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Abstract

It has been a while since Internet of things (IoT) devices that measure various types of events
such as temperature, voltage and pressure are used in many systems, and the amount of data
collected by such devices is increasing year by year. Accordingly, a variety of services using
those collected data have been produced in a lot of fields and utilization of the data has become
much more important than ever. Considering an office building as one of the examples,
collected data by sensors installed on walls or ceilings, which measure temperature, humidity,
or carbon dioxide concentration, can be used in an air conditioning control system or a lighting
system. In the case of sensing at multiple locations in a building, the sensors located in the
same local area are expected to record similar values. In this situation, if a sensor is broken,
different patterns of values from others might be recorded, which indicates that the sensor
should be replaced with a new one immediately. However, finding such broken sensors is
difficult because anomalous behavior of broken sensors may emerge combinatorially together
with other healthy sensors, and the combinatorial relationship between sensors must be taken
into account. Since those data collected by multiple sensors are in the form of multivariate
time series, it is essential to extract features encoding association between multiple time
series, and there are heavy demands particularly for industrial fields.

Once data taken by sensors are collected, features extracted from the data that properly
takes relationships between multivariate time series into account can be used in various data
science applications such as outlier detection and clustering. Since finding useful feature
vector representation from time series is one of crucial tasks in those fields, a lot of methods to
extract association between time stamps have been developed so far such as Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT), and Discrete Cosine Transformation
(DCT). These methods are widely used in signal processing fields and the methods are
commonly targeted to univariate time series data, that is, they cannot be directly applied
to multivariate time series even though they are widely seen in the real-world. Therefore,
extraction of features with considering association between multivariate time series remains a
challenging task because both time-wise and variable-wise associations should be taken into
account. Although some algorithms using machine learning technology like deep learning
are becoming popular among outlier detection tasks nowadays, which can implicitly take
such time-wise and variable-wise associations into account, they commonly need ground
truth inlier (normal) time series that do not include any outliers (anomalous patterns) to train
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a model. As one of the examples, there is an autoencoder method that can detect outliers by
calculating reconstruction errors. A model made by the autoencoder is expected to correctly
decode inliers and wrongly decode outliers if only inliers are used in its training, and the
difference of reconstruction errors makes it possible to discriminate outliers from inliers.
However, if outliers exist in a training dataset, a model trained by the autoencoder may
overlook outliers because they can be also correctly decoded, resulting in the suboptimal
performance. To date, only few unsupervised algorithms have been proposed that do not
require any labeled time series data, although such unsupervised algorithms are of high
importance in practice. To address this issue, we focus on unsupervised feature extraction
that can be used for various downstream tasks including outlier detection and clustering.

In this dissertation, we present unsupervised feature extraction algorithms for multivariate
time series, called UFEKS (Unsupervised Feature Extraction using Kernel and Stacking) and
UFEKT (Unsupervised Feature Extraction using Kernel Method and Tucker Decomposition).
UFEKS (1) constructs a kernel matrix for the set of subsequences from each time series
and (2) concatenates all matrices horizontally. Feature representation is obtained as row
vectors in the concatenated matrix in a fully unsupervised manner, which can be used in
subsequent machine learning problems. Likewise, UFEKT (1) constructs a kernel matrix
from subsequences of each time series to account for time-wise association and (2) constructs
a single tensor by stacking the kernel matrices and performs Tucker decomposition to
account for variable-wise association. Tucker decomposition is one of the well-known tensor
decomposition techniques and it decomposes the constructed tensor of a kernel into one core
tensor and three factor matrices. Feature representation is obtained as a row vector in one of
the decomposed factor matrices. In the decomposition process, ranks of a tensor must be
given as one of the hyper-parameters. Although finding the best values of hyper-parameters
in an unsupervised learning is known as a difficult task, we present an algorithm to find
appropriate values of the ranks heuristically. The whole process of UFEKT is also fully
unsupervised and can be used for subsequent machine learning tasks.

After we describe our new algorithms in detail, we empirically evaluate our algorithms
and show experimental results in two tasks of outlier detection and clustering. Nine synthetic
and six real-world datasets are used for outlier detection and 102 real-world datasets are
used for clustering. Our methods are compared with two well-established existing feature
extraction methods, the subsequence-based method (SS) and the page rank kernel-based
method (PRK). Furthermore, we discuss reasons why our algorithms are superior to the
existing methods using the principal component analysis (PCA). Finally, we summarize main
findings of this dissertation and discuss future work.
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Chapter 1

Introduction

1.1 Background

Internet of things (IoT) devices, composed of many sensors such as temperature, humidity,
and pressure, are installed in various types of systems, and multivariate time series data
collected by those sensors are used in a wide range of fields. For instance, in the task of
facility maintenance for a building, it may be possible to know the best timing of replacement
for broken facilities by monitoring and analyzing collected data. Although this process,
called Condition-Based Maintenance (CBM) [24, 45], is well known technology in industrial
fields, this task is still challenging as we need to use many multivariate time series to find
relationship between sensors. In the case of sensing at multiple locations in a building,
sensors located in the same local area are expected to record similar values. If one sensor
takes different values from others, the sensor might be broken and need to be replaced to the
new one. However, it is hard to find sensors taking different values because we need to find
different combinatorial relationships between sensors. Therefore, a new algorithm to solve
these problems is still in great demand.
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1.2. PROBLEM SETTINGS AND OUR APPROACHES

1.2 Problem Settings and Our Approaches

���������	
��������

���������

�

N

D

E

A

B

C

Figure 1.1: This is an example of an office layout1. There are five sensors denoted from A to
E installed in the office rooms and each sensor record temperature measured every hour at
each room.

In this dissertation, we consider association between multiple time series. An example of
association is shown in Fig. 1.1. It shows a floor map in an office building and five temperature
sensors denoted from A to E are installed in each room. All sensors record temperature
measured every hour in the rooms. Examples of time series measured by their sensors are
shown in Figure 1.2. To clarify the difference between time series, small values are added
to each data as an offset. All the time series seem to have similar waveform, however, the
time series collected from the sensor E seem to rise slightly on the afternoon of January 12th,
2022, whereas the others drop. If building managers find such a trend, they are probably
considered as signals of maintenance for equipment and they can start to inspect it in more
detail, whether or not the sensor E should be calibrated, the filters of the air conditioner
installed in the room E must be cleaned for clogging, and the air conditioner require to be
replaced with a new one. Finding a different combination from multivariate time series data
is one of the most important tasks in a number of sensor monitoring tasks including CBM.

1This figure can be obtained from https://www.edrawsoft.com/template-office-layout.html, which is provided
as a free customizable office layout template. The sensor labels and direction symbol are added by the author.
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1.3. PROPOSED ALGORITHMS
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Figure 1.2: An example of multivariate time series data collected by sensors installed in
office rooms shown in Figure. 1.1. They are fluctuations of temperature measured every hour
in each room. To clearly display each data, some values are added to the data as offset. The
temperature measured by the sensor E seems to rise slightly on the afternoon of January 12th,
2022, whereas the others drop.

Moreover, we show the other easy-to-understand example of association between multiple
time series in Figure 1.3. There two time series from the corresponding variables composed
of lines and sine waves with noise. In an orange frame, the time series is composed of line
and sine wave (up and bottom), while the other subsequences out of the orange frame are
composed of the combination of only lines or sine waves. Hence only the subsequence in the
orange frame has a different combination. This is an example of a combinatorial outlier, and
finding such outliers is fundamentally difficult as they cannot be found if we look at each time
series separately.

Therefore, we focus on the task of extracting feature vector representation from multivari-
ate time series data that can incorporate combinatorial association between two or more time
series. This approach is unsupervised, hence it enables us to apply general existing machine
learning algorithms to multivariate time series.

Furthermore, we try to apply the extracted feature vector representation to a clustering
problem because the representation is not limited to only an outlier detection task.

1.3 Proposed Algorithms

To extract feature vectors from multivariate time series, we propose two new algorithms,
called UFEKS (Unsupervised Feature Extraction using Kernel and Stacking) and UFEKT
(Unsupervised Feature Extraction using Kernel Method and Tucker Decomposition) [36]. A
basic procedure of the proposed algorithm, UFEKS, is as follows:

14



1.3. PROPOSED ALGORITHMS

Figure 1.3: An example of association for multivariate time series data. There are time series
data of two variables (that is, two time series) composed of lines and sine waves with noise.
Combination in an orange frame has two subsequences (up and bottom), which are composed
of a line and a sine wave, while subsequences other than the orange frame are composed of
similar shapes between up and bottom subsequences. Hence, the orange frame is deemed to
be an combinatorial outlier in the time series.

1. Divide given time series into a set of its subsequences,

2. Make kernel matrices from each subsequence using the RBF kernel,

3. Place the all kernel matrices across in one row and horizontally concatenate them
into one kernel matrix,

4. Extract row vectors in the concatenated matrix as feature vectors.

The basic procedure of UFEKT is also as follows:

1. Divide given time series into a set of its subsequences,

2. Make kernel matrices from each subsequence using the RBF kernel,

3. Stack all the kernel matrices and make a three-way tensor from their kernel
matrices,

4. Decompose the tensor into one core tensor and three factor matrices,

5. Extract row vectors in one of the factor matrices as feature vectors.
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1.4. CONTRIBUTIONS

Each row vector obtained by UFEKS or UFEKT is corresponded to a point in the
multidimensional Euclidean space. This means that our approach allows us to use existing
standard algorithms of non-time series for an outlier detection task or a clustering task with
considering combinatorial association between time series. We examine their proposed
methods using unsupervised outlier detection and clustering algorithms. Although both
the row vectors obtained by UFEKS and UFEKT have features, each has advantages and
disadvantages. The vectors obtained by UFEKS tend to have a high dimensions, while the
vectors by UFEKT can be low dimensions using Tucker decomposition. It means that, if we
use the feature vectors by UFEKT for outlier detection or clustering, it might be possible to
get high accuracy of the results, however, it would have high computational cost. Moreover, it
should be noted that our proposed method does not use any labeled data for detecting outliers
from multivariate time series since many algorithms about outlier detection use labeled data
even if they are mentioned to unsupervised learning.

1.4 Contributions

To summarize, the main contributions of our works are:

• Our proposed methods UFEKS and UFEKT can extract features from multivariate
time series by incorporating combinatorial association between time series.

• The obtained features using UFEKS and UFEKT can be applied to a variety of
applications such as outlier detection, clustering, and other data mining tasks.

• In outlier detection, the proposed method can detect outliers that cannot be found if we
look at each of the multivariate time series separately.

• The UFEKS and UFEKT have good experimental results for outlier detection scenario
both synthetic and real-world datasets. Furthermore, the UFEKT have also good
experimental results for clustering scenarios for real-world datasets.

1.5 Outline

First, we mention related work about feature extraction from univariate and multivariate time
series datasets. In these fields, it is difficult to find literature related to feature extraction
from time series because methods or techniques are often mentioned in literature about
applications like outlier detection using extracted features. Therefore, we cited some literature
about applications such as outlier detection from time series and non-time series data, and
clustering, respectively, in Chapter 2.

Second, our proposed algorithms to extract features from multivariate time series are
mathematically formulated in Chapter 3. In addition, one of the parameters for UFEKT, the
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1.5. OUTLINE

rank, which is used for Tucker decomposition, must be decided in an unsupervised scenario.
The rank selection algorithm that we have proposed is mentioned in the same chapter. The
algorithm employs a heuristic strategy, however, it gives good rank settings in terms of the
performance in outlier detection in practice. It is discussed in the same chapter.

To evaluate our algorithms, two feature representation algorithms, the PageRank Kernel
(PRK) and SubSequence (SS), are employed for comparison with our algorithms. After
explanations about procedures of their algorithms, the experimental results applied to an
outlier detection task and a clustering task are shown in Chapter 4 and Chapter 5, respectively.
In their experiments, we prepared nine types of synthetic and six types of real-world
multivariate time series datasets for an outlier detection task, and 102 real-world multivariate
time series datasets for a clustering task. Their datasets are explained in the same chapters.
In addition, to evaluate our algorithms, ^th-Nearest Neighbor (^NN), Local Outlier Factor
(LOF), One-class Support Vector Machine (OCSVM), and Isolation Forest (IForest) are used
for an outlier detection task, and K-means (KMeans), Density-based Spatial Clustering of
Applications with Noise (DBSCAN), Agglomerative Hierarchical Clustering (AHC), and
Gaussian Mixture Model (GMM) used for a clustering task. Furthermore, Area under
Precision and Recall Curve (AUPRC) and Normalized Mutual Information (NMI) are used as
metrics for outlier detection and clustering. Those algorithms and metrics are also mentioned
in the same chapters. In discussion parts, we discuss reasons why our algorithms take higher
scores than existing methods by considering Euclidean distances between subsequences
analyzed with Principal Component Analysis (PCA).

Finally, we summarize the main findings of our studies and mention future work in
Chapter 6.
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Chapter 2

Related Work

2.1 Feature Extraction from Time Series

Several algorithms about feature extraction from time series for outlier detection have been
developed so far. Some representative algorithms for representation of time series data are
shown in Table 2.1 [3]. The Discrete Fourier Transform (DFT), Discrete Wavelet Transform
(DWT), and Discrete Cosine Transformation (DCT) are known as the methods to represent
features of time series data and widely used in a signal processing field. Other methods like
statistics are also well known techniques to extract features from time series data. However,
some methods shown in Table 2.1 cannot be directly applied to multivariate time series. As
another point of view, kernel methods are used for extraction of features from multivariate
time series [12, 54]. They construct a kernel matrix using radial basis function (RBF)
kernel [12] or linear kernel [54] from a time series. However, since their approaches use only
the integrated signal across multiple time series, they cannot treat combinatorial association
of time series. In contrast, our proposal treats each time series separately when we apply
kernels, hence we can treat such combinatorial effects.

2.2 Outlier Detection from Univariate Time Series

Outlier detection for time series have been actively studied and a number of methods have
been proposed [25, 1, 44, 12, 28, 48, 38, 39]. In particular for outlier detection from
a univariate time series, autoregressive moving average (ARMA) and an autoregressive
integrated moving average (ARIMA) have been commonly used [44]. They can find outliers
from differences between predicted values by ARMA or ARIMA and actual values. However,
they are considered to be sensitive to noise, resulting in increasing false positives when the
noise level is severe [44, 54]. Furthermore, a lot of algorithms we cited cannot directly be
applied to outlier detection problems for multivariate time series. Dynamic time warping
(DTW) is another representative method, which measures similarity between two time series
by aligning them [40, 7, 37]. DTW is widely used in a variety of applications because it
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2.3. OUTLIER DETECTION FROM MULTIVARIATE TIME SERIES

Table 2.1: Representative Methods for Representation of Time Series Data cited from [3].

Representation Methods Abbreviation of Methods

Discrete Fourier Transform DFT
Discrete Wavelet Transform DWT
Discrete Cosine Transformation DCT
Piece-waise Aggregate Approximation PAA
Symbolic Approximation SAX
PageRank Kernel PRK
Subsequence SS
Statistics (mean, variance, etc.) STATS

is robust to different frequencies or lengths. DTW can be used for univariate time series,
however, it cannot directly measure the association between three or more time series.

2.3 Outlier Detection from Multivariate Time Series

2.3.1 General Methods

In terms of outlier detection from multivariate time series, several algorithms have been
proposed [12, 28, 48]. TAKEISHI and YAIRI [48] have proposed an algorithm using sparse
representation. This method is designed in a supervised manner and requires labeled data.
Moreover, they do not focus on combinatorial association between time series and may
not detect combinatorial outliers. Furthermore, although tensor decomposition technique
have been used for outlier detection [55, 30, 18], where anomaly detection using Tucker
decomposition has been proposed, they do not focus on multivariate time series.

2.3.2 Neural Network Based Methods

Nowadays, a number of outlier detection methods for time series have been proposed
based on neural networks [35, 53, 56, 29, 57, 46, 54, 5]. One of the outlier detection
methods for multivariate time series is multi-scale convolutional recurrent encoder-decoder
(MSCRED), which is an algorithm using attention-based convolutional long-short time
memory (LSTM) [54]. It extracts features and detects outliers from multivariate time series
by constructing a kernel matrix. Many algorithms based on neural networks are becoming
popular recently and widely used in the real world. However, most of the neural network
based models have many parameters to be tuned, which is fundamentally difficult in the
unsupervised setting. Furthermore, they are often designed as supervised, hence ground-truth
labels are required to train their models to perform outlier detection.
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2.4. OUTLIER DETECTION FROM NON-TIME SERIES

2.4 Outlier Detection from Non-Time Series

Numerous algorithms have been proposed so far for outlier detection for non-time series
data [1, 2, 42, 11, 19, 51, 56, 57]. Representative algorithms include local outlier factor
(LOF) [9], ^th-nearest neighbor (^NN) [26], ORCA [6], one-class support vector machine
(OCSVM) [33, 43], isolation forest (IForest) [31], and sampling-based outlier detection [47].
Although these algorithms have been widely used in a variety of fields, they fundamentally
assume i.i.d. data and cannot be applied to time series directly. Since our method generates
feature vectors from multivariate time series with incorporating such time-wise association,
the above outlier detection algorithms can be directly applied to the obtained feature vectors,
which is an advantage of our method.

2.5 Clustering for Time Series

2.5.1 Clustering Applications

A clustering is one of the applications that is widely used in various categories such as
biology, energy, finance, medicines, and so on. Some representative clustering applications
are shown in Table 2.2.

2.5.2 Clustering Algorithms

Considering time series clustering, it can be classified to three types of clustering categories,
whole time series clustering, subsequence time series clustering, and time point clustering [3].
Many algorithms have been focused on whole time series clustering and developed so
far. In general, many algorithms have two steps to find clusters, feature extraction or
decision of model parameters, and usage of existing clustering algorithms for non-time series.
Some representative algorithms for whole time series clustering are shown in Table 2.3.
Subsequence time series clustering and time point clustering are commonly applied to
univariate time series, that is, there are few algorithms applied to multivariate time series.
Therefore we focus on the area and evaluate capabilities of clustering using features extracted
from our algorithm UFEKT.
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2.5. CLUSTERING FOR TIME SERIES

Table 2.2: Representative Clustering Applications for Time Series Data cited from [3].

Category Clustering Application

Aviation/Astronomy Astronomical data - pre-processing for outlier detection

Biology
Multiple gene expression profile alignment for microarray
time-series data clustering

Climate Discovery of climate indices
Energy Discovering energy consumption pattern
Finance Finding seasonality patterns
Medicine Detecting grain activity
Psychology Analysis of human behavior in psychological domain
Robotics Forming prototypical representations of the robot’s experiences

Table 2.3: Representative Whole Time Series Clustering Algorithms cited from [3].

Clustering Algorithms Representation Method Distance Measurement

Modified relocation clustering Raw time series Euclidean

Fuzzy C-Means Raw time series
Euclidean and two cross
correlation-based

Agglomerative hierarchical Raw time series J divergence
Agglomerative hierarchical Raw time series Root mean square
Fuzzy clustering Raw time series Euclidean
Agglomerative hierarchical Raw time series Gaussian moedels of data errors
K-Means Discrete Wavelet Transform Euclidean

K-Means and fuzzy C-Means
Symbolic Aggregate Euclidean and symmetric
Approximation version of Kullback-Liebler

K-Means, Hierarchical, and RS Raw time series DTW

K-Means
Derivative time series

DTW
segment approximation

Bayesian Hierarchical Clustering Gaussian process data model Dirichlet process model
Hybrid, K-Medoids, and Piece-wise aggregate

Euclidean distance and DTW
Hierarchical approximation

21



Chapter 3

Algorithms

3.1 UFEKS: Unsupervised Feature Extraction using Kernel and
Stacking

We formulate our method UFEKS in Section 3.1, which extracts feature vectors from
multivariate time series, and introduce its application to outlier detection in Chapter 4.

3.1.1 Extraction of features from multivariate time series

Many algorithms to extract features from time series have focused on its subsequences [54,
12, 48, 28]. In this thesis, we follow the idea of using subsequences and extract features based
on the similarity between subsequences. We use a kernel method to measure the similarity
between subsequences as it is widely used in data analysis for time series and its effectiveness
is well known.

Assume that there are % variables indexed from 1 to %. Given a multivariate time
series with the length ) as a matrix X = (G8 9) ∈ R%×) , where each row vector x(?) =
(G?1, G?2, · · · , G?) ) ∈ R) represents a time series of a variable ? and each column vector
xC = (G1C , G2C , · · · , G%C )T ∈ R% represents a multivariate vector at a time stamp C. A submatrix
XC ∈ R%×F , which is a part of X with respect to time stamps from C to C +F −1, is denoted as

XC =


G1C G1(C+1) · · · G1(C+F−1)

G2C G2(C+1) · · · G2(C+F−1)
...

...
. . .

...

G%C G% (C+1) · · · G% (C+F−1)


, (3.1)

where each row x(?)C = (G?C , G? (C+1) , · · · , G? (C+F−1) ) ∈ RF represents a subsequence at C of
the ?-th time series with length F. Examples of subsequences from a univariate time series
are shown in Figure 3.1.

First, we consider extraction of feature vectors from a univariate time series x(?) . Given
two subsequences of ?-th univariate time series x(?)

8
, x(?)
9
∈ RF with the length F. We use
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3.1. UFEKS: UNSUPERVISED FEATURE EXTRACTION USING KERNEL AND
STACKING

Subsequence

Figure 3.1: Examples of a subsequence from a univariate time series.

𝑲 =				

…

…
…

： ： ：

Figure 3.2: An image of a kernel matrix. Each element in the kernel matrix shows the
relationship between subsequences.

the RBF kernel to obtain the similarity between them, which is given as

:
(?)
8 9

= exp

{
−
∑F−1
B=0 (G? (8+B) − G? ( 9+B) )2

f2

}
, (3.2)

where f ∈ R is a parameter. Every : (?)
8 9

takes a value in (0, 1]. The RBF kernel for similarity
computation between subsequences was first employed in [12] and we follow this strategy.
As shown in Figure 3.2, each element in the kernel matrix shows the relationship between
subsequences. For example, diagonal elements in the kernel matrix are a relationship between
the same subsequences themselves, and the other elements are relationships between different
sequences. If they are similar to each other, their elements take close to one, on the other
hand, if they are different, their elements take close to zero. So, this kernel matrix is a
non-negative symmetric matrix and each element takes value between zero and one. The
resulting kernel matrix K(?) ∈ R() −F+1)×() −F+1) becomes a non-negative square matrix
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3.1. UFEKS: UNSUPERVISED FEATURE EXTRACTION USING KERNEL AND
STACKING
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(b) A concatenated kernel matrix K<;C

Figure 3.3: An image of a concatenated kernel matrix generated from two time series. Each
row vector in the concatenated kernel matrix represents associations between the two time
series.

given as

K(?) =



:
(?)
11 :

(?)
12 · · · :

(?)
1() −F+1)

:
(?)
21 :

(?)
22 · · · :

(?)
2() −F+1)

...
...

. . .
...

:
(?)
() −F+1)1 :

(?)
() −F+1)2 · · · :

(?)
() −F+1) () −F+1)


, (3.3)

where we denote each row vector as k(?)C = (: (?)
C1 , :

(?)
C2 , · · · , : (?)

C () −F+1) ) ∈ R
() −F+1) and )

is the length of the time series. Each row k(?)C of the kernel matrix K(?) is a feature vector
representation of the subsequence x(?)C , and it incorporates association between x(?)C and all
the other subsequences.

Now we extend our feature vector representation for univariate time series to multivariate
time series. First we generate kernel matrices K(1) ,K(2) , ...,K(%) for all variables 1, 2,. . . ,
%. Then, we horizontally concatenate all kernel matrices with each other and generate a
single matrix. The resulting matrix K ∈ R() −F+1)×() −F+1)% for multivariate time series is
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3.1. UFEKS: UNSUPERVISED FEATURE EXTRACTION USING KERNEL AND
STACKING

Algorithm 1 The UFEKS algorithm
Input: X ∈ R%×) , F, f, ' ∈ R
Output: k1, . . . , k) −F+1 ∈ R() −F+1)%

// Construct kernel matrices from multivariate time series
1: for ? = 1 to % do
2: for (8, 9) = (1, 1) to () − F + 1, ) − F + 1) do
3: :

(?)
8 9
← exp{ −∑F−1

B=0 (G? (8+B) − G? ( 9+B) )2/f2 }
4: end for
5: end for
6: Construct K∈R() −F+1)×() −F+1)% from K(1), . . . ,K(%) by concatenating each matrix

// Feature Extraction from Kernel Matrices
7: for 8 = 1 to ) − F + 1 do
8: k8 ← 8th-row vector of K
9: end for

10: return k1, . . . , k) −F+1

given as

K := [K(1) , · · · ,K(%) ] (3.4)

=


:
(1)
11 · · · :

(1)
1() −F+1) · · · :

(%)
11 · · · :

(%)
1() −F+1)

...
. . .

... · · ·
...

. . .
...

:
(1)
() −F+1)1 · · · :

(1)
() −F+1) () −F+1) · · · :

(%)
() −F+1)1 · · · :

(%)
() −F+1) () −F+1)


and its row vector kC ∈ R() −F+1)% is given as

kC =
(
:
(1)
C1 , · · · , :

(1)
C () −F+1) , · · · , :

(%)
C1 , · · · , : (%)

C () −F+1)

)
. (3.5)

This matrix K is considered to be the set of feature vectors {k1, k2, . . . , k) −F+1}. We treat
each row kC as a feature vector representation of the corresponding multivariate subsequence
XC , which is expected to encode the association between variables with respect to the
subsequence from C to C + F − 1. An image of concatenated kernel matrices are shown in
Figure 3.3. The pseudo code of our algorithm is summarized in Algorithm 1.
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3.2. UFEKT: UNSUPERVISED FEATURE EXTRACTION USING KERNEL
METHOD AND TUCKER DECOMPOSITION

3.2 UFEKT:UnsupervisedFeatureExtractionusingKernelMethod
and Tucker Decomposition

3.2.1 Feature Extraction Algorithm

Although UFEKS can extract features from multivariate time series, if datasets include a
lot of variables, its row vector in a feature matrix obtained by UFEKS might be a high
dimensional vector and makes it difficult to represent features of time series. To overcome
this issue, we propose a new method Unsupervised Feature Extraction using Kernel Method
and Tucker Decomposition (UFEKT). The UFEKT is composed of two steps: construction of
kernel matrices from multivariate time series and feature extraction from the kernel matrices
via tensor decomposition. After formulating those steps, we also formulate outlier detection
and clustering as applications for UFEKT.

Constructing kernel matrices from multivariate time series

To extract features from time series, most of algorithms have focused on subsequences, which
means they are sequences derived from original time series [54, 12, 48, 28]. In this thesis,
we follow the idea of using subsequences and extract features based on the similarity between
subsequences. A kernel method to measure the similarity between subsequences is employed
because it is widely used in data analysis for time series and its effectiveness is well known in
this area [12, 54].

Assume that a multivariate time series is given as a matrix X = (G8 9) ∈ R%×) with
% variables indexed from 1 to % and the length ) of time series, where each row vector
x(?) = (G?1, G?2, . . . , G?) ) ∈ R) represents a time series of a variable ? and each column
vector xC = (G1C , G2C , . . . , G%C )T ∈ R% represents a multivariate vector at a time stamp C. A
submatrix XC ∈ R%×F , which is a part of X with respect to time stamps from C to C + F − 1,
is given as

XC =


G1C · · · G1(C+F−1)

G2C · · · G2(C+F−1)
...

. . .
...

G%C · · · G% (C+F−1)


, (3.6)

where it represents a subsequence at C with its length of F. Each row x(?)C = (G?C , G? (C+1) , . . . ,
G? (C+F−1) ) ∈ RF is a subsequence of the ?-th time series.

First, we consider extracting feature vectors from a univariate time series x(?) . Given
two subsequences of ?-th univariate time series x(?)

8
, x(?)
9
∈ RF with the length F. When

the RBF kernel is employed for similarities between subsequences, their similarities : (?)
8 9

are
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Figure 3.4: An image of a tensor of kernel matrices. Each kernel matrix is stacked and a
three-way tensor is generated.

defined as

:
(?)
8 9

= exp

{
−
∑F−1
B=0 (G? (8+B) − G? ( 9+B) )2

f2

}
, (3.7)

where f is a parameter. Since the f must be changed depending on the input datasets, we
show one of the way to get suitable values of the f, which is the mean sum of squares of
differences between two subsequences for every variable. In this case, the f take different
values for each variable. More details are shown in Algorithm 4. Every : (?)

8 9
takes a value in

(0, 1]. The RBF kernel for similarity computation was first employed in [12] and we follow
the strategy. The resulting kernel matrix K(?) ∈ R() −F+1)×() −F+1) becomes non-negative
square matrix given as

K(?) =



:
(?)
11 · · · :

(?)
1() −F+1)

:
(?)
21 · · · :

(?)
2() −F+1)

...
. . .

...

:
(?)
() −F+1)1 · · · :

(?)
() −F+1) () −F+1)


. (3.8)

We denote each row vector as k(?)C = (: (?)
C1 , : (?)

C2 , . . . , : (?)
C () −F+1) ) ∈ R

() −F+1) and ) is the
length of time series. Each row vector k(?)C in the kernel matrix K(?) can be viewed as a
kernel vector representation of the subsequence x(?)C , and it incorporates association between
a subsequence x(?)C and all the other subsequences. The time complexity of constructing
each K(?) is O()2), hence the total time complexity becomes O()2%) when there are %
times series.

Feature extraction from kernel matrices

Second, we construct a tensor from the obtained kernel matrices to take association be-
tween multiple time series into account. Given % kernel matrices K(1) ,K(2) , . . . ,K(%) ∈
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Figure 3.5: An image of Tucker decomposition. A three-way tensor is decomposed into one
core tensor and three factor matrices. After the decomposition, resulting each row vector in a
factor matrix is regarded as a feature vector for multivariate time series.

R() −F+1)×() −F+1) generated from % time series by (3.8), a tensor is constructed by stacking
them; that is, it becomes three-dimensional tensor K ∈ R%×() −F+1)×() −F+1) . The tensor
incorporates information about association between subsequences in multivariate time series.
To extract features from the tensor, we propose to use Tucker decomposition [50]. Although
CANDECOMP/PARAFAC (CP) decomposition [27, 10, 21] is a well-known alternative
to tensor decomposition, we consider that Tucker decomposition is more suitable in our
task for the following reason. In CP decomposition, a third-order tensor X ∈ R�×�× 

is decomposed into three matrices A ∈ R�×� , B ∈ R�× , and C ∈ R ×� in the form of
X ≈ ‖_; A,B,C‖ = ∑'

A=1 _A aA ◦ bA ◦ cA under appropriate column-wise normalization,
where a, b, c ∈ R' and the symbol "◦" denotes the vector outer product. In this case,
information of outliers tend to appear in the vectors belonging to a higher-order rank of _A and
it is difficult to detect them in an unsupervised manner. In contrast, in Tucker decomposition,
information of outliers is encoded in a factor matrix, hence it is easy to extract vectors from it.

As shown in Figure 3.5, if a tensor K ∈ R"×#×% is given, Tucker decomposition
decomposes it into one core tensor C ∈ R'1×'2×'3 and three factor matrices F(1) ∈
R"×'1 , F(2) ∈ R#×'2 , and F(3) ∈ R%×'3 . The optimization problem we wish to solve for
decomposing the tensor K is formulated as

min
C,F(1) ,F(2) ,F(3)

‖K − C ×1 F(1) ×2 F(2) ×3 F(3) ‖, (3.9)

where each entry : ′<=? of the term C ×1 F(1) ×2 F(2) ×3 F(3) is defined as

: ′<=? =
'1∑
A1=1

'2∑
A2=1

'3∑
A3=1

2A1A2A3 5
(1)
<A1 5

(2)
=A2 5

(3)
?A3 . (3.10)

Several algorithms to solve the optimization problem in (3.9) have been already developed
so far. We adopt the higher-order orthogonal iteration (HOOI) [16, 15], which is based on
singular-value decomposition (SVD) for matrices. The SVD is a well known algorithm for

28



3.2. UFEKT: UNSUPERVISED FEATURE EXTRACTION USING KERNEL
METHOD AND TUCKER DECOMPOSITION

Algorithm 2 The Higher-order orthogonal iteration (HOOI) algorithm for UFEKT

Input: K ∈ R%×() −F+1)×() −F+1) , '1, '2, '3 ∈ R
Output: C ∈ R'1×'2×'3 ,F(1) ∈ R%×'1 ,F(2) ∈ R() −F+1)×'2 ,F(3) ∈ R() −F+1)×'3

// Initialize F(1) ∈ R%×'1 ,F(2) ∈ R() −F+1)×'2 ,F(3) ∈ R() −F+1)×'3 using HOSVD
1: repeat
2: # ← 3
3: for = = 1, . . . , # do
4: Y ← K ×1 F(1)T · · · ×=−1 F(=−1)T ×=+1 F(=+1)T · · · ×# F(=)T

5: F(=) ← '= leading left singular vectors of Y(=)
6: end for
7: until fit ceases to improve or maximum iterations exhausted
8: C ← K ×1 F(1)T ×2 F(2)T ×3 F(3)T

9: return C,F(1) ,F(2) ,F(3)

Algorithm 3 The Higher-order SVD (HOSVD) algorithm

Input: K ∈ R%×() −F+1)×() −F+1) , '1, '2, '3 ∈ R
Output: C ∈ R'1×'2×'3 ,F(1) ∈ R%×'1 ,F(2) ∈ R() −F+1)×'2 ,F(3) ∈ R() −F+1)×'3

1: # ← 3
2: for = = 1, . . . , # do
3: F(=) ← '= leading left singular vectors of K(=)
4: end for
5: C ← K ×1 F(1)T ×2 F(2)T ×3 F(3)T

6: return C,F(1) ,F(2) ,F(3)

decomposing a single matrix into three matrices: one diagonal matrix and two orthogonal
matrices. Furthermore, the higher-order SVD (HOSVD) is used as initialization and inputs
into HOOI. Although the HOSVD also decompose a tensor into one core tensor and three
factor matrices using SVD, it is known for that their outputs are not optimal [27]. Therefore,
to overcome the issue, the HOOI has been developed by utilizing results of HOSVD. The
procedures of theHOOI and theHOSVDalgorithms are shown inAlgorithm2 andAlgorithm3.
The HOOI also makes it possible to decompose a tensor into one core tensor and multiple
factor matrices with SVD. By applying HOOI to the obtained tensor of kernel we mentioned,
the tensor K ∈ R%×() −F+1)×() −F+1) can be decomposed into one core tensor C ∈ R%×'×'

and three factor matrices F(1) ∈ R%×%,F(2) ∈ R() −F+1)×',F(3) ∈ R() −F+1)×', where ranks
of the core tensor are given as [%, ', '] in advance as parameters. The computational cost
for performing Tucker decomposition using HOOI for a third order tensor is known to be
O()3' + )'4 + '6) [23, 22] where it assumes ranks and size of a tensor are C ∈ R'×'×'

and K ∈ R) ×) ×) , respectively.
After decomposing the given tensor, our idea is to focus on one of the factor matrices,
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Algorithm 4 How to decide the f used in UFEKT
Input: X ∈ R%×) , F ∈ R
Output: � ∈ { f (1) , f (2) , . . . , f (%) }
1: �← ∅
2: for ? = 1 to % do
3: - ← ∅
4: for (8, 9) = (1, 1) to () − F + 1, ) − F + 1) do
5: ΔG8 9 ←

∑F−1
B=0 (G? (8+B) − G? ( 9+B) )2

6: - ← - ∪ ΔG8 9
7: end for
8: (f (?) )2 ← "40={ - }
9: Σ← Σ ∪ f (?)

10: end for
11: return Σ

Algorithm 5 The UFEKT algorithm
Input: X ∈ R%×) , F, f, ' ∈ R
Output: f1, . . . , f) −F+1 ∈ R'

// Construct kernel matrices from multivariate time series
1: for ? = 1 to % do
2: for (8, 9) = (1, 1) to () − F + 1, ) − F + 1) do
3: :

(?)
8 9
← exp{ −∑F−1

B=0 (G? (8+B) − G? ( 9+B) )2/f2 }
4: end for
5: end for

// Feature Extraction from Kernel Matrices
6: Construct K ∈R%×() −F+1)×() −F+1) from K(1), . . . ,K(%)

7: (C,F(1) ,F(2) ,F(3) ) ← Tucker(K, [%, ', '])
8: for 8 = 1 to ) − F + 1 do
9: f8 ← 8th-row vector of F(2)

10: end for
11: return f1, . . . , f) −F+1

F(2) or F(3) , and extract its row vectors as the resulting feature vectors of subsequences
in the original multivariate time series. We will consistently use F(2) to construct feature
vectors as there is usually no significant difference between F(2) and F(3) . This is why
kernel matrices before constructing a tensor are always symmetric and similar features
are incorporated in their decomposed factor matrices. More precisely, given a tensor
of kernels K = (:<=?) ∈ R"×#×%, SVD used in HOOI is performed against matrices
K" ∈ R"×(#×%) , K# ∈ R#×(%×" ) , and K% ∈ R%×("×# ) , which are extracted from
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Rank Normalized 
distance

10 0.5

11 0.6

12 0.7

13 0.8

…

50 0.6A factor matrix obtained by 
Tucker decomposition

A feature vector

T-w+1

Rank Time
Normalized distance
of kth-NN between 

feature vectors

12 0 0.5

12 1 0.7

12 2 0.6

… …

12 T-w+1 0.3

Choosing the best rank 

Choosing 
maximum 
distance

T: The length of time series, 𝑅! 	: The number of time series, w: The length of subsequence

e.g.) 𝑅𝑎𝑛𝑘𝑠 = [𝑅!, 𝑅", 𝑅#]

𝑅" = 𝑅# = 12
(𝑹𝟐)

(𝑹𝟐)

Figure 3.6: An example of rank selection.

the tensor K. If we set ranks to [', ', %], we obtain exactly the same factor matrices
F" ∈ R"×' and F# ∈ R#×' from K" and K# , respectively, because both <-th row
vectors k"< in K" and k#< in K# are composed of the same elements except for the
order, that is, :<=? = :=<? always holds. Although factor matrices F′

"
and F′

#
, which are

eventually obtained by HOOI, could be slightly different with each other due to the iteration
of SVD in the framework of HOOI, they are still expected to be similar with each other. We
therefore do not distinguish them and consistently use F(2) in our algorithm. A symmetric
Tucker-2 decomposition could be used instead of the original Tucker decomposition as
Tucker-2 decomposition assumes that F(2) and F(3) are the same. However, we employ the
original Tucker decomposition algorithm in our proposal since it is expected that there is
no significant difference between the original Tucker and Tucker-2 due to the above reasons
(equivalence of SVD) and factor matrices might be used for other tasks, e.g., feature selection,
in our future work.

As a result, we obtain row vectors f1, . . . , f() −F+1) ∈ R' from the factor matrix F(2) .
Furthermore, column vectors of F(2) are considered to be almost orthogonal with each other
because HOOI uses the SVD algorithm to decompose a tensor. Therefore, we consider
that row vectors of F(2) represent feature vectors of multivariate time series, where both
time-wise and variable-wise associations are taken into account, and these feature vectors can
be applied to a variety of applications such as outlier detection and clustering. The pseudo
codes of our algorithm are summarized in Algorithm 5 and Algorithm 4.

3.2.2 Rank Selection Algorithm

In UFEKT, ranks of a core tensor in tensor decomposition must be determined in advance.
We provide a guideline of how to determine it in the following. We again emphasize that
we are considering the setting of unsupervised learning, and automatic parameter selection
such as grid search via cross-validation cannot be used. To decompose a three-dimensional
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Algorithm 6 Rank selection of a core tensor for UFEKT

Input: K ∈ R%×() −F+1)×() −F+1) , ^ ∈ N, 8_<8= ∈ N
Output: 'opt ∈ R
1: Prepare d ∈ R'

2: for 8 = 1 to ) − F + 1 do
3: (C8 ,F(1)8 ,F(2)

8
,F(3)
8
) ← Tucker(K, [%, 8, 8])

4: F8 ← ∅
5: for 9 = 1 to ) − F + 1 do
6: f 9 ← 9 th row vector of F(2)

8
; F8 ← F8 ∪ {f 9}

7: end for
8: Prepare s ∈ R) −F+1

9: for 9 = 1 to ) − F + 1 do
10: s 9 ← 3^ (f 9 ;F8)
11: end for
12: d8 ← (max 9 s 9)/(

∑
9 s 9)

13: end for
14: 'opt ← argmax8≥8_<8=d8
15: return 'opt

tensor into one core tensor and three factor matrices, a three-dimensional rank ['1, '2, '3]
is required. Assume that '1 indicates an axis in the direction of variables and '2, '3 indicate
axes in the direction of time series. The first rank '1 is recommended to be the same value as
the number of variables because a decomposed factor matrix is not used in our method and
compression in this direction is not required. We recommend to set '2 = '3 because only
one of two factor matrices will be used to construct feature vector representation in UFEKT.
Hence, only one parameter '2 should be determined in UFEKT.

To determine the rank '2, we propose to use the ^th nearest neighbor (^NN) distance.
For each rank setting, we decompose a tensor, and we compute the ^NN distance for each
row vector in F(2) . We then normalize each distance by dividing it by the summation of all
distances to compare distances across different ranks. Finally, we adopt the rank with the
largest distance for outlier detection as it is expected that outliers may be well distinguished.

To get the best rank, first of all, we perform Tucker decomposition while changing ranks.
After each decomposition, we measure normalized distance between feature vectors in a
factor matrix and regard the longest distance as a representative distance of the rank. This
slide shows the case where R2 is 12. To make the right table, choose the maximum distance
from the middle table, it becomes 0.7 in this case, and set the value in the table. After
making the right table, choose the best rank by selecting the longest normalized distance.
This method does not guarantee to output the best rank, however, our experiments show that
favorable results can be obtained.
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Since the effect of outliers are considered not to appear if the rank is too small, we seek
ranks greater than or equal to 8_<8=, which is a parameter. As we will mention in Chapter 4,
we set ^ = 5 and 8_<8= = 10 in our experiments. This proposed heuristic strategy gives good
rank setting in terms of the performance in outlier detection in practice. The details of our
algorithm to find an appropriate rank of a core tensor is shown in Algorithm 6.
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Chapter 4

Outlier Detection

4.1 Feature Extraction from Multivariate Time Series

To evaluate our algorithms, UFEKS and UFEKT, we introduce two representative feature
extraction algorithms, PageRank kernel (PRK) and SubSequence (SS).

4.1.1 UFEKS for Feature Extraction

To evaluate the effectiveness of our algorithm UFEKS, we propose to apply the UFEKS to the
problem of unsupervised outlier detection from multivariate time series. When we use our
method for a multivariate time series X, we can extract feature vectors for subsequences in
the kernel matrix K. Then we can directly perform outlier detection on the extracted vectors
to find outlier subsequences.

4.1.2 UFEKT for Feature Extraction

As the same as UFEKS above, we also apply our algorithm UFEKT to an unsupervised
outlier detection problem. Given a multivariate time series X, feature vectors of subsequences
in the factor matrix F(2) extracted by UFEKT will be used to detect outliers (anomalous
subsequences) using existing outlier detection techniques.

4.1.3 PageRank Kernel (PRK) for Feature Extraction

The PageRank kernel, which we denote by PRK, has been proposed in the outlier detection
method PR [12], which is considered to be the state-of-the-art technique for unsupervised
outlier detection from multivariate time series. PR is a kernel-based method using the
PageRank algorithm. It constructs a state transition probability matrix converted from a
kernel matrix calculated by the RBF kernel, and the state transition probability matrix is used
for the PageRank algorithm to detect outliers. Given a multivariate time series X ∈ R(%×) )

with % variables with the length ) , PR constructs a kernel matrix  ∈ R() −F+1)×() −F+1)
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such that

:8 9 = exp
−

∑%
?=1

∑F−1
B=0 (G

(?)
8+B − G

(?)
9+B)2

f2

 , (4.1)

8, 9 ∈ {1, 2, . . . , ) − F + 1},

where F is the length of each subsequence. The difference between this kernel and our
kernel function in Equation (3.7) is whether or not values representing associations between
subsequences calculated for each variable are summed up. In the case of Equation (4.1),
information of association among variables may be lost by its summation.

4.1.4 SubSequence (SS) for Feature Extraction

In comparison with PRK, the subsequence based approach, which we denote by SS, is widely
used in extracting features from time series. A subsequence is a sequence extracted from
time series. Given X = (G8 9) ∈ R%×) with % variables with the length ) , first we obtain a
single time series xBB by summing up every variable at each time C,

xBB =
©«
%∑
?=1

G
(?)
1 , . . . ,

%∑
?=1

G
(?)
)

ª®¬ . (4.2)

When we denote each element of xBB at time C as GBBC =
∑%
?=1 G

(?)
C , the subsequence based

matrix XBB ∈ R() −F+1)×F with the window size F is defined as

XBB =


GBB1 · · · GBBF

GBB2 · · · GBB
F+1

...
. . .

...

GBB
) −F+1 · · · GBB

)


. (4.3)

By considering each row in Equation (4.3) to be a multidimensional data point, outliers can
be detected by conventional algorithms like ^NN. We compare our algorithm with PRK and
SS.

4.2 Outlier Detection Methods

We employed five types of outlier detection methods, such as distance-based, density-based,
kernel-based, ensemble-based, and pagerank-based algorithms for evaluating our algorithms.
Furthermore, we chose representative method from each type, ^th-Nearest Neighbor (^NN),
Local Outlier Factor (LOF), One-class Support Vector Machine (OCSVM), Isolation Forest
(IForest), and PageRank (PR), and briefly mention their methods.
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Table 4.1: Existing methods of outlier detection for non-time series datasets.

Types Names

A distance-based algorithm ^th-Nearest Neighbor (^NN)
A density-based algorithm Local Outlier Factor (LOF)
A kernel-based algorithm One-class Support Vector Machine (OCSVM)
A ensemble-based algorithm Isolation Forest (IForest)
A PageRank-based algorithm PageRank (PR)

4.2.1 Distance-based Algorithm

The ^th-Nearest Neighbor (^NN) [26, 41] is one of the distance-based algorithm and is
widely used in the data mining field. Outlierness to be measured by ^NN has been proposed
by RAMASWAMY et al. and the score @(XC ) is defined as:

@(XC ) := 3^ (kC ;Sfvec), (4.4)

where the 3^ (kC ;Sfvec) is Euclidean distance from kC ∈ R() −F+1)%, which is the feature
vector representation of XC to its ^th-nearest neighbor in the set Sfvec = {k1, k2, . . . , k) −F+1}.

4.2.2 Density-based Algorithm

There is Local Outlier Factor (LOF) [9] as one of the representative distance-based algorithms.
The LOF is defined as the ratio of the reachability density of data point kC and the score
@(XC ) is defined as:

@(XC ) := ©«|# ^ (kC ) |−1
∑

k′C ∈# ^ (kC )

d(k′C )
ª®¬ d(kC )−1, (4.5)

d(kC ) := |# ^ (kC ) |
©«

∑
k′C ∈# ^ (kC )

<0G

{
3^ (kC ,XC ), 3 (kC , k

′
C )
}ª®¬
−1

, (4.6)

where # ^ (kC ) is the set of ^th-nearest neighbors of data point kC .

4.2.3 Kernel-based Algorithm

The One-class Support Vector Machine (OCSVM) [33, 43] classifies given datasets into
inliers and outliers by introducing a hyperplane between them. If a data point is located in
the outlier space, the data point would be decided as an outlier. The score @(XC ) of a vector
kC with a feature map Φ is defined as:

@(XC ) := d − (8 · Φ(kC )), (4.7)
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where the offset d and the weight vector 8 are optimized by the quadratic programming:

<8=
8∈F,/∈R= ,d∈R

1
2
| |8| |2 + 1

a=

) −F+1∑
8=1

b8 − d, (4.8)

subject to (8 · Φ(k8)) ≥ d − b8 , b8 ≥ 0, (4.9)

with a regularization parameter a.

4.2.4 Ensemble-based Algorithm

The Isolation Forest (IForest) [31] is known for one of the ensemble-based algorithms and a
random forest-like method. The outlierness of a data point kC is measured by path length
ℎ(kC ) on a tree and the score @(XC ) is defined as:

@(XC ) := 2−ℎ (kC )/2 (B) , (4.10)

2(B) := 2� (B − 1) − 2(B − 1)
) − F + 1

, (4.11)

where ℎ(kC ), B and � indicate the average of ℎ(kC ), the depth of the tree, and the harmonic
number, respectively.

4.2.5 PageRank-based Algorithm

The PageRank-based algorithm (PR) is proposed as outlier detection algorithm for time series
data [12]. After making a kernel matrix defined in Equation (4.1), PR constructs a weighted
graph � = (+, �), where + corresponds to the set of subsequences, and use the PageRank
algorithm on the graph to quantify the outlierness of each subsequence, where anomalous
subsequences will receive low score in the method.

4.3 Evaluation Metrics

For evaluating accuracy of our algorithms, we introduce area under precision recall curve
(AUPRC) as an evaluation metric. AUPRC is widely used for evaluating accuracy especially
for outlier detection problems. Precision and Recall are defined as follows:

%A428B8>=(C) :=
|((C) ∩ � |
|((C) | , (4.12)

'420;; (C) :=
|((C) ∩ � |
|� | , (4.13)

where ((C) and � indicate a set of data points that are inferred to be outliers with a threshold
C and a set of data points with ground truth labels, respectively. Once they are calculated, it is
possible to plot a curve between the precision and the recall by varying the threshold C. An
AUPRC score corresponds to an area under the curve. The score takes values between zero
and one, and higher is better.
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Table 4.2: A package list of Python that we used in our experiments. Some packages called
from the listed packages are not written here.

Package Version

matplotlib 3.2.1
networkx 2.5
numpy 1.18.4
pandas 1.1.4
scikit-learn 0.23.1
scipy 1.4.1
seaborn 0.11.0
statsmodels 0.12.1
tensorly 0.5.0

Table 4.3: Parameters for algorithms. The ^ and f are used for ^NN and PRK, respectively.
The length of subsequences, or the window size, is used in not only SS but all algorithms to
convert a given time-series to a set of subsequences.

Name Value

^ for ^-th nearest neighbor (^NN) 5
f for PageRank kernel (PRK) 1
Length of subsequence or window size of time series 2

4.4 Experimental Environment

We used CentOS release 6.10 with 4x 22-Core model 2.20 GHz Intel Xeon CPU E7-8880
v4 processors and 3.18 TB memory. All methods are implemented in Python 3.7.6 and
all experiments are performed on the same platform. A package list of Python used in our
experiments is shown in Table 4.2.

As for hyper parameters, we set ^ = 5, in ^th-Nearest Neighbor which is commonly used
in literature [6, 8], and set f = 1, which is known to be an appropriate value for normalized
datasets. The length of subsequences or the window size was set to be two to avoid low
resolution and to improve accuracy of AUPRCs. If the window size increases further, it
becomes low resolution, resulting in low AUPRCs. We show each parameter that we used in
the algorithms in Table 4.3.
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4.5 Datasets

4.5.1 Synthetic Datasets

We prepared nine types of synthetic multivariate time series datasets. Each synthetic dataset
includes two or more time series. Outlierness behavior occurs in only one of time series
shown as an orange solid area in Figures from 4.1a to 4.4. All the nine synthetic datasets are
composed of sine waves or straight lines, and Gaussian noise were added to every data point,
where the noise were generated by Gaussian distribution with zero mean and 0.1 standard
deviation N(0, 0.12). We generated each synthetic dataset ten times with random noise.

Eight figures from Figure 4.1a to Figure 4.2d illustrate synthetic multivariate time series
datasets, each of which is composed of two time series. Each time series has 1,000 time
stamps, and outliers with the length of ten or eleven time stamps are injected. SYN1 time
series in Figure 4.1a is composed of sine waves and straight lines. SYN2 time series in
Figure 4.1b is composed of two sine waves with different amplitudes. Datasets from SYN3 to
SYN6 illustrated in Figure 4.1c, Figure 4.1d, Figure 4.2a, and Figure 4.2b are composed of
sine waves, and their averages in subsequence are swaying over time. Moreover, a phase shift
occurs between their time series in SYN6. SYN7 time series in Figure 4.2c is composed of
sine waves with different amplitudes. SYN8 time series is almost the same as SYN7 except
for changes of their averages over time. Enlarged plots between specific time spans that
include outliers from SYN1 to SYN8 are shown in Figure 4.3a and Figure 4.3b. The SYN9
dataset in Figure 4.4 has a set of four time series and each time series has 1,500 time stamps.
Their wavelengths of the top and the bottom time series are fifteen and thirty, respectively.
The second time series is combined with two wavelengths of ten and twenty. Similarly, the
third time series is combined with two wavelengths of ten and twenty-five. Consequently, all
of four time series are composed of different wavelengths.
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(a) SYN1 time series.

(b) SYN2 time series.

(c) SYN3 time series.

(d) SYN4 time series.

Figure 4.1: Synthetic datasets (SYN1-SYN4). Orange solid areas indicate time spans
including combinatorial outliers.

40
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(a) SYN5 time series.

(b) SYN6 time series.

(c) SYN7 time series.

(d) SYN8 time series.

Figure 4.2: Synthetic datasets (SYN5-SYN8). Orange solid areas indicate time spans
including combinatorial outliers. 41
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(a) The plots from left to right correspond to enlarged plots between specific time spans that include
outliers from SYN1 to SYN4 time series.

(b) The plots from left to right correspond to enlarged plots between specific time spans that include
outliers from SYN5 to SYN8 time series.

Figure 4.3: Synthetic datasets (Enlarged SYN1-SYN8). Orange solid areas indicate time
spans including combinatorial outliers.
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Figure 4.4: Synthetic datasets (SYN9). Orange solid areas indicate time spans including
combinatorial outliers.
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Figure 4.5: Real-world datasets (ATSF). Orange solid areas indicate time spans including
combinatorial outliers.

4.5.2 Real-world Datasets

We prepared six types of real-world multivariate time series datasets. Real-world datasets
ambient temperature system failure (ATSF) are shown in Figure 4.5, which come from
the Numenta Anomaly Benchmark (NAB) v1.1 publicly available1 [4] and record ambient
temperature in an office setting measured every hour. Since it is hard to find ground truth
combinatorial outliers in multivariate time series from real-world datasets, we collected
univariate time series and artificially simulated combinatorial outliers on it. Time series
we extracted have successive 1,000 time stamps out of 7,267 where it corresponds between
November 1, 2013 and December 13, 2013, and we created 8, 16, 32, and 64 variants with
adding noise generated by Gaussian distribution withN(0, 0.12). Furthermore, we artificially
injected outliers in the range from 951 to 1,000 by adding about one percent values of the
original values to only a single variable. Such outliers simulate, for example, abnormal drift
of a temperature sensor. Similar to synthetic datasets, we repeated generating each ATSF
dataset ten times with adding random noise.

1https://github.com/numenta/NAB/tree/master/data
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(a) WADI time series.

(b) SWaT time series.

Figure 4.6: Examples of real-world datasets (WADI and SWaT). Orange solid areas indicate
time spans including combinatorial outliers.
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Table 4.4: Summary of synthetic and real-world datasets.

Name of
Datasets

# of
variables

Range of
outliers

Length of
time series

SYN1 2 140-150 1,000
SYN2 2 231-240 1,000
SYN3 2 101-110 1,000
SYN4 2 101-110 1,000
SYN5 2 201-210 1,000
SYN6 2 201-210 1,000
SYN7 2 241-250 1,000
SYN8 2 241-250 1,000
SYN9 4 201-250 1,500
ATSF8 8 951-1,000 1,000
ATSF16 16 951-1,000 1,000
ATSF32 32 951-1,000 1,000
ATSF64 64 951-1,000 1,000
WADI 93 9,054-9,644 10,000
SWaT 39 2,918-3,380 5,000

Furthermore, we employed another types of multivariate time series 2 called Water
Distribution (WADI) 3 illustrated in Figure 4.6a and Secure Water Treatment (SWaT) 4

illustrated in Figure 4.6b. These real-world multivariate time series datasets are also publicly
available and outliers have been already included in them. We extracted 10,000 successive
time stamps out of 172,801 time stamps between 50,001 and 60,000 from WADI and
successive 5,000 time stamps out of 449,919 time stamps between 130,000 and 135,000 from
SWaT. Their subsets include some outliers that can be obviously and visually identified as
outliers. Note that, in comparison with ATSF, we do not artificially inject any outliers in
both WADI and SWaT datasets.

4.6 Experimental Results and Discussion for UFEKS

4.6.1 Experimental Results

Results are summarized in Figure 4.7, Figure 4.8, and Tables 4.5 and Tables 4.6. OD, FR,
PRK, and SS in the figures stand for Outlier Detection, Feature Representation, PageRank
Kernel, and SubSequence, respectively. The datasets except forWADI and SWaT are prepared

2iTrust, Centre for Research in Cyber Security, Singapore University of Technology and Design
3https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_wadi/
4https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
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Table 4.5: Area under precision-recall curve (AUPRC) obtained by UFEKS for synthetic
datasets. OD, FR, PRK and SS stand for Outlier Detection, Feature Representation, PageRank
Kernel and SubSequence respectively. Averages±StandardDeviations in ten trials are shown
in the table. Best scores are denoted in bold.

OD ^NN LOF
FR UFEKS PRK SS UFEKS PRK SS

SYN1 0.886 ±0.003 0.815 ±0.010 0.486 ±0.028 0.857 ±0.008 0.736 ±0.034 0.258 ±0.017
SYN2 0.913 ±0.054 0.734 ±0.048 0.575 ±0.055 0.803 ±0.043 0.062 ±0.031 0.380 ±0.122
SYN3 0.980 ±0.013 0.625 ±0.167 0.016 ±0.005 0.953 ±0.028 0.118 ±0.041 0.011 ±0.002
SYN4 0.956 ±0.028 0.573 ±0.111 0.010 ±0.002 0.901 ±0.017 0.114 ±0.073 0.011 ±0.003
SYN5 0.990 ±0.005 0.046 ±0.009 0.007 ±0.001 0.957 ±0.028 0.006 ±0.000 0.011 ±0.003
SYN6 0.237 ±0.068 0.063 ±0.019 0.182 ±0.051 0.023 ±0.009 0.007 ±0.001 0.139 ±0.043
SYN7 0.853 ±0.012 0.779 ±0.057 0.010 ±0.001 0.867 ±0.031 0.047 ±0.029 0.060 ±0.069
SYN8 0.739 ±0.074 0.012 ±0.001 0.006 ±0.000 0.006 ±0.000 0.007 ±0.000 0.007 ±0.000
SYN9 0.375 ±0.026 0.368 ±0.041 0.033 ±0.001 0.140 ±0.020 0.069 ±0.020 0.035 ±0.002

Average 0.770 0.446 0.147 0.612 0.129 0.101

OD OCSVM IForest
FR UFEKS PRK SS UFEKS PRK SS

SYN1 0.668 ±0.042 0.006 ±0.000 0.007 ±0.000 0.670 ±0.030 0.017 ±0.000 0.013 ±0.001
SYN2 0.600 ±0.036 0.006 ±0.000 0.018 ±0.000 0.303 ±0.143 0.006 ±0.000 0.019 ±0.001
SYN3 0.418 ±0.105 0.006 ±0.000 0.008 ±0.000 0.017 ±0.005 0.006 ±0.000 0.011 ±0.001
SYN4 0.508 ±0.109 0.006 ±0.000 0.007 ±0.000 0.014 ±0.001 0.006 ±0.000 0.007 ±0.000
SYN5 0.545 ±0.114 0.006 ±0.000 0.010 ±0.000 0.022 ±0.009 0.006 ±0.000 0.008 ±0.001
SYN6 0.008 ±0.002 0.007 ±0.001 0.008 ±0.000 0.007 ±0.000 0.007 ±0.000 0.014 ±0.005
SYN7 0.894 ±0.013 0.006 ±0.000 0.006 ±0.000 0.374 ±0.049 0.007 ±0.000 0.006 ±0.000
SYN8 0.331 ±0.075 0.012 ±0.003 0.014 ±0.000 0.162 ±0.026 0.051 ±0.016 0.006 ±0.000
SYN9 0.117 ±0.021 0.020 ±0.001 0.032 ±0.001 0.070 ±0.020 0.030 ±0.002 0.032 ±0.001

Average 0.454 0.008 0.012 0.182 0.015 0.013

ten patterns for each as we inject Gaussian noises and Averages ± StandardDeviations in ten
trials are shown in the table. Best scores are denoted in bold.

Synthetic datasets (SYN)

Figures from Figure 4.7a to Figure 4.9 show results of synthetic datasets. There are four
plots in each figure and each title in their plots shows the name of the corresponding outlier
detection algorithm. Our algorithm, UFEKS, is superior to the other feature representation
algorithms PageRank Kernel (PRK) and SubSequence (SS) in all synthetic datasets. In
comparison with PRK and SS, our kernel matrix used in the algorithm does not sum up
elements in a row of the kernel matrix that represents association between subsequences,
while PRK and SS sum up them. Therefore, it is considered that UFEKS has high capability
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(a) SYN1 time series.
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(b) SYN2 time series.
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(c) SYN3 time series.
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(d) SYN4 time series.

Figure 4.7: AUPRCs for SYN1, SYN2, SYN3, ans SYN4 by UFEKS.

of representing features. Moreover, by using Gaussian kernel, it is expected that UFEKS can
reduce noise and extract features easier than SS. Furthermore, it is also interesting that ^NN,
which is an outlier detection algorithm, also tends to produce better results than the other
algorithms except for SYN8 datasets. Their details are shown in Table 4.5.

Real-world datasets (ATSF)

Figures from Figure 4.10a to Figure 4.10d show results of ATSF datasets. A detail of the
results is shown in Table. 4.6. The results tend to be similar to synthetic datasets, that is,
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(a) SYN5 time series.
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(b) SYN6 time series.

UFEKS PRK SS
0.00

0.25

0.50

0.75

1.00
kNN

UFEKS PRK SS

LOF

UFEKS PRK SS

OCSVM

UFEKS PRK SS

IForest

(c) SYN7 time series.
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(d) SYN8 time series.

Figure 4.8: AUPRCs for SYN5, SYN6, SYN7, and SYN8 by UFEKS.

combinations of ^NN and UFEKS have resulted in high accuracy for all datasets except for
ATSF8.

Real-world datasets (WADI and SWaT)

Figure 4.11a and Figure 4.11b show results for WADI and SWaT datasets. These results are
different from those for the other datasets because OCSVM and IForest have better results
than ^NN. Moreover, our algorithm, UFEKS, is not better than SS.
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Figure 4.9: AUPRCs for SYN9 by UFEKS.

Table 4.6: Area under precision-recall curve (AUPRC) obtained by UFEKS for real-world
datasets. OD, FR, PRK and SS stand for Outlier Detection, Feature Representation, PageRank
Kernel and SubSequence respectively. Averages±StandardDeviations in ten trials are shown
in the table, however, WADI and SWaT are performed only once. Best scores are denoted in
bold.

OD ^NN LOF
FR UFEKS PRK SS UFEKS PRK SS

ATSF8 0.914 ±0.027 0.199 ±0.028 0.040 ±0.001 0.960 ±0.006 0.187 ±0.030 0.067 ±0.001
ATSF16 0.868 ±0.018 0.260 ±0.038 0.039 ±0.001 0.630 ±0.012 0.066 ±0.009 0.064 ±0.001
ATSF32 0.614 ±0.027 0.186 ±0.018 0.039 ±0.001 0.176 ±0.010 0.032 ±0.002 0.063 ±0.001
ATSF64 0.306 ±0.015 0.089 ±0.005 0.038 ±0.001 0.080 ±0.003 0.028 ±0.000 0.063 ±0.000
WADI 0.092 0.047 0.128 0.057 0.064 0.055
SWaT 0.143 0.085 0.118 0.088 0.070 0.100

Average 0.489 0.144 0.067 0.332 0.074 0.069

OD OCSVM IForest
FR UFEKS PRK SS UFEKS PRK SS

ATSF8 0.899 ±0.006 0.026 ±0.000 0.034 ±0.000 0.461 ±0.049 0.029 ±0.000 0.035 ±0.001
ATSF16 0.821 ±0.026 0.026 ±0.000 0.034 ±0.000 0.247 ±0.042 0.030 ±0.000 0.034 ±0.000
ATSF32 0.329 ±0.026 0.027 ±0.000 0.034 ±0.000 0.132 ±0.021 0.030 ±0.000 0.034 ±0.000
ATSF64 0.189 ±0.003 0.032 ±0.003 0.034 ±0.000 0.113 ±0.024 0.034 ±0.000 0.034 ±0.000
WADI 0.249 0.032 0.751 0.172 0.033 0.628
SWaT 0.783 0.118 0.881 0.643 0.054 0.365

Average 0.545 0.044 0.295 0.295 0.035 0.188

4.6.2 Discussion - Principal Component Analysis (PCA)

Synthetic Datasets (SYN)

As shown in Subsection 4.6.1, ^NN had good results. One of the reasons is that outlier
points tend to place far away from normal points. To analyze the difference between feature
representation methods deeper, we apply Principal Component Analysis (PCA) for the
obtained feature representations from SYN7 datasets as a representative example. The result
obtained by SubSequence (SS) is plotted in Figure 4.12 and those by UFEKS and PageRank
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(a) ATSF8 time series.
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(b) ATSF16 time series.
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(c) ATSF32 time series.
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(d) ATSF64 time series.

Figure 4.10: AUPRCs for ATSF8, ATSF16, ATSF32, and ATSF64 by UFEKS.

kernel are in from Figure 4.13 to Figure 4.18. The x- and y-axes in Figure 4.12, Figure 4.13 and
Figure 4.16 indicate the first and the second principal components, respectively. Furthermore,
we plot the second and third principal components in Figure 4.14 and Figure 4.17, and the
second and fourth ones in Figure 4.15 and Figure 4.18. The circles and crosses in all plots
denote normal and outlier points, respectively. As the Figure 4.12 shows, it seems to be
difficult to detect outliers by an existing algorithm like ^NN from this feature representation
because most outliers are close to the normal data points. In contrast, we can see some outliers
that are apart from normal data points in Figure 4.14 and Figure 4.18. This demonstrates the
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(a) WADI time series.
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(b) SWaT time series.

Figure 4.11: AUPRCs for WADI and SWaT by UFEKS.

effectiveness of our approach as it means that there is a possibility to detect such outliers
by distance-based outlier detection methods from these feature representations. Note that a
feature representation matrix from SubSequence (SS) has only two dimensions as we set the
length of subsequence to be two.

Real-world Datasets (WADI and SWaT)

As shown in Subsection 4.6.1, the results obtained by our algorithm, UFEKS, is not better
than SS. To analyze this reason, we illustrate results of PCA for SWaT datasets in Figure 4.19,
Figure 4.20, and Figure 4.21. The x- and y-axes indicate the first and second principal
component, the second and the third principal components, and the second and fourth
principal components, respectively. The circles and crosses in these plots denote normal
and outlier points, respectively. These three plots have different features compared with
other PCA plots for synthetic datasets that we have shown before. Outliers and normal data
points are aligned with each other. Furthermore, distances between data points seem to be
comparatively equal. In this case, detecting outliers using distance-based outlier detection
algorithms such as ^NN may be difficult. Although it might be possible to detect them by
supervised learning, it is out of scope of this thesis. We consider that both WADI and SWaT
time series include a variety types of data patterns and it is fundamentally difficult to detect
outliers from these datasets in an unsupervised manner.
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Figure 4.12: A result of PCA that is applied to the feature representation obtained by
SubSequence (SS) for the SYN7 time series dataset. The 1st and 2nd principal components
are shown here.

4.7 Experimental Results and Discussion for UFEKT

4.7.1 Experimental Results

We performed three feature representation algorithms, UFEKT, PageRank kernel (PRK), and
SubSequence (SS), combined with four outlier detection algorithms, ^NN, LOF, OCSVM,
and IForest, resulting in twelve combinations of feature extraction and outlier detection
in total. In addition to them, we tried to perform one of the common algorithms called
Prophet [49], which is a forecasting procedure for univariate time series. However, we could
not get results of Prophet due to high computational cost and it was hard to decide date
and time information correctly for our datasets, which is required for Prophet as additional
input. The effectiveness of each method was evaluated by the area under precision-recall
curve (AUPRC) [1]. The AUPRC score takes values between zero and one, and higher is
better. Moreover, we show each parameter that we used in the algorithms in Table 4.3. We
set ^ = 5, which is default setting, and set f = 1, which is known to be an appropriate
value for normalized datasets. The window size was set to be two to avoid low resolution
and to improve accuracy of AUPRCs. If the window size increases further, it becomes low
resolution, resulting in low AUPRCs.

Results are summarized in Table 4.7 and Table 4.8. OD, FR, PR, PRK, and SS in the
tables stand for Outlier Detection, Feature Representation, PageRank, PageRank Kernel,
and SubSequence, respectively. All datasets except for WADI and SWaT were created ten
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Figure 4.13: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SYN7 time series dataset. The 1st and 2nd principal components are shown in this
figure.

times with adding Gaussian noises. Therefore, each method are performed ten times for each
dataset except for WADI and SWaT. In addition to the tables, we show plots of the results of
every dataset in Figure 4.22, Figure 4.23, and Figure 4.24 for synthetic datasets, Figure 4.25
for ATSF datasets, and Figure 4.26 for WADI and SWaT datasets.

Synthetic Datasets (SYN)

Results of SYN datasets are shown in Table 4.7. Our algorithm, UFEKT, is superior to the
other feature representation algorithms PageRank Kernel (PRK) and SubSequence (SS) in all
synthetic datasets except for SYN2, SYN6, and SYN8, and shows the best performance on
average. In comparison with PRK, kernels used in our algorithm do not sum up elements in
a row of a kernel matrix that represents association between subsequences. Therefore, it is
considered that UFEKT has a high capability of feature representations. Moreover, by using
the Gaussian kernel, it is expected that UFEKT can reduce noise and extract features easier
than SS. Furthermore, it is also interesting that ^NN, which is an outlier detection algorithm,
also tends to show better results than the other algorithms. The reasons why ^NN, which is
distance-based algorithm, have a good result is that outlier points tend to place far away from
normal points in a kernel space.
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Figure 4.14: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SYN7 time series dataset. The 2nd and 3rd principal components are shown in this
figure.

Real-world Datasets (ATSF)

Results of ATSF datasets are shown in Table 4.8. UFEKT is superior to PRK and SS in all
ATSF datasets. Those ATSF datasets are prepared for detecting outliers that cannot be found
if we look at each of the multivariate time series separately. In the case of ATSF8, there are
eight similar time series with artificially injected noise. The results of UFEKT remain high
accuracy even if the number of variables are increased. This is one of the characteristics of
UFEKT.

Real-world Datasets (WADI and SWaT)

Results of WADI and SWaT datasets are shown in Table 4.8. Their results are different
from the other datasets because SS is superior to our algorithm UFEKT. Those datasets have
different tendencies compared to other datasets, SYN and ATSF, because each time series
has a unique shape shown in Fig.4.6a and Figure 4.6b, and the differences between variables
are not dominant. This means that feature extraction and outlier detection to these datasets
are fundamentally difficult.

4.7.2 Discussion - Rank Dependencies of AUPRCs

We examine the effectiveness of our parameter selection algorithm in Algorithm 6, which
tries to find a good choice of a parameter, rank of a core tensor, used in UFEKT. We compare
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Figure 4.15: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SYN7 time series dataset. The 2nd and 4th principal components are shown in this
figure.

the AUPRCs obtained by Algorithm 6 and that by the optimal rank obtained by the grid
search. Note that the latter is possible only when the ground truth labels for outliers are given
and it is not possible in practice. Figure 4.27 shows rank dependencies of AUPRCs in our
experiments. Our algorithm indicates that the rank should be set as 14 as it takes the highest
normalized ^NN distance, and the bottom plot shows that the corresponding AUPRC is a
good choice. Table 4.9 shows that our algorithm is almost successful in finding ranks for all
datasets, and the loss of AUPRCs is marginal. These results show that our heuristic rank
selection algorithm is effective in the task of outlier detection.

4.7.3 Discussion - Usage of The Rest of Factor Matrices by UFEKT

As we have mentioned above, in the UFEKT, three factor matrices are produced by Tucker
decomposition and only one of the matrices is used for extracting feature vectors, that is, the
rest of the matrices remained unused. However, one of the remaining matrices in variable
direction can be considered to contain information about outliers. To make sure if it is true,
we prepared real-world datasets called ambient temperature system failure (ATSF) datasets
shown in Figure 4.28. The datasets we employed are the same as datasets for outlier detection
as we have mentioned except for outlierness. The outliers are located between 950 and 1,000
time stamps at the second plot from the bottom on the left side and the second plot from the
top on the right side in the figure, that is, two out of sixteen variables have included outliers.
Their outliers are made by adding about one percent values of the original values. After
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Figure 4.16: A result of PCA that is applied to the feature representation obtained by PRK for
the SYN7 time series dataset. The 1st and 2nd principal components are shown in this figure.

applying the datasets to UFEKT, we extract feature vectors from the factor matrix and plot
them in Figure 4.29. The upper and bottom plots show the first and the second component
of the matrix, respectively. As we can see from the plots, there are two peaks at the sixth
and ninth variables, that is, they indicate that the seventh and tenth variables are different
from the others. They correspond to variables that include outliers in Figure 4.28. Although
this might be one of examples showing that features about outliers are included in the factor
matrix, it makes us feel a potential.
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Figure 4.17: A result of PCA that is applied to the feature representation obtained by PRK for
the SYN7 time series dataset. The 2nd and 3rd principal components are shown in this figure.
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Figure 4.18: A result of PCA that is applied to the feature representation obtained by PRK for
the SYN7 time series dataset. The 2nd and 4th principal components are shown in this figure.
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Figure 4.19: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SWaT time series dataset. The 1st and 2nd principal components are shown in this
figure.
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Figure 4.20: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SWaT time series dataset. The 2nd and 3rd principal components are shown in this
figure.
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Figure 4.21: A result of PCA that is applied to the feature representation obtained by UFEKS
for the SWaT time series dataset. The 2nd and 4th principal components are shown in this
figure.
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Table 4.7: Area under precision-recall curve (AUPRC) obtained by UFEKT for synthetic
datasets. OD, FR, PR, PRK and SS stand for Outlier Detection, Feature Representation,
PageRank, PageRank Kernel and SubSequence, respectively. Mean±StandardDeviation in
ten trials are shown in the table, however, WADI and SWaT are performed only once. Best
scores are denoted in bold.

OD
FR UFEKT

^NN
PRK SS UFEKT

LOF
PRK SS

SYN1 0.878 ±0.018 0.815 ±0.010 0.486 ±0.028 0.871 ±0.017 0.736 ±0.034 0.258 ±0.017
SYN2 0.715 ±0.096 0.734 ±0.048 0.575 ±0.055 0.699 ±0.095 0.062 ±0.031 0.380 ±0.122
SYN3 0.988 ±0.029 0.625 ±0.167 0.016 ±0.005 0.961 ±0.066 0.118 ±0.041 0.011 ±0.002
SYN4 0.964 ±0.034 0.573 ±0.111 0.010 ±0.002 0.920 ±0.057 0.114 ±0.073 0.011 ±0.003
SYN5 0.992 ±0.017 0.046 ±0.009 0.007 ±0.001 0.933 ±0.172 0.006 ±0.000 0.011 ±0.003
SYN6 0.026 ±0.012 0.063 ±0.019 0.182 ±0.051 0.096 ±0.061 0.007 ±0.001 0.139 ±0.043
SYN7 0.872 ±0.026 0.779 ±0.057 0.010 ±0.001 0.884 ±0.026 0.047 ±0.029 0.060 ±0.069
SYN8 0.118 ±0.040 0.012 ±0.001 0.006 ±0.000 0.010 ±0.002 0.007 ±0.000 0.007 ±0.000
SYN9 0.425 ±0.035 0.368 ±0.041 0.033 ±0.001 0.248 ±0.035 0.069 ±0.020 0.035 ±0.002
Average 0.664 0.446 0.147 0.625 0.129 0.101

OD
FR UFEKT

OCSVM
PRK SS UFEKT

IForest
PRK SS

SYN1 0.841 ±0.026 0.006 ±0.000 0.007 ±0.000 0.717 ±0.050 0.017 ±0.000 0.013 ±0.001
SYN2 0.570 ±0.127 0.006 ±0.000 0.018 ±0.000 0.153 ±0.132 0.006 ±0.000 0.019 ±0.001
SYN3 0.908 ±0.066 0.006 ±0.000 0.008 ±0.000 0.168 ±0.293 0.006 ±0.000 0.011 ±0.001
SYN4 0.799 ±0.069 0.006 ±0.000 0.007 ±0.000 0.019 ±0.019 0.006 ±0.000 0.007 ±0.000
SYN5 0.827 ±0.277 0.006 ±0.000 0.010 ±0.000 0.629 ±0.241 0.006 ±0.000 0.008 ±0.001
SYN6 0.011 ±0.001 0.007 ±0.001 0.008 ±0.000 0.012 ±0.001 0.007 ±0.000 0.014 ±0.005
SYN7 0.737 ±0.072 0.006 ±0.000 0.006 ±0.000 0.109 ±0.218 0.007 ±0.000 0.006 ±0.000
SYN8 0.029 ±0.003 0.012 ±0.003 0.014 ±0.000 0.050 ±0.013 0.051 ±0.016 0.006 ±0.000
SYN9 0.048 ±0.010 0.020 ±0.001 0.032 ±0.001 0.058 ±0.013 0.030 ±0.002 0.032 ±0.001
Average 0.53 0.008 0.012 0.213 0.015 0.013

OD
FR UFEKT

PR
PRK SS -

-
- -

SYN1 - 0.618 ±0.012 - - - -
SYN2 - 0.431 ±0.101 - - - -
SYN3 - 0.826 ±0.098 - - - -
SYN4 - 0.798 ±0.061 - - - -
SYN5 - 0.030 ±0.010 - - - -
SYN6 - 0.197 ±0.042 - - - -
SYN7 - 0.751 ±0.024 - - - -
SYN8 - 0.411 ±0.082 - - - -
SYN9 - 0.287 ±0.035 - - - -
Average - 0.483 - - - -
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Table 4.8: Area under precision-recall curve (AUPRC) obtained by UFEKT for real-world
datasets. OD, FR, PR, PRK and SS stand for Outlier Detection, Feature Representation,
PageRank, PageRank Kernel and SubSequence, respectively. Mean±StandardDeviation in
ten trials are shown in the table, however, WADI and SWaT are performed only once. Best
scores are denoted in bold.

OD
FR UFEKT

^NN
PRK SS UFEKT

LOF
PRK SS

ATSF8 0.877 ±0.038 0.199 ±0.028 0.040 ±0.001 0.972 ±0.011 0.187 ±0.030 0.067 ±0.001
ATSF16 0.856 ±0.039 0.260 ±0.038 0.039 ±0.001 0.938 ±0.034 0.066 ±0.009 0.064 ±0.001
ATSF32 0.765 ±0.057 0.186 ±0.018 0.039 ±0.001 0.705 ±0.053 0.032 ±0.002 0.063 ±0.001
ATSF64 0.672 ±0.059 0.089 ±0.005 0.038 ±0.001 0.434 ±0.029 0.028 ±0.000 0.063 ±0.000
WADI 0.090 ±0.000 0.047 ±0.000 0.128 ±0.000 0.069 ±0.000 0.064 ±0.000 0.055 ±0.000
SWaT 0.179 ±0.000 0.085 ±0.000 0.118 ±0.000 0.080 ±0.000 0.070 ±0.000 0.100 ±0.000
Average 0.573 0.144 0.067 0.533 0.074 0.069

OD
FR UFEKT

OCSVM
PRK SS UFEKT

IForest
PRK SS

ATSF8 0.960 ±0.011 0.026 ±0.000 0.034 ±0.000 0.882 ±0.051 0.029 ±0.000 0.035 ±0.001
ATSF16 0.957 ±0.016 0.026 ±0.000 0.034 ±0.000 0.784 ±0.124 0.030 ±0.000 0.034 ±0.000
ATSF32 0.825 ±0.041 0.027 ±0.000 0.034 ±0.000 0.608 ±0.147 0.030 ±0.000 0.034 ±0.000
ATSF64 0.543 ±0.060 0.032 ±0.003 0.034 ±0.000 0.414 ±0.159 0.034 ±0.000 0.034 ±0.000
WADI 0.186 ±0.000 0.032 ±0.000 0.751 ±0.000 0.224 ±0.000 0.033 ±0.000 0.628 ±0.000
SWaT 0.230 ±0.000 0.118 ±0.000 0.881 ±0.000 0.310 ±0.000 0.054 ±0.000 0.365 ±0.000
Average 0.617 0.044 0.295 0.537 0.035 0.188

OD
FR -

PR
PRK - -

-
- -

ATSF8 - 0.094 ±0.006 - - - -
ATSF16 - 0.072 ±0.002 - - - -
ATSF32 - 0.057 ±0.002 - - - -
ATSF64 - 0.044 ±0.002 - - - -
WADI - 0.061 ±0.000 - - - -
SWaT - 0.087 ±0.000 - - - -
Average - 0.069 - - - -
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(a) AUPRCs for SYN1.
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(b) AUPRCs for SYN2.
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(c) AUPRCs for SYN3.
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(d) AUPRCs for SYN4.

Figure 4.22: AUPRCs for synthetic datasets (SYN1 and SYN4). PR, PRK, and SS stands for
PageRank, PageRank Kernel, and SubSequence, respectively. We generated each dataset ten
times and each circle in the plot corresponds to each trial of the respective method.
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(a) AUPRCs for SYN5.
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(b) AUPRCs for SYN6.
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(c) AUPRCs for SYN7.
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(d) AUPRCs for SYN8.

Figure 4.23: AUPRCs for synthetic datasets (SYN5 and SYN8). PR, PRK, and SS stands for
PageRank, PageRank Kernel, and SubSequence, respectively. We generated each dataset ten
times and each circle in the plot corresponds to each trial of the respective method.
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(a) AUPRCs for SYN9.

Figure 4.24: AUPRCs for synthetic datasets (SYN9). PR, PRK, and SS stands for PageRank,
PageRank Kernel, and SubSequence, respectively. We generated each dataset ten times and
each circle in the plot corresponds to each trial of the respective method.

Table 4.9: Comparison of AUPRCs between our algorithm in Algorithm 6 and grid search
for all ranks. The latter can be possible only when the ground-truths are given.

Datasets Our algorithm Optimal value
SYN1 0.878±0.018 0.914±0.009
SYN2 0.715±0.096 0.943±0.053
SYN3 0.988±0.029 0.999±0.003
SYN4 0.964±0.034 0.994±0.008
SYN5 0.992±0.017 0.999±0.003
SYN6 0.026±0.012 0.245±0.057
SYN7 0.872±0.026 0.905±0.029
SYN8 0.118±0.004 0.271±0.076
SYN9 0.425±0.035 0.485±0.039
ATSF8 0.877±0.038 0.950±0.026
ATSF16 0.856±0.039 0.928±0.016
ATSF32 0.765±0.057 0.893±0.020
ATSF64 0.672±0.059 0.852±0.019
WADI 0.090 0.172
SWaT 0.179 0.228
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(a) AUPRCs for ATSF8.
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(b) AUPRCs for ATSF16.
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(c) AUPRCs for ATSF32.
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(d) AUPRCs for ATSF64.

Figure 4.25: AUPRCs for real-world datasets (ATSF8, ATSF16, ATSF32 and ATSF64). PR,
PRK, and SS stands for PageRank, PageRank Kernel, and SubSequence, respectively. We
generated each dataset ten times and each circle in the plot corresponds to each trial of the
respective method.
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(a) AUPRCs for WADI.
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(b) AUPRCs for SWaT.

Figure 4.26: AUPRCs for real-world datasets (WADI and SWaT). PR, PRK, and SS stands
for PageRank, PageRank Kernel, and SubSequence, respectively. We generated each dataset
ten times and each circle in the plot corresponds to each trial of the respective method.

Figure 4.27: Rank dependencies of AUPRCs. x-axes indicate ranks of a core tensor and
y-axes indicate normalized ^NN distances for the top plot and AUPRCs for the bottom plot,
respectively The top plot is obtained by Algorithm 6, while the bottom plot is obtained by
the grid search, which requires the ground truth labels that are not available in practice.
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(a) ATSF16 (# 1). (b) ATSF16 (# 2).

Figure 4.28: Real-world Datasets (ATSF16). The datasets are prepared for evaluating whether
or not the UFEKT can detect variables that include outliers. The datasets we employed are
the same as datasets for outlier detection as we have mentioned except for outlierness. The
outliers are located between 950 and 1,000 time stamps at the second plot from the bottom
on the left side and the second plot from the top on the right side, that is, two out of sixteen
variables have included outliers. Their outliers are made by adding about one percent values
of the original values.
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(a) The 1st component in the factor matrix.

(b) The 2nd component in the factor matrix.

Figure 4.29: Feature Vectors in The Factor Matrix with A Direction of Variables.
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Chapter 5

Clustering

5.1 Clustering for Multivariate Time Series

A basic idea of clustering for multivariate time series using our algorithm UFEKT is similar to
the one for the outlier detection problem as we mentioned in Chapter 4. Given a multivariate
time series X ∈ R%×) , their feature vectors fC ∈ R' extracted by UFEKT can be regarded as
non-time series data points in a multidimensional space, where %, ) , and ' are the number of
variables, the length of time series, and the rank used in Tucker decomposition, respectively.
Therefore, those vectors can be applied to clustering algorithms for non-time series datasets
such as K-means (KMeans) [32, 34], Density-based Spatial Clustering of Applications with
Noise (DBSCAN) [17], Agglomerative Hierarchical Clustering (AHC) [14], and Gaussian
Mixture Model (GMM) [13]. In the following, a clustering problem is briefly summarised as
using one of the representative algorithms, K-means.

Assumed a set of  clusters C = {�1, �2, . . . , �: , . . . , � } where �: is defined as a set
of feature vectors f8 ∈ R' extracted by UFEKT, a clustering problem is defined as follows:

C∗ = arg min
C
{((� (C)} , (5.1)

((� (C) =
 ∑
:=1

∑
f8 ∈C:

| |f8 − -: | |2, (5.2)

-: =
1
|C: |

∑
f8 ∈C:

f8 , (5.3)

where C∗ indicates a set of the best clusters, ((� stands for the Sum of Square Errors,
-: ∈ R' and |C: | indicate a centroid of all data points in the cluster C: and the number of
feature vectors in the cluster C: , respectively [52]. Considering that all feature vectors need
to be assigned to one of the clusters, the best cluster :∗ that belong to feature vectors f is
formularized as follows:

:∗ = arg
 

min
:=1

{
| |f8 − -: | |2

}
, (5.4)
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Algorithm 7 The K-means (KMeans) algorithm

Input: f1, f2, . . . , f8 , . . . , f() −F+1) ∈ R() −F+1) ,  , n ∈ R
Output: C = {�1, �2, . . . , �: , . . . , � }
1: C ← 0
2: Initialize all centroids with random values: - (C)1 , - (C)2 , . . . , - (C)

:
, . . . , - (C)

 
∈ R() −F+1)

3: repeat
4: C ← C + 1
5: C: ← ∅ for all : = 1, . . . ,  
6: for i = 1, . . . , T-w+1 do
7: :∗ ← arg min:

{
| |f8 − - (C−1)

:
| |2

}
8: C:∗ ← C:∗ ∪ {f8}
9: end for
10: for k = 1, 2, . . . , K do
11: - (C)

:
← 1
|C: |

∑
f8 ∈C: f8

12: end for
13: until

∑ 
:=1 | |-

(C)
:
− - (C−1)

:
| |2 ≤ n

14: return C = {�1, �2, . . . , �: , . . . , � }

where  indicates the number of clusters that must be initialized in advance. In addition, a
set of vectors of centroids - =

{
-1, -2, . . . , -: , . . . , - 

}
must be initialized with random

values. The computational cost of K-means is known as O(() − F + 1) () − F + 1) ) [52].

5.2 Existing Methods for Comparison with Our Algorithm

In the same manner as Chapter 4, we compare our algorithm, UFEKT, with two existing
feature representation algorithms, the PageRank kernel (PRK) and SubSequence (SS), under
four different clustering algorithms,K-means (KMeans), Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), Agglomerative Hierarchical clustering (AHC), and
Gaussian Mixture Model (GMM), which are commonly and widely used in data analysis.

5.2.1 PageRank Kernel (PRK) for Feature Extraction

As shown in Chapter 4, when a multivariate time series X ∈ R(%×) ) with % variables with
the length ) is given, PageRank (PR) constructs a kernel matrix  ∈ R() −F+1)×() −F+1) such
that

:8 9 = exp
−

∑%
?=1

∑F−1
B=0 (G

(?)
8+B − G

(?)
9+B)2

f2

 , (5.5)

8, 9 ∈ {1, 2, . . . , ) − F + 1},
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Table 5.1: Existing methods of clustering problem for non-time series datasets.

Types Names

A centroid-based algorithm K-means (KMeans)
A density-based algorithm Density-based Spatial Clustering of

Applications with Noise (DBSCAN)
A hierarchical-based algorithm Agglomerative Hierarchical Clustering (AHC)
A probabilistic model-based algorithm Gaussian Mixture Model (GMM)

where F is the length of each subsequence. In this case, each row vector k8 ∈ R() −F+1)

would be a feature vector that represents associations between subsequences. Therefore, we
apply the vectors in a kernel matrix to existing clustering algorithms for comparison with our
algorithm.

5.2.2 SubSequence (SS) for Feature Extraction

In comparison with PRK, the subsequence based approach, which we denote by SS, is also
widely used in extracting features from a time series. A subsequence is a sequence extracted
from time series. Given X = (G8 9) ∈ R%×) with % variables with the length ) , first we obtain
a single time series xBB by summing up every variable at each time C,

xBB =
©«
%∑
?=1

G
(?)
1 , . . . ,

%∑
?=1

G
(?)
)

ª®¬ . (5.6)

When we denote each element of xBB at time C as GBBC =
∑%
?=1 G

(?)
C , the subsequence based

matrix XBB ∈ R() −F+1)×F with the window size F is defined as

XBB =


GBB1 · · · GBBF

GBB2 · · · GBB
F+1

...
. . .

...

GBB
) −F+1 · · · GBB

)


. (5.7)

By considering each row in Equation (5.7) to be a multidimensional data point, it can be
applied to clustering algorithms like K-Means. Eventually, our algorithm is compared with
two methods, PRK and SS.

5.2.3 Clustering Methods

As shown in Table 5.1, we employed four clustering algorithms such as KMeans, DBSCAN,
AHC, and GMM. They are the representative algorithms for a centroid-base algorithm, a
density-based algorithm, a hierarchical-based algorithm, and an probabilistic model-based
algorithm, respectively [20].
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𝑥! 𝑥"
𝑥#

(a) Density-based Spatial Clustering ofApplications
with Noise (DBSCAN)

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥%

𝐶! 𝐶" 𝐶#

(b) Agglomerative Hierarchical Clustering (AHC).

Figure 5.1: Images of two representative clustering methods, DBSCAN and AHC.

KMeans

One of the most famous clustering algorithms is KMeans. We employed it as a representative
of a centroid-based algorithm. The detailed algorithm has already been mentioned above and
shown in Algorithm 7.

DBSCAN

The KMeans is suitable for datasets having convex clusters, while it is not suitable for
non-convex clusters. Therefore we use DBSCAN as a density-based clustering that can be
applicable in non-convex clusters. As shown in Figure 5.1a, DBSCAN define the points
x1, x2, and x3 as a core point (a solid circle), a border point (a dashed circle), and a noise
point (a dotted and dashed circle), respectively, if "8=%CB (the minimum points) is set to five.
In case of DBSCAN, there are two main hyper-parameters, n and "8=%CB. Those parameters
heavily affect the accuracy of the results of clustering. We will show you how to decide the
values of the parameters later.

AHC

An image of AHC is shown in Figure 5.1b. The goal of AHC is to create a tree structure
or hierarchy of clusters, which is called the cluster dendrogram. A tree structure is easily
understandable for humans and used in various cases. Once a tree is constructed, clusters are
generated by deciding a threshold. In the case of Figure 5.1b, three clusters, �1, �2, and �3

are results where the dashed line in the figure indicates threshold for clustering.
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GMM

As for GMM, it is assumed that each cluster is characterized by a multivariate normal
distribution. Given dataset x8 ∈ R3 , a multivariate normal distribution is as follows:

58 (x) := 5 (x|`8 ,�8) =
1

(2c) 32 ( |�8 |)
1
2
4G?

{
−
(x − `8)T�−1

8
(x − `8)

2

}
(5.8)

where the cluster mean `8 ∈ R3 and the covariance matrix Σ8 ∈ R3×3 are hyper parameters.
Therefore GMM is given as

5 (x) :=
 ∑
8=1

58 (x)%(�8) =
 ∑
8=1

5 (x|`8 ,�8)%(�8) (5.9)

where the mixture parameters %(�8) must satisfy the condition
∑:
8=1 %(�8) = 1. The model

parameters, `8 ,�8, and %(�8) are often decided by the expectation-maximization (EM)
algorithm.

5.3 Evaluation Metrics

For evaluating accuracy of our algorithm, we introduce Normalized Mutual Information
(NMI) as an evaluation metric. The NMI is widely used for evaluating accuracy of a clustering
problem. The NMI is defined as follows:

#"� (*,+) :=
"� (*,+)

1
2 (� (*) + � (+))

, (5.10)

"� (*,+) :=
|* |∑
8=1

|+ |∑
9=1

%(8, 9) log
(
%(8, 9)

%(8)%′( 9)

)
(5.11)

=

|* |∑
8=1

|+ |∑
9=1

|*8 ∩+ 9 |
#

log
(
# |*8 ∩+ 9 |
|*8 | |+ 9 |

)
, (5.12)

� (*) := −
|* |∑
8=1

%(8) log (%(8)) , (5.13)

� (+) := −
|+ |∑
9=1

%′( 9) log (%′( 9)) , (5.14)

%(8, 9) :=
|*8 ∩+ 9 |

#
, (5.15)

%(8) :=
|*8 |
#
, (5.16)

%( 9) :=
|+ 9 |
#
, (5.17)

where * and + are a set of estimated cluster numbers and a set of class labels, and # is
the number of samples. "�, �, and % indicate the Mutual Information, an Entropy, and a
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Probability, respectively. In our experiments, # indicates the number of all subsequences
obtained by UFEKT. |*8 | and |+ 9 | are the number of subsequences belonging to the cluster 8
and the number of class labels belonging to the class 9 . The NMI score takes values between
zero and one, and higher is better.

5.4 Experimental Environment

We used CentOS release 6.10 with 4x 22-Core model 2.20 GHz Intel Xeon CPU E7-8880
v4 processors and 3.18 TB memory. All methods are implemented in Python 3.7.6 and all
experiments are performed on the same platform. A package list of Python we used in our
experiments is shown in Table 4.2. They are the same platform for outlier detection tasks.

Table 5.2 is a hyper parameter list used in clustering algorithms. We set ^ = 5 in
^th-Nearest Neighbor which is commonly used in literature [6, 8].

The f used in UFEKT and PageRank kernels is automatically determined by calculating
the mean sum of squares of differences between two subsequences for every variable.
Therefore, the f take a different value for each variable. The details of how to decide them
are shown in Algorithm 4.

The n and "8=%CB (the minimum points) are hyper-parameters for DBSCAN. They
indicate the maximum distance between two samples for one to be considered as in the
neighborhood of the other, and the number of samples in a neighborhood for a point to be
considered as a core point, respectively. Therefore, the n must be changed for every datasets
because it strongly affects the accuracy of the results of clustering. Some algorithms to decide
the appropriate values of the n have been developed so far. We introduce one of the methods
called the elbow rule, which is one of the renowned techniques to get the suitable values. As
following the rule, we set the n to the maximum point of second order differentiation of sorted
distances from nearest neighbors. More details about the algorithm is shown in Algorithm 8.
Moreover, the value of "8=%CB is set to five, which is a default value of DBSCAN.

Furthermore, the number of clusters is used for some algorithms such as KMeans, AHC,
and GMM, as a hyper parameter. For these algorithms, it is one of the most difficult problems
to decide the best number of clusters in an unsupervised manner. However, since our aim is
to evaluate accuracy of our algorithm that can extract features from multivariate time series,
we gave the number of clusters with ground truth to each clustering algorithm as initialized
values in advance.

Table 5.3 is a parameter list about the length of subsequence and the rank for Tucker
decomposition used in UFEKT. The length of subsequence as known as a window size can
be calculated from the percentages shown in the table. Since the percentages indicate a ratio
of length of a subsequence, if a time series has 1,000 time stamps and [8, 16, 32] are given
as parameters, the lengths of the subsequence would be 80, 160, and 320, respectively. We
simulated three times for each dataset while varying the percentages, that is, 8, 16, and 32,
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Table 5.2: Parameters about experiments for a clustering. The ^ and f are used for ^NN and
PRK, respectively. The length of subsequences, or the window size, is used in not only SS
but all algorithms to convert a given time-series to a set of subsequences.

Name Value

^ for ^-th Nearest Neighbor (^NN) 5
f for UFEKT and PageRank kernel (PRK) variable
n for DBSCAN variable
"8=%CB for DBSCAN 5
Number of clusters for KMeans, AHC, and GMM variable

Algorithm 8 How to decide the value of n for DBSCAN
Input: f1, . . . , f) −F+1 ∈ R'

Output: n ∈ R
1: �, Δ← ∅
2: for 8 = 1 to ) − F + 1 do
3: 3 (8) ← Distance from the nearest neighbor of f8
4: � ← � ∪ 3 (8)

5: end for
6: � = { 31, 32, · · · , 3 () −F+1) } ← B>AC ( � = {3 (1) , 3 (2) , · · · , 3 () −F+1) } )
7: for 9 = 2 to () − F + 1) − 1 do
8: X 9 ← Second order differentiation( 3 9−1, 3 9 , 3 9+1 )
9: Δ← Δ ∪ X 9
10: end for
11: � ← 0A6<0G

8∈{ 2, · · · ,) −F }
( Δ )

12: n ← 3 (� )

13: return n

and one of the lengths that have the best NMI score was used in our evaluations.
A rank parameter is used for Tucker Decomposition in UFEKT. If the rank is too small,

features of time series might not be included in row vectors obtained by UFEKT. In contrast,
computational costs become high if they are too large.

5.5 Datasets

We employed the time series classification datasets that are offered by the University of
California, Riverside, called UCR Time Series Classification datasets (UCR)1 for our

1http://www.timeseriesclassification.com/index.php
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Table 5.3: Parameters of clustering for Real-world datasets (UCR). A length of subsequence
as known as a window size can be calculated from the percentages shown in the table. Since
the percentages indicate a ratio of length of time series, if a time series has 1,000 time stamps
and [8, 16, 32] are given as parameters, the lengths of a subsequence would be 80, 160, and
320, respectively. We simulated three times for each dataset while varying the percentages,
that is, 8, 16, and 32, and chose one of the percentages that have the best NMI scores for
evaluations. A rank is used for Tucker decomposition in UFEKT. In general, three parameters
of ranks are needed for three-way tensor, however, UFEKT requires only one rank as a
parameter because one of the three parameters is decided by the number of parameters and
the rest of two parameters take same values, that is, one parameter is required for UFEKT.

Name of Datasets
Percentages of
Subsequence

A Rank for
Tucker Decomposition

EOGHorizontalSignal [8, 16, 32] 8
EOGVerticalSignal [8, 16, 32] 8
FiftyWords [8, 16, 32] 8
GestureMidAirD1 [8, 16, 32] 8
InlineSkate [8, 16, 32] 8
MelbournePedestrian [1/32, 1/16, 1/8] 8
SemgHandGenderCh2 [8, 16, 32] 8
SemgHandMovementCh2 [8, 16, 32] 8
SemgHandSubjectCh2 [8, 16, 32] 8
SyntheticControl [8, 16, 32] 8
UWaveGestureLibraryX [1/32, 1/16, 1/8] 8
UWaveGestureLibraryY [1/32, 1/16, 1/8] 8
UWaveGestureLibraryZ [1/32, 1/16, 1/8] 8
Other than the above [8, 16, 32] 8

experiments. They are widely used as experimental real-world time series datasets for a
classification and a clustering problem. We collected 102 out of 128 UCR datasets in that
some long time series datasets led to extremely high computational costs. Since all of the
datasets are provided for a classification problem, that is, training and test datasets are offered
separately, we concatenated them into one time series for each dataset and then applied their
concatenated time series to a clustering problem. A list of datasets that we employed are
shown in Table 5.4, Table 5.5, and Table 5.6.
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5.6 Experimental Results and Discussion for UFEKT

5.6.1 Experimental Results

We performed three feature representation algorithms, UFEKT, PageRank kernel (PRK), and
Subsequence (SS), combined with four clustering algorithms, KMeans, DBSCAN, AHC,
and GMM, resulting in twelve combinations of feature extraction and clustering in total. The
effectiveness of each method was evaluated by scores of the Normalized Mutual Information
(NMI). The NMI score takes values between zero and one, and higher is better. The results
are summarised from Table 5.7 to Table 5.10 and from Figure 5.2 to Figure 5.5. The CL, FR,
PRK, and SS in the figures stand for Clustering, Feature Representation, PageRank Kernel,
and SubSequence, respectively. The more detailed results for all UCR datasets are shown
from Figure A.1 to Figure A.26 in Appendix.

The Figure 5.2 shows the results of NMIs obtained by KMeans. The data points in
the scatter plots indicate each UCR datasets, that is, there are 102 data points in the figure.
The x-axis and y-axis indicate NMI scores obtained by UFEKT and PRK in the Plot 5.2a,
respectively, and UFEKT and SS in the Plot 5.2b, respectively. A blue straight line in every
plot means a border of NMI scores. If a data point is located under the line, UFEKT is
superior to the other method because the inclination of every blue line is one.

As for the results of NMI scores obtained by KMeans shown in Figure 5.2, UFEKT
consider to be almost same as PRK and apparently superior to SS because many points
seem to be located around the line on PRK and under the line on SS. In fact, the numbers
of datasets that take the best NMI scores obtained by KMeans are 41 for UFEKT and 42
for PRK, as shown in Table 5.10. It means that UFEKT might be slightly inferior to PRK,
however, it is also considered that UFEKT has almost the same capability of PRK. Moreover,
as for the results obtained by DBSCAN, AHC, and GMM, the results obtained by UFEKT are
apparently superior to the ones from PRK and SS for all datasets. These results lead to the
conclusion that UFEKT has high potential to extract features from multivariate time series.
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Table 5.4: Summary of UCR datasets (# 1).

Name of Datasets
Abbreviation
of Name

Length of
Time Series

Number of
Variables

Number of
Class Labels

ACSF1 ACSF 200 1461 10
Adiac Adia 781 177 37
AllGestureWiimoteX AllX 1000 501 10
AllGestureWiimoteY AllY 1000 501 10
AllGestureWiimoteZ AllZ 1000 501 10
ArrowHead Arro 211 252 3
Beef BME 60 471 5
BeetleFly Beef 40 513 2
BirdChicken Beet 40 513 2
BME Bird 180 129 3
Car CBF 120 578 4
CBF Car 930 129 3
Chinatown Chin 363 25 2
Coffee Coff 56 287 2
Computers Comp 500 721 2
CricketX CriX 780 301 12
CricketY CriY 780 301 12
CricketZ CriZ 780 301 12
DiatomSizeReduction DiSR 322 346 4
DistalPhalanxOutlineAgeGroup DiAG 539 81 3
DistalPhalanxOutlineCorrect DiOC 876 81 2
DistalPhalanxTW Dist 539 81 6
DodgerLoopDay DoLD 158 289 7
DodgerLoopGame DoLG 158 289 2
DodgerLoopWeekend DoLW 158 289 2
Earthquakes ECG2 461 513 2
ECG200 ECGF 200 97 2
ECGFiveDays EOGH 884 137 2
EOGHorizontalSignal EOGV 724 1251 12
EOGVerticalSignal Eart 724 1251 12
FaceFour Face 112 351 4
FiftyWords Fift 905 271 50
Fish Fish 350 464 7
Fungi Fung 204 202 18
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Table 5.5: Summary of UCR datasets (# 2).

Name of Datasets
Abbreviation
of Name

Length of
Time Series

Number of
Variables

Number of
Class Labels

GestureMidAirD1 GeD1 338 361 26
GestureMidAirD2 GeD2 338 361 26
GestureMidAirD3 GeD3 338 361 26
GesturePebbleZ1 GeZ1 304 456 6
GesturePebbleZ2 GeZ2 304 456 6
GunPoint GunP 200 151 2
GunPointAgeSpan GuPA 451 151 2
GunPointMaleVersusFemale GuPM 451 151 2
GunPointOldVersusYoung GuPO 451 151 2
Ham Ham 214 432 2
Haptics Hapt 463 1093 5
Herring Herr 128 513 2
HouseTwenty Hous 159 2001 2
InlineSkate Inli 650 1883 7
InsectEPGRegularTrain InRT 311 602 3
InsectEPGSmallTrain InST 266 602 3
InsectWingbeatSound InBS 2200 257 11
ItalyPowerDemand Ital 1096 25 2
LargeKitchenAppliances Larg 750 721 3
Lightning2 Lig2 121 638 2
Lightning7 Lig7 143 320 7
Meat Meat 120 449 3
MedicalImages Medi 1141 100 10
MelbournePedestrian Melb 3633 25 10
MiddlePhalanxOutlineAgeGroup MiAG 554 81 3
MiddlePhalanxOutlineCorrect MiOC 891 81 2
MiddlePhalanxTW MiTW 553 81 6
MoteStrain Mote 1272 85 2
OliveOil OSUL 60 571 4
OSULeaf Oliv 442 428 6
PhalangesOutlinesCorrect Phal 2658 81 2
PickupGestureWiimoteZ Pick 100 362 10
PigAirwayPressure PigA 312 2001 52
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Table 5.6: Summary of UCR datasets (# 3).

Name of Datasets
Abbreviation
of Name

Length of
Time Series

Number of
Variables

Number of
Class Labels

PigArtPressure PigA 312 2001 52
PigCVP PigC 312 2001 52
Plane Plan 210 145 7
PowerCons Powe 360 145 2
ProximalPhalanxOutlineAgeGroup PrAG 605 81 3
ProximalPhalanxOutlineCorrect PrOC 891 81 2
ProximalPhalanxTW PrTW 605 81 6
RefrigerationDevices Refr 750 721 3
Rock Rock 70 2845 4
ScreenType Scre 750 721 3
SemgHandGenderCh2 SeGE 900 1501 2
SemgHandMovementCh2 SeMO 900 1501 6
SemgHandSubjectCh2 SeSU 900 1501 5
ShakeGestureWiimoteZ Shak 100 386 10
ShapeletSim Shap 200 501 2
SmallKitchenAppliances Smal 750 721 3
SmoothSubspace Smoo 300 16 3
SonyAIBORobotSurface1 Son1 621 71 2
SonyAIBORobotSurface2 Son2 980 66 2
Strawberry Stra 983 236 2
SwedishLeaf Swed 1125 129 15
Symbols Symb 1020 399 6
SyntheticControl Synt 600 61 6
ToeSegmentation1 Toe1 268 278 2
ToeSegmentation2 Toe2 166 344 2
Trace Trac 200 276 4
TwoLeadECG TwoL 1162 83 2
UMD UMD 180 151 3
UWaveGestureLibraryX UWaX 4478 316 8
UWaveGestureLibraryY UWaY 4478 316 8
UWaveGestureLibraryZ UWaZ 4478 316 8
Wine Wine 111 235 2
WordSynonyms Word 905 271 25
Worms Worm 258 901 5
WormsTwoClass WoTC 258 901 2
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Table 5.7: The NMI scores for UCR datasets (# 1). The CL, FR, PRK and SS stand for
Clustering, Feature Representation, PageRank Kernel and SubSequence respectively. Best
scores are denoted in bold.

CL KMeans DBSCAN AHC GMM
FR UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS

ACSF 0.701 0.791 0.179 0.599 0.433 0.129 0.695 0.755 0.189 0.704 0.763 0.180
Adia 0.330 0.303 0.306 0.202 0.028 0.000 0.331 0.305 0.315 0.313 0.316 0.301
AllX 0.580 0.544 0.574 0.533 0.359 0.333 0.599 0.584 0.550 0.586 0.562 0.526
AllY 0.588 0.564 0.519 0.510 0.373 0.273 0.603 0.588 0.552 0.544 0.587 0.463
AllZ 0.603 0.572 0.453 0.657 0.291 0.034 0.606 0.541 0.516 0.608 0.623 0.426
Arro 0.208 0.303 0.018 0.368 0.400 0.044 0.391 0.347 0.052 0.293 0.301 0.027
BME 0.398 0.382 0.435 0.497 0.316 0.316 0.378 0.447 0.293 0.317 0.373 0.368
Beef 0.273 0.819 0.343 0.447 0.354 0.098 0.428 0.751 0.410 0.313 0.693 0.218
Beet 0.432 0.305 0.023 0.393 0.122 0.006 0.337 0.272 0.030 0.021 0.170 0.040
Bird 0.567 0.089 0.015 0.000 0.015 0.006 0.120 0.109 0.006 0.127 0.142 0.047
CBF 0.005 0.004 0.002 0.025 0.003 0.000 0.001 0.004 0.002 0.002 0.003 0.004
Car 0.042 0.067 0.057 0.000 0.040 0.017 0.051 0.090 0.062 0.070 0.066 0.064
Chin 0.589 0.629 0.557 0.339 0.539 0.520 0.520 0.535 0.673 0.752 0.629 0.557
Coff 0.621 0.847 0.045 0.332 0.677 0.038 0.506 0.763 0.009 0.847 0.621 0.007
Comp 0.235 0.229 0.008 0.326 0.000 0.127 0.262 0.197 0.054 0.079 0.229 0.085
CriX 0.048 0.053 0.059 0.122 0.000 0.009 0.045 0.061 0.041 0.045 0.046 0.048
CriY 0.040 0.053 0.052 0.138 0.000 0.013 0.044 0.049 0.058 0.036 0.061 0.056
CriZ 0.052 0.056 0.059 0.160 0.000 0.000 0.055 0.064 0.050 0.048 0.049 0.061
DiSR 0.014 0.018 0.017 0.041 0.018 0.000 0.011 0.018 0.016 0.016 0.014 0.024
DiAG 0.272 0.206 0.036 0.221 0.288 0.168 0.305 0.212 0.080 0.284 0.206 0.005
DiOC 0.031 0.013 0.007 0.027 0.016 0.024 0.040 0.011 0.010 0.041 0.013 0.023
Dist 0.053 0.064 0.033 0.100 0.000 0.013 0.054 0.063 0.034 0.056 0.055 0.023
DoLD 0.623 0.705 0.783 0.504 0.145 0.313 0.607 0.795 0.679 0.617 0.730 0.721
DoLG 0.111 0.414 0.018 0.335 0.313 0.000 0.054 0.372 0.003 0.188 0.403 0.008
DoLW 0.069 0.414 0.398 0.250 0.189 0.436 0.138 0.490 0.629 0.188 0.414 0.413
ECG2 0.029 0.003 0.013 0.015 0.005 0.007 0.014 0.004 0.014 0.032 0.003 0.005
ECGF 0.000 0.000 0.005 0.009 0.002 0.000 0.002 0.002 0.004 0.000 0.001 0.002
EOGH 0.471 0.441 0.528 0.340 0.186 0.046 0.438 0.469 0.530 0.536 0.439 0.511
EOGV 0.345 0.320 0.334 0.272 0.259 0.036 0.343 0.357 0.332 0.371 0.337 0.491
Eart 0.001 0.002 0.013 0.031 0.023 0.000 0.003 0.006 0.000 0.003 0.008 0.001
Face 0.055 0.120 0.038 0.086 0.078 0.028 0.086 0.078 0.070 0.062 0.135 0.060
Fift 0.340 0.345 0.315 0.286 0.002 0.002 0.335 0.354 0.338 0.334 0.344 0.320
Fish 0.048 0.054 0.044 0.074 0.010 0.000 0.052 0.049 0.035 0.052 0.046 0.049
Fung 0.736 0.774 0.359 0.688 0.462 0.000 0.756 0.733 0.374 0.771 0.719 0.308
GeD1 0.350 0.376 0.344 0.294 0.035 0.023 0.348 0.377 0.388 0.332 0.382 0.366
GeD2 0.389 0.390 0.351 0.246 0.000 0.000 0.377 0.379 0.380 0.380 0.396 0.360
GeD3 0.366 0.367 0.349 0.287 0.070 0.000 0.366 0.381 0.370 0.360 0.377 0.338
GeZ1 0.066 0.280 0.289 0.314 0.148 0.049 0.112 0.258 0.283 0.107 0.269 0.240
GeZ2 0.099 0.265 0.291 0.204 0.046 0.090 0.100 0.234 0.366 0.181 0.252 0.310
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Table 5.8: The NMI scores for UCR datasets (# 2). The CL, FR, PRK and SS stand for
Clustering, Feature Representation, PageRank Kernel and SubSequence respectively. Best
scores are denoted in bold.

CL KMeans DBSCAN AHC GMM
FR UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS

GunP 0.021 0.028 0.004 0.011 0.050 0.001 0.028 0.068 0.009 0.024 0.030 0.011
GuPA 0.494 0.233 0.007 0.000 0.155 0.063 0.461 0.270 0.003 0.477 0.239 0.033
GuPM 0.535 0.433 0.338 0.028 0.583 0.477 0.722 0.443 0.411 0.590 0.433 0.374
GuPO 0.788 0.444 0.465 0.488 0.381 0.445 0.799 0.409 0.472 0.103 0.444 0.551
Ham 0.356 0.114 0.001 0.303 0.000 0.074 0.166 0.079 0.006 0.540 0.108 0.007
Hapt 0.017 0.018 0.020 0.057 0.008 0.000 0.014 0.025 0.015 0.020 0.022 0.017
Herr 0.004 0.003 0.012 0.017 0.003 0.000 0.007 0.004 0.020 0.002 0.005 0.012
Hous 0.178 0.154 0.405 0.268 0.211 0.098 0.345 0.173 0.324 0.399 0.122 0.379
Inli 0.023 0.025 0.025 0.105 0.009 0.007 0.023 0.019 0.017 0.021 0.026 0.028
InRT 0.489 0.464 0.473 0.522 0.564 0.594 0.501 0.480 0.432 0.499 0.464 0.454
InST 0.443 0.531 0.518 0.671 0.670 0.641 0.618 0.560 0.528 0.533 0.531 0.518
InBS 0.015 0.020 0.013 0.060 0.002 0.003 0.017 0.015 0.016 0.015 0.015 0.012
Ital 0.003 0.005 0.000 0.012 0.002 0.006 0.006 0.004 0.009 0.005 0.002 0.001
Larg 0.208 0.213 0.006 0.472 0.018 0.306 0.315 0.519 0.084 0.359 0.212 0.005
Lig2 0.028 0.024 0.027 0.061 0.022 0.026 0.039 0.011 0.030 0.031 0.058 0.025
Lig7 0.091 0.192 0.117 0.163 0.033 0.028 0.088 0.174 0.148 0.102 0.144 0.095
Meat 0.452 0.439 0.047 0.580 0.495 0.000 0.702 0.786 0.069 0.402 0.517 0.040
Medi 0.029 0.026 0.028 0.077 0.005 0.004 0.032 0.032 0.030 0.031 0.032 0.026
Melb 0.800 0.705 0.597 0.503 0.408 0.005 0.814 0.713 0.617 0.846 0.757 0.631
MiAG 0.207 0.306 0.143 0.234 0.254 0.282 0.203 0.304 0.165 0.337 0.306 0.071
MiOC 0.004 0.016 0.001 0.041 0.012 0.018 0.016 0.019 0.007 0.010 0.016 0.002
MiTW 0.062 0.046 0.018 0.116 0.012 0.057 0.056 0.042 0.030 0.062 0.038 0.023
Mote 0.002 0.001 0.002 0.017 0.002 0.001 0.001 0.001 0.003 0.000 0.001 0.000
OSUL 0.036 0.029 0.026 0.000 0.000 0.000 0.026 0.033 0.024 0.029 0.024 0.022
Oliv 0.712 0.616 0.262 0.506 0.546 0.212 0.677 0.791 0.223 0.695 0.584 0.152
Phal 0.007 0.007 0.004 0.021 0.006 0.005 0.007 0.007 0.001 0.008 0.007 0.001
Pick 0.861 0.916 0.632 0.433 0.430 0.293 0.787 0.844 0.751 0.729 0.917 0.682
PigA 0.752 0.614 0.777 0.563 0.034 0.189 0.752 0.618 0.794 0.750 0.616 0.780
PigA 0.793 0.761 0.751 0.268 0.263 0.000 0.775 0.796 0.755 0.762 0.782 0.760
PigC 0.792 0.797 0.803 0.573 0.324 0.079 0.784 0.802 0.798 0.797 0.798 0.802
Plan 0.092 0.134 0.069 0.005 0.034 0.014 0.097 0.107 0.090 0.088 0.114 0.083
Powe 0.652 0.017 0.016 0.276 0.019 0.000 0.035 0.172 0.639 0.019 0.042 0.047
PrAG 0.183 0.261 0.105 0.265 0.285 0.275 0.293 0.276 0.066 0.277 0.261 0.089
PrOC 0.020 0.028 0.007 0.035 0.008 0.017 0.026 0.021 0.017 0.032 0.028 0.005
PrTW 0.037 0.024 0.028 0.056 0.002 0.000 0.031 0.030 0.014 0.034 0.022 0.024
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Table 5.9: The NMI scores for UCR datasets (# 3). The CL, FR, PRK and SS stand for
Clustering, Feature Representation, PageRank Kernel and SubSequence respectively. Best
scores are denoted in bold.

CL KMeans DBSCAN AHC GMM
FR UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS UFEKT PRK SS

Refr 0.463 0.009 0.011 0.561 0.000 0.177 0.330 0.023 0.047 0.432 0.006 0.012
Rock 0.405 0.411 0.336 0.280 0.287 0.244 0.442 0.373 0.352 0.299 0.444 0.292
Scre 0.251 0.174 0.006 0.458 0.229 0.002 0.412 0.202 0.008 0.309 0.173 0.005
SeGE 0.124 0.184 0.000 0.274 0.089 0.046 0.200 0.130 0.001 0.332 0.183 0.001
SeMO 0.585 0.531 0.467 0.589 0.356 0.170 0.543 0.535 0.601 0.634 0.565 0.512
SeSU 0.569 0.430 0.630 0.615 0.213 0.234 0.550 0.440 0.622 0.726 0.427 0.648
Shak 0.731 0.755 0.680 0.421 0.441 0.403 0.817 0.783 0.745 0.810 0.798 0.651
Shap 0.007 0.019 0.004 0.000 0.012 0.063 0.613 0.007 0.004 0.258 0.003 0.001
Smal 0.406 0.046 0.010 0.523 0.058 0.176 0.416 0.354 0.187 0.347 0.027 0.043
Smoo 0.663 0.436 0.520 0.427 0.213 0.000 0.425 0.489 0.634 0.397 0.459 0.492
Son1 0.003 0.005 0.005 0.020 0.006 0.000 0.000 0.002 0.003 0.005 0.004 0.004
Son2 0.000 0.002 0.004 0.008 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.001
Stra 0.050 0.189 0.000 0.180 0.189 0.003 0.102 0.188 0.003 0.161 0.189 0.002
Swed 0.085 0.077 0.065 0.153 0.020 0.022 0.091 0.087 0.062 0.089 0.074 0.067
Symb 0.016 0.012 0.012 0.049 0.000 0.000 0.013 0.016 0.015 0.016 0.011 0.016
Synt 0.668 0.469 0.042 0.517 0.324 0.000 0.687 0.457 0.039 0.792 0.469 0.027
Toe1 0.124 0.000 0.003 0.168 0.000 0.143 0.398 0.000 0.166 0.141 0.000 0.022
Toe2 0.075 0.000 0.029 0.079 0.000 0.084 0.370 0.017 0.007 0.266 0.010 0.017
Trac 0.044 0.077 0.027 0.012 0.000 0.043 0.071 0.060 0.032 0.037 0.069 0.022
TwoL 0.001 0.001 0.001 0.009 0.018 0.000 0.001 0.001 0.003 0.006 0.001 0.000
UMD 0.295 0.321 0.417 0.342 0.245 0.130 0.406 0.386 0.260 0.289 0.280 0.321
UWaX 0.185 0.264 0.025 0.001 0.001 0.001 0.172 0.221 0.025 0.240 0.249 0.031
UWaY 0.202 0.257 0.025 0.002 0.001 0.002 0.125 0.236 0.024 0.351 0.257 0.027
UWaZ 0.186 0.254 0.021 0.001 0.001 0.001 0.211 0.263 0.019 0.209 0.241 0.003
Wine 0.010 0.133 0.005 0.111 0.001 0.000 0.041 0.054 0.046 0.050 0.133 0.043
Word 0.151 0.155 0.153 0.160 0.000 0.016 0.150 0.160 0.155 0.153 0.181 0.165
Worm 0.333 0.016 0.037 0.477 0.000 0.339 0.319 0.019 0.214 0.314 0.021 0.067
WoTC 0.276 0.002 0.002 0.248 0.000 0.536 0.105 0.009 0.065 0.231 0.006 0.005

Average 0.273 0.255 0.182 0.243 0.145 0.100 0.282 0.267 0.203 0.276 0.253 0.180

Table 5.10: The count of the best NMI scores per each clustering algorithm. Total counts in
the table are equal to the number of datasets. Best counts are denoted in bold.

UFEKT PRK SS Total Count

KMeans 41 42 19 102
DBSCAN 76 17 9 102

AHC 43 39 20 102
GMM 47 40 15 102
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(a) The results were performed by UFEKT and PRK for feature extraction and KMeans for clustering.
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(b) The results were performed by UFEKT and SS for feature extraction and KMeans for clustering.

Figure 5.2: Scatter plots of NMIs for UCR datasets.
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(a) The results were performed by UFEKT and PRK for feature extraction and DBSCAN for clustering.
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(b) The results were performed by UFEKT and SS for feature extraction and DBSCAN for clustering.

Figure 5.3: Scatter plots of NMIs for UCR datasets.
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(a) The results were performed by UFEKT and PRK for feature extraction and AHC for clustering.

0.0 0.2 0.4 0.6 0.8 1.0
UFEKT

0.0

0.2

0.4

0.6

0.8

1.0

SS

(b) The results were performed by UFEKT and SS for feature extraction and AHC for clustering.

Figure 5.4: Scatter plots of NMIs for UCR datasets.
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(a) The results were performed by UFEKT and PRK for feature extraction and GMM for clustering.
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(b) The results were performed by UFEKT and SS for feature extraction and GMM for clustering.

Figure 5.5: Scatter plots of NMIs for UCR datasets.
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Chapter 6

Conclusion

In this thesis, we proposed two main algorithms UFEKS (Unsupervised Feature Extraction
using Kernel and Stacking) and UFEKT (Unsupervised Feature Extraction using Kernel
Method and Tucker Decomposition), which can extract features from multivariate time
series. To evaluate both algorithms, we performed experiments such as outlier detection and
clustering tasks for synthetic and real-world datasets, and had better results than existing
algorithms. After summarizing my thesis, I will mention current limitations and future
works.

6.1 Summary

First, we defined combinatorial outliers of multivariate time series as follows:

• Combinatorial outliers are defined as outliers that can be found when we look at
multivariate time series simultaneously.

We have proposed two new algorithms that extract features from multivariate time
series called Unsupervised Feature Extraction using Kernel and Stacking (UFEKS) and
Unsupervised Feature Extraction using Kernel Method and Tucker Decomposition (UFEKT).
The procedures are as follows:

• UFEKS

– Divide a given time series into a set of its subsequences,

– Make a kernel matrix from each subsequence using RBF kernel,

– Place the all kernel matrices across in one row and horizontally concatenate them
into one kernel matrix,

– Extract row vectors in the concatenated matrix as feature vectors.

• UFEKT
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6.2. CURRENT LIMITATIONS AND FUTURE WORKS

– Divide a given time series into a set of its subsequences,

– Make a kernel matrix from each subsequence using RBF kernel,

– Stack the all kernel matrices and make a three-way tensor of a kernel matrix,

– Decompose the tensor into one core tensor and three factor matrices,

– Extract row vectors in one of the factor matrices as feature vectors.

When the UFEKT are applied to outlier detection tasks, a value of rank ', which is one
of the parameters, must be given and we propose the algorithm as follows:

• Rank selection in UFEKT

– Perform Tucker decomposition while changing ranks,

– Measure normalized distance between feature vectors in a factor matrix,

– Regard the longest distance as a representative distance of the rank,

– Choose the best rank by selecting the representative distance.

This method does not guarantee to output the best rank, however, our experiments showed
that favorable results could be obtained.

In addition, to evaluate our algorithms, UFEKS and UFEKT, we applied them to outlier
detection tasks, and employed five outlier detection methods for non-time series, such as
^th-Nearest Neighbor (^NN), Local Outlier Factor (LOF),One-class Support Vector Machine
(OCSVM), Isolation Forest (IForest), and PageRank (PR) for synthetic and real-world datasets.
Our experiments using those datasets showed that our algorithms had an enough potential to
extract features from multivariate time series for outlier detection.

Furthermore, we showed the reasons why our algorithm had better results than existing
algorithms by analyzing a resulting kernel matrix with the principal component analysis
(PCA).

Moreover, we also applied our algorithm UFEKT to clustering tasks. As representative
clustering algorithms for non-time series, K-means (KMeans), Density-based Spatial Cluster-
ing of Applications with Noise (DBSCAN), Agglomerative Hierarchical Clustering (AHC),
and Gaussian Mixture Model (GMM) are employed for our evaluations. Like the results of
outlier detection, they had better results than the existing algorithms.

6.2 Current Limitations and Future Works

Although our algorithms could have better results for some applications we mentioned above,
we consider that some challenges remain.
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6.2. CURRENT LIMITATIONS AND FUTURE WORKS

6.2.1 Datasets containing missing values

Datasets that we employed in this dissertation do not contain any missing values. However,
when we consider that our algorithms are applied to a real-world system, missing values
might be contained in datasets collected by sensors in the system. To overcome this issue,
two types of ways might be considered: replacing missing values to complemented values
using existing algorithms, or developing a new algorithm that can directly handle missing
values. The former might be one of the better ways, however, we consider that our algorithms
have capabilities of directory applying to datasets with missing values and interpolating them
because both time-wise and variable-wise associations have been already taken into account
in our algorithm.

6.2.2 Time series with different lengths

Our algorithms require the same length of multivariate time series as input datasets. Therefore,
if collected time series from sensors have different lengths from each other, we need to adjust
them to the same lengths before applying them to our algorithms. However, if some similarity
measurements between multivariate time series like the Dynamic Time Warping (DTW) can
be applied to our algorithms, it can be said that our algorithm supports a variety of time
series with different lengths. For instance, considered that two time series with same time
period but different sampling interval are given, a kernel matrix that represent association
between them can be calculated by DTW substituted for RBF kernel in UFEKT after dividing
the time series into the same numbers of subsequences from the time series. This might be
worthy of consideration.

6.2.3 Effective usage of factor matrices

As we have mentioned in this thesis, variables including outliers can be extracted by checking
one of the factor matrices obtained by Tucker decomposition. However, the result we showed
in this thesis is one of the datasets donated as ATSF16. We need to try to apply the method
to a variety of datasets and evaluate accuracy of them. If high accuracy can be obtained from
many datasets, UFEKT would be more attractive algorithm because it can be said that it is
able to generate two types of features, time-wise and variable-wise features, in one method.
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Appendix A

Experimental results for clustering
by UFEKT

Experimental results of a clustering using UCR datasets are shown here. We performed three
feature representation algorithms, UFEKT, PageRank kernel(PRK), and Subsequence (SS),
combined with four clustering algorithms, KMeans, DBSCAN, AHC, and GMM, resulting
in twelve combinations of feature extraction and clustering in total. The effectiveness of
each method was evaluated by Normalized Mutual Information (NMI). The NMI score takes
values between zero and one, and higher is better.
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Figure A.1: NMIs for UCR (#1).
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Figure A.2: NMIs for UCR (#2).
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Figure A.3: NMIs for UCR (#3).
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Figure A.4: NMIs for UCR (#4).
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Figure A.5: NMIs for UCR (#5).
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Figure A.6: NMIs for UCR (#6).
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Figure A.7: NMIs for UCR (#7).
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Figure A.8: NMIs for UCR (#8).
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Figure A.9: NMIs for UCR (#9).
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Figure A.10: NMIs for UCR (#10).
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Figure A.11: NMIs for UCR (#11).
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Figure A.12: NMIs for UCR (#12).
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Figure A.13: NMIs for UCR (#13).
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Figure A.14: NMIs for UCR (#14).
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Figure A.15: NMIs for UCR (#15).

107



PRK SS UFEKT
0.000

0.025

0.050

0.075

0.100

KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(a) MiddlePhalanxTW

PRK SS UFEKT
0.000

0.005

0.010

0.015

KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(b) MoteStrain

PRK SS UFEKT
0.00

0.01

0.02

0.03

KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(c) OSULeaf

PRK SS UFEKT
0.0

0.2

0.4

0.6

0.8
KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(d) OliveOil

Figure A.16: NMIs for UCR (#16).
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Figure A.17: NMIs for UCR (#17).
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Figure A.18: NMIs for UCR (#18).
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Figure A.19: NMIs for UCR (#19).
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Figure A.20: NMIs for UCR (#20).

112



PRK SS UFEKT
0.0

0.2

0.4

0.6

0.8
KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(a) ShakeGestureWiimoteZ

PRK SS UFEKT
0.0

0.2

0.4

0.6
KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(b) ShapeletSim

PRK SS UFEKT
0.0

0.2

0.4

KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(c) SmallKitchenAppliances

PRK SS UFEKT
0.0

0.2

0.4

0.6

KMeans

PRK SS UFEKT

DBSCAN

PRK SS UFEKT

AHC

PRK SS UFEKT

GMM

(d) SmoothSubspace

Figure A.21: NMIs for UCR (#21).
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Figure A.22: NMIs for UCR (#22).
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Figure A.23: NMIs for UCR (#23).
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Figure A.24: NMIs for UCR (#24).
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Figure A.25: NMIs for UCR (#25).
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Figure A.26: NMIs for UCR (#26).
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