
Feature Enhancement using Spatio-Temporal

Information for Video Object Detection

by

Masato FUJITAKE

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

March 2022

ABSTRACT

Video is an essential resource because of its ability to hold space and time

information. Therefore, in the field of computer vision, a lot of research is con-

ducted to extract various information, especially object detection in videos. It is

expected to be applied to real-world applications such as surveillance cameras

and robotics.

Object detection consists of two processes: extracting the feature maps for

detection from the video frames and detecting objects from them. In object de-

tection in video, detectors for still images are sometimes applied to each frame.

However, it is difficult to achieve stable detection due to apparent changes with

time in the video, which leads to fluctuations of detection confidence score,

and false-positive and false-negative detection results. Previous research tried to

solve them by incorporating temporal information in the detection stage. How-

ever, the effect was limited since the feature maps obtained from the frames are

deteriorated due to the changes in appearance, and it is difficult to detect ob-

jects from them. Therefore, it is essential to enhance feature maps with temporal

information before the detection stage.

Research on feature maps suitable for detection has been conducted mainly in

offline methods that employ all future, current, and past information, and there

have been few online methods, which do not rely on future information, aimed at

real-world applications such as surveillance cameras and robots. In addition, for

such applications, not only the accuracy but also the processing speed for real-

time is essential. Previous works have proposed stabilizing the detection by prop-

agating the past information from the last frame or a specific nearby keyframe

for real-time processing in online settings. However, they have not yet achieved

stable detection due to the limited use of temporal information. Therefore, this

dissertation studies feature enhancement methods for real-time and online video

object detection that utilizes more temporal and spatial information.

To enhance feature maps for video object detection, we studied two aspects.

One is to refine a feature map by aggregation, and the other is to enhance a fea-

ture map through prediction. First, we propose two new feature map aggregation

methods: frame-level feature map aggregation and element-level feature map ag-

gregation. Feature map aggregation differs from previous real-time and online

methods in that it directly exploits multiple past feature maps. It has been stud-

ied in offline methods and can provide stable feature maps; however, it requires

more processing time due to the computation of the weight between detection

and each surrounding frame. Therefore, in frame-level feature map aggregation,

we propose to refine the feature map by calculating which past frames should

be focused on in a one-shot manner, which runs in real-time. To aggregate past

features directly, we extend the detector with external memory. We experimen-

tally show that frame-level feature map aggregation can suppress the issue of

object confidence score fluctuations in time. At the element-level, the idea of

the frame-level method is further extended. Each element of the feature map

is refined considering local and global spatial information and short- and long-

range temporal information; however, such dense aggregation takes much time

to calculate in general. Therefore, we propose a novel sparse aggregation method

to reduce computation processing time for feature aggregation. Furthermore, we

also propose an adaptive feature update strategy in external memory to hold long-

term information. Finally, we achieve state-of-the-art performance in an online

detector that maintains real-time performance. We also show that the proposed

method significantly reduces false-positive and false-negative detection results,

which are challenges in video object detection.

Next, we propose a novel feature map enhancement approach through pre-

diction. The prediction-based approach differs from the feature map aggregation

approach in that it does not utilize external memory but enhances the perfor-

mance of the model itself. Therefore, it is suitable for conditions under strict

GPU memory constraints, such as robotics. The prediction-based approach em-

ploys a future prediction task, which requires deep knowledge of objects, such as

motion, to forecast the future clearly. The detector enhances the feature maps for

stable object detection by learning features through prediction during the training

phase. We leveraged the prediction from different perspectives: forecasts for the

next and the next several frames. First, we propose a detector that jointly learns

detecting objects and forecasting the next-frame feature map. This prediction

approach is suitable for extending the recurrent neural network object detectors,

and experiments show the effectiveness of learning features through the next

frame forecast. Next, we propose a video object detection framework based on

stochastic future prediction to leverage more extended time. The next several

frames prediction is difficult to predict due to the future uncertainty; therefore,

our model learns features by predicting the sampled and possible future. Ex-

periments have shown the effectiveness of leveraging the stochastic long-term

prediction for video object detection.

Acknowledgements

First and foremost, I would like to devote my thankful heart and wish to my super-

visor, Prof. Akihiro Sugimoto, whose both devotion and expertise make an incredible

contribution to the achievement of this dissertation. I cannot find a way to credit all his

patient guidance, valuable suggestions, and enthusiastic encouragement in his supervi-

sion of my doctorate. It is very fortunate to have the opportunity to be supervised by

him, who has deep experience in my research area, who is always gentle and cares about

my research progress.

I would like to express my deep gratitude to all committee members, including Prof.

Kazuya Kodama, Prof. Satoshi Ikehata, Prof. Shinichi Satoh, and Prof. Imari Satoh,

who guided and helped my research process. Without your valuable comments, my

Ph.D. would take longer to finish. In addition, I thank all my friends who are always

encouraging me to keep studying.

Last but not least, I have to give special thanks to my parents and my older sister for

encouraging me and inspiring me in carrying out scientific research for all these years.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivations . 5

1.3 Problem Statement . 6

1.4 Dissertation Focus and Main Contributions . 7

1.5 Organization of the Dissertation . 10

2 Literature Review 11

2.1 Object Detection in Images . 11

2.2 Object Detection in Videos . 13

2.2.1 Box-level . 14

2.2.2 Feature-level . 14

2.3 Related Topics to Video Object Detection . 18

2.3.1 Multi Object Tracking . 18

2.3.2 Video Instance Segmentation . 19

2.4 Benchmark Datasets . 21

2.5 Evaluation Metrics . 26

3 Frame-level Feature Aggregation 27

3.1 Introduction . 27

3.2 Proposed Method . 29

3.2.1 Architecture . 29

3.2.2 Spatiotemporal Encoder . 30

3.2.3 Temporal Attention Decoder . 31

3.2.4 External Memory . 31

3.2.5 Loss Function . 32

3.3 Experiments . 32

3.3.1 Benchmark Datasets and Metrics . 32

3.3.2 Implementation Details . 33

vi

3.3.3 Model Design Analysis . 34

3.3.4 Comparison with State-of-the-Art . 36

3.3.5 Qualitative Comparison . 39

3.3.6 Detailed Analysis . 40

3.4 Conclusion . 46

4 Element-level Feature Aggregation 48

4.1 Introduction . 48

4.2 Related Work . 50

4.2.1 Feature Aggregation for Video Object Detection 50

4.2.2 External Memory for Video Object Detection 51

4.2.3 Transformer Network . 51

4.2.4 Pretraining . 52

4.3 Proposed Method . 53

4.3.1 Overview . 53

4.3.2 Frame Selection from Short- and Long-ranges 53

4.3.3 Feature Embedding . 54

4.3.4 Video-aware Sparse Transformer . 55

4.3.5 Detection . 57

4.3.6 External Memory . 57

4.3.7 Pretraining . 57

4.4 Experiments . 58

4.4.1 Benchmark Datasets and Metrics . 58

4.4.2 Network Architecture . 59

4.4.3 Implementation Details . 60

4.4.4 Comparison with State-of-the-Art . 61

4.4.5 Detailed Analysis . 64

4.4.6 Video Instance Segmentation Results 73

4.5 Conclusion . 74

5 Prediction based Feature Enhancement 77

5.1 Introduction . 77

5.2 Related Work . 79

5.3 Proposed Method through Next Future Prediction 79

5.3.1 Overview . 80

5.3.2 Encoder Module for Feature Map Forecast 81

5.3.3 Scheduler Module . 82

5.3.4 Loss Function . 83

vii

5.3.5 Training . 84

5.3.6 Testing . 84

5.4 Experiments through Next Future Prediction . 85

5.4.1 Benchmark Datasets and Metrics . 85

5.4.2 Implementation Details . 85

5.4.3 Comparison with State-of-the-Art . 86

5.4.4 Detailed Analysis . 88

5.5 Proposed Method through Next Several Future Predictions 93

5.5.1 Stochastic Adversarial Video Prediction 94

5.5.2 Pipeline . 96

5.5.3 Our Prediction and Detection Network 96

5.5.4 Pretraining Loss . 97

5.5.5 Fine-tuning Loss . 98

5.5.6 Inference Step . 98

5.6 Experiments through Next Several Future Predictions 99

5.6.1 Benchmark Datasets and Metrics . 99

5.6.2 Implementation Details . 99

5.6.3 Comparison with State-of-the-Art . 100

5.6.4 Detailed Analysis . 103

5.6.5 Discussion . 108

5.6.6 Video Instance Segmentation Results 109

5.7 Conclusion . 110

6 Conclusion 115

6.1 Summary . 115

6.2 Future Work . 118

viii

List of Figures

1.1 Examples of detection confidence score fluctuations with Faster R-CNN

due to apparent changes with time. Small changes in appearance, such

as luminance, drastically affect the detection confidence in a still image

detector. 3

1.2 Examples of false-negative and false-positive detection with Faster R-

CNN due to apparent changes with time. The changes cause the prob-

lems, such as detecting an object that is not the target of detection or

failing to detect an object in a scene that should be detected. 4

2.1 Pipeline of a two-stage detector (figure is adapted from [131]). The two-

stage detector obtains a feature map from the image and then estimates

the candidate regions of the object from the feature map using the Region

Proposal Network. It then extracts the corresponding features in the area

and performs a classification task to detect the object. Due to several

processes, the runtime is generally slow; however, the accuracy tends to

be high. 12

2.2 Pipeline of a one-stage detector (figure is adapted from [112]). Unlike

the two-step detectors, the one-step detector performs classification and

localization directly from the feature map obtained from the image. Be-

cause it has fewer processes than a two-stage model, it can run faster but

tends to be lower accuracy. 12

2.3 Frame examples of ImageNet VID dataset [134]. 23

2.4 Frame examples of UA-DETRAC dataset [164]. 24

2.5 Frame examples of VisDrone-VID2019 dataset [188]. 24

2.6 Frame examples of YouTube-VIS2019 dataset [79]. 25

ix

3.1 Examples of the detection results by TFEN on the UA-DETRAC. A

bounding box is plotted if its confidence score is larger than 0.4. 28

3.2 Architecture of our proposed TFEN. 29

3.3 Architecture of the spatiotemporal encoder. 30

3.4 Architecture of the temporal attention decoder. 31

3.5 Accuracy v.s. FPS under different number m of frames to be stored in

the external memory. 34

3.6 Soft attention weights used in the temporal decoder. 34

3.7 Example detection results of TFEN (m = 2, 4, 6, 8) for frames with

lots of blur on ImageNet VID val. A bounding box is plotted if its

confidence score is larger than 0.4. 37

3.8 Comparison of precision-recall curves on each subset of UA-DETRAC test.

We show results by the default models provided by the dataset providers [164]

and results by SpotNet, TSSD, and VOD-MT. 41

3.9 Example detection results of TFEN, Baseline Model, and TSSD on UA-

DETRAC dataset. 42

3.10 Example detection results of TFEN, TSSD and Baseline Model on Ima-

geNet VID val. The left column of each video corresponds to the base-

line model, the middle one corresponds to the proposed model, TFEN,

and the right one corresponds to TSSD. A bounding box is plotted if its

confidence score is larger than 0.4. 43

3.11 Feature activation before and after TFEN. For visualization, we summed

up the feature maps in the channel direction, then mapped their values to

the interval of 0-255, and up-sampled the feature channel by the bi-linear

interpolation. 45

3.12 Example of changes in detection confidence score over time. 47

4.1 An example of the behavior of the VSTAM framework. It collects re-

lated information from the past frames spatiotemporally to refine the

target frame’s representation, including those in external memory. The

orange and yellow arrows represent the highly related positions between

frames. 48

x

4.2 The architecture of the proposed Video-aware sparse transformer with

attention-guided memory (VSTAM). 52

4.3 The reference frame selection for feature aggregation from a video clip.

m is the number of past frames used for aggregate. Dark and light orange

indicate the current frame and the selected reference ones, respectively. 54

4.4 Visualization examples of the sparse attention. Here, we assume a video

with five consecutive frames, each frame possessing a 2 × 2 feature el-

ement. Gray color indicates the absence of attention. (a) random atten-

tion, (b) frame-wise attention, which cares only in self-frame, (c) Posi-

tion attention, which focuses on the same position of each frame, (d) the

combined attention map of Video-aware Sparse Transformer. 55

4.5 The sub-network for pretraining. 58

4.6 Visualized results on ImageNet VID val. From left to right: predictions

of Faster R-CNN(baseline) [131], MEGA [29] and ours. Best viewed

digitally and in color. 65

4.7 Visualized results on ImageNet VID val. From left to right: predictions

of Faster R-CNN(baseline) [131], MEGA [29] and ours. Best viewed

digitally and in color. 66

4.8 Visualized results for a small objects scene with slight motion on VisDrone-

VID test. From top to bottom: predictions of Baseline and ours. Best

viewed digitally and in color. 67

4.9 Visualized results for a scene with large motion on VisDrone-VID test.

From top to bottom: predictions of Baseline and ours. Best viewed dig-

itally and in color. 68

4.10 Visualized examples of error classification from TIDE [12]. “Cls” repre-

sents that the model detected the object but misclassified it into another

class. “Loc” means that the model detected the object with lousy lo-

calization. “Both” means occurring of both “Cls” and “Loc”. “Dupe”

represents duplicated detection for an object. “Bkg” means background

false-positive detections, while “Miss” means that it does not detect the

object even though an object exists there. Best viewed digitally and in

color. 72

xi

4.11 Visualized results of error analysis on ImageNet VID val by TIDE [12].

From left to right: results of the Faster R-CNN (baseline) [131], MEGA [29]

and ours. See Figure 4.10 for the categories of errors. Best viewed digi-

tally and in color. 73

4.12 Example of visualized results between Baseline (MaskTrack R-CNN [176])

and Ours on YouTube-VIS val. Results are plotted if their confidence

scores are larger than 0.45. Best viewed digitally and in color. 76

5.1 Video object detection through the next frame prediction. Current live

streaming video object detector approaches (a) store historical informa-

tion of feature maps to acquire stable detection results. In our proposed

model (b), we jointly learn the future feature map prediction to support

the detection task at the current frame. 80

5.2 The architecture of our proposed model. It consists of the feature extrac-

tor, the encoder, the scheduler, and the object detector. The encoder pre-

dicts the future feature map at the next frame and the current temporally-

aware feature map. The scheduler decides whether to exploit the fore-

cast feature map or extract the actual feature map at the next frame. The

black arrows show the information flow used during training and infer-

ence, and the green arrows show the flow for training only. 81

5.3 Scheduler network. The output feature map of the correlation layer is

followed by two convolutional layers and a fc layer with a 2-way softmax. 82

5.4 Visualization of example detection and the corresponding scheduler re-

sults on ImageNet VID val (best view in color). We set p = 0.5 in the

scheduler module. Frames where the forecast feature map is used are

specified in red; otherwise the real frame is adopted. 87

5.5 Visualized results for an occluded scene on UA-DETRAC test. Each

column shows the detection result of successive frames by the model

without forecast and the proposed method. We can confirm that when

an occlusion issue occurs on the left side of the frames, the proposed

method, which predicts the future motion of the object, robustly detects

it. Best viewed digitally and in color. 89

xii

5.6 mAP v.s. FPS trade-off comparison under different threshold p in the

scheduler module. 90

5.7 Forecast operation usage rate when varying the threshold p. The usage

rate of the future prediction operation depends on the movement of the

objects, Motion IoU. 91

5.8 Visualization of the feature activation error between the predicted feature

map and the actual feature map at the next time-step. Frames that use

the future forecast feature map for detection are surrounded by the red

rectangle (p = 0.5). 91

5.9 The overview of our proposed framework. To obtain a video represen-

tation, we pretrain the model through the future prediction task. Then,

we append a detection module to the trained model and transfer it to the

detection task. In the inference, only the dotted line area in (b) is used

(the future prediction part is not used). 94

5.10 The architecture of the proposed model. The model is pretrained using

the components in the orange-colored area, and then fine-tuned using the

whole components. The inference corresponds to blue-colored area. . . 95

5.11 Visualized results for subtle motion blur scene on VisDrone-VID test.

From top to bottom: predictions of Baseline (FCOS) and ours. Best

viewed digitally and in color. 102

5.12 Visualization results on ImageNet VID val. From left to right: the pre-

dictions of the model w/o prediction, the complete model, and LMP [193].

The proposed method continues to detect the object on degraded scenes

with a high degree of confidence. 103

5.13 Visualization results on ImageNet VID val. From left to right: the pre-

dictions of the model w/o prediction, the complete model, and LMP [193].

The proposed method provides stable detection without class error even

when the object moves rapidly. 104

5.14 Example of changes in detection confidence score over time. 111

5.15 Effect of varying the KL loss weights on the detection and generation

accuracy, showing the synthesized 10th frames corresponding to the

weights and the corresponding ground truth. 112

xiii

5.16 Accuracy impact of different methods of generating future forecasts . . 112

5.17 Visualization of training losses on several settings. The numbers indicate

the ratio of data used for training against the training set of ImageNet

VID, and “prob” and “det” indicate stochastic prediction and determin-

istic one. 113

5.18 Visualized results comparison the baseline (SG-Net [109]) and ours on

YouTube-VIS val. Results are plotted if their confidence score is larger

than 0.45. Best viewed digitally and in color. 114

6.1 Accuracy-speed trade-off across various online detectors on ImageNet

VID val (our methods are plotted in red). Multiple points for our same-

named method show the results when using different backbones. The

size of the marker indicates the model size (GiB). Measured compet-

itive methods are shown in green, and methods with unknown model

sizes are shown in gray. Also, the processing time of LSTM-SSD [110]

and Memory-guided [111] was reported on a smartphone in the papers.

LTLS uses high-end GPUs for speedup; we re-measured them on a GTX

2080 Ti using their implementation. The red area shows the general real-

time processing performance. 118

6.2 Accuracy-speed trade-off across various online detectors on UA-DETRAC test

(our methods are plotted in red). Multiple points for our same-named

method show the results when using different backbones. The size of the

marker indicates the model size (GiB). Measured competitive methods

are shown in green, and methods with unknown model sizes are shown

in gray. The performance of TSSD [26] and VOD-MT [86] is measured

by ourselves. The red area shows the general real-time processing per-

formance. 119

xiv

6.3 Accuracy change with scene switching on ImageNet VID val. The

horizontal axis shows the time, with the -1 frame indicating the previous

scene and the 0 to the fifth frame indicating the frames in the new scene.

The vertical axis shows the accuracy ratio of each frame when the accu-

racy of the last scene is set to 1. We can see that the accuracy of TSSD,

which does not take into account the decision to use past information,

drops significantly when the scene switches to a new one. 120

xv

List of Tables

2.1 Benchmark datasets for object detection and instance segmentation in

videos. “D” denotes the detection task, and “I” denotes the instance

segmentation task. 21

3.1 AP v.s. FPS under different compressibility p of the output channel

dimension on UA-DETRAC test. 35

3.2 mAP v.s. FPS under different compressibility p of the output channel

dimension on ImageNet VID val. 35

3.3 Performance comparison with state-of-the-art end-to-end models for live-

streaming videos on ImageNet VID val. 37

3.4 Comparison of AP scores [%] on UA-DETRAC test under various

environmental conditions. Bold faces are the top performance on each

subset. Methods in the first block are for still images. The methods in the

second block are for videos. The bottom block lists unpublished meth-

ods and thus shows just the reference scores. (* is tested by ourselves; ⋆

is our own implementation.) . 39

3.5 Performance comparison of ablation models 40

3.6 Effectiveness of temporal attention mechanism on ImageNet VID val

and UA-DETRAC test. 44

4.1 Performance comparison on ImageNet VID. 61

4.2 Comparison of accuracy and runtime on ImageNet-VID val. All method

employ Faster R-CNN with ResNet-101 and their processing time is

measured on Titan RTX. The re-measured speed of SELSA, RDN, and

MEGA is reported in [143]. 61

xvi

4.3 Comparison of External Memory Method on ImageNet-VID val. All

processing time is measured on RTX Titan. The re-measured speed of

OGEMN is reported in [143]. 62

4.4 Performance comparison with the state-of-the-art models on VisDrone-

VID2019 test. 63

4.5 Performance comparison on UA-DETRAC test. Bold faces are the

top performance on each subset. 64

4.6 Impact of components in the proposed method on ImageNet VID val,

VisDrone-VID val and UA-DETRAC test. 64

4.7 Performance comparison of feature aggregation modules by different

frame sampling on ImageNet VID val, VisDrone-VID val and UA-

DETRAC test. 67

4.8 Performance comparison of sparse attention modules on ImageNet VID val,

VisDrone-VID val and UA-DETRAC test. 69

4.9 Impact of the ratio of random attention on ImageNet VID val. 70

4.10 Impact of the number of the layers on ImageNet VID val 70

4.11 Impact of External Memory on ImageNet VID val, VisDrone-VID val

and UA-DETRAC test. 71

4.12 Performance comparison of pretraining on ImageNet VID val, VisDrone-

VID val and UA-DETRAC test. 71

4.13 Impact of VSTAM to RPN on ImageNet VID val. 72

4.14 Performance comparison with the state-of-the-art models on YouTube-

VIS2019 val. All the methods use ResNet-50 as the backbone. 75

5.1 Performance comparison with state-of-the-art end-to-end video object

detection models on ImageNet VID val. α is the hyper parameter of

MobileNet. The last column shows the runtime (FPS) on our GPU envi-

ronments. All our results are obtained on RTX 2080 Ti GPUs. 86

5.2 Performance comparison with state-of-the-art real-time detectors on UA-

DETRAC test. (* is tested by ourselves.) 88

5.3 Effectiveness of components in the proposed model 88

5.4 Performance comparison with the state-of-the-art online and real-time

detectors on ImageNet VID val. (* is tested by ourselves.) 100

xvii

5.5 Performance comparison on UA-DETRAC test. Bold faces are the

top performance on each subset. Methods in the first block are for still

images. The methods in the second block are for videos. (* is tested by

ourselves; ⋆ is our own implementation.) 101

5.6 Performance comparison with the state-of-the-art models on VisDrone-

VID2019 test. 101

5.7 Ablation study of our model on ImageNet VID val and UA-DETRAC test.

. 103

5.8 Performance comparison of VOD modules with VOD-MT [86] on Reti-

naNet and ResNeXt-101 on ImageNet VID val. 105

5.9 Impact of the number of the future prediction on ImageNet VID val. . 106

5.10 Performance comparison under different pretraining datasets on Ima-

geNet VID val. 107

5.11 Prediction accuracy in SSIM on Caltech Pedestrian dataset. Higher

SSIM means better prediction accuracy. 108

5.12 Detection accuracy in mAP on KITTI 108

5.13 Performance comparison with the state-of-the-art models on YouTube-

VIS2019 val. All of the methods use ResNet-50 as backbone. 109

xviii

Chapter 1

Introduction

1.1 Background

Video is a vital resource that holds information about both time and space. Increasingly,

many videos are being made year by year with the spread of smartphones, robotics cam-

eras, surveillance cameras, and cameras for automatic driving. Therefore, it is essential

to extract information from the video for robotics [50, 188], factory automation [35, 64],

and human support [60, 65, 168], rather than letting it end up as data. Understanding

videos and extracting information are researched from various angles, such as video

recognition [95], action recognition [148, 157] and anomaly detection [118].

One of the most fundamental but essential understandings in videos is recognizing

what an object is and where it is in a video frame. In order to find out what is in the

frame, i.e., to identify objects in an image, object detection has been studied in computer

vision. Object detection has made tremendous progress in recent years [15, 18, 112, 130,

131, 173], benefiting from the development of deep learning and convolutional neural

networks [81, 141, 172]. The famous object detection benchmark MS COCO [107]

reached 61.3% accuracy in 2021 [173] from 19.7% in 2015 [70]. These developments

mean that object detection technology can now be used in the real-world, and its utility

value is attracting attention not only in robotics [26, 50] and automated driving [67] but

also in various fields such as medical care [168] and agriculture [135].

Object detection consists of two stages: feature extraction and detection. In feature

extraction, important information for detection is obtained as features from images using

a backbone such as VGG [141] or ResNet [81]. The features are generally referred to

1

as a feature map. Next, the detection stage estimates object’s location and class from

the obtained feature map. For detection, mechanisms such as SSD [112] and Faster R-

CNN [131] have been proposed. The detectors output the detected objects’ positions and

their classes with confidence scores for the given image by going through these stages.

The confidence score indicates the degree of certainty the detector estimated the detected

object. The detector must detect the target with high confidence because the results are

filtered at a certain threshold.

When it comes to detecting objects in a video with the detectors [112, 131], it is diffi-

cult to achieve stable detection due to apparent changes caused by the temporal changes

in the video. In general, to apply object detection to video, the detectors trained on still

images are applied on each video frame for detection. However, it does not provide

stable detection in practice since the changes in appearance with time lead to phenom-

ena such as motion blur and out-of-focus, making detection difficult. More specifi-

cally, the change produces several issues of video object detection: detection confidence

score fluctuation, false-negative detection, and false-positive detection. As shown in

Figure 1.1, the confidence scores of the detected object fluctuate as the changes in ap-

pearance even slightly over time. Figure 1.2 shows the occurrence of false-negative

detection and false-positive detection. False-negative detection is a case where a detec-

tion target is present but cannot be detected. False-positive detection mainly consists

of background false-positive and class false-positive detection. The background false-

positive one is that a model detects an object where there is no target object, and the class

false-positive one is that a model detects the target as a different class. Thus, overcoming

these problems caused by the apparent changes is necessary to achieve stable detection

in video object detection.

Recently, feature extraction considering temporal information is expected to be an

approach to address those problems. In order to stably detect objects in a video, methods

that take temporal information into account at each stage of the object detector have been

studied. The existing research initially tried to enhance detection by introducing tempo-

ral information into the detection results [77, 165] or the detection stages [54, 90, 91].

However, these methods only slightly improved since they do not work well unless the

bounding boxes are detected in most frames. The problem is that the features necessary

for detection could not be sufficiently obtained due to degraded appearances caused by

2

Figure 1.1: Examples of detection confidence score fluctuations with Faster R-CNN

due to apparent changes with time. Small changes in appearance, such as luminance,

drastically affect the detection confidence in a still image detector.

the apparent temporal changes [191]. Therefore, to obtain sufficient features for detec-

tion before the detection stage, it is necessary to enhance the feature map by including

temporal information in the feature extraction stage. In video object detection, it is cru-

cial to research generating and enhancing robust features from degraded ones for stable

object detection in videos by utilizing temporal information to deal with fundamental

issues and has become the mainstream approach [29, 68, 191, 192].

3

Figure 1.2: Examples of false-negative and false-positive detection with Faster R-CNN

due to apparent changes with time. The changes cause the problems, such as detecting

an object that is not the target of detection or failing to detect an object in a scene that

should be detected.

4

1.2 Motivations

Research on enhancing feature maps for detecting objects in videos has been actively

studied in recent years [29, 42, 125, 143, 191, 192], and can be divided into offline

and online settings, depending on how the temporal information is used for detection.

Moreover, their target can be divided into accuracy-oriented and speed-oriented.

In terms of detection settings, many methods have been studied in offline settings

and a few studies in online ones in the field of research. The offline methods use past

and future information when detecting objects in the current frame [29, 42, 125, 191].

On the other hand, future information is not available in online methods [26, 192] in-

tended for live streaming videos. Since accuracy is one of the most crucial factors in

the research field, offline methods have been mainly proposed, and online ones have not

been sufficiently studied.

In addition, since there is a trade-off between accuracy and speed, the previous works

have been divided into the pursuit of accuracy and speed. The accuracy-oriented research

is to refine the feature map quality of the detection frame by using the features obtained

from the surrounding frames [29, 158, 167, 191]. Improving the feature map can over-

come the video challenges and increase detection accuracy. However, due to the high

processing cost, these works tend to be slow operation speed, mostly one ˜ten frames

per second. On the other hand, the speed-oriented research is to improve the speed

performance by eliminating the heavy feature extraction process because the neighbor-

ing frames have redundant information [23, 83, 192]. However, the accuracy of these

methods tends to be lower than that of still image detectors [192].

When real-world applications are considered, such as surveillance cameras, robotics,

and medical fields[135, 168], it is essential to detect objects in online settings because

future information cannot be utilized. Furthermore, while stable detection is vital for

practical applications, real-time processing performance is also essential. However, re-

search from this perspective has not been sufficiently discussed.

Two approaches have been proposed under the online constraint within real-time

processing to leverage a nearby specific keyframe to achieve high accuracy video object

detection. The warp-based approach [190, 192] proposed stabilizing the current feature

map by propagating features by flow information [190, 192] from a nearby keyframe in

5

the past. The recurrent neural network-based approach [26, 27, 110, 111] propagates

temporal information by accumulating the last frame through the recurrent neural net-

work. Although these approaches tried to detect objects stably, they do not result in

stable detection since they only rely on the limited temporal information, a past nearby

frame. Therefore, an approach that utilizes multiple frames to utilize temporal informa-

tion more effectively is expected for stable detection.

Inspired by the above discussion, this dissertation researches feature enhancement

learning methods, which utilize more temporal information, for online video object

detection that improves accuracy within real-time speed. In particular, we consider

the feature aggregation approach to learn the assembly of features from multiple past

frames and the prediction-based feature enhancement approach, which learns enhance-

ment through future prediction. In the following sections, we describe our research scope

in more detail.

1.3 Problem Statement

Video object detection provides problems such as fluctuation of detection confidence

score false-negative and false-positive detections because of apparent changes with time.

Due to the degraded appearance scenes caused by the changes, detectors cannot obtain

enough features for detection. Therefore, it is crucial to enhance the feature map by

utilizing temporal information for stable detection. Many feature map enhancement

methods have been studied in offline settings that utilize future information and cannot

be applied to real-world applications such as surveillance cameras and robotics since

they require online settings for live stream videos. Moreover, real-time processing is

also an essential factor in such applications. In the previous studies that satisfy those

requirements, the use of temporal information is limited and stable detection has not

been achieved. Therefore, it is vital to develop online feature map enhancement methods

that utilize more temporal information in real-time for stable video object detection in

consideration of real-world applications. In our dissertation, we address this issue.

6

1.4 Dissertation Focus and Main Contributions

This dissertation focuses on enhancing feature maps for video object detection, exploit-

ing spatiotemporal information under real-time processing and live-stream video con-

straints. We remark that real-time processing is over 15 frames per second on commer-

cial graphics boards, such as RTX 2080 Ti, whose single-precision performance is about

13 TFLOPS in this dissertation. Under the constraints, existing research utilizes flow

information to warp features [190, 192] or recurrent neural networks to propagate the

past information to the current frame [26, 110, 111]. Unfortunately, they only propagate

temporal information from a specific frame, last or nearby keyframe. Therefore, these

methods cannot achieve stable object detection and are insufficient in accuracy.

Unlike the existing methods, this dissertation attempts to enhance features by utiliz-

ing multiple frames from various perspectives to improve accuracy. For this purpose, we

present two approaches to the problem: the feature map aggregation approach and the

prediction-based feature map enhancement approach.

First, we propose feature map aggregation approaches for real-time online video

object detection. Since feature map aggregation is generally computationally time-

consuming, it has been studied only the offline methods [9, 158, 191] and has not been

proposed for real-time situations. To aggregate features in real-time, we propose ag-

gregation of feature maps from two different aspects. The first is enhancement through

frame-level feature map aggregation (in Chapter 3). We adaptively refine the feature map

from the viewpoint of which past frames should be focused to aggregate information. In

the conventional offline methods [86, 158, 191], each frame is weighted by similarity,

which takes time. On the contrary, we propose a real-time method to weigh the mul-

tiple frames at once. We also introduce an external memory to retain the past feature

maps. Experiments show that the proposed method is more beneficial than the previous

approach for the issue of detection confidence fluctuation. Next, we deepen the frame-

level aggregation to the element-level (in Chapter 4). Focusing on the element-level

allows it to aggregate for object misalignment over a more extended period. However,

element-level aggregation is generally time-consuming. Thus, we propose a sparse ag-

gregation method considering video redundancy. Experiments have shown that refining

the feature map by directly accessing past frames using external memory can effectively

7

improve the accuracy in real-time. In addition, we experimentally confirm that it is ef-

fective for the problems of false-negative and false-positive detection in video object

detection.

Second, we propose prediction-based feature map enhancement methods (in Chap-

ter 5). The feature aggregation approach relies on external memory to store the past

features, which requires GPU memory. However, there are memory limitations in some

situations, such as robotics. Thus, we present feature map enchantment through pre-

diction learning to improve accuracy without increasing memory usage. Predicting the

future requires detailed knowledge of object dynamics, such as motion. Incorporating

predictions into video object detection, we improve performance without increasing the

model size by utilizing future information during training. We fuse detection and future

prediction from two perspectives: the next and the next several frames forecasts. In the

next frame prediction, we introduce joint learning of object detection and the next-frame

feature map prediction by extending the existing recurrent neural network object detec-

tor. Experiments validate the clear benefit of feature enhancement through prediction.

We propose a video object detection framework based on a probabilistic future forecast

to leverage extended temporal information in future prediction in the next several frames

forecasts. This experiment employs ten successive future frames. It is difficult to predict

the long-term future clearly; therefore, we leverage stochastic future prediction, which

samples one possible future. Our model learns video nature by predicting the possible

future, utilized for object detection.

In this way, this research effectively exploits space and time to learn to enhance

features for video object detection and improve accuracy while maintaining real-time

performance. Following this research direction, the main contributions in the dissertation

are as follows:

• We propose a new efficient frame-level feature map aggregation method named

Temporal Feature Enhancement Network (TFEN) [61] for real-time online video

object detection. The basic idea is to aggregate multiple past features in the ex-

ternal memory by computing their weights adaptively in a one-shot manner from

recurrent units.

• We propose a new element-level feature map aggregation method, Video-aware

Sparse Transformer with Attention-guided Memory (VSTAM), aggregating a more

8

extended period for real-time video object detection. The proposed method refines

the feature map at the element-level by considering local and global space and

temporal short-long range information. We sparsely aggregate features in time

and space within real-time by proposing Video Sparse Transformer (VST). We

also propose an adaptive external memory update strategy to hold frames vital for

feature aggregation.

• We propose two new prediction-based feature map enhancement methods, Real-

time Object Detector by Feature Map Forecast (ROD-FMF) [62] and Video Rep-

resentation learning through Prediction (VRP) [63] for strict memory limitation.

The prediction-based approach stands on recurrent neural network detectors with

less memory consumption than methods with external memory. Predicting the fu-

ture, i.e., model forecasts how the next or the more forward frames go on, enhances

feature maps. To utilize the future prediction, we examined two perspectives, the

next frame prediction by ROD-FMF and the next several frames prediction by

VRP. In ROD-FMF, we propose extending the existing recurrent detector to pre-

dict the feature map of the next frame while learning the detection. Next, in VRP,

we propose a framework that integrates probabilistic future prediction and video

object detection. Since predicting the successive future frames, ten frames for-

ward is difficult due to future uncertainty; we introduce probabilistic sampling to

predict a possible future. Moreover, we propose a two-step training method to uti-

lize future predictions stably: pretraining a model only the future prediction and

finetuning it to the detection.

9

1.5 Organization of the Dissertation

The remaining of this dissertation is organized as follows:

• Chapter 2 provides an overview of still image and video object detection methods

and datasets. In addition, we provide a survey of recent video topics that are

closely relevant to this dissertation.

• Chapter 3 presents feature aggregation method at frame-level, Temporal Feature

Enhancement Network (TFEN), an efficient algorithm that computes which past

frame to attention in external memory for aggregation.

• Chapter 4 presents feature aggregation method at element-level, Video-aware Sparse

Transformer with Attention-guided Memory (VSTAM), which sparsely aggre-

gates features in temporal short- and long-term and spatial local and global in-

formation to process in real-time.

• Chapter 5 presents two prediction-based feature enchantment approaches, which

learn enrichment through future prediction. We present Real-time Object Detector

by Feature Map Forecast (ROD-FMF) for the next frame prediction. Regarding the

next several frames prediction, we present Video Representation learning through

Prediction (VRP), which learns enhancement by generating stochastic frame pre-

diction.

• Chapter 6 concludes this dissertation by summarizing our contributions and dis-

cussing future works.

10

Chapter 2

Literature Review

The research on Video Object Detection (VOD) is based on object detection in still

images. Since this dissertation focuses on enhancing the feature maps of video object

detection, we briefly review still image object detection in Section 2.1. We then review

video object detection works deeply in Section 2.2. We also review related tasks to video

object detection, Multi-object Tracking (MOT) and Video Instance Segmentation (VIS)

in Section 2.3.

2.1 Object Detection in Images

Object detection in still images is the task of estimating the location and the category

of objects in a given image. In traditional object detection, the models were built as an

ensemble of hand-crafted feature extractors such as the scale-invariant feature transform

(SIFT) [116], and the histogram of oriented gradients (HOG) [39]. After the deep learn-

ing method, AlexNet [96], won the ImageNet Image Classification Competition champi-

onship by an overwhelming margin compared to traditional methods, deep convolutional

neural networks (CNNs) have been extensively studied [81, 141, 172]. Subsequently,

CNNs are also applied to the field of object detection and outperformed traditional ap-

proaches [39, 55]. Object detection in still images with deep learning algorithms has

made remarkable progress in the past few years [70, 71, 112, 128, 129, 130, 131].

Object detection based on deep learning can be divided into two main groups. The

first is called two-stage detectors [15, 80, 131] as shown in Figure 2.1, which estimate

the candidate regions of objects from the features obtained by CNNs and then perform

11

Figure 2.1: Pipeline of a two-stage detector (figure is adapted from [131]). The two-stage

detector obtains a feature map from the image and then estimates the candidate regions

of the object from the feature map using the Region Proposal Network. It then extracts

the corresponding features in the area and performs a classification task to detect the

object. Due to several processes, the runtime is generally slow; however, the accuracy

tends to be high.

Figure 2.2: Pipeline of a one-stage detector (figure is adapted from [112]). Unlike the

two-step detectors, the one-step detector performs classification and localization directly

from the feature map obtained from the image. Because it has fewer processes than a

two-stage model, it can run faster but tends to be lower accuracy.

12

classification and localization on them. The second is called one-stage detectors, as

shown in Figure 2.2, which perform classification and localization directly from features.

In general, two-stage detectors tend to be more accurate because their classifier does not

need to consider unnecessary objects in advance thanks to the region proposals, but

they are slower in processing speed due to the multi-stages. On the other hand, the

one-stage detectors are faster but tend to be less accurate. Based on these approaches,

research recently proposes improvements on existing components such as loss for class

imbalance problems [106], architecture for utilization of detailed information [105], and

hand-crafted parameter-free [18, 51, 97] towards high-performance detectors. We build

our feature map refinement frameworks on top of [112, 131] and extend them to the

video object detection task.

Especially in surveillance video, some methods have been proposed to improve

the detection performance without considering temporal information. Evolving Boxes

(EB) [156] improves its region proposal network with a cascade strategy, refining object

boxes. GP-FRCNN [140], on the other hand, proposes geometric proposals for Faster

R-CNN [131], whereby they re-rank the geometric object proposals with an approximate

geometric estimate of the scene to remove false positives. Foreground Gating and Back-

ground Refining Network (FG-BR Net) [59] incorporates the background subtraction

method to ignore a non-interested region efficiently for false-positive elimination. They

improve their accuracy performance; however, none of them can operate in real-time due

to the high cost of computations.

2.2 Object Detection in Videos

Since a video is a collection of consecutive images, a still image object detector [112,

131] can be applied to each video frame to detect objects in the video. However, as

discussed in Section 1.1, due to the apparent changes with time, which produces issues

such as detection confidence score fluctuation and false-negative detections, the still

image detectors cannot detect objects well in videos. To cope with the challenges in

video domains, research can be categorized into two primary approaches. The first is to

improve the detection process and post-processing, called box-level, based on bounding

boxes. The second method is called feature-level because it exploits feature maps. We

will first review the box-level method and then the feature-level method.

13

2.2.1 Box-level

In order to address the challenges of video object detection issues, methods of incorpo-

rating temporal information into the detection results or the detection stage of the still

object detectors were initially proposed. For example, SeqNMS [77] links bounding

boxes across frames with IoU threshold and re-rank the linked bounding boxes to deal

with detection confidence score fluctuations. TCN [91] introduces tubelet modules into

the detection stage and applies a temporal convolutional network to embed temporal

information to improve the detection across frames. T-CNN [90] applies image object

detectors to generate results and then uses optical flow to associate the detected results.

D&T [54] proposes tracking loss to improve detection accuracy by combining tracking

approaches. However, these methods are unsuccessful since they assumed that detection

was possible in most frames. It is challenging to detect objects with insufficient fea-

tures for detection from the degraded appearance caused by the apparent changes with

time. Besides, most of the works [77, 90, 91] can not be trained end-to-end, and their

performances are still sub-optimal.

2.2.2 Feature-level

Improving feature maps by propagating temporal information has recently become a

mainstream approach in video object detection to cope with degraded appearance due to

the changes in appearance over time. It can be broadly classified into offline algorithms

that pursue accuracy and online ones that consider live stream videos. Since accuracy

is one of the essential factors in the research field, many studies have been conducted

as offline methods. Thus, this section first reviews offline algorithms and then reviews

online ones.

Offline Methods

The main focus of research in the offline algorithms for feature map refinement is how to

exploit temporal information, including future information, to improve accuracy. They

can be classified into three categories: local, global, and combination aggregation, ac-

cording to how they handle temporal information.

Local aggregation methods [9, 44, 68, 108, 158, 171, 191] usually focus on propa-

gating features from nearby frames, less than ten frames, on video sequences. In order

14

to refine the whole current frame feature map, FGFA [191] exploits optical flow in-

formation to have pixel-to-pixel correspondence among nearby frames. MANet [158]

further utilizes flow information to capture object motion. STSN [9], on the other hand,

uses deformable convolutions across time to align the features from adjacent frames.

STMN [171] computes the correlation between neighboring frames and introduces a

memory module to aggregate their features. They have shown the importance of feature

maps from nearby frames; however, they require additional network and training costs

for flow information. Thus, some research relies on only apparent features from the

feature extractors without flow information. FFAVOD [125] proposes aggregating the

apparent features of the surrounding frames by fusing channel-wisely. TF-Blender [36]

proposes a method to compute the interrelationships between neighboring frames and

enhance the entire feature map in all aggregated frames instead of improving only the

detection frame.

Recently, to aggregate features more robustly against object misalignment, the object-

level feature aggregation approach [44, 68, 75, 94] has been proposed to use only the can-

didate regions features of objects rather than exploit the entire feature map. RDN [44]

focuses on the object relations to align object features. OFAVOD [68] proposes pair-

wise feature aggregation, which aligns object features based on context. EBFA [75]

proposes a temporal and spatial alignment module to refine object-wise features. TM-

VOD [94] offers temporally-aware region proposals to extract object-wise features ro-

bustly for object-wise refinement.

On the contrary, global aggregation methods [76, 167] rely on long-range seman-

tic information in a video or among videos. They can deal with degraded appearance

scenes that continue for multiple frames, such as motion blur. In such cases, since

aggregating information from neighboring frames does not provide practical temporal

information, propagation from the distant frames before and after the moments can be

used. SELSA [167] proposed sequence-level semantics object-level aggregation, which

utilizes spectral clustering to capture the object relations in the whole video. Further-

more, HVR-Net [76] proposes an Inter-Video Proposal Relation module to consider the

relation of object-level features among different videos, in addition to the intra-proposal

association in a single video. However, since they treat all features in the temporal in-

formation equally, locally essential features may be ignored.

15

Unlike the methods that exploit features locally or globally, the combination aggre-

gation method leverages both local and global features but deals with them separately.

MEGA [29] introduces a memory module to keep both local and global object-level fea-

tures separately to enhance the visual representation of the current frame. The offline

aggregation methods achieve high detection accuracy; however, they use computation-

ally expensive feature aggregation and future information, which impede live streaming

detection.

Online Methods

Although online methods are similar to the offline ones in terms of feature aggregation

except for future information, they focus on efficiently utilizing temporal information

and are classified into three categories. The first methods aim for high accuracy in on-

line fashion without focusing on speed. The second category is the methods that aim

to improve speed performance by utilizing the redundancy of videos; however, they

sacrifice detection accuracy. The third is methods to improve detection accuracy while

keeping real-time speed performance. Our research belongs to the third category.

The first group of methods aims at high accuracy under the limitation of not utilizing

future information. THP [189] exploits optical flow to improve accuracy by propagat-

ing information from keyframes. In addition, they propose to determine non-keyframes

adaptively and to update the flow information partially. OGEMN [42] proposes to ag-

gregate features by using external memory to keep long-term information. It introduces

the updating rule in the external memory to keep the feature maps that maximize the

detected objects’ confidence. MAMBA [143], which is an extension of OGEMN, pro-

poses a simple random update rule based on video redundancy. Some works [74, 88]

point out applying optical flow directly onto image-based features leads to a mismatch

in high-level features. Therefore, LSTS [88] proposes learnable spatiotemporal sampling

to learn semantic-level correspondences among adjacent frame features. PSLA [74] of-

fers a progressive sparse local attention module to propagate local information from the

previous frames based on appearance features. Since their improving approaches require

high computational costs, they cannot run on commercial graphics boards in real-time.

The second group of methods aims to take advantage of the redundancy of video

to increase speed performance. DFF [192] utilizes a high-cost feature extractor for

16

keyframes and a lightweight optical flow for non-keyframes to propagate temporal infor-

mation and achieve high speed. DorT [117] proposes a network that decides whether to

use detection or tracking to speed up. Adascale [31] proposes a scale regressor network

that estimates the subsequent frame resolution adaptively to improve the tradeoff be-

tween accuracy and speed. Flow-guided [190] proposes to stabilize the flow information

between frames by passing through a recurrent neural network. Memory-guided [111]

proposes to exploit high-cost and low-cost feature extractors for keyframes and non-key

frames, respectively, to boost speed performance. LWDN [87] propagates high-level fea-

tures from keyframes by focusing on the weighted local parts. Attention-guided [179]

proposes an adaptive key and non-keyframe prediction approach for fast detection with

subtle decline and offers a feature propagation module by attention mechanism from a

keyframe. Although these methods can speed up processing, they are inferior in accu-

racy.

In recent years, attention has been focused on improving the trade-off between ac-

curacy and speed for real-world applications such as robotics [26, 27, 110]. As a result,

methods in the third group have been proposed to improve accuracy while running in

real-time. LSTM-SSD [110] offers bottleneck architecture of the convolutional recur-

rent neural network to propagate temporal information. TSSD [26] propagate feature

maps across frames with convolutional recurrent neural networks using spatial attention.

TSSD-OTA [27] extends TSSD with tracking networks for better accuracy. Heatmap-

guided [175] propagates the previous reliable detection in the form of the heatmap to

boost the results of the subsequent frame. LMP [193] proposes separate temporal propa-

gation modules to handle temporal information of different times separately. They tried

to employ temporal information to stabilize detection; however, most concentrate on

propagating temporal information from a particular frame (the last frame or a nearby

keyframe) to the current one. Thus, they lack the consideration of utilizing more tempo-

ral information effectively.

Unlike the existing methods, our approaches employ multiple frames to refine fea-

tures. First, in the feature map aggregation approach, we aggregate multiple past feature

maps directly to refine the current frame feature map by introducing external memory to

keep them. However, the existing methods aggregating feature maps proposed in offline

methods are computationally expensive, so we propose two cost-effective aggregation

17

methods towards real-time performance. First, in frame-level aggregation, instead of

weighting each frame by similarity, we exploit recurrent neural networks to weigh past

frames in a one-shot manner by an attention mechanism. Very recently, a method of

aggregating past features directly for real-time online video object detection has been

proposed [86]. Still, the processing speed is not fast because it conducts the weighting

for each frame. Next, in element-level aggregation, we propose to refine the feature map

details by aggregating features element-wisely to deal with the object misalignment in

multiple frames. However, it takes a long time to compute aggregating features at all el-

ements from past frames. For this reason, we propose sparse element-wise aggregation

to achieve real-time speed, considering the video redundancy. The details of frame-level

and element-level aggregation are described in Chapter 3 and Chapter 4, respectively.

Secondly, we leverage the next future frame or multiple successive future ones during

the training phase to enhance feature maps through future predictions. While the existing

recurrent neural network methods [26, 110, 111] focus on propagating information from

the past to the present, we introduce predictions to learn about the knowledge of objects,

such as motion. The details are explained in Chapter 5.

2.3 Related Topics to Video Object Detection

Multi-object tracking and video instance segmentation are related tasks in video object

detection. In this section, we review them briefly.

2.3.1 Multi Object Tracking

Multi-object tracking (MOT) is a task to track multiple objects in a given video, and

the goal is to assign the same ID to each tracked object. It is a similar task in terms of

continuously detecting objects in the video, but its purpose is different from video object

detection. In the pre-deep learning era, trackers often exploits flow fields [85, 132],

Kalman filters [10, 24] or Intersection-over-Union (IoU) [10, 11] for association. The

proposed methods are simple and fast but fail very easily in challenging scenarios.

With the success of deep learning, many models have recently leveraged appearance

features to associate objects [33]. For instance, DeepSORT [165] takes the provided

detections by still-image detectors and associates them using an offline trained deep re-

identification (Reid) model and a Kalman filter model. SiameseCNN [98] exploits a

18

Siamese network to learn the similarity between a pair of detections directly. Moreover,

Deep Affinity Network [144] employs a Siamese network that takes two video frames

as input, extracts multi-scale appearance embeddings, and outputs the similarity scores

between all pairs of detections.

More recently, the success of multi-task learning in deep neural networks [20, 27,

147] has led to models that jointly learn detection and tracking tasks. The tracker [32]

adapts the Faster RCNN [131] to estimate the bounding box location in a new frame

from the preceding frame. CenterTrack [187] and D&T [54] extend the still-image de-

tectors [37, 51] to compute correlation maps between high-level feature maps of consec-

utive frames to estimate inter-frame offsets between bounding boxes. To directly opti-

mize the MOT model, Xu et al. [174] presents an end-to-end MOT training framework,

using a differentiable approximation of MOT metrics in the loss functions. To further

integrate the still-image detector and tracking methods, Reid branchs [21, 162, 184] are

proposed to extract object embeddings for the association.

2.3.2 Video Instance Segmentation

Recently, a new task, video instance segmentation (VIS) [154, 176], has been pro-

posed, which is a combination of object detection, instance segmentation, and object

tracking across frames. To solve this problem, MaskTrack R-CNN [176] extends Mask

R-CNN [80] with a pair-wise identity branch to solve the instance association. SipMask-

VIS [16] propose one-stage models for VIS, which is the similar pipeline [176]. MaskProp [8]

introduces a mask propagation branch on the multistage framework [22] that prop-

agates instance masks from one frame to another. In [102], a modified variational

auto-encoder was proposed to learn spatial interdependence and motion continuity in

the video. STEm-Seg [4] and TrackR-CNN [154] treats the video clip as 3D spatial-

temporal volume and segments objects in a bottomup fashion. VisTR [161] naturally

extends DETR [18] for VIS task in a query-based end-to-end fashion. CrossVIS [178]

proposes pair-wise global instance embeddings to tackle the association of instance seg-

mentation. They focus only on how to associate objects in a video and do not consider

the significance of the feature refinement.

This dissertation also examines the effect of temporal feature map enhancement on

the more complex task of video instance segmentation. Recently, CompFeat [58] in-

19

troduced features aggregation at frame-level and object-level with temporal and spatial

context information. TF-Blender [36] proposed feature adjustment to enrich the repre-

sentation of every neighboring feature map. Although CompFeat and TF-Blender im-

prove accuracy performance, they only consider feature aggregation from nearby frames.

20

2.4 Benchmark Datasets

In this section, we describe benchmark datasets for object detection in videos. Then, we

describe the dataset used for our experiments.

The early days of video object detection began with specific tasks such as person

counting [57] and person [48] and car detection [67] for automated driving. However,

they were limited by the small number of video scenes [49, 67], the small number of de-

tection targets [49], and the fact that only one frame, known as keyframe, was annotated

in every few frames [67].

Therefore, ImageNetVID [134] was proposed using videos collected from the Inter-

net, aiming at a general-purpose dataset for video object detection and has become the

de facto standard dataset nowadays. The dataset is split into a training set and a valida-

tion set, containing 3862 and 555 video snippets. The dataset consists of 30 classes of

categories, annotated on all frames captured at 25 or 30 fps. Those classes are composed

of subclasses of ImageNet DET [134], a dataset for still image object detection. Most

of the methods recently studied for video object detection have been validated on this

dataset.

The Youtube-BB [127] was proposed as a dataset that includes rich variations in

videos due to the relatively small size and diversity of datasets in ImageNetVID. YouTube-

BB is a large-scale dataset, which is human-annotated at one frame per second on videos

from YouTube. It contains a total of 380,000 videos with 23 object categories, which is

a subset of the COCO dataset [107]. While Youtube-BB is high diversity, it has not been

sufficiently validated by the methods due to the small number of classes and its errors

relative to a fully human-annotated dataset.

Table 2.1: Benchmark datasets for object detection and instance segmentation in videos.

“D” denotes the detection task, and “I” denotes the instance segmentation task.

Name Task Scene Classes Number of videos (train/ val/ test) Annotations Year

Caltech [49] D Driving 1 5/-/5 all-frame 2012

KITTI [67] D Driving 3 7,481/-/7,518 key-frame 2012

ImageNetVID [134] D Generic 30 3,862/ 555/ - all-frame 2015

UA-DETRAC [164] D Traffic 4 60/-/40 all-frame 2015

YouTube-BB [127] D Generic 23 304,000/38,000/38,000 key-frame 2017

EPIC-KITCHENS-55 [40] D Egocentric 290 272/106/54 key-frame 2018

UAVDT [50] D Drone 3 29/ -/ 21 all-frame 2018

VisDrone-VID [188] D Drone 10 56/ 7/ 16 all-frame 2019

YouTube-VIS [176] I Generic 40 2,238/302/343 key-frame 2019

KITTI MOTS [154] I Driving 2 12/9/- all-frame 2019

21

While research has been conducted on video object detection such as pedestrian

detection using in-vehicle cameras [49], UA-DETRAC [164] proposes video object de-

tection from fixed-point surveillance cameras for intelligent traffic systems. It offers

new challenges compared to general video object detection datasets from the Inter-

net [127, 134] since the size of an object is smaller and things are denser due to the

surveillance camera perspective. UA-DETRAC is a dataset containing various traffic

patterns and climatic conditions captured from 24 different locations at 25 fps with all

frames annotated and consists of 60 and 40 videos for training and testing, respectively.

Moreover, with the recent development of robotics and drone technology, new chal-

lenges have arisen in video object detection. From the drone’s point of view, the camera

has a smaller detection target and a wider angle of view than conventional video ob-

ject detection, resulting in a high density of detection targets. To tackle the challenges,

new datasets for drone viewpoints have been proposed in recent years. UAVDT [50]

is an early dataset that consists of 29 and 21 videos for training and testing, respec-

tively, in three categories. Recently, an extension of the UAVDT dataset, VisDrone-VID

dataset [188], has been proposed. It contains 79 sequences with ten object categories

such as cars, vans, and pedestrians, three non-overlapping subsets, 56 training video

clips, seven validation video clips, and 16 test video clips. The annotations are available

for all frames. These sequences have been shot in different cities under different weather

and lighting conditions.

EPIC-KITCHENS-55 [40] is a dataset proposed for video understanding from a first-

person perspective and consists of 432 videos captured at 60 fps by multiple participants

using a head-mounted camera in a kitchen. Several tasks are proposed for video under-

standing: action recognition, action anticipation, and video object detection. However,

in the revised version of EPIC-KITCHENS-100 [41], the video object detection task has

been deprecated due to the addition of other tasks such as Unsupervised Domain Adap-

tation for Action Recognition. We do not evaluate it on this dataset because there are

few methods to assess them on KITCHENS, and it is not sufficiently comparable.

In very recent years, a more complex video object detection task, video instance seg-

mentation (VIS), has been proposed to simultaneously perform instance segmentation,

tracking, and detection in videos. The proposed datasets are mainly for on-vehicle cam-

eras [154] and Internet videos [176], and they have attracted much attention recently.

22

Figure 2.3: Frame examples of ImageNet VID dataset [134].

YouTube-VIS-2019 [176] is the first dataset for video instance segmentation, which has

a 40-category label set. There are 2,238 training videos, 302 validation videos, and 343

test videos with precise annotation intervals of 5 keyframes. KITTI MOTS [154] has 12,

and 9 videos for training and validation, respectively, and all frames are annotated.

This dissertation evaluates the proposed methods on datasets with different charac-

teristics to check their effectiveness. First, we investigate the generic performance of

all methods using ImageNet VID, a de-facto standard for video object detection with

typical scenes. Then, in addition to ImageNet VID, we investigate UA-DETRAC or

VisDrone-VID to validate if they are effective for other challenges such as small objects

and more accurate localization. In addition, we test our feature map enhancement on

YouTube-VIS to see if it is effective for video instance segmentation, which requires

more precise feature map refinement due to the generation of masks instead of bounding

boxes. However, we utilize only the video object detection dataset for methods that can-

not be trained with keyframe annotations due to the training method or are challenging

to apply instance segmentation and tracking due to the structure of the model. Fig-

ure 2.3, 2.4, 2.5 and 2.6 show the reference images of ImageNet VID, UA-DETRAC,

VisDrone-VID and YouTube-VIS, respectively.

23

Figure 2.4: Frame examples of UA-DETRAC dataset [164].

Figure 2.5: Frame examples of VisDrone-VID2019 dataset [188].

24

Figure 2.6: Frame examples of YouTube-VIS2019 dataset [79].

25

2.5 Evaluation Metrics

The accuracy evaluation of video object detection [134, 164, 188] is conducted on a

frame-by-frame basis, using the same metrics as for still images. For object detection

in still images, the metric, mean Average Precision (mAP), is utilized, which provides a

single number of performances in terms of regression and classification accuracy. Preci-

sion is derived by Intersection over Union (IoU), the ratio of the area of overlap and area

of union between ground truth and predicted bounding box. A threshold is set to deter-

mine whether the detection is correct. If the IoU is more than a threshold, it is classified

as True Positive (TP), while the IoU below it is classified as False Positive (FP). When

the model fails, the object present in the ground truth is detected as False Negative (FN).

Precision measures the percentage of correct predictions, while recall measures accurate

predictions with respect to ground truth. Precision and recall is defined as follows:

precision =
TP

TP + FP
(2.1)

recall =
TP

TP + FN
(2.2)

According to the above equations, average precision is computed for each category

separately. The mean of average precision of all classes, called mean average precision

(mAP), is used to compare the performance between detectors, which acts as a single

metric for final evaluation.

For the ImageNet VID dataset, a threshold of 0.5 is used for the IoU. The UA-

DETRAC dataset uses an IoU threshold of 0.7 for more accurate localization. We remark

that although UA-DETRAC has four categories, the evaluation stage deals with them as

one class; therefore, single category accuracy (AP) is used. The VisDrone-VID dataset

employs the average of the mAPs measured in increments of 0.05 from 0.5 to 0.95 for

the IoU threshold proposed in the COCO, which is called AP.

26

Chapter 3

Frame-level Feature Aggregation

3.1 Introduction

Video object detectors [42, 54, 189, 191, 192] have been actively studied to detect objects

stably against appearance changes with time by utilizing temporal consistency over a

video. Some methods [89, 191] have been proposed to stabilize detection by utilizing

not only past and present frames but also future ones. However, in the case of live

streaming videos, future information cannot be utilized. Besides, improving the still-

image detectors with geometrical constraints [140] or the cascade strategy [156] has been

proposed for frame-by-frame object detection. Such approaches improve the accuracy

while they are limited to running in real-time. To deal with real-time and live-stream

video, some methods have been proposed using recurrent neural network [26, 110] and

flow information [189]. They tried to improve accuracy in real-time by utilizing temporal

information from the last or a specific nearby keyframe in the past. However, the limited

temporal information has not achieved sufficient accuracy when real applications are

considered.

To achieve accurate real-time object detection in live-stream videos, we aim to gen-

erate an enriched feature map by aggregating coarse feature maps in previous multiple

frames, extracted using a lightweight feature extractor, using an attention mechanism ef-

fectively. To this end, we propose an encoder-decoder-based network, Temporal Feature

Enhancement Network (TFEN), that utilizes (i) spatial information from coarse spatial

features and (ii) temporal information available from the live stream of video data. The

encoder consists of recurrent convolutional units dealing with both spatial and temporal

27

Figure 3.1: Examples of the detection results by TFEN on the UA-DETRAC. A bound-

ing box is plotted if its confidence score is larger than 0.4.

features. The decoder has the external memory to store feature maps generated to uti-

lize temporal information and exports a densely aggregated feature map using attention

weights in a one-shot manner to compute in real-time. In this way, TFEN enriches coarse

features with spatial and temporal information so that the trade-off between accuracy and

speed is considerably enhanced. We evaluate TFEN on the UA-DETRAC dataset [164]

and the ImageNet VID dataset [134] using MobileNetV2 [136] as the feature extrac-

tor and Cascade R-CNN as the object detector. Experimental results demonstrate that

TFEN performs in real-time while keeping comparable accuracy with state-of-the-art.

Figure 3.1 and Figure 3.10 show some detection results by TFEN on the UA-DETRAC

and the Imagenet VID. We see that TFEN successfully detects most objects in different

scenes, especially even when heavy and partial occlusions occur. Additionally, unlike

other methods [191, 192] that utilize optical flow to warp feature maps across neigh-

boring frames, TFEN entirely relies on only appearance information from image feature

extractors. The architecture of TFEN is thus simple to design. Moreover, it enables us

to optimize its loss function efficiently because we do not suffer from any disturbance

caused by differences between appearance and optical flow features.

28

Encoder

ConvGRU state

+

Write

Temporal Attention

Decoder
+

External Memory

Read

Write

Encoder
Feature

Extractor

!!"#
"!!"# #!!"#

!!
"!!

#!!

!"!"#
!"!"$

!"!"%
!"!"&

C

W

H

!C

W

H

C

W

H

Predictions

Predictions

C

W

H

!C

W

H

C

W

H

Temporal Feature Enhancement Network

Skip Connection

Skip Connection

Temporal Attention

Decoder

Read

External Memory

!"!
!"!"#

!"!"$
!"!"%

Feature

Extractor
Object

Detector

Object

Detector

Temporal Feature Enhancement Network

Figure 3.2: Architecture of our proposed TFEN.

3.2 Proposed Method

3.2.1 Architecture

Figure 3.2 shows the overall architecture of our proposed TFEN at previous time t−1 and

current time t where TFEN is connected to the feature extractor and the object detector.

The skip connection is employed from the feature extractor to the object detector to

retain information from the feature extractor. We denote by Ft the feature map extracted

from the feature extractor at time t, which is fed to TFEN. As the lightweight feature

extractor, we employ MobileNetV2 because its computational cost is low.

Our proposed TFEN receives the extracted feature map Ft and enriches them to pass

to the object detector (see the rectangle area in pink in Figure 3.2). It consists of the

spatiotemporal encoder and the temporal attention decoder having the external memory.

For the frame at time t, the spatiotemporal encoder creates temporally-aware feature

map F̃t using recurrent convolutional neural networks similarly to [110]. It exploits the

spatial attention module BAM [122] and ConvGRU [6]. BAM refines the feature map Ft

by inferring simple spatial and channel attention, while ConvGRU uses spatiotemporal

information for temporally-aware feature maps.

The temporal attention decoder, on the other hand, utilizes both the current time

feature maps Ft and the external memory which stores the temporally-aware features

generated in the past m frames: {F̃i}t−m+1≤i≤t := {F̃t, F̃t−1, . . . F̃t−m+1}. Then it

29

!!

C

W

H

!C

"!!

Encoder

ConvGRU

ConvGRU state

ReLU

+ Sigmoid

+×

W

H

1x1 conv

GAP
3x3 conv

FC FC

1x1 conv

Channel Attention

Spatial Attention

Attention Map

Conv1x1

Figure 3.3: Architecture of the spatiotemporal encoder.

outputs a densely aggregated feature map according to the attention coefficient calcu-

lated in the decoder. In preliminary experiments, we found that the encoder and decoder

were challenging to train the module stable. We adopt a residual learning scheme [81] to

facilitate the gradient flow. The aggregated feature map (called enhanced feature map)

is fed to the object detector. We detail the encoder and the decoder in the following

subsections.

3.2.2 Spatiotemporal Encoder

Our encoder is designed for extracting spatiotemporal information from the feature map

Ft coming from the feature extractor. As shown in Figure 3.3, it consists of BAM [122]

and ConvGRU [6]. BAM is a simple and effective attention module, which infers an

attention map along two separate pathways: channel and spatial. ConvGRU is recurrent

convolutional units that are able to deal with both spatial and temporal features.

First, for given the input feature map Ft ∈ R
C×H×W at the time t, BAM infers spa-

tial attention maps M(Ft) ∈ R
C×H×W where C,H,W denote the number of channels,

the horizontal and vertical sizes of the feature map, respectively. The refined feature map

Ft
′ is computed as

Ft
′ = Ft + Ft ⊗M(Ft), (3.1)

where ⊗ denotes the element-wise multiplication. We introduce the compressibility

value p to reduce the channels of F ′
t by applying the 1× 1 convolution operation to have

F ′′
t ∈ R

pC×H×W . We then feed F ′′
t into ConvGRU to store temporal information with

hidden state. See [6] for details on ConvGRU. The output of ConvGRU is fed into the

Rectified Linear Unit (ReLU) to output the temporally-aware feature map F̃t which is

saved in the external memory.

30

3.2.3 Temporal Attention Decoder

!!

External Memory

!"! !"!"# !"!"$!"!"%

concat

"!!

Conv

3x3-s1, 2* #C,

ReLU

Conv

3x3-s1, $,

ReLU

GAP SoftMax

Tensor-wise

Product

Element-wise

Sum

ConvGRU,

ReLU

"!!

Conv

1x1-s1

Conv

1x1-s1

Figure 3.4: Architecture of the temporal attention decoder.

The temporal attention decoder is the most important, and its architecture is shown in

Figure 3.4. Our temporal attention operation is similar to dense feature aggregation [7].

At the time t, the decoder performs dense feature map aggregation by summing all the

temporally-aware feature maps {F̃i}t−m+1≤i≤t based on soft attention weights†. The

weights determine which time of temporally aware feature maps should be focused.

Soft attention weights for time are calculated through the tensor computed from F̃t

and current time feature map Ft. The 1 × 1 convolution is first applied to Ft to adjust

its size, and then its output is concatenated with F̃t in the channel direction. Transform-

ing operation with the stacked convolution layers and ReLU is applied, and then global

average pooling (GAP) [104] and the softmax function are applied to have soft attention

weights for time. The output channel of the first convolution layer and the second one

depicted in Figure 3.4 are pC and m, respectively. The computed soft attention weights

are used for tensor-wise products with all F̃i in {F̃i}t−m+1≤i≤t stored in the external

memory. Then, the element-wise summation of tensors and F̃t are fed to ConvGRU

followed by ReLU. The hidden state of ConvGRU is initialized by F̃t. The 1 × 1 con-

volution operation is next applied to adjust the channels of the feature map to export the

enhanced feature map F̂t, which is forwarded to the object detector.

3.2.4 External Memory

Our external memory consists of a data buffer and a set of Write and Read operations to

access. The data buffer stores the past temporally-aware feature maps {F̃i}t−m+1≤i≤t

†Although the objects can be spatially displaced between frames, the impact of displaced objects can be

negligible in short-term aggregation. Indeed, we used m = 4 in our experiments, meaning about 120 msec.

Moreover, the aggregated feature map is used as a state of ConvGRU and, thus, the effect of displaced

objects across frames on the feature map is indirect and insignificant.

31

where m is the number of frames to be stored.

The data structure inside the memory uses a first-in-first-out queue. Therefore, older

temporally-aware feature maps are pushed out over time as new ones are written to the

memory. With the Write operation, the latest temporally-aware feature map is en-queued

into the buffer after the oldest one is discarded. The Write operation allows the decoder

to access all the tensors.

3.2.5 Loss Function

Since all the modules described above are differentiable, TFEN can be trained in an end-

to-end manner. We follow the Cascade R-CNN loss proposed in [15] for multi-stage

classification and bounding box regression. This is because we employ the conventional

cascade R-CNN as the object detector in our experiments.

At each stage, the detector head predicts the classification score and bounding box

regression offset for all sampled RoIs. The overall loss function takes the form of multi-

task learning:

L =
S
∑

s=1

(Ls
loc + Ls

cls), (3.2)

where Ls
loc and Ls

cls are the losses of the bounding box predictions and classification

prediction at stage s, and S is the total number of multi-stages. We follow [15] and set

S = 3.

3.3 Experiments

3.3.1 Benchmark Datasets and Metrics

We evaluated the proposed model on two datasets. One is the ImageNet VID dataset [134]

for natural scenes, and the other is the UA-DETRAC dataset [164] for surveillance. The

ImageNet VID dataset [134] provides various challenges for general purposes such as

motion blur and occlusion. The UA-DETRAC dataset [164] was published as a large-

scale benchmark for vehicle detection in video. On the other hand, it offers challenges

such as smaller object sizes and higher resolution frames. These datasets are annotated

for all frames and are suitable for our method. (see Section 2.4 for more details about

datasets.)

32

The evaluation metric for the UA-DETRAC dataset follows the average precision

(AP) score proposed in the PASCAL VOC challenge [53] and uses the IoU threshold

of 0.7. Note that while the PASCAL VOC challenge uses the IoU threshold of 0.5,

the UA-DETRAC dataset requires object detection at a more precise location. For the

ImageNet VID dataset’s evaluation, the detection accuracy is measured by the mean

average precision (mAP) at the IoU threshold of 0.5. (see Section 2.5 for more details

about mAP.)

3.3.2 Implementation Details

We employed MobileNetV2 [136] as the feature extractor and cascade R-CNN [15] as

the object detector. We re-implemented the cascade R-CNN network with the pre-trained

MobileNetV2 in PyTorch [123] and regarded it as our baseline model.

In order to train TFEN, we use a multistep training strategy. Namely, we first fine-

tune our baseline model to the dataset domain as a static image detector. For data aug-

mentation, a random horizontal flip was adopted during training. In the next step, we

initialize the weights of the feature extractor and the object detector with the weights

of the fine-tuned baseline model while we randomly initialize the weights of the feature

enhancement network. We then train all the weights together in an end-to-end manner.

In the first step, we fine-tuned our baseline model on all the 60 videos in UA-

DETRAC training set for the UA-DETRAC dataset. For ImageNet VID dataset, Im-

ageNet DET dataset [134] was employed as training assistance. The 30 categories in

VID dataset are a subset of the 200 categories in the DET dataset. Therefore, following

the practicals [54, 66], we trained the model with VID and DET (only using the data

from the 30 VID classes). We trained it in 36 epochs using asynchronous gradient de-

scent with 0.9 momentum, 0.0005 weight decay, in a batch size of 4 images on 2 GPUs

for both datasets. The initial learning rate was 0.005 and 0.01 on UA-DETRAC dataset

and ImageNet VID dataset, respectively. And we decreased the rate by 0.1 after 18 and

30 epochs.

In the second step, we fine-tuned the model injected TFEN in a temporal manner.

The initial learning rate was set to 0.001 for both datasets, and we decreased it in the

same way as the baseline model. We adapted the random horizontal flip for the UA-

DETRAC dataset for the data augmentation. Following the common data augmentation

33

(a) UA-DETRAC test (b) ImageNet VID val

Figure 3.5: Accuracy v.s. FPS under different number m of frames to be stored in the

external memory.

Figure 3.6: Soft attention weights used in the temporal decoder.

in the ImageNet VID dataset, we adapted random sample crop, random horizontal flip,

and photometric distortions as in [111, 112] for the ImageNet VID dataset.

We used a PC with Intel 3.9GHz Xeon W-2123 CPU, NVIDIA RTX 2080 Ti GPU

with 11 GB Memory, and 64 GB of RAM. The experiments are executed with cuDNN

v7.6 and CUDA 10.1. Our proposed TFEN (m = 4) runs in 29.11 and 29.02 fps on

UA-DETRAC and ImageNet VID datasets, respectively, and consumes about 1.9 GiB of

GPU memory for all components, including external memory.

3.3.3 Model Design Analysis

We first experimentally investigated the optimal channel compressibility and the number

of frames stored in the external memory in terms of the trade-off between speed and

34

Table 3.1: AP v.s. FPS under different compressibility p of the output channel dimension

on UA-DETRAC test.

p 1.0 0.7 0.5 0.3 0.1

AP[%] 84.12 82.77 82.40 76.53 73.42

FPS 40.92 42.53 43.96 46.13 49.32

Table 3.2: mAP v.s. FPS under different compressibility p of the output channel dimen-

sion on ImageNet VID val.

p 1.0 0.7 0.5 0.3 0.1

mAP[%] 69.4 69.1 68.9 67.4 65.1

FPS 41.43 43.02 44.96 46.65 49.87

accuracy. This allows us to fix the parameters not determined through training TFEN.

Bottleneck Dimension

We analyzed the impacts of the ConvGRU output channel dimension on accuracy and

speed. In this experiment, we changed the compressibility p, which defines the number

of output channels of the feature map in the spatiotemporal encoder, from 1.0 to 0.1. We

remark that we fixed the number m of frames in the external memory to four and used

FP16 due to our GPU memory constraint. We also remark that the processing speed

of models using FP16 tends to be faster than FP32 since the computation can be done

efficiently using Tensor Core units on GPUs.

Tables 3.1 and 3.2 show the impacts on accuracy and speed under different p on the

UA-DETRAC and ImageNet VID datasets. We observe that the accuracy is decreased

by compressing the feature map while the processing time and the model capacity are

reduced. We also see that the accuracy remains almost constant up to p = 0.5, then

drops. This is applied to both datasets. Accordingly, we confirm that when aggregating

feature maps from the past, it is unnecessary to use the actual feature maps obtained

from the frames and that it is possible to reduce the weight to some extent. From this

experiment, we may conclude that the compressibility p controls the trade-off between

detection speed and accuracy of TFEN and that p = 0.5 is the best choice.

Number of Frames in Attention Decoder

We evaluated the number m of frames to be stored in the external memory. Since four

frames are maximum using FP32 to accommodate in our GPU memories, we used FP16

35

in this experiment so that we can accommodate up to 8 frames. We changed m from 2

to 8 and computed the accuracy (AP or mAP) and fps. We also computed soft attention

weights to see temporally-aware feature maps of which frames are really focused on to

derive the enhanced feature map.

Figure 3.5 illustrates accuracy and fps under different m on the UA-DETRAC and

ImageNet VID datasets, respectively. Figure 3.6 shows the average of soft attention

weights when m = 8. We note that the horizontal axis shows the offset from the current

frame, meaning that 0 indicates the current feature map, and 7 indicates the feature map

of the last frame in the external memory.

We see that from Figure 3.5 the accuracy tends to be improved by increasing the

number of frames and is saturated with m = 6 on both the datasets. On the other hand,

the run-time speed decreases as m increases. We may conclude that m = 4, 5 or 6 is a

good compromise as the trade-off between accuracy and speed.

Figure 3.6 shows that the weight for the current frame is most significant, which

is represented as 0 in the horizontal axis, and weights for the last 3 and 4 frames are

dominant. It also shows that even if we store eight frames in the external memory, the

frames that are really used in the computation are the last 3 or 4 frames.

Figure 3.7 visualizes some detection results by TFEN (m = 2, 4, 6, 8) where lots of

blur is present due to object or camera motion. We can see that the detection’s confidence

and location become more stable by aggregating over longer periods (m = 8 is better

than m = 4, 6, for example). However, when comparing the improvement between

m = 2 and m = 4 with that between m = 4 and m = 8, we see that the improvement

between m = 4 and m = 8 is smaller and is not significant.

The above observation indicates that storing more than five frames in the external

memory results in just taking run-time while it does not contribute to improving accuracy

much. Accordingly, we can conclude that in practice, m = 4 is the best choice in terms

of accuracy and speed.

3.3.4 Comparison with State-of-the-Art

We set m = 4 and p = 0.5 according to the above experimental results and compared

the average precision (AP) and the mean average precision (mAP) of TFEN with the

state-of-the-art methods.

36

Figure 3.7: Example detection results of TFEN (m = 2, 4, 6, 8) for frames with lots of

blur on ImageNet VID val. A bounding box is plotted if its confidence score is larger

than 0.4.

Table 3.3: Performance comparison with state-of-the-art end-to-end models for live-

streaming videos on ImageNet VID val.

Method
Components Performances

Backbone Feature Aggregation? Attention? RNN? mAP FPS (Device)

D&T [54] ResNet-101 [81] 78.7 8 (Titan X)

LSTM-SSD [110] MobileNetV1 [84] ! 54.4 15 (Pixel 2)

Memory-guided [111] MobileNetV2 [136] ! 61.4 24 (Pixel 3)

Flow-guided [190] MobileNetV1 [84] ! 61.2 13 (Mate 8)

LMP [193] MobileNetV2 [136] ! ! 64.2 29 (GTX 1060)

TSSD [26] VGG-16 [141] ! ! 64.8 27 (Titan X)

TSSD(-OTA) [27] VGG-16 [141] ! ! 65.4 21 (Titan X)

VOD-MT [86] VGG-16 [141] ! ! ! 71.0 18 (−)

TFEN (m = 4) MobileNetV2 [136] ! ! ! 68.9 29 (2080 Ti)

TFEN (m = 6) MobileNetV2 [136] ! ! ! 69.2 28 (2080 Ti)

TFEN (m = 4) w/ SSD VGG-16 [141] ! ! ! 70.6 25 (2080 Ti)

Comparison on ImageNet VID

Table 3.3 shows the performance comparison with other object detection methods for

live-streaming videos on ImageNet VID. We present models of TFEN (m = 4, 6) trained

using FP32. TFEN(m = 6) was trained with half of the batch size for memory alloca-

tion‡. In terms of accuracy, D&T, which employs the tracking operation, surpasses all

methods; however, it cannot run in real-time because of the high cost of simultaneous

detection and tracking and the heavy backbone. Some methods using ResNet-101 [81]

‡We confirm that when using FP32, the performances in accuracy and run-time speed at m = 4 and

m = 6 are almost the same as the case where we use FP16.

37

or VGG [141] as the backbone achieve higher mAP, but using such heavy backbones is

not suitable in the context of real-time object detection in live-streaming video.

We see that methods exploiting MobileNetV1 [84] or MobileNetV2 [136] as the

backbone realize real-time object detection thanks to the lightness of the backbone;

however, they tend to achieve lower mAP compared to methods having richer feature

extractors. In contrast, TFEN achieves the highest accuracy among the methods using

MobileNet (either V1 or V2), beating the second place by about four points [193]. This

is because TFEN exploits feature aggregation, attention mechanism, and recurrent neu-

ral networks altogether, and, furthermore, their combination brings the improvement of

accuracy.

We see that although VOD-MT [86] outperforms TFEN, its backbone is heavier than

that of TFEN. As a result, VOD-MT runs at only 18 fps while TFEN does at 29 fps. To

fairly compare TFEN with VOD-MT, we used VGG-16 [141] as the backbone and SDD

as the detector for TFEN, resulting in the difference from VOD-MT is the only feature

aggregation module (the last line in Table 3.3). We see that TFEN processes more than 7

fps faster than VOD-MT under the same backbone and detector while achieving compa-

rable accuracy. This faster processing time comes from the one-shot manner aggregation

of TFEN. We also see that a lightweight feature extractor, MobileNetV2, speeds up the

processing time even more. We confirm that TFEN is more suitable for applications

where run-time speed is essential.

Comparison on UA-DETRAC

Table 3.4 shows the performance comparison on UA-DETRAC. We trained and evalu-

ated TSSD [26] with the UA-DETRAC dataset from the official code. We re-implemented

VOD-MT by ourselves based on [86] (referred to as VOD-MT⋆) because the code is not

publicly available. We remark that most of the published works on UA-DETRAC bench-

marks are for still-image object detection. We also remark that CSP, RD2, ExtendNet,

IMIVD-TF, and MYOLO are not available as published papers up to now, and thus we

used their reported scores and regard them just as reference scores.

FFAVOD-SpotNet performs best among the methods, which is an offline algorithm

utilizing future information; however, it uses a heavy backbone (namely, Hourglass-

104 [97] and cannot run in real-time. Except for the offline method [125], Table 3.4

38

Table 3.4: Comparison of AP scores [%] on UA-DETRAC test under various envi-

ronmental conditions. Bold faces are the top performance on each subset. Methods in

the first block are for still images. The methods in the second block are for videos. The

bottom block lists unpublished methods and thus shows just the reference scores. (* is

tested by ourselves; ⋆ is our own implementation.)

Method Backbone Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU

DPM [55] − 25.70 34.42 30.29 17.62 24.78 30.91 25.55 31.77 0.17 −
ACF [47] − 46.35 54.27 51.52 38.07 58.30 35.29 37.09 66.58 0.67 −
R-CNN [71] − 48.95 59.31 54.06 39.47 59.73 39.32 39.06 67.52 0.10 Tesla K40

CompACT [14] − 53.23 64.84 58.70 43.16 63.23 46.37 44.21 71.16 0.22 Tesla K40

Faster R-CNN [131] VGG-16 [141] 58.45 82.75 63.05 44.25 62.34 66.29 45.16 69.85 11 Titan X

GP-FRCNN [140] VGG-M [141] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4 Tesla K40

EB [156] VGG-16 [141] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X

YOLOv3-SPP [92] Darknet-53 [130] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6-7 Titan Xp

MSVD SPP [93] Darknet-53 [130] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9-10 Titan Xp

FG–BR Net [59] ResNet-18 [81] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 Tesla M40

SpotNet [124] Hourglass-104 [97] 86.80 97.58 92.57 76.58 89.38 89.53 80.93 91.42 − GTX 1080 Ti

3D-DETNET [101] Darknet-Conv23 [101] 53.30 66.66 59.26 43.22 63.30 52.90 44.27 71.26 26 −
RN-VID [126] VGG-16 [141] 70.57 87.50 75.53 58.04 80.69 69.56 56.15 83.15 − −
FFAVOD-SpotNet [125] U-Net [125] 88.10 97.82 92.84 79.14 91.25 89.55 82.85 91.72 − −
LMP* [193] MobileNetV2 [136] 55.11 79.98 60.31 40.09 56.82 61.32 43.32 65.16 30 RTX 2080 Ti

TSSD* [26] VGG-16 [141] 57.16 81.06 62.07 43.14 57.59 63.87 44.98 67.73 32 RTX 2080 Ti

VOD-MT⋆ [86] VGG-16 [141] 67.22 82.81 74.36 55.29 71.43 66.79 64.16 70.82 14 RTX 2080 Ti

TFEN MobileNetV2 [136] 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29 RTX 2080 Ti

CSP [113] ResNet-50 [81] 77.67 93.65 83.67 64.54 89.66 86.81 61.39 80.63 4 Tesla K40

RD2 [119] − 85.35 95.80 89.84 76.64 89.67 86.59 78.17 90.49 − Tesla P40

ExtendNet [119] − 83.59 95.46 88.75 73.36 86.89 85.05 76.75 90.77 45 Titan X

IMIVD-TF [119] − 85.67 96.32 91.17 75.45 87.02 88.93 80.60 89.69 1 −
MYOLO [119] − 83.50 95.15 88.18 73.99 88.58 83.38 77.06 88.37 7 −

shows that TFEN ranks at the top among all methods except for SpotNet on the easy

and sunny subsets. We also see that TFEN outperforms VOD-MT⋆ by large margins in

accuracy and speed. The gap between TFEN and the other methods except for TSSD is

significant in speed but not in accuracy. TSSD also runs in real-time, but its performance

is far worse than TFEN.

Figure 3.8 shows precision-recall curve comparison. As with TFEN, Faster R-CNN

and EB have a common point as a two-stage detector; however, we see that TFEN draws

a better curve. We also observe that TFEN keeps high-level precision, even though the

recall becomes higher.

3.3.5 Qualitative Comparison

Figure 3.9 shows detection results obtained by TFEN, the baseline model (MobileNetV2

based Cascade R-CNN), and TSSD along a sequence of frames on the UA-DETRAC

dataset. It also shows ground truth. The video clip shows that both TFEN and TSSD

successfully detect the occluded car behind the bus while the baseline model fails. This

confirms the importance of using temporal information because the baseline model does

not use temporal information at all.

Figure 3.10 illustrates some visualized examples of the detection result by the base-

line, TSSD and TFEN. First, we can see that the baseline model and TSSD are not stable

39

Table 3.5: Performance comparison of ablation models

Method

Components UA-DETRAC Imagenet VID

Video
Temporal

Attention Decoder

Skip

Connection

Spatial

Attention

Temporally-aware

Feature map
Overall Easy Medium Hard mAP

(a) baseline model 73.39 90.92 79.28 60.33 64.1

(b) model w/o TAD ! ! ! ! 79.26 95.96 85.83 67.42 67.8

(c) model w/o SK ! ! ! ! 72.53 91.26 78.57 59.24 64.3

(d) model w/o SA ! ! ! ! 80.93 97.17 86.08 66.44 68.5

(e) model w/o TF ! ! ! ! 79.22 95.06 84.77 65.46 67.7

(f) (complete) TFEN ! ! ! ! ! 82.42 97.40 88.90 72.18 68.9

in detection, as it sometimes incorrectly labels the target with another class or fails to

detect the target even when the target is not moving much. On the other hand, the detec-

tion results by TFEN are more stable, and the confidence score tends to be higher. It is

thanks to incorporating feature aggregation in TFEN.

3.3.6 Detailed Analysis

We evaluated the effectiveness of each component in TFEN to show its necessity on

both datasets. We removed each component of TFEN one by one from the complete

model to have ablation models. They are the model w/o TAD (temporal attention de-

coder), model w/o SK (skip connection), model w/o SA (spatial attention), and model

w/o TF (temporally-aware feature maps). Note that the baseline model corresponds to

the model dropping TFEN. Performances of the ablation models and the baseline model

are illustrated in Table 3.5.

Temporal Attention Decoder

The model w/o TAD (Table 3.5 (b)) shows the ablation results of replacing the temporal

attention decoder with a standard decoder without an attention mechanism. This re-

placing decoder consists of a simple stacked ConvGRU and ReLU, which receives only

current-frame feature maps and has no external memories; the model w/o TAD thus can-

not exploit past feature maps except the hidden state. The performance of the model w/o

TAD drops 3.16 points of AP and 1.3 points of mAP for the overall subset and mAP,

respectively. This demonstrates the effectiveness of the temporal attention decoder.

Skip Connection

Table 3.5 (c) and (f) show that applying skip connection between the feature extractor

and the object detector brings consistent gains on all the sets. Moreover, Table 3.5 (a)

and (c) reveal that the model w/o SK has lower scores than the baseline model in overall,

40

(a) overall (b) easy

(c) medium (d) hard

(e) sunny (f) rainy

(g) night (h) cloudy

Figure 3.8: Comparison of precision-recall curves on each subset of UA-

DETRAC test. We show results by the default models provided by the dataset

providers [164] and results by SpotNet, TSSD, and VOD-MT.

41

Baseline ModelTFENGround Truth TSSD

Time

Figure 3.9: Example detection results of TFEN, Baseline Model, and TSSD on UA-

DETRAC dataset.

medium, and hard subsets on the UA-DETRAC dataset. On the ImageNet VID dataset,

the model w/o SK slightly outperforms the baseline model but achieves the lowest score

among all the ablation models. We conjecture that the skip connection helps gradient

flow through TFEN and is an essential part of TFEN.

Spatial Attention

Table 3.5 (d) and (f) show that the spatial attention mechanism used in the spatiotem-

poral encoder brings additional improvements 1.49%, 0.23%, 2.82%, 5.74% in AP on

overall, easy, medium, hard subsets, respectively. We also see 0.4 point improvements

on ImageNet VID. This suggests that the spatial attention mechanism is useful for all

the subsets, but especially for the hard subset. We confirm that the hard subset tends to

contain dense vehicles or small vehicles. Therefore, we may conclude that the spatial

attention mechanism removes useless features around objects and makes feature maps

easier to handle in the temporal attention decoder.

42

Figure 3.10: Example detection results of TFEN, TSSD and Baseline Model on Ima-

geNet VID val. The left column of each video corresponds to the baseline model, the

middle one corresponds to the proposed model, TFEN, and the right one corresponds to

TSSD. A bounding box is plotted if its confidence score is larger than 0.4.

43

Temporally-aware Feature Map

To verify the necessity of the temporally-aware feature map, we store the feature maps

without temporal information in the external memory instead of the temporally-aware

feature map, which is the model of w/o TF. We remark that the model w/o TF uses the

encoder only to create attention weights. Table 3.5 (e) and (f) show that temporal in-

formation in the external memory gives additional improvements 3.20%, 2.34%, 4.13%,

6.72%, 1.2% on overall, easy, medium, hard subsets, and ImageNet VID, respectively.

This suggests that the temporal information stored in the external memory is useful for

all the sets. We thus confirm that both the feature aggregation with temporal attention

mechanism and the temporal-aware feature map are necessary for improving the detec-

tion accuracy.

Table 3.6: Effectiveness of temporal attention mechanism on ImageNet VID val and

UA-DETRAC test.

Methods
ImageNet VID UA-DETRAC

FPS
mAP AP

Attention (ours) 68.9 82.4 29.1

Weighted averaging 63.3 79.8 31.3

Cos similarity 65.4 81.0 27.8

Attention based Feature Aggregation

We validated our introduced attention mechanism in feature aggregation by replacing

it with other aggregation ways on the ImageNet VID and UA-DETRAC dataset. Ta-

ble 3.6 shows the results. Our proposed attention mechanism for feature aggregation,

dynamic weighting, is denoted by attention. Weighted averaging [110] is a static weight-

ing way for feature aggregation where the weights of frames are determined so that the

previous and current frames are weighted 1:3, and all other frames are set to 1. Cos-

similarity [191] is another dynamic weighting way where the weights of the current and

past frames are dynamically computed using cosine similarity and the softmax func-

tion. We confirmed the effectiveness of the TFEN component of the proposed method

by replacing it with other aggregation methods.

We see from Table 3.6 that the dynamic weighting ways are more accurate than the

static weighting as the weights are changed for each video and that our introduced atten-

tion is most beneficial. We also observe that attention is superior in terms of run-time.

44

Original frame Before TFEN After TFEN

(a)

(b)

Figure 3.11: Feature activation before and after TFEN. For visualization, we summed

up the feature maps in the channel direction, then mapped their values to the interval of

0-255, and up-sampled the feature channel by the bi-linear interpolation.

This is because it predicts the weights in a one-shot manner, not calculating weights one

by one.

Analysis of Detection Confidence Score Fluctuation

We examined how the proposed method differs from existing recurrent neural network-

based methods regarding the fluctuation of detection confidence score. Figure 3.12

shows the confidence fluctuation with time for the baseline single-image SSD detec-

tor [112], the recurrent neural network-based TSSD [26], and the TFEN with SSD. In

the baseline, the detection confidence score fluctuates greatly, and it can be confirmed

that the fluctuation decreases with TSSD. In addition, TFEN significantly reduces it and

maintains a high score. We see that enhancing the feature maps by feature aggregation

is essential for detection with low fluctuation and high confidence score.

Feature Map Enhancement

We finally visualize the feature maps before and after TFEN (Ft and F̂t) in Figure 3.11

to illustrate how feature maps are enriched. Yellow means higher activation values,

whereas dark Mazarin indicates negligible feature activation. We observe that compared

with Ft, F̂t shows stronger responses near regions where vehicles exist, even highly

occluded vehicles. We thus see that our feature enhancement is practical and improves

the detection accuracy.

45

3.4 Conclusion

We presented the temporal attention network with the external memory called TFEN for

real-time object detection in live-streaming video. TFEN exploits the spatial and tempo-

ral information to enrich the feature map extracted using a lightweight feature extractor.

While the feature aggregation approach has been used only for offline video object de-

tectors, TFEN deals with frames in the memory with an efficient attention mechanism

to realize online object detection in live-streaming videos. Compared with recent fea-

ture aggregation methods that aggregate relevant frames to focus on a frame by frame,

TFEN utilizes temporally-aware feature maps to efficiently compute attention weights in

a one-shot manner, which leads to real-time object detection. We confirmed that TFEN

achieves real-time performance while keeping comparable accuracy with state-of-the-

art methods on publicly available datasets. In addition, we showed that the proposed

method detects objects with higher and more stable confidence scores than the existing

methods, which is a challenge in video object detection. TFEN demonstrates the atten-

tion module’s clear benefits based on the external memory and achieves a considerably

enhanced trade-off between accuracy and speed.

46

(a) Detection confidence score with time for ImageNet VID Video No.143000. It corresponds to

the video in the left column in Figure 1.1.

(b) Detection confidence score with time for ImageNet VID Video No.33000. It corresponds to

the video in the right column in Figure 1.1.

Figure 3.12: Example of changes in detection confidence score over time.

47

Chapter 4

Element-level Feature Aggregation

4.1 Introduction

From two perspectives, this chapter deepens TFEN, a frame-level feature map aggrega-

tion. First, TFEN aggregates features by superimposing feature maps with frame-level

weighting regarding the aggregation method. However, this method cannot deal with

the significant movement of objects between frames. Therefore, we propose aggregating

features at the element level to obtain more detailed information. Next, TFEN updates

the external memory on a first-in-first-out rule without considering the importance of

each frame. However, since each video is dynamic, it is difficult to deal with the sim-

Figure 4.1: An example of the behavior of the VSTAM framework. It collects related

information from the past frames spatiotemporally to refine the target frame’s represen-

tation, including those in external memory. The orange and yellow arrows represent the

highly related positions between frames.

48

ple rules. Therefore, we propose a method to update the external memory dynamically

based on the importance of each frame. We explain the details from each perspective.

In video object detection, how to propagate features from surrounding frames to the

current one is a vital issue, and many existing methods utilize only local information in

both time and space [110, 158, 191]. FGFA [191] and MANet [158] proposed to utilize

flow networks whereas TSSD-OTA [27] and some methods [110, 111] exploited recur-

rent neural networks to propagate features from neighboring frames. Although these

methods show accuracy improvement, their refinements are limited for two reasons.

First, they consider only local spatial information, such as the pixel-to-pixel transfor-

mation of flow-networks and the convolutional kernel of recurrent networks. They do

not consider global information such as object relations and context in frames. Sec-

ond, they utilize only nearby frames, meaning that information over long-term frames is

missing. They are robust against a few successive deteriorated frames for issues such as

motion blur, but if the problem persists for some time, it becomes challenging to deal

with them using short-term frames. Thus, existing methods [27, 191, 192] suffer from a

lack of capturing global aspects of video in both space and time to refine a feature map.

The memory consumption cost becomes crucial to capture the dependencies of dis-

tant frames. Simply using a static sliding window [9, 34, 191] is not a good choice.

This is because a longer-range window to cover distant frames is memory-consuming.

A static window may fail to capture videos’ dynamic nature because the changes of ob-

jects are different at a time in each video. Instead, adaptively holding the most vital

frame features identified through attention as an extended memory is more preferable.

Such adaptation also reduces the memory-consumption cost since irrelevant frame fea-

tures are not involved.

Based on the above observations, we propose Video-aware Sparse Transformer with

Attention-guided Memory (VSTAM) that captures long-term dependencies in space and

time (called “video-aware” in this paper) through aggregating features locally and glob-

ally in both space and time at the same level to obtain element-wise features. Aggre-

gating features at the element level allows the model to cope with object misalignment

flexibly. VSTAM possesses an attention-guided external memory that adaptively holds

the most vital frame features. Figure 4.1 illustrates the concept of “element-wise fea-

ture aggregation with attention-guided memory”, in which features associated with each

49

element of the feature map are widely and appropriately aggregated from multiple loca-

tions and frames with sparse attention, and the more vital frame features are sequentially

retained in the external memory based on attention. Even if some objects or frames

are degraded, VSTAM appropriately uses features from other locations in other frames

for aggregation. Moreover, if valuable frame features are in the sliding window, they

can be updated to the external memory and aggregated. VSTAM does not suffer from

computational expense and memory-intense.

Despite its simplicity, VSTAM achieves outperformance surprisingly on ImageNet

VID dataset [134], UA-DETRAC [164] and VisDrone-VID against SOTAs. We fur-

thermore demonstrate the applicability of VSTAM to a more complex task, i.e., Video

Instance Segmentation, which requires more precise features for masks, showing com-

parable detection accuracy against SOTAs.

4.2 Related Work

This section reviews related works on element aggregation-based methods for attention-

based extended memory in terms of “feature aggregation,” “external memory,” and “pre-

training.” For the related works on video object detection in general, please refer to

Section 2.2.

4.2.1 Feature Aggregation for Video Object Detection

Feature aggregation from nearby frames is essential to tackle video issues. Optical flow

is used to align and warp features extracted from adjacent frames for aggregation [191,

192]. This approach, however, heavily relies on the accuracy of motion estimation.

STSN [9] directly predicts sampling locations in different frames without using optical

flow. STMN [171] proposed a spatial-temporal memory module to model long-term

appearance and movement changes. TSSD-OTA [27] proposed an attentional recurrent

neural network to refine a feature map. However, aggregation from only adjacent frames

makes detection difficult when blurring occurs over multiple frames.

To overcome feature aggregation limitation using only nearby frames, using object-

wise long-range temporal information was recently proposed. SELSA [167] consid-

ered the semantic impact between related object candidate regions in all the frames.

RDN [44] distilled relation through repeatedly refining supportive object proposals with

50

high confidences and used them to upgrade object-wise features. MEGA [29] consid-

ered both local and global aggregation to enhance the feature representation. However,

these methods result in object-wise aggregation after detection, which can be difficult if

detection is impossible. On the contrary, our proposed VSTAM considers element-wise

features from spatial local-area and short-range temporal information to spatial global-

area and long-range temporal information for aggregation.

4.2.2 External Memory for Video Object Detection

Video object detection using external memory has been studied in recent years. There

are two main categories regarding their updating strategy. The first category employs

the first in first out strategy, which utilizes the external memory to simply extend past

features at instance-level [29] and frame-level [61]. However, those methods remove

features in the external memory from the old one and simply update it with the new

feature map.

The second one dynamically updates the external memory depending on the spe-

cific sampling strategy, and our approach falls into this category. OGEMN [42] pro-

poses a top-down object-guided strategy, which computes features that give a high con-

fidence level belonging to the detected objects and selects the higher ones to store.

MAMBA [143] employs a random sampling strategy considering video redundancy and

proposes feature-wise deleting to remove redundant features for efficient computation.

Our method differs from the methods above in that it selects feature maps based on the

sum of the attention weights of the aggregated elements at the frame level in a more

straightforwardly bottom-up manner.

4.2.3 Transformer Network

The transformer [151] is a novel architecture for learning sequence data dependency.

The vanilla transformer [151] and its similar one, non-local [160], are powerful mod-

els; however, they suffer from computational costs when they come to large tensors due

to the large sequence length and resolution. Some attempts are reported to reduce the

cost by making the transformer’s self-attention map sparse [30, 137, 183, 185]. Sparse

masks, such as slide windows, enable a transformer to abbreviate computation on no

mask [30, 183]. Though these masks perform well on NLP tasks [183, 185] and a single

51

Figure 4.2: The architecture of the proposed Video-aware sparse transformer with

attention-guided memory (VSTAM).

image [30], we cannot directly apply them to the video sequence due to spatial and tem-

poral constraints. Our proposed video-aware sparse attention properly captures long-

range dependencies in space and time with reasonable computational cost and memory

consumption.

Recently, SSTVOS [52] has been proposed by making a transformer sparse in video

object segmentation (VOS). However, it considers only temporally and spatially local

elements and is vulnerable to significant object motion. Our method also considers the

object moving in distant frames by incorporating randomness.

4.2.4 Pretraining

Pretraining is one area that has been received much attention in recent years and has

shown progressive results in the natural language [46] and image recognition domains [28,

78]. Pretraining for video has been researched in video recognition where the time do-

main is essential, and methods such as video order estimation [56, 100] and pace esti-

mation [155] have been proposed. However, pretraining for VOD has not been exploited

where spatial and temporal information is essential. We propose an effective pretraining

method for VOD through the object motion estimation and reconstruction tasks.

52

4.3 Proposed Method

4.3.1 Overview

Our proposed VSTAM is depicted in Figure 4.2, which is notably simple. It contains five

components: feature embedding with frame selection, encoder, decoder, detection net-

works, and external memory. First, to feed short- and long-range temporal information,

we effectively collect both nearby and distant frames. The feature embedding module

then extracts feature maps. The feature maps are further compressed and flattened into

one dimension [18]. Then, they are concatenated in the timeline order with the feature

maps in the external memory to have a one-dimensional sequence. Then, the sequence

together with positional encoding is passed to the encoder module to exploit the long-

range sequential dependency among frames. Next, the high-level encoded feature map

and the positioned frame query are passed into the decoder module for aggregation to

have video-aware enriched features. They are passed to the detection network for object

detection. Finally, the feature maps to be held are selected for the subsequent time de-

tection. The external memory is updated based on the attention weight of each frame in

the decoder to utilize the feature map of essential frames in the distant frame window.

4.3.2 Frame Selection from Short- and Long-ranges

Given video frames {It}Tt=1 ∈ R
H0×W0×C0 , where T is the length of a video and H0, W0

and C0 respectively denote height, width, and number of channels, our goal is to detect

objects in the current frame (at time k) Ik with reference frames Rk where |Rk| = m

for a given m. Reference frames are used for aggregation to have the enriched features

of the current frames.

To capture the long-term temporal dependencies of a video, we need to collect ref-

erence frames from short- and long-term periods. For a given m (the number of past

frames used for aggregation), we define the set Ssparse of differences of time from the

current frame time as follows: Ssparse = {2i|0 ≤ i < m} (Fig. 4.3b). We then define

Rk = {Ik−n|n ∈ Ssparse}. In this way, we can effectively collect nearby and distant

frames as reference frames. Ik and Rk are fed to the feature embedding module.

Our collected reference frames consist of nearby frames that complement the blur in

a short time densely and frames that are less affected by rare poses sparsely. Compared

53

with the standard dense sampling [191] (Fig. 4.3a), our collection way allows us to

obtain a broader range of information with the same number of reference frames. We

remark that we use “nearby frames” to refer to the last five frames and “distant frames”

to refer to the frames after that since in existing works [61, 191] focusing only on the

nearby frames, the weights were applied only up to five frames.

4.3.3 Feature Embedding

Given the selected frames Rk and Ik, the feature embedding module extracts feature

maps {Fk}. We utilize a shared-weighted ResNet [81] or ResNeXt [172]. Following

DETR [18], we use a 1 × 1 convolution to reduce the channel dimension of feature

maps {Fk} ∈ R
H×W×C from C to a smaller dimension d, creating new feature maps

{F̂k} ∈ R
H×W×d. We then collapse the spatial dimensions of {F̂k} into one dimension,

resulting in HW × d feature maps. The external memory contains additional flattened

(a) Nearby frame selection

(b) Nearby-distant frame selection

Figure 4.3: The reference frame selection for feature aggregation from a video clip. m is

the number of past frames used for aggregate. Dark and light orange indicate the current

frame and the selected reference ones, respectively.

54

(a) Random (b) Frame (c) Position (d) Video-aware

Figure 4.4: Visualization examples of the sparse attention. Here, we assume a video

with five consecutive frames, each frame possessing a 2× 2 feature element. Gray color

indicates the absence of attention. (a) random attention, (b) frame-wise attention, which

cares only in self-frame, (c) Position attention, which focuses on the same position of

each frame, (d) the combined attention map of Video-aware Sparse Transformer.

feature maps {Êq}pq=1. The newly sampled feature maps and the feature maps stored

in the external memory are concatenated in the order of the timeline. The number of

frames is L = p+m+ 1. In this way, we obtain a feature sequence Z ∈ R
LHW×d.

4.3.4 Video-aware Sparse Transformer

Based on the vanilla transformer [151] which exploits a self-attention mechanism to

learn the elements’ dependencies and gather information for an input sequence, we de-

velop a video-aware sparse transformer (VST) so that it aggregates information from

multiple frame feature maps. A vanilla transformer considers all elements; however,

considering all elements of the video sequence is unnecessary because of redundancy

involved in a video (ex., objects may appear at similar positions for a certain period in

multiple frames). We thus follow recent work [30, 185] in NLP that makes self-attention

sparse and samples elements more efficiently for VST.

Video-aware Sparse Self-Attention

To realize video-aware sparse attention, the video-aware sparse attention masking op-

eration M(·) is implemented on self-attention [151] based on the below consideration.

The modified formulation of a uni-head sparse self-attention can be formulated as:

SparseAttention(Q,K, V) = softmax(M(
QKT

√
dk

))V, (4.1)

where K ∈ R
l×dk , V ∈ R

l×dv , Q ∈ R
l×dk are the key, value, and the query, respec-

tively. l is the length of input sequence, dv and dk are the embedding dimension of the

55

value and key. A sparse mask M ∈ [0, 1]l×l is defined as

M(i, j) =







1 if query i attends to key j,

0 otherwise,.

(4.2)

Video-aware sparse attention is designed taking into account the following consider-

ations. First, to refer to all the elements in a frame globally and locally, we introduce the

frame attention (Fig. 4.4b). It allows the self-attention to refer only to each frame’s el-

ements, thus improving the feature map while considering its spatial context. However,

since it lacks temporal information, we introduce two types of sparse masks: random

and position attention.

As the name implies, random attention (Fig. 4.4a) masks a certain percentage of

the elements, allowing access to a wide range of features. Different from the original

random attention [183], we mask each frame with a random probability r instead of the

entire sequence. This is because a video’s information is divided into frames.

Although random attention enables us to obtain information from multiple frames,

it cannot sometimes aggregate features reliably when objects remain in a specific area

over multiple frames. To reliably extract information from around the same location

over multiple frames, we introduce position attention (Fig. 4.4c). It plays the role of

aggregating features from the corresponding location in the temporal direction. It only

considers the same position at each frame; it is sensitive to object motion. Therefore, we

applied a mask like a 3× 3 dilated convolution kernel (Rate = 2) [181] to each element

to give the position attention to a wide field of view for robustness against object motion.

The combined masks of frame, random, and position are video-aware sparse attention

(Fig. 4.4d) and applied to the self-attention of transformer [151]. We exploit this sparse

transformer for both the encoder and decoder.

Encoder and Decoder

The encoder and decoder follow the original layered architecture of the transformer [151]

except for its self-attention. We replace the standard self-attention with video-aware

sparse attention. Given the positioned and flattened feature sequence Z, we obtain the

embedded sequence Ẑ ∈ R
LHW×d via the encoder.

The function of the decoder is to generate a video-aware refined feature map. To

56

decode at each element of the feature map, a query sequence Qk ∈ R
HW×d is required

and obtained by flattening embedded feature map F̂k. Then, the decoder outputs the

video-aware refined feature sequence Q̂k using the query Ẑ and embedded Qk sequence.

4.3.5 Detection

Thanks to the decoder, we have refined sequence Q̂k. To utilize it for detection, we

expand its spatial dimension. It contains the local and global information of the video

sequence; however, it loses the detailed information due to the compression of 1 × 1

convolution operation in the feature embedding process. Therefore, we decompress Q̂k

with 1× 1 deconvolution operation in the channel direction to generate the feature map

Q̃k ∈ R
H×W×C . Then, we merge both feature maps Q̃k and Fk by the element-wise

sum to acquire the final refined feature map for detection.

4.3.6 External Memory

To store the feature map of most vital frames adaptively in the external memory, we

select them based on the importance of each frame according to their attention weights.

They are already computed when VST aggregates each element, indicating the impor-

tance of the features. Therefore, we measure the importance of each frame by accumu-

lating the weights for each element in each frame. This is the “Attention ranking” shown

in Figure 4.2, and we keep up to the p-th feature map as {Êq} in external memory, ar-

ranged in the cumulative order of attention weights. We remark that the feature map

candidates to be stored in the external memory are already ones there and the distant

frames newly loaded in the sliding window. The role of the external memory is to hold

long-term features and deal with scenes that are difficult to detect by using neighboring

frames, so adjacent frames are not to be stored.

4.3.7 Pretraining

We introduce a pretraining for VOD to train the model more effectively. We use only

feature embeddings, encoders, and decoders with no external memory for pretraining

and let them learn the spatial and temporal context of the video through simple tasks.

The proposed pretraining consists of the “reconstruction task” to acquire spatial infor-

mation in a frame and the “average-motionIoU task” to obtain temporal information in

57

Figure 4.5: The sub-network for pretraining.

a video. The reconstruction task generates the current frame image like an autoencoder.

The average-motionIoU task estimates the average of motionIoU for each object at the

current frame. MotionIoU is proposed for evaluating moving objects in [191], the aver-

age of the IoU deviations of the same object over ±10 frames from the current frame.

Each of them is a spatial and temporal supervisory task essential for VOD.

To perform the two pretraining tasks, we attached the pretraining sub-network shown

in Figure 4.5 to the Q̂k obtained by the decoder. Using Q̂k as input, we perform average-

motionIoU and reconstruction after convolution, batch normalization, and ReLU, re-

spectively. After the pretraining is completed, the head attached for pretraining is re-

moved, and then the network for detection is connected.

We design a multi-task objective function to train our model. Namely, we utilize

l2 loss for both motion IoU estimation loss LMotionIoU and reconstruction loss Lreconst,

and the total loss is defined as follows:

Lpretrain = αLMotionIoU + βLreconst, (4.3)

where α and β are weighting parameters to balance the optimization of both the tasks.

4.4 Experiments

4.4.1 Benchmark Datasets and Metrics

We evaluated the performance of our method on tree public dataset: ImageNet VID [134],

UA-DETRAC [164] and VisDrone-VID2019 [188] (see Section 3.3.1 for more details

58

about ImageNet VID and UA-DETRAC.) The VisDrone-VID2019 dataset [188] was

published as a large-scale detection benchmark for a drone viewpoint in the video. In

addition to the usual video challenges such as motion blur, it offers additional challenges

such as smaller object sizes, a large number of detection targets, and higher resolution

frames.

We evaluated the performance using mean average precision (mAP) and average

precision (AP) for ImageNet VID and UA-DETRAC, respectively, (cf. Section 3.3.1).

VisDrone-VID2019 requires more precise localization accuracy. We use AP, AP50,

AP75, AR1, AR10, AR100, and AR500 metrics for evaluation, similar to that in MS

COCO [107].

4.4.2 Network Architecture

Feature Extractor

We mainly conduct experiments with ResNet-50 [81] pretrained on ImageNet [43], if

not otherwise noted. Following a common practice [158, 191], we enlarge the resolu-

tion of feature maps by modifying the stride of the first convolution block in the last

stage of convolution, namely conv5, from 2 to 1. Besides, we set the dilation of these

convolutional layers to 2 to retain the receptive field size.

Detection Network

We exploit Faster R-CNN [131] as our detection module. For a fair comparison, we fol-

low the commonly employed setting [29, 68, 167]. Specifically, we leverage 12 anchor

with 4 scales {642, 1282, 2562, 5122, } and 3 aspect ratios {1 : 2, 1 : 1, 2 : 1} for regres-

sion and classification. During training and inference, 3000 and 300 candidate boxes are

generated in previous and post non-maximum suppression (NMS), respectively.

VSTAM

We set the frame selection (Fig. 4.3b) at training and inference stages with temporal

window size m = 5 in VSTAM. Unless otherwise noted, we conducted our experiments

with external memory set to q = 2. Therefore, we utilize L = 8 frames, including the

target frame for each batch in total. In the embedding process, we set the compressed

dimension d of the feature map to 128. In VST, we utilize multi-heads attention with

59

the number of heads h = 8. The number of layers in the encoder and decoder is set to

4, respectively. For the sparse attention, we set a random ratio with r = 10% at each

frame.

4.4.3 Implementation Details

We implement VSTAM mainly on detectron2 [170]. The whole architecture is trained

on two RTX 3090 GPUs with ADAMW [114]. Although we trained our model on two

RTX 3090 GPUs, we evaluated the speed performance on Titan RTX GPUs for a fair

comparison with other methods.

Pretraining Stage

We train VSTAM, whose detection head is replaced by the sub-network for pretraining,

to sample a consecutive 6-frame with the same sparse frame selection. We resize frames

to 512 × 512 and random-flip the whole video clip horizontally for data augmentation,

following the video recognition pretraining protocol [3]. The batch size is eight, and the

initial learning rate is 10−4. All the weights are randomly initialized. The learning rate

is divided by 10 for every six epochs, and the training process is stopped after 18 epochs.

The hyperparameters α and β for Lpretain are set to 1 and 0.5, respectively.

Detection Training Stage

For ImageNet VID, we train VSTAM on a combination of ImageNet VID and DET

datasets [134] following common protocols in [9, 29, 167]. For the DET dataset, we

select the same 30 classes as in the VID dataset and follow the data augmentation strat-

egy proposed in [111]. For VisDrone-VID2019 and UA-DETRAC, we utilize only its

training dataset.

The input images are resized to have their smaller side to be 600 pixels. Each GPU

holds two mini-batches, and each mini-batch contains one set of images or frames. The

model with a vanilla transformer was trained with one mini-batch due to memory con-

straints and adjusted according to the batch size [73]. We train our network for 13

epochs with learning rate decay, dividing by ten at epochs 9 and 12, respectively. The

initial learning rate is set to 10−4. At inference, an NMS of 0.5 IoU threshold is adopted

to suppress reduplicate detection boxes.

60

Table 4.1: Performance comparison on ImageNet VID.

Methods Backbone Base Detector
mAP

Online Offline Post-processing

DFF [192] ResNet-101 R-FCN 73.1 − −

THP [189] ResNet-101 + DCN R-FCN 78.6 − −

OGEMN [42] ResNet-101 + DCN R-FCN 80.0 − 81.6

PLSA [74] ResNet-101 + DCN R-FCN 80.0 − −

LSTS [88] ResNet-101 + DCN R-FCN 80.1 − −

D&T [54] ResNet-101 Faster R-CNN 80.2 − −

LRTR [139] ResNet-101 FPN 81.0 − −

MEGA [29] ResNet-101 Faster R-CNN 81.9 82.9 84.5

MAMBA [143] ResNet-101 Faster R-CNN 84.6 − −

VSTAM(Ours) ResNet-101 Faster R-CNN 85.5 86.1(+0.6) 86.4(+0.3)

FGFA [191] ResNet-101 R-FCN − 76.3 78.4

MANet [158] ResNet-101 R-FCN − 78.1 80.3

STSN [9] ResNet-101 + DCN R-FCN − 78.9 −

SELSA [167] ResNet-101 Faster R-CNN − 80.3 82.7

TM-VoD [94] ResNet-101 Faster R-CNN − 80.5 −

RDN [44] ResNet-101 Faster R-CNN − 81.8 83.8

TransVOD [82] ResNet-101 Deformable DETR − 81.9 −

TROI [72] ResNet-101 Faster R-CNN − 82.0 −

HVR-Net [76] ResNet-101 Faster R-CNN − 83.2 83.8

TF-Blender [36] ResNet-101 Faster R-CNN − 83.8 −

OFAVOD [68] ResNet-101 Faster R-CNN − 83.9 85.1

DSFNet [103] ResNet-101 Faster R-CNN − 84.1 −

EBFA [75] ResNet-101 Faster R-CNN − 84.8 −

LRTR [139] ResNeXt-101 FPN 84.1 − −

MAMBA [143] ResNeXt-101 Faster R-CNN 85.4 − −

VSTAM(Ours) ResNeXt-101 Faster R-CNN 86.9 87.6(+0.7) 88.0(+0.4)

RDN [44] ResNeXt-101 Faster R-CNN − 83.2 −

MEGA [29] ResNeXt-101 Faster R-CNN − 84.1 85.4

TM-VoD [94] ResNeXt-101 Faster R-CNN − 84.5 −

HVR-Net [76] ResNeXt-101 Faster R-CNN − 84.8 85.5

DSFNet [103] ResNeXt-101 Faster R-CNN − 85.4 −

OFAVOD [68] ResNeXt-101 Faster R-CNN − 86.1 86.9

4.4.4 Comparison with State-of-the-Art

Table 4.2: Comparison of accuracy and runtime on ImageNet-VID val. All method

employ Faster R-CNN with ResNet-101 and their processing time is measured on Titan

RTX. The re-measured speed of SELSA, RDN, and MEGA is reported in [143].

Method mAP Runtime (ms)

SELSA [167] 80.3 91.3

RDN [44] 81.8 128.0

MEGA [29] 82.9 182.7

MAMBA [143] 84.6 110.3

Ours 85.5 95.2

Comparison on ImageNet VID

Many methods exploit ResNet-101 [81] and ResNext-101 [172]. We thus report scores

using them for a fair comparison. We compare the models separately since the accuracy

61

Table 4.3: Comparison of External Memory Method on ImageNet-VID val. All pro-

cessing time is measured on RTX Titan. The re-measured speed of OGEMN is reported

in [143].

Method mAP Runtime (ms)

Base (R-FCN [37]) 73.8 46.7

OGEMN [42] 79.3 (+5.5) 89.1

MAMBA [143] 81.6 (+7.8) 90.1

Ours 82.6 (+8.8) 80.2

differs among offline, online, and post-processing cases. For comparison, we show the

offline setting results for the case where five frames extend the sliding window into the

future (L = 13).

Table 4.1 shows the result comparison between state-of-the-art methods on online,

offline and post-processing conditions. Among all the methods, VSTAM achieves the

best performance on all backbone and conditions. With ResNet-101 backbone, our on-

line model achieves 85.5% mAP, 0.9% absolute improvement over the recent and most

powerful competitor MAMBA [143], which utilizes external memory. Compared to

FGFA [191], MANet [158] and STSN [9], which aggregate element-wise feature from

nearby frames, our proposed method outperform more than 8 points. The gap between

the proposed method and the above is feature aggregation with global spatiotemporal

context. VSTAM also outperforms some methods [29, 44, 68, 72, 167], which utilize

object-wise feature aggregation. The object-wise approaches provide effective improve-

ment but may lack sufficient information near objects. Our method considers element-

wise features from distant and nearby frames and local to global in the feature map,

leading to the best performance on ImageNet VID.

By replacing the backbone from ResNet-101 to ResNeXt-101, our model achieves a

better performance of 86.9% mAP, as expected. In an offline setting, our model achieved

an accuracy of 87.6%, making it the first model to achieve precision in the 87% range.

We applied post-processing to the offline model since many methods report offline.

For the post-processing method, we adopt Seq-NMS [77], which refine scores of weaker

detection from nearby frames. Our method still performs the best, obtaining 86.4% and

88.0% mAP with backbone ResNet-101 and ResNeXt-101, respectively.

Table 4.2 shows accuracy and speed comparison on the same architecture and GPUs.

We can see that the proposed method is superior in accuracy while the speed is faster

62

than most methods. Next, we replaced the detector with R-FCN [37] to compare the per-

formance of the methods with the external memory under the same conditions and GPU.

As shown in Table 4.3, we confirm that the proposed method is superior in accuracy and

speed. OGEMN and MAMBA have two-step frame-wise and object-wise aggregation

based on complex update and delete rules, requiring more processing time. On the other

hand, the proposed method deals only with feature maps element-wisely and reduces

run-time by a simple rule that holds the feature maps most used in the enhancement.

Table 4.4: Performance comparison with the state-of-the-art models on VisDrone-

VID2019 test.

Methods AP AP50 AP75 AR1 AR10 AR100 AR500

FPN [105] 16.72 39.12 11.80 5.56 20.48 28.42 28.42

CornerNet [97] 16.49 35.79 12.89 9.47 24.07 30.68 30.68

CFE-SSDv2 [186] 21.57 44.75 17.95 11.85 30.46 41.89 44.82

D&T [54] 17.04 35.37 14.11 10.47 25.76 31.86 32.03

FGFA [191] 18.33 39.71 14.39 10.09 26.25 34.49 34.89

DBAI-Det [188] 29.22 58.00 25.34 14.30 35.58 50.75 53.67

Faster R-CNN [131] 14.46 31.80 11.20 8.55 21.31 26.77 26.77

Ours 32.16 60.71 27.52 16.45 38.91 56.21 56.21

Comparison on VisDrone-VID2019

Table 4.4 shows performance comparison. Most method [54, 105, 131, 191] utilize

ResNet-101 as base backbone, we employ it in this section. D&T [54] and FGFA [191]

are methods to stabilize the detection of the still image detector [131] with temporal

information. We see that our model significantly improves the accuracy from the base-

line, Faster R-CNN [131], and outperforms the compared methods. DBAI-Det [188]

combines heavy backbone, ResNeXt-101 [172], more precise detection head, Cascade

R-CNN [15], and several methods [17, 38] for accuracy. However, because it does not

utilize temporal information, it is less accurate than our method, which uses a smaller

backbone, ResNet-101.

Comparison on UA-DETRAC

The results on the UA-DETRAC dataset are reported in Table 4.5. Our online model

achieves 90.3% AP, 2.2% absolute improvement over the recent detector, FFAVOD-

SpotNet [125], which utilize temporal information including future frames. As expected,

63

Table 4.5: Performance comparison on UA-DETRAC test. Bold faces are the top

performance on each subset.

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU

GP-FRCNN [140] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4 Tesla K40

EB [156] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X

YOLOv3-SPP [92] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6-7 Titan Xp

MSVD SPP [93] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9-10 Titan Xp

FG–BR Net [59] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 Tesla M40

SpotNet [124] 86.80 97.58 92.57 76.58 89.38 89.53 80.93 91.42 14 GTX 1080 Ti

3D-DETNET [101] 53.30 66.66 59.26 43.22 63.30 52.90 44.27 71.26 26 −
RN-VID [126] 70.57 87.50 75.53 58.04 80.69 69.56 56.15 83.15 − −
FFAVOD-SpotNet [125] 88.10 97.82 92.84 79.14 91.25 89.55 82.85 91.72 − −
TFEN [61] 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29 RTX 2080 Ti

Ours w/ ResNet-101 90.30 97.82 94.67 82.07 92.48 91.92 84.91 94.51 10 RTX Titan

Faster-RCNN w/ ResNet-101 76.18 92.01 79.52 65.27 85.10 73.96 67.26 86.37 18 RTX Titan

Ours w/ ResNet-50 85.13 95.82 88.11 75.13 89.23 86.31 77.00 91.08 18 RTX Titan

Faster-RCNN w/ ResNet-50 73.11 90.91 78.16 60.32 83.23 71.41 63.48 83.01 26 RTX Titan

the proposed method improves the detection performance on different datasets.

4.4.5 Detailed Analysis

To evaluate the effectiveness and superiority of each component in VSTAM, we conduct

several ablation experiments. Specifically, we gradually modify online VSTAM with

ResNet-50 and compare their differences.

In order to analyze details, we follow a motion-aware evaluation metric in [191] to

evaluate the performance on the categories of a slow, medium, and fast objects, where

these three categories are divided by their average IoU scores between objects across

nearby frames. Slow motion means the case where IoU score is higher than 0.9, and fast

motion means that IoU score is lower than 0.7. The medium motion indicates the rest.

We note that mAPs, mAPm, mAPf represent mAP(small), mAP(medium), mAP(fast),

respectively.

Table 4.6: Impact of components in the proposed method on ImageNet VID val,

VisDrone-VID val and UA-DETRAC test.

Components ImageNet VID VisDrone-VID UA-DETRAC

Video Sparse Transformer External Memory Pretraining mAP AP AP

71.7 12.1 73.1

! 77.1 18.7 81.8

! ! 80.0 22.6 84.2

! ! ! 81.3 23.6 85.1

Vanilla transformer ! ! 80.1 22.7 83.8

64

Figure 4.6: Visualized results on ImageNet VID val. From left to right: predictions of

Faster R-CNN(baseline) [131], MEGA [29] and ours. Best viewed digitally and in color.

Investigation of VSTAM

In this section, we review VSTAM from the proposed component level. To confirm

the effectiveness of VASTM, we use Faster R-CNN [131], a single frame detector, as

a baseline model and show the effectiveness of the proposed method. Table 4.6 shows

the difference of accuracy with the modules on three datasets. First, we can see that

the introduction of VST provides a significant gain from the baseline for all different

datasets. Therefore, we can confirm that elemental aggregation is effective as feature

aggregation for video. Next, we see that introducing external memory for updating

by attention improves accuracy. Furthermore, we can confirm that the introduction of

pretraining is practical for all datasets. Thus, we can see that all the factors are essential

for video object detection.

To check the effectiveness of sparse sampling in VSTAM, VST was replaced by a

65

Figure 4.7: Visualized results on ImageNet VID val. From left to right: predictions of

Faster R-CNN(baseline) [131], MEGA [29] and ours. Best viewed digitally and in color.

vanilla transformer. Our proposed method processes one frame in 52ms. If we replace

VST with a vanilla Transformer, the run-time becomes 342ms. VSTAM (w/ VST) and

VSTAM (w/ vanilla one) consume 2.1GiB and 7.2GiB memories per frame during infer-

ence on FP32. Additionally, 5.1GiB memories are required for each for Faster-RCNN.

Our VST offers 658% speed up 70.1% memory reduction. We see significant gains

thanks to our sparse sampling.

Figure 4.6 and 4.7 shows the detection results of the baseline [131], MEGA [29]

and the proposed method for ImageNet VID. We confirm that the proposed method de-

tects the targets accurately, even in severe scenes, compared to the existing methods.

Figure 4.8 and 4.9 shows the detection results of Faster R-CNN(baseline) and the pro-

posed method for VisDrone-VID. It can be seen that the proposed method improves the

detection in the deteriorated scenes.

66

(a) Faster R-CNN

(b) Ours

Figure 4.8: Visualized results for a small objects scene with slight motion on VisDrone-

VID test. From top to bottom: predictions of Baseline and ours. Best viewed digitally

and in color.

Table 4.7: Performance comparison of feature aggregation modules by different frame

sampling on ImageNet VID val, VisDrone-VID val and UA-DETRAC test.

Methods
Window-range ImageNet VID VisDrone-VID UA-DETRAC

Nearby-only Nearby-Distant mAP mAPs mAPm mAPf AP AP

VST (Ours)
! 77.1 85.1 75.5 55.8 18.7 81.8

! 75.9 84.8 73.9 53.1 17.2 79.2

SSTVOS [52]
! 74.4 83.3 72.9 50.2 13.8 75.0

! 74.7 83.6 73.3 51.3 15.1 75.6

Baseline 71.7 80.7 69.0 47.0 12.1 73.1

67

(a) Faster R-CNN

(b) Ours

Figure 4.9: Visualized results for a scene with large motion on VisDrone-VID test.

From top to bottom: predictions of Baseline and ours. Best viewed digitally and in

color.

Investigation of Element-wise Aggregation

We examine the effect of element aggregation across different frame sampling. VSTAM

aggregates information from a wide range of frame spans to overcome the challenge

of videos lasting several frames. We investigate how this frame selection affects the

element-level aggregation. In this experiment, we do not include external memory or

pretraining.

We compare our results with the recent video object segmentation method, which

68

Table 4.8: Performance comparison of sparse attention modules on ImageNet VID val,

VisDrone-VID val and UA-DETRAC test.

Sparse attention ImageNet VID VisDrone-VID UA-DETRAC

Frame Position Random mAP mAPs mAPm mAPf AP AP

! 73.1 82.4 70.5 48.4 13.6 75.8

! 74.0 83.7 71.3 49.3 15.2 79.2

! 74.3 83.9 72.1 50.1 13.1 74.8

! ! 74.8 84.2 72.9 50.4 16.2 79.4

! ! 75.3 84.1 73.4 52.1 14.3 78.8

! ! ! 77.1 85.1 75.5 55.8 18.7 81.8

vanilla transformer 75.9 84.6 73.9 53.2 17.9 80.7

Baseline 71.7 80.7 69.0 47.0 12.1 73.1

proposes a sparse attention-based aggregation method [52] similar to VST. SSTVOS

performs element aggregation by focusing on local spatial area and temporal neighbor-

hoods. Since there is no official implementation of SSTVOS, we reproduced it and

obtained a result 0.1 pt higher than the paper value, which is used for comparison.

Table 4.7 shows the difference in accuracy between the two types of frame sampling,

where “Nearby-only” means dense sampling as shown in Figure 4.3a, and “Nearby-

Distant” represents sparse sampling, as shown in Figure 4.3b. Both VST and SSTVOS

can improve accuracy from baseline. However, SSTVOS loses accuracy when far frames

are included. VST, on the other hand, can improve accuracy by utilizing distant frames

rather than aggregating over a short period. In particular, it can be observed that mAPf ,

which has a large object motion, has a significant gain. This is due to VST’s robust

sparse attention to object positions, allowing VST to utilize a global view effectively.

Effect of Video Sparse Attention

Next, we investigate the effect of attention on accuracy. Table 4.8 shows the accuracy

impact with each attention method. The full attention of the vanilla transformer main-

tains high accuracy of 75.9% because it considers all elements of the time series frame.

Only frame attention, which can only access its frame and cannot aggregate from neigh-

boring frames, results in a significant decrease. Only random attention aggregates fea-

ture from each frame to utilize long-range information, but the accuracy is insufficient.

The position attention, similar to dilated convolution over multiple frames, aggregates

global information, but like random attention, it is not accurate. Combining the frame

attention, which accesses locally and globally within a frame, and the random and po-

sition, which aggregate features spatiotemporally, improves their accuracy. Moreover,

69

Table 4.9: Impact of the ratio of random attention on ImageNet VID val.

Random r (%) 0 5 10 15 30 50 70 100

mAP (%) 74.8 76.4 77.1 77.1 76.9 76.5 76.3 75.9

Table 4.10: Impact of the number of the layers on ImageNet VID val

Layers (L) 1 2 3 4

mAP (%) 80.1 80.7 81.1 81.3

the video-aware sparse transformer, which combines all of them (Frame + Position +

Random), is 1.2 points more accurate than the original full attention. Indeed, we con-

firmed that for video sequences, properly performing the sparse sampling, rather than

the dense sampling, achieves higher accuracy. There is much redundant information in

video sequences, both in space and time, and it is easier to process them properly if the

information is reduced to some extent. Therefore, in video object detection, we con-

firmed that including computer vision characteristics in the attention mechanism leads

to improved accuracy because it omits some of the redundant information in the video

rather than accessing all of the information.

Effect of Random Attention

We investigate the impact of the ratio using random attention. Table 4.9 shows the

performances under different ratios (r%) using random attention. r = 0% is identical

with using frame attention and position attention only in Table 4.8 while r = 100%

is identical with using the vanilla transformer. We see that the accuracy is improved

by increasing r from 5% to 10%, but it gradually decreases from 15% to 100%. This

indicates that introducing random attention is practical for feature aggregation, but using

random attention too much is not a good way.

Effect of number of layers

The encoder and decoder are essential parts of VSTAM, which are built upon stacked

layers. We investigate the influence of the layer number of VSTAM on the performance.

Table 4.10 shows that VSTAM performs better with more layers stacked.

70

Table 4.11: Impact of External Memory on ImageNet VID val, VisDrone-VID val

and UA-DETRAC test.

Methods Update candidate Additional frames
ImageNet VID VisDrone-VID UA-DETRAC

mAP AP AP

External Memory

− 0 77.1 18.7 81.8

Distant 1 78.8 22.0 83.6

Distant 2 80.0 22.6 84.2

Distant 3 80.1 22.4 84.0

Nearby-Distant 2 78.4 20.1 82.8

Extended sliding window
− 1 77.5 18.9 82.2

− 2 77.7 18.8 82.3

Table 4.12: Performance comparison of pretraining on ImageNet VID val, VisDrone-

VID val and UA-DETRAC test.

Method ImageNetVID Visdrone-VID UA-DETRAC

mAP mAPs mAPm mAPf AP AP

Ours w/o pretraining 80.0 86.9 77.7 59.1 22.6 84.2

Ours 81.3 88.2 79.1 60.8 23.6 85.1

Pace Prediction 80.1 87.0 77.5 59.1 22.5 84.4

Ours w/o Motion prediction 80.7 87.7 78.4 59.8 22.9 84.9

Ours w/o Reconstruction 80.5 87.4 78.2 59.5 23.2 84.7

Effect of External Memory

In this section, we examine the effect of external memory. Table 4.11 summarizes the

accuracy effects of changing the number of additional frames with and without external

memory. To examine the effect of selectively chosen feature maps, we show that the

sliding window width increased without using external memory. It can be seen that

increasing the number of additional frames also improves the accuracy. However, the

gain of the external memory is more prominent, and the number of additional frames

of the external memory is saturated after about two frames. Therefore, it is no longer

possible to obtain a significant gain. We can also confirm that when nearby frames are

included as update candidates, the accuracy decreases compared to only distant frames.

It is better to utilize only distant frames as candidates to overcome video issues over a

long time.

Investigation of Pretraining

In this section, we discuss the effects of pretraining. Table 4.12 summarizes the effect

of pretraining on the accuracy.Ours w/o pretraining means initial values from ImageNet.

We also show the results of replacing our model with Pace Prediction [155], which

estimates the velocity of frames, proposed in video recognition. First, the effect of pre-

71

Figure 4.10: Visualized examples of error classification from TIDE [12]. “Cls” repre-

sents that the model detected the object but misclassified it into another class. “Loc”

means that the model detected the object with lousy localization. “Both” means occur-

ring of both “Cls” and “Loc”. “Dupe” represents duplicated detection for an object.

“Bkg” means background false-positive detections, while “Miss” means that it does not

detect the object even though an object exists there. Best viewed digitally and in color.

training is present on both datasets. On the other hand, we can see that Pace Prediction

is less effective, confirming the need for pretraining that suites video detection tasks. In

addition, it is essential to train a model with both time and space since the accuracy of

each component decreases when either part is removed.

Effect of Feature Map Refinement to RPN

Recent methods [29, 44, 75, 167] in VOD employ object-level features from RPNs [131]

and propose refinements, which are robust to position changes of objects over the long

term. These methods rely on the detection of RPNs, heavily degrading performance

where detection is difficult. In contrast, our method refines the feature map before RPN.

We thus evaluate how it affects the RPN in terms of Average Recall (AR). We select top

k = 5, 10, 100 proposals generated by RPN and calculate ARk. Table 4.13 shows the

difference of Recall in RPN with and without our proposed method. We can see that all

the metrics are improved by the proposed method, confirming the effectiveness of the

feature improvement before RPN.

Error Analysis

Some scenes are difficult to detect in video object detection due to the appearance

changes with time, resulting in detection errors. To see what kind of errors the pro-

Table 4.13: Impact of VSTAM to RPN on ImageNet VID val.

VSTAM AR5 AR10 AR100

w/o 75.1 81.0 90.2

w/ 79.2(+4.1) 86.1 (+5.1) 96.4 (+6.2)

72

Figure 4.11: Visualized results of error analysis on ImageNet VID val by TIDE [12].

From left to right: results of the Faster R-CNN (baseline) [131], MEGA [29] and ours.

See Figure 4.10 for the categories of errors. Best viewed digitally and in color.

posed method solves explicitly, we conducted an error analysis using TIDE [12]. It

classifies object detection errors into misclassification, incorrect localization, duplicate

detection, false-positive detection, and miss, as shown in Figure 4.10. Figure 4.11 shows

the error results of the Faster R-CNN(baseline) [131], MEGA [29] and VSTAM on Im-

ageNet VID val, where the horizontal axis shows the error categories and the vertical

axis shows the amount of error accumulation proposed in TIDE [12].

MEGA improves feature maps only in the object candidate regions after detection

and reduces “CLS” errors from the baseline, while many “BKG” and “MISS” errors

remain. On the other hand, the proposed method significantly reduces them by perform-

ing feature refinement before the object candidate region estimation, thus alleviating the

false-negative and false-positive problems, especially background false-positive in video

object detection. In addition, the class error is also reduced thanks to our element-wise

aggregation.

4.4.6 Video Instance Segmentation Results

To validate the versatility of the proposed method, we also evaluate it on YouTube-VIS

dataset [176], which is a more complex task (cf. Section 2.4). The evaluation metric is

similar to the standard evaluation one in image instance segmentation, average precision

(AP), and average recall (AR) [107]. Specifically, it uses AP, AP50, AP75, AR1 and

73

AR10 metrics for evaluation. However, the IoU computation is modified from image

instance segmentation [107] to compute the spatial-temporal consistency of predicted

and ground truth segmentations. It obtains a low IoU if the algorithm detects the object

masks successfully but fails to track the objects across frames. Therefore, AR and AP

are scored in such a way that tracking is taken into account.

Most of the current VIS methods focus on generating high-quality masks and linking

the same objects across frames with features extracted by the backbone like ResNet,

while only a few of them pay attention to improving the features.

To apply the proposed method to VIS, we replaced Faster R-CNN with MaskTrack

R-CNN [176]. MaskTrack R-CNN is an extension of Mask R-CNN [80] with a tracking

branch to link the same object instances between two frames.

The results with ResNet-50 as the backbone are shown in Table 4.14. Our pro-

posed method achieves competitive results on all evaluation metrics. With our proposed

method, MaskTrack R-CNN is improved by more than 8.7% on the AP metric. We re-

mark that the AP gap between ours and MaskProp mainly comes from its combination

of multiple methods [9, 22] and the high-resolution mask refinement post-processing.

Recently, TF-Blender [36] and TROI [72] have been proposed to improve a feature

map. TF-Blender utilizes nearby frames, but it aggregates features at the frame-wise

without considering object misalignment, and the gain is limited since instance segmen-

tation requires more precise feature refinement. TROI proposes a temporal ROI align-

ment to extract ROI features from other frames based on their similarity; however, it is

not sufficient for hard-to-detect scenes because the refinement is for the object-level fea-

ture map. On the contrary, our approach is based on element-wise aggregation, allowing

us to improve the representation more precisely.

Figure 4.12 shows VIS results between baseline (MaskTrack R-CNN [176]) and the

proposed method on example frames from the validation set. We see that by refining

element-wise feature maps with the temporal information, false-negative detections are

reduced, and masks are stabilized.

4.5 Conclusion

We introduced a novel framework VSTAM for video object detection. VSTAM element-

wisely refines feature maps by considering spatiotemporal information across long- and

74

Table 4.14: Performance comparison with the state-of-the-art models on YouTube-

VIS2019 val. All the methods use ResNet-50 as the backbone.

Methods AP AP50 AP75 AR1 AR10

OSMN [177] 27.5 45.1 29.1 28.6 33.1

DeepSORT [165] 26.1 42.9 26.1 27.8 31.3

FEELVOS [153] 26.9 42.0 29.7 29.9 33.4

MaskProp [8] 40.0 − 42.9 − −

SipMask [16] 32.5 53.0 33.3 33.5 38.9

STEm-Seg [4] 30.6 50.7 33.5 31.6 37.1

CompFeat [58] 35.3 56.0 38.6 33.1 40.3

VisTR [161] 36.2 59.8 36.9 37.2 42.4

SG-Net [109] 34.8 56.1 36.8 35.8 40.8

CrossVIS [178] 34.8 54.6 37.9 34.0 39.0

VisSTG [159] 36.5 58.6 39.0 35.5 40.8

MaskTrack R-CNN [176] 30.3 51.1 32.6 31.0 35.5

TF-Blender [36] + MaskTrack R-CNN [176] 31.4 52.3 33.5 31.9 36.5

TROI [72] + MaskTrack R-CNN [176] 33.5 57.0 36.6 − −

VSTAM(Ours) + MaskTrack R-CNN [176] 39.0 61.2 42.9 38.9 47.6

short-term ranges with external memory. We proposed a video-aware sparse transformer

(VST) to model a long-range spatially and temporally relation of frames in a video se-

quence to aggregate features efficiently. In addition, VSTAM significantly improved

the accuracy by adaptively storing the feature map of the frame utilized during element

aggregation in external memory to deal with the dynamics of video. Extensive evalua-

tions demonstrate that VSTAM performs favorably on several publicly available datasets

against SOTAs. Moreover, detailed analysis showed that the proposed method reduced

the challenges of false-negative and background false-positive detection due to the ap-

parent changes of video object detection.

For further work, improving the efficiency of feature map management in external

memory is considered. Currently, feature maps are stored in external memory on frame-

wise management, but we believe that memory-efficient feature map management is

necessary to retain only the necessary portions or patch-wise features.

75

Figure 4.12: Example of visualized results between Baseline (MaskTrack R-CNN [176])

and Ours on YouTube-VIS val. Results are plotted if their confidence scores are larger

than 0.45. Best viewed digitally and in color.

76

Chapter 5

Prediction based Feature

Enhancement

5.1 Introduction

In order to detect objects robustly in live streaming videos, recurrent neural networks [26,

110, 111] and optical flow methods [190, 192] were proposed to propagate past infor-

mation. They achieved more stable detection than still-image detectors because of tem-

poral information. However, they are still low accuracy because they utilize only the

information of the specific frame, mostly the last or a nearby keyframe. Therefore,

the external memory approach [42, 61, 86] has been proposed for online video object

detection to extend the temporal information range in recent years. They showed the

practical improvement of accuracy by using external memory. However, storing fea-

tures in external memory consumes a lot of memory banks. For instance, TFEN [61]

and VOD-MT [86] use 1.9GiB and 4.3GiB, respectively, including models and external

memory. OGEMN [42] and VSTAM (in Chapter 4) consume more than 7GiB memory.

In contrast, there are memory limitations in the circumstances, such as robotics. For

example, the Jetson TX1, a GPU device for automated driving and robotics, has 4GiB

of memory shared with a CPU, and the memory available for models is around 2.0-

2.6GiB*. Thus, the external memory approach may not be applicable in environments

under strict memory limitations, and a method with low memory usage is needed.

Therefore, we propose a prediction-based feature map enhancement approach to im-

*Depending on the operating system used, the memory used is usually between 1.4 and 2.0 GiB.

77

prove detection accuracy under such a limitation effectively. Recently, in the field of

video representation, the task of predicting the future has received much attention [19,

99, 115]. It is necessary to acquire knowledge about the object, its structure, motion, etc.,

to depict the future accurately. The model can then obtain better feature representations

about objects and environments through future prediction.

Based on the idea, we introduce the concept of future prediction, which uses the

future frames to improve the object detection accuracy in live stream video. Although

the existing approach [26, 110, 111] simply propagates information from the past to

the present, our proposed methods actively learn object knowledge through prediction

during training to enhance feature maps and improve detection accuracy. This approach

does not employ any external memory other than the recurrent neural network states,

and we achieve improved accuracy with less than 1.8GiB memory usage, which is under

the substantial limitation of 2 GiB.

In order to enhance a feature map through future prediction, we conducted on differ-

ent temporal perspectives: the next and the next several frames forecasts. We propose a

model that simultaneously detects objects and predicts the feature map of the next frame

based on the existing propagation model for the next frame prediction. In the future

prediction, we examine how it affects the existing detectors by actively predicting the

next frame. Moreover, we obtain the pseudo feature map of the next frame by predic-

tion. Suppose the generated feature map is similar to the real one. In that case, we can

utilize it for the subsequent frame detection, which results in faster processing speed by

the abbreviation of feature extraction. We show the effectiveness of future feature map

prediction.

We propose applying the next several frames prediction, ten successive future frames,

to video object detection. A deterministic model, such as we used in next-frame feature

map prediction, outputs an average of the future candidates. Therefore, it is difficult to

predict the future in the successive frames because of the high uncertainty at each time

step. Thus, we learn feature representations based on probabilistic future prediction,

where we sample and predict the one probable future. We also propose a method to

learn only the future prediction first and then fine-tune it to the detection task to pre-

dict the problematic future more reliably. We validate in detail how probabilistic future

prediction affects object detection.

78

5.2 Related Work

In this section, we review related works on next frame prediction methods. For the re-

lated works on video object detection in general, please refer to Section 2.2. Forecasting

the future in video content is mainly explored in the next-frame video prediction task,

which tries to predict what happens next in images or a few frames. Two main ap-

proaches have been proposed to successfully predict future frames from given the past

frames: deterministic and stochastic prediction.

The video prediction by deterministic models generates the next frame by using de-

terministic loss, such as mean-squared-error, along with LSTM [142], ConvLSTM [121],

3D-Convolution [1, 182], and more complex recurrent models [13, 115]. Deterministic

models tend to produce blurred images because the output image is the average possible

image. For this reason, separating a foreground object from the background has been

proposed for more accurate generation [7, 45, 149, 152, 169].

Models with stochastic hidden variables such as VAEs, have been proposed [5, 19,

99] to reduce the uncertainty that increases over time in deterministic models. These

models define a prior distribution for a set of latent variables and allow different samples

from these latent variables to capture multiple outcomes. It has also been observed

that the mean-squared-error loss is based on Gaussian distribution and produces blurred

output, so using an adversarial loss with GAN is proposed [99].

While these studies aim to generate detailed future images themselves, our proposed

method focuses on generating the future that is effective for detection. Our proposed

method utilizes deterministic methods to predict the next-frame feature map and stochas-

tic approaches to forecast actual future frames into video object detection. Recently,

CrevNet [182] suggests the video representation learned through video prediction can

be directly used for object detection, we discuss in Section 5.6.5.

5.3 Proposed Method through Next Future Prediction

This section proposes a method to improve the accuracy of real-time video object detec-

tion using next frame feature prediction. Figure 5.1 intuitively shows the characteristic

of our approach against the existing one. Unlike other models that exploit both past

and current information (Fig 5.1(a)), our model (Fig 5.1(b)) forecasts the feature map

79

at the next frame and utilizes it with the current and past feature maps. We accomplish

the proposed model by jointly learning to forecast the future feature map and object

detection.

Detection from forecast feature maps reduces the processing cost of the backbone

and thus increases processing speed, on the one hand. On the other hand, we have to

load images in the video at appropriate timing to maintain the reliability of forecast

feature maps, which is difficult to determine in advance. For this purpose, we propose

a scheduler network that decides whether we read the next actual frame or exploit the

forecast feature map. In this way, our model improves the processing speed by using the

forecast feature map without significant performance loss.

(a) W/o Forecast

(b) W/ Forecast

Frame t-1 Frame t

?

Frame t+1

Forecasted

Feature map

Temporally-aware Featuremap

Figure 5.1: Video object detection through the next frame prediction. Current live

streaming video object detector approaches (a) store historical information of feature

maps to acquire stable detection results. In our proposed model (b), we jointly learn the

future feature map prediction to support the detection task at the current frame.

5.3.1 Overview

Our goal is to produce frame-by-frame detection {Dt}Tt=1 for a given live streamed video

with the length of T , where Dt is a list of bounding box locations and class predictions

corresponding to the frame at time t, i.e., It. Note that in a live streaming setting,

detection Dt is generated using only frames up to t. Normally, the object detection

model can be viewed as a composed function Dt = Ndet(Nfeat(It)), where Nfeat and

80

Ndet represent a feature extractor and an object detector model such as SSD [112]. We

use the recurrent-network based SSDLite architecture [110] as the baseline model and

insert our proposed modules, i.e., encoder module and scheduler module, into between

the extractor and the detector.

Figure 5.2 depicts the proposed framework dealing with frames at time t and t +

1. It consists of the feature extractor, the encoder module, the scheduler module, and

the object detector. The feature extractor and object detector are the recurrent-network

based SSDLite architecture [110]. Our encoder module generates forecast feature maps

from the output of the feature extractor while the scheduler module decides whether to

leverage the forecast feature map (forecast operation) at the next frame or load a new

image (read operation).

Recurrent state

!!

Feature

Extractor

Scheduler Forecast or Read

'!!%#

Forecast Loss

Detector

Detector

cls & loc Loss $%!

$%!%#

+

#!!

Recurrent state

!"#$%&'# !"#$%&'$

Read

Detector
Feature

Extractor
%&'()*+# %&'()*+$ +

Scheduler
Forecast

or Read

Forecast

Detector%&'()*+# %&'()*+$ +

Scheduler
Forecast

or Read
'!!%#

Decision Loss

"!!

Feature

Extractor

Figure 5.2: The architecture of our proposed model. It consists of the feature extractor,

the encoder, the scheduler, and the object detector. The encoder predicts the future fea-

ture map at the next frame and the current temporally-aware feature map. The scheduler

decides whether to exploit the forecast feature map or extract the actual feature map at

the next frame. The black arrows show the information flow used during training and

inference, and the green arrows show the flow for training only.

5.3.2 Encoder Module for Feature Map Forecast

Our encoder module has two identical encoders: Encoder1 and Encoder2. The archi-

tecture of each encoder consists of the spatial attention network [166] followed by the

bottleneck LSTM [110]. This allows us to recurrently retain past states and adapt to the

limited capacity of the bottleneck LSTM. We stack the two encoders to generate a fore-

cast feature map F́t+1 at the next frame and convert it into the feature map at the current

frame. Encoder1 takes the role of the forecast while Encoder2 for the conversion.

81

!!

'!!%#

Corr Conv BN Relu FCConv BN Relu
Decision

Score

Figure 5.3: Scheduler network. The output feature map of the correlation layer is fol-

lowed by two convolutional layers and a fc layer with a 2-way softmax.

At time t, Encoder1 receives the feature map Ft from the feature extractor and

outputs forecast feature map F́t+1 for the next frame. To train Encoder1, we use the

forecast loss so that F́t+1 becomes close to (actual) feature map Ft+1 (see Section 5.3.4).

Encoder2, on the other hand, receives F́t+1 and outputs F̂t as the converted feature

map at time t. Encoder2 incorporates the temporal information into the feature map,

allowing the detector to be aware of the temporal information.

In the inference phase, Ft and F̂t are then element-wisely averaged to have a feature

map F̃t which is fed to the object detector. By doing so, this simple architecture enables

to leverage the forecast feature map and to stabilize the object detection at the current

frame.

5.3.3 Scheduler Module

If the forecast feature map is reliably well-generated from the current feature map, we

can use it as the alternative to the (actual) feature map (obtained by the feature extractor)

for the detection at the next frame. This tends to happen as long as there is no significant

change from the current frame to the next frame. However, it is better to use an (actual)

feature map if the forecast feature map is not reliable. To determine which way should

be taken, we propose the scheduler module. The scheduler module aims to determine

whether to utilize the forecast feature map or extract the feature map by loading the

actual frame for the next frame detection.

Following [117] and utilizing the correlation of feature maps, we design the archi-

tecture of the scheduler module, as shown in Figure 5.3. The module receives F́t+1 and

F̃t and exports the score of 1 or 0 with its confidence, indicating to exploit the forecast

feature map (1) (forecast operation) or to read a new image (0) (read operation). If the

confidence score of the forecast operation exceeds threshold p (given beforehand), the

82

forecast operation is executed. Otherwise, the read operation is performed.

The binary classification loss is adopted to train the scheduler module where the

ground truth is generated using the next frame detection Dt+1 and its corresponding

ground-truth GT t+1.

5.3.4 Loss Function

We design a multi-task objective function to train our model. Namely, we use a local-

ization loss Lloc, a classification loss Lcls, a forecast loss Lfor, and a decision loss Ldec

all together:

L =
1

M
(αLloc + βLcls) + γLfor + λLdec, (5.1)

where M is the number of matched bounding boxes. We exactly follow [112] to define

Lloc and Lcls. Note that We set the hyper parameters to be α = 1,β = 1, γ = 1,λ = 0.7

in experiments.

Forecast Loss

To optimize Encoder1 to generate the forecast feature map, we supervise Encoder1

using the mean squared error between the forecast feature map F́t+1 and the (actual) one

Ft+t. Then, Lfor can be given as

Lfor =
1

n

1

m

1

l

n
∑

i=1

m
∑

j=1

l
∑

k=1

||F́t+1(i, j, k)− Ft(i, j, k)||2, (5.2)

where n, m, and l are, respectively, the width, height, and channels of feature maps.

Decision Loss

The decision loss is developed to train the scheduler module. It has the form of a simple

binary cross-entropy:

Ldec = −yt log(pt)− (1− yt) log(1− pt), (5.3)

where, pt and yt are the output score of the scheduler module at time t and the ground

truth generated using the next frame detection Dt+1 and its corresponding ground truth

GT t+1 (See Section 5.3.5 for details).

83

5.3.5 Training

The whole training pipeline is depicted in Figure 5.2. Fundamentally, our training pro-

cedure is the same as the usual video object detection [26, 110, 111]; however, there are

three major differences.

The first difference exists in training Encoder1. At time t, Encoder1 forecasts F́t+1

while its ground truth Ft+1 is available at time t + 1. Therefore, unlike existing works,

we need to generate a batch containing one extra frame in addition to the video length to

be trained.

The second difference is how to train the scheduler module. It is most important to

train the scheduler module so that its output is (almost) the same as the ground truth

yt. This depends on the accuracy of the object detector, and thus generating yt during

training is required. We use the detection result Dt+1 and its corresponding ground-truth

GT t+1 to generate the ground truth for the scheduler. If all the ground-truth bounding

boxes GT t+1 are matched with Dt+1 (IOU over 0.7, for example), the yt is labeled as 1;

0 otherwise.

The last difference is how we combine two feature maps: Ft and F̂t. In the training

phase, we do not propagate the recurrent state simply to generate Dt+1. We thus use

probabilistic connections in the averaging operation in the training phase, which leads to

output Ft, F̂t, or their averaged feature map randomly. This allows the object detector

not to depend on the temporally-aware feature maps.

All of the training is performed jointly, but the encoder module and the detector are

trained first just for stability.

5.3.6 Testing

The flow of inference follows the black arrows in Fig 5.2. At the time t, the model

simultaneously performs forecasting a feature map and detecting objects at the current

frame from F̃t. Also, using F́t+1 and F̂t, the scheduler module decides to whether use

F́t+1 or read the next frame for the detection at the next frame. The video’s initial frame

is image loading, but the scheduler’s function of inferring in subsequent frames will

continue.

84

5.4 Experiments through Next Future Prediction

5.4.1 Benchmark Datasets and Metrics

We evaluated the performance of our method on two public datasets: ImageNet VID [134]

and UA-DETRAC [164] (see Section 3.3.1). We evaluated the performance using mean

average precision (mAP) and average precision (AP) for ImageNet VID and UA-DETRAC,

respectively, (cf. Section 3.3.1).

5.4.2 Implementation Details

We used PyTorch and a PC with Xeon W-2123 CPU, NVIDIA RTX 2080 Ti GPU,

cuDNN v7.6, and CUDA 10.1.

Architecture

We adapt SSDLite [110, 112] architecture to the proposed model. We employ MobileNet

V2 [136] as a feature extractor because of its computational efficiency and use the feature

map before its average pool layer as Ft. In total, our proposed method consumes 1.1 GiB

of GPU memory for all components during inference.

Data Augmentation

In addition to the data augmentation proposed in [112], we employ a more extended one

to alleviate the potential over-fitting problem since it contains data with little change

in the positions of objects. To augment the motion of objects, we recombine videos

by selecting frames at equal intervals instead of training with consecutive frames. To

be more specific, for each video in a batch, thinning parameter q (integer) is randomly

selected from the interval
[

0,min(⌊(l−1
n
)− 1⌋, r)

]

, where l and n are the video’s length

and the number of training frames. Since ImageNet VID and UA-DETRAC have some

videos whose length is too long, we truncate the video length using r, which is set to be

25. Then, the training video is reconstructed from the original video according to q. This

augmentation gives us an improvement of 0.8, resulting in 65.2 in mAP for ImageNet

VID.

Following the idea of [146], we train the model without the thinning operation from

the last two epochs. This operation contributed to an additional 0.5 point increase in

85

Table 5.1: Performance comparison with state-of-the-art end-to-end video object detec-

tion models on ImageNet VID val. α is the hyper parameter of MobileNet. The last

column shows the runtime (FPS) on our GPU environments. All our results are obtained

on RTX 2080 Ti GPUs.

Methods Backbone mAP
Published Our Impl.

Device FPS FPS

LSTM-SSD [110](α = 1.0) MobileNetV1 [84] 54.4 Pixel 2 15 56

Flow-guided [190](α = 1.0) MobileNetV1 [84] 61.2 Mate 8 13 −
Memory-guided [111](α = 1.0) MobileNetV2 [136] 61.4 Pixel 3 27 61

LMP [193](α = 1.0) MobileNetV2 [136] 64.2 GTX1060 29 30

Ours (α = 1.0) MobileNetV2 [136] 65.7 RTX 2080 Ti 39 −

accuracy to achieve 65.7 in mAP for ImageNet VID.

Training Details

Our training procedure consists of two phases: (1) For Imagenet VID, we pretrain

our baseline model following the protocols [110, 191] with additional ImageNet DET

dataset [134]. For UA-DETRAC, we pretrain the baseline model as still-images. (2) We

injected the encoder and scheduler modules into the baseline model while we randomly

initialized the weights of the additional modules. We train the model on sequences of 10

frames and use a batch size of 12 and SGD. The encoder module, the feature extractor,

and detector are trained with an initial learning rate of 10−4 and 10−2, respectively, and

their decay rate of 0.1 at the 18th, 30th epochs. From the 25th epoch, the scheduler

module is involved in training with an initial learning rate of 10−3 and a decay rate of

0.1 at the 30th, the 35th epoch. We then trained all the weights together in an end-to-end

manner until the end of training at the 40th epoch.

5.4.3 Comparison with State-of-the-Art

Comparison on ImageNet VID

We compared our proposed model with state-of-the-art real-time and live streaming

video object detection methods. They are LSTM-SSD [110], Flow-guided [190], Memory-

guided [111] and LMP [193]. In this comparison, the threshold of the scheduler module

was set to 1.0.

As shown in Table 5.1, the proposed model achieves the best performance. It achieves

65.7% mAP, 1.5% higher than the strongest competitor [193], which employs a differ-

ent local and mid-range propagation strategy to extract past information. This is mainly

86

Figure 5.4: Visualization of example detection and the corresponding scheduler results

on ImageNet VID val (best view in color). We set p = 0.5 in the scheduler module.

Frames where the forecast feature map is used are specified in red; otherwise the real

frame is adopted.

thanks to introducing the feature map forecast and our end-to-end joint training.

Table 5.1 also shows the runtime of the methods. Our method runs at about 39

fps, achieving the real-time level. We see that our method runs about ten fps faster

than LMP [193] in the same backbone. We note that [110, 111, 190] are developed for

mobile devices, and thus published runtime comparison with them is just for a reference.

Therefore, for comparison, we re-measured their implementation [110, 111, 193] on our

GPU. Since they are simply propagating past information, they run faster but at the

expense of accuracy.

Figure 5.4 visualizes object detection results and outputs of the scheduler module

where frames used by the forecast feature maps are surrounded by the red rectangle.

The scheduler module tends to leverage the forecast feature map when the motion of

objects is easy to predict while frequently deciding to read new images on complex

scenes. We confirm that reasonable detection is realized using forecast feature maps.

Detection using future prediction works well with decisions made by the scheduler, but

a failure case by the scheduler is shown in the bottom row. This happens when there

is a drastic change in the position of an object in a sequence of frames due to a drastic

movement of the camera. When the camera moves gradually, as in the example in the

third row, the scheduler does not leverage the prediction until it knows the movement,

87

Table 5.2: Performance comparison with state-of-the-art real-time detectors on UA-

DETRAC test. (* is tested by ourselves.)

Method Backbone AP FPS Memory (GiB) GPU

LSTM-SSD* [110] MobileNet [84] 49.2 56 0.9 RTX 2080 Ti

Memory-guided* [111] MobileNetV2 [136] 53.6 61 1.1 RTX 2080 Ti

LMP* [193] MobileNetV2 [136] 55.1 30 1.8 RTX 2080 Ti

Ours MobileNetV2 [136] 65.4 39 1.1 RTX 2080 Ti

but it tends to be weak in scenes where the camera moves rapidly.

Comparison on UA-DETRAC

We compared the real-time processing capability of the methods, which does not rely

on external memory, on the UA-DETRAC dataset. Table 5.2 shows the accuracy of

the methods. For the non-real-time methods, please refer to Section 3.3.4. LSTM-

SSD [110], Memory-guided [111], and LMP [193] only exploit temporal information

from the past to the present, and we can confirm that the proposed method, which utilizes

future information through prediction, is significantly superior in terms of accuracy. In

addition, we can confirm that the accuracy of the proposed method can be improved by

using only 1.1 GiB memory, which is less memory than LMP.

5.4.4 Detailed Analysis

To confirm the effectiveness of the proposed method in detail, we conducted ablation

studies on ImageNet VID and UA-DETRAC and detailed analysis on ImageNet VID.

Table 5.3: Effectiveness of components in the proposed model

Methods
Components ImageNet VID UA-DETRAC

Current information Forecast mAP mAPs mAPm mAPf AP

(a) Complete model ! ! 65.7 73.9 64.4 47.4 65.4

(b) Model w/o forecast ! 64.1 72.5 62.7 44.5 54.2

(c) Model w/o combination ! 62.4 70.8 61.0 43.9 58.6

Baseline 60.6 68.7 58.8 41.6 52.2

Component Analysis

We set p = 1.0 in the scheduler module and generated two ablation models: the model

w/o forecast and the model w/o combination. The model w/o forecast is obtained by

dropping the forecast training, and the model w/o combination is obtained by dropping

the skip connection between Ft and F̂t. We remark that the encoder module of the model

88

w/o forecast is used only to stabilize the feature map from the past, resulting in similar

to methods [26, 110]. We also remark that in the model w/o combination, F̂t is directly

fed to the object detector.

Performances of the ablation models and the baseline model are illustrated in Ta-

ble 5.3. Note that we follow a detailed evaluation metric [191] to evaluate the perfor-

mance on the categories of slow, medium, and fast objects, where these three categories

are divided by their average IoU scores between objects across nearby frames. (cf. Sec-

tion 4.4.5).

From Table 5.3, we see that simultaneously training the forecast and the detection

improves the overall accuracy by 1.6 points on ImageNet VID. This gain mainly comes

from the Fast category (2.9 point improvement). We thus reason that the larger the

object’s movement, the more critical it is to forecast the future state. We also see that

only forecasting the future alone is not sufficient. Indeed, we observe that from model

(a) W/o future prediction (b) W/ future prediction

Figure 5.5: Visualized results for an occluded scene on UA-DETRAC test. Each

column shows the detection result of successive frames by the model without forecast

and the proposed method. We can confirm that when an occlusion issue occurs on the

left side of the frames, the proposed method, which predicts the future motion of the

object, robustly detects it. Best viewed digitally and in color.

89

w/o combination, utilizing Ft for the feature maps to be fed to the object detector is also

essential.

In terms of the UA-DETRAC dataset, we can see that, unlike the ImageNet VID,

the model w/o forecast has a significant loss of accuracy. It may suggest that the con-

cept of prediction is essential when the future motion of an object such as a car is easily

predictable. Figure 5.5 shows the difference in detection results on the UA-DETRAC

dataset between the proposed method and the model without forecast, which only prop-

agates past to present information. Under the occlusion scene, the proposed method with

future prediction can detect robustly, which confirms the effectiveness of the forecast.

Figure 5.6: mAP v.s. FPS trade-off comparison under different threshold p in the sched-

uler module.

Effectiveness of Scheduler Module

Figure 5.6 illustrates mAP and fps under different threshold p in the scheduler module

on ImageNet VID. Note that “fixed” indicates the model using a fixed scheduling rule

where the model reads the image at every odd frame and utilizes forecast feature maps

at every even frame. We confirm that lowering p accelerates the processing speed while

dropping the accuracy. This is because the model tends not to compute forecast feature

maps from the image. We also confirm that the adaptive scheduling is superior to the

fixed rule. We thus conclude that the scheduler module can flexibly control the accuracy

and speed.

90

Figure 5.7: Forecast operation usage rate when varying the threshold p. The usage rate

of the future prediction operation depends on the movement of the objects, Motion IoU.

Figure 5.8: Visualization of the feature activation error between the predicted feature

map and the actual feature map at the next time-step. Frames that use the future forecast

feature map for detection are surrounded by the red rectangle (p = 0.5).

To examine more detail in which scenes the scheduler is utilized, the average usage

rate of the prediction in a video clip when the threshold p is varied in terms of Motion IoU

and shown in Figure 5.7. The average forecast usage rate is defined by the average ratio

of the predicted operation in a 9-frame interval during inference over the entire set of

videos. It can be seen that as the threshold is increased, the usage rate of the prediction

decreases for all metrics, and conversely, as the threshold is decreased, the usage rate

increases. Therefore, we confirm that the change of forecast utilization affects speed

and accuracy, as shown in Figure 5.6. Moreover, the fact that the usage rate differs for

each Motion IoU confirms that the scheduler changes the usage rate adaptively based on

91

the object’s motion.

Figure 5.8 shows the errors in terms of the heat map between actual feature maps

and forecast feature maps when using the scheduler module or “fixed”. The heat map

turns more yellow when errors become large. We see that “fixed” results in more errors.

This can be understood because it does not have enough uptake. By contrast, the sched-

uler module takes on the actual images until they are stable, making the errors smaller.

Figure 5.8 also shows that the errors are more likely to occur near target objects having

uncertainty for their future locations.

92

5.5 Proposed Method through Next Several Future Predic-

tions

This section proposes a method to enhance the accuracy of real-time video object de-

tection through the successive several future frame prediction. Future feature map pre-

diction approach [62] is more effective than just stabilizing the feature map with past

information [26, 110], since it actively learns how an object moves by predicting a fea-

ture map at the next frame. While the method improves accuracy, it has the following

limitations: (1) Predicting the next frame feature map is too short-term, so the future

information is not effectively utilized in the training phase. (2) The accuracy of predict-

ing the next-frame feature map depends on the feature extractor, and the feature detector

itself is acquired in the training phase, which takes time. Hence, it is insufficient to

leverage future information to train online video object detection with future feature

map prediction [62]. However, if we simply leverage the long-term temporal informa-

tion, it will be difficult to predict with a definitive model as proposed in the previous

work [62] due to the problem of future uncertainty. It is because the deterministic model

learns to output the average of multiple future possibilities [99].

Video pretraining methods are recently studied for video recognition tasks where a

video representation is learned through such as pace prediction [155] or pseudo-label

estimation [69]. Predicting future frames in a video [19, 99] can be regarded as a video

pretraining method. It can provide a video representation that effectively learns temporal

and spatial information, and can be applied to online object detection. However, since

existing studies focus only on generating future frames, proposed model structures are

task-specific, and their applicability to other tasks is not well investigated.

Based on the above observations, we propose a framework that utilizes stochastic

next-frame video prediction [99] into online video object detection. During training

to generate future frames, we can obtain the video representation that can effectively

enhance the feature map at the current frame with temporal information from past to

several future frames. Stochastic forecasting deals with the uncertainty of the future by

sampling one of the future possibilities.

In order to utilize stochastic future prediction for object detection, we propose a

two-stage training method. Figure 5.9 shows the two-stage training flow of the pro-

93

(a) Pretraining the model by future prediction

(b) Fine-tuning the model to a downstream task

Figure 5.9: The overview of our proposed framework. To obtain a video representation,

we pretrain the model through the future prediction task. Then, we append a detection

module to the trained model and transfer it to the detection task. In the inference, only

the dotted line area in (b) is used (the future prediction part is not used).

posed framework. First, we pretrain the encoder-decoder structure of the detector using

stochastic next-frame video prediction [99]. In this pretraining step, the video repre-

sentation, namely, the context of the video is learned. This step is conducted by self-

supervised learning with unlabeled videos, and thus our model can exploit large-scale

videos with no annotation. Next, we append the object detection module to the decoder

as the downstream task and then fine-tune the model for a detector. We remark that

although “pretraining” and “fine-tuning” are often used as applying a model trained on

one dataset to another dataset in the same task, they mean in this method transferring the

model to another task.

5.5.1 Stochastic Adversarial Video Prediction

We build our video object detection framework on Stochastic Adversarial Video Predic-

tion (SAVP) [99]. Our model is modified from SAVP so that it is able not only to predict

future frames, but also to detect objects in videos. This section briefly describes SAVP.

SAVP [99] combines GANs and VAEs. VAEs produce diverse images while sam-

94

Figure 5.10: The architecture of the proposed model. The model is pretrained using the

components in the orange-colored area, and then fine-tuned using the whole components.

The inference corresponds to blue-colored area.

pling but tend to produce blurry images, while GANs produce clear images but suffer

from producing diverse images. Combining VAEs and GANs thus benefits from their

complementary strengths.

SAVP consists of a generator G and a discriminator D. G is with an encoder-decoder

structure conditioned with past frames, and from a current frame and its latent codes at

the time, generates the next frame while D optimizes G adversarially. SAVP possesses

two distributions for sampling the latent code: the prior distribution and the posterior

one, approximated by the learned encoder, in which the posterior distribution is param-

eterized by a conditional Gaussian distribution using frames of adjacent time steps. At

test time, a random latent code z is sampled from the prior distribution independently at

each time step. The generator G takes the previous frame and z, and then synthesizes a

next-step future frame. To generate the next frame, the frame generated in the previous

step is fed into G again, and the generation is repeated. During training, G is optimized

to predict videos that match the distribution of actual videos using the discriminator D.

The historical state is accessed via the recurrent neural networks in the generator G.

SAVP also uses separate discriminators D and DVAE, depending on the distribution used

to sample the latent code.

95

5.5.2 Pipeline

The overall pipeline architecture of our proposed framework is depicted in Figure 5.10.

The proposed method consists of five major components. They are (1) recurrent encoder

RE for feature extraction from each frame, (4) a synthetic head for generating an image

from the decoded feature map, and (5) a discriminator for discriminating the generated

future frames from the actual future ones.

We have two training steps and one inference step. During “Pretraining”, the model

acquires the feature representation of videos by self-supervised learning through predict-

ing future frames. The training method is essentially the same as SAVP, but reconstruc-

tion of the current frame is also performed for the “fine-tuning” step. Optimization of the

generated future frames is performed using a GAN. “Fine-tuning” transfers the model

to our downstream task, i.e., detection, using the feature representations acquired in the

pretraining step. The difference from pretraining is that the detection head is appended

to the decoder.

During “Inference”, we do not generate future frames but detect objects. Generating

future prediction frames contributes to acquiring video representations during training,

but is not necessary for detection.

5.5.3 Our Prediction and Detection Network

The task of future prediction takes the current frame xt (at time t) as input with the past

d frames {ci}t−1
i=t−d as the context, and predicts the future frame x̂t+1 at time t. However,

video object detection requires a detection result in the current frame xt at the input time

t (the output from the decoder must be at the current time t). Therefore, to combine

video object detection and future prediction, the model must be able to decode feature

maps for the current frame and the next frame separately.

We design an encode-decoder network to decode the encoded features at each time

independently. The network has the recurrent encoder RE and recurrent decoder RD as

shown in Figure 5.10. The RE and RD are based on ResNet [81] and Feature Pyramid

Network (FPN) [105] respectively. Two-layered ConvLSTMs [138] are added to the

outputs of each ResNet block (C3, C4, C5, P3, P4, P5). The roles of ConvLSTMs in

RE and RD are different. ConvLSTMs in RE are used to generate the temporally-

aware feature map [110], whereas those in RD are used to propagate the information

96

over time.

Using the feature map obtained from the encoder at time t, the decoder at time t

together with the synthetic head at time t first reconstructs the current frame x̂t. Then,

it samples the latent code zt and decodes the feature map with zt to generate the next

frame x̂t+1. The states of the recurrent neural network in the decoder are propagated

to account for time-stamp information. The decoders at time t and t + 1 share their

weights except the ConvLSTMs states. In order to generate realistic images from the

decoder, we append the shared-weighted synthetic heads on top of the output of P3. The

synthetic head is a simple network consisting of a convolution layer with a 3-size kernel

and 2-stride, instance normalization [150], and ReLu, stacked together twice. The output

of the final convolution layer is set to 3 dimensions for RGB images. To optimize the

generated image, the corresponding ground truth image is resized to the P3 feature map

resolution size.

To enable stochastic sampling for the future frame generation, RD is conditioned

on time-varying latent codes. Those codes are sampled at training. Each latent code zt

is a 16-dimensional vector, and is passed through a fully-connected LSTM to facilitate

correlations in time of the latent variables. The encoded latent codes are then converted

to match the 256 input dimensions of FPN, and added channel-wisely to the all input of

FPN during lateral connections. Thus, the latent codes are added to the input of FPN

when generating the future frame stochastically, but not when generating the current

frame. FPN works as an ordinary object detection module.

5.5.4 Pretraining Loss

The current frame image is first reconstructed to enable the model to transfer it to both

detection in the fine-tuning step and future frame prediction. Then, the decoder times-

tamp is increased to generate future frames. The loss function for the pretraining step is

almost identical to that for the SAVP training [99]. The only difference is that our loss

involves the current frame reconstruction. We use d = 10 frames for initialization to

predict future as proposed in [99].

The loss function of SAVP is defined with four weights λi (i = {1, . . . , 4}) as fol-

lows:

Lsavp = λ1L1 + λ2LKL + λ3LGAN + λ4LVAE
GAN, (5.4)

97

where L1 is the L1 norm between the forecasted frames and the ground truth, LKL is the

KL divergence between the prior and posterior distribution, LGAN is adversarial loss for

discriminator, and LVAE
GAN is analogous to LGAN except which use latent codes sampled

from the posterior distribution. See [99] for details of these terms. In order to optimize

the reconstructed current frame x̂t from the actual frame xt at the time t, we employ L1

norm. The loss function Lvideo for our pretraining is defined as:

Lvideo = Lsavp + λ5||xt − x̂t||1, (5.5)

where λ5 is the weights for reconstruction loss of the current frame.

5.5.5 Fine-tuning Loss

The pretrained model will be optimized to be a model for detection. Through fine-tuning,

we train the whole weights to fit for detection. Fine-tuning is the same as pretraining

except for detection loss and input. The loss for detection defined in FCOS [145] is set

to Ldet. As a result, the loss function for the current frame in fine-tuning is

Lfinetune = αLvideo + βLdet, (5.6)

where α and β is the balance weights for Lvideo and Ldet, respectively.

The difference of input is that in detection, the previous frame may not be obtained

due to the timing of video loading, so we select a random value from [0 10] (we set

d = 10) and use the frame corresponding to the value.

5.5.6 Inference Step

The encoder and decoder inherit the ConvLSTMs state from the previous frame ex-

cept for the initial frame, and the detection is performed sequentially using the encoder-

decoder with input frames. It is important to note that we neither reconstruct the current

frame nor predict future frames at the inference step. This is because the fine-tuned

model already acquires the video representation for detection. Removing reconstruction

and prediction functions also contributes to faster inference.

98

5.6 Experiments through Next Several Future Predictions

5.6.1 Benchmark Datasets and Metrics

We evaluated the performance of our method on three public datasets: ImageNet VID [134],

UA-DETRAC [164] and VisDrone-VID2019 [188] (see Section 4.4.1 for more details

about datasets.) We evaluated the performance using mean average precision (mAP),

AP and AP for ImageNet VID, UA-DETRAC and VisDrone-VID, respectively (cf. Sec-

tion 4.4.1).

5.6.2 Implementation Details

We employ FCOS [145] as the baseline object detector in our proposed model. On Im-

ageNet VID, we use ResNet-50 and ResNet-101 [81] with FPN [105] for the backbone

and insert ConvLSTMs as described in Section 5.5.3. We utilize ResNet-101 as a back-

bone on Visdrone and UA-DETRAC dataset for a fair comparison with other methods.

We follow the hyper-parameters of FCOS [145] and the modifications [2]. The input

images are resized to have their smaller side to be 512 pixels on ImageNet VID and

UA-DETRAC, and 800 pixels on VisDrone-VID2019, respectively.

For pretraining, we follow SAVP [99] with SGD and a batch size of 16 with pre-

trained weights of ImageNet. We set λ1 = 0.25, λ2 = 0.0375, λ3 = 0.3, λ4 = 0.3, and

λ5 = 0.25 empirically and use 16 dimensions of latent codes. We utilize the discrim-

inator D as proposed in [99]. We train our model for ten epochs to predict a 10-frame

forward future in total, with the learning rate of 10−4 and 10−5 in the first six and the

last two epochs, respectively.

For fine-tuning, we set α = 1.0, β = 1.0. We then train the pretrained model for

five epochs, with the learning rate of 10−4 and 10−5 in the first 3.3 and the last epoch,

respectively. Although we trained our model on two RTX 3090 GPUs, we evaluated the

speed performance on two 2080 Ti GPUs for a fair comparison with other methods. In

total, our proposed method with ResNet-50 and ResNet-101 consumes 1.5 and 1.8 GiB

of GPU memory for all components during inference, respectively.

99

Table 5.4: Performance comparison with the state-of-the-art online and real-time detec-

tors on ImageNet VID val. (* is tested by ourselves.)

Models Backbone Base Detector mAP FPS Device

LMP [193] MobileNetV2 [136] RetinaNet [106] 64.2 29 GTX 1060

TSSD-OTA [27] VGG-16 [141] SSD [112] 65.4 21 Titan X

ROD-FMF [62] MobileNetV2 [136] SSD [112] 65.7 39 2080 Ti

VOD-MT [86] VGG-16 [141] SSD [112] 71.0 18 −
CrevNet* [182] CrevNet-48-2 [182] SSD [112] 60.1 1.8 2080 Ti

DFF [192] ResNet-101 [81] R-FCN [37] 73.1 20 K40

AdaScale [31] ResNet-101 [81] R-FCN [37] 75.5 21 1080 Ti

Attention-guided [179] ResNet-101 [81] R-FCN [37] 73.7 22 1080 Ti

Heatmap-guided [175] ResNet-101 [81] CenterNet [51] 76.7 37 −
Ours ResNet-50 [81] FCOS [145] 73.1 54 2080 Ti

Ours ResNet-101 [81] FCOS [145] 78.0 39 2080 Ti

5.6.3 Comparison with State-of-the-Art

Comparison on ImageNet VID

We compare our method against several online video object detectors. Table 5.4 shows

their performance comparison. We observe that with the ResNet-101 backbone, our

method surpasses the strong competitive detector, Heatmap-guided [175] with faster

processing speed.

Our method runs at 54 and 39 fps, positioning at the first and second place with

ResNet-50 and ResNet-101, respectively. Despite the high-speed processing, it achieves

an accuracy of 73.1 mAP, which may be sufficient for reasonable detection accuracy. A

comparison between detectors capable of real-time processing confirms that our method

runs at high speed while maintaining high accuracy.

In particular, when compared with VOD-MT [86], which is close in accuracy, we see

that our method runs more than twice faster. VOT-MT aggregates past feature maps to

stabilize detection, and takes time for each frame aggregation. In contrast, our method

learns video representation in advance and transfers it to the detection task, so that no

aggregation is required for detection. This difference brings the high accuracy of our

method with excellent speed. More detailed comparison with VOT-MT is presented in

Section 5.6.4.

In terms of GPU memory consumption, the proposed method consumes 1.5GiB for

ResNet-50 and 1.8GiB for ResNet-101. On the other hand, VOD-MT and CrevNet con-

sume 4.3GiB and 3.9GiB, respectively, indicating that the proposed method can operate

with low memory. Therefore, the proposed method achieves high accuracy and low

100

Table 5.5: Performance comparison on UA-DETRAC test. Bold faces are the top per-

formance on each subset. Methods in the first block are for still images. The methods in

the second block are for videos. (* is tested by ourselves; ⋆ is our own implementation.)

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU

GP-FRCNN [140] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4 Tesla K40

EB [156] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X

YOLOv3-SPP [92] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6-7 Titan Xp

MSVD SPP [93] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9-10 Titan Xp

FG–BR Net [59] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 Tesla M40

SpotNet [124] 86.80 97.58 92.57 76.58 89.38 89.53 80.93 91.42 14 GTX 1080 Ti

RetinaNet [106] 69.14 86.82 73.70 56.74 79.88 66.57 55.21 82.09 − −
3D-DETNET [101] 53.30 66.66 59.26 43.22 63.30 52.90 44.27 71.26 26 −
RN-VID [126] 70.57 87.50 75.53 58.04 80.69 69.56 56.15 83.15 − −
FFAVOD-SpotNet [125] 88.10 97.82 92.84 79.14 91.25 89.55 82.85 91.72 − −
FFAVOD-RetinaNet [125] 70.57 87.50 75.53 58.04 80.69 69.56 56.15 83.60 − −
TSSD* [26] 57.16 81.06 62.07 43.14 57.59 63.87 44.98 67.73 32 RTX 2080 Ti

VOD-MT⋆ [86] 67.22 82.81 74.36 55.29 71.43 66.79 64.16 70.82 14 RTX 2080 Ti

TFEN [61] 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29 RTX 2080 Ti

Ours 80.91 96.52 86.73 71.02 87.31 81.30 71.19 90.10 38 RTX 2080 Ti

FCOS* [145] 70.01 86.91 74.17 57.27 80.13 67.16 55.92 82.47 41 RTX 2080 Ti

Table 5.6: Performance comparison with the state-of-the-art models on VisDrone-

VID2019 test.

Methods AP AP50 AP75 AR1 AR10 AR100 AR500

Faster R-CNN [131] 14.46 31.80 11.20 8.55 21.31 26.77 26.77

D&T [54] 17.04 35.37 14.11 10.47 25.76 31.86 32.03

FGFA [191] 18.33 39.71 14.39 10.09 26.25 34.49 34.89

FCOS(baseline) [145] 15.12 32.42 11.44 9.01 22.29 26.98 26.98

Ours 21.82 49.01 16.83 12.91 30.22 41.28 41.28

DBAI-Det [188] 29.22 58.00 25.34 14.30 35.58 50.75 53.67

memory by training through future prediction.

Comparison on UA-DETRAC

The results on the UA-DETRAC dataset are reported in Table 5.5. We confirm that the

proposed method ranks the fastest among several detectors except for the baseline, about

four times faster than FG-BR Net [59], which produces close accuracy. As for methods

using temporal information, FFAVOD-SpotNet [125], which fuses the feature maps of

the still image detector SpotNet with past and future feature maps, is superior in terms

of accuracy. Moreover, FFAVOD has a gain of about 1.4 pt when applied to RetinaNet,

similar to our method baseline, FCOS. In contrast, our method has a significant gain

of about 11 pt without using future information, confirming that the effect of future

prediction is substantial.

101

(a) Baseline (FCOS)

(b) Ours

Figure 5.11: Visualized results for subtle motion blur scene on VisDrone-VID test.

From top to bottom: predictions of Baseline (FCOS) and ours. Best viewed digitally

and in color.

Comparison on VisDrone-VID

Table 5.6 shows performance comparison. D&T [54] and FGFA [191] are methods to

stabilize the detections of the still image detector [131] with temporal information. We

see that our model significantly improves the accuracy from the baseline and outperforms

the compared methods. Our model runs at 23 fps. As a reference, we show DBAI-

Det [188] since it is ranked in first place at the VisDrone-VID2019 competition. Note

that DBAI-Det [188] combines heavy backbone [172] and several methods [15, 38] for

102

Figure 5.12: Visualization results on ImageNet VID val. From left to right: the predic-

tions of the model w/o prediction, the complete model, and LMP [193]. The proposed

method continues to detect the object on degraded scenes with a high degree of confi-

dence.

accuracy, and runs at less than 1 fps.

Figure 5.11 visualize the comparison of the baseline and the proposed method on

VisDrone-VID scene. We see that our method detect target object robustly compared to

the baseline.

5.6.4 Detailed Analysis

To confirm the effectiveness of the proposed method in detail, we conducted ablation

studies on ImageNet VID and UA-DETRAC and detailed analysis on ImageNet VID.

We follow a motion-aware evaluation metric in [191] to evaluate the performance on

Table 5.7: Ablation study of our model on ImageNet VID val and UA-DETRAC test.

Methods
ImageNet VID UA-DETRAC

mAP mAPs mAPm mAPf FPS AP

FCOS (baseline) [145] 68.7 79.3 68.5 43.6 56 70.0

model w/o prediction (+ConvLSTMs only) 70.1 80.0 68.7 44.5 54 71.6

model w/o pretraing 71.6 83.1 69.0 47.1 54 77.2

complete model 73.1 83.3 71.7 52.7 54 80.9

complete model w/o GAN 71.7 81.5 69.6 48.2 54 72.5

complete model w/o VAE 70.7 80.9 69.2 44.9 54 73.1

103

Figure 5.13: Visualization results on ImageNet VID val. From left to right: the predic-

tions of the model w/o prediction, the complete model, and LMP [193]. The proposed

method provides stable detection without class error even when the object moves rapidly.

the categories of slow, medium, and fast objects, where these three categories are di-

vided by their average IoU scores between objects across nearby frames. (see details in

Section 4.4.5.)

Component Ablation Analysis on ImageNet VID and UA-DETRAC

We evaluate the impact of key components of our model on the detection accuracy; see

Table 5.7. Model w/o prediction exploits from past to current frames such as [27] (we

append ConvLSTMs only), and model w/o pretraining represents the model is trained

for future prediction and object detection simultaneously without pretraining, and the

number of training iterations is the same as for pretraining. The lower part of Table 5.7

shows the models without using VAEs or GANs in the SAVP [99] part. We see that

model w/o pretraining outperforms model w/o prediction, meaning that the accuracy

is improved by training the recurrent neural network to predict the future, rather than

simply propagating features from the past to the present. It is important to emphasize

that the significant gain in UA-DETRAC is future prediction, which is considered to be

an easily predictable object. We also see that our complete model significantly outper-

104

Table 5.8: Performance comparison of VOD modules with VOD-MT [86] on RetinaNet

and ResNeXt-101 on ImageNet VID val.

Methods mAP mAPs mAPm mAPf FPS

RetinaNet [106] 77.9 87.3 74.5 55.7 9.1

VOD-MT [86] 79.2 88.2 76.0 57.5 6.4

Ours 81.5 89.2 80.2 63.4 8.7

forms the model w/o pretraining. This indicates that learning the video representation

through prediction and transferring it to detection is a meaningful procedure to improve

detection accuracy. This is also supported by the fact that the improved accuracy for fast

objects is remarkable because video representations for fast objects are more sensitive

to changes in context, such as motion. When GANs or VAEs are ablated, the accuracy

drops, confirming that they are both critical for using long-term future predictions.

Figure 5.12 and 5.13 show the detection results of the model w/o prediction, ours

and the competitive model, LMP [193]. All models utilize the same backbone and ar-

chitecture for a fair comparison. We see that our method provides more stable detection

than the model w/o prediction. In particular, our method is found to be robust to blurring

and suppresses class switching, achieving a higher score as seen in Table 5.7.

Impact analysis on detection confidence score

We examined how the proposed method differs from the existing approach, which prop-

agates temporal information from the past to the current time regarding the detection

confidence score. Figure 5.14 shows the confidence scores with time for the model w/o

prediction, the complete model, and LMP [193]. The score is given for objects detected

with the correct label and zeroes for false positives or missing detections. We confirm

that the proposed method maintains a higher score with smaller fluctuation than the ex-

isting approach. In addition, it correctly detects objects longer intervals even in scenes

that are difficult to detect, as shown in Figure 5.13. We see that feature map enhancement

through prediction is essential for stable detection.

Fair Comparison with the Same Baseline

To make the comparison more fairly with the closely performing method VOT-MT [86],

we follow the same configuration of the detector and feature extractor as VOD-MT. Ta-

ble 5.8 shows the accuracy and speed comparison of VOD-MT under the same detector,

105

Table 5.9: Impact of the number of the future prediction on ImageNet VID val.

predicted frames (T) 1 3 5 7 10 15 20

mAP 71.9 72.3 72.5 72.8 73.1 72.9 73.2

feature extractor, and input frame size. Both methods have improved accuracy from the

base detector, but our method achieves higher accuracy and faster processing speed. This

is because our method just uses robust feature representations for the inference that are

learned during training, while VOT-MT generates robust feature maps at each inference.

Effect of KL Divergence

We change KL loss weight λ2 to see how the weighting for VAE affects the detection

and generation. Figure 5.15 shows under different λ2, the detection accuracy and Struc-

tural Similarity Index Measure (SSIM) [163]) computed with the ground truth in 10

future frames. When λ2 is large (weighting for VAE is large), KL loss prevents the gen-

eration as the regularizer (producing poor SSIM). As λ2 becomes small, however, the

detection accuracy and the generated image become high until a certain point. Then,

as λ2 becomes even smaller, KL loss does not work well for detection while rendering

becomes better until some point and then gradually degraded. Therefore, there is the

trade-off and λ2 that compromises detection and generation, which should be learned as

a well-balanced point. The frame generation accuracy does not increase when the KL

loss works well because images are generated stochastically, and they are structurally

different from the actual future ones, as seen at the bottom of the row.

Impact of Prediction of Future Frame

We investigate how much the successive future predictions affect the detection accuracy.

Table 5.9 shows the detection accuracy under different number of generated frames dur-

ing training. We see that the accuracy gradually improves with longer future predictions

and becomes saturated with about ten frame predictions. We confirm that ten frames are

effective and sufficient for the prediction.

Comparison of Stochastic and Deterministic Future Predictions

The proposed method learns feature representation by stochastically predicting what is

likely to happen in the future using VAE. We evaluate how stochastic prediction af-

106

Table 5.10: Performance comparison under different pretraining datasets on ImageNet

VID val.

Pretraining dataset ImageNet VID YouTube-BB BDD100K

mAP 73.1 (+3.5) 76.6 (+2.1) 75.2

fects the acquisition of video representations with respect to the size of the training set

(Fig. 5.16). As a comparison of deterministic prediction, we also show the result without

using VAE. Here, we change the ratio of training data against the training set of Ima-

geNet VID from 0.5 to 1.0 by 0.25. The number of iterations in training is adjusted not

to be affected by the ratio. Figure 5.16 shows that stochastic prediction tends to be more

accurate as of the training data size increases compared to deterministic prediction. We

also observe that while the final value of the loss function for deterministic prediction

does not change along with the training data size, that for stochastic prediction becomes

increased.

Figure 5.17 shows that the deterministic prediction converges to almost the same

level regardless of the ratio of data really used for training against the training set of

ImageNet VID. In contrast, stochastic prediction converges significantly different lev-

els depending on the ratio. This can be understood as follows: as the data variation

increases, the training loss becomes unlikely to drop, resulting in less overfitting to the

training videos. This suggests that stochastic prediction leads to increasing the model

capacity for detection by avoiding overfitting that arises for deterministic prediction due

to redundant training data [167].

Impact of Pretraining Dataset

Our model does not require an annotated dataset for pretraining. In order to investigate

how the size and variation of datasets used for pretraining affect detection accuracy,

we exploit two video datasets: YouTube-BB [127] and BDD100K [180]. YouTube-

BB is a new large-scale natural scene dataset similar to ImageNet VID and consists of

about 380,000 15-20 second videos extracted from publicly available YouTube videos.

BDD100K is the largest and most diverse open-driving video dataset to date, consisting

of 100,000 videos recorded in different weather conditions such as clear, cloudy, and

rainy, and at different times of the day and night.

Table 5.10 shows the detection accuracy under different datasets for pretraining.

107

Table 5.11: Prediction accuracy in SSIM on Caltech Pedestrian dataset. Higher SSIM

means better prediction accuracy.

Model Next-Frame 3rd 6th 9th

CrevNet [182] 0.92 0.83 0.73 0.67

Ours 0.89 0.79 0.69 0.65

Table 5.12: Detection accuracy in mAP on KITTI

Methods
Car Pedestrian Cyclist

mAP
Easy Mod Hard Easy Mod Hard Easy Mod Hard

CrevNet [182] 91.9 91.8 86.0 89.7 83.2 75.8 87.3 80.9 72.2 84.3

Ours 95.3 93.3 91.1 88.8 80.5 75.9 89.1 81.2 73.1 85.4

Without any effort, pretraining with the YouTube-BB dataset improves the accuracy by

3.5 points. This is a significant gain without increasing any cost of inference. Pre-

training with BDD100K also shows the improvement in accuracy by 2.1 points. This

interestingly indicates that even pretraining on a completely different-looking dataset

improves accuracy. These observations mean that there is excellent potential for ac-

curacy improvement by using an immense amount of training data for learning video

representations through future prediction.

5.6.5 Discussion

CrevNet [182] is proposed recently as a deterministic model to generate future images. It

focuses on predicting future frames as accurately as possible by minimizing information

loss during feature extraction, but its application to detection is also suggested. Here, we

evaluate the accuracy of future image generation and detection to see whether determin-

istically predicting accurate future images is really required for accurate detection. We

follow the evaluation in CrevNet [182]. To be more specific, we pretrained our model

for video prediction on KITTI [67]. The accuracy of future image generation by the pre-

trained model is then evaluated on the Caltech Pedestrian dataset [48] using SSIM [163].

Next, we fine-tuned the model using the detection data on the KITTI. Since the training

set of the KITTI dataset provides unlabeled frames of the previous three frames for each

annotated detection frame and no future frames, the fine-tuning step of our method is

purely for the detection part.

Tables 5.11 and 5.12 show accuracy of generating future images on Caltech, and

the detection accuracy on KITTI. We see that while our method is less accurate than

108

Table 5.13: Performance comparison with the state-of-the-art models on YouTube-

VIS2019 val. All of the methods use ResNet-50 as backbone.

Methods Online? FPS AP AP50 AP75 AR1 AR10

OSMN [177] ! 27.5 45.1 29.1 28.6 33.1

DeepSORT [165] ! 26.1 42.9 26.1 27.8 31.3

FEELVOS [153] 26.9 42.0 29.7 29.9 33.4

MaskTrack R-CNN [176] ! 10 30.3 51.1 32.6 31.0 35.5

MaskProp [8] 40.0 − 42.9 − −

SipMask [16] ! 34 32.5 53.0 33.3 33.5 38.9

STEm-Seg [4] 4 30.6 50.7 33.5 31.6 37.1

CompFeat [58] ! 35.3 56.0 38.6 33.1 40.3

VisTR [161] 30 36.2 59.8 36.9 37.2 42.4

CrossVIS [178] ! 40 34.8 54.6 37.9 34.0 39.0

VisSTG [159] ! 22 36.5 58.6 39.0 35.5 40.8

SG-Net [109] ! 23 34.8 56.1 36.8 35.8 40.8

TF-Blender [36]+SG-Net [109] 21 35.7 57.1 37.6 36.6 42.0

Ours+SG-Net [109] ! 21 36.3 54.7 40.1 36.7 43.6

CrevNet in terms of generating future images in both the short and long-term, it is better

in terms of detection; our method significantly outperforms CrevNet. We reason that

the video representation learned for generating accurate future images does not match

the representation for object detection. Therefore, some uncertainty in video representa-

tion brought by stochastic prediction is needed to increase the model capacity for other

tasks. Fine-tuning to object detection makes use of this capacity to adjust the video

representation to detection.

5.6.6 Video Instance Segmentation Results

Since our method is applicable to methods that are annotated only on keyframes, we

evaluated it on the YouTube-VIS dataset [176] (See Section 4.4.6 for more details.) To

support instance segmentation and tracking, we used the SG-Net [109] method based

on the one-stage detector. Table 5.13 shows the results of the YouTube-VIS validation

set. Our method improves the accuracy by 1.5 points over SG-Net. While most of

the methods are proposed for tracking and mask propagation, recently, TF-Blender has

been proposed to improve the accuracy by improving the feature map in the surrounding

frames. This is an improvement of 0.9 points over the base model, which confirms the

effectiveness of our feature map enhancement.

Figure 5.18 shows the detection results of SG-Net and the proposed method. We can

see that the proposed method improves the accuracy of mask generation and classifica-

tion.

109

5.7 Conclusion

For stable object detection in a live-stream video that can be processed in real-time under

memory limitations, we proposed to improve accuracy by feature map enhancement

through prediction. We proposed two frameworks that utilize the next and the following

several frames predictions for online video object detection to enhance feature maps.

In the next frame future prediction approach, we present a video object detection

model that jointly learns to detect objects in the current frame and predict the next

frame’s feature map. We also improved the processing speed using the predicted fea-

ture map for the next-frame detection and introduced an adaptive scheduler to stabilize

the detection. Our experiments show that detection accuracy is improved through next-

frame feature map prediction and that the processing speed is improved while only a

slight loss of the detection accuracy using the scheduler.

Next, we proposed feature enhancement learning in terms of the next several frames

prediction. To employ the prediction, we introduced a probabilistic future generation

framework. To utilize the future forecast more effectively, we proposed a method that

first learns the video representation by predicting future frames and fine-tunes the model

for object detection by optimizing the detector module added as a downstream task.

Our experiments have shown that the proposed detection model can be robust against

the apparent change with time, leading to higher accuracy. We also showed that the

detection performance improves with the size of the pretraining data.

Currently, we employed a fixed probability distribution for videos and the exact sam-

pling at each network layer to design a stochastic future prediction model. However,

videos in the real world are much more diverse and represented differently at each layer.

Exploring further expressive probability distribution with sampling by the hierarchy is

left for future work.

110

(a) Detection confidence score with time with the model w/o prediction, the complete model, and

LMP [193]. It corresponds to the video in Figure 5.12.

(b) Detection confidence score with time with the model w/o prediction, the complete model,

and LMP [193]. It corresponds to the video in Figure 5.13.

Figure 5.14: Example of changes in detection confidence score over time.

111

Figure 5.15: Effect of varying the KL loss weights on the detection and generation

accuracy, showing the synthesized 10th frames corresponding to the weights and the

corresponding ground truth.

Figure 5.16: Accuracy impact of different methods of generating future forecasts

112

Figure 5.17: Visualization of training losses on several settings. The numbers indicate

the ratio of data used for training against the training set of ImageNet VID, and “prob”

and “det” indicate stochastic prediction and deterministic one.

113

Figure 5.18: Visualized results comparison the baseline (SG-Net [109]) and ours on

YouTube-VIS val. Results are plotted if their confidence score is larger than 0.45. Best

viewed digitally and in color.

114

Chapter 6

Conclusion

6.1 Summary

Detecting objects in a video is a fundamental technique for obtaining information from

video and is essential for real-world applications such as surveillance cameras and robotics.

However, in video object detection, appearance changes with time cause detection confi-

dence fluctuation and false-negative and false-positive detection problems. They make it

difficult to perform stable detection using still image detectors. To tackle them, the pre-

vious studies tried to stabilize detection by incorporating temporal information into the

detection result or the detection stage. However, they do not work well unless bounding

boxes are detected in most frames. Since the appearance changes deteriorate the feature

map for detection, it is challenging to detect objects accurately. Therefore, it is crucial

to enhance the feature map for detection with temporal information before the detection

stage, and this approach has been studied as a major trend in recent years.

Considering real-world applications such as robotics and surveillance cameras, video

object detection is expected to detect objects in a live stream video within the real-time

processing speed as well as high accuracy. However, the video object detection research

mainly focuses on the offline setting, which utilizes past, present, and future temporal

information. There are few studies for the online setting which does not leverage future

information. The existing works, which run in real-time on the online setting, enhance

feature maps using only the last or a nearby keyframe; however, the accuracy tends

to be low due to the limited temporal information. Therefore, there is a need to study

video object detection for real-world applications, which can sufficiently utilize temporal

115

information for stable detection.

This dissertation addresses the challenging issue of utilizing spatiotemporal infor-

mation to obtain suitable features for detecting objects in a video within real-time pro-

cessing in the online condition. The previous works proposed to propagate information

using the last frame or keyframe. In contrast, we proposed online feature aggregation

approaches with external memory, which directly exploits multiple past feature maps.

We enhanced the feature maps and improved the detection accuracy by learning how

to aggregate the feature maps. Detailed experiments show that the proposed methods

dramatically reduce the video object detection problems, such as confidence fluctuation,

false-negative, and false-positive detection. Next, we proposed novel prediction-based

feature refinement approaches for strict memory conditions. Since the feature aggre-

gation methods use external memory, it may be difficult to introduce them in the envi-

ronments such as robotics due to GPU memory limitations. In contrast, the prediction-

based approach exploits the recurrent neural network without any external memory. This

approach enhances the feature map by learning the knowledge of the object through

future predictions during training. Thus, we have contributed to two aspects of fea-

ture map enhancement learning for video object detection: feature map aggregation and

prediction-based feature map enhancement. Figure 6.1 and 6.2 show our contributions

to ImageNet VID dataset and UA-DETRAC dataset, respectively. We confirm that the

proposed methods are generally superior to the existing methods regarding the trade-off

between accuracy and speed on different datasets.

Feature Map Aggregation. To take into account the temporal information of the video

as much as possible under the limitation of online processing in real-time, we proposed

feature map aggregation methods and obtained information directly from the multiple

past frames in the external memory. Feature map aggregation has been mainly studied

in offline video object detection, and it is effective in terms of accuracy. However, it

requires a lot of processing time since it calculates the similarity for each frame in the

past and weighs them accordingly. To address these issues, we proposed two methods:

frame-level feature map aggregation and element-level feature map aggregation. We

proposed a fast aggregation method in frame-level aggregation, which weighs multiple

past frames in a one-shot manner. This method enables us to enhance the feature map

effectively within real-time processing time without computing frame-by-frame weights.

116

In detailed validation, we confirmed that the fluctuation of detection confidence score is

smaller than that of the existing approach, and the detection can be performed with

higher scores.

Next, we extended the frame-level feature map aggregation approach to dense fea-

ture map enhancement at the element-level. Focusing on the element-level makes it

possible to aggregate for object misalignment flexibly. However, element-level aggre-

gation is generally time-consuming. Thus, we proposed a video sparse transformer that

considers video characteristics and collects information sparsely to solve this problem.

Our experiment shows that sparse element-level aggregation effectively improves detec-

tion accuracy while reducing computation time and memory. Moreover, experiments

show that compared with state-of-the-art methods, the proposed method significantly re-

duces the problems of false-negative and false-positive detection, which are challenges

of video object detection.

Prediction-based Feature Map Enhancement. There are memory limitations in sit-

uations where real-time processing and online detectors are required, such as robotics.

Therefore, applying feature map aggregation methods with external memory in such an

environment is sometimes impractical. For this reason, we proposed prediction-based

approaches that utilize future information during training to enhance the feature map.

The prediction-based feature map enhancement method is based on an existing recurrent

neural network detector and learns features such as the motion of objects through future

prediction. We have proposed two different perspectives for prediction: the next and the

next several frames. In the next frame prediction, we proposed to let the model predict

the feature map of the next frame at the same time as detection. We also pointed out that

this method retains the generated next-frame feature map, so it is possible to skip extract-

ing features from the following frame and increase the processing speed by performing

detection from it. We proposed an adaptive scheduler to increase the processing speed

without sacrificing accuracy and showed its effectiveness. For the next several frames

prediction, we proposed to learn to predict successive ten future frames in advance and

then transfer the model to the detection task. Because of the diversity of videos, it is not

easy to make reliable successive future frame predictions. Thus we introduced stochas-

tic future forecasts and showed their effectiveness in video object detection. We showed

that prediction could improve the detection performance without increasing the model

117

size.

Figure 6.1: Accuracy-speed trade-off across various online detectors on ImageNet

VID val (our methods are plotted in red). Multiple points for our same-named method

show the results when using different backbones. The size of the marker indicates the

model size (GiB). Measured competitive methods are shown in green, and methods with

unknown model sizes are shown in gray. Also, the processing time of LSTM-SSD [110]

and Memory-guided [111] was reported on a smartphone in the papers. LTLS uses

high-end GPUs for speedup; we re-measured them on a GTX 2080 Ti using their imple-

mentation. The red area shows the general real-time processing performance.

6.2 Future Work

We plan to extend our work to the following for more robust to apparent changes with

time:

118

Figure 6.2: Accuracy-speed trade-off across various online detectors on UA-

DETRAC test (our methods are plotted in red). Multiple points for our same-named

method show the results when using different backbones. The size of the marker in-

dicates the model size (GiB). Measured competitive methods are shown in green, and

methods with unknown model sizes are shown in gray. The performance of TSSD [26]

and VOD-MT [86] is measured by ourselves. The red area shows the general real-time

processing performance.

• Instantaneous class switching: One issue that arises due to the apparent changes

with time is the class false-positive detection, where the detected object’s class

is switched instantaneously. The element-level feature aggregation shows that it

significantly reduces the number of false-negative and background false-positive

detections. However, class false-positive detections still remain, caused by an in-

stantaneous change to another class. The feature map enhancement method cannot

guarantee the temporal consistency of the detection results. Therefore, it is neces-

119

sary to incorporate tracking methods [25, 120] to keep the same class as the same

object.

• Discontinuous scene changes with time: For object detection in more diverse

videos, it is necessary to improve the robustness against discontinuous temporal

changes in appearance. The current datasets for video object detection [127, 134,

176, 188] mainly consist of one continuous scene for each video clip. In other

words, the content does not change within a video clip. Therefore, most video

object detection methods have been proposed based on the assumption that the

past and current frames are the same scenes. However, since videos in the real

world are diverse and often switch to different scenes such as TV and movies, it is

necessary to consider the discontinuity of scenes.

It is challenging to cope with discontinuous scene changes by simply relying on

past information. Figure 6.3 shows the accuracy change of scene switching when

300 consecutive frames are connected randomly as one video clip on the ImageNet

VID dataset. When the accuracy of the previous scene is used as a reference,

the accuracy of the TSSD, which propagates temporal information by a recurrent

Figure 6.3: Accuracy change with scene switching on ImageNet VID val. The hor-

izontal axis shows the time, with the -1 frame indicating the previous scene and the 0

to the fifth frame indicating the frames in the new scene. The vertical axis shows the

accuracy ratio of each frame when the accuracy of the last scene is set to 1. We can see

that the accuracy of TSSD, which does not take into account the decision to use past

information, drops significantly when the scene switches to a new one.

120

neural network, is significantly decreased as a new scene starts. On the other

hand, TFEN, which decides which frame to focus on sequentially for multiple past

frames, is less affected. Thus, it is difficult to cope with discontinuous changes in

a video by simply using past information.

To deal with discontinuous scene changes more flexibly, it is necessary to recog-

nize the relationship between past and current frames. By recognizing the current

and past scenes, we can decide whether to use the past temporal information or

not. To consider the relation, it is advantageous to incorporate a video scene de-

tection task [133], which divides a video into semantic scene clips. We believe

that we can deal with discontinuous scene changes by recognizing the scene and

switching the information used for detection.

121

References

[1] Sandra Aigner and Marco Körner. Futuregan: Anticipating the future frames of video

sequences using spatio-temporal 3d convolutions in progressively growing gans. ISPRS-

International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 4216:3–11, 2019.

[2] aim uofa. Adelaidet. https://github.com/aim-uofa/AdelaiDet.

[3] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo Torresani, Bernard Ghanem,

and Du Tran. Self-supervised learning by cross-modal audio-video clustering. 33:9758–

9770, 2020.

[4] Ali Athar, Sabarinath Mahadevan, Aljosa Osep, Laura Leal-Taixé, and Bastian Leibe.

Stem-seg: Spatio-temporal embeddings for instance segmentation in videos. In Proceed-

ings of European Conference on Computer Vision, pages 158–177. Springer, 2020.

[5] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey

Levine. Stochastic variational video prediction. In Proceedings of the International Con-

ference on Learning Representations, 2018.

[6] Nicolas Ballas, Li Yao, Christopher Joseph Pal, and Aaron C. Courville. Delving deeper

into convolutional networks for learning video representations. In Proceedings of the

International Conference on Learning Representations, 2016.

[7] Xinzhu Bei, Yanchao Yang, and Stefano Soatto. Learning semantic-aware dynamics for

video prediction. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 902–912, 2021.

[8] Gedas Bertasius and Lorenzo Torresani. Classifying, segmenting, and tracking object in-

stances in video with mask propagation. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 9739–9748, 2020.

[9] Gedas Bertasius, Lorenzo Torresani, and Jianbo Shi. Object detection in video with spa-

tiotemporal sampling networks. In Proceedings of European Conference on Computer

Vision, pages 331–346. Springer, 2018.

122

https://github.com/aim-uofa/AdelaiDet

[10] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online

and realtime tracking. In Proceedings of IEEE International Conference on Image Pro-

cessing, pages 3464–3468, 2016.

[11] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-speed tracking-by-detection

without using image information. In Proceedings of IEEE International Conference on

Advanced Video and Signal-Based Surveillance, pages 1–6, 2017.

[12] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman. Tide: A general toolbox for

identifying object detection errors. In Proceedings of European Conference on Computer

Vision, pages 558–573. Springer, 2020.

[13] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumoutsakos. Con-

textvp: Fully context-aware video prediction. In Proceedings of European Conference on

Computer Vision, pages 753–769. Springer, 2018.

[14] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-aware

cascades for deep pedestrian detection. In Proceedings of the IEEE International Confer-

ence on Computer Vision, page 3361–3369, 2015.

[15] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object de-

tection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

pages 6154–6162, 2017.

[16] Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal, Fahad Shahbaz Khan, Yanwei

Pang, and Ling Shao. Sipmask: Spatial information preservation for fast image and video

instance segmentation. In Proceedings of European Conference on Computer Vision,

pages 1–18. Springer, 2020.

[17] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local networks

meet squeeze-excitation networks and beyond. In Workshops in Conjunction with IEEE

International Conference on Computer Vision, 2019.

[18] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,

and Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of

European Conference on Computer Vision, pages 213–229. Springer, 2020.

[19] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for

video prediction. In Proceedings of the IEEE International Conference on Computer

Vision, pages 7608–7617, 2019.

123

[20] Mohamed Chaabane, Ameni Trabelsi, Nathaniel Blanchard, and Ross Beveridge. Looking

ahead: Anticipating pedestrians crossing with future frames prediction. In Proceedings of

IEEE Winter Conference on Applications of Computer Vision, pages 2297–2306, 2020.

[21] Mohamed Chaabane, Peter Zhang, J Ross Beveridge, and Stephen O’Hara. Deft: Detec-

tion embeddings for tracking. arXiv preprint arXiv:2102.02267, 2021.

[22] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen

Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance seg-

mentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4974–4983, 2019.

[23] Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuanjun Xiong, Chen Change Loy,

and Dahua Lin. Optimizing video object detection via a scale-time lattice. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, pages 7814–7823,

2018.

[24] Long Chen, Haizhou Ai, Zijie Zhuang, and Chong Shang. Real-time multiple people

tracking with deeply learned candidate selection and person re-identification. In Proceed-

ings of IEEE International Conference on Multimedia & Expo, pages 1–6, 2018.

[25] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Trans-

former tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 8126–8135, 2021.

[26] Xingyu Chen, Zhengxing Wu, and Junzhi Yu. Tssd: Temporal single-shot detector based

on attention and lstm. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1–9, 2018.

[27] Xingyu Chen, Junzhi Yu, and Zhengxing Wu. Temporally identity-aware ssd with atten-

tional lstm. IEEE Transactions on Cybernetics, 50(6):2674–2686, 2020.

[28] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with mo-

mentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[29] Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. Memory enhanced global-local aggre-

gation for video object detection. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, pages 10337–10346, 2020.

[30] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences

with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

124

[31] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adascale: Towards real-time video

object detection using adaptive scaling. In Proceedings of Machine Learning and Systems,

2019.

[32] Wongun Choi. Near-online multi-target tracking with aggregated local flow descriptor. In

Proceedings of the IEEE International Conference on Computer Vision, pages 3029–3037,

2015.

[33] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagli-

aferri, and Francisco Herrera. Deep learning in video multi-object tracking: A survey.

Neurocomputing, 381:61–88, 2020.

[34] Daniel Cores, Manuel Mucientes, and Vıctor M Brea. Roi feature propagation for video

object detection. In Proceedings of European Conference on Artificial Intelligence, 2020.

[35] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert J. Causo,

Kris K. Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wurman.

Analysis and observations from the first amazon picking challenge. IEEE Transactions

on Automation Science and Engineering, 15:172–188, 2018.

[36] Yiming Cui, Liqi Yan, Zhiwen Cao, and Dongfang Liu. Tf-blender: Temporal feature

blender for video object detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 8138–8147, 2021.

[37] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based

fully convolutional networks. In Proceedings of International Conference on Neural In-

formation Processing Systems, page 379–387, 2016.

[38] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.

Deformable convolutional networks. In Proceedings of the IEEE International Conference

on Computer Vision, pages 764–773, 2017.

[39] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 1,

pages 886–893, 2005.

[40] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,

Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.

Scaling egocentric vision: The epic-kitchens dataset. In Proceedings of European Con-

ference on Computer Vision, pages 720–736. Springer, 2018.

125

[41] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos

Kazakos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.

Rescaling egocentric vision. arXiv preprint arXiv:2006.13256, 2020.

[42] Hanming Deng, Yang Hua, Tao Song, Zongpu Zhang, Zhengui Xue, Ruhui Ma, Neil

Robertson, and Haibing Guan. Object guided external memory network for video object

detection. In Proceedings of the IEEE International Conference on Computer Vision,

pages 6678–6687, 2019.

[43] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, 2009.

[44] Jiajun Deng, Yingwei Pan, Ting Yao, Wengang Zhou, Houqiang Li, and Tao Mei. Relation

distillation networks for video object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 7023–7032, 2019.

[45] Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled represen-

tations from video. In Proceedings of International Conference on Neural Information

Processing Systems, page 4414–4423, 2017.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of NAACL-

HLT, pages 4171–4186, 2019.

[47] Piotr Dollár, Ron D. Appel, Serge J. Belongie, and Pietro Perona. Fast feature pyramids

for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(8):1532–1545, 2014.

[48] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: A

benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 304–311, 2009.

[49] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: An

evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(4):743–761, 2012.

[50] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang

Zhang, Qingming Huang, and Qi Tian. The unmanned aerial vehicle benchmark: Object

detection and tracking. In Proceedings of European Conference on Computer Vision,

pages 370–386. Springer, 2018.

126

[51] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Cen-

ternet: Keypoint triplets for object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 6569–6578, 2019.

[52] Brendan Duke, Abdalla Ahmed, Christian Wolf, Parham Aarabi, and Graham W. Taylor.

Sstvos: Sparse spatiotemporal transformers for video object segmentation. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, pages 5912–5921,

2021.

[53] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn,

and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. In-

ternational Journal of Computer Vision, 111(1):98–136, 2015.

[54] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track to

detect. In Proceedings of the IEEE International Conference on Computer Vision, pages

3057–3065, 2017.

[55] Pedro F Felzenszwalb, Ross B Girshick, and David McAllester. Cascade object detection

with deformable part models. In Proceedings of IEEE Computer society conference on

computer vision and pattern recognition, pages 2241–2248, 2010.

[56] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised

video representation learning with odd-one-out networks. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 3636–3645, 2017.

[57] J. Ferryman and A. Shahrokni. Pets2009: Dataset and challenge. In Proceedings of IEEE

International Conference on Advanced Video and Signal-Based Surveillance, pages 1–6,

2009.

[58] Yang Fu, Linjie Yang, Ding Liu, Thomas S. Huang, and Humphrey Shi. Compfeat: Com-

prehensive feature aggregation for video instance segmentation. In Proceedings of AAAI

Conference on Artificial Intelligence, 2021.

[59] Zhihang Fu, Yaowu Chen, Hongwei Yong, Rongxin Jiang, Lei Zhang, and Xian-Sheng

Hua. Foreground gating and background refining network for surveillance object detec-

tion. IEEE Transactions on Image Processing, 28(12):6077–6090, 2019.

[60] Masato Fujitake, Makito Inoue, and Takashi Yoshimi. Development of an automatic

tracking camera system integrating image processing and machine learning. Journal of

Robotics and Mechatronics, 33(6):1303–1314, 2021.

127

[61] Masato Fujitake and Akihiro Sugimoto. Temporal feature enhancement network with ex-

ternal memory for object detection in surveillance video. In Proceedings of International

Conference on Pattern Recognition, pages 7684–7691, 2020.

[62] Masato Fujitake and Akihiro Sugimoto. Real-time object detection by feature map fore-

cast for live streaming video. In Proceedings of IEEE International Conference on Multi-

media & Expo, 2021.

[63] Masato Fujitake and Akihiro Sugimoto. Video representation learning through predic-

tion for online object detection. In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision Workshops, pages 530–539, 2022.

[64] Masato Fujitake and Takashi Yoshimi. Estimation system of construction equipment from

field image by combination learning of its parts. In Proceedings of Asian Control Confer-

ence, pages 1672–1676, 2017.

[65] Michael Fulton, Jungseok Hong, Md Jahidul Islam, and Junaed Sattar. Robotic detection

of marine litter using deep visual detection models. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 5752–5758, 2019.

[66] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Alberto Del Bimbo. Spatio-

temporal closed-loop object detection. IEEE Transactions on Image Processing,

26(3):1253–1263, 2017.

[67] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2012.

[68] Qichuan Geng, Hong Zhang, Na Jiang, Xiaojuan Qi, Liangjun Zhang, and Zhong

Zhou. Object-aware feature aggregation for video object detection. arXiv preprint

arXiv:2010.12573, 2020.

[69] Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan. Large-scale weakly-supervised pre-

training for video action recognition. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 12046–12055, 2019.

[70] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on

Computer Vision, page 1440–1448, 2015.

[71] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, page 580–587, 2014.

128

[72] Tao Gong, Kai Chen, Xinjiang Wang, Qi Chu, Feng Zhu, Dahua Lin, Nenghai Yu, and

Huamin Feng. Temporal roi align for video object recognition. In Proceedings of AAAI

Conference on Artificial Intelligence, volume 35, pages 1442–1450, 2021.

[73] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd:

Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[74] Chaoxu Guo, Bin Fan, Jie Gu, Qian Zhang, Shiming Xiang, Veronique Prinet, and Chun-

hong Pan. Progressive sparse local attention for video object detection. In Proceedings of

the IEEE International Conference on Computer Vision, pages 3909–3918, 2019.

[75] Liang Han, Pichao Wang, Zhaozheng Yin, Fan Wang, and Hao Li. Exploiting better

feature aggregation for video object detection. In Proceedings of ACM International Con-

ference on Multimedia, pages 1469–1477, 2020.

[76] Mingfei Han, Yali Wang, Xiaojun Chang, and Yu Qiao. Mining inter-video proposal

relations for video object detection. In Proceedings of European Conference on Computer

Vision, pages 431–446. Springer, 2020.

[77] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad

Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S. Huang. Seq-nms

for video object detection. arXiv preprint arXiv:1602.08465, 2016.

[78] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast

for unsupervised visual representation learning. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[79] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 2961–2969,

2017.

[80] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 2961–2969,

2017.

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[82] Lu He, Qianyu Zhou, Xiangtai Li, Li Niu, Guangliang Cheng, Xiao Li, Wenxuan Liu,

Yunhai Tong, Lizhuang Ma, and Liqing Zhang. End-to-end video object detection with

129

spatial-temporal transformers. In Proceedings of ACM International Conference on Mul-

timedia, page 1507–1516, 2021.

[83] Congrui Hetang, Hongwei Qin, Shaohui Liu, and Junjie Yan. Impression network for

video object detection. arXiv preprint arXiv:1712.05896, 2017.

[84] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-

bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[85] Hamid Izadinia, Imran Saleemi, Wenhui Li, and Mubarak” Shah. (mp)2t: Multiple people

multiple parts tracker. In Proceedings of European Conference on Computer Vision, pages

100–114. Springer, 2012.

[86] Kim Jaekyum, Koh Junho, Lee Byeongwon, Yang Seungji, and Jun Won Choi. Video

object detection using object ’s motion context and spatio-temporal feature aggregation.

In Proceedings of International Conference on Pattern Recognition, pages 1604–1610,

2020.

[87] Zhengkai Jiang, Peng Gao, Chaoxu Guo, Qian Zhang, Shiming Xiang, and Chunhong

Pan. Video object detection with locally-weighted deformable neighbors. In Proceedings

of AAAI Conference on Artificial Intelligence, volume 33, pages 8529–8536, 2019.

[88] Zhengkai Jiang, Yu Liu, Ceyuan Yang, Jihao Liu, Peng Gao, Qian Zhang, Shiming Xiang,

and Chunhong Pan. Learning where to focus for efficient video object detection. In

Proceedings of European Conference on Computer Vision, pages 18–34. Springer, 2020.

[89] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui Liu, and Xiaogang

Wang. Object detection in videos with tubelet proposal networks. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 889–897, 2017.

[90] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang,

Zhe Wang, Ruohui Wang, Xiaogang Wang, and Wanli Ouyang. T-cnn: Tubelets with

convolutional neural networks for object detection from videos. IEEE Transactions on

Circuits and Systems for Video Technology, 28(10):2896–2907, 2018.

[91] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object detection from

video tubelets with convolutional neural networks. pages 817–825, 2016.

[92] Kwang-Ju Kim, Pyong-Kun Kim, Yun-Su Chung, and Doo-Hyun Choi. Performance

enhancement of yolov3 by adding prediction layers with spatial pyramid pooling for ve-

hicle detection. In Proceedings of IEEE International Conference on Advanced Video and

Signal-Based Surveillance, pages 1–6, 2018.

130

[93] Kwang-Ju Kim, Pyong-Kun Kim, Yun-Su Chung, and Doo-Hyun Choi. Multi-scale de-

tector for accurate vehicle detection in traffic surveillance data. IEEE Access, 7:78311–

78319, 2019.

[94] Junho Koh, Jaekyum Kim, Younji Shin, Byeongwon Lee, Seungji Yang, and Jun Won

Choi. Joint representation of temporal image sequences and object motion for video object

detection. In Proceedings of IEEE International Conference on Robotics and Automation,

2021.

[95] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown,

and Boqing Gong. Movinets: Mobile video networks for efficient video recognition. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages

16020–16030, 2021.

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Proceedings of International Conference on Neural

Information Processing Systems, 25:1097–1105, 2012.

[97] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings

of European Conference on Computer Vision, pages 734–750. Springer, 2018.

[98] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learning by tracking:

Siamese cnn for robust target association. In Workshops in Conjunction with IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 33–40, 2016.

[99] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey

Levine. Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

[100] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised

representation learning by sorting sequences. In Proceedings of the IEEE International

Conference on Computer Vision, pages 667–676, 2017.

[101] Suichan Li and Feng Chen. 3d-detnet: a single stage video-based vehicle detector. In Third

International Workshop on Pattern Recognition, volume 10828, pages 60 – 66. SPIE,

2018.

[102] Chung-Ching Lin, Ying Hung, Rogerio Feris, and Linglin He. Video instance segmen-

tation tracking with a modified vae architecture. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pages 13147–13157, 2020.

[103] Lijian Lin, Haosheng Chen, Honglun Zhang, Jun Liang, Yu Li, Ying Shan, and Hanzi

Wang. Dual semantic fusion network for video object detection. In Proceedings of ACM

International Conference on Multimedia, pages 1855–1863, 2020.

131

[104] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In Proceedings of the

International Conference on Learning Representations, 2014.

[105] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge

Belongie. Feature pyramid networks for object detection. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 936–944, 2017.

[106] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for

dense object detection. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2980–2988, 2017.

[107] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-

manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in

context. In Proceedings of European Conference on Computer Vision, pages 740–755.

Springer, 2014.

[108] Dongfang Liu, Yiming Cui, Yingjie Chen, Jiyong Zhang, and Bin Fan. Video object detec-

tion for autonomous driving: Motion-aid feature calibration. Neurocomputing, 409:1–11,

2020.

[109] Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen. Sg-net: Spatial granularity

network for one-stage video instance segmentation. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 9816–9825, 2021.

[110] Mason Liu and Menglong Zhu. Mobile video object detection with temporally-aware fea-

ture maps. In Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5686–5695, 2018.

[111] Mason Liu, Menglong Zhu, Marie White, Yinxiao Li, and Dmitry Kalenichenko. Look-

ing fast and slow: Memory-guided mobile video object detection. arXiv preprint

arXiv:1903.10172, 2019.

[112] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-

Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In Proceedings of

European Conference on Computer Vision, pages 21–37. Springer, 2016.

[113] Wei Liu, Shengcai Liao, Weiqiang Ren, Weidong Hu, and Yinan Yu. High-level semantic

feature detection: A new perspective for pedestrian detection. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 5182–5191, 2019.

[114] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings

of the International Conference on Learning Representations, 2018.

132

[115] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for

video prediction and unsupervised learning. In Proceedings of the International Confer-

ence on Learning Representations, 2017.

[116] David G Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[117] Hao Luo, Wenxuan Xie, Xinggang Wang, and Wenjun Zeng. Detect or track: Towards

cost-effective video object detection/tracking. In Proceedings of AAAI Conference on

Artificial Intelligence, volume 33, pages 8803–8810, 2019.

[118] Hui Lv, Chuanwei Zhou, Zhen Cui, Chunyan Xu, Yong Li, and Jian Yang. Localiz-

ing anomalies from weakly-labeled videos. IEEE Transactions on Image Processing,

30:4505–4515, 2021.

[119] Siwei Lyu, Ming-Ching Chang, Dawei Du, Wenbo Li, Yi Wei, Marco Del Coco, Pierluigi

Carcagnı̀, Arne Schumann, Bharti Munjal, Dinh-Quoc-Trung Dang, Doo-Hyun Choi, Erik

Bochinski, Fabio Galasso, Filiz Bunyak, Guna Seetharaman, Jang-Woon Baek, Jong Taek

Lee, Kannappan Palaniappan, Kil-Taek Lim, Kiyoung Moon, Kwang-Ju Kim, Lars Som-

mer, Meltem Brandlmaier, Min-Sung Kang, Moongu Jeon, Noor M. Al-Shakarji, Oliver

Acatay, Pyong-Kun Kim, Sikandar Amin, Thomas Sikora, Tien Dinh, Tobias Senst, Vu-

Gia-Hy Che, Young-Chul Lim, Young-min Song, and Yun-Su Chung. Ua-detrac 2018:

Report of avss2018 & iwt4s challenge on advanced traffic monitoring. In Proceedings of

IEEE International Conference on Advanced Video and Signal-Based Surveillance, pages

1–6, 2018.

[120] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichtenhofer.

Trackformer: Multi-object tracking with transformers. arXiv preprint arXiv:2101.02702,

2021.

[121] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-

conditional video prediction using deep networks in atari games. In Proceedings of Inter-

national Conference on Neural Information Processing Systems, page 2863–2871, 2015.

[122] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In-So Kweon. Bam: Bottleneck

attention module. In Proceedings of British Machine Vision Conference, 2018.

[123] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

torch: An imperative style, high-performance deep learning library. In Proceedings of

133

International Conference on Neural Information Processing Systems, pages 8026–8037,

2019.

[124] Hughes Perreault, Guillaume-Alexandre Bilodeau, Nicolas Saunier, and Maguelonne

Héritier. Spotnet: Self-attention multi-task network for object detection. In Proceedings

of Conference on Computer and Robot Vision, pages 230–237, 2020.

[125] Hughes Perreault, Guillaume-Alexandre Bilodeau, Nicolas Saunier, and Maguelonne

Héritier. Ffavod: Feature fusion architecture for video object detection. Pattern Recogni-

tion Letters, 151:294–301, 2021.

[126] Hughes Perreault, Maguelonne Héritier, Pierre Gravel, Guillaume-Alexandre Bilodeau,

and Nicolas Saunier. Rn-vid: A feature fusion architecture for video object detection. In

International Conference on Image Analysis and Recognition, pages 125–138, 2020.

[127] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke.

Youtube-boundingboxes: A large high-precision human-annotated data set for object de-

tection in video. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 5296–5305, 2017.

[128] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016.

[129] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, pages 6517–6525, 2017.

[130] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767, 2018.

[131] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(6):1137–1149, 2017.

[132] Mikel Rodriguez, Saad Ali, and Takeo Kanade. Tracking in unstructured crowded scenes.

In Proceedings of the IEEE International Conference on Computer Vision, pages 1389–

1396, 2009.

[133] Daniel Rotman, Dror Porat, Gal Ashour, and Udi Barzelay. Optimally grouped deep

features using normalized cost for video scene detection. In Proceedings of ACM Inter-

national Conference on Multimedia Retrieval, pages 187–195, 2018.

134

[134] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-

heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. Imagenet large scale visual recognition challenge. International Journal

of Computer Vision, 115(3):211–252, 2015.

[135] Edmund J Sadgrove, Greg Falzon, David Miron, and David W Lamb. Real-time object

detection in agricultural/remote environments using the multiple-expert colour feature ex-

treme learning machine (mec-elm). Computers in Industry, 98:183–191, 2018.

[136] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang Chieh

Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[137] Han Shi, Jiahui Gao, Xiaozhe Ren, Hang Xu, Xiaodan Liang, Zhenguo Li, and James T

Kwok. Sparsebert: Rethinking the importance analysis in self-attention. In Proceedings

of International Conference on Machine Learning. PMLR, 2021.

[138] Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-

chun WOO. Convolutional lstm network: A machine learning approach for precipitation

nowcasting. In Proceedings of International Conference on Neural Information Process-

ing Systems, pages 802–810, 2015.

[139] Mykhailo Shvets, Wei Liu, and Alexander C Berg. Leveraging long-range temporal re-

lationships between proposals for video object detection. In Proceedings of the IEEE

International Conference on Computer Vision, pages 9756–9764, 2019.

[140] Amin Sikandar and Galasso Fabio. Geometric proposals for faster r-cnn. In Proceedings of

IEEE International Conference on Advanced Video and Signal-Based Surveillance, pages

1–6, 2017.

[141] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. In Proceedings of the International Conference on Learning

Representations, 2015.

[142] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of

video representations using lstms. In Proceedings of International Conference on Machine

Learning, pages 843–852. PMLR, 2015.

[143] Guanxiong Sun, Yang Hua, Guosheng Hu, and Neil Robertson. Mamba: Multi-level ag-

gregation via memory bank for video object detection. In Proceedings of AAAI Conference

on Artificial Intelligence, volume 35, pages 2620–2627, 2021.

135

[144] ShiJie Sun, Naveed Akhtar, HuanSheng Song, Ajmal Mian, and Mubarak Shah. Deep

affinity network for multiple object tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 43(1):104–119, 2019.

[145] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage

object detection. In Proceedings of the IEEE International Conference on Computer Vi-

sion, pages 9627–9636, 2019.

[146] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-

test resolution discrepancy. In Advances in Neural Information Processing Systems, vol-

ume 32, pages 8252–8262, 2019.

[147] Ameni Trabelsi, Mohamed Chaabane, Nathaniel Blanchard, and Ross Beveridge. A pose

proposal and refinement network for better 6d object pose estimation. In Proceedings of

IEEE Winter Conference on Applications of Computer Vision, pages 2382–2391, 2021.

[148] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli. Video classification with

channel-separated convolutional networks. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 5552–5561, 2019.

[149] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing

motion and content for video generation. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1526–1535, 2018.

[150] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The

missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[151] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of

International Conference on Neural Information Processing Systems, pages 5998–6008,

2017.

[152] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decom-

posing motion and content for natural video sequence prediction. In Proceedings of the

International Conference on Learning Representations, 2017.

[153] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and

Liang-Chieh Chen. Feelvos: Fast end-to-end embedding learning for video object seg-

mentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 9481–9490, 2019.

[154] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Balachan-

dar Gnana Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object tracking and

136

segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 7942–7951, 2019.

[155] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learn-

ing by pace prediction. In Proceedings of European Conference on Computer Vision,

pages 504–521. Springer, 2020.

[156] Li Wang, Yao Lu, Hong Wang, Yingbin Zheng, Hao Ye, and Xiangyang Xue. Evolving

boxes for fast vehicle detection. In Proceedings of IEEE International Conference on

Multimedia & Expo, pages 1135–1140, 2017.

[157] Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. Tdn: Temporal difference networks

for efficient action recognition. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, pages 1895–1904, 2021.

[158] Shiyao Wang, Yucong Zhou, Junjie Yan, and Zhidong Deng. Fully motion-aware network

for video object detection. In Proceedings of European Conference on Computer Vision,

pages 542–557. Springer, 2018.

[159] Tao Wang, Ning Xu, Kean Chen, and Weiyao Lin. End-to-end video instance segmenta-

tion via spatial-temporal graph neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 10797–10806, 2021.

[160] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural net-

works. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

pages 7794–7803, 2018.

[161] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen,

and Huaxia Xia. End-to-end video instance segmentation with transformers. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, pages 8741–8750,

2021.

[162] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards real-

time multi-object tracking. In Proceedings of European Conference on Computer Vision,

pages 107–122. Springer, 2020.

[163] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE Transactions on Image

Processing, 13(4):600–612, 2004.

[164] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi,

Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. UA-DETRAC: A new benchmark and

137

protocol for multi-object detection and tracking. Computer Vision and Image Understand-

ing, 193:102907, 2020.

[165] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking

with a deep association metric. In Proceedings of IEEE International Conference on

Image Processing, pages 3645–3649, 2017.

[166] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional

block attention module. In Proceedings of European Conference on Computer Vision,

pages 3–19. Springer, 2018.

[167] Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Sequence level seman-

tics aggregation for video object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 9217–9225, 2019.

[168] Lingyun Wu, Zhiqiang Hu, Yuanfeng Ji, Ping Luo, and Shaoting Zhang. Multi-frame

collaboration for effective endoscopic video polyp detection via spatial-temporal feature

transformation. In Proceedings of Medical Image Computing and Computer Assisted

Intervention, pages 302–312, 2021.

[169] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Future video synthesis with object

motion prediction. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 5539–5548, 2020.

[170] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-

tron2. https://github.com/facebookresearch/detectron2, 2019.

[171] Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned spatial-temporal

memory. In Proceedings of European Conference on Computer Vision, pages 485–501.

Springer, 2018.

[172] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 1492–1500, 2017.

[173] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang

Bai, and Zicheng Liu. End-to-end semi-supervised object detection with soft teacher. In

Proceedings of the IEEE International Conference on Computer Vision, pages 3060–3069,

2021.

[174] Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixé, and Xavier

Alameda-Pineda. How to train your deep multi-object tracker. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 6787–6796, 2020.

138

https://github.com/facebookresearch/detectron2

[175] Zhujun Xu, Emir Hrustic, and Damien Vivet. Centernet heatmap propagation for real-

time video object detection. In Proceedings of European Conference on Computer Vision,

pages 220–234. Springer, 2020.

[176] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of

the IEEE International Conference on Computer Vision, pages 5188–5197, 2019.

[177] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K Katsaggelos.

Efficient video object segmentation via network modulation. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 6499–6507, 2018.

[178] Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Chen Fang, Ying Shan, Bin Feng,

and Wenyu Liu. Crossover learning for fast online video instance segmentation. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 8043–8052,

2021.

[179] Yanni Yang, Huansheng Song, Shijie Sun, Yan Chen, Xinyao Tang, and Qin Shi. A feature

temporal attention based interleaved network for fast video object detection. Journal of

Ambient Intelligence and Humanized Computing, 2021.

[180] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,

Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for het-

erogeneous multitask learning. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, pages 2636–2645, 2020.

[181] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.

In Proceedings of the International Conference on Learning Representations, 2016.

[182] Wei Yu, Y. Lu, S. Easterbrook, and S. Fidler. Efficient and information-preserving future

frame prediction and beyond. In Proceedings of the International Conference on Learning

Representations, 2020.

[183] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,

Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:

Transformers for longer sequences. In Proceedings of International Conference on Neural

Information Processing Systems, 2020.

[184] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On

the fairness of detection and re-identification in multiple object tracking. International

Journal of Computer Vision, pages 1–19, 2021.

139

[185] Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and Xu Sun. Ex-

plicit sparse transformer: Concentrated attention through explicit selection. arXiv preprint

arXiv:1912.11637, 2019.

[186] Qijie Zhao, Tao Sheng, Yongtao Wang, Feng Ni, and Ling Cai. Cfenet: An accu-

rate and efficient single-shot object detector for autonomous driving. arXiv preprint

arXiv:1806.09790, 2018.

[187] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points. In Pro-

ceedings of European Conference on Computer Vision, pages 474–490. Springer, 2020.

[188] Pengfei Zhu, Dawei Du, Longyin Wen, Xiao Bian, Haibin Ling, Qinghua Hu, Tao Peng,

Jiayu Zheng, Xinyao Wang, Yue Zhang, et al. Visdrone-vid2019: The vision meets drone

object detection in video challenge results. In Workshops in Conjunction with IEEE Inter-

national Conference on Computer Vision, pages 227–235, 2019.

[189] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high performance video

object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 7210–7218, 2018.

[190] Xizhou Zhu, Jifeng Dai, Xingchi Zhu, Yichen Wei, and Lu Yuan. Towards high perfor-

mance video object detection for mobiles. arXiv preprint arXiv:1804.05830, 2018.

[191] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature ag-

gregation for video object detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 408–417, 2017.

[192] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for

video recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 4141–4150, 2017.

[193] Zhifan Zhu and Zechao Li. Online video object detection via local and mid-range feature

propagation. In Proceedings of First International Workshop on Human-Centric Multi-

media Analysis, page 73–82, 2020.

140

	Introduction
	Background
	Motivations
	Problem Statement
	Dissertation Focus and Main Contributions
	Organization of the Dissertation

	Literature Review
	Object Detection in Images
	Object Detection in Videos
	Box-level
	Feature-level

	Related Topics to Video Object Detection
	Multi Object Tracking
	Video Instance Segmentation

	Benchmark Datasets
	Evaluation Metrics

	Frame-level Feature Aggregation
	Introduction
	Proposed Method
	Architecture
	Spatiotemporal Encoder
	Temporal Attention Decoder
	External Memory
	Loss Function

	Experiments
	Benchmark Datasets and Metrics
	Implementation Details
	Model Design Analysis
	Comparison with State-of-the-Art
	Qualitative Comparison
	Detailed Analysis

	Conclusion

	Element-level Feature Aggregation
	Introduction
	Related Work
	Feature Aggregation for Video Object Detection
	External Memory for Video Object Detection
	Transformer Network
	Pretraining

	Proposed Method
	Overview
	Frame Selection from Short- and Long-ranges
	Feature Embedding
	Video-aware Sparse Transformer
	Detection
	External Memory
	Pretraining

	Experiments
	Benchmark Datasets and Metrics
	Network Architecture
	Implementation Details
	Comparison with State-of-the-Art
	Detailed Analysis
	Video Instance Segmentation Results

	Conclusion

	Prediction based Feature Enhancement
	Introduction
	Related Work
	Proposed Method through Next Future Prediction
	Overview
	Encoder Module for Feature Map Forecast
	Scheduler Module
	Loss Function
	Training
	Testing

	Experiments through Next Future Prediction
	Benchmark Datasets and Metrics
	Implementation Details
	Comparison with State-of-the-Art
	Detailed Analysis

	Proposed Method through Next Several Future Predictions
	Stochastic Adversarial Video Prediction
	Pipeline
	Our Prediction and Detection Network
	Pretraining Loss
	Fine-tuning Loss
	Inference Step

	Experiments through Next Several Future Predictions
	Benchmark Datasets and Metrics
	Implementation Details
	Comparison with State-of-the-Art
	Detailed Analysis
	Discussion
	Video Instance Segmentation Results

	Conclusion

	Conclusion
	Summary
	Future Work

