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Abstract

Learning from Interpretation Transition (LFIT) is an unsupervised learning al-
gorithm which learns the dynamics just by observing state transitions. LFIT
algorithms have mainly been implemented in the symbolic method, but they are
not robust to noisy or missing data. Recently, research works combining logi-
cal operations with neural networks are receiving a lot of attention, with most
works taking an extraction-based approach where a single neural network model
is trained to solve the problem, followed by extracting a logic model from the
neural network model. However, most research work suffer from the combina-
torial explosion problem when trying to scale up to solve larger problems. A lot
of the invariances that hold in the symbolic world are not getting utilized in the
neural network field.

In this thesis, we will introduce a novel technique for obtaining symbolic
knowledge by deep learning. We will also introduce our contribution in which
we verified that our technique was sound. We show that our method works by
performing experiments in various different commonly used benchmarks. We
will then be introducing several techniques that will allow the model to scale up
to a larger problem space than can be handled previously. First, we will intro-
duce a technique that will allow us to exploit the symbolic invariance that exists
in the LFIT framework. Namely, the sequential ordering of the input should be
invariant. This allows the model to be more efficient in its use of training data.
Next, we will introduce a technique to allow further scaling up of the model to
a larger problem space. We will reuse the same output nodes for multiple differ-
ent meanings to reduce the exponential explosion. Then, we will also introduce
some techniques that, due to some of the previous techniques, made the model
much more difficult to train. We will also perform some experiments to show
the effectiveness of our approach. Lastly, we will show some extensions of our
method to other notions of dynamics.
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1
Introduction

Recent advancements in machine learning and deep learning [32] have brought
to the world an unprecedented level of artificial intelligence (AI) boom. Rang-
ing from something as simple as image recognition [47] [62], natural language
translations [10], speech recognition [5], to self autonomous vehicle driving [96].
These were thought to be nearly impossible a little more than a decade ago, but
has since become something approachable to reality in a relatively short amount
of time [6]. It is difficult to overstate the achievements [82] [19] [45] of these var-
ious tasks for a method as simple as gathering data and letting the machine do
the crunching.

Meanwhile, there are also tasks that are seemingly simple for humans, but
are exceedingly difficult for these techniques [81]. Certain image recognition are
easily fooled by bit manipulation, despite an image looking literally the same
to human eyes [60] [87]. There are also various accountability issues [14] where
the decision for an algorithm to categorize something can affect a person’s life,
yet the algorithm can simply offer no explanation beyond the numbers that it
calculated [30] [18].
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A purely symbolic method, however, does not work as we’ve observed since
the first AI winter. Purely symbolic methods suffer from the issue of robustness
[89] and thus are less applicable to real world usage.

On the other hand, the AI community has rode the wave of deep learning and
have achieved feats that are worthy of applause, but it is clear that, as more
important problems need to be tackled, pure deep learning alone is no longer
sufficient. Explainable AI (XAI) [3] [76] is one such emerging field in trying to
solve the problem of deep learning being not really explainable [77]. Some ex-
perts also call this the interpretability problem [31]. An alternative name that is
also widely used is the academic community is interpretable AI.

Multiple techniques have been developed in light of the XAI movement. Cur-
rently, most of the efforts are focused on interpreting the trained model, hence
the name ”interpretable AI” [17]. Most of these techniques probe the model to
figure out where the model changes its decisions, or attempting visualization of
so called ”features” to figure out the priorities learned by the model [31] [61].

Unfortunately, application of these techniques are still fairly limited in the
real world. Everyday, as algorithms are making decisions on social media and
affecting people’s lives, transparency is still no where to be found. As financial
institutions also begin to use AI techniques to automate risk decisions, there are
real issues where some people getting locked out of our financial systems with
no clear explanation [53].

Some issues with these interpretable techniques include being only applica-
ble to applications where visualization is meaningful [83] [98], or applicable only
when features fed into the models are understandable. Evidently this is usu-
ally not the case with real world applications. There seems to be a trade-off
between being able to obtain interpretable model and accurate model [44], al-
though no empirical studies have yet been performed. Models that started out
interpretable are not able to achieve an acceptable level of performance in the
real world, whereas models that are less interpretable achieve stunning accu-
racy. However it is only in the edge cases where these models breakdown, and
when they do they can have profound effects on someone’s life, yet nobody can
explain how that happened [54].

There is however an alternate technique, bringing back techniques from the
1950s, in combining the symbolic logic AI with the current deep learning AI.
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Figure 1.1: Boolean Network

This field, dubbed the Neural-Symbolic AI (NSAI) is not a recent trend [22] [13]
[34], though it has certainly garnered some attention in light of the XAI move-
ment. The main focus of NSAI research is to allow machines to perform higher-
order thinking functions, like the human brain [48]. But it so happens that sym-
bolic is interpretable and explainable as well. Thus there are some hopes that
the combination of neural network and symbolic AI can lead to a transparent
AI model [9].

This thesis attempts to propose a method in line with the spirit of NSAI.
Solving the entire interpretability issue is a scope way beyond this thesis [17].
In this thesis, the focus lies on trying to refine an NSAI technique in a much
narrower sense. In particular, the framework for which this thesis works on is
the learning of system dynamics.

Boolean networks [46], first proposed by Kauffman as random models, to
model gene regulatory networks are very simple at first sight. A boolean net-
work describes the relationship between different variables, whereby the rela-
tionships define the values of the variables. In a dynamic system, the values of
the variables change at each timestep. The collective values of the variables at
any timestep is called a state.

Learning from Interpretation Transition (LFIT) is an algorithm that learns
explainable rules of a dynamic system [41]. Given a series of state transitions
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from the observed dynamic system, the LFIT algorithm outputs a normal logic
program (NLP) which realizes the given state transitions. An NLP is fully equiv-
alent to a boolean network [39] [42]. Therefore, LFIT can also learn boolen net-
works. LFIT has been applied in various fields, including biology [71] and multi-
agent settings [57].

LFIT has been mainly implemented in two different methods, the symbolic
method [70] and the neural network method [29]. The symbolic method uses
logical operations and symbolic manipulation to learn and induce logic pro-
grams. Each state transition is taken as an example and the algorithm applies
logical operation to ensure that every example is covered. This guarantees that
the resulting NLP is consistent with the state transitions. The symbolic method
is relatively scalable. Most research has also been done in the symbolic area.
There are various advancements like dealing with multivalued systems [73], and
general semantics [68] [69] that have not yet been applied to neural networks.
However, there are also significant limits when utilizing logical operations. One
of the limitations is that the logical operations employed by symbolic LFIT al-
gorithms lack ambiguous notations. This means that any error or noise present
in the data is reflected directly in the output, synonymous to the garbage in,
garbage out problem.

On the other hand, since neural networks are known to be robust to noise [74]
[80], neural network methods have been developed as an attempt to solve the
ambiguous value issue. However there are also roadblocks with the neural net-
work method. The first and simplest method developed, NN-LFIT [29] trains a
neural network that models the system being studied. The weights of the neural
network are then pruned based on a heuristic, and non-zero weights are deter-
mined as connections between the input nodes and the output nodes. Whilst
simplistic and scales relatively well, this technique suffers from the usual ma-
chine learning suspect, namely overfitting.

First idea for extending NN-LFIT came by dealing with delays [65], which
have already been implemented in the symbolic algorithm [72]. Most compo-
nent in a biological system do not change their states in lockstep. Introducing
a time delay component is typically one way to allow for the model to express
such idea. Extending NN-LFIT to recurrent neural networks (RNN) however
was not simple. RNNs, having loops in between them, have a much more com-
plex inter-connection. Furthermore, as RNNs get unfolded to longer and longer
time, training becomes very difficult due to the exponential gradient problem.
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It became apparent that the simplistic NN-LFIT approach is fairly limited in its
extensions.

The issue with NN-LFIT is that, mainly by fiddling with the neural network
itself, for every advancements made in the field of deep learning, a new tech-
nique has to be devised in order to adapt the advancement. Obviously by em-
ploying current state-of-the-art techniques like batch normalization [43] and
dropout [85], the characteristic of the neural network is bound to change so
much that a simplistic approach like NN-LFIT is no longer feasible.

In this thesis, we will first cover the necessary background knowledge in chap-
ter 2. These knowledge include both logic programming and neural network re-
lated background.

Our attempt at adapting neural network to LFIT came in the form of δLFIT
[65]. δLFIT took a different approach from NN-LFIT, wherein NN-LFIT only
trains one neural network per logic program, δLFIT trains one neural network
to learn multiple logic programs. NN-LFIT takes a state as input and outputs
the next state as prediction, while δLFIT takes a sequence of state transitions
and predicts the NLP that explains the provided state transitions. Where NN-
LFIT is a problem of modelling a dynamic system with neural network, δLFIT
is about learning the semantics of dynamic systems, the relationship between
their observed state transitions and the logical rules that explain them. The ap-
proach δLFIT took required a new idea. The LFIT algorithm, in its essence, is
classifying whether a variable is true or false given the current state. This trans-
lates to an interesting concept where by the LFIT algorithm can be thought of
as a classification problem. Neural networks have long claimed the superiority
in the classification problem. Also by not relying in any way the internals of the
network itself, it is now possible to employ state-of-the-art techniques in train-
ing the neural network. An overall flow of the learning method employed by
δLFIT is depicted in figure 1.2. This work is described in chapter 3.

However, with the different approach that δLFIT has taken, many different
problems have arise. The combinatorial nature of symbolic and the way δLFIT
is structured architecturally leads to a combinatorial explosion problem. We
have devised several techniques to curb the explosion, and we have also focused
particularly in the invariance that is present in the symbolic world to further
help this issue. This work is described in chapter 4.
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Figure 1.2: The difference in learning method between most NSAI approaches and δLFIT, δLFIT+

We then extend our work to various other improvements that have been made
in the symbolic LFIT field. Namely dealing with systems with delays and also
various different transition semantics. This work is described in chapter 5.

Then, we will be describing some of the related works in the field and the re-
lationship of our work in chapter 6. Lastly, we will close out the thesis with a
summary of our contributions and some future outlook in chapter 7.
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2
Background

In this chapter, we will introduce the necessary background knowledge required
to understand the contributions in this thesis.

The work done in this thesis touches 2 major areas, symbolic AI and neural
networks. Both are seminal AI techniques and are the foundation of 2 separate
AI booms.

This work forms a bridge between the 2 separate methods, and thus neces-
sitates a brief coverage of both areas. On the symbolic side, we will cover the
basics for logic programming, the LFIT framework for which this work is based
on, and the symbolic algorithm for LFIT. On the neural network side, we will
be covering first the basis of neural networks, then some techniques that are uti-
lized in this thesis. Lastly, we will be covering the basics of δLFIT, which will
be necessary in order to understand this thesis.
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2.1 Logic Programming

Logic programming is a type of declarative programming based on formal logic.
A logic program is typically a set of sentences written in logical form, express-
ing facts and rules about a problem domain. Rules are written in the form of
clauses such as the following:

A← A1 ∧ A2 ∧ . . . ∧ Am (2.1)

where A and Ai are propositional atoms. Here, A is the head of the rule and
A1, A2, . . . , Am together with ∧, which is the logical and operation forms the
body of the rule. This rule, in plain English, can be read as ”A is true if all of
A1, A2, . . . , Am are true”.

For any rule R of the form (2.1), the head of R, denoted as h(R) is defined as
h(R) = A. The body of R, denoted as b(R) is defined as the set of atoms in the
body, b(R) = A1, A2, . . . , Am.

Facts are rules that have no body, and are written in the form:

A←

which states that A is true.

A logic program P is a set of rules in the form (2.1). All atoms that appear
in a logic program P , is called the Herbrand base B. An Herbrand interpreta-
tion I is a subset of B, which is an assignment of truth values to the atoms in
the Herbrand base. An interpretation is inconsistent if ⊥ ∈ I, otherwise I is
called consistent.

Given a rule R and an interpretation I, if b(R) ⊆ I implies h(R) ∈ I, then
the interpretation I is said to satisfy the rule R. If a consistent interpretation I
satisfies all rules of a logic program P , I is called the model of P .

2.1.1 Normal Logic Program

For most practical applications, the negation of an atom has to be considered.
In classical logic, the negation of an atom a can be written as a and is under-
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stood as ”a is false”. In logic programming however, it is very difficult to dis-
prove a statement (i.e. to infer that a is false). The knowledge we have about
our world may simply be insufficient to decide that. Therefore, the notion of
negation as failure [20] is introduced. Under the negation as failure viewpoint, a
is assumed to be false if it cannot be shown true in our knowledge base. This is
also known as the closed world assumption.

A normal rule is of the form:

A← A1 ∧ A2 ∧ . . . ∧ Am ∧ ¬Am+1 ∧ Am+2 ∧ . . . ∧ ¬An (2.2)

where A and Ai are propositional atoms, and ¬a is the negation of the atom
a. The atoms A1, A2, . . . , Am are referred to as the positive body, denoted as
b+(R) = {A1, A2, . . . , Am}, while the atoms Am+1, Am+2, . . . , An are the negative
body, denoted as b−(R) = {Am+1, Am+2, . . . , An}. A logic program composed of
a set of normal rules are called a normal logic program (NLP).

2.1.2 Inductive Logic Programming

Logic programs can be handwritten, but there is no reason to leave it at that.
A method of producing logic programs, called the Inductive Logic Programming
(ILP) [58] is an approach to machine learning which produces logic program as
its result. ILP algorithms work on examples, both positive examples and nega-
tive examples. The algorithm will try to deduce a logic program that both con-
firms the positive examples and infirm the negative examples.

ILP algorithms mainly rely on generalization and specialization to deduce
logic programs. Generalization and specialization are a kind of dual notion,
where generalization is an inductive operation while specialization is a deduc-
tive operation.

A generalization operator maps a conjunction of clauses S onto a set of min-
imal generalizations of S. A minimal generalization G of S is a generalization
of S such that S is not a generalization of G, and there is no generlization G′ of
S such that G is a generalization of G′ [59]. To make this easier to understand,
consider the following example.

Example 1 Consider the following clauses C1 = (a), C2 = (a ∧ b), and C3 =
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Figure 2.1: Left: input of state transitions, right: output of logic program

(a ∧ b ∧ c). In this case, C2 is a minimal generalization of C3, but C1 is not a
minimal generalization of C3. This is because for C1, there exists a much more
minimal generalization for C3 that is C2.

A specialization operator maps a conjunction of clauses G onto a set of max-
imal specializations of G. A maximal specialization S of G is a specialization of
G such that G is not a specialization of S, and there is no specialization S ′ of G
such that S is a specialization of S ′. Consider the following example.

Example 2 From example 1, C3 is a maximal specialization of C2, but C3 is
not a maximal specialization of C1. For the similar reason that because for C3,
there exists a much more maximal specialization for C1 that is C2.

2.2 LFIT

The main goal of LFIT [41] is to learn an NLP describing the dynamics of the
observed system. The overall behavior of the LFIT algorithm is shown in fig-
ure 2.1. To describe the dynamics of a changing system with respect to time,
we can use time as an argument. In particular, we will consider the state of an
atom A at time t as A(t). Thus, we can rewrite the rule of form (2.2) into a dy-
namic rule as follows:

A(t+ 1)← A1(t) ∧ A2(t) ∧ . . . ∧ Am(t) ∧ ¬Am+1(t) ∧ Am+2(t) ∧ . . . ∧ ¬An(t)
(2.3)

which means that, if A1, A2, . . . , Am is true at time t and Am+1, Am+2, . . . , An is
false at time t, then the head A will be true at time t + 1. By describing a nor-
mal rule in the form (2.3), we can simulate the state transition of a dynamical
system with the TP operator [90] [7].

10



It is important to note that, even though t is expressed as a parameter in the
rule, t+1 only ever appears on the left hand side while t strictly appears only on
the right. They can subsequently omitted and be considered as a propositional
rule, just like rule 2.2.

Also note that the literal on the left, A can appear on the right as well. Con-
sider the following rule

A(t+ 1)← A(t)

In terms of describing the dynamics of the system, we want the A on the left
and A on the right to represent the same thing, say a particular gene. However,
they represent different values in different times. Therefore this is not a cyclic
rule. Since LFIT only learns rule that determine the next state of the system,
there would never be any cyclic rule involved in the algorithm.

In LFIT, we are most concern about the transition of states between 2 ad-
jacent timesteps. If an interpretation I reflects the state of a system at time t,
then the state of the system at t+ 1, J is also an interpretation. In this case, we
can denote (I, J) as the state transition of the dynamic system from I to J .

Given a rule R of form 2.3 and a state transition (I, J), R is consistent with
(I, J) if and only if b+(R) ⊆ I and b−(R) ∩ I = ∅ implies h(R) ∈ J . The
concept of consistency can be further expanded to a set of state transitions. If
R is consistent with every state transition in set E, then R is consistent with E.
Further, a logic program P is consistent with E if every rule R ∈ P is consistent
with E.

In section 2.1.2, we defined the generalization and specialization of clauses.
Here, we can similarly define the generalization and specialization of rules. To
apply these operations to rules, we will consider rules that share the same head
and operate on their bodies.

A rule Rs is a maximal specialization of a rule R, if h(RS) = h(R) and b(RS)
is a maximal specialization of b(R). Given two rules R1 and R2 where h(R1) =
h(R2) and R1 subsumes R2, i.e. b(R1) ⊆ b(R2) [70]. Let li be the ith literal of
b(R2), then the least specialization of R1 over R2 is defined as follows:

ls(R1, R2) = {h(R1)← (b(R1) ∧ ¬b(R2))}
= {(h(R1)← (b(R1) ∧ li)) | li ∈ b(R2) \ b(R1)}
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Given an NLP P , a rule R and a set of rules S ⊆ P that subsumes R, the least
specialization of P by R can be written:

ls(P,R) = (P \ S) ∪ (
⋃

RP∈S

ls(RP , R))

A minimal generalization of a rule R is then, conversely a rule Rg if h(Rg) =
h(R) and b(Rg) is a minimal generalization of b(R).

The LFIT algorithm is defined to be an algorithm which, when given the in-
put of a set of state transitions E and an initial NLP P0, produces a result of an
NLP P such that P is consistent with E.

The symbolic method of implementing LFIT can utilize either the generaliza-
tion operator or the specialization operator. The generalization method starts
out with the least general rule and then generalizing for each example provided.
The specialization method, on the other hand, starts with the most general rule
and then specializing the rules for each example. It turns out that the gener-
alization method produces a lot of rules. This is, in most cases, not what we
want. The specialization method on the other hand, only considers the minimal
conditions and thus produces far fewer rules.

2.2.1 Learning Prime Implicant Conditions

The specialization method learns all minimal conditions that imply a variable
being true in the next state. Minimal conditions are easier to deal with in vari-
ous situations, given the smaller amount of computation required. Therefore it
is often desirable to learn only the minimal conditions that can describe a par-
ticular system.

To define the minimality of an NLP P , the notion of prime implicant is used.
P , an NLP learned by the LFIT algorithm is considered to be minimal, if the
body of each rule is a prime implicant to infer its head. Given a formula ϕ, an
implicant of C is prime, if and only if none of its proper subset S ⊂ C is also an
implicant of ϕ [40]. This means that C is the most minimal clause that covers
the same truth table as ϕ.

Given a rule R and a set of state transitions E such that R is consistent with
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Figure 2.2: How LFIT learns, reds are negative examples and blues are positive examples

E. b(R) is a prime implicant condition of h(R) if there does not exist another
rule R′ that subsumes R and is consistent with E. To simplify further discus-
sion, we also call R a prime rule of E. Given that the definition of a prime rule
is a rule that is not subsumed by any other rules, the most general prime rule is
the fact, i.e. a rule with an empty body.

An NLP P is a prime NLP for a set of state transitions E, if P realizes E
and all rules of P are prime rules for E. The set of all prime rules of E is the
complete prime NLP of E. This is illustrated in figure 2.2, the NLP must real-
ize all blue transitions while not realizing the red transitions. Blue and red are
colored with respective to r.

A simple naïve method of obtaining the complete prime NLP for a given set
of transitions is to do a brute force search. By starting from the most general
rules (i.e. facts), we can then generate all maximal specific specialization at
each step and keep only the first ones that are consistent with E. However this
method requires traversing all possible rules and thus is not computationally
efficient.

This algorithm relies heavily on specialization. Starting from the most general
rule, each state transition provides negative examples that allow the algorithm
to perform specialization to each of the rules it has already learned. By doing
this, the output of this algorithm is guaranteed to be a complete prime NLP of
the input. The complete algorithm is described in algorithm 1.

The algorithm starts out with putting in facts for each atom in the Herbrand
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Algorithm 1: LFIT: Learning the complete prime NLP P

Inputs : a set of atoms B, E ⊆ 2B × 2B

Output: an NLP P such that J = TP (I) holds for any (I, J) ∈ E
P := ∅;
foreach A ∈ B do

P = P ∪ {A.};
end
while E 6= ∅ do

Pick (I, J) ∈ E;
E := E \ {(I, J)};
foreach A ∈ B do

if A 6∈ J then
RI

A := A←
∧

Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj;
P :=Specialize(P,RI

A);
end

end
end

base B of the input. Then each state transition (I, J) ∈ E is analyzed. For each
variable A that is not present in J , LFIT infers an anti-rule RI

A:

RI
A = A←

∧
Bi∈I

Bi ∧
∧

Cj∈B\I

¬Cj

This rule is constructed such that I infers A, but since A is not present in J ,
this rule is not consistent with the input. This is done specifically so that once
the algorithm performs a specialization of P by RI

A, none of the rules in P will
subsume RI

A, which means that none of the rules in P will infer A given I, thus
P is now consistent with I with respect to A. The specialization algorithm is
described in algorithm 2.

To perform specialization, all rules RP ∈ P that subsume RI
A is first ex-

tracted. The least specialization of each rule RP is generated by creating a rule
for each literal in RI

A. Each of the created rules contain all of the literals from
RP , in addition to the negation of the literals in RI

A. Then any rules that are
not subsumed already by P is added to P . Now P is an NLP that is consistent
with the transition (I, J), while also being a complete prime NLP. Once all the
state transitions in E has been analyzed, P is a complete prime NLP of E.
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Algorithm 2: Specialize(P,R): specialize P so that P does not subsume
R
Inputs : an NLP P and a rule R
Output: the maximal specialization P that does not subsume R
conflicts := ∅;
foreach RP ∈ P do

if b(RP ) ⊆ b(R) then
conflicts = conflicts ∪RP ;
P = P \RP ;

end
end
foreach Rc ∈ conflicts do

foreach l ∈ b(R) do
if l 6∈ b(Rc) and l 6∈ b(Rc) then

R′
c = (h(Rc)← (b(Rc) ∪ l));

if P does not subsume R′
c then

P = P \ all rules subsumed byR′
c;

P = P ∪R′
c;

end
end

end
end
return P

Table 2.1 shows the execution trace of LFIT, where the state transition pqr →
pq represents the state transition ({p, q, r}, {p, q}). Literals that are introduced
by least specialization is represented in bold, while rules that are subsumed af-
ter specialization are stroked out. This algorithm begins with the most general
set of prime rules, which is P = {p., q., r.}. Based on the transition (pqr, pq), the
algorithm infers the anti rule r ← p∧q∧r. This rule is subsumed by r., therefore
a least specialization operation has to be done. By performing the least special-
ization we get ls(r., r ← p ∧ q ∧ r) = {r ← ¬p, r ← ¬q, r ← ¬r}. By combining
the rules obtained from the least specialization and the rules originally in P ,
and also removing the rule that subsumed the anti-rule, we can obtain an NLP
that is now consistent with the transition (pqr, pq). The result of this is shown
in the cell next to initialization in table 2.1.
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Next, based on the transition (pq, p), the algorithm infers two anti-rules: q ←
p ∧ q ∧ ¬r and r ← p ∧ q ∧ ¬r. These are subsumed by q. and r ← ¬r re-
spectively. q. is replaced by {q ← ¬p, q ← ¬q, q ← r} after performing least
specialization. On the other hand, the least specialization of the second inferred
anti-rule produces two new rules r ← ¬p ∧ ¬r and r ← ¬q ∧ ¬r. However these
rules are subsumed by rules r ← ¬p and r ← ¬q that are already in P respec-
tively. Thus, the least specialization of the second anti-rule only resulted in the
specialization of the rule q. and the deletion of r ← ¬r.

The same steps are repeated until (q, pr), where a special case occurs. Based
on this transition, the algorithm infers the rule q ← ¬p ∧ q ∧ ¬r, which is sub-
sumed by P with rule R : q ← ¬p ∧ q ∧ ¬r. Unfortunately, the rule that P al-
ready has includes all the atoms that exists in the Herbrand base, ‖b(R)‖= ‖B‖
and therefore cannot be further specialized. In this case, rule R is simply re-
moved from the NLP P .

2.3 Neural Network and Deep Learning

The artificial neural network (ANN) is a machine learning prediction algorithm
inspired by the human brain. ANN was originally developed in 1957 [75], but
has only seen daylight in recent years thanks to the improvements in parallel
computation technology, that made ANN practical and accessible. Although
ANNs are inspired by the biological neural function of the brain, their mecha-
nisms and functions are anything but.

An example of an ANN structure is the feed-forward neural network (FNN).
An FNN, as shown in Figure 2.3, consists of multiple artificial neurons, con-
nected in layers, in a way such that information only flows one way. An FNN
typically includes three types of layers: one input layer, one or more hidden lay-
ers, and one output layer. The input layer usually denotes the dimension of the
input to the FNN, with the number of neurons equals the dimension of the in-
put. The hidden layers are usually responsible for the computation. The output
layers consist of activation functions, to give meaningful purposes to the compu-
tation performed in the hidden layers. An FNN with at least one hidden layer is
said to be able to function as a universal approximator, i.e. can compute almost
any function [37].
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Figure 2.3: A feed‐forward neural network.

Algorithm 3: Computation of an FNN
z0 := x;
for i = 1 to l + 1 do

xi := Wi−1zi−1 + bi;
zi := e(xi);

end
z := zl;
return z;

An FNN with l hidden layers is parametrized by l+1 weight matrix (W0, . . . ,Wl)
and l + 1 bias vectors (b0, . . . , bl). Given an input x, the output of the FNN z is
computed as described in algorithm 3.

In algorithm 3, e(·) is the activation function, such as the element-wise sig-
moid function sigmoid(xj) = 1/(1+exp(−xj)). With this construct, it is possible
to model Boolean functions with FNNs.

2.3.1 Backpropagation

To make FNN approximate a function, all parameters have to be carefully cho-
sen. However, doing so by hand will not be practical. Trying to solve the pa-
rameters analytically is also very difficult. Thus, the backpropagation algorithm
[35] was introduced as a simple and effective solution to finding the appropriate
parameters iteratively. Traditionally, gradient descent was used as the optimiza-
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tion method. Gradient descent is known to work well enough in practice with
the proper configuration (also called hyperparameters), even though it can be
quite time-consuming and is also not guaranteed to find the global minimum.

To perform the backpropagation algorithm, a pair of input vector and the
corresponding desired output vector, also known as a training example, is pre-
pared. The input vector is feed through the FNN. The parameters of the FNN
is assumed to be initialized to a certain value, usually random. The output of
the FNN is then compared to the desired output from the training example, and
is evaluated with a loss function defined by the user. Usually a small value of
the loss function indicates that the FNN is behaving closer to the desired func-
tion. Therefore, the loss function can be thought of as a distance measurement
between the current function of the FNN and the desired function.

The gradient of the loss function is then calculated. Gradients for each layer
in the hidden layer is also subsequently computed by using the chain rule of
derivates. Each parameter is then updated by subtracting a portion of the gra-
dients that were calculated. The amount to subtract is called the learning rate,
which can either be fixed throughout the whole training process or be dynamic.
After all parameters have been updated, the algorithm will repeat the whole
process again by using a different training example. This whole process can be
repeated until the parameters converge, i.e. does not change by a significant
amount after updating.

It is not uncommon to have huge amount of training examples to train the
network with. Such method of updating the parameters after each training ex-
ample costs not only a huge amount of computation, but can also lead to huge
amount of inefficiency due to gradients constantly changing directions and not
leading towards convergence. Thus, another method of training called mini-
batch learning [51] was introduced in order to overcome these problems. In mini-
batch learning, a subset of training examples are taken together and used to cal-
culate gradients before updating the parameters. The gradients are aggregated
with average and thus provides more stability in terms of the direction.
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2.3.2 Differentiable Programming

The allmightyness of neural networks through backpropagation has sparked a
new form of programming paradigm, called the differentiable programming [52].
Compared to neural networks which only use matrix multiplication and an ac-
tivation function, in differentiable programming a program can be defined with
any differentiable mathematical operator. A loss function is then defined and a
gradient descent algorithm will then optimize the program to minimize the loss
function.

Stemming from this paradigm, many different ”neural network” architectures
have been proposed. Many of them with no resemblence to the original simplis-
tic artificial perceptron. The first prominent example of this is the Long-Short
Term Memory (LSTM) [36]. LSTM came from the need to deal with sequence
inputs, yet the simplistic RNN was difficult to use given the gradient explosion
problem [12]. LSTM was a breakthrough, ”gates” were defined within the net-
work to allow dynamic control of how much the inputs or previous states should
affect the current internal states. Many revolutionary architectures have also
since been proposed [11] [79].

2.3.3 Layer Normalization

As neural networks get deeper, training became more computationally expensive
and difficult. As parameters increase, the risk of overfitting also increase. To
counteract the risk of overfitting, more training data will be provided and thus
neural network models took more time to train and converge.

A technique called batch normalization [43] was introduced at first, that takes
the average and variance of a mini-batch during training and normalize the
mini-batch. This allowed feed forward neural networks to converge quickly.
However, it wasn’t clear how this technique can be applied to recurrent neural
networks.

Thus layer normalization [8] was introduced that can be applied not just to
feed forward neural networks, but in fact can be applied to any neural network
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Figure 2.4: Multi‐head Attention.

architecture. Layer normalization is defined as follows

LayerNorm = γ
x− E[x]√
Var[x] + ϵ

+ β (2.4)

Layer normalization apples normalization to each training instance instead of
a mini-batch, thus getting rid of inter instance dependencies. This has allowed
neural networks to converge even quicker and is a major driving force behind
recent deep learning advancements.

2.3.4 Attention

The next advancement came in the form of transformer [91]. Recurrent neural
networks enforce sequence ordering with their layered structure, with the left
most input in the sequence taking the longest route to the output. This, how-
ever disallows information to flow back in time, particularly when later infor-

20



mation can inform about details on past information. This is especially prob-
lematic in the natural language domain, as words typically can change meaning
depending on what comes next.

The transformer model attempts to solve this by laying all the inputs flat and
allow an ”attention” mechanism to identify which part of the inputs are of rela-
tive importance to the output. Position of the inputs are provided as positional
encoding.

The attention mechanism used in transformer is also called the Scaled Dot-
Product Attention. Given a matrix Q, and two other matrices K and V , the
attention is computed as follows

Attention(Q,K, V ) = softmax(QKT

√
dk

)V (2.5)

where dk is the dimension of K.

Most models don’t use a single attention, as it has been found to be beneficial
to perform multiple linear projections to multiple dimensions. With multi-head
attention, the model can attend to different information concurrently with dif-
ferent representations.

The multi-head attention is calculated as follows

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.6)

where headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.7)

The transformer is an encoder-decoder architecture that primarily utilizes the
attention mechanism. The transformer model revolutionized machine transla-
tion and various other natural language processing tasks.

2.3.5 Set Transformer

Set transformer [49] is an architecture that deals with unordered sequence, namely
a set. There might be questions as to why come up with another model when, if
you take off the positional encoding in the transformer, you should be able to
get non-positional inputs. The reason however, is fairly simple. An architecture
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Figure 2.5: The Set Transformer Architecture.

processing a set has a requirement to be permutation invariant, that is whether
element 1 and element 3 are in their own positions or swap places, the result
of the computation should be the same. This is however, not the case with a
vanilla transformer. A vanilla transformer even without positional encoding, is
still sensitive to the input ordering.

To ensure permutation invariance, we will have to first pool the inputs. If
the pooling is permutation invariant, then we can guarantee that subsequent
operations will also be permutation invariant. One simple pooling operations is
the max function, which takes the largest number from a vector. This is easily
provable to be permutation invariant as the largest number will be the same no
matter where it appears in the vector.

The set transformer is just like a transformer, consisting of an encoder and a
decoder. The difference is that both encoder and decoder attend to their own
inputs respectively to produce activation.

The set transformer introduces two permutation invariant blocks, set atten-
tion block (SAB) and induced set attention block (ISAB). The basic building
block for these blocks is the multi-head attention block (MAB) which can be
defined as follows

MAB(X,Y ) = LayerNorm(H + rFF(H))

where H = LayerNorm(X + MultiHead(X,Y,Y))
(2.8)
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rFF is any row-wise feed forward network. The SAB is defined as

SAB(X) = MAB(X,X) (2.9)

From this equation, it is evident that SAB takes a set and performs self-attention
between elements in the set. This produces the permutation invariance with
respect to the ordering of elements in X. However, SAB is quadratic in time
complexity and may be fairly expensive when there is high number of elements.
ISAB is thus introduced, which first reduces the dimension of the set before per-
forming the attention. These lower dimension elements are called the inducing
point I. With m inducing points, ISAB can be defined as

ISABm(X) = MAB(X,H)

where H = MAB(I,H)
(2.10)

Set transformer introduced the pooling by multi-head attention (PMA) layer,
which is the permutation invariant layer. PMA has k learnable seed vectors.
PMA is defined as

PMAk(Z) = MAB(S, rFF(Z)) (2.11)

since SAB and ISAB are already permutation invariant, one might think that
adding PMA is unnecessary. However the authors show that having a pooling
layer helps in modeling explaining-away.

The encoder for the set transformer can use either stacks of SAB or ISAB.
The decoder puts the output of the encoder through a layer of PMA, followed
by SABs. The overall architecture is depicted in figure 2.5.
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1. Initialization
p.
q.
r.

6. r → r

p← q.
p← p¬r.
p← q ∧ r.
q ← ¬p ∧ q.
q ← p ∧ r.
q ← q ∧ r.
r ← ¬p.
r ← ¬q ∧ r.

2. pqr → pq

p.
q.
r ← ¬p.
r ← ¬q.
r ← ¬r.

7. qr → pr

p← q.
p← p ∧ r.
q ← p ∧ r.
q ← ¬p ∧ q ∧¬r.
q ← p ∧ q ∧ r.
r ← ¬p.
r ← ¬q ∧ r.

3. pq → p

p.
q ← ¬p.
q ← ¬q.
q ← r.
r ← ¬p.
r ← ¬q.
r ← ¬p ∧ ¬r.
r ← ¬q ∧ ¬r.

8. pr → q

p← q.
p← p ∧ q ∧ r.
q ← p ∧ r.
q ← ¬p ∧ q ∧ ¬r.
r ← ¬p.
r ← ¬p ∧ ¬q ∧ r.

4. p→ ϵ

p← ¬p.
p← q.
p← r.
q ← ¬p.
q ← r.
q ← ¬p ∧ q.
q ← q ∧ r.
r ← ¬p.
r ← ¬p ∧ q.
r ← ¬q ∧ r.

9. q → pr

p← q.
q ← p ∧ r.
r ← ¬p.

5. ϵ→ r

p← q.
p← r.
p← ¬p ∧ q.
p← ¬p ∧ r.
q ← r.
q ← ¬p ∧ q.
q ← ¬p ∧ r.
r ← ¬p.
r ← ¬q ∧ r.

Table 2.1: Execution trace of LFIT
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3
δLFIT

δLFIT [65] is an end-to-end differentiable implementation of the LFIT algo-
rithm. δLFIT takes a sequence of state transitions and outputs the logic pro-
gram that best explains the transitions. Comparing to previous neural network
methods that implement LFIT, δLFIT differs in that it views the LFIT prob-
lem as the classification problem. Namely, classifying whether a rule exists or
doesn’t exist within the given state transitions.

In this chapter, we will first investigate whether neural networks are capable
of identifying logic programs. Different logic programs produce different tran-
sitions, but similarly the same logic program can produce different transitions
depending on the initial state. Thus we want to understand whether (1) neural
networks can identify different transitions that came from the same logic pro-
gram, and (2) neural networks can identify transitions coming from different
logic programs.

In the second half of this chapter, we will introduce the δLFIT algorithm.
δLFIT takes a series of state transition as an input and outputs the logic pro-
gram that explains the state transition.
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3.1 Logic Program Classification

However, before we are able to use neural networks to classify rules, we want to
ensure that neural networks can properly classify state transitions. To do this,
we propose a model [66] that is trained in such a way to learn a representation
from which classification can be derived from.

In this model, we don’t learn the representation directly. An optimal rep-
resentation is obtained by training the model on a separate task, mainly the
regression of the next state. Intuitively, by learning the regression on the next
state, the NNs can focus on learning the abstract features of the particular sys-
tem.

On a high level, we want to abstract the information represented in the log-
ical space, into a more compact linear space. By abstracting and thus avoid-
ing the need to deal with information in the lower level logical space, we are
able to handle the fuzziness and ambiguity of the data. This model thus can be
thought of as first encoding information in the logical space, into the represen-
tation space. We then perform the TP operator, that will give us the next state,
in the representation space. Once we obtain the next state in the representation
space, we can then map it back into the logical space.

The model is defined as calculating the following

v⃗t+1 = fdecode(frepresentation(M
′
k, L0)× fencode(Mk)

⊤) (3.1)

where M ′
k can be equal or different from Mk, L0 is an initial representation,

fdecode : Rd 7→ {0, 1}|B|, frepresentation : {0, 1}|B|×k × Rd×d 7→ Rd×d, fencode :
{0, 1}|B|×k 7→ Rd, d is the dimension of the learned representation. All of fdecode,
frepresentation and fencode are differentiable, × represents the matrix-vector multi-
plication, and therefore this entire model is end-to-end differentiable.

Learning is performed by minimizing the mean squared loss defined as follows

loss = 1

|B|

|B|∑
i=1

(vt+1,i − yi)
2

where yi is the true label.
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Figure 3.1: A visualization of the model

The fdecode function converts state vectors in the representation space, back
into the logical space. The fencode function does the opposite of converting state
vectors in the logical space into the representation space.

The frepresentation function takes 2 parameters, the past k states that provides
the abstract feature to extract from, and an initial representation that is the a
priori knowledge. With these 2 parameters, the function outputs a matrix that
is the representation of the dynamics of the system.

Implementation-wise, all of the above functions can be implemented with any
non-linear function with parameters that can be trained by performing gradient
descent. In our implementation, the fdecode and the fencode functions are imple-
mented with a multi-layer perceptron. The frepresentation function is implemented
with LSTM (Long-Short Term Memory).

3.1.1 Experiments

To train the model, we used a randomly generated dataset. The model’s goal is
to extract features for any given system. The constraint of the system is such
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that the system can be described by an NLP. Therefore, it is to our advantage
that we can randomly generate a huge amount of data based on that constraint,
and then train the model to extract common features of systems with such con-
straint.

Data generation works by first randomly generating an NLP, then generat-
ing state transitions that start from all possible initial states. However, if we
purely randomly generate an NLP, we might not be able to generate good qual-
ity NLPs that allows the model to learn. Therefore, we limit ourselves to only
generating NLPs with several properties. First, the body of each rules in the
NLP should not be too long. We perform a random exponential cut-off for the
length of the body, so there are cases where the body is long, but that should
not be too often. Second, the state transitions generated from the NLP needs to
have high variation. State transitions that are in the middle of an attractor are
excluded from the training data. If there are too few state transitions from the
NLP, then the NLP is also excluded from the training data.

During the experiment performed below, we generated 30,000 different NLPs.
Then from each NLP, we obtained a maximum of 500 samples, each sample
containing state transition for 10 timesteps. This gave us 150,000 samples to
train the model.

Based on our experience, generating training data that has sufficient variance
hugely affects the performance of the model. When we tried purely randomly
generating NLPs and their corresponding states, we got transitions that are zero
for most of the time or are constantly at the same state, and the model was un-
able to learn any useful features.

We tested the model on 4 LFIT benchmarks. These are the same benchmarks
that were also used in [41] and [70].

We generated a series of 10 transitions from all possible initial states for each
benchmark. The model is then asked to predict the next state based on these 10
transitions. We first ran all the benchmarks without providing any background
knowledge, that is supplying the 0 matrix for L0 in equation 3.1. Next, for pre-
dictions that are wrong by 1 or more variables, we obtained new L matrix by
calculating frepresentation by supplying different state transitions than Mk, and
then using that as L0 for Mk to calculate the predictions again. The results are
shown in table 3.1. We calculated the mean absolute error (MAE) as the metric
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Method Mammalian (10) Fission (10) Budding (12) Arabidopsis (16)
Without L0 0.224 0.063 0.218 0.146

With L0 0.184 0.062 0.199 0.128
Fuzzy data (25%) 0.209 0.062 0.206 0.134
Fuzzy data (50%) 0.243 0.072 0.215 0.238

Error (10%) 0.223 0.081 0.198 0.157
Error (20%) 0.249 0.101 0.211 0.201
Error (30%) 0.287 0.129 0.227 0.230
Error (40%) 0.334 0.182 0.250 0.251
Error (50%) 0.379 0.250 0.288 0.263
Error (60%) 0.418 0.324 0.318 0.274
Error (70%) 0.435 0.363 0.341 0.280
Error (80%) 0.466 0.406 0.353 0.300
Error (90%) 0.490 0.469 0.355 0.317

Table 3.1: The MAE of the prediction performed by the model on 4 separate benchmarks.

for accuracy. An MAE of 0.2 for a 10 variable benchmark means that the model
predicted 2 of the 10 variables wrong. As can be seen from the results, we were
able to improve the predictions when providing L0, except in the case of the fis-
sion benchmark where the model was already doing very well.

Next, we added fuzziness to the data by mapping each element in the state
vector {0, 1} 7→ [0, 1]. When a particular variable is 1, the value is fuzzed into
a range of [0.5, 1], and when it is 0 it is mapped into the range [0, 0.5]. The re-
sults of this is indicated by the row fuzzy data (50%). For fuzzy data (25%), we
mapped 1 to the range of [0.75, 1] and 0 to [0, 0.25]. In this experiment, when-
ever the model made wrong predictions, we provided L0 that is calculated based
on discrete error-free data. This is done under the assumption that in a real
world scenario, the prior knowledge provided is usually considered as a fact.
Therefore we did not do any fuzziness test on L0.

We then tested the model’s ability to handle erroneous data. For 10%, we
flipped 10% of the variable states that we provide as input to the model. As can
be seen from table 3.1, by providing prior knowledge to the model we are able
to maintain fairly high accuracy for data with errors up to 50%.
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(a) Logic program representationA

(b) Logic program representationB

Figure 3.2: Two logic program representations learned from different state transitions from the fission bench‐
mark

3.1.2 Discussion

In figure 3.2, we show 2 separate logic program representations learned from
2 distinct state transitions that came from the fission benchmark. We can see
that both of them share very similar features, and can confirm that the model
did indeed manage to extract some high level features based on the input state
transitions. With this, we can be confident that neural networks have the ability
to learn and classify logic programs.

3.2 Rule Classification

For δLFIT, the classes that it is trying to classify are the logical rules. Every
combination of logical rules in a particular Herbrand base is assigned a class to
which δLFIT can perform classification on.

To do this, a mapping from every logical rule has to be built. Given Herbrand
base B, if every single permutation of the form (2.3) has to be considered, the
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possibilities are infinitely many. From the infinitely many rules, we first want to
reduce them to a manageable set.

The following operations are defined

Definition 1 (Simplification of Rules) A rule can be simplified according to
the following operations:

• a ∧ a is simplified to a

• ¬a ∧ ¬a is simplified to ¬a

• a ∧ ¬a and ¬a ∧ a is simplified to ⊥

where a is an atom.

With these operations, we can define a minimal rule.

Definition 2 (Minimal Rule) A rule is considered to be minimal, if its logical
formula cannot be simplified further.

Note that the ordering of the atoms within in the rule is insignificant in the
above definition. Both a ∧ b and b ∧ a are equally minimal.

By limiting to only minimal rules, we now know that the length of a rule
body is finite. In particular, the maximum length a rule can take is equal to
‖B‖ since the same atom cannot appear twice in the same rule. With this con-
straint, it is now possible to list out all possible rules a system can have.

Given an Herbrand base B, we define a function τ(B) generates a finite or-
dered set that contains all possible minimal rules. In a classification scenario,
we want to know which class maps to which rule. To ease this mapping, a deter-
ministic approach is defined to map each rule to an index, which corresponds to
a class.

Before explaining the approach to map the rules, first we will have to define
several terms that we will be using throughout.
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Definition 3 (Length of a rule) The length of a rule R ∈ τ(B) is defined as
‖b(R)‖.

Definition 4 (Index of element in ordered set) Let S be an ordered set,
the index of element e ∈ S, is defined as σS(e) = ‖S<e‖, where σS : S 7→ N and
S<e = {x | x < e, x ∈ S}.

Definition 5 (Ordered Herbrand Base) The ordered Herbrand base Bo con-
tains the same elements as B except each element has an ordered relation <.

The relation < on Bo can be defined arbitrarily, but in most cases, the lexi-
cographical ordering is the most convenient and conventional. Therefore this is
the one that we will also be utilizing throughout this thesis.

Now, we will split all the rules in τ(Bo) by their rule lengths. This will give us
the basis to quickly and deterministically calculate the index of any given rule.
Consider a set of rules τl(Bo) which only contains rules of length less than or
equal to l, where τl(Bo) = {R | ‖b(R)‖≤ l, R ∈ τ(Bo)} ⊆ τ(Bo). The number of
rules in τl(Bo) can be given by the following formula:

‖τl(Bo)‖=

{
1 if l = 0,
‖τl−1(Bo)‖+

(
n
l

)
× 2l if l > 0.

(3.2)

where n = ‖Bo‖ is the number of elements in the Herbrand base and
(
n
k

)
repre-

sents the binomial coefficient.

Next, consider the ordered set τ̃l(Bo) = {R | ‖b(R)‖= l, R ∈ τ(Bo)} containing
all the rules R that are exactly of length l. The ordered relation for τ̃l is defined
by first ordering the negation by marking the negative literals as 1s and positive
literals as 0s, then next by ordering based on Bo. By marking negative literals
and positive literals to 1s and 0s, we can map each rule to a binary number,
e.g. {a, b,¬c} maps to (0, 0, 1), {¬a,¬b, c} maps to (1, 1, 0). regarding the left-
most digit as the least significant bit and the right-most as the most significant
bit, we can denote it as 1002, which can be considered as 4 in decimal. Another
example {¬a,¬b, c} maps to (1, 1, 0) which is 0112 and can be considered as 3
in decimal. Next, we look at each atom in the rule and order them according to
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Bo, which in this case we choose the lexicographical ordering. In this relation,
{a, b} < {a, c} < {¬a, b} < {¬b, c} < {¬a,¬c}.

With these tools, we can finally calculate the index for any arbitrary rule. We
define the indexing function στ(Bo) : τ(Bo) 7→ N. The index of a rule R is simply
as follows:

στ(Bo)(R) = ‖τl−1(Bo)‖+στ̃l(Bo)(R)

where l = ‖b(R)‖ is the length of the rule R. The basic principle here is that
rules are sorted first by their length, and then by their position within the same
rule lengths. Thus, by adding up all the rules that are less than themselves, and
then looking at the position within the same length, we would get the global
position of the particular rule.

Example 3 Consider an ordered Herbrand base Bo = {a, b, c}, where the or-
dered relation is the alphabetical ordering. The full table of στ(BO)(R) is listed as
in table 3.2.

3.3 Logic Program Encoding

Since neural networks only deal with matrices and vectors, we will have to en-
code logic programs into matrices. The encoding employed by δLFIT puts the
rule head on the row, and all the minimal rules τ(Bo) on the column.

For example, consider a system with the Herbrand base B = {a, b}, and an
NLP as follows:

a(t+ 1)← a(t) ∧ b(t)

a(t+ 1)← ¬b(t)
b(t+ 1)← ¬a(t)

(3.3)

The above NLP can be encoded into the matrix below:
{} {a} {b} {¬a} {¬b} {a, b} {¬a, b} {a,¬b} {¬a,¬b}[ ]

a 0 0 0 0 1 1 0 0 0
b 0 0 0 1 0 0 0 0 0
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Note that heads with multiple rules like a, which are disjoins in the NLP se-
mantics, can be encoded by marking their respective elements as 1, therefore
in the a row there are 2 columns that are marked as 1. Therefore this is not a
one-hot encoding.

3.4 Model

By viewing the LFIT problem as a classification problem, the loss can be cal-
culated as the cross entropy of the correct labelling of each rule with regard to
the predictions of the system. The model can then be trained by minimising the
loss with stochastic gradient descent.

The model is defined by the number of variables in the system, i.e. the size
of the Herbrand base. For example, by building out and training a model that
uses 3 variables, the model will be able to provide predictions for any 3 variable
logic programs. But in order to obtain predictions for 4 variable systems, a new
model that is built with that in mind has to be retrained.

δLFIT consists of an LSTM and a feed-forward network. The LSTM trans-
forms the input sequence into a feature vector, the feed-forward network then
classifies and predicts the rules based on the feature vector. The model struc-
ture is depicted in figure 3.3.

The LSTM is trained by BPTT based on variable length, and the outputs

...

xtx2x1

p(t+1)←

p(t+1)←q(t)
p(t+1)←p(t)

p(t+1)←r(t)

...

Figure 3.3: The δLFIT Architecture.
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are the elements of τ(BO). Each output node is given an index and is mapped
according to the indexing function σ.

3.5 Loss Function

For each rule r, given the state transition sequence S, δLFIT outputs the condi-
tional probability:

p(r|S)

The aim is to ensure that each rule r that appears within the logic program P
to have p(r | S) = 1 and those that don’t appear in the logic program to have
p(r | S) = 0. In other words, when all data Λ is sampled, (r, S) will hopefully
match the actual label r. Therefore, the idea is to minimize the expected nega-
tive log likelihood:

LFIT loss = −E(r,S)∼Λ(r × log p(r | S) + (1− r)× log(1− p(r | S)))

An auxilary loss function, called the subsumption loss is also added to aid in
training. The subsumption relation between different rules can be used to pe-
nalize the model as, assuming minimal NLP, subsumed rules should not appear
in the prediction. For ever rule in τ(B) a softmax cross-entropy is added. The
loss is defined as follows

Subsumption Lossτ(BO) = −
∑

r∈τ(BO)

(r × log p(r | S) + (1− r)× log(1− p(r | S)))

3.6 Generating Training Data

Due to the generality of δLFIT, the model is very difficult and expensive to
train as well. In order to be able to predict any arbitrary logic program, with
the limitation of the Herbrand base, the training data will have to be sampled
sufficiently across every logic program possibility. In particular, because δLFIT
is essentially a classifier, datapoint for every class has to be provided.
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Gathering good training data is usually the most important aspect in statis-
tical machine learning [88]. In terms of the δLFIT task, we are attempting to
solve a classification problem. Thus a training data for that allows identification
for each separate rule is required. Unfortunately, this is very difficult to obtain
from real world data. Therefore, the training data that we are going to use will
be artificially generated.

For every rule R ∈ τ(B), we generate a corresponding training data set.
Based on the input output of the model, this training data set consists of pairs
of (T, P ) where T is the state transitions and P is the corresponding logic pro-
gram. Here, P is a logic program that contains the rule R, and is required that
any other rules in P not subsume R.

To generate this training data set, first a logic program Po is constructed. Po

must contain the rule R for which we are constructing the training data set for.
Next, a random initial state is picked and a series of state transition T is gen-
erated based on Po. Next, based on the state transition generated a logic pro-
gram Pl is learned based on algorithm 1. If R is present in Pl, then the data
pair (T, Pl) is accepted, otherwise it is rejected and a next initial state is picked.
An extra step of running algorithm 1 is performed to ensure that the state tran-
sitions provided has sufficient information to learn the rule R.

The above process is repeated for every rule R ∈ τ(B). Therefore, for a 3-
variable system we will have 81 sets of training data. For a 4-variable system,
there will be 324 sets, etc.

3.7 Experiments

We first verify that δLFIT is capable of producing the expected logic programs
when given a series of state transition. Next, we perform several experiments
that focus mainly on the ability to handle noisy data and also erroneous data.

δLFIT is implemented in Tensorflow [1]. We prepared several experiments
to verify the performance of δLFIT. As far as we are aware, there are no other
works that perform similar tasks, therefore we were not able to do any compar-
ison. Instead, we will show the precise results that we obtained in our experi-
ments.
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3.7.1 Hyperparameters

These hyperparameters were not tuned by a lot, mainly because the hyperpa-
rameters that we chose worked well for most experiments. The following de-
scribes some of the hyperparameters chosen:

• Batch size: 750.

• Gradient descent optimizer: Adam, learning rate is set to 0.01.

• All parameters are initialized randomly by the default initializer in Ten-
sorflow r1.5.

• Dropout rate of 0.8.

• L2-regularization for the parameters.

• Input is a series of 15 state transitions.

Other neural network specific hyperparameters varies from experiments to
experiments, so we will describe them as we describe our experiments.

3.7.2 Experimental Methods

We generated 50,000 (T, P ) pairs for each training data set. The model is then
trained for 2 epochs on this data sets while attempting to minimize the loss.
Each step, a mini-batch is sampled across all of these data sets randomly. This
mini-batching should give the process a stochastic element and helps to escape
local minima.

After 2 training epochs, δLFIT produces the predicted logic programs given a
series of state transitions. To validate this result, we take the initial state from
the series of state transitions that was given as input, and run the TP operator
on the predicted program. The generated state transitions is then compared
with the original state transitions.
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Once δLFIT has finished training, we get the probability of the rules. To turn
it into a human-readable logic program, we just have to take for each p(R) ≥ θ,
where θ is a threshold, use the reverse lookup σ−1

τ(BO)(R) and combine them.

We tested δLFIT on 4 boolean networks taken from [86]. Two of them are
3-variable systems and one of them is a 5-variable system. We could only test
on small systems currently, mainly due to memory constraints because larger
systems require a larger neural network architecture. Another factor is that the
training data generation takes too long to be practical beyond 5 variables.

For 3-variable systems, we used the following hyperparameters:

• LSTM hidden units: 50.

• Output of LSTM is a 6 dimension vector.

• Feed-forward neural network is 2 layers with 10,000 hidden neurons each.

Whereas for the 5-variable system, we used the following hyperparameters:

• LSTM hidden units: 500.

• Output of LSTM is a 10 dimension vector.

• Feed-forward neural network is 4 layers with 8,000, 5,000, 5,000 and 2,000
hidden neurons respectively.

First, we fed δLFIT discrete, error-free data. From the predicted logic pro-
gram that was obtained from δLFIT, we attempted to reproduce the same state
transition sequence. Then, we calculated the mean squared error (MSE) be-
tween the original input sequence and the generated sequence.

Next, we test δLFIT with fuzzy data. We map the values of the transition
being fed into δLFIT from 1 → [0.5, 1] and 0 → [0, 0.5] randomly on a normal
distribution. Note that both ranges include 0.5, this is done deliberately to test
the model’s robustness. Another thing to note is that δLFIT was not retrained
specifically to deal with fuzziness. The same parameters that were used for the
previous experiments were used for the fuzziness test as well.

38



The full results for the experiments we have performed is detailed in table
3.3. In general, we notice that δLFIT was not able to perform as well when the
data is fuzzy, except for Raf, which has several attractors. We provide some
analysis into why this is the case in section 3.8.

In this section, we will focus on the 3-node (a) and 5-node experiments in
detail.

3-node (a)

This is a toy network that contains 3 nodes. The boolean network is shown as
in figure 3.4, and its corresponding logic program is described as below:

v1(t+ 1)← ¬v1(t) ∧ ¬v2(t).
v1(t+ 1)← ¬v1(t) ∧ ¬v3(t).
v2(t+ 1)← ¬v1(t) ∧ v2(t).

v3(t+ 1)← ¬v1(t).
v3(t+ 1)← v2(t).

This network has two attractors and one steady state. We plugged every possi-
ble initial state (23 states) and produced a series of 15 state transitions for every
initial state. These series are then fed into δLFIT to obtain the corresponding
logic program. After δLFIT predicted the logic program, we then used the pre-
dicted logic program to generate a series of 15 state transitions. Those transi-
tions are then compared with the original transitions.

In this particular task, the mean squared error (MSE) for all the state tran-
sitions were 0.095. More precisely, out of 8 possible series of state transitions
(based on the initial state), there were 2 series of state transitions for which the
predicted logic program couldn’t reproduce accurately. For those that were ac-
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v1 v2

v3

Figure 3.4: 3‐node toy network with monotone edges and two attractors

curate, δLFIT predicted the following logic program:

v1(t+ 1)← v2(t).

v1(t+ 1)← ¬v1(t).
v1(t+ 1)← ¬v3(t).
v2(t+ 1)← v2(t).

v2(t+ 1)← ¬v1(t) ∧ v3(t).

v2(t+ 1)← v1(t) ∧ ¬v3(t).
v3(t+ 1)← v2(t).

v3(t+ 1)← ¬v1(t).
v3(t+ 1)← ¬v3(t).

Notice that even though the predicted logic program is longer than the original
logic program, none of the rules subsume each other. We attribute this to the
subsumption loss that is added to the loss function.

On the other hand, out of those that weren’t correct, one of them is the at-
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tractor, where the state is always 011. The predicted logic program was:

v1(t+ 1)← v1(t).

v2(t+ 1)← v3(t).

v3(t+ 1)← .

v3(t+ 1)← ¬v2(t).

Here, we notice that all the rules regarding v3 on the head is wrong. If the pre-
dicted logic program was able to create rules that made sure v3 is true, either
by v3(t + 1) ← v3(t), v3(t + 1) ← v2(t) or v3(t + 1) ← ¬v1(t), then the logic
program will be correct.

Another incorrect prediction worth noting, is when the initial state was 111.
The original series was 111 → 001 → 101 → 000 → 101 → . . . . The predicted
logic program was:

v1(t+ 1)← v2(t).

v1(t+ 1)← ¬v1(t).
v1(t+ 1)← v1(t) ∧ ¬v3(t).
v2(t+ 1)← ¬v1(t) ∧ v2(t).

v2(t+ 1)← v2(t) ∧ ¬v3(t).
v3(t+ 1)← ¬v1(t).
v3(t+ 1)← ¬v3(t).

This logic program produced the series 111 → 100 → 101 → 000 → 101 → . . . .
Note that before entering the attractor, the predicted logic program transitioned
to 100 instead of 001.

When we fed the fuzzy state transitions, δLFIT got 3 out of the 8 sequences
correct. The correct predicted logic program is as follow:

v1(t+ 1)← v2(t).

v1(t+ 1)← ¬v1(t).
v3(t+ 1)← v1(t).

v3(t+ 1)← ¬v3(t).

Note that no rules for v2 was predicted. This is because in these 3 sequences,
the value for v2 has always been 0.
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We then look at one of the incorrect predictions. The given sequence was
001→ 101→ 000→ 101→ . . . . The predicted logic program was:

v1(t+ 1)← v2(t).

v1(t+ 1)← ¬v1(t).
v1(t+ 1)← ¬v3(t).
v3(t+ 1)← ¬v3(t).

Based on this logic program, the generated sequence was 001 → 100 → 101 →
000 → 101 → . . . . In this case, δLFIT missed the v3(t + 1) ← v1(t) rule which
had been predicted for the other correct sequences.

5-node

This is a toy network that contains 5 nodes. The boolean network is shown as
in figure 3.5, and its corresponding logic program is described as below:

v1(t+ 1)← v2(t) ∧ ¬v3(t) ∧ ¬v4(t) ∧ v5(t).

v1(t+ 1)← v2(t) ∧ v3(t) ∧ v4(t) ∧ ¬v5(t).
v2(t+ 1)← v2(t) ∧ v3(t) ∧ v4(t) ∧ ¬v5(t).
v3(t+ 1)← v1(t) ∧ v2(t) ∧ v4(t).

v3(t+ 1)← v1(t) ∧ ¬v2(t) ∧ ¬v4(t).
v4(t+ 1)← v2(t) ∧ ¬v3(t) ∧ ¬v4(t) ∧ v5(t).

v4(t+ 1)← v2(t) ∧ v3(t) ∧ v4(t) ∧ ¬v5(t).
v4(t+ 1)← ¬v2(t) ∧ v4(t).

v5(t+ 1)← ¬v1(t) ∧ v2(t) ∧ v3(t).

This network has 3 steady states. Similar to the other experiments, We plugged
every possible initial state (25 states) and produced a series of 15 state tran-
sitions for every initial state. These series are then fed into δLFIT to obtain
the corresponding logic program. After δLFIT predicted the logic program, we
then used the predicted logic program to generate a series of 15 state transi-
tions. Those transitions are then compared with the original transitions.

For the accurate logic programs that δLFIT was able to predict, it looked like
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Figure 3.5: 5‐node toy network with 3 steady states

this:

v1(t+ 1)← v2(t). v1(t+ 1)← v3(t).

v1(t+ 1)← v4(t). v1(t+ 1)← v5(t).

v2(t+ 1)← v3(t). v2(t+ 1)← v5(t).

v2(t+ 1)← v1(t) ∧ v4(t). v2(t+ 1)← ¬v1(t) ∧ v2(t).

v2(t+ 1)← ¬v1(t) ∧ v3(t). v2(t+ 1)← ¬v2(t) ∧ v3(t).

v2(t+ 1)← ¬v2(t) ∧ v4(t). v2(t+ 1)← v2(t) ∧ ¬v3(t).
v2(t+ 1)← v3(t) ∧ ¬v3(t). v3(t+ 1)← v2(t).

v3(t+ 1)← v3(t). v3(t+ 1)← ¬v1(t) ∧ v3(t).

v3(t+ 1)← v3(t) ∧ ¬v4(t). v3(t+ 1)← v3(t) ∧ ¬v5(t).
v4(t+ 1)← ¬v2(t) ∧ v4(t). v4(t+ 1)← v2(t) ∧ ¬v3(t).
v4(t+ 1)← v2(t) ∧ ¬v5(t). v5(t+ 1)← v3(t).

v5(t+ 1)← v1(t) ∧ v4(t). v5(t+ 1)← ¬v3(t) ∧ v4(t).

Eventhough δLFIT produced much more rules than the original logic program,
every state transition tested was correct.

On the other hand, for those that were incorrect, we mostly observed that the
state transition sequence that were given mostly involved steady states.
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Next, when we fed fuzzy transitions, δLFIT predicted logic programs that
were correct, but much shorter than when discrete error-free transitions were
given. The correctly predicted logic program is as follows:

v1(t+ 1)← v2(t).

v1(t+ 1)← v3(t).

v1(t+ 1)← v4(t).

v1(t+ 1)← v5(t).

v2(t+ 1)← v5(t).

v3(t+ 1)← v2(t).

v3(t+ 1)← v4(t).

v3(t+ 1)← ¬v1(t) ∧ v3(t).

v4(t+ 1)← v3(t) ∧ v5(t).

v4(t+ 1)← ¬v1(t) ∧ v4(t).

v5(t+ 1)← ¬v3(t) ∧ v4(t).

3.8 Discussion

Our aim is to utilize neural network’s ability to handle ambiguous data to pro-
duce models that fully explain the system that we are trying to observe. While
we were able to show that when passing discrete data, δLFIT was able to per-
form very well. We were not able to get δLFIT to handle ambiguous and fuzzy
data as well. We attribute this to the fact that we did not train our neural net-
works to learn to handle fuzziness in the data. We speculate that adding fuzzi-
ness to the training data should be able to help δLFIT generalize better to am-
biguity.

We were also not able to scale the neural network beyond 5 variables. Mainly
because the amount of expressiveness required beyond that point far exceeds the
computation capability we currently possess. Aside from having more comput-
ing power, we would also like to think that improvements to the area of multi-
class multilabel tasks could help in this area.

Also, another thing to note is that on all 4 of the experiments we have per-
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formed, δLFIT was not able to predict the accurate logic program when the
given state transition sequence is within an attractor. However, we can see
that the performance improved by a little bit when fuzzy data was given for
Raf, which has more attractors than the other boolean networks. We attribute
this to the low variance nature of an attractor as an input. The neural network
was not able to classify properly when given the same uniform input. However,
when fuzzy data was given, there was fluctuation within the state transitions
and therefore led to improvements in performance.
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τ(Bo)
l = 0 0→ {}

l = 1

1→ {a}
2→ {b}
3→ {c}
4→ {¬a}
5→ {¬b}
6→ {¬c}

l = 2

7→ {a, b}
8→ {a, c}
9→ {b, c}
10→ {¬a, b}
11→ {¬a, c}
12→ {¬b, c}
13→ {a,¬b}
14→ {a,¬c}
15→ {b,¬c}
16→ {¬a,¬b}
17→ {¬a,¬c}
18→ {¬b,¬c}

l = 3

19→ {a, b, c}
20→ {¬a, b, c}
21→ {a,¬b, c}
22→ {¬a,¬b, c}
23→ {a, b,¬c}
24→ {¬a, b,¬c}
25→ {a,¬b,¬c}
26→ {¬a,¬b,¬c}

Table 3.2: Full index of rules for Bo = {a, b, c}
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Boolean Network MSE (Discrete) MSE (Fuzzy)
3-node (a) 0.095 0.137
3-node (b) 0.054 0.057

Raf 0.253 0.217
5-node 0.142 0.147

Table 3.3: The MSE for the state transitions generated by the predicted logic programs.
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4
δLFIT+

We will introduce our third contribution of this thesis in this chapter. δLFIT+
is an improvement upon δLFIT’s main shortcoming, scalability. δLFIT was only
able to deal with systems up to 5 variables. This is due to the combinatorial
explosion problem. Recall that δLFIT assigns an output node to each logical
rule. Even considering only minimal rules, the number of output nodes scale
by n3n. Most NSAI techniques in fact, suffer from the combinatorial explosion
problem one way or the other.

In δLFIT the issue is particularly severe because of the way the model learns.
It is not just that the number of output nodes increase, that leads to the num-
ber of parameters subsequently memory space increasing. δLFIT is a classifi-
cation algorithm at its heart, the number of classes to classify scales exponen-
tially, therefore the amount of training data required for convergence also scales
exponentially. The δLFIT method is fortunate in that training data is gener-
ated and not obtained through other means, however more data means more
computational time required.

In broader terms, when we looked at various other NSAI techniques, we found
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that symmetries or invariants that exist in the symbolic world are woefully
under-appreciated. There are some symmetries that have been implicitly built
in as part of the model, like in δLFIT, considering minimal rules where the po-
sition of the atoms within the rules are pre-defined, is one such symmetry. But
most symmetries were not actively exploited.

We demonstrate our technique to exploit invariance in the symbolic world, in
the field of NSAI. In hopes that our techniques will inspire other works, which
may address the NSAI scalability problems.

4.1 Problems with δLFIT

Before introducing the δLFIT+, we would like to rehash the issues facing δLFIT
which inspired this work.

One of the largest issues, as noted above, is the scalability issue. In particu-
lar, we faced issue trying to instantiate a model with 7 variables, the GPU that
we have been using had 12GB VRAM yet it was insufficient. Of course it would
have been possible to train such a model if we had access to a huge cluster of
compute, however the model itself had other flaws that such an endeavour is
possibly not worth.

Another issue is with regards to symbolic invariances. While we have taken
account of the invariance in terms of the positioning of atoms within logical
rules, it is still insufficient. In particular, δLFIT is sensitive to the ordering of
sequence in the input data, which means that in order to be able to train prop-
erly it will be ncessary to provide all different permutations as training data. As
an example, consider the following input

1 : (0, 0, 1)→ (1, 1, 0)→ (0, 0, 1)

2 : (1, 1, 0)→ (0, 0, 1)→ (1, 1, 0)

it should be immediately obvious that sequence 1 and sequence 2 are both equiv-
alent. However, due to the way neural networks work, the hidden state of the
LSTM in δLFIT will be different in both cases and thus it will affect the predic-
tion.

Finally, δLFIT uses an LSTM, which takes a sequence as input data. In a
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dynamic system, it is possible for certain states to never appear in a sequence of
transitions for certain initial states. As an example, consider the following NLP

p(t+ 1)← q(t).

q(t+ 1)← p(t) ∧ r(t).

r(t+ 1)← ¬p(t).
(4.1)

This NLP has 2 disjunct sequence of transitions. The first, starting with pqr as
the initial state, the transitions are as follows

pqr → pq → p→ ϵ→ r → r → . . .

Notice that not all state configurations appear. Those states appear in the fol-
lowing sequence

qr → pr → q → pr → . . .

These 2 sequences will never cross over. Since δLFIT can only take one sequence
as input, it will be ignorant of the other sequence and thus will have to produce
predictions only based on the first sequence. This will, no doubt, penalize the
performance of the model.

4.2 Input Sequence Invariance

First, we will introduce an improvement we’ve made that will solve both the
input sequence being disjoint issue and one of the symbolic variance issues. We
will restructure the inputs such that it is no longer a continuous sequence, and
instead it will be a set of state transitions. This is much more in-line with the
symbolic LFIT algorithms, and also allow the model to get information about
disjoint sequences.

In δLFIT, assuming the sequence length as ls, the dimension of the input to
the LSTM was n × ls, where n is the number of variables or the size of the Her-
brand base. This has some implications on the model itself. First, it was unable
to convert or learn a much more suitable representation for use with the input
states. Next, the input itself scaled by a factor of n, which contributes to the
overall memory usage.
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Previous State θp = 0 θp = 1
ϵ 0 8
p 1 9
q 2 10
pq 3 11
r 4 12
pr 5 13
qr 6 14
pqr 7 15

Table 4.1: Full state input for a logic program with B = {p, q, r}

4.2.1 Encoding States

In δLFIT+, we use a much more compact form of input. In the synchronous 1-
step dynamic system setting, we are generally only interested on a particular
variable’s state, 1 or 0, provided a prior state. For example, the LFIT algorithm
described in section 2.2.1 only learns from transitions where in the next state
the variable is 0. Therefore, in δLFIT+, we propose an encoding of a state tran-
sition for a particular variable into a number, which will then be mapped to a
learnable embedding.

Given a set of state transitions E, and the variable of interest x, we define
Ex = {(I, θx) | I ∈ 2B}, where B is the Herbrand base. θx = 1 when x ∈ TP (I)
and θx = 0 when x 6∈ TP (I). Therefore, Ex will contain all positive examples
of x with (I, 1) and all negative examples of x with (I, 0). Next, we will define
a function ζ0 : 2B 7→ N that maps I to a natural number. We first take I and
represent it as a vector v ∈ {0, 1}n. Each element in v is 0 if it is not in the
interpretation and 1 if it is. Note however, that the index position of each atom
within v is order-dependent. This can then be interpreted as a binary number.

One state transition of (I, θx) can then be mapped to a number with the fol-
lowing function

ζ1(I, θx) = (θx + 1)× ζ0(I) (4.2)

Thus, the input to δLFIT+ is a set of {ζ1(ζ0(I), θx) | (I, θx) ∈ Ex}. An example
for the list of possible inputs are shown in table 4.1.

Consider the example NLP in (4.1). The full state transition input for p in
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this NLP will look like E ′
p = {15, 11, 1, 0, 4, 14, 5, 10}, which corresponds to Ep =

{(pqr, 1), (pq, 1), (p, 0), (ϵ, 0), (r, 0), (qr, 1), (pr, 0), (q, 1)}. Note that the full ‖Ex‖
will always be 2n as each of the combination of {p, q, r} should appear.

Based on this, we know for an n-variable system, there will be 2n different
prior states. Each state can transition to 2 different possibilities. And since each
variable is independent, there are n different combinations of these. Therefore
for an n-variable system, the input space of the δLFIT+ algorithm looks like
this

(22
n

)n (4.3)

As can be imagined, even for a small n this is quickly intractable. The implica-
tion for this is that, even for small values of n, the input space can grow really
huge.

n Input Space Number
2 (22

2
)2 256

3 (22
3
)3 1.68× 107

4 (22
4
)4 1.84× 1019

5 (22
5
)5 1.46× 1048

6 (22
6
)6 3.94× 10115

Table 4.2: The input space for each n

Seeing that the number of atoms in the universe is estimated to be 1080, we
cross that threshold by n = 6. Thus it is not possible to collect every possi-
ble logic program for the training data, and instead a good sampling method is
required. We will discuss our random sampling method in section 4.9.

4.2.2 State Ordering Invariance

Now we would like to input the set E ′
p obtained above into the model. Con-

ventionally, RNNs are utilized for processing sequences. Recent works however
heavily prefer the transformer model [91]. The transformer, however is not per-
mutation invariant, it does not lend well to the notion that the input is a set.
As described previously, this will require us to train the model with every single
permutation, which increases the training time.
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Therefore, we will instead use the set transformer. In addition to that, in-
stead of passing the state numbers directly into the input of set transformer, we
will pass it through with an embedding. This will allow the model to learn a
much more suitable representation space for the transitions. Also recall that, in
(2.8), the set transformer computes the self-attention for the inputs. In particu-
lar, based on (2.5), QKT is the pairwise relationship between the matrix Q and
K. Since in set transformer, referring to both (2.9) and (2.10), Q = K = X, this
will compute the pairwise relationship between each of the state transition that
is given to the model.

4.3 Reducing Number of Output Nodes

Next, we look into the scalability issue in δLFIT. In δLFIT, every possible min-
imal rule is mapped to a single output node. This means that the size of the
neural network scales directly to the number of possible minimal rules. These
possible minimal rules in turn scales exponentially to the number of variables in
the Herbrand base. This means that the size of the neural network scales expo-
nentially with the number of variables. As explained, this was already an issue
at a number of variables as lowly as 6. Most real world applications however,
range from 10 variables, and up to 100k for genes. δLFIT is nowhere near in
this regard.

4.3.1 Reuse by Rule Head

Recall that the number of output nodes for δLFIT is n3n. The first thing we
can do is get rid of the factor n. The n to the left in n3n represents the head
of the rule. We can move from asking δLFIT to also predict which rule head it
should output, to telling the model which rule head we are currently interested
in. This means that instead of assigning each combination of the rule head and
rule body to the output nodes, now the output nodes only need to be the possi-
bilities of all rule bodies.
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Nodes 0 1 2 3 4 5
l = 0 {} - - - - -
l = 1 {a} {b} {c} {¬a} {¬b} {¬c}
l = 2 {a, b} {a, c} {b, c} {¬a, b} {¬a, c} {a,¬b}
l = 3 {a, b, c} {¬a, b, c} {a,¬b, c} {¬a,¬b, c} {a, b,¬c} {¬a, b,¬c}
Nodes 6 7 8 9 10 11
l = 0 - - - - - -
l = 1 - - - - - -
l = 2 {¬b, c} {a,¬c} {b,¬c} {¬a,¬b} {¬a,¬c} {¬b,¬c}
l = 3 {¬a, b,¬c} {a,¬b,¬c} {¬a,¬b,¬c} - - -

Table 4.3: Mapping of output nodes to rule bodies with various lengths

4.3.2 Reuse by Rule Length

However this is still 3n output nodes, which is still exponential. Here, we de-
vise another strategy to reduce the number of outputs. Observing that the next
logical partitioning for the rule bodies are the length of the rule, we will again
move the length of the rule from the outputs to the input, allowing us to specify
what the outputs mean by controlling the input. In particular, we can specify
say rule length to be 1 in the input, and then we interpret the output for the
respective rules of length 1.

Recall again table 3.2, in which we list all the rules and their lengths sepa-
rately. By noting that l = 1 containing 6 rules, l = 2 containing 12 rules, and
l = 3 containing 8 rules, we can observe that the maximum number of output
nodes we require is 12 nodes. This is less than half of the 27 required if without
the head, and far fewer than the 81 required for δLFIT. We show the mapping
of the output nodes to the corresponding rule in table 4.3.

Output node 0 corresponds to 3 different rules depending on l, which are {},
{a}, {a, b} and {a, b, c} respectively. As can be seen, not all output nodes are
assigned a rule body. For those without an assignment, we will just ignore them
in the output.

To figure out the number of output nodes required for different number of
variables in the Herbrand base, first consider the set τ̃l(Bo) which contains all
rules that are equal to length l. From (3.2), the cardinality of τ̃l(Bo) can be cal-
culated from the following

‖τ̃l(Bo)‖=
(
n

l

)
× 2l (4.4)
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Figure 4.1: Plot of 3n vs
(

n
n/2

)
× 2n/2, left graph being linear scale and right graph being logarithmic scale

Thus the number of output nodes is obtainable based on the following equation

no = max{‖τ̃l(Bo)‖: l = 0 . . . ‖B‖}

Given that
(
n
l

)
is the largest when l = dn

2
e, assuming n is even to ease the calcu-

lation, we can rewrite the equation in (4.4) into the following(
n

n/2

)
× 2

n
2 (4.5)

As n approaches infinity, we can see that limn→∞
2n/2

( n
n/2)

= 0, therefore we know
that the binomial term dominates and the number of output node is scaling by
factors of

(
n

n/2

)
. It is difficult to calculate the upper bound for this, but since∑

k

(
n
k

)
= 2n, therefore we can say that worst case this will be O(2n). The char-

acteristics of this is still exponential, but it is much less than O(3n) of δLFIT.
In practice though, the difference gained is substantial. Figure 4.1 shows the
the number of output nodes for δLFIT and δLFIT+. It can be observed that
even though in logarithmic scale, the new method only trails the old method
by a little bit, in the linear scale graph we can see that the gains are actually
substantial, as there is at least 1 or 2 order of magnitude difference.
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4.4 Subsumed Label Smoothing

By introducing the rule length sharing technique, we face another problem. If
we only consider minimal logic programs, the majority of the dataset will only
contain negative labels. To illustrate this, consider again the NLP in (4.1). This
NLP does not contain any rules with length of 3. Therefore, there are no posi-
tive labels for length 3. In fact, this will happen more frequently as the number
of variables increase, as such we will have a dataset with largely negative labels
and almost no positive labels.

This is obviously problematic, as if more than 80% of the dataset is just 0s,
the neural network could just memorize the output as 0 and still achieve 80%
accuracy. Since this is just an instance of overfitting, we will utilize a tech-
nique, known as label smoothing, to attempt to regularize the neural network
and avoid this issue.

In δLFIT there was an auxilary loss function that penalizes the model when
outputting subsumed rules, here instead we are encouraging subsumed rules.
This is due to the different characteristics in these models. The output predic-
tion of δLFIT are treated as is, and thus it will be more beneficial if subsumed
rules are not predicted in the first place. δLFIT+ however does not have the
picture of the full output, as the model only goes length by length. Therefore it
will not be beneficial for the model to be aware of subsumption and be penal-
ized for nothing from its perspective.

We apply label smoothing by randomly sampling subsumed labels at each
mini-batch. It is quite redundant to apply smoothing to every rule that is sub-
sumed, since if we have a rule at l = 1, about half of the rules at l = 3 will be
subsumed. This will provide no immediate insight for the neural network.

To compute the smoothing to apply for each label, we first have to compute
all the rules that are subsumed by the label. Assume that we have a label that
is rule length of 2, we know that there will be no rule for which l = 1 will be
subsumed by the label. As this is also problematic, we also extend it such that
rules that subsume the labels are also qualified. A matrix of 3n × 3n is con-
structed, with each row and column representing a rule body, and the matrix is
filled with 0 being not subsumed and 1 being subsumed. For ease of computa-
tion, we define {} as being subsumed by all rules. An example of the matrix is
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shown as follows for n = 2

{} {a} {b} {¬a} {¬b} {a, b} {¬a, b} {a,¬b} {¬a,¬b}



1 1 1 1 1 1 1 1 1 {}
1 1 0 0 0 1 0 1 0 {a}
1 0 1 0 0 1 1 0 0 {b}
1 0 0 1 0 0 1 0 1 {¬a}
1 0 0 0 1 0 0 1 1 {¬b}
1 1 1 0 0 1 0 0 0 {a, b}
1 0 1 1 0 0 1 0 0 {¬a, b}
1 1 0 0 1 0 0 1 0 {a,¬b}
1 0 0 1 1 0 0 0 1 {¬a,¬b}

An immediately observable pattern is that, aside from {}, every rows and columns
add up to 4, which is half of 23.

As an example, suppose we have an NLP as in (3.3). To demonstrate that we
can handle cases with more than 2 rules per head, we will investigate the case
with a and l = 2. The label in this case is {a, b} and {¬b}. We will first gather
columns that are l = 2, which is 4 of the right columns. We then look up the
{a, b} and {¬b} rows, to get the following matrix

{a, b} {¬a, b} {a,¬b} {¬a,¬b}( )
0 0 1 1 {¬b}
1 0 0 0 {a, b}

We then add up the columns to get a vector of (1, 0, 1, 1) which can now be
used to apply the subsumption factor. Let µ be the subsumption factor, the
target labels for a and l = 2 was initially just (1, 0, 0, 0), after applying the sub-
sumption factor, the target will now look like (1 + µ, 0, µ, µ). In (3.3), we can
also see that for b and l = 2, the target label is (0, 0, 0, 0) which is the prob-
lematic part. However by applying the subsumption factor, the target label will
now be (0, µ, 0, µ).

4.5 Label Imbalance

If we look again at table 4.3, it is clear that some nodes are used more than
others. For example, node 0 is used 4 times, nodes 1 through 5 is used 3 times,
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Figure 4.2: The imbalance in label distribution in the training data

while nodes 9 to 11 are only used once. The imbalance in the assignation is also
apparent in the training data.

The distribution of the positive labels within the training data is shown in
figure 4.2. To counteract this imbalance, we apply some weights to the class
while training. The weight are the ratio of negative examples to positive exam-
ples.

The weighted loss function can be calculated as

1

C ·N

C∑
c=1

N∑
n=1

−wn,c[pcyn,c · log σ(xn,c) + (1− yn,c) · log(1− σ(xn,c))]

where N is the number of labels in the training data, C is the total number of
rules or classes, and pc is the positive weight applied to each rule. pc can be ob-
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tained by

pc =
Nn

c

Np
c

where Nn
c is the number of negative examples for class c and Np

c is the number
of positive examples for class c.

4.6 Network Architecture

The overall architecture is as depicted in figure 4.3. The neural network takes
as input a set of state transitions, the variable index and the length of the rules
to produce predictions for. The set of state transitions is as described in section
4.2. Variable index is an integer going from 0 . . . n − 1. While rule length is an
integer going from 0 . . . n.

Each input goes through a layer of trainable embedding, which converts the
integers into a learnable representation space. Integer inputs are first converted
into a one-hot vector, which is then multiplied by a learnable matrix which will
provide the embedded vector, followed by a ReLU activation [4] and a Layer-
Norm

Embedding(x) = LayerNorm(ReLU(Onehot(x) ·Me))

where Onehot(x) converts the integer x into a one-hot vector and Me is the ma-
trix for the embedding space.

Next, both variable index and rule length are put through to a combination
of a feed forward network and an ”Add & Norm” layer. These layers behave
like a residue layer, allowing the neural network to learn a much more suitable
representation for each of the embeddings, while also retaining some of the rep-
resentations in the embedding itself. This layer can be obtained by the following

ResidualFF(x) = LayerNorm(rFF(x) + x)

Then, the results computed from the variable index and the output of the set
transformer based on the set of state transitions are concatenated into a singu-
lar vector. This vector is then passed through a residual feed forward layer.

59



Algorithm 4: δLFIT+ algorithm to output NLP P

Inputs : a set of atoms B, set of state transitions E ⊆ 2B × 2B

Output: an NLP P
P := ∅;
foreach x ∈ B do

E := {(I, θx) | (I, J) ∈ E, θx = {0, 1}};
Ex := {ζ1(ζ0(I), θx) | (I, θx) ∈ Ex};
Rx := ∅;
for l in 0 . . . ‖B‖ do

Rx,l := δLFIT+(Ex, x, l);
foreach R ∈ Rx,l do

Rx = Specialize (Rx, R);
end

end
foreach R ∈ Rx do

P = Specialize (P , R);
end

end

Next, this concatenated vector and the embedding obtained from the rule
length input are applied through a multi-head attention layer. With the query
being the concatenated vector and the embedding from the rule length being
the key and value self-attention. This allows the network to compute the pair-
wise element relationship between the rule length and the obtained vector, and
to attend to the components that are crucial for predicting the rules.

Following the multi-head attention, the resulting vector is passed through 2
layers of residual feed-forward network. Finally, the result is passed through a
signmoid activation layer, and the probability for each rule is obtained.

4.7 The Algorithm

Since one inference pass will not generate the logic program, we will need to
run the inference pass of the model multiple times in order to obtain the logic
program. The algorithm for this is described in algorithm 4.
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Given a set of variables B and a set of state transitions E, the algorithm out-
puts an NLP P . First, the algorithm initializes P into the empty set. There are
no rules at first. Then, for each variable in the Herbrand base, the algorithm
predicts the rules that the specific variable is the rule head.

At each variable, we convert the set of state transitions in the form of {(I, J)
| I, J ∈ 2B} to the form of {(I, θx)}. This method is described in detail in sec-
tion 4.2.1. We first convert the transition (I, J) into (I, θx) where θx is whether
or not x is present in the next state J .

Then, from 0 to ‖B‖, which is the maximum rule length for minimal rules, we
will probe δLFIT+ model to ask for predictions. δLFIT+ will return the pre-
dictions in terms of probability for each of the rules in their respective lengths.
These predictions are then sorted by model confidence score and the top k rules
are selected.

These rules that are selected by δLFIT+ are then added to the set of rules
that have x being the head of the rule. This is done all while maintaining Rx to
be minimal. Since Rx is a set of rules, which is equivalent to a logic program,
we can use the algorithm described in algorithm 1 to perform the specialization.

Finally, after we’ve finished iterating over all lengths, we will incorporate the
rules into the logic program P . Once again, we will add the rules one by one, all
while maintaining the logic program to be minimal.

4.8 Recovering the Logic Program

As the output obtained from the δLFIT+ is a vector of probabilities, with each
column representing the probability of the rule for the respective column, we
will need a way to restore this into a logical rule. The indexes are in numeric
form, so we are looking for an algorithm to map N 7→ R. The reverse has al-
ready been described in section 3.3, which maps logical rules to indexes.

Here, we will describe an algorithm that does an inverse lookup for the index
to logical rule. This algorithm, which we name it σ−1

τ(BO)(R), performs several
calculations to figure out the length of the rule and the exact composition of the
rule body.
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The algorithm is described in algorithm 5. We first check if the index is larger
than 0. x = 0 is the trivial case of R = {}. We then have to find the l length
of the rule. The length of the rule can be found by iterating through all the
lengths, finding the first index of that particular length, and checking if the first
index of l is larger than x. If it is, then we know that the length of the rule is
l − 1.

Once we know the length of the rule, we want to know the position that rule
lies in within the same length. This allows us to find the combination of atoms
in the body, and whether they are positive or negative literals. We first initialize
the rule to be the first rule in its length. This will just be all positive literals in
the order that BO is in. For example, the first rule for l = 2 will be {a, b}.

Next, we increment the rule one by one up until we get to the index. The
IncrementRule function takes care of figuring out which variables to go next.
The algorithm for IncrementRule is described in algorithm 6.

Finally, we will assign the positive and negatives to the variables based on the
index and their position. This can be known by doing a bitwise & operation, to
figure out if the bit at position i is 0 or 1. If it is 1, then we want to negate the
variable in that position.

Once this is done, we will have the rule body.

4.8.1 Incrementing a Rule

In this section, we will describe the algorithm that allows us to obtain the com-
bination of atoms for a particular rule index. This algorithm is described in al-
gorithm 6.

First we will check if the position of the rule l to increment is the same as the
length of the Herbrand base, which is the trivial case. In this case, the rule will
just contain all of the variables in their specific ordering and there is nothing to
increment to.

Then we attempt to increment the variable in the position l. If the index of
the incremented variable exceeds the number of variables in the Herbrand base,
we will first attempt to increment the variable at position l − 1. Then, note that

62



within the rule, the ordering of the variable is strictly inline with the ordering
in BO. Therefore, the variable index in position l will never be smaller than the
variable index in position l − 1. Therefore, once we incremented the variable at
l − 1, we can set the variable at l to be the same as the variable at l − 1, then
increment the variable at l.

Otherwise, we will set the variable at l to be the next variable of itself and
return.

4.9 Training Data Generation

Similar to δLFIT, due to the generality of δLFIT+, it is infeasible to obtain suf-
ficient data from the real world and treat it as training data. Fortunately, the
data that we require are fairly structured and known. In particular, in the LFIT
domain, valid NLPs are known ahead of time. If we also limit ourselves to the
deterministic, single-step semantics, then it is obvious that it will be possible to
generate all data for use with training.

The training data consists of the set of state transitions, being the input
and the set of rules which is the logic program, being the target. Given E =
{(I, TP (I)) | I ∈ N} where P is the logic program, the training dataset is {(E,P )}
for many different E and P , ensuring that every P is consistent with their re-
spective E.

We will describe the data generation for a single datapoint in the following.
To generate the whole training dataset, these steps will just be repeated for the
number of datapoints required.

1. Generate random rule
We first pick a variable from the Herbrand base to be the rule head. We
then sample {0, 1, 2}, each with equal probability, from a binomial dis-
tribution for each variable. When it is 0, the variable is not added to the
body. When it is 1, the variable is added as a positive literal. When it is
2, the variable is added as a negative literal.

2. Add rule to logic program
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For each random rule generated, we will compare to rules that are already
added to the logic program. If the new rule is subsumed by other rules in
the logic program, it will not be added. For each variable in the Herbrand
base, we will generate at least 1 rule. Each subsequent rule generated has
a 0.5r probability to be the last rule generated for that specific variable
head, where r is the number of rules already in the logic program with the
same variable head.

3. Generate state transitions from the generated logic program
Since there are no guarantee that the logic program is actually minimal,
even though we check for rule subsumptions, we will do another pass to
obtain the minimal logic program. We will run the TP operator to obtain
transitions from all states, which is 2n states. These transitions are then
recorded as the input of the training data as E.

4. Run the symbolic LFIT algorithm to obtain the minimal logic program
Based on the transitions that we obtained from the previous step, we run
the LFIT algorithm described in section 2.2.1. This algorithm will give
us the minimal logic program to learn from. This is then recorded as the
target of the training data as P . Note that the initial randomly generated
logic program is thrown away and not used to train the model.

Based on the large space that is the possible logic programs, we can run the
data generation process in parallel and be relatively confident that there will
not be any duplicates within the dataset.

4.10 Experiments

In this section, we will describe the experiments that we have performed to vali-
date the effectiveness of our proposed methods.

4.10.1 Experimental Method

We trained separate variants of the δLFIT+ model with different number of
variables. The number of variables that the model is trained with is important
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because it decides the number of outputs the δLFIT+ has. It is possible, for
example, to learn a 3-variable system with a 5-variable system model, but it is
not possible to learn a 7-variable system with a 5-variable model. The number
of variables that the model is trained with, is denoted by δLFIT+n, where n is
the number of variables.

The network was implemented in PyTorch [64] and then trained with the
Adadelta [97] optimizer. After training for 10 epochs, the network is evaluated
by feeding data from the boolean networks. We then produce state transitions
from the predicted logic program, and calculated the mean squared error be-
tween the state transitions from the predicted logic program and the boolean
network.

During training, we only focus on one of the variables and one particular rule
length for each data point. The selection for the variable is randomized within
each batch, but the selection for the rule length is fixed for each batch, instead
randomizing between different batches. This is done primarily for computa-
tional efficiency reasons. For each data point, we pick 80% of the states from
all possible states for training. E.g., for 5 variables there are 25 = 32 possible
states, thus we pick 25 state transitions for training. These 25 states are picked
randomly each epoch. Also for each epoch, we only train a single rule length l
and on a particular variable as the rule head x for 1 datapoint. The combina-
tion of l and x is selected randomly. Therefore, at least n(n + 1) epochs need
to be trained to at least go through every available datapoint once. Validation
is performed on data point withheld from the training process. The results are
taken only from 1 run of the experiment, due to the lengthiness in the process
of training, and also when we did multiple runs on the smaller systems, we did
not observe significant variance in the results.

4.10.2 Baseline

Baseline results are shown in table 4.4. δLFIT wasn’t able to deal with more
than 5 variables therefore the results are omitted for 7 variable networks. The
top number next to δLFIT+ represents the number of variables that was trained
on. δLFIT+3 means that the specific network was trained with 3 variables, and
thus have 12 output nodes. Networks trained with more variables have more
output nodes and thus can deal with larger boolean networks, together with
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smaller networks.

We can observe that δLFIT+ performance is generally a little worse than
δLFIT. However, δLFIT+ can generate predictions for 7 variables and above.
Only in the boolean network Raf, which δLFIT struggled, was δLFIT+ beat in
terms of performance.

4.10.3 Regular Transformer

In this experiment, we replaced the set transformer in the network architecture
to a regular transformer. We retrained the model with the same hyperparame-
ters and the same dataset. The results are shown in table 4.5. Results are taken
by randomizing the order of the state transitions and taking the average. The
drop in performance is easily observable across the board.

4.10.4 Rule Length Sharing

We show the difference in number of parameters with rule length sharing com-
pared to without rule length sharing in figure 4.4. Without this, the number of
parameters start exploding from 14 variables. However, with rule length shar-
ing this effect is delayed until 16 variables. Contrasting with the state of the art
natural language processing model like GPT-3, which has 175 billion parameters
[16], there are still some leeway in terms of network architecture, however it will
require state of the art hardware and large amount of computational time to ac-
tually train it. We did not perform any experiments to validate the difference in
terms of accuracy because it will require a significant restructuring in the train-
ing process. We think that the restructuring is sufficiently impactful that the
difference in accuracy that we will be measuring will not just be the effect of
sharing rule lengths, but also the difference in the entire training process.

4.10.5 Without Label Smoothing

In this experiment, we trained the network without applying subsumed label
smoothing. The results are shown in table 4.5 with the results for δLFIT+5

¬S
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being one without label smoothing applied. No clear performance difference was
found with the 3 variable networks, but the network that trained without label
smoothing performed significantly worse with the 5 node boolean network.

4.10.6 Training Data Availability

Based on (4.3), we do know the entire problem space for δLFIT+ for any given
n-variable system. Here, we do some experiment to figure out how much of the
problem space given to δLFIT+ will affect its convergence. Experiments are
performed for 3-variable systems, and hyperparameters are constant through-
out all experiments. Each experiment is repeated 3 times. The results of this
experiment are shown in table 4.6. We can observe that as more training data
becomes available, the accuracy of the model improves.

4.10.7 Missing Data

In this experiment, we randomly redact state transitions from the input. Each
experiment is performed 3 times and the averages are recorded. The results are
shown in table 4.7. We can observe that as a general trend, as more data be-
comes available the accuracy improves.

4.10.8 Baseline: 3-node-a

This is a toy network with 3 variables. The boolean network constructed is
shown in figure 4.5. Its corresponding logic program is written as

v1(t+ 1)← ¬v1(t) ∧ ¬v2(t).
v1(t+ 1)← ¬v1(t) ∧ ¬v3(t).
v2(t+ 1)← ¬v1(t) ∧ v2(t).

v3(t+ 1)← ¬v1(t).
v3(t+ 1)← v2(t).

This network has two attractors and one steady state. The predicted logic
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program by δLFIT+ is shown as below

v1(t+ 1)← ¬v1(t) ∧ ¬v2(t).
v1(t+ 1)← ¬v1(t) ∧ ¬v3(t).
v2(t+ 1)← v2(t).

v2(t+ 1)← ¬v1(t) ∧ ¬v3(t).
v3(t+ 1)← v2(t) ∧ ¬v3(t).
v3(t+ 1)← ¬v1(t) ∧ ¬v2(t).
v3(t+ 1)← ¬v1(t) ∧ ¬v3(t).

Note that there are a few rules that disagree with the original logic program.
We validate the accuracy of the prediction based on the state transitions that
can be obtained by the logic programs. The difference in the state transitions
produced by the respective logic programs are shown in table 4.8.

4.11 Discussions

In general, we observed that there is a drop in accuracy across the board as the
outputs get reused. δLFIT+ performed poorer on the other networks, except in
the boolean network Raf, where δLFIT struggled because the same state was
repeated. We also observed that δLFIT+3 performing better than δLFIT+5 for
3 variable networks. Memory efficiency has also improved from δLFIT, which
allowed us to easily train a network with 7 variables. However, generating train-
ing data for 8 variables and beyond required too much time with the amount
of computational resource that we had, therefore we were unable to train the
networks.

With the rule length sharing method proposed, we were able to cut the num-
ber of parameters in the model by half. This allowed us to use larger number
of batch size during training to increase training speed. However with the re-
duced number of output nodes, this might have led to a potential loss in terms
of accuracy, as now each output node represents multiple rules, compared to
one output node one rule in δLFIT.

Subsumed label smoothing did not have any visible impact on smaller net-
works with 3 variables, but with 5 variables the effects were visible. In partic-
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ular, with the same hyperparameter, we observed that δLFIT+5
¬S was overfit-

ting, meaning training loss decreased very rapidly while validation loss remained
high. Adding subsumed label smoothing helped apply some regularization to
δLFIT+5.

Training data availability seems to have a substantial effect on the model ac-
curacy. For n = 3, it is still feasible to sample a substantial amount of the prob-
lem space to provide as training data. However, starting from n = 4, attempting
to sample even 1% of the training data requires huge amount of computational
time. It might have been possible to further improve on δLFIT+ accuracy,
should there be a better means of sampling the problem space. For example,
by ensuring that each rule has a clear example for the model to learn.

We can also see that missing data has an effect on the accuracy. Although
once given more than half of the transitions, the model seems to provide an ac-
ceptable prediction for the logic program. There were huge variance for each
run on the experiments here, and we can speculate that it is due to some state
transition providing more information than others. It might be interesting to
further investigate on whether there are some main transitions that could define
the logic program, such that when those transitions are included the model is
always able to perform better predictions than other transitions.

δLFIT+ took 1 day to generate and train for 3 variable systems, while it took
5 days to generate and train for 7 variable systems. Compared to other LFIT
methods, the runtime for δLFIT+ is significantly higher. However, most meth-
ods only focus on learning a single system whereas δLFIT+ learns a general n-
variable system. The advantage for this is that, in real world applications, novel
systems that are being investigated often have only small amount of observation
data available. A technique that only works with the obtained observation data
will overfit, whereas δLFIT+ can avoid the overfitting problem.
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Figure 4.3: δLFIT+ architecture
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Algorithm 5: σ−1
τ(BO)(R): Reverse lookup a rule given an index

Input : x ∈ N
Output: Rule R such that στ(BO)(R) = x
if x > 0 then

l = 1, xr = 1;
for i := 0 to ‖B‖ do

if ‖τi(BO)‖> x then
break

end
xr = ‖τj(BO)‖;
l = i+ 1;

end
end
xr = x− xr;
c :=

(∥B∥
l

)
;

R := {}, C := BO;
for i = 0 to l − 1 do

a := C[0];
C = C \ a;
R = R ∪ {a};

end
for i = 0 to xr mod c do

IncrementRule (R, l − 1);
end
for i = 0 to a do

if bxr

c
c&(1� i) 6= 0 then

a := σ−1
R (i);

R = (R \ {l}) ∪ {a};
end

end
return R
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Algorithm 6: IncrementRule(R, l): Increments a rule to the next rule
Inputs : R a rule body or a set of clauses, l the position to which the

literal should be incremented
Output: R a rule body
if l < ‖BO‖ then

a = σBO
(R[l]) + 1;

if a ≥ ‖BO‖ then
R = IncrementRule (R, l − 1);
R[l] = R[l − 1];
R = IncrementRule (R, l);

end
else

R[l] = σ−1
BO

(a);
end

end
return R

Boolean Network (n) δLFIT δLFIT+3 δLFIT+5 δLFIT+7

3-node-a (3) 0.095 0.271 0.271 0.271
3-node-b (3) 0.054 0.188 0.208 0.208

Raf (3) 0.253 0.188 0.208 0.208
5-node (5) 0.142 N.A. 0.278 0.325
7-node (7) O.O.M. N.A. N.A. 0.223

WNT5A (7) [93] O.O.M. N.A. N.A. 0.194

Table 4.4: The MSE for the state transitions generated by the predicted logic programs compared to δLFIT+.

Boolean Network δLFIT+5 δLFIT+5
¬T δLFIT+5

¬S
3-node (a) 0.271 0.313 0.271
3-node (b) 0.208 0.292 0.208

Raf 0.208 0.271 0.208
5-node 0.278 0.375 0.378

Table 4.5: The MSE for the state transitions generated by the predicted logic programs with and without set
transformers, and with and without label smoothing

72



Figure 4.4: Number of parameters in 10 billions, of the network with rule length sharing compared to without
rule length sharing

v1 v2

v3

Figure 4.5: Boolean network of 3‐node‐a, a toy network with 3 nodes
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Percentage 3-node (a) 3-node (b) Raf Average
0.1% 0.472 0.542 0.458 0.49
0.25% 0.5 0.444 0.43 0.458
0.5% 0.444 0.486 0.445 0.458
0.75% 0.472 0.375 0.486 0.444

1% 0.472 0.597 0.333 0.468
5% 0.292 0.431 0.430 0.384
10% 0.236 0.403 0.347 0.329
15% 0.236 0.278 0.361 0.292
20% 0.264 0.264 0.25 0.259
25% 0.236 0.306 0.236 0.259
50% 0.222 0.319 0.208 0.25
75% 0.264 0.194 0.25 0.236

Table 4.6: Accuracy for different level of training data availability for 3‐variable systems

3-node (a) 3-node (b) Raf
Given δLFIT+ NN-LFIT δLFIT+ NN-LFIT δLFIT+ NN-LFIT

1 (12.5%) 0.431 0.459 0.625 0.472 0.444 0.417
2 (25%) 0.417 0.542 0.431 0.458 0.347 0.389

3 (37.5%) 0.319 0.542 0.472 0.292 0.319 0.458
4 (50%) 0.264 0.5 0.403 0.403 0.264 0.417

5 (62.5%) 0.389 0.333 0.389 0.292 0.306 0.458
6 (75%) 0.236 0.375 0.222 0.167 0.278 0.333

7 (87.5%) 0.292 0.083 0.195 0.083 0.236 0.25
8 (100%) 0.208 0.00 0.083 0.042 0.25 0.333

Table 4.7: Accuracy for different amount of missing data for 3‐variable systems

Prior State Actual δLFIT+
ϵ {v1, v3} {v1, v2, v3}
{v1} ϵ ϵ
{v2} {v1, v2, v3} {v1, v2, v3}
{v1, v2} {v3} {v2, v3}
{v3} {v1, v3} {v1, v3}
{v1, v3} ϵ ϵ
{v2, v3} {v2, v3} {v2}
{v1, v2, v3} {v3} {v2}

Table 4.8: Predicted state transitions for the network 3‐node‐a
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5
Extensions

In this chapter, we will introduce several extensions that can be applied to δLFIT+.
In the LFIT literature, there are various extensions that extend the problem be-
yond synchronous semantics and boolean values. These extensions can also be
applied to δLFIT+.

We will first introduce the basic ideas of these extensions to the LFIT frame-
work, and then explain the methods that we applied δLFIT+ for the extensions.

5.1 Systems with Delays

Some real world application require that not all variables be updated at the
same time. In particular, some of the effects of actions or events can appear
after certain time points. For example, the mammalian circadian clock [21] is
better expressed with delays. Another example is the DNA damage repair [2]
system. Even in social interactions, past actions that extend beyond the pre-
vious timestep is certain to be influencing future decisions [63]. Therefore, to
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capture these sorts of interactions in the model, delays can be introduced into
the LFIT framework.

In the most vanilla LFIT, the algorithms deal with a Markov(1) system. Ex-
tending this idea, where Markov(k) means that the state of the system may
depend on, up to k previous states. In this case, any k sequence of transitions
there is a deterministic state at the k + 1 timestep. Note that, given a state I at
time step t, there may be one or more states that I will lead to.

5.1.1 LFkT

The LFIT algorithm that deals with delays is called Learning from k-step Tran-
sitions (LFkT). We will now extend the idea of Herbrand base B to capture the
Markov(k) system dynamic. Given a logic program P , an Herbrand base B and
a natural number k, the timed Herbrand base with period k is

Bk =
k⋃

i=1

{vt−i | v ∈ B}

Consider the following logic program in a Markov(2) system

a(t+ 1)← b(t) ∧ b(t− 1) (5.1)
b(t+ 1)← a(t− 1) ∧ ¬b(t− 1) (5.2)

this means that the atom a will only be in the interpretation at timestep t + 1,
only if b is in both the timestep t and timestep t− 1. Notice that we are looking
up to 2 previous timesteps. On the other hand, atom b will be in the interpreta-
tion at timestep t+ 1, if only atom a is in the timestep t− 1.

Under this framework, instead of state transitions, we will be dealing with
traces of execution. A trace of execution T is defined as a finite sequence of
states S, where T = (S0, S1, . . . , Sn). To figure out the sequences, we will also
define the following function

prev(i, j, T ) =


∅ if i = 0 or j = 0,

(Si−j−1, . . . , Si−1) if j + 1 ≤ i,

(S0, . . . , Si−1) otherwise.
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where n ≥ 1, ∀i ∈ N (i ≤ n), Si ∈ 2B. To ease some of the notations, we will
also define the following

prev(i, T ) = prev(i, n, T )
next(i′, T ) = Si′+1

where i′ ∈ N, i′ < n. We will denote ‖T‖ to be the length of the trace, which
is the number of state transitions within the sequence. A subtrace of size m
of T , is a sub-sequence of m consecutive states within T . As an example, given
T1 = ({a}, {b}, {a}), then ‖T1‖= 2 and both ({a}, {b}) and ({b}, {a}) are sub-
traces of length 1 for T1.

Next we consider the k-step interpretation transitions. Given an Herbrand
base B and the corresponding timed Herbrand base Bk, a k-step interpretation
transition is a pair of intepretations (I, J) where I ⊆ Bk and J ⊆ B.

As an example, given a trace T = ({a, b}, {b}, {a}), the interpretation transi-
tions obtained are the following

1. ({at−1, bt−1, bt}, {a}), this corresponds to the entire trace

2. ({at, bt}, {b}), this corresponds to the subtrace ({a, b}, {b})

3. ({bt}, {a}), this corresponds to the subtrace ({b}, {a})

To explain this Markov(k) system, we define the consistency as follows. Given
a logical rule R and a k-step interpretation transition (I, J), R is consistent
with (I, J) if and only if b+(R) ⊆ I and b−(R) ∩ I = ∅ imply h(R) ∈ J .

5.1.2 Extending Input State Encoding

To apply δLFIT+ to delayed systems, we will extend the input state encoding.
Given an Herbrand base B = {p, q} and period of k = 2, the timed Herbrand
base is Bk = {pt, qt, pt−1, qt−1}. The Herbrand base is basically extended by a
factor of k, which means ‖Bk‖= nk. We will therefore just extend the encodings
accordingly.
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Previous State θa = 0 θa = 1
ϵ 0 16
at 1 17
bt 2 18
atbt 3 19
at−1 4 20
atat−1 5 21
btat−1 6 22
atbtat−1 7 23
bt−1 8 24
atbt−1 9 25
btbt−1 10 26
atbtbt−1 11 27
at−1bt−1 12 28
atat−1bt−1 13 29
btat−1bt−1 14 30
atbtat−1bt−1 15 31

Table 5.1: Extended state input for a logic program with Bk

The ordering of the elements in ordered timed Herbrand base Bk,O can be
determined arbitrarily as noted in section 3.2. For convenience though, we will
first sort by the timing factor from t, t−1, . . . and then by lexicographical order.

We will thus extend the definition of both ζ0 and ζ1 to work with the timed
Herbrand base. Redefining Ek

x = {(I, θx) | I ∈ 2Bk}, and θx is still as the follow-
ing

θx =

{
0 if ∀(I, J) ∈ E (x 6∈ J),
1 if ∃(I, J) ∈ E (x ∈ J),

Next, we define the function ζk0 : 2Bk 7→ N. An example of the mapping repre-
sented by ζk0 is listed in table 5.1.

As can be observed, one can simply treat the original Herbrand base as hav-
ing 4 variables instead of 2, and perform the encoding. Consider the example
NLP in (5.2). The full state transition input for a in this NLP can be written
like E ′

a = {6, 30, 26, 2, 8, 12, 4, 0}.
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The input space for systems with delays, can be modified based on (4.3) to
the following

(22
nk

)n

For a system with n-variable and k delay, there are nk prior states. For each of
these states there are 2 possible transitions, for each of the n variables. Consid-
ering (4.3) to be the special case of k = 1, it is clear that the input space with
delays is much larger.

n k Input Space Number
2 1 (22

2
)2 256

2 2 (22
4
)2 4.24× 109

2 3 (22
6
)2 3.40× 1038

3 1 (22
3
)3 1.68× 107

3 2 (22
6
)3 6.28× 1057

3 3 (22
9
)3 2.41× 10642

Table 5.2: The input space for each n and k

5.1.3 Adapting the δLFIT+ Algorithm

Comparing from the vanilla LFIT framework, in LFkT there are separate do-
mains for b(R) and h(R). In particular, b(R) ⊆ Bk is a subset of the timed Her-
brand base while h(R) ∈ B. This means that in terms of what δLFIT+ cares, if
‖B‖= 2 and k = 2, we can train the model for 4 variables while only asking for
rules with 2 variables as the head.

The algorithm in algorithm 4 can be subsequently modified to the algorithm
described in 7.

The only modifications to this algorithm are the inputs, where we know have
a set of state transitions E which have the timed Herbrand base as the states to
transition from.
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Algorithm 7: δLFIT+ algorithm to adapt to delayed systems
Inputs : a set of atoms B and another set of atoms Bk, integer k, set of

state transitions E ⊆ 2Bk × 2B

Output: an NLP P
P := ∅;
foreach x ∈ B do

E := {(I, θx) | (I, J) ∈ E, θx = {0, 1}};
Ex := {ζ1(ζ0(I), θx) | (I, θx) ∈ Ex};
Rx := ∅;
for l in 0 . . . ‖Bk‖ do

Rx,l := δLFIT+(Ex, x, l);
foreach R ∈ Rx,l do

Rx = Specialize (Rx, R);
end

end
foreach R ∈ Rx do

P = Specialize (P , R);
end

end

5.1.4 Recovering the Logic Program

We will also extend the reverse lookup for a rule given an index algorithm σ−1.
The only modifications required are places related to those which operated on
B, we will instead extend them to work on Bk.

5.1.5 Other Details

Other parts of the δLFIT+ technique can be extended to cover delay systems
with minimal modifications. In particular with regards to rule sharing, the basic
principles are the same. A full example of the mapping for the output nodes is
listed in table 5.3.

Due to the fact that the head of the rules are still in domain of B, no further
modifications are required on the input.
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5.1.6 Experiments

In this section, we will describe the experiments that we have performed to val-
idate our methods. The setup is largely similar to that of δLFIT+. We first
generate random logic programs to obtain the training data, we then train the
model and subsequently validate the results with a prior known boolean net-
work.

Experimental Methods

We first generated training data for the Bk that we wanted to study. In this
case, due to computational constraints, we picked 2 variables with k = 2. The
model is trained based on this training dataset. We then performed experiment
with the logic program given in (5.2) and recorded the results.

The network implementation is exactly the same as in chapter 4. The only
modifications required are to adapt the input encoding to take into account the
delays.

Results

In this experiment, we generated state transitions from the logic program in
(5.2). The generated state transitions are then input into the model. The state
transitions from the predicted logic program is then compared with the original
logic program.

The predicted logic program by δLFIT+ is shown as below

a(t+ 1)← a(t) ∧ a(t− 1) ∧ b(t− 1)

a(t+ 1)← b(t) ∧ ¬a(t− 1) ∧ ¬b(t− 1)

b(t+ 1)← ¬a(t) ∧ ¬b(t) ∧ a(t− 1)

b(t+ 1)← b(t) ∧ a(t− 1) ∧ ¬b(t− 1)

The full difference in the state transitions produced by the respective logic
programs are shown in table 5.4.
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The MSE between the predicted state transitions and the actual state transi-
tions is 0.313. Despite there being no common rules between the predicted logic
program and the actual logic program, we can observe that most of the errors
are from the prediction of variable a. There are only 2 errors with regards to
variable b.

5.1.7 Discussions

We can observe that δLFIT+ can be applied to systems with delay without too
many modifications. However due to the fact that the problem space growing
large even for small variables and small amount of delays, it became infeasible
to train for even a slightly larger network with a little bit of delays.

5.2 δGULABOOL

The original LFIT only considered the synchronous semantic, in which all vari-
ables are updated at the same time. Meaning at each transition, every rule from
the logic program that can be applied, are applied simultaneously in 1 step to
obtain the next state. Real world applications, however, demanded different
kinds of update semantics.

5.2.1 GULA

The original GULA algorithm proposed in [69] deals with multivalued systems.
Here, however, we do not want to investigate the multivalued properties of δLFIT+,
therefore we will work under the assumptions of a boolean system. A multival-
ued system will be a generalized version of the boolean system.

First, we say that a rule matches an interpretation I, written as R ∩ I if
b(R) ⊆ I. This means that rule R can be applied at the interpretation. Given 2
rules R and R′, these rules cross-match, written as R ∩ R′ if there exists I ⊆ B
such that both R and R′ matches, R ∩ I and R′ ∩ I. In this case, during state I,
both R and R′ can be applied.
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Next, we say that a rule R realizes the transition (I, J), written as I
R−→ J ,

if R ∩ I ∧ h(R) ∈ J . This means that in the transition (I, J), rule R has been
applied on state I to obtain the transition state J . A logic program P realizes
the transition (I, J), written as I

P−→ J , if ∀l ∈ B ∃R ∈ P (h(R) = l) ∧ (I
R−→ J).

If there is a rule R in the logic program P that realizes the transition from I to
J , then we can say P realizes the transition.

For a set of transitions E = {(I, J) | I, J ⊆ B}, we denote the set of in-
terpretations that has a transition as γ(E) = {I | ∃(I, J) ∈ E}. Note that
γ(E) = ∅ ⇒ E = ∅, if there are no interpretations that have a transition, then
the set of transitions should be empty as well.

We will also define an operator I ◦ l where I ⊆ B is an interpretation and
l ∈ B is an atom. I ◦ l is defined as follows

I ◦ l =

{
I \ l if l ∈ I,

I ∪ {l} if l 6∈ I.

essentially this operator says l must change value in the transition after I.

Let’s now define what we mean by semantics of a dynamic system. A se-
mantics is a function that maps a logic program P to a set of transitions E ⊆
2B × 2B such that γ(E) = B, meaning each interpretation is assigned a next
state to transition to.

Using this definition of semantics, we now define the synchronous semantics.
The synchronous semantics Tsyn is defined as follows

Tsyn : P 7→ {(I, J) ∈ 2B × 2B | J ⊆ {h(R) | R ∈ P,R ∩ I}}

In the synchronous semantics, all rules R ∈ P that is consistent with I will take
effect. We say that the transitions in E are synchronous when the following is
true. First, γ(E) = B, meaning all interpretations have a transition. Then, ∃P
such that Tsyn(P ) = E if and only if ∀(I, J), (I,K) ∈ E, ∀L ∈ 2B, L ⊆ J ∪K ⇒
(I, L) ∈ T . This says that if we observed I transitioning into 2 separate states J
and K, the combination of both J and K, L is also a valid transition from state
I.

Next, we will define the asynchronous semantics. Contrasting to the syn-
chronous semantics, in the asynchronous semantics only one variable is allowed
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to change their state at one time. The asynchronous semantics Tasyn is defined
as follows

Tasyn : P 7→{(I, J ◦ {h(R)}) ∈ 2B × 2B | (R ∈ P ) ∧ (R ∩ I) ∧ (h(R) 6∈ I)}∪
{(I, J) ∈ 2B × 2B | ∀R ∈ P (R ∩ I ⇒ h(R) ∈ I)}

We can say E is asynchronous, when ∃P such that Tasyn(P ) = E, if and only if
∀I, J ∈ 2B, I 6= J , ((I, I) ∈ E ⇒ (I, J) 6∈ E) ∧ ((I, J) ∈ E ⇒ ‖I \ J‖= 1).
This says that, the transition from state I will be either state I itself, or an-
other state J which differs from I by only 1 atom. The asynchronous semantics
have a tendency to priorize atoms changing value, since this is the only imme-
diate observable effect when applying the rules. Note that the semantics says
only at most 1 variable can change, but nothing about how many rules shall be
applied.

Lastly, we will define the general semantics. The general semantics is a gen-
eral version of the asynchronous semantics. Any subset of the variable is al-
lowed to change their values. The general semantics Tgen is defined as follows

Tgen : P 7→ {(I, J ◦ r) ∈ 2B × 2B | r ⊆ {h(R) | (R ∈ P ) ∧ (R ∩ I)}}

E is general, when ∃P such that Tgen = E, if and only if ∀(I, J), (I,K) ∈
E, ∀L ∈ 2B L ⊆ I ∪ J ∪ K ⇒ (I, L) ∈ E. This says that, if we observe an
interpretation I transitioning into 2 states J and K, another state L which can
be a combination of J , K and I itself will also be a transition from I.

5.2.2 Extending δLFIT+

δLFIT+ can be trivially extended to support the general semantics. In fact,
due to the probabilistic nature of δLFIT+, it already inherently supports all the
other semantics.

The only thing to consider here is the input. Where in the synchronous se-
mantics, there will only be one possible state for each prior state, in the general
semantics there can be more than one. However, since δLFIT+ only considers a
single variable at a time, the only thing that might be possible is that the vari-
able either changes or doesn’t change in the next timestep.
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In the perspective of δLFIT+, given a prior state of {a, b}, focusing at the
variable a, if an input of ({a, b}, {}) or ({a, b}, {b}) exists, then the model can
know that a rule that makes a negative exists. And this is the only information
that δLFIT+ will need to predict logic programs.

5.2.3 Experiments

We performed experiments by randomly picking rules to apply to each state
transition, and asked δLFIT+ to predict the logic program. The logic program
is then compared to the original full logic program.

Experimental Method

We generated training data based on the synchronous semantics, then trained
the model based on that training data. The implementation was the same as
described in chapter 4. We then tested the model on boolean networks taken
from PyBoolNet. To test the difference in semantics, we generated the state
transitions by randomly picking rules with probability of p. The state transi-
tions are then given to the model to produce a logic program prediction. The
logic program is then compared with the original boolean network by producing
the state transitions based on the synchronous semantics. The experiments are
repeated 3 times for each case and the averages are recorded.

Results

The results for this are shown in table 5.5. We can observe that as p increases,
it becomes closer to the synchronous semantics and thus the model performs
better.

Here, we’ll show the example for the Raf network with 3 variables. The boolean
network constructed is shown in figure 5.1. Its corresponding logic program is
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Erk Mek

Raf

Figure 5.1: Boolean network of raf

written as

Erk(t+ 1)← Erk(t) ∧Mek(t)
Erk(t+ 1)← Mek(t) ∧ Raf(t)

Mek(t+ 1)← Erk(t)
Mek(t+ 1)← Mek(t) ∧ Raf(t)
Raf(t+ 1)← ¬Erk(t)
Raf(t+ 1)← ¬Raf(t)

The predicted logic program, after providing the state transitions with p =
0.25 probability of applying the rules, is shown as below

Erk(t+ 1)← ¬Erk(t) ∧ Raf(t)
Erk(t+ 1)← ¬Mek(t) ∧ Raf(t)
Erk(t+ 1)← Erk(t) ∧ ¬Raf(t)

Mek(t+ 1)← Erk(t) ∧Mek(t)
Mek(t+ 1)← Erk(t) ∧ ¬Raf(t)
Mek(t+ 1)← ¬Mek(t) ∧ ¬Raf(t)
Raf(t+ 1)← ¬Raf(t)
Raf(t+ 1)← ¬Erk(t)

In this case we can see there is a huge difference as δLFIT+ struggles a little
bit to clearly predict the logic program. The MSE for this logic program was
0.292.
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On the other hand, here is the logic program after providing the state transi-
tions with p = 0.75 probability of applying the rules

Erk(t+ 1)← Erk(t) ∧Mek(t)
Erk(t+ 1)← Mek(t) ∧ Raf(t)
Erk(t+ 1)← ¬Erk(t) ∧ Raf(t)

Mek(t+ 1)← Erk(t) ∧ Raf(t)
Mek(t+ 1)← Mek(t) ∧ Raf(t)
Raf(t+ 1)← ¬Raf(t)
Raf(t+ 1)← ¬Erk(t) ∧ ¬Mek(t)

Here we can see a very good prediction from δLFIT+, where the rules for
Erk are actually all correct, and for Raf there is only 1 state transition that dis-
agrees. The MSE in this case was 0.167.

5.2.4 Discussions

We can observe that there is no necessity to train the model specifically in the
various semantics as the generalization ability of the neural network already al-
lows it to also adapt to the various semantics. This is also aided in particular to
the way that we already encode the state transitions, by providing transitions
for each variables individually, there is already inherently a generalizability in
terms of semantics. Despite the fact that semantics focus on the rules that are
applicable and not the variables that change within the transitions, the out-
come, we can argue are the same.
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Algorithm 8: σ−1
τ(Bk,O)(R): Reverse lookup a rule given an index

Input : x ∈ N
Output: Rule R such that στ(Bk,O)(R) = x

if x > 0 then
l = 1, xr = 1;
for i := 0 to ‖Bk‖ do

if ‖τi(Bk,O)‖> x then
break

end
xr = ‖τj(Bk,O)‖;
l = i+ 1;

end
end
xr = x− xr;
c :=

(∥Bk∥
l

)
;

R := {}, C := Bk,O;
for i = 0 to l − 1 do

a := C[0];
C = C \ a;
R = R ∪ {a};

end
for i = 0 to xr mod c do

IncrementRule (R, l − 1);
end
for i = 0 to a do

if bxr

c
c&(1� i) 6= 0 then

a := σ−1
R (i);

R = (R \ {l}) ∪ {a};
end

end
return R
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Nodes 0 1 2 3
l = 0 {} - - -
l = 1 {at} {bt} {at−1} {bt−1}
l = 2 {at, bt} {at, at−1} {at, bt−1} {bt, at−1}
l = 3 {at, bt, at−1} {at, bt, bt−1} {bt, at−1, bt−1} {at, at−1, bt−1}
l = 4 {at, bt, at−1, bt−1} {¬at, bt, at−1, bt−1} {at,¬bt, at−1, bt−1} {¬at,¬bt, at−1, bt−1}
Nodes 4 5 6 7
l = 0 - - - -
l = 1 {¬at} {¬bt} {¬at−1} {¬bt−1}
l = 2 {bt, bt−1} {¬at, bt} {¬at, at−1} {¬at, bt−1}
l = 3 {¬at, bt, at−1} {¬at, bt, bt−1} {¬at, at−1, bt−1} {¬bt, at−1, bt−1}
l = 4 {at, bt,¬at−1, bt−1} {¬at, bt,¬at−1, bt−1} {at,¬bt,¬at−1, bt−1} {¬at,¬bt,¬at−1, bt−1}
Nodes 8 9 10 11
l = 0 - - - -
l = 1 - - - -
l = 2 {¬bt, at−1} {¬bt, bt−1} {¬at−1, bt−1} {at,¬bt}
l = 3 {at,¬bt, at−1} {at,¬bt, bt−1} {at,¬at−1, bt−1} {bt,¬at−1, bt−1}
l = 4 {at, bt, at−1,¬bt−1} {¬at, bt, at−1,¬bt−1} {at,¬bt, at−1,¬bt−1} {¬at,¬bt, at−1,¬bt−1}
Nodes 12 13 14 15
l = 0 - - - -
l = 1 - - - -
l = 2 {¬bt, at−1} {¬bt, bt−1} {¬at−1, bt−1} {¬bt−1, at}
l = 3 {¬at,¬bt, at−1} {¬at,¬bt, bt−1} {¬at,¬at−1, bt−1} {¬bt,¬at−1, bt−1}
l = 4 {at, bt,¬at−1,¬bt−1} {¬at, bt,¬at−1,¬bt−1} {at,¬bt,¬at−1,¬bt−1} {¬at,¬bt,¬at−1,¬bt−1}
Nodes 16 17 18 19
l = 0 - - - -
l = 1 - - - -
l = 2 {¬bt−1, bt} {¬bt−1, at−1} {¬at,¬bt} {¬at,¬at−1}
l = 3 {at, bt,¬at−1} {at, bt,¬bt−1} {at, at−1,¬bt−1} {bt, at−1,¬bt−1}
l = 4 - - - -
Nodes 20 21 22 23
l = 0 - - - -
l = 1 - - - -
l = 2 {¬at,¬bt−1} {¬bt,¬at−1} {¬bt,¬bt−1} {¬at−1,¬bt−1}
l = 3 {¬at, bt,¬at−1} {¬at, bt,¬bt−1} {¬at, at−1,¬bt−1} {¬bt, at−1,¬bt−1}
l = 4 - - - -
Nodes 24 25 26 27
l = 0 - - - -
l = 1 - - - -
l = 2 - - - -
l = 3 {at,¬bt,¬at−1} {at,¬bt,¬bt−1} {at¬at−1,¬bt−1} {bt,¬at−1,¬bt−1}
l = 4 - - - -
Nodes 28 29 30 31
l = 0 - - - -
l = 1 - - - -
l = 2 - - - -
l = 3 {¬at,¬bt,¬at−1} {¬at,¬bt,¬bt−1} {¬at,¬at−1,¬bt−1} {¬bt,¬at−1,¬bt−1}
l = 4 - - - -

Table 5.3: Mapping of output nodes to rule bodies with various lengths
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Prior State Actual δLFIT+
ϵ ϵ ϵ
at ϵ ϵ
bt ϵ {a}
atbt ϵ {a}
at−1 {b} {b}
atat−1 {b} {a}
btat−1 {b} {b}
atbtat−1 {b} {a, b}
bt−1 ϵ ϵ
atbt−1 ϵ ϵ
btbt−1 {a} ϵ
atbtbt−1 {a} ϵ
at−1bt−1 ϵ {b}
atat−1bt−1 ϵ ϵ
btat−1bt−1 {a} ϵ
atbtat−1bt−1 {a} ϵ

Table 5.4: Predicted state transitions for the network with delays

p 3-node-a 3-node-b Raf
δLFIT+3 p = 0.125 0.528 0.472 0.417
δLFIT+3 p = 0.25 0.556 0.5 0.389
δLFIT+3 p = 0.375 0.417 0.347 0.32
δLFIT+3 p = 0.5 0.458 0.236 0.222
δLFIT+3 p = 0.625 0.417 0.305 0.375
δLFIT+3 p = 0.75 0.305 0.222 0.209
δLFIT+3 p = 0.875 0.264 0.139 0.264

Table 5.5: The MSE for the state transitions generated by the predicted logic programs compared to δLFIT+ for
general semantics.
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Prior State Actual p = 0.25 p = 0.75
ϵ {Raf} {Mek,Raf} {Raf}

{Erk} {Mek,Raf} {Erk,Mek,Raf} {Raf}
{Mek} {Raf} {Raf} {Raf}

{Erk,Mek} {Erk,Mek,Raf} {Erk,Mek,Raf} {Erk,Raf}
{Raf} {Raf} {Erk,Raf} {Erk,Raf}

{Erk,Raf} {Mek} {Erk} {Mek}
{Mek,Raf} {Erk,Mek,Raf} {Erk,Raf} {Erk,Mek}

{Erk,Mek,Raf} {Erk,Mek} {Mek} {Erk,Mek}

Table 5.6: The difference state transitions for raf generated by the predicted logic programs compared to
δLFIT+.
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6
Related Work

We will provide a summary of some of the works that are most relevant to the
work presented in this thesis. As noted before, this work presents a novel method
of training a general neural network for many different problems. This has not
yet been replicated in the field of NSAI.

Related works in the NSAI field can largely be categorized into different 2
approaches, the extraction-based approach and the integration-based approach.
We will also introduce other neural-symbolic work which are not based in logic,
namely the Neural Turing Machine and Neural-Programmer Interpreters. Then
we will introduce NN-LFIT which is most similar to our work. And lastly, we
will describe a new work that is done at the level that is similar to that of the
LFIT framework itself.
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6.1 Extraction-based Approach of NSAI

The extraction-based approach of NSAI concerns of training the model in the
statistical space, and later attempting to retrieve symbolic knowledge from the
trained statistical model. These approaches either heavily rely on expert knowl-
edge to build out the initial neural network architecture base to extract from, or
have serious limitations in their scalability.

6.1.1 Connectionist Approaches

One of the earliest methods of extracting symbolic knowledge from neural net-
works was demonstrated by d’Avila Garcez et al in [23]. In this work, which the
authors named C-IL2P, a background knowledge represented as logic programs
are translated into a neural network with an algorithm. The translated neural
network is then subsequently trained with examples, and then logical rules are
extracted from it.

In [22], the authors proposed a much more general extraction algorithm, ap-
plicable not just to networks that were constructed in C-IL2P. Further in [26]
and subsequently [27] the authors further refined their extraction method. How-
ever, this still placed heavy constraints on the network the method was appli-
cable to, and are sadly not applicable to deeper networks that employ modern
state-of-the-art techniques to achieve higher performance.

Another extraction method, propsed in [50], utilizes interpretations to con-
struct NLP. This method, again assumes a specific structure of a neural net-
work that prohibits this method from being applied to more recent neural net-
work structures.

6.1.2 Neural Markov Logic Networks

In [56], the authors introduced a model that are based on neural network, but
which models a Markov Logic Networks. Given a knowledge base to train on,
the Neural Markov Logic Networks can model the actual relationships between
the entities within the knowledge base. Neural Markov Logic Networks can also
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add new relationships to an incomplete knowledge base. Since this approach
is more relational while δLFIT+ is more propositional, the approaches are not
directly comparable. However this work lies more on the extraction line than
the δLFIT+ approach.

6.1.3 δILP

The δ-ILP framework, introduced by Evans, et. al. in [24] incorporates a differ-
entiable machine learning approach and the symbolic ILP approach. In the δ-
ILP approach, the authors proposed a framework that uses differentiable meth-
ods to perform the ILP task at hand, while also simultaneously learning to pro-
duce the logic program that could solve the ILP task itself. In LFIT terms, this
would be synonymous to a method that is differentiable all the way to predic-
tions of the next state while also producing the logic program. However, in
δLFIT+, we only aim to construct a differentiable method to learn any logic
programs given any state transitions, while the prediction of the next states,
that is the TP operator is not within the differentiable method. Additionally, δ-
ILP requires a language template and program template to significantly reduce
the search space, whereas we don’t impose such a requirement. This however
may be an unfair comparison because in LFIT, the number of variables within
the system can be known before hand. Whereas in ILP tasks, not knowing the
predicates before hand could potentially explode the search space.

The core idea in this paper is to solve the ILP task by minimizing a loss us-
ing stochastic gradient descent. In this case, the loss is the cross entropy of the
correct label with regard to the predictions of the system. Given an ILP task T ,
the probability of λ, which is the prediction, for a ground atom α is written as:

p(λ|α, T )

This probability is computed by several differentiable operations and several
non-differentiable operations. One of the differentiable operation, finfer is where
all the heavy-lifting takes place. After generating all the rules and clauses that
are possible given the language template and program template, the finfer oper-
ation performs a single step of forward chaining inference, in order to find the
correct clause.
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6.1.4 Relational Neural Machines

In [55], the authors introduced a method to learn and reason on first-order logic.
This work is inline with δILP in that it integrates both the problem and also
producing the logic program together. This is in contrast with δLFIT+ where
no backpropagation learning for the problem itself is performed. It also dif-
fers in that the backpropagation learning has to be performed for each different
problems whereas δLFIT+ doesn’t require that.

6.1.5 LRNN

In [84], the authors introduced lifted relational neural network (LRNN). LRNN
is a little bit different from the aforementioned works, in that LRNN starts with
a logic program and constructs a neural network, to then subsequently find new
relations within the knowledge base. It differs from our work in that it uses re-
lational logic whereas LFIT only deals with proposition logic, and the method
of integrating neural networks and symbolic are vastly different from δLFIT+.

6.1.6 NeuralLP

In [94], the authors introduced NeuralLP which are capable of learning rules
based on a knowledge base. This work is similar to all the other approaches in
that the neural network is trained to model the provided knowledge base, and
then rules are extracted from within the trained network. This work however is
applicable to relational logic.

6.2 Integration-based Approach of NSAI

The integration-based approaches, in contrast to the extraction-based approaches,
are mostly about having separate statistical learning and symbolic algorithms.
Since neural networks are good at dealing with real world data, these approaches
utilize the neural networks to extract useful representations, which can then be
used for the symbolic algorithms to do the reasoning.
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6.2.1 NeurASP

In [95], the authors showed a method that combines neural network with a con-
ventional ASP engine. The authors showed an interesting approach that allows
the backpropagation of neural network to be guided by the symbolic reasoning
engine. This work is mainly focused on bringing symbolic methods to deal with
real world continuous data, such as image data. While δLFIT+ is partially con-
cerned with interpretability and the opacity of neural networks.

6.2.2 NLProlog

In [92], the authors proposed NLProlog that integrates neural network and a
Prolog solver. In this case the authors were concerned with attempting to solve
Prolog problems that were described in natural language. To that end, the com-
bination of neural network and symbolic was purely at an external level, where
there is no cross over.

6.3 Neural Turing Machines

For the purposes of comparing and constrasting the various methods, we will
regard the turing machine, namely the von-Neumann architecture [15], as be-
ing in the same category of symbolic manipulation, eventhough it is not strictly
logical. The neural turing machines, described in [33], shows a novel method
of integrating an algorithm that has shown to work in the symbolic world, into
neural network architecture. In the Turing machine, there are several parts that
are integral, namely the ability to read/write to memory and the ability to com-
pute.

Neural networks have long been proven to have the ability to compute, since
it can approximate any arbitrary function [38], but however lacked the ability
to randomly access memory as necessary. In the work done by [33] however, the
authors showed a method to allow neural networks to randomly access memory,
and learning to do so by backpropagation.
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6.3.1 Neural-Programmer Interpreters

Following Neural Turing Machines, Reed et al introduced the Neural-Programmer
Interpreters in [67]. In Neural-Programmer Interpreters, in addition to having
random access to memory, the model also outputs a trace of its execution. The
model itself learns how to execute and solve a problem by training on examples,
but as it executes, the trace of execution that it outputs resembles an assembly
program, which can then be interpreted.

This is similar to the δLFIT+ approach, in that they are asking the neural
network to provide the symbolic knowledge directly as output. The main differ-
ence however, is that Neural-Programmer Interpreters work in the imperative
programming sense, whereas in the logical world, especially in ILP, they are
declarative and thus have no execution trace.

6.4 NN-LFIT

NN-LFIT can be categorized as an extraction-based approach in the field of
NSAI, but because it is directly related to this thesis in that it is also based on
the LFIT framework, it deserves a section on its own.

In [29], NN-LFIT starts by training a minimal neural network that learns
the target system, by ensuring the inputs and outputs of the neural network
matches those of the target system. Since it is the aim of this algorithm to pro-
duce the minimal neural network, the training process starts by one hidden neu-
ron, that is a hidden layer of dimension 1. The dimension of the hidden layer
is continuously expanded until the accuracy of the neural network drops on the
validation set after a fixed number of training steps. Once the minimal number
of hidden layer dimension is obtained, the algorithm proceeds to zero out the
trained parameters. Each trainable parameter is set to 0 in a fixed order, until
the accuracy of the neural network starts to drop again.

Now that a minimal neural network, with a sparse trained parameter, that
could model the system is obtained, the algorithm proceeds to extract the cor-
responding logic program in an analytical way. The algorithm inspects the
sub-network that is connected to each of the outputs, which correspond to the
prediction of a variable in the next state. Thus, the sub-network could reveal
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the relationship between the inputs of the neural network, which represent the
present state of the variables, and the corresponding output for the specific vari-
able that the algorithm is currently inspecting. After obtaining all the relation-
ships for the variable, the algorithm constructs a truth table by probing the
neural network for all input possibilities, and then obtaining the logic formula
that represents the rule for the variable on the output.

The experimental results presented in [29] showed that the algorithm was
able to achieve high performance despite reducing the amount of training data.
However, no experimental results were presented on the effect of noise and er-
rors in the training data. Besides, this algorithm requires a new neural network
to be train each time a different system is to be learned.

6.5 D-LFIT

D-LFIT, proposed in [28], is similar in many ways to δLFIT and δLFIT+ in
which a differentiable method is used to learn intepretation transitions. The
main difference though, similar to that of NN-LFIT, is that training is per-
formed separately for each logic program. Contrary to NN-LFIT however, D-
LFIT does not use neural networks or perceptrons, in that it does not consist of
the usual learnable parameter, bias and activation function. It performs back-
propagation on a mathematical linearly implemented TP operator. The TP op-
erator is implemented by multiplying matrices and applying non-linearity to
recover the consequences in boolean space. Therefore, to learn a logic program
that conforms to a certain input sequence, is then a matter of searching for the
correct logic program matrix. D-LFIT does this by performing backpropagation,
hence the name differentiable.

However, due to the nature of the encoding of the logic program matrix, re-
covering the full logic program is non-trivial. The authors of D-LFIT solved this
by introducing meta-info learner, which helps inform the shape of the logic pro-
gram to be learned. In particular, the meta-info learned by this learner consists
of information such as the number of rules per variable as the head. With this
information, an appropriate matrix is then constructed to fully recover the logic
program.

This approach is different from δLFIT and δLFIT+, where in δLFIT+ the
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goal is not to learn a single logic program but to learn a general model that
distinguishes various different systems of logic programs. The approach taken
by D-LFIT to reduce the search space, which is the meta-learner, is unfortu-
nately not applicable to δLFIT+. This is because the combinatorial explosivity
of δLFIT+ is in the architectural sense whereas D-LFIT’s explosivity is in the
learning sense.

6.6 AND/OR BN

In [78], the authors proposed the learning of AND/OR BN which is a subclass
of boolean network consisting only of logical AND and OR. The algorithm pro-
posed to learn this class of boolean network in the linear mathematical space.
The learning algorithm proposed is similar to that of D-LFIT, in that the en-
coding of the logic program is derived from the same family.

Considering only AND or OR within the logic program will obviously have
a huge impact in the scaling factor of δLFIT+. The authors managed to use
the scaling factor to achieve learning of real world genome datasets, which are
a considerably larger problem than what δLFIT+ is currently able to deal with.
However, we can predict that even by only considering AND/OR BN, the scal-
ing factor for δLFIT+ is still combinatorial. This is because δLFIT+’s inherent
problem lies in the combination of the variables, and not in the combination of
the logical operators within the rules. Since δLFIT has a simpler scaling fac-
tor, we can attempt to analyze what the scale factor will be if we only consider
AND/OR BN. To recall, the scale factor for the normal case is n× 3n, where we
consider each literal being absent, positive or negative. For AND/OR BN, this
will be 2n × 2n, where we will have separate rules for AND and OR, and each
literal will be either present or absent. This is obviously, still exponential.

6.7 Apperception

In [25], the authors introduced an algorithm they called Apperception Engine.
This algorithm is similar to LFIT and δILP in that it is trying to learn the
rules given observed data. The authors defined and introduced the framework
of apperception tasks, that not only takes into account the time-based dynamics
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LFIT, but also spatial dynamics as well. While LFIT is strictly propositional,
apperception tasks are first-oder logics and thus, in general, a much harder
problem to solve. The authors introduced the algorithm, Apperception En-
gine that could solve the problems, but the algorithm needs to be provided a
program template, which could be seen as prior knowledge, before solving the
problem. In contrast to that, LFIT requires no templates and can learn logic
programs without any prior knowledge.
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7
Conclusion

In this thesis, we have investigated a method that will integrate the statistical
machine learning and the symbolic machine learning method. In particular, we
focused on the LFIT framework which learns the dynamics of a system based on
the observation of its state transitions. We devised a method to directly employ
the strength of statistical machine learning in classification to obtain symbolic
knowledge. We have also shown several techniques that overcome some of the
hurdles that have plagued the neural symbolic field, particularly the combinato-
rial explosion problem.

7.1 Summary of contribution

In chapter 3, we introduced the δLFIT algorithm, which is an algorithm that
classifies logic programs based on the given state transitions. We first investi-
gated whether neural networks are capable of classifying logic programs. Next,
we described our neural network architecture that learns the logic program rep-
resentation, and then performs classification of rules based on the representa-
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tion. We described our method of enumerating through all possible rules. We
show that our method works with clean and noisy data. We then show several
examples of δLFIT algorithm in action.

In chapter 4, we introduced our techniques of enabling neural network to
learn larger systems. We first introduced the integration of Set Transformer,
that ensured different permutations of the state transitions do not affect the
output. Next, we introduced a method of encoding state transitions, in a man-
ner that allows the neural network to focus on what matters most, that is the
positive examples and the negative examples for a particular system. We then
introduced a technique to reduce the combinatorial factor that exists inherently
in the neural network architecture, due to how we structure the problem. By
reusing the output nodes for multiple different rule heads and rule body lengths,
we were able to cut the combinatorial factor that allowed us to perform exper-
iments on larger systems. Following that, we showed some technique to allow
the model to converge better due to the improvements that were introduced
above. We considered label smoothing with subsumed rules, and target weight-
ing based on the imbalanced distribution of learning targets for the model.We
then performed several experiments to validate the improvement techniques
that we have introduced. Due to a pretty structured problem space, we were
able to map out the entire problem space. However the problem space is really
huge, and due to computational limitations it is infeasible to provide the entire
problem space as training data. We therefore introduced our method of sam-
pling the problem space. Based on this, we showed several experiments based
on well-known Boolean network benchmarks, and showed the effectiveness of
our methods. We have also investigated and found that covering more of the
problem space increases the accuracy of the model, which is in-line with what is
expected.

Finally in chapter 5, we also extended our techniques to systems that have
delayed influences, and also to a much more general semantics. We showed that
our techniques were effective, even with minimal modifications to the model.
This is consistent with the expectation that neural networks are much better
generalizers.
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7.2 Future Directions

There are still several potentially promising directions that are worth investigat-
ing.

Logic program generation is a potentially interesting direction. The com-
binatorial explosion inherent in our method is due to the fixation of the output
node and the requirement that all possible rules are being classified. If, instead
of this, there is a technique that allows the neural network to directly output
the logic program rule by rule, literal by literal, then this should solve the com-
binatorial explosion problem.

Variable permutation invariance is also an interesting direction to pur-
sue. Given that the names of the variables are arbitrarily assigned by humans,
the ordering in which variable goes where within the neural network is also
pretty much arbitrary. By having an invariance that allows variables to freely
permute both in the input states and the output logic programs will cut the
problem space by a very significant margin.

Distilling logic programs will be another potential direction. As the num-
ber of variables increase, and the number of rules increase, the logic program
becomes more complicated. There are some arguments that the interpretability
property of a logic program will be lost when the logic program is simply too
complicated for one to understand, as it is as opaque as a string of numbers.
With our method of learning the entire problem space and getting the general
semantics of all logic programs given the number of variables, it might be pos-
sible to have the neural network identify a core part of the logic program and
ensure that the core part remains readable and understandable.
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