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Abstract 1 

The orbitofrontal cortex (OFC) supposedly plays a critical role in value-based decision-making. 2 

Abundant evidence exists on the role of the OFC in reinforcer devaluation tasks, which assess 3 

the ability to represent identity, sensory qualities, and subjective values of the expected 4 

outcomes. However, it remains unclear which aspect is specifically represented in this region. 5 

Here, by conducting functional magnetic resonance imaging experiments, wherein participants 6 

rated the palatability of 128 food items using photos, investigated whether the human OFC 7 

represents object identity, sensory qualities, or value. Employing many items helped me 8 

dissociate object identity from sensory qualities and values; the inferred sensory qualities of 9 

the identical items were manipulated by a change in the metabolic state. Moreover, value 10 

differences between items were analytically controlled by a technique similar to age adjustment. 11 

The palatability ratings for food items significantly decreased after the meal. By applying 12 

representational similarity analysis, I found that the OFC represents value, as reported 13 

previously. Moreover, identical items were represented similarly in the lateral OFC in a given 14 

metabolic state; however, these representations were altered post feeding. Importantly, this 15 

change was not explained by subjective value, suggesting that the OFC represents sensory 16 

quality and value, but not object identity. 17 

 18 

 19 
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1. Introduction 1 

Decision making is a cognitive process in which multidimensional information must be 2 

integrated. For example, when people decide what to eat at a restaurant, they infer gustatory 3 

experience from the photos and descriptions on the menu while considering our current 4 

metabolic state (i.e., satiated or hungry). Even if the dessert options themselves are identical, 5 

inferred gustatory experiences are not the same at the time of the first course as when dessert 6 

is ordered, suggesting that the inferred sensory qualities and identity can be dissociated under 7 

certain conditions. As in the old proverb, “hunger is the best sauce,” the sensory qualities of 8 

food are dynamically altered by changes in one’s internal metabolic state while the food 9 

identity is stably represented. By integrating such information, an individual estimates the 10 

value of each option in deciding what to eat. The orbitofrontal cortex (OFC) integrates sensory 11 

and visceral information, providing a basis for such decision-making (Kringelbach, 2005). 12 

Specifically, a growing body of research has shown that the OFC encodes the predicted 13 

outcomes that follow either sensory events or behavioral choices (Rudebeck et al., 2013; 14 

Schoenbaum et al., 2009). In particular, studies on rodents, monkeys, and humans have 15 

consistently demonstrated that the OFC plays a critical role in reinforcer devaluation, in which 16 

specific food rewards are provided until satiated or paired with illness (Gallagher et al., 1999; 17 

Gremel & Costa, 2013; Izquierdo, 2004; Pickens et al., 2005; Reber et al., 2017; Rudebeck et 18 

al., 2013; West et al., 2013). While healthy participants prefer an option that leads to the food 19 

with which they are not sated, OFC-lesioned animals or patients show no such preference.  20 

However, the specific function of this region remains under debate (Rudebeck & 21 

Murray, 2014; Schoenbaum et al., 2011; Stalnaker et al., 2015), partially because of the 22 

complexity of the devaluation paradigm. Although behavior is driven by composite 23 

representations of identity, sensory qualities, and subjective values of expected outcomes in 24 
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this paradigm (Howard et al., 2015; Rudebeck & Murray, 2014), the emphasized aspect of the 1 

task varies across studies. Although several studies have focused on the involvement of the 2 

OFC in value representations (Gallagher et al., 1999; Kringelbach et al., 2003; Rudebeck et al., 3 

2013), others have emphasized representations of the sensory qualities or food identity (Burke 4 

et al., 2009; Gremel & Costa, 2013; Schoenbaum et al., 2011). Indeed, there are several 5 

difficulties in dissociating these representations in the devaluation paradigm. For example, 6 

because different taste rewards evoke different sensory qualities, differences in identity and 7 

sensory qualities cannot be dissociated should the reward type given be small, as in animal 8 

experiments. Moreover, devaluation alters the sensory qualities of expected outcomes, as well 9 

as their subjective value (Rudebeck & Murray, 2014), although their identity remains the same 10 

(e.g., orange juice can be identified as orange juice even if it does not taste good after 11 

devaluation). Thus, it remains unclear whether the OFC represents identity, sensory quality, or 12 

the subjective value of the expected outcome. 13 

In this study, I sought to answer this question using a non-selective devaluation 14 

paradigm with many reward types. In our functional magnetic resonance imaging (fMRI) 15 

experiment, participants rated the palatability of 128 various food photos before and after meals 16 

on two experimental days. By employing representational similarity analysis (Kriegeskorte, 17 

2008), I investigated where in the brain the representations of identical objects were maintained 18 

through pairs of the same or different metabolic states. If the OFC represents object identity, 19 

the representations of identical objects would be invariant across different metabolic states, 20 

whereas if the OFC represents the inferred sensory qualities but not identity, those 21 

representations would be maintained only in the same metabolic state. Furthermore, I 22 

investigated whether such representations could be explained by differences in the subjective 23 

value of the food. These procedures allowed me to specify whether the OFC represents identity, 24 

sensory qualities, or the subjective value of the expected outcomes in the devaluation paradigm. 25 
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 1 

2. Materials and Methods 2 

2.1. Participants 3 

Twenty-four right-handed, healthy, non-obese male participants [mean ± standard error of 4 

mean (SEM) age 27.4 ± 5.9 years, range 25–39; body mass index (BMI) 22.1 ± 2.9 kg/m², 5 

range 17.0–27.6] with no history of neurological or psychiatric problems were recruited from 6 

the local area via email. This study was approved by the ethical committee of the National 7 

Institute for Physiological Sciences of Japan. All participants provided written informed 8 

consent. No statistical test was performed to determine the sample size a priori. The sample 9 

size that I chose is similar to those used in previous studies (Chikazoe et al., 2014; Haxby et 10 

al., 2011; McNamee et al., 2013). 11 

 12 

2.2. Experimental design 13 

 14 

2.2.1. Experimental procedure 15 

The same experimental procedure was repeated twice in two days; the two experiments were 16 

spaced 7–41 days apart (17.0 ± 9.0, mean ± standard deviation [SD]). Participants were 17 

instructed to abstain from the intake of any food and caffeinated or alcoholic beverages after 8 18 

pm on the day preceding each experiment. The schedule on the experiment day was controlled 19 
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in the same manner. Between the first and second fMRI sessions, the participants ate the 1 

standard Japanese lunch box (776 kcal), which contained rice seasoning, fried egg, grilled 2 

salmon, simmered vegetables, meatballs, fried tofu fritter, and simmered black bean. If they 3 

were not satiated, they could eat as much of the three types of snacks (chocolate cookie, salt 4 

cracker, and rice cracker) as they wished. Total calorie consumption was 802.2 ± 64.8 (mean ± 5 

SD). 6 

 7 

2.2.2. Visual stimuli 8 

I collected 128 food photos from the Internet. Half of the images depicted the main dishes 9 

(mainly salty and savory), and the other half depicted desserts (mainly sweets). The 10 

descriptions are provided in the Supplementary Table. 1. No food items in these photos were 11 

the same as those that the participants actually ate in the experiment. Every photo was resized 12 

to 600 × 400 pixels. Each food type photo set was reordered according to the average of the 13 

luminance values of all the pixels, and the luminance values in all pixels of each dessert photo 14 

were controlled by matching their average with that of the main dish photo in the same 15 

luminance rank. To generate control stimuli, the pixels in each food image were reordered, 16 

resulting in 128 scrambled images. Sixty-four control images were constructed from the 17 

average image of the scrambled images of different food types with the same luminance rank. 18 

 19 
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2.3. fMRI task 1 

The same fMRI experiments were conducted before and after a meal, and the experiments were 2 

repeated on day 2. Thus, the participants completed four fMRI sessions. In an fMRI session, 3 

128 food photos, 64 scrambled images, and 64 resting images (white cross in the center of a 4 

black background) were presented through four runs. The order of the 256 stimuli was fixed 5 

across all the fMRI sessions. While participants were asked to rate the palatability of the food 6 

using a ten-point scale during the presentation of the food image, they were asked to rate the 7 

brightness of each image during the presentation of the scrambled image (1=not at all; 10=most 8 

ever). Each stimulus without a resting image was presented for 2,900 ms, during which 9 

participants considered the rating on a ten-point scale. This was followed by the presentation 10 

of a fixation image (red cross in the center of a black background) for 1,100 ms, during which 11 

participants verbally reported their rating. These ratings were recorded manually by the 12 

experimenter, who was listening via an audio system connected to a microphone near the 13 

participant’s mouth. During the presentation of the resting image for 4,000 ms, the participants 14 

were given a break (Fig. 1A). 15 
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 1 

 2 

Fig. 1. Experimental task, analytical procedures, and data structure 3 

(A) fMRI task procedure. Twenty-four healthy male adults completed four fMRI sessions in 2 4 

days. Before and after the meal, the same fMRI experiments were conducted, and this was 5 

repeated on day 2. A total of 128 food photos were presented during the fMRI sessions. 6 
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Participants were instructed to determine their rating for palatability of the food using a 10-1 

point scale during the presentation of each photo. This was followed by fixation, during which 2 

the participants reported their rating verbally. (B) Analytical procedures to generate the 3 

activation map in each trial. BOLD signal in each voxel was extracted from the preprocessed 4 

fMRI data. The presentation period of every food stimulus was modeled in every experimental 5 

session as well as regressors of no interest. To estimate the precise regression coefficient 6 

weights in adjacent trials, I adopted a ridge regression method. Totally, 128 (food photos) × 4 7 

(experimental sessions) activation maps were acquired for each participant. (C) Schematic 8 

illustration of the session pair structure. To conduct the representational similarity analysis, I 9 

first constructed a representational similarity matrix on a trial-by-trial basis. The 4 × 4 matrix 10 

indicates the combinations of experimental sessions (due to redundancy, only the upper triangle 11 

is shown). Each element represents an experimental session pair. Each color surrounded by a 12 

square or upper triangle represents a 128 × 128 representational similarity matrix (RSM) for 13 

each session pair. Because there were four experimental sessions in total, I analyzed 10 session 14 

pairs, including four within-session pairs (shown in blue) and six cross-session pairs (shown in 15 

red and orange). Moreover, cross-session pairs could be divided into the same metabolic state 16 

pairs (shown in red) and different metabolic state pairs (shown in orange). (D) Schematic 17 

illustration of the searchlight analysis. Representational similarity matrix (RSM) was 18 

constructed by computing the correlation coefficient between the neural activation patterns of 19 
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each trial pair in a 5 mm radius sphere searchlight, in the whole brain. 1 

 2 

2.4. Imaging parameter 3 

MR images were collected using a 3.0T-fMRI system (Verio; Siemens Erlangen, Germany) 4 

with a 32-element phased-array head coil. T2*-weighted gradient echo-planar imaging (EPI) 5 

was used to obtain functional images. The sequence was as follows: repetition time (TR) = 6 

2000 ms, echo time (TE) = 30 ms, TA = 900 ms, field of view = 192 mm, 60 slices with isotropic 7 

3-mm voxels, multiband EPI: multiband factor = 3. For anatomical imaging, a T1-weighted 8 

three-dimensional (3D) magnetization-prepared rapid-acquisition gradient echo (MP-RAGE) 9 

sequence was employed (TR = 1800 ms; TE = 1.98 ms; flip angle = 9°; field of view = 256 10 

mm; and voxel dimensions = 1.0 × 1.0 × 1.0 mm). 11 

 12 

2.5. Data analysis 13 

 14 

2.5.1. Behavioral analysis  15 

The experiment consisted of four sessions: day 1 hungry, day 1 satiated, day 2 hungry, and day 16 

2 satiated. I conducted two-way repeated-measures analysis of variance (ANOVA) on the 17 

palatability of the food by day (days 1 and 2) and metabolic state (hungry and satiated) as 18 

factors, using SPSS 23 (See Supplementary Results and Supplementary Fig. 1). All ANOVAs 19 
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in this study were performed by using SPSS23 including Supplementary results. Palatability 1 

was used as a metric for the subjective value of food in this study. The palatability rating scores 2 

were further analyzed separately for the main dishes and desserts, as shown in the 3 

Supplementary Results and Supplementary Fig. 2. Furthermore, using the generalized linear 4 

model, I investigated whether the amount of snack consumption during the meals affected the 5 

palatability after the meals. The results of this analysis are also reported in Supplementary 6 

Results. 7 

 8 

2.5.2. fMRI data preprocessing for the representational similarity analysis 9 

Standard image preprocessing was performed using the Statistical Parametric Mapping 10 

(SPM12) package in MATLAB (R2014a). The functional images were realigned to correct for 11 

head motion. Each participant’s T1-weighted image was co-registered with the mean image of 12 

all functional images for each participant. Accordingly, all functional images were processed 13 

by segmentation and normalization to the MNI-152 space using the unified segmentation-14 

normalization tool in SPM12. To obtain precise voxels in the gray and white matter of each 15 

participant, the first EPI volume in the first run of day 1 was segmented into gray and white 16 

matter masks using the tissue probability map of SPM12. To construct a representational 17 

similarity matrix (RSM) that was associated with the identical objects, neural activations were 18 

estimated on a trial-by-trial basis. To estimate the brain activity evoked at each trial by 19 
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regression, the response and explanatory variables were computed as follows: I extracted the 1 

BOLD signal time series for each voxel. Nuisance variables (including six head motion 2 

components encoding the x, y, and z directions and pitch, roll, and yaw for each run) and the 3 

dummy variables encoding each run, were regressed out from the data. The residual in this 4 

regression was high-pass filtered at 1/128 Hz and then used as a response variable in each 5 

voxel. To construct a design matrix for the explanatory variables, each presentation period of 6 

128 food and 64 scrambled images was separately modeled for each stimulus, and the verbal 7 

reporting period was modeled as a regressor of no interest. The design matrix, which was high-8 

pass filtered at 1/128 Hz and whitened, was used as the explanatory variable. By applying the 9 

ridge regression with the empirically determined ridge parameter (see Supplementary Methods 10 

and Results for details), the brain activity evoked by each food photo stimulus was estimated 11 

on a trial-by-trial basis, resulting in 128 × 4 = 512 regression coefficients (see Fig. 1B). Finally, 12 

these coefficients were transformed to t-values as estimates of the neural activity. 13 

 14 

2.5.3. Representational similarity analysis for identical objects and metabolic states 15 

Because it is difficult to directly model the effects of object specificity, metabolic states, values, 16 

and their interactions on neural responses, I employed representational similarity analysis, a 17 

method for uncovering representational properties underlying multivariate data (Kriegeskorte, 18 

2008). This method is a type of pattern analysis that compares the neural and model the RSMs. 19 
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Rather than directly modeling the relationships between psychological/physiological factors 1 

and neural responses, this method compares the representations at the similarity matrices level. 2 

By establishing a correspondence between the relationships among the stimuli and their 3 

representations, a higher-level functional perspective can be obtained. All data processing and 4 

analysis of the multivariate analysis in this study were performed using MATLAB (R2014a), 5 

except for the statistical tests and multiple comparisons in the group analysis of the whole brain. 6 

Our first aim in this study was to investigate which brain areas are associated with the 7 

representations of identical objects and whether these representations are affected by metabolic 8 

state changes. A schematic explanation of this analysis is shown in Supplementary Fig. 5. For 9 

each session pair (e.g., day 1 hungry and day 2 satiated), I estimated the neural representational 10 

similarity on a trial-by-trial basis, resulting in a 128 × 128 RSM. Because there were four 11 

experimental sessions in total, six cross-session RSMs (i.e., 4 × 3 /2 = 6) and four within-12 

session RSMs were computed (Fig. 1C). To examine how metabolic states affected neural 13 

representations, cross-session RSMs were divided into pairs of same and four different 14 

metabolic states (Fig. 1C). Following the basic scheme of representational similarity analysis, 15 

I estimated how well the model RSM (e.g., the identity pair model) explained the neural RSM 16 

by comparing two matrices (Kriegeskorte, 2008). Prior to the construction of neural RSMs, to 17 

standardize the spatial pattern of activity, 512 (128 × 4) estimates of the neural activity were 18 

de-meaned for each voxel. For the computation of the neural RSMs, only voxels within the 19 
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grey matter mask were used. Using searchlight analysis (Kriegeskorte et al., 2006), correlation 1 

coefficients of activation patterns for each trial combination (128 × 128) were calculated in a 2 

spherical searchlight (radius = 5 mm), yielding the neural RSM for each session pair (Fig. 1D). 3 

Additionally, voxels in the white matter mask were used to compute the noise RSMs from a 4 

spherical searchlight (radius = 5 mm) for each session pair. Then, these noise RSMs were 5 

averaged across white matter voxels and z-scored for each session pair. After regressing out 6 

the white matter noise component, neural RSMs were converted to vectors and rank-ordered 7 

(Supplementary Fig. 5); as a linear relationship between the two RSMs could not be assumed 8 

(Kriegeskorte, 2008). To explore the brain regions associated with the representations of 9 

identical objects, percentiles of the elements in the neural RSM were averaged separately for 10 

identical and non-identical object corresponding elements in the identical object model RSM 11 

(Supplementary Fig. 5). Because I were interested in the effect of the metabolic state change, I 12 

separately averaged these metrics across pairs of same (two session pairs, Fig. 1C: red) and 13 

different metabolic states (four session pairs, Fig. 1C: orange). Using the procedures described 14 

above, I obtained four representational similarity metrics, categorized as identical object pair 15 

in the same metabolic state (ISS), non-identical object pair in the same metabolic state (NSS), 16 

identical object pair in the different metabolic state (IDS) and non-identical object pair in the 17 

different metabolic state (NDS) in each gray matter voxel. To investigate the identical object 18 

specificity effect in the same and different metabolic state pairs, I calculated [ISS – NSS] and 19 
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[IDS – NDS], and then the data were spatially smoothed (full width half maximum = 8 mm) 1 

for each participant. In this study, I adopted the same full-width half maximum value for 2 

smoothing in both univariate and multivariate analyses. Because I focused on representations 3 

in the cerebral cortices, I masked the information map with a cerebral cortex mask created 4 

using the SUIT anatomy toolbox (http://www.diedrichsenlab.org/imaging/propatlas.htm). 5 

Under the null hypothesis of no difference in the representational similarities between identical 6 

and non-identical object pairs, the smoothed data were subjected to a non-parametric one-7 

sample t-test across participants, using FSL's Randomize function (v2.1, 5,000 permutations). 8 

The threshold-free cluster enhancement (TFCE) correction for multiple comparisons (Smith & 9 

Nichols, 2009) was used, and the statistical threshold was set at p < 0.05, family wise error 10 

(FWE) (Fig. 2A). All statistical tests and multiple comparisons for group analysis of the whole 11 

brain in this study, including those reported in Supplementary Results, were performed using 12 

the same procedures as described above. To visualize the representations of identical objects 13 

and the effect of metabolic states on them, I conducted a region of interest (ROI) analysis. 14 

Representational similarity metrics were spatially smoothed separately for each category, as 15 

described above. I selected the primary visual area (V1) and fusiform gyrus (FG) as the ROIs 16 

in addition to the OFC to investigate identical object representations in detail. As previous 17 

studies reported that V1 encoded concrete visual features such as shape or color of the objects 18 

(Grill-Spector, K., & Malach, R., 2004) and FG encoded semantic categories (Mummery, C. J. 19 



17 

 

et al., 1998; McCandliss, B. D. et al., 2003), identical object representations in these areas were 1 

assumed to be independent of the metabolic state change. I generated three anatomically 2 

defined ROIs (V1: primary visual area, FG: fusiform gyrus, l OFC: lateral orbitofrontal cortex) 3 

based on the standard automated anatomical labeling (automated anatomical labeling; AAL) 4 

template (Tzourio-Mazoyer et al., 2002) within the gray matter voxels of at least 12 participants. 5 

The anatomical labels used for defining the three ROIs were as follows: V1: calcarine gyrus, 6 

43, 44; FG: fusiform gyrus, 55, 56; l OFC: superior orbitofrontal cortex 5, 6; middle 7 

orbitofrontal cortex 9, 10; and inferior orbitofrontal cortex 15, 16. In ROI analysis, it is well-8 

known that the use of the same dataset for both selection of the ROI and further statistical 9 

analyses entails invalid statistical inferences (i.e., double-dipping problem  (Kriegeskorte et al., 10 

2009)). To avoid this problem, I applied a leave-one-participant-out procedure (Chikazoe et al., 11 

2019). After excluding each of the 24 participants, I conducted non-parametric one-sample t-12 

tests on the identical object specificity effect in the same metabolic state pair with the remaining 13 

23 participants, resulting in 24 t-value maps. I then identified the peak voxel in the three ROIs 14 

for each map and extracted four representational similarity metrics (i.e., ISS, NSS, IDS, and 15 

NDS) in the averaged data from a spherical searchlight (radius = 5 mm) region, around the 16 

peak from the left-out participant’s data (Fig. 2B). I conducted paired t-tests on the identical 17 

object specificity effect in the same and different metabolic states and the difference between 18 

these effects in the data. All t-tests on behavioral, physiological, and ROI data in this study 19 
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were two-sided and Bonferroni corrected, including those in Supplementary Results. A 1 

Kolmogorov-Smirnov test was performed prior to the t-test to confirm the normal distribution 2 

of the data. 3 

 4 

2.5.4. Univariate analysis for value representations 5 

There was a difference in value distance distribution between identical and non-identical object 6 

pairs in some experimental session pair RSMs as shown in Fig. 3A (Because the term “distance” 7 

is used to denote a dissimilarity measure in the context of representational similarity analysis 8 

(Kriegeskorte, 2008), hereafter I refer to the absolute difference of subjective values between 9 

each pair of stimuli as the value distance). Indeed, two-way repeated-measures ANOVA on the 10 

value distance with object specificity and metabolic state as factors revealed that the main 11 

effects of both factors were significant (object specificity: F1,23 = 59.27, p < 0.001; metabolic 12 

state: F1,23 = 46.35, p < 0.001), as was their interaction (F1,23 = 45.03, p < 0.001) (Fig. 3B). The 13 

post hoc simple t-tests revealed significant object specificity effects in both the same and 14 

different metabolic state pairs (same state: t23 = 9.06, p < 0.001; different state: t23 = 2.88, p = 15 

0.025) (Fig. 3B). These results indicate the possibility that the value distance distribution was 16 

correlated with the object specificity effect on neural representations in the OFC. To explore 17 

this possibility, I first investigated whether the OFC represented subjective values in both the 18 

univariate and multivariate analyses. First, in the univariate parametric modulation analysis, all 19 
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data processing and analysis were performed using the SPM12 package in MATLAB (R2014a). 1 

Value representations were analyzed separately in the hungry state, in the satiated state, and in 2 

all sessions. Functional images, which were processed by the segmentation and normalization 3 

described above, were spatially smoothed. In individual analysis, a design matrix was 4 

constructed from the combinations of the 4×4 runs (run number × session) in all sessions, and 5 

4×2 runs in each state along the time series for each participant. I fitted a general linear model 6 

(GLM) to the fMRI data for each participant. Neural activity during each condition was 7 

modeled with box-car functions convolved with the canonical hemodynamic response function. 8 

A design matrix included task-related regressors (the main dish rating in each state, the dessert 9 

rating in each state, and verbal response in the fixation period), and one regressor for parametric 10 

modulation of the demeaned subjective values. The time series for each voxel was high-pass 11 

filtered at 1/128 Hz. Assuming a first-order autoregressive model, the serial autocorrelation 12 

was estimated from the pooled active voxels with the restricted maximum likelihood procedure 13 

and was used to whiten the data. Motion-related artifacts were minimized by incorporating six 14 

parameters (three displacements and three rotations) from the rigid-body realignment stage into 15 

each model. Because each participant was involved in two separate days experiments, the two 16 

parameter estimates for the subjective values were averaged for each participant. These 17 

averaged parameter estimates were subjected to a non-parametric one-sample t-test. The 18 

statistical threshold was set at p < 0.05 and FWE-corrected. The table reporting the clusters and 19 
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their information was constructed using FSL’s cluster function (all sessions: Fig. 3C, whole 1 

brain map; Supplementary Fig. 7A, cluster list; Supplementary Table 2. Hungry state: whole 2 

brain map; Supplementary Fig. 8A, cluster list; Supplementary Table 3. Satiated state: whole 3 

brain map; Supplementary Fig. 9A, cluster list; Supplementary Table 4). 4 

 5 

2.5.5. Representational similarity analysis for value representations 6 

I also investigated whether the OFC represented the subjective values using representational 7 

similarity analysis. A schematic explanation of this analysis is shown in Supplementary Fig. 6. 8 

To use independent data from the analysis above, I used the data in the within-session pairs 9 

only (Fig. 1C, blue), which did not include data used in the analysis of identical objects. I used 10 

data from the upper triangle of the RSM only because the diagonal element in the within-11 

session RSM was always one and the matrix was symmetrical about the diagonal. Thus, these 12 

data do not contain information about identical objects. I examined how well the value distance 13 

model explained the neural representational dissimilarity. As in the identical object analysis, 14 

correlation coefficients of activation patterns in each trial combination were calculated in a 15 

spherical searchlight (radius = 5 mm) for each session pair in each cerebral cortex voxel. I 16 

constructed a neural representational dissimilarity matrix (RDM) whose element was one 17 

minus the corresponding correlation coefficient. Then, the elements in the neural RDMs were 18 

rank-ordered. As in the identical object, white matter noise signals were regressed out from the 19 
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neural RDMs. On the other hand, I computed a value distance model matrix in which elements 1 

encoded absolute values of differences between subjective values corresponding to each trial 2 

pair. After conversion to a vector, the model data were z-scored. In a given searchlight, the 3 

neural RDM was converted to a vector and rank-ordered. To explore the brain regions 4 

associated with value representations, the correlation coefficient between a vector from the 5 

percentile of the neural RDM and a vector from the model RDM was calculated in a given 6 

searchlight. The relatedness of these RDMs was examined by 1,000 random permutations of 7 

the trial pairs (see Supplementary Fig. 6). To investigate value representations in all sessions, 8 

only in the hungry state, and only in the satiated state, I averaged the RDM relatedness metrics 9 

separately across all four within-session pairs for all sessions in the hungry and satiated states, 10 

and across two within-session pairs in hungry–hungry state pairs (hungry state) and satiated–11 

satiated state pairs (satiated state) (Fig 1C, blue). All the data were spatially smoothed for each 12 

participant. I masked the information map using the same mask used in the identical object 13 

analysis. Under the null hypothesis of no relatedness between the value distance model RDM 14 

and neural RDM, the bias maps calculated by the permutation test were subjected to a non-15 

parametric one-sample t-test across participants. The statistical threshold was set at p < 0.05 16 

and FWE-corrected. The table reporting the clusters and their information was constructed 17 

using FSL’s cluster function (all sessions: Fig. 3D, whole brain map; Supplementary Fig. 7B, 18 

cluster list; Supplementary Table 5. Hungry state: whole brain map; Supplementary Fig. 8B, 19 
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cluster list; Supplementary Table 6. Satiated state: whole brain map; Supplementary Fig. 9B, 1 

cluster list; Supplementary Table 7). 2 

  3 

2.5.6. Value distribution adjustment 4 

Because differences in value distance are accompanied by identity differences, to rigorously 5 

estimate the identical object specificity effect, the value distance must be controlled before 6 

being subjected to statistical tests. Although several studies have applied the representational 7 

dissimilarity decomposition technique to dissociate multiple representations using a GLM 8 

(Alink et al., 2015; Chikazoe et al., 2014), I did not adopt this method because associations 9 

between object specificity and value distance (see Fig. 3B) might cause a multicollinearity 10 

problem. Alternatively, I developed a method in which the value distance distribution was 11 

adjusted between pairs of identical and non-identical objects. This novel method was inspired 12 

by the basic idea of age adjustment, which has been broadly used in the fields of epidemiology 13 

and public health (Neison, 1844; Curtin & Klein, 1995). In the age adjustment technique, the 14 

difference in age distributions between two different aged populations, is controlled for. For 15 

example, if the specific population with cancer has a higher mortality rate than the healthy 16 

population, it is possible that this effect is confounded by the age distribution difference 17 

between the two populations since the population with cancer is older than the healthy 18 

population. In this technique, a weighting approach was adopted to control for this confounding 19 
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effect, as described below. In the population with cancer, younger groups are weighted more 1 

heavily, and older groups are weighted less heavily to match their age distribution with that of 2 

the healthy population. In detail, the mortality rate in the population with cancer is multiplied 3 

by the proportion of the age distribution in the healthy population separately for each age 4 

distribution bin and then summed across the age distribution. This “age-adjusted” mortality 5 

rate allows an adequate comparison between two different aged populations. In particular, I 6 

employed a weighting approach in age adjustment that controls for the difference in age 7 

distributions between two populations in order to adjust for the difference in the value distance 8 

distributions between identical and non-identical pairs in our data. First, the proportions of trial 9 

pairs of identical and non-identical object pairs were separately calculated for each value 10 

distance (see Fig. 4A, right column). To control for the effect of value distance, I adjusted for 11 

the difference in the value distance distribution between identical and non-identical object pairs 12 

by replacing the value distance distribution of the non-identical object pair with that of the 13 

identical object pair. On the other hand, after regressing out the white matter noise component 14 

as described above for the identical object analysis, the percentile of the rank of the elements 15 

of the neural RSM were averaged as a neural representational similarity metric, separately, for 16 

each value distance bin and for identical and non-identical pairs. Furthermore, I calculated the 17 

product between the proportion of trial pairs and the neural representational similarity metric 18 

for each value distance bin. The products were summed across all value distances, resulting in 19 
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a summary statistic of representational similarity of identical and non-identical object pairs. 1 

These procedures were similarly repeated, once more, except that the value distance 2 

distribution of the identical object pair was replaced by that of the non-identical object pair. 3 

The two summary metrics from the different distribution adjustment directions were averaged. 4 

In this way, I obtained neural similarity metrics while controlling for the value effect in 5 

identical and non-identical object pairs in each session pair in each cerebral voxel. Because I 6 

was interested in the effect of the metabolic state change, I separately averaged these metrics 7 

across pairs of the same metabolic states (two session pairs, Fig 1C: red) and different 8 

metabolic states (four session pairs, Fig 1C: orange). Using the procedures described above, I 9 

obtained four representational similarity metrics categorized into ISS, NSS, IDS, and NDS. To 10 

estimate the difference in identical object specificity effects between the same and different 11 

metabolic state pairs, I calculated [(ISS – NSS) – (IDS – NDS)] metrics in each gray matter 12 

voxel. After these similarity metrics were spatially smoothed for each participant, they were 13 

subjected to a one-sample t-test. The statistical threshold was set at p < 0.05 and FWE-corrected. 14 

The table reporting the clusters and their information was constructed using FSL’s cluster 15 

function (Fig 4B, whole brain map; Supplementary Fig 10, cluster list; Supplementary Table 16 

8). To visualize representations of identical objects and the effect of metabolic states on them, 17 

I conducted an ROI analysis. Each representational similarity metric in the four categories 18 

described above was spatially smoothed. Using a leave-one-participant-out procedure and the 19 
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l OFC ROI as in the identical object analysis, I extracted four representational similarity metrics 1 

(i.e., ISS, NSS, IDS, and NDS) from the averaged data from a spherical searchlight (radius = 2 

5 mm) region around the peak in each participant (Fig 4C). I conducted a paired t-test on 3 

identical object specificity effects in the same and different states and the difference between 4 

these effects in the data. A Kolmogorov-Smirnov test was performed prior to the t-test to 5 

confirm the normal distribution of the data. To visualize the value representations in this 6 

searchlight region, I computed the neural representational similarities in relation to the value 7 

distance. In all within-session pair data (Fig 1C, blue), I extracted neural RDM elements based 8 

on value distance (0, 1, 2, > 2) without value distribution adjustment in this region, and then 9 

averaged them in each bin. All the data were spatially smoothed (Fig. 4D). I selected these bins 10 

as the larger value distance was relatively rare, and thus, the larger value distance data were 11 

derived from a few participants. These RDM elements in all value distance bins (from 0 to 9) 12 

are plotted in Supplementary Fig. 12. Furthermore, I investigated whether the food type of the 13 

visual stimuli affected the representations of object specificity in the OFC. The details of the 14 

analyses are reported in the Supplementary Results. 15 

 16 

2.5.7. Nasal oxytocin administration 17 

All data in this study were derived from a project aimed at investigating the effect of nasal 18 

oxytocin on neural responses to subjective value changes. Participants took nasal oxytocin on 19 
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an experimental day and placebo on the other day, in a randomized crossover, double-blind 1 

manner. Previous studies have demonstrated that nasal oxytocin administration alters food 2 

intake in healthy male adults (Lawson et al., 2015; Ott et al., 2013). Before the experiment 3 

began, six 0.1-mL puffs (three per nostril) of intranasal oxytocin (Syntocinon) or placebo and 4 

vehicle were administered intranasally, amounting to a total dose of 24 IU oxytocin (0.6 mL). 5 

Moreover, the psychological and physiological effects of the drug were examined. Before and 6 

after scanning, participants completed 10-cm visual analogue scales (VAS) of appetite 7 

including the question: ‘How hungry do you feel right now?’ (Supplementary Fig. 13). Thus, 8 

participants completed the VAS rating four times on each experimental day. Before and after a 9 

meal, the experimenter used a lancet to obtain a drop of blood from the side of the finger and 10 

measured the plasma glucose level using a glucometer (Supplementary Fig. 14). Because I did 11 

not observe any effects of oxytocin administration in behavioral, physiological, and neural data 12 

analysis, I analyzed the data assuming that the same experimental procedure was repeated on 13 

both days. The results of these analyses are provided in Supplementary Results. 14 

 15 

 16 

3. Results  17 

 18 

3.1.Behavioral Results 19 
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Twenty-four healthy male adults completed four fMRI sessions in two days before and after a 1 

meal with a total of 128 food photos presented during the fMRI sessions (Supplementary Table 2 

1). Participants were instructed to rate the palatability of the food using a 10-point scale during 3 

the presentation of the photo in each trial (Fig. 1A). Palatability was used as a metric of the 4 

subjective value of food. The rating scores were subjected to a two-way repeated measures 5 

ANOVA with the factors of experimental day (days 1 and 2) and meal (before and after a meal) 6 

(day: F1,23 = 4.06, p = 0.056; meal: F1,23 = 81.37, p < 0.001; day × meal: F1,23 = 2.45, p = 0.13). 7 

Post-hoc simple t-tests revealed that while eating a meal significantly decreased the subjective 8 

value of the food (t23 = 9.02, p = 1.03× 10 -8), the experimental day did not have a significant 9 

effect (t23 = -2.02, p > 0.05). Although having eaten a meal decreased the palatability for all 10 

foods, the experimental day (first or second day) had no effect on palatability (Supplementary 11 

Fig. 1).  12 

 13 

3.2.Representations of identical objects in the OFC is sensitive to metabolic state change 14 

The first aim of this study was to determine which brain region contributed to identical object 15 

representations and its association with the metabolic state change. To investigate the effect of 16 

metabolic state change, the representational similarity metrics of the identical and non-identical 17 

object pairs were averaged separately for pairs of the same metabolic state (two session pairs, 18 

Fig. 1C: red) and different metabolic states (four session pairs, Fig. 1C: orange) (See 19 

Supplementary Fig.5 in detail). To estimate the object specificity effects in pairs from the same 20 

and different metabolic states, the differences in these metrics between identical and non-21 

identical object pairs were subjected to a one-sample t-test for each voxel, separately, in two 22 

metabolic state pairs. I found that identical objects were similarly represented in the lateral 23 

OFC only in pairs of the same metabolic state, whereas identical objects were similarly 24 

represented in the V1 and FG in pairs of both the same and different metabolic states (Fig. 2A). 25 
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To visualize representations of identical objects and the effect of metabolic states on them, I 1 

conducted an ROI analysis in V1, FG, and lateral OFC. Representational similarity metrics for 2 

the four categories described above are plotted in Fig. 2B. I observed the object specificity 3 

effect in the same metabolic state pair in all three regions (V1: t23 = 12.11, p = 3.68 × 10 -11, 4 

FG: t23 = 14.54, p = 8.76 × 10 -13, l OFC: t23 = 5.10, p = 7.28 × 10 -5) and the object specificity 5 

effect in a different metabolic state pair in V1 and FG, but not in OFC (V1: t23 = 12.45, p = 2.10 6 

× 10 -11, FG: t23 = 12.88, p = 1.07 × 10 -11, l OFC: t23 = - 0.43, p > 0.05). Furthermore, I found 7 

a difference in the object specificity effect across metabolic states only in the OFC (V1: t23 = − 8 

-0.45, p > 0.05, FG: t23 = − 0.99, p > 0.05, l OFC: t23 = 3.34, p = 0.0028). These results 9 

demonstrated that the representations of identical objects in V1 and FG were not affected by 10 

the metabolic states, suggesting that object identity was represented in the primary and higher 11 

visual cortices. On the other hand, representations in the OFC do not reflect pure visual features, 12 

but rather the sensory qualities of the expected outcome, which are adaptively altered, 13 

reflecting changes in the metabolic states. 14 

 15 
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 1 

 2 

Fig. 2. Representations of identical objects in the same and different metabolic state pairs  3 

(A) The brain regions that showed higher similarity for identical objects in comparison to non-4 

identical objects in the same (upper) and different (lower) metabolic state pairs. Color denotes 5 

t value thresholds at p < 0.05 (FWE). N = 24. (B) Neural representational similarity in three 6 

regions of interest: V1, primary visual area; FG, fusiform gyrus; and l OFC, lateral orbitofrontal 7 

cortex. N =24. ISS, identical object pair in the same metabolic state; NSS, non-identical object 8 
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pair in the same metabolic state; IDS, identical object pair in the different metabolic state; NDS, 1 

non-identical object pair in the different metabolic state; n.s. not significant. Boxes represent 2 

the median and 25th/75th percentiles, and whiskers represent the minimum and maximum. ***p 3 

< 0.001; **p < 0.01; Bonferroni-corrected. 4 

 5 

 6 

3.3.State-sensitive representations of identical objects in the OFC were not explained by 7 

a change in subjective value 8 

The results described above suggest that information about identical objects is not uniformly 9 

represented across brain regions; instead, each brain region represents different aspects of 10 

identical objects. Specifically, the representations of identical objects in the OFC are affected 11 

by metabolic state changes. Although identity refers to the physical and/or categorical aspect 12 

of a food item itself, sensory qualities refer to the uniqueness of the perceptual experience 13 

evoked by the item. This implies that a change in the metabolic state alters the inferred sensory 14 

qualities, but not the object identity. Thus, the state-sensitive representations of identical 15 

objects in the OFC, as described above, might refer to inferred sensory qualities other than 16 

object identity. However, considering the fact that previous studies have consistently 17 

demonstrated the involvement of the OFC in subjective value representation (Chikazoe et al., 18 

2014; Gallagher et al., 1999; Gottfried et al., 2003; Kringelbach et al., 2003; Padoa-Schioppa 19 

& Assad, 2006, 2008; Stalnaker et al., 2014; Tremblay & Schultz, 1999), these results may be 20 

explained by a change in the palatability of food, accompanied by a metabolic state change 21 

(Supplementary Fig. 1). Moreover, the object specificity effect on neural representations might 22 

be explained by the difference in the value distance distribution between identical and non-23 

identical object pairs (Fig. 3A). Indeed, the results of the two-way repeated-measures ANOVA 24 
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on the value distance, with object specificity and metabolic state as factors, revealed that the 1 

main effects of both factors were significant (object specificity: F1,23 = 59.27, p < 0.001; 2 

metabolic state: F1,23 = 46.35, p < 0.001), as was their interaction (F1,23 = 45.03, p < 0.001) (Fig. 3 

3B). The post hoc paired t-tests revealed significant object specificity effects in both the same 4 

and different metabolic state pairs (same state: t23 = 9.064, p < 0.001; different state: t23 = 2.88, 5 

p = 0.025) (Fig. 3B). These results indicate that the difference in the value distance distribution 6 

may explain the difference in the neural representational dissimilarities between identical and 7 

non-identical object pairs. To explore this possibility, I first investigated whether the OFC 8 

represented subjective values, in both the univariate and multivariate analyses. In a GLM 9 

approach, parametric modulation analysis revealed that subjective values were coded in 10 

multiple brain regions, including the lateral and medial OFC, superior frontal gyrus, and 11 

parietal lobules (Fig 3C; the whole brain map, see Supplementary Fig. 7A; the cluster list, see 12 

Supplementary Table 2). Next, I conducted a representational similarity analysis of the value 13 

representations. To ensure data independence from the analysis of identical object 14 

representations, I used the data in only the within-session pairs (Fig. 1C; blue). After the 15 

searchlight analysis, the relatedness of the neural and value distance model RDMs was 16 

estimated based on the correlation coefficients between these RDMs (see Supplementary Fig. 17 

6). With the permutation procedure, I computed where the actual correlation fell among the 18 

simulated null distribution of correlations, which was used for the summary statistic. In the 19 

group analysis, under the null hypothesis of no relationship between the neural and model 20 

RDMs, these summary statistics were subjected to a one-sample t-test for each voxel.  21 

 22 

 23 

 24 

 25 

 26 
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 3 

Fig. 3. Value representations in the OFC 4 

(A) Proportion of value distance in identical (red) and non-identical (blue) object pairs in one 5 

representative session pair. Note that the value distance of the identical object pairs is smaller 6 

than that of the non-identical object pairs. Red: identical object pair; blue: non-identical object 7 

pair. (B) Boxplots show the value distance in each identical and non-identical object pairs and 8 

in each pair of the same and different metabolic states. Red: identical object pair; blue: non-9 

identical object pair. ISS, identical object pair in the same metabolic state; NSS, non-identical 10 

object pair in the same metabolic state; IDS, identical object pair in different metabolic state; 11 

NDS, non-identical object pair in different metabolic state. N = 24. Boxes represent the median 12 

and 25th/75th percentiles, and whiskers represent the minimum and maximum. ***p < 0.001; 13 



33 

 

*p < 0.05; Bonferroni-corrected. (C) Univariate analysis revealed that subjective values are 1 

represented in the medial and lateral orbitofrontal cortices (OFCs). The color denotes the t-2 

values thresholds at p < 0.05, corrected (FWE). N = 24. (D) Multivariate analysis revealed that 3 

subjective values are represented in the medial and lateral OFCs. The color denotes the t-values 4 

thresholds at p < 0.05, corrected (FWE). N = 24. 5 

 6 

 7 

I found that subjective values were represented in multiple brain regions, including the lateral 8 

and medial OFC, precuneus, and parietal lobules (Fig 3D; for the whole brain map, see 9 

Supplementary Fig. 7B; for the cluster list, see Supplementary Table 5). To investigate whether 10 

subjective values were similarly represented independent of metabolic states, I conducted 11 

univariate and multivariate analyses separately for the hungry or satiated state. I found value 12 

representations in the OFC in both univariate and multivariate analyses, and in both hungry 13 

and satiated states (univariate analysis in the hungry state: for the whole brain map, see 14 

Supplementary Fig. 8A; for the cluster list, see Supplementary Table 3; univariate analysis in 15 

the satiated state: for the whole brain map, see Supplementary Fig. 9A; for the cluster list, see 16 

Supplementary Table 4; multivariate analysis in the hungry state: for the whole brain map, see 17 

Supplementary Fig. 8B; for the cluster list, see Supplementary Table 6; multivariate analysis 18 

in the satiated state: for the whole brain map, see Supplementary Fig. 9B; for the cluster list, 19 
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see Supplementary Table 7). These results suggest that to rigorously estimate the effect of 1 

identical object specificity, the effect of value distance must be analytically dissociated from 2 

that of the metabolic change, at least in value-related regions such as the OFC. To this end, I 3 

investigated the effect of metabolic states on the representations of identical objects while 4 

controlling for the effect of value distance differences in cross-session pairs. I matched the 5 

distribution of non-identical and identical object pairs, and vice versa. Fig 4A shows the details 6 

of our method; however, to avoid complexity, only one matching direction procedure is shown. 7 

After the adjustment procedure was conducted for each direction, two summed adjusted 8 

representational similarities were averaged. Then, these values in six cross-session pairs were 9 

averaged separately for the same metabolic state pairs (two session pairs, Fig 1C: red) and 10 

different metabolic states (four session pairs, Fig 1C: orange), as in the identical object analysis 11 

in Fig 2. To estimate the interaction of the object specificity and metabolic states, I calculated 12 

the difference of difference of the similarities [ (ISS – NSS) – (IDS – NDS) ] as the summary 13 

metric. In the group analysis, the summary metric was subjected to a one-sample t-test for each 14 

voxel. 15 

 16 

 17 
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 1 

 2 

Fig. 4. Representations of the sensory qualities other than the subjective value in the OFC 3 

(A) Schematic illustration of the distribution adjustment method for controlling for the effect 4 

of value distance. Because the value distance of identical object pairs was smaller than that of 5 

the non-identical pairs (See Fig. 3A, B), representational similarity differences associated with 6 
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identical objects, may just reflect the difference in value distance. To dissociate the effect of 1 

identical objects from that of value distance, I devised a method for controlling for the effect 2 

of value distance difference between identical and non-identical object pairs. This procedure is 3 

explained by a toy example in which the representational similarity difference between 4 

identical (red) and non-identical object pairs (blue) is fully explained by value distance. In 5 

fMRI studies, the summary metric for the effect of interest for each subject is subject to a group 6 

analysis. To calculate the summary metric, representational similarities were averaged in each 7 

identical and non-identical object pairs as shown in Fig 2. This procedure is mathematically 8 

equivalent to the way that averaged representational similarity (top row in the left column) and 9 

trial pair proportion (second row in the left column) are multiplied (third row in the left column) 10 

for each bin, and then summed across bins (bottom row in the left column). Thus, the difference 11 

between identical and non-identical object distributions in each bin (second row in the left 12 

column) might cause an artifactual effect of object specificity (bottom row in the left column). 13 

By contrast, the right column illustrates an analysis procedure that controls for the effect of 14 

value distance by distribution adjustment. I adjusted for the difference in the value distance 15 

distribution by replacing the value distance distribution of the non-identical object pairs with 16 

that of the identical object pairs (second row in the right column). With this procedure, the 17 

representational similarity difference between identical and non-identical object pairs 18 

diminished if the actual representational similarity difference did not exist (bottom row in the 19 

right column). This method provides two distribution adjustment directions: from the identical 20 

object pair distribution to the non-identical one, and vice versa. Hence, I averaged the summary 21 

metrics obtained by these procedures. After the distribution adjustment, I conducted a one-22 

sample t-test on the difference of the object specificity between the same and different 23 

metabolic states. (B) Representational similarity analysis revealed that the left lateral OFC was 24 

associated with the difference of object specificity between the same and different metabolic 25 



37 

 

states. Colors represent the t values thresholds at p < 0.05, corrected (FWE). N = 24. (C) Neural 1 

representational similarity in l OFC. l OFC, lateral orbitofrontal cortex; ISS, identical object 2 

pair in the same metabolic state; NSS, non-identical object pair in the same metabolic state; 3 

IDS, identical object pair in different metabolic state; NDS, non-identical object pair in 4 

different metabolic state. N = 24. Boxes represent the median and 25th /75th percentiles and 5 

whiskers represent the minimum and maximum. *** p < 0.001; * p < 0.05; Bonferroni-6 

corrected. (D) Neural representational similarity in value distance bin in the lateral OFC. N = 7 

24. Boxes represent the median and 25th/75th percentiles and whiskers represent the minimum 8 

and maximum. 9 

 10 

 11 

Even after applying the distribution adjustment, I found a significant difference in 12 

identical object specificity between the same and different metabolic states in the left OFC and 13 

lateral frontal area (Fig 4B; for the whole brain map, see Supplementary Fig. 10; for the cluster 14 

list, see Supplementary Table 8). To visualize the representations of identical objects and the 15 

effect of metabolic states on them under the value distribution control, I conducted ROI 16 

analysis in the lateral OFC (Fig. 4C). I adopted a leave-one-subject-out procedure (Chikazoe 17 

et al., 2019) in this analysis in the same way as in the identical object analyses in Fig. 2B (see 18 

details in Methods). This analysis revealed a significant effect of object specificity in the pairs 19 

of the same metabolic state (t23 = 4.29, p = 5.46 × 10 -4) but not in pairs of different metabolic 20 

states (t23 = -0.55, p > 0.05). Furthermore, there was also a significant difference in object 21 

specificity between the same and different metabolic state pairs (t23 = 2.64, p = 0.015). 22 

Additionally, to confirm that object specificity effects were similar in both hungry–hungry and 23 

satiated–satiated pairs in the same metabolic state, I investigated whether the effect of object 24 

specificity was different between hungry–hungry and satiated–satiated pairs. Because no voxel 25 
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survived in this analysis, I averaged the two metrics in hungry–hungry and satiated–satiated 1 

pairs for the same metabolic state. To visualize the coexistence of value representations and the 2 

interaction between object specificity and metabolic states in this region, I plotted the neural 3 

representational similarity without the value distribution adjustment for each value distance bin 4 

(Fig. 4D). This revealed a monotonic decrease in representational similarity as the value 5 

distance increased, indicating that the same portion of the lateral OFC was associated with the 6 

interaction between object specificity and metabolic states, as well as the value. Additionally, 7 

the results of further analyses of the effect of food type on these object specificity 8 

representations are reported in Supplementary Results and Figures (Supplementary Fig. 11). 9 

These results demonstrate that representations of identical objects in the lateral OFC 10 

were altered by metabolic state changes, which was not explained by the value representations. 11 

These results suggest that the lateral OFC integrates the visual features and infers the gustatory 12 

features, reflecting an inferred gustatory experience. I conclude that sensory qualities and 13 

subjective values of the expected outcomes co-exist in the lateral OFC. 14 

 15 

4. Discussion and Conclusions 16 

 17 

In this study, I explored the neural representation of object specificity and its relationship with 18 

the metabolic states, as well as the subjective values. During fMRI scanning, participants rated 19 

food palatability based on gustatory information inferred from the food photos. By applying 20 

representational similarity analysis, I revealed that object identity was represented in the 21 

primary visual cortex and FG. Although neuroimaging studies have rarely reported the 22 

involvement of the OFC in identity representations, I found that representations of identical 23 

objects were constantly maintained in the lateral OFC only under the same metabolic 24 
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conditions. Interestingly, representations of identical objects were altered when the metabolic 1 

state changed. I also found that the OFC represents the subjective value of food objects, which 2 

is consistent with previous studies (Chikazoe et al, 2014; Gallagher et al, 1999; Gottfried, 3 

O’Doherty, & Dolan, 2003; Kringelbach et al, 2003; Padoa-Schioppa & Assad, 2006, 2008; 4 

Stalnaker et al., 2014; Tremblay & Schultz, 1999). Importantly, the altered representation of 5 

identical objects due to a change in the metabolic state was not explained by the subjective 6 

value, which indicates the existence of integrated representations of object-specific information 7 

and metabolic states in addition to value representations in the OFC. These results suggest that 8 

the OFC does not represent pure visual features or object identity, but rather represents 9 

subjective value as well as sensory qualities of the expected outcome, which are adaptively 10 

altered, reflecting a change in the metabolic state. 11 

 12 

4.1.Representations of the identical objects in the OFC 13 

Animal studies have consistently demonstrated that reward identity is represented by the OFC 14 

neurons. For example, rodent electrophysiological studies have indicated that OFC neurons 15 

encode specific features, which constitute the odor identity (Schoenbaum & Eichenbaum, 16 

1995; Stalnaker et al., 2014). Similarly, single-unit recordings in monkeys revealed that OFC 17 

neurons exhibited differential responses to different odors (Cichy et al, 2011) and tastes 18 

(Padoa-Schioppa, 2007). However, the human neuroimaging literature lacks evidence for 19 

identity representations in the OFC, although several studies have revealed that the interaction 20 

of reward and identity might reside in the OFC (Howard et al, 2015; Klein-flügge et al., 2013). 21 

Identity representations are generally assumed to be associated with specific features with 22 

which an animal or human subject can discriminate one stimulus from multiple stimuli (Cichy 23 

et al., 2011; Hung et al, 2005; Kriegeskorte et al, 2007). In this study, food objects could be 24 

identified by visual features, such as the color or shape, as well as categories. Consistent with 25 
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this, representations of identical objects were similarly represented in the visual cortices, 1 

including V1 and the FG (Fig. 2). Furthermore, these representations were stable across 2 

different metabolic states, which is a requisite characteristic for “object identity’ (DiCarlo et 3 

al, 2012). By contrast, representations of identical objects in the OFC were sensitive to 4 

metabolic state changes (Fig. 2). This indicates that the OFC does not represent pure visual 5 

features, but instead represents inferred sensory qualities that are adaptively altered, reflecting 6 

changes in the metabolic states. These results suggest that the OFC appears to represent reward 7 

identity, depending on the experimental setting; however, our results clearly demonstrate that 8 

the OFC does not represent mere identity, but rather represents inferred sensory qualities as 9 

well as value. 10 

 11 

4.2.Value representations of the food in the OFC 12 

In the present study, I demonstrated that the lateral OFC was associated with the interaction 13 

between object specificity and metabolic states (Fig. 4B and 4C). This interaction was evident 14 

even after adjusting for the difference in palatability distribution between identical and non-15 

identical object pairs. Considering that palatability is just one type of subjective value; this 16 

interaction effect may reflect other aspects of value beyond palatability. For example, several 17 

human neuroimaging studies have demonstrated that the OFC represents the subjective value 18 

of different types of stimuli, such as monetary, erotic, and social rewards (Levy and Glimcher, 19 

2011, 2012; Sescousse et al., 2010). This raises the possibility that the lateral OFC may be 20 

involved in representing other value components such as retail value, or entirely different 21 

cognitive processes (e.g., less/more attention paid to food stimulus in the hungry state). 22 

However, an objective value such as retail value cannot explain this interaction, as the objective 23 

value is not affected by internal metabolic states. Furthermore, the task to be completed during 24 
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the fMRI scanning is the palatability ratings of food photos; thus, it is unlikely that erotic or 1 

social value is represented. Cognitive components, such as attention, cannot explain the 2 

interaction effect, as attention will be similarly recruited for identical and non-identical object 3 

pairs. Although I cannot exclude the possibility that the interaction effect in the lateral OFC 4 

may reflect a type of value that was not reported but represented, the current result suggests 5 

that the lateral OFC is associated with object representations that are affected by the metabolic 6 

states. 7 

 8 

4.3.Relationship with cognitive map theory in the OFC 9 

Recently, the cognitive map theory was revisited in order to interpret the complex roles of the 10 

OFC (Behrens et al., 2018; DiCarlo et al., 2012; Wikenheiser & Schoenbaum, 2016; Wilson et 11 

al, 2014). In 1948, that animals construct map-like representations of causal associations, 12 

posited by Tolman, was named the cognitive map (Tolman, 1948). In this map, the objects 13 

represent not only the physical properties but also their causal outcomes, which must be 14 

inferred rather than directly observed. Such abstract representations enable the derivation of 15 

novel means of achieving the outcomes. In this study, participants were asked to infer the 16 

palatability of food from a photo. I revealed that representations of identical objects in the OFC 17 

were constantly maintained only when the metabolic states were matched. This result is in line 18 

with the cognitive map theory. It has been posited that the cognitive map encodes rich 19 

representations of outcomes that are associated with internal/external states (Wikenheiser & 20 

Schoenbaum, 2016; Wilson et al., 2014). Although such representations are distributed in 21 

multiple brain regions besides the OFC (Wikenheiser & Schoenbaum, 2016), recent studies 22 

have indicated that the OFC encodes integrated representations of all relevant internal and 23 

external stimuli or features that define a particular situation in the world (Bradfield et al, 2015; 24 

Schuck et al, 2016, Wimmer & Büchel, 2019). Consistent with this, our results revealed such 25 
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integrated representations in highly cognitive areas, including the lateral orbitofrontal and 1 

prefrontal cortices (Fig 4B; for the whole brain map, see Supplementary Fig. 10; for the cluster 2 

list, see Supplementary Table 8), suggesting that representations in these regions may constitute 3 

a cognitive map. Assuming that a cognitive map may represent all possible combinations for 4 

specific objects in specific conditions, in such a map, even the same food objects can be placed 5 

distantly, if the metabolic states are different. Alternatively, changes in the metabolic state may 6 

alter the cognitive map. In this case, the same food objects in different states may be represented 7 

in an incomparable manner. In either case, the representations of the same food objects in the 8 

different metabolic states would be dissimilar, whereas those in the same metabolic states 9 

would be similar (Fig. 4B and 4C). 10 

 11 

4.4.The OFC as the gustatory cortex 12 

The gustatory pathway is presumed to be similar in humans and nonhuman primates. Gustatory 13 

information is conveyed from taste receptors to the ventral posterior medial nucleus of the 14 

thalamus (Beckstead et al, 1980). Although the primary projection terminates in the anterior 15 

insula and frontal operculum, it is thought that the secondary or tertiary projections terminate 16 

in the OFC (Petrides, M. & Pandya, D.N., 1994). Consistent with this, monkey 17 

electrophysiology and human neuroimaging studies have demonstrated the involvement of the 18 

OFC in gustatory processing (Padoa-Schioppa, 2007; Rolls & Baylis, 1994; Veldhuizen et al., 19 

2011). Based on this evidence, the OFC is thought to play an important role in gustatory 20 

processing (Small et al., 2007). In this study, I revealed that representations of identical objects 21 

in the OFC were altered by a change in the metabolic state. Considering that even the same 22 

food may taste differently under different metabolic states, this interaction effect in the OFC 23 

represents gustatory experiences inferred from the food photo. Although it remains unclear 24 

whether this effect is specific to gustatory experiences or can be extended to other modalities, 25 
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such as visual or auditory experiences; our results illustrate that the role of the OFC is not 1 

limited to value representations.  2 

 3 

4.5.Implications for functional subdivisions in the OFC 4 

Functional distinctions between medial and lateral OFCs have been reported in many studies 5 

(Noonan et al, 2012; Noonan et al., 2010; Rudebeck & Murray, 2014; Wallis, 2012). 6 

Connectivity studies have revealed distinct medial and lateral orbitofrontal networks in rats 7 

(Ongür & Price, 2000), monkeys (Carmichael & Price, 1996), and humans (Kahnt et al, 2014), 8 

indicating a functional dissociation between the medial and lateral OFCs across species. 9 

Consistent with this, recent studies have demonstrated that although the lateral OFC is required 10 

for evaluating options (Rudebeck & Murray, 2011; Walton et al., 2010), the medial OFC is 11 

associated with choices among objects based on value comparisons (Boorman et al, 2009; 12 

FitzGerald et al, 2009; Hunt et al., 2012; Noonan et al., 2010; Rudebeck & Murray, 2011; Strait 13 

et al, 2014). Indeed, a recent multivariate pattern analysis of human fMRI revealed identity-14 

specific value representations of food in the lateral OFC and identity-general value 15 

representations of food in the ventromedial prefrontal cortex (Howard et al., 2015). Moreover, 16 

another multivariate analysis of fMRI data demonstrated that although food value is 17 

represented in neural activity patterns in both the medial and lateral OFC, only the lateral OFC 18 

represents the elemental nutrient content (Suzuki et al, 2017). These results suggest that the 19 

value of objects is represented in both the medial and lateral OFCs, whereas more complicated 20 

associations that cannot be explained by value alone are represented in the lateral OFC. 21 

Consistent with this, I replicated the value representations in the medial and lateral OFCs (Fig. 22 

3C, D). I further demonstrated that object-specific features represented in the lateral OFC were 23 

not invariant, but rather, were flexibly altered, reflecting the internal metabolic states. These 24 

results are in line with previous connectivity studies showing sensory orbitofrontal network in 25 
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the primate lateral OFC, which is characterized by connections with the gustatory, olfactory, 1 

and visual cortices (Carmichael & Price, 1996). In this network, the visual information of 2 

objects converges with the olfactory, gustatory, and visceral inputs (Rudebeck & Murray, 3 

2011). This complex visual–chemovisceral convergence might enable the lateral OFC to play 4 

an important role in inferring specific outcomes based on integrated multidimensional 5 

information. 6 

In summary, this study revealed that the OFC represents the inferred perceptual 7 

experience linked with the current internal state, which supports flexible decision-making. 8 

These results support the idea that representations in the OFC have unique flexible functions 9 

required for updating an individual’s moment-to-moment values based on the current internal 10 

state. 11 

 12 

References 13 

Alink , A., Walther, A., Krugliak, A., van den Bosch, J. J. F., Kriegeskorte, N., 2015. Mind 14 

the drift - improving sensitivity to fMRI pattern information by accounting for 15 

temporal pattern drift. BioRxiv, 032391. https://doi.org/10.1101/032391. 16 

Beckstead, R. M., Morse, J. R., Norgren, R., 1980. The nucleus of the solitary tract in the 17 

monkey: Projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190(2), 18 

259–282. https://doi.org/10.1002/cne.901900205. 19 

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, 20 

K. L., Kurth-Nelson, Z., 2018. What is a cognitive map? Organizing knowledge for 21 

flexible behavior. Neuron. 100(2), 490–509. 22 

https://doi.org/10.1016/j.neuron.2018.10.002.  23 

Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., Rushworth, M. F. S., 2009. How green 24 

is the grass on the other side? Frontopolar cortex and the evidence in favor of 25 



45 

 

alternative courses of action. Neuron. 62(5), 733–743. 1 

https://doi.org/10.1016/j.neuron.2009.05.014.  2 

Bradfield, L. A., Dezfouli, A., Van Holstein, M., Chieng, B., Balleine, B. W., 2015. Medial 3 

orbitofrontal cortex mediates outcome retrieval in partially observable task 4 

situations. Neuron. 88(6), 1268–1280. https://doi.org/10.1016/j.neuron.2015.10.044. 5 

Burke, K. A., Franz, Theresa M., Miller, Danielle N., Schoenbaum, G., 2008. The role of the 6 

orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature. 7 

454(7202), 340–344. https://doi.org/10.1038/nature06993. 8 

Carmichael, S. T., Price, J. L., 1996. Connectional networks within the orbital and medial 9 

prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371(2), 179–207.  10 

Chikazoe, J., Lee, D. H., Kriegeskorte, N., Anderson, A. K., 2014. Population coding of 11 

affect across stimuli, modalities and individuals. Nat. Neurosci. 17(8), 1114–1122. 12 

https://doi.org/10.1038/nn.3749. 13 

Chikazoe, J., Lee, D. H., Kriegeskorte, N., Anderson, A. K., 2019. Distinct representations of 14 

basic taste qualities in human gustatory cortex. Nat. Commun. 10(1), 1–8. 15 

https://doi.org/10.1038/s41467-019-08857-z. 16 

Cichy, R. M., Chen, Y., Haynes, J. D., 2011. Encoding the identity and location of objects in 17 

human LOC. NeuroImage. 54(3), 2297–2307. 18 

https://doi.org/10.1016/j.neuroimage.2010.09.044. 19 

Curtin, L. R., Klein, R. J., 1995. Direct standardization (age-adjusted death rates). Healthy 20 

People 2000 Stat. Notes. (6), 1–10. 21 

DiCarlo, J. J., Zoccolan, D., Rust, N. C., 2012. How does the brain solve visual object 22 

recognition? Neuron. 73(3), 415–434. https://doi.org/10.1016/j.neuron.2012.01.010. 23 



46 

 

FitzGerald, T. H. B., Seymour, B., Dolan, R. J., 2009. The role of human orbitofrontal cortex 1 

in value comparison for incommensurable objects. J. Neurosci. 29(26), 8388–8395. 2 

https://doi.org/10.1523/JNEUROSCI.0717-09.2009. 3 

Gallagher, M., McMahan, R. W., Schoenbaum, G., 1999. Orbitofrontal cortex and 4 

representation of incentive value in associative learning. J. Neurosci. 19(15), 6610–5 

6614. https://doi.org/10.1523/JNEUROSCI.19-15-06610.1999.  6 

Gottfried, J. A., O’Doherty, J., Dolan, R. J., 2003. Encoding predictive reward value in 7 

human amygdala and orbitofrontal cortex. Science, 301(5636), 1104–1107. 8 

https://doi.org/10.1126/science.1087919.  9 

Gremel, C. M., Costa, R. M., 2013. Orbitofrontal and striatal circuits dynamically encode the 10 

shift between goal-directed and habitual actions. Nat. Commun. 4, 1–12. 11 

https://doi.org/10.1038/ncomms3264. 12 

Grill-Spector, K., Malach, R., 2004. The human visual cortex. Annu. Rev. Neurosci. 27(1), 13 

649–677. https://doi.org/10.1146/annurev.neuro.27.070203.144220. 14 

Haxby, J. V, Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, 15 

M. I., Hanke, M., Ramadge, P. J., 2011. A common, high-dimensional model of the 16 

representational space in human ventral temporal cortex. Neuron. 72(2), 404–416. 17 

https://doi.org/10.1016/j.neuron.2011.08.026. 18 

Howard, J. D., Gottfried, J. A., Tobler, P. N., Kahnt, T., 2015. Identity-specific coding of 19 

future rewards in the human orbitofrontal cortex. Proc. Natl. Acad. Sci. 112(16), 20 

5195–5200. https://doi.org/10.1073/pnas.1503550112.  21 

Hung, C. P., Kreiman, G., Poggio, T., Dicarlo, J. J., 2005. Fast readout of object identity from 22 

macaque inferior temporal cortex. Science. 310(5749), 863–866. 23 

https://doi.org/10.1126/science.1117593. 24 



47 

 

Hunt, L. T., Kolling, N., Soltani, A., Woolrich, M. W., Rushworth, M. F. S., Behrens, T. E. 1 

J., 2012. Mechanisms underlying cortical activity during value-guided choice. Nat. 2 

Neurosci. 15(3), 470–476. https://doi.org/10.1038/nn.3017. 3 

Izquierdo, A., 2004. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt 4 

choices guided by both reward value and reward contingency. J. Neurosci. 24(34), 5 

7540–7548. https://doi.org/10.1523/JNEUROSCI.1921-04.2004. 6 

Klein-flügge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J., Edward, T., & Behrens, J. 7 

(2013). Segregated encoding of reward-identity and stimulus-reward associations in 8 

human orbitofrontal cortex. J. Neurosci., 33(7), 3202–3211. 9 

https://doi.org/10.1523/JNEUROSCI.2532-12.2013. 10 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain 11 

mapping. Proc. Natl. Acad. Sci., 103, 3863–3868. 12 

https://doi.org/10.1073/pnas.0600244103. 13 

Kriegeskorte, N., Formisano, E., Sorger, B., Goebel, R., 2007. Individual faces elicit distinct 14 

response patterns in human anterior temporal cortex. Proc. Natl. Acad. Sci., 104(51), 15 

20600–20605. https://doi.org/10.1073/pnas.0705654104. 16 

Kriegeskorte, N., 2008. Representational similarity analysis – connecting the branches of 17 

systems neuroscience. Front. Syst. Neurosci., 2, 1–28. 18 

https://doi.org/10.3389/neuro.06.004.2008. 19 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., Baker, C. I., 2009. Circular analysis in 20 

systems neuroscience: The dangers of double dipping. Nat. Neurosci., 12(5), 535–21 

540. https://doi.org/10.1038/nn.2303. 22 

Kringelbach, M. L., O’Doherty, J., Rolls, E. T., Andrews, C., 2003. Activation of the human 23 

orbitofrontal cortex to a liquid food stimulus is correlated with its subjective 24 



48 

 

pleasantness. Cereb. Cortex, 13, 1064–1071. 1 

https://doi.org/10.1093/cercor/13.10.1064. 2 

Kringelbach, M. L., 2005. The human orbitofrontal cortex: linking reward to hedonic 3 

experience. Nat. Rev. Neurosci., 6, 691-702. https://doi.org/10.1038/nrn1747. 4 

Lawson, E. A., Marengi, D. A., Desanti, R. L., Holmes, T. M., Schoenfeld, D. A., Tolley, C. 5 

J., 2015. Oxytocin reduces caloric intake in men. Obesity, 23(5), 950–956. 6 

https://doi.org/10.1002/oby.21069. 7 

Levy, D. J., & Glimcher, P. W., 2011. Comparing apples and oranges: Using reward-specific 8 

and reward-general subjective value representation in the brain. J. Neurosci., 31(41), 9 

14693–14707. https://doi.org/10.1523/JNEUROSCI.2218-11.2011. 10 

Levy, D. J., Glimcher, P. W., 2012. The root of all value: A neural common currency for 11 

choice. Curr. Opin. Neurobiol., 22(6), 1027–1038. 12 

https://doi.org/10.1016/j.conb.2012.06.001. 13 

McCandliss, B. D., Cohen, L., Dehaene, S., 2003. The visual word form area: Expertise for 14 

reading in the fusiform gyrus. Trends Cogn. Sci., 7(7), 293–299. 15 

https://doi.org/10.1016/S1364-6613(03)00134-7. 16 

McNamee, D., Rangel, A. O’Doherty, J.P., 2013. Category-dependent and category- 17 

independent goal-value codes in human ventromedial prefrontal cortex. Nat. 18 

Neurosci. 16, 479–485. https://doi.org/10.1038/nn.3337. 19 

Mummery, C. J., Patterson, K., Hodges, J. R., Price, C. J. 1998. Functional neuroanatomy of 20 

the semantic system: Divisible by what? J. Cogn. Neurosci, 10(6), 766–777. 21 

https://doi.org/10.1162/089892998563059. 22 

Neison F. G. P., 1844. On a method recently proposed for conducting inquiries into the 23 

comparative sanatory condition of various districts. J. R. Stat. Soc. (the Royal 24 

Statistical Society), 7, 40–68. https://doi.org/10.2307/2337745. 25 



49 

 

Noonan, M. P., Walton, M. E., Behrens, T. E. J., Sallet, J., Buckley, M. J., Rushworth, M. F. 1 

S., 2010. Separate value comparison and learning mechanisms in macaque medial 2 

and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci., 107(47), 20547–20552. 3 

https://doi.org/10.1073/pnas.1012246107. 4 

Noonan, M. P., Kolling, N., Walton, M. E., Rushworth, M. F. S., 2012. Re-evaluating the 5 

role of the orbitofrontal cortex in reward and reinforcement. European J. Neurosci., 6 

35(7), 997–1010. https://doi.org/10.1111/j.1460-9568.2012.08023.x. 7 

Ongür, D., Price, J. L., 2000. The organization of networks within the orbital and medial 8 

prefrontal cortex of rats, monkeys and humans. Cereb Cortex, 10(3), 206–219. 9 

https://doi.org/10.1093/cercor/10.3.206. 10 

Ott, V., Finlayson, G., Lehnert, H., Heitmann, B., Heinrichs, M., Born, J., Hallschmid, M., 11 

2013. Oxytocin reduces reward-driven food intake in humans. Diabetes, 62(10), 12 

3418–3425. https://doi.org/10.2337/db13-0663. 13 

Padoa-Schioppa, C., Assad, J. A., 2006. Neurons in the orbitofrontal cortex encode economic 14 

value. Nature, 441(7090), 223–226. https://doi.org/10.1038/nature04676. 15 

Padoa-Schioppa, C., 2007. Orbitofrontal cortex and the computation of economic value. Ann. 16 

N. Y. Acad. Sci., 1121, 232–253. https://doi.org/10.1196/annals.1401.011. 17 

Padoa-Schioppa, C., Assad, J. A., 2008. The representation of economic value in the 18 

orbitofrontal cortex is invariant for changes of menu. Nat. Neurosci., 11(1), 95–102. 19 

https://doi.org/10.1038/nn2020. 20 

Petrides, M., Pandya, D.N., 1994. Comparative architectonic analysis of the human and the 21 

macaque frontal cortex, in: Boller, F., Grafman, J. (Eds.), Handbook of 22 

Neuropsychology. Elsevier Science, Amsterdam, pp. 17-58.  23 



50 

 

Pickens, C. L., Saddoris, M. P., Gallagher, M., Holland, P. C., 2005. Orbitofrontal lesions 1 

impair use of cue-outcome associations in a devaluation task. Behav. Neurosci., 2 

119(1), 317–322. https://doi.org/10.1037/0735-7044.119.1.317. 3 

Reber, J., Feinstein, J. S., O’Doherty, J. P., Liljeholm, M., Adolphs, R., Tranel, D., 2017. 4 

Selective impairment of goal-directed decision-making following lesions to the 5 

human ventromedial prefrontal cortex. Brain, 140(6), 1743–1756. 6 

https://doi.org/10.1093/brain/awx105. 7 

Rudebeck, P. H., Murray, E. A., 2011. Balkanizing the primate orbitofrontal cortex: Distinct 8 

subregions for comparing and contrasting values. Ann. N. Y. Acad. Sci., 1239, 1–13. 9 

https://doi.org/10.1111/j.1749-6632.2011.06267.x. 10 

Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S., Murray, E. A., 2013. 11 

Prefrontal mechanisms of behavioral flexibility, emotion regulation and value 12 

updating. Nat. Neurosci., 16(8), 1140–1145. https://doi.org/10.1038/nn.3440. 13 

Rudebeck, P. H., Murray, E. A., 2014. The orbitofrontal oracle: Cortical mechanisms for the 14 

prediction and evaluation of specific behavioral outcomes. Neuron, 84(6), 1143–15 

1156. https://doi.org/10.1016/j.neuron.2014.10.049. 16 

Rolls, E. T., Baylis, L. L., 1994. Gustatory, olfactory, and visual convergence within the 17 

primate orbitofrontal cortex. J. Neurosci., 14(9), 5437–5452. 18 

https://doi.org/10.1523/JNEUROSCI.14-09-05437.1994. 19 

Schoenbaum, G., Eichenbaum, H., 1995. Information coding in the rodent prefrontal cortex. 20 

I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform 21 

cortex. J. Neurophysiol, 74, 733–750. https://doi.org/10.1152/jn.1995.74.2.733. 22 

Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., Takahashi, Y. K., Yuji, K., 2009. A new 23 

perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. 24 

Neurosci., 10(12), 885–892. https://doi.org/10.1038/nrn2753. 25 



51 

 

Schoenbaum, G., Takahashi, Y., Liu, T. L., Mcdannald, M. A., 2011. Does the orbitofrontal 1 

cortex signal value? Ann. N. Y. Acad. Sci., 1239, 87–99. 2 

https://doi.org/10.1111/j.1749-6632.2011.06210.x. 3 

Schuck, N. W., Cai, M. B., Wilson, R. C., Niv, Y., 2016. Human orbitofrontal cortex 4 

represents a cognitive map of state space. Neuron, 91, 1402–1412. 5 

https://doi.org/10.1016/j.neuron.2016.08.019. 6 

Sescousse, G., Redoute, J., Dreher, J.-C., 2010. The architecture of reward value coding in 7 

the human orbitofrontal cortex. J. Neurosci., 30, 13095–13104. 8 

https://doi.org/10.1523/JNEUROSCI.3501-10.2010. 9 

Small, D. M., Bender, G., Veldhuizen, M. G., Rudenga, K., Nachtigal, D., Felsted, J., 2007. 10 

The role of the human orbitofrontal cortex in taste and flavor processing. Ann. N. Y. 11 

Acad. Sci., 1121, 136–151. https://doi.org/10.1196/annals.1401.002. 12 

Smith, S. M., Nichols, T. E., 2009. Threshold-free cluster enhancement: Addressing problems 13 

of smoothing, threshold dependence and localisation in cluster inference. 14 

NeuroImage, 44, 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061. 15 

Stalnaker, T. A., Cooch, N. K., McDannald, M. A., Liu, T. L., Wied, H., Schoenbaum, G., 16 

2014. Orbitofrontal neurons infer the value and identity of predicted outcomes. Nat. 17 

Commun., 5, 1–13. https://doi.org/10.1038/ncomms4926. 18 

Stalnaker, T. A., Cooch, N. K., Schoenbaum, G., 2015. What the orbitofrontal cortex does not 19 

do. Nat. Neurosci., 18(5), 620–627. https://doi.org/10.1038/nn.3982. 20 

Strait, C. E., Blanchard, T. C., Hayden, B. Y., 2014. Reward value comparison via mutual 21 

inhibition in ventromedial prefrontal cortex. Neuron, 82, 1357–1366. 22 

https://doi.org/10.1016/j.neuron.2014.04.032. 23 



52 

 

Suzuki, S., Cross, L., O’Doherty, J. P., 2017. Elucidating the underlying components of food 1 

valuation in the human orbitofrontal cortex. Nat. Neurosci., 20, 1780–1786. 2 

https://doi.org/10.1038/s41593-017-0008-x. 3 

Thorsten Kahnt, T., Chang, L.J., Park, S.Q. Heinzle, J., Haynes J-D., 2014. Connectivity-4 

based parcellation of the human posteromedial cortex. J. Neurosci. 32, 6240-6250. 5 

https://doi.org/10.1523/JNEUROSCI.0257-12.2012. 6 

Tolman, E. C., 1948. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208. 7 

https://doi.org/10.1037/h0061626. 8 

Tremblay, L., Schultz, W., 1999. Relative reward preference in primate orbitofrontal cortex. 9 

Nature, 398(6729), 704–708. https://doi.org/10.1038/19525. 10 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., 11 

Joliot, M., 2002. Automated anatomical labeling of activations in SPM using a 12 

macroscopic anatomical parcellation of the MNI MRI single-subject brain. 13 

NeuroImage, 15, 273–289. https://doi.org/10.1006/nimg.2001.0978. 14 

Veldhuizen, M. G., Albrecht, J., Zelano, C., Boesveldt, S., Breslin, P., Lundström, J. N., 15 

2011. Identification of human gustatory cortex by activation likelihood estimation. 16 

Hum Brain Mapp, 32, 2256–2266. https://doi.org/10.1002/hbm.21188. 17 

Wallis, J. D., 2012. Cross-species studies of orbitofrontal cortex and value-based decision-18 

making. Nat. Neurosci., 15, 13–19. https://doi.org/10.1038/nn.2956. 19 

Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H., Rushworth, M. F. S., 20 

2010. Separable learning systems in the macaque brain and the role of orbitofrontal 21 

cortex in contingent learning. Neuron, 65(6), 927–939. 22 

https://doi.org/10.1016/j.neuron.2010.02.027. 23 

West, E. A., Forcelli, P. A., McCue, D. L., Malkova, L., 2013. Differential effects of 24 

serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer 25 



53 

 

devaluation and extinction in rats. Behav Brain Res, 246, 10–14. 1 

https://doi.org/10.1016/j.bbr.2013.02.027. 2 

Wikenheiser, A. M., Schoenbaum, G., 2016. Over the river, through the woods: Cognitive 3 

maps in the hippocampus and orbitofrontal cortex. Nature Publishing Group, 17, 4 

513–523. https://doi.org/10.1038/nrn.2016.56. 5 

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., Niv, Y., 2014. Orbitofrontal cortex as a 6 

cognitive map of task space. Neuron, 81, 267–278. 7 

http://dx.doi.org/10.1016/j.neuron.2013.11.005. 8 

Wimmer, E.G., Büchel, C., 2019. Learning of distant state predictions by the orbitofrontal 9 

cortex in humans. Nat. Commun., 10, 1–11. https://doi.org/10.1038/s41467-019-10 

10597-z. 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 



54 

 

6. Supplementary Methods 1 

 2 

Comparison between ordinary least square (OLS) and ridge regression 3 

A general linear model (GLM) is commonly used to estimate neural activation in the 4 

neuroimaging field. However, when trials are temporally adjacent, explanatory variables 5 

coding for respective trials might be highly correlated. In this situation, the regression 6 

coefficient estimation might be unstable in the OLS regression model. Ridge regression is well 7 

known to alleviate this problem by adding a penalty term to the loss function (but see Mumford 8 

et al., 2012). To confirm that the regression coefficients are more stably estimated by the ridge 9 

than the OLS regression model using the data of the present study, a comparison analysis was 10 

conducted. Because the same stimuli were repeatedly presented (once per session, four times 11 

in total), the regression coefficients for the respective stimuli were assumed to be similar across 12 

the experimental sessions. Based on this assumption, by splitting the data, the regression 13 

coefficients, estimated using one dataset, were used to predict activity in another independent 14 

dataset. I adopted the mean squared error (MSE) as the loss function, in this procedure. I 15 

conducted a four-fold cross-validation, which splits the data into a training dataset from the 16 

three experimental sessions and the test dataset from the remaining one (Supplementary Fig. 17 

3A, left and 3B, upper-left).  In the OLS regression model, model fitting and prediction were 18 

conducted, as shown in Supplementary Fig. 3A (right). For each voxel, the regression 19 
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coefficient for each stimulus was calculated using the training dataset. This procedure resulted 1 

in a vector with 128 elements, each of which encoded the brain activity evoked by each 2 

stimulus. Using these coefficients, the brain activity vectors in the test data were predicted. The 3 

MSE was calculated between the predicted and actual activities in the test dataset 4 

(Supplementary Fig. 3A, right). In the ridge regression model, the training and test datasets 5 

were split similarly as in the OLS regression model. However, because the ridge parameter 6 

should be empirically selected, I adopted a nested cross-validation technique (Supplementary 7 

Fig. 3B, upper panel). The training dataset in the outer fold was split into the inner training set 8 

from two experimental sessions and the validation set from one session. The range for the 9 

parameter search was 100 logarithmically spaced points ranging from 1.0E-10 to 1.0E+10. I 10 

computed the regression coefficients by ridge regression with each ridge parameter in the inner 11 

training dataset and then applied them to the validation dataset at each round of cross-validation. 12 

I selected the optimal ridge parameter to minimize the MSE in the validation dataset in each 13 

round of inner cross-validation. I calculated the geometric mean of these three ridge parameters 14 

as the optimal ridge parameter in the outer fold. Regression coefficients for the respective 15 

stimuli were estimated using the optimized ridge parameter in the outer training set 16 

(Supplementary Fig. 3B, upper left). The activity vector in the test dataset was predicted using 17 

the regression coefficients. The MSEs from four rounds of outer cross-validations were 18 

averaged for each participant. The mean values from the 24 participants are plotted in 19 
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Supplementary Fig. 4. The difference in the mean values between OLS and ridge regression 1 

was examined using a paired t-test. 2 

 3 

Ridge parameter selection in the main analysis 4 

The ridge parameter selection procedure used in the main analysis is shown in Supplementary 5 

Fig. 3C. The full dataset was split into a training dataset from three experimental sessions and 6 

a validation dataset from the remaining one. The range of the parameter search was the same 7 

(from 1.0E-10 to 1.0E+10) as in the confirmation analysis. With the regression coefficients 8 

extracted from the training dataset, the MSE in the validation dataset was calculated. The 9 

optimal ridge parameter was selected to minimize the MSE in the validation dataset at each 10 

round of cross-validation, and then, the optimal ridge parameter for a voxel was calculated by 11 

the geometrical mean of the four optimal parameters from the four rounds. The median of these 12 

parameters from all voxels was regarded as the optimal ridge parameter for each 13 

participant. This optimal ridge parameter was used to estimate the brain activity evoked by 14 

each food photo on a trial-by-trial basis, which was later subjected to the representational 15 

similarity analysis. 16 

 17 

 18 

 19 

 20 

 21 
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7. Supplementary Results 1 

 2 

Comparison analysis of OLS and ridge regression 3 

The MSE of the OLS regression was significantly higher than that of the ridge regression (t23 4 

= 15.53, p < 0.001) (Supplementary Fig. 4). This analysis indicated that the regression 5 

coefficients for the respective stimuli were more stably estimated in the ridge regression than 6 

in the OLS regression (Supplementary Fig. 3A and 3B). Thus, I adopted the ridge regression 7 

to estimate the regression coefficients for each food photo. 8 

 9 

Effect of the food type (main dish/dessert) in the visual stimuli 10 

The visual stimuli in the fMRI session consisted of the main dishes (salty and savoury) and 11 

desserts (sweet) in equal proportions. I analyzed the effect of the food type on both the 12 

behavioral and neural representations in the OFC. 13 

Supplementary Fig. 2 shows the palatability of the food that was sorted based on meal 14 

(before and after the meal), experimental day (days 1 and 2), and food type (main dish and 15 

dessert). A three-way repeated measures ANOVA was conducted with these three factors. 16 

While the interaction effect between the meal and food type was significant, no other 17 

interaction effects were significant (meal × experimental day, F1,23 = 2.487, p > 0.05; meal × 18 

food type, F1,23 = 54.460, p < 0.001; experimental day × food type, F1,23 = 2.830, p > 0.05; meal 19 
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× experimental day × food type, F1,23 = 0.273, p > 0.05). While the main effect of the meal was 1 

significant (F23 = 81.286, p < 0.001), the main effects of other factors were not significant 2 

(experimental day, F23 = 4.042, p > 0.05; food type, F23 = 0.261, p > 0.05). To further interpret 3 

the significant interaction effect between meal and food type, simple effect tests were 4 

conducted. Both palatability of the main dish and dessert decreased significantly after eating a 5 

meal (main dish, t23 = 13.24, p < 0.001; desert t23 = 9.11, p < 0.001). While the palatability of 6 

the main dish was significantly higher than that of the dessert before meals (t23 = 3.07, p = 7 

0.021), the former was significantly lower than the latter after meals (t23 = -3.51, p = 0.0074). 8 

According to a proverb, “there is always room for dessert,” the palatability of the desserts 9 

remains relatively high even after satiation (Supplementary Fig. 2). 10 

Participants consumed three types of snacks (chocolate cookie, salt crackers, and rice 11 

crackers) ad libitum, immediately after eating the lunch box. I examined whether the amount 12 

of snack consumption influenced the difference in palatability of food photos before and after 13 

a meal. I used the calorie consumption of each snack as an explanatory variable. To estimate 14 

the effect of each food type individually, I used the difference in the palatability of each food 15 

type before and after the meal as the response variable. Model fitting was performed separately 16 

for each food type. As the experiments were conducted over two days, these variables were 17 

averaged across days. A GLM was applied to these data using a MATLAB function, ‘glmfit’. 18 

These analyses revealed that the amount of consumption of all three snacks did not influence 19 



59 

 

palatability changes of the main dishes and desserts (chocolate cookie to the main dish, t23 = 1 

0.213, p > 0.05; salt crackers to the main dish, t23 = 0.143, p > 0.05; rice crackers to the main 2 

dish, t23 = 0.299, p > 0.05; chocolate cookie to the dessert, t23 = 0.057, p > 0.05; salt crackers 3 

to the dessert, t23 = 1.221, p > 0.05; rice crackers to the dessert, t23 = 1.741, p > 0.05). 4 

To confirm the consistency of the representations of the identical object in the OFC 5 

among different food types, representational similarity analysis was conducted using the same 6 

procedure as the main analysis, but using two distinct representational similarity matrices 7 

(RSMs) for the main dish or dessert trial pairs. I conducted region of interest (ROI) analyses 8 

using the same ROI, as shown in Fig. 4B. These analyses were repeated twice, with and without 9 

the value distribution adjustment technique. Using the same procedures as in the main analysis, 10 

I obtained four representational similarity metrics, categorized as identical object pair in the 11 

same metabolic state (ISS), non-identical object pair in the same metabolic state (NSS), 12 

identical object pair in the different metabolic state (IDS), and non-identical object pair in the 13 

different metabolic state (NDS) in the searchlight voxels used for the analysis reported in Fig. 14 

4C. I found similar representational similarity patterns in the OFC (Supplementary Fig. 11), as 15 

found in all the food photos (Fig. 4C). Supplementary Fig. 11 shows that this similarity was 16 

consistent across four conditions: the main dish without value adjustment (A), dessert without 17 

value adjustment (B), main dish with value adjustment (C), and dessert with value adjustment 18 

(D). One-sample t-tests revealed significant effects of identical object specificity in the same 19 
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metabolic state (ISS – NSS) in all conditions (main dish without value distribution adjustment, 1 

t23 = 5.03, p < 0.001; dessert without value distribution adjustment, t23 = 3.54, p =0.0035; main 2 

dish with value distribution adjustment, t23 = 4.93, p < 0.001; and desert with value distribution 3 

adjustment, t23 =3.54, p = 0.0035). In contrast, one-sample t-tests revealed no significant effects 4 

of identical object specificity in the different metabolic states (IDS – NDS) in all conditions 5 

(main dish without value distribution adjustment, t23 = -0.29, p > 0.05; desert without value 6 

distribution adjustment, t23 = -0.72, p > 0.05; main dish with value distribution adjustment, t23 7 

= -0.32, p > 0.05; and desert with value distribution adjustment, t23 = -0.76, p > 0.05). 8 

Furthermore, the differences of the differences in the similarities were significant [(ISS - NSS) 9 

- (IDS - NDS)] in all conditions (main dish without value distribution adjustment, t23 = 3.34, p 10 

= 0.0029; desert without value distribution adjustment, t23 = 2.63, p = 0.015; main dish with 11 

value distribution adjustment, t23 = 3.28, p = 0.0033; and desert with value distribution 12 

adjustment, t23 = 2.65, p = 0.014). These results indicate that the difference in the object 13 

specificity effects between metabolic state pairs in the OFC was independent of the food type. 14 

 15 

Nasal oxytocin administration  16 

All data in this study were derived from a project aimed at investigating the effect of nasal 17 

oxytocin on neural responses to changes in palatability. Before all experimental procedures, 18 

participants took nasal oxytocin on an experimental day and placebo on the other day, in a 19 
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randomized crossover, double-blind manner. Behavioral, physiological, and ROI analyses were 1 

conducted to investigate the effects of nasal oxytocin administration. 2 

The feeling of hunger was measured using the visual analogue scale (VAS) before and 3 

after scanning. Supplementary Fig. 13 shows these metrics averaged across the scanning, sorted 4 

on meal (before and after meal) and drug (placebo and active drug). To investigate the effect 5 

of nasal oxytocin administration on the feeling of hunger, I conducted a two-way repeated 6 

measures ANOVA with the drug (placebo and active drug) and meal (before and after a meal). 7 

Although neither of the interaction and main effects of the drug administration were significant 8 

(drug × meal: F1,23 = 0.487, p = 0.492; drug: F1,23 = 0.043, p = 0.838), the main effect of the 9 

meal was highly significant (meal: F1,23 = 326.24, p < 0.001). Post-hoc simple t-tests revealed 10 

that while eating a meal significantly decreased the feeling of hunger (t23 = 18.06, p < 0.001), 11 

drug administration did not have a significant effect (t23 = 1.21, p > 0.05). Blood glucose levels 12 

were measured using a glucometer before and after the meal (Supplementary Fig. 14). To 13 

investigate the effect of nasal oxytocin administration on blood glucose levels, I conducted a 14 

two-way repeated measures ANOVA with drug (placebo and active drug) and metabolic state 15 

(before and after a meal). Both the main and interaction effects of the drug administration were 16 

not significant, while the main effect of the meal was highly significant (drug: F1,23 = 1.72 × 17 

10-4, p = 0.990; meal: F1,23 = 208.19, p < 0.001; drug × meal: F1,23 = 0.880, p = 0.358). Post-18 

hoc simple t-tests revealed that while eating a meal significantly increased the blood glucose 19 

level (t23 = 14.43, p < 0.001), drug administration did not have a significant effect (t23 = 1.98, 20 

p > 0.05). Supplementary Fig. 15 shows the palatability of the food that was sorted based on 21 

drug (placebo and active drug) and meal (before and after a meal). To investigate the effect of 22 

nasal oxytocin administration on the palatability of food, I conducted a two-way repeated 23 

measures ANOVA with these two factors. The interaction and main effects of the drug 24 

administration were not significant; however, the main effect of the meal was highly significant 25 
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(drug: F1,23 = 0.038, p = 0.85; meal; F1,23 = 81.37, p < 0.001; drug × meal; F1,23 = 2.47, p = 0.13). 1 

Post-hoc simple t-tests revealed that while eating a meal significantly decreased the palatability 2 

of the food (t23 = 9.02, p < 0.001), drug administration did not have a significant effect on 3 

palatability (t23 = 0.19, p > 0.05). 4 

Next, I investigated the effects of nasal oxytocin on the neural representations of both 5 

object specificity and palatability. Supplementary Fig. 16A shows a schematic illustration of 6 

the session pair structure that was used to estimate the effect of nasal oxytocin administration 7 

on representations of object specificity. In this analysis, the experimental sessions were sorted 8 

based on drug administration (placebo or active drug). I used the different metabolic state pairs 9 

only, so that the experimental conditions could be matched by these pairs. These four pairs 10 

were labeled as placebo–placebo (‘drug-free data,’ shown in purple), drug–drug, or drug–11 

placebo (‘drug-treated data,’ shown in green). I calculated the object specificity metrics (i.e., 12 

the difference in the representational similarity between identical and non-identical object 13 

pairs) in each session pair, as shown in Supplementary Fig. 5. These metrics, from the three-14 

session pairs of the drug-treated data, were averaged. I conducted a one-sample t-test on the 15 

differences between these metrics using the drug-free and drug-treated data. The test statistic 16 

did not reach significance level for any voxel of the whole cerebral cortex, at p < 0.05 threshold, 17 

corrected (family wise error [FWE]). Supplementary Fig. 16B shows a schematic illustration 18 

of the session pair structure that was used to estimate the effect of nasal oxytocin administration 19 

on representations of the subjective value. The experimental sessions were sorted based on 20 

drug administration (placebo or active drug), as shown in Supplementary Fig. 16A. The four 21 

within-session pairs were divided into two placebo-placebo pairs (shown in purple) and two 22 

drug-drug pairs (shown in green). I calculated the value-associated metrics for each session 23 

pair, as shown in Supplementary Fig. 6, and then averaged them separately for the placebo and 24 

active drug pairs. I conducted a one-sample t-test on the difference in the value-associated 25 
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metrics between the placebo and active drug pairs. The test statistic did not reach significance 1 

level for any voxel of the whole cerebral cortex, at p < 0.05 threshold, corrected (FWE). Thus, 2 

the administration of this drug and metabolic state change were not associated with neural 3 

representations of object specificity and value in any brain region. I concluded that nasal 4 

oxytocin administration had no effect on the results of our main analyses. 5 

 6 
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9. Supplementary figures 1 

 2 

 3 

 4 

 5 

Supplementary Fig. 1. Rating scores of the palatability of food  6 

The palatability of food was plotted based on meal (before and after meals) and experimental 7 

day (days 1 and 2). N=24. Boxes represent the median and 25th/75th percentiles, and whiskers 8 

represent the minimum and maximum values. 9 

 10 

 11 

 12 
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 1 

 2 

Supplementary Fig. 2. Rating scores of the palatablitiy of two food types (main dish and 3 

dessert)  4 

The palatability of food was plotted based on meal (before and after meals), experimental day 5 

(days 1 and 2), and food type (main dish and dessert). N=24. Boxes represent the median and 6 

25th/75th percentiles, and whiskers represent the minimum and maximum values. 7 
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 1 

Supplementary Fig. 3. Comparison between the ordinary least square (OLS) and ridge 2 

regression methods and parameter selection in ridge regression  3 



67 

 

Confirmation analysis was conducted to confirm the efficiency of ridge regression in the 1 

estimation of the activity evoked by each trial. (A) Model fitting and prediction of voxel activity 2 

evoked by the respective stimuli. The mean squared error (MSE) in the test dataset was 3 

calculated using non-nested four-fold cross-validation (left). Note that the data in one fold 4 

correspond to one experimental session. Regression coefficients associated with the respective 5 

stimuli, which were calculated using the training dataset, were applied to predict the activity in 6 

the test dataset (right). The MSE in the test dataset was calculated to evaluate the model fitting. 7 

(B) In the ridge regression, the nested cross-validation technique was used. MSE was calculated 8 

in the outer four-fold cross-validation, as in the OLS regression (upper-left). Within the outer 9 

training dataset, parameter selection was conducted using the inner three-fold cross-validation 10 

(upper-right). Regression coefficients, which were calculated for each ridge parameter in the 11 

training dataset, were applied to estimate the MSE in the test dataset (lower right). The optimal 12 

parameter selected to minimize the MSE was chosen from each fold, and then, the geometrical 13 

mean of the three optimal parameters was used as the optimal ridge parameter after the inner 14 

cross-validation. Using this optimal parameter, the MSE was estimated from the test dataset 15 

(lower-left). (C) The procedure of parameter selection for ridge regression in the main analysis 16 

is illustrated. The full data consisting of four experimental sessions was used for the four-fold 17 

cross-validation. Regression coefficients calculated with each ridge parameter in the training 18 

dataset were applied to estimate the MSE in the validation dataset. The optimal parameter was 19 
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selected to minimize the MSE at each round, and then, the geometrical mean of the four optimal 1 

ridge parameters from the four rounds was treated as the optimal ridge parameter for one voxel. 2 

Finally, the median of the optimal ridge parameters from all voxels was adopted as the optimal 3 

ridge parameter for each participant. 4 

 5 
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 1 

 2 

Supplementary Fig. 4. Comparison of the mean squared error (MSE) between ordinary 3 

least square (OLS) and Ridge regressions 4 

The MSE of the OLS regression was significantly higher than that of the ridge regression.   N 5 

= 24. Boxes represent the median and 25th/75th percentiles, and whiskers represent the 6 

minimum and maximum values. ***p < 0.001. 7 

 8 
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 1 

 2 

Supplementary Fig. 5 Schematic illustrations in the analytical procedures of the identical 3 

object representation  4 

The neural representational similarity matrix (RSM) was converted to a vector and then rank-5 

ordered. I calculated the average of the percentiles of the rank-ordered correlations between 6 

identical object pairs (red; diagonal elements in RSM) and average of the percentiles of the 7 

rank-ordered correlations between non-identical object pairs (blue; off-diagonal elements in 8 

RSM) in each cross-session pair (Fig. 1C, red and orange). To investigate the effect of the 9 

metabolic state change, I averaged these metrics separately for the same metabolic state 10 

experimental session pairs (Fig. 1C, red) and for different metabolic state pairs (Fig. 1C: 11 

orange). These representational similarity metrics were subjected to a one-sample t-test for 12 

group analysis. ISS, identical object pair in the same metabolic states; NSS, non-identical 13 

object pair in the same metabolic states; IDS, identical object pair in the different metabolic 14 

states; NDS, non-identical object pair in the different metabolic states. 15 



71 

 

 1 

Supplementary Fig. 6 Schematic illustrations in the analytical procedures of the 2 

multivariate analysis for the subjective value representations 3 

To maintain data independence, I used data from within-experimental session pairs (Fig. 1C, 4 

blue) only, in this analysis. I constructed a value distance model matrix (hereafter referred to 5 

as representational dissimilarity matrix, RDM) whose elements were used to code the absolute 6 

value of the subjective value difference in each food object pair. Neural RDM was also 7 

constructed by searchlight analysis (Fig. 1D). The RSM was converted to RDM by calculating 8 

(1 − r) for each element. Because of the symmetry, only the data in the upper triangle were 9 

used. Both the value distance model RDM and neural RDM were converted into vectors. As in 10 

the identical object, white matter noise signals were regressed out from the neural RDMs. Then, 11 

the random permutation of the vector from the value distance model RDM was repeated 1,000 12 

times. Correlation coefficients were calculated between the vector from the neural RDM and 13 

each permuted vector from the model RDM 1,000 times. The percentiles of the ranks of the 14 
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real data in a total of 1,000 correlation coefficients were averaged across the four experimental 1 

sessions. This RDM was submitted to a one-sample t-test for group analysis.  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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 1 

 2 

Supplementary Fig. 7. Value map in whole brain 3 

Value map revealed at univariate (A) and multivariate analyses (B). The color represents the t-4 

value threshold at p < 0.05, corrected (family wise error [FWE]). N=24. 5 

 6 
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 1 

 2 

Supplementary Fig. 8. Value map in the hunger state in the whole brain 3 

Value map in the hunger state revealed at univariate (A) and multivariate analyses (B). The 4 

color represents the t-value threshold at p < 0.05, corrected (family wise error [FWE]). N=24. 5 

 6 
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 1 

 2 

Supplementary Fig. 9. Value map in the satiated state in the whole brain 3 

Value map in the hunger state revealed at univariate (A) and multivariate analyses (B). The 4 

color represents the t-value threshold at p < 0.05, corrected (family wise error [FWE]). N=24. 5 

 6 
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 1 

 2 

Supplementary Fig. 10. Whole-brain maps revealed at multivariate analysis of the 3 

difference in the identical object specificity effects between same and different state pairs 4 

while controlling for the effect of differences in value distance  5 

Multivariate analysis revealed that the left lateral orbitofrontal cortex (OFC) was associated 6 

with differences in identical object specificity effects across metabolic states. Colors represent 7 

t values in regions at p < 0.05 threshold, corrected (family wise error [FWE]). N=24. 8 

 9 
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 1 

Supplementary Fig. 11 Representational similarities in the lateral OFC for the main dish 2 

and dessert separately  3 

Representational similarities in the lateral orbitofrontal cortex (OFC) are shown separately by 4 

food type (main dish or dessert) and the analytic technique (with or without value distribution 5 

adjustment). (A) Main dish without adjustment for value distribution adjustment. (B) Dessert 6 

without value distribution adjustment. (C) Main dish with value distribution adjustment. (D) 7 
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Dessert with value distribution adjustment. ISS, identical object pair in the same metabolic 1 

state; NSS, non-identical object pair in the same metabolic state; IDS, identical object pair in 2 

different metabolic states; NDS, non-identical object pair in different metabolic states. n.s. not 3 

significant. Boxes represent the median and 25th/75th percentiles, and whiskers represent the 4 

minimum and maximum values. N=24. ***p < 0.001. **p < 0.01. *p < 0.05. Bonferroni 5 

corrected. 6 
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 1 

Supplementary Fig. 12 Neural representational similarity in all value distance bins in the 2 

lateral OFC 3 

The neural representational similarities shown in Figure 4D were plotted for all value distance 4 

bins (from zero to nine). From left to right, the number of participants included in each bin was 5 

24, 24, 23, 21, 16, 12, 9, 6, 2, and 1. Boxes represent the median and 25th/75th percentiles, and 6 

whiskers represent the minimum and maximum values. 7 

 8 

 9 

 10 
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 2 

Supplementary Fig. 13 Rating scores of the hunger feeling by visual analogue scale (VAS)  3 

The hunger feeling was plotted based on meal (before and after meals) and drug (placebo and 4 

active drug). N=24. Boxes represent the median and 25th/75th percentiles, and whiskers 5 

represent the minimum and maximum values. 6 

 7 

 8 
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 2 

Supplementary Fig. 14 Blood glucose levels 3 

Blood glucose levels were plotted based on meal (before and after meals) and drug (placebo 4 

and active drug). N=24. Boxes represent the median and 25th/75th percentiles, and whiskers 5 

represent the minimum and maximum values. 6 
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 8 
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 1 

Supplementary Fig. 15. Rating scores of the palatability of food and nasal oxytocin 2 

administration  3 

The palatability of the visual food stimuli was plotted based on meal (before and after meals) 4 

and drug (placebo and active drug). N=24. Boxes represent the median and 25th/75th percentiles, 5 

and whiskers represent the minimum and maximum values. 6 
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 2 

Supplementary Fig. 16. Effect of the nasal oxytocin administration on the representations 3 

of identical object and subjective value  4 

(A) Schematic illustration of the session pair structure that was used to estimate the effect of 5 

nasal oxytocin administration on representations of identical objects. The experimental 6 

sessions were sorted based on drug (placebo or active drug). These four pairs were labeld as 7 

placebo–placebo (‘drug-free data,’ shown in purple), drug–drug, or drug–placebo (‘drug-8 

treated data,’ shown in green). (B) Schematic illustration of the session pair structure that was 9 

used to estimate the effect of nasal oxytocin administration on value representation. The 10 

experimental sessions were sorted based on drug (placebo or active drug). Four within-session 11 

pairs were labeled as placebo–placebo (shown in purple) and drug–drug (shown in green).  12 
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10. Supplementary tables 1 
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Supplementary Table 1. Description of the visual food stimuli 1 

Run 1

No. Main dish Dessert

1 radish sprouts salad plane scones

2 taco rice coffee cream cake

3 Dried squid, fish roe and seaweed marinated with soy sauce custard pudding with caramel

4 cut open and dried Atka mackerel butter cookie

5 miso soup waffle

6 hashed beef rice fruit tart

7 sandwich with ham and vegitables mont blanc

8 fried potato fruit parfait

9 curry and naan donut

10 a side dish of boiled seasoned cucumber and chinese cabbage choco scones

11 salada with cabbage, tomatoes, and radish choco cookie

12 pork curry and rice Japanese bean‐jam‐filled wafers

13 meatballs with parsley vanilla ice cream with blueberry sauce

14 boiled pumpkin pound cake

15 salada with tomatoes, cucumber and cabbage vanilla ice cream

16 cutlet sandwich mile crape

Run 2

No. Main dish Dessert

1 chirashi shushi, rice topped with sashimi and other ingredients chocolate coated wheat puffs

2 udon, thick Japanese noodle with bonito flakes
"takenokonosato", a Japanese brand of chocolate cookies shaped

 like bamboo sprouts

3 chilled Chinese noodle topped with boiled egg, ham sesame flavor cookie

4 fried chikin almond ice cream

5 caesar salad "M&M's", American brand cholate snacks 

6
Chinese noodle with grilled pork, spring onion, bean sprout,

wakame seaweed
crepe cookies

7 coleslaw salad choco pie

8 curry rice with deep-fried oysters blueberry tart cake

9 stewed hamburger steaks with demi-glace saurce sponge cake

10 spaghetti with tomato sauce bean-paste rice-dumpling

11 grilled tofu with slices of the garlic cream puff

12 spaghetti with green onion and meat honey churros

13 pot sticker almond jelly

14 steamed pork dumplings unbaked cheesecake

15 bread roll with cabbage,  cucumber and ham Aerated cholate snack with cone 

16 rolled omlet "mamedaifuku", a sweet rice cake stuffed with a sweet bean paste

Run 3

No. Main dish Dessert

1 Udon noodles in a hot soup with shrimp tempura cocoa biscuits cookie

2 sliced tangle boiled in sweetened soy sauce thick "pocky", a Japanese brand of cholate-covered bisucuit sticks

3
chinese noodle in miso soup with cone, ham, sesame,

seaweed and bean sprouts
eclair

4 pizza with salami, parma, cone, broccoli muffin

5 beefsteak gummy candy, cola taste

6 deep fried tofu with bean paste milk chocolate topped with strawberry flavored white chocolate

7 hijiki seaweed salad choco tip cookie

8 fried chikien and cabbage caramel candy

9 omelet rice with starchy sauce bun filled with sweet bean paste

10 omelet, cabbage and parsley cup cone ice cream with strawbbery and bread

11 pepper stuffed with meat cream puff

12 mapo tofu honey dip donut

13 sandwich with bacon and lettuce baumkuchen

14 baked sweet green pepper baked cheesecake

15 a piece of the pizza with potato, cone, tuna, moyonnaise saurce thin "Pocky", a Japanese brand of cholate-covered bisucuit sticks

16 baked salmon butter crunch donut

Run 4

No. Main dish Dessert

1 grilled squid chocolate icecream

2 hard boiled egg
"kinokonoyama", a Japanese brand of chocolate cookies shaped

 like mushrooms

3 "katsudon", a bowl of rice topped with slices of deep-fried pork chocolate cake

4 Szechuan sesame spicy hot noodles crunky chocolate

5 "kimuchi", Korean side dish of salted and fermented vegetables tiramisu

6 thick pizza with minced meat, tomato,arugura chocolate chunk cookie

7 raw egg on rice sweet bean paste in thin dough wrapping

8 salt-grilled saury crepe with ice cream, cream, blueberry and strawberry

9 thin crust pizza with tomato,arugura baumkuchen with cream

10 Ebi katsu (Japanese shrimp cutlet) burger strawberry shortcake

11 omlet topped with demi-glace sauce mille-feuille

12 pot-au-feu almond cream puff

13 deep-fried horse mackerel tart with coffee cream

14 steamed white rice French cruller

15 spaghetti with scallop and dried mullet roe chocolate bar

16 bacon egg and cheese English muffin cookie with strawberry jam  2 
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Supplementary Table 2. Clusters in the value map revealed at univariate analysis 1 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 1004 -2 36 -10 7.12 Medial orbitofrontal cortex L

-2 38 16 4.24 Antegior cingulate L

-4 58 8 3.69 Superior medial frontal gyrus L

2 780 -22 -72 44 5.88 Superior parietal lobule L

-36 -64 32 4.10 Middle occipital gyrus L

3 406 -8 -54 16 5.47 Precuneus L

4 350 22 -76 -4 5.37 Lingual gyrus R

30 -56 -14 4.45 Fusiform gyrus R

6 -88 -6 3.80 Lingual gyrus R

5 278 -20 36 52 6.13 Superior frontal gyrus L

6 156 -16 -34 -6 5.72 ParaHippocampus L

-32 -16 -14 3.74 Hippocampus L

7 109 -12 10 -6 3.44 Putamen L

8 97 -32 -88 14 4.59 Middle occipital gyrus L

9 68 -18 58 8 6.06 Superior frontal gyrus L

10 25 -4 -34 36 4.84 Middle cingulate L

11 11 -30 30 4 3.98 Insula L

MNI coordinate (mm) Location

 2 

 3 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 4 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 5 

2002). 6 

 7 

 8 
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 12 
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Supplementary Table 3. Clusters in the value map revealed at univariate analysis in 1 

hunger state 2 

Cluster NoCluster size (voxel) MNI coordinate (mm) t Value(24) Location

x y z Side Area

1 736 0 36 -10 5.94 Medial orbitofrontal cortex R

-4 40 10 4.64 Anterior cingulate L

2 242 30 -36 0 4.60 Hippocampus R

32 -56 -14 4.47 Fusiform gyrus R

3 211 -26 -22 -12 5.04 Hippocampus L

-24 -44 -8 4.68 Lingual gyrus L

4 206 18 -72 -8 5.15 Lingual gyrus R

5 146 -16 -52 8 4.82 Calcarine gyrus L

6 135 -34 -82 14 5.19 Middle occipital gyrus L

7 31 40 -78 14 5.53 Middle occipital gyrus R

8 19 -12 10 0 5.68 Caudate L  3 

 4 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 5 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 6 

2002). 7 

 8 

 9 

 10 
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Supplementary Table 4. Clusters in value map revealed at univariate analysis in the 1 

satiated state 2 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 486 -34 -72 46 5.27 Parietal lobule L

-8 -74 56 4.32 Precuneus L

-52 -60 40 3.95 Angular gyrus L

2 456 -22 32 42 5.76 Middle frontal gyrus L

-28 12 46 3.66 Middle frontal gyrus L

3 273 4 40 -10 5.46 Medial orbitofrontal cortex R

4 85 -12 -56 18 4.62 Precuneus L

5 18 -30 32 -10 4.32 Inferior orbitofrontal cortex L

6 16 -20 58 8 4.98 Superior frontal gyrus L

7 15 -40 12 40 3.94 Middle frontal gyrus L

8 13 -28 12 56 3.71 Middle frontal gyrus L

9 8 -8 22 -18 4.52 Rectus L

MNI coordinate (mm) Location

 3 

 4 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 5 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 6 

2002). 7 
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Supplementary Table 5. Clusters in the value map revealed at multivariate analysis 1 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 14273 32 48 18 9.69 Middle frontal gyrus R

24 28 42 8.47 Middle frontal gyrus R

-8 50 28 8.23 Superior medial frontal gyrus L

-26 8 50 8.08 Middle frontal gyrus L

-22 50 10 7.79 Superior frontal gyrus L

12 48 20 7.69 Anterior cingulate R

-28 42 30 6.90 Middle frontal gyrus L

34 44 -10 6.78 Middle orbitofrontal cortex R

-48 40 -6 6.08 Inferior orbitofrontal cortex L

-22 32 48 5.53 Superior frontal gyrus L

-8 30 32 5.48 Anterior cingulate L

-30 22 -12 5.33 Insula L

-30 22 12 5.16 Insula L

32 16 56 5.04 Middle frontal gyrus R

20 26 -18 4.50 Inferior orbitofrontal cortex R

8 36 0 4.43 Anterior cingulate R

-56 30 10 3.74 inferior frontal gyrus triangular part L

2 3455 44 -56 46 7.71 Inferior parietal lobule R

-16 -68 58 6.99 Supeior parietal lobule L

-2 -72 42 6.55 Precuneus L

46 -68 30 5.52 Middle occipital gyrus R

56 -40 50 4.38 Inferior parietal lobule R

2 -48 38 3.72 Precuneus R

3 1477 50 6 -32 8.99 Middle temporal pole R

32 -12 -36 4.97 Fusiform gyrus R

4 732 -52 -2 36 6.55 Precentral gyrus L

-54 16 18 4.80 inferior frontal gyrus opercular part L

5 697 -52 6 -32 5.53 Middle temporal gyrus L

-30 -12 -32 4.37 Fusiform gyrus L

6 404 -30 -56 48 5.01 Inferior parietal lobule L

-46 -64 38 3.69 Angular gyrus L

7 160 60 4 30 4.07 Precentral gyrus R

8 34 62 -18 -14 3.91 Middle temporal gyrus R

9 33 48 -6 36 4.03 Precentral gyrus R

10 22 38 -36 46 3.99 Supramarginal gyrus R

11 21 -46 -52 30 3.74 Angular gyrus L

12 14 48 22 12 4.00 inferior frontal gyrus opercular part R

13 11 -26 -80 34 3.63 Middle occipital gyrus L

14 11 -2 16 52 3.73 Supplementary motor area L

15 10 4 12 52 4.05 Supplementary motor area R

16 5 62 -8 32 3.58 Postcentral gyrus R

MNI coordinate (mm) Location

 2 

 3 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 4 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 5 

2002). 6 
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Supplementary Table 6. Clusters in the value map revealed at multivariate analysis in 1 

the hunger state 2 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 12898 -6 54 24 8.28 Superior medial frontal gyrus L

-22 44 34 8.07 Middle frontal gyrus L

20 30 44 7.90 Superior frontal gyrus R

6 38 30 7.24 Anterior cingulate R

-38 36 16 7.04 inferior frontal gyrus triangular part L

34 50 16 7.01 Middle frontal gyrus R

-28 10 52 6.94 Middle frontal gyrus L

-34 30 42 6.70 Middle frontal gyrus L

-8 40 -6 6.15 Medial orbitofrontal cortex L

42 48 -4 6.01 Inferior orbitofrontal cortex R

14 42 4 5.70 Anterior cingulate R

32 8 56 5.54 Middle frontal gyrus R

-34 54 0 5.17 Middle orbitofrontal cortex L

12 62 2 5.06 Superior medial frontal gyrus R

-10 58 4 4.66 Superior medial frontal gyrus L

-48 40 -6 4.65 Inferior orbitofrontal cortex L

6 12 48 4.56 Supplementary motor area R

-8 28 46 4.22 Superior medial frontal gyrus L

42 38 32 3.86 Middle frontal gyrus R

2 4542 -2 -64 38 8.29 Precuneus L

38 -54 40 8.10 Angular gyrus R

54 -60 24 6.84 Angular gyrus R

16 -66 48 5.80 Precuneus R

58 -40 42 4.84 Supramarginal gyrus R

-18 -70 58 4.42 Superior parietal gyrus L

3 1588 -56 -56 42 5.96 Inferior parietal gyrus L

-34 -68 46 5.48 Inferior parietal gyrus L

4 1149 50 2 -28 5.90 Middle temporal gyrus R

64 -18 -14 5.43 Middle temporal gyrus R

5 464 -54 -8 30 6.02 Postcentral gyrus L

-48 16 16 4.27 inferior frontal gyrus opercular part L

6 227 -26 22 -12 4.51 Insula gyrus L

7 89 52 8 44 4.27 Precentral gyrus R

8 48 46 -12 34 4.55 Postcentral gyrus R

9 37 -50 26 6 3.92 inferior frontal gyrus tricular part L

MNI coordinate (mm) Location

 3 

 4 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 5 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 6 

2002). 7 

 8 
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Supplementary Table 7. Clusters in value map revealed at multivariate analysis in the 1 

satiated state 2 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 1664 24 38 -14 5.87 Superior orbitofrontal cortex R

26 54 22 5.75 Middle frontal gyrus R

48 50 -6 4.27 Middle orbitofrontal cortex R

40 38 12 4.09 inferior frontal gyrus triangular part R

2 886 -22 54 8 5.71 Superior frontal gyrus L

-44 44 -4 4.64 Inferior orbitofrontal cortex L

3 473 48 6 -32 5.23 Middle temporal pole R

30 18 -40 4.39 Middle temporal pole R

4 213 20 24 42 4.84 Superior frontal gyrus R

5 206 -10 -98 8 4.48 Superior occipital gyrus L

6 155 -8 56 38 5.70 Superior medial fronal gyrus L

7 101 -14 50 6 4.59 Superior medial fronal gyrus L

8 82 -30 -92 -4 4.32 Middle occipital gyrus L

9 37 34 -10 -36 4.20 Fusiform gyrus R

10 36 14 48 8 4.04 Superior medial frontal gyrus R

11 33 -54 0 34 4.93 Precentral gyrus L

12 32 26 38 34 3.85 Middle frontal gyrus R

13 18 -32 -14 -30 5.78 Fusiform gyrus L

14 10 22 10 -20 4.11 Superior temporal pole R

15 7 -26 22 -12 3.79 Insula L

MNI coordinate (mm) Location

 3 

 4 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 5 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 6 

2002). 7 

 8 

 9 
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Supplementary Table 8. Clusters in the whole-brain maps revealed at multivariate 1 

analysis of the difference in identical object specificity effects between same and 2 

different pairs states while controlling for the effect of differences in value distance  3 

Cluster No Cluster size (voxel) t Value(24)

x y z Side Area

1 121 -24 30 50 4.05 Middle frontal gyrus L

2 37 -20 44 40 3.84 Supperior frontal gyrus L

3 31 -34 44 8 3.65 Middle frontal gyrus L

4 9 -34 30 -12 3.79 Inferior orbitofrontal cortex L

5 7 -10 62 18 3.61 Superior medial frontal gyrus L

6 2 -38 42 34 3.54 Middle frontal gyrus L

7 1 -20 32 32 3.52 Supperior frontal gyrus L

MNI coordinate (mm) Location

 4 

 5 

Listed are the cluster size, coordinates in MNI peak, maximum t-value at local peak, and 6 

anatomical label from the automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 7 

2002). 8 

 9 

 10 


