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Chapter 1

Motivation

The aim and scope of the present research is to illustrate the potential of Sili-
con monolithic monochromators and its applications for lattice spacing measure-
ments of St and GaAs and associated defects in it using brilliant Synchrotron ra-
diation.Monolithic monochromators are critical ingredients where fixed wavelength
plays the key role. In the monolithic structure the interplanar angle between the
concerned diffraction planes are fixed, thus the wavelength emerging from this device
are highly stable and we exploit this feature in the measurements of lattice spacing
of Si and GaAs in our present study.

The lattice spacing of crystalline solids are sensitive to a wide variety of phene-
menon such as elastic strains by variation in the temperature,pressure, mechanical
stress, impurity, vacancy, electric and magnetic fields. These are mainly sensitive in
the region of few parts per million. For example if one is interested only in the strains
belowAd/d<107? and if a precision of order 1 percent is required, then sensitivity
to Ad/d<10"° must be achieved. The absolute and relative measurement of lattice
spacing of silicon crystal is important for the establishment of precision wavelegth
scale for various spectroscopies and also for the determination of fundamental phys-

ical constants like Avogadro constant and atomic mass unit. Determination of avo-



gadro number with high accuracy is needed to define the mole, kilogram and electric
standards. There are many defects in semiconductor materials those are at the or-
der of 10~° to 10~8. Therefore our aim is to measure the lattice parameter of Si
and GaAs with high precision and accuracy using Synchrotron radiation from 2.5
GeV facility of Photon factory, KEK, Japan. In this regard a 4-reflection channel-
cut monolithic monochromator has been realized to achieve the unique wavelength
which is one of the key ingredients for high precision lattice parameter measurement.
We have developed several new methods of different optics for the lattice parameter

measurenient systems at BL-3C2 of Photon Factory.




1.0.1 Synchrotron x-rays

As is well-known some of the advantages of SR compared to conventional x-ray gen-
erator tubes are, higher intensity, the wavelength selectivity and well-colliminated
beam. Many devices have and are being developed to further increase the intensity
such as wigglers and undulators and x-ray FEL’s. We used the standard bend-
ing magnet radiation which gave at least an order of magnitude higher intensity
and better resolution than the X-ray tube. The much higher statistics and lower

background obtained with SR are important factors in the measurements.

1.1 Previous study:

The starting point of lattice spacing measurements by x-ray diffraction methods and
evaluation of their accuracy and precision is the Bragg's law, combining diffraction
conditions with the parameters of the lattice to be determined by 2dsinf = n where
d is the interplanar distance being a function of direct lattice parameters and n is
the order of interference, a correction for refraction of X-rays should be introduced.
Measurement. of lattice spacings can be divided into absolute in which lattice spac-
ings are determined under defined enviornmental conditions, and relative, in which
compared to a reference crystal, small changes of lattice spacings due to the tem-
perature, pressure, mechanical stress etc are examined. In the particular case when
the lattice parameter of the reference crystal has been very accurately determined,
precise determination of the ratio of two lattice spacing will enable one to obtain an
accurate value of the speciman parameter. Absolute method can be characterized
by the accuracy Ad defined as the difference between measured and real interplanar
spacings or more frequently by using the relative accuracy, Ad/d defined by the for-
mula obtained as a result of differentiation of the Bragg law: Ad/d = AN/A—cotf A

where AX/X is relative accuracy of the wavelength determination in relation to the



tommonly accepted wavelength standard, and A# is the error in the Bragg angle
determined. There are many ways by which one can measure the lattice parameter
depending on the need of the experimenter, the details are given elsewhere, they.
can classified mainly in the following way:

(1) Single Crystal Methods:

(2) The Bond Method

(b) The Kossel Method

(c) Energy dispersive methods

(d) High angle diffraction of X-rays

(2) Multiple Crystal Methods:

(a) Double Crystal rocking curve

(b) Rocking curve from epitaxial layer

(c) Three reflection comparator -

(d) Double beam comparators

(3)Topographic Methods:

(a) Bragg angle mapping

(b) Bragg angle contours.

In the crystal diffraction methods, which give accurate determinations of the Bragg
angles and intensities, several instrumental and physical factors should be taken into
account. .The effect of some can be diminished by the use of soller slits and effects
of most can be reduced by the Bond geometry, in its basic forms or its various mod-
ifications in particular in combination with double or triple crystal spectrometers.
Another arrangement giving a partial reduction of systematic errors phenomena are
applied. In most one or double crystal assymetric spectrometers , the uncertainty
of the origin of the angular scale is the important problem, which can be resolved
by Bond symmetrical arrangement or triple axis arrangement or a second beam in

the multiple beamn method or in various combined method. The other important



problem in the single-crystal methods, in the case when high accuracy is required,
is the mis-alignment of the crystals and some element of the device. The errors due
to the mis-alignment can be reduced to some extent experimentally if a respective
dependence is known.

Along with an increase of Bragg angle determination, the error due to the wave-
length determination becomes more important and a correction for the refraction
should be introduced. Among others measurement performed in the case of Kossel
method and divergent-beam techniques can be strongly affected by uncertainty of
wavelength, especially when the exact value of the wavelength is to be determined|1-
10] from the experiment. Combination of X-ray and optical interferrometry gives
new possibilities of very accurate lattice spacing measurements. For obtaining high
precision a monochromatic and well collimated X-ray beam is desired . Some au-
thors have managed to reduce the cost of the experiment using simple equipment.
An example may be the triple-crystal scheme realized by the use of a double-axis
spectrometer. Considering all the methods we found a method which reduce the er-
ror in Bragg angle measurement and reduce the error in wavelength selection[10-19],
both are achieved in our lattice spacing measurement system which are by mono-
lithic monochromator for particular wavelength and particular sample indexes and

thus we demonstrate the potential of Monolithic monochromator x-ray optics.

1.2 Present Study

The aim and scope of the present research is to illustrate the potential of Silicon
monolithic monochromators and its applications for lattice spacing measurements of
Si and GaAs and associated defects in it using brilliant Synchrotron radiation. The
precise and accurate determination of lattice spacing attract scientists for decades

as there is a continuous need for the establishment of precision wavelength scale for
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x-ray, determination of Avogadro number and atomic mass unit with high accuracy.
In addition the production of silicon wafers free enough of both defects and con-
tamination for use in the semiconductor industry is becoming increasingly difficult.
The industry is working on the problems associated with detecting, identifying and
specifying these features. Our goal is to understand the very small strain in silicon
and in silicon wafer with a precision of Ad/d = 10~ Tto 10~8. Many works has been
reported using optical/x-ray interferrometry and conventional x-ray tube in this
connection. On the otherhand we have used synchrotron x-ray which is extremely
high intense, collimated, forward directed and tunable in comparison with conven-
tional x-ray tube. In addition we have introduced an monolithic monochromator
x-ray optics as a fixed wavelength device for the first time. We have designed and
fabricated several monolithic monochromators of different wavelengths, resolution,
geometry and energy dispersive settings from the notion that monolithic monochro-
mators can play an important role in the development of synchrotron radiation x-ray
optics and can provide the precision information about the materials. Monolithic
monochromators (MM/MDCM) are made from a single piece of silicon slot and
perhaps this is the significant difference from the Double crystal monochromator
(DCM)where the crystals are seperated. Due to this difference there are lot of im-
provements in the x-ray optics can be obtained by MM than DCM. Notably we
can get an excellent ‘stability’ by MM than DCM due to its mono lithic structure.
In the monolithic structure the interplanar angle between the concerned diffraction
plane is fixed therefore the wavelength emerging from this device can retain its high
stability. Thus MM can be used as an excellent precision wavelength device.

Therefore MM are a citical ingredient where fixed wavelength plays the key role.
The ‘continuous’ properties and ‘good natural collimation® of synchrotron x-rays in
addition to the large distance from the source allows monolithic monochromators

to provide a high energy resolution using a high index reflection. Using this high



resolution features of MM, one can achieve an excellent x-ray optics. So far our
knowledge no technological details about MM is reported in the literature.

We have designed and fabricated several monolithic monochromators, here we re-
ported their design principle, fabrication and applications .We applied some of the
MM in the high precision measurement of Si and GaAs lattice spacing with syn-
chrotron ra.diatio.n, mainly two methods (1) Precision Bond Method with MDCM
optics (2) Bragg method from pair of diffraction. The results demonstrate their po-
tential use as a precision wavelength device as well as an excellent SR x-ray optics.

In our study Chapter 2 describes details of monolithic monochromator (MM)
design, fabrication and etching techniques. A code for wavelength generation has
been also described in this chapter.

Chapter 3 describes the development of dynamical X-ray diffraction theory. We
present analytical expressions for diffraction curves in Bragg (reflection) geometry.
Several examples are presented as an implementation of the theory in this chapter.
Chapter 3 also contains the refraction and temperature corrections that are necessary
for high precision lattice spacing measurement with theoretical details.

Chapter 4 describes the characterization of all MM‘s which include the wave-
length callibration and details descriptions of Dumond diagrams for all MM's. Fur-
ther Chapter 4 discusses with the 3-beam and many beam effect in the simultaneous
diffraction from the monochromator that uses the Bragg diffraction of two same
planes of (513) and (153) ,detail calculation shows that overall Bragg peak shift
around 12 micro-radians. The Triplet phase have been determined to be zero degree
for the coplanar three beam (000), (513) and (153).

In Chapter 5 we describe X-ray optic systems that have been developed at beam
line BL-3C2 of Photon factory,KEK for the study of the relative lattice spacings
of Si-wafers using synchrotron radiation (SR). Since, unlike a X-ray tube, SR has

no characteristic [wavelength] spectral lines, a new tool of (4,+) high resolution



channel-cut monolithic monochromators (MM) are introduced in the systems as a
wavelength selective device. Using two types of MM, two schemes are proposed
and applied to the study of the lattice spacings of Si-wafers. The lattice spacing
differences are determined in the range of sub ppm level, for example in scheme-
1 we obtain 0.6 ppm and 0.2 ppm in scheme-2. One of the practical a.dva.ntages
of this system is that it can be applied for a fast and precise measurement of the
lattice spacing changes due to the doping and defects in Si, GaAs and other single
crystals. Scheme-1 describes the introduction MM optics as a wavelength selection
device while using the modified Bond method , thus the method provides the abso-
lute determination of lattice spacing values, the precision of the method increases
with the increase of higher Bragg angle, MM plays the role of Cu,Mo labratory x-
ray source for wavelength selection. The proposed method is unique for precision
d-spacing measurement using the state-of the are SR technology. In scheme-2 uses
the Bragg diffraction of two same planes of a sample, in this scheme lattice spacing
differences are determined from the measured differences in two quasi-simultaneous
Bragg diffractions of two equivalent atomic planes in a crystal. If we select a par-
ticular x-ray wavelength and pair of planes in the crystal with interplanar angle
between the planes matching the diffraction condition, the Bragg angle can be ob-
tained by measuring a small angle in a range of few arcseconds instead of measuring
a wide angle of few tens degrees in the Bond method. Asmall angle can be measured
quickly and accurately, therefore the the method provides high accuracy as well as
speedy.

Chapter 6 describes the lattice spacing measurement fron GaAs single crystal.
The lattice spacing of GaAs has been measured using the modified Bond method at
the order of ppm level.

As a conclusion, several monolithic monochromators of (+,+) type has been

designed and fabricated as a energy selective device and is classified into two types



which provides two schemes for lattice spacing measurement . We have achieved the
relative lattice value at the order of 1077 to10~* in this study as overall precision of
the proposed system. Further three beam cases have been described in details for the
type-2 monochromator where equivalent planes are excited simultancously showing
the Bragg peak shift for N-beam interactions with {000},(513) and (153) co-planar

three beam cases. More elaborately, conclusions are given after each chapter.
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Chapter 2

Monolithic Monochromator(IMM)

Design and Fabrication

2.1 Introduction

High energy resolution Monolithic monochromator are a critical ingredient in the
measurement where fixed wavelengths[26,27] play the key role such as determination
of lattice spacing of Si with high precision and accuracy, and in the inelastic scat-
tering for example to study the phonon spectrum and in nuclear resonant scattering
experiments. In these experiments it is necessary to reduce the energy bandwidth of
the beam from the high heat load monochromator from a few eV to the required few
meV level with very high efficiency. We can produce meV beams including cystals
in the dispersive arrangements (+,-,-,+) and scattering at High Bragg angles.

We fabricate the monolithic double crystal monochromator from a single perfect
crystal as a means of obtaining an X-ray beam of well defined wavelength
Monolithic double crystal monochromator(MM), in effect a single perfect crystal
where two sets of Bragg planes play the role of two seperate crystals. The anglef; be-

tween the two crystals of the MM is therefore fixed.Since the dihedral angle between
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the diffracting planes is fixed, the wavelength of the emerging beam is completely
determined by the geometry of the crystal structure when one imposes the conven-
tional condition that the beam must lie in the plane defined by the two diffraction
vectors.

We can obtain the longest wavelength by rotating the double crystal monochroma-
tor around an axis normal to the first set of planes. Thus the angle of incidence
on the first set of planes does not vary. The incidence angle in the second set of
planes, however varies with the angle of rotation «, is the angle of rotation around
the normal of the first diffraction plane of monolithic monochromator. The max-
imum point in this rotation corresponds to the central wavelength or the longest

wavelength transmitted by the monochromator.

2.2 Theory:

The starting point of our MM design is the Bragg‘s law. In order to obatain suitable

wavelength for experiments from MM, we solved the the following four equations:

A = 2dysinfy (1 — 6/ sin?6,)........ (2.1)
A2 = 2dysinfa(1 — 8/ sin 8y)........ (2.2)

0+, + By =m....... (23)

where & represents the refraction related correction and f is the interplanar angle
between the two planes.d; and ds are the two lattice planes of monochromator and
6, and 0, are corresponding two Bragg angles in vacuum

letsing; = z and sin#; = y then

12



A = 2dyz(1 — 6/2%)
Ay = 2day(1 — 8/y%)
bh+b+0Gy=m

Now from (2.3) we can write

6, + Bo = 180 — 6,
sin(f + Bo) = sin(180 — 8;) = sinfy =y
sinb cosB + costsinf =y
sinéd,cosf3 + \/E 1 — z%)sinf = sinf,
A = 2ds5tnby = 2dysinf cosf + \/E 1 — 2%)sing
A = 2dysin(8cosf + coshysinf)(1 — 8/ (sinb cosP + costy sinf)?...(2.4)

Equation (2.4) provides wavelength with § value. Now considering 4 equals 0, the

equations can be written as
M = 2d;sinb,........ (2.1)

Az = 2dgsin92 ........ (22)

91 + 92 + ﬂo = M.eeervss (23)

Al = Ag
From(2.1) and (2.2)
sindy [sinfy = dy/dy............ (2.5)
From (2.3)
" — 91 = 92 + ﬁ

sin, = sinflycosf + cosbysinf

13



Now putting the value in (2.1) and (2.5)
A = 2d,sinb,

A = 2d1[(d, /d,)sinbcosf + costsinf]
>= 2d,5tnd, [(d1/d2)cosB + (cosba/sind;)sing]
A = 2d,5inb, [zcosB + (1/sin?8) — 2%)/%sinf)
using A = 2d,sinfy ,herex = d,/d (let).

= zcosf + (1/sin%0, — z°)%sinf

squaring bothe the sides
(1 — zcosf)? = (1/sin0, — z%)sin*g
sin’B/sin’, = 22+ 1 — 2zcosf
>=(d,/dy)* + 1 — 2d,/dzcos3
>= (dy/dy — cosB)? + sin’f3

4d2sin?B/ A2 = (d1/dy — cosP)* + sin®f3
2d,sinf
[(d1/d; — cosf)? + sin?f]1/?
(1) Solving the 4 equations yields after further simplificaytions,? = fo:

A=

- 2d,sinfs (2.5)
[\/(h3 + K3 + B/h3 + Kk + 13) — cosBo)? + sin? o1/ '

(2) if d; = dy = d we can further modify the above equations as follows:

2dsinfy
[(1 ~ cosfl)? + sin?(3,]'/?

MM lLave been designed following the above equations.

A= (2.6)

14



2.3 MCMD (Monolithic Crystal Monochromators
Design) Code

2.3.1 Table of Hl,Kl,LI and HQ,K‘Z,L2

A simulation code MMCD (Monolithic Monochromator Crystal Design) has been
realized which can generate different wavelengths using(hi, &y, Iy )and(ha, ks, Iy} com-
binations using the wavelengths equations written previously.Our Code rely on the
lattice parameter value a=5.431061 angstrom at 25°C.

Tables are given in chapter 5 and programme Codes are shown in Appendix

2.4 MM Design and fabrication:

Several monolithic monochromators of different wavelengths A = 1.612607a° (Fig-
1), 1.410846¢° ( Fig-2 ) 1.356949a° (Fig-3) 1.542079a° (Cu-K monochromtor, Fig-4)
0.694067a° (M0-K monochromator, Fig-5). has been designed and fabricated by
ourselves. Technical details of their design and fabrication described below. (a)
Wavelength A = 0.1612nmMM

This is a very significant monochromator that we have designed having same Bragg
angle for (hy, k1,11 )and(ha, ka2, l2), the index being used are (5,1,3) and (1,5,3). This
is an implementation of eqn(2.6) special case. The reason of choosing this wave-
length and these indexes originates from the application for precision lattice spacing
measurement for Si. Conventional Bond method usually provides very high preci-
sion value but we need a rotation of the sample in the bond method. If we choose
(513) and (153) indexes we can achieve simultaneous diffraction and therefore effect
of temperature can be neglected and better precision data can be obtained than

conventional bond method at room temperature.
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Table I. Type-1 different indexes, MMCD Code generated wavelengths

hikili  hakaly  HKL fo & 0, A §

1565 -531 486 692044 63.1437 47.6519 1.356950 .57719E-05
3ss5 -331 086 70.8196 75.8031 33.3772 1370938 .58915E-05
335 351 086 73.5280 57.1730 49.2990 1.391940 .60734E-05
113 -5-35 -4-28 740515 252230 80.7265 1.395642 .61057E-05
113 -3-55 -2-48 740515 252230 80.7255 1.395642 .61057E-05
155 ©&15 6610 46.6641 66.6680 66.6680 1.396621 .61143E-05
113 -531 442 1047631 25.3769 49.8599 1.403594 .61755E-05
355 15-1 4104 548119 83.0088 421792 1.403614 .6175TE-05
115 117 99212 424407 68.3502 69.2091 1.410846 .62686E-05

Table II. Type-2 same indexes, MMCD Code generated wavelengths

hikily  hakala HKL Bo 4 @2 A )

135 35-1 4-24 119.0503 30.4704 30.4704 931039  .2T17T2E-05
355 -5-35% -2210 04.8614 42,5693 42.5693  .956631  .28686E-05
135 5-1-3 622 111.8037 34.0081 34.0981 1.029302 ..33210E-05
335 -35-3 082 102.0815 389503 38.9593 1.041527  .34004E-05
155 -1-55 0010 91.1235 44.4382 44.4382 1.064914  .35548E-05
135 531 -406 104.9006 37.5497 37.5497 1118970 .39249E-05
155 -55-1 -4104  72.8954 53.5523 53.5523 1.223493 .46924E-05
335 .3.35 0010 80.6311 49.6854 49.6854 1263037  .50006E-05
135 53-1 -464 916373 441814 44.1814 1.279591 .51325E-05
155 551 6106 466641 66.6680 66.6680 1.396621 .61143E-05
135 35.1 -284 784630 50.7685 50.7685 1.223493  .46924E-05
335 -3-35 0010 80.6311 49.6854 49.6854 1.422186  .63402E-05
115 -15-1 064 92.1226 43.9387  43.9387 1450516  .65953E-05
135 -1-35 0010 64.6231 57.6885 57.6885 1.551732 .75479E-05
135 531 666 57.1216 61.4392 61.4392 1612607 .81517E-05



MMCD code provides wavelength of 1.612607 angstrom which satisfies the simulta-
neous Bragg condition for the indexes (5,1,3), (-5,-1,-3),(1,5,3),and (-1,-5,-3). The
Bragg angles for both indexes is 61.4392 degree with ihterplanar angle 57.1216 de-
gree. In this design the third reflection is not allowed therefore the many beam
effects is avoided. In order to realize the monochromator, in brief we did the follow-
ing steps: (1) First we find the perpendicular vector for the indexes (5,1,3)and(1.5,3),
this is (-1,-1,2) which is the vector product(5i + 15 + 3k) x (1i + 57 + 3k) of the
above indexes. A stereogram is drawn for the pole (-1,-1,2) . From the pole figure
we identify the major direction (-1,1,0), (1,1,1) and (-1,-1,2). (3) Accordingly we
design our MM , we choose the beam gap 35mm between the incident and diffracted
beam so that direct beam is avoided without any shielding.

As we know the major directions , then we find the angle between (153)/or(513)
with any major direction say (111),28.5603 degree in this case and we cut the first
index by Diamond saw with a precision of lmicro m. As a next step we just rotate
the saw by the interplanar angle 57.1216% and cut the second plane. According to
the design we move the saw parallely for the cutting of a conjugate plane. We check

the major direction and choosen indexes by X-ray diffraction in order to confirm the

direction.

Geometry:

Once at least the two direction is known with respect to the choosen diffraction
vectors then one can choose any geometry one likes. We have choosen L x B x H =
45mm x 45mm x 45mm. For making MM adjustment easier for the experiment

we have choosen different height of the diffraction legs, the second leg is smaller

“than the first leg so that we can catch the first diffraction easily and hence after

necessary adjustment we can get the 4th cosecutive reflections. For etching we use
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the solutions of HF,HNO3 and CH3CH20H with appropriate ratio.

(b) Wavelength A = 1.410846a°M M
This monolithic monochromator has been made using the reflection indexes (1,1,7),
(1,5,1),(-1,-1,-7),and (-1,-5,-1). The motivation behind for fabrication of this monochro-
mator is to study the d-spacing of the GaAs(800) single crystal doped with Boron(B)
using the Bond method. As the high bragg angle provides high precision there fore
we found the above indexes from the MMCD code which provides 86.5 degree for
GaAs(800) sample. MM has been made following the same procedure that has been
described for the previous monochromator, here the perpendicular vector is (17,-3,-
2). The diffraction plane has been checked by X-ray. .
The Bragg angles are 42.4 degree(151) and 68.1 degrees(117) respectively and the
interplanar angle turns out to be 69.5 degree.The beam gap is 15 mm between inci-
dent and diffracted beam.
(c) Wavelength A = 1.356949a°M M

This monochromator has been made to study the d-spacing of Si. For Si(800)
sample this provides 88 degrees using the indexes(155),(-1-5-5),(-531)and (5-3-1).Bragg
angles are 53.1437 degree and 47.6519 degree respectively,the interplanar angle is
69.2044 degree. The perpendicular vector (5,13,-14 ) is perpendicular to both index
and thus the index planes are parallel. Fig 6 shows schematic design for 0.135nm
wavelengths MM and Fig 7 shows for the O.161nm MM and its steregram is shown
in Fig 8.
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2.5 Conclusion

(1) Three independent equations has been solved and two types of wavelength has
been derived, using the solved equations (eqn 2.5,2.6) a computer code MMCD has
been developed to generate the two types of wavelength.

(2) From the two wavelength equations monolithic monochromator classified into
type-1 {a) d, # d, and (b) type-2, d; = d»

(3) Several monolithic monochromators of different wavelengths A = 1.612607a°
(Fig-1), 1.4108460° ( Fig-2 ) 1.356949a° (Fig-3) 1.542079a° (Cu-K monochromtor,
Fig-4) 0.694067a° (M0-K monochromator, Fig-5) have been designed and fabricated

by ourselves. Technical details of their design and fabrication have been described.

Design and fabrication of 1.612607 angstrom MM is reported as an illustration.
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Figure 1
Type 1 monolithic monochromator designed for a wavelength of 0.1410 nm

with index (1, 5,1), (1,1, 7), 4,5, 1), ., 1, 7).

Figure 2
Type 2 monolithic monochromator for a wavelength of 0.1612 nm with index

(5.1,3), (1,5,3), 5, 1,3), 1,5,3).




Fig 5 Type-1 Mono

chromator designed for wavelength 0.13525 nm with index
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Fig 8 Sterogram for 0.16126 nm wavelength MM design.




Chapter 3

Dynamical theory of X-ray

Diffraction

3.1 Introduction

We present analytical expressions for diffraction curves in Bragg (reflection) geom-
etry[31,32]. Detailed various aspects of dynamical theory and their various applica-
tions are reported in [ 56,57,58,59,60,61,62,63,64,65,66,67] and many others,
Several examples are presented as an implementation of the theory. In describing
the dynamical theory of X-ray diffraction, from Maxwell equations , we can derive
the following two differential equations for the field strength Dy and Dy which are
related to the waves propagating along the incident-beam direction and diffracted-
beam direction inside a perfect crystal. The electromagnetic waves are transverse
waves, and we assume that we can treat the m and o polarization components

independently, viz.,
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8Dy /8sn = —in KCxaDo + (120 KBy + K Xo) Dhevovoecr. (1)
ADo/0sg = TKCxoDo — (inKCxp Dp)eveereen (2)

Here, we use the oblique cordinate system (s0,sh). The directions of s0 and sh
correspond to those of the incident wavevector and diffracted wavevector, respec-
tively. C is the parameter distinguishing the polarization states and usually referred
to as the ”polarization factor”.

C=1 for o polarization ..........cccccceceeirences (3)
C=cos(20g) for 7 polarization............. (4)

where fp is the Bragg angle.

The x.'s are related to the hth Fourier component of the susceptibility and are

represented as follows in terms of the crystal structure factor Fj.
Xh = —/\27‘th/7!"/. ...................... (5)

here \is the X-ray wavelength, 7. the classical electron radius (r. = 2.8179 x 107'?)
and V is the volume of the unit cell. The Crystal structure factor Fj, is represented

in terms of the atomic scattering factor

by
Fh=Fy+iFy =S (f) + f; +if] Jezp(2rihr)e ™0 (7)
J

. where the summation is over all the atoms in the unit cell. Here the two parameters

F, and F, are defined by the following equations:

Fo=Y(f]+ f;)exp(Qﬂih.r)e'Mj ....................... (8)
i

K = Z(f;)exp(th.r)e_Ml .................................... (9)
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The Debye-Waller factor e~ arising from thermal vibrations and static displace-

ments , We can re-write the susceptibility as follows:

Xh = Xh + 'I‘Xh ...................... (10)
Xn = AT Fu TV, (11)
Xp = A2 Fp TV (12)

B, is the parameter representing the angular deviation from the Bragg condition

and is related to #y — @ through another parameter W,

By = e\/fe’yh/'m)Cx‘hW ................. (13)
W E\/E’Yo/f’m)[?(% - 93)2363"7;2295) X -w/w) (14)

~n, and o are scalar products of s, and sq with the inner surface normal n. For
Bragg geometry e=-1 and for Laue +1. The solutions of egn{l) and (2) will be

following form:

Dy(2) = doexp(2midk,y)eeoeceeoneinne (15)
Dp(z) = dpexp(2midk,.) oo, (16)

Let us introduce new parameters { and g as

dn = (dy

exoley/(vo/em — Vem/ )
2Cx,

Inserting eqns(13),{15),(16) and (17) into egns(1) and (2) and using the relations

8/6s0 = Yod/dzand
6/63}1 = 7hd/d3
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eqns (1) and (2) becomes
2nidk,vo — wKx:} = —wiKCXg ............... (21)

(2midk,yn + 2miK C‘X;l

Em/ oW - xp)¢ = ~miKCxh.........(22)

Solving egns(21)} and (22) for 8k, we can get the following expressions:

okl = —eKCx;,/[Q\ﬂf'Yo’Yh)]

The corresponding expression for ¢ is derived from egn(21) and is given by:

¢ = —1/(1+ik")(ro/em) (W +ig) £ (W +ig)? + (1 +ik)(1 +k))].......(24)

In equs (23) and (24) k and &* are given by

k=X
Xh
= [gc}l*
Xh]

Now the solutions of egns(1) and (2) can be written as the form:
Do(z) = diexp(2miklz) + diexp(2midklz)

Din(2) = (' diexp(2midklz) + Cd2exp(2midkZz). oo (28)

d} and djare to be determined from the boundary conditions for the X-ray wave-

field at the entry and exit surfaces of the crystal.
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3.1.1 Diffraction curves in the Bragg geometry

In Bragg geometry, Yo > 0,7 < 0 and € = -1
so that egn(23) and (24) can be written as

8k = —KCx,/12¢/(vom)]

The corresponding expression for ( is given by:
¢7 = —1/(1 +ik") Ao/ MW +19)%

ﬂW +ig)2 + (14 k) (1 k") ons (24 — 2)

If we take the amplitude of the incident beam to be unity and that of the diffracted
beam to be Ej the boundary conditions at the entrance surface is z=0 and also at

the exit surface, thus we can write:
Do(z=0)=dp+d3 =1, (29)

Da(z = 0) = (dg + (Pdy = Epevvvevvccnnens (30)

Since one of the 6] has a negative imaginary part, resulting in a field amplitude
which diverges to infinity as z increases, the coefficient d? must be zero. Accordingly

, eqn(29) and (30) are reduced to:

E,=(

3.2 Reflectivity
and the Reflectivity is given by
RBragg(W) = ’7!!/'70((1)2
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3.2.1 Intensity

The rocking curve Intensity is the auto-correlation of the Reflectivity, the relation-

ship between the rocking curve and reflection curve can be written as:
I(w)=K f R(6R(6 — w)do

[for double crystal]

The general theory of X-ray diffraction, which properly accounts for normal
absorption and extinction of wavefields in crystal medium, is called the dynamical
x-ray diffraction theory. It is a first order theory in that it takes the deviation of the
x-ray refractive index from unity up to first order, and the variation of the complex

amplitudes over one x-ray wavelength to first order.

3.2.2 Computer Program

Using the dynamical theory a computer programme [ 30] have been developed to
generate the rocking curves which incorporates the equations described above by

FORTRAN 77 , one run takes several few minutes to calculate the rocking curves.

3.3 Simulated results:

3.3.1 Examples

Several simulated rocking curves has been generated Using the prorgramme above ,

Fig-1 and Fig 2 shows some simulated reflectivity curves for Si.
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3.4 Discussion

Several simulated rocking curves has been generated Using the prorgramme above
, Fig-1 and Fig 2 shows some simulated reflectivity curves for Si. Fig 3 shows
the Intensity curves generated for Si(153) which shows good agreement between
theory and experiment thus showing the good performance of the monochromator.
The discrepency is due to the convolution effect. It is assuined in the theory that
crystal is perfect but this may not be the true in real case. Further Fig 4 shows the
dynamical effect after the 4th reflection for 0.16126 nm MM.
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.Fig 4 Experimentally observed curve after fourth reflection from MM
with wavelength 0.16126nm
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3.5 Corrections for Lattice Spacing Measurement

In this section we describe the necessary corrections for lattice spacings, these are
mainly (1) Refraction (2) Assymetric and (3) Temperature corrections and all pos-
sible corrections depending on the experimenter and experiment. Lattice spacing

can be corrected as d = do+all corrections.

3.5.1 Refractive Index

The refractive index is defined as the ratio of the phase velocities in vacuum and in
the medium c/v,. because v is complex, we get complex refractive indexy.. The

partial refractive index for g-type electron :

feq = Hq — tHi, g =1 = by — 1Bq......(4.1)
ptqg = 1 — &g is the real part of ey - The unit decrement &, gives the departure ofu,

from 1. for X-ray frequencies:

2nnge*m(w? — w))

m2(w? — w?) + 4e*w®/9c°

0 =

2rn,e?

~ m(w? - w?)

indexy For the X-ray frequencies (w =2 wy)

2me? Y, 1

(5 = ;6q == '(j;—wg)_m
N 2ne? 2q g
T wim
B e?n\?

2mmc?

For X-rays being dispersed by crystals, the unit decrement é is a small positive

quantity ,and g =1 -6 < 1(for x-rays) (In glass prism u > 1).It follows that for
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X-rays the medium of a crystal is less dense than a vacuum If N4 = 6.0225 x 10%
is Avogadro number, A=Atomic wt,Z=Atomic number,p=density, then from the

above equation gives with n = E%e and

§/X% = N4 Zp/(2rmc?A.)
§/3% = 2.7 x 10'0Zp/A = constant(A < Ag).......(4.4)

for most cases. From eqn(2) forAlI'(A = 27,p = 2.7)0 = 1.74 x 107°.
For MoK ,(0.708) radiation Jezp = 1.68 X 10~5(good agreement). Near the absorp-

tion edge % is not constant and anomalous dispersion occurs 82 varies with A.

In our case:
we have Agi_s;3 = 1.612607angstrom

Using eqn(2)6/X3% = (2.7 x 10'°Zp) /A we have

Z=14
A = 28.085
p = 2.3290406gm/cc
A = 1.612607Angstrom

50,6 = 2.7 x 10" x 14/28.085 x 2.3290406 x 1.612607% x 1078 x 107°

531’—1.61 = 8.15 x 10—6
63,'__1_41 = 6.23 x 10-6
Soio135 = 5.77x 107°

551‘_1.54 = 7.45 x 10_6
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3.5.2 Assymetry:

In the general case when the crystal surface is not parallel to the reflecting planes
but is rotated from the atomic planes around the measuring axis by the angle .
. the corrections which relates directly to the determined interplanar distance, has
the form d = do[1 + 8cospt/(sin(6 + )sin(6 — p))] where 6 = 4.48 X 10751y A%, where
ne = 699nm~3 for Si. In order to incorporate the refraction and assymetry the

additional term to the Bragg angle can be written more explicitly by the formula
Bpssym = 90° ~ Bo/2 — 8/4[2+1/b+ 8]

where b is the assymetry factor. In another form in terms of small correction (e) due
to the assymetry arises from the miscut can be written as € = ;}éﬁ;[lﬁ—sinﬂ /5in(26,—

8)] where 8 and 6, are glancing angle of incidence and Bragg angle.

3.5.3 Temperature corrections:

Temperature correction to lattice spacing values follow the linearity equations Ad/d =
aAt where a is the thermal expansion co-efficient, usually 2.5 % 1076 at 22.5 degree
celcius. For example temperé.ture fluctuation should be maintained 0.04 degree-cel-
cius for Ad/d = 107® to be achieved. Usually corrections are standard procedure to

be needed to follow depending on the experimental conditions.

3.5.4 Vibration Measurement

We have taken the vibration spectrum by Fourier spectrometer. Fig 5.1a shows the
signal when the accelerometer is placed on the goniometer stage and Fig 5.1b shows
the spectrum when the sensor is put on the sample holder, we see from the both
spectrum there is no significant change, peak signals are due to the line signal. Fig

5.1c shows the spectrum when the Coarse motor of the sample goniometer moves
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and Fig 5.1d shows the spectrum when the Fine motor of the sample goniometer
moves, from the above study we see that Fig 5.1a,5.1b and 5.1d has no change in
the spectrum and thus we take our all diffraction spectrum in the lattice measuring
system by tuning the Fine motor.

Further it is estimated that for the source orbit movement of 100micron, comesas
the effect of (1/2)a*tand to the measured Bragg angle which attibutes approximately
1 x 10 —6 to the Ad/d value. Thus all effects need to be taken care for the mea-

surements.
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Chapter 4

Charcaterization Of Monolithic

Monochromator:

4.0.5 Wavelength Callibration:

The absolute wavelenghth have been callibrated first by DCM Si(111) with Bond
method using an analyzer crystal and fine tuning of the wavelength have been per-
formed by inserting the monolithic momonochromator and using two cross tilting
stage of the goniometer where MM were fixed. Further as we fabricate the monolithic
double crystal monochromator from a single perfect crystal as a means of obtaining

an X-ray beam of well defined wavelength, the tilt dependence wavelength is defined

by [45]

Aa) = 2d; sinfocosc (3.1)
[ﬂh% 2+ B/RY+ kT + 12) — cosfo)? + sin?focos?all/?

where a is the rotation around the normal of the first plane and a =0 corresponds

the maximum wavelength transmitted by the MM (MDCM). Our all MM has been

chracterized to transmit the maximum wavelength as at o = 0 position define the

lattice constant precisely. To charaterize the wavelength we have used the analyzer

crystal after the MM, MM was installed in a two stage goniometer by which we
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can rotate the MM around the normal of the First plane and to obtain a maximum
wavelength. Fig 3a shows the wavelength callibration of MM's, showing the o = 0
positions which corresponds the maximum wavelength, either side from maximum

position corresponds the spectral range of MM

4.0.6 Intensity

The general expression for the intensity transmitted by MM can be expressed[45]

and many other references related to the dynamical theories are [26, 31, 32, 65,

56-66]:

1—[][(;@ $)J() ZR [06,(6,w)
—(A,\/)\g)tanﬂl]R?,a[ABg(qb,w)
—(AN/ Ao)tands)ldAdgdw
where w a'nd ¢ are the horizontal and vertical divergences and Rl and R2 is the

reflectivity from the 1st and 2nd index and @ are the Bragg angles from the crystal

faces. The window function is defined as :
W= o) = [ [ Gl )IN) L RLASH @)
—(A)\/)\o)tanQI]RM[Bg(d), UJ)
—(ODM/ Ao )tanbsldédw
where the symbols R1,2 are the Bragg reflectivity curves of the two crystals, P
denotes the polarization state. the arguments of R are the deviations of the glancing
angles of the rays g and 6 + 3 from respective Bragg angles 6, and 6,, G is geometry

of the instrument and J is the intensity distribution in the spectrum. We developed a

programme using the dynamical diffraction theory to compare with the expt rocking

curve.
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4.1 Resolution provided by the Monolithic Monochro-
mator

The full width at half maximum (FWHM) of the reflecting range is given by [59) :

Af = Qng('yg/'yg)l/z/sin%B
Xg = —72A2Fh/7ﬂ/c
where 7, is the classical electron radius, Fj is the atomic structure factor, V, is the
volume of the unit cell, X is the wavelength C is the polarization factor; 1 for o

polarization and cos26s for w polarization and (7/Y) =1 for symmetry reflection.

The energy resolution is usually determined using the relation:

AE/E = cotfA8

4.1.1 Dispersion:

Dispersion is an important parameter as how wavelength varies with Bragg-angle

and the angular dispersion of MM is defined by
D =dafdr = 4E1(a/\/Eh12+k12+112)2sin2(ﬁo)cosaa/[B2(d2/d1)+cosﬁosina]...(3.2)

where B=12398 4244eVangstrom. The general behavior of the dispersion function
D is proportional to cos 3a/sina We have caculated the dispersion following the
above equations for some of our monochromators. In order to callibrate wavelength |
resolution we have used the Fig- 3d where an analyzer crystal was used. Table 3f
shows the beam size,wavelength, energy resolution and throughput of various MM.
Theoretical Rocking curves has been generated using the X-ray dynamical diffraction

theory for 0.1612nm wavelength MM, the experimental rocking curves correlate well

with the theory.
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4.2 Results and discussions

Fig 3 shows the X-ray photograph showing the incident and diffracted beam gap is in
agreement with the designed value for the 0.1542 and 0.0694nm Monochromators.
All monochromators has been callibrated at its maximum wavelengths following
equation 3.1.  Figdb shows the relationship between the tilt angle of a channel-
cut(a) and their wavelengths for monochromators of 0.0694 nm(Mo-K) , around the
peak positions , we observed the zero tilt position which corresponds to the longest
wavelength transmitted by the monochromator.

We further calculate the dispersion for the above two monochromators following
eqn(3.2), Fig 3b and 3c shows the absolute callibration of the wavelengths and
their correspondence dispersion relationship for MM design for 0.154nm and 0.069
nm wavelength. We observed the singularity at maximum wavelength position as
expected and is clearly shown in fig 3¢ in case of 0.06940nm monochromator. Such
relationship has been obtained for the first time and thus lattice constant at this
maximum position defines with high precision. We further observed that for higher
Bragg angle the dispersion is higher. We have tried both high and low Bragg angle
MM, for higher Bragg angle the dispersion is higher, therefore one needs the optirnufn
choice of wavelength. In fig 3a shows Callibration of wavelength of MM showing the
maximum wavelength transmitted from 0.0694 nm. All MM has been set at this
maximum position. Further wavelength have been callibrated using Bond method
and FZ oxyzen free crystal.

Further Experimental rocking curves in Fig 3e for 0.1612nm monochromator fits
well with the Dynamical diffraction theory thus showing the good performance of
MM. From MM Characterization Table-3f we see that for higher index MM, the
wavelength resolution is higher therefore number of photons on the sample is lower,
in case of low index provides lower resolution but higher number of photons. Thus

one needs to compromise the higher resolution at the cost of lower intensity and
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higher intensity at the cost of lower resolution. Output after the 4th reflection from
MM varies accordingly. Our main interest is to set the MM at its maximum position
as it is related to the lattice constant value which is the longest wavelength value of
MM according to the expression (2.5). All MM" were well characterized in terms of

their wavelength, resolution, FWHM , beam gap and throughput.
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4.2.1 Dumond diagram

Dumond diagram characterize monolithic monochromators in terms of their Energy
and Angular resolution. Dumond developed a graphical technique for understand-
ing the wavelength and angular distribution[36] of X-ray beam that results from
the successive diffraction through various multiple- crystal face arrangements. The
Dumond diagram for diffraction from the first four crystal faces is shown in Fig-3g.
These diagrams is applicable only when all of these first four crystal faces are iden-
tical, and the x-ray beam undergoes the same bragg reflection at each crystal face.
Figure 3g shows the intersection of the curves. The square shaped area represent
the resulting x-ray beam. In Fig 3¢ four cﬁwes,01,02,03,04 represent the region
of diffraction from crystal faces 1,2,3,and 4 in Figdg, respectively. Curves Ol and
02 lie on top of one another, as do curves O3 and O4, so only two distinct curves
are seen in Fig 3g. Curves Ol and 02 follow the functional dependence A = 2dsint
where d is the spacing of crystal planes. curves 03 and Q4 are reflected about the
) axis and displaced by twice the Bragg angle, 85 and so follow the functional de-
pendence A = —2dsin(f — 20g). The enlargement of the intersection region shown
in fig 3g shows that the O curves are actually bands of finite width , coerrespondirig
to the band of narrow but finite angular width over which the Bragg diffraction is
observed. The wavelength and angular distribution of the beam after the first four
reflection is the product of the intensities of the bands in the intersection region.

Suppose we know the angular dependence of the reflectivity[30] for a monochromatic
x-ray beam that undergoes the specific bragg reflection. We are using with these
first four crystal faces. We define that the line shape to be g(y)- The maximurm value
of g occurs when y equals zero, and g gradually falls off to zero as y becomes large
either positively or negatively. but g is not in general symmetric about zero. Then
the intensity of band O1 across the line AC shown in Fig 3g would be g(0—06g). This

is the intensity at Ag, the central wavelength of the radiation emitted by x-ray. The
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intensity of band O1 across line of constant wavelength A slightly above or below Aq
is the function g displaced slightly to the right or left by the difference between A
and ) divided by the slope of Ol in this region,i.e

I = 9[9 - 93 - (/\ - Ag)/d/\/dg)] ......................................... (33)

[ = glf— 85 — (A — A0}/ 2d00SBB) ] corvrorrsvcrrvssvessnssoerssrooe (3.4)

We assume that the line shape does not change with small excursions in the wave-

length.
The intensity of O2 is the same as for O1. The intensity of O3 along AC is the same

function g, inverted and displaced. Thus the intensity of O3 along AC is g(—6+65).
On line of constant wavelength slightly above or below Ao the intensity of O3 is, by

the logic used before,

I = g[0+ 05 — (A — Xo)/2dcostg]

The intensity of O4 is the same as for O3. the angular and wavelength distribution

of an x-ray beam that has undergone the first four successive reflections shown in

fig-3g is therefore the product of four intensities,
I=gld—0g—(A— A0)/2dC08OB)P e (3.5)

I=gl0+85— (A~ Xo)/2dcosOB) .o e (3.6)

4.3 Analytical AfandAX/A

Here we have derived angular and wavelength spread in the dumond diagram for
the two different hl,k1,11 and h2,k2,12 combinations. All symbols are labelled in Fig
3h. In triangle AMR (Fig-3h)

tanB'==AM/MR=AM/(MQ+QR):AM/(A9+QR) ................................ (3.7)
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In Triangle CQL

tan6,=CQ/LQ=CQ/ (MQ+LM)=CQ/ (AGHLM).ovierviiiimie i (3.8)

from above

£, (§+LMY=CQu . oovvvermimemmmmsssssssssess s (3.9)
£aRB, (§HQRYZAM oo (3.10)

Adding equation(3.7) and (3.8)

tanb, (9+LM)+tan9‘2(A6+QR)=CQ+AM

Ab(tanb, + tanby) + tanf: (LM)+tand,(QR)=AM+CQ....... (3.11)

In Triangle AOM
tanf;=AM/OM=AM/(WI+LM}.coooiviimmmiririesmmm e (3.12)

In Triangle CQZ

£anBy=CQ/(W2HQR)..orerrerrernrmsssssssssssssssssssssss s (3.13)

From (3.12) and (3.13)

£anf (WIFLM) =AM (3.14)

£anly (W2HQR)=CQuccvvvvemensssssssessmsssssssre e (3.15)

adding (3.14) and (3.15)

tan91(W1+LM)+tan9‘2(W2+QR)=AM+CQ ..................... (3.16)

Now comparing from (3.5) and (3.10)

AB(tand, +tanby)+tanby (LM )+tanby(QR) = tand (W1+ LM)+tand; (W2+QR)
A8 = (tand, W1 + tanfW2) [{tanf; + tant))

from tan(180 — 6;) = —b2

A8 = (tanh W1 — tanf,W2)/(tand; + tanf)...occovweeeens (3.17)

AX/ X = Abcott =[(tan91W1—tanBQWQ)/(tan01+tan92)]1/tan(91+92) ............. (3.18)
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4.4 Dumond diagram procedure:

(1) Dumond diagrams are functional dependance of A = 2dsinf
{2) Dumond diagrams are curves of finite bandwidth corresponding to the angular

width over which the Bragg-diffraction is observed and given by:
Awl/g = 2|C|x/sin293 ............... (319)

wherex = =Y A2 Fn [TV (3.20)

~v. is the classical electron radius.
F,, is the atomic structure factor

|Cl=cos26gfor 7 polarization and 1 for sigma polarization.

DUMOND DIAGRAM FOR WAVELENGTH 0.1410nm:

(1) for (1,1,5) index:
Aw,jp = 1.67arcsec Band width for (1,1,5) represented by QI,0II (2) for (1,7,1) in-
dex: Aw, sy = 1.54arcsec Band width for (7,7,7) represented by HL,HII and following
the same procedure ,the slope for OI,OII is37.79degree and slopefor HI,HII is 15.83
degree.

DUMOND DIAGRAM FOR WAVELENGTH 0.06940nm:

(1) for (5,9,11) index:
Awp = 0.14arcsec Band width for (5,9,11) represented by OI,OII (2) for (7,7,7)
index: Awyy» = 0.19arcsec Band width for (7,7,7) represented by HLHII and fol-
lowing the same procedure ,the slope for O1,011 is 5.5 degree and slopefor HI,HIT is
15.8 degree.

DUMOND DIAGRAM FOR WAVELENGTH 0.1359nm:

(1) for (5,3,1) index:
Aw, /2 = 1.26arcsec Band width for (5,3,1) represented by OILOII (2) for (1,5,5)

index:
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Aw, s = 1.22arcsec Band width for (1,5,5) represented by HI,HII and following the
same procedure ,the slope for OLOII is 31.69 degree and slopefor HLHII is 18.96

degree.
Dumond diagrams drawn are shown in Fig 3i, 3j 3K. Thus the draw of dumond

diagram for MM provides the understanding of the intuitive energy spread and

angular spread of each MM.
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4.7.1 2-beam Rocking curves

Two beam rocking curves is shown in Fig-1 , Comparing with Fig 1 with Fig 2 to

10, it is estimated that overall Bragg peak shift is 12 micro radian.

4.8 3 -beam Rocking curves

Further effort has been made to calculate the 3-beam diffraction from a finite crystal
using the Takagi-taupin [62,63), approach considering the natural parameter (7) of
a crystal which is the ratio of the crystal dimension to the extinction length and
u parameter which is the product of the crystal dimension to the excitation error
{deviation from the Bragg peak) and is dimension less. In these calculations ® is
the product of the three structure factors involved in three beams [62,63,64,66,70].
By using on the Takagi-Taupin equations for three coupled waves in a perfect crystal
it has been possible to obtain general boundary-value green functions for the wave
fields Dy, Dy, D,. For a crystal shaped as a parallelepiped the integral power P is
calculated by suitable integration over one divergence angle and over the entrance
and exit surfaces. The result which is expressed as a function of the deviation
from the Bragg condition for the third wave, is continuous through the three-beam
point, and gives the expected assymetry associated with the invariant phase ® of
the product of the three structure factors involved. Non zero value of X corresponds
to the movement of reciprocal lattice point relative to the Ewald sphere.

In the expression for the integrated power the dimensions of the crystal [ 70] ,
scaled to appropriate extinction lengths, occurs as parameters. The movement of
the reciprocal latrtice point owing to the rotation of the crystal when calculating
the integrated power. When this movement is small it shows oscillations in the

integrated power, both Umweganregung and Aufhellung situations is observed.
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In the result, Fig 17, shows invariant phase of three-beam ®==0 shows the relative
change in integrated power as a function of u,( parameter which is the product of
the crystal dimension to the excitation error (deviation from the Bragg peak) )

corresponds to usually called Umweganregung case, Fig 17.

Fig 18 with Phase & = 180 corresponds to the Aufhellung case Fig 18, others

& = 90, 270degrees are intermediate case. Other intermediate case shown in Fig 19

, Fig 20.

Non zero value of X corresponds to the movement of reciprocal lattice point
relative to the Ewald sphere when the crystal is rotated to measure the integrated
power. Splitting in Fig 21, Fig 22 is attributed to the two excitation errors usually
occurs due to the 3-beam case as we have calculated in the earlier calculation. In
these calculations It has been proved that the diffraction power is symmetric in case
of phase 90 degree and 270 degree Fig 19 and Fig 20 in agreement with the plane

wave of dynamical theory.

From experimentally observed curve it seems that there are some resonant errors
occurs enlarged in Fig 14, Fig-15. Fig 16 shows the diffraction curves after the fourth
reflection - this is perhaps due to the narrow angular window and narrow energy

window after the fourth diffraction.

4.8.1 Bragg-Peak shift

Detailed calculation Fig 1-Fig 11 shows that the overall Bragg angle-shift is about
12 micro radian in case of (513) and (153) diffraction with wavelength 1.612607

angstrom monochromator.
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4.8.2 Structure factor:

In general for the direction of the spectrum hkl, the structure factor F(hkl) is given
by
F(hkl) = Y fe?mithusthoitben .. (1)

where u, v, w being the fractional co-ordinates of the centre of the atom whose
scattering factor is f; and summation being all over the atoms in the unit cell. To
show the phase factor we know that a complex amplitude includes the phase factor,

for example in f = f +if " then we can write
fo4if =|fl(cos® + isin®) = |fl|e*?

where

tand = f—
f
1=V + £
corresponds to a real amplitude factor equal to the modulus of f and a phase factor
i® '

The structure factor of the unit cell can be written as
F=(F +iF")

and the phase is defined by the ratio of the imaginary part of the structure factor
to the real part and can be written as:
_FE
tan® = F-
Detailed structure factor for co-planar three beam (0,0,0).(-5,-1,-3),(-1,-5,-3) can

be calculated for Si using the equation, square of F(hkl):

|F2,| = 16[2f% + 2f%cosm /2(h + k + 1))
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for Si has 8 atoms with positions (0,0,0) (0,1/2,1/2),(1/2,1/2,0),(1/2,0,1/2) and

at (1/4,1/4,1/4), (1/4,3/4,3/4), (3/4,1/4,3/4),(3/4,3/4,1/4). Using the tables of

Intemnational Union of Crystallography F{000)=112, F(-5,-1,-3)=30.00 and F(-1,-5,-

3)=30.00. the coupled reflections F(-4,4,0)=44.80

Some more values of structure factors for various indexes of Si is given in appendix.
The triplet phase of ®00®(_s_1-3)P(-1,-5,—3) the co-planar three beam (000),(-

5,-1,-3),(-1,-5,-3) is 0 degree.

4.9 - Discussion

We have calculated the Bragg peak shift for the (513) and (153) simultaneous diffrac-
tion, estimated 12 micro-radians in comparison with 2-beam case. There is a split in
Bragg peaks-the physical reason for the split peaks is that, when there two or more
Bragg reflections simultaneously excited, it is possible, depending on the particular
scanning scheme adopted, that the Bragg nodes may go through the Ewald sphere

not exactly all at the same time -for the same theta value, in our case. Further Un-
wegenregung, Aufhellung situations have been covered in the 3-beam calculations.
Structure factor and triplet phase have been determined to be F(000)=112, F(513)=30.00,
F(153)=30.00 and phase 0°.(zero degree).
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Chapter 5

Lattice spacing Measurement : (1)
Scheme-1 with monochromator

diffraction index d; # do

(2) Scheme-2 with monochromator

diffraction index d; = dy

X-ray optic systems have been developed at beam line BL-3C2 of Photon fac-
tory, KEK for the study of the relative lattice spacings of Si-wafers using synchrotron
radiation (SR). Since, unlike a X-ray tube, SR has no characteristic [wavelength]
spectral lines, a new tool of (+,+) high resolution channel-cut monolithic monochro-
mators (MM) are introduced in the systems as a wavelength selective device. Using
two types of MM, two schemes are proposed and applied to the study of the lattice
spacings of Si-wafers. The lattice spacing differences are determined in the range of
sub ppm level, for example in scheme-1 we obtain 0.6 ppm and 0.2 ppm in scheme-2.

One of the practical advantages of this system is that it can be applied for a fast and
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precise measurement of the lattice spacing changes due to the doping and defects in

Si, GaAs and other single crystals.
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5.1 Introduction

Lattice spacing measurements of Si and other single crystals is of importance both
for fundamental solid state physics and applications. For decades, especially since
Si is routinely used in the semiconductor industry as well as commonly employed
in beamline optics of synchrotron radiation facilities and other x-ray experiments.
Much of the works on lattice spacing measurement has been reported using well
defined wavelength of laboratory x-ray sources [1-8]. In contrast relatively few works
have been reported using the state-of the art SR x-ray source [54-56].

Unlike X-ray tube data for which tables of wavelengths of the characteristic spec-
tral lines are available, there are no lines in the synchrotron radiation (SR} spectrum.
Thus it demands to make schemes and data available for precise determinations of
lattice spacing which utilize the SR source. Thus one of our main motivation is to
develop a high precision relative lattice spacing measurement system using SR for
synchrotron radiation users. In addition the methods can be applied for other ap-
plications, such as for example, the measurement of relative lattice spacing changes
due to the Boron [B] doping in Si, B doping in VBG LEC GaAs , As and In doping
in GaAs crystals, to mention a few. One of the nice advantages is that these sys-
tems do not rely on a high accurate absolute value of wavelength and relative high
precision value is sufficient for most of the applications puposes using these systems.

To this end, we have constructed two X-ray optics systems for relative high pre-
cision lattice spacing measurement of single crystal using synchrotron radiation at
BL-3C2 of Photon factory, KEK. In our new optics energy selective (+,+) channel-
cut monolithic monochromator together with higher angle resolution goniometer
with a precision of 0.36 arc sec has been introduced. We have designed and fab-
ricated several kinds of MM that give a fixed exit beam position and provide a
convenient setting of the whole X-ray optics. With the current set-up it is simple to

make another d-spacing measurement, if need be by simply replacing the monochro-
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mator with another. In addition to the measurements of Si crystals, measurements
for other materials such as GaAs crystals can easily be performed. The monolithic
double crystal monochromator is obtained from a single perfect crystal as a means
of obtaining an X-ray beam of well defined wavelength. Monolithic monochromator
(MM), is in effect a single perfect crystal where two sets of Bragg planes play the
role of two seperate crystals. As the interplanar angle between the concerned diffrac-
tion plane is fixed in the MM therefore the wavelength emerging from this device
is highly stable and is extremely stable against temperature variations. The two
types of MM allow us to propose two schemes for the lattice spacing measurement.
Approximately, the precision achieved in Ad/d in these systems is in the range of
10~7 to 1078, The method has been applied {53,54-57] for the Boron doped Si and
B doped VBG LEC GaAs single crystals. From these measurements we can see that
the lattice spacing changes can be modelled by Vegard’s law. The method can be
applied to study the lattice spacing changes due to the doping, defects in the single
crystal and further to study photon-phonon energy transfer in inelastic scatteing
experiments. The two proposed systems are ready for use at SR facilities.

The layout of this chapter is as follows. In the next section we discuss the
MM. This is followed by experimental details of our proposed schemes and the
measurements made. We then briefly mention computer control employed in our
set-up and applications. Applications will be undertaken in more detail in a later

note. Section VI is devoted to results and discussion. Finally conclusions are stated.

5.2 Monolithic Monochromator:

The starting point of monolithic monochromator (MM) design is the Bragg's law.

In order to obtain suitable wavelength for experiments from MM, we consider the

following three equations:
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AL = A = 2d,sin6,(1 — 6/ sin’8))
Ao = A = 2dysindy (1 — 6/ sin? 6}
91 + 82 + ﬁo =T

where & represents the real part of refraction index and (3 is the interplanar angle
between the two planes, 8; and 6, are the Bragg angles for two diffraction planes d,

and d, respectively.

(1} Solving the three equations, yields after simple algebra:

2d,sinf
A= > (1)
[(\/(h,% + k3 +3/h + Kk} +1}) — cos By)? + sin® §y)1/2
(2) if d) = d» = d Eq. 1 further reduces to :
- 2d sin Gy @)

(1 — cos By)? + sin® By)!/2
Using Eqs. 1 and 2 a simulation code MMCD [Monolithic Monochromator Crystal
Design] has been realized which can generate different wavelengths using (hy, k1, {;)
and (Rg, k2, l2) combinations . Our code relies on the Deslatte’s [28] lattice spacing
of silicon wafer of dsgo = 1.920171540.0000006 angstrom at 25°C.

Two types of Monolithic monochromator [MM] have been designed and fabri-
cated on the basis of Egs. 1 and 2. These are notated by Type-1 and Type-2. Type-1
is used in the experimental set-up, refered to as scheme-1 and similarly Type-2 is
utilized in the set-up called scheme-2.

Figs. 1 and 2 show the MM that have been made for the wavelength defined by
Eqgs. 1 and 2 respectively. Some of the simulated wavelengths from MMCD code
is given in Table [ for both types of MM with refraction correction 4, given by § =
3

4.48 x 107%ngA2. Here ng is the number density, for example for Si ng = 699nm 2,

and A is the wavelength of x-rays.
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For illustration, we reproduce the following two examples here:

1. Type-1: MM diffraction planes d, # d; , wavelength A = 0.1410846 nm
This monolithic monochromator has been made using the reflection indexes
(1,1,7), (1,5,1),(-1,-1,-7),and (-1,-5,-1)which is an implementation of equation
(1). The motivation behind for fabrication of this monochromator is to study
the d-spacing of Si as well as GaAs(800) single crystal. As the high Bragg
angle provides high precision therefore we found the above indexes from the
MMCD code provides 86.5 degree for GaAs(800) sample. Table II represents
some of the monochromator wavelengths that we have made together with

their design parameter.

2. Type-2 MM diffraction plane d, = d3 , wavelength A = 0.1612607 nm
This monochromator has been designed having same Bragg angle for (hy, k1, {, }and
(ha, kg, 13), the index being used are (5,1,3) and (1,5,3), which is an implemen-
tation of equation (2). The reason of choosing this wavelength and these
indexes originates from the advantage of precision lattice spacing measure-
ment for Si. Conventional Bond method usually provides high precision value
but we need a rotation of the sample in the Bond method. If we choose (5,1,3)
and (1,5,3) indexes of the samples and wavelength 0.16126 nm we can achieve
quasi-simultaneous diffraction instead of rotation of the sample and thus the
effect of temperature will be smaller, measurement time will be shortened and
more precise data than conventional Bond method at room temperature can

be obtained.
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5.2.1 Resolution provided by the Monolithic Monochroma-
tor

The FWHM of the reflecting range of MM is determined by the dynamical theory

of diffraction and is given by :

A8 = 2Cx,(7e/0)"/?/ sin 26,
Xg = _'YeXZFh/WV;

where 7, is the classical electron radius, F}, is the atomic structure factor, V; is the
volume of the unit cell, A is the wavelength C is the polarization factor, it is 1 for ¢
polarization and cos 28 for 7 polarization. We note that (v,/v) = 1 for symmetric

reflection. The energy resolution is given by
AE/E = cotfAd

As an example of MM designed for wavelength 0.1410846 nm , calculated angular
divergence and wavelength spreads are given by: AA/A = 2.5 x 107% and Af = 8 x
10~%rad. All monochromators were well characterized in terms of their throughput,
wavelength and angular resolution. The experiment was carried out at beamline

BL-3C2 [26,27] which is located at the Photon Factory’s 2.5 GeV ring.

5.2.2 Synchrotron x-rays

As is well-known some of the advantages of SR compared to conventional x-ray gen-
erator tubes are, higher intensity, the wavelength selectivity and well-colliminated
beam. Many devices have and are being developed to further increase the intensity
such as wigglers and undulators and x-ray FEL’s. We used the standard bending
magnet radiation which gave at least an order of magnitude higher intensity and
better resolution than the X-ray tube. The much higher statistics and lower back-

ground obtained with SR are important factors in precision measurements. The
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question arises as how to extract exact values for wavelength. For x-ray tubes there
is a guiding principle, since tables of wavelengths of the characteristic spectral lines
are readily available. In contrast there are no lines in the SR spectrum. Only the
absorption edges of elements in the speciman or of thin foils placed in the beam can
be measured. The accuracy of such measurements is not as high as desired because
of the uncertainty as to what feature of the edge should be used as a measure of
wavelength.

The wavelength problem could be avoided by using the ratio of the lattice pa-
rameters of the specimen to an accurately known standard. The limitation is of
course the accuracy of the standard. A discussion of the extraction of standard
for exact wavelength determination will be discussed elsewhere. For the purpose
of current work we limit our discussion to the following: For determination or the
callibration of wavelength we use FZ Si(444) as a reference, which is oxygen free
and the lattice parameter change has been determined to about 2 x 1078, The cal-
libration was performed before and after a series of experiments and no change was
detected, showing the stability of our measurement technique. The wavelength was

callibrated by using an FZ silicon wafers of

5.3 EXPERIMENTAL

5.3.1 Measurement of lattice spacing of Si -wafers single
crystals
Scheme-1 with Type-1 MM diffraction planes d, # d»

This scheme is a modification of the Bond method with MM X-ray optics. We
have carried out an experiment for the precision lattice spacing measurement of

Si using SR from bending magnets. Fig. 3a shows the schematic diagram of the
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experimental set-up. The novelty of the scheme is that we can replace the MM and
sample in each experiment. Several experiments have been carried out using the
above scheme. We describe here the case where MM of wavelength 0.1410846 nm
, and sample Si(444) FZ are used. The experiments for the other cases i.e. with
different MM wavelengths follows the almost same procedure and only the results
will be reported. As can be seen in Fig. 3a a channel-cut MM has been introduced
using the geometry of successive lattice planes (1,5,1) and (1,1,7) and a wavelength of
0.1410846 nm was obtained. In the experimental scheme of Fig. 3a, SR x-ray beam
from the channel-cut monochromator is diffracted from a sample crystal Si{444) at
a crystal angle W1 (diffraction maxima) into detector PIN #1 of left side. The
same Bragg reflection is also observed at a crystal position W2 (diffraction maxima)
with a detector PIN #2 of right side. The change in crystal angle (180 — 28,) is
independent of the goniometric errors and now one can obtain the Bragg-angle using
the Bond formalism [47]. Necessary tilt adjustment both for channel-cut crystal and
sample crystal has been made. The center of the goniometer, holding the sample
Si(444) fixed was adjusted by taking X-ray photos so that the center of the beam
from the monochromator will hit the center of rotation axis of the goniometer. We
also used the laser (He-Ne) beam to adjust the beam height and position. A rotary
encoder with a digit of 0.36 arcsec were used to record the W1 and W2 values.

An automated computer system has been installed to run the experiment and
to store the data, see below, section IV. Table III shows the W1 and W2 values
for Si(444). The average value for 9 measurements of a Si-wafer is reported as
dys = 0.078390564nm £ 3 x 1078 at 25°C. The average Ad/d was obtained as
6.2 x 1077 calculated from d(cal) and dus. The results of Ad/d for Si FZ, and
GaAs(800) samples are reported in Table I'V.
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Scheme-2 with Type-2 MM diffraction planes d, = d;

In this Scheme a two equivalent lattice planes have been chosen for the sample
for a particular wavelength, thus providing the two almost simultaneous diffraction
with a few arc sec rotation of the sample. The scheme of the system is shown
in Fig-4a. In this scheme, a monolithic monochromator (MM) of 4-reflection type
having d; = d» diffraction planes has been introduced as a fixed wavelength device.
A monolithic monochromator that uses (5,1,3),(1,5,3),(-5,-1,-3},(-1,-5,-3) reflections
has been made from channel-cut Si-crystal grown along [1,1,1] direction provides the
wavelength of A = 0.16126nm The wavelength 0.16126nm satisfies the simultaneous
Bragg condition for the indexes (5,1,3), (-5,-1,-3),(1,5,3},and (-1,—5,—3‘). The Bragg
angles for both indexes is 61.4392 degree and the interplanar angle is 57.1216 degree.
In this set up MM crystal faces are arranged in a (+,+,-,-,) dispersive setting.
The four crystal faces of the monochromator are the inner faces of channel-cut
crystals of Si. The method has been applied for the d- spacing of FZ Si wafer
measurement, the sample index was choosen being the (5,1,3) and (1,5,3) which
provides the same Bragg angle. The sample was selectecd Fz Si orientation flat
of 110, normal direction of 111. When a x-ray beam of wavelength 0.16126 nm
is projected on the sample along 111 direction, Bragg conditions for (5,1,3} and
(1.5,3) is satisfied and thus we observed the two diffraction simultaneously. The
measured Bragg angle is determined by geometry of the experiment and is given
by 8g = 90° — 3,/2 — D, where D is the peak difference between the two rocking
curves (5,1,3)and (1,5,3) [Fig 4b]. For two such measurements Af ox AD, thus AD

is a direct measure of change in relative lattice spacing from the differential of the

Bragg's law Ad/d = —cotdAS.
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5.3.2 Assymetry:

In order to incorporate the refraction and assymetry the additional term to the

Bragg angle can be written more explicitly by the formula
Oassym = 90° — Bo/2 — 8/4[2+1/b+ b — D

where b is the assymetry factor. In another form in terms of small correction (¢) due
to the assymetry arises from the miscut can be written ase = ﬁ[l-&—sz’nf) /sin(26,—
6)} where 8 and 8, are glancing angle of incidence and Bragg angle.

In this experiment the polarization of the SR is choosen as horizontal and
the diffraction plane is chosen vertical. Two goniometers has been used for the
monochromator and sample crystal. The axis of the goniometer has been adjusted
perpendicular to the x-ray beam by laser. The goniometer containing the MM has
two tilt axis, one parallel to the first diffraction plane and the other is perpendicular
to the plane. Fig 4¢ shows the Photographic view of the Scheme. In our system
several thermistor probes were used for temperature measurement both at MM and
at sample. The entire experimental hutch was covered by the Styler foam, and the
temperature fluctuation was controlled to within +0.01° C. Refraction correction
has been taken into account to d with § = 4.48 x 10 %npA2, where ng = 699nm—2
for Si. The measured d;33 value in our experiment on the average was 0.091801632

nm=+2 x 1078,

5.4 Computer control:

An automated computer system has been installed to run the experiment and to
store the data. During the measurement, the computer automatically drove pulse
motors for the goniometers, counted x-ray intensities, and saved data in the memory.
The block diagram for the control system is shown in Fig 6. In this system 8 motor

control system has been used to run the MM and sample goniometer stage and
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several GPIB interface has been used to run the beam line optics and experimental
optics. Multimeter and pico-ammeter is used to record the intensity from PIN photo-
diode. Two 16 channel pulse motor controller system connected with motor driving
system which are further connected to several goniometer stage holding the sample
(GMS) and monochromator stage (GMM). Therefore sample scanning and MM
setting are controlled from outside the hutch. Temperature controlled system has
been developed to monitor the temperature by 7015 multiplexer coupled with 2000
multimeter. Fig 5 shows one of the temperature record before and after the lattice
spacing measurement as an example . Ten temperature probe has been installed to
monitor the temperature at MM, at sample and at various position of the hutch. The
entire hutch was covered by the styler form . Further vibration spectrum has been
recorded by Fourier spectrometer. Fig 8 shows the spectrum when the accelerometer
sensor is placed on the sample goniometer stage and Fig. 9 shows the spectrum when
the sensor is put on the sample holder during the goniometer movement by motor,
we observed from the both spectrum that there is no significant changes, the peaks
are due to the a.c line signal in the experimental hutch, thus the lattice spacing

values are error free.

5.5 Applications

Applications of the methods for lattice spacing changes to Boron doped Si and VBG
LEC GaAs crystals have been reported elsewhere [53], the results demonstrate that
the lattice spacing changes can be modelled by Aa=ag x (r; — 75)/Ts x (N;/N;)
where 7; and r; are the radii of impurities and silicon atoms respectively and N;
andN, are the concentration of impurities and silicon. This is in good agreement
with Vegard's law. Further, several new states has been observed in addition to
the Vegard’s states in case of B doped VBG LEC GaAs crystal . The presented

methods are useful in the study the lattice spacing changes induced by the defects,
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and doping in single crystals. Moreover, it is possible to study phenemenon such as
photon-phonon energy transfer in inelastic scattering due to the high resolution x-
ray optics, used in the current set-up. A more detailed discussion of the applications

of the mentioned methods will be discussed elswhere.

5.6 Results and Discussion

As mentioned above, two relative lattice spacing measurement methods using two
types (i.e scheme-1 and scheme-2 based respectively on the diffraction plane con-
ditions d, # d» and d, = d3) of (+,+) energy selective MM with SR have been
developed. Results of the two schemes are summarized in this section.

In scheme-1 we applied our method to several MM, as shown in Table III and
Table IV. The novelty of the method is that in each case MM and sample can be
changed. For the Si sample grown by FZ and for the plane (444) a MM wavelength
of 0.1410 nm is utilized. Fig. 3b shows the pair of diffraction curves for this case.
The results for this case are summarized in Table III. Nine measurements were taken
at different position of Si wafer and the corrected d values are listed. The average
value of Ad/d is 6.2 x 1077 as mentioned before. Table IV shows the results of our
lattice spacing measurement for Si grown by CZ, and FZ methods where the planes
(800) and (444) are considered in addition to GaAs grown by CZ method for the
plane (800). We can see that the average value of Ad/d is higher for GaAs compared
to that of Si. Temperature and refraction corrections have been taken into account.
For scheme-1 several temperature probes were installed at sample and MM. The
true value of d is given by dgps + Ad, + Ady, where Ad, and Ad,; are the refraction
and temperature corrections respectively. The refraction correction is calculated for
wavelength .1410 nm as 0.0000019A and temperature correction was 0.000006A to
the d-value. The calculated d -value has been taken at 25°C from Deslattes [28];

the measured dy44 value obtained on the average from nine measurement points is
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0.078390564 nm +2 x 1078,

In scheme-2 two equivalent planes and a few arc sec rotation (D) of the sam-
ples provide two quasi-simultaneous Bragg diffraction. This method is fast. Several
scans were performed for a Si wafers prepared with FZ method and two diffraction
profiles were recorded from the (5,1,3) and (1,5,3) planes. Fig. 4b shows this scheme
with pair of diffraction from the (5,1,3) and (1,5,3) planes. Fig. 6 shows the re-
sults of seventy measurements taken at different positions of Si(153) FZ prepared
wafer. From this graph we can see that the approximate average value of Ad/d
is 1.1 x 10~7. Temperature variation has been carefully monitored. For scheme-2
several temperature probes were installed at sample and MM. The true value of d
is given by dups + Ad, + Ad;, where Ad, and Ad, are the refraction and tempera-
ture corrections respectively. The refraction correction is calculated for wavelength
16126 nm as 0.00000749A4 and temperature correction was0.000002914 to the d-
value. The calculated d -value has been taken at 25°C from Deslattes. The measured
d\s3 value obtained on the average from seventy measurement points is 0.091801632
nm 2 x 1078, As Fig. 10 shows for 70 measurement the Ad/d obtained from AD
is within 0.2 ppm level. The standard deviation calculated from 100 measurement

of differential peak difference D at one point was 2 x 1078,

5.7 Conclusions

In conclusion keeping in mind the unique features of SR such as high intensity,
tunability, high resolution d-spacing 2-measurement systems have been developed
at Photon factory, KEK and successfully operated and tested. The system can
be used in a routine d-spacing measurement of Si and other single crystals with a
precision of 10~7 to 1078, Both systems are inexpensive and each measurement takes
only few tens of seconds. The accuracy of the both methods is determined by the tilt

adjustment of the MM, geometric misalignment, peak determination of the profiles
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and the fluctuation of the wavelength and the stability of SR. In scheme-2 we have
demonstrated a method for Si lattice spacing measurement which only requires few
arc sec rotation of the sample thus bypassing the larger rotation [on the order of few
degrees| of the sample required in the conventional Bond method. As the two pair of
diffractions occur almost simultaneously, therefore each measurement takes only few
seconds. Thus our new system is speedy, accurate and highly stable. The method
is suitable for improving the accuracy of measuring the lattice parameter, which in
turn is needed for the determination of the exact wavelength used. The applications
of the methods for lattice spacing changes to Boron doped Si and VBG LEC GaAs
crystals have been reported elsewhere [9,10,12]. The results demonstrate that the
lattice spacing changes can be modelled by Aa=ag x (r; — r5)/rs X (N;/Ns)where r;
and r, can be regarded as a radius of impurities and silicon atoms and N; andN; are
the concentration of impurities and silicon. This is in agreement with Vegards law.
Further, several new states have been observed in addition to the Vegard’s states
in the case of B doped VBG LEC GaAs crystal . The presented methods open up
a new direction in the solid state research, in particular to the study of changes in
the lattice spacing due to the defects, and doping in single crystals.This is made
possible due to the high resolution x-ray optics used in the set-up described here.
It is hoped that the method can be applied in a wide variety of application in the

condensed matter research especially where high resolution is of prime importance.
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Figure 1
Type 1 monolithic monochromator designed for a wavelength of 0.1410 nm

with index (1, 5,1), (1,1, 7), (1,5, 1), 4. 1, 7).

Figure 2
Type 2 monolithic monochromator for a wavelength of 0.1612 nm with index
(5.1,3),(1,5,3), (5.1,3), (1, 5, 3).
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Table 1. Type-1 different indexes, MMCD Code generated wavelengths

hikily  hakals HKL Bo N &2 A d

155 -531 486 692044 63.1437 47.6519 1.356950 STT19E-05
355 -331 086 708196 75.8031 33.3772 1.370938 .58915E-05
335 351 086 735280 57.1730 49.2990 1.391940 .60734E-05
113 5-35 -4-28 740515 252230 80.7255 1.395642 .61057E-05
113 355 -2-48 740515 252230 B0.7255 1.395642 .61057E-05
155 515 6610 466641 66.6680 66.6680 1.396621 .61143E-05
113 531 4492 1047631 253769 49.8599 1.403594 .61755E-05
355 15-1 4104 548119 83.0088 42.1792 1.403614 .61757E-05
115 117 2912 424407 68.3502 69.2091 1.410846 .62686E-05

Table II. Type-2 same indexes, MMCD Code generated wavelengths

hikily  hakalz HKL Bo & 02 A é

135 35-1 4-24 110.0593 304704 30.4704 931039 .27T1T2E-05
3595 5-.35 -2210 948614 425693 42.5693 956631  .28686E-05
135 5-1-3 6292 111.8037 34.0981 34.0981 1.029302 .33210E-05
335 -35-3 082 102.0815 38.9593 38.9593 1.041527 .34004E-05
155 .1-55 0010 911235 44.4382 44.4382 1.064914  .35548E-05
135 -5-31 406 104.9006 37.5497 37.5497 1.118970 .39249E-05
155 55-1 -4104 728954 53.5523 53.5523 1.223493  .46924E-05
335 3.35 0010 80.6311 49.6854 49.6854 1.263037  .50006E-05
135 53-1 -464 916373 441814 44.1814 1.279591  .51325E-05
155 551 6106 46.6641 66.6680 66.6680 1.396621 .61143E-05
135 35-1 -284 784630 50.7685 50.7685 1.223493  .46924E-05
335 .3-35 0010 B80.6311 49.6854 49.6854 1.422186  .63402E-05
115 .15-1 064 921226 43.9387 43.9387 1.450516  .65953E-05
135 .1-35 0010 646231 57.6885 57.6885 1.551732  .75479E-05
135 531 666 57.1216 61.4392 614392 1.612607 .B1517E-05




Table III. Monochromator made with some of their design parameter.

Diffraction Bragg-angles Wavelength LxB x H Beam gap AMA Ad
Planes 01,83 (deg) (um) (mm) (mm) (x107%) (x107?)
(59 11),(7-7-7) 74.30; 50.77 0.0694067 45x40 x 40 7 0.5 1.6
(33-3),(-3-5-3) 47.53; 68.58 0.1542067 55%52 x 50 29 2.8 9.2
151,117 42.44; 68.06 0.1410846  35x42 x 35 15 25 8.7
(513),(153) 61.43; 61.43 0.1612607 60x55 x 37 35 4.3 0.1
(155,(-531) 62.78; 47.65 0.1352569 40x30 x 35 0 23 6.2

Table IV. Relative lattice spacing for wafer sample Si(444) with 0.1410 nm wavelength MM.

Measurement Left Peak Right Peak Difference d- value Average Ad/d
No W1 (degree) W2 (degree) W1-W2(degree) corrected (nm) (%1077}
1 215.3518 163.6417 51.7101 0.078390514
2 215.3526 163.6419 §1.7107 0.078390713
3 215.3516 163.6409 51.7107 0.078390713
4 215.3525 163.6412 51.7113 0.078390912
5 215.3525 163.6418 51.7107 0.078390713 6.2
6 215.3514 163.6428 51.7186 0.078390017
7 215.3514 163.6410 51.7104 0.078390613
8 215.3514 163.6423 51.7191 0.078390173
9 215.3518 163.6411 51.7107 0.078390713

Table V. Relative lattice spacing values measured using scheme-1 for Si and GaAs sample.

Sample Sample Sample MM wavelength Average Ad/d

No Type index (nm) (x1077)
Si FZ (444) 0.1542 6.1
Si cz (800) - 0.1356 6.3

GaAs CZ (800) 0.1356 8.0



Chapter 6

Lattice spacing Measurement in

GaAs(800)

6.1 Introduction

GaAs Crystals are heavily used in the semiconductor technology for IC and LSI cir-
cuits, therefore it is of great importance to understand its properties and structure.
Since the crystal consists of Ga and As elements therefore it is difficult to growth
the crystal uniformly . Lattice spacing is a non destructive measure to study the
properties and quality of the GaAs crystals by which we can get the microscopic

insight of the crystals [58,74].

6.2 Experimental arrangement

The experimental system is developed using the scheme-1 previously. The beam
line covered the X-ray range 4-25 KeV X-ray . The Experimental hutch was covered
by styler foam and thus thermally shielded . A steel base plate with a size of

1260 x 1660mm?was installed in to the hutch where two Kohzu type Goniometer
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was put, one for the monochromator and the other for the sample. The Synchrotron
radiation (SR) was introduced into the room. A beam height of 600 mm above
the plate was obtained by adjusting all optical components. This was performed
to a precision of 50 uymeter by taking x-ray pictures and using He-Ne lasers. This
corresponds no error in the present lattice spacing measurement system. For further
temperature control, fluorescent lamps were installed outside the ceiling of the hutch.
The legs of the base plate were insulated by wooden plates from the floor and the
inside hutch was completely thermally shielded. The SR is projected first onto a
high precision monolithic monochromator (MM) and after 4 times of reflections it
impinges on the sample. Prior Si(111) double crystal monochromator (DCM) was

used to avoid the heat loading onto the monochromator.

6.2.1 Experiment with MM 0.1410nm wavelength

In this arrangement a channel-cut monolithic monochromator has been introduced
in order to obtain valuable stability and a very narrow bandwidth of SR x-rays .
This is achieved through the channel shaped MM using the geometry of successive
lattice planes (151,117) and a wavelength of 0.1410 nm was obtained. By using the
geometry of successive reflections, a highly collimated beam with a narrow band
width was produced. Its angular divergence and wavelength spread is described
previously. The X-ray beam from the monochromator was monitored by the PIN
photo-diode whose current was in the pico-amp range. The centre of the sample
goniometer was adjusted by taking X-ray photos and with the help of laser beam
so that the beam from MM heat the centre of the rotation axis. A Rotary encoder
Heidenhein with a digit of 0.36 seconds of an arc was used in the sample goniometer.
On the table of a sample goniometer, translational stage was mounted so that the
sample can moved in x, y and z direction. The sample was 20mmx20mm GaAs

wafer and was mounted vertically on a Aluminium holder. All the angular position
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of the goniometer and linear positions of horizontal and vertical stages are readable
in the computer. The X-ray diffraction from the sample was monitored by PIN
photo-diode.

In the experimental schme, SR X-ray beam from the channel-cut monochromator
[54]is diffracted at a crystal angle W1(peak position) into detector PIN of left side.
The same Bragg reflection is also observed at a crystal position W2{peak position)
with a detector PIN of right side in the scheme -1. The change in crystal angle (180 —
20g) is independent of the goniometric errors and now one can obtain the Bragg-
angle using the Bond formalism [47] 85 = [180 — (W1 — W2})/2].We monitored the
SR X-ray from the channel-cut crystal by anPIN detector . Ncessary tilt adjustment
both of channel-cut crystal and sample crystal has been made. The centre of the
goniometer ,holding the sample was adjusted by taking X-ray photos so that the
centre of the Monochromator beam will hit the centre of rotation axis. A rotary

encoder with a digit of 0.36 arcsec were used to record the W1 and W2 values.

6.3 MM of 0.1410nm Setting

The MM with wavelength 0.141 nm is shown in Fig-1 . The MM uses the in-
dex of (151) and {171) and their conjugates, the Bragg angles for them are 42.4
and 68.1 degrees respectively and thus the wavelength transmitted by the MM was
0.1410846nm. The wavelength was set by tilting the MM cross tilting stage of the
goniometer and the MM was set at its maximum wavelength, the wavelength has a
double check once by the tuning of a Si{111) downstream monochromator and later
by Bond method without MM and further fine tuning after the installment of MM
and recording the consecutive diffraction from 1st and 4th diffraction plane of MM
recorded by PIN detector. Experiments were carried out using some of the MM,
such as 0.141nm MM and sample and 0.135nm MM and GaAs(800) samples. The

novelty of the method is that in each case MM and sample can be changed.
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We applied A monochromatic beam with wavelength A = 0.135659nm , after 4
times of reflection projected onto the sample. The X-ray beam size of approximately
Imm x lmm locates on a sample crystal surface. Using this system, precise lat-
tice spacing measurements of GaAs single crystals were carried out , samples {800)
specimans were put on a precision goniometer. .Bragg angles of GaAs(800) was 86.5
degrees.

Fig 2, 3.4 shows the pair of diffraction in the method from sample crystal
GaAs(800) . Relative lattice spacing have been measured by measuring the dif-
ferencec in bragg angle using the differential Bragg's law Ad/d = —cotfAf. Fig 5
shows shows experimental scan fitting well with the theory. Fig 6 shows the variation

of the measured Bragg-angle , both for CW and CCW motion of the goniometer.

6.4 Results and discussions

We have achieved the both relative and absolute measurement of GaAs (800) lattice
spacing, the estimated d(800) = 0.0706584nm £2 x 10~° and relative lattice spacing
have been measured by measuring the differencec in bragg angle using the differential
Bragg's law Ad/d = —cotfAf. Relative lattice spacing values are 2 parts per million.
Using the described scheme, defects in GaAs can be studied and the method can be
applied for other condensed matter research especially where high resolution is of

prime importance.
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Fig 1 Type-1 Monochromator designed for wavelength 0.1410 nm
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program three_beam

real nog,nhg,noh,yl,y2

common /cl/nog,nhg,nch
open(l,file-'datal.dat',status-'unknown‘)

pi=3.1415926
noh=0.05
nog=0.4
nhg=0.4
write(l1,'(42al2)") 'phi','x’,'u','y'
do i=1,4
phi-(i-l)*B0.0*pi/lB0.0

x=0.0
do j=1,101
u--40.0+(j-1)*80.0/100.0
¥l =y({u,x,phi)
write(1,100) phi*lB0.0/pi,x,u,yl
end do

100 format(4£12.6)

x=1.0
do 3=1,101
u--40.0+(j—1)*80.0/100.0
¥y2 =y(u,x,phi)
write(l,100) phi*lBO.D/pi,x,u,yz
end do
write(l,*)
end do’
end

function y(u,x,phi)
real nog,nhg,noh,u,x,phi,y
common /cl/neg, nhg,noh
y--2.0*abs(nog*nhg/noh)*(cos(phi)*fZ(u,x)-sin(phi)*fl(u,x))
* -nog**z*fl(u,x)-nhg**z*(fl(u,x)+f4(u,x))
* +2.0*nog**2*nhg**2/noh**2*f3(u,x)
end

function f1l(u,x)
if { abs(u) > 0.0001) then
f1= 1.0/u*#*2%({1.0-cos(u}) + x/u**2*(1.0+cos(u)-2/u*sin(u))
else
fl= 0.5 - x/6.0
end if
end

function f2(u,x)
if ( abs(u) > 0.0001) then
f2= 1.0/u*(1.0-1.0/u*sin(u)) +

* x/u**2*(sin(u)-2/u*(1.0-cos(u)))
else
£2 =u/6.0 -x*u/6.0
end if
end

function £3(u,Xx)
if ( abs(u) > 0.0001) then
fi= 1.0/u**2%( 1.0-1.0/u*sin{u) ) * x/u**2*(0.5+sin(u}/u
* - 3.0/u**2*( 1.0-cos{u) V)
else

Page: 1




fi=1.0/6.0-x/6.0
end if
end

function f4{u,x)
if (abs(u) > 0.0001) then
f4=x/ux*2*(1.0+cos(u} - 2.0/u*sin(u)-x*(cos(u)-4.0*sin(u)/u
+6.0/u**2*(1.0-cos{u))))

else

f4 =-x/6.0-x**2/6.0
end if
end
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Appendix: Structure Factor values of Si.

ij hkil esse F(hkl )

—5-1-3 5447 30.0208
-1-3-5 5447 30.0208
-1-5-3 5447 30.0208
-3-5-1 .5447 30.0208
-5-3-1 5447 30.0208
-3-1-5 .5447 30.0208
513 5447 30.0208
4-2-2 - 4510 50.7968
4-40 5208 445353
2-42 4510 50.7968
2604 69.5585
2604 69.5585
5447 30.0208
4510 50.7968
2604 69.5585
4510 50.7968
5208 445353
2604 69.5585
5447 30.0208
5208 445353 -
2604 69.5585
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ft###tttt#t**##******####***t#t#*i#*###t#t*###*#***#i*#¢##t###t###****#*cc
............... HHCD........................................c
............ WONOL [ TINIC HONOCHROMATOR CRYSTAL DESIGN. v vvvverenrennnenesC

THIS PROGRAM AUTOMATICALLY CENERATE THE TYO DIFFRACTION PLANES FOR cc
FABRICATIOH OF V-CUT HONOLITHIC MONOCHROMATOR AND THEIR YAYELENGTH, cc
#***tt#t##ttti##**#i##*####*#**#*#*###t###t##tt##*i####**##tt#*#####*Cc

FE4

............

VERSION UN1X_98.6-— ce

ZCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

program MHCD
parameter(a=5.431061.pi=3.1415926.n=3000)

integer hl.kl.11.h2,k2.12.h.k.l.mark1.mark2
integer list(n.ﬁ).ii.indx(n).indxz(n)
real anglel.angleZ.angleE.lamda.x.lamda_list(n).angle_list(n.3)
real laudaZ.landaﬂ.lamda_listZ(n).lamda_lists(n)
real thetal.thetaz.thetalo.thetazo
real dl,dZ.lmbda.lualp.lmphal.betao.alpha.lap.lph.lamdaO
conaon /dat/d1, beta0,d2
open(ZO.fi1e='vtestwt.dat'.status=’unknovn')
open(30.file='vtestll.dat'.status='unknown')
open(lO.file='vtestw2.dat'.status=’unknown’)
open(SO.f11e='vtestwﬂ.dat'.status='unknown’)
s the following is a test for one paircccccccccccccccccccccccccccccccccccc
:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
hi=1
k1=§
11=5
hZ=-4
k2=4
12=d
alpha=0.0

phai=0.0
cccccccccccccccccccccccccccqcccccccccccccc

write(d0, *¥) * alpha ', phal *,* lamda’
call bangle(hl.kl.ll.h!,kz.l2.angle3)
write(t, ¥) 180. 0-angled
call bangle{hl+h2 k1+k2, 11+l h2, k2,12, anglel)
yrite(t ¥) anglel
call bangle(hl+h2.k1+k2.11+12.h1.k1.11,angle2)
write(#. %) anglel
catl done(nt, k1,11, d)
write(t, )" d=".d
x=float(hl*h1+k1*k1+11*11)
lamda=2.0*a/sqrt(x)*sin(anglel*pi/lao.0)
dl'-a/sqrt(f]oat(hl*h1+k1#k1+11*11))
d2=a/sqrt(float(hz*h2+k2#k2+12t12))
1ubda=(2*d1#sin(angle3))/((dl/dz-cos(angleS))**Z+(sin(anzle3))**2))*#0.5
1na|p=(2*dl#sin(angle3)*cos(alpha))/((dl/dz-cos(anglea))#*2+
¥ (sin(anglez))#*2*(cos(alpha))#*2)tt0.5
lnphai=(2td1#sin(angle3)#cos(alpha+phai))/((dl/dZ-cos(angleS))*#2+
% (sin(angleﬂ))**2*(cos(alpha+phai))**2)##0.5
yrite(# ¥} landa .
write(d #) 1nbda, angled, d1.d?
yrite(t, ) lmbda,lualp.lnphai.alpha.phai
pause
ii=1
do h1=0,5
do kl=hi,$
do 11=k1,3
do h1==5,9
do x2=-3,%

A~ 17=2=5 5



it (mod(abs(hl).2).eq.l.and.nod(abs(kl).z).eq.l
% _and. mod(abs{11),2). eq. 1} then
markl=l
goto 1
else
markl=0
end if ‘
if (uod(hl.2).eq.0.and.mod(kl.Z).eq.O
¥ Cand.mod(11, 2).eq. 0) then
if (mod{h1+k1+11,4).eq.0) then
if (hl*h1+k1#kl+ll*11.gt.0) then
parkl=1
else
parkl=0
end if
else
markl=0
end if
else
markl=0
end if
3CCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

continue
if (mod(abs(hz).2).eq.l.and.mod(abs(k2).2).eq.1

% and.mod (abs(12),2).eq. 1) then
mark?=1
goto 2

else
marki=0

end if
if (mod(h2.2).eq.0.and.mod(k2.2).eq.0

* and. mod (12, 2).eq.0) then
if (nod(h2+k2+12,4).€q.0) then
if (h2#h2+k2#k2+12*12.gt.0) then
markZ=1 .
else
mark2=0
end if
else
markl=0
end if
else
mark?=0
end if
LCCEECeeeeCEeEeEeCeetteeereeeeeeeeeeaceereetce
! continue
if (markl¥mark2.eq.1) then
h=h1+h2
k=k1+k2
C1=11+12
call bangle(hl. k1, 11, h2, k2, 12, angled)
call bangle(hl.kl.ll.h.k.l.angIeZ)
call bangle(hZ.kZ.12.h.k,1.angle1)
x=float (h1¥h1+kl¥k1+11¥11)
lamda=2.0*a/sqrt(x)*sin(anglel*pi/lsﬂ.0)
if (lauda.ge.G.S.and.lamda.le.l.S) then
list(ii,1)=h1
list(ii, 2)=k1
list{ii, 3)=11
Pist{ii, 4)=h?
list(il,5)=k2
list{ii.6)=12
 angle_tist{ii,1)=anglel
angle list(ii, 2)=anglel
angle_list(ii.3)=180.0—angle3

P W P ]

ccececeeceeeccctecccee

cccececceeeecececceed



i 1a

end
else
¥r
pa
end if
end do
end do
end do
end do
end do
end do
format(lx,3i2,” .
call indexx{n, landa_

call indexx{n, lamda_

do i=l.n

ii=indx(i)

ii2=indx2(i)

if (landa_list{ii
hi=list{ii, 1)
kl=list(ii, 2)
H=list(ii. &
h2=1ist{ii, 4)
k2=1ist(ii.5)
12=1ist {ii, &)
h=h1+h?
k=ki+k2
1=11+12
anglel=angle_l

betaO=(180.0-angleﬂ)*pi/lao.0
dl=a/sqrt(float(hl*h1+kl*k1+l1*I1))
dz=a/sqrt(rloat(hzthz+kztkz+tZtIZ))
lamda2=flanda(0.0.0.0)

pet20=(angled) #pi/180.0

|andad={landa{0.0,0.0)

landa_list2(ii)=lardal

tanda_list3(ii)=1andal

ji=iitl

write(# 10) hl, k1 11, R k2 1L h K1,
180-angled. anglel, anglel,

anglel+angle2+180-ang!ea.lamda

write(30,10) h1, ki 11, 02.%2, 12,0k 1,
180-anglel, anglel, anglel.

angle1+angle2+180—angle3.lamda

if

ite(+,#) hi ki, 11,h2 k2,12
use

3i2, ', %13 ", 4£9.4,f12.6)
list, indx)
1ist2, indx2)

). ne.0.0) then

ist{ii, 1)

ang]e2=angle_list(ii.2)

angled=angle_]
lamda=lamda_li
yrite(20,10) h

ist(ii, )
st{ii)
l.kl.ll.hz.kZ.IZ.h.k.l.

angleﬂ,angleZ.angleL
angle1+an3132+angle3,lamda

end if

if (lamda_list2(i
Ri=list(ii2, 1)
k1=1ist{ii2. 2)
11=1ist(ii2, 3)
n2=list(ii, 4)
k2=1ist(ii2, §)
12=]ist{ii2, §)
h=hl+h2
k=k1+k2
[=11+12
anglel=angle_l
angleZ=angle_1
angle3=angle_l
1amda?=1anda |

i2}.ne.0.0) then

ist{ii2, 1)
ist(ii2, 2
ist(iiz. 3}
ist2{ii2)
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lamd33=lamda_listl(ii2)

if

(nod(h+k+l.4).ne.0.aud.lamda2.ge.0.&

and.landaZ.lt.l.S.and.laudaﬂ,ge.O.S.and.lamdaﬁ.ll.l.s

.and.nod(abs(h).z).eq.o.

yrite(40.10) L AL 1L 2 K2, 12 K L

end
end if
format

do
lap

/s
+(

anglei.anglez.anglel.

anglel+anglez+angle3.landaz
d1=a/squ(float(hl#h1+k1*kl+11*11))
d2=a/sqrt(float(hZ#h2+k2tk2+12*12))
thetal=asin(lamd32/(2.0*dl))*lﬁﬂ.O/pi
thet32=asln(lamd32/(2.0*d2))#180.0/pi
theta10=asin(1amd33/(2.0*dl))*IB0.0/pi
theta20=asin(lamda3/(2.B*dZ))*lﬂﬂ.O/pi
srite(50, 11) hl.kl.ll.hz.kz.lz.h.k.L
angleﬁ.thetal.thetaz.
thetal+thetaz+ang1e3.lamdaL
IB0.0-angIeﬂ.thetalﬂ.thetaZO.
180.0—angle3+theta10+theta20.1amda3
if
(913.3f§.3.1f1.1.1f8.4,3f9.3.1f1.1.1f6.l)

j=0.15

alpha=float(j)#pi/180.0
lap=flanda(a1pha.nﬂﬂ)

=(z.O#dltsin(betao)*cos(alpha+phai))

qrt((dl/dz—cos(betao))##z
sin(betaﬂ))**Zt(cos(alpha+phai))**2)
write(d0, 100) alpha/pi*l&ﬂ.o.o.o,lap

end do
do 3=0.1%

do k=15
a]pha=float(j)*pi/180.0
phai=0.l*floa!(k)#pi/laﬂ.0
1ph=flamda(alpha.phai)
yrite(40,100) alpha/pi*lBO.D.phai,lph
end do

end do

end do
forlat(ﬂeis.s)

E
¥

end

function

flamda(alpha,phai)

parametei(pi=3.l¢15925)

real alpha.phai.dl.dZ.betaO

common /dat/dl.betao.dz

flamda=(2.0#ditsin(betaﬁ)*cos(alpha+phai))

/sqrt((dl/dz-cos(betaO))#*z
+(sin(betaO))t#Z#(cos(alpha+phai))**2)

end

subroutine bangle(hl.kl.11.h.k.1.angle)
parameter(pi=3.1415926)

real x. Y.

1, angle

integer hl.kl.ll.h.k,l.nl.nZ,n3
n1=h1#*2+k1**2+11**2
n2=h##2+kt*2+1t#2

' n3=hl#h+kl*k+11*l

v=l1oat{nl)
y={10at {n2)
2=[loat {n3)
if (nl#nZ.eq.nJ#nS) then
- tammenell, 0} #180.0/p1




end
prpERREHEERERE

~c this is 2 subroutine for vritin

else
angle=acos(z/Sqrt(X*y))tlso.O/Di

end if
*#*#####****i##*i*#t##*##ﬁ**####*****#ii#i###*#**i#*ft####

subroutine done (b1, k1, 11.d)

real nl. k1, 11.d
paraneter(a=5.l!lﬂﬁl)
d=a/sqrt(float(hl*hl+kl*kl+ll*ll))
return

end

g the wavelength in order cecceecceeceee

SUBROUTINE indexx(n.arr.indx)
| NTEGER n.indx(n).M.NSTACK
real arr(n)

PARAMETER (M=1.NSTACK=1000)
INTEGER i.indxt.ir.itemp.j.jstack,k.l.istack(NSTACK)

real a

do j=L.n
{ndx{i)=i

end do

jstack=0

1=1

ir=n
11 (ir-1. 1t. M) then
do 11 j=l+i.ir
indxt=indx(j)
a=arr (indxt)
do i=j-1,1.-1
if(arr(indx(i)).le.a)goto 2
indx(i+1)=1ndx(i)
end do
i=l-1
indx{i+1)=indxt
continue
if(jstack.eq.o)retufn
ir=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2
else
k=(1+ir)/2
i temp=indx (k)
indx(K)=indx{1+1)
indx(141)=1tenp
if(arr(indx(l)).gt.arr(indx(ir)))then
i temp=indx(1)
indx (1) =indx({ir)
indg{ir)=itenp
endif
if(arr(indx{1+1)). gt. arr{indx{ir)))then
itesp=indx(1+1)
indx (1+41)=indx (ir)
indx(ir}=itemp

endif

if(arr(indx(l)).gt.arr(indx(l+1)))then
i temp=indz (1)
indx{1)=indx(1+1)
indx(1+1)=itemp

endif

i=1t1

j=ir

indxt=indx(1+1)

azarr{indxt)

continue




j=itl
ir(arr(indx(i)).lt.a)goto 3
continue

j=i-l
if(arr(indx(j)).st.a)goto 1
if(j. It. i}goto §
itemp= indx (1)
indx (1) =indx ()
indx(j)=itemp
goto 3
indx(l+1)=indx(j)
indx (j)=indxt
jstack=jstack+2
if(jstack.gt.NSTACX)pause "NSTACK t
if(ir-i+1.ge.j-l)then
istack(jstack)=lr
istack(jstack-1)=i
ir=j-1
else
jstack(istack}=j-1
istack(jstack-1)=1
1=
endif
endif
goto 1
END

oo saall in jndexx’
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