As a result, we can
estimate that the DTC becomes more stable in the strong interaction strength regime. To see
its effect, we consider weak interaction (J§71' = 0.06) and strong interaction (J;71' = 0.2)
cases and Fig 3.5 (a) exhibits local magnetization dynamics at the stroboscopic times in
long-times. As we saw in section 3.3.3, as the interaction strength increases, the many-
body effect becomes more dominant. As a result, the stroboscopic system tends to preserve
the U(1)-symmetry of the many-body interaction. It means that during the time evolution,
the system tends to be polarized along the z axis at stroboscopic times. Thus, the chimera
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Figure 3.6: Long-time dynamics of regional magnetization M7}, for different disorder
strengths W1 = 0 and W' = 2n. Here, we have chosen driving errors €4 = 0.01,
eg = 0.9 and JyT' = 0.06 with o = 1.51. The results strongly suggest that the stability of
the DTC phase in region A is due to the MBL effect in the weakly coupled spin network.

DTC phase has a longer lifetime, as shown in Fig. 3.5 (a).

As we defined « in section 3.4.1, it effectively determines the connectivity of the
spin-network. Thus, one can expect that the critical point shifts depending on «, as similar
to that in the Ising model [105]. To see the « effect, we show the long-time dynamics of
the regional magnetization for the several connectivity (o = 0.0, 1.51, and oo) in Fig 3.5
(b). Here, o = 0 and o = o0 are extreme cases in which the networks are the all-to-all
coupling and the nearest-neighbor coupling, respectively. We see that as o decreases, the
DTC phase becomes more stable. Furthermore, the result shows that chimera DTC has
the longest lifetime for all-to-all coupling (o = 0).

3.4.3 Strong disorder (W1 = 27)

Previously, we have numerically investigated the chimera DTC from the magnetization
dynamics of our Chimera DTC in the absence of the diagonal disorder. Now, in the
present section, let us investigate the diagonal disorder effect on the chimera DTC. As
we discussed in the section 3.3.4, the disorder affects both regions A and B. Thus, we
consider regional errors to be ¢4 = 0.03 and e = 0.9 and weakly interacting network
(JoT' = 0.06). Furthermore, to explore the role of disorder in a systematic way, we
compare the magnetization dynamics for the absence of the disorder (W71 = 0) and the
strong disorder WT' = 27, respectively. Here we employ the same initial state |¥(0)), as
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we used in the previous section.

Fig. 3.6 depicts the regional magnetization of regions A and B without and with the
diagonal disorder. Here, for disorder strength WI" = 27, we take an ensemble average
over 100 disorder realizations. In the absence of the disorder and due to the value of
the error e = 0.9, the spins in region B oscillate with the same frequency in short-time
dynamics. Contrary, in the strong disorder regime, magnetization in region B is effectively
preserved at stroboscopic times due to the MBL effect. It means that the strong disorder
stabilizes the magnetization in region B.

Similarly, the DTC in region A is stabilized by the strong disorder, as shown in Fig. 3.6.
To understand the mechanism, let us evaluate the parameter (J,) for the strong disorder,
defined by Eq.(3.24). Because the parameter is the ensemble averaged value, we calculate
the ensemble average of cos ©,. For simplicity, when we ignore the interactions, we obtain
O, = 2W,T5, and the ensemble average (cos éz) ~ (. As a result, the transverse field in
the effective Hamiltonian gets smaller, and the DTC phase in region A becomes stable.

3.5 Chimera phase with quantum information point of
view

Previously, we have analytically and numerically seen the chimera phase in the magnetiza-
tion dynamics. Here, let us investigate the chimera phase from a microscopic perspective
by calculating quantum entanglement of the state. In the present model, because of the two
different quantum phases coexisting in the same space, let us investigate the entanglement
between the two regions. Since the system is a closed system, we employ von Neumann
entropy which is used to measure the entanglement of pure states [106, 107]. Here, the
entropy between two regions A and B is given by,

Sp(t) = —Trg [P (H)Inps (1) (3.26)

where pp(t) = Try[p(t)] is the reduced density matrix of the region B and can get
by tracing out the degree of freedom in Region A from the total density matrix p(t) =

(W (@) ()] -

3.5.1 Error in initial states and effective interaction suppression and

Previously, we have employed the state fully polarised along z-axis as the initial state
|U(0)), = [¥(0))a®|¥(0))s. Whenep = 1, because {FIB, ﬁf}ﬁﬂ — Oand Hz|¥(0))g =
Ep|¥(0))s, the bipartite entanglement between two regions can not be generated in the dy-

namics. Therefore, it is impossible to explore the microscopic dynamics via entanglement
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Figure 3.7: (a) and (c) depict the stroboscopic dynamics of the local magnetization
(07 (nT)) and the entanglement Sz (n1") for the new initial state |¥(0)), o with 6 = 0.17.
In (b) and (c), we show the long-time dynamics of the regional magnetization M 3 /B and
the entanglement entropy. In all panels, we have chosen €4 = 0.01, eg = 1, Jo1' = 0.2
with o = 1.51 and WT = 0.

in the chimeric phase using this initial state.

However, there should always be a small error in the implementation of the initial state
in experiments. Thus, here we investigate effect of the error in the initial state preparation
to the chimera DTC from the microscopic perspective via entanglement, and we consider
a simple model of our initial state as follows,

[W(0)),9 = e 220277 |W(0)), (3.27)

where 6 is the error.

The results of the stroboscopic dynamics of the local magnetization and the entan-
glement entropy in short times are shown in Fig. 3.7 (a) and (c), respectively. First, the
magnetization results indicate that even there is an error in the initial state preparation,
as long as region A initially has the non-zero magnetization, its magnetization dynam-
ics shows sub-harmonic oscillation with 2T. As shown in the entanglement dynamics in
Fig. 3.7 (c), it seems to indicate that entanglement is low at the even periods and high at
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odd periods. Thus, we see that the Floquet operator I3 generates the entanglement between
two regions. However, as we saw in section 3.2, the interaction between two regions is
strongly suppressed in the effective Hamiltonian associated to the square of the Floquet
operator. Indeed, when €4 = 0, two regions are completely decoupled. Consequently,
the entanglement entropy between two regions also oscillates with the same period of the
magnetization as the entanglement is low at even periods and high at odd periods.

Fig. 3.7 (b) and (d) show the long-time dynamics of the regional magnetization and
the entanglement entropy. Despite the error in the initial state preparation, we see that
region A shows a stable DTC phase with a long lifetime. The entropy results show that
the entanglement generation due to the dynamics is strongly suppressed until a certain
long time. It reflects the stable existence of the ordered phases of regions A and B in the
macroscopic regime. From a macroscopic point of view, after the DTC phase of region
A collapsed, it looks like only region A undergoes a transition into a new quantum phase,
e.g., thermal equilibrium. Contrary to this, the phase of matter in Region B remains stable.
However, in the macroscopic perspective, as the DTC phase of region A begins to decay,
the entropy increases. After the DTC is completely melted, the entropy value saturates
and is slightly fluctuating.

3.5.2 Strong disorder (IW'T' = 27)

Here, let us see the state dynamics under strong disorder W' = 27. To take into account
the randomness of the disorder, we consider the ensemble average of the entanglement
entropy (Sp) as similar to the ensemble average of the magnetization, which is defined

by,
1 &

(Su(t)) = + 3 SY@), (3.28)

where [V, is the total number of the realizations of disorder and Sg) (t), is the von Neumann
entropy for a single realization at time t. The entropy is used as the measurement of the
bipartite entanglement for the pure state. But, in the case, Eq. (3.28) is an assemble of it.
Thus, we note that the ensemble value does not tell us the amount of the entanglement of
the state anymore. However, we use it to get the tendency of the entanglement growth.
Here, we consider regional errors to be e4 = 0.03 and e = 0.9 and weakly interacting
network (Jy7T' = 0.06) as we used in section 3.4.3. Fig. 3.8 exhibits the ensemble
entanglement entropy of the new initial states for different error ¢ = 0,0.17 and 0.27.
Similarly to the disorder-free case, while region A shows the DTC phase, the amount of
entanglement entropy generation is little for all initial errors (6). When the DTC phase is
melting, the entropy increases until the DTC phase is completely melted. Eventually, the
entanglement entropies converge to different values that tend to increases as the error in
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Figure 3.8: Long-time dynamics of ensemble average of the regional magnetization
(M3,p) (a) and the ensemble entanglement entropy (S)p (b) for the new initial state
|W(0)). o with several errors § = 0.0,0.17,0.27,0.57. In both panels, we have chosen
ea=0.01,e =0.9, JyT = 0.2 with« = 1.51 and WT = 2.

the initial state increases. We will see more details below.

It is important to compare our results with generic thermal and many-body localized
states where the ensemble average of the entanglement entropies are predicted to be

(S) ~[NIn2 —1] /2~ 2.3[108] and (S) ~ In2 ~ 0.69 [109], respectively. As we saw,
the ensemble entanglement entropy in long times depends on the initial state or the error
(/) in the initial state preparation. When 6 = 0, the initial state is the ferromagnetic phase.
Thus, in region B, the tunneling time due to the transverse magnetic filed becomes longer.
Furthermore, because of strong disorder, the heating due the transition is highly prevented.
As a results, the entanglement entropy even after long-times is too small. Contrary, in
the presence of the small error § = 0.17 and 0.27, ensembles are in between the MBL
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and the thermal state. As the initial state of region B approaches the disordered state, the
number of ordered states that can be prevented from melting by the MBL effect decreases,
so the final ensemble entropy value gets close to the value of thermalization, as shown in
the result for = 0.57.

3.6 Conclusion

In the present Chapter, we have analytically and numerically investigated a periodically
driven spin network under a regional driving. We have shown that quantum phases of
matter on the network can be manipulated and demonstrated the chimera DTC in which
two different phases of matter stably coexist in the same network. We have also evaluated
its entanglement entropy to investigate the chimera phase from a microscopic perspective.
Interestingly, in the chimera DTCs, entanglement is highly suppressed despite the long-
range interactions over the spin network. It suggests that the chimera state may be used to
control sub-networks on a spin network. We believe that our results, in which interactions
in the network are strongly suppressed by local driving, will contribute greatly to the
design of analog quantum simulators and quantum memories using DTCs.
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Chapter 4

XX-DTC and DTC growth

Previously, we investigated the 2T-DTC phase on the periodically driven spin-1/2 network
where nodes (spins) are coupled via the ZZ-Ising interactions. In this Chapter, we refer
to the 2T-DTCs previously discussed as the ZZ-DTC to distinguish the new type of DTC
we will introduce in this section. In ZZ-DTC models, the effective Hamiltonian for two
periods has a parity symmetry (also known as Z,-Ising symmetry). The symmetry tells
us essential information such as the order parameter and plays an essential role in our
choice of the initial state to observe the DTC phase on the network. For instance, when
the initial state is fully polarized along the z-axis, the magnetization dynamics exhibit a
sub-harmonic oscillation with a period that is twice longer than that of the Hamiltonian,
which is a clear signature of the 2T-DTC phase.

Besides the Z,-Ising symmetry, the effective Hamiltonian for two periods has another
symmetry called the U(1)-symmetry. As a result, the local longitudinal magnetizations
are (quasi-) conserved quantities at the stroboscopic times. Furthermore, that is one of the
reasons why one can use magnetization as the order parameter of the 2T-DTC. Importantly,
it was experimentally checked using tapped ions [110].

However, there are two types of the U(1)-symmetry, global and local, resulting in
total and local magnetization conservation, respectively. In previous studies of (ZZ-)
DTCs [33, 110, 3, 38, 4], the difference between the two symmetries was not apparent
because the ZZ-interactions have both symmetries. Thus, this Chapter will consider a new
spin network breaking the local U(1)-symmetry but having global symmetry.

The present Chapter will show three crucial results on the new network with periodic
driving. First, we will show that even when the local U(1)-symmetry is broken in the
network, the magnetization dynamics can exhibit stable sub-harmonic oscillation. We
show that the global U(1)-symmetry plays an essential role in stabilizing the DTCs.

Next, we will extend our model to the system weakly coupled to an environment.
Generally, the noise from the environment destroys the state’s purity. Consequently, the
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Figure 4.1: (a) Illustrates the initial state we are interested in, and the schematic spin
network for our model in which spins are connected via XX-interactions. Our initial state
has two regions characterized by different symmetries. The blue region is a state breaking
the Z,-symmetry (parity). Contrary, the green regions is symmetric under the parity. (b)
[lustrates the time evolution of the above initial state under our time periodic Hamiltonian
4.1).

phase of matter collapses. However, if we design the system including the environment
to have the global U(1)-symmetry, we show that the dissipative system can exhibit the
sub-harmonic response with 2T.

Lastly, to see the physics behind the difference between global and local symmetries
on the network, we explore the dynamics of a new initial state being in-homogeneous.
Specifically, we consider an initial state having two well-defined regions. One of them is
prepared in the ferromagnetic state, and the rest is in the para-magnetic state, respectively,
as shownin Fig 4.1 (a). Using the initial state, we will show that the DTC can grow, similar
to the crystal growth in the space [4]. By comparing the dynamics in the closed system
and the system coupled to the environment, we show that the entire system eventually
becomes a DTC phase due to the dephasing effect, as illustrated in Fig 4.1 (b).
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4.1 Model

As mentioned in the introduction above, this Chapter considers a new periodically driven
spin network with N-sites coupling with XX-Ising interactions. Our new time-dependent
Hamiltonian with period 7' = T + 75 is given by,

H(t) — ! 4.1)
Hy =hY Jr (ofok + olo¥)+ WY Wiop (11 <t<T),
m l

where o} with u € {x,y, z} are the usual Pauli operators at the I-th site. Since we are
interested in the discrete time-translation symmetry breaking, we set g to be g7 = 7/2
and a parameter € represents a rotational error, similar to the ZZ-DTC. Importantly, when
e = 0, the time evolution of the first Hamiltonian is the same as the parity transformation
operator X = [TV o7. Next, the coupling .J7? determines the connectivity of the network
between [-th and m-th sites, and W is the disorder at the [-th site given by the uniform
distribution W, € [0, W] with the strength of the disorder V.

4.2 Effective Hamiltonian and Symmetry

To investigate the stroboscopic dynamics of the new model, we can apply the Floquet
theory to it, similar to the conventional DTCs. In the present section, we will derive the
effective Hamiltonian and find its emergent symmetry necessary later. Since we expect
our model to show the sub-harmonic oscillation with a period twice longer than the period
of the driving, we derive the 2T-effective Hamiltonian.

4.2.1 'Trivial case (e = 0and W = 0)

Generally, it is difficult to analytically find the effective Hamiltonian from the Floquet
operator with an rotational error €. But as we saw in the ZZ-DTC discussion, one can
get some intuition form the the 2T-effective Hamiltonian for the trivial case € = 0. Using
Eq.(4.1), the square of the Floquet operator can be written as

LTy

F2 = emifeTog—i AT o= HaTo o=

= exp [—i (Z Jir(ofol +ofol)+ > VVfJf) TQ] 42
lm l ( : )
exp [—i <Z Jir (ol ol + ofol) — Z VVfaf) T2]
Im l
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where, we use the fact that the Hamiltonian dynamics are same as the perfect w-rotation.

However, unlike the conventional ZZ-DTCs, in this case its difficult to obtain the
effective Hamiltonian due to the disorder. Generally, the XX-interaction term and diagonal
disorder does not commute with each other,

=0 W, are l-independent
> Jim (UfffmeU?U%z),ZWsz] :{ l P (4.3)
Im l

# (0 others

Thus, to get some intuition or to avoid the difficulty above, we consider the absence of
the disorder W = 0, and now it is possible to analytically obtained the 27 -effective
Hamiltonian, as follows,

hT
a7t =2 Z * (a7 ol + afal,) (4.4)

where we user H27" = i In(F)/2T. Here, the above Hamiltonian breaks local U(1)-

symmetry, as expected. Thus, the local magnetization is no longer a conserved quantity
at the stroboscopic times. However, it is still invariant under the global U(1)-symmetry,
giving the total magnetization conservation. Next, as similar to ZZ-DTCs, the above
Hamiltonian has the Z,-Ising symmetry (more precisely, it is invariant under the transfor-
mation o — of, 0f — —o} and o] — —07).

4.2.2 Presence of the small error (¢ < 1)

Next, to see the rotational error effect, let us consider a small error ¢ < 1. By treating
the error as a perturbation, one can approximately obtain the effective Hamiltonian, as
follows,

h
eszfffoz—ZJ (o] oy, +glgy)+%ZJ vojoY — %ZO‘, 4.5)
l#m l

where we take the first order of the Baker-Campbell-Hausdorff formula [111]. Remarkably,
despite the imperfect m-rotation, the above Hamiltonian (approximately) has the Z,-Ising
symmetry.

4.3 XX-DTCs in closed systems

Previously, we have derived the 2T-effective Hamiltonian in the previous section and seen
the emergence of the Z,-Ising symmetry. The present section analytically and numerically

74



CHAPTER 4. XX-DTC AND DTC GROWTH

investigates the stroboscopic dynamics of magnetization. We will show that our model
can exhibit a sub-harmonic oscillation with 27", similar to the ZZ-DTCs.

Similar to the previous section, we first consider the typical case. We then investigate
the case where there is an error in the rotational pulse and see the Robustness of the
sub-harmonic response.

4.3.1 Trivial case (c = 0and IV = 0)

The emergence of the parity symmetry at periodic times tells us an order parameter and a
choice of initial states to get the 2T-DTC phase on the new network. Hence, It is natural to
consider local magnetization dynamics o7 (n1’) as an order parameter of the DTC phase
and a state breaking the parity symmetry as an initial state, similar to ZZ-DTCs.

Thus, let us consider an initial state p(0) = |¥(0))(W(0)| breaking the parity and see
its local magnetization dynamics. The local magnetization at even periods ¢t = 2nT" is
given by

(o7 (2nT)) = T (F*"p(0)(F>")1o7)

(4.6)
= Tr (p(2nT)o}) .

Similarly, at odd periods (¢t = (2n + 1)T)), it is given by,
(07 ((2n + 1)T)) = Tr (F>+5(0) (F>+)fo7)
= Tr (p(2nT) Flo7 F) (4.7)
=-—Tr (ﬁ(QnT)e%mT?er_%ﬁQTQ)

Now, unlike the ZZ-DTCs, because our network breaks the local U(1)-symmetry, [ﬁ] 9, 07| #
0, and in general,
(o7 (2n +1)T)) # —(o7 ((2n)T) (4.8)

Consequently, in the new model, the local magnetizations can not be used as the order
parameter to see the 2T-DTC.

However, because of the global U(1)-symmetry in the new network, the total magneti-
zation is preserved, [Hy, Y, 07] = 0. Thus, the total magnetization M () = >,(07(t)) /N
at odd and even periods satisfies,

M ((2n+ 1)T) = —M (2nT) (4.9)

It indicates that the total magnetization can be used as the order parameter of the new
model.
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Here, we note that when the initial state has is fully polarized along the z-axis such as
|W(0)) = |00 - --0), then the local magnetization satisfies,

(o7 ((2n+ 1)T)) = — (o7 (2nT)), (4.10)

due to the magnetization conservation. It means that we can still use the local magneti-
zation as the order parameter as long as the initial state is homogeneous, similar to the
77-DTCs. To distinguish it from the conventional ZZ-DTCs, we refer to the new one as
the XX-DTC.

4.3.2 In the presence of the small error (¢ < 1)

Now, let us see our system in the presence of the small error to demonstrate that it shows
the 2T-DTC phase. Similar to the absence of the error, the total magnetization at the even
period can be given by,

M2nT) =
Tr (,6(2nT) Z af) 4.11)
~ NTr (ﬁpre zl: 0f>

Here, we expect that after a certain time (the characteristic time associated to the prethermal
state) [54], the state reaches the thermal state of H 3}{5{0 as similar to the conventional
77-DTCs. Thus, the macroscopic observables of the system after the certain time can be
given by the thermal state ﬁpre.

Next, at the odd periods, the expectation value can be written, as follows,
1
M (20 1)T) = T (PO Zal)

1 .
=T (e HHEWT j(onT e Heaw= oTFZUZFT> (4.12)

~ —M(2nT),

where we used 'Y, 07 F' ~ — ¥, 07. The above result indicates that, even there is the
small error in the rotation, our network sill exhibits the sub-harmonic oscillation in the
magnetization dynamics. Thus, the network is in the DTC phase.
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Figure 4.2: (a) Illustrates the one-dimensional arranged spin chain used in the numerical
calculation to simulate our model. To account for the complexity of the network, we
consider a long-range interaction Jj» = ”7‘777%‘& with the coupling strength Jy and the
decay rate o. Later this Chapter, we couple the system with a Markovian environment
giving the dephasing effect.

4.3.3 Disorder effect

Now, let us consider the disorder effect. In the trivial case (e = 0), we still get the
2T-oscillation in the magnetization dynamics because the disorder is diagonal. Next, if
€ 1s non-zero because the diagonal disorder does not commute with the XX-interaction,
it leads to the additional terms in the effective Hamiltonian. Consequently, the effective
Hamiltonian is no longer invariant under parity. Nevertheless, the disorder effect that
appears in the effective Hamiltonian should be proportional to the error € and the difference
(W; — W,) between the values of the disorder at different sites i-th and j-th sites. Thus,
when the error is small enough (¢ < 1), and the disorder is not too strong, one can observe
a stable DTC phase.

4.4 Numerical experiments of closed XX-DTCs

Previously, we have analytically seen that our network exhibits the sub-harmonic response
in the stroboscopic dynamics of the magnetization and shown that it is the DTC phase.
Here, we numerically evaluate XX-DTC by looking at the magnetization dynamics at the
stroboscopic times t = nT.

4.4.1 Parameter setting

To investigate the dynamics numerically, we employ the simple spin network in which
spins are arranged in a one-dimensional chain shown in Fig. 4.2 as an example. We set the
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Figure 4.3: Depicts the quasienergy spectrum as a function of the rotational error € for
a chain with N = 8. The red and black dots represent analytical and numerical results,
respectively. The analytical quasienergies are obtained from the approximate 27 -effective
Hamiltonian (4.5). We set Jo7'/2m = 0.2 with o« = 1.51 and WT' /27 = 0.

coupling between spins to be J** = Jy /|l —m|* where indexes [ and m indicate the sites.
Here, Jy and « are the strength and range of the spin-spin interaction, respectively. The
parameter o can be chosen between 0 to co and produce various networks, e.g., a network
with coupling between nearest neighbors (« = o0) and the fully connected network
(a = 0). Here, we choose o = 1.51, an experimentally used value in trapped ions [2] and
NV-centers in diamonds at room temperature [3], giving long-range interactions across
the entire network.

4.4.2 Qusi-energy spectrum

Because we proposed a new DTC model and derive its effective Hamiltonian using the
Baker-Campbell Hausdorff formula, it is important to check the quality of the approxima-
tion. Thus to evaluate the approximate effective Hamiltonian, we numerically calculated
the quasi-energies of the square of the Floquet operator (F?), giving the 27-effective
Hamiltonian. Because the eigenvalues and eigenstates of the Floquet operator can rep-
resent the stroboscopic dynamics of any state, we believe that it is sufficient to study the
effect of approximation on them. Here, the quasienergies —hn/T < ¢ < hn/T are
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Figure 4.4: (a) Depicts the stroboscopic dynamics of the local magnetization (o} (nT))
with NV = 8 sites in short periods. (b) Shows the stroboscopic dynamics of the scaled
total magnetization, M, = > ;(o7(nT"))/N for the several sizes N = 8,9 and 10. Here,
we have set € = 0.03, JoT'/(2r) = 0.2 with = 1.51 and WT'/(27) = 0.

eigenvalues of the Floquet operator, as follows,
F2|@y) = e 10 @), (4.13)

where |®;) is a corresponding eigenstate.

Fig. 4.3 shows a quasi-energy with different rotational errors ranging from 0 to 0.1. It
indicates that when the rotational error is small (e < 0.04), the approximate Hamiltonian
is sufficiently accurate to obtain the dynamics of the original Hamiltonian. As the error
increases, the displacement between the red and black dots is bigger. However, our
approximation remarkably works well even at the large error € ~ 0.1.

4.4.3 Stroboscopic dynamics of magnetization

Now, let us see the stroboscopic dynamics of the magnetizations. We employ an initial
state |¥(0)) = |00---0) that breaks the parity symmetry. First, we see the dynamics in
early periods to see its oscillation with 27" and check its robustness to the rotational error
e = 0.03. As shown in Fig. 4.4 (a), even when there is a small error in the rotation, the
local magnetization still shows the sub-harmonic oscillation with 27, similarly to that of
the ZZ-DTC.

Next, we calculate the magnetization dynamics with different system sizes to see the
size effect. Fig. 4.4 (b) shows the time evolution of the normalized total magnetization at
long times for different system sizes N = 8,9 and 10. The result means that as the system
size increases, the two-period oscillation of the magnetization becomes more stable, or
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there is the size effect. Thus, these results show that even in the spin network coupled via
the XX-interactions, there is a stable DTC phase in the region where € is small.

4.5 Dissipative XX-DTCs

We have seen that network dynamics should preserve the parity (Z,-Ising symmetry)
and the global U(1)-symmetry at the stroboscopic times to get the stable DTC phase.
Recently, the stability of the DTCs under coupling to an external has been investigated
theoretically [112, 94, 113, 114, 115] and experimentally [116]. Thus this section extends
our XX-DTC model to the system interacting with a Markovian environment [117]. Fur-
thermore, by looking at the symmetry of the entire system, including the environment,
we will show that it exhibits stable sub-harmonic oscillation even though our model is
affected by the environment.

4.5.1 Lindblad Equation for XX-DTCs

Since we are interested in the system interacting with the environment, we use the density
matrix p(t) of the system rather than the state |¥(¢)) of the system. In the case, the
dynamics of the system can be represented by the Lindblad equation [118, 119], as
follows,

@5ty = =L [(0), 1)) + Dlae)]

dt X
= L{p(t)]

St e

(4.14)

where D[j(t)] is the dissipative term due to the environment, and £][-] is the Liouvillian
operator of the system. See Appendix D for details of the dissipative terms in quantum
and spin systems coupled to environmental systems.

4.5.2 Symmetry in dissipative systems

In general, the dissipative effect (D) or the environment effect are treated as noise that
breaks the quantum state of a closed system (H). However, in our work, we take a different
approach in which we extend the symmetry determining the phase of matter of the closed
system governed by H to that of the dissipative system, including the environment, which
is generated by L. In other words, we try to define the phase of matter of the dissipative
system based on the symmetry of the total system. Specifically, we require the reservoir
to have the exact symmetry of the 27-effective Hamiltonian at ¢ = 0, and as a result,
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we expect that the dissipative network can exhibit the sub-harmonic response with 2T at
longer periods.

Thus, let us discuss the symmetry in the dissipative systems in this section. To
understand the symmetry of the system governed by the Lindblad equation, we use the
super-operator formalism, in which the equation can be written as,

h))

1) = £1p()), @.15)

where |p)) is the vector form of the density matrix in the extended Hilbert space H ® H.
More details are explained in the Appendix D.4. In this formalism, one can treat the
dynamics of the density matrix in a similar way to that of the state in closed system.

Let us extend the symmetry in a closed system to dissipative systems using super-
operator formalism [118, 119]. We assume that a system /7 is invariant under the symmetry

A

S, as follows,
STHS = H. (4.16)

Now, in the super-operator formalism, the Liouvillian operator ﬁUni associated to the
unitary dynamics governed by the Hamiltonian  is give by,

ihlumi = H@ Ly — v @ BT, 4.17)

where H7 is the transpose of H, and Iy is the 2V x 2V -dimensional identity operator.

Then the symmetry transformation in closed systems can be extended in the super-
operator formalism, as follows,
ihﬁUni — ﬁ ® ]/IQN - ]TQN ® ﬁT
A A A A A A A T
A8) @Iy — v @ ($T79)
THS) @ loy — I @ (STH'S7) (4.18)

($
(S

SHH @In — v @ HD)S

A

St (z’hﬁmi) S.

From the above, we see that the symmetry operator in the super-operator formalism can
be given by

A~
~

S=5®5" (4.19)
where S* is the complex conjugate of S 1120, 121, 122].

Now, we extend the above notation to a dissipative system. It means that when the total
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system, including an environment, has the symmetry, its Liouvillian operator L should be
invariant under the symmetric transition, as follows,

O}))

SILS=L. (4.20)
Here, note that we assume that this Liouvillian operator has both unitary and dissipative
terms. More details of the symmetry and corresponding conserved quantities in the open
system, including the dissipative systems, are discussed in Ref. [122].

4.5.3 Dephasing effect

From the analysis of closed systems, we have seen that the global U(1)-symmetry and
Zy-1sing symmetry are essential for the DTC to be stable. Now, to get a stable DTC under
the environmental effect, we extend these two symmetries to the total system, including
the environment. Here, in the dissipative system, these symmetries are represented by the
super-operator formalism as follows,

(4.21)

where Uy = e % 221 with a global phase 6 and X are the global U(1)-symmetry and
Zo-Ising symmetry operators in the closed systems.

The most straightforward candidate of a dissipative term with U (1)-symmetry would
be an interaction in the Pauli matrix along the z-axis (o7). Thus, one of the simple is the
dephasing effect given by,

DIpt)aepn = Y. [noip(t)ai — p(t)], (4.22)

with the site-dependent dephasing strength ~;. In this work, we consider the site-
independent strength ; = 7. Now, in the super-operator formalism, the dissipator of
Eq. (4.14) can be written by,

Ddeph =

B[ =2

> (o @0 — oy @ 1Tav) (4.23)
l

Remarkably, the dephasing term has the Zs-Ising symmetry and the U(1)- symmetry
defined by Eq. (4.21), as we required. Furthermore, we note that in many solid-state
quantum systems, dephasing is the dominant dissipative factor.
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4.5.4 XX-DTCs with dephasing effect

Now, let us see the XX-DTC on the dephasing network. Our total Liouvillian is given by,

a A R N
Lup(t) = =2 [H(1), ()] + DIp(t)]acpn, (4.24)
where H (t) is the Hamiltonian (4.1). Here, the subscript of ﬁt means time-dependent

of the Liouvillian due to the that of our Hamiltonian. Correspondingly, the Liouvillian

super-operator Ly is given by,

l

Here, we note that since our Hamiltonian is time periodic, thus our Liouvillian super-
operator shows the same periodicity L, = ﬁt+T. As a result, one can apply the Floquet

theory to the dissipative system to understand the dynamics at the stroboscopic times. The

dissipative dynamics is generated by the dynamical map &7 associated with the period 7',
N N T 2 Ae
b = Zefo Lrdr _ eﬁiﬁT, (4.26)

where ﬁeTﬁ is referred to as the effective Liouvillian super-operator giving the dynamics at
the stroboscopic times. More details on the Floquet theory for the dissipative systems are
discussed in the Appendix D.5

Before considering the dynamics, here we assume that during the spin rotation Hy, the
dephasing effect can be neglected. We believe the assumption is acceptable because in
many experiments the pulse can be applied in short time which is much smaller than the
time scale of the dephasing. Thus, now, the time-dependent Liouvillian super-operator
can be written as,

E 21:—%<ﬂ1®ﬁ2N—ﬁ2N®f{1T> 0<t< T}y
o EA?Z_%(FI?@]T?N_ﬁ2N®ﬁ2T)"‘VZ(UlZ@UiZ_]AIQ(?N)) T <t<T
l
(4.27)

where, ﬁ2<zN> = ]TQN ® ﬁgzv. Remarkably, remarkably the dynamical map generated by Ly
corresponds to the super-operator ssociated to the spin flip operator defined in Eq. (4.21),
as follows,

_ A mi(ely-inell) _ 5 o % (4.28)

HH>>

1

&3



CHAPTER 4. XX-DTC AND DTC GROWTH

where we used |} ® Ion, Iy @ HT| = 0.

4.5.5 Sub-harmonic oscillations with the dephasing effect

Now, similarly to the DTC in the closed system, we use the Floquet theory to investigate
the dynamics at the stroboscopic times. Gin:n the double periodicity of the DTC,Alet us
find the effective Liouvillian super operator £27 associated to the dynamical map ®2. for
2T. As aresult, in the absence of rotation error € = 0, one can get the effective Liouvillian

for 2T, as follows,

L2 — —% {Iflfi'g“ R Ly —Iv ® (ﬁfi‘g‘f)T} + %Z (0 ® 0" —Tpov) . (4.29)
l

This Liouvillian operator is invariant under both the global U(1)-symmetry and Z,-Ising

symmetry. As a result, the dissipative system preserves the magnetization at times ¢ =
2nT,

A~

&)%“,M} =0, (4.30)

where M is the super-operator corresponding to the total magnetization M = > o7 [123].
Now, steady states |pm)) and |p_,)) are fully polarized state along the z-axis, as

follows,
Pm =100---0)(00---0|, p_pm=|[11---1)(11---1], (4.31)

whose total magnetization are N and — N, respectively [123]. This is very similar to
the behavior of ZZ-DTC and XX-DTC in closed systems. Here, at times 7" the operator
given in Eq. (4.28) maps the state py, to p_, and vice versa. As a result, when the initial
state is either | Py, )) and |p_m)), then its magnetization dynamics exhibits a sub-harmonic
oscillation with period 2T similarly to the XX-DTC in the closed system.

Next, even in the presence of a small error in the rotation, since the effective Hamil-
tonian still has the parity (Z.) Ising symmetry and the global U(1)-symmetry as we saw
in the previous section, one can observe the DTC phase for longer periods. However, the
error also affects the dephasing term, and it induces a new dissipative term breaking these
symmetries. Consequently, the error destroys the some symmetries and the state gradually
explores all the symmetry multiplets reaches a completely mixed state.

4.5.6 Numerical experiments of XX-DTCs with dephaing

Lastly, let us numerically investigate the XX-DTC under the dephasing. Previously, we
have considered the N = 8 model with a rotation error ¢ = 0.03 to see the DTC phase
rigidity against the error. In the closed system, its computational space is 27V = 28 = 256.

84



CHAPTER 4. XX-DTC AND DTC GROWTH

(a) (b)

_ 1071 l - 1.0

& ¥ i 2 \
051 L £ 0.5

E b I E

004 i il 200

k5] i | ]

2 | HIL @

=-0.51 1t “e Site-0 - Site2 -+ Site-4 | =-0.5

5 l' | Site-1 —-Site-3 —+-Site-5 | § /—_
=10 j PLLLURRLLEELLR L] = 0

0 10 20 30 40 50 0 200 400 600 800 1000
Period Period

Figure 4.5: (a) Shows the stroboscopic dynamics of the local magnetization (o} (nT))
for N = 6 sites under the dephasing rate v7' = 0.02 in short periods. (b) Illustrates the
long-time dynamics of the total magnetization, M, = Y";(c7(nT))/N in longer periods.
Here, we have set ¢ = 0.01, Jy7'/(27) = 0.2 with o = 1.51 and WT'/(27) = 0.

However, in the Liouvillian dynamics, because we use the super-operator formalism, we
need more computational space, approximately 22V = 22%8 ~ 7.0 x 10 which is the same
as that of 16-sites in the closed system. Our purpose is to investigate a macroscopically
accessible quantity such as the magnetization dynamics from the microscopic point of
view. We also believe that the results of small systems can provide some understanding
of the behavior of macroscopic physical quantities in large systems. Thus, in our calcu-
lation, we employ a small system with N = 6 sites to explore dynamical properties and
correspondingly consider a small error € = 0.01 to see its robustness.

Now, Fig. 4.5 shows the local magnetization dynamics for the initial state |¥(0)) =
|00 ---0) under the dephasing effect ¥7' = 0.02 with the rotational error ¢ = 0.01.
The leftmost panel in Fig. 4.5 indicates that magnetization dynamics show sub-harmonic
oscillation with 2T in the short periods even in the presence of the rotational error and
dephasing effect similarly to the XX-DTC in the closed system. Due to the rotational
error resulting in the global U(1)-symmetry breaking at the longer periods, the DTC phase
gradually melts. However, the sub-harmonic response survives, even at the longer periods
(n ~ 10%), which is much longer than the dephasing time scale 1/ ~ 10%, as shown in
Fig. 4.5 (b).

4.6 DTC Growth (DTCG)

In the previous section, we have seen that the DTC phase could appear on the new
network breaking the local U(1)-symmetry. Our result means that as long as a spin
network (approximately) preserves the global U(1)-symmetry at the stroboscopic times,
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the networks could exhibit stable sub-harmonic oscillation, i.e., the DTC phase. This
section investigates the essential difference between our model and previous models due
to the network’s local U(1)-symmetry breaking. Thus, this section employs a new initial
state and investigates its dynamics to find differences.

4.6.1 Initial state and DTC seed

As we previously discussed in Chapter 2, to get the DTC phase, an initial state should
break the parity, e.g., the ferromagnetic state |W(0)) = |00 --0). Contrary, if the initial
state is parity symmetric, e.g., a para-magnetic state |U(0)) = | + +---+), it does not
exhibit the sub-harmonic oscillation, where |+) = (|0) + |1))/v/2. These states have
global symmetry, such as global U(1)-symmetry and parity symmetry. Moreover, as we
have seen in the previous section, the global symmetry of states helps the network breaking
the local symmetry exhibit stable sub-harmonic oscillations. Therefore, we consider that
to see the effects of local symmetry breaking in a network, the symmetry of the initial
state needs to be broken locally as well.

Thus, this section employs a new initial state which regionally breaks the parity
symmetry to investigate the network’s local U(1)-symmetry breaking effect. In other
words, there are two regions in the initial state where the parity symmetry is preserved while
the other region breaks it. To simplify the discussion, we consider a simple initial state
dividing the network into two well-defined regions, referred to as region A and region B.
First, as an initial state of region A, we employ the ferromagnetic state |00 - - - 0) 5, breaking
the parity symmetry. If the whole network is covered by region A, region A’s dynamics
breaks the discrete time-translational symmetry, and the state is the DTC phase. Thus, we
refer to the initial state on the region A as the DTC seed. Next, we chose the para-magnetic
state as the initial state | + + - - - +)p for region B, preserving the parity symmetry. Thus,
the total initial state of the entire network is given by [¥(0)) = |00+ --0)A @ |+ + - - - +)p.

In the conventional ZZ-DTC model, we expect the two regions to be preserved during
the time evolution due to local U(1)-symmetry ( in the absence of rotational error case )
on the spin network. Contrary, in our network, as discussed in the previous section, the
two regions will be mixed under the dynamics due to the network’s local U(1)-symmetry
breaking.

4.6.2 DTC Growth in closed systems

First, let us explore the dynamics of the new initial state in the closed system. In the
numerical model with N = 6, we consider a state |¥(0)) = [000)5 ® |+ + +)p as the
initial state. We show the stroboscopic dynamics of the local magnetization (o7 (nT")) for
the new initial state in Fig. 4.6 (a) and (b). result depicted in Fig. 4.6 (a), we see that
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the magnetization dynamics at each site are not stable compared to the previous initial
state |¥(0)) = |000 - - - 0). The XX-interactions J;:* allows the population transfer in the
network. As a result, the sub-harmonic oscillation with 27" or the DTC region initially
located at region A propagates to region B in a short time-scale as shown in Fig 4.6 (b).
Thus, we refer to this spread of the DTC phase as DTC growth, and the initial state on
the region A as the DTC seed.

The aforementioned results show that magnetization dynamics cannot be stabilized
in a finite closed quantum system even after a long time. Here, one can also consider
the above phenomenon as a thermalization of the stroboscopic dynamics governed by the
effective Hamiltonian Eq. (4.5) for the new initial state. It means that if the system size is
large enough to show thermalization, once the state reaches a equilibrium state (at discrete
times), there should be no dynamics except for small fluctuations from a macroscopic point
of view. In the aforementioned case, the dynamics for even periods ¢ = 2nT" shows that
the magnetization initially located in region A spread to the entire system. If the effective
Hamiltonian system shows thermalization, then eventually the magnetization will stop
spreading, and since the total amount of magnetization is constant and there are no special
sites, the entire system should show the DTC phase. This point is not addressed enough
in the present work. However, we are confident that the scenario is sufficiently reasonable
from above results and the previous DTC studies.

4.6.3 DTC Growth with quantum perspective

Previously, we have seen that the initial population located at region A spread over the
whole network due to the XX-interaction. Here, we focus on the time evolution of the
corresponding quantum state and investigate the relationship between the growth process
in magnetization, which is a macroscopic physical quantity, and the microscopic state.
To investigate the time evolution of the quantum state, we consider the entanglement
between two regions, A and B. As we saw in chimera DTCs, if the quantum system is
isolated or closed, one can use the Von Neumann entropy to measure the entanglement of
pure bipartite states. However, in the next Chapter, we will investigate the DTC Growth
on the dissipative network. Thus, we employ the negativity between two regions A
and B, which can be used to measure entanglement between two regions in dissipative
systems [124, 125]. Here, the negativity N3 of the subspace B is defined as

1671y — 1)

Np = ( 5 , (4.32)

where p'2 is the partially transposed density matrix p with respect to subspace B (region
B) with || X||; = Try XX being the trace norm. Fig 4.6 (c) shows the results of the
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Figure 4.6: (a) and (b) Sxhibit the stroboscopic dynamics of the local magnetization
(0f(nT)) for DTC growth in the closed system. The panel (b) clearly shows the population
propagation on the network due to the XX interactions that allow the hopping of spin flips.
In (c), we show the corresponding dynamics of the negativity. We have used a state
|W(0)) =1000)4 ® | + ++)p as our initial state. Here, we have chosen, JoT'/(27) = 0.2
with o = 1.51 and WT'/27 = 0.0.

dynamics of the negativity at the stroboscopic times. During the DTC propagation, the
entanglement between two regions increases over time. However, after a certain period,
it saturates with fluctuation. The number of period (n ~ 10) tells us the time scale of the
DTC propagation. Since the state remains pure and bounds at the edge of the spin network,
the population transfer reflects and causes interference. In this situation, the negativity
fluctuates, and consequently, the magnetization dynamics do not reach a steady state.

4.7 DTC Growth (DTCG) on the dissipative network

As we saw in the previous section, we have seen DTC growth, where the DTC region
expands in a short time scale due to the XX interactions that allows for spin flip hopping.g.
However, because of the finite size of the system, the numerical results show that the
entire system does not exhibit a stable DTC phase at longer periods due to reflections
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Figure 4.7: 'We show the stroboscopic dynamics of the local magnetization (o7 (nT))
for DTC growth for two different dephasing rates 7' = 0.012 and 0.02 in (a) and (b),
respectively. The corresponding dynamics of the negativity is shown in (c). We have used
a state |U(0)) = |000)s ® | + ++)p as our initial state. We set Jy7'/(27) = 0.2 with
a = 1.51and WT/(2r) = 0 with ¢ = 0.0.

at the spin chain boundaries and interference. These effects are caused by the purity of
the quantum state. Here, the environmental effect such as the dephasing might help the
system to suppress the magnetization interference due to the loss of phase information or
coherence. Thus, when the network is coupled with an environment, one might obtain
a homogeneous DTC phase at the steady-state by suppressing the interference using the
dephasing effect, even in a finite system. Here, we consider the network that we used in
the previous section, and systematically explore the effect of dephasing.

In Fig 4.7, we show the numerical results for the local magnetization dynamics (o7 (¢))
and negativity N/ (nT") at the stroboscopic times ¢ = nT" with two different dephasing rates
7T = 0.012 and 0.02. In both cases, the DTC seed initially at region A propagate under the
time evolution. Correspondingly, the negativity increases in a short time scale and peaks at
a certain time. Unlike the case of the closed system discussed above, the negativity begins
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Figure 4.8: We show the DTC growth on the dissipative spin network with a dephasing rate
~T" = 0.02 for a mixed initial state in region B. The panel (a) depicts the dynamics of the
local magnetization at the stroboscopic times for a initial state 5(0) = |000) o (000|®/(0) 5,
where 5(0) 5 is the full mixed state of region B. Correspondingly, the panel (b) plots
the stroboscopic dynamics of the negativity. We set Jo7/(27) = 0.2 with « = 1.51,
WT/(2r) = 0 with e = 0.01. These results are from our recent article published in
Ref. [4].

to decrease and converge to zero due to the dephasing. As a result, the state gradually
loses its purity over time and reaches the steady-state that shows sub-harmonic oscillation
with period 27, as shown in Fig 4.7(a). In general, as the dephasing rate increases, the
purity of the state is lost more quickly, and the system reaches a steady-state in a shorter
time scale. Thus, as shown in Fig 4.7, the low dephasing rate needs more periods (n) to
stabilize the DTC phase.

Above, we have demonstrated the DTC growth for the pure initial state and shown
the population transfer due to the XX-interaction, and the dephasing stabilizes the mag-
netization dynamics. However, it is not clear that dephasing is a key ingredient required
to get a stable DTC for a longer time. To investigate it more efficiently, we consider a
new initial state where region B is a completely mixed state: pp(0) = I57,/Mp, as an
example, where Mp = 23 is the Hilbert space size of region B. Since region B has no
phase information or coherence, DTC may not grow.

We show the result of the local magnetization and the negativity for the new initial
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state with two different dephasing rates v7" = 0, and 0.02 in Fig 4.8. The magnetization
results indicate that although the initial state in region B is the completely mixed state,
the DTC state initially on region A can grow in a short time scale. Similarly to the results
in Fig 4.8, the DTC region spreads over the entire chin and becomes stable due to the
dephasing effect.

The above results for the two initial states indicate that the presence of the DTC seed
is more crucial for DTC growth than the purity of the quantum state at the initial time.
The result of the mixed initial state indicates that the DTC can grow even if the state has
already lost its purity due to the environmental noise before the DTC seed spreads. Thus,
we can observe that DTC growth even in large systems where the DTC state takes a long
time to propagate in comparison to the decoherence time scale.

4.8 Time Scale of the DTC Growth

Previously, we have seen the DTC growth on our network due to the spin hopping and the
dephasing. This indicates that the physics behind the DTC growth is intimately related

to the Liouvillian operator fLeTﬁ. Here, to understand the DTC growth in more detail, we
investigate the structure of the effective Liouvillian operator.

4.8.1 Effective Liouvillian gap for periodic dissipative systems

First, since effective Liouvillian operator is time-independent and gives the dynamics at
the stroboscopic times ¢ = nT’, the density matrix p(n7’) can be written in terms of its
eigenstates and eigenvalues [126], as follows,

pnT) = (Br) " 15(0) = XM TalAR)

= oV |ARY) + 37 e T|ARY),
1#£0

(4.33)

where, ¢; = ((AF|p(0))), and |AlL/ " are left/right eigenvectors of the effective Liouvillian

operator ﬁeT‘f with the eigenvalue A;. Now, we introduce an order among the eigenvalues
as Re(Ag) > Re(A;) > -+ > Re(Agpn). Next, the state |[A)) with Ag = 0 is called the
steady state and is denoted by 5(*). It means that the state does not change under the time
evolution,

Lefpiss) = 0. (4.34)
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From the expansion, we see that the relaxation time-scale can be estimated by 7 ~ 1/A
(unit of 77, where A is a Liouvillian gap [123, 126, 127],

A = —Re(A,), (4.35)

which is the negative real part of the second largest eigenvalue A; of the Liouvillian
operator.

4.8.2 DTC growth time-scale (7ptc)

Now, let us consider the DTC growth time scale (7prc) that tells us the time scale for
the DTC region initially at region to A spread the whole network and the magnetization
interference to be settled and stabilized. Thus, there are two steps in the DTC growth:
the propagation of the DTC state and the DTC stabilization. We have seen the first step
and its time scale in the negativity dynamics in the above section. The time scale can be
determined by the propagation speed, which is related to the hopping strength similar to
the state transfer [128]. The time scale of stabilization is related to the dissipation time
of the system. However, in our model, stabilization due to the dephasing takes longer
than state propagation. Thus we can estimate Tpc from the stabilization time scale or the
relaxation time scale. It means that we can use the Liouvillian gap A as a measure to
estimate Tprc.

Now, let us see more detailAs. Given the 2T-periodicity of the DTC, we consider the
effective Liouvillian operator f)gg; and spectral gap. As we saw in the previous section,
when € = 0, the operator is analytically obtained by Eq. (D.2). In general, it can be
numerically obtained from

2. 1 2T i 1 2
L = o7 In <Tefo Lrd ) = 5nn ((I)QT), (4.36)
where we use the periodicity of the Liouvillian operator L = EHT to perform the

integration. In numerical calculations, we used the above equation to find the Liouvillian
operator and gap, e.g. in the case of diagonal disorder as we will see in the next section.
Now, as an example, let us numerically find the eigenvalues of the effective Liouvillian
with v7T" = 0.02 that is used in Fig. 4.7. We show the results in Fig. 4.9. First, remarkably,
because our system preserves the total magnetization at even periods ¢, = 2nT, there
are multiple steady-states which are different from the fully mixed state (g, = I /2N,
as we expected. As a result, the DTC phase still exists even the system reaches the
steady-state. From the results, we see that the Liouvillian gap is A = 0.02 (in units of
1/T). Correspondingly, the relaxation time is 7/7" ~ 1/AT = 50. While, from the
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Figure 4.9: Spectrum of the 2T-effective Liouvillian operator ﬁgg for the N = 6 spin

network with dephasing rate 77 = 0.02: Red dots are complex eigenvalues A of L27.
We set JoT'/(2m) = 0.2 with o = 1.51, WT'/(2r) = 0 with ¢ = 0.01. Because of the

U(1)-symmetry of Ezf? , there are multiple steady states. The plot is taken from our recent
article Ref. [4].

magnetization and negativity dynamics, we can estimate the DTC growth time scale to be
around 7cg /T = 40 ~ 60. We see that the estimated time-scale obtained by analyzing the
Liouvillian gap explains the time scale of the DTC growth.

4.9 Disorder effect on DTC Growth

Previously, we have investigated the DTC growth time-scale 7 and seen that it is de-
termined measured by the Liouvillian gap A. In the above analysis, we have considered
the absence of the diagonal disorder to simplify the discussion. Here let us investigate
the DTC growth in the presence of the disorder. When there is a strong disorder, it is
known that it induces the Floquet Anderson localization [129]. Consequently, the crystal
growth might be suppressed due to the localization effect. In this section, we investigate
the disorder effect using the Liouvillian gap.

When one derives the Lindblad master equation, it is assumed that the system of
interest is weakly coupled to a Markovian environment. In our work, we implicitly assume
that the dephasing rate is much lower than the characteristic energy scale of our system.
Actually, in the numerical simulation, we set the network’s hopping strength to satisfy the
condition. However, in the presence of a strong disorder, the coupling might be effectively
become negligible due to the localization phenomena. Consequently, the aforementioned
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Figure 4.10: Liouvillian gap A of the spin chain with NV = 6 sites under the effect of
disorder. (a) Liouvillian gap for several realizations of disorder with strengths ranging
from WT,/(27) = 0 to the maximum value 7. The red dots and dashed line represent
the average value of the Liouvillian gap with 200 disorder realizations. The blue band
is the width between the maximum and minimum values of the Liouvillian gap. (b)
Spectrum of the Liouvillian for one disorder realization for different strength of the disorder
W/Jy = 10,25 and 30. In both (a) and (b), we set v7' = 0.02, and JoT'/(27) = 0.2 with
a = 1.51. These plot are taken our published article Ref. [4].

condition might be broken at stroboscopic times ¢ = 2nl". It means that there is a critical
strength of the disorder .. Before and after the critical point, the Liouvillian spectrum
and the Liouvillian gap should dramatically change.

4.9.1 Numerical experiment

In this section, we explore properties of the Liouvillian gap for the several disorder
strength and show the result in Fig. 4.10. To deal with the randomness of the disorder, we
calculate the average value of the Liouvillian gap (the red dashed line) and the minimum
and maximum values (the blue dashed lines) for the several disorder strength with 200
disorder realization. The result shows that the time scale for DTC growth is not affected by
the disorder up to a specific strength W,/Jy ~ 15. Contrary, in the strong disorder region
W > W.,, the Liouvillian gap may take a smaller value due to the effective suppression
of the hopping.
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Here, let us take a closer look at the Liouvillian gap near the critical point. To
explore spectral properties of the Liouvillian that determine the steady state, we depict the
spectrum close to the lowest real part for several disorder strengths W/.Jy = 10, 25 and 30
in Fig. 4.10. We see that the structure around the gap does not change up to W/.Jy ~ 15.
Contrary, when the disorder strength is larger than the critical points (W > W,), the
Liouvillian operator structure gradually changes. As a result, the gap becomes smaller,
and the DTC growth becomes slow.

4.9.2 Theoretical analysis using the simplest model

Now, let us investigate the disorder effect on the crystal growth more analytically. Here,
we show how the hopping strength effectively decreases due to the disorder effect. To
simplify the discussion, we consider a small system with two sites (N=2), and its the
time-dependent Hamiltonian is given by,

hg (o7 + o3 0<t<T
H(S)(t)—{ g (01 + 03) si< iy (4.37)

th (UTU% + U%’O’g) + thO'f + hWQU; T1 S t<T y

where 2¢g77 = m. The first Hamiltonian gives the parity operator, X = ofog. Next, W,
with [ = 1, 2 are the diagonal disorder amplitudes at each site and we assume Wy > W.

To obtain the 27-effective Hamiltonian, we begin with the square of the Floquet
operator. Using the spin rotation properties, it can be written as

ofof -‘rO'gO'i/ +W101+W202}T2Xe {Jo(aoal +Ugaf)+W10f+WQJ§}T2X

(4.38)

+(Wa=W1)o5 } Ty ,~i{ Jo(ofof +ofot ) —(Wa=Wi)o3 } T2

( )
e—Z{J()(O' of +a' o )+W10'1+W202}T2 —2{Jg(o‘001+0'00'1) VV10'1 WQG'Q}TQ
_ efz{Jo(o' 0'1+o'00 )

( )

0
0001-‘,-0001 +Wga2}T2€—z{Jo(aoal+anl) WgO’Z}TQ

where we use [Y; 0y, Jo (6§07 + ofoi)] = 0. Here, W, = Wy — W is a gap of the
disorder for two sites, and it characterises the disorder effect.

Since the total number of expiation are preserved at every even and odd periods, we
consider a subspace for the one excitation. In this subspace, our system is a two level
system, when we consider a the basis set

110) = (é) 01) = <(1)> , (4.39)
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for the new subspace. In this basis, the 27-effective Hamiltonian reads

A~ €0 K

HY = 4.40
where €4/, are real, and K is a complex effective coupling, respectively. The effective

hopping strength is characterized by the absolute value of the off-diagonal term | K|.

Now, let us find the effective Hamiltonian in the one-excitation subspace. Within the
subspace, Eq. (4.38) can be written as,

FAQ — e—i(2J00x+Wgoz)T2e—i(2J00'w—Wgcrz)T2’ (441)

where o (11 € x,y, 2) are the Pauli matrices for the two level system. Since the system is
the two level system, we exactly derive the effective Hamiltonian from the above equation,

as follows,
ch (\/(2J0) + W2o" — W sin(a)o?)

2T\/(2J0)2 cos?(a) + W?2

freff
HQT__

(4.42)

where we used the composition law of the group SU(2). Here the two parameters a and ¢
are given by

a = _T2 (2J0)2 + Wg2
2(200)% . (4.43)

COS(C) =1- W

respectively.

The above Hamiltonian is exact, but it is difficult to see the disorder effect. Thus to see
it more efficiently, let us consider the two situations, small and strong disorder strength.
First, we assume that the disorder strength is small. Then the Hamiltonian becomes,

A W, T? JoW,T
o~ hJy (1— ; )a”—l— 029 ¥, (4.44)

The result is the same as that obtained by using the Baker-Campbell-Hausdorff formula at
the lowest order. Then, in the weak disorder regime, the hopping strength is

T 2
K| ~ Joy/1— (ng2) < Jp. (4.45)

It means that its value decreases as the disorder gap increases, as we expected.
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Figure 4.11: Effective coupling | K| and Liouvillian gap A for a N = 2 coupled spins
under the effect of disorder. (a) The effective coupling | K| for disorder strengths ranging
from W,T5/(2m) = 0 to m. We show the corresponding Liouvillian gap in (b), In (a) and
(b), we set vI' = 0.02, and JoT'/(27) = 0.2. The plots are taken from Ref. [4].

Nest, we find the large disorder gap (I, > 1). Now the Hamiltonian is given by,

Ao 2hJy (sin(2W, 1) , .
H ~ T ( 5 92 6% — sin (W,T5)" 0¥ | , (4.46)
and the corresponding coupling strength is

2J0‘ SiH(WgT2> ’
W,T

| K| < Jp. (4.47)
Surprisingly, the above Hamiltonian and | /| works even for the small gap W, < ¢ except
for W, = 0. Now, as IV, increases, we see that the effective coupling strength decreases,
and it gets smaller than the dephasing rate at the certain critical strength .. From
Eq. (4.46), for the given dephasing rate v, the critical point is roughly estimated as,

m 0
AR R S 4.48
W T2< (2J0+7)> (49
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It indicates that for the N = 2 case, the critical point is in the strong disorder regime.
Thus, we expect that the Liouvillian gap is constant until the diagonal disorder gap reaches
the critical point. Then, when disorder strength is larger than the critical disorder, the
Liouvillian gap gets smaller. Lastly, we numerically evaluate the above estimation with
the hopping strength Jy7'/(27) = 0.2 and the dephasing rate v7" = 0.02. First, from
the equation obtained above, the critical point for this condition is about W,/ Jy ~ 29.9.
Next, we numerically find the effective coupling | K| for several gaps and show the result
in Fig. 4.11. We see that as the gap increases, the effective coupling | K| decreases. At a
certain gap, it crosses the value . Correspondingly, when the diagonal disorder strength
is smaller than the critical point, the Liouvillian gap is constant. However, when it exceeds
the point, the gap gets smaller. Form Fig. 4.11, the critical gap is about W./.Jy ~ 30.
The agreement between numerical and theoretical results is good. Here, we note that the
critical point is much bigger than the N = 6 case (W./.Jy ~ 15). We have to point out
that the above model has more sites, long-range interactions, and higher excitation sectors
that can shift the critical point.

4.10 Conclusion

This Chapter demonstrated that a spin network breaking the local U(1)-symmetry can
exhibit the sub-harmonic oscillations with the double periodicity of the driving. By
extending the Zs-symmetry and the global U(1)-symmetry of the effective Hamiltonian,
which are necessary to obtain the stable 2T-DTCs, to the Liouvillian operator of the
dissipative system, we showed that a network with dephasing effect can exhibit stable
sub-harmonic oscillation. Furthermore, we investigated an essential difference between
spin networks preserving and breaking the local symmetry by looking at the stroboscopic
dynamics of a new initial state. We firstly demonstrated the DTC growth using the hybrid
states, which do not appear in the conventional models. By comparing different initial
states, we showed that the DTC seed is crucial to observe the growth and that the purity
of the initial state does not play a role in this phenomenon. By analyzing the spectrum of
the 27 -effective Liouvillian operator, we showed that the Liouvillian gap can measure the
time scale of DTC growth. Additionally, we investigated DTC growth in the presence of
diagonal disorder. Until a specific strength of the disorder, the time scale of DTC growth
does not change. However, when the strength of the disorder exceeds a certain critical
point, it is slow growth due to the effect of Anderson localization. As a result, its time
scale (or the Liouvillian gap) becomes longer (or smaller). We believe that this DTC
growth will help generate stable DTCs coupled to the environment and understand new
dynamical quantum phases of matter.
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Chapter 5

Quantum Reservoir Extreme Learning
Machine (QRELM)

When simulating quantum systems on classical computers, the computation time increases
exponentially as the size of the system increases. It implies that the dynamics of quantum
systems are more complex than classical systems. R. Feynman pointed out that com-
puters based on quantum mechanics may have more computational power than classical
computers [130]. Around the same time, Benioff [131] and others have a similar idea.
Subsequently, Deutsch [132] proposed a gate model for quantum computer as an extension
of the classical Turing machines to quantum systems. It consists of a quantum version of
bits called qubits (quantum states) and quantum gates (operators) which are the quantum
counterparts of classical bits and logical gates, respectively. An essential result of this gate
model of quantum computation is that its universality has been shown, i.e., any quantum
computation can be performed [133].

Although various efficient quantum algorithms [134, 135] have been developed to be
run on quantum computers, the implementation of error-correcting codes is inevitable
since quantum computers imitate classical Turing machines [136, 137]. Furthermore, to
use the aforementioned algorithms for practical problems, many logical qubits are required.
However, at the current level of technology, quantum processors have tens to hundreds of
qubits affected by noise (Noisy Intermediate-Scale Quantum (NISQ) devices): such as
superconducting qubits [20], trapped ions, cold atoms [25], and others [26]. Therefore, it
is essential to investigate the applications on NISQ devices.

A quantum neural network was proposed as a different approach to exploit the intrinsic
quantum complexity of quantum systems. Initially, it was proposed in the context of
artificial intelligence to explain the brain’s cognitive functions with quantum effects [138,
139]. Nowadays, it is used in the contents of quantum machine learning (QML) as an
analogy to classical neural networks used in machine learning (ML). Recently, QML has
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been extensively investigated because it has been shown that quantum neural networks can
be optimized by Variational Quantum Algorithms (VQAs) [140, 141, 142, 143, 144,
145] which is widely used to optimized a quantum circuit. The algorithm is a hybrid of
quantum and classical computers that can efficiently solve problems based on variational
principle and is expected to run on NISQ devices. However, optimization of the quantum
circuits has several issues, and one of them is the scalability. Furthermore, the noise effect
is inescapable on quantum circuit model.

Recently, Quantum Reservoir Computing (QRC) [146, 147, 148] and Quantum
Extreme Learning Machine (QELM) have been receiving much attention to overcome
the difficulties of VQAs. In QRC, the quantum system generates a huge neural network,
and this algorithm does not require any optimization in the quantum part. Furthermore,
because QRCs can be designed as analog quantum computing, it is expected that the noise
effect can be suppressed compared to the circuit model [149]. However, since the quantum
state is collapsed by measurement, it is not clear that QRC has a memory effect similar to
classical RC. Thus, QELM has recently proposed applying quantum neural networks to
pattern recognition tasks. However, it has been challenging to address practical tasks with
enormous input, such as images.

The presence Chapter proposes a new machine learning model based on QRCs and
ELM and refers to it as Quantum Reservoir Extreme Learning Machine (QRELM).
In the model, quantum systems are used as a reservoir producing a complex neural net-
work similar to QRCs. We propose a systematic way to encode the classical image into a
quantum state using the classical information compression technique and demonstrate the
classification of handwritten digits in the MNIST data set. In this Chapter, we investigate
the performance of our computational model by comparing it with different quantum sys-
tems. As a significant result, we show by using driven quantum systems (Floquet systems),
our model does not require as much complexity as conventional quantum processors re-
quire, such as quantum supremacy. For instance, the Floquet system records over 98%o
with 14-qubits for testing data (unknown data). We believe that this new QRC opens up
new avenues for future computing with quantum complexity.
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5.1 Introduction of Machine Learning (CML) and Clas-
sical Neural Network (CNN)

We will briefly explain machine learning and classical neural network in this section for
readers unfamiliar with them.

5.1.1 Machine learning (ML)

Machine learning (ML) is a type of artificial intelligence (AL) which is a technology
that allows computers to perform intellectual actions such as language understanding and
reasoning on behalf of humans. Among them, ML is the technology to achieve human-like
learning ability on computers. In ML, a computer learns from "training data" and uses the
learning results to perform some task.

There are three types of ML depending on the learning style: supervised learning, un-
supervised learning, and reinforcement learning [150, 151]. First, supervised learning
is a learning method that learns connection between input and output using the previously
prepared input-output pairs (labeled training data). Contrary, unsupervised learning is a
method of learning the characteristics of the training data without output (labels). Finally,
reinforcement learning is a method that does not need training data but learns to maximize
the reward (or cost) depending on the purpose. In this Chapter, mainly, we focus on
supervised learning.

Typical supervised learning applications are regression and pattern recognition, as
shown in Fig. 5.1 (b) and (c). Regression is a kind of function approximation technique.
Computers learn the connection between input and output during the ML and find an
approximate function. While pattern recognition is a technology that finds specific rules
from given data and assigns them to predetermined clusters. Here, we note that some-
times, pattern recognition is referred to as classification, and a machine learning device
is referred to as a classifier. An example of a simple problem in pattern recognition is
the classification of two-dimensional scatter plots. Another famous problem is the clas-
sification of handwritten digits called the MNIST dataset [46]. This Chapter proposes a
new classifier using quantum systems that exploit the power of quantum systems to solve
a classification problem.

5.1.2 Classical neural network (CNN)

Machine learning is a "methodology" in computer science, and thus to actually perform
it, one needs mathematical models. One of them is a neural network (model). This
section will introduce two neural network models: the simple perceptron, which is the
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Figure 5.1: Overview of Artificial Intelligence (AI) and Machine Learning (ML): ML is the
subclass of Al. Supervised learning is the subfield of ML and mainly used to regression (b)
and classification problems (c). Regression analysis is a statistical processes for estimating
the relationship between inputs and outputs. The left panel of (c) is the binary classification
being linearly separable. The right panel of (c¢) is hand written digits (MNIST).

most basic and most straightforward, and the deep neural network (DNN).

Initially, the simple perceptron is proposed to model neuron activity in the brain [152,
153]. Nowadays, it is recognized as a concrete model for performing machine learning.
The simple perceptron consists of a weighted summation, and a non-linear function (an
activation function) called a step function, as shown in Fig. 5.2. For example, let
us consider the binary classification (such as true or false). When there are n-inputs
(z1,--- ,x,) and one output (y), the output of the simple perceptron is represented by

y=rf (Z wyT) + b) (5.1)
l

where w; and b are weights and a bias, and f(-) is the step function. Because of the
step function, y can be taken a value from O to 1. The weights w; (I = 0,1,--- ,n) are
initialized to be small random numbers and updated as follows,

w™™ = w™ —p(t - y)z (5.2)
where wy = b, t is the desired output (labels), and 0 < 1 < 1 is a teaching rate. The model
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Figure 5.2: Illustration of the simple perceptron and a neural network. (a) Shows the
simple perceptron with n-inputs (x1, z2, - - - , x,,) and one output y. The perceptron sums
up weighted inputs and returns output through the activation function. (b) Illustrates the
conceptual model of the neural network used in deep learning.

can lean the training data by optimizing the weights and bias. Here, we note that since
the connection between input and output is a network, the simple perceptron is a neural
network.

Despite the simple mechanism, it is theoretically shown to solve any linearly separable
problems by the simple perceptron model. Contrary, the only linear transformation (a
linear network) does not have the power or expressiveness to solve nonlinear problems
such as the classification of handwritten number images.

As an improvement of the simple perceptron, multilayer perceptron was proposed.
In this model, many neuron layers connect to another layer via an activation. Its structure
is more similar to the network of neurons in the brain. By increasing the number of layers,
the representation capability of the neural network is increased. As a result, nonlinear
separation problems can be solved. Theoretically, a feed-forward neuronal network can
represent any continuous function with arbitrary accuracy. It is known as the “universal
approximation theorem” [154, 155]. However, practically, to get a high expressiveness,
a deep neural network is used in many applications, and it is called deep learning.
Conceptually, the neural network can be represented as

y=9r Wr—1-g0-1(---Wa- g2 (g1 (W1 -2)))) (5.3)

where Wy, Wy, - -+ | W _; are weight matrices, and g; are activation functions. Thus, first,
it was thought to be challenging to optimize the network because of the large number
of parameters such as Wy, Ws,--- Wy _;. Thanks to backpropagation techniques and
improved computational power, Al and neural networks are the most active fields and are
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widely used on several problems. Furthermore, it has shown very high performance in
several fields.

5.1.3 Support Vector Method (SVM) and Kernel Machine

Finally, we briefly explain a Support Vector Machine (SVM), not a neural network
model. It is a learning method that determines the boundaries between data in a feature
space, such as a sample in a two-dimensional space.

For example, let us consider n-inputs: x = (x1,---,z,), where € R" (n-
dimensional real space). To simplify the discussion, let us consider two classes. First, we
define a new function g(x), as follows,

1 f(=z) >0
gl@) = {o (@) < 0. o4

Here, f(x) is a function deterring the boundary, given by,
fl@)=w"z+b (5.5)

where w is the normal vector and b is the offset. Now, the function g(x) tells us which
class a point belongs to. For example, when a point is above the line f(x) (f(x) > 0),
then g(x) = 1. Contrary, if a point is bellow the line (f(x) < 0), then g(x) = 0. By
adjusting w and b in f(x), the output of g(x) can be tuned to match the training data.
Now, in learning section, we use the previously prepared label y, that is the ideal
g-value for each point. Suppose we have x; as the input and y; as the label for the i-th
data. If the classification is successful, the sign of y; and f(x) are unique, so we get,

yif (x;) > 0. (5.6)

If the classification is successful for all the training data, then the above equation is valid
for any y; (i = 1,--- D), where D is the total number of training points. However, since
there are multiple candidates for f(x) (or w and b) that satisfy the above equation, we need
a criterion to determine it. So, in general, the distance between the data set of each class
and the line f(x), the margin, is used as a criterion. In SVM, w and b are optimized to
maximize the margin. If readers are interested in the details of SVM optimization, please
see the Refs [156].

The simplest SVM is the linear SVM described above. However, this method is
unable to solve nonlinear classification problems. Therefore, a nonlinear SVM have been
proposed. In this method, the input & is mapped to a higher dimension by a nonlinear
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function ¢(x). As a result, since the feature space of the input is non-linearly extended
to a higher-dimensional space, the classification problem may be solved. However, it
is well known that as the feature space becomes higher dimensional, the computational
complexity of SVM optimization becomes huge.

To solve the above computational problems, the Kernel method (Kernel machine)
was proposed [157]. In non-linear SVM optimization, the most computationally expensive
part is the inner product ¢(x;)” ¢(x,,). Thus, in the kernel method, the kernel function
is defined by K (x;, ©,,) = ¢(x;)” ¢(x,,,). However, in the actual calculation, the kernel
function is given by a specific formula in terms of inputs @; and x,,, called the kernel
trick. For example, in the Gaussian kernel method, the kernel function is given by
K(xy, @) = exp (—|x; — xm|?/0), where o is a parameter. As result, it is easier to
calculate the kernel function. Furthermore, it is possible that to consider the infinite-
dimensional feature space by using the kernel function.

5.2 Quantum Neural Network (QNN) and Quantum Ma-
chine Learning (QML)

Because quantum systems and their dynamics are more complex than classical systems,
it is believed that neural network models based on quantum mechanics have more com-
putational power than classical ones. Therefore, the presence section briefly reviews
perceptron and machine learning within the context of quantum mechanics.

5.2.1 Quantum Perceptron

Initially, quantum neural networks was developed to explain the cognitive functions of
the brain in terms of quantum effects [138, 139]. However, nowadays, quantum neural
networks are used to extend classical neural networks in quantum machine learning. Of
course, in this Chapter, we use QNNs in this sense. In 1996, E. Behrman et al. gave
an idea of the perceptron using quantum dot molecule coupled to the environment [158].
They demonstrated that the system could train any desired classical and quantum logical
gates. They state that quantum neural networks can be powerful computational tools and
have advantages over classical neural networks in pattern recognition, missing data, and
learning ability.

The general concept of the quantum perceptron was proposed by Altaisky [159]. In his
model, neurons are represented by the quantum states, and output is their superposition.
For example, when we consider the same problem as seen in the previous section (multiple
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inputs and one output), the output of the quantum perceptron is represented by,
ly) = szl|$l> (5.7)
!

where F' is an unknown unitary operator. Unlike the classical perceptron models, the
network is not effective due to the linearity of F. However, it is believed that the measuring
procedure can play the role of the non-linearity [160, 161].

5.2.2 Quantum Circuit Learning (QCL)

QNN have been extensively investigated recently because their optimization can be per-
formed on quantum circuits. It is called the Quantum Circuit Learning (QCL) [162].
In this model, a quantum neural network is used to get desired output and thus optimized
by variational quantum algorithms (VQAs) [143, 145] being believed to be able to run
on small quantum processors called NISQ devices. The algorithms are able to optimize
or design quantum circuits using the feed-froward loop with the classical optimizer.

The generic procedure of VQAs are illustrated in Fig. 5.3. The quantum circuit
U (z) prepares a quantum state |¢/i,(z)) encoded the training input 2. This initial state
is transformed into an output state by a quantum circuit programmed by parameters
0 = (61, ,0n): |a()) = U(0)|tn(x)). One then needs to measure the expectation
value of some observable of the final state such as a bit string of qubits in a computational
basis and convert it into a final output using classical data processing y(x, @). This allows
us to calculate the loss function L(8) that evaluates between the desired output y and the
model output, y(x, @) and update 0 to minimize the function: arg ming L(8).

VQAs are expected to apply to combinatorial problems and quantum chemical cal-
culations. For example, Variational Quantum Eigensolver (VQE) is proposed to find
the ground state of atoms and molecules for quantum chemistry and atomic physics using
VQAs [140, 141, 163, 142, 143, 144, 145].

Although VAQs are expected to be an optimizer for quantum machine learning using
NISQ devices, it seems that optimizing quantum circuits by classical loops is challenging
to scale up. Furthermore, during the classical optimization, one needs to update the
parameters 6 follow the gradient to explore the minimum of the cost function L(6). In
some situations, the optimization landscape becomes flat and gradient-based techniques
fail, as shown in Fig. 5.3. This problem is known as the barren plateau [164, 165]. Simply
speaking, it is caused by the fact that the cost function is defined by the expectation value.
Because it is a macroscopic physical quantity, the expectation value is insensitive to small
changes of quantum states as a system size increases. Consequently, the optimization
becomes difficult due to a small cost function gradient.
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Figure 5.3: A scheme of the Quantum Circuit Learning (QCL) and a Variational Quantum
Algorithm (VQA) (a), and landscape of the loss function (b): The unitary operator U ()
encodes the input data onto qubits. A quantum circuit U (0) parametrized by @ , transforms
a quantum input state into an output state.To get the output information from the quantum
layer, one measures expectation values on a computational basis. In (b) we depict the
loss function L(0) being necessary to evaluate the quantum circuit. The goal of a VQA
algorithm is to update parameters 0 to minimize the loss function using the classical
optimizer.

5.2.3 Quantum kernel method

One can consider a quantum kernel method [166, 167] by extending the kernel function
to the inner product of quantum states: K (x;, ;) = |[(¢(x,,)|d(x;))]?. Generally, the
quantum kernel function can be obtained by the unitary operator U of the quantum system
corresponding to the non-linear map of the classical kernel. It is also used to encode
the classical input into the Hilbert space:|¢(a;)) = U(x;)|0). Thus, the quantum kernel
function can be written as K (x;, x,,) = |(0|UT(,,)|U (2;)|0)|2, where |0) is the initial
state. Its advantage is that the quantum kernel method does not require optimization of the
quantum system. However, to calculate the kernel function, the quantum circuit should
implement both the unitary operator for the map and its time reverse [168], which is a
challenging point in operation with NISQ devices.

5.3 Quantum Reservoir Computing (RC)

As the section above shows, it is better to avoid tuning or optimizing the quantum sys-
tem when performing quantum machine learning with NISQ devices. Especially in the
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Figure 5.4: Conceptual diagram of reservoir computing (a) and extreme learning machine
(b). In both models, the middle layer (reservoir) is connected to a linear classifier (11/7°").
In RC, a network of reservoirs plays the role of a recurrent network. As reservoirs,
nonlinear dynamical systems and, recently, quantum systems have been considered.

quantum neural network model, although the network is considered to have sufficient
complexity, it is not being used effectively due to noise during optimization. Therefore,
research should be carried out to exploit its complexity. One way is quantum reservoir
computing. In this section, we will discuss classical and quantum reservoir computing.
In addition, we will discuss a Extreme learning Machine, which is an application of QR
to static data such as images.

5.3.1 Classical reservoir computing (CRC) and Quantum RC (QRC)

In classical machine learning, to analyze the time-dependent data such as audio data and
video efficiently, Recurrent Neural Networks (RNNs) were proposed. In RNNs, the
output of the neural network unit returns is used as inputs in the next loop. In general, the
network consist of an input layer, a recurrent layer, and an output layer, as shown Fig. 5.4
(a). In the learning section, the weight matrices in the recurrent layer and between the
recurrent and output layers are optimized. Here, Reservoir Computing (RC) is a specific
model of the RNNSs, in which the recurrent layer is replaced by a huge nonlinear network
called the reservoir. Unlike RNNS, it is not necessary to optimize the recurrent layer
(reservoir), as shown Fig. 5.4 (a). As aresult, it is believed that learning can be performed
with much less computational cost.

Inrecent years, physical reservoir computing, in which some physical system replaces
this reservoir, has been receiving much attention [169, 170, 171, 172]. Since the physical
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system can be used as a computational resource, it is expected to improve energy efficiency
and reduce computational costs. In classical systems, analog circuits, fluid dynamics,
optical devices, and cultured cells have been investigated.

Like classical reservoirs, quantum systems are expected to be used as reservoirs [147,
148]. Here, to distinguish this model from classical systems, it is referred to as quantum
reservoir computing (QRC). As well as classical reservoir computing, quantum reservoir
(quantum neural network) is fixed during the optimization. In QRCs, quantum systems are
used to get huge neural networks. It is an essential point of QRCs that it may not require
any optimization to quantum networks, unlike the QCLs using VQAs. Many different
models of QRC have been proposed, e.g., networks of quantum node [146, 173, 172], a
single nonlinear oscillator [174] and the Ising Hamiltonian [37].

5.3.2 Extreme learning machine (ELM)

As similar to RC for the temporal data such as movie and voice, Extreme Learning
Machine (ELM) was proposed for static data, which consists of a huge fixed neural
network and a simple classifier [175, 176, 177, 178]. Its conceptual diagram is shown in
Fig. 5.4 (b). The input layer w is connected to the huge middle layer z,,, (m = 1,--- | N,),
as follows

T = fO aw + byy) (5.8)
1

where f(x) is a typical activation function such as the step function. Here, a; € R and
b, € R are weights and biases between the input layer and the middle layer. In ELM,
these parameters a;, b,,, are randomly generated from some probability distribution and
are fixed in the optimization loop. Next, the middle layer connects to the output layer with
a weight matrix /", as,

Ny
Y = Y Wi T (5.9)
m=1

In the learning section, the weight matrix 1/ °" are optimized to get the desired output,

IVIII/HII T - W*X|. (5.10)
T
Here, T' = (t(l)T, cee t(ND)T) is the matrix of the desired outputs, and X is a matrix of

all inputs of the middle layer, and is given by,

xl(u(l)) . l'l(ru,(ND))
X = : : , (5.11)
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where N is the total number of the training samples. Using the least-squares method, we
finally obtain the weight matrix

W = (XTX)'XTT. (5.12)

Unlike deep learning, the global minimum can be obtained in ELM.

Like RC, a quantum version of ELM has been proposed [170, 179]. For instance,
S. Ghosh applied quantum reservoir computing to a quantum processor and showed that
it can recognize entangled quantum states and simultaneously estimate various phys-
ical quantities [170]. An ELM using a quantum system is called a quantum ELM
(QELM) [146, 173, 172, 174, 37, 180].

5.4 Quantum Reservoir Extreme Learning Machine

This section proposes the new machine learning model based on quantum neural networks,
a hybrid QRC and classical ELM model. We refer to it as the Quantum Reservoir
Extreme Learning Machine (QRELM). Unlike the random neural networks of ELMs
and QELMs, this model uses quantum many-body systems and quantum dynamics to
generate neural networks. In other words, this model uses the quantum systems as the
reservoir generating a non-trivial complex huge network for ELM. Thus, unlike the VQAs
and quantum kernel methods, there is no need to optimize or tune the quantum circuits or
quantum systems.

Because conventional quantum reservoirs have not dealt with huge classical inputs
such as images, they could not be applied to practical problems. To overcome it, we
insert a new encoder that can be operated in NISQ and efficiently convert huge classical
information into quantum information using classical compression techniques. Thus, our
QRELM can treat both classical data and quantum states as input. Unless otherwise noted,
we consider classical input data in this section.

A conceptual diagram is shown in Fig. 5.5, which mainly consists of an input layer, a
hidden layer, and an output layer. In this model, the input and hidden layers are quantum,
and the output layer is classical. A measurement layer referred to as M-layer is inserted to
convert quantum and classical information. Each element will be explained later.

5.4.1 Notation of dataset for QRELM

We design QRELM as a supervised learning model to solve classification problems and
pattern recognition problems. Thus, there are two sections, learning (training) and infer-
ence (testing). The learning section uses the training data to optimize our neural network
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Figure 5.5: Conceptual diagram of Quantum Reservoir Extreme Learning Machine. Clas-
sical data d¥) such as a sample and an image encoded into an initial state |¥®) (d*))) of
a quantum system. It changes to a final state |¥'¥)(d*))) by the quantum neural network.
At the M-layer, a final state is measured on a computational basis, and it converts to x®)
with normalization. In the learning section, the network between *) and an output y*)
is classically optimized. Contrary, in the inference, y*) returns the probability for each
class.

to solve a given problem, such as the classification problem. Thus, this section will explain
the notation of the data set used in training.

The training dataset contains dataset DD of examples, e.g., images, that we want to
classify, and corresponding training label set (answers) T'. Here, D and T’ are respectively
represented by

dvT 1T
D=|d»wn" |, T=|»" |, (5.13)
d(ND)T t(ND)T

where d® and t*) are data, and the corresponding label of a k-th example (k =
1,---,Np), and (a)T is the transpose of a. In this section, we consider a general classi-
fication problem with multiple classes. We use the one-hot representation of the training
labels, which is commonly used in ML. In this representation, labels can be interpreted
as the probability of belonging to each class. For example, if there are two classes, the
training labels should be ¢*) = [1,0]7 or ) = [0, 1]”. Correspondingly, in the inference
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section (or testing), one can interpreter an output *) as a probability, as follows,

Yy = <Pr0bability of being the 1st-class ) (5.14)

Probability of being the 2nd-class

It implies that output from the final output layer should be fit with probability representa-
tion. Therefore, to satisfy this, an activation function has been inserted in our QRELM,
as we will see later.

5.4.2 Classification using QRELM

First, if the input data is classical data, it is necessary to encode it into the (quantum) input
layer, which is a quantum state. The encoding part will be explained in detail in the next
section. We use a new encoder to efficiently convert classical information into quantum
information. With the new encoding, classical information is stored in the coefficients of
the computational basis. For example, consider classical data (d*)) and quantum systems
with N-qubits. Now, an initial state with classical information can be written as follows,

|0 Za (d™)|1), (5.15)

where |/} is the computational basis and al(i) are its coeflicients.

Since this model uses a neural network generated by a quantum reservoir, it can be
prepared by the system’s dynamics or quantum circuits using gates. Using the neural
network, the initial state [ ¥ (d(*))) is mapped to a final state |¥/)(d*))).

To perform optimization in the classical part, converting quantum information into
classical information is necessary. Thus, we insert the measurement layer called the M-
layer. Due to the stochastic nature of quantum states, single-shot measurement cannot
provide information on quantum neural networks. Therefore, the layer needs to take a
statistic. In this proposal, we measure the population density in the computational. Thus,
the M-layer outputs 2"V -classical neurons, by measurement, as follows,

2

yrt

o)

2 N T
p(d®) = (pr,pa, )" = (Jal?] ). 66
where (- - - )T means transpose.

It is easily predicted that as the size of the quantum system increases, the popula-
tion density becomes exponentially smaller: p; ~ 1/2%(lin1,-,2"). Consequently, the
classical optimization becomes unstable. Thus, the M-layer has classical data processing
to stabilize the optimization process in the classical part (p — «). In this model, we
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normalize the population density to have it’s average 0 and variance 1, as follows,
2Npl -1

- : (5.17)
V2V S 146

X

where we used 3, p; = 1. Here, § = 1077 is a parameter to avoid divergence. Finally, the
M-layer returns the classical output = (d*).

The classical neural network connects the M-layer = (d*)) and the output layer y(d*))
in the classical part. In the inference part, the output layer returns the probability of
belonging to each class. While in the training part, we optimize the network using
classical techniques using the label (t*)).

5.4.3 Quantum reservoir and Quantum hidden layer in QRELM

In the QRELM, a quantum reservoir provides a huge neural network defined by Altaisky’s
representation [159]. For example, an initial state can be written as a vector using
computational basis, as follows,

a?; Re(a\”) + iIm(a!?)
| all (DY 4 i (
D @®y = || = Re(ay’) + ilm(az’) (5.18)

Re(aéi])v) + z'Im(ag])v)

where a] € C are complex values. Similarly, in the computational basis, a unitary U
generated by QR is written as,

U1 U2 -+ UpoN

N U1 Uga =+ UxN

U=1| . . . (5.19)
U9N1 U9N9 *++ U9N9N

where wu;,, € C are complex values. Thus, the unitary transformation between the initial
state |U()(d*))) and a final state | ¥/ (d™))) by the unitary matrix [/ can be written as

2N
w0y = Ty 5 o) = 3" w0l (5.20)

By comparing the above transformation with Eq. (5.1), we can see that it is equivalent to
a classical neural network, except that there is no activation function and the values are
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complex. However, as we saw above, the measurement process can be seen as a nonlinear
activation function for a probability amplitude: p; = f(a;) = |a;|*.

In general, as quantum system’s size increases, its unitary size exponentially increases.
Thus, using the large quantum reservoir, it is possible to generate an exponentially huge
neural network. Additionally, since unlike VQAs, the quantum part is fixed, our model is
a kind of ELM.

5.4.4 Classical neural network and optimization in QRELM

In our model, we connect between the M-layer and the output-layer via a classical neural

network W refereed to as one layer neural network (ONN). Thus, a:l(k) linearly transforms

to ul(k), as follows,

2N
u? =3 aPwy + (5.21)
i=1
where B = (by,-- -, by,) is a bias vector. To interpreter the output layer as probability of

each classes, we use the soft-matrix function as an activation function,

k
(k)) _ exXp (Uz( )>

(k))'

= 5.22
> exp (u; ( :

Unlike the classical ELMs and other QELMs, since our model includes the non-linear
activation function (soft-matrix), it is impossible to use the least-squares method to find
the global minimum. Therefore, we use a gradient method, which can find a minimum of
a given function. Compared to the least-squares method, the gradient method may require
a longer time for learning because it iterates until the solution converges. Furthermore,
one might expect that a global minimum cannot be found. However, in the QRELM, since
feature space is sufficiently expanded by the quantum system and the optimized network
is linear, we believe that the convergence theorem [181] and the universal approximation
theorem [154, 155] efficiently work. Thus, that learning will be completed in a finite
number of iterations, and a minimum value will be obtained. Furthermore, due to recent
improvements in classical optimization algorithms, we believe that a solution with this
amount of computation can be obtained with sufficient speed.

To optimize the ONN using the gradient method, we need to define a cost function
or loss function that evaluates the difference between the outputs y and training labels £.
While various cost functions have been proposed for different tasks, we use cross-entropy,
which is widely used for multi-class classification problems,

Nc
LM = =3 1" n (y*) (5.23)
l
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where V. is the total number of classes. This function takes a smaller value as the
distribution of y*) is closer to the label ¢*).

To optimize the above loss function. we employ the simplest and most widely used
the stochastic gradient descent (SGD). From this algorithm, the update process of the
weight matrix W and bias vector B are given by,

k

w’l] 1]

8?1)1‘]‘
oL*)
0b;

(5.24)
b(new) _ b(-()ld) .

where L(*) is the loss function of the output y*) of k-th sample, and 7 is a learning rate
(0 < n < 1). Here, we note that there are, of course, other optimization algorithms.
Using a modified algorithm of the basic SGD, the performance of the QRELM may
change. However, in this Chapter, we use it to simplify the classical part.

The loss function L*) = L(y®) is a function of an output y which is a function of
the M-layer output &. Thus, applying the chain rule, we have

OLW w09 _
S \ . )

ij
oL® (P — ®)
o, TR

(5.25)

where z\¥) € @®)(; = 1, 2") is the output at the M-layer.

Furthermore, in this study, we use the mini-batch method to speed up the optimization
and to avoid local minimum. We randomly extract M -training data (M < Np) and
update the parameters, where /N is the total number of the training data, and M is the
mini-batch size. With this as a set, update the parameters iteratively until the cost function
converges. Here, a loss function is now the average of the loss function for each sample:
L=, L% /M. Using the new loss function, the derivatives for the weight matrix and
the bias are given by

go 7O
oL _ 1 X7 _
811)1" M ) .
’ g — (D (5.26)
OL 1 %8&
ob; M 4 b,
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T ™T
where X = ((:ﬂ”) R (a:(M )> ) . Here we note that, the derivative for the weight

matrix is written in the matrix representation.

5.5 Encoder in the QRELM and PCA Map

When using quantum systems as a classifier, an unavoidable part is encoding classical
data into quantum states. If there is a fault-tolerant quantum computer, one can use an
arbitrary quantum state such as the entangled state to encode classical information such
as images [182, 183]. Because one can use the entire Hilbert space, which is generally
much bigger than the classical data size, one can encode all classical data information into
a quantum state with a few qubits [182, 183].

However, in NISQ devices, it is hard to prepare an arbitrary quantum state such as an
entangled state due to the noise effect. On the contrary, the fidelity of a single gate is very
high in NISQ devices. Thus, using product states prepared with single quantum gates is
more reasonable to encode classical data. Additionally, we believe that the complexity
generated by the dynamics of a quantum system is essential, so the initial states do not
need to be already complex such as entangled states. This approach is similar to encoders
proposed in image processing research using quantum systems [184, 183].

5.5.1 Encoder using the Bloch sphere

First, to simply discussion, let us consider a samples (points) in a two-dimensional space
as show in Fig. 5.1 (c) and one qubit. In this case, a k-th points (d*)) are given by two
values (dgk), dgk)). Next, any state of a single qubit can be represented by the Bloch sphere
and is written by,

|T) = cos (Z) 0) + €' sin (g) 1) (5.27)

with two angles (6, ¢).
Now, it is natural to use a map between two coordinates (d;, dy) and two angles (6, ¢)

as an encoder. Here, the surface of the Bloch sphere is closed, but the data feature

space is generally flat. Therefore, to efficiently map a plane to a sphere, we only use the

hemispherical surface of the Bloch sphere. The map between the data point (dgk), dgk))

and two angles (%), ¢¥)) is give by,

m(df ..o — min[d)]; or2)

(5.28)

o) (k) — .
or ¢ (max[d]; or2 — min[d]; or2)

Here, because the training data set: d = (d(l), v d® ) is given in advance, it is
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possible to calculate the minimum min|d]; o2 and the maximum max[d)]; o;2 from the
training data (dgk), dgk)) in advance and use them in the inference section (testing).
Now, the initial state of the point (d*)) with N-qubits can be given by,

|\1,(z')(d(k))> _ |qj>1(d(k)) R[+)2® @ |+)n. (5.29)

Here, we assume that the state except for the first qubits are |+); = (|0) + [1))/v/2.
Alternatively, one can consider a state,

WOD) = [W(dH)), @ (WD), @ - @ WPy, (5.30)

Here, we emphasize that a training data (dgk) , dgk)) are non-linearly encoded into a quantum
system represented by cos (9(’“)/ 2) ,sin (9(’“) / 2) and " in computational basis. It
indicates that this encoder generates a non-trivial non-linearity in the classifier.

Lastly, we note that there are different encoding methods [184, 183] similar to
Egs. (5.29) (5.30), but without phases. Thus, unlike these ways, one can encode two
classical points into a qubit so that the N-qubits system can maximally encode 2N com-
ponents of classical data in our encoding way.

5.5.2 General classical input and PCA Map

Generally, classical data such as images have more information (such as pixels) than twice
the total number of qubits (2N). Thus, in the study of quantum image processing, an
encoder has been proposed, using entanglement states with ancillaries [182, 183]. But,
in this work, to encode images into quantum states still using single rotations, we need to
compress them into 2/N. In addition, in the machine learning, it is not necessary to keep
all the information of the classical data.

There are a lot of different classical compression technologies, and one needs to choose
the appropriate one for the purpose after understanding the advantages of each. Since the
purpose of our work is to develop a classifier, we use the principal component analysis
(PCA), which is a linear transformation to the direction that maximizes the variance of
the data and does not lose the features of classical data. More detail is explained in
Appendix E. We refer to it as a PCA map.

For example, let us consider images with L x M pixels, where LM > N. An image
data labelled % can be written as a LM -dimensional vector: I*) = S"FY cke; Now,
the PCA map complex it to the 2N-dimensional vectors:T®) ~ S"2V &, where v; are
new basis set which nicely reflects information of images. We use these ¢; to prepare the
initial states of N-qubits. The procedure after the PCA map is the same as that of the
two-dimensional case. More precisely, in the PCA map, the first N-principle components

119



CHAPTER 5. QUANTUM RESERVOIR EXTREME LEARNING MACHINE
(QRELM)

¢ (I =1,--- N) are encoded into #; of each qubit, and the remaining components
(l=N+1,---,2N) are encoded into their phase ¢;.

The role of PCA described above can be viewed as a feature extraction in the QRELM,
which efficiently finds features from data such as images. Similar studies have been
conducted in classical ELM [185, 186]. The ELM works as an extended classifier in
these studies, and feature extraction is done using previously optimized networks, e.g.,
auto-encoders and convolutional neural networks (CNNs) [187]. Such a model can find
features more efficiently, and the classifier can be optimized faster by ELM than other
classifiers. We believe in the classification task, it would be more efficient to optimize
feature extraction on a classical computer and avoid optimizing the quantum circuit than
complete quantum classifiers.

5.6 Models for quantum reservoirs

In the next section, we will use four different quantum reservoirs to numerically evaluate
the dependence of quantum reservoirs on the performance of the QRELM. Here, we
introduce the quantum reservoirs we will use.

5.6.1 2T-Discrete Time Crystal

Recently, in the study of quantum reservoir computing, it was pointed out that dynamical
phase transitions can improve reservoir computing performance [37]. Similarly, we expect
that the dynamical phase can generate a non-trivial neural network for the QRELM.

To see the phase transition effect on the QRELM performance, we employ the discrete-
time crystals discussed in the Chapter 2 as a reservoir. It is a periodically driven system
with /V sites and its time-periodic Hamiltonian with a period 7' = T + 75 is given by,

H =hg(l—e)Xof (0<t<Ty)
H(t)=1 . l (5.31)
HQ = hz Jﬁnalzafn (Tl S t < T),

Im

where o]' with i € {x,y, 2} are the usual Pauli operators at the [-th site. Here, .J;,, are the
coupling strength between [-th and m-the sites. In this numerical experiments, we employ
JE, = Jo/|l — m|*, where J, is the coupling constant and « is the decay rate.

As we saw in Chapter 2, the 2T-DTC shows a phase transition from the (MBL or
pre-thermal) DTC phase to the MBL or the thermal state by changing the parameter e.

Because of the absence of the disorder, our model shows the phase transition between

the pre-thermal DTC and the thermal state. Thus, we expect that the model can evaluate
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how the performance of the QRELM changes due to the phase transition. Furthermore,
recently, a new complexity discovery has been reported in 2T-DTC, which is called scale-
free networks [38]. They showed that at the critical point, the point where the DTC
phase melts, its effective Hamiltonian shows scale-free in the graph representation. In
classical reservoir calculations, it is known that the performance improves at the edge of
chaos which lies between the chaos due to nonlinear dynamics and periodic dynamics.
Moreover, it has been recently reported that neural networks are scale-free in reservoirs
when the dynamics property shows the edge of chaos. Therefore, although the state
dynamics are linear in quantum mechanics, the scale-free nature of 2T-DTC is expected
to contribute significantly to the performance of the QRELM.

Because of the periodically driven system, one can apply the Floquet theorem to
Eq. (5.31), as discussed in Chapter 2. Here, the Floquet operator, which is the unitary
operator for one period, is given by,

A ) T i 7 i f
F=Texp <— H(T)dT) = e nthTigmpH2T2 (5.32)
0

where 7 is a time ordering operator.

5.6.2 Circular unitary ensemble (CUE)

Recently, several papers have been published that claim to experimentally demonstrate the
quantum superiority in programmable quantum circuits [20, 188]. Quantum supremacy
refers to the ability of a quantum processor to perform a given task more efficiently than a
classical one [189]. They used a random sequence of gates to sample the Haar-random
quantum states. These states are uniformly distributed with Haar measure in the Hilbert
space [189]. Thus it is considered to be difficult to simulate on a classical computer.

Similarly, we consider a unitary operator sampled from all unitary matrices with Haar
measure. It is known as the circular unitary ensemble (CUE) [190, 191]. Here, we note
that by using sampled unitary operators from the CUE and acting them to a fixed quantum
state, one can generate Haar-random states. It means that to generate a unitary operator
in CUE, one needs to use random quantum gates [192] as similar to gates in supremacy
experiments [20]. Thus, we believe that a unitary in the CUE has the same complexity as
that of quantum supremacy. In the QRELM process, we chose a unitary operator Ucur
from the CUE and used it as a quantum reservoir.

The CUE is ensemble of all unitary matrices with Haar measure. For example,
consider the CUE for 2V x 2N -unitary. Now, mathematically, its probability distribution
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P(601,0,,- - ,0yn) of the eigenvalues is given by,

Py, 05, ,0ox) ~ ] | — e (5.33)
1<k<<2N
where ¢ with 0 < ), < 2r for k = 1,---,2" are the eigenvalues of Ucyg. In the

numerical experiment, to generate a unitary operator sampled from the CUE, we use the
QR decomposition [193].

5.6.3 Non-interacting spin systems

We believe that many-body interactions can improve the performance of quantum neural
networks because they allow states to explore widely in Hilbert space. Thus, let us consider
the spin network without any many-body interaction to explore this point efficiently. In
other words, the system can be interpreted as a system with N-free spins. Its unitary Us.cue
is constructed by the tensor product of small unitary operators U SU(2)s

Us.cug = USU(Q) ® USU(Q) ® - ® USU(Q) (5.34)

where U su(2) 18 a sampled unitary from the CUE of single qubits. Thus, the above unitary
represents the N-qubits system without many-body interactions. We refer to the system as
the S-CUE model.

5.6.4 Cauchy random Hamiltonian (Cauchy model)

Any unitary operator can be expressed as U = e=tC using the Hermitian matrix G. In
quantum mechanics, this matrix corresponds to the system’s Hamiltonian with appropriate
units (é = Ht /h, where t is time). From the graphic representation [38], one can consider
that the Hamiltonian represents a transition network between quantum neurons. Here,
consider one artificial unitary whose G follows a Cauchy distribution. Here, its density

function is given by,

1 72
f(ﬂf7fEQ,’Y) = 7_[_77 (.T _ 330)2 + 72 ) (535)

where z( and v are the location parameter and the scale parameter, respectively. To
simplify the discussion, we chose zy and v to be £y = 0 and v = 1, which is known as
the standard distribution. Therefore, each element G,,, (I < m) of the Hamiltonian can

be represented by,
Glm =x+ z'y, and Gml = szm, (536)
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Figure 5.6: Isotopic Gaussian Samples (IGS) in 2D-space (a) and digit images of MNIST
dataset in which there are 60,000 images as for training and 10,000 images for testing (b).

where z,y € f(z;0,1) and Gj,, means the complex conjugate of G,,. Here, we note
that since GG is a Hermitian, when [ = m, the imaginary part is zero (y = 0). The main
characteristic of the Cauchy distribution is that it has a large spread, namely having a
long tail. Consequently, some configurations are more strongly coupled than others. This
property is clearly different from the unitary operator Ucur, where all quantum states are
treated equally, and thus we believe the cauchy model can represent more natural physical
systems.

5.7 Numerical experiments

We have seen that quantum reservoir provides a huge neural network. We believed that
the performance of the QRELM is dependent on its complexity. Thus, in the this section,
we will evaluate the performance of QRELM with four different quantum reservoirs by
numerical experiments.

5.7.1 Non-linear separability in QRELM

Because of the enormous feature space of the neural network generated by the quantum
reservoir, we believe the QRELM can solve the non-linear classification problems, similar
to the non-linear SVM. Thus, we consider the classification of the isotropically Gaussian
distributed samples (IGS) with two classes (red and blue) in two-dimensional space, as
shown in Fig. 5.6. This classification problem has been used widely in other QR and QML
studies [194, 168].
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Figure 5.7: Performance of the 2T-DTC against IGS: the training accuracy rate of the
classification vs. periods (a), and the classification results for different periods n1" =
0,10, 20 and 30 (b). The parameter are set as J;7' = 0.06 and € = 0.02 with o = 1.51.

We employ the 2T-DTC with 6-sites as an example to demonstrate IGS classification.
With the experiment in trapped ions [2] in mind, we set each parameter to € = 0.02
and JyT' = 0.06 with a« = 1.51. Fig. 5.7 (b) shows the classification accuracy versus
the number of periods (n). We see that the quantum system must be sufficiently time-
evolved to obtain a neural network with high expressive power from the quantum system.
For example, at nT" = 0, the representativeness of the network is very poor, and only
linear separation is possible. On the contrary, at n7" = 30, the network has much
representativeness to classify IGS with nearly 100%.

Since the QRELM has one classical optimized neural network, it is guaranteed to solve
any linear separation problem. Contrary, it is opaque for non-linearity problems. But, the
above result implies that combining the linear classifier with the quantum neural network
giving huge feature space, can solve non-linear problems. The mechanism is very similar
to that of the non-linear SVM.

5.7.2 Comparison of the performance of four QRs using MNIST

The above demonstration with IGS shows that the QRELM can solve non-linear problems.
However, because the previous example is too simple to evaluate the quantum system

124



CHAPTER 5. QUANTUM RESERVOIR EXTREME LEARNING MACHINE
(QRELM)

Training accuracy Testing accuracy
DTC CUE CAU S-CUE DTC CUE CAU S-CUE

Average 0.998 0.998 0.998 0.755 0.973 0.973 0.975 0.752
Best 0.998 0.999 0.998 0.802 0.974 0974 0976 0.794

Table 5.1: Performance of four quantum reservoirs against MNIST. The result of DTC is
for e = 0.02. Here, the average and the best records are taken for 90 and 100 epochs. The
parameter are set as J;71' = 0.06 with o = 1.51

dependency of the performance, here we apply it to a more complex problem, classification
of the MNIST dataset [46], which is closer to real-world issues. This data set consists of
digit images from O to 9, as shown in Fig. 5.6 (b). There are 60,000 images for training
and 10,000 images for testing.

Although the handwritten digits are 784-dimensional input vectors, they can be effi-
ciently represented with about 20 principal components using the PCA. Thus, to encode
them into quantum states efficiently, we consider N = 11 qubits. It means that 21 = 2048
neurons from the quantum network are used to optimize the classical network. We employ
four quantum reservoirs explained in the previous section to see the system dependency.

Next, let us explain the setup for the 2T-DTC model. Like the previous classification,
with the experiment in the trapped ions in mind, we employ the weak coupling J;7' = 0.06
with @ = 1.51. Given the previous results of the IGS classification with 2T-DTCs, to
generate the sufficiently complex neural network, we consider the Floquet operator with
100 periods (F19). In this section, we consider the 2T-DTC at the critical point, as am
example. As discussed in Chapter 2, the critical point of the 2T-DTC are characterised
by the parameter 0, = e/ J{T ~ 1, thus we consider the 2T-DTC with a rotational error
¢ = 0.02, where 6, = 1.05.

Results of the QRELM performance for all reservoirs are summarized in Table 5.1.
Here, the average and best accuracy are taken from 90 to 100 epochs.

First, let us see the performance of the CUE and the Cauchy models. Both models
are well-trained, as shown in Table 5.1, and their testing accuracy rate is sufficiently high,
over 97.0%. Here, it is interesting to compare our results with the classical classifiers.
However, since QRELM uses a quantum system as a neural network, it is difficult to find
its classical counterpart directly. Thus to simplify the comparison, we compare our results
with the classical ELM (CELM) with 784 — 2048 — 10 neurons. Here, a random neural
network is classically generated between an input and a hidden layer in the CELM. To keep
the conditions the same as in QRELM, we also use the soft-max function and optimize it
with SGD. The performance of the CELM are about 100% (training) and 95.5% (testing),
respectively. It implies that our quantum random neural network in QRELM has more
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expressive power than the CELM.

Interestingly, the CUE model is better than the Cauchy model in the training part.
However, the Cauchy model performs better than the CUE model in the test section. It
indicates that the Cauchy model has less overfitting than the CUE model for the MIST
dataset. We believe that its property comes from the difference of the quantum neural
networks. Since the QRELM performance depends on several factors such as quantum
systems, activation functions, classical classifiers, and classification problems, it is hard
to evaluate slight differences between models. However, we would like to point out the
following point. There is no specific configuration because the CUE model can generate
Haar-random states. In other words, all configuration is treated equally. While, in the
Cauchy model, the transition strength of some configurations becomes higher than others
due to the long tail of the Cauchy distribution. As a result, the distribution of the neurons’
values also takes a more spread form. It is similar to the initialization problem of the
neural network in ML [195, 196] and ELM [110]. In other words, we can expect that
individual neurons in the Cauchy model have high expressive power.

Next, let us see the performance of the S-CUE model. To encode the classical infor-
mation (MNIST digit images) to quantum information, we use one-qubit gates (rotation
gates). Thus, because the unitary US_CUE randomly rotates each qubit, the encoding infor-
mation at the initial state may be broken. Consequently, as shown in Table 5.1, the the
S-CUE model doesn’t work well in training and testing.

Finally, let us briefly see the performance of the 2T-DTC. We see that the performance
of the test at the critical point of the 2T-DTC is comparable to the CUE model, as shown
in Table. 5.1. It indicates that the dynamics of quantum many-body systems can be used
to generate a neural network with high-expressive power without using random quantum
circuits, which are challenging to implement in NISQ, such as random gates.

5.7.3 e-dependence of 2T-DTCs and ZZ-Ising model

In the previous section, we have seen the performance of the 2T-DTC at the critical
point. This section will further investigate the performance of the quantum neural network
generated by 2T-DTC and investigate the e-dependence of its quantum neural network.
Additionally, we will use the Ising model introduced in Chapter 2, which effectively
governs the discrete-time dynamics of 2T-DTCs to investigate 2T-DTCs. We will show
that the rotational error ¢ and the U(1)-symmetry play essential roles in 2T-DTCs to
generate a quantum neural network with high expression power.
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Figure 5.8: Accuracy rates of the 2T-DTC and the ZZ-Ising with N = 11 sites. The black
and blue lines show the average accuracy rates for the 2T-DTC and the ZZ-Ising models
with different rotational errors ranging from ¢ = 0.0 to ¢ = 0.2, and the blue and gray
shadows are the corresponding standard deviations. We consider the weak (J57' = 0.06)
and strong (J§T' = 0.15) interactions. Here, the average and the standard deviation are

taken for 90 and 100 epochs.

2T-DTCs

To investigate the e-dependency in detail, we set its range from € = 0.0 to e = 0.2. Here,
since the parameter d, is the balance between the rotation error € and the interaction Jj, we
compare the performance of 2T-DTCs with weak (J;7' = 0.06) and strong (J;1' = 0.15)
interactions cases to obtain further numerical evidence. The expected critical point is
around € = 0.01 ~ 0.02 and ¢ = 0.04 ~ 0.05 for each strength, respectively.

Results are shown in Fig. 5.8. We see that in both interaction strength, training, and
testing performance become high around its critical point. Furthermore, interestingly, the
strong coupling case tends to have better performance than that of weaker coupling overall,
and optimization fluctuations of the linear classifier tend to be smaller. The performance
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decreases in both weak and strong interactions as rotational error becomes stronger. It
shows that although not all rotational errors will result in better performance, by adjusting
the 2T-DTC to a critical point, a strong quantum neural network can be generated without
using random quantum gates.

7.7-Ising model

As we saw in Chapter 2, the parameter ¢, is obtained from the ZZ-Ising model analogy.
Thus, it might be possible to investigate the rotational error effect via the Ising model.
Since we are considering DTCs without the diagonal disorder, the corresponding ZZ-Ising
model has a transverse field in the x-axis direction,

N 5 J§ hme
Hyz 16ing = Jol — —— ’ 5.37
7z1sing = lzll—mlaalgm 2T;Ul (5.37)

where € and Jj use the same values as the DTC.

The results are shown in Fig. 5.8. As expected, for a small rotational error regime,
including the critical point, the performance trends of the DTC and the ZZ-Ising models are
almost identical. In contrast, for a large rotational error regime, because the approximation
using the Ising model breaks, there is also a difference in the classification performance
of the two. But, similar to the DTC, the ZZ-Ising results also show poor performance as
the strength of the one-body interaction increases. These results indicate that the ZZ-Ising
model can perform the QRELM easier than the 2T-DTC on NISQ devices.

U(1)-symmetry breaking the role of transverse magnetic fields

The above results indicate that improving the classification performance in the 2T-DTC
is not caused by the higher-order interactions that appeared in the effective Hamiltonian
of the Floquet operator. In other words, it would be possible to reveal its mechanism by
investigating the effect of transverse magnetic fields in the Ising model. Thus, here we
explore the role of the transverse magnetic field.

First, to simplify the discussion, consider the trivial case where € = 0. In this case, the
Z7-1Ising model is invariant under the local U(1)-symmetry. As a result, the probability
distribution |al(f ) 2 (1 = 1,---,2") does not change under the time evolution. To see
it more clearly, let us rewrite the probability distribution in terms of correlations of o7
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(l=1,---,N). For example, \a§f)y2 can be written as
aDp = (o Itof I+o; I4oi|,
! T2 2 2 |/
X N (5.38)
T v <H2N + 2 (Wslof[Wp) + D (Vylojon|¥y) + - )
l l<m

where I and L~ are 2 x 2-dimensional and 2V x 2V-dimensional identities, respectively.
As a result, the probability distribution can transform into the stings of the correlations,

as follows,
oy !
()2 z
a o
WP e | 530,
gt/ \lofos---o%)
where (- --) means (Uy|--- |U ). In other words, dynamics affect only phase information

being not measurable.

Thus, in the ZZ-Ising model, the transverse magnetic field plays a role in breaking the
symmetry. As aresult, these correlations show non-trivial phenomena. While as discussed
in the previous section shows, when the transverse field strength is too large, the one-body
interaction injures the encoded information in initial states. Thus, the competition between
the strengths of the two-body interaction and the transverse field is essential. In the current
case, as long as the parameter ¢, is below the critical point except for the zero, it shows
high performance.

5.7.4 nT-dependence of 2T-DTCs

In the IGS classification, we have seen that the performance of the QRELM of DTCs
depends on the number of the period (n) of the Floquet operator. Here, we explore
this point in a bit more detail with the MNIST dataset. We show the results of the n-
dependency of classification accuracy rate for the weakly interacting DTC in Fig. 5.9. If
n is small, the quantum states are not sufficiently spread out in the Hilbert space. Thus the
performance of the classification is low. Therefore, we can see that it is getting better as
time increases. Furthermore, we can see the effect of the one-body interaction in Fig. 5.9.
For the large error (e = 0.08), because of the weak interaction, we see that the classification
performance is significantly affected by the rotational error in short periods (n < 30).
The effect of the one-body interaction discussed above is also explained by the ZZ-
Ising model. First, let us consider that the strength of the ZZ-interaction is smaller than
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Figure 5.9: Accuracy rates of the 2T-DTC v. s. the total number of Floquet period. The
red and blue lines show the average accuracy rates for the 2T-DTC with ¢ = 0.02 and
e = 0.08, and the red and blue shadows are the corresponding standard deviations. The
parameters are set as Ji1' = 0.06 with o« = 1.51. Here, the average and the standard
deviation are taken for 90 and 100 epochs.

that of the transverse interaction. Thus, let us consider the simplest Ising model,
H=XH,+V, (5.40)

where A < 11is a parameter. Here, HyandV represent the ZZ-interactions and transverse
magnetic field along the x-axis. Now, a state can be written as,

[U(t) =e
~ (1= ixtH; ) eV (0)) (5.41)
e VHT(0)) — iNtH e V[T (0)),

—L(AAH[+hV )t | Q(O»

Q

for a short time (¢ < 1). In the above, since A < 1, the first term is dominant, it collapses
encoded information in initial states. Contrary, because the second term is not one-body
interaction and breaks the U(1)-symmetry, it can improve the performance. Thus, for
A > 1, it decreases the performance due to a short time effect. But, because of the second
term, it improves its performance over time.

Next, let us consider that the strength of the transverse interaction is smaller than that
of the ZZ-interaction. As discussed above, we consider the simplest Ising model given by

H=H;+)\V. (5.42)

130



CHAPTER 5. QUANTUM RESERVOIR EXTREME LEARNING MACHINE
(QRELM)

a b
( )1.00 F S — o T T ( )1.000 ******** ———s———— P ——)
/"7
- % DTC Training Testing
+ ; Average -@- -@-
0.99 | ¢+ o g Best e
o verfiting § k::::3:::2122221:IZ:¢::::3
s <
>
g£0984 T |99 —
5 e s | 1.000
51 B U )
< ; 1 e CauChy Training Testing
i 7 2 Average --®- -@-
0974 g Bet -
¢ [5)
TrainTing DIC CEE CaiChy 2 .==:::4::::::::::3:::::2:::::1
est--o--- --@-- --@®--
0.96 0.975
10 11 12 13 14 0.0 0.1 0.2 0.3 0.4 0.5
Size Dropout

Figure 5.10: (a) Illustrates scaling of the classification performance for each quantum
system. Over 12 qubits, the training has saturated to one, and there is severe overfitting
where the test does not improve. (b) and (c) Illustrate the accuracy rate of the 2T-DTC and
the Cauchy model with dropout. The dropout allows the neural network to perform pseudo
ensemble learning. This increases the expressive power of the network and improves test
performance. Here, the average and the standard deviation are taken for 90 and 100 epochs.

Then, one can lead a state for a short time (f < 1),
W(¢)) ~ e T (0)) — ixtVe 1 [T(0)). (5.43)

Contrary to Eq. (5.41), now the many-body interaction H; is dominant. Because H; has
the local U(1)-symmetry, for a short time, the performance does not change. However,
the second term that breaks the symmetry improves the performance as time increases, as
shown in Fig.2 for e = 0.02.

5.7.5 Quantum neural network size and Dropout

We believe that quantum systems behave as reservoirs and that exponentially expanding
Hilbert Space provides a huge neural network. Therefore, in this last section, we investigate
the scaling of performance. The size dependency of performance is shown in Fig. 5.10
(a). It shows that for all quantum systems, the performance of classification increases as
the size of the hidden layer, the quantum neural network, increases. As we saw above, the
Cauchy model performs better in testing than other quantum systems.

In machine learning, overfitting is a severe problem. It is a situation in which the
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Dropout 0.0 0.1 0.2 0.3 04 05
DTC ave. 0.979 0.979 0.980 0.979 0.980 0.980
bes. 0.979 0980 0.981 0.981 0.981 0.981
Cauchy ave. 0.979 0.980 0.980 0.980 0.980 0.981

bes. 0.980 0.980 0.981 0.981 0.981 0.982

Table 5.2: Classification performance of the 2T-DTC and the Cauchy model trained with
dropout. The parameters of 2T-DTC are the same as in Fig. 5.10. To see the effect of
dropout, we considered a dropout rate of 0.0 to 0.5. Here, the average (ave.) and the best
records (bes.) are taken for 90 and 100 epochs.

classifier over-adapts to the training data in the training section (optimization). As a
result, it loses its expressive power and does not perform well with unseen data such as test
data. There are two leading causes of overfitting. First, a model with many parameters
and high expressive power. Second, there is not enough training data. In this study, the
MNIST dataset we used has 60,000 images for training, which we believe is sufficient.
However, since the neural network of a quantum system grows exponentially with size,
the linear separator has a huge number of neurons (parameters).

There are two main ways to suppress over-fitting: weight decay and dropout [197].
Weight decay is an old method that penalizes the weight matrix for having large weights
in the learning process. However, we employed the dropout for this study. It is a
method of learning by randomly erasing neurons. Here, dropout is closely related to
ensemble learning. It is a machine learning technology in which multiple models are
trained independently, and their outputs are averaged together during inference (testing).
Experimentally, this model has been shown to improve the recognition accuracy of neural
networks by several percent. In the dropout, because several network structures are
realized in the training optimization, it can be interpreted as ensemble learning. We intend
to realize a robust network or classifier by combining the quantum neural network and this
dropout.

We trained the 2T-DTC and the Cauchy models with 14-qubits with dropouts ranging
from 0.0 to 0.5. The classification performance results are shown in Fig. 5.10 (b) and
Table 5.2. From the results in Fig. 5.10 (a), we can already see overfitting at 12-qubits, or
at 4, 096 neurons. Thus, for 14 qubits with 16, 384 neurons, the network can be optimized
even if 50% of the neurons (8192 neurons) are randomly removed. In both models, we see
that dropout improves the performance in the test. In the Cauchy distribution model and
dropout 0.5, we recorded the best accuracy rate of 98.2% in this experiment.

Our method is effective and efficient compared to other machine learning methods
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based on quantum systems [198, 199] in terms of the size of the quantum system and the
complexity of the model.

Furthermore, recent ML research has pointed out that the datasets used in classifications
such as MNIST have errors in the test labels [200]. This labeling error naturally affects the
testing (benchmark). In the case of MNIST, the magnitude of the label error is 0.15 [200].
Given this effect, we believe that our model is very superior.

5.8 Conclusion

We proposed a new powerful machine learning model, the QRELM, which combines a
quantum neural network with a classical linear classifier. In this model, the quantum
system acts as a reservoir, like a reservoir computer, providing a huge and complex neural
network. We have also proposed a new way to encode classical information into quantum
states so that this can be run on NISQ devices. We have experimented with several
models, 2T-DTC, ZZ-Ising, the Cauchy model and the CUE model, to classify MNIST
handwritten digit images. Using the 2T-DTC and the ZZ-Ising model, we found essential
factors to design quantum reservoirs, First, if the quantum system has the U(1)-symmetry,
its performance does not change. Second, when the system is written by only single
rotational operators, its performance gets poor. In this demonstration, we recorded over
98% classification accuracy rates for the 2T-DTC and Cauchy model with 50% dropout.
We believe that our result has a great advantage over the ML method using quantum
systems and classical ML in terms of computational complexity, simplicity of the model
and system sizes [198, 199].
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Chapter 6

Summary

Current technology has reached the level where small isolated quantum systems can be
realized stably and controlled with high precision. This has led to even greater expectations
for the realization of quantum computers. In reality, however, the size of current quantum
processors is only a few tens to a few hundred qubits, which is insufficient to run efficient
quantum algorithms. These are called NISQ devices, and currently, research on how to use
these devices effectively is essential and attracting much attention. One such application
is the use of these devices in non-equilibrium quantum systems. Unlike the equilibrium
quantum systems, they are not stable, and the quantum state is not in a steady state but
shows dynamics. Therefore, this quantum non-equilibrium state is expected to exhibit
new and rich physical phenomena not seen in equilibrium quantum systems. Furthermore,
it has been reported that non-equilibrium quantum systems can be used as information
processing devices to study quantum neural networks and quantum transcendence. Among
the various non-equilibrium quantum systems, discrete-time crystals observed in NISQ
devices have attracted much attention. This Chapter investigates quantum phases in new
non-equilibrium quantum systems and applications of non-equilibrium quantum systems
to real-world problems based on these time crystals.

Chapter 2 presented the basic theory and recent research reports on discrete-time
crystals, which have recently attracted much attention as a non-equilibrium quantum
phase actually observed in NISQ devices. This Chapter shows that the Floquet time
crystal using spin systems can be mapped to the quantum Ising model. Using this Ising
model, we have given an intuitive, though not rigorous, understanding of the critical phase
transition in time crystals from a physical point of view.

In the next part, we proposed two different dynamical phases of matter breaking the
DTTS. In Chapter 3, we focused on the fact that in the Floquet time crystal, the breaking of
the discrete-time translational symmetry is determined by the rotation angle of the external
field. In quantum systems with regions of different rotation angles, we show that, unlike
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conventional time crystals, there are two regions where one region breaks the discrete-time
translational symmetry and one that does not. We showed that each region is a time crystal
and a ferromagnet, indicating that two different quantum phases coexist in this quantum
system. We named this exotic quantum system the chimeric time crystal as an analogy
to the classical chimeric state. Furthermore, by measuring the entanglement between the
two quantum systems using von Neumann entropy, we showed that the entanglement is
hardly generated during the quantum phases in the stable two regions.

The next Chapter focused on another symmetry of DTCs, U(1)-symmetry. Conven-
tional models of time crystals have both local and global symmetry, and thus the essential
difference is hidden. Therefore, we proposed a new discrete-time crystal model with only
global symmetry. We have shown that when the initial state has the global Z,-Ising (parity)
symmetry, it exhibits the sub-harmonic oscillation. Then, we extended our model for the
isolated quantum system to a system with decoherence. We have shown that the DTC can
exist stably as long as the total system has the U(1)-symmetry, including the environment.
As the next step, we explore the fundamental difference between our new and conventional
models. We found that when the initial state has both Z,-symmetry and breaking regions,
the DTC region expands due to the local U(1)-symmetry breaking, which is not observed
in conventional time crystals, i.e., the time crystal grows. Furthermore, we show that
the effect of this environment stabilizes the DTC growth of finite systems. With the new
time crystals shown in the two Chapters, we have demonstrated the new possibilities of
dynamical quantum phases.

The last Chapter proposed a new QIP (quantum information processing) based on
machine learning technology. Because the quantum state is in an exponentially huge
Hilbert space and can walk around in the space via quantum dynamics, it can be used
as a neural network with high explanation power. However, unlike the classical-quantum
network, it seems challenging to optimize the quantum neural network, such as the quantum
circuit learning with VQAs. Thus, we proposed a new quantum reservoir computing in
which the quantum part is fixed during the optimization. We apply it to the static data and
thus refer to it as a quantum reservoir extreme learning machine (QRELM) as an analogy to
the classical ELM. We investigated the performance of the QRELM with various quantum
systems, including the CUE model and the 2T-DTC. As a classification problem close
to a practical problem, we use MNIST data sets. Importantly, we have shown that the
performance of 2T-DTC is comparable to that of the randomly chosen unitary UCUE used in
the study of quantum supremacy. Based on these results, we proposed two critical factors
for the QRELM. In addition, we have shown that over-learning due to the exponential
expansion of neural networks by QR can be suppressed by dropout, which is widely used
in ML, and high expressiveness of the network can be obtained. We believe we open a
new way to use the quantum’s complexity as QIP for more practical problems.
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Appendix A

Spin Systems and Two level systems

Here, we briefly explain the basics of quantum spin systems that we used in this thesis. We
assume that the reader already has an understanding of classical physics. In this Chapter,
we will only explain the minimum knowledge and symbols needed to understand this
thesis. If readers want to understand the basics of quantum mechanics, we recommend
reading Ref. [11, 201].

A.1 Single spin and Two level system

In classical physics, the motion of an object is determined by its initial condition and the
equations of motion known as Newton’s equation. Here, the classical state is given by its
position and velocity. However, in quantum mechanics, its state is represented by a wave
function, and physical observables such as positions becomes stochastic.

The dynamics corresponding to classical velocity and position were systematized by
Schrodinger’s wave mechanics [9]. But, to simplify the following discussion, let us
consider the discrete state such as a single spin (two-level system). For understanding the
dynamics of such discrete states, Heisenberg’s matrix mechanics is effective.

First, the classical spin state is described by two basic states: e.g. o = =+1 or
s = 0,1 [202]. However, in a quantum system, its state should be described by a vector.
Given the fact that the two basic states can be distinguished by measurement, they can be
described by the following basis vectors as follows,

=) m=(7) (1)

Here, the linear space of these vectors is called the Hilbert space, and in this case, the
dimension is two. Now, a generic state can be written as the superposition of the two basis
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states, as follows,
0) = (g) = a]0) + 1) (A2)

where o, 3 € C which satisfies |a|> +|3|> = 1 to normalize its norm. It tells us that either
|0) or |1) can be observed with a probability |a|? or |b|>. As an analogy to a classical bit,
the two-level systems are used as qubits, a bit of the quantum version.

Here, we introduce the nice representation for the qubit called the Bloch sphere. The
state is a point on this sphere, which can be given by the two angles § and ¢ as follows,

|U) = cos <g> 0) + €' sin <§> 1). (A.3)

Here, we ignore the global phase.

In quantum mechanics, to know the physical quantities A of a state, we need the
corresponding Hermitian matrix A, and measured values are the eigenvalues of the matrix.
Because of the stochastic interpretation of general quantum states, observables are also
stochastic. Thus, in many cases, we are interested in the average value (A) of the
observables, which can be given as follows.

(A) = (U|A|D). (A.4)

Here, (A) is referred to as the expectation value of A for the state | ).

Now, we introduce the Pauli matrices (o, for u = z,y, z) which is a sef of three 2 x 2
complex matrices, as follows,

. (01 (0 —i . (1 0
O’—(l 0), ay—(i O)’ 0—(0 _1>. (A.5)

These matrices are Hermitian ((0*)7 = o#) and unitry ((o#)fo* = o#(o#)T = ). It is
known that the Pauli matrices with the identity matrix (I) are an orthogonal basis of the
2 x 2 Hermician matrix space, thus any Hermician matrix A can be written as

i <A0+AZ A, —iA,

- — A+ A0 + AcY+ Ao* A.
A, + 1A, Ao—Az> ol +Ay0" +Ayo? + Ao (A.6)

where A, € R for u = 0, x,y, z. It can be shortly written as,
A=Ad+ A7 (A.7)
T

where ¢ = (0%, 0Y,0%)".
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In the quantum mechanics, the state dynamics |W¥(¢)) is given by the Shorodinger
equation,

0 A
ih W (1) = HIW (1)) (A8)

where H is the Hamiltonian corresponding to the energy. Generally, the Hamiltonian
can be both time-independent H (¢) and dependent H. Here, let us assume the system is
time-dependent and its Hamiltonian is given by,

H = hwol + hw,o” + hwyo? + hw.o®

A (A9)
= thH + (Zj . 5,
Now, a solution of Eq. (A.8) can be given by,
U(t)) = e F1w(0
(1)) = e (0)) A10)

U(t)%(0))

where |¥(0)) is an initial state, and U = exp {—%f] t} is the Unitary operator. Now, using
the properties of the Pauli matrices, one can write the unitary operator as follows,

O(t) = e #flt
— efiwofltfi@'-&'t (A 1 1)

= 7" (cos (|@[t)T — isin (|5]t)7i - 5)

where 171 is the unit vector along the J-axis (77 = w/|w|). Here, we see that wy is the phase
information which disappears at the observation level. Thus, in general, the first term is
omitted form the Hamiltonian by chaining the origin of the energy.

A.2 Many body systems

Now, let us expand the single spin model to many body (spin) systems. To get some
intuition, here we consider two spins as an example. In the case, by using the basis sets of
the single spin, its Hilbert space can be represented by the four basis,

0) ®0) = , 1) ®10) = 10y @ (1) = D@1 = , (Ad2)

o = O O
_ o O O

1 0
0 1
0 0
0 0
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where ® means the tensor product. Here, we note that sometimes the tensor product is
omitted in the short notation, e.g. |00) = |0) ® |0). Thus, in general, the Hilbert space for
N-spins can be spanned by 2% states given by

000 --0), [010---0), [001---0),--- ,[111---1). (A.13)

2N states

Now, let us see the operators. First, we expand the operator for the single spin to the
many body systems. When N = 2, the operator acting on the single spin can be written
by,

Aol
o A,

Ay
A,

(A.14)

where the left side are the short notation. While, the operator A, acting on the both spins
are given by,
Two-body operator = A ® A, (A.15)

Here, we note that sometimes the tensor product is omitted in the short notation, fll ® AQ =
AjAs. Similarly, in the N-spins, the operator A; acting on the single spin at /-th site are
written as,

A=Ielg  oleodelelg - ol (A.16)
—_— —_—
-1 N—I

And the operator acting on two sites ([ > m) is

A, =19 - - 9leAele - 9led,le - o1. (A.17)
-1 m—I[—1 N—m

Similarly, many-body interactions such as Ay Ay Ay can be defined.
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Thermalization of quantum systems and
the Floquet systems

In the present section, we briefly review the quantum thermalization and the Floquet theory
used to understand the discrete time crystals.

B.1 Quantum thermalization

This section will briefly review the thermal equilibrium state for quantum systems that
have frequently appeared in the above Chapters. These topics are rich and are active, with
many unresolved issues still to be addressed. Thus, here we only give the basic idea of
quantum thermalization and its mathematical representation.

As we know, in classical mechanics, the dynamics is an updated process of the state
governed by Newton’s Law. If one has all the information (initial position and initial
verbosity) about the initial state, one can track the state at any time by Newton’s equation
of motion. But, when we focus on the matters such as metals, these consist of several
elements (particles). Thus it is impossible to solve Newton’s equations for all particles
simultaneously. Nonetheless, come to think of it, we do not need all information to un-
derstand the macroscopic systems. In thermodynamics, we know that these macroscopic
states eventually reach the universal state in which there are no changes from the macro-
scopic point of view. The state is called the thermal equilibrium state. Of course, from a
microscopic point of view, there are still dynamics. However, as long as we look at the
macroscopic observable, the state seems steady. Thermodynamics is an elegant theory
that reveals the universality of this equilibrium state. In this theory, it is shown that the
equilibrium state is defined as a universal state determined by a small number of physical
quantitative quantities such as temperature 7', the number of particles NV, the chemical
potential x, and, if necessary, the total magnetization M.
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On the contrary, statistical physics is a framework for describing these macroscopic
states from a microscopic perspective. However, as we said, it is impossible to solve the
equations of motion based on the dynamics from a microscopic point of view because
of large systems. Therefore, statistical physics employs probability theory to describe
the physical quantities of the thermal equilibrium state of a macroscopic system without
precisely solving the microscopic dynamics [203].

Before going to quantum systems, let us consider the thermal equilibrium state in
classical statistical physics. As mentioned above, statistical physics uses stochastic models
to understand phenomena at the microscopic scale. Various stochastic models, e.g., micro-
canonical, canonical, and grand canonical, have been proposed for different problems. In
this section, we consider the canonical ensemble model or canonical Gibbs ensemble [204]
as an example. The interest (A) system is coupled to a heat bath (B) in this model. And
we assume that there are only energy exchanges between the bath and the system. When
the system is coupled to the bath with temperature 7', then, a probability of the emergence
of a state with energy Ej in the system (A) is defined as follows,

—-BE;
oM _ €
l 7CM

(B.1)

where 0 = 1/(KgT) and Kp is Boltzmann’s constant. Here, the partition function for
the normalization is given by,

ZM=3 e Ph (B.2)
]
As a results, the expectation value of the physical quantity (A) can be obtained by,

(A) =>" Ap™, (B.3)
l

where A; are the value of A for the state with the energy Ej.

Now, let us consider the thermal equilibrium state of a quantum system. In a quantum
system, generally states can take superposition, and they are not independent. It means
that the number of possible states of a quantum system is very rich. Thus, when we
apply the concepts of the canonical ensembles to quantum systems, we need to the some
coordinate to pick up states representing representative states with the energy £;. One of
the nice way is that one adapts the principle of equal weights of classical statistical physics
to the eigenstates of the Hamiltonian H, which gives the complete set. As in the classical
system, the probability of appearance of an energy state |¢;) with energy F is given by,

e BB (g |e PH|p)  e~Blailflen

QM _ — —

142



APPENDIX B. THERMALIZATION OF QUANTUM SYSTEMS AND THE
FLOQUET SYSTEMS

where, |¢) is the eigenstate of the Hamiltonian of the system: H|¢;) = Ej|¢;). Likely,
the partition function of the quantum system is written as,

Z3 = Ze_ﬂEl = Z<¢z|6_ﬁg|¢z> =Tr [e_ﬂg} : (B.5)
I I

where we use the trace. The above probability can be reconstructed by the single density
matrix,

1 N
Pea(B) = e " (B.6)

Here, the density matrix sometimes be called the canonical Gibbs ensemble or shortly
the thermal state of quantum systems. The above density matrix in quantum systems first
given by V. Neumann in his research on measurement process in quantum systems as a
mixed state that maximizes von Neumann entropy [205]. Later, R. C. Thomson introduced
it as a canonical distribution in quantum statistical mechanics as an extension of classical
statistical mechanics [206]. Similarly, when there are several conserved quantities fk
including the energy , then the thermal state is given by the generalized Gibbs ensemble,

e~ Ek Al

PoGE = , (B.7)

ZGGE

where Zggp = Tr[e” 2o Ml *] and Ay are Lagrange multipliers. Here, itis important to note
that although the equilibrium state of quantum states based on the equal weight principle is
elegant and seems to be compatible with the conventional notation of quantum mechanics,
but we should not forget that it is just a working hypothesis to explain macroscopic physical
quantities by stochastic models.

When the system at the infinite temperature (7" = oo or § = 0), the thermal state
equals the fully mixed state p.q(5 = 0) = I/dim#, where dim# is the dimension of the
Hilbert space of the system. It means that all energy eigenstates appear with the same
probability.

Recently, it is believed that the above thermal state also can be used to represent
the thermal state of the isolated closed quantum state without the heat bath. Here,
thermalization in the isolated systems means that the large isolated state should be relax
to the equilibrium state with microscopic perspective. The Eigenstate Thermalization
Hypothesis (ETH) has been proposed to explain why the Gibbs ensemble is valid for the
thermal state of isolated quantum systems [207, 208, 209, 210]. At present, this remains
a hypothesis, but various numerical results have followed [211].
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B.2 Floquet theory and Floquet thermalization

When a system is time periodic, one can use the Floquet theory and the systems is called
the Floquet system. Here, we briefly review the Floquet theory for the quantum systems.
Then we will explain the thermalization process of the periodic systems.

B.2.1 Floquet theory

For a genetic time-dependent Hamiltonian H (), the time evolution of a state |¥()) is
given by the time-dependent Schrodinger equation,

(1)) = H)N(). (B5)

While, because of the unitary dynamics in the quantum system, a state at any time t can
be written as
[W(t)) = U)[¥(0)), (B.9)

where, | (0)) is the initial state and U (¢) is the time-evolution (unitary) operator. Combing
the above two equations, we get,

i—U(t) = HH)U(t), (B.10)

where U (0) = I is the identity operator. Now, when the Hamiltonian is time-periodic:
H(t+T) = H(t), the Floquet theory allows us to write the solution of the above equation,
as follows,

U(t) = P(t)e nHeT (B.11)

where P(t + T) = P(t) is a time-periodic unitary and P = 1. Here, the Hamiltonian
Hp is the time-independent Hamiltonian and called the Floquet Hamiltonian. Using the
Hamiltonian, the time evolution operator for one period can be written by,

~ A

F=U(T)="T exp (—; /OTH<T>dT> = ¢ il T (B.12)

where, 7 is a time ordering operator. Here, the one-period unitary is called the Floquet
operator and denote F'. Now, we see that the dynamics at stroboscopic times are effectively
governed by the Floquet Hamiltonian Hyp, and thus sometime it is referred to as the effective
Hamiltonian and is denoted 7. In this Chapter, we use the notation H . While, in later
Chapters, we will use He to emphasize that the Hamiltonian effectively governs the
stroboscopic dynamics.
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B.2.2 Magnus Expansion

In Floquet systems, e.g. the DTC, generally it is more interested in the dynamics at
stroboscopic time given by the Floquet Hamiltonian. In general, it is difficult to find the
Floquet Hamiltonian analytically. However, there is a closed form solution called the
(Floquet-) Magnus expansion [212, 213, 214] in which the Floquet Hamiltonian can be
expanded in terms of powers of 7', as follows,
He =AY =AY + A" + AY + -
! (B.13)
=¥ Q.1
m=0

Here, the expansion coefficient 2, at the m-th order is given by

T 5 . . R )
Q= ;Cg’m/o ASpmq1 ./O ds; {H(to.(mﬂ)), [H(tg(m)%. - [H(t0(2))7H(ta(l)} ”

(B.14)
where o is a permutation, and C, ,,, being,
(=190 (m — 0[o])!
Com = —— : B.15
’ im(m + 1)2m!Tm+! ( )
with O[o] = >, (6(c(i + 1)) — 6(i)) and the step function #(-). For instance, the first
two lowest order can be given by,
1 /T .
Qo = T / dsH(s)
2 . (B.16)
0 = 2hT2/0 d32/0 ds; |:H($2),H(Sl):| :
Here, the approximate Hamiltonian at the lowest order,
N 1 /T A
A9 = Q10 = = / dsH (s) (B.17)
0

is the time-averaged Hamiltonian.

From Eq. (B.14), at the m-th order, there is the multiple commutator, as follows,

(A (1), [H(tw), -, [H(t2), H(tr)] -] (B.18)

It implies that the term may have at most an (m + 2)-body interaction term. Thus, in
general, in the Magnus expansion, it is not possible to write the Floquet-Hamiltonian with
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a few-body interaction term.

B.2.3 Floquet ETH

The divergence of the Magnus expansion suggests a very important physical property of
the Floquet system. To see it, let us consider the eigenstate of the Hamiltonian Hp,

Helor) = elon) (B.19)

where ¢; is the eigenvalue and is called the quasi-energy. Because the eigenstates forms
the complete orthonormal set, an initial state |U(0)) can be written in terms of them:
|W(0)) = >, clé). Here, the long-time average of the density matrix at stroboscopic
times (¢ = nI") can be given by,

>

1 M-1
= dim g 2 o) =3 lallon 9] (B.20)

where we assume that there is no degeneracy in the Floquet system.

Here, some numerical results [70, 74] suggest that the expected value of the local
physical observable A s indistinguishable from that of the thermal equilibrium state
pPeq(B = 0) at infinite temperature 3 = 0, as follows,

(61| Alg) ~ Tr(Apeg(B = 0)) (B.21)

Although it has not been proven whether the result applies to generic quantum many-
body systems, it seems to be a general property of non-integrable and periodically driven
systems, which is called the Floquet ETH hypothesis. Now, given that this hypothesis is
correct, the long-time average of the physical quantity A is as follows,

Tr(Ap) = Tr(Apeg(8 = 0)) (B.22)

where we use 3, |¢;|?> = 1. It indicates that the generic Floquet system will relax to a
thermal equilibrium state at infinite temperature after waiting long enough time.

More details on the Floquet theory and the thermalization of the periodically driven
system are available on Ref. [213, 81].
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Derivation of the effective Hamiltonian
for the chimer DTC

In the Chapter 3, we have used the effective Hamiltonian for two periods to show that
our model exhibits the coexistence of two quantum phases, called chimeric DTCs. Here,
we analytically derive the effective Hamiltonian 4 2Tl for a non-zero error €5. In the
calculation, we assume that €, is the small compared to the coupling constant Jjand set
eg = 1.0. To find the effective Hamiltonian, we start from the square of the Floquet
operator. By definition, in our model, it can be written as

A

1
F? =exp |——

h
1 A 7 A 1 7 A
= exp {—hHng] exp {—hHlTl] exp {—hHng] exp {—hHlTl] ,

f2Ta
(C.1)

where [, and H, are defined in the main text. For convenience, we decompose Hy as
follows,

Hy =0 Ji0i0i, + 1Y Wiof
Im l
=h Y Jioi0L, +hY Wioi+h > Jiofol, +hY Wioi +h Y. Ji0i0k.

ImeA leA ImeB leB leA
meB

(C.2)
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Here, we consider an operator O = exp (—%]—AIITl) exp <—%ﬁ2Tz) exp (—%ﬁlTl). And
using the properties of the spin rotation we rewrite it as follows

R _i7r(12—eA) Zo_ll _i7r(12—eA) ZUlz
O=e A exp [—z’ (Z Jroiol, + > VVfo) TQ] e leA
Im l
=Vesexp [ =i | Y Jiuoion =Y Jinoion,— > Wioi+y Wioj | Tr| Ve,
ImeA/B leA leA leB
L meB
A @l P
=V exp | =i (=Y —o0f Y. Jioion+ Y. Jioion+Y Wiol | T V.,
L leA 2 ImeA ImeB leB
0 . él . z _z_z 2 9
= V., exp |1 > To| exp |—1t Z Jooiom+Hp | To| Ve,,
L ImeA
(C.3)

where @l =2W,/T5+2 Z Ji, Ihor, and VeA = exp (“A” > 05”). Here we defined the

Hamiltonian containing operators of region B: Hz = 3 Ji, o708, + Z Wiof. Letus
ImeB

define a rotation acting on the operator o} as follows,

exp (—2 Z O’l) 4 €Xp (z Z ?ai) = exp [ZESW Z (cos (:)laf + sin (:)laly)

ImeA leA

leA leA leA
(C4)
Thus,
72 . z _z_z . él z | 7
Fo=exp |—t Z Jioi0n | Ta| exp —12?01 Vea
ImeA leA
. él z . z Z, =z ' 9
exp ZZ—UZ exp |—1t Z Jioron, +2Hp | To| Ve,
lca 2 ImeA
- _ (C.5)
oo |1 5 i) 1 oo | 578 oot + s

exp ( i2]fIBT2> XA/EA .

o |4 £ i ) 7
ImeA
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When the parameter A and p are small, the Baker-Campbell-Hausdorff formula is approx-
imately given by

exp (AX) exp (uf/) /R exp (AX + uff + ;/\u[f(, Y]) , (C.6)

where X and Y are matrices. By using this equation, one can write

exp (AX) exp (;AA/) exp (/\X)

_ 5 Py = 5
= exp (AX) exp (2Y) (2Y) exp (X)

¢4y Mg Bo Mo o €7
A exp ()\X—|—2Y+4 )exp <)\X—|— =Y — Z[X Y])

/A exp (QAX + ,u}A/) .

We here assume that both the couplings J;;,, as well as the error €4 are small. Thus, we
can apply the formula discussed above to obtain

exp |—i | > Ji.0i05 | T
ImeA

= exp [—i (2 > Jﬁnalza;) T + ZEQAW > (cos O,0% + sin éyﬁ’)

LEAT

exp

leA ImeA

ImeA leA
(C.8)
By combining Egs (C.3), (C.4) and (C.8), finally, we get
RT: haeyT: . RT: . . s
HEA o = 72 Z Jlmal m 2T 2 Z Jlmo—l ng + T2 Z Jlmal Om
I,meA Il,meA I,meB
l#m

hTQ (C.9)

hme
ZVVI oy — 4TAZ

leB leA

(cos e+ 1) of sin ©,07

From this Hamiltonian, we see that the rotation error €5 produces an interaction between
regions A and B, and the strength of this interaction is proportional to it. If e, = 0, this
Hamiltonian reduces to
hTQ

Freff
H, —oor =

hT:
> Jiwoion o Y Jooion, + 12 Zm (C.10)

l,meA l,meB leB
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which is the same as the exact one obtained from Eq. (C.1) analytically. Obviously,
regions A and B are completely decoupled.
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Appendix D

Quantum dissipative systems

In the present Chapter, we briefly introduce the formalism to find the dynamics of the
quantum dissipative system. In addition, we will explain the super operator form, which
is very useful for analyzing the dynamics of dissipative systems.

D.1 Liouvillian-von Neumann equation

Let us start from the closed systems or highly isolated systems from the environment,
in which its physical state is represented by a wave function W(z,t) or a state vector
|W(t)). And one can calculate it’s dynamics by Schrodinger equation which is differential
equation. For instance, when the system’s Hamiltonian H is time independent, the state
dynamics is given by

d -
ih-[U(t) = A0 (D). (D.1)

For closed systems, the state vector and the above equation are enough to understand it
dynamics.

However, when the system is effected by the environment, it is better to use the density
matrix p(t) = [¥(¢))(W(¢)|. Now, in general a different equation for /() can be written

as
d A
—p(t) = L[p(t)] , (D.2)
dt

where £ is called the Liouvillian operator and it acts on the operator. The above equation

is an analogy to the classical Liouvillian equation in the classical statistics physics. In the

absence of the environment, the Liouvillian equation can be obtained form Eq. (D.1), as
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follows,
d d d
—p(t) = | —|¥(t Ut Wt
00 = (Glven) e+ e (o)
i o
=~ (Ap(t) = p(1)1T) D-3)
7 A
- _ﬁ[ >p]
Thus, the corresponding Liouvillian operator is £[p] = —1 [H, p] that preserves the unitary

in the dynamics. In the other words, it gives the unitary dynamics. Thus, the above
differential equation (D.2) has is refereed to as the Liouville-von Neumann equation.

D.2 The total system including the system and the envi-
ronment

Now, let us consider the system coupled to an environment. In this case, the generlc total
Hamiltonian can be represented by HT = Hs + HE + HS e, Where HS and HE are the
system’s and environment’s Hamiltonian, and HS_E is the interaction term between the
system and the environment. Then, the dynamics of the density matrix for the total system
are obtained from Eq. (D.2), as follows,

d . T~
%PT = —ﬁ[HTva] (D.4)

However, because the above equation has all degree of the freedom including the envi-
ronment, it is difficult to obtain the dynamics of the interested system from the above. In
many cases, to avoid it, one trace out the environment space in the above equation, and

derives the equation for the partial density matrix pg = rl}j:rﬁT, which is same as the density
matrix of the interested system.

D.3 Lindblad equation

In this Chapter, we assume that our system is weakly coupled to the Markovian environ-
ment. In this approximation, the Liouvillian operator can be simply written as,

A

L15(8)) = 1A, ps(0] + Dlps 0] 03)
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Here, Eq. (D.2) with the above Liouvillian operator is specifically called the Lindblad
equation. Explicitly, the first term above is the same as that of the Liouville-von Neumann
equation for the system. Next, the second term represents non-unitary dynamics due to
the environment. Generically, it can be represented as follows,

Dlps(t)] = (Lﬁ(t)i? - ; {LIL, Mt)}) : (D.6)

l

where the operators L, are referred to as the jump operator, and {fl, E} — AB+ BAis
an anti-commutator. If you want more details, Refs. [118, 119] are available.

Next, let us see the more detail of Eq. (D.6) for spin-1/2 systems that we are interested
in. The generic form of D[p,(t)] is given by,

)

Dips(t)] = 345 (a;ﬁsu)a;; ~ 5 ot ps(0)})
+ Zv"‘bs (Uz ps(t)om — ; {ovom, ﬁs(t)}) (D.7)
# o (at7s(0105, 5 Loioiops)).

where 0i° = (oF & io}') /2. Here, the first and second terms above represent the emission
and absorption of the energy causing the spin flip. For example, when a two-level system
is coupled to the cavity, there is energy exchanging between the system and the cavity
via the photon emission and absorption. Next, the last term above is referred to as the
dephasing term that yields the decay of off-diagonal elements in the density operator.

D.4 Super-operator formalism

The differential equation (D.2) is a completely positive map that preserves the trace of the
density matrix. Despite its form is very similar to the Schrodinger equation that is the
first-order differentiation, we always have difficulty in solving the equation, because they
are matrices. However, it is possible to transform the matrix to the vector which is referred
to as the super-operation formalism.
Suppose, the system’s density matrix is given by p = ZZ pim|l) (m| where |I) are states in
m

the Hilbert space H, for instance the computational bases set. Then in the super-operation
formalism it is written as a vector, as follows,

= Zplmﬂ) ® |m). (D.8)

Im
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where the matrix elements are p;,,, = (I|p|m). Here we note that the vector above are
defined in the extended Hilbert space H @ H, and sometimes the space is called the Fock-
Liouvillian space (FLS). For instance, let us consider a single spin in the computational
bases. A density matrix is given by

b= (Poo P01> . (D.9)
P10 P11

While, its super-operator formalism is

P00

=" (D.10)
P10

P11

Similarly, for any operator A, its vector form is given by

[A)) =" Ap|l) @ |m). (D.11)

Im

In the space, the scalar product of operators A and B is defined by,
((A|B)) = Tr[ATB]. (D.12)

Next, to obtained the Liouvillian operator in the super-operation formalism, let us
consider action of an operator. Suppose we have an density operator p and an operator A
acts on it from the left side, Ap. In the super-operator formalism, it cam be written by,

Ap =" pmAlY(m| = Y pin (ART) (1) @ Im) = (A1) (1),  (D.13)

where T is the identity operator with the same dimension of A. Similarly, the right
multiplication ﬁfl can be written by,

pA — (1o AT)[|p)), (D.14)

where A7 is the transpose of A.

Now, in this extended Hilbert space, the Lindblad equation (D.2) is written as a linear
system of coupled ordinary differential equations

d

S1p0)) = L1p(e) (D.15)
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where L is the Liouvillian super-operator. Because the form is the same as the Schrodinger
equation, it is easier to get the intuition of the dynamics form the Liovillian super-operators.
For example, when the spin-network is under dephasing, its Liouvillian super-operator
can be written as

l

where Iy is the (2" x 2%)-dimensional identity operator, and H is the network’s Hamil-
tonian. It can be considered as the system where two individual networks are coupled via
the pseudo-interaction: 7y, 07 ® o7 .

D.5 Floquet Theory for the dissipative system

In Chapter 4.5, we have applied the Floquet theory to the periodic driven spin network
interacting with the environment. In this section, we briefly explain the Floquet theory for
the dissipative systems.

Let us consider a time dependent Liouvillian operator L, and dynamics given by,

d A

G0t = Lp() ®.17)

where f(t) is the density matrix. As it is not possible to apply Floquet theory in this style,
we use the sparse operator formalism in which the dynamics is given by

A

L1900 = £dp(e) ®.18)

where £, is the super-operator of the Liouvillian. Now, as we saw in the above section, we
can treat the dynamics of the density matrix j(t) as a vector |/(t))), and apply the Floquet
theory to it, as similar to a state in closed systems [215].

Now, when the Liouvillian operator is time periodic (L, = ﬁt+T), the Floquet theory
tells us that the density matrix j(t) at stroboscopic times ¢ = n7" can be obtained from,

A(nT))) = Bn[H(0))), (D.19)

where &7 is called a dynamical map associated with the period 7" which corresponds to
the Floquet operator in the closed system. Like the Floquet operator, the map can be
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obtained by,
2 T fTE dr L:ZC“T
Op = Telo 777 =17 (D.20)

where Z is the time-ordering operator. As similar to the effective Hamiltonian of the
closed system, the the dynamics at the stroboscopic times ¢ = nl" are governed by the
effective Liouvillian super-operator,

2 1 2
L = 7 In ¢ (D.21)

Here, clearly the Liouvillian is time-independent.
Similar to the Magnus expansion of the closed systems, the effective Liouvillian
operator can be written as,
L =S LWT. (D.22)
n=0

For instance, the first term is given by,

2 1 /T 2
A / L.dr. (D.23)
T Jo

More details on the Floquet theory for the open quantum systems and disspative
systems are available on Ref. [215, 216]
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Appendix E

Principal component analysis (PCA)

In Chapter 5, we mentioned that principal component analysis (PCA) is used to map
classical data to quantum states. In this Chapter, we will briefly explain the actual process
of PCA. In Chapter 5, we used PCA to decompose handwritten digit data set (MNIST) to
perform the QRELM with 11 to 14 qubits.

Suppose, we have D-dimensional classical data set X with M -samples,

T11 12 - T1.D ivlT
T
To1 T22 - T2D Ly
X=1 . . =] (E.1)
T
Tyma TMm2 °° TM,D Ip
where x; is a one of the sample labeled by [ (I = 1,---, M) and x is the transpose of

x;. To find the variance of this data set, we denote the averaged data set as,

- _ - _\T
T11 —T1 T12— T2 - T1,D — XD (331 - 93)
— — — —\T
_ To1 — X1 22— T2 - X2apD—TD (wQ - JJ)
X = . ) _ . = . (E.2)
a P P L
Tyy—T1 Typ—Ty o Tup—Tp (xp — )
where & = (Zq, - - ,QZ'D)T, and 7, = M Zm1/M. Now, the the covariance matrix (33)

representing the variance of the data set is defined by,
_ R
= Var {X} = XX (E.3)

where X is the real symmetric matrix.

The PCA is a linear transformation of a data set to the direction in which its variance
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(a) 6;2 (b) 6;2

€1

Figure E.1: Basis transformation in vector space (a). The vector represented by (z;; —
1,2 — To) in the original space stretched by e; and e, is represented by z; ; in the new
basis vector v;. PCA finds a new basis vector where the data points are the most spread
out, i.e., where the variance is the largest (b).

is maximized. In other words, it is the same as the projection to the direction where its
variance is maximized. Thus, here we introduce new unite vectors, as follows,

V1,1 V2,1 Up1
V1,2 V2,2 Up,2

vV = . ) Uy = . y o, Up = . . (E4)
U1,D V2,D UD,D

where vlTvm = 0;m. Here, we want to rewrite the data set X using this new axis. For
example, the data (x; — =) can be written as,

(a:j — ii) = (xu — fl) e + (wl’g — 532) ey + .- (Il,D — i’D) Eép

(E.5)
= 211V1 + 212V2 " - - 21, pUD
where, z;; can be obtained by
215 = Vj1 (%1 —I)+ Vj2 ($l,2 —To) 4+ Vi D (xip —Zp) (E.6)

= (¢ —z)" v,

158



APPENDIX E. PRINCIPAL COMPONENT ANALYSIS (PCA)

Similarly, the data points along v;-axis can be given by
zi=| | = X, (E.7)

Next, the variance of the data points on the v;-axis is given by

1 1 /o \T /5
Var{z,} = szsz = (X'uj> (vaj> = v; Z; (E.8)
Now, our purpose is to find a vector v;, such that it maximizes this new variance, while
keeping its norm to one. Therefore, one can use the method of Lagrange multiplier to
solve it. Here, the Lagrangian function is given as follows

L(v;) = 'vaE'vj - A (vavj - 1) (E.9)

where )\ is a Lagrange multiplier. The derivative of the function with respect to the vector
v; can be written as
OL(v;)
ov;
Finally, PCA becomes an eigenvalue problem for the covariance matrix of the original
data, as follows,

= 2%, — 2\v; = 0 (E.10)

E’Uj = )\’Uj (Ell)

where A can be seen as eigenvalues. Because of the real symmetric matrix 32, eigenvalues
are real and we introduce an order among the eigenvalues as \y > Ay > - -+ > Ap.

Now, remarkably, the variance of the data set on the v-axis is given by
Var{z;} = vaEvj = )\j'vavj =), (E.12)

It means that the component linearly transformed by the eigenvector \; with largest eigen-
value v; has the largest variance, which is called the first principal component. Similarly,
the component transformed by eigenvector v; is called the j-th principle component (j-th
PC). Since the eigenvalues gives the variances, the total variance is given by,
D
Ve =D =\ (E.13)

=1

where it agrees with the total variance of the original data set due to the properties of
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Figure E.2: PCA for handwritten digits provided by MNIST.

the trace. The ratio of the variance of the j principal component to the total variance,
r; = Aj/Vio, is called the contribution of the j-th component. Similarly, the cumulative
contribution up to the j-th component is ¢; = (Z{Zl )\l> /Vior- It tells us the degree of
compression of a linear transformation of the original data set by eigenvectors up to the
J-th vector v;.

As an example, let’s use PCA to decompose a handwritten number image from the
MNIST data set. Fig. E.2 (a) shows the cumulative rate against the number of principal
components. From this, we can see that the MNIST image can be represented by a
sufficiently small vector for the whole. For example, it shows that, about 80% can be
represented by the number of 100 PCs. Furthermore, since clear images of digits are not
necessary for digit classification, a digit image of about the number of 20 PCs is considered
sufficient, as shown in Fig. E.2 (b).
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