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Parallel applications become sensitive to communication latencies and bandwidth of
interconnection networks between compute nodes on parallel computers. Interconnection
networks have been studied for parallel computers, including supercomputers and high-
end datacenters. Switch delay dominates communication latencies in interconnection
networks, especially for short messages because switch delays are massive compared
to the link and packet injection delays. At a conventional switch, routing decision is
based on CAM (Content Addressable Memory) table lookup, and it imposes a significant
delay. A main problem of the packet forwarding processing is the significant operation
latency to the CAM at a switch. Reducing the CAM access latency is crucial for the
upcoming low-delay switch in parallel computers. Besides the CAM latency problem,
the packet forwarding rate is not proportional to the switching capacity on cutting-edge
commodity switches of interconnection networks. A switch will not be able to forward
incoming packets at the maximum line rate. It is also difficult to provide the proportional
packet forwarding rate to a high line rate on a future switch even for long packets. The
key design to resolve the problem of the packet forwarding performance is a packet
forwarding cache architecture explored in this dissertation. More precisely, “address
patterns” of interconnection networks should be found, and the packet forwarding cache

architecture should be optimized for enjoying the address patterns.

To resolve the latency and throughput problems, an on-chip packet forwarding cache
to a switch is explored. An incoming packet avoids large-latency of accessing a CAM
forwarding table if the cache hits. Firstly, the cache for up to 2K-node jobs is optimized
because the sizes of a large number of workloads are less than 2K compute nodes. The
conventional cache design achieves an almost 100% hit rate (no capacity miss nor con-
flict miss) for packets generated in up to 2K-node jobs on arbitrary network topologies,
which affect the access pattern of a switch. Only an exclusive layer-1 (L1) cache at an
input port contributes to achieving a high line rate, e.g., 800 Gbps for the incoming
short packets. Zero-load communication latency with the packet forwarding cache in a
large scale interconnection network is evaluated. From the evaluation results, the re-
duction percentage of zero-load communication latency gradually decreases from 19%
to 13% with the effects of capacity misses of the packet forwarding cache when used
in a 9K computation node large scale interconnection network. Additionally, with ad-
ditional entries in the packet forwarding cache, the reduction percentage of zero-load
communication latency gradually increases from 9% to 19%. The adoption of the packet
forwarding cache clearly decrease the communication latency of interconnection network
and increase both the line rate and the performances of parallel applications. Conse-
quently, the packet forwarding cache is strongly recommended to be adopted in HPC
switches. However, larger jobs make the cache hit rate almost “zero” on any network

topologies, and the cache effect becomes almost “zero.”



Secondly, a switchable node reduction function to refer to a packet forwarding table on
a switch is presented for 100% hit rate on larger jobs. The main idea is that a large
number of packet destinations share a same index tag, resulting in the same required
number of cache entries as the number of output ports. This design can be enabled by
the path regularity of the above network topologies. A general node reduction function,
which obtains two addresses and their indices then returns a cache tag, is defined to
achieve the path regularity. The switchable node reduction function is then optimized
to typical network topologies, i.e., k-ary n-cubes, fat trees, and Dragonfly. Evaluation
results show that the reasonable packet forwarding cache supports a 933 Gbps line rate
even for incoming shortest packets on the above network topologies. In addition, they
illustrate that parallel applications obtain the performance gain of 5.07x speed up using
the cache switches since the impact of the switch delay and link bandwidth is significant

on the end-to-end communication performance.

Through this dissertation, it is concluded that a commodity switch should have a packet
forwarding cache with switchable node reduction functions. The packet forwarding cache
is efficient for forwarding a large number of shortest packets, and the switchable node

reduction function is necessary for large scale parallel computers.
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Chapter

Introduction

1.1 Motivation

Interconnection networks have been studied for parallel computers, including supercom-
puters and high-end datacenters. They have four key architectural components, network
topology, routing, switching, and arbitration. The main concern of this dissertation is

the network topology and routing.

Unlike custom interconnection networks, e.g. BlueGene/Q [6] and Tofu Interconnect D
(TofuD) [7] for Fugaku supercomputer [8], commodity interconnection networks, e.g.,
Ethernet [2] and InfiniBand [3], are a mainstream of supercomputer’s communication
platform. As of June 2021, more than 80% of Top500 [1] supercomputers use them, as
shown in Figure 1.1. A commodity interconnection network usually supports arbitrary
network topologies and arbitrary routings by updating a packet forwarding table at its

network switch.

At a conventional commodity switch, routing decision is based on CAM [9] (Content
Addressable Memory)-based table lookup, though there are two routing implementa-
tions, distributed table lookup and source routing. Source routing packs the routing
information to the destination into a packet header, thus requiring no routing tables
at an intermediate switch. Unlike commodity local area networks, the next-generation
High Performance Computing (HPC) systems will take aggressive network feature, such

as congestion control and adaptive routing, which dynamically selects a route from
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Interconnect Family System Share

@ Gigabit Ethernet
@ Infiniband
Omnipath
@ Custom Interconnect

@ Proprietary Network

TOP500.0rg

FIGURE 1.1: Interconnect Family System Share of TOP 500 Release June 2021 [1].

alternative routes at an intermediate switch so as to avoid congestion points in an inter-
connection network. Source routing cannot support adaptive routing. This dissertation

considers the case for the table lookup for routing at a switch.

A main problem of the packet forwarding processing is the significant operation latency
to the CAM at a switch. The next-generation HPC systems are to achieve low end-to-
end latencies, e.g., under 1 us across an exascale system [10]. This objective is partially
achieved thanks to decreasing switch delays because switch delays are massive relative to
the link and packet injection delays. Currently, Mellanox QMS8700 [11] achieves 130 ns
switch delay, and some Mellanox switches achieve less than 100 ns delays. Since a
conventional switch uses off-chip CAMs for forwarding packets, its access latency would

reach dozen of nanoseconds that should be reduced.

Another problem is the low packet forwarding rate on a switch. Switching capacity (giga
bits per second) is proportional to the aggregate line rate on a switch, e.g., 25.6 Tbps
for 400 Gbps x 64 ports in a cutting-edge switch [12]. Link bandwidth continues to
increase to 1.6 Tbps in the 2020s, as illustrated in Ethernet Roadmap 2020 [2], and
the supercomputer interconnect will follow the link-bandwidth roadmap. By contrast,
packet forwarding rate (billion packets per second) using TCAM (ternary CAM) lookup
is not much improved year by year because the operation latency of product TCAMs
does not much decrease in recent ten years, e.g., six nanoseconds for Renesas Electronics
R8A20410BG [13] in 2009, while four nanoseconds for the successor R8A20611BG in
2021 [14].



Challenges

Ethernet requires to perform packet forwarding processing every 84 Bytes at an input
port because the minimum frame length and inter-frame gaps are 64 and 20 Bytes,
respectively. When a single-port TCAM is located at each input port, the upper bound
of an input-port throughput is 168 Gbps ( = 1/4 ns x 84 Bytes x 8). Maximum
transfer unit (MTU) is 1,518 Bytes in Ethernet. If an inter-process message length
becomes longer than 1,518 Bytes, it is divided and transferred by multiple Ethernet
frames. When all frames have the longest length (1,518 Bytes), the packet forwarding
processing achieves up to 3.0 Tbps line rate (=1/4 ns x 1,518 B x8). This is the
theoretical upper bound of the line rate. In practice, various frame sizes should be
burstly proceeded. For example, when average frame length is 1 KiB, the line rate
supported by the packet forward processing is up to 2.0 Thps (=1/4 ns x 1 KiB x 8).
Since over 2 Tbps link will appear shortly, the packet forwarding processing should be
much improved. Consequently, the gap between a line rate and a packet forwarding rate
will become a serious bottleneck in parallel computing. This dissertation challenges to

mitigate this problem.

To mitigate the throughput gap, an existing straight-forward solution is to operate par-
allel accesses to multiple TCAMs or their multi-port extension on a switching ASIC [12].
Of course, this parallelism approach will be unrealistic due to the vast cost as the line

rate increases.

1.2 Challenges

To improve the operation latency to compute routes, i.e., the packet forwarding rate,
an on-chip packet forwarding cache to a switch is explored in this dissertation. An
incoming packet avoids accessing a TCAM forwarding table if the cache hits. Only an
exclusive layer-1 (L1) cache at an input port contributes to achieving a high line rate,
e.g., 800 Gbps for the incoming short packets. An L2 cache access latency becomes a few
nanoseconds (e.g., 2 ns) that do not provide a high line rate, i.e., higher than 336 Gbps
(=1/2ns x 84 Bytes x 8). The L1 cache size is strictly limited by the chip area. This

limitation strongly affect the cache hit rate for traffic generated in parallel applications.

Access locality is a key factor to make the cache hit rate high. However, parallel applica-
tions sometimes generate traffic with less access locality. For example, alltoall collective
communication makes access pattern uniform. Thus, two conditions are taken for mak-
ing strong access locality of a cache as follows. (1) up to 2K job sizes, and (2) supporting
only typical network topologies with their custom routing. In this dissertation, a packet
forwarding cache architecture is exploited for improving the link bandwidth and routing

computation latency of a network switch for the two above cases.
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1.3 Contributions

Firstly, a packet forwarding cache architecture on a network switch is illustrated. On
most jobs on arbitrary network topologies, 2K-cache entries with a four-way set-associative
provide almost 100% cache hit rate (no conflict nor capacity miss). However, the solution

of the packet forwarding cache cannot work well when the network size is large.

Secondly, a switchable node reduction function for the packet forwarding cache architec-
ture is demonstrated for elephant-nose large jobs on some predefined network topologies.
Some typical configurations of the functions are stated. It requires taking a custom

packet destination addressing on the predefined network topologies.

Table 1.1 highlights the contributions of this dissertation.

TABLE 1.1: Contributions for High-Throughput, Low-Latency Packet Forwarding of a
Network Switch.

Section Ttem Detail
Assumption Arbitrary network topologies.
Chapter 4 | Limitation Job size is up to 2K compute nodes.
Solution The four-way set associative cache.
Efficiency | 99.9% hit rate. 1.64 Tbps link, 4.39x application speedup.
Assumption Arbitrary number of compute nodes.
Chapter 5 | Limitation Predefined topologies.
Solution The switchable node reduction function.
Efficiency 933 Gbps link. 5.07x application speedup.

1.4 Organization

The remainder of the dissertation is organized as follows. Chapter 2 describes back-
ground information of this dissertation. Chapter 3 states the problem mitigated in this
dissertation. Chapter 4 describes the switch organization using the packet forwarding
cache. Chapter 5 describes the switchable node reduction function on the switch with
the packet forwarding cache. Chapter 6 discusses alternative ways to improve the hit
rate of the packet forwarding cache. Chapter 7 concludes with a summary of the findings

and perspectives on future work.

Figure 1.2 illustrates the outline of this dissertation.
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I Problem Statement I
Section Il Background information of interconnection networks |
Scope and Limitation
Low throughput and high latency of packet I Solution I
Section Il forwarding at a switch
Section IV Case for arbitrary topologies with small jobs

i
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FIGURE 1.2: Outline of the Dissertation.






Chapter

Background Information

2.1 Parallel Computers

Energy consumption and heat problem limits the performance of single CPU cores and
the number of cores in a die. The performance of shared-memory computers suffer
from the long latency of a shared main memory in an Uniform Memory Access (UMA)
system, or the complexity of cache coherence in a cache-coherent Nonuniform Memory
Access—(ccNUMA) system. Consequently, distributed memory computers with message

passing architectures are widespread in large scale parallel computers.

Parallel computers, including supercomputers, continues to increase the number of pro-
cessing cores. As for June 2021, Fugaku, which is the first rank of Top500 [1], takes
7,630,848 processor cores. ABCI [15], Piz Daint [16], and Titan [17] have 391,680,
387,872, and 560,640 processor cores, respectively.

From the interconnection-network point of view, the interest of this dissertation is the
number of endpoints and their types on parallel computers. Each compute node usually
consists of multiple processor sockets, and each processor socket has tens of processor
cores. Piz Daint supercomputer connects 5,320 XC50 [18] compute nodes. Titan super-
computer has 200 racks to store 18,688 compute nodes. Some parallel computers take
not only commodity processors but also accelerators, e.g., General Purpose Graphics
Processing Units (GPGPU) [19], for increasing the system performance. For exam-

ple, Cori supercomputer [20] consists of 2,388 Haswell CPU compute nodes and 9,688
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KNL [21] compute nodes. In ABCI, each compute node also has commodity processors
and GPUs, and ABCI has 1,088 compute nodes.

2.2 Interconnection Network

An interconnection network plays a key role to connect all of compute nodes. They
have four key architectural components, network topology, routing, switching, and ar-
bitration, as presented in a textbook [22]. Network topology determines possible routes
for transmitting packets. Interconnection networks usually share paths among different
pairs of compute nodes. Once the network topology is determined, the next concern is
routing. Routing determines allowable possible paths for transmitting packets. Arbitra-
tion determines the available time of the path for packets when they can be transmitted.

Switching determines the allocation of packets to paths.

In this dissertation, the concern is topology and routing. Arbitration and switching are

well explained in textbooks [23, 24].

2.2.1 Network Topology

Interconnection networks are surveyed for top 30 supercomputers, as of Nov. 2019 [25].
Table 2.1 lists up their taxonomy. Although there are a large number of network topolo-
gies, including the results of Graph Golf competition [26], only a small number of typical
network topologies, e.g. torus, fat tree [27], and Dragonfly [28], are used. In the figure,
the fat tree topology takes two layers, and switches of different tiers have different num-
bers of ports. Tier 1 means a root switch, as known as director switch. Tier 2 means
a leaf switch, or a Top of Rack (ToR) [29], which is usually located on the top of the
computer racks. A number in parentheses is their ranks in Top500 Ranking [1]. The
node bandwidth is the aggregate link bandwidth of compute node. For example, the
first ranked supercomputer has two 100 Gbps links at a compute node, resulting in a
200 Gbps node bandwidth.

The link bandwidth varied from 16 Gbps to 100 Gbps on different supercomputers. The
link bandwidth depends on the year of the system deployment. As illustrated in the
Ethernet and InfiniBand roadmaps in Figure 2.1 and Figure 2.2, the link bandwidth
increases year by year, almost 10 times per 10 years. In the figure, “Others” includes

the case where a network topology is not disclosed.

The network topologies on supercomputers can be classified into direct and indirect.

In direct network topologies, every switch connects directly to a number of compute

8
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TABLE 2.1: Network Topologies of Top 30 Supercomputers as of Nov. 2019.
Topology Num. of Switch Ports | Link/Node BW(Gbps) Rankings
Fat Tree 36,/648[1,2,10] 100/200[1,2,8,11]

(indirect) 32/576[4] 112/112[4] 1,2,4,5,8-11,
40/800[5] 200/100[5] 14,15,17-20,
36/648[8] 100/100[14,18,19,30] | 23,24,26,29,30
48/768[14,15,19,23,30] 100/800][20,26,29] (19 Machines)

648[20] 100/400[23]

Dragonfly 48 37.5-42/84 6,7,13,27,28

(direct) (5 Machines)
5-D Torus 10 16/Integrated 12,22

(direct) (2 Machines)

Others - - 3,16,21,25
(inc. unknown) (4 Machines)

nodes and other switches. Direct topologies are k-ary n-cubes and Dragonflies in top 30

supercomputers. All these network topologies have the same degree.

k-ary m-cubes include tori and meshes. Their difference is the existence of wraparound

channels. We illustrate 4-ary 2-torus and 4-ary 2-mesh in Figure 2.3.

The dragonfly is a hierarchical network with three levels: switch, group, and system [30].
At the bottom level, each switch has local p endpoints, a — 1 links to other switches in
the same group,and h global links to switches in other groups [30]. Thus, the switch
degree become p + a + h — 1. The main idea of Dragonfly is that a group, consisting of
a switches, behaves as a single virtual switches with a degree of a(p + h), which can be
considered as a high-degree network. It is a rack-conscious topology that distinguishes
the intra-rack layer and the inter-rack layer, which can be seen as an instance of the

Dragonfly.

The original Dragonfly is described as “three-layered,” including compute nodes, but in
this dissertation we ignore compute nodes and consider only intra- and inter-rack links.
Figure 2.4 is an example of Dragonfly network topology, in which inter-group network
is a ring, while intra-group network is a fully connected network topology. Inter-group
links are marked as red color, while intra-group links are marked as black color. The
other layout-conscious network topologies provided a better floorplan for reducing the

network latency or network costs [31-34].

In indirect network topologies, some switches are connected only to other switches.
Famous indirect network topologies are fat trees, Clos network [35] and multi-stage

interconnection networks [36] (MINs) such as the Omega [37] and Butterfly [38] networks.
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MINs have uniform access latency and they use different schemes by which link end
points are “shuffled” deterministically at each stage, so that re-arrangeable or non-
blocking data transfers are possible. Fat tree consists of multiple trees, and recent
supercomputers follow the two-layer structure, director switch (some hundreds of ports)

and Top-of-Rack (ToR) switches (some dozens of ports), as shown in Figure 2.5.

ToR switches connect both compute nodes and neighboring switches, while the director
switch only connect neighboring switches. In this context, fat tree is an indirect inter-
connection network. There are some variations of the two-level fat trees. A simplest
approach is to have a single link! between compute node and ToR switch. Another

approach takes multiple links from a compute node to different ToR switches.

If link aggregation is taken, it should be counted as one.
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2.2.2 Routing

Interconnection networks require the routing to resolve deadlocks of packets because
they are “lossless” using virtual-cutthrough or wormhole switching. Custom deadlock-
free routing algorithms have been proposed and used in supercomputers for the above

typical network topologies, e.g., dimension-order routing and Duato’s protocol for k-ary
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FIGURE 2.5: Example of a Two-Level Fat Tree.

n-cubes [23]. Routing on these network topologies includes a strong regularity that helps

design a routing algorithm.

Besides the above custom routing to specific network topologies, topology-agnostic
deadlock-free routing algorithms are well studied [39, 40], and they can be applied to

any network topologies.

Routing algorithms are classified into deterministic and adaptive methods. The former
determines a single path for a given pair of source and destination nodes. The latter
allows a packet to dynamically select a path from alternative paths for avoiding the

congestion at an intermediate switch.

There are two approaches to avoid deadlocks in routing. A simple approach breaks cyclic

12
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channel dependency of paths [41]. A famous example uses a spanning tree [42] embed-
ded in the network topology. All deterministic and many adaptive routing algorithms
follow this approach. Up*/down* routing is based on the assignment of direction, up or
down, to network channels using a spanning tree [43]. A legal path must traverse zero
or more channels in the up direction followed by zero or more channels in the down
direction [43]. Since no cyclic channel dependencies are formed among paths with the
above restriction, deadlock freedom is guaranteed. Since there are multiple legal paths
to a destination, up*/down* routing is an adaptive routing algorithm. Sophisticated

deadlock-free routings are designed using virtual channels for taking minimal paths [39].

Another approach to avoid deadlocks prepares both escape and adaptive paths over the
network. Some adaptive routing algorithms follow this approach [23, 44]. It provides
deadlock freedom of packets while cyclic channel dependencies are allowed. They take
different virtual channels for separating network resources. Along virtual channels for
adaptive paths (adaptive virtual channel), each packet can take any route. When it is
blocked at an intermediate switch, it has to select a virtual channel along the escape
path (escape virtual channel). In an escape virtual channel, the route has to be deadlock
freedom among escape paths. Once a packet follows an escape virtual channel, it should
be transferred only with escape virtual channels [44]. arbitrary network topologies.
More recently, through the detailed analysis of the condition of deadlocks, deadlock-free
routings with the higher adaptivity are discovered [45].

Commercial commodity interconnection networks, e.g., InfiniBand and Ethernet sup-
port deterministic routing. However, adaptive routing dynamically selects a route from
alternative routes at intermediate switches, depending on the network congestion. As
a result, adaptive routing will be one of the key features for the next-generation high-

bandwidth low-latency interconnection networks for supercomputers.

2.2.3 Switch Microarchitecture

The baseline switch microarchitecture is described in this section. A four-stage router
quoted from [46] is assumed as a baseline switch in this paper as shown in Figure 2.6.
The blue arrows in the figure represents data movement of a packet. The black arrows

in the figure shows controls to calculate the path of a packet in the switch.

Each packet arrives at an Input Unit. The output port of the packet is determined by
Routing Computation. VC Allocator allocates an output virtual channel for the packet.

Switch Allocator allocates a time slot of Crossbar to forward the packet.

13
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Similarities with vector processors, the key design is pipelining the switch microarchi-
tecture. In the switch, a header flit is transferred through four pipeline stages that
consist of a routing computation (RC) stage, a virtual channel allocation (VA) stage
for output channels, a switch allocation (SA) stage for allocating the time-slot of the
crossbar switch to the output channel, and a switch traversal (ST) stage for transferring
flits through the crossbar. An example of a four-flit packet transfer is illustrated in
Figure 2.7.

Indeed, each of the four operations is executed with multiple clock cycles. The access

latencies and the cycle numbers of each pipeline stage are not publicly available in many
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Header flit RC VA SA ST
Body flit 1 SA || ST
Body flit 2 SA ST
Tail flit SA ST

FIGURE 2.7: Four-stage Pipeline Processing of a Packet.

commercial switches, with some exceptions, e.g. IBM BlueGene/Q router is 40 nano
seconds(500MHz, 20 cycles) [47], Cray YARC router is 31.25 nano seconds(800MHz,
25 cycles) [48], Fujitsu 10GbE switch is 450 nano seconds(312.5MHz, 140 cycles) [49],
RHINET-2/SW is 160 nano seconds(125MHz, 20 cycles), and RHINET-3/SW is 240 nano
seconds(100MHz, 24 cycles) [50]. Although the parallelism of control dependency on the
pipeline structure can be logically relaxed by look-ahead routing and speculation [24],

actual switch products still have over 100 nano seconds delay.

In this dissertation, the pipeline stages other than the RC stage are not improved. Hence,

they are not treated hereafter.

2.2.4 Optical Network

WDM (Wavelength Division Multiplexing) is commonly used in optical fiber communi-
cations. In WDM, each data carrier is represented as a wavelength, whereas multiple
wavelengths are multiplexed to a single fiber for transmission, as shown in Figure 2.8.

Consequently, multiplication of capacity of data is transferred with a single fiber.

DWDM (Dense Wavelength Division Multiplexing) is a WDM technique using denser
wavelengths, whose differences are around 0.8nm, than the wavelengths of CWDM (Coarse
Wavelength Division Multiplexing), whose differences are around 20nm. Because of the
small differences of wavelengths, DWDM can transmit more data than CWDM, resulting
in a higher bandwidth.
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FIGURE 2.8: WDM(Wavelength Division Multiplexing) optical transmission.

2.3 Network Cache Architecture

In this dissertation, a cache structure for forwarding a packet at a switch in intercon-
nection networks is used. This section introduces the prior studies on network cache
architecture. Cache architecture to forwarding packets has been discussed mainly for
Internet routers with TCAM. The prior studies concern either high hit rate or longest

prefix matching.

2.3.1 DRAM Routing Tables

In the 1990s, the routing table is stored in DRAMSs whose access latency becomes some
hundreds of nano seconds [51], because a series of table entry comparison is necessary to
find a matched entry from a DRAM table. CPU Caches [52] and SRAMs [53] are used

to improve the lookup performance.

Figure 2.9 shows an example of a search from a DRAM routing table. In the Figure,
“10001” is searched from the DRAM table. First, the first line of the DRAM table is
compared to “10001,” resulting in a no-match. Then, the second line of the DRAM
table is compared to “10001,” resulting in a match. As a result, the second port is

returned as the result of the DRAM table lookup.

Figure 2.10 shows another example of DRAM table lookups. In the Figure, “00010” is
searched from the table. As the entry can only be found in the fourth line of the table,
four comparisons, which needs four DRAM reads, are needed to return the matched

result. As a result, this search takes longer time than that of the case in Figure 2.9.
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Search “10001”
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FIGURE 2.9: DRAM Table Matching; the Second Row Matches.

2.3.2 Content Address Memory (CAM)

Content Address Memory (CAM) is widely used in switch routing. Figure 2.11 shows
two search examples to a CAM. CAM is a memory table, which contains multiple entries
with a static length bits. When a search comes to a CAM, it returns a row number if

the entry in the row matches. Exact match is checked in a binary CAM.

Ternary CAM (TCAM) is a CAM that allows the X bit (don’t care bit) in its table.
Figure 2.12 shows examples to search a TCAM. In the Figure, if a bit patter “10001” is
searched in the TCAM, the first row is a hit because the last bit of the first row is an X
bit, which matches “1” of the last bit of “10001”. This search will not match to the first
row of the CAM in Figure 2.11, because the CAM requires a strict match and the last
bit of the first row in the CAM is “0”.

Switches of specially implemented interconnection network, e.g. Anton-2 or IBM Blue-
Gene/Q, can forward packets with special hardware synthesis. They achieve low switch-

ing latencies, e.g. 40 nano seconds per hop for Anton-2.

However, the adaptation of these specially implemented switches are limited on HPC
interconnection networks. CAM is suitable to implement routing tables of switches
which supports any network topologies, e.g. InfiniBand which is widely used in HPC.

The entry size of the routing table is huge because it needs to accommodate the whole
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FIGURE 2.11: Binary CAM Searches.

network addresses, 16 bit local ID in InfiniBand. Consequently, CAM and the switch is

implemented in different chips.

The access latency of CAM chips used in routers or switches has not been reduced for a
last decade. The access latency of Renesas Electronics R8A20410BG, which is shipped
in 2009, is 6 nano seconds, while the latest R8A20611BG is only improved to 4 nano

seconds. The access latency from the switch chip to the off CAM chip is around 25

nano seconds, including the latency of CAM chip itself and the communication latency

between the switch chip and the CAM chip, including SerDes conversions. This is about
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the same to the access latency of off-chip L3 cache chips, around 20 nano seconds [54],

while the access latency of the L3 cache chips itself is only 3 nano seconds.

2.3.3 High-Throughput Cache

The fast-path technology bypasses the original datapath, and it uses cache whose access
latency is some nano seconds to improve the router latency. The memory structure
is similar to that in a traditional processor. Since TCAM and SRAM are immensely
expensive and power-hungry than DRAM [55-58], a cache strategy using a small amount
of special-purpose memory is reasonable. The cache replacement algorithms, such as
least recently used (LRU) and least frequently used (LFU), are evaluated on digital
subscriber line (DSL) or ISP’s traffic patterns [59]. A router-specific cache replacement
algorithm is proposed called traffic-aware flow offloading (TFO) [60]. The TFO uses
traffic statics over multiple-time scales and leverages Zipf’s law. When a cache hits,
incoming traffic bypasses the controller in a router model consists of the forwarder and

controller [60].

In the 2010s, a TCAM can store all routing-table entries for improving the packet
forwarding rate. Currently, the access latency to the table entries in a TCAM is not
proportional to the switching capacity in a cutting-edge switch, as described in Section 1.
In this context, inserting an on-chip SRAM cache is investigated in [61]. If cache hits,
avoiding accessing a TCAM leads high packet forwarding rate. In this study, we vote

for the on-chip cache strategy to use our baseline cache structure in a baseline switch.
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2.3.4 Software-Defined Network

Software-defined networks [62] would require a larger number of rule tables than a num-
ber of table entries in modern TCAMs [63, 64]. Accessing to the controller introduces
slow packet forwarding, but the cache strategy should care about the rule-dependent
analysis for the longest prefix match. If the cache does not include the longest prefix
entries, missrouting may occur with the shorter prefix matching at a cache. Fortunately,
the parallel computing system does not use complex rules, and we are free from the rule

consistency problem at a packet forwarding cache.

To the best of my knowledge, there are no prior work on routing cache on parallel
computer systems. The impact on the performance of parallel applications should be

investigated.

2.3.5 Routing Cache

A routing cache [65] is proposed to improve the packet forwarding throughput of electric
Internet routers. The access latency to the CAM is so large that it is the bottleneck
of the throughput of Internet backbone routers [66]. The routing cache is proposed to
be introduced in front of the CAM access, improving the throughput of the routers by
bypassing the CAM accesses when it hits. An 1 Tbps line rate throughput for minimum

64 byte packets is achieved [67] with a different cache mechanism.

The work to utilize routing caches on HPC switches is limited [68, 69], and detailed effects
on reducing the communication latencies and the performance of HPC applications are

not known.

2.4 Job Size of HPC Systems

HPC systems with batch job queuing systems rarely executes parallel applications on all
the computation nodes. Instead, they are used with batch job queuing systems, enabling

multiple application programs of multiple users to run with a maximum throughput.

Many parallel application jobs are allocated to sub-groups of computation nodes and
are executed independently. The maximum computation node size is usually limited to
a few thousands, enabling multiple parallel application jobs to be executed in parallel

to maximize the job throughput.
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FIGURE 2.13: The Cumulative Distribution of Parallel-Job Sizes.

Figure 2.13 shows the accumulating size of user jobs in CERIT-SC [70], RICC [71],
CEA-Curie [72], and MetaCEntrum [73] supercomputers. They are analyzed with the
traces of Parallel Workloads Archive (PWA) [74] and [75].

In Figure 2.13, the overall processor numbers are shown in the next of the supercomputer
name. Notice that the x-axis shows the processors number, instead of computation node
number. All supercomputers have multiple processors in each node, e.g. RICC has
8 processors in a computation node, and CEA-Curie has both CPUs and GPUs in a
computation node. Consequently, the computation node number used for each user jobs

is far less than the processors number shown in Figure 2.13.

According to Figure 2.13, many user jobs only use a small number of computation nodes
in real supercomputers, e.g. 98% of user jobs only use less than 128 processors (32

computation nodes) in RICC supercomputer.

2.5 MPI Traffic Patterns

On a network cache, the access locality is a crucial factor to lead to a high cache hit
rate. Parallel computers usually generate unique traffic patterns. Traffic patterns are
reviewed in the three layers; point to point communications, collective communications,

and traffic pattern of application benchmarks.
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MPI programs are dominant for parallel computers program environment. More sophis-
ticated program environment, e.g., PGAS [76] and SHMEM [77], can be employed, and

they utilize MPI environment as their runtime.

Figure 2.14 shows a runtime architecture of MPI programs. The figure shows that one
or more MPI programs, an MPI library, and an operating system are running in a host
compute node. Each user program is running on the MPI library, which is running
on the operating system. They have their memory buffers for their own computations

dependent on what MPI programs they execute.

Host Node

User Prog. User Prog. User Prog.

User Bufs ) User Bufs ) | User Bufs

MPI Library

Operating System

FIGURE 2.14: MPI Programs, an MPI Library, and an Operating System, in a Host
Compute Node.

2.5.1 Point to Point Communication

A point to point communication is a message communication between a compute node
with another compute node. Each compute node can be mapped logically with one or
more communication ranks. Ranks are specified by programmers to MPI applications.
Consequently, the traffic patterns of point to point communications are fully dependent

on the MPI user programs.

2.5.1.1 Send Communication

A send communication is a message communication which is initiated by a network
node. The send communication packet is delivered to another network node, which is
called target node. As other network nodes do not receive the communication packet,

the send communication is a point to point communication.
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Figure 2.15 shows an example of send communication. Six network nodes, rankl, 2, ...,
6, exist in the figure. Each node has a memory buffer. Assume that the memory content
of rank2 is sent to that of rank3. After the content of the buffer of the rank3 has became
the same content with that of the rank2, which is described in Section 2.5.1.2, the send

communication terminates.

rankl rank2 rank3 rank4 rank5 rank6

A0
Al
A2
A3
A4
A5

- send

AO
Al
A2
A3
A4
A5

FIGURE 2.15: Send Communication from the Rank2 to the Rank3.

2.5.1.2 Receive Communication
A receive communication is a message communication which is prepared by a compute

node. The communication waits until a message from a sender compute node arrives to

the compute node.
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Figure 2.16 shows an example of receive communication. The rank3 initiate a send com-
munication while the rankl initiate a receive communication. The actual transmission
starts only after both ranks, the rank3 and the rankl in this example, initiate and be
waiting the communication terminates. After the receive communication terminates,

the buffer of the rankl has became that of the rank3.

rankl rank2 rank3 rank4 rank5 rank6

A0
Al
A2
A3
A4
A5

e

receive

A0
Al
A2
A3
A4
A5

FIGURE 2.16: Receive Communication to the Rankl, from the Rank3.

2.5.1.3 Access Pattern of Point to Point Communication

As the target rank of send communication is specified in each user program, the traffic

pattern is fully dependent on the user program.
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Same as the send communication, receive communication needs to specify the target rank

they receive the communication, the traffic pattern is dependent on the user program.

Thus, the traffic patterns of point to point communication are fully dependent on the
user programs As a result, the packet forwarding algorithm of a commodity switch is

not able to be optimized to a specific user program.

2.5.2 Collective Communication

Parallel programs usually perform some collective communications. Collective com-
munications involve all compute nodes, different from point-to-point communications.

Typical collective communications are explained in this Section.

Since collective communications involve multiple communication ranks, the communi-
cation patterns are dependent on the library, instead of user programs themselves. Op-

timizations of collective communications [78] may be adopted to those libraries.

2.5.2.1 Barrier and Broadcast

Broadcast communication is a communication from a sender node to the rest of all com-
pute nodes. The contents of the buffers in all compute nodes involving the broadcast
communication became the same content of that of the buffer in the sender node. As
multiple compute nodes involve in the broadcast communication, multiple target node
addresses are used. Binomial Tree Algorithm [79] is widely used as an optimized com-
munication algorithm. An optimized scatter-ring-allgather [80] algorithm are used in
MPICH communication library [81]. The different algorithms directly affect the traffic
access patterns in interconnection networks. Since commodity interconnection networks
may take different algorithms on a parallel computer, various traffic patterns may be

generated. Thus, we target the worse case, random traffic pattern, in this dissertation.

2.5.2.2 All-to-All Communication

Complete exchange communication is one type of an all-to-all communication. After a
complete exchange communication, each rank has a buffer with the content that is a

collection of an entry in the same position of all buffers of all network nodes.

Figure 2.18 shows an example of a complete exchange communication. After the com-
plete exchange communication terminates, each rank has all buffer entry corresponding

to the number of the rank in its buffer. Traditionally, non-power-of-two process counts
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FIGURE 2.17: Broadcast Communication from the Rankl.

(mmsg-npof2) algorithm is used. Similar to the barrier and broadcast, multiple algo-

rithms, which generate different traffic patterns, can be implemented to alltoall.

2.5.2.3 Allgather Communication

Gather communication is an all-to-one communcation, which collects a buffer entry of all
ranks to a rank. Allgather communication collects the same data with gather communca-

tion, while all ranks receive the data instead of just one rank as gather communcation.

Figure 2.19 shows an example of an allgather communication. After the allgather com-
munication terminates, all ranks have the same buffer data which is the collection of all

ranks.
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FIGURE 2.18: All-to-All Communication.

Reduce communication is an all-to-one communication, which calculates the collection

of a buffer entry of all ranks and stores the result to a rank. Allreduce communication

calculates and stores the same data with reduce communication to all ranks.

Figure 2.20 shows an example of an allreduce communication. After the allreduce com-

munication terminates, all ranks have the same buffer data which is the results of all

calculations of all ranks.
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2.5.2.5 Access Pattern of Collective Communication

Collective communications are initiated, transferred, and terminates in MPI libraries,
instead of user programs. KEach MPI collective communication library calls are im-
plemented with one or more collective communication algorithms to accomplish the
specified collective communication. The communication algorithms of collective com-

munications are dependent on the implementations of MPI libraries.

Communication algorithms is able to be selected statically by the user, by command-line
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options or configuration files of the MPI library. The working algorithm is even automat-

ically selectable dependent on the network sizes and the communication sizes [82]. Thus,

the traffic patterns of collective communication are independent on the user programs

and the network topologies. As a result, to optimize the packet forwarding algorithm

of a commodity switch can suffer from low communication performance because of the

multiple possible collective communication algorithms.

2.5.3 Access Patterns of Parallel Applications

Cache works well when there exists a strong access locality of the packets. Unfortunately,

there are a large number of collective communications on typical parallel applications,
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that generate a global traffic access. For example, it was reported that Mira supercom-
puter executed many jobs in which significant part of the execution time is collective
communication [83]. The most frequently used collective communications are allreduce,
bcast, alltoall, and barrier, which are explained in the previous subsection. They fully
utilize all compute nodes, or generate a global traffic access to compute nodes within a

job.

Fabien and Koibuchi analyzed the traffic patterns of NAS Parallel Benchmarks [84] by
the network simulation [85]. In all simulations, they assumed that the interconnection
network consists of 64 switches with 64 processes. The considered applications are the
Fourier Transform Class A (FT), the Integer Sort Class A (IS), the Block Tri-diagonal
solver Class A (BT), the Scalar Penta-diagonal solver Class A (SP), the Lower-Upper
Gauss Class B —due to benchmark restrictions— (LU), the Conjugate Gradient Class
A (CG), the Data Traffic Class A (DT), the Embarrassingly Parallel Class A Class A
(EP), and the Multi-Grid Class A (MG) from the NAS benchmarks. They also ran the
Memory Multiplication (MM) provided by SimGrid, the Himeno benchmark Class S and
the replicated version of the Graph500 MPI program.

Results in [85] showed the average traffic for all benchmarks, between a source-and-
destination pair. We found that there are a large number of local traffic in four bench-
marks (BT, SP, LU and HIMENO). By contrast, uniform traffic is found in FT, IS, MM
and Graph500.

Through the facts of the prior works [83, 85, 86], our packet forwarding cache design as-

sumes that the worst case in which the communication pattern is less locality (uniform).
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Interconnection network architecture for both supercomputers and data centers are con-
verging, due to the heavy data centric workloads. While high-bandwidth and low-latency
network performance are critical for supercomputers, interoperability with commodity
standards is inevitable for data centers. Cray Slingshot interconnection network [87]
provides key features for both supercomputers and data centers. It allows the intercon-
nection network to be interoperable with standard Ethernet switches, while providing

the high-bandwidth and low-latency network performance for supercomputers.

Network switch is a heart of an interconnection network, and its aggregate network
throughput increases year by year. Switch delay dominates communication latencies in
interconnection networks. At a conventional switch, routing decision imposes a signif-
icant delay. Reducing the access latency is crucial for the upcoming low-delay switch
in parallel computers. Regarding switch ASICs, Broadcom releases the design of Toma-
hawk 3 Ethernet switch ASIC (12.8 Tbps) in 2018, and Tomahawk 4 (25.6 Thps) in 2019.
It is expected that a switch ASIC will reach 51.2 Tbps in the first half of the 2020s. The
application of Tomahawk switch ASIC to the HPC domain is a Rosetta switch [70] in
Cray Slingshot interconnection network which uses Dragonfly network topology. Rock-
ley Photonics also illustrates a hyperscale switch. RANOVUS Odin plans to utilize a
siliconphotonics engine in a 51.2 Tbps switch. Continuing to increase the switching

capacity of a switch ASIC relies on optical integration.

Intel and Barefoot provide a 12.9 Thps P4-programmable Tofino2 switch ASIC, which
is one of the highest packet throughput switch ASICs, whose block diagram is shown in
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FIGURE 3.1: An Example of a Switching ASIC; Intel Tofino2 [4].

Figure 3.1. In the figure, four packet forwarding pipelines “pipe” are implemented in the
Tnm switch die. 64 MB Unified Packet Buffer is used to store the forwarding packets.
Four 400G Media Access Controller(MAC)s are connected with 260 lanes of 56G-PAM4
SerDes Tiles. Besides the switching capacity, the packet forwarding rate is far from
a line rate when incoming packets are burstly short in cutting-edge switch products.
The Tofino2 switch provides 12.8 Thps (400 Gbps x 32) switching capacity while it has
only 6 Bpps (billion packets per second) that leads only 4-Tbps throughput (6 Bpps X
84 Bytes x 8) for a minimum packet length. Similarly, Arista 7060X series provides
12.8 Thps switching capacity with 3.3 Bpps to 9.52 Bpps packet forwarding rate, result-
ing in only 2.1 Thps to 6.2 Tbps throughput for a minimum packet length. A typical
packet forwarding engine relies on TCAM. Intel Tofino2 switching chip is implemented
on 2.5D chiplets, and it seems that TCAMs are located outside the switching chip. The
bottleneck of the forwarding packet rate is the access latency within TCAM regardless
of its location (on-chip or off-chip), and TCAM itself almost maintains its read latency

year by year, as described in Section 2.3.2. The gap between switching capacity and
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forwarding packet rate will increase even when large TCAM will be integrated into 2.5D

chip implementation.
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FIGURE 3.2: Simultaneous Parallel Lookups and Actions [5].

There are switch ASICs that implement simultaneous parallel assessing to the TCAM.
Figure 3.2 shows an example of such a switch [5] that supports multiple simultaneous
lookups and actions. When N lookups come to the ASIC, the six TCAM memory tables
handle them, as shown in Figure 3.3. Then, multiple results are returned to the switch
ASIC, resulting in multiple times more results than a single TCAM chip offers. However,
the huge total energy consumption of TCAM chips limits the number of the parallelism,
as a large part of forwarding logic is made up with TCAMs [4]. Consequently, the overall
packet forwarding rate with multiple TCAM accessing is limited.

It is difficult to provide the proportional packet forwarding rate to a high line rate
on a future switch even for long packets, as described in Chapter 1. The key design
to resolve the problem of the packet forwarding performance is a packet forwarding
cache architecture explored in this dissertation. More precisely, “address patterns” of
interconnection networks should be found, and the packet forwarding cache architecture

should be optimized for enjoying the address pattern.

One might think that a function to route packets should be simplified by dropping
routing tables from a switch. That is, source-routing implementation should be employed
instead of distributed routing, to increase the packet forwarding throughput. This is
technically true, and historically Myrinet2000 supports source routing. This concerns
the network design philosophy; intelligent switch with simple network interface or simple
switch with intelligent network interface. As soon as the network designer selects the

former, we cannot be free from the distributed routing, and the routing cache is currently
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FIGURE 3.3: Multiple TCAMs to Support Simultaneous Parallel Accesses [5].
only one solution for high-bandwidth low-latency switches. Since current commodity

interconnection technology continues to take the former, the routing cache will be a

valuable.
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A switch ASIC should be widely used in parallel computers and high-end datacenters.
To improve the forwarding capacity and throughput of a network switch, a packet for-

warding cache design for arbitrary network topologies is presented in this chapter.

4.1 Scope and Assumption on Job Size

In this chapter, jobs of up to 2K computation nodes are considered. This assumption is

reasonable, and its reason is explained in Section 2.4.

The total number of the target addresses of all packets in a user job is less than or equal
to the number of computation nodes within the job. Most jobs are small on average,
and 2K table entries are enough for them. It is reasonable to support such a job size at
the packet forwarding cache. In this chapter, the case for the worst-case design for up

to 2K-computation node jobs is considered.

4.2 Packet Forwarding Cache Switch Architecture

4.2.1 Outline

Figure 4.1 illustrates our target switch with the packet forwarding cache. Later, we call

it the cache switch. It is the same as the baseline switch in Figure 2.6 except for the
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routing-computation unit.

After an incoming packet is stored at an input port, its output port information is ob-
tained via a routing-table lookup in the traditional switch. Routing tables are Forward-
ing Table in InfiniBand and MAC address table in Ethernet. The entry size is significant
because it needs to input packet address information and output the port information
where the packet need to transmit. For example, Mellanox MTS3600 (36 ports, 40Gbps
InfiniBand Switch) has 48K entries, and Mellanox SN3000 Series datacenter switches
(32 to 48 ports, 400Gigabit Ethernet(GbE)) have 512K entries. As a result, routing
tables are implemented using CAM(Content Address Memory) instead of SRAM.

By contrast, in the cache switch, an incoming packet accesses a packet forwarding cache.
A referred cache line is identified by a hash value computed by a destination node
information stored in a packet header. If tag information of the referred cache line
matches the destination of the packet, this is a case of cache hits, then its output port
is obtained from the cache line. If the cache misses, a CAM table lookup is performed.
If the switch hits a cache for an incoming packet, the time to complete the routing

computation decreases by avoiding a CAM access.

When the cache hits, the switching latency can be reduced because no CAM access
occurs for the routing. On the other hand, the switching latency increases when the
cache misses because the CAM access is needed in addition to the latency to accessing

the cache.

Current 400Gbps Ethernet Standards are achieved with multiple lanes, due to the lim-
itation of single SerDes lane speed. E.g. 400GBASE-FRS is a combination of eight
50Gbps lanes with wavelength-division multiplexing (WDM).

When WDM or DWDM (Dense Wavelength Division Multiplexing), which is used with
400G-ZR, is used for the link, the cache can either be installed to each link or each
wavelength, depending on the packet throughputs they provides. E.g. if the cache
switch architecture is fast enough to handle the whole packets for the link, a switch
link architecture with only one cache can be selected for smaller chip area overhead,
whereas when the link throughput is higher than the maximum throughput of the cache
switch architecture, the cache can be implemented for each wavelength for higher overall

throughput.

4.2.2 Function of the Packet Forwarding Cache

The function of switches with the packet forwarding cache is the same, except the routing

computation stage, as the baseline switch microarchitecture shown in Figure 2.6. The
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FIGURE 4.1: Block Diagram of Switch with the Packet Forwarding Cache.

routing computation stage of a switch with the packet forwarding cache is described in

this section.

Figure 4.2 shows the microarchitecture of a switch with the packet forwarding cache,
which is proposed in this Chapter. The switch has an additional packet forwarding
cache mechanism in addition to the baseline switches. All input ports of the switch has
a packet forwarding cache. This is because, in general, packets to a same target address

may be routed to different output ports.

Packets arrived to the input ports of the baseline switch are stored in the channel buffer.
Then, the target output port information are derived by accessing the off-chip CAM.
In the case of the switches with the packet forwarding cache, the packet forwarding
cache of the input port is accessed after a packet is arrived and stored to the channel
buffer. A cache line is selected by a hash number calculated with the target address

node information of the input packet header. If the tag of the selected cache line is the
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same to the target node address of the input packet, the access to the packet forwarding
cache is a hit, and the output port can be derived from the cache. On the other hand.
if the access to the packet forwarding cache is a miss, the output port information is
derived by accessing the off chip CAM. Therefore, the access to the off chip CAM is
skipped if the cache hits. Note that the CAM is assumed to be large enough to store

entire target address space of the network.

The routing computation stage of the switch with packet forwarding cache is further

divided into three pipeline stages as follows.

1. Hash value calculation
2. Accessing the cache, and

3. Accessing the CAM.

Each stage takes a few cycles. The stage of the hash value calculation can be finished in
one cycle by CRC(Cyclic Redundancy Check). The stage of accessing the on-chip cache
takes one to a few cycles, which is dependent on the cache capacity. In this chapter, a
small size on-chip cache, e.g. 24KiB, is assumed, and the access latency is 0.41 nano
seconds, which is simulated result with CACTI6.5 [88] using 32 nm design process. This
access latency is small enough to fit in one cycle of a switch ASIC operated in less than
1GHz, even the latency to determine whether the access is a hit or a miss is included.
The CAM is accessed only when the cache access is a miss, and an additional 25 nano

seconds latency, which is 25 cycles in a switch operated in 1GHz, is needed.
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4.2.3 Packet Forwarding Cache on Topology Changes

A switch with routing tables can be used in different topologies by only reprogramming
the table content [24]. Although the changes of network topology for HPC switches
rarely occur, they are certainly allowed in the commodity network standards. To strictly
following the network standards in the switch with packet forwarding cache, the cache

content is fully flushed on network topology changes.
The functions of the switch with the packet forwarding cache on topology changes are
described as follows.
1. Detect the change of the network topology.
2. Flush and temporally disable the packet forwarding cache.
3. Reprogram the routing table (CAM) to support the new network topology.
4. Enable the packet forwarding cache.
As a result, consistent operations for data hazard, e.g., WAW (Write After Write), RAW,

and WAR, are not necessary for the packet forwarding cache. The restart of the packet

forwrding cache sould suffer from initial cache misses.

4.2.4 Support for Routing Options

Our cache switch can support adaptive routing, which is described in Section 2.2.2.
The behavior of a conventional switch for adaptive routing is the same as that for
deterministic routing except that the routing computation (RC) returns multiple output
candidates, and switch allocation request to reserve an output ports from the output
candidates. To support adaptive routing, the size of a cache entry slightly increases to

store the information of multiple output ports.

4.2.5 Cache Architecture
4.2.5.1 Data structure
In this dissertation, each entry of the packet forwarding cache is a 12 bytes line, consists

of 8 bytes target node address descriptor as a cache tag, 2 bytes output port descriptor

as a cache data, and 2 bytes reserved data which can be used by QoS control.
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4.2.5.2 Cache hierarchy

The size of the packet forwarding cache is large enough to store all the computation
node addresses used in most jobs. Therefore, capacity misses of the packet forwarding
cache will not occur for communications in such a job. Hence, in this Chapter, a large
second level shared cache which is able to be used among all input ports of switches is
not adopted. FEach input port has its own packet forwarding cache and can access it

exclusively.

4.2.6 Consistency Model

Unlike a processor’s cache, we do not have to update the routing information frequently.
The update of the routing information may occur when faulty hardware occurs in an
interconnection network. In such a case, simple control that cleans all the table entries
once is practical, and a consistent operation for data hazard, e.g., WAW (Write After
Write), RAW, and WAR, becomes a trivial problem.

The legend represents the number of packet destinations. The results illustrate that the

four-way set-associative cache is reasonable for almost avoiding the conflict cache miss.

We also analyze the conflict miss rate when NAS Parallel Benchmarks are executed
on the system condition with 3-D torus (8x8x4). It also suggests that the two- and

four-way cache avoid the conflict cache miss.

We analyzed the relationship between the number of ways and cache hit rates for rea-
sonable job sizes of real parallel computers. Our finding was that most jobs used less
than 2K nodes. Using 2K table entries decreases the possibility of capacity miss of a

cache.

Another finding was that four-way set-associative cache introduces almost zero conflict
miss on the reasonable scenario. Later, we set 2K table entries with four-way set-

associatives as baseline in the cache switch.

4.3 Evaluation

4.3.1 Cache Size and Latency

The cache area and latency is estimated using the CACTI v6.5 simulation, to guaran-

tee that the packet forwarding cache is feasible in terms of the area overhead and the
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forwarding throughput. The transistor model is a high-performance 45nm process. A

four-way set-associative is assumed.

Figure 4.3 illustrates the area overhead of the cache. Since our target is a 64-port

switch, the total cache overhead area becomes 14.6mm? for 2,048 entries (0.228mm? in

the graph plot) in a chip. Since switching ASICs have large area, e.g., 329 mm? in Tofu

of

K-computer ICC (65nm technology), we consider that 2K entries for a 64-port switch

are acceptable.
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FIGURE 4.3: Cache Area Overhead at an Input Port.
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Figure 4.4 illustrates the latency overhead of the cache. When 2,048 entries are used,
the latency is 0.41 nanoseconds. Ideally, the packet forwarding throughput becomes 1.64
Thbps (1 / 0.41 x 84 x 8).

4.3.2 Compulsory Miss Rates of the Packet Forwarding Cache

Cache misses can be categorized as compulsory misses, initial misses, and conflict misses.
Capacity misses rarely occur to a packet forwarding cache with enough entries in a small
size computation node systems. Compulsory misses are negligible by kicking warm-up
communications among all computation nodes on the job starting up. Therefore, conflict
misses of packet forwarding caches are evaluated in this section. Since conflict misses
are highly dependent on their associativity, the conflict miss rates and associativity of

the packet forwarding cache are evaluated.

4.3.2.1 Evaluation Conditions

The capacity of the packet forwarding cache is 24 KiB(2,048 entries), which is about
the same as the capacity of general CPU L1 caches, with considering the capacity miss
overhead and chip area overhead. With this capacity, no capacity miss occurs in a
job less than 2,048 computation nodes. The area overhead of the packet forwarding
cache is evaluated with CACTI6.5[88]. Only 0.18 mm? and 0.73 mm? area overhead for
each port is needed for high performance transistor model, 32 nm and 65 nm process
technology, respectively. The area overhead is only about 2%, or 7.3 mm?2, for 10 port
packet forwarding caches of the ICC chip(10 ports, Fujitsu Semi-Conductor, 65 nm,
329 mm? [89] ), which is used for the K computer. Besides, the area overhead of CRC

hash calculation hardware is negligible, e.g. hundreds ymm? [61].

An uniform traffic pattern, which is uniform for the all target address and the calculated
hash number, and communication traces of NAS parallel benchmark 3.3.1(MPI) are
used. The problem size is Class A, and the rank size is 256, for the NAS parallel
benchmarks. The network topology used for the NAS parallel benchmark evaluation is

3D torus(4x4x4), with each computation node connecting to a switch.

4.3.2.2 Uniform Traffic Results

Figure 4.5 shows the software simulation results of conflict miss rates (Y-axis) corre-

sponding to each associativity (X-axis) of the packet forwarding cache.
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FIGURE 4.5: Associative Number and Ratio of Entries Replaced by Conflicts (Uniform
Traffic).

From the simulation results, the conflict miss rates is less than 0.1% for the case of
inserting 512 targets to a 4-way set associative cache and the case of inserting 1,024
targets to a 16-way set associative cache. Hence, conflict misses rarely occur for 1,024
computation nodes jobs with 16-way set associative cache. Because the sizes of more
than 90% jobs used in many HPC systems are less than 1,024, as shown in Figure 2.13,
the timing overhead of conflict misses of the packet forwarding cache is negligible for

most jobs.

4.3.2.3 NAS Parallel Benchmarks Results

Figure 4.6 shows the conflict miss rates of each associativity of the packet forwarding

cache by executing NAS parallel benchmarks.

No conflict miss occurs on associativity 2 and 4 caches for all applications. Accordingly,
the hit rates are 100.0% on the caches with associativity 2 and 4, except the compulsory
misses. Besides, all applications except DT show extremely high 99.7% to 100.0% cache
hit rates even including compulsory misses on the cache with associativity 4. (The
cache hit rate of DT including compulsory misses is 95.6%, because of its small number
of communications.) The results illustrate that the four-way set-associative cache is

reasonable for almost avoiding the conflict cache miss.

We analyzed the conflict miss rate when NAS Parallel Benchmarks are executed on the
system condition with 3-D torus (8x8x4). It also suggests that the two- and four-way

cache avoid the conflict cache miss.
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4.3.3 Parallel Applications Performance

In this section, the execution performances of HPC parallel applications are evaluated,
comparing the performances on a baseline interconnection network without the packet

forwarding cache and an interconnection network with the packet forwarding cache.

4.3.3.1 Simulation Conditions

SimGrid v3.25 [90] is used to evaluate the execution performances of applications. Two
parallel computation systems are used for the evaluation, and their environmental pa-

rameters are shown in Table 5.2.

The routing latency is 10 nano seconds [91] for the baseline switch without the packet
forwarding cache. Other switching latency is set to 50 nano seconds. The 50 nano
second latency is the sum of the latency of output buffer allocation, the latency of
crossbar allocation, and the latency of transmitting the packet from the input port and
the output port. Consequently, the minimum latency to forwarding a packet in the

switch is 60 nano seconds.

The routing latency of the switch with the packet forwarding cache on a cache hit is
1 nano seconds. This 1 nano seconds latency is a sum of hash value calculation and

cache access latency, on an 1 GHz switching chip.
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The routing latency on a cache miss suffers from an additional 10 nano seconds latency,
which is the same as the access latency to the baseline switch without the routing table
cache. Accordingly, the access latency of the switch with the packet forwarding cache is

51 nano seconds on a cache hit, and 61 nano seconds on a cache miss, respectively.

Each computation node has 50 TFlops computation power. The network topology is
random [92-94], and its degree is set to eight. The other network topologies are evaluated

in Chapter 5.

NAS parallel benchmarks 3.3.1(MPI) are used. The problem size is Class B, except that
IS and FT is Class A, because of the simulation time limitation. The capacity miss rate
and conflict miss rate on executing the NAS parallel benchmarks are both 0% for 4-way
set associative packet forwarding cache, from the previous Section. Compulsory misses
can be avoided by all-to-all commutations before starting the job. Therefore, no cache

miss is assumed to occur in this evaluation.

4.3.3.2 Evaluation Results

The evaluation results of NAS Parallel Benchmarks are shown in Figures 4.7 and 4.8.
Link bandwidth is varied from 100Gbps to 1.6Tbps. The Y-axis shows relative Millions
of Operations Per Second(MOPS), which is 1.0 on the conventional switches (Conv.
Switch) without the packet forwarding cache. The larger the value of MOPS is better.
From the evaluation results, the MOPS performances of NAS Parallel Benchmarks are
improved by the switch with the packet forwarding cache(Switch w/ Routing Cache).
With NAS Parallel Benchmarks, the amount of computation decrease for each compu-
tation node as the process number increases. Thus, the communication latency affects
more on the execution performance for a system with more processes and larger network

size.

NAS Parallel Benchmarks have different traffic patterns [85]. For example, FT, IS, and
MM conduct many all-to-all communications and traffic among all network nodes, while
BT, LU, and SP conduct many neighboring communications. As a result, the former
group benchmarks represents higher performance improvement, more than 4.0x at least,

than the latter group benchmarks, less than 3.0x at most.

Note that the evaluation results show that the average performances of all parallel bench-
mark applications have been improved with the switches with the packet forwarding
cache. Consequently, the effect of the packet forwarding cache to improve network
throughput and line rate are significant. More exactly, it achieved 4.39x maximum

performance improvement on 256 switches and 2.76x on 32 switches on average.
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4.3.4 Zero-Load Communication Latency Analysis

In this section, performances of large-scale networks is analyzed. SimGrid, which is

used for the simulations in the previous Section, is not feasible to simulate networks

with more than 256 computation nodes. Therefore, the effect of the packet forwarding

cache on a large-scale network, from a few thousands nodes to 30 thousands nodes, is

analyzed. Analysis results [95] on interconnection network is reported to be consistent on

the simulation results of interconnection network simulators. The performance analysis

results are able to be used to determine system parameters of large-scale systems at the

initial stage.
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4.3.4.1 Analysis Setup

In this analysis, jobs are allocated to a rectangular area of computation nodes of K-
ary N-cube torus which consists of KV computation nodes, assuming K to be an odd
number. Each computation node is connected to a switch. Dimensional routing is used.
The cases where multiple computation nodes are connected to a switch, or K is an even

number, are also able to be analyzed with the same method.

Every input port has a packet forwarding cache. The size of each packet forwarding

cache is M entries.

Every computation node produces communication packets with the intervals following
the Poisson distribution. Every communication packet is transmitted to the network
in the order they are produced. The target address of the communication packet is

determined randomly from all computation nodes when it is produced.

In this analysis, different from the evaluation environment used in Section 4.3.2 and
Section 4.3.3, capacity misses occur because of the large scale network and affect the in-
terconnection network performance. On the other hand, no conflict miss occurs because
random traffic and enough associativity is assumed. In addition, no compulsory miss

occur because a warmed up network is assumed.

4.3.4.2 Cache Hit Ratio
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O O

FI1GURE 4.9: Example of 5-Ary 2-Cube Torus.
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Figure 4.9 marked possible destination nodes of a packet from x dimension port and y
dimension port in a 5-ary 2-cube torus network. A packet comes from the x dimension
input port, which is described with a black colored arrow in the Figure, is transmitted
to one of K| K/2] target nodes group, which is shown in the black rectangular. A packet
comes from the y dimension input port, which is described with a red colored arrow in
the Figure, may be transmitted to the | K /2| target nodes group, which is shown in the
red rectangular. A packet comes from the local computation node can be transmitted

to KV — 1 target nodes, which is all nodes except the node produces it.

Assuming a random traffic pattern, the hit ratio of the i dimension input port P;(0 <
P; <1)in a K-ary N-cube torus network can be calculated from the possible number of
target node of the input port with Formula 4.1. The dimension of the input port from

the local computation node is defined to be 0.

t; (ti < 1)
P, = (4.1)
1 (otherwise)
M i ==
ti _ KN_1 ( ) (42)

M .
KN=1[K/2] (0 <)
4.3.4.3 Zero-Load Communication Latency

Let C' be both link latencies from a computation node to a switch and between two
switches, Spqse be a switching latency on a hit to the packet forwarding cache, and Sy,

be a penalty on a miss to the cache.

A zero-load communication latency L; j, which is the time of a packet which comes from
1 dimension input port of a switch to arrive to the input channel of a switch in j hops

away, can be described below.

Li,j = j(Sbase + Spnl(1 - Pz) + C) (4.3)

The maximum zero-load communication latency L,,q. is equal to the latency to a node
in | K/2| hops away along the dimension of K-ary N-cube torus. As the cache hit ration

is dependent on the dimension of input ports of a switch, L., can be described below.

N
Liae = LO,I + Z Lz,LK/QJ +C (44)

=1
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Note that, in Formula 4.4, the hop number of a communication packet comes from the
local computation node, dimension 0, is 1. As a result, the hop number of a packet from
a source node to a destination node is 1 more than the number of switches along the

communication route.

4.3.4.4 Evaluation of Maximum Zero-Load Communication Latency

Figure 4.10 and 4.11 show maximum zero-load communication latencies of all-to-all
random traffic in a job, with different cache sizes, job sizes, and baseline switch latencies.
Evaluation parameters, e.g. switching latency and cache miss penalty, are those of
System-1 of the previous Section. The default entry size of the packet forwarding cache

is 2,048.

6000 i | Conv. Switch —¥—
5500 Switch w/ Routing Cache —{1—
5000 t |

4500
4000
3500
3000
2500
2000
1500
1000

500

Zero-Load Latency

1000 10000
Job Size

FIGURE 4.10: Zero-Load Communication Latency for Various Job Sizes.

Job Size Figure 4.10 shows maximum zero-load communication latencies along the
sizes of jobs. As the job size becomes larger, capacity misses occur. The packet for-
warding cache reduces the maximum zero-load communication latencies by 13% to 19%.
Thus, the packet forwarding cache is effective to reduce the communication latency of a

large scale job.
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FIGURE 4.11: Zero-Load Communication Latency vs. Number of Cache Entries per
Input Port.

Cache Entry Size Figure 4.11 shows maximum zero-load communication latencies
along the sizes of the packet forwarding cache, in a large scale 21 x 21 x 21 3D Torus
interconnection network. Maximum zero-load communication latencies of a conventional
switch without the routing table cache (Conv. Switch) is also shown in the Figure. The
maximum zero-load communication latency is reduced by 9% when the entry size of
the packet forwarding cache is 128. Because the system has only 9,261(21 x 21 x 21)
computation nodes, the reduction of the maximum zero-load communication latency is

no more than 19% when the entry size of the packet forwarding cache is more than 9,261.

4.4 Energy and Bandwidth

The energy consumption of CAM is high. TCAM(Ternary CAM) consumes 15 times
more energy than SRAM (Static Random Access Memory) of the same capacity [96].
While there are researches on reducing static energy with power gating [97] or reducing

dynamic energy with DVFS [98], the large energy consumption is still problematic.
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4.4.1 Energy Consumption

Dynamic energy consumption on reading a CAM can be reduced because an access to
the CAM is skipped when a cache access is a hit in a switch with the packet forwarding
cache. In addition, most dynamic energy consumption on reading the CAM can be
reduced when a 100% cache hit ratio is achieved in a switch with the packet forwarding
cache. In this Section, effects of reducing energy consumption on looking up the CAM

table on a switch with the packet forwarding cache is evaluated with a modeling.

The energy consumption S used in looking up the table of the switch is described with a
model of energy consumption of an Internet router with a single routing table cache[67]

below,

S = n(Ecache + Ecamrmiss) + (dpcache + Pcam) (4'5)

where Feqche and Eeqpm, represents dynamic energy of a cache and a CAM, and Peycpe and
P..m represents static energy of a cache and a CAM, respectively. Other parameters, n,
d, and 7,,;ss represent the number of packet processed in a second, switch degree, and

cache miss rates, respectively.

Energy consumption of looking up a table of a conventional switch can be calculated by

setting Eegche and Pegene to be 0, and rp,;s5 to be 1, in Formula 4.5.

Ecache and Pegepe is 0.039nJ and 13mW, respectively, by a CACTI6.5 [88] simulation.
According to recent CAM energy consumption research[99, 100], Ecqm and Py, are set
to 42nJ and 36mW, respectively. d is 7 ports, including one local port, assuming a 3D

Torus topology.

Figure 4.12 shows S, which is energy consumption of looking up tables in switches, with
the above parameters. In Figure 4.12, 0%, 50%(700Gbps), and 100%(1,400Gbps) are
used for n for a 1400Gbps(200Gbpsx7) link. Energy consumption of looking up tables

is calculated for two cases, which use 1% and 0% as 7miss-

Figure 4.12 shows that the dynamic energy consumption of accessing the CAM is domi-
nant on increasing the number of packet processing for a conventional switch. However,
energy consumption of accessing the CAM of the switch with the routing table cache is
largely reduced by reducing the number of accessing the CAM. While the static energy
consumption of the packet forwarding caches for all input ports increases, it only shares
1% when the load is 50%. Hence, the reduction of dynamic energy consumption for

accessing CAM is larger.
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FI1GURE 4.12: Power Consumption of Table Lookups in Three Cases of Forwarding
Capacity Utilization.

Consequently, the energy consumption of a switch can be reduced by adopting the packet

forwarding cache.

4.4.2 Forwarding Capacity
Thase, which represents a maximum (forwarding) throughput of a conventional switch,

can be calculated with Formula 4.6, where L., represents a latency of accessing a CAM.

1
Tbase =

(4.6)

Lcam

Every packet needs one packet processing. A 25 nano seconds latency is needed to
accessing a off chip CAM. As a result, Tpqse, Which represents maximum throughput of

a conventional switch with a single CAM, is limited to 40 Mpps (packet per second).

On the other hand, T}cqche, Which represents maximum throughput of a switch with
the packet forwarding cache, is calculated, where L., represents cache access latency,

with Formula 4.7, because the CAM is accessed only when the cache misses.
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1 1
Trcache = min ( ) > (47)

Leache LeamTmiss

The latency of routing processing on a cache miss is a sum of hash calculation, latency
of accessing the cache, and latency of accessing the CAM. Thus, the latency on a cache
miss is worse than that of a conventional switch. In contrast, the throughput is the same
or higher than that of a conventional switch, because the maximum throughput of the
switch with the packet forwarding cache is 40 Mpps, thanks to the pipelined stages even

all packets cause cache misses.

The latency to accessing a 24 KiB packet forwarding cache is about 1 nano second,
resulting in an 1 Gpps throughput per port. Tyceche of the switch with the packet
forwarding cache is 1 Gpps, calculated with Formula 4.7 when almost 100% accesses are
hits to the cache. This is 25 times higher than Tj,s., which is that of a conventional
switch. The throughput decreases when the cache miss rate is more than 4%, with the
CAM accessing being a bottleneck. However, Ty.cqche is 400 Mpps even the cache miss

rate is 10%, that is 10 times higher throughput than Tj,s. of a conventional switch.

Consequently, the throughput of routing processing increases much by adopting the

routing table cache to a switch.

4.5 Summary

The performances of parallel applications are highly dependent on the communication
throughput of interconnection networks between computation nodes. In this chapter,
the application of packet forwarding cache to all input ports of switches is investigated to
improve the switching latency, the line rate, and the performance of parallel applications.
An incoming packet avoids large-latency accessing a CAM forwarding table if the cache
hits. Only an exclusive layer-1 (L1) cache at an input port contributes to achieving a
high line rate, e.g., 800 Gbps for the incoming short packets. An L2 cache access latency
becomes a few nanoseconds (e.g., 2ns) that do not provide a high line rate, i.e., higher
than 336 Gbps (= 1/2ns x 84 Bytes x 8). The L1 cache size is strictly limited by the

chip area. We thus focused on the case for up to 2K-node jobs.

In the interconnection network with 512 computation nodes, the conflict miss rate of
a 2,048 entry 4-way set associative packet forwarding cache is less than 0.1%, with the

cache simulation results, The performance of NAS parallel benchmark applications is
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improved by 4.39x at maximum in a interconnection network with 256 computation

nodes, with MPI simulation results of SimGrid v3.25.

Zero-load communication latency with the packet forwarding cache in a large scale inter-
connection network is evaluated. From the evaluation results, the reduction percentage
of zero-load communication latency gradually decreases from 19% to 13% with the ef-
fects of capacity misses of the packet forwarding cache when used in a 9K computation

node large scale interconnection network.

Additionally, with additional entries in the packet forwarding cache, the reduction per-

centage of zero-load communication latency gradually increases from 9% to 19%.

The adoption of the packet forwarding cache clearly improve the communication through-
put of interconnection network and increase both the line rate and the performances of
parallel applications Consequently, the packet forwarding cache is strongly recommended

to be adopted in HPC switches.
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Switchable Node Reduction

Function

In this Chapter, a switchable node reduction function for the packet forwarding cache
is described. The switchable node reduction function enables to provides 100% cache
hit rate except for the compulsory miss even for large scale jobs on typical network

topologies.

5.1 Limitation of the Packet Forwarding Cache

The dissertation aims at enabling high-bandwidth low-latency interconnection networks
for any job size. The analysis results in Chapter 4 indicate that 2K table entries are
enough for almost 100% hit rates on the traffic within most jobs. However, the remaining
elephant-nose (large) jobs, that would also be important in the HPC domain, suffer from

the low cache hit rate on the cache switches.

A serious low cache hit rate is quantitatively illustrated in Figure 5.1 as the system
size becomes large. Four-dimensional tori with a dimension-order routing and random
traffic in which each node exchanges a message to a randomly selected destination node
is assumed. Since parallel programs sometimes generate all-to-all communications, the
random traffic should be considered, as described in Chapter 4. Cache misses are classi-

fied into compulsory, capacity, and conflict. As the job size increases, the capacity miss
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becomes a crucial problem. Figure 5.1 illustrates the relationship between the job size
and the capacity miss rates of the cache. An average high miss ratio close to 100% is
suffered when the network size is large. This means that the effect of the cache becomes

trivial for the traffic in the large job size.

100 '
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10 |
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Capacity Miss Rate [%]

1000 10000 100000
Network Size

FIGURE 5.1: Capacity Miss Ratio on k-Ary 4-Tori (2K Cache Entries).

Figure 5.2 shows theoretical ideal bandwidths achieved from L1 caches(1ns, 0.4ns),
TCAMs(20ns, 25ns), and the packet forwarding cache with a realistic miss rate, listed
in Table 5.1. The x-axis represents the number of destination addressees, corresponding
to the number of compute nodes. The y-axis represents the packet forwarding rate,
corresponding to the maximum link bandwidth in Figure 5.2. Minimum size packets
are assumed to arrive to each input port. The access latencies to L1 and L2 caches are
obtained with CACTI v6.5. RC(L1-All-Hit-0.4ns) achieves an ideal maximum high band-
width, assuming all accesses to the L1 cache are hits. TCAM(25ns) and TCAM(20ns)
represents a current conventional interconnection network switch, where each can only
achieves less than 100 Gbps bandwidth. RC(Real) decreases to less than 100 Gbps band-
width when the number of compute node size is large, because the hit rates decrease to

ZEro.

One may consider that a packet length may not always be small at an input port on a
switch. Thus, the packet forwarding rate may not be a bandwidth bottleneck if a packet

length is enough long. However, many-core processing generates a large number of tiny
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FIGURE 5.2: Number of Compute Nodes vs Link Bandwidth.

TABLE 5.1: Switch Parameters.

L1 L2 TCAM
RO(L1-AI-Hit-0.4ns) | 0.4ns, 100% - -
RC(L1-All-Hit-1ns) 1.0ns, 100% - -

TCAM(20ns) - ; 20ns
TCAM(25ns) - - 25ns
RC(Real) 0.4ns, 512 Entry | 4.0ns, 8192 Entry | 25ns

packets in parallel computing. Small messages (typically less than 3 KiB) constitute
a major fraction of many HPC applications [10], and its high-throughput operation is
listed up as a challenge to interconnection networks. As described in Section 1.2, the
CAM internal latency does not decrease much year by year. The gap between a line rate
and a packet forwarding rate will become a serious bottleneck in parallel computing.
For example, it can provide 2.0 Tbps (=1/4ns x 1KiB x 8) for 1KiB packets. Link
bandwidth will be 1.6 Tbps in the 2020s, as illustrated in Ethernet Roadmap 2020 [2],

and over 2 Tbps link will be supported in the near future.
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5.2 Switchable Node Reduction Function

5.2.1 Assumption and Behaviour

A switchable node reduction function is presented for a packet forwarding cache to
address the problem of the low hit rate close to zero. A packet address takes a wide range,
e.g., 24 bit, in interconnection networks. A node reduction function converts a (short)
cache tag from a packet address before the table lookup. A fast typical node reduction
function takes a Cyclic Redundancy Check (CRC) to distribute the tag uniformly.

To achieve an 100% cache hit rate, the approach relies on a topology regularity. Existing
parallel computers usually use k-ary n-cubes, fat tree, and Dragonfly network topologies,
as described in Section 1.1. The approach targets to support an 100% hit rate only when

they are used.

The main idea in this Chapter is to provide multiple node reduction functions that
are optimized to the above common network topologies. The node reduction function
assumes to use its custom node addresses. For example, the custom node address can
be set as local identifier (LID) in InfiniBand. The procedure to use a switchable node

reduction function is described as follows.

1. Each compute node is assigned to its custom address for the node reduction func-

tion.
2. Each switch fills up CAM entries when a parallel computer is deployed.

3. All cache entries are flushed. Each switch then sets a suitable node reduction

function before a job is executed, and turns on a node reduction function.

Figure 5.3 shows the block diagram of switches with the packet forwarding cache and the
node reduction functions. When an incoming packet arrives, a cache tag corresponding
to the destination address is obtained by the node reduction function. To easily maintain
the consistency of CAM and cache, the switchable node reduction function outputs the

index tag that is a key of routing cache.

Four datapaths on the node reduction functions in Figure 5.4, k-ary n-cube, fat-tree/Dragonfly,
arbitrary topologies, and link aggregation (LAG) are prepared. The datapath for arbi-
trary topologies follows a CRC computation, and the CRC design follows [61].

The function to select a link among LAG is performed in parallel if LAG is used. The

remaining two datapaths are stated as follows.
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F1GURE 5.3: Block Diagram of Switch with Packet Forwarding Cache and Node Re-
duction Functions.

LAG is implemented logically the same as non-LAG networks, whereas a physical link
within a LAG group is selected to use in transmitting each packet. A round robin, CRC
of the target address, or simply the residual of the target address can be used. The CRC

of the target address is used in Section 5.4.

5.2.2 General Node Reduction Function

In this section, a general node reduction function is described. It is intend to explain the
general idea behind the node reduction functions instead of being actually implemented

with hardware in a switch chip.

Figure 5.5 shows the overview of the idea behind the general node reduction function.
A compute node has multiple output ports. Each port is connected to a set of compute

nodes, e.g. three nodes set in Figure 5.5. All compute node has its own address. As a
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F1GURE 5.4: Routing Computation Unit and Node Reduction Functions.

result, a reduction function from addresses of a nodes set to a port number is able to be
defined.

Port 1

D
- Port 2

Port 3

Nodes Set 1

Nodes Set 2

Nodes Set 3

FIGURE 5.5: Overview of General Node Reduction.

Algorithm 1 shows the pseudo code of the general node reduction function. It obtains
two addresses which represent the address of the current node address(c) and the address
of the target destination address(d) respectively. The function body consists of a double

loop, each iterates one of the two addresses, ¢ and d.
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Algorithm 1 General Node Reduction Function.

Require: Coordinates of current node (cy,...,c,—1) and destination node (dp,...,dp—1).
Ensure: Cache index tag.
1: procedure :
2 fori=0ton—1do
3: for j=0ton—1do
4: if Handle(4, j, c;, d;) then
5: tag := getTag(i, j, ci, d;);
6

tag := Local endpoint;

A Handle subfunction is used to determine whether the node reduction function termi-
nates or not. If it does, another getT'ag subfunction is used to obtain the tag. If it does

not terminate, the double for loop continues.

The key idea behind the switchable node reduction function is to create two hardware
implementable subfunctions Handle and getTag, to achieve a 100% cache hit rate from
the returned tag value. Because the getT'ag subfunction obtains (i, j, ¢;, d;) and returns
a tag, it reduced the addressing space drastically, from the bitwidth of d; to a simple
tag value. As a result, the possible index space for the packet forwarding cache is

dramatically reduced from 20itwidth(d:)

to only tag. Consequently, the packet forwarding
cache with the switchable node reduction functions is able to achieve a 100% cache hit

rate.

From the general node reduction function, special node reduction functions to handle

typical network topologies can be derived, as described hereafter.

5.2.3 Typical Topologies Supported by Node Reduction Function

5.2.3.1 K-Ary N-Cube

A node reduction function to k-ary n-mesh/torus is stated in Algorithm 3. This can be
derived from the general version of the function which is shown in Algorithm 1, where
the “Handle” subfunction only handles the argument when ¢ = j, and the subfunction

“getTag” works as the pseudo code from line 3 to 7 of Algorithm 3.

Dimension-order routing is assumed to use in the network. Each compute node is as-
signed to the n-dimensional coordinates (X,_1,..., X1, Xp), and each switch has com-

pute nodes. Each output-port information in the cache corresponds to a link.

Firstly, the case for k-ary n-meshes is considered. The required number of table entries
is minimized, that is the number of output ports on a switch. Figure 5.6 shows an
example of mesh network. Multiple destinations that use a same output link refer the

same table entry. For example, the packet destinations (0,2), (1,2), and (2,2) share the
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Algorithm 2 Node reduction function on k-ary n-mesh.

Require: Coordinates of current node (co,...,cy,—1) and destination node (do,...,dp_1).
Ensure: Cache index tag.
1: procedure :
2 for i=0ton—1do
3 Xoffset = d7 — Ci;
4: if Zoffset > 0 then
5: tag := X 1;
6 else if z,f75e <0 then
7 tag == X; _;
8 tag := Local endpoint;

same table entry (X ;) at the switch (1,1) in Figure 5.6. In the Figure, each output
port is marked as Xo,; 4/, that is the table entry.

Switch

FIGURE 5.6: An Example of 3-Ary 2-Mesh.

The reduction function of node “11” works for any target nodes in the network. Without
the reduction function, the possible target addresses are all nine network nodes, including

the “11” node itself, which is usually called as a sink port.

With the reduction function, the possible number of the target addresses are reduced to
five, which is the sum of the number of the output ports and one sink port, as shown in
Figure 5.7.
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FIGURE 5.7: Reduction of Routing Patterns on 3-Ary 2-Mesh.

This characteristic is the key of the reduction functions, which can reduce the number of
possible target addresses from the number of all network nodes to the number of output
ports. This reduction can be significant when the network is huge, because the number
of output ports is no more than a few hundreds while the number of nodes can be more

than a hundreds of thousands.

The regularity of dimension-order routing on k-ary n-cubes is fully utilized to minimize
the number of table entries. Indeed, Figure 5.7 represents that the number of table
entries can be classified into five from nine destinations. Thus, only five table entries
are needed for k-ary 2-meshes. More generally, k-ary n-meshes require only 2n+1 table

entries.

Figure 5.8 shows the address format for the k-ary n-cube mesh/torus network. The
address is divided to n address chunks. Each chunk is corresponding to a dimension of
the network. In the figure, the LSB chunk represents the first dimension of the mesh
network. The neighboring chunk of the LSB chunk represents the second dimension.

Consequently, N dimensions can be represented with the N chunks.

Figure 5.9 shows the format of the address chunk. Each chunk consists of K bits,
representing the address of a node in a dimension of the network. With the K bits,

2% — 1 nodes can be addressed, representing the node in the dimension.

The address format is assumed to be 24 bits. The chunk size can be 24 bits address
format is assumed. K can be 2, 3, and 4, representing 2- to 16-ary mesh/torus topologies.

Consequently, the maximum number of chunks in an address is 12 = 24/2.

Figure 5.10 shows an implementation of a node reduction function that supports mesh

topologies. It consists of a splitter, 12 comparators, and a multiplexer, following with
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FIGURE 5.8: K-ary, N-cube Mesh/Torus Address Format.

c[N-1]

K bits

—

FIGURE 5.9: K-ary, N-cube Mesh/Torus Address Chunk.

the Routing Cache, to realize the functionality of Algorithm 2. Note that the “for”
loop in Algorithm 2 is implemented with the 12 comparators, because of the maximum
number of chunks is 12. The comparators can be accessed in parallel, resulting in a

shorter access latency than using a state machine.

Secondly, we consider the case for k-ary n-tori. On tori, there are the wraparound

channels, as shown in Figure 5.11. It makes the node reduction function, which is shown
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FIGURE 5.10: Implementation of the Mesh Node Reduction Function.

Algorithm 3 Node reduction function on k-ary n-torus.

Require: Coordinates of current switch node (¢,—1,...,¢o) and destination compute node
(dn-1,-..,dp).
Ensure: Cache index tag.
1: procedure :
2 fori=0ton—1do
3 Xoffset =d; — Ci;
4: if ofpser > f%] then
5: tag = X; _;
6 else if z,f¢sc¢ > 0 then
7 tag := X; 13
8 else if x4f7ser < —f%] then
9: tag := X; 13
10: else if z,ff5e <0 then
11: tag == X —;
12: tag := Local ComputeN ode;

in Algorithm 3, different from that in k-ary n-mesh.

A high-radix switch sometimes uses multi-rail links, also known as link aggregation
(LAG). The link selection within a LAG can be performed by the CRC hash function,
and it is not shown in Algorithm 3. Each table entry in Algorithm 3 should be stored so
as to avoid the conflict miss on n-way associative cache. Conflict misses can be avoided
by using the CRC number of the target addresses, or round-robin of the target address

or the target port number itself.

Node reduction function on k-ary n-torus with supporting LAG is shown in Algorithm 4.
In the Algorithm, each output logical port is equipped with lag,um physical output

ports.

Figure 5.12 shows a logical configuration of a network switch with LAG. Each switch has

four logical ports, port_minus|0, 1] and port_plus|0, 1]. Each logical ports consists of P
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FIGURE 5.11: Reduction of Routing Patterns on 5-Ary 2-Torus.

physical ports, resulting in a LAG logical port. Each physical port is selected according
to a CRC number of the target address. Consequently, an aggregated bandwidth is

achieved when a large number of packets are transmitted with the LAG port.

Figures 5.13 shows an example of torus topology routing, equipped with LAG ports.
Note that the direction of packet transmitting in a dimension is determined by the
relative position of the source node and the target node, i.e. the node “41” should be
routed to the upper direction from the node “11”, while the routing is not feasible in
the mesh network. c_be is calculated and used to determine the direction where a packet
should be routed along the dimension. In the figure, the node “31” is the c_be node of

the node “11” in the first dimension, which can be calculated as 3 = (14 |5/2]) mod 5.

66



Switchable Node Reduction Function

Algorithm 4 Node reduction function on k-ary n-torus with supporting LAG.

Require: Coordinates of current switch node (c,—1,...,¢o) and destination compute node
(dn-1,...,dp).
Ensure: Cache index tag.
1: procedure :
2 lagID = d mod lag_num;
3 fori=0ton—1do
4: Xoffset =d; — Ci;
5: if Zoffser > fg-I then
6 tag := Xi _jlagID];
7 else if z,f ¢ > 0 then
8 tag == Xi {lagID];
9 else if 2ffset < —[%] then

10: tag = X; t{lagID);
11: else if z,ff5e <0 then
12: tag := X; _(lagID];

13: tag := Local ComputeN ode;

T
port_minus[1][P]

port_plus[O][P]

port_plus[1][P]
!

FI1GURE 5.12: Aggregated P Ports for All Logical Port of Node “11” in a Mesh Network.
5.2.3.2 Fat Tree
Up*/down™* routing is assumed in fat trees. Assume that a switch at the layer i has
n upper and down links. Recent parallel computers use a fat tree that consists of

some high-radix director switches and many ToR switches. The node reduction function

supports such a high-radix fat tree.
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<- c_be for node 11 in degree 1
(3 = (1 + floor(5/2)) mod 5)

F1GURE 5.13: Aggregated P Ports for All Logical Port of Node “11” in a Torus Network.

Algorithm 5 Node Reduction Function on n-Dimensional Fat Tree.

Require: Coordinates of current switch node (dim, ¢,—1, ..., co) and destination compute node
(dns - - do).
Ensure: Cache index tag.
1: procedure :
2 for i =n —1 to dim do
3: if di+1 ;é C; then
4: tag := upq,;
5 tag := downg,;

Figure 5.15 shows the node address format for Fat tree topology. The address consists
of D 4+ 1 chunks, where D denotes the number of dimensions in the Fat tree network,

four in the figure as an example.

Each node address chunk format is shown in Figure 5.16. Each chunk consists of K bits,
where K denotes the logarithmic of the number of the switches in the same dimension

of the Fat tree network.
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FIGURE 5.14: An Example of 2-Ary 4-D Fat Tree. (n=4, k=2)

c[D] c[3] c[2] c[1] c[0]

FI1GURE 5.15: D-dimensional K-ary Fat-tree Node Address Format.

c[d]

K bits

FIGURE 5.16: D-dimensional K-ary Fat-tree Node Address Chunk Format.

Figure 5.17 shows the switch address format for Fat tree topology. The address consists
of a d with D chunks, where D denotes the number of dimensions in the Fat tree network,
four in the figure as an example. d denotes the number of the dimension in the Fat tree

network.

Each switch address chunk format is shown in Figure 5.18. Each chunk consists of
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K bits, where K denotes the logarithmic of the number of the switches in the same

dimension of the Fat tree network.

d s[D-1]| - s[3] s[2] s[1] s[0]

Il
O |N|W

O |aja|a
Il

FIGURE 5.17: D-dimensional K-ary Fat-tree Switch Address Format.

d s[d]

f Y

K bits K bits

FIGURE 5.18: D-dimensional K-ary Fat-tree Switch Address Chunk Format.

Algorithm 5 represents the node reduction function on a fat tree. Each switch node is
assigned to the (n+1)-dimensional coordinates (dim, ¢,—1, ..., co), where dim represents
the dimension number and cj{O <j<n0<¢ < k} for the address in the dimension.
Each compute node is assigned to the (n+1)-dimensional coordinates (d,, . ..,dy). Each
output port information in the cache corresponds to a link. It is identified by up; and
down; for 0 < j < k. The links upy and downg are connected to the left-most switch of

neighboring up/down layers.

Figure 5.14 represents an example of the node addresses in Algorithm 5. In the Al-
gorithm, the matching to a dimension is represented in Figure 5.19. In the reduction

function, the top d chunks of the node address are compared to the top d chunks. If
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they do not match, the routes are up, p_u[] in the figure. If all the comparison matches,
the routes are down, p_d[] in the figure.

Algorithm 5 is also a derived function of the general Algorithm 1. In this case, the

works as the pseudo code from line 2 to 4 of Algorithm 5.
p_ul0]  p_u[1]

“Handle” subfunction only handles once, e.g. ¢ = j = 0, and the subfunction “getTag”

def fat_tree hash(D, K, d, s, dst):
for dim in range(D-1, d):

if s[dim] !'= dst[dim+1]:
p_d[1]

s compare
return port_up[dst[dim]]
# s[dim] == dst[dim]:

p_d[0]

return port_down[dst[dim]]

FI1GURE 5.19: Comparisons of Fat Tree Hardware Reduction Function.

(for loop starts)
dim(=3) -> s[3]==dst[4]
dim(=2) -> s[2]==dst[3]
(for loop terminates)

return p_d[dst[2]] (=p_d[0])

(for loop starts)

dim(=3) -> s[3]==dst[4]
dim(=2) -> s[2]==dst[3]
(for loop terminates)

return p_d[dst[2]] (=p_d[1])

(for loop starty

dim(=3) > s[B]==dst[4]
dim(=2) > s[}] '=dst(3

[3]
return p_u[dsf 2]] (=p_u[0])

dim(=3) ->

3]==dst[4]
dim(=2) -> s[p] I=dst[3]

return p_u[dst{2]] (=p_u[1])

FI1GURE 5.20: Packets Routing in a Fat Tree Network.

5.2.3.3 Dragonfly Network Topology

The Dragonfly is a meta network topology that states a geometric (intra and inter-
rack) network topology. A typical configuration takes a densely connected intra-rack
network topology and a virtual router that consists of switches on a single rack takes
a densely connected inter-rack network topology. Such a typical configuration of the
Dragonfly network topology can work with the node reduction configuration of fat tree

in Algorithm 5. We illustrate the Dragonfly in Figure 5.21 in which the inter- and intra-

rack interconnection networks are defined. The upper most layer of switch nodes consist
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the inter-rack interconnection network, while the remaining layers of switch nodes consist
multiple intra-rack network, intra-racks 0 to 7 in Figure 5.21. The links connected to
the different coordinates of different layers (up/down) in fat tree topology are physically
connected by design to a switch node in the same layer. As a result, the connected switch
nodes in the same coordinates form a intra-rack group. With all groups, the network

consists the Dragonfly, in which the node reduction function of fat tree also works for

Inter-rack interconnection net

4 N N\

20010 20011 20100

each switch node.

Vs

[Intra-rack 0] [Intra-rack 1 [Intra-rack 2] [Intra-rack 3 [Intra-rack 4] | [Intra-rack 5]- [Intra-lrack 6] [Intra-rack 7]
00001 (00101)
RN AN

00100
AN AN U\ J J

00000}00001 00010 00100 01000

F1GURE 5.21: Dragonfly Corresponding to the Fat Tree in Figure 5.14.

~
J/

£

x
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e
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5.3 Limitation of the Switchable Node Reduction Function

A same node reduction function can be shared by tori and meshes. It can support some
node reduction function by updating the table entry of the packet forwarding cache. For
example, when the X¢ 1 link of node 11 fails permanently, updating the cache entry
avoids the faulty link is illustrated in Figure 5.22.

We give up to support 100% hit rate on the other network topologies. Supercomput-
ers and datacenters historically use some network topologies supported by the packet
forwarding cache. However, if the trend of the network topology changes, i.e., when a
new network topology appears, the packet forwarding cache works as a common four-
way set-associative, which may lead low hit rate in a large parallel computer. Another
option is to add a node reduction function optimized to a newly introduced network
topology to a cache switch by the hardware remake, though it may be costly. This is
the limitation of this study, though the possibility to change the trend of the network
topology is low.
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Routing Table Cache @ Switch 11

Tag 010
@ A Failure X0,a X0 - Dir

X0,+ X0 + Dir
Updating XO0,- X0 - Dir
the path X0,b X0 + Dir

Tag (new)
X0,a X0 - Dir
X0,+ X0 - Dir
XO0,- X0 - Dir
X0,b X0 - Dir

FIGURE 5.22: An Example of a Faulty 5-Ary 1-Cube.

5.4 Evaluation of the Switchable Node Reduction Func-

tion

5.4.1 Condition

The switchable node reduction function is designed with the Nangate 45nm Open Cell
Library [101]. We completed its synthesis using Synopsys Design Compiler O-2018.06-
SP4.

Routing information is set to 24 bits for supporting up to 224 = 160 addresses. We
omit a datapath for the CRC cache function for arbitrary network topologies because
we can borrow the results from the design in [61]. It is essentially needed even if the
switchable node reduction function is not used in a cache switch. Notice that the results
illustrated the area overhead of the CRC hash function is trivial compared to area of a

modern switch ASIC.

In k-ary n-cubes, our design supports the following configuration, 256-ary 3-cube, 64-ary
4-cube, 16-ary 6-cube, 8-ary 8-cube, and 4-ary 12-cubes. Since we do not have to use
all the node addresses to the above configuration, the node reduction function supports

any network topologies that can be embedded in them. For example, it is possible to
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construct a 4-ary 12-cube in which two links are bundled as a link aggregation in a

64-radix cache switch,

In fat trees, the over subscription should be carefully set. It is the ratio of the number of
lower links against the number of upper links at an intermediate switch, and we support
1: 1. It is obvious that the node reduction function to support 1 : 1 over subscription
can embed an n : 1 fat tree, and a Dragonfly that supports a fully connected intra and

inter-rack network topology by the configuration of the 3-dimensional fat tree.

Another CRC computation is performed to support LAG. We support up to a 16-link
bundle (4 bits), and a link is selected from the input packet’s destination address (24-bit)
with the CRC computation.

5.4.2 Results

5.4.2.1 Cache Approach

4000 OK-ary N-cube —
3500 O Fat Tree/Dragonfly
3000 B LAG
‘€ 2500
£
32000
§ 1500 —
<
1000
500
0
Baseline Pipeline

FicUre 5.23: Node Reduction Function Area Overhead at an Input Port.

Figures 5.23 and 5.24 illustrate the area and latency overheads of the switchable node
reduction function, respectively. We design two versions (combinational and sequen-
tial circuits), and they should be selected according to the latency requirements. The
baseline represents the combinational circuits. The pipeline represents the sequential
circuits, and two cycles are needed for enabling higher operating frequency. A port se-
lection among a bundled link is selected by the packet destination, and a CRC circuit

is used as shown in Figure 5.4 for the link aggregation.
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O K-ary N-cube
0.9 O Fat Tree/Dragonfl
0.8 B LAG

Baseline Pipeline

FIGURE 5.24: Node Reduction Function Latency Overhead at an Input Port.

We support n-cubes where n is 3, 4, 6, 8, and 12 in this evaluation. If k£ is limited
to a specific value, e.g. 6, the area can be almost one four, i.e., 300 wmm? in the
baseline and 352 wmm? in the pipeline. (we omit these values in the figure.) Similarly,

if only a 5-dimensional fat tree is supported, the area overhead becomes 114 pmm?

and 165 pumm?

on the baseline and the pipeline, respectively. The operation of the
node reduction function for fat trees is based on a bit-wise comparator, and it becomes
lightweight compared to that for k-ary n-cubes. Thus, The node reduction function for
k-ary n-cubes occupied 85% of the total amount of the hardware for the switchable node

reduction function.

Although there is a trade-off between generality and area overhead, its area overhead is
small compared to a switch ASIC, e.g., 329 mm? of ICC chip in the K computer (10 ports,
Fujitsu Semiconductor 65 nm process technology). In this context, we conclude that
the area overhead of each node reduction function is trivial even if we support various

configurations of fat tree, k-ary n-cubes and Dragonfly.

When a network topology is fixed, its switchable node reduction function and LAG
computational function are done in parallel. Thus, the latency can be regarded as
the maximum value of the switchable node reduction function and LAG computational
function. It is less than 1 nano second. If we support the above limited configuration, the
latency further decreases. For example, when only 6-cubes are supported, the latency
becomes 0.54 ns and 0.47 ns on the baseline and the pipeline, respectively. If three-
stage pipeline is used, each stage can be completed within most 0.72 ns. The access is
fully pipelined with three stages, the packet forwarding throughput becomes 933 Gbps
(1/0.72 ns x 84 x 8) for incoming shortest packets.
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We conclude that the latency overhead would not be a severe bottleneck compared
to the switch latency, i.e., some dozens of nanoseconds, and we can support typical

configuration for k-ary n-cubes, fat trees, and Dragonfly.

5.4.3 Parallel Application Performance

5.4.3.1 Condition

The ultimate metric is application performance. The purpose is to illustrate the impact
of the low latency of the cache switch on the application performance. We use discrete-
event simulation to evaluate the performance of parallel application benchmarks. To this
purpose, we use the SimGrid simulation framework (v3.25) [90] to simulate the execution
of unmodified parallel applications that use the Message Passing Interface (MPI) [102].

The parameters are listed in Table 5.2.

TABLE 5.2: Parameters of SimGrid Simulation.

Torus Dragonfly
RC delay 10 ns 10 ns
(w/o cache)
RC delay 1 ns 1 ns
(w cache)
Other switch delay 50 ns 50 ns
Compute power 100 GFlops / core 100 GFlops / core
Network topology 4-D torus Dragonfly
Number of Nodes | 32 / 256 switches 32 / 256 Switches
23 x4 ) 44 4 Groups x 8 nodes / 16 Groups x 16 nodes

The routing-computation (RC) delay is set to 1 nano second if the cache hits. As the
results in the previous subsection, the cache latency is 0.41 ns and the delay of the
switchable node reduction function is 0.72 ns, thus 1 ns in total. The RC delay is set to

10 ns, including 4 ns delay within a TCAM in the conventional switch.

A conventional switch that uses CAM assumes to use a 200 Gbps, 400 Gbps, 800 Gbps,
and 1.6 Tbps link. 1.6 Tbps is used for simulating link aggregation. It would not guaran-
tee 400 Gbps and higher line-rate throughput for incoming shortest packets. However, in
this evaluation, for the sake of simplicity, we assume that every switch works to support

line-rate throughput.

We simulate the execution of the MPI NAS Parallel Benchmarks version 3.3.1 [84] (Class
B for BT, CG, DT, LU, MG and SP, and Class A for FT and IS benchmarks), the matrix
multiplication example provided in the SimGrid distribution (MM), and the Graph500
benchmark version 2.1.4 [103].
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5.4.3.2 Simulation Results

m 100Gbps, Baseline 100Gbps, Cache W 200Gbps, Baseline  m 200Gbps, Cache M 400Gbps, Baseline
W 400Gbps, Cache W 800Gbps, Baseline  ® 800Gbps, Cache M 1.6Tbps, Baseline M 1.6Tbps, Cache

4
R0 AR AROR AR ARA0E oo o
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FIGURE 5.25: Relative Application Performance (256 Nodes, 4-D Torus).
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FIGURE 5.26: Relative Application Performance (256 Nodes, Dragonfly).

Figures 5.25 and 5.26 show performance results for the baseline and the cache switches,
normalized to the performance achieved by the baseline switch using 100 Gbps links with
256 computation nodes. Figures 5.27 and 5.28 show the relative performance results of
32 computation nodes. The y-axis represents the relative operations per second (Mop/s

for NPB benchmarks), and the higher value is better.

The cache-switch delay is 51 ns, while the conventional switch takes a 60 ns delay.

The delay difference results in the performance improvement by the cache switch. The
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® 100Gbps, Baseline 100Gbps, Cache B 200Gbps, Baseline  ®200Gbps, Cache B 400Gbps, Baseline
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FIGURE 5.27: Relative Application Performance (32 Nodes, 4-D Torus).
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FIGURE 5.28: Relative Application Performance (32 Nodes, Dragonfly).

network diameter of the 4-D torus is 8 hops while that of the Dragonfly is 3 hops. The
impact of the switch delay is smaller in the Dragonfly.

An important performance factor is the link bandwidth. As the link bandwidth increases,
the application performances, e.g. DT, FT, IS, and MM, with 256 computation nodes
drastically improves, especially for DT by 15.3x and 15.7x, of 4-D torus and Dragonfly
respectively. This result interestingly illustrates the demand of the network bandwidth,
because FT, IS, and MM conduct many all-to-all communications and traffic among all

network nodes [85].

On average, 5.07x maximum performance improvement is achieved on 4-D torus and
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4.27x on Dragonfly. As the total link number of Dragonfly is 3840, while that of 4-D
torus is 768, the overall aggregated network bandwidth of Dragonfly is much higher than
that of 4-D torus. This resulting in the higher relative performance improvement of 4-D
torus because of the lack of the overall network bandwidth for the baseline performance.
Indeed, the absolute maximum FT performance of Dragonfly is more than twice as
much as that of 4-D torus, in opposite to the lower relative performance improvement

of Dragonfly.

Besides the link bandwidth, the switch delay affects a little to limited benchmarks, IS
of Torus and Dragonfly, and MM and Graph500 of Dragonfly. Not only the higher link
bandwidth but also the lower switch delay are crucial for higher average parallel appli-
cations performance. In this context, the switchable node reduction function becomes
effective. high link bandwidth.

Figures 5.27 and 5.28 show the performance improvement of 32 computation node
systems with the higher network bandwidth, while the improvement are moderate than

that of the 256 computation node systems.

5.5 Hardware Only Approach for Switchable Node Reduc-

tion Function

One might think that the cache does not have a strong demand for the switchable
node reduction function. It can be implemented by the hardware synthesis optimized
to typical network topologies. However, it is costly because a mapping between switch
port and network topology can be complex. We support arbitrary patterns of such a
mapping. Figure 5.29 is a block diagram of a hardware only approach for switchable

node reduction function.

We evaluated the case for hardware only approach for switchable node reduction func-
tion. The switchable node reduction function is designed with the Nangate 45nm Open
Cell Library [101]. We completed its synthesis using Synopsys Design Compiler O-
2018.06-SP4, as well as the evaluation in Chapter 5. Our design only supports up to
16 patterns of the mapping between switch port and network topology. However, its

hardware amount is significant as shown in Figure 5.30.

Figure 5.30 illustrated that the hardware amount of the switchable node reduction func-
tion without cache is proportional to the number of the mapping patterns. We can
conclude that the cache should work together with the switchable node reduction func-

tion.
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FI1GURE 5.29: Block Diagram of Hardware Only Approach for k-ary n-cube Switchable
Node Reduction Function.

5.6 Summary

A switch will not able to forward incoming packets at the maximum line rate in in-
terconnection networks. To resolve the latency and throughput problems, an on-chip
packet forwarding cache to a switch is explored, as illustrated in the previous Chapter.
Since an incoming packet avoids large-latency accessing a TCAM forwarding table if the
cache hits, both the line rate and switch delay are much improved. However, the L1
cache size is strictly limited by the chip area. The cache switch would lead to a low hit

ratio close to zero when the network size is large.

In this Chapter, an additional switchable node reduction function on the packet forward-
ing cache architecture for elephant-nose large jobs on some specified network topologies
is demonstrated. The main idea is that a large number of packet destinations share a
same index tag, resulting in the same required number of cache entries as the number of
output ports. This design can be enabled by the path regularity of the above network
topologies. A general node reduction function, which obtains two addresses and their
indices and returns a cache tag, is defined to achieve the path regularity. Then, some
typical configurations of the switchable node reduction function are stated, which can be
derived from the general node reduction function. They required taking custom packet

destination addressings on k-ary n-cubes, fat trees, and Dragonfly.
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FicUure 5.30: Hardware Amount of the k-Ary n-Cube Switchable Node Reduction
Function without the Cache.

Our evaluation results show that the packet forwarding cache provides up to 933 Gbps

line rate We illustrate that parallel applications obtain the gain of 5.07x speed up using

the packet forwarding cache.
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Discussions

6.1 Alternative Ways to Achieve 100% Cache Hit Rate

There are two alternative ways to target 100% cache hit rates of a cache switch. We

qualitatively discuss them.

6.1.1 Host-Assisted Software Cache

A simple way to fill the cache entries that will be immediately used is a prefetch. A
compute node that will generate a message soon sends an empty packet to the same
destination in order to fill out the cache entry at all switches on the route. When it
forwards the successor message, intermediate switches will hit its cache entry at a cache.
Recently, MPI v3.0 [104] or later supports asynchronous communication and one-side
communication, and we can use it as the empty packet for the cache prefetch. However,
if all-to-all communications occur, it is impossible to store all packet destinations in
the cache. In this context, the cache prefetch would be impractical as the number of

compute nodes increases.

6.1.2 MPI-Aware Cache Refill Algorithm

Another approach is to optimize a cache refill algorithm. When a switch understands

MPI communication pattern, it may improve the cache refill algorithm. Once a switch
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detects an all-to-all communication, it can identify a cache entry whose packet is already
transferred in this all-to-all communication. The switch can eject the entry, and prefetch
another entry that will be used soon in the all-to-all communication. However, we
consider that this operation becomes complicated, and it is unclear whether a 100% hit

rate maintains or not as the number of compute nodes increases.

6.2 Tradeoff between Hardware Amount and Required Net-

work Size

In Section 5.4, a general mesh/torus hardware reduction function which is equipped
with 12 comparators is adopted, as shown in Figure 6.1. It can support 2, 3, and 4 bit
width chunks in parallel. The maximum chunk number is 12 = 24 bit/2 bit, when 24 bit

address format is used.

With the 2, 3, and 4 bit width chunks, they can address 4(= 22), 8(= 23), and 16(= 2*)-
ary networks, as listed in Table 6.1. With the general hardware reduction function in
Figure 6.1, all the three network sizes can be handled, because it has 12 comparators to

compare the maximum 12 chunks in parallel.

TABLE 6.1: Network Size and Chunk Sizes.

Network Size | Chunk Size | Chunk Number | Total Address Length
4-ary, 12-cube 2 bit 12 24 bit = 2 bit x 12
8-ary, 8-cube 3 bit 8 24 bit = 3 bit x 8
16-ary, 6-cube 4 bit 6 24 bit =4 bit x 6

If up to 16-ary 6-cube network is needed to support in the switch, only six chunks are
needed to support in the hardware reduction function. Consequently, the implemen-
tation cost can decrease to Figures 6.2, resulting in smaller area overhead and lower

latency.
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FIGURE 6.1: A General Mesh/Torus Hardware Reduction Function with 12 Compara-
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Conclusions

7.1 Achievements

An on-chip packet forwarding cache to a switch to resolve the delay and throughput
problems of routing decision is explored. Since an incoming packet avoids large-latency
accessing a TCAM forwarding table if the cache hits, both throughput and switch delay

is much improved.

Our contributions are (1) the four-way set associative packet forwarding cache for up to
2K-node jobs with arbitrary network topologies, and (2) the switchable node reduction

function on the cache switch for arbitrary job sizes on typical network topologies.

7.1.1 Four-Way Set Associative Packet Forwarding Cache

The application of packet forwarding cache to all input ports of switches is investigated
to improve the switching throughput, the line rate, and the performance of parallel
applications. When DWDM (Dense Wavelength Division Multiplexing) is used for the
link, the cache can either be installed for each link or each wavelength, depending on

the packet throughputs they provides.

The packet forwarding cache area and latency is simulated using the CACTI v6.5 sim-
ulator. The transistor model is a high-performance 45 nm process. Since we targeted

a 64-port switch, the total cache overhead area becomes 14.6mm? for 2,048 entries
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(0.228mm?) in a chip. Since switch ASICs have large area, e.g., 329 mm? in Tofu of K-
computer ICC (65 nm technology), we consider that 2K entries for a 64-port switch are
feasible. The CACTI simulation results also showed that the packet forwarding cache
supports up to 1.64 Tbps line rate.

In an interconnection network with 512 computation nodes, the conflict miss rate of
a 2,048 entry 4-way set associative routing cache is less than 0.1%, with the cache
simulation results. The performance of NAS parallel benchmark applications is improved
by 4.39x on average in a interconnection network with 256 computation nodes, with MPI

simulation results of SimGrid v3.25.

It is concluded that the adoption of the packet forwarding cache increases the commu-
nication throughput of interconnection network, the line rate, and the performances of
parallel applications. As a result, the packet forwarding cache is strongly recommended

to be adopted in HPC commodity switches with arbitrary network topologies.

7.1.2 Switchable Node Reduction Function

Although we illustrate the conventional cache switch architecture, it becomes a low hit
ratio close to zero if the network size becomes large. To achieve an almost 100% hit rate
on any network size, we present a switchable node reduction function to index a packet
forwarding table on a switch. The switchable node reduction function is optimized to
typical network topologies, e.g., k-ary n-cubes, fat tree, and Dragonfly, thanks to custom

node addressing.

The CACTI simulation results show that the reasonable packet forwarding cache sup-
ports up to 933 Gbps line rate on the above network topologies. It implicitly suggests
that the packet forwarding cache enables a top-of-rack high-radix switch ASIC, e.g.,
51.2 Thps (800 Gbps x 64), with the moderate chip-area overhead for incoming shortest
packets.

We illustrated that parallel applications obtain the performance gain of 5.07x speed
up using the cache switches since the cache switch reduces the delay of the routing

computation unit.

Through this dissertation, it is concluded that a commodity switch should have a packet
forwarding cache with switchable node reduction functions. The packet forwarding cache
is efficient for forwarding a large number of shortest packets, and the switchable node

reduction function is necessary for large scale parallel computers.
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7.2 Future Direction and Future Work

7.2.1 Future Interconnection Network

Future interconnection network will rely on commodity technology for Ethernet. Optical
technology will be a key factor to follow the 2018 Ethernet roadmap. Ultra high-radix
switch ASICs enabled by the optical technology would drastically change the design of

interconnection networks.

Co-packaged optics (CPO) [105], i.e., optical technology integration to chip package,
is a promising technology for switch ASICs. Hyperscale datacenters highly demand a
high-radix high-throughput switch ASIC. BroadCom releases the Ethernet switch ASIC
design, Tomahawk 3 [106] (12.8 Tbps) in 2018 and Tomahawk 4 [107] (25.6 Tbps) in 2019.
It is expected that a switch ASIC will reach 51.2 Tbps in the 2020s. In current switches,
the electric serializer-deserializer (SerDes) conversion consumes significant power, and

the broad area of aggregate I/O pluggable ports in creases the onboard wire length.

To mitigate the both problems, the optical technology should be tightly coupled with a
switch ASIC. Once the O/E conversion is performed, the data is electrically transferred
on a switching ASIC. Thanks to CPO, the line rate continues to increase in the next
decade in interconnection network. Thus, the cache switch is more important in the

next decade.

Besides the optical technology, the micro switch architecture would change, such as
speculation, prediction for decreasing the latency, and look-ahead routing for removing
the dependency of the pipeline [24]. The 3-D and 2.5-D chip integration including chiplet
also affects the allowable capacity of cache and switch microarchitecture. The cache
switch is applicable for the various switch microarchitectures, because it only affects the
routing-computation unit on a switch. Our future work is to investigation of the impact

of cache switch on them.

7.2.2 Future Software-Defined Network

Software-defined networks(SDN) also continue to increase the line rate. In SDN, packets
are forwarded according to the decision of the control plane. Then, the packets are
actually forwarded by the data plane. The SDN controller controls all control planes in
the network. Consequently, accessing the controller introduces slow packet forwarding

rate.
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In this context, the cache strategy should care about the rule-dependent analysis for
the longest prefix match. At present, TCAM is used as a cache, however, the depth
of the cache hierarchy increases as the required line rate increases. That is, L1 cache
will be used in the near future, and L1 cache and TCAM will work together. The low-
latency consistency model of the longest rule matching is needed. The development of
the consistency model is future work to apply a cache switch to future software-defined

networks.
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