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Abstract

The popularity of online learning has increased in recent years, with increasingly
many intelligent tutoring systems (ITSs) becoming available to learners. In general,
these platforms enable learners to acquire knowledge in the process of a series of
individualized learning activities (e.g., exercising solving) that accommodate learners
with di�erent needs and knowledge pro�ciencies. A key technique underlying these
adaptive tutoring services is learner knowledge assessment, which aims to model
learner performance to discover their latent knowledge pro�ciency in mastering
knowledge concepts in a domain.

This task can facilitate the optimization of human learning because the assessment
information is fundamental for the further adaptive services in many real-world ITSs.
For example, adaptive remedial learning materials can be automatically provided based
on students’ individual needs, and content that is predicted to be not in conformity with
students’ knowledge states can be skipped or delayed, thereby e�ectively improving
their learning e�ciency and avoiding any decrements in their engagement. Meanwhile,
given the popularity of a growing number of online educational platforms, a large
number of learning logs can be collected for the purpose of building advanced models
for accurate learner knowledge assessment. This has been a popular interdisciplinary
research topic across education, psychology, computer science, and cognitive science.

Nevertheless, discovering learners’ latent knowledge state from the learning logs in
an ITS is a rather challenging task, as human knowledge construction is a dynamic
procedure and their knowledge is constantly evolving since learners dynamically learn
and forget over time. Moreover, the knowledge attainment can be a�ected by many
factors from both the learners and the learning domains. The existing studies have
explored this task and proposed e�ective approaches from two directions: cognitive
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diagnostic assessment (CDA) and knowledge tracing (KT). However, there are still
numerous methodological issues, which restrict their practical applications. In this
work, we address three important ones, namely, insu�cient learning factor modeling,
data sparseness and information loss, and �ne-grained assessment and interpretability.

To tackle these issues, we proposed a general framework for dynamic learner
knowledge assessment by integrating both learner and domain modeling. Based on
this framework, we proposed three approaches, each addressing one speci�c issue
in the existing studies. Speci�cally, on the �rst issue, we investigated the learner
factors (learning and forgetting) and domain factor (item di�culty) by making use of
rich information during learners’ learning interactions and proposed a novel model
named KTM-DLF that traces the evolution of learners’ knowledge acquisition over
time by explicitly modeling their learning and forgetting behaviors as well as the
item di�culty. Extensive experiments con�rmed the e�ectiveness of this model as it
takes more and precise information into the modeling procedure. For the second
issue, we explored to incorporate the knowledge structure (KS) into the learner
assessment procedure to potentially resolve both the sparseness and information loss.
We explored to automatically generate the KS from the learning logs and proposed a
novel KS-enhanced graph representation learning model for KT with an attention
mechanism (KSGKT). Extensive experiments demonstrated the superiority of the
KSGKT model and the results proved it to be a good trial to alleviate the data sparseness
and the information loss in conducting learner knowledge assessment. To cope with the
third issue, we proposed a dynamic CDA model called KIEDCDA that incorporates not
only the ability to trace the evolution of learners’ knowledge pro�ciencies over time
for large-scale assessments, but also the interpretability to explain learner performance
in terms of their current knowledge pro�ciency and item characteristics. Experiments
on several real-world datasets demonstrated the superiority and interpretability of the
KIEDCDA model for learner performance modeling, suggesting that it is worthy of a
good trial to track and explain learners’ �ne-grained and evolving knowledge states
simultaneously.

This research has several contributions to the entire ITS �eld. It explored the task
of dynamic learner knowledge assessment to obtain the individual learner’s evolving
knowledge states, which is the pillar of learner characteristics in ITS. The distribution
of a learner’s knowledge states provides a distinctive latent pro�le of the learner for the
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ITSs, and lets the ITSs know who they are teaching, hence increasing the adaptability
and individualization of the further services. Moreover, this thesis modeled various
aspects of the learning domain, the obtained characteristics of learning content are
essential for the ITSs to manage learning content and help the ITSs understand what
they are teaching. Furthermore, this thesis investigated the potential of educational
data mining driven decision-making in ITSs for adaptive online tutoring, and explored
to track and explain learners’ evolving knowledge states simultaneously. This will be
helpful for the further tutoring services and provides ideas for explainable feedback.

This thesis presents our trials on dynamic learner knowledge assessment that
enhanced the existing techniques. To further stimulate new ideas in the �eld of
intelligent education, some remaining issues and future work are also described.
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1
Introduction

Amid the COVID-19 pandemic, online education has become an inevitable choice and a
mainstay in many nations [6, 7]. Recently, online learning has been more integrated
with arti�cial intelligence approaches as a result of fast technological advancements,
allowing for the development of more individualized educational systems. These
systems are known as Intelligent Tutoring Systems (ITSs) [8]. With the explosive
growing number of learners enrolled in online learning, the big data accumulated by
these ITSs provides the potential to analyze and infer the latent factor/characteristics
of the online learners and the learning resources, which is essential and fundamental
for the systems to provide adaptive services [9, 10, 11, 12, 13].

This thesis is about the techniques that make the ITSs more intelligent and equip
them with adaptive capabilities from the perspective of learning analytics on the big
educational data. Speci�cally, this thesis is dedicated to the methods that dynamically
assess the knowledge of online learners during their interaction with the systems, a
fundamental personalized-tutoring technique underlying the adaptive services in ITSs.

This chapter brie�y explains the background of this thesis in Section 1.1. It then
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gives an overview of this thesis in Section 1.2, explaining the motivation and the topic,
the potential issues with existing methods and models, and the contributions. The
thesis outline is described in Section 1.3.

1.1 Background: ITSs

Online learning has become increasingly popular in recent years, with proliferated
online learning platforms becoming available to learners [14, 15, 16]. In general, these
platforms enable the knowledge-acquisition of learners through a series of learning
activities (e.g., video lecturing and exercising solving), to improve their formal and
informal learning experiences.

There are two general forms of online learning [17]: one is based on the ITSs that
involve the (semi-)autonomous computer programs, such as Carnegie Learning1,
ASSISTments2, Knewton3, Riiid TUTOR4 and ALEKS5, to provide tutoring feedback
to learners; The other is the person-to-person online tutoring that enables human
tutors to provide instructions to learners via communication tools, such as Zoom6 and
Webex7, in a synchronous or asynchronous way. This thesis is concerned with the �rst
form of online learning through ITSs, with the goal to make the ITSs more intelligent
and equip them with adaptive capabilities.

ITSs, “computer programs that are designed to incorporate techniques from the AI
community in order to provide tutors which know what they teach, who they teach
and how to teach it” [18, 19], are a critical category of a carrier of online learning [6]
which refers to using arti�cial intelligence techniques to facilitate online learning
through structuring numerous resources and assisting learners in acquiring knowledge
online, etc. These systems mimic individualized human tutoring in a computer-based
environment [20], and are capable of o�ering delicate instructions during problem
solving, tracking learners’ abilities and knowledge acquisition, and recommending

1http://www.carnegielearning.com/
2https://new.assistments.org/
3https://www.knewton.com/
4https://www.riiid.co/toeic-online-test/
5https://www.aleks.com/
6https://zoom.us/
7https://www.webex.com/
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learning resources to accommodate for the di�erent learning preference and aptitude of
individual learners [21]. ITSs have a particular strength in dealing with the interactive
and personalized aspects of individual learning e�ectively [20], thus providing an
alternative to the “one-size-�ts-all” approach in traditional web-based learning [21].

The general architecture for the ITSs is plotted in Figure 1.1. It mainly consists of
three models and a user interface [18, 22]. The user interface presents the learning
interactions between learners and the ITSs in di�erent forms, such as the learning
materials, hints, feedback from the system, etc. The three models in the ITSs are
described as follows:

• Learner model: it is the core component of an ITS. It provides an ITS with the
information of who it teaches, which is the fundamental for the adaptivity of the ITS.
To provide the personalized and precise tutoring services to a speci�c learner, an ITS
should build a learner pro�le that contains as much explicit and implicit knowledge as
possible about the learner’s cognitive and a�ective states and their dynamic evolution
during the long-term learning process [22]. The cognitive and a�ective states built in
a learner pro�le are individualized factors such as the level of knowledge, activities,
responses, behaviors, learning styles, preferences, cognitive engagement, mood
and emotion and other information about a learner inferred and updated from the
accumulated logs during the interaction process with the system [8].

• Domain model: it provides an ITS with the information of what it teaches. It
contains the expert knowledge (concepts, rules, and problem-solving strategies, etc.)
to be learned in a speci�c domain. This domain knowledge is generally organized
into curriculums with some structures (hierarchies, networks, frames, etc.) that link
the knowledge together according to pedagogical sequences [22].
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• Pedagogical model: it provides an ITS with the strategies of how to teach. Taking
the input from both the domain and learner models, it makes decisions about tutoring
strategies and actions to be taken [22].

The existing ITSs usually contain part or all of these models in the back-end with
di�erent levels of intelligence. Recently, ITSs have become increasingly integrated with
arti�cial intelligence techniques in order to provide more personalized tutoring. With
the explosive growing number of learners using the ITSs, the big data accumulated
by these systems provides the potential to build more accurate learner models, to
automatically structure and label the expert knowledge in the domain, and to learn
the precise pedagogical models from previous experiences in a data-driven matter,
as shown in Figure 1.2, which is essential and fundamental for the ITSs to provide
adaptive and personalized services to individual learners.

1.2 Thesis Overview

1.2.1 Motivation

This thesis focuses on the techniques that automatically build the learner and domain
models in the ITSs from the perspective of learning analytics on the big educational
data, assuming the pedagogical model is available. More speci�cally, this thesis
deals with the issue of dynamic learner knowledge assessment (DLKA) to obtain each
individual learner’s evolving knowledge states, which indicate their mastery of the
particular knowledge in a domain. This is the most typical type of learner modeling as
well as being the fundamental model type in ITSs [23].

Figure 1.3 shows an instantiated ITS architecture of the general architecture in
Figure 1.1. Three modules (learner assessment module, problem domain module and
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pedagogical module) derived from the three models are added and linked in the �gure
and they form a more speci�c ITS architecture. In fact, learner knowledge assessment
is only a part of learner modelling, researcher have conducted various researches on
learner modeling under di�erent sub-topics, such as learner cognitive engagement
[24], learning style [25], learning emotion [26], etc.

As mentioned above, the aim of this thesis is to dynamically assess the knowledge
states of learners, which is a typical type of learner model. Generally speaking, domain
model and learner model are viewed to be separate; however, in this thesis we try to
propose approaches for modeling both where the learning logs of learners can be useful
indications for unfolding the latent structure of a learning domain [27]. Moreover, the
process of learner knowledge assessment is based on the interaction between learners
and the learning materials, hence the knowledge assessment is inextricably related to
the domain modeling (e.g., the de�nition of knowledge components, the mapping of
the learning materials to these knowledge components, and the modeling of content
di�culty) [23]. Therefore, this thesis conduct DLKA by incorporating both learner and
domain modeling, as shown in the red box of Figure 1.3.

Given the learners’ long-term interaction logs in an ITS, the DLKA task is generally
formulated as the problem of modeling their performances and inferring the evolving
knowledge states that they accumulated from the interaction process in a long time.
DLKA is essential for personalized learning and also plays a fundamental role in
ITS [28, 9, 29, 16, 30]. The results of DLKA can optimize human learning in many
real-world learning systems because the assessment information is fundamental for
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many further adaptive services [27, 31, 32, 29, 33]. Based on the inferred knowledge
states of learners, tailored learning activities and support can be provided to meet
individual learning needs and ful�l the diverse capabilities of learners. Content that is
predicted to be not in conformity with learners’ knowledge level can be skipped or
delayed, thereby e�ectively improving their learning e�ciency [23, 34] and avoiding
any decrements in their engagement [35]. Moreover, a timely intervention of learning
procedures by designing new measures and learning materials to remedy the weakness
of learners can help teachers and administrators. Learner themselves can also better
understand their weakness and strength and pay more attention to the poorly mastered
knowledge concepts for better self-regulated learning. Meanwhile, given the popularity
of a growing number of online ITSs, a large number of learning logs can be collected
for the purpose of building advanced models for accurate DLKA [36, 37]. This has been
a popular interdisciplinary research topic across education, psychology, computer
science, and cognitive science [16, 38].

Nevertheless, discovering learners’ latent knowledge state from the long-term
learning logs in an ITS is a rather challenging task. From the perspective of human
learning, some of the major concerns are listed below:

• Dynamic knowledge construction procedure. Human knowledge construction is a
dynamic procedure and is constantly evolving as learners dynamically learn and
forget over time. ITSs provide learners with abundant learning resources and enable
them to learn individually at their own pace. knowledge acquisition is realized
through this continuous learning process, and inevitably, learners will forget the
knowledge they have learned. The knowledge construction procedure is a trade-o�
between acquiring new knowledge and forgetting old one; the knowledge retention is
�uctuated continuously with space scheduling in human learning.

• Complex human knowledge attainment. The knowledge attainment process can be
a�ected by many factors (a�ect, motivation, identity, etc.) at both the macro and
micro level [11]. Moreover, learning can occur during explicit contexts, such as
classroom teaching and exercising solving, or can occur implicitly by experience in
our external world [39], not to mention the epiphany in human learning. In addition,
there are complex relationships between the learning activities and the knowledge
acquiring outcomes.
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• Latent and non-explicit knowledge state. It is obviously that learners’ knowledge
states are latent and cannot be directly observed and quanti�ed due to the complexity
of human brain, which leads to the inaccessibility of the ground-truth.

From the perspective of implementing DLKA approaches, the main challenges are
as follows:

• Dynamic learning process modeling. As we mentioned above, human learning process
is dynamic and involves complex knowledge construction procedure as learning and
forgetting occur at the same time. How to build models to adequately model the
cognitive process of this complexity and dynamics in a longitudinal manner is an
extremely challenging issue. Moreover, learners’ performance in the future is deeply
in�uenced by their long-term historical learning experiences, especially on their
learning of the related knowledge states. Capturing these long-term dependencies in
the learning sequences [31] to precisely monitor the evolution of learners’ knowledge
states is another big challenge.

• Fine-de�ned domain modeling. Learning domain is inextricably related with the
development of learner knowledge. The learning procedure involves the acquaintance
and application of the massive knowledge, and the knowledge in a domain is generally
decomposed into a set of small-granularity knowledge components [40]. In the
practical learning scenarios, these knowledge components are embedded in the
individual learning objects, such as exercises and learning videos, to practice learners’
mastery on speci�c knowledge components. A realistic ITS usually contains hundreds
of knowledge components and tens of thousands of learning objects. The knowledge
components and the learning objects have complex relations between each other,
e.g., the prerequisite relations and similarity. How to organize and characterize the
knowledge components and the large numbers of learning objects in a domain is
essential for the assessment of learner knowledge.

• Sparseness and noise of the learning data. In an ITS, a learning object only incorporates
one or several knowledge components, and the number of learning objects is far
greater than the number of knowledge components, most learners only attempt a
small part of the learning objects with higher dropout rate. Accordingly, the response
data are quite sparse [41, 42]. Moreover, some learners may game the systems with a
set of non-learning-oriented strategies [43], which results in noise in the collected
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learning data.

• Interpretability. The interpretability is an important factor that accounts for good
tutoring services for self-regulated learning. Learners wonder not only what they
need to learn further but also why they need to learn it, i.e., acquiring the degree
of mastery on some certain knowledge concepts. However, it is nontrivial to both
quantify the impacts of long-term content learning on improving the knowledge
acquisition and enable the interpretability of the DLKA models [1].

This thesis is dedicated to propose novel DLKA models by considering these
challenges both in human learning and also in the practical implementation on the
long-term learning data. In the next section, we show the research topic and scope.

1.2.2 Topic and Scope

The problem of DLKA primarily focuses on monitoring learners’ evolving degrees of
mastery on various conceptual or procedural knowledge components (KCs)8 in a
speci�c domain [9, 10]. However, as mentioned above, learners’ knowledge states on
KCs are latent and cannot be directly observed and quanti�ed. To cope with this issue,
we need to turn to some observable indications to infer their knowledge states.

Researchers in this �eld have worked on this topic by utilizing learners’ explicit
learning feedback on various types of learning materials, such as readings [44], video
lectures [45], assignments, exercises [9, 10, 11] and discussions, as well as the multiple
learning resource types concurrently [46, 47, 48]. Some types of learning materials
are gradable, such as exercises and quizzes. A learner’s grade can be interpreted as
an explicit indication of learner knowledge when they engage with such kinds of
materials. If a learner obtains a high mark on an item, it is probable that he or she
has acquired the necessary KCs to solve that item. Others are not gradable and their
in�uence on learner knowledge is indirect and implicit [47]. To obtain more explicit
indication of learner knowledge, in this thesis we use the learners’ explicit feedback on
gradable exercises to assess learner knowledge, i.e., monitoring learners’ evolving
knowledge states based on the long-term exercising logs, which is the most common
manner for implementing the DLKA models.

8KCs are atomistic components of knowledge in a domain; in cognitive psychology, KC is also
termed as attribute or skill. In this thesis KC and skill will be used interchangeably.
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Figure 1.4: Showcase of the learner knowledge assessment task for the two users
practicing the exercises in an ITS. (a) Assessment information on each learner’s
knowledge states on all knowledge concepts at each time point can be obtained using
DLKA models; (b) the example KCs involved in these exercises; (c) the Q-matrix for
mapping the speci�c exercises to these KCs.

Figure 1.4(a) shows a toy example for the DLKA task. Two learners 9(D1 and D2)
attempt exercises 10 in a tutoring system in a certain time period. The KCs they want
to master are shown in Figure 1.4(b). These KCs are embedded in the explicit exercises.
In general, each exercise involves one or several KCs that are required to solve the
exercise (e.g., “12-8=?” involves the KC of “subtraction of two integers” and “3.8-1.6=?”
is related to “subtraction of two decimals”). This information is typically encoded in the
form of a Q-matrix (as shown in Figure 1.4(c)) given as prior knowledge from education
experts denoting which skills are required for each problem [33]. The number one in
the Q-matrix indicates that the speci�c exercise involves the corresponding KC, and
zero indicates otherwise. Given learners’ learning logs (answers to exercises and other
side information) in a system, the DLKA task is to model their performances and infer
the knowledge states that they accumulate from the exercising process.

9“Learner” here is a more general concept, it is also referred as “student” and “user”.
10We will interchangeably refer to exercises as questions, items or problems.
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To more precisely formulate the problem, we now explain the topic of this thesis
using a more technical wording:

Let us suppose that a learning system has � students, � exercises, and  
underlying knowledge components. Each exercise is associated with one
or several KCs needed to solve the exercise, i.e., the system have provided
the KC labelling in the Q-matrix. Each KC can be trained by attempting
several exercises. Moreover, each learner can learn and perform exercises
individually at di�erent times, and will attempt an exercise correctly or
incorrectly every time. Whenever a learner attempts an item at time
point C , the system generates an exercise record =C = (D8, @C , B: , AC , B8C , CBC ),
where =C is a tuple including the learner ID D8 ∈ {D1, D2, ..., D� }, exercise
ID @C ∈ {@1, @2, ..., @ � }, underlying KCs B: ∈ {B1, B2, ..., B }, the correctness
AC ∈ {0, 1} of the learner’s answer at timestamp C , side information B8C
during this interaction (e.g., the elapsed time spent on solving the given
question and the opportunity count of attempting this question or KC), and
the timestamp CBC of the current time point C . A learner’s exercising process
is then modeled as a sequence - = {=1, =2, ..., =) }, where ) indicates the
latest timestamp.

Note that we estimate learners’ knowledge from their exercising logs, the smaller the
gap between the estimated and learners’ real knowledge states, the more accuracy of
the built models [49], as shown in Figure 1.5. However, there is no ground-truth of the
learners’ real knowledge, the obtained assessment results cannot be directly evaluated.
Researches from cognitive psychology, such as the Classical Test Theory and Item
Response Theory [50], have veri�ed that the e�ectiveness of the estimated learner
knowledge can be validated by predicting learner scores on the exercises. Hence in
the practical implementation, DLKA models are veri�ed by comparing the predicted
results and the real results of learners on the attempted exercises. Based on this, the
existing researches on DLKA generally use the learner performance prediction to test
their models, aiming at alleviating the gap between the estimated and the real learner
mastery of domain knowledge.

Without loss of generality, the research topic can be formulated as follows:
(Problem Formulation) Given a learner’s past exercising sequence - in a system
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and a new exercise @C+1, our goal is to model the learner–exercise interaction procedure, and
hence track the evolution of a learner’s knowledge states from timestamp 1 to ) . Based on
the estimated learner knowledge states, we then predict the probability ? (AC+1 = 1|-,@C+1)
that the learner answers exercise @C+1 correctly.

To adequately capture the complexity of learners’ cognitive process, this thesis is
dedicated to propose rich DLKA model with non-linearity on the massive learning
interaction data, with the emphasis on monitoring the dynamics of learner knowledge
in a longitudinal manner. It does not assess the learners based on a certain quiz, such
as GRE (Graduate Record Examinations) and TOEFL (Test of English as a Foreign
Language), in a static way. Moreover, it is based on the big data of long-term learning
logs, as will described in Chapter 3, it may be challenging for the proposed models to
be directly applied to small data of classroom-level learners, which will be one of our
future work.

This thesis solve the task of DLKA, assuming the de�nition of KCs, the designing
of exercises in a domain and the mapping of speci�c exercises to these KCs (i.e., the
q-matrix) are available. Actually, for many ITSs, this domain-dependent work is
manually designed by domain experts, based on which the learning is conducted.
Moreover, although the data collected for this thesis, as will described in Chapter 3, is
mainly from the ITSs that are used for learning mathematics and English, the models
proposed in this thesis are domain-independent, and can be directly applied to other
domains.
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Figure 1.6: Fine-grained Diagnostic Report. The above �gure shows a learner’s changing
knowledge states after attempting each exercise [1]; the bottom left �gure shows the
learner’s knowledge states at �xed interval time from a macroscopic perspective [2];
while the bottom right �gure shows the results of statistical analysis based on the
learning logs, e.g., the attempt counts for speci�c KCs.

1.2.3 Example Application Scenarios

Fine-grained Diagnostic Report The research in this thesis can be directly applied
to the tutoring systems by providing learners with �ne-grained diagnostic report.
Compared with the coarse-grained information such as correct/incorrect feedback or
the score/rank of learners’ exercise process, this �ne-grained diagnostic report can be
more helpful to learners when conducting the self-regulated learning [51, 33]. From a
tutoring viewpoint, learners who understand the strengths and weaknesses of their
knowledge points can remedy these weaknesses and improve themselves through
self-regulated learning. From a teaching viewpoint, a comprehensive diagnostic
report would help teachers identify the knowledge levels of both the whole class and
individual students. Based on this information, they can design and provide timely
interventions of the learning procedures.

Figure 1.6 shows an example diagnostic report provided by an ITS during the
whole learning process. Assisted by this �ne-grained diagnostic report, learners can
focus on their weak knowledge without repeated training on their already mastered
skills. This enlightenment will greatly improve students’ learning e�ciency.
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The below-radar graphs show the changes in the learner’s knowledge states on each
skill. Gradually, the learner mastered all skills in the learning path.

Adaptive Learning-Path Recommendation Adaptive learning-path recommen-
dation reasonably arranges the order of the learning contents to generate a well-de�ned
learning path. Along this path, a learner can e�ciently complete the learning target
and alleviate the information overload issues in e-learning [52]. The research in this
thesis can be directly applied to this task. Incorporating the inferred knowledge states
of learners and the knowledge structure in the domain, the adaptive learning-path
recommendation service can be provided. In the example of Figure 1.7, the learner is
requested to master skill “E” along the recommended learning path “B→A→C→E”
based on his or her current knowledge level. This path follows the logicality determined
by the knowledge structure [53]. As the learner has already mastered skill “B”, he or she
approaches skill “C“ from skill “B” rather than from skill “D”. Along the learning path,
the learner is provided with the corresponding learning contents. After completing this
self-learning process, the learner has gradually mastered all skills along the learning
path. Such self-awareness can greatly improve the adaptive navigation ability of
existing ITS.
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1.2.4 Issues to Be Addressed

We have introduced the general procedure of DLKA in § 1.2.2. For better understanding,
we show this general procedure in Figure 1.8. Given the learning log data, learning
factors that in�uence the learning performance are quanti�ed to capture the impact
on knowledge acquisition during the learning process, and then learner knowledge
assessment is conducted by integrating all these factors to monitor learners’ evolving
knowledge states over time. Researchers in this �eld have proposed various models
to implement this procedure. Although the existing researches have achieved good
performance on this task, some important issues remain (partially) unsolved. This
thesis analyzes the existing learner knowledge assessment approaches and identi�es
three potential issues (as shown in the three shaded boxes in Figure 1.8):

1. Issue 1: what factors in�uence the learning performance and how to quantify
these factors and utilize them to model the dynamic evolution of learner
knowledge?

2. Issue 2: How to alleviate the data sparseness and the information loss in
conducting learner knowledge assessment?

3. Issue 3: how to track and explain learners’ �ne-grained and evolving knowledge
states simultaneously?
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As we assess learners’ evolving knowledge from their exercising logs, the �rst
and most important consideration is to �nd the factors that result in the change of
their knowledge acquisition, based on which the knowledge evolution process is
modeled. Cognitive psychology has long veri�ed that the knowledge acquisition
procedure is not only related to the learners but also the learning materials in the
domain. Existing approaches for DLKA consider only a fragment of the information
during the learning process that results in the change of learner knowledge acquisition.
To more precisely assess the learner knowledge, we must �rst pinpoint the factors
that in�uence the evolving knowledge and propose methods to quantify them. This
issue is explored in Chapter 4. With issue 1 addressed, we �nd that the performances
of existing approaches greatly su�er from the sparseness of the input data and the
information loss when modeling the learning process, hence we solve this issue (issue
2) in Chapter 5 of this thesis. We propose deep learning models in this thesis to
model the learning process by leveraging the powerful representation ability of the
deep neural networks in a data-driven manner, however, deep neural network is
regarded as a black-box, how to track and explain learners’ evolving knowledge states
simultaneously is an important issue. Moreover, the interpretability is an important
factor that accounts for good tutoring services in an ITS. This issue will be solved in
Chapter 6.

1.2.5 Contributions

In this thesis, we propose a general framework, used as a general idea for solving the
research task in § 1.2.2. This framework is then instantiated to three approaches, each
addressing the issues in § 1.2.4 from di�erent perspectives. In this section, we introduce
the philosophy of this framework and then give an overview of the contributions.

As shown in Figure 1.9, the learners interact with the exercises in the tutoring
systems, and their exercising results are recorded in the learning logs. Existing work
generally performs DLKA on these exercising results to monitor the learners’ evolving
knowledge. However, the exercising procedures are also very important for the task
of learner knowledge assessment. Cognitive psychologists have long veri�ed that
the procedure of knowledge acquisition is linked with multiple factors that not only
related with the learners (e.g., learning and forgetting) but also the learning materials
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Figure 1.9: The general framework for DLKA.

(e.g., di�culty and discrimination) [54, 55, 56]. Hence in this thesis, we solve the DLKA
task by incorporating both learner and domain modeling.

This framework is then instantiated to three approaches that address the above-
mentioned issues from di�erent perspectives. Speci�cally, the contributions of this
thesis are as follows:

• A deep factorization machine based approach for learner knowledge assessment by
modeling multiple factors. It solves the Issue 1 by exploring the factors that in�uence
the knowledge acquisition and making use of rich information during learners’
learning interactions to achieve more precise prediction of learner knowledge. In
Chapter 4, we propose a novel knowledge tracing model named KTM-DLF that traces
the evolution of learners’ knowledge acquisition over time by explicitly modeling
learners’ learning and forgetting behaviors as well as the item di�culty. We model
learners’ learning and forgetting behaviors by taking account of their memory decay
and the bene�ts of attempts on exercises, and propose a concept of cognitive item
di�culty and a method to model this user-oriented di�culty adaptively in terms of
the cognitive challenge it presents to di�erent individuals. Empirical analyses were
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conducted to show the e�ectiveness of the KTM-DLF model and the impact of these
factors on the learner knowledge assessment.

• A knowledge structure enhanced graph representation learning model for attentive
learner knowledge assessment in Chapter 5. This approach solves both Issue 1 and
Issue 2. It explores methods to infer the domain knowledge structure from the learner
response data and integrates it with the original question–skill relation graph to
enrich the data and alleviate the data sparseness. It proposes a knowledge structure
enhanced graph representation learning model to learn the dense question and skill
embeddings, and fuses these embeddings with other distinctive features to obtain
the comprehensive question representation, thus alleviating the information loss
of the existing skill-level models that neglect the distinctive information related
to the questions themselves and their relations. Moreover, it solves the Issue 1 by
discovering the knowledge structure and integrating it into the knowledge assessment
process with other learning factors. Comprehensive evaluation results veri�ed the
superiority and interpretability of this approach in dynamically modeling the learning
performance and discovering the knowledge structure from data.

• A knowledge interaction enhanced sequential modeling method for interpretable
learner knowledge assessment. As shown in Chapter 6, we propose a novel model,
called the knowledge interaction-enhanced dynamic cognitive diagnostic assessment
(KIEDCDA), to dynamically trace the evolution of each learner’s knowledge states
during the exercise activities. It uni�es the strength of the auxiliary memory
capacity of the key-value memory network to enhance the representation of the
knowledge state during learner performance modeling and the interpretability of
the Item Response Theory (IRT) to explain the learner performance in terms of
knowledge pro�ciency and item characteristics (i.e., item di�culty and discrimination).
Moreover, we propose the knowledge interaction concept among knowledge concepts
and incorporate it into the modeling procedure to further exploit the long-term
dependencies in the exercising sequences, solving the Issue 1 to some extent. Based
on these factors, this model can not only output the learners’ knowledge pro�ciency
in a multi-granularity manner but also output the item characteristics, making it
possible to interpret the results and solve the Issue 3.
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1.3 Outline of Thesis

The rest of this thesis is organized as follows:
Chapter 2 will describe the related work in three aspects: ITSs, learner and domain

modeling in ITSs, and the learner knowledge assessment methods. The current
development and limitations of the existing methods will be discussed.

Chapter 3 will introduce the datasets and the evaluation metrics used in this thesis.
Chapter 4 will explore the factors that in�uence the learning performance and the

methods to quantify these factors and utilize them to model the dynamic evolution of
learner knowledge. Speci�cally, it will introduce our �rst approach by modeling the
dynamic knowledge construction procedure and cognitive item di�cult.

Chapter 5 will introduce our second approach for learner knowledge assessment.
It will show how the knowledge structure enhanced graph representation learning
approach alleviate the data sparseness and the information loss when conducting the
assessment.

Chapter 6 will show our third approach to obtain the �ne-grained and interpretable
results based on a deep learning model.

Chapter 7 will conclude this thesis. It replies to the three issues of DLKA, shows the
remaining issues and explains the potential directions to improve learner knowledge
assessment for ITSs.
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2
Related Work

This chapter summarizes the models and techniques closely related with the task in
this thesis, and gives further description of the research background. As this thesis is
about the techniques that make the ITSs more intelligent, we �rst gives an overview
of the intelligent tutoring systems in Section 2.1. Speci�cally, we conduct learner
knowledge assessment by incorporating both learner and domain modeling. Section
2.2 discusses the techniques for learner and domain modeling in ITSs, respectively.
Section 2.3 focuses on the research problem in this thesis and shows the related work
in learner knowledge assessment from both static and dynamic perspectives. Based on
the above analysis, Section 2.4 points out the limitations in existing methods and
further introduces the positioning of this research in the relevant �eld.

2.1 Intelligent Tutoring Systems

From CAI to ITSs The employment of computers in education has a long history
since its inception in the 1950s [57, 18] under the name of Computer Assisted Instruction
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(CAI). The simple “linear programs” by Skinner [57] is regarded as the pioneer work in
the �eld of CAI. The system presented a series of “’frame’ containing very simple
problems to guide the students toward the desired goals. Students with di�erent
abilities, background, or prior knowledge, received exactly the same material in exactly
the same sequence [18]. This system, together with many other earlier systems, are
deemed to be unable to provide feedback and individualization, as they cannot obtain
the knowledge of what they were teaching, who they were teaching or how to teach it.

During the late 1960s and early 1970s, the generative CAI systems came into the
stage to improve the feedback and individualization. Uhr described a computer program
that generates very simple questions in pre-de�ned formats in numerically oriented
problem domain that are tailor made to student performance [58]. Wexler proposed a
system which can dynamically generate simple instructional and remedial sequences
that are used in non-numeric problem domains [59]. Although these systems drastically
reduce the memory usage to store the learning materials by directly generating them,
they are actually quite ad hoc and non of these systems has human-like knowledge of
the subject they are tutoring [18].

To solve these issues, CAI systems have gradually integrated with arti�cial intelli-
gence (AI) techniques and evolved into the advanced systems termed as “Intelligent
Computer Assisted Instruction (ICAI)” [60]. In [60], Carbonel claimed that CAI
systems could be more intelligent by incorporating AI techniques to overcome the
existing issues. In recent decades, the term “Intelligent Tutoring System” (ITS) is
used frequently as a replacement for ICAI [61]. In [18], Nwana thought that ITSs
and ICAI are synonymous, as research under these two terms share the same intents
and purposes. With the incorporation of AI in education, ITS has been a popular
interdisciplinary research �eld across education, psychology, computer science, and
cognitive science [16, 61]. From the perspective of pure research, the researches in
ITSs will contribute to the discovery and test of more accurate theories of human
learning; In practical level, the ITSs will facilitate one-to-one tutoring and provide
supplement for the formal education, and the scalability and online characteristic also
make the ITSs more a�ordable and convenient than face-to-face tutoring [17].

Researchers from multiple research �elds have explored and solved issues in ITSs
from di�erent perspectives. A considerable consensus of the general architecture
for the ITSs has been reached that ITSs consist of at least four basic components
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[18, 61], as shown in in Figure 1.1. These four components are the domain model
which contains the knowledge to be learned in a certain domain, the learner model
which stores the pro�le of an individual learner, the pedagogical model which stores
pedagogical knowledge and makes decisions about when and how to intervene, and
the user interface that presents the learning interactions with learners.

Under this general architecture, many researches are conducted to improve the
intelligence and adaptability of the ITSs. Among them, massive work is conducted on
the topics of learner modeling and domain modeling (see Section 2.2), for example the
learner knowledge assessment [50, 62, 63, 64, 65, 66, 28, 9, 29, 16, 30, 10, 23], learning
style or preference detection [25, 67, 68, 69], cognitive engagement detection [24],
a�ective states recognition [70, 71, 72], question-skill mapping or q-matrix learning
[73, 74, 75, 76], knowledge graph construction [77, 78], and item analysis [79, 40, 80].
Pedagogical researchers have proposed various tutoring strategies for the ITSs to
provide more adaptive services to learners, for example the adaptive navigation [53, 81],
personalized pedagogical interventions [20], game-based learning strategies [82],
dialogue-based tutoring [83].

To test the e�ectiveness of ITS on the learning outcomes, researchers have
conducted a series of meta-analysis based on the existing studies. Steenbergen-Hu and
Cooper conducted two meta-analysis of the e�ectiveness of ITSs on K-12 students’
mathematical learning [84] and college students’ academic learning [85], respectively.
Twenty-six reports assessing the e�ectiveness of ITS on K-12 education settings and
Thirty-�ve reports on higher education are analyzed. The �ndings demonstrated
that ITS appear to have a more signi�cant e�ect on college-level learners than on
K-12 students [85]. For the college students, ITSs outperformed many instructional
methods in a wide range of subjects, although they were not yet as e�ective as human
tutors; For the K-12 students, ITSs overall appeared to have a small positive impact
compared with regular class instruction, and they showed a greater positive impact on
general students than on low achievers [84]. And they concluded that ITSs could be
e�ective supplements to regular class instruction for students who are motivated and
can self-regulate learning. Kulik and Fletcher [86] described a meta-analysis from 50
studies and showed that students learned using ITSs outperformed the counterparts
from conventional classes in 92% of the studies, and the e�ect size was considered to
be substantively great in 78% of the studies (above 0.66). The study by Ma et al [87]
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analyzed 107 published studies by comparing the outcomes of students learning from
ITS and non-ITS environments. They found that students using ITSs had greater
achievement compared with other settings (teacher-led, large-group instruction,
non-ITS instruction) Moreover, no signi�cant di�erence was observed between learning
from ITS and learning from individualized human tutoring or small-group instruction,
which veri�es the rule of ITSs as relatively e�ective tools for learning.

Considering the e�ectiveness of ITS on the learning outcomes, this thesis explores
the techniques that make the ITSs more intelligent and provide the adaptive services to
maximize the learning gains.

2.2 Learner and Domain Modeling in ITSs

As we have mentioned in Section 1.1, learner and domain modeling are important
for the ITSs to know who they teach and what they teach, providing the footing of
penalization in ITSs. On the basis of these information, the ITSs link instructional
materials structured in the domain model with the characteristics and needs of the
learners [72]. In this section, we overview the related work on learner and domain
modeling in ITSs, respectively.

2.2.1 Learner Modeling

Building an ITS with the ability to be adaptive and personalized is extremely challenging
as learners usually have di�erent needs and with di�erent characteristics. A solution
to this challenge is the technology of learner modeling [88]. Learner modeling is
considered as the pillar of adaptive ITSs [72], which makes them superior to the
“one-size-�ts-all” tutoring in traditional web-based learning. It mainly undertakes
two tasks: to infer the learner characteristics, and to represent them in order to be
accessible by the ITSs for o�ering adaptation [88].

To construct a useful learner model, we need to �rst identify and select the aspects
of the learners that in�uence their learning process and that should be included in
the model, then build the model and maintain it up to date based on the long-term
tracing of the learning activities in the ITSs. The literature review by Desmarais
and Baker [16] revisited the learner model in ITSs before 2012, and discussed the
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Figure 2.1: Six categories of learner characteristics in existing learner modeling. Among
them, learner knowledge is the most frequent and fundamental aspect for learner
modeling.

advancements of learner modeling from learner knowledge-based modeling to the
modeling of other key constructs, such as learner motivation, emotional and attentional
state, meta-cognition and self-regulated learning, etc. Chrysa�adi and Virvou [88]
reviewed learners’ characteristics that should be considered in the learner modeling
and the approaches for and potential use of learner modeling. Pelánek [23] reviewed
the techniques for learner modeling from a broad aspect, including both knowledge
model and domain model. A more recent survey by Abyaa et al. [72] contributed
to the identi�cation of the learners’ individual characteristics and described the
most used techniques for modeling them. They divided the learner characteristics
in six categories: the static learner pro�le (such as the age, gender, name and other
demographic information), knowledge, cognitive characteristics, social characteristics,
motivation and personality, as shown in Figure 2.1.

Various researches on learner modeling have been conducted from di�erent aspects
and provided di�erent kinds of adaptation to facilitate the ITSs. Learner knowledge is
assessed in a learner model to uncover a learner’s strength and weakness of knowledge
to further deliver the most appropriate learning materials and feedback. Researches
in [50, 62] estimated learner knowledge at certain time point through tests; while
some others [28, 9, 29, 30, 10] dynamically traced learners’ evolving knowledge states
in the ITSs using the massive learning logs. Cognitive characteristics, such as the
learning styles, facilitate the ITSs to make decisions about the most e�ective learning
strategies [88]. Two popular learning style models, VARK (Visual, Aural, Read/write,
and Kinesthetic) [67] and FSLS (Felder–Silverman learning style: active/re�ective,
sensing/intuitive, visual/verbal, and sequential/global) [68] are widely adopted in
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existing ITSs. Binh et al. [69] built an ITS and adopted the FSLS model to identify
learning styles, based on which the lessons were chosen to satisfy learners’ need. Their
results revealed some advantages over the traditional class in various ways. Learner
motivation, such as the a�ective state and engagement, is an important consideration
for the ITSs when choosing the proper learning methods that increase the e�ectiveness
of interactions. A�ective states, such as interested, frustrated, bored, distracted, focused
and confused, are found to be highly related with the learners’ motivation [88], and
some of them may lead to failure interaction with the systems, such as gaming the
system and o�-task behaviors [89]. Other characteristics of learners, such as the social
interaction and personality, are also incorporated in previous researches [72, 88],
providing additional information for the ITSs to provide corresponding tutoring
services.

Ideally, a learner model should incorporate all aspects of learner characteristics
that may have an impact on his/her learning. However, it is not only non-trivial but
maybe impossible to build such a comprehensive model [18], as inferring di�erent
aspects of learner characteristics requires di�erent channels of the input data, and
it is quite tough to obtain the multi-modal data simultaneously. Hence most of the
existing ITSs only incorporate part of the learner characteristics to build the learner
model. Among the various learner characteristics that contained in the the learner
models, knowledge of learners is the most frequent and fundamental aspect for learner
modeling, and it is also the primary model type utilized in the majority of existing
ITSs [23]. This thesis follows this paradigm, and aims to assess learner knowledge
for building the learner models. We will focus on this topic and further describe the
related work in detail in Section 2.3.

2.2.2 Domain Modeling

Domain model, which models the content of the learning domain, provides the ITS
with the knowledge of what they are teaching [61]. Pelánek [40] gave a more abstract
de�nition of this concept as “designing an appropriate organization of individual
learning objects to higher-level units and speci�cation of relations among these units”;
while in practical development of a usable ITS, domain modeling is usually conducted
by managing the learning objects to make them in well-de�ned organization. It is
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crucial in developing the ITSs, and can be used in many ways, such as personalization
of learning objects for learners, feedback of the learning progress, organization of the
content [40].

For a speci�c learning domain, there are generally a set of knowledge components
(KCs) to learn, KC is also termed as skill, attribute, knowledge and concept synony-
mously. These KCs are usually embedded in a series of learning objects, such as
presentation, exercises and learning videos. In this thesis, we denote learning objects
by the generic and commonly used term items. Actually, exercises are the widely used
materials in the ITSs, hence items are speci�cally de�ned as exercises in many of the
existing studies. For the domain modeling, the main task is to elicit these KCs and map
between items and KCs, assess the characteristics of items, and �nd the relation among
KCs and items.

KCElicitation and Item-KCMapping KCs in a domain are treated as“organizational
units that group together related items” [40]. These KCs can be facts (e.g., one-digit
multiplication) or rules (e.g., solving equation) that represent the knowledge to be
learned in the domain. In most ITS, they are elicited by experts in a manual manner.
This is a highly time-consuming process, particularly for a complicated subject with a
large quantity of knowledge [18]. Nevertheless, there is severe issue of consistency
as trade-o�s should be made between granularity and coverage. To cope with this,
researchers have explored methods to automatically elicit KCs from the items using
natural language processing techniques. Chau et al. [75] proposed to use automatic
key-phrase extraction to obtain key-phrases and use them as KCs to index each
textbook section. This method is especially suit for the textbook-based learning, where
the items are mainly reading materials. However, for the items like exercises, this
method has rarely explored as exercises usually have very short text and the KCs to
solve a speci�c exercise are implicit and usually cannot be directly obtained from the
text.

Given the KCs in the domain, they are usually embedded in and practiced by
items, and naturally a mapping is built between these KCs and items. This mapping
is represented by a Q-matrix, as shown in the example of Figure 2.2, and can be
represented by a bipartite graph. Generally, items are designed for the aim of practicing
the KCs, hence in most of the ITSs, the Q-matrix is designed by the experts and stored
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Figure 2.2: Q-matrix and the item-KC mapping graph.

in the backends of the systems. To improve the scalability of the ITS to incorporate the
overwhelmingly large numbers of items emerging on the Internet, many researches
have been conducted to learn the Q-matrix automatically from the learning data. Liu
et al. [76] introduced an estimator of the Q-matrix under the setting of the DINA
model in a data-driven manner. Sun [66] proposed a recursive method that updates the
q-matrix based on the Boolean matrix factorization. However, these methods obtain the
q-matrix with unknown KCs, thus making them di�cult to interpret as expert-made
and the inferred q-matrices do not often coincide. To improve the interpretability,
Matsuda et al. [90] exploited both student performance data and the text of items to
build a statistical model to infer the q-matrix, the bag-of-words (BoW) strategy used for
text analysis provided some kind of explanation of the KCs. Some researchers re�ne
the existing q-matrix to make it more �t to the learner performance data [91, 92]. In
this thesis, as the focused topic is learner knowledge assessment, we also assume
that KCs in the domain are given and the q-matrix is already labeled by the experts
following most of the existing studies.

Item Assessment Item assessment is to obtain the characteristics of items, based
on which they are structured and managed. Items, even contain the same KCs, are
generally designed with di�erent properties, such as di�culty, discrimination, quality,
complexity and similarity with others. Obtaining these properties of items is useful
for the personalization of ITSs, for example, providing a learner with the proper
challenging items that suitable for his/her ability.　

Pelánek [80] gave an overview of the complexity and di�culty of items in ITSs,
he presented a simple distinction between complexity and di�culty measures that
complexity is based only on item description while di�culty is based only on data
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about student performance. He concluded from the existing work that complexity is
usually measured by the length of text, the number of KCs in an item, and the number
of steps required to solve an item; while measurements of di�culty are dependent on
learners’ performance, such as failure rate and median response times. Minn et al.
de�ned the di�culty of an item as the ratio of the number of failed attempts to the
total number of attempts by the set of students in a system who have attempted the
same item [93]. Wang et al. [94] modeled learners’ exercising logs on a large number
of questions and predicted their potential answer to unseen questions to impute the
missing value in the response matrix. Based on the completed matrix, they quanti�ed
the di�culty of questions by the incorrect rate, and de�ned the quality of questions
using the information gain of estimating learner ability conditioning on the answer to
questions.

The item response theory (IRT) model [50] is the widely studied model in Psycho-
metrics for modeling the probability that a learner answers item correctly based on
his/her ability and the item di�culty and discrimination. By �tting on the reponse
data, it infers the item di�culty and discrimination. Similar models that can also be
used for item assessment are the additive factor model (AFM) [95] and Performance
factor analysis (PFA) [96]. Based on IRT model, many researches on item assessment
have been conducted. Pankiewicz et al. [97] compared four methods of item di�culty
estimation: learner feedback, incorrect rate, and Elo and Glicko based rating algorithms
with reference values provided by the Item Response Theory model. Highest correlation
has been found for the Glicko algorithm. Similar research is also conducted in [98].
Ayers and Junker [99] used Item Response Theory based model to predict item di�culty
based on the number of skills required for the items. They assumed that the more skills
required for each item, the more di�cult the item is expected to be.

Some researchers extract the feature from the items and train transfer models to
estimate the item characteristics. Benedetto et al. [100] proposed a framework for
assessing the di�culty and the discrimination of newly generated multiple-choice
questions using natural language process paradigm. They used the Item Response
Theory model to obtain the ground-truth di�culty and discrimination of learner-
attempted exercises, and then trained regressors based on the NLP features of questions
and the ground-truth. Fang et al. [101] predicted the di�culty of visual-textual exercise
using a multimodal embedding extractor to obtain a uni�ed representation for exercises,
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and then training a classi�er to predict the di�culty in a supervised manner.
To facilitate the item recommendation in ITSs, researchers have proposed various

methods to measure the item similarity. Pelánek [102] provided a overview of
approaches for quantifying similarity of items from diverse domains in two categories:
similarity based on item statements, metadata and solutions and similarity based
on performance data. Rihák and Pelánek [103] compared di�erent measures of item
similarity and showed that Pearson correlation is a good similarity metric based on
learner performance data and the additional response times increase stability of the
measures on small data. Nazaretsky et al. [104] proposed an item-similarity measure
termed Kappa learning based on learner performance data that can capture similarity
in the context of learning. Mussack et al. [105] discovered item similarity through
combining item features and user behavior using a deep learning method. Liu et al.
[106] proposed a deep learning framework for �nding similar exercises by learning a
uni�ed semantic representation from the heterogeneous item data (i.e., texts and
images).

Knowledge Graph Construction In education domain, pedagogical concepts usu-
ally have various relations with each other, such as the prerequisite relations. The
prerequisites between these concepts can be represented as a knowledge graph
[53, 107, 108]

Knowledge graph is usually designed by experts in a certain domain, and building
this graph is quite labor-intensive work, especially in the case of massive concepts.
With the knowledge graph, ITSs can provid personalized learning paths and services
to accommodate the needs of di�erent learners. Automating this process has been
attempted in several studies. Most of the existing methods for knowledge graph
construction identify the latent skills required for answering the questions, and
�nd the similarities among the questions in the domain for clustering the potential
knowledge graph. Pan et al. [109] automatically inferred the prerequisite relation
between knowledge concepts in MOOCs using natural language processing techniques.
Wang et al. [110] proposed a latent-variable selection method with regularization for
cognitive diagnostics, which learns the skill hierarchies from learner response data.
Using a DKT model, Zhang et al. [77] discovered the topological order of skills from
learners’ exercise performance. Chen et al. [78] adopted named entity recognition
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Figure 2.3: Static and dynamic learner knowledge assessment.

techniques to extract educational concepts from item text, and utilized association
rule mining on the performance data to identify prerequisite relations among these
concepts to build the Knowledge graph.

2.3 Learner Knowledge Assessment

As described in Section 1.2, learner knowledge assessment is to obtain learner knowledge
states based on the learners’ explicit learning feedback on various types of learning
materials. Some researchers conducted learner knowledge assessment based on the
learners’ interaction results on gradable types, such as assignments and exercises
[9, 10, 11], while some others solved this task utilizing the non-gradable types, such
as readings [44] and video lectures [45]. Another direction of work is based on the
multiple learning resource types concurrently [46, 47, 48]. In this thesis, we focus on
the learner knowledge assessment by utilizing their performance on exercises, which
can be interpreted as an explicit indication of their implicit knowledge. Based on the
application context, existing work can be divided into two categories: static learner
knowledge assessment for testing and dynamic learner knowledge assessment for
learning, as shown in Figure 2.3. For the testing context, learner knowledge assessment
is to obtain the �ne-grained diagnostic reports on learner knowledge instead of just the
ranks or �nal scores. It is also termed as Cognitive Diagnostic Assessment (CDA). The
data for analysis is the learners’ performance data on a single summative quiz/test
with limited items, such as the GRE (Graduate Record Examinations). For the learning
context, learner knowledge assessment is to obtain the learners’ long-term evolving
knowledge states for the purpose of providing adaptive tutoring. This category
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is known as Knowledge Tracing (KT), and the input data is generally the learners’
long-term exercising logs in the systems.

2.3.1 Static Learner Knowledge Assessment/CDA

CDA is usually conducted after a summative test, aiming to measure learners’ knowledge
states on a set of KCs through some diagnostic assessments. This topic has been widely
explored by researchers in the �elds of psychometrics and data mining because of the
fundamental value of the diagnostic results for both instructors and learners to assess
progress towards attaining learning objectives.

Psychometrists discover learners’ latent knowledge pro�ciencies by designing
delicate psychological models. These models generally consider the learners’ personal
traits and item characteristics, which makes them interpretable. IRT [56] and DINA
[62] are two of the most renowned models in this category. IRT diagnoses a learner’s
knowledge pro�ciency using a unidimensional variable (i.e., latent trait), which can be
seen as a general level of KC attainment. It uses an interaction function to model the
probability of a learner’s correct solving of an item based on his latent trait \ and item
characteristics (i.e., item di�culty and discrimination). The widely used two-parameter
logistic IRT model [56] is described as follows:

? (\ ) = 1
1 + 4−�0(\−1)

(2.1)

where 0 and 1 depict two parameters for each attempted item denoting item di�culty
and item discrimination, respectively; ? (\ ) is the correct probability; and � is a
constant usually set to 1.7. The DINA model [62] describes each learner’s pro�ciency
level using a binary vector, where one represents mastering of a speci�c KC and zero
otherwise. Unlike IRT, the DINA model must infer this multidimensional vector by
using the Q-matrix. Accordingly, researchers have extended IRT-related models and
proposed MIRT models [111] to indicate more complex and diverse student latent
attributes by representing the learner’s latent pro�ciency by a vector.

Meanwhile, data mining researchers have proposed various data-driven methods
to assess the learners’ pro�ciencies based on Matrix factorization (MF) [64, 65, 66].
Nguyen et al. [64] used multi-relational MF to diagnose the learner pro�ciency in
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ITSs by considering the interaction between the learners and items and exploiting
the possible relation between learners and the items for improving the prediction
accuracy. Sahebi et al. [65] proposed a tensor factorization-based approach to model the
increases in learners’ knowledge by using a feedback-based constraint on the previous
pro�ciency and the current item. Sun et al. [66] attempted to use the Boolean MF
method to express conjunctive models in CDA and automatically learn the knowledge
state matrix from the learners’ item response matrix.

The psychological model based approaches provide some explainable results
for learner knowledge, while the MF-based approaches are long criticized by their
unexplainability. Moreover, in practical scenarios, the number of KCs for setting
the psychological models must not be too large so as to be statistically supportable
[112, 113], which makes the assessments of a large number of KCs impractical [114],
especially in large-scale adaptive learning environments. Conversely, IRT-based
assessments provide coarse-grained uni- or low-dimensional values to represent the
general pro�ciency of learners, which may not directly represent their strengths
and weaknesses. Despite this limitation, IRT-based models have been widely used in
practical assessment because of their interpretability and simplicity. However, all
these studies perform CDA under static assumption (i.e., infer learner pro�ciency in
independent assessments at some time points); therefore, the temporal factor for the
learner pro�ciency evolution is greatly ignored, which makes these approaches unable
to be directly adopted into the dynamic learning context in ITSs.

2.3.2 Dynamic Learner Knowledge Assessment/KT

To utilize the temporal factor of learning in ITSs, various models have been proposed to
dynamically model the learner performance from a long period and trace the learners’
knowledge over time [63, 10, 32, 31, 27, 30]. The existing KT methods can be generally
divided into three main categories: probabilistic models, factor analysis models and the
deep learning models [11].

Probabilistic Models Bayesian knowledge tracing (BKT) [9] is a pioneer model
for the task of KT. It is a probabilistic model based on the hidden Markov model
(HMM) that separately tracks the pro�ciency of each KC based on the exercising
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logs, i.e., each KC has a speci�c BKT model. There are four parameters in BKT:
transition probability % () ), the initial probability of mastery % (!0), slip probability
% (() and guess probability % (�). % () ) represents the probability of transition from the
non-mastered to mastered state, % (() is the probability that a learner will incorrectly
answer an item in spite of mastery, and % (�) is the probability that a learner will guess
correctly an item in spite of non-mastery. Given the exercising logs on a speci�c KC,
the estimation of learner knowledge state and the probability of correct answer are as
follows:

% (!C ) = % (!C | Answer ) + (1 − % (!C | Answer)) % () ), (2.2)

% (�C+1) = % (!C ) (1 − % (()) + (1 − % (!C )) % (�), (2.3)

where % (!C ) is the probability that the learner has mastered the KC at timestamp
t, and % (�C+1) is the prediction of correctly answering the next item based on the
current knowledge state. The posterior probability % (!C |�=BF4A ) is estimated using
the Bayesian formula based on the correct or incorrect answer to the previous item.

% (!C | correct ) = % (!C−1) (1 − % (())
% (!C−1) (1 − % (()) + (1 − % (!C−1)) % (�)

(2.4)

% (!C | incorrect ) = % (!C−1) % (()
% (!C−1) % (() + (1 − % (!C−1)) (1 − % (�))

(2.5)

Baker et al. [63] extended BKT by contextually estimating the probability of slip
and guess and alleviated the model degeneracy. BKT-based models is regarded to have
information loss in the modeling process as they do not consider the contextual trial
sequence of all skills and inter-skill similarity.

Factor Analysis Models To trace a learner’s pro�ciency using the whole long-term
contextual sequence, researchers have proposed various factor-analysis models. These
models pre-design a delicate model framework and assign the considered factors as
model parameters, which are learned from the data to generalize the observations.

The IRT model [50] has been simpli�ed and used as regression model for modeling
the learner performance ?8, 9 dynamically based on learner ability U8 and the item
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di�culty 3 9 . The one-parameter dynamic IRT is as follows:

;>68C ?8, 9 = U8 − 3 9 (2.6)

Multidimensional IRT (MIRT) [115] extends IRT by considering the interactions of the
multidimensional embedding vectors of the two variables in Eq. 2.6.

The additive factor model (AFM) models the probability of attempting an item
correctly by considering the di�culty of the KCs involved in the item and the number
of attempts on items that require the involved KCs [95]. Performance factor analysis
(PFA) improves the AFM by considering separately successful and failed attempts [96].
The probability of an item 9 being successfully answered by student 8 is de�ned as
follows:

;>68C ?8, 9 = Σ:∈ � ( 9) (V: + W:,8: + X:�8:) (2.7)

where V: is the di�culty parameter for KC : involved in item 9 , and,8: and �8: are
the numbers of successful and failed attempts, respectively, required for KC : .

More recently, Vie and colleagues have proposed a knowledge tracing machine
(KTM) based on factorization machine (FM) [116], a generic framework that incorporates
side information (e.g., users, items, skills, win and fail attempts) into the student model
[30]. They modelled the probability to observe a positive outcome as follows:

? (~C = 1) = f (` +
#∑
8=1

F8G8,C +
∑

1≤8< 9≤#
〈E8, E 9 〉G8,CG 9,C ) (2.8)

where ` is a global bias, and G8,C and G 9,C are the 8Cℎ and 9Cℎ abstract features in a vector
of totally # features collected at time C . F8 is the bias of feature 8 and E8 ∈ '38< its
embedding in 38< dimension. In KTM, the features in an input sample are generally
sparse features including: which user attempted which item, the KCs involved in the
item, and the win/fail information related with previous attempts, etc. The �rst two
terms in Eq. 2.8 are actually regression terms and the last term models the pairwise
interactions between the high-dimensional embeddings of features in the input, which
allows high quality parameter estimates of higher-order interactions under sparsity
[116]. A sample is generally encoded into a vector of sparse features by concatenating
all the features in the one-hot encoding manner. They have proven that the KTM
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model encompasses several EDM models, including IRT, MIRT, AFM, and PFA [30].
Wang et al. adopted variational inference to perform Bayesian inference for factor
analysis models and output the uncertainty of model estimation [117].

Deep Learning Models Various neural networks have been recently used for the
KT task and show signi�cant improvements in model performance over traditional
models due to their excellent abilities in conducting learning on big data [10, 32, 118].

The pioneering work on deep KT (DKT) [10] obtained the learners’ latent knowledge
pro�ciency, which was extracted from the exercising sequences by a recurrent neural
network (RNN) or long short-term memory (LSTM). Through learning from the input
sequences of learners’ learning history, the hidden layer retains relevant information
that is useful for the future performance prediction, and hence the hidden state in the
RNNs can be intuitively seen as embedding the knowledge states of students [119].

Nagatani et al. [120] extended the DKT model to enable it to predict learners’
future performance by considering their forgetting behavior. In addition to encoding
learners’ attempts (trials and accuracy), it also incorporates time- and count-based side
information to model learners’ forgetting behavior, thereby showing that the inclusion
of forgetting information results in performance improvement. DKT-DSC (Deep
Knowledge Tracing with Dynamic Student Classi�cation) [121] improved the DKT
model by capturing learners’ learning ability through assigning learners into distinct
groups with similar ability at regular time intervals dynamically. By incorporating
this side information (label of group level) with student trial sequence, it improves
performance signi�cantly as compared with the DKT model. Similar to the former two
methods, DKT-DSC can be used only for problems with a single associated knowledge
component.

Although DKT-based approach has gained signi�cant performance improvement, it
is limited in terms of pinpointing the learners’ actual pro�ciency on speci�c KCs. To
overcome this limitation, DKVMN [32] was proposed using an auxiliary memory
to record the pro�ciency of each latent KC based on a memory-augmented neural
network (MANN). Other related models have also been proposed based on this model
[31, 122, 123, 124]. Sequential key-value memory networks (SKVMNs) [31] modeled
student learning by unifying the strengths of RNN (recurrent modeling capacity) and
MANN (high memory capacity).
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A newly proposed network named Transformer [125] has also been adapted to
learner knowledge assessment in various ways [118]. To focus on the relevant previous
interactions, the Transformer framework applies a self-attention mechanism to the
input data, and hence incorporates the inner relations in the exercise sequences into
the network. Attention based KT models inspired by this work have become an active
research area [126, 127, 1]. Graph-based KT models [42, 41, 51, 128] have become
prevalent in recent years, but the focus is di�erent from the above deep learning
models, as they main solve the embedding representation in the KT task, we will
describe this branch of researches in the following paragraph.

Some researchers have questioned the using of deep learning in the educational
setting [29], since deep learning does not appear to be the panacea, particularly when
an explicit underlying theory and interpretability matter [129]. Recent work has also
showed that Bayesian extensions of IRT [130] and extended BKT [119] outperformed
or performed just as well as neural networks for pro�ciency estimation. Nevertheless,
deep learning have widely used for solving this task and have obtained signi�cant
improvement over other models, and some models have already been applied into the
real-world ITSs (e.g., the Riiid TUTOR 1).

Graph-based models are a special branch of deep learning models, here we describe
such models separately.

Graph-based Models The relations between questions and skills have been con-
sidered in various graph-based KT models [42, 41, 51, 128]. Liu et al. [42] built a
question–skill bipartite graph based on the Q-matrix in the domain and pre-trained
the question and skill embedding in the graph using three constraints of explicit
question–skill relations and implicit relations of skill similarity and question similarity.
As the dense embeddings of questions and skills contain the relations in the graph,
the pre-trained embedding-fed KT model outperforms the baseline models. Yang
et al. [41] incorporated the question–skill correlations via embedding propagation
on the question–skill relation graph using a graph convolutional network (GCN).
Tong et al. [51] introduced problem schema with a hierarchical exercise graph to KT.
The problem schema clustered similar exercises into the same group to incorporate
the question–question relations. Pandey et al. [127] calculated the exercise–exercise

1https://riiid.com/en/product
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relations based on the performance data and the exercise text, and incorporated it
into a transformer model for relation-aware KT. All of these methods exploit the
relation information between questions and skills in various graphs and introduce the
distinctive information of questions into the KT task. Some other researchers utilized
the skill-skill relations into the KT procedure. Nakagawa et al. [128] and Chen et al.
[107] incorporated the knowledge structure information into the KT procedure. Chen
et al.’s work [107] assumes that the knowledge structure is already given by experts,
and models the prerequisite as an ordering pair. In this way, the mastery of related
skills is constrained by referring to the knowledge structure. Nakagawa et al. [128]
used the knowledge structure information and a graph neural network (GNN) to
update the learners’ hidden knowledge states.

Besides the main three categories of KT models, there are some variants with
additional information considered in the modeling process.

KT with Learning and Forgetting Most of the above-mentioned KT approaches
model students’ learning in an implicit manner by obtaining their (implicit) knowledge
states through learning from sequences of multiple attempts. However, there are only
a few studies in the �eld of KT that have addressed learning and forgetting explicitly
and simultaneously [120, 131, 132, 29, 28, 133], while either simplifying the forgetting
behavior or just ignoring it.

Chen et al. [28] embedded students’ learning and forgetting as a prior and designed
a probabilistic matrix factorization framework by incorporating this prior for tracking
student knowledge pro�ciency. Mohammad et al. introduced a forgetting parameter,
and counted the number of intervening trials and treat each as an independent chance
for forgetting some skill. By incorporating this forgetting factor into the classic BKT
model, they proved that it has the potential to be sensitive to interspersed trails in the
trial sequences and outperforms the ordinary BKT [119]. Nagatani et al. [120] explicitly
incorporated information related to forgetting into the DKT framework. It models
learning and forgetting by considering the number of times a student has attempted an
item and the lag time from the previous interaction with the same item. However,
this DKT-based method cannot be applied to items with multiple KCs. DAS3H (item
Di�culty, student Ability, Skill, and Student Skill practice History) [29] builds on the
DASH (Di�culty, Ability, and Student History) model [132] and uses KTMs [30] to
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handle multiple KC tagging. It depends on the temporal distribution and the outcomes
of past practices to simulate memory strengths and estimates the di�culty parameters
for each item and the skills contained. The model is de�ned as follows:

? (~8, 9,C = 1) = f (U8 − X 9 +
∑

:∈ � ( 9)
V: + ℎ\ (08,B,1:C )) (2.9)

ℎ\ (08,B,1:C ) =
∑

:∈ � ( 9)

,∑
F=1

\:,2F+1 ;>6(1 + 28,:,F )

− \:,2F+2 ;>6(1 + 08,:,F )

(2.10)

where the probability of student 8 correctly attempting item 9 at time C depends on his
ability U8 , the di�culty of the item X 9 , and the sum of the di�culty values V: of the
KCs involved in item 9 , as well as the synthesized result of learning and forgetting
ℎ\ (08,B,1:C ). In ℎ\ ,F is the index of the time window before the time C , and 28,:,F is the
number of times that KC : has been correctly recalled in windowF in 08,:,F times of
attempts; intuitively, ℎ\ can be viewed as memory strengths synthesized by learning
and forgetting.

KT with Item Di�culty Modeling Several studies have already attempted to
incorporate the item di�culty in KT, and the experimental results showed empirically
the bene�ts of adding this di�culty information for this task [93, 16, 134, 30, 135].
These studies generally model the di�culty of an item as a notion or a function of KCs
associated with the item.

Pardos et al. captured the di�culty of items belonging to a particular skill being �t
by individualizing the guess and slip parameter of each item and integrated it into the
BKT model [134]. Di�culty is actually a function of KCs mapped to items (in the
parlance of their paper, di�culty is mapped to items belonging to a speci�c skill). The
variations of IRT models also incorporate a parameter indicating the di�culty of an
item, which is a notion speci�c to IRT [135]. Moreover, the KTM model learns a vector
of parameters on the one-hot encoded item vectors to obtain the di�culty coe�cients
of all of the items [30]. Minn et al. de�ned the di�culty of an item as the ratio of
the number of failed attempts to the total number of attempts by the set of students
in a system who have attempted the same item [93]. Unlike the above models, the
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DAS3H model estimates the di�culty parameters for each item and also for all the
skills they involve. They do not assume that items with same skill are interchangeable,
and believe that their di�culties may di�er from one another [29]. Therefore, di�culty
parameters are calculated both in item and also in skill level.

KT with Knowledge Interaction The knowledge interaction models the depen-
dencies among KCs, where the opportunities of practicing some KCs in the previous
attempts a�ect the knowledge pro�ciency of later KCs in the exercising sequences.
The interdependencies among KCs have long been explored as knowledge graphs or
maps [107, 108, 53], where KCs are represented as nodes and the prerequisite and
subsequent relations between them are described as the link between them. Using
knowledge interaction matrix is another form of modeling the relation between KCs.
Chen et al. [107] exploited the prerequisites as constraints on student pro�ciency
prediction and incorporated them into the DKT framework. Although showing
some performance improvement, the method utilized a manually labeled prerequisite
matrix in model testing, which is a labor-intensive task in a large-scale assessment.
Nakagawa et al. [128] learned the latent knowledge structure information and used a
graph neural network (GNN) to update the learners’ hidden knowledge states. Some
researchers utilized the relations between items to indirectly model the knowledge
interaction among KCs, as KCs are embedded in the items. Liu et al. [1] proposed
the exercise-aware KT model that leveraging the exercise text to enhance the KT
process. Exercise similarity calculated on the exercise representations was used for the
attention calculation to model the indirect knowledge interaction. Pandey et al. [127]
calculated the exercise–exercise relations based on the performance data and the
exercise text, and used it as the attention constraint for relation-aware KT. A similar
idea is also presented in [51].

2.4 Limitations of Existing Methods

By analyzing the existing researches on DLKA task, we �nd three main limitations,
which motivated the researches in this thesis.
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Insu�cient Learning Factor Modeling The knowledge construction procedure is
constantly evolving because learners in ITSs dynamically learn and forget over time.
Cognitive psychology has long veri�ed that the knowledge acquisition procedure is not
only related to the learners but also the learning materials in the domain. To model this
complex procedure, many factors need to be considered to make the model accurately
assess learners’ real knowledge. Unfortunately, to the best of our knowledge, most of
existing approaches consider only a fragment of the information during the learning
process that results in the change of learner knowledge acquisition, and the problem of
making use of rich information during learners’ learning interactions to achieve more
precise prediction of learner performance in KT remains under-explored. Hence we
must �rst pinpoint the factors that in�uence the evolving knowledge and propose
methods to quantify them to more precisely assess the learner knowledge.

Data Sparseness and Information Loss The performances of existing approaches
greatly su�er from the sparseness of the input data and the information loss when
modeling the learning process. In the ITSs, there are usually a large number of items
with limited number of KCs, and each item is only related with very small number of
KCs. The high scarcity and the large quantity of items present great challenges to the
DLKA task as each learners in the ITSs generally answers just a small proportion of
potentially non-overlapping items. The adequacy of DLKA is still challenged by the
sparseness of the learners’ exercise data. To alleviate the sparseness problem, most of
the exiting studies are performed at the skill-level rather than the question-level, as
questions are often numerous and associated with much fewer skills. However, at the
skill level, KT does not distinguish questions containing the same skills and hence
neglects the distinctive information related to the questions themselves and their
relations. Moreover, almost all of these models simply assume that all questions and
skills are independent, which is unrealistic in the actual learning process. In this case,
the models can imprecisely infer the learners’ knowledge states and might fail to
capture the long-term dependencies in the exercising sequences.

Fine-grained Assessment and Interpretability Deep learning models have ob-
tained excellent results to model the learning process by leveraging the powerful
representation ability of the deep neural networks in a data-driven manner. However,



40 Chapter 2. Related Work

deep neural network is regarded as a black-box, and most of the deep learning models,
especially the RNN based sequential models, retain the learner knowledge in a hidden
vector or model parameters. This works well for the prediction of learners’ future per-
formance, but from the perspective of proving good tutoring services to learners, their
�ne-grained knowledge pro�ciencies in a multi-granularity manner are particularly
important. Moreover, these methods found it di�cult to go deeper into the explanation
of the learners’ performances in terms of their current knowledge pro�ciencies and
item characteristics. Hence how to track and explain learners’ evolving knowledge
states simultaneously remains to be an important issue.
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3
Data Collection and Evaluation Metrics

This chapter describes the datasets and the evaluation metrics to measure the model
performance in this thesis. These datasets are public data collected from several
real-world ITSs, we �rst give a short introduction to these ITSs in Section 3.1 and then
describe these datasets in detail in Section 3.2. Section 3.3 introduces the evaluation
metrics for performance measurement.

3.1 Real-word ITSs for Data Collection

In this thesis, we use several public datasets collected from the real-world ITSs, e.g.,
Carnegie Learning’s Cognitive Tutor (CT) 1, the ASSISTment system 2, and Riiid’s
Santa TOEIC 3. To gain a better understanding of the data, in this section we give a
short introduction to these three main ITSs.

1https://www.carnegielearning.com/solutions/math/
2https://new.assistments.org/
3https://riiid.com/en/product
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Figure 3.1: The interface of Cognitive Tutor for Algebra I [3].

3.1.1 Cognitive Tutor

CT is a mathematics ITS created and supplied by Carnegie Learning, an enterprise
formed by scientists at Carnegie Mellon University, and now has developed into the
MATHia program in K-12 education and Mika in higher education. It is also the �rst
successful ITS in commercial and educational environments utilized by hundreds of
thousands of students every year [136, 137]. It is reported that CT for mathematics are
now in use in more than 2,500 schools across the US for 500,000 students per year 4.

It provides support for guided learning by doing [138], allocates students problems
individually, monitors solution stages for students, o�ers context-sensitive feedback
and hints, and applies a mastery study criteria [139]. A number of studies have
shown that CT help raise students’ mathematics achievement relative to traditional
mathematics courses [139].

CT was built upon the assumptions of Adaptive Control of Thought–Rational
(ACT-R) model theory of cognition and learning and was equipped with a built-in
cognitive model [138]. Figure 3.1 displays the interface of CT for Algebra I. CT presents
a problem description and asks several questions, students answer the questions by

4see https://pslcdatashop.web.cmu.edu/KDDCup/rules.jsp#the-challenge
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• Row: the row number,!1...n for the training file and 1...n for the test file.

• Anon Student Id: unique, anonymous identifier for a student

• Problem Hierarchy: the hierarchy of curriculum levels containing the problem.

• Problem Name: unique identifier for a problem

• Problem View: the total number of times the student encountered the problem so far.

• Step Name: each problem consists of one or more steps, the step name is unique within each problem, but 

there may be collisions between different problems, so the only unique identifier for a step is the pair of 

problem_name and step_name.

• Step Start Time: the starting time of the step. Can be null.

• First Transaction Time: the time of the first transaction toward the step.

• Correct Transaction Time: the time of the correct attempt toward the step, if there was one.

• Step End Time: the time of the last transaction toward the step.

• Step Duration (sec): the elapsed time of the step in seconds, calculated by adding all of the durations for 

transactions that were attributed to the step. Can be null (if step start time is null).

• Correct Step Duration (sec): the step duration if the first attempt for the step was correct.

• Error Step Duration (sec): the step duration if the first attempt for the step was an error (incorrect attempt or 

hint request).

• Correct First Attempt: the tutor's evaluation of the student's first attempt on the step—1 if correct, 0 if an error.

• Incorrects: total number of incorrect attempts by the student on the step.

• Hints: total number of hints requested by the student for the step.

• Corrects: total correct attempts by the student for the step. (Only increases if the step is encountered more than 

once.)

• KC(KC Model Name): the identified skills that are used in a problem, where available. A step can have multiple 

KCs assigned to it. Multiple KCs for a step are separated by ~~ (two tildes). 

• Opportunity(KC Model Name): a count that increases by one each time the student encounters a step with the 

listed knowledge component. Steps with multiple KCs will have multiple opportunity numbers separated by ~~.

Figure 3.2: The attributes contained in each interaction record.

�lling in the worksheet [3]. It checks and records every action performed by students,
and displays the error messages just-in-time in the hint window if the student make a
mistake. It also calculates the learned skills by using knowledge tracing and presenting
them on a bar chart called Skillometer.

CT provides many subjects for students to learn, for example, the Algebra I and the
“Bridge to Algebra” program for pre-Algebra. Students’ learning logs are collected
during their interaction with the system. The attributes contained in each interaction
record is shown in Figure 3.2. Important information about the learner and the learning
process is recorded, such as the learner ID, the problem name, duration time, and
correctness. Three development datasets collected by CT have been published in the
KDD Cup 2010 Education Data Mining Challenge hosted by the PLSC Datashop 5. In
this thesis, we main use two of the datasets: Algebra I 2005-2006 and Bridge to Algebra
2006-2007.

5https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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3.1.2 ASSISTment System

ASSISTments is a free, online, formative assessment math platform utilized nationally
in grades 3-10 by more than 18,000 teachers and 500,000 students. It was �rst created
in 2004 and hosted by Worcester Polytechnic Institute. Assistance and assessment
are incorporated together into the system that teaches students while giving them a
more thorough assessment of their knowledge [4]. It helps students to solve di�cult
questions by dividing them into sub-steps, while it gathers data on their learning
performance. After analyzing the rich data, numerous reports have been produced
about the individual students to enable educators and stakeholders better understand
the achievements and growth of students [140]. Moreover, di�erent from other ITSs,
the ASSISTments brings teachers, students, and researchers together as part of the
ASSISTments ecosystem [140]. it is not only a test preparation program, but also
a tool for building tutors. The authoring tool allows teachers to write individual
ASSISTments (composed of questions with answers and associated hints, solutions,
web-based videos, etc.) or to use pre-built ASSISTments, bundle them together in a
problem set, and assign these to students [140].

Figure 3.3 shows the process of a student working on a problem in ASSISTments.
The system �rst provides students an original problem, if students get the problem
correct they are given a new one. If they get it wrong, they are provided with a tutoring
session where a few sca�olding questions that break the problem down into steps will
be o�ered [4]. Buggy and hint message can be also presented under the learning
context. The student interaction process is recorded by the system as logs, in which
more than 30 attributes are allocated for a piece of record 6. The owner of the system
has published three datasets collected in di�erent years, including the ASSISTments
2009-2010, 2012-2013, and 2015 Skill Builder Dataset. These datasets are popularly used
in the education data mining community. In this thesis, we mainly use two of the
datasets: ASSISTments 2009-2010 and ASSISTments 2012-2013.

6The interpretation of the attributes for learning records can be found here:
https://sites.google.com/site/assistmentsdata/how-to-interpret



3.1 Real-word ITSs for Data Collection 45
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Figure 3.3: The ASSISTment system showing a student working on a problem [4].

3.1.3 Riiid’s Santa TOEIC

Santa is a multi-platform, self-study solution equipped with arti�cial intelligence
tutoring system developed by Korean Riiid Inc. It aids students in preparing for
the TOEIC (Test of English for International Communication) listening and reading
test [141]. The user interface is shown in Figure 3.4. Santa currently has 1,047,747
registered users and is available on both Android and iOS [5].

It uses AI techniques to provide not only the most appropriate level of contents but
also the precise score prediction. Moreover, it motivates learners by visualizing their
current learning status in contrast to their own target scores as well as comparison
to average user score trends. Users receive personalized analysis report including
the TOEIC prediction score, the �ve-point index consisting of listening, reading,
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Figure 3.4: The user interface of Santa app [5].

vocabulary, grammar, and structure. It is reported that this app motivates the users to
solve 3 times as more questions than they normally would with a workbook 7.

Based on this app, a new dataset named EdNet is published, which is the largest
public available dataset in education �eld in terms of the total number of students,
interactions, and interaction types [141]. There are 4 versions of EdNet datasets
(EdNet-KT1,..., EdNet-KT4) that recording user behaviour ranging from basic exercising
activity to complete interaction actions with other types of learning materials at
increasing levels of detail. In this thesis, we only use the EdNet-KT1 dataset with pure
exercising logs.

3.2 Datasets

This section introduces the six datasets used in the following sections of this thesis.
These datasets are all well-established and popular temporal datasets taking the form
of interaction records between students and the real ITSs. They incorporate rich
information regarding students and items as well as their interactions over time; hence,

7See https://www.riiid.co/
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they are very suitable for dynamically assessing students’ changing knowledge over a
long time in large-scale scenarios.

3.2.1 Algebra0506

Algebra05068 was collected during 2005 and 2006 using Carnegie Learning’s Cognitive
Tutor. It contains the interaction logs of 569 learners and 173,113 items in the algebra
�eld, resulting in 607,000 entries, and has the maximum number of items. Each item in
this dataset contains one or more underlying skills. The average skill per item is 1.363.
Each learner can attempt one item more than once, resulting in di�erent attempts. The
exercising history is recorded in chronological order. During the preprocessing, we
concatenate the problem and step ID as a new problem ID, which is recommended by
the challenge organizers, because the problems are typically divided into several steps.
Figure 3.5 shows a piece of example record collected in this dataset.

Row Anon Student 

Id

Problem 

Hierarchy

Problem Name Problem View

Step Name

Step Start Time First 

Transaction 

Time

Correct 

Transaction 

Time

2 0BrbPbwCMz Unit ES_04, 
Section ES_04-1

EG4-FIXED

1 x+2 = 5 2005-09-09 
12:25:15.0

2005-09-09 
12:25:31.0

2005-09-09 
12:25:31.0

Step End Time Step Duration 

(sec)

Correct Step 

Duration (sec)

Error Step 

Duration (sec)

Correct First 

Attempt

Incorrects

Hints Corrects Opportunity(De

fault) 

2005-09-09 
12:25:31.0

16 16 1 0 0 1 1~~1

KC(Default) [SkillRule: Remove constant; {ax+b=c, positive; ax+b=c, negative; x+a=b, positive; x+a=b, negative; [var expr]+[const 
expr]=[const expr], positive; [var expr]+[const expr]=[const expr], negative; [var expr]+[const expr]=[const expr], all; Combine 
constants to right; Combine constants to left; a-x=b, positive; a/x+b=c, positive; a/x+b=c, negative}]~~[SkillRule: Isolate 
positive; x+a=b, positive]

Figure 3.5: A piece of example data collected from Algebra0506.

3.2.2 Bridge2Algebra0607

Bridge2Algebra06079 was collected in Carnegie Learning’s Cognitive Tutor in 2006 and
2007, has been widely used in many papers after the release of the KDD Cup 2010 EDM
Challenge. It contains the exercising records of 1130 learners attempting 129,263 math
problems, with 1.8 million interaction entries. It is also a dataset with multi-skill items.

8Algebra0506:http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
9Bridge2Algebra0607:http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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The average skill per item is 1.013, indicating that most of the items still have only one
skill. It has the similar record structure with the Algebra0506.

3.2.3 Assist0910

Assist091010 was collected from 2009 to 2010 using the ASSISTment system. The
system is web-based and hence accessible anywhere/anytime [4], a large number of
students have interacted with the system and their log data has been recorded. This
dataset contains the interactions of 3002 learners and 17,705 items associated with 123
skills, forming 277,540 interaction records. A data quality issue has been detected in
this dataset, in this thesis we use the corrected version of the skill-built dataset.

3.2.4 Assist1213

Assist121311, which updates Assist0910, was collected over the whole year of 2012.
This dataset contains the columns related to a�ect that is tentatively utilized for a�ect
prediction from the interaction data. However, in this thesis we do not use the a�ect
column as the main objective of it is to assess learner knowledge. In this dataset,
22,591 learners in the system attempted 52,855 mathematics questions requiring 265
skills. This dataset contains the largest number of learners, questions, and interaction
entries (nearly 2.7 million); however, the average attempted items per user are very
low (118.73). The whole correctness for all items is also very low, at 0.6959. It is a
one-skill-per-question dataset, meaning that each question requires one skill.

3.2.5 EdNet

EdNet12 is newly available to the public. It is collected from the Santa, a multi-platform
ITS available on iOS, Android and Web [141]. EdNet contains data collected from both
mobile and desktop users in a consistent manner. The dataset consists of multiple-choice
exercises in the TOEIC level with corresponding learner responses. Four versions of
EdNet datasets (EdNet-KT1,..., EdNet-KT4) are released at increasing levels of detail. In

10Assist0910:https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010

11Assist1213:https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-a�ect
12EdNet:http://bit.ly/ednet_kt1

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
http://bit.ly/ednet_kt1
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Timestamp Exercise ID Response Elapsed time

ID
48

Part 1 Correct 326

2019-06-12 17:59 ID
3

Part 5 Incorrect 153

2019-06-12 18:03 ID
86

Part 5 Correct 124

2019-06-12 18:08 ID
68

Part 2 Correct 450

2019-06-12 17:52

Exercise category

Figure 3.6: A learner’s interaction records on four problems in EdNet [5].

this thesis, we only use the EdNet-KT1 dataset with pure exercising logs from January
1st, 2019 to June 1st, 2020. Following existing work [41], we randomly selected 5000
students who answered 12,372 questions requiring 188 skills, thus obtaining 347,866
interaction logs. This dataset contains the minimum number of attempted items per
learner (69.57) but the largest number of skills per item (2.28) among all the datasets. A
learner’s interaction records on four problems is shown in Figure 3.6. Besides, a �le
containing the mapping of questions and skills is also given.

3.2.6 Statics2011

Statics201113 contains the exercising records of 332 students attempting 1223 items
from an engineering statics course at Carnegie Mellon University for 4 months (i.e.,
August to December) in 2011. Each item contains only one skill. This dataset has the
smallest number (189,292) of interaction entries because it has the smallest number of
students. It is published in the Datashop upon request.

3.2.7 Preprocessing and Formatting

Preprocessing was conducted on all of the datasets. For the Algebra0506 and
Bridge2Algebra0607 datasets, problems are typically divided into several steps;
hence, we concatenated the problem and step ID as a new problem ID, which is
recommended by the KDD Cup Challenge organizers. For other datasets, we used the
problem_id as the item ID. To avoid noise, following the existing studies [30, 41, 29], we
delete users with fewer than 10 interaction entries and questions with “not-a number”
(NaN) skills from all the datasets. Table 3.1 summarizes the statistics of the six datasets.

13Statics2011:https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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9 

134, 97, 440, 268, 100, 83, 77, 95, 731 

6321, 5476, 367, 8028, 6044, 6441, 5610, 9771, 1185 

0, 1, 1, 1, 0, 0, 0, 0,1 

5, 3, 5, 5, 5, 3, 5, 5, 5 

5, 3, 5, 4, 5, 2, 5, 1, 5 

10000, 17000, 16000, 22000, 13000, 18000, 10000, 25000, 16000 

……..

the length of the interaction sequence

Skill tag

Question ID

Correctness(1-correct or 0-wrong)

Di�iculty calculated on item

Di�iculty calculated on skills

Elapsed time

Other factors considered in the model

Figure 3.7: The multiple line format for storing the interaction sequence records of a
learner.

Note that we measure the sparseness of each dataset using “# of attempted items per
learner” divides “# of items”. As shown in the table, all the datasets except Statics2011
have quite low sparseness.

For the convenience of inputting data into the model, we join the multiple skills in
an item into a new skill tag, similar to that conducted in a previous study [10, 142]
and keep the mapping of new skill tag and the previous multiple skill tag. The
processed datasets are stored in a uniform format (multiple line format) to represent
the interaction sequence records, as shown in Figure 3.7, which can be found in [10].
In this format, multiple lines are composed of an interaction sequence. The �rst
line indicates the length of the interaction sequence, and the second and third lines
represent the skill tag and exercise id. The fourth line stands for correct answer (i.e., 1)
or wrong answer (i.e., 0). The �fth and sixth lines are the item di�culties calculated in
di�erent methods, as will described in the Chapter 4. The seventh line records the
elapsed time in milliseconds of a learner on each exercise. Other factors involved in the
models can also be added in this data format.

After preprocessing and data formatting, each dataset is transformed into a �le in
the above multiple line format, as well as some additional �les recording information,
such as the q-matrix, the mapping of new and previous skill tags and the name of skills.

3.3 Evaluation Metrics

As described in Section 1.2.2, we assess learners’ knowledge from their exercising
logs, the smaller the gap between the estimated and learners’ real knowledge states,



52 Chapter 3. Data Collection and Evaluation Metrics

the more accuracy of the built models. However, there is no ground-truth of the
learners’ real knowledge, the obtained assessment results cannot be directly evaluated.
Researches in the existing studies have veri�ed that the e�ectiveness of the estimated
learner knowledge can be validated by predicting learner scores on the exercises.
Hence in the practical implementation, model performance is evaluated by comparing
the predicted responses and the real responses of learners on the exercises.

Three metrics are widely used on this task for measuring the performances of
di�erent models: prediction accuracy (ACC), area under the curve (AUC) and negative
log-likelihood (NLL).

ACC:
��� =

)% +)#
#

(3.1)

where TP = True positive, TN = True negative, and N is the total number of samples.
AUC: stands for “Area under the ROC Curve”, which measures the entire two-

dimensional area underneath the entire ROC curve. AUC is a better measure than
accuracy [143] and is widely used in the comparison of model performance. It considers
the probability (be it 0.51 or 0.99) of the prediction results, and provides an overall
performance measurement over all possible classi�cation thresholds. AUC is interpreted
as the probability that the model will score a random positive example more highly
than a random negative one 14.

AUC score is between 0 and 1. A model with 100% false predictions has an AUC of
0.0, and AUC of 1.0 represents 100% correct predictions. Generally, the value 0.5 of
AUC or ACC indicates the result by randomly guessing, the larger, the better.

NLL:

NLL = − 1
#

#∑
8=1

~8 log (?8) (3.2)

where ~8 is the real result, ?8 is the perdicted result, and # is the number of samples.
For NLL, the smaller the value, the better the model performance.

In the following chapters, we will show the performance of the three proposed
models and compare them with the existing models using these metrics.

14https://developers.google.com/machine-learning/crash-course/classi�cation/roc-and-auc

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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4
Learner Knowledge Assessment by
Modeling the Dynamic Knowledge

Construction Procedure and Cognitive
Item Di�culty

Human knowledge acquisition is an extremely complicated procedure, as we
dynamically learn and forget over time. Cognitive psychology has long veri�ed that
the knowledge acquisition procedure is not only related to the learners but also the
learning materials in the domain. To model this complex procedure, many factors need
to be considered to make the model accurately assess learners’ real knowledge. This is
the Issue 1 investigated in this thesis.

The material in this chapter is based on [12, 144]



54
Chapter 4. Learner Knowledge Assessment by Modeling the Dynamic

Knowledge Construction Procedure and Cognitive Item Di�culty

In this chapter, we empirically examine the factors (learner factors: learning and
forgetting, item factor: item di�culty) that in�uencing the learning performance,
propose methods to quantify these factors and utilize them into our proposed model,
named KTM-DLF, to assess the learner knowledge. Section 4.1 introduces the motivation
of our proposed solution in this chapter; Section 4.2 gives an overview of our proposed
framework; the detailed description of the proposed KTM-DLF model is presented in
Section 4.3; Section 4.4 introduces the experimental settings and Section 4.5 presents
the results of performance evaluation of the proposed model; a summary of this
chapter is given in Section 4.6.

4.1 Motivation

Knowledge Construction Process Cognitive diagnostic models (e.g., Deterministic
Inputs, Noisy “And” gate, DINA [62]) and data mining techniques (e.g., Boolean
matrix factorization [66]) have been widely used in characterizing students’ implicit
knowledge pro�ciency from a static perspective. However, students’ knowledge
construction process is not static but evolves over time [28] since students learn and
forget over time, making tracing students’ knowledge inherently di�cult. These
learning and forgetting procedures have long been veri�ed by two classical theories in
educational psychology: the learning curve theory [54] and the Ebbinghaus forgetting
curve theory [55]. The former uses learning curves to represent how an increase in
learning performance comes from greater trials or exercises. The latter argues that
students’ knowledge states or levels can exponentially decline over time (i.e., memory
decay).

Several studies on learner knowledge assessment have been conducted (partially)
considering these two dynamic procedures [30, 120, 29, 28, 63, 96, 145], showing some
bene�t from adding temporal information for this task. However, some issues still
remain. Most of the models consider only a fragment of the information related to
learning or forgetting. Deep learning approach (e.g., deep knowledge tracing [10])
models students’ learning by considering students’ performance on a sequence of
exercises over time, while the forgetting factor is not explicitly considered, and it can
only be adopted to items with single KC. Factor analysis approach (e.g., knowledge
tracing machine [30]) incorporates both the number of trials and the temporal
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information from the previous interactions to model learning and forgetting procedures.
However, these factor analysis models use features obtained from the interactions
either at the skill or the item level, or just neglect that learning and forgetting factors
are closely related to the exercises done at each time. When �tting student models, it is
better to rely on the totality of information available at hand, as veri�ed by Vie in [30].

Cognitive Item Di�culty Problem di�culty undoubtedly has some in�uence on
student performance [93, 50, 96, 115]. Di�erent KCs involve di�erent levels of di�culty
and di�erent problems with di�erent combinations of various KCs can also exhibit
di�erent levels of di�culty. The relative di�culty level of a speci�c problem varies
from student to student. For a speci�c student, the di�culty level of the same problem
also varies over time in his cognition. However, existing KT work either does not
consider problem di�culty or assumes it remains constant [50, 96, 115, 10], and this is
unrealistic in the actual learning process. These studies assume that it is only the KCs
involved that contribute to the di�culty of an item, hence given an item with the
de�nite set of KCs associated with the item, the di�culty of that item is also �xed and
will not change for di�erent students over time, i.e. the item di�culty is item-oriented.
However, researches [146, 147, 148, 149] from cognitive psychologists show that while
KCs are of major relevance in problem solving, it is only one of several sources of
di�culty, there are also some residuals that cannot be accounted for by the KCs, for
example, the item types (multiple-choice question or short answer question), the
memory loads imposed by di�erent problem isomorphs (item structure) as well as
the search space for �nding the correct combinations of KCs to solve the problem.
Moreover, in human learning, the same item is generally on di�erent levels of di�culty
in terms of the cognitive challenge it presents to di�erent learners, hence considering
the cognitive di�culty of items for di�erent learners (i.e. user-oriented di�culty) will
make the KT more accuracy for speci�c individuals.

To solve the challenges mentioned above, we herein propose a novel model, KTM-
DLF (Knowledge Tracing Machine by modeling cognitive item Di�culty and Learning
and Forgetting), to trace the evolution of each learner’s knowledge acquisition during
exercise activities by modeling his or her dynamic knowledge construction procedure
and cognitive item di�culty. Speci�cally, we �rst specify the concept of cognitive item
di�culty and propose a method to model the cognitive item di�culty adaptively based
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on learners’ learning histories. Then, based on two classical theories (the learning
curve theory and the Ebbinghaus forgetting curve theory), we propose methods for
modeling learners’ learning and forgetting over time. Finally, the KTM-DLF model is
proposed to incorporate learners’ abilities, the cognitive item di�culty, and the two
dynamic procedures (learning and forgetting) together. Inspired by [30, 29], We then
use the factorization machine framework to embed features in high dimensions and
model pairwise interactions to increase the model’s accuracy. Extensive experiments
have been conducted on three public real-world datasets, and the results con�rm that
our proposed model outperforms the other state-of-the-art educational data mining
models.

The contributions of this proposed method can be summarized as follows:

• We propose a novel knowledge tracing model named KTM-DLF that traces the
evolution of students’ knowledge acquisition over time by explicitly modeling
students’ learning and forgetting behaviors as well as the cognitive item di�culty.

• We propose a concept of cognitive item di�culty and a method to model this
user-oriented di�culty adaptively in terms of the cognitive challenge it presents
to di�erent individuals.

• We model students’ learning and forgetting behaviors by taking account of their
memory decay and the bene�ts of attempts when an item can involve multiple
KCs.

• Experiments on real-world public datasets shows the e�ectiveness of the KTM-
DLF model compared with the state-of-the-art models.

4.2 Solution Overview

In this section, we give an overview the proposed KTM-DLF model for KT.
As introduced in Section 1.2.2, KT is a supervised learning problem: given the

labelled past exercise log, it predicts the future performance. Figure 4.1 shows the
framework of the proposed KTM-DLF model. It mainly consists of two stages: modeling
and predicting.
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Figure 4.1: The process of knowledge tracing based on the proposed KTM-DLF model.

In the �rst stage, we propose the concept of cognitive item di�culty, which is
di�erent from the general item di�culty. General item di�culty is constant based
on the involved KCs to all the students, and it is item-oriented, while the cognitive
item di�culty not only consider the inherent item di�culty as the general item
di�culty, but also consider the cognitive factors of users, which makes it user-oriented.
This is consistent with human learning experience as the same item is generally on
di�erent levels of di�culty in terms of the cognitive challenge it presents to di�erent
respondents, hence considering the cognitive item di�culty for di�erent individuals
will make the KT more accuracy for speci�c individuals. We propose a method to
model the cognitive item di�culty. Moreover, as human knowledge construction
procedure is dynamic due to learning and forgetting all the time, we also propose
methods to model the learning and forgetting procedures based on their interaction
history. Then by incorporating these factors together, we propose the KTM-DLF model,
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which models students’ knowledge states by considering their ability, their learning
and forgetting procedures, and the cognitive di�culty level of items.

In the second stage, we use the proposed KTM-DLF model to predict students’
performance in the future interactions. In the following section, we will specify the
modeling procedure in the KTM-DLF model.

4.3 Proposed KTM-DLF Model for KT

In this section, we introduce the proposed KTM-DLF model. In our setting, students
learn to obtain a set of KCs by interacting sequentially with the tutoring systems.
Their knowledge levels on KCs at speci�c times are explicitly measured by the ability
to answer items involving the set of KCs. Moreover, students’ knowledge pro�ciency
can be enhanced by learning and can also decline over time as a result of forgetting.

Based on these assumptions, this section presents the proposed KTM-DLF model,
which models students’ knowledge states by considering their ability, their learning
and forgetting procedures, and the cognitive di�culty level of items.

4.3.1 Modeling Cognitive Item Di�culty

Rationality of Cognitive Item Di�culty Several studies have already attempted
to incorporate the item di�culty in KT, and the experimental results showed empirically
the bene�ts of adding this di�culty information for this task [93, 16, 134, 30, 135].
However, nearly all of the existing models that formulate the di�culty at the item or
skill level consider the di�culty coe�cient as a constant, assuming that it will not
change for di�erent students over time. They assume that it is only the KCs involved
that contribute to the di�culty of an item, hence given an item with the de�nite set of
KCs associated with the item, the di�culty of that item is also �xed. This is unrealistic
in the actual learning process as problem di�culty a�ects performance undoubtedly
and also varies overtime in terms of the cognitive challenge it presents to individual
learners.

Actually item di�culty is a subjective variable for learners and has been widely
studied in the �eld of cognitive psychology. Some prior work [146, 147, 148, 149]
evaluated the possible factors contributed to item di�culty. Kubinger et al. [147]
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performed case study and showed some attributes lead to item di�culty, such as
item types, item structures and knowledge depth. Kotovsky et al [149] demonstrated
that di�culty was also correlated with the size of the memory loads imposed by the
di�erent problem isomorphs. In [146], Kotovsky et al proposed that while KCs are
of major relevance in problem solving, it is only one of several sources of di�culty,
another source of di�culty widely recognized is the size of the space that must be
searched to �nd the correct path from start to goal from among the many paths
available.

Based on these �ndings in the cognitive psychology and the limitations in the
existing KT models, we proposed in this thesis the concept of “Cognitive Item Di�culty”,
which models the item di�culty based not only on the KCs involved in the item but
also on other residual aspects (e.g. the memory loads of problem isomorphs and size of
search space). Speci�cally, we model the cognitive item di�culty by considering the
di�culty of KCs and the item itself, as well as the search space for each KC and item.

Quanti�cation of Cognitive Item Di�culty Based on the above analysis, item
di�culty can be expected to be determined not only based on the di�culty of each KC
involved (a function of KCs), but also according to the characteristic of items and
students’ current knowledge states (their own cognition). Therefore, we quantify
Cognitive Item Di�culty by taking into consideration not only the di�culty from the
items and KCs themselves, but also from the cognitive aspects of each student. We call
the former as the inherent di�culty of item or KC (part 1 and 2 in Eq. 4.1) as it is
item-oriented (KCs are also mapped to an item) and is also general to all the users.
Notably, we model the residual di�culty that not accounted for by the involved KCs
into a term associated with the item (part 1 in Eq. 4.1).

Moreover, di�erent students have their own di�erent knowledge structures at
di�erent times, the search space for answering an item (or KC) built during their
previous learning experiences also varies, hence we try to model the search space from
students’ own cognition to make the item di�culty user-oriented, a reason why we
call it cognitive item di�culty.

However, the search space for answering an item (or KC) is implicit and cannot be
directly measured. Intuitively, the more di�cult to search the correct path to answer
an item in the search space, the more tendency a student will get an incorrect answer.
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Since students’ previous exercising records are explicit and accessible, we can use
the incorrect interactions in students’ previous exercising process as an indicator to
measure each student’s search space that contributing to the cognitive di�culty of
items (part 3 in Eq. 4.1).

Given the above discussion, the cognitive di�culty 3 (8, 9, C) of item 9 for student 8
at time C is de�ned as

3 (8, 9, C) = X 9︸︷︷︸
%0AC−1

+
∑

:∈ � ( 9)
V:︸     ︷︷     ︸

%0AC−2

+\<Ψ8, 9,C + \=
[∑

:∈ � ( 9) Ψ8,:,C

| � ( 9) |

]
︸                                ︷︷                                ︸

%0AC−3

(4.1)

where V: is the inherent di�culty of skill : , and X 9 is a term denoting the inherent
residual di�culty of item 9 that cannot be accounted for by the involved KCs.  � ( 9) is
the set of skills required to solve item 9 . The �rst two terms of Eq. 4.1 are item-oriented
and they are general inherent di�culty for all the students. The last two terms of Eq.
4.1 are indicators that measuring the search space for a speci�c item and the involved
KCs, respectively. They are adjustive terms to make the cognitive item di�culty
user-oriented based on a student’s current knowledge structure. Inspired by [93], the
terms for measuring incorrect interactions on items Ψ8, 9,C and on KCs Ψ8,:,C are de�ned
in Eq. 4.2. \< and \= are the biases for the cognitive di�culty levels in the search space
indicated by previous attempts on the same item and on the associated skills.

Ψ8,E,C |E={ 9,:} =


[
|{G8,E==0}|0:C
|#8,E |0:C

∗ (2 − 1)
]
, 8 5

��#8,E ��0:C ≥ 5

2, 4;B4

(4.2)

where Ψ8, 9,C and Ψ8,:,C are quanti�ed into 2 + 1 levels (ranging from zero to c). #8,E is the
set of problems or skills the student 8 has attempted prior to time C , and G8,E is the
outcome of the attempt by student i on problem 9 or skill : . An outcome of zero is a
failure. If a student has attempted a problem or skill fewer than �ve times, the level
will be set as 2 indicating the highest level of di�culty in the search space.
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4.3.2 Modeling Student Learning and Forgetting

Existing KT approaches model students’ learning in an implicit manner by obtaining
their (implicit) knowledge states through learning from sequences of multiple attempts.
There are only a few studies in the �eld that have addressed learning and forgetting
explicitly and simultaneously [120, 131, 132, 29, 28, 133], while either simplifying the
forgetting behavior or just ignoring it.

Actually, learning and forgetting are two widely accepted procedures in educational
psychology that can in�uence learning outcomes. The more exercises a student does,
the bigger gain of knowledge pro�ciency he or her will obtain. Moreover, the longer
the lag time from the previous interaction, the greater probability the student will
forget something. Based on these assumptions, we de�ne learning as follows.

; (8, 9, C) = Φ8, 9,C +
∑

:∈ � ( 9))
Φ8,:,C (4.3)

Φ8,E,C |E={ 9,:} =
)∑

CF=1
{\E,3CF+1;>6(1 +,8,E,CF )

+ \E,3CF+2;>6(1 + �8,E,CF )
− \E,3CF+3;>6(1 +�8,E,CF )}

(4.4)

where learning ; (8, 9, C) is composed of the acquisition from attempting both the same
items (Φ8, 9,C ) and also di�erent items containing the same set of skills (Φ8,:,C ).,8,E,CF

and �8,E,CF denote the number of attempts that skill or item E have been correctly and
incorrectly recalled among �8,E,CF attempts in time window CF by student 8 . CF |0:) is
a set of expanding time windows inspired by [29], which are not disjoint but span
increasing time intervals. The consideration of both successful and failed attempts
corresponds to the fact that being correct or incorrect in some items or skills both
contribute to the knowledge acquisition.

Early studies of forgetting revealed that the retention rate decreases exponentially
as time passes [131, 28]. The longer interval of the interaction with some knowledge,
the more likely the forgetting occurs. For this reason, we formulate forgetting behavior
as

5 (8, 9, C) = \ 9, 94Δ 9, 9 + \:,:
∑

:∈ � ( 9))
4Δ:,: + \ 9, 9−14Δ 9, 9−1 (4.5)
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j, j
j, j-1

: KC : Item

j, j

j, j-1

k, k : lag time between interactions with the same KC

: lag time between interactions with the same item

: lag time between adjacent interactions

Figure 4.2: The three kinds of information related to forgetting from a student’s
sequence of interactions. Each semicircle represents a KC and each circle corresponds
to an interaction with an item at a speci�c time and the same color represents the same
KC.

where 5 (8, 9, C) can be interpreted as representing the amount of forgetting in a
student’s memory, which is composed of three parts, as shown in Figure 4.2, the lag
time between the current interaction and the previous interaction with the same
item Δ 9, 9 , the lag time between the current interaction and the previous interaction
with the same associated skill Δ:,: , and the lag time between adjacent interactions in
the learning sequence Δ 9, 9−1. For some problems, these are related or similar, or the
skills contained are related. Hence, the lag time between adjacent interactions in the
sequence can a�ect the performances on these questions. Incorporating the time gap
in the sequence into the model might capture this e�ect [120].

4.3.3 Proposed KTM-DLF Model

Based on the de�ned cognitive item di�culty and the modeling of learning and
forgetting, this subsection proposes a KTM-DLF model for KT and leverage the
factorization machine (FM) framework [150] to integrate these factors. This framework
enriches the proposed model by embedding the features in high dimensions and
modeling pairwise interactions between those features.

For an embedding dimension of 38< = 0, our model is formulated as

f (% (.8, 9,C = 1)) = U8,C − 3 (8, 9, C) + ; (8, 9, C) − 5 (8, 9, C) (4.6)

by incorporating Eq. 4.1, 4.3 and 4.5. Thus, the probability of student 8 correctly
attempting item 9 at time C depends on the student’s ability U8,C at time C , the cognitive
di�culty 3 (8, 9, C) of the item 9 to student 8, and the student’s learning ; (8, 9, C) and
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forgetting 5 (8, 9, C) during this time period. f (.) here is a link function; in our
implementation, we use probit as the link function. It is worth noting that when
38< = 0, our model does not consider the interactions of the embedding features; it is
actually a regression model. Our model is performed on a set of sparse vectors G of
length # by encoding of all the features in the input samples.

For higher embedding dimensions 38< > 0, all features are embedded in 38<
dimensions and their interactions are modeled in a pairwise manner, as shown in
Figure 4.3. The quadratic term of our model is:

q )"−�!� =
∑

1≤8< 9≤#
〈E8, E 9 〉G8G 9 (4.7)

where G8 and G 9 are the 8Cℎ and 9Cℎ feature of the input sample, respectively. E 9 ∈ '38< is
the embedding vector of feature 9 for some dimension, and 〈.〉 is the inner product
of two embedding vectors (as shown with the green arrow). As shown in Figure
4.3, all the features in the input sample are weighted in an element-wise matter, as
the general regression analysis (as shown with the red arrow). Moreover, all the
features are embed in high dimensions as the embedding vectors, and FM models the
interaction by factorizing it, which allows high quality parameter estimates of higher-
order interactions under sparsity [116]. These regression and pair-wise interaction
procedures are both sent to the output units to predict students’ performance, which
can make our model �t student data in a more accuracy way.

Training of KTM-DLF is performed by minimizing the logistic loss over the
observations and the outcomes.

;>6;>BB =
1
<

<∑
8=1

;>6(1 + 4G? (−~8 (%-8
= 1))) (4.8)

Following previous work [29, 150], we also use a hierarchical distributional
assumption to train our model. The regression and embedding weights for the feature
vectors both follow a normal prior distribution N(`, 1/_), and ` and _ hierarchically
follow hyperpriors ` ∼ N(0, 1) and _ ∼ Γ(1, 1). Markov chain Monte Carlo Gibbs
sampling is used to �t our model (see [150] for the details).
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Figure 4.3: The framework of the KTM-DLF.

4.4 Experimental Setting

This section describes the experimental settings (datasets, implementation details
and comparison baselines). The detailed experimental results and model analysis are
presented in the next section.

4.4.1 Datasets

We used three public real-world datasets for our experiments: the Algebra 2005-2006
dataset, the Bridge to Algebra 2006-2007 and the ASSISTments 2012-2013 dataset. The
details of these datasets are shown in Section 3.2.

4.4.2 Implementation Details

For each dataset, �ve-fold cross validation was performed at the student level. We
divided all the students into �ve disjoint groups, and their interaction entries were
separated into training and testing sets to perform the cross validation.

Our model was implemented in Python, ?~F�" 1 was used as a wrapper for ;81 5<
[150] to implement the factorization machine for classifying data when the dimension
of the model is greater than zero. In our experiments, our model was trained during 500

1https://github.com/j�o�/pywFM
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epochs, because that was su�cient for convergence. For the adaptive item di�culty,
we set the 2 in Eq. 4.2 as 5, indicating six levels of item di�culty (0 - 5). For the time
windows used in Eq. 4.4, we used the same time windows as in [29]: {1 /24, 1, 7, 30,
+∞ } with time units expressed in days.

4.4.3 Comparison Baselines

We compared the proposed KTM-DLF model with six of the best known state-of-the-art
KT models: DAS3H [29], DASH [132], IRT [50], MIRT [115], PFA [96], AFM [95]. These
were chosen either because of their predominance in psychometrics or educational
data mining, or because they are best performers. Moreover, these models also have
explicit underlying theories and interpretability, as our proposed model does. Here
we do not compare with the sequence model approach (e.g. DKT), as it can only be
adopted to items with single KC, and there is also a mild controversy concerning the
performance [29, 129, 130, 119]. Moreover, it is black-box to �t the data, thus making it
very di�cult to interpret their performance. Table 4.1 shows the comparisons between
our proposed model and previous work. To the best of our knowledge, no KT model
accounts for both students’ dynamic knowledge construction procedure and cognitive
item di�culty, a gap that we intend to bridge in this chapter.

We used the KTM framework [30] 2 and the code in [29] 3 to implement the baseline
models and tested the models in a variety of dimensions (3 = 0, 5, 10, 20). Note that
we embed the features in high dimensions and model the regression and pair-wise
interaction procedures by using the factorization machine framework, hence in all the
baseline models, we took the factors considered in each model following the same
above-mentioned procedures to test the models in various dimensions. ACC, AUC and
NLL are used for measuring the performances of di�erent models, the details of these
metrics are shown in Section 3.3.

2https://github.com/jilljenn/ktm
3https://github.com/BenoitCho�n/das3h
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Table 4.2: Comparisons among di�erent models on the Algebra 2005-2006 dataset. ↑ (↓)
indicates higher (lower) is better.

Model dim AUC ↑ ACC ↑ NLL ↓
KTM-DLF 5 0.837 ± 0.003 0.821 ± 0.006 0.405 ± 0.007
KTM-DLF 0 0.836 ± 0.002 0.819 ± 0.009 0.404 ± 0.013
KTM-DLF 10 0.832 ± 0.003 0.819 ± 0.008 0.407 ± 0.011
KTM-DLF 20 0.826 ± 0.003 0.816 ± 0.004 0.415 ± 0.005
DAS3H 0 0.826 ± 0.003 0.815 ± 0.007 0.414 ± 0.011
DAS3H 5 0.818 ± 0.004 0.812 ± 0.007 0.421 ± 0.011
DAS3H 20 0.817 ± 0.005 0.811 ± 0.004 0.422 ± 0.007
DASH 5 0.775 ± 0.005 0.802 ± 0.01 0.458 ± 0.012
DASH 20 0.774 ± 0.005 0.803 ± 0.014 0.456 ± 0.017
DASH 0 0.773 ± 0.002 0.801 ± 0.004 0.454 ± 0.006
IRT 0 0.771 ± 0.007 0.800 ± 0.009 0.456 ± 0.015
MIRT 20 0.770 ± 0.007 0.800 ± 0.006 0.460 ± 0.007
MIRT 5 0.770 ± 0.004 0.800 ± 0.008 0.459 ± 0.011
PFA 0 0.744 ± 0.004 0.782 ± 0.003 0.481 ± 0.004
AFM 0 0.707 ± 0.005 0.774 ± 0.004 0.499 ± 0.006
PFA 20 0.670 ± 0.010 0.748 ± 0.005 1.008 ± 0.047
PFA 5 0.664 ± 0.010 0.735 ± 0.013 1.107 ± 0.079
AFM 20 0.644 ± 0.005 0.750 ± 0.005 0.817 ± 0.076
AFM 5 0.640 ± 0.007 0.742 ± 0.009 0.941 ± 0.056

4.5 Performance Evaluation

In this section, we evaluate the performance of our proposed model by comparing it
with the state-of-the-art-models; ablation tests are also conducted to test di�erent
settings.

4.5.1 Performance Comparisons for Di�erent Models

The comparisons among di�erent models on three datasets are shown in Tables 4.2, 4.3
and 4.4. Five-fold cross-validation is performed in our experiments, and hence, the
mean values of AUC, ACC and NLL are shown in these tables. Moreover, standard
deviations over �ve folds are reported.

The results show that the proposed KTM-DLF model outperforms all of the other
models on all three datasets. This makes sense since the KTM-DLF model takes into
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Table 4.3: Comparisons among di�erent models on the ASSISTments 2012-2013 dataset.
↑ (↓) indicates higher (lower) is better.

Model dim AUC ↑ ACC ↑ NLL ↓
KTM-DLF 5 0.756 ± 0.001 0.744 ± 0.002 0.522 ± 0.003
KTM-DLF 10 0.755 ± 0.002 0.744 ± 0.001 0.522 ± 0.002
KTM-DLF 20 0.754 ± 0.002 0.743 ± 0.002 0.523 ± 0.002
KTM-DLF 0 0.745 ± 0.001 0.739 ± 0.002 0.540 ± 0.002
DAS3H 5 0.744 ± 0.002 0.737 ± 0.001 0.531 ± 0.001
DAS3H 20 0.740 ± 0.001 0.736 ± 0.002 0.533 ± 0.003
DAS3H 0 0.739 ± 0.001 0.736 ± 0.001 0.534 ± 0.002
DASH 0 0.703 ± 0.002 0.719 ± 0.003 0.557 ± 0.004
DASH 5 0.703 ± 0.001 0.720 ± 0.001 0.557 ± 0.001
DASH 20 0.703 ± 0.002 0.720 ± 0.002 0.557 ± 0.002
IRT 0 0.702 ± 0.001 0.719 ± 0.001 0.558 ± 0.001
MIRT 20 0.701 ± 0.001 0.720 ± 0.001 0.558 ± 0.001
MIRT 5 0.701 ± 0.002 0.719 ± 0.001 0.558 ± 0.001
PFA 5 0.669 ± 0.002 0.709 ± 0.002 0.577 ± 0.002
PFA 20 0.668 ± 0.002 0.709 ± 0.003 0.578 ± 0.003
PFA 0 0.668 ± 0.002 0.708 ± 0.001 0.579 ± 0.002
AFM 5 0.610 ± 0.001 0.699 ± 0.002 0.597 ± 0.001
AFM 20 0.609 ± 0.001 0.699 ± 0.003 0.597 ± 0.003
AFM 0 0.608 ± 0.002 0.697 ± 0.002 0.598 ± 0.002

consideration the cognitive item di�culty and the learning and forgetting procedure;
thus, it incorporates more information regarding the knowledge acquisition process
and hence can trace the changes in students’ knowledge more accurately. AFM and
PFA perform the worst on all of the datasets since they only incorporate the skill bias
and numbers of attempts on the skills, and they consider the bias and weights for every
skill as �xed. However, for the three datasets, the numbers of skills are far less than the
numbers of items, and hence, it is a coarse way to model students’ performances
based on these limited �xed parameters. Given their simplicity, IRT and MIRT obtain
better performance, which might be because they model student ability and item bias
for every student and every item and this is much more suitable for the enormous
datasets used in our experiments. By considering memory decay and skill bias, DAS3H
obtains the second best performance and outperforms the DASH model on three
datasets. Compared with DAS3H, our KTM-DLF model has +0.011 AUC improvement
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Table 4.4: Comparisons among di�erent models on the Bridge to Algebra 2006-2007
dataset. ↑ (↓) indicates higher (lower) is better.

Model dim AUC ↑ ACC ↑ NLL ↓
KTM-DLF 5 0.812 ± 0.002 0.851 ± 0.003 0.362 ± 0.005
KTM-DLF 0 0.811 ± 0.001 0.850 ± 0.003 0.357 ± 0.005
KTM-DLF 10 0.806 ± 0.003 0.849 ± 0.006 0.365 ± 0.010
KTM-DLF 20 0.799 ± 0.003 0.849 ± 0.003 0.370 ± 0.004
DAS3H 5 0.791 ± 0.005 0.848 ± 0.002 0.369 ± 0.005
DAS3H 0 0.790 ± 0.004 0.846 ± 0.002 0.371 ± 0.004
DAS3H 20 0.776 ± 0.023 0.838 ± 0.019 0.387 ± 0.027
DASH 0 0.749 ± 0.002 0.840 ± 0.005 0.393 ± 0.007
DASH 20 0.747 ± 0.003 0.840 ± 0.001 0.399 ± 0.002
IRT 0 0.747 ± 0.002 0.839 ± 0.004 0.393 ± 0.007
DASH 5 0.747 ± 0.003 0.840 ± 0.002 0.399 ± 0.002
MIRT 5 0.746 ± 0.002 0.840 ± 0.004 0.398 ± 0.006
MIRT 20 0.746 ± 0.004 0.839 ± 0.005 0.399 ± 0.007
PFA 20 0.746 ± 0.003 0.839 ± 0.002 0.397 ± 0.004
PFA 5 0.744 ± 0.007 0.838 ± 0.003 0.402 ± 0.007
PFA 0 0.739 ± 0.003 0.835 ± 0.005 0.406 ± 0.008
AFM 5 0.706 ± 0.002 0.836 ± 0.003 0.411 ± 0.004
AFM 20 0.706 ± 0.002 0.836 ± 0.003 0.412 ± 0.004
AFM 0 0.692 ± 0.002 0.833 ± 0.004 0.423 ± 0.006

on Algebra 2005-2006, +0.012 on ASSISTments 2012-2013 and +0.021 on Bridge to
Algebra 2006-2007 dataset, which show its superiority in the performance of KT.

To further compare whether the performance of these KT models are statistically
signi�cant, we conducted two-tailed independent t-tests on the AUC results between
our proposed KTM-DLF model and the other models, as shown in Table 4.5. Note that
for each kind of model with di�erent dimensions, we choose the model with dimension
that obtaining best performance on AUC to compare with other models. When the
variances of two groups of results are the same, student’s t-test is used, otherwise
Welch’s t-test is used [151]. We found that the p-values between KTM-DLF and all the
other models are all smaller than 0.005, which indicating that the null hypothesis is
rejected and the di�erences between our model and the other models are statistically
signi�cant on all the three datasets.
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Table 4.5: P-value comparisons of independent t-tests on AUC measure between
KTM-DLF model and the other models on three datasets.

Dataset
p-value(KTM-DLF & the other models)

DAS3H DASH IRT MIRT PFA AFM
Algebra 2005-2006 4.06E-04 1.33E-07 3.25E-06 2.99E-06 4.61E-10 1.07E-09
ASSISTments 2012-2013 2.34E-05 4.14E-09 3.95E-13 3.41E-13 2.25E-10 2.22E-16
Bridge to Algebra 2006-2007 2.57E-04 2.92E-11 2.28E-11 2.02E-11 1.45E-09 4.59E-13

(a) Algebra 2005-2006 dataset (b) ASSISTments 2012-2013 dataset

(c) Bridge to Algebra 2006-2007 dataset

Difficulty

Outcome

(d)

Figure 4.4: AUC comparisons of the e�ectiveness of cognitive item di�culty on three
datasets. (a), (b) and (c) show the performance comparisons between KTM-DLF model
and its ablated model without considering the cognitive aspects on Algebra 2005-2006,
ASSISTments 2012-2013, and Bridge to Algebra 2006-2007 dataset, respectively. The
upper part of (d) visualizes the cognitive item di�culty of the �rst 50 problems
attempted by the �rst 40 students in the ASSISTments 2012-2013 dataset, and the lower
part of (d) shows the real response outcome of the 50 problems attempted by the �rst
40 students in the corresponding dataset.
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4.5.2 E�ectiveness of the Dimension of Features

As shown in Tables 4.2, 4.3 and 4.4, the KTM-DLF model with d=5 performs best
on all of the datasets, while the same model with d=20 performs worst except on
ASSISTments 2012-2013. This indicates that a smaller multidimensional embedding
and the pairwise interactions could improve the performance as compared to d=0
(logistic regression), but the impact of the dimensions of features appears to be very
limited, a result that is consistent with existing work [29, 30].

4.5.3 E�ectiveness of Cognitive Item Di�culty

To test the e�ectiveness of the proposed cognitive item di�culty, we conducted some
ablation tests. We changed the item di�culty in Eq. 4.1 as 3 (8, 9, C) = X 9 + Σ:∈ � ( 9))V: ,
which does not consider the di�culty in terms of the cognitive challenge it presents to
individual learner and assumes the di�culty level of an item is �xed, i.e. only consider
the item-oriented part and do not consider the user-oriented part.

The results on three datasets are plotted in Figure 4.4(a), 4.4(b) and 4.4(c). We
observe that considering user-oriented cognitive item di�culty rather than the item-
oriented inherent di�culty of items and KCs generally performs better on all three
datasets. Notably, we can see that using cognitive item di�culty is more e�ective
for the ASSISTments 2012-2013 dataset (the average AUC gain is +0.009 for various
values of 3) than for the other two (the average AUC gains are +0.001 and +0.002,
respectively). This is consistent with the characteristics of the three datasets. As the
ASSISTments 2012-2013 dataset includes more users and fewer items than the other
two, students are more likely to attempt the same items or skills. Hence the change on
the cognitive item di�culty might be much bigger. We visualize the di�culty level of
the �rst 50 problems attempted by the �rst 40 students in skill level in ASSISTments
2012-2013 dataset using Eq. 4.2, and we also plot the corresponding response outcome,
as shown in Figure 4.4(d). We can see that students answering di�cult problems are
more likely to obtain the wrong answers for their attempts than when they attempt the
easy ones, showing the e�ectiveness of the proposed adaptive item di�culty.
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(a) Algebra 2005-2006 dataset (b) ASSISTments 2012-2013 dataset

(c) Bridge to Algebra 2006-2007 dataset
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Figure 4.5: AUC comparisons of the e�ectiveness of forgetting on three datasets. (a),
(b) and (c) show the performance comparisons between KTM-DLF model and its
ablated model without considering the forgetting procedure on Algebra 2005-2006,
ASSISTments 2012-2013, and Bridge to Algebra 2006-2007 dataset, respectively. (d)
shows the e�ect of lag time interval on the responses of a student on 200 problems in
the Algebra 2005-2006 dataset.
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4.5.4 E�ectiveness of Forgetting

To test the e�ectiveness of the forgetting procedure, we removed the term 5 (8, 9, C)
in Eq. 4.6 and compared it with the full KTM-DLF models. The results on three
datasets are shown in Figure 4.5(a), 4.5(b) and 4.5(c). We can see that the forgetting
procedure shows +0.009 average AUC improvement on Algebra 2005-2006, +0.014 on
ASSISTments 2012-2013 and +0.010 on Bridge to Algebra 2006-2007. Further, we plot
the lag time of 200 problems attempted by a student in the Algebra 2005-2006 dataset in
Figure 4.5(d). We can see that a long lag time interval from the same skills can lead to
failure for the same practices in the later attempts, thereby verifying the e�ectiveness
of the proposed forgetting procedure for predicting students’ learning performance.

4.5.5 E�ectiveness of LearningMeasured by Item-only, Skill-only,
and Item-Skill

To test the impact of the learning procedure measured by various factors, we conducted
ablation tests by considering the learning procedure measured by item-only, skill-only,
and item-skill. For item-only tests, Eq. 4.3 is changed to ; (8, 9, C) = Φ8, 9,C . For skill-only
tests, Eq. 4.3 is changed to ; (8, 9, C) = Σ:∈ � ( 9))Φ8,:,C . The item-skill tests are based on
the full KTM-DLF model.

The results on three datasets are shown in Figure 4.6. We observe that measuring
students’ learning by considering both items and skills associated with items in the
history of their attempts obtains best performance, with the average AUC gains
of +0.013 and +0.001 compared with the item-only and skill-only tests on Algebra
2005-2006, +0.013 and +0.005 on ASSISTments 2012-2013, and +0.012 and +0.008 on
Bridge to Algebra 2006-2007 dataset. However, compared with the item-only tests,
the skill-only tests perform better in predicting students’ performance (this can be
seen also from the above values of average AUC gains). This makes sense since the
numbers of skills are quite limited compared with the numbers of items in all three
datasets (112/173113, 265/52976 and 493/129263, respectively), hence introducing
the item-level consideration might introducing more noise. Moreover, measuring
students’ learning procedure by considering skills compares more favorably to the
proposed KTM-DLF model. In a cognitive model like KTM-DLF from systems like
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(a) Algebra 2005-2006 dataset (b) ASSISTments 2012-2013 dataset

(c) Bridge to Algebra 2006-2007 dataset

Figure 4.6: AUC comparisons of the e�ectiveness of the learning procedure measured
by item-only, skill-only, and item-skill on three datasets.

Cognitive Tutor and ASSISTments, relying on skill makes sense. As shown in the
previous discussion, solving an item need not only all the KCs involved in the item, but
also some other factors, like the memory load imposed by the item representation
and the search space to �nd the correct combination of KCs, hence taking both skill
and item into consideration can model this e�ect and gain more information in the
learning procedure, a reason why the KTM-DLF with learning measured by item-skill
gets the best performance.

In general, from the experimental evaluation, we can see that the KTM-DLF model
outperforms all of the other comparison baseline models and its ablated counterparts,
verifying that modeling students’ dynamic knowledge construction procedure and
cognitive item di�culty can boost the performance of knowledge tracing over models
that do not consider them or consider only one or the other.
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4.6 Summary

This chapter focused on Issue 1: what factors in�uence the learning performance and
how to quantify these factors and utilize them to model the dynamic evolution of learner
knowledge ? We empirically examined both learner factors (learning and forgetting)
and item factor (cognitive item di�culty) that in�uencing the learning performance,
proposed methods to quantify these factors and utilized them into our proposed
KTM-DLF model to assess the learner knowledge.

The KTM-DLF model traces the evolution of each student’s knowledge acquisition
to further predict his or her future performance by modeling the student’s dynamic
knowledge construction procedure and cognitive item di�culty. Speci�cally, this
chapter �rst proposed the concept of cognitive item di�culty, which not only considers
the di�culty from the items and KCs themselves, but also from the cognitive aspects of
each student to make it user-oriented. Further it proposed a method to model cognitive
item di�culty by making use of students’ learning histories. The di�culty level of
each item is calculated at both the item and KC levels, and it can also be adaptive to
the individual student’s cognition. Then, based on the learning and forgetting curve
theories, it proposed methods to model these two dynamic procedures over time.
Learning is modeled by leveraging the correct and incorrect attempts in di�erent time
windows at both the item and KC levels, and forgetting is modeled by considering
the lag time from the previous interactions. Finally, it combined the above factors
and used the factorization machine framework to enrich the proposed model. This
framework can not only consider the contributions of di�erent parts to the probability
of observing binary outcomes of attempts (correct or incorrect), but also embed
features in high dimensions and use the pairwise interactions to make the model
more accurate. Extensive experiments were conducted on three public real-world
datasets. The experimental results showed that the proposed model outperformed all
of the other comparison baseline models and its ablated counterparts, verifying that
modeling students’ dynamic knowledge construction procedure and cognitive item
di�culty all boosted the performance of knowledge tracing.

The proposed model has achieved good performance by taking consideration
of various factors in�uencing the learning performance, however, it is based on a
potential assumption that the items attempted by learners are independent to each
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other (i.e., the relationships among all the questions and skills are not considered in the
model), which may lead to performance degradation on learner knowledge assessment
because of the sparseness of response data and the potential information loss. We will
further explore methods to alleviate this issue in the next chapter.
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Recent learner knowledge assessment methods have achieved good performance at
this task. However, the adequacy of KT is still challenged by the sparseness of the
learners’ exercise data. To alleviate the sparseness problem, most of the exiting studies
implement their models based on the skills rather than the questions themselves,
as questions are often numerous and associated with much fewer skills. However,
at the skill level, KT neglects the distinctive information related to the questions

The material in this chapter is based on [152]
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themselves and their relations. In this case, the models can imprecisely infer the
learners’ knowledge states and might fail to capture the long-term dependencies in the
exercising sequences. This is the Issue 2 “sparseness and information loss” addressed in
this thesis.

To alleviate this issue, this chapter explores to incorporate the knowledge structure
(KS) into the learner assessment procedure to potentially resolve both the sparseness
and information loss, an avenue not yet been fully explored because obtaining the
complete KS of a domain is challenging and labor–intensive. Speci�cally, we propose a
novel KS–enhanced graph representation learning model for KT with an attention
mechanism (KSGKT). Section 5.1 introduces the motivation of our proposed solution in
this chapter. Then the proposed KSGKT model is detailed in Section 5.2. Section 5.3
explains the experimental settings, and Section 5.4 presents the experimental results
and analysis. Based on the KSGKT model, Section 5.5 shows a case study to provide the
�ne-grained diagnostic report to learners, and a summary of this chapter is given in
Section 5.6.

5.1 Motivation

As we have discussed in the previous chapters, learner assessment task in an online
learning system dynamically assesses the learner knowledge in a longitudinal manner.
Based on the inferred knowledge states, learners are provided with various adaptive
services that suit their individual needs, thereby improving their learning e�ciency
[23].

Sparseness and Information Loss Massive e�orts have been devoted to track
learner knowledge (also named Knowledge Tracing, KT) in the skill-level [41, 42],
which build KT models based on the skills (or “knowledge concepts”) required in a
speci�c domain. Each question in a KT task is correlated with one or more skills
needed to solve the question (e.g., “3+5” corresponds to the skill “addition of integers”),
and each skill is related to many questions. The question–skill mapping information is
typically encoded as a Q-matrix of prior knowledge provided by education experts
[12, 33], and can be naturally represented as a question–skill relation graph (for an
example, see Figure 5.1(left)). Most of the existing KT methods train the KT models on
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Figure 5.1: (left) Illustration of a question–skill relation graph, and (right) part of the
knowledge structure in the algebra domain

skills rather than questions, as the number of questions is far greater than the number
of skills and most students only attempt a small part of the questions. In general,
students are not required to answer all the questions in an ITS, meaning that some
students may not answer some questions. Accordingly, the response data are quite
sparse [41, 42, 107]. This is also shown in Table 3.1, most of the datasets only have the
sparseness value of less than 1%. Skill-level KT is feasible to some extent because skill
mastery can largely a�ect the correctness of question answering. Therefore various KT
methods proposed under this setting have achieved good performance.

In skill-level KT models, all questions pertaining to a speci�c skill are considered as
the same inputs (and multiple skills corresponding to a question are merged into one new
skill). This approach loses the distinctive information related to individual questions,
leading to imprecise inferences of the learners’ knowledge states [127, 126, 41, 42]. For
example, in Figure 5.1(left), the questions “3+5” and “345+6789” both require the skill
“addition of integers”, and are considered as the same inputs when building the KT
models, which ignores their di�erent di�culty levels. Existing researches have proved
that question di�culty undoubtedly in�uences the learner performance [12, 144, 93].
In this chapter, we explore to associate the cognitive question di�culty with the
question representation, and introduce extra distinctive information for each question
to potentially improve the reliability of tracing learner pro�ciency over the long-term.

The interdependencies between the skills in the knowledge structure (KS) have
long been acknowledged in both cognitive science and arti�cial intelligence [107, 108].
The prerequisites between pedagogical concepts can be represented as a knowledge
graph [53] (see Figure 5.1(right) for an example). Nevertheless, the KS (which speci�es



80
Chapter 5. Knowledge Structure Enhanced Graph Representation Learning

Model for Attentive Learner Knowledge Assessment

the relations among skills) has rarely been integrated in KT models because obtaining
the complete KS of a domain is labor-intensive and the KS is not easily inferred from
the data [109, 77, 128]. To avoid these di�culties, most of the KT models simply
assume that all questions and skills are independent. In the real world, questions
are interrelated to each other and are also closely related to the underlying skills
required for their solution. When learners grow their knowledge from a certain
question incorporating B:8;;1, they also improve their attainment of B:8;;2 to some
extent (assuming that B:8;;1 is related to B:8;;2 in the KS). For example, a learner who
attempts an exercise requiring the “equation solving” skill will also deepen his or her
understanding of the skill “solving systems of equations”. In this work, we infer the KS
from learners’ response data and integrate it with the KT model. Our method o�ers two
advantages over the existing models: �rst, it inputs extra information into the question
representation by referencing the KS (thus alleviating the data sparsity problem in the
question representation), and second, it models the impact of previous experiences on
future exercise during the knowledge evolution. In addition, incorporating the KS into
the KT procedure can capture the long-term dependencies in the exercising sequences
[31], further improving the precision of inferring the dynamic knowledge pro�ciencies
of learners.

Moreover, most of the previous work on KT represents the questions for model
building using one-hot encoding [10]. The resulting data are often too sparse to repre-
sent su�cient information for the KT task, thus leading to performance degradation
[41, 51, 42, 128]. In recent work on graph representation learning, the model is trained
on a dense embedding of the graph, which improves the performance on various tasks
[153, 154]. Motivated by the high ability of graph neural networks to extract graph
representation by aggregating the information from neighbors, we apply the graph
representation learning method to obtain question- and skill-embedding from the KS
enhanced question–skill relation graph. The learned embeddings from the graph
incorporate not only the explicit multi-hop question–skill relations but also the implicit
multi-hop question–question and skill–skill relations in the graph. We also propose a
convolutional representation method that incorporates additional information and
considers their interactions, thus generating dense and meaningful representations of
the input questions and potentially further improving the model performance.
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Overview of our Solution We propose a new KT model named Knowledge Structure
enhanced Graph Knowledge Tracing (KSGKT) that traces the evolution of learners’
knowledge pro�ciencies and solves the issue of data sparseness and information loss.
We �rst explore eight methods to infer the domain KS from the learner response
data and integrate it with the original question–skill relation graph to obtain the KS
enhanced question–skill relation graph. Leveraging a graph representation learning
model (Metapath2Vec [153]), we then obtain the dense question and skill embeddings
from the enhanced graph. To overcome the limitations of skill–level KT models,
which neglect the distinctive information related to the questions, we propose a
convolutional representation method that integrates the question and its associated skill
embedding information into the multi-level cognitive question–di�culty information,
thus obtaining a comprehensive representation of each attempted question. These
representations for the learners’ exercising sequences are fed into the proposed KT
model, which considers the long-term dependencies using an attention mechanism, and
�nally predicts the learners’ performance on new problems. The main contributions of
this work are listed below.

• We propose the KSGKT model enhanced by the inferred KS in the domain that
traces the evolution of learners’ knowledge pro�ciencies with three attention
methods.

• We explore eight methods that automatically discover the domain KS from
learner response data, and test them in the KT procedure.

• We propose a KS–enhanced graph representation learning model that learns
the dense question and skill embeddings in the KS enhanced graph, and a
convolutional representation method that fuses these distinctive heterogeneous
features into a comprehensive question representation.

• We conduct comprehensive experimental evaluations from six perspectives on
three real-world datasets. The results demonstrate the superiority of our method
in dynamically modeling the learning performance and discovering the KS from
data.
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Figure 5.2: The proposed KSGKT framework for attentive knowledge tracing

5.2 KSGKT Model

This section introduces the proposed KSGKT framework for knowledge tracing,
as shown in Figure 5.2. The framework proceeds the KT task using �ve modules:
knowledge structure discovery, graph-based embedding learning, convolutional
question representation, attention mechanism and learner knowledge state evolution.
Before conducting the embedding learning, we must build the KS–enhanced question–
skill graph by integrating the KS inferred from the learner response data into the
question–skill graph. Based on the built KS–enhanced question–skill graph, the dense
embeddings of all skill and question nodes are obtained through the graph embedding
learning method Methpath2Vec. To incorporate more distinctive information of
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Table 5.1: A list of symbol notations used in this study.

Var. Description
D8 learner D8
@C question @C
B: skills B:
AC the correctness of the learner’s answer at timestamp C
4CC the elapsed time spent on solving the given questionat timestamp C
$ the binary q-matrix
'F the representation of the KS as a skill relation matrix
'̂ matrix representation of the KS–enhanced question–skill graph
@ question embedding vector
B average skill embedding vector in a question
3@ question di�culty embedding vector at the question level
3B question di�culty embedding vector at the skill level
@̃ the �nal comprehensive question embedding
GC the interaction embedding at timestamp C
ℎC the hidden knowledge state of a learner at step C
U8,C+1 the attention between current questions and previous question
6(@̃8, @̃C+1) the correlation between current questions and previous question
?C+1 the predicted learner performance at step C + 1

the questions, the cognitive question di�culty at both the question and skill levels
are also inferred from the learning histories of individual learners. A convolutional
representation method is then proposed to fuse the question and skill embeddings with
the cognitive question di�culty. It considers each separate factor and the interactions
between each pair of factors, thus obtaining the comprehensive representations of
questions (see Figure 5.3). These representations are fed to the attentive KT network
for predicting learner performance (see Figure 5.4 for the KT procedure). To capture the
long-term dependencies in the exercising sequence, di�erent attention mechanisms are
applied. For reference, the algorithm for our proposed method is shown in Alg. 5.1. A
list of symbol notations used in this study is presented in Table 5.1 to facilitate reading.
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Algorithm 5.1 The proposed KSGKT method for attentive knowledge tracing
Input: the learners’ exercise logs � in a system, the Q-matrix $
Output: the predicted probability ?C+1 that the learner answers exercise @C+1 correctly,

the matrix representation 'F of the KS, and the �nal embedding matrix & , ( of the
question and skill nodes.

1: 'F , '̂← 0, U8,C+1, ?C+1← 0;
2: initialize & , ( , � from a Gaussian distribution;
3: infer 'F from the exercise logs �; ⊲ Eight methods in Section 5.2.1
4: calculate '̂ using Eq. 5.3 and 5.4;
5: calculate Ψ@,C and ΨB,C using Eq. 4.2; ⊲ Cognitive item di�culty
6: repeat
7: & , ( ←"4C0?0Cℎ2+42('̂,“QSQ”, & , (); ⊲ Embedding learning in Section 5.2.2
8: @̃ ← �>=E>;DC8>=(@ = &@, B = 0E6((@), 3@ = Ψ@,C�,3B = ΨB,C�); ⊲ Convolutional

question representation in Section 5.2.3
9: ℎC ← !()" (�>=20C (@̃, CC , AC ), ℎC−1;\ ); ⊲ update learner knowledge state using

LSTM in Section 5.2.4
10: calculate attention U8,C+1 using Eq. 5.14;
11: ?C+1 = "!% (@̃C+1, ℎ8, U8,C+1); ⊲ Predict learner performance with three attention

methods in Section 5.2.4
12: until L = −∑

C (AC+1;>6 ?C+1 + (1 − AC+1);>6(1 − ?C+1)) is minimum ⊲ minimize
cross-entropy loss

13: return ?C+1, 'F , & , ( .

5.2.1 Inferring Knowledge Structure from Data

In practical educational scenarios, there always exists a topological order (KS) among
the skills in a domain, because skills are taught and learned in sequence. In many
learning systems the KS information is never provided and must be obtained by time-
consuming labor. We observed that if learners have not mastered a speci�c skill, their
probability of incorrectly answering questions requiring the post-requisite skills will
increase. Moreover, learners’ mastery of a skill can be indicated by their performances
on the attempted questions requiring that skill. Based on these observations, this
chapter aims to discover the KS from the learner response data.

Previous studies [110, 77] intuited that the KS is di�cult to directly extract from
response data, but this di�culty can be bridged by ordering the learners’ mastery of
skills. Hence, in this work, we infer the KS from the order of the learners’ mastery of
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Table 5.2: Contingency table for a pair of skills B8 and B 9

sj master sj not master total

si master a b a+b
si not master c d c+d

total a+c b+d a+b+c+d

skills, which is explicitly represented by the exercising performance data. Here we �rst
give a formal de�nition of the KS.

De�nition 1 (Knowledge structure): The KS is a directed graph with all skills as
nodes. It can be represented as  ( =

{
(,
−→
!

}
, where ( is the set of all skill nodes and −→!

denotes the prerequisite relations between two skill nodes in the graph. KS can also be
represented as a skill relation matrix ' ∈ R|( |×|( | , in which entry '8, 9 represents the
prerequisite relation B8 � B 9 between skill B8 and B 9 .

Inspired by the de�nition of question similarity in previous methods [155, 51, 102],
we explore the underlying KS using eight methods: Skill Transition, Cohen’s Kappa,
Adjusted Kappa, Phi coe�cient, Yule coe�cient, Ochiai coe�cient, Sokal coe�cient,
Jaccard coe�cient, as described below.

• Skill Transition: The skill-transition matrix ' contains the transitions of
di�erent skills. Its entries are '( 8, 9 =

=8, 9∑ |^ |
:=1 =8,:

, where =8, 9 denotes the number of
times in which skill B 9 is trained immediately after training skill B8 .

To further leverage the impact of the learners’ performance of one skill on the
performance of another, we summarized the learners’ performance on skill pair B8 and
B 9 in a contingency table (see Table 5.2). As mentioned above, we interpreted the
learners’ correct or incorrect responses as mastery indicators of the underlying skills
of the given questions. It is worth noting that in Table 5.2, the question requiring
skill B8 occurs before the question requiring B 9 in the learning sequence. When there
are multiple occurrences of question pairs in the learning sequence, we consider
only the latest occurrence. Based on the contingency table, we discovered the KS
using the evaluation indices [102] in Table 5.3, which measure the agreement of
the prerequisite relation between a pair of skills. These indices are widely used for
measuring associations between two variables.
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Table 5.3: Evaluation indices for obtaining KS using the contingency table

Cohen’s Kappa '
 0??0

8, 9
= 2(03 − 12)/{(0 + 1) (1 + 3) + (0 + 2) (2 + 3)}

Adjusted Kappa '
 0??0′

8, 9
= 2(03 − 12)/{(0 + 2) (2 + 3)}

Phi coe�cient '%ℎ88, 9 = (03 − 12)/
√
(0 + 1) (1 + 3) (0 + 2) (2 + 3)

Yule coe�cient '.D;48, 9 = (03 − 12)/(03 + 12)
Ochiai coe�cient '$2ℎ8088, 9 = 0/

√
(0 + 1) (0 + 2)

Sokal coe�cient '(>:0;8, 9 = (0 + 3)/(0 + 1 + 2 + 3)
Jaccard coe�cient '

�0220A3

8, 9
= 0/(0 + 1 + 2)

As the KS is always a unidirectional graph, we simpli�ed it by a suitable strategy. We
also imposed a threshold that controlled the sparsity of the relations in KS. The �nal skill
relation matrix was denoted as'F ,F ∈ {( ,  0??0,  0??0′,%ℎ8, .D;4,$2ℎ808, (>:0;, �0220A3}.
The elements along the diagonal of 'F were set to one.

'F
8,9

=<0G ('F
8,9
, 'F

9,8
), 'F

9,8
= 0, 8 5 'F

8,9
≥ 'F

9,8

'F
9,8
=<0G ('F

8,9
, 'F

9,8
), 'F

8,9
= 0, >Cℎ4AF8B4

(5.1)

'F8,9 =


1, 8 5 'F

8,9
≥ CℎA4Bℎ>;3

0, >Cℎ4AF8B4
(5.2)

5.2.2 Embedding Learning on the KS–enhanced Question–Skill
Graph

Graph representation learning models such as graph neural networks (GNNs) have
solved various tasks through their excellent ability to process graph-structure data.
Traditional machine learning methods have limited ability to extract and encode
the high-dimensional, non-Euclidean information on graph structure from graphs
[156]. Following the edges in the graph, GNNs obtain the node representation from a
whole graph by propagating and aggregating information from the neighbor nodes. In
this way, node embeddings can summarize their graph positions and the structures
of their local-graph neighborhoods [156]. The obtained graph-based embeddings
can be directly used for various downstream tasks. In the deep-learning models of
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KT tasks, they alleviate the sparsity problem of the one-hot representation. One
widely used GNN model is the graph convolutional network (GCN), which was
recently used as the input-question embedding learning in KT task [41, 51]. GCNs are
especially suitable for isomorphic graphs, in which the nodes are of the same type.
Recent graph-to-vector models such as Metapath2Vec [153] have proven successful in
heterogeneous graph-representation learning. Such models are eminently suitable for
KT tasks because question–skill graphs are typical heterogeneous graphs. In this work
we leverage the Metapath2Vec model to learn the dense embedding from the relation
graph. Before presenting the embedding learning process, we now introduce some
de�nitions that will used in this sections.

De�nition 2 (Question-skill graph): The q-matrix $ containing the question–
skill relations can be naturally represented as a question–skill graph � = {&, (, !},
where & and ( are sets of question and skill nodes, respectively, and ! = [$ 9:] ∈ {0, 1}
indicates whether question node @ 9 and skill node B: are connected by an edge.

De�nition 3 (KS Enhanced Question-skill graph): KS–enhanced question–skill
graph is a dense graph, with all questions and skills as nodes. It can be represented as
 (� =

{
&, (, !@,B, !B,B

}
, where !@,B = [$@,B] ∈ {0, 1} indicates the original question–skill

relation in the Q-matrix and !B,B = ['FB,B] ∈ {0, 1} denotes the prerequisite relations
between two skill nodes in the KS. It can be also represented as a matrix '̂ ∈ R|& |×|( | .

As we have already obtained the inferred skill relation matrix 'F ∈ R|( |×|( | of
the KS and the q-matrix $ ∈ R|& |×|( | for the question–skill graph, we now built a
KS–enhanced question-skill graph and conducted embedding learning on it.

The matrix representation '̂ ∈ R|& |×|( | of the KS–enhanced question–skill graph is
obtained as follows:

'̂ = $ ('F )) (5.3)

'̂8, 9 =


1, 8 5 '̂8, 9 ≥ 1

0, >Cℎ4AF8B4
(5.4)

In Eq. (4), the transpose of the skill relation matrix 'F accounts for the skills that are
prerequisite to the skills of the current question. In other words, a question requiring a
speci�c skill is also related to the prerequisite skills.

The matrix '̂ can be naturally represented as a graph, hereafter denoted as the
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KS-enhanced question–skill graph. This graph includes not only the multi-hop relations
between questions and skills, but also the prerequisite relations among the skills. The
embeddings in this graph were obtained using the Metapath2Vec method [153].

The Metapath2Vec method proceeds in two main steps: meta-path generation and
skip-gram-based embedding learning. A meta-path is a sequence of nodes following
the edges in the graph. To assure that all questions and skills appear in the �nal
embeddings, we generate the meta-paths from the KS-enhanced question–skill graph
using a question–skill–question (QSQ) pattern, in which every meta-path begins with
a question node followed by a skill node and then by a question node; for example, d :

@1
'̂1,1↦−→ B1

'̂2,1↦−→ @2
'̂2,2↦−→ B2

'̂3,2↦−→ @3. Setting two hyper-parameters—the path length ℘ and
number of paths ℵ—for each question node, we generated all meta-paths on the graph.
The probability of moving one step between two nodes EC and EC+1 along path d is
given by

% (EC+1 |EC , d) =

1/|#C (EC ) |, 8 5 EC+1 ∈ #C (EC ), C~?4 (EC , EC+1) ∈ “&(&′′

0, >Cℎ4AF8B4
(5.5)

where #C (EC ) is the set of one-hop neighbors of nodes EC following the QSQ pattern.
Following [153], we apply the heterogeneous skip-gram and learn the node

embeddings by maximizing the probability of having context #C (EC ) given a node EC :

0A6<0G\

∑
E∈+

∑
C~?4∈“&(& ′′

∑
2C∈#C (EC )

;>6? (2C |EC , \ ) (5.6)

where ? (2C |EC , \ ) usually de�ned as a softmax function based on the learned embedding
of nodes. Finally, we obtain all embeddings with the same dimension 3 of question and
skill nodes in the graph, which also enclose the relation information.

5.2.3 Convolutional Question Representation

In this subsection, we fuse the various feature representations through convolu-
tional operations to obtain the comprehensive question embedding with distinctive
information.

We have now obtained the distinctive embedding and the contained skill embedding
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Figure 5.3: Use of convolution to fuse various distinctive features and their interactions
into the comprehensive question representation

in the previous subsection. To include more distinctive information into the question
representation, we also calculate the cognitive di�culty information of each question
(see Section 4.3.1). To simultaneously preserve all of these parts, we fuse them
into comprehensive question embeddings. Following [42] and [157] that learn the
high-order latent patterns through feature interactions and convolution operations
(rather than directly concatenating the features), we map and fuse the separate features
and their interactions using convolution operations, as shown in Figure 5.3.

The question-di�culty information is represented as vectors using an embedding
matrix � (of size (2 + 1) × 3). The continuous embedding vectors at the question and
skill levels of each question are de�ned as 3@ = Ψ@,C� and 3B = ΨB,C� , respectively. Note
that Ψ@,C and ΨB,C are calculated using Eq. 4.2. For questions containing multiple skills,
we represent the skill as the average skill embedding as

B =
1
|B@ |

∑
B8∈B@

B8 . (5.7)

Fusing the above-obtained features, we generate the linear information " and
quadratic information # for question @.

" = [@, B, 3@, 3B] ∈ R4×3 ,
# = [〈"8, " 9 〉] ∈ R4×4,

(5.8)
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where 〈.〉 represents the interactions of two vectors obtained by the inner product. We
then apply the two-dimensional convolution operation with eight kernels of size
2 × 2 on both " and # , and maxpooling on each feature map to obtain ;< ∈ R1×(3−1)×8

and ;= ∈ R1×3×8. These two parts are then concatenated into eight longer vectors
;<+= ∈ R1×(3+2)×8 including the convolutions from the separate features and their
interactions. Inspired by the multi-head mechanism in the transformer model [125],
we concatenate and linearly transform the eight vectors and hence obtain the �nal
question representation @̃ ∈ R1×3

′
.

;< = "0G%>>;8=6(�>=E (")),
;= = "0G%>>;8=6(�>=E (# )),
;<+= = �>=20C (;<, ;=),

(5.9)

@̃ = �>=20C (;1<+=, ..., ;8<+=), $ , (5.10)

where,$ ∈ R((3+2)×8)×3
′

is the parameter that transforms the convolution results into
a vector.

5.2.4 Learner Knowledge State Evolution

The learner exercising sequences are fed into an attentive KT framework that predicts
the learner performance, as shown in Figure 5.4.

The log data of each interaction in the exercising sequences consists of a tuple
representing the question, the correctness, and the elapsed time. Look-up operations
are performed on an embedding matrix �A ∈ R2×3

′
, in which row vector AC contains the

incorrectness or correctness of the responses. The elapsed time 4C strongly evidences a
student’s pro�ciency in knowledge and skills [158]. This time is converted to seconds
and capped at 500 seconds. A 3

′-dimensional latent embedding vector for 4C: is
computed as C: = 4C:,4C + 14C , where,4C and 14C are learnable vectors. The interaction
embedding is obtained as

GC = �>=20C (@̃, CC , AC ). (5.11)

The sequence data of the learners’ exercising process are modeled using LSTM [10]
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Figure 5.4: Tracking the evolution of a learner’s knowledge state by attentive knowledge
tracing on the exercising sequences

within the KT framework, and the learners’ knowledge states are traced at each time.
The hidden knowledge state ℎC of a learner at step C is updated based on the current
input and the previous state ℎC = !()" (GC , ℎC−1;\ ) as:

8C = f (,G8GC +,ℎ8ℎC−1 + 18),
5C = f (,G 5 GC +,ℎ5ℎC−1 + 1 5 ),
>C = f (,G>GC +,ℎ>ℎC−1 + 1>),
2C = 5C2C−1 + 8CC0=ℎ(,G2GC +,ℎ2ℎC−1 + 12),
ℎC = >CC0=ℎ(2C ),

(5.12)

where the 8C , 5C , >C are the input, forget, and output gates, respectively, 2C is the cell
memory vector, and,∗ and 1∗ are network parameters.

We then employ an attention mechanism that accounts for the impact of previous
attempts on the current attempt. A new question will likely be strongly a�ected
by similar questions or questions requiring the same skillset as the new question.
Moreover, according to forgetting-curve theory, the impact exponentially decays as
time passes [55]. To describe these e�ects, we assume that the learner-knowledge state
in the current step is the weighted sum of the aggregated states in the previous steps.
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The weights are based on the correlations:

ℎC+1 =
C∑
8=1

U8,C+1ℎ8 . (5.13)

The attention was calculated by three methods: shared skill-based attention, question
similarity-based attention, and a combination of both former attention methods.

U8,C+1 =
4G? (2>AA48,C+1)∑
9 4G? (2>AA4 9,C+1)

,

2>AA48,C+1 = 4G? (−\ |CC+1 − C8 |)6(@̃8, @̃C+1),
(5.14)

where |CC+1 − C8 | is the time interval between step 8 and C + 1, \ > 0 is the learnable
decay rate over time, the exponential term down-weights the importance of questions
in the distant past, and 6(.) denotes the correlation between two questions. The 6(.)B
computed by the three methods provide three kinds of attentions.

• shared skill based-attention: This method calculates the number of skills
shared by two questions in the KS-enhanced q-matrix '̂. We de�ne 6(@̃8, @̃C+1) =
=
|B@C+1 |

, where = is the number of shared skills and |B@C+1 | denotes the number of
skills contained in question @C+1.

• question similarity-based attention: This method calculates the correlations
between two question representations by determining their similarities. We
de�ne 6(@̃8, @̃C+1) = 2>B (@̃8, @̃C+1), that is, the cosine similarities between the two
vectors of question representation.

• combined attention: This method combines the above correlations with coe�-
cients. We de�ne 6(@̃8, @̃C+1) = _ =

|(@C+1 |
+ (1 − _)2>B (@̃8, @̃C+1), where _ is a tunable

parameter that balances the above two correlations.

The learner performance at step C + 1 can be predicted from the question represen-
tation @̃C+1 and the current knowledge state ℎC+1 as follows:

BC+1 = C0=ℎ(,B [@̃C+1, ℎC+1]) + 1B,
?C+1 = f (,?BC+1 + 1?),

(5.15)
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where,∗ and 1∗ are parameters in the fully connected layer and the sigmoid activation
layer, respectively.

Finally, we optimized our model by the cross-entropy loss; speci�cally, we mini-
mized the following objective function between the true answer ;C and the predicted
performance ?C+1 at each interaction:

L = −
∑
C

(AC+1;>6 ?C+1 + (1 − AC+1);>6(1 − ?C+1)) . (5.16)

5.3 Experimental Settings

In a series of experimental tasks, we evaluated the proposed KSGKT model on three
public real-world datasets. This section describes the experimental settings (aims,
datasets, comparison baselines, setup and implementation, and evaluation metrics).
The detailed experimental results and model analysis are presented in the next section.

5.3.1 Experimental Aims

Our experiments aimed to answer the following questions:

1. Based on the knowledge pro�ciency inferred from the learners’ exercise histories,
how well does KSGKT predict the learners’ performance on new questions? (See
subsection 5.4.1)

2. How does embedding learning on the KS-enhanced graph a�ect the performance
of the proposed model? (See subsection 5.4.2)

3. Does the question embedding learned on the graph provides meaningful infor-
mation? (See subsection 5.4.3)

4. How well do the eight methods infer the KS from data? Is the inferred KS
explainable? (See subsection 5.4.4 and 5.4.5)

5. How e�ective is the convolutional question representation of the KT task? (See
subsection 5.4.6)

6. How e�ective is the attention mechanism in the proposed method? What is the
e�ect of changing the attention-calculating method? (See subsection 5.4.7)
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5.3.2 Datesets and Compared Models

Three well-established datasets are used to perform the experiments: Assist0910,
Assist1213, and EdNet. The detail of these datasets are shown in Section 3.2. As part of
our model evaluation, we competed the model against several state-of-the-art skill–
and question–based KT models. The performances of the various models in di�erent
settings were compared using AUC as the evaluation metric.

• BKT [9] conducts KT using a hidden Markov model, and represents the learner
knowledge states as a set of binary variables.

• DKT [10] is the �rst KT model based on a deep neural network. This model treats the
learner-knowledge prediction as a sequence learning task and captures the complex
representations of student knowledge using the hidden vectors of RNNs. The input is
a one-hot encoding of skills.

• DKVMN [32] establishes the learners’ knowledge states using an auxiliary memory
that augments the neural networks. This method embeds the skill information into a
key matrix and accumulates the temporal information from the learners’ exercising
sequences. It then infers their knowledge states on these skills.

• KTM [30] is a factor analysis model based on the factorization machine. It is a generic
framework that incorporates the side information into the student model. Learner
performance is predicted based on a sparse set of weights applied to all features in the
samples.

• DKT-Q is a variant of DKT that replaces the skills embedding with a one-hot encoding
of questions as the input.

• DKT-Q&S is a variant of DKT that inputs both the questions and skill representations
to the DKT.

• DKT-CQE is a variant of DKT that inputs our convolutional question embeddings to
the DKT.

• GIKT [41] is a graph-based interaction model that learns the question representations
from the question–skill relation graph using a GCN and conducts KT within the
LSTM framework.

Among the baseline models, the former three are skill-based models, in which the KT
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Table 5.4: Comparisons of di�erent learning models

Category
Representative

Work

Typical

Technique

Data Source
Use of Skill

Consider

Sequence
Order

Problem/Skill

Representation
Di�culty

Q-S

Relation
KS

Elapsed

time

Probabilistic Model BKT HMM, Bayesian Network parameters — × × × single X

Factor Analysis Model KTM Factorization Machine parameters
skill-level,
constant

× × × multiple ×

Deep Learning Model DKT, DKVMN RNN, LSTM, MANN
one-hot

encoding
— × × × single X

Graph-based Model
GIKT GCN

dense
embedding

constant X × × multiple X

Our model Metapath2Vec
convolutional dense

embedding
multi-level,

adaptive
X X X multiple X

is based on the skills contained in the questions. The latter �ve and the proposed
model are question-based models that account for the distinctive question information.
The di�erent types of models are compared in Table 5.4.

5.3.3 Setup and Implementation

Before conducting the experiments, we extracted 20% of the sequences in the dataset as
the test set and retained the remaining 80% as the training set.

To embed the nodes in the graph using Metapath2Vec, we set the length of all
meta-paths as ℘ = 7 and the number of paths as ℵ = 100 for each question node in the
graph. The embedding dimension 3 of the skill and question representations was set to
128. The �nal dimension of the convolutional question representation was 3 ′ = 256.
The size of the hidden layers of the LSTM was set to 256. The other hyperparameters
were set through grid searching. The embedding matrix of the correctness and all
parameter matrices in the networks were randomly initialized and updated through
the training process.

The model was optimized using Adam optimization of the learning rate on a
case-by-case basis in the three datasets. The norm clipping threshold and batch size
were maintained at 10 and 64, respectively. Similarly to the existing models, the
sequence length of the model input was �xed at 200. Accordingly, the long sequences
were divided into several short sequences and the short sequences were padded with
null symbols to extend their length to 200.

The proposed model was implemented using TensorFlow. Our model was tested
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over 50 epochs because it converged over that period. The other baselines were
implemented with their best parameter settings, as speci�ed in the original works.

5.4 Results and Analysis

This section presents the experimental results and model analysis. To answer our �rst
research question in subsection 5.3.1, subsection 5.4.1 compares the learner-score
prediction performances of our proposed KSGKT model and all baseline models. The
other �ve questions are answered in relevant model analyses. In subsection 5.4.2, the
contribution of the embedding learning on the KS-enhanced graph is evaluated in an
ablation study and the second question is answered. Subsection 5.4.3 presents the
visualization of the question embedding learned on the graph and answers the third
question. Subsection 5.4.4 and 5.4.5 compare the eight methods for KS discovery and
verify the interpretability of the inferred KS, and the fourth question is answered.
To answer the �fth and sixth research questions, the contributions of two separate
components (convolutional question representation and the attention mechanism) are
evaluated through the ablation studies in subsection 5.4.6 and 5.4.7.

5.4.1 Performance Prediction

The di�erent models were evaluated by their performances in predicting the future
learner scores from the estimated knowledge state. Table 5.5 presents the AUC results
of all models on the three datasets.

Our model outperformed the other models on all three datasets. Speci�cally, the
AUC scores of the KSGKT model were 0.8242, 0.7851, and 0.7754 on the Assist0910,
Assist1213 and EdNet datasets, respectively, 3.97%, 1.39%, and 2.25%, respectively, above
those of the state-of-the-art GIKT model. Similarly to the original DKT model, our
model processes the time-series data using a recurrent neural network framework, but
achieved 8.3%, 5.95% ,and 8.65% higher AUCs than the DKT model on the Assist0910,
Assist1213 and EdNet datasets, respectively.

The skill-based BKT model was the worst performer among the models because
it tracks the mastery of each skill separately, without considering a contextual
trial sequence of all skills. DKT and DKVMN achieved similar performances and
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Table 5.5: Comparisons of the AUC results of di�erent models on the three datasets

Model ASSIST0910 ASSIST1213 EdNet

Skill-based Model
BKT 0.6571 0.6204 0.6027
DKT 0.7412 0.7256 0.6889

DKVMN 0.7559 0.7247 0.6921

Question-based Model

KTM 0.7582 0.7212 0.6899
DKT-Q 0.7306 0.7158 0.6812

DKT-Q&S 0.7616 0.7389 0.7235
DKT-CQE 0.7998 0.7686 0.7523

GIKT 0.7845 0.7712 0.7529
KSGKT 0.8242* 0.7851* 0.7754*

considerably outperformed the BKT model, con�rming the e�ectiveness of applying
deep neural networks to this task; however, they were slightly outperformed by the
other question-based models. KTM framework, which incorporates several traditional
models, typically obtained similar AUC scores to those of DKT and DKVMN. DKT
extended with various input-question embeddings (DKT-Q, DKT-Q&S, and DKT-CQE)
demonstrated noticeable performance di�erences. DKT-Q using the one-hot encoding
of question representations performed much worse than the original DKT model, owing
to the sparsity of question interactions in these datasets. DKT-Q&S and DKT-CQE
decidedly outperformed the original DKT and DKT-Q models, consistent with our
intuition that each question contains distinctive information even when it requires the
same skills as one or more other questions in the dataset. Therefore, incorporating
the distinctive question and skill information into the question representations can
improve the model performance. The comparison between DKT and DKT-CQE
also shows the e�ectiveness of the proposed convolutional question representation.
Moreover, the improvements in the AUC scores of these DKT-extended models were
smaller on Assist1213 than on the other two datasets. As Assist1213 is a single-skill
dataset, incorporating the skill information into the question representation provides
less additional information on this dataset than on the other datasets. Our KSGKT
model outperformed GIKT, validating the e�ectiveness of the proposed KS-enhanced
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Table 5.6: Comparisons of di�erent question-embedding methods in di�erent models
on the three datasets. The best results are marked with *.

Methods ASSIST0910 ASSIST1213 EdNet

DKT 0.7412 0.7256 0.6889
DKT-Q 0.7306 0.7158 0.6812

DKT-Q&S 0.7616 0.7389 0.7235
DKT-CQE 0.7998 0.7686 0.7523

GIKT 0.7845 0.7712 0.7529
KSGKT-Q 0.7409 0.7277 0.6987
KSGKT-S 0.7523 0.7399 0.7043

KSGKT-Q&S 0.7682 0.7464 0.7293
KSGKT-CQE 0.8242* 0.7851* 0.7754*

question–skill graph learning method.

5.4.2 E�ect of Embedding Learning on Graph

Besides the aforementioned three extensions of DKT models, we extended our KSGKT
model with the following question embeddings:

• KSGKT-Q: In this embedding, we removed the module of embedding learning on the
graph and inputted the one-hot question embedding to our KSGKT model.

• KSGKT-S: Similar to the KSGKT-Q embedding, but here we inputted the one-hot
skill embedding to our KSGKT model.

• KSGKT-Q&S: Similar to the KSGKT-Q embedding, but here we concatenated the
question and skill embedding and inputted the result to our KSGKT model.

• KSGKT-CQE: This model was the proposed model, renamed to emphasize that we
learned the convolutional question embedding from the graph and inputted the result
to our KSGKT model.

The AUC performances of the di�erent question-embedding methods in the DKT,
GIKT, and the proposed KSGKT models are displayed in Table 5.6. Herein, we mainly
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compared the one-hot embedding, the GNN-based graph embedding in GIKT, and
the KS-enhanced graph embedding in the proposed KSGKT model. The one-hot
embeddings in the DKT-extended models (DKT, DKT-Q, DKT-Q&S) and the KSGKT-
extended models (KSGKT-Q, KSGKT-S, and KSGKT-Q&S) were outperformed by the
other two embedding methods, validating that the embeddings learned from the graph
incorporate more meaningful information about the graph (i.e., the relations among the
questions and skills). Moreover, the KSGKT-extended models usually outperformed the
corresponding DKT-extended models because they employ an attention mechanism.
Comparing the performances of the DKT-CQE and DKT-extended models (also the
KSGKT-CQE and the KSGKT-extended models), we validated the e�ectiveness of
the KS-enhanced graph embedding method and its ability to improve the existing
models. Comparing the performances of the GIKT and KSGKT-CQE models, we
further con�rmed that embedding learning on our KS-enhanced graph outperformed
embedding learning on the original question–skill graph.

5.4.3 Visualization of Question Embedding Learned on a Graph

Figure 5.5 illustrates the question embeddings learned from the original and KS-
enhanced graphs of Assist0910 and EdNet. For visual clarity, we randomly selected 50
skills and their corresponding questions in the two datasets and scattered the embedding
vectors of these questions in the embedding matrix learned using Metapath2Vec.
Speci�cally, we visualized the high-dimensional data by projecting the high-dimensional
embedding vectors of the questions onto two-dimensional points. The projection was
implemented using t-SNE [159] in Python.

As an example, we enhanced the original question-skill graph using the adjusted
Kappa in Assist0910. As shown in Figure 5.5, the question embeddings of both datasets
were highly structured: questions requiring the same skill tended to be clustered
while questions belonging to di�erent categories were well separated. Moreover, the
question embeddings of the original graphs of both datasets were well separated into
di�erent categories, unlike the distributions in the KS-enhanced graph. This result is
consistent with our motivation, as the KS is intended to bring the skill domain into the
enhanced graph. Therefore, as each question is potentially associated with more skills
(the associated skills plus the prerequisite skills), the distances between questions in
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Figure 5.5: Embeddings of question nodes learned from the graphs of the Assist0910
and EdNet datasets. Each panel presents the questions associated with 50 kinds of
skills in di�erent categories (labeled with di�erent colors). The upper left and right
panels show the question embeddings learned from the original question–skill graph
and the KS-enhanced graph using the adjusted Kappa in Assist0910, respectively. The
lower �gures show the question embeddings learned from the corresponding graphs in
EdNet.

related categories became much closer. Also notable are the di�erent distributions of
the question embeddings learned from the original graphs of the Assist0910 and EdNet
datasets. The boundaries of the questions requiring di�erent skills were much clearer
in the Assist0910 dataset than in EdNet. This result can be traced to the lower average
number of skills related to each question in Assist0910 (1.207) than in EdNet (2.276).
Therefore, a question in EdNet more likely requires multiple skills so the inter-group
distances were much closer in the question embeddings of this dataset.
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(a) Assist0910 (b) EdNet

Figure 5.6: Number of inferred relations in KS using the three methods with di�erent
thresholds on two datasets

(a) number of skills per question (b) number of questions per skill

Figure 5.7: Average number of skills per question and average number of questions per
skill before and after considering the KS on the Assist0910 dataset
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Figure 5.8: KS inferred from the learner response data
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5.4.4 Comparison of KS Inferences by Di�erent Methods

In subsection 5.2.1, we presented eight methods for inferring KS from the response
data. Here we compares the performances of these methods.

The number of relations in the inferred KS can be controlled by a threshold. Here,
the threshold for each method on the three datasets was decided on a case-by-case
basis because the di�erent coe�cients have di�erent ranges. Figure 5.6 shows the
numbers of relations in KS with di�erent thresholds after applying the Cohen Kappa,
adjusted Kappa, and Phi coe�cient on the Assist0910 and EdNet datasets. In our
experiments, we set the threshold of both datasets to 0.2 to obtain a proper number of
relations for the KS. Figure 5.7 compares the average number of skills per question
and the average number of questions per skill before and after considering the KS
on Assist0910. The original numbers of skills per question and questions per skill
were both very low, but after incorporating KS with the questions using various
methods, both values increased by di�erent degrees, indicating that more meaningful
information was included in the question representation.

Figure 5.8 compares the AUC results of the predictions of nine methods on the
three datasets. Here the “original” method represents the embedding learning on
the original question–skill relation graph and the other eight methods are based on
the KS-enhanced graph. As evidenced in the �gure, the eight KS enhanced methods
generally outperformed the “original” method on all three datasets, validating the
e�ectiveness of the KS enhanced graph in KT tasks. The adjusted Kappa yielded the
best performance on both Assist0910 and EdNet, whereas the skill transaction method
performed best on Assist1213.

5.4.5 Visualization of Inferred KS

Figure 5.9 illustrates the KS graphs of four methods, inferred from the learner response
data in Assist0910. The right-hand side of this �gure enlarges a part of the graphs
to show their local connections. The nodes and edges in the KS form dense graphs
with similar structures, showing several interconnected nodes. These graphs also
show some interesting properties. In the adjust-Kappa graph, four nodes (25, 111,
90, and 95) were locally interconnected and revealed a perfect ordering of the skills
(prerequisite and post-requisite relations) in the geometry. The local connections in the
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Figure 5.9: Visualization of the directed KS graphs generated by four methods on
Assist0910

Phi coe�cient graph also presented reasonable relations among the three skills. These
results con�rm that our KS discovery methods can infer prerequisite skill pairs from
the ordering of learners’ mastery of skills.

5.4.6 E�ect of Convolutional Question Representation

To evaluate the e�ectiveness of the convolutional question-representation module, we
fed the following question representations into our KSGKT model:

• KSGKT with only QE: The question embedding learned from the graph was input
to our KSGKT model.

• KSGKT with only SE: The skill embedding learned from the graph was input to our
KSGKT model.

• KSGKT with QE&SE: The question and skill embeddings learned from the graph
were concatenated and input to our KSGKT model.

• KSGKT with CQE: This was the proposed model, renamed to emphasize that the
convolutional question embedding learned from the graph was input to the KSGKT.
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Table 5.7: Comparisons of AUC results of various KSGKT extended models with
di�erent question representations on the three datasets. The best results are marked
with *.

Methods ASSIST09 ASSIST12 EdNet

KSGKT with only QE 0.8005 0.7636 0.7489
KSGKT with only SE 0.8047 0.7569 0.7543
KSGKT with QE&SE 0.8132 0.7764 0.7603

KSGKT with CQE 0.8242* 0.7851* 0.7754*

Table 5.7 compares the performances of the KSGKT extended models. The KSGKT
with the convolutional question embedding achieved the best results on all three
datasets, indicating the e�ectiveness of the convolutional question-representation
module. The KSGKT with QE&SE obtained the second best results, and the KSGKT
with SE alone generally outperformed the KSGKT with QE alone (the exception was the
Assist1213 dataset). The convolutional question representation acquires the distinctive
features of the questions and also their interactions, thus improving the performance
of the proposed model.

5.4.7 E�ects of the Three Attention-calculating Methods

Table 5.8 compares the performances of the three attention methods on the datasets.
The proposed method with the combined attention method far outperformed the
proposed method with the shared skill-based and question similarity-based methods,
indicating that incorporating the knowledge states of many related questions improved
the model performance. However, the models with all three attention-calculating
models signi�cantly outperformed the model without attention, con�rming that the
attention mechanism bene�ts the KT task. This result is consistent with existing work
[126, 127, 1], which reported that learners’ past experience on related questions a�ects
the performance on the current question.
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Table 5.8: Comparison of AUC results of the proposed model with three attention-
calculating methods on the three datasets. Best results are marked with *.

Methods ASSIST0910 ASSIST1213 EdNet

Without attention 0.7998 0.7686 0.7523
shared skill-based attention 0.8229 0.7784 0.7729
question similarity-based attention 0.8233 0.7839 0.7727
combined attention 0.8242* 0.7851* 0.7754*
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Figure 5.10: Obtaining a learner’ knowledge state of each skill through interaction
between the hidden knowledge states in the network and skill representation. The heat
map on the right shows the evolution of the learner’s skill mastery before and after
attempting a series of questions. Each cell in the map indicates the learner’s mastery of
a speci�c skill at some time point. Over time, the mastery level increases from low
(orange) to high (green) as the learner gradually masters the skills.
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5.5 Case study

Most of the existing tutoring systems provide learners only with coarse-grained
information such as correct/incorrect feedback or the score/rank of their exercise
process [51, 33]. From a tutoring viewpoint, learners who understand the strengths
and weaknesses of their knowledge points can remedy these weaknesses and improve
themselves through self-regulated learning. From a teaching viewpoint, a comprehen-
sive diagnostic report would help teachers identify the knowledge levels of both the
whole class and individual students. Based on this information, they can design and
provide timely interventions of the learning procedures.

Our model can easily generate a diagnostic report and provide the dynamic
evolution of learners’ mastery of each skill over time. Figure 5.10 shows the procedure
of obtaining the dynamic skill mastery of learners. When a learner attempts a series of
questions, the hidden layer of the network retains the relevant information in the
learners’ exercising history. Intuitively, this knowledge retention can be considered as
an embedding of the general knowledge states of the learner [10] (shown as ℎ8 ). As the
hidden vector and the skill embedding representation have the same dimension, we
can map the hidden knowledge states vector and the skill embedding vector to the
same space. The mastery level of each skill is then computed as

<(B:) = f (ℎ8 � B:) ∈ [0, 1] (5.17)

where f (D) = 1/(1+4G? (−D)) is the sigmoid function and � refers to the inner product.
The right-hand side of Figure 5.10 illustrates the mastery levels of a learner on �ve
skills in the Assist0910 dataset. Note that the skill mastery steadily evolved as the
learner gradually mastered all �ve skills after attempting 21 questions. Assisted by this
�ne-grained diagnostic report, learners can focus on their weak knowledge without
repeated training on their already mastered skills. This enlightenment will greatly
improve students’ learning e�ciency.

Moreover, adaptive services such as remedial learning materials that meet learners’
individual needs can be automatically provided based on the obtained knowledge
mastery [12, 51]. Besides obtaining the required and prerequisite skills for solving a
problem, our question-representation method infers the cognitive di�culty of the
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question from a learner’s exercising history. Content predicted to be incompatible with
the learners’ knowledge level (too easy or too di�cult) can be skipped or delayed,
thereby e�ectively improving the students’ learning paces while maintaining their
engagement [12]. Many tutoring systems use similar exercises to identify whether a
learner has mastered a certain type of exercise [51]. Our proposed method can be
easily implemented for this purpose. In the question embeddings of the question–skill
graph, questions linked by related skills are much closer in the embedding space
than questions requiring di�erent skills; hence, similar questions can be �ltered from
the question bank by performing simple similarity calculations on their embedding
representations.

5.6 Summary

This chapter presented a knowledge structure-enhanced graph representation learning
model for knowledge tracing (KSGKT) with an attention mechanism. By incorporating
the knowledge structure into the knowledge tracing model, the model dynamically
traces the learner’s knowledge pro�ciency, thus alleviating the sparseness of the
interaction data and the neglect of distinctive information related to the questions
themselves and their relations (Issue 2 in this thesis). These problems severely limit
the e�cacies of previous skill-based models.

To automatically obtain the KS in the domain, we �rst explored the abilities of
eight methods to infer the domain KS from learner response data based on the mastery
orders of pairs of skills. After integrating the KS with the KT procedure, we leveraged
a graph-representation learning model and obtained the question and skill embeddings
from the KS enhanced graph. To incorporate more distinctive information regarding
the questions, we proposed a convolutional representation method that fuses the
cognitive question di�culty with the question itself and its associated skill embedding.
We thus obtained a comprehensive representation of each question. Feeding these
representations into the proposed KT model with an attention mechanism, we can
predict the learning performance on new problems. Extensive experiments conducted
from six perspectives on three real-world datasets demonstrated the superiority of our
model for learner performance modeling and KS discovery, validating its potential
applicability to real educational environments.



108
Chapter 5. Knowledge Structure Enhanced Graph Representation Learning

Model for Attentive Learner Knowledge Assessment

Deep learning models, such as the proposed one in this chapter, have obtained
excellent results to model the learning process by leveraging the powerful representation
ability of the deep neural networks in a data-driven manner. However, deep neural
network is regarded as a black-box, and most of the deep learning models retain the
learner knowledge state in one hidden vector or as model parameters [119, 129, 32].
This works well for the prediction of learners’ future performance, but from the
perspective of proving good tutoring services to learners, their �ne-grained knowledge
pro�ciencies in a multi-granularity manner are particularly important. Note that
although we can obtain the learner knowledge state on each skill using Eq. 5.17 in this
chapter, this hidden vector representation of learners’ general knowledge mixes the
knowledge states on all the skills together, making it not precise enough to address
the credit and blame assignment issue [40] for handling multiple KCs. Moreover,
these methods found it di�cult to go deeper into the explanation of the learners’
performances in terms of their current knowledge pro�ciencies and item characteristics.
Hence how to track and explain learners’ evolving knowledge states simultaneously
remains to be an important issue, which will be explored in the next chapter.
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6
Knowledge Interaction Enhanced

Sequential Modeling for Interpretable
Learner Knowledge Assessment

As we have discussed in Section 2.3, the task of learner assessment is to obtain
learner knowledge states based on the learners’ explicit exercising logs. Based on the
di�erent application contexts, this task is addressed by two categories of educational
psychology models: cognitive diagnostic assessment (CDA) models for static testing
and knowledge tracing (KT) models for dynamic learning. For the testing context, CDA
is to obtain the �ne-grained diagnostic reports on learner knowledge instead of just the
ranks or �nal scores. The data for analysis is the learners’ performance data on a single
summative quiz/test with limited items. For the learning context, KT is to obtain the
learners’ long-term evolving knowledge states for the purpose of providing adaptive

The material in this chapter is based on [160, 13]
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tutoring. The input data is generally the learners’ long-term exercising logs in the
systems.

CDA models have good interpretability because of the rich background educational
psychology theories, but they are generally designed for the static assessment, and are
di�cult to meet the requirements of large-scale assessment. KT models dynamically
track the evolution of learner knowledge, but most of the high-performance KT models
are based on the deep neural networks and �nd it di�cult to explain the results. Hence
how to track and explain learners’ evolving knowledge states simultaneously remains
to be an important issue, this is the Issue 3 in this thesis and will be explored in this
chapter.

To alleviate this issue, this chapter proposes a novel model, called the knowledge
interaction-enhanced dynamic CDA (KIEDCDA), to develop learner performance, and
hence, dynamically diagnose and trace the evolution of each learner’s knowledge
pro�ciency during the exercise activities. Section 6.1 introduces the motivation of
our proposed solution. Section 6.2 overviews the proposed solution in this chapter.
Then the proposed KIEDCDA model is detailed in Section 6.3. Section 6.4 explains the
experimental settings, and Section 6.5 presents the experimental results and analysis.
Finally, a summary of this chapter is given in Section 6.6.

6.1 Motivation

Online learning systems have become increasingly intelligent in recent years with
the application of techniques from arti�cial intelligence and cognitive psychology
[14, 161, 162]. These systems generally model learner performance to assess their
latent knowledge states, based on which many further adaptive services are provided
to optimize learner learning. For example, tailored learning activities and support can
be provided to meet individual learning needs and ful�l the diverse capabilities of
learners. Moreover, a timely intervention of learning procedures by designing new
measures and learning materials to remedy the weakness of learners can help teachers
and administrators.

In the literature, massive e�ort has been devoted to both psychometrics and
educational data mining, to propose various CDA models that can extract diagnostic
information in a data-driven manner, such as the item response theory (IRT) [56],
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deterministic inputs, noisy “and” gate model (DINA) [62], multidimensional IRT (MIRT)
[111], and matrix factorization (MF) [66]. These models have achieved great success in
student assessment [114]. However, in practical scenarios, a good rule for setting the
set of KCs for these models, except for IRT-based models, is that the number of KCs
must not be too large (generally less than 10), so as to be statistically supportable
[112, 113], which makes the assessments of a large number of KCs impractical [114],
especially in large-scale adaptive learning environments. Conversely, IRT-based
assessments provide coarse-grained uni- or low-dimensional values to represent the
general pro�ciency of learners, which may not directly represent their strengths
and weaknesses. Despite this limitation, IRT-based models have been widely used in
practical assessment because of their interpretability to explain the learner performance
in terms of the current knowledge pro�ciency and item characteristics. These CDA
models are also generally used in independent assessments at some time points (i.e.,
performing CDA from a static perspective). However, learners’ knowledge construction
process is not static, but evolves over time, because learners learn and forget over time
[9], as has long been converged by educational psychologists [29, 2].

Accordingly, several studies in the �eld of educational data mining have been
conducted to dynamically track the evolution of learners’ knowledge pro�ciency by
considering their long-term exercising procedures. The pioneer model, called deep
knowledge tracing (DKT) is the most popular model [10], which captures complex
representations of student knowledge using the hidden variables of recurrent neural
networks (RNNs). Although it obtains substantial improvement in terms of model
performance, the hidden vector of learners’ general knowledge mixes the knowledge
states on all the KCs together, making it di�cult to explain the mastery degrees of
learners on each speci�c KC. To overcome this issue, a new neural network-based
model, called the dynamic key-value memory network (DKVMN), was proposed
[32] based on the memory-augumented neural network (MANN) [163, 164], which
models students’ knowledge states over all underlying KCs separately using an
auxiliary key-value memory. This model shows a good representation capability to
track and present the evolution of knowledge pro�ciencies on the underlying KCs.
However, DKVMN retains the knowledge acquisition from the exercising sequences
into the network parameters; thus, the causality between the learner performance and
knowledge pro�ciencies is di�cult to explain. Therefore, this chapter proposes a
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dynamic CDA model that incorporates not only the ability to trace the evolution
of learners’ knowledge pro�ciencies over time for large-scale assessments such as
DKVMN, but also the interpretability to explain learner performance in terms of their
current knowledge pro�ciency and item characteristics (e.g., IRT).

Meanwhile, previous experiences in exercise solving can a�ect the future ones
because of the interdependencies between the KCs in these items (i.e., the prerequisites
between pedagogical concepts). However, exploring the modeling of the skill interac-
tion (specifying the interaction among KCs) for learner knowledge assessment is
considerably underexplored because most of the CDA and KT models simply assume
that all items and KCs are independent of each other. In the real world, when learners
acquire knowledge growth from a certain item incorporating skill  �1, they also
improve the attainment of skill  �2 to some extent, which we refer to herein as
knowledge interaction. In the Chapter 5, we have explored to automatically discover the
knowledge interaction of skills from learner response data by ordering the learners’
mastery of skills. However, this method is separate from the KT procedure and may
obtain imprecise results during a cold start. To cope with this, in this chapter we
integrate the processes of knowledge interaction modeling and learner assessment
together and optimize them simultaneously using the deep learning framework.

This chapter proposes a new dynamic CDA model, called the KIEDCDA model,
which provides four advantages over the existing models.

• The KIEDCDA model uni�es the strengths of the memory capacity of the
key-value memory network to enhance the representation of the knowledge
states during exercise solving, as well as the ability to trace the evolution of
learners’ knowledge pro�ciencies over time for large-scale assessments, and the
interpretability of IRT to explain learner performance in terms of their current
knowledge pro�ciency and item characteristics.

• The KIEDCDA model exploits the interdependencies between the KCs from
the knowledge structure to incorporate the knowledge interaction into the
CDA procedure. In modeling the learner learning, it automatically learns the
interdependencies between the KCs from the learners’ exercising logs. This
knowledge interaction procedure not only improves the precision to infer the
dynamic knowledge pro�ciencies of learners but also enhances the ability to
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Figure 6.1: Framework of the proposed dynamic CDA.

capture the long-term dependencies in the exercise sequence.

• The KIEDCDA model can not only output the learners’ knowledge pro�ciencies
in a multi-granularity manner but also output the item characteristics to better
model the learner performance.

Comprehensive experimental evaluations from six perspectives on �ve real-world
datasets are conducted to test the proposed model. The results demonstrate the
superiority and interpretability of our method in dynamically modeling the learning
performance.

6.2 Solution Overview

The framework of the proposed KIEDCDA model is shown in Figure 6.1. After inputting
the learners’ exercise records, the KIEDCDA model begins to perform the learner
performance modeling on these records from timestamp C1 to the latest timestamp.
Speci�cally, the model conducts a diagnosis assessment from two inter-connected
aspects: domain modeling and learning process modeling. Domain modeling studies
the factors within a domain of items that may a�ect the leaner performance, and
learning process modeling considers a learner’s real learning process. Our model
establishes these two aspects because a learner’s performance on items is highly
related to his/her previous learning process, as well as the items he/she has interacted
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with. We perform domain modeling from three aspects: cognitive item di�culty, item
discrimination, and knowledge interaction. The former two are characteristics related
to each item (as considered in IRT). The knowledge interaction models the interaction
e�ect between di�erent KCs in the de�ned domain. Moreover, the learning process is
modeled by considering the learners’ dynamic learning and forgetting procedures.
The evolution of the learners’ knowledge pro�ciencies and the item characteristics
can be obtained after performing the dynamic CDA. Coarse- and �ne-granularity
pro�ciencies can both be obtained, providing a more delicate proof for further adaptive
services. Furthermore, the cognitive item di�culty and discrimination for each learner
on each item at the current timestamp are obtained, making it possible to delve deep
into the causality between the learner performance and his/her pro�ciency and item
characteristics. The knowledge interaction matrix can also be automatically learned
from the input data, which can be potentially used to analyze the structure of KCs
within a de�ned domain.

6.3 KIEDCDA

This section presents the proposed KIEDCDA model. First, we introduce the KIEDCDA
model architecture and then show how previous learning procedures are encoded into
the network and utilized to model the learner performance.

6.3.1 Model Architecture

Figure 6.2 shows the KIEDCDA model architecture augmented by a key-value memory
following [32], to trace the evolution of learners’ knowledge pro�ciencies over time for
a large-scale assessment, and the IRT framework to enable the interpretability of
explaining the learners’ performances in terms of their current knowledge pro�ciencies
and item characteristics. The key-value memory 〈" , "+

C 〉 (green part, Figure 6.2) is a
pair of external memory for storing paired parameters in the model. " with size
# × 3: is a static matrix for storing all embedded # underlying KCs with dimension
3: . "+

C with size # × 3E is a dynamic matrix for recording a learner’s knowledge
pro�ciency of the corresponding KC at timestamp C (i.e., "+

C is di�erent from "+
C+1

because a learner’s pro�ciencies evolve over time). Every time a learner attempts an
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multiplication and concatenation of vectors, respectively.

item with some underlying KCs, the corresponding space in "+
C is updated based on

the pro�ciency change through the currently attempted item. Therefore, the key-value
memory acquires a pro�ciency change based only on the most recent item and fails to
capture the impact of knowledge interaction of the previously attempted exercises on
the current one (i.e., the long-term dependencies in the exercising sequence). To cope
with this, we incorporate a knowledge interaction matrix " � (blue part, Figure 6.2) to
model the interactions between each pair of KCs. This process considers the in�uence
of the knowledge pro�ciency growth Δ"+

C−� :C by attempting the latest � previous
items in the exercising sequence to the KCs in the current item, and thus, further
improving precision in inferring current learner pro�ciencies. Therefore, we use the
pro�ciencies in "+

C and the knowledge interaction procedure to infer the learners’ real
ability. To accurately model the item di�culty to the performance of learners, we
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consider the previous items and KCs trained in the learners’ exercise-solving history to
model the learner-oriented cognitive item di�culty for the current item (orange part,
Figure 6.2). Moreover, the item discrimination for each item is modeled based on the
KCs contained in each item. Finally, the IRT framework is used to explain the learner
performance (?C ) in terms of their pro�ciencies ("+

C and \ ) and item characteristics (0
and 1) (pink part, Figure 6.2).

In the subsequent subsections, we will specify how the KIEDCDA model worked to
perform a dynamic CDA.

6.3.2 Input

The models take the current item@C and the previously attempted items in the exercising
sequence as the input. Item @C is �rst embedded into a vector :C with dimension 3: by
looking up an embedding matrix � ∈ R�×3: .

:C = 4<14338=6(@C , �) (6.1)

Each of the previous items is labeled with the pro�ciency matrix "+
C at a speci�c

timestamp.

6.3.3 Learning Procedure Encoding

Given the input to our model, it must encode the interaction procedures between
the learners and items to the network by conducting domain and learning process
modeling. The relevant details are as follows:

Item–KC Correction: After obtaining the embedding vector :C of item @C , our
model will query the KC embedding matrix " to �nd the correction between item @C

and the underlying KCs in " . A correction vectorFC can be obtained by computing
the softmax of the inner product between :C and all slots in " , where the element
FC (8) represents the degree of dependence on the speci�c KC to solve the item.

FC (8) = B> 5 C<0G (:)C " (8)) (6.2)

Knowledge Interaction: The knowledge interaction captures the long-term
dependencies in the exercising sequence to model the in�uence of a previous experience
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to the current item. Our model evaluates the knowledge interaction based on a
knowledge interaction matrix " � and the latest previous � items. " � is a symmetric
matrix, in which each element �8 9 represents the impact of KC B8 on B 9 . Note that the
elements in the diagonal direction are set to 1, and �8 9 and � 98 are always equal. � is a
hyperparameter for modeling the in�uence of the previous � items to the current one.
It calculates the in�uence of the pro�ciency changes by attempting these � items to
the KCs in the current item. Note that every time a learner attempts an item, only
the slots of the involved KCs in the pro�ciency matrix "+

C are updated. Therefore
we calculate the pro�ciency changes Δ"+

C−� :C (in the following, we will use Δ"+ for
convenience) from timestamp C −� to C by subtracting "+

C−� from "+
C . The in�uence

vector ℎC is calculated as follows:

Δ"+ = "+
C −"+

C−� (6.3)

ℎC = (Δ"+ ))" �FC =

#∑
8=1

#∑
9=1

Δ"+ (8)�8 9F 9 (6.4)

Knowledge Pro�ciency on Current Item: With the item–KC correction vector,
learners’ knowledge pro�ciencies on the current item can be retrieved from the
pro�ciency matrix "+

C . However, considering the knowledge interaction of the
accumulated long-term experience to the current item, we calculate the learners’
knowledge pro�ciencies herein by incorporating them together (i.e., the knowledge
evolution is based on the knowledge growth from not only the latest item but also a
previous experience). We calculate the KC-wise weighted sum of "+

C (8) andFC (8) as
AC to retrieve the pro�ciencies of related KCs from "+

C , and concatenate it with the
in�uence vector ℎC of the previous experience to obtain the �nal knowledge pro�ciency
vector 5C on the current item @C .

AC =

#∑
8=1

FC (8)"+
C (8) (6.5)

5C = 2>=20C4=0C4 [AC , ℎC ] (6.6)
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Item Discrimination: The item discrimination describes how well an item can
di�erentiate learners who have mastered the involved KCs from those who have not
[56]. The discrimination highly depends on the item itself and the KCs involved in the
item. Following [165], we calculate the item discrimination from the KCs corresponding
to the item. We speci�cally use the item–KC correction as the weight to sum the KC
embeddings in " and obtain a vector 2C with 3: dimension. We then concatenate it
with the embedding vector :C of item @C to obtain the �nal item discrimination vector 8C .

2C =

#∑
8=1

FC (8)" (8) (6.7)

8C = 2>=20C4=0C4 [2C , :C ] (6.8)

Cognitive Item Di�culty: We use the cognitive item di�culty proposed in
Section 4.3.1 to model the learner-oriented item di�culty in the dynamic learning
process based on the learners’ current cognition (i.e., their current cognitive structures
built during the exercising solving procedure). The cognitive di�culty Ψ8C4<,C and Ψ:2,C

from the aspects of the previous same items and KCs are calculated using Eq. 4.2. Then
we represent them as one-hot vectors of length 2 + 1. We can obtain the �nal cognitive
di�culty vector of item @C by concatenating them and the embedding vector :C .

3C−8C4< = >=4ℎ>C (Ψ8C4<,C ) (6.9)

3C−:2 = >=4ℎ>C (Ψ:2,C ) (6.10)

9C = 2>=20C4=0C4 [3C−8C4<, 3C−:2, :C ] (6.11)

Pro�ciency Update: After a learner attempts an item, our model will update his
pro�ciencies in the pro�ciency matrix "+

C based on the knowledge attainment from
attempting this item. The updating rule aims to change the pro�ciency of the KCs
involved in the current item whether learners attempt correctly or incorrectly on the
current item. Figure 6.3 shows the updating process for changing "+

C to "+
C+1.

Following [123], our model considers the attainment from attempting the current
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timestamp C to "+
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item and the learners’ current knowledge pro�ciencies to update the pro�ciency
matrix. The current item @C and the correctness of the learner’s answer ;C , as well as
the learner’s current knowledge pro�ciency are speci�cally input to the update module.
We �rst represent @C and ;C as a vector GC and embed it by looking up an embedding
matrix � ∈ R2�×3E to obtain the �nal representation EC for this learning log. The EC and
5C concatenation is then input into this updating module.

GC ∈ {0, 1}2� :

G
@C
C = 1, 8 5 ;C = 0

G
@C+�
C = 1, 8 5 ;C = 1

(6.12)

EC = 4<14338=6(GC , �) (6.13)

DC = 2>=20C4=0C4 [EC , 5C ] (6.14)

Similar to general memory networks [32], the updating process incorporates two
gates: erase gate and add gate. The erase gate controls the information to be erased
from the pro�ciency matrix that captures the forgetting behavior of learners in the
learning process. The add gate mimics the learning behavior of learners because it
controls the information to be added into the pro�ciency matrix due to knowledge
growth. Thus, an erase vector 4C and an add vector 6C can be obtained. The updating
process for "+

C to transit to "+
C+1 is described as follows:

4C = B86<>83 (,4DC + 14) (6.15)
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6C = C0=ℎ(,6DC + 16) (6.16)

"+
C+1(8) = "+

C (8) ⊗ [1 −FC (8)4C ] +FC (8)6C (6.17)

6.3.4 Learner Performance Modeling

The learner performance can be modeled after encoding the learning procedure into
the network. We have already obtained a learner’s current knowledge pro�ciency
vector 5C , the item discrimination vector 8C , and the cognitive item di�culty vector
9C on the current item. Thus, we now use the IRT framework to model the learner
performance and obtain the explainable causality between the learner’s pro�ciency
and item characteristics.

Before inputting these components into IRT, deep neural networks are used to
automatically learn high-order, nonlinear features from these vectors and transform
them into meaningful values. Three DNNs (i.e., �##1, �##2, and �##3) are used
herein to obtain three parameters in IRT: learner ability \ , item discrimination 0, and
item di�culty 1. The learner performance on item @C is modeled in Eq. (23) as ?C .
Following the existing study [166, 56] on the requirements of item discrimination and
di�culty, we normalize both to the [-4,4] range in Eqs. (21) and (22).

\ = �##1(5C ) (6.18)

0 = 8 × (B86<>83 (�##2(8C )) − 0.5) (6.19)

1 = 8 × (B86<>83 (�##3( 9C )) − 0.5) (6.20)

?C =
1

1 + 4−1.70(\−1)
(6.21)
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6.3.5 Optimization

The cross-entropy loss was used to optimize our model by minimizing the following
objective function between the true answer ;C and the predicted performance ?C on
each item in the sequence.

L = −
∑

C∈[1:) ]
(;C;>6 ?C + (1 − ;C );>6(1 − ?C )) (6.22)

All the model and network parameters are updated in each iteration by minimizing
the above loss function using Adam optimization.

6.4 Experimental Settings

Several experiments are conducted to evaluate the proposed KIEDCDA model on �ve
public real-world datasets for various tasks. This section describes the experimental
settings, including the aims, datasets, comparison baselines, setup and implementation,
and evaluation metrics. The detailed experimental results and model analysis are
presented in the next section.

6.4.1 Experimental Aims

We conduct experiments to answer the following questions:

1. Based on the inferred knowledge pro�ciency from the exercise history, how does
KIEDCDA perform on predicting a learner’s performance on new items? (see
Section 6.5.1)

2. What is the optimal set of hyperparameters for the neural network of KIEDCDA
and their sensitivities? (see Section 6.5.2.A.)

3. Up to what degree are the contributions of each KIEDCDA component to the
performance of the whole model? (see Section 6.5.3)

4. How does KIEDCDA perform on capturing the knowledge interaction between
each latent KC? (see Section 6.5.2.B.)
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Table 6.1: Comparison of the characteristics of our model and the baseline models.
Model Model Character Domain modeling Knowledge Modeling Dynamic

IntepretationKnowledge
Interaction

Concept
Discovery

Item
discrimination

Item
di�culty

Evolution of KC
pro�ciency

Score
Prediction

IRT × × X constant × X X
MIRT × × X constant X X X
LFA × × × constant × X ×
PFA × × × constant × X ×
KTM × × × constant × X ×
DKT × × × × × X ×
DKVMN × X × constant X X ×
KIEDCDA X X X Adaptive Multi-granularity X X

5. How does KIEDCDA perform on discovering the correlation between items and
latent KCs? (see Section 6.5.2.C.)

6. How does KIEDCDA perform on knowledge and domain modeling (i.e., capturing
the evolution of knowledge pro�ciency and item parameters) in the speci�c
domain? (see Section 6.5.4)

6.4.2 Datasets and Baseline Models

Five well-established datasets were used to conduct the experiments, namely Alge-
bra0506, Statics2011, Assist0910, Bridge2Algebra0607, and Assist1213, the detail of
these datasets are described in Section 3.2. We compare the proposed KIEDCDA
model with seven of the best-known state-of-the-art models (i.e., DKT, DKVMN, KTM,
IRT, MIRT, PFA, and LFA) to demonstrate its e�ectiveness. These models are chosen
because of their predominance in either educational psychometrics (i.e., IRT and MIRT)
or educational data mining (i.e., DKT, DKVMN, KTM, PFA, and LFA); the �rst three are
also the best performers in this �eld. DKT and DKVMN are neural network models.
KTM is based on the factorization machine in the data mining �eld, while the other
models are non-neural network models. The model details are elaborated below:

• IRT: IRT [56] is a basic model, which is the most popular CDA model. It is a regression
model used to model the probability of a student answering an item correctly based
on his/her ability and the item di�culty.
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• MIRT: MIRT [111] extends IRT by considering the interactions of the multidimensional
embedding vectors of the learner ability and the item di�culty.

• LFA: LFA [95] is a factor analysis model that models the probability of attempting an
item correctly by considering the di�culty of the KCs involved in the item and the
number of attempts on items requiring the involved KCs.

• PFA: PFA [96] improves the LFA by considering successful and failed attempts
separately. Both PFA and LFA assume that learners share the same learning rate in
their learning process.

• KTM: KTM [30] is a newly proposed model based on the factorization machine. It
models the probability of exercising results (right or wrong) based on a sparse set of
weights for all features in a sample. It is a generic framework that incorporates side
information (e.g., users, items, skills, win and fail attempts) into the student model
[29].

• DKT: DKT[10] is the �rst model to use a deep neural network for conducting CDA.
It considers the prediction of learner knowledge as a sequence learning task and
leverages recurrent neural networks to capture the complex representations of student
knowledge using the hidden variables of RNNs. By learning from the input sequences
of the students’ learning history, the hidden layer retains relevant information that
can be intuitively seen as embedding the knowledge states of learners [119].

• DKVMN: DKVMN [32] is a recent state-of-the-art deep learning-based model that
establishes learners’ knowledge states using an auxiliary memory to augment the
neural networks. It embeds the skill information into a key matrix and accumulates
temporal information from the learners’ exercising sequences to infer their knowledge
states on these skills. It then stores them into a value matrix. However, it considers
the changing of the knowledge state only from the most recent item, and does not
consider knowledge interaction among skills, as well as the cognitive item di�culty.

For a better illustration, we show the model characteristics in Table 6.1.

6.4.3 Setup and Implementation

Before conducting the experiments, we take 30% of the sequences in a dataset as the
test set and the other 70% as the training set, and perform a �ve-fold cross-validation
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on the training set to �nd the optimal set of hyperparameters through grid search.
We run the training and evaluation processes for �ve times during the test phase;
hence, the mean and standard deviation of the experimental results are reported in the
experimental analysis.

The item embedding matrix A, item-response embedding matrix B, key memory
matrix " , value memory matrix "+ , and other model parameters (W and b) are
randomly initialized from a Gaussian distribution with a zero mean and a standard
deviation of 0.1. For the knowledge interaction matrix " � , we use an initializer from
the standard uniform distribution to keep the interaction coe�cient of each KC pair
between the range of 0 and 1. We only use the coe�cients in the upper triangle and
set the same value for the corresponding coe�cients in the lower triangle to ensure
" � as a symmetric matrix. All parameters are learned in the training procedure by
optimizing the model using cross-entropy loss.

We optimize the model using Adam optimization with the learning rate case-by-case
in the �ve datasets, and consistently set the the norm clipping threshold to 10 and the
batch size to 32. The sequence length to input into the model is �xed to 200. Thus, long
sequences are divided into several short ones and short sequences are padded with a
null symbol to maintain it at a length of 200.

We use the open source to implement KTM1, and DKVMN2. The proposed model
and DKT are implemented using TensorFlow. We conduct the IRT, MIRT, LFA and AFA
experiments on all datasets based on the KTM framework. KTM is implemented using
various features, including items, skills, wins, and fails. The size of the hidden layers
for the DKT model is chosen from {10, 50, 100, 200}. Meanwhile, the size of the key
memory matrix " for DKVMN and the proposed KIEDCDA model is chosen from {5,
10, 20, 50, 100}. The dimension of the key and the value memory slot are chosen from
{10, 50, 100, 200}. For the proposed KIEDCDA model, we set the latest previous items
considered in the knowledge interaction process for the current item from {1, 5, 10, 20,
50}. We simplify the grid search in quite a large search space by setting 3: = 3E , to
make the dimension of the key and value memory slot similar. Our model is tested for
50 epochs because it is su�cient for the model convergence. For the other baselines,
we follow the settings of the best parameters in the original work. All models are

1https://github.com/jilljenn/ktm
2https://github.com/jennyzhang0215/DKVMN

https://github.com/jilljenn/ktm
https://github.com/jennyzhang0215/DKVMN
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Table 6.2: Comparisons of the AUC results among di�erent models on the �ve datasets.
Test AUC (%)

Dataset
KIEDCDA DKT DKVMN KTM IRT MIRT PFA LFA

Algebra0506 85.09 +/- 0.04 82.94+/-0.20 84.21 +/- 0.17 72.79+/-1.05 77.11+/-0.41 77.21+/-0.93 75.38+/-0.95 72.15+/-0.46
Statics2011 82.74+/-0.04 80.46+/-0.35 82.77+/-0.07 80.31+/-0.56 78.61+/-0.33 78.44+/-0.35 68.40+/-0.99 65.40+/-0.37
Assist0910 83.08 +/- 0.27 80.97+/-0.12 81.49+-/0.06 73.82+/-0.40 67.70+/-0.13 67.69+/-0.55 69.98+/-0.70 62.09+/-0.47
Bridge2Algebra0607 79.72 +/- 0.32 77.55+/-0.43 79.03+/-0.06 77.43+/-0.86 74.76+/-0.44 74.70+/-0.23 74.53+/-0.32 70.67+/-0.62
Assist1213 73.43 +/- 0.09 72.12+/-0.10 72.66+/-0.11 73.42+/-0.07 70.18+/-0.25 70.13+/-0.19 66.89+/-0.21 60.99+/-0.13

trained and tested on the same training and testing sets.
To report the results, the widely used AUC, ACC and NLL are used as the evaluation

metrics. The details of these metrics are described in Section 3.3.

6.5 Results and Analysis

This section presents the experimental results. We answer the �rst research question in
Section 5.1 by comparing the learner score prediction performances of our proposed
KIEDCDA model and all baseline models in Section 6.1. We conduct a model analysis
from the three aspects in Section 6.2 to answer the second, fourth, and �fth questions.
In Section 6.3, we conduct an ablation study to evaluate the contributions of each
KIEDCDA component and answer the third question. Section 6.4 presents the KIEDCDA
results on knowledge and domain modeling. We present its abilities for tracing the
evolution of the multi-granularity knowledge pro�ciency and item parameters to
answer the sixth question.

6.5.1 Learner Performance Prediction

We claim herein that the proposed KIEDCDA model can infer the current knowledge
pro�ciency of learners based on their exercising history. Directly evaluating this
estimated information is not easy because obtaining the actual knowledge pro�ciency
in the human brain is di�cult [2]. As an alternative, following the existing studies
[56, 95, 96, 30, 32] , we evaluate herein the models by the performance of learner score
prediction in the future based on the estimated current knowledge pro�ciency. We also
compare our KIEDCDA model with all baseline models on �ve datasets. Table 6.2
presents the AUC results of all models. Figure 6.4 depicts the ACC and Loss results.
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Figure 6.4: Comparisons of the ACC and Loss results among di�erent models on the
�ve datasets. The upper bar graph shows the comparisons of ACC. The lower graph
illustrates the comparisons of Loss.

Our model outperforms the other models over all �ve datasets, except on the
Statics2011 dataset, where it obtains a slightly smaller AUC compared to the DKVMN
model. However, it has a much larger ACC and a smaller Loss than DKVMN on that
dataset. In the Algebra0506 dataset, our KIEDCDA model achieves the best average test
AUC of 85.09%; DKT obtains an AUC of 82.94%, and DKVMN ranks the second best at
84.21%. The other models only obtain an AUC of less than 78%. In the Statics2011, our
model and DKVMN obtain very similar results, which is probably because Statics2011
has the smallest number of learners and total items and the fewest interaction entries
between the learners and the items. Compared to the DKVMN model, this data volume
may not be good enough for a more complex network structure of KIEDCDA in
terms of optimizing more parameters; however, both models are better than the other
models by at least 2% AUC. Our model outperforms all other models in the Assist0910,
Bridge2Algebra0607 and Assist1213 datasets. In the Assist1213, KTM is the second-best
performer with an AUC of 73.42%, which is slightly smaller than that of the KIEDCDA
model, but is still better than DKVMN and DKT. The overall performance of all models
on Assist1213 is the lowest among all datasets, indicating the di�culty of performance
prediction on this dataset caused by the large numbers of learners and the small
number of average attempted items per learner, which makes the training process
di�cult considering the limited sequence information that can be utilized. The ACC
comparisons in Figure 6.4 also show that our KIEDCDA model outperforms all other
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models in all �ve datasets. The Loss comparisons also illustrate a similar property.
Furthermore, the neural network-based methods present better performances than the
non-neural-network models on this task.

In summary, KIEDCDA shows the best performance for the learner score prediction
task compared to all state-of-the-art models while achieving the second-best AUC
among all models on the Statics2011 dataset; however, note that the results it obtained
are very close to the best results obtained by DKVMN. DKVMN generally has the
second-best performance except on the Assist1213 dataset. These results demonstrate
that our KIEDCDA can utilize the knowledge interaction of the previous exercising
history on the current item and the cognitive item di�culty to better estimate the
learners’ current knowledge pro�ciency and predict their future performance based on
this information.

6.5.2 Model Analysis

In this subsection, we further deeply analyze our proposed model on three aspects:
parameter sensitivity, the ability to model the knowledge interaction between the
latent KCs, and ability to discover the underlying KCs for each item.

A. Sensitivity of the Model Parameters

We will now discuss the parameter sensitivity in the proposed KIEDCDA model.
Speci�cally, three hyperparameters are crucial for the model performance: the number
of slots in the key memory matrix (<.B8I4), which represents the number of latent
skills; the dimension of each slot in the key memory matrix (B .38<), which indicates the
dimension of skill representation; and the number of latest previous exercising records
(i.e., related items), considered in the knowledge interaction procedure (A8 .=D<). We
consider di�erent sets of these three parameters and analyze their in�uence on the
AUC results of the learner performance prediction.

Table 6.3 shows the results of di�erent parameter sets on the �ve datasets. We report
<.B8I4 = {5, 10, 20, 50} for the Statics2011 dataset because when the m.size is larger
than 50, it does not result in any improvement. We report<.B8I4 = {10, 20, 50, 100} for
the other four datasets for the same reason of the m.size being smaller than 10. Fixed
on each<.B8I4 , we set B .38< = {10, 50, 100, 200} and A8 .=D< = {1, 5, 10, 20, 50} and test
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Table 6.3: Comparisons of AUC results using di�erent hyperparameter sets.
Algebra0506 Statics2011 Assist0910 Bridge2Algebra0506 Assist1213

m.size s.dim ri.num AUC m.size s.dim ri.num AUC m.size s.dim ri.num AUC m.size s.dim ri.num AUC m.size s.dim ri.num AUC

10 10 5 84.15 5 10 1 82.61 10 10 1 82.91 10 10 10 78.68 10 10 1 72.82
10 50 5 84.48 5 50 20 82.74 10 50 10 82.89 10 50 1 79.13 10 50 5 72.91
10 100 20 84.77 5 100 10 82.57 10 100 50 82.81 10 100 5 79.32 10 100 5 73.05
10 200 5 84.89 5 200 20 82.72 10 200 10 82.33 10 200 1 79.39 10 200 10 73.01

20 10 10 83.73 10 10 50 82.63 20 10 10 82.92 20 10 10 79.01 20 10 5 72.92
20 50 50 84.35 10 50 20 82.71 20 50 1 82.80 20 50 5 79.17 20 50 5 73.00
20 100 1 84.95 10 100 5 82.32 20 100 50 82.68 20 100 5 79.38 20 100 50 73.11
20 200 5 85.03 10 200 1 82.69 20 200 50 81.91 20 200 1 79.39 20 200 20 73.14

50 10 5 83.72 20 10 1 82.54 50 10 1 83.08 50 10 20 78.91 50 10 10 73.07
50 50 5 84.42 20 50 5 82.56 50 50 1 83.01 50 50 20 79.03 50 50 5 73.18
50 100 1 84.68 20 100 10 82.63 50 100 50 82.59 50 100 1 79.36 50 100 5 73.42
50 200 5 85.02 20 200 1 82.23 50 200 5 82.52 50 200 10 79.72 50 200 50 73.04

100 10 1 83.84 50 10 5 82.11 100 10 10 82.71 100 10 10 78.94 100 10 20 73.05
100 50 5 84.22 50 50 5 82.65 100 50 1 82.89 100 50 5 78.87 100 50 10 73.02
100 100 10 84.69 50 100 50 82.49 100 100 20 82.61 100 100 1 79.32 100 100 5 73.17
100 200 10 85.09 50 200 1 82.41 100 200 20 82.77 100 200 5 79.14 100 200 1 73.10
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Figure 6.5: Impact of di�erent A8 .=D< on the �ve datasets.

the combinations for all datasets. We only report herein the best AUC results on each
<.B8I4 and B .38< combination and on a speci�c value in A8 .=D<.

In the Algebra0506 dataset, the AUC results show an increasing trend with the
increasing B .38< on each �xed<.B8I4 and achieve the best result with<.B8I4 = 100,
B .38< = 200, and A8 .=D< = 10. In Statics2011, the AUC results are relatively steady. No
large AUC gap is found, even for the small {5,10,1} and large {50,200,1} groups of the
three parameters. It achieves the best results with only a few key memory slots and
dimensions at {5,50,20}. Meanwhile, in Assist0910, the AUC gradually decreases with
the increasing B .38< on each group of �xed<.B8I4 until<.B8I4 reaches 100 and obtains
the best AUC at {50,10,1}. The di�erent B .38< and A8 .=D< settings do not lead to huge
changes in the AUC results when the<.B8I4 is equal to 100. In Bridge2Algebra0607, the
best AUC results in the group of the same<.B8I4 generally show an increasing trend
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with the increasing<.B8I4 until<.B8I4 reaches 100. The best result for this dataset is
obtained at {50,200,10}. The AUC results gradually decrease with<.B8I4 = 100. In the
Assist1213 dataset, the AUC increases with B .38< in each group of the same<.B8I4 .
Moreover, for di�erent<.B8I4 , the AUC shows an increasing trend until the<.B8I4 is
equal to 100 and achieves the best result at {50,100,5}. The AUC decreases and does not
change much around 73.10 when<.B8I4 reaches 100.

Fixed on the<.B8I4 and B .38< sets on each dataset, we further evaluate the sensitivity
of di�erent A8 .=D< values (Figure 6.5). The result shows the impact of di�erent numbers
of the latest related items on the model performance evaluated by AUC, ACC, and Loss.
In Assist0910, both AUC and ACC gradually decrease with the A8 .=D< value increasing
in the range of 1, 5, 10, 20, and 50, while the Loss �rst increases, decreases at 10, and
then increases again at 20. It achieves the best AUC, ACC, and Loss when A8 .=D< = 1.
Assist0910 has the lowest average number of attempted items per learner and the
lowest overall correctness, which is probably the reason why it is di�cult for the
model to capture the relation between each pair of latent KCs in the short sequences.
For the other four datasets, both AUC and ACC �rst increase, and then decrease at a
speci�c point. Furthermore, only one maximum point is found on the line, while
the Loss sees an opposite trend. The best results are obtained at 10, 20, 10, and 5 for
Algebra0506, Statics2011, Bridge2Algebra0607, and Assist1213, respectively.

We set the parameter set with the best results on each dataset to evaluate our
proposed model based on the abovementioned observation.

B. Knowledge Interaction Between the Latent KCs

As mentioned before, we incorporate the knowledge interaction between the KCs into
our model to capture the long-term dependencies in the exercising sequences and
model the in�uence of the previous exercise on the current one. The KIEDCDA could
automatically discover the underlying interaction between each pair of latent KCs,
leading to a better model performance.

We directly visualize the �nal learned matrix " � to verify how well the proposed
model performs on discovering this knowledge interaction matrix. We further check
the similarity of the items involving each pair of KCs, based on this matrix. Speci�cally,
for each pair of KCs in the knowledge interaction matrix, we divide the KC pairs into
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(a) Algebra0506 KI matrix (b) Algebra0506 item simi-
larity

(c) Statics2011 KI matrix (d) Statics2011 item similar-
ity

Figure 6.6: Knowledge interaction analysis on two datasets: (a) visualizes the learned
knowledge interaction matrix of the �rst 30 KCs in the Algebra0506 dataset; (b)
plots the similarity of each pair of items in Algebra0506 involving the pair of KCs,
whose interaction coe�cient is under or above a threshold of 0.5; (c) visualizes the
knowledge interaction matrix of the �ve KCs in Statics2011; and (d) similarity of items
in Statics2011 involving the pair of KCs, whose interaction coe�cient is under or
above a threshold of 0.5.

two parts: one with the interaction coe�cient over a speci�c threshold and another
under the same threshold. For each KC pair in these two parts, we collect two groups
of items involving the pair of KCs based on the item–KC correction vectorFC obtained
using Eq. (3), and calculate the Euclidean distance of the embedding vector :C obtained
using Eq. (2) for each pair of items in these two groups.

We take Algebra0506 and Statics2011 as examples for verifying the ability of our
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model to discover the knowledge interaction of KCs from the data. Figure 6.6 shows
the results. Figures 6.6(a) and 6.6(c) indicate the knowledge interaction matrix of
Algebra0506 and Statics2011, respectively. For a better illustration, we only show the
�rst 30 KCs in the matrix among the 100 latent KCs in Algebra0506. We plot the item
similarity involving a KC pair whose coe�cient is over and under the threshold of 0.5
for both Algebra0506 and Statics2011, based on the learned matrix (Figures 6.6(b) and
6.6(d)). In both datasets, the items involving KCs with a coe�cient over 0.5 in the
matrix have a smaller distance than those with a coe�cient under 0.5, because they
are closer in the knowledge space. This result veri�es that our model can e�ectively
discover the knowledge interaction of KCs during the modeling process.

C. KC Discovery for Each Item

Section 4.3 showed that our model calculates the item–KC correction for each item to
automatically discover the involved KCs therein. We directly visualize the learned
embedding vectors of the items to demonstrate the model’s ability to evaluate how well
it discover the latent KCs for items. For a better illustration, we randomly select �ve
KCs and all their corresponding items in a dataset and scatter the embedding vectors of
these items in the learned embedding matrix �. Furthermore, we adopt t-SNE [159] in
Python to visualize the high-dimensional data by projecting the high-dimensional
embedding vectors of the items to two-dimensional points.

We take Algebra0506 and Statics2011 as examples to verify the ability of our model
to discover KCs for items. We assign an item to a KC whose correlation value is the
largest in the slot of the embedding vector for the item. Figure 6.7 depicts the scattering
results for the two datasets. The items assigned to the same KCs are labeled with
the same color. Consequently, the items with the same KCs are easier to be grouped
because of their similarity in the knowledge space. The �gure also reveals a compelling
result when assigning items to the KCs, indicating the ability of our model to discover
the KCs involved in the items.

6.5.3 Ablation Study

We conduct some ablation tests to examine the e�ectiveness of each model component.
As mentioned before, our model can exploit the long-term dependencies of items,
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Figure 6.7: Scattering results of items with �ve types of KCs in the Algebra0506 and
Statics2011 datasets. The items involving di�erent KCs are distinguished in di�erent
colors.

learner-oriented cognitive factor, and item parameters in the exercising sequences to
model the learner performance, which leads to the best performance of the proposed
model, by incorporating the knowledge interaction process and the cognitive item
di�culty and extending the network using the IRT model. We propose herein three
ablation models based on the KIEDCDA model to verify the contribution of each
component (Figure 6.8).

• Ablation 1: Compared to the proposed model, this ablation model was incorporated
the knowledge interaction process, but not extended with the IRT model (Figure
6.8(a)). It is used to test the in�uence of the IRT component.

• Ablation 2: This ablation model does not have the knowledge interaction component,
and thus, cannot capture the long-term dependencies in the exercising sequences
(Figure 6.8(b)). It is used for a performance comparison with the full model, considering
the knowledge interaction.

• Ablation 3: This model uses the item embedding vector to infer the item di�culty and
considers the item di�culty to be static for each item. Meanwhile, in the proposed
KIEDCDA model, the learner-oriented cognitive item di�culty is used to adaptively
calculate the item di�culty. Figure 6.8(c) illustrates this model.

We compare three ablation models with the proposed full model on all datasets.
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(c) Ablation 3
Figure 6.8: Framework of the three ablation models: (a) ablation model without IRT
extension; (b) ablation model without the knowledge interaction process; and (c)
ablation model without the adaptive cognitive item di�culty.
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Figure 6.9 illustrates the comparison results of AUC, ACC, and Loss. We discover
that the KIEDCDA model generally outperforms all three ablation models on the �ve
datasets based on the three metrics, verifying that considering the abovementioned
three aspects leads to the best performance of the proposed model. Moreover, the results
of the KIEDCDA model obtained for all datasets show lower variances, demonstrating
its stability in modeling the learner performance. In the Algebra0506 dataset, the
Ablation 2 model performs much worse than the other two ablation models, indicating
the importance of considering the knowledge interaction in this dataset. In Statics2011,
all three ablations have huge performance gaps compared to the KIEDCDA model.
Moreover, Ablations 1 and 3 perform much worse than Ablation 2. This result implies
that all three aspects considered in the KIEDCDA model are important for the �nal
performance on this dataset, and that the item parameters and cognitive di�culty play
more crucial rules. In Assist0910, the Ablation 3 model exhibits the worst performance
among all models. Huge gaps exist between it and the other models, indicating that the
learner-oriented cognitive item’s di�culty matters much in this dataset. Moreover, the
Ablation 2 model obtains results similar to those for the KIEDCDA model, which is
consistent with the parameter analysis in Section 6.2.1, indicating that considering
more previous items does not signi�cantly improve the performance of this dataset. In
Bridge2Algebra0607, Ablation 1 performs the worst, whereas Ablations 2 and 3 do not
show very big di�erences, although they are still worse than the KIEDCDA model.
These results indicate the huge in�uence of extending the model with IRT on this
dataset when considering the item parameters. In Assist1213, the Ablation 2 and 3
models are much worse than the other models. Meanwhile, Ablation 1 shows results
similar to those of the KIEDCDA model, indicating that the knowledge interaction and
cognitive item di�culty play more crucial roles than IRT extension in this dataset.

In summary, all three considered aspects in the KIEDCDA model contribute to
the best performance of the model on the �ve datasets and have di�erent e�ects on
di�erent datasets.

6.5.4 Knowledge and Domain Modeling

As discussed in Section 1, the learners’ knowledge pro�ciencies evolve over time with
the exercising process. Moreover, our proposed KIEDCDA model can estimate the
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Figure 6.9: Comparison results of the three ablation models and the proposed model on
�ve datasets based on three metrics.

multi-granularity knowledge pro�ciencies of learners and the item characteristics
for modeling their performance, making it possible to delve deep into the causality
between the learner performance and their pro�ciency, as well as item attributes.

We randomly select a learner from the Assist0910 dataset to evaluate the perfor-
mance of our model on the modeling knowledge and item attributes in the domain. We
then evaluate the evolution of his knowledge pro�ciency on 50 items. For a better
illustration, we select items in his exercising sequence such that only �ve latent KCs
are incorporated based on the item–KC correction. We test our model on these 50 items
and �ve KCs (i.e., at each time step of the 50-item exercising process, a knowledge state
comprised the knowledge pro�ciency of �ve KCs). After inputting this sequence into
our model, it will infer the knowledge state after attempting each item and store it into
the value memory "+

C . Moreover, it will output the general ability of learners after
each attempt and the item di�culty and discrimination by extending the IRT model.
We divide the analysis into two parts: evolution of knowledge pro�ciency and skill
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Figure 6.10: Evolution of KC pro�ciency during a learner’s attempt on the 50 items
containing �ve KCs. Di�erent KCs are labeled with di�erent colors. The items
attempted correctly and incorrectly are represented with �lled and hollow circles,
respectively.
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Figure 6.11: Evolution of the general ability during the learner’s attempt on the items
in Figure 6.10.

domain analysis.

A. Evolution of Multi-granularity Knowledge Pro�ciency

To show a learner’s knowledge pro�ciency on each KC at each time step, we directly
input the 8Cℎ vector in the value memory into the network �##1 to output the value \8
of the pro�ciency on the 8Cℎ KC using the following formula:

\8 = B86<>83 (�##1("+
8 )) (6.23)

Figure 6.10 depicts the results of the pro�ciency evolution of the �ve KCs when
attempting 50 items. We obtain the general ability of the learner after attempting each
item using the IRT in Eq. (20) (Figure 6.11), making it possible to present the learner
knowledge in a multi-granularity manner.

Figure 6.10 shows that the evolution of the KC pro�ciency is very smooth when the
50 items are attempted. Some compelling results are also obtained. After initializing
the knowledge state for each KC before attempting any item, our model discovers
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the KCs from each attempted item and updates the state for the discovered KCs at
each time step. For example, when the learner answers the �rst item correctly, the
state value of the �fth KC (marked red) underlying this item increases. When the
learner obtains incorrect answers for the sixth and seventh items, the state value of the
�fth KC gradually decreases. When when he attempts the 19th, 31st, and 39th items
with the same �fth KC correctly, this value increases again until it shows that the
learner has mastered this KC. Another example is the second KC with the orange color.
When the learner incorrectly answers the 10th, 18th, and 25th items, the pro�ciency
value of the second KC gradually decreases. After the learner answers the 30th, 37th,
38th, and 45th items correctly, the value begins to increase until a moderate level.
Figure 6.11 shows that during the �rst 28 attempts, the learner attempts to correctly
and incorrectly answer the items in a crosswise manner; hence, the general ability
frequently �uctuates. After the learner attempts most of the remaining items correctly,
the wave of the general ability gradually rises. In summary, the results of the KC
pro�ciency evolution present the learner’s knowledge level evolution on each KC
at a di�erent time step, while the general ability evolution illustrates the learner’s
general ability for all KCs during the exercising process. All results show a reasonable
consistency with the learner’s real responses in the exercising process, indicating the
ability of our KIEDCDA model to estimate the multi-granularity knowledge state
during the learning process.

B. Skill Domain Analysis

When the KIEDCDA model is incorporated with IRT, it cannot only output the learners’
knowledge pro�ciency but also obtain the estimated item characteristics in the skill
domain, making it interpretable for explaining the learners’ performance in terms of
their current knowledge and item characteristics.

We visualize herein the same sets of items in Figure 6.10 to present the obtained
item di�culty and discrimination (Figures 6.12 and 6.13). Figure 6.12 compares the
results of the three methods for calculating the item di�culty. The di�culty by item is
achieved using Eq. (11) based on the same items as those used in the previous attempts.
The di�culty by the KC is calculated using Eq. (12) based on the same underlying
KCs in the previous attempts. Meanwhile, the cognitive item di�culty is proposed
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Figure 6.12: Comparisons of the three types of di�culties for the items shown in
Figure 6.10.
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Figure 6.13: Obtained item discrimination for the attempted items in Figure 6.10.

herein by considering the previous attempted items and KCs and the current item in an
adaptive manner, and is calculated using Eq. (13). For a comparison, we also normalize
the results of the di�culties by both item and KC into [-4,4] as the same scale with the
cognitive item di�culty. Figure 6.12 depicts that the di�culty by item generally has a
much larger value because learners do not frequently interact with the same items.
Moreover, the initial parameter setting for a new item is the highest level of di�culty;
hence, this line is presented at a higher position. In contrast, the di�culty according to
the KC frequently changes at a much lower position because learners may frequently
come across the same KC by attempting items with the same KCs. Comparatively, the
cognitive item di�culty shows much stable changes during the exercising process and
maintain the overall trend with the other two lines for each item.

Figure 6.13 shows that the item discrimination frequently changes because di�erent
items contain di�erent KC proportions; hence, di�erent discriminatory attributes are
presented. We also discover that many items have very low discrimination, which is
not good for adaptive tutoring because these items cannot classify high- and low-ability
learners.

In summary, our KIEDCDA model can output the item characteristics in the domain,
thereby providing clues for exploring the learner performances. Moreover, based on
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the domain analysis, we can further provide suggestions to system builders with
regard to improvement in their tutoring systems, by selecting items for learners for
better adaptive learning. Items that are estimated too di�cult or too easy and are not
in conformity with the learners’ knowledge level can be skipped or delayed, and those
with no good discriminatory attribute can be deleted. Therefore, the learners’ learning
e�ciency can be e�ectively improved and any decrement in their engagement can be
avoided.

6.6 Summary

This chapter looks into Issue 3: how to track and explain learners’ evolving knowledge
states simultaneously? It presented a new CDA model, called KIEDCDA, for diagnosing
the knowledge pro�ciency of learners by modeling their learning performances.
KIEDCDA uni�ed the key-value memory network and IRT model into the model
framework to dynamically trace the evolution of learners’ knowledge pro�ciencies
in a long period and enable interpretability to explain learner performances. This
chapter proposed the knowledge interaction concept among the knowledge concepts
underlying the items and incorporated it into the proposed model to capture the
long-term dependencies of the items in the exercising sequences. Moreover, the
cognitive item di�culty was adaptively modeled to more precisely obtain the learner-
oriented item di�culty. Using these factors, the KIEDCDA model can output not
only the multi-granularity knowledge pro�ciency of each learner but also the item
characteristics, thereby providing clues for explaining the learner performances in
terms of their knowledge pro�ciencies and the characteristics of the attempted items.
Finally, extensive experiments were conducted on �ve large-scale, real-world datasets
and evaluated the proposed model from six perspectives. The results demonstrated the
e�ectiveness and interpretability of the model.
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7
Conclusion

In this thesis, we have explored the task of dynamic learner knowledge assessment to
obtain the individual learner’s evolving knowledge states, which indicate the mastery
of the particular knowledge in a domain, based on the massive long-term learning logs
in the ITSs. In the previous chapters, we have proposed three di�erent approaches
to solve the three existing issues from di�erent perspectives. In this chapter, we
summarize our work and provide reply to the three issues in Section 7.1. In Section 7.3,
we discuss the remaining issues for the task of DLKA and present the future work.

7.1 Replies to The Three Issues of DLKA

In this work, a general framework that is used as a general idea for solving the task
of DLKA is presented. This framework assess learner knowledge by incorporating
both learner and domain modeling. Compared with the existing work that generally
performs learner knowledge assessment based on the exercising results, this framework
assesses learner knowledge by considering multiple factors that not only related with



142 Chapter 7. Conclusion

the exercising results but also the exercising procedures. This framework is then
instantiated into three approaches that address the three following issues from di�erent
perspectives: insu�cient learning factor modeling, data sparseness and information
loss, �ne-grained assessment and interpretability. Here we give reply to these three
issues and describe in detail how the three proposed approaches solve these issues.

Issue 1: what factors in�uence the learning performance and how to quantify these
factors and utilize them to model the dynamic evolution of learner knowledge?

The learning performance of learners is generally related with many factors because
of the extremely complicated human knowledge construction procedure. During
the long-term exercising procedure, learners update their knowledge incessantly
by interacting with the exercise, hence these factors that in�uence the learning
performance should not only include the learner factors but also the domain factors.

In Chapter 4, we explored this issue and investigated the learner factors (learning
and forgetting) and domain factor (item di�culty) by making use of rich information
during learners’ learning interactions to achieve more precise prediction of learner
knowledge. Speci�cally, we proposed a novel model named KTM-DLF that traces the
evolution of learners’ knowledge acquisition over time by explicitly modeling learners’
learning and forgetting behaviors as well as the item di�culty. Based on two classical
theories (the learning curve theory and the Ebbinghaus forgetting curve theory), we
proposed methods for modeling learners’ learning and forgetting behaviors by taking
account of their memory decay and the bene�ts of attempts on exercises. We also
speci�ed the concept of cognitive item di�culty and proposed a method to model this
user-oriented di�culty adaptively in terms of the cognitive challenge it presents to
di�erent individuals. The KTM-DLF model is then proposed to incorporate learners’
abilities, the cognitive item di�culty, and the two dynamic procedures (learning
and forgetting) together. To further increase the model’s accuracy, the factorization
machine framework was utilized to embed features in high dimensions and model
pairwise interactions among these features.

Compared with existing studies that consider only a fragment of the information
related with learning or forgetting and almost all work that either neglects the problem
di�culty or assumes that it is constant, the KTM-DLF model takes more and precise
information into the modeling procedure. Extensive experiments con�rmed the
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e�ectiveness of our proposed model. Ablation studies were also conducted to test each
considered factor, and the results showed that all these factors contributed to the
improvement of model performance on the learner knowledge assessment.

Issue 2: How to alleviate the data sparseness and the information loss in conducting
learner knowledge assessment?

Learner knowledge assessment methods have achieved good performance at this
task. However, the adequacy of model performance is still challenged by the sparseness
of the learners’ exercise data as students are not required to answer all the questions
in an ITS, meaning that some students may not answer some questions. Moreover,
each question is correlated with one or several skills needed to solve the question.
Accordingly, the response data is quite sparse. Existing studies implement their models
at the skill-level rather than the question-level, hence the distinctive information
related to the questions themselves and their relations are neglected, which has caused
the potential information loss. Due to the data sparseness and the information loss, the
models can imprecisely infer the learners’ knowledge states and might fail to capture
the long-term dependencies in the exercising sequences.

To solve this issue, Chapter 5 explored to incorporate the knowledge structure
(KS) into the learner knowledge assessment procedure to potentially resolve both
the sparseness and information loss, an avenue not yet been fully explored because
obtaining the complete KS of a domain is challenging and labor–intensive. We proposed
a novel KS-enhanced graph representation learning model for KT with an attention
mechanism (KSGKT). Speci�cally, we �rst explored eight methods that automatically
infer the domain KS from learner response data and integrate it into the KT procedure.
The integration of KS into KT procedure o�ers two advantages over the existing models:
�rst, it inputs extra information into the question representation by referencing the KS
as a question requiring a speci�c skill is also related to the prerequisite skills, thus
alleviating the data sparsity problem in the question representation; and second, it
models the impact of previous experiences on future exercise during the knowledge
evolution by referencing the KS because incorporating the KS into the KT procedure
can capture the long-term dependencies in the exercising sequences. Moreover, it
considered more factors in the learning domain that can be leveraged to monitor the
evolution of learner knowledge, this further improves the precision of inferring the
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dynamic knowledge states of learners.

To alleviate the information loss, we applied a graph representation learning
method (Metapath2Vec) to obtain question- and skill-embedding from the KS enhanced
question–skill relation graph by leveraging the high ability of graph neural networks
to extract graph representation by aggregating the information from neighbors. The
learned embeddings from the graph incorporate not only the explicit multi-hop
question–skill relations but also the implicit multi-hop question–question and skill–
skill relations in the graph. To overcome the limitations of skill–level KT models,
which neglect the distinctive information related to the questions, we also proposed a
convolutional representation method that incorporates additional information and
considers their interactions, thus generating dense and comprehensive representations
of the input questions and potentially further improving the model performance. These
representations are input to the proposed KT model, and the long-term dependencies
are handled by the attention mechanism. The model �nally predicts the learner’s
performance on new problems.

Extensive experiments conducted from six perspectives on three real-world datasets
demonstrated the superiority and interpretability of our model for learner-performance
modeling. We also tested the graph embedding learning to the model performance and
showed the visualization of these embeddings, the results showed the e�ectivenss
of this embedding learning procedure, and the embedding can de�nitely overcome
the data sparseness and information loss. The visualization of the inferred KS also
showed meaningful and interpretable results. Moreover, the proposed three attention-
calculation methods also improved the model performance.

To sum up, the proposed method is a good trial to alleviate the data sparseness and
the information loss in conducting learner knowledge assessment.

Issue 3: how to track and explain learners’ �ne-grained and evolving knowledge
states simultaneously?

The existing models are either designed for static scenarios or �nd it di�cult to
explain the causality between learner performance and knowledge pro�ciency, as well
as the item characteristics. CDA models have good interpretability because of the
rich background educational psychology theories, but they are generally designed
for the static assessment, and are di�cult to meet the requirements of large-scale
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assessment. KT models dynamically track the evolution of learner knowledge, but
most of the high-performance KT models are based on the deep neural networks
and �nd it di�cult to explain the results. Hence how to track and explain learners’
evolving knowledge states simultaneously remains to be an important issue.

To solve this issue, in Chapter 6 we proposed a dynamic CDA model called KIEDCDA
that incorporates not only the ability to trace the evolution of learners’ knowledge
pro�ciencies over time for large-scale assessments, but also the interpretability to
explain learner performance in terms of their current knowledge pro�ciency and item
characteristics. Speci�cally, We �rst proposed a dynamic CDA framework by unifying
the strength of the memory capacity of the key-value memory network to enhance the
representation of the knowledge state during learner performance modeling and
the interpretability of the Item Response Theory to explain the learner performance
in terms of knowledge pro�ciency and item characteristics (i.e., item di�culty and
discrimination). In this framework, we traced each learner’s knowledge pro�ciency on
each knowledge concept over time and stored them into an auxiliary memory using the
key-value memory network. We further inferred their general pro�ciencies and the IRT-
based item characteristics using another neural network. Moreover, we proposed the
knowledge interaction concept among KCs and incorporated it into the CDA procedure
to further exploit the long-term dependencies in the exercising sequences, thereby
devising the KIEDCDA model. Based on these factors, our KIEDCDA model could
not only output the learners’ knowledge pro�ciency in a multi-granularity manner
but also output the item characteristics, making it possible to interpret the learner
performances in terms of their current knowledge states and item characteristics.

Extensive experiments conducted from six perspectives on �ve real-world datasets
demonstrated the superiority and interpretability of our model for learner performance
modeling, suggesting that it is worthy of a good trial to track and explain learners’
�ne-grained and evolving knowledge states simultaneously.

7.2 Summary of Research Contributions to The ITS

In the above section, we reply to the three important issues solved in this thesis and
show our contributions to the topic of DLKA. In this section we will summarize the
research contributions of this thesis to the �eld of ITS from the whole picture.
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• “Stupid” Systems, Intelligent Tutoring—Who They Teach?

As an alternative to the “one-size-�ts-all” traditional web-based learning platforms,
ITSs are designed to mimic individualized human tutoring in a computer-based
environment [20], and are expected to o�er delicate instructions during learners’
learning process. ITSs used at scale today are developing rapidly to �ll this expectation,
but they are still computer programs (sometimes even stupid and simple programs),
hence the ability to provide intelligent and adaptive tutoring services is essential for
the widely applications in the daily life.

This thesis explored the task of dynamic learner knowledge assessment to obtain
the individual learner’s evolving knowledge states, which is the pillar of learner
characteristics in ITS. The distribution of a learner’s knowledge states provides a
distinctive latent pro�le of the learner for the ITSs, and lets the ITSs know who they
are teaching, hence increasing the adaptability and individualization of the further
services.

Moreover, this thesis solves the task of dynamic learner knowledge assessment
by modeling the individual knowledge acquisition procedure (learning and forgetting
process) and obtaining the individual knowledge evolution, providing more accurate
and individual information for the ITSs. This process of learner modeling can be
directly integrated into the various existing online learning platforms (e.g., MOOCs,
Massive Open Online Courses) to enhance their intelligent ability.

• Learning Content Management in ITSs—What They Teach?

Learning content is another important factor for the success of ITSs. Learning content
is generally manually organized into curriculums with some structures (hierarchies,
networks, frames, etc.) that link the knowledge together according to pedagogical
sequences. The modeling of learning content provides the ITSs with the knowledge
of what they are teaching. Learning content is generally labeled and structured by
experts. Because of the labor-intensive work, the current ITSs usually store a limited
amount of learning content in their item bank.

To improve the scalability of the ITS to incorporate the overwhelmingly large
numbers of learning items emerging on the Internet, it is essential to automatically
label and structure the learning content. Obtaining the characteristics of learning
content is fundamental for the management of learning content. This thesis explored
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the learning domain modeling and proposed to automatically obtain various aspects
for the learning contents. In Chapter 4, it speci�ed the concept of cognitive item
di�culty and propose a method to model the cognitive item di�culty adaptively based
on learners’ learning histories. Compared with existing studies that either do not
consider problem di�culty or assume it to be constant (i.e. item-oriented di�culty),
the cognitive item di�culty considering the cognitive di�culty of items adaptively
for di�erent learners (i.e. user-oriented di�culty) will make the modeling of DLKA
more accuracy for speci�c individuals. In Chapter 5, it explored eight methods to
automatically discover the domain knowledge structure from the learner response
data and test them in the knowledge tracing procedure. And the experimental results
also con�rmed that the knowledge structure discovery methods can infer reasonable
prerequisite skill pairs from the ordering of learners’ mastery of skills. Chapter 6
proposed a framework to output the estimated item characteristics (item di�culty and
discrimination) in the learning domain. Moreover, the learned item/skill embeddings
in Chapter 5 and Chapter 6 can be used to measure the similarity of learning content.

The obtained characteristics of learning content are essential for the ITSs to
manage learning content and help the ITSs understand what they are teaching.

• Interpretability of Decision-making in ITSs—Potential for Explainable Feed-
back

Interpretability is of great importance for the tutoring in ITSs. Learners generally not
only expect the ITSs to provide the adaptive tutoring but also want to know why the
speci�c kind of tutoring (e.g., recommend an item) is provided. The general deep
learning based models in ITSs are deemed as black boxes, and it is di�cult to explain
the decision-making based on such models.

In this thesis, we explored to track and explain learners’ evolving knowledge
states simultaneously. Our �nal aim is to provide the learners with the tailored
learning content that can remedy their weak knowledge concepts and improve their
learning e�ciency based on the result of dynamic learner knowledge assessment. In
Chapter 5, we proposed to generate a diagnostic report of learners’ mastery on each
skill over time based on the hidden vectors in the deep learning framework. This
provides some degree of interpretability for the distribution of learner knowledge,
and also further clues to explain why some items are further recommended to the
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learners. Chapter 6 proposed a model that can not only output the learners’ knowledge
pro�ciencies in a multi-granularity manner but also output the item characteristics,
thereby providing clues for explaining the learner performance prediction in terms of
their knowledge pro�ciencies and the characteristics of the attempted items.

To summarize, this thesis investigated the potential of educational data mining
driven decision-making in ITSs for adaptive online tutoring, and provided preliminary
interpretability for the results. This will be helpful for the further tutoring services
and provides ideas for further explainable feedback.

7.3 Remaining Issues and Future Work

Although the proposed methods in the previous chapters and existing work have
obtained good results for the task of dynamic learner knowledge assessment, there are
still some gaps when applying them for the practical applications. Here we list some of
them, which we want to �ll in the future work.

• Q-matrix Learning

In this thesis, we assume that the KC set and the Q-matrix, which maps the questions
to the KCs in the domain, are already given by the experts. Actually this is also a basic
assumption of previous studies. The ITSs generally keep a certain amount of learning
materials in their databases with �ne-labeled structure to practice certain set of KCs in
the domain. To obtain the set of elicited KCs and the labelled Q-matrix, large amount
of the manual work from expert should be conducted, which is highly time-consuming
and labor-intensive, particularly for a complicated subject with a large quantity of
knowledge [18]. Nevertheless, there is severe issue of consistency as trade-o�s should
be made between granularity and coverage.

For the estimation of model parameters and the identi�cation of the underlying
knowledge states of learners, the appropriately elicited KCs and de�ned Q-matrix are
essential. Previous research showed that the learner knowledge assessment methods
are susceptible to Q-matrix choices. A misspeci�ed Q-matrix might lead to signi�cant
inadequate �tness and hence erroneous identi�cation of learner knowledge states [76].
On the other hand, in this information era, there are increasing numbers of open
materials in the Internet that can be reused by these ITSs, automatically structuring,
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Table 7.1: Various modalities of data that can be used for learner knowledge assessment.

Modality Usage for learner knowledge assessment

Exercise text
KC elicitation, Q-matrix designing,

attention mechanism, domain modeling
Video watching, clickstream sequences,

readings, forum discussion
Explore learning patterns, predict future performance

IoT data
Learning behavior, a�ective and cognitive factors,

learning style and preference, motivation, disengagement
Demographic data Learner modeling

assessing and labeling these open materials will greatly enhance the intelligence and
scalability of existing systems. Hence the automated methods for the KC elicitation
and Q-matrix designing have become a prominent necessity in the intelligent tutoring
�eld.

Some researchers have explored to learn the Q-matrix and the KC set automatically
from the learning data [76, 66]. However, these methods obtain the Q-matrix with
unknown KCs, thus making them di�cult to interpret as expert-made and the inferred
Q-matrices do not often coincide. To improve the interpretability, automated Q-matrix
learning methods by exploiting both the student performance data and the side
information (e.g., text) of learning items could be a promising direction, which may be
worthy of trial in the future.

• Multi-modal Learner Knowledge Assessment

This thesis conducted the learner knowledge assessment mainly based on the long-term
gradable exercising logs collected in the ITSs. However, this is only one typical
modality of learning data that can be used for this task, and the other modalities of
data (as shown in Table 7.1) are largely ignored, with which the model performance
and the intelligence of ITSs could potentially be further improved.

In this thesis, the exercise text is not been used for the proposed models even
though they all take the exercising logs as input. Actually, there is rich information
contained in the exercise text, e.g., KCs, exercise hierarchy, di�culty and discrimination.
Leveraging natural language processing methods, the KCs contained in the exercises
can be elicited, as in [90]. The exercise text can also facilitate the designing of Q-matrix,
and joining the data-driven and the text analysis methods will be a feasible direction
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for obtaining an interpretable Q-matrix. Moreover, the exercise text can be also used
to distinctively represent the certain exercise even with the same KCs, which can be
used for the item representation and attention calculation [1]. Despite these bene�ts,
the exercise text has not been used in this thesis, as most of the open datasets do not
provide the text information of the exercises in their systems. With the popularity of
multimodal learning analytics, some datasets with text information are becoming
open-access. Hence in the future, we plan to combine both learner exercising logs and
the exercise text for more precisely assessing learner knowledge.

Moreover, the practical learning procedure is conducted not only on the exercises,
but also some other various learning materials, such as the videos and readings,
especially on the popular MOOCs platform. Hence some other modalities of data
is widely existed. These video watching and reading logs, clickstream sequences
and forum discussion data can be additional fuel to improve the learner knowledge
assessment models [45, 44, 46, 47]. In addition, the demographic data of learners can
be also used for learner modeling.

Learning analytics researchers have to date depended on ITS data to examine
learners’ knowledge states. While these data sources can still provide a rich ground for
learner knowledge assessment, a new wave of technological innovations is taking
place with the Internet of Things (IoT). Wearables, eye-trackers and other camera
systems provide new physiological sources of information, hence multimodal datasets
can be collected from physical activities and physiological responses to learning
situations that may be utilized to investigate and assist learning [167, 168]. The
development of integrating wearable computing and learning analytics using both
physiological and learning log data collected as students interact with learning content
is still marginal. This level of multimodal data collection promises to provide valuable
insight into cognitive and a�ective states [169], and also the knowledge states of
individuals, especially when combined with traditional learning analytics data sources,
and will de�nitely provide both new opportunities and challenges to enhance our
understanding of the learning process and employ these insights to intelligent tutoring
better.

• Learner Knowledge Assessment Beyond Binary Correctness

In this thesis, we use the binary correctness (1/0) to show whether the learners attempt
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exercises correctly or incorrectly. This is a natural way to indicate the learning
performance on objective exercises. Following the existing work, the performance on
subjective exercises (e.g., the programming exercises) are ignored or simpli�ed as
binary correctness when building the models, hence the information from subjective
problems is largely underexplored. Actually subjective exercises are widely used in the
practical learning procedure. Compared with the objective exercises, the response to a
subjective exercises can be continuous values, ranging from totally correct, totally
wrong, and partially correct [33]. Liu et al. [33] argued that subjective exercises
measure the learners much better as learners may be unable to guess the exercises
correctly to a large degree.

Some researches explored to use such sources of richer information, for example
[170] made the binary correctness continuous using partial credit. However, such kind
of methods has still not been used in the current mainstream of learner knowledge
assessment. A most recent work [171, 172] compared binary correctness with non-
binary measures and showed that the binary correctness as the only input to the
models was not always warranted and limited the progress of ITSs. Hence it is
necessary to develop models that can assess learner knowledge based on both discrete
and continuous performance data.

• Learner Knowledge Assessment with Small Learning Data

As described in Chapter 3, the models in this thesis used several datasets that include
big volume of learning logs collected from the real-world ITSs. These big educational
data enables the good performance and stability of the proposed models, especially
for the deep neural network models. However, the model performance may be
degraded when applied to the small learning data, especially the classroom-level data,
as Inadequate sample size can result in poor parameter estimates with poor predictive
power.

The traditional cognitive diagnostic models, such as IRT and DINA, are designed
for this small-data context, they are widely used for the classroom-level test with a
certain number of exercises associated with small number of KCs (usually less than
ten), but they are designed for the static assessment and the temporal information is
not considered. The powerful knowledge tracing models can dynamically monitor the
learner knowledge but most of them are built on the massive data. Hence the current



152 Chapter 7. Conclusion

learner knowledge assessment model are rarely seen for the practical classroom usage,
which greatly limit the further application of these models. It is necessary to propose
approaches to conduct learner knowledge assessment based on small data.

We assume that two potential solutions can be explored in the future to cope
with the small data. One is to infer and tune the model parameters on the big data and
use the trained model to conduct prediction on the small data. The other is based on
the Variational Autoencoders (VAE) [173], which is a famous generative model. The
VAE model can learn the probability distribution parameters of the input sample in
order to generate new data that are similar to those in the small dataset. We will
validate these ideas in our future work.

• Further Tutoring Based on Learner Knowledge Assessment

In this thesis, we modeled learner performance to infer their latent knowledge states
by integrating learner and domain modeling. The learner factor (knowledge states)
and domain factors (item di�culty and discrimination, knowledge graph) can be
obtained from the output of these models. However, how to further utilize these
factors to provide adaptive tutoring services has yet been conducted.

Actually providing the intelligent tutoring services to individual learners is the
�nal objectives for developing all kinds of learning analytics techniques. This thesis is
part of the work towards this direction. Some researchers have explored the learning
material recommendation based on the inferred knowledge states [53, 174]. Di�erent
from the traditional collaborative �ltering-based recommendation, the knowledge
states based methods provide more personalization, which is worthy of trial in the
future. Moreover, we also plan to conduct case studies to test the e�ectiveness of
integrating learner knowledge assessment and online learning systems on student
learning performances and perceptions.

This thesis presented our trials on dynamic learner knowledge assessment, we hope
it will stimulate new ideas in the �eld of intelligent education that will overcome all
educational barriers in the COVID-19 era and serve every individual learner adaptively.
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A
List of Abbreviations

A-D
AI arti�cial intelligence
AIED arti�cial intelligence in education
AFM additional factor model
ACT-R Adaptive Control of Thought–Rational
AUC area under the curve
ACC prediction accuracy
BoW bag-of-words
BKT Bayesian knowledge tracing
CAI computer assisted instruction
CT Cognitive Tutor
CDA cognitive diagnostic assessment
DINA deterministic-input, noisy “and” gate
DLA dynamic learner assessment
DKT deep knowledge tracing
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DKVMN dynamic key-value memory network
DAS3H item Di�culty, student Ability, Skill, and Student Skill practice History
DASH Di�culty, Ability, and Student History
DKT-DSC deep knowledge tracing with dynamic student classi�cation
E-L
EDM educational data mining
FM factorization machine
FSLS Felder–Silverman learning style
GCN graph convolutional network
GNN graph neural network
HMM hidden Markov model
ITS intelligent tutoring systems
ICAI intelligent computer assisted instruction
IRT item response model
IoT internet of things
KT knowledge tracing
KC knowledge component
KTM knowledge tracing machine
KTM-DLF Knowledge Tracing Machine by modeling cognitive item Di�culty and
Learning and Forgetting
KS knowledge structure
KSGKT KS–enhanced graph representation learning model for knowledge tracing
KIEDCDA knowledge interaction-enhanced dynamic cognitive diagnostic assess-
ment
LSTM long short-term memory
M-V
MOOC massive open online course
MF matrix factorization
MIRT multidimensional item response theory
MANN memory-augmented neural network
NLP natural language processing
NLL negative log-likelihood
PFA performance factor analysis
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QSQ question–skill–question
RNN recurrent neural network
SKVMN sequential key-value memory network
VARK Visual, Aural, Read/write, and Kinesthetic
VAE Variational Autoencoder
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