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Abstract

With recent years’ development in space exploration, scientific objectives have
become more diverse, including numerous missions to small celestial bodies (Rosetta,
OSIRIS-Rex, Hayabusa, Hayabusa2, DART) and recurring visits to Solar System
planets (BepiColombo to Mercury). These wide arrays of objectives have driven
the development of novel space travel techniques (IKAROS, OKEANOS with solar
sails, DESTINY+ with continuous low thrust engines), as well as systems that enable
repeatable access to space. In parallel, NASA’s Artemis program has been taking the
center stage on human spaceflight with the Lunar Gateway. This has kickstarted a
renewed interest in the development of space infrastructure for recurrent use, but most
importantly, it has made apparent the necessity of studies on the feasibility, use and
dynamical environment surrounding auxiliary spacecraft and their interactions with
other spacecraft.

The Deep Space Orbit Transfer Vehicle (DS-OTV) has been introduced in the past
as a concept to separate the roles of ’transportation to the destination’ and ’exploration
at the destination’ to two spacecraft, instead of one. The main merit of such a design is
the specialization of each spacecraft on each role, decreasing complexity, and the
possibility of standardization of the spacecraft between different mission. The DS-OTV
concept introduced in this research leverages technical heritage from Hayabusa2
to design an architecture with recurring access to deep space by placing an OTV
in a parking orbit in the Earth’s vicinity. Using the OTV for refueling purposes in
future missions would bring the launch mass down, increase the availability of launch
windows and allow flexibility against delays and launcher vehicles used.

The first part of this work details the DS-OTV concept, describing the technical
heritage that can make it possible, introducing the phases of such a mission and the
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orbital requirements to fulfill its objective. A main topic that requires an in-depth look
is the phasing possibilities for the DS-OTV. In an architecture in which rendezvous
between spacecraft is recurrent, being able to get them into a favorable situation for
docking from different positions is paramount. In this section, candidate parking orbits
are obtained, evaluated and classified, and promising candidates are selected to further
study them.

In the next part, transfers between different candidate orbit families are studied in
the context of the DS-OTV. The tools used to find transfers with different characteristics
are introduced, and single and multiple periodic transfers between these periodic
orbits in the vicinity of the L1 and L2 Sun-Earth Lagrange Points are systematically
searched, and their properties studied. The potential use of these transfers as a phasing
mechanism for spacecraft is evaluated with the creation of performance parameters
and comparison tools. Additional methods for improving the phasing capabilities of
these transfers are introduced with a three-impulse transfer design algorithm, working
around the limitation of periodic transfers between orbits, and the evaluation over the
lifetime of a DS-OTV mission is done with regards to fuel usage and time constraints.
Insights are drawn from the results with regards to the possibility of usage of these
orbits in the context of this architecture, highlighting the advantages and drawbacks
with regards to detailed phasing situations.

The third part of the research changes the focus to phasing maneuvers between
spacecraft along the same periodic orbit but with different starting locations. With this
idea, firstly, Lagrange Point and Lyapunov Orbit stand-by transfers are introduced, in
which a spacecraft placed in the Lagrange Point exploits the stationary location to
facilitate the phasing with regards to other candidate periodic orbits in the study. With
the same objective, direct transfers from and to the different periodic orbits at different
positions are also taken into account. The study does not focus on specific unique or
optimal maneuvers, but on the overall structure of possible solutions, especially in
the existence of low energy transfers by leveraging the stable and unstable manifold
structures emanating from the periodic orbits. To aid in the study, new tools and
algorithms are designed and executed. These methods are applied to the candidate
orbits and their performance are compared to try to establish a baseline for the viability
of these maneuvers with regards to timing possibilities and fuel spent, as well as the
possibility of usage in ad hoc trajectory design for specific missions.
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Finally, mission feasibility analyses are performed taking into account the different
phasing possibilities found in the previous parts. Special care is put into trying to
design lifetime analyses that can emulate an actual DS-OTV mission scenario, used to
evaluate the feasibility of the concept and the operations proposed with a focus on the
entire operation of the mission.

The results of this work can serve as a baseline for initial guesses for DS-OTV
orbits and transfer trajectories design, as well as a baseline to determine requirements
for the different subsystems that comprehend an entire DS-OTV architecture (Orbit
Transfer Vehicle (OTV) and mission spacecraft, docking equipment, launcher system,
launch availability). The phasing and transfer trajectories presented in this research
can be extended for different multi-spacecraft mission in the Earth’s vicinity that share
similar design constrains.





ix

Contents

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

1 Introduction and Background 1
1.1 Aims and Methods of this Research . . . . . . . . . . . . . . . . . . . . 4
1.2 Past ISAS/JAXA Missions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Hayabusa (Launched 2003) . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 IKAROS (Launched 2010) . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Hayabusa2 (Launched 2014) . . . . . . . . . . . . . . . . . . . . 8

1.3 Past (and alternative) Orbit Transfer Vehicle Concepts . . . . . . . . . . 9
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Circular Restricted Three-Body Problem (CRTBP) 17
2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Adimensional Equations of Motion . . . . . . . . . . . . . . . . . . . . 20
2.3 Conversion Between Reference Frames . . . . . . . . . . . . . . . . . . 23
2.4 Jacobi’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Lagrange Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Zero Velocity Curves (ZVCs) (or Hill’s Surfaces) . . . . . . . . . . . . . 28
2.7 Symmetries of the System . . . . . . . . . . . . . . . . . . . . . . . . . 31



x Contents

3 Trajectory Design Methods and Dynamical Structures 33

3.1 Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Differential Correction / Single Shooting Algorithm . . . . . . . . . . . 35
3.3 Orbit Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Monodromy Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Stability Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Invariant Manifolds Theory . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Numerical Continuation / First Order Predictor-Corrector Algorithm . 45
3.6 SQNLP Algorithm for Constrained Non-Linear Optimization . . . . . . 50
3.7 Periodic Orbit Parametrization . . . . . . . . . . . . . . . . . . . . . . . 53

3.7.1 Fourier Series Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7.2 Smoothing Spline Fit . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Deep Space Orbit Transfer Vehicle (DS-OTV) Concept 57

4.1 Hayabusa2 Heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 DS-OTV Mission Design . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Operation Maneuvers . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Mission Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Candidate Parking Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Parking and Transfer Orbit Candidates Selection . . . . . . . . 71

5 Periodic Orbital Transfers as Phasing Mechanism 75

5.1 Single Periodic Transfers for Candidate Orbits . . . . . . . . . . . . . . 76
5.1.1 Single Periodic Transfers Evaluation . . . . . . . . . . . . . . . 76
5.1.2 Single Periodic Transfers Orbital Phasing Possibilities . . . . . 78

5.2 Multiple Periodic Transfers for Candidate Orbits . . . . . . . . . . . . . 83
5.2.1 Multiple Periodic Transfers Nomenclature . . . . . . . . . . . . 84
5.2.2 Multiple Orbital Crossings Algorithm (MOCSA) . . . . . . . . . 86
5.2.3 Lyapunov and Low Prograde Orbits Multiple Transfers Results 91
5.2.4 Multiple Periodic Transfers for Fast Servicing . . . . . . . . . . 94
5.2.5 Multiple Periodic Transfers for Orbital Phasing . . . . . . . . . 97



Contents xi

6 In-Orbit Phasing Mechanisms 105
6.1 In-Orbit Phasing by Lagrange Point Stand-by Transfers . . . . . . . . . 106

6.1.1 Lagrange Points Stand-by Transfer Trajectories Design . . . . . 107
6.1.2 Lagrange Point Stand-by Transfers Results . . . . . . . . . . . . 112

6.2 In-Orbit Phasing by Direct Transfers . . . . . . . . . . . . . . . . . . . 119
6.2.1 Direct Transfers Nomenclature and Definition . . . . . . . . . . 121
6.2.2 Direct In-Orbit Phasing Algorithm (DIOPA) . . . . . . . . . . . 123
6.2.3 Change in Phase and Maneuver Calculation . . . . . . . . . . . 128
6.2.4 Direct Transfers Phasing Results . . . . . . . . . . . . . . . . . 132

7 Mission Lifetime and Trade-off Analyses 143
7.1 DS-OTV Properties for the Analyses . . . . . . . . . . . . . . . . . . . . 144
7.2 Single Periodic Transfers Feasibility Analysis . . . . . . . . . . . . . . . 144

7.2.1 Singular Period Transfers Feasibility Analysis . . . . . . . . . . 145
7.2.2 Three-Impulse Maneuvers for Detailed Phasing . . . . . . . . . 146
7.2.3 Launch and Insertion to Parking Orbit . . . . . . . . . . . . . . 151
7.2.4 Mission Lifetime Analysis . . . . . . . . . . . . . . . . . . . . . 154
7.2.5 Feasibility and Mission Lifetime Trade-off Discussion . . . . . 159

7.3 Multiple Periodic Transfers Feasibility Analysis . . . . . . . . . . . . . 160
7.4 Lagrange Point Stand-by Maneuvers Feasibility Analysis . . . . . . . . 163

7.4.1 Mission Operations Breakdown . . . . . . . . . . . . . . . . . . 164
7.4.2 Mission Lifetime Analysis . . . . . . . . . . . . . . . . . . . . . 166

8 Conclusions and Future Work 171
8.1 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . 176

Appendix A Classical Mechanics 177

Appendix B Reference Frames Details 181

Bibliography 183





xiii

List of Figures

1.1 Hayabusa (MUSES-C) photo and mission plan. . . . . . . . . . . . . . . 7
1.2 Mission sequence of IKAROS. . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Asteroid Ryugu and Hayabusa2 casting a shadow on its surface after

touchdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 First steps towards the development of the OTV concept by the USSR

and NASA in the 1960s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Integrated space transportation systems and OTV concepts from NASA

studies during the 1980s. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 The Artemis Program and its Lunar Gateway have re-ignited the study

of OTVs and the technology surrounding them. . . . . . . . . . . . . . 13
1.7 Supporting concepts for the Lunar Gateway appeared in recent years. . 14
1.8 New space infrastructure concepts studied for the mid-term future. . . 14

2.1 The Circular Restricted Three-Body Problem (CRTBP). . . . . . . . . . 19
2.2 Non-dimensional distances 𝛾1, 𝛾2 and 𝛾3 used to find the location of the

co-linear Lagrange Points. . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Zero Velocity Curves (ZVCs) of the Lagrange Points. . . . . . . . . . . 30

3.1 Grid search technique: dividing two independent variables into 𝑖 steps. 34
3.2 Sequential Quadratic Non-Linear Programming (SQNLP) general

algorithm constrains for a trajectory. . . . . . . . . . . . . . . . . . . . 50
3.3 SQNLP algorithm with multiple legs for highly constrained trajectories. 52
3.4 Periodic orbit with polar coordinates, using different central points. . . 53
3.5 Parametrized Lyapunov Orbit Fourier 1-8 Fits and statistics. . . . . . . 55



xiv List of Figures

4.1 External view of the Hayabusa2 spacecraft. . . . . . . . . . . . . . . . . 58
4.2 Hayabusa2 touchdown procedure/loop and adaptation to rendezvous. . 59
4.3 Hayabusa2 adapted docking procedure and mechanism. . . . . . . . . . 60
4.4 Deep Space Orbit Transfer Vehicle (DS-OTV) mission architecture. . . 62
4.5 Dynamical system influence on the DS-OTV architecture. . . . . . . . . 63
4.6 GTO and equivalent maneuver proposed for insertion into parking orbits. 65
4.7 Alternative insertion trajectory to transfer orbits by lunar fly-by. . . . . 66
4.8 Insertion into the deep space trajectory by means of a Powered Earth

Gravity Assist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9 Mission sequence timeline for the DS-OTV with 4 mission spacecraft. . 67
4.10 Planar Periodic Orbit families in the Earth’s vicinity. . . . . . . . . . . . 70
4.11 Stability and Energy Plot of Planar Periodic Orbits in the Earth’s Vicinity. 72

5.1 Poincaré Section at 𝑦 = 0, |𝑣𝑦0 | > 0 for the Lyapunov and Low Prograde
Orbit families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 L2 Lyapunov and Low Prograde Orbit families candidate transfers. . . . 78
5.3 A Single Periodic Transfer (SPT) maneuver between two periodic orbits. 79
5.4 Single Periodic Transfers (SPTs) for Change in Phase (CP) maneuvers. . 81
5.5 Example Single Periodic Transfers (SPTs) for phasing. . . . . . . . . . . 81
5.6 Low Prograde Orbits Single Periodic Transfers (SPTs) comparison of

period and Δ𝑣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 Single Periodic Transfers (SPTs) orbits’ period and size properties. . . 83
5.8 A full Multiple Periodic Transfer (MPT) maneuver with Time-on-

Temporary-Orbit (TOTO) portion highlighted. . . . . . . . . . . . . . . 85
5.9 Flowchart of the Multiple Orbital Crossings Search Algorithm (MOCSA). 86
5.10 Lyapunov and Low Prograde Orbits parametrized with angle \ . . . . . 87
5.11 Multiple Orbital Crossings Search Algorithm (MOCSA) second step. . . 89
5.12 I-0.5O-E maneuver Δ𝑣 vs Time-on-Temporary-Orbit (TOTO). . . . . . . 92
5.13 Rapid servicing maneuvers’ properties for the L1 orbital families. . . . 95
5.14 Rapid servicing maneuvers’ properties for the L1 orbital families. . . . 96
5.15 Multiple Periodic Transfers (MPTs) for a short Change in Phase (CP)

maneuver with the defined concepts. . . . . . . . . . . . . . . . . . . . 98



List of Figures xv

5.16 Multiple Periodic Transfers (MPTs) for a long Change in Phase (CP)
maneuver with the defined concepts. . . . . . . . . . . . . . . . . . . . 98

5.17 Multiple Periodic Transfers (MPTs) for phasing maneuvers for the
families of orbits in the vicinity of L1. . . . . . . . . . . . . . . . . . . . 100

5.18 Multiple Periodic Transfers (MPTs) for phasing maneuvers for the
families of orbits in the vicinity of L2. . . . . . . . . . . . . . . . . . . . 101

5.19 Example Multiple Periodic Transfer (MPT) for different orbital cases. . 103

6.1 𝐿1 Lyapunov Orbit family used in the Lagrange Point Stand-by Transfers
study and their properties. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Example Lagrange Point and Lyapunov Orbit insertion maneuvers
from launch, at a Low Earth Orbit (LEO). . . . . . . . . . . . . . . . . . 108

6.3 Stable Invariant Manifolds used as initial guesses for the insertion and
transfer maneuvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Example DS-OTV phasing maneuver procedure through a Lagrange
Point Stand-by Trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Lyapunov Orbit insertion as a function of orbit size (Δ𝑣 and ToF). . . . 112
6.6 Lagrange Point and Lyapunov Orbit insertion example maneuvers. . . 113
6.7 Lyapunov Orbit-to-Lagrange Point maneuvers (and vice versa) as a

function of orbit size (Δ𝑣 and Time-of-Flight (ToF) respectively). . . . . 114
6.8 Lyapunov Orbit to Lagrange Point (and vice versa) example maneuvers. 115
6.9 Lagrange Point Stand-by Transfer combination for launch scenario. . . 117
6.10 Orbit families used in the in-orbit direct transfers phasing study. . . . . 120
6.11 Direct transfers phasing new concepts. . . . . . . . . . . . . . . . . . . 121
6.12 Flowchart of the Direct In-Orbit Phasing Algorithm (DIOPA). . . . . . 123
6.13 Lyapunov and Low Prograde Orbits parametrized in terms of angle \ . . 124
6.14 Lyapunov Orbits with invariant manifolds transfer trajectories. . . . . 126
6.15 Variables used to calculate the in-orbit Change in Phase (CP). . . . . . . 132
6.16 Direct transfer phasing maneuvers for 3 Lyapunov Orbits. . . . . . . . 134
6.17 Lyapunov Orbit 1 direct phasing maneuvers examples. . . . . . . . . . 134
6.18 Lyapunov Orbit 2 direct phasing maneuver examples. . . . . . . . . . . 135
6.19 Lyapunov Orbit 3 direct phasing maneuver examples. . . . . . . . . . . 136
6.20 Direct transfer phasing maneuvers for 3 Low Prograde Orbits. . . . . . 137



xvi List of Figures

6.21 Low Prograde Orbit 1 direct phasing maneuver examples. . . . . . . . . 137
6.22 Low Prograde Orbit 2 direct phasing maneuver examples. . . . . . . . . 138
6.23 Low Prograde Orbit 3 direct phasing maneuver examples. . . . . . . . . 138
6.24 Direct phasing maneuvers distribution for 3 Lyapunov Orbits. . . . . . 139
6.25 Direct phasing maneuvers distribution for 3 Low Prograde Orbits. . . . 141

7.1 Orbits used in the Single Periodic Transfer (SPT) feasibility study. . . . 146
7.2 Discrete phasing when using Single Periodic Transfers (SPTs). . . . . . 147
7.3 Three-impulse maneuver diagram for detailed phasing. . . . . . . . . . 148
7.4 SQNLP algorithm for detailed phasing trajectories design. . . . . . . . 149
7.5 Single Periodic Transfer (SPT) combined with three-impulse maneuvers

for detailed phasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.6 Insertion maneuver to parking orbits from LEO after launch. . . . . . 152
7.7 Insertion maneuver and Single Periodic Transfer (SPT) detailed phasing

combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.8 DS-OTV mission operation breakdown for the trade-off analysis. . . . . 155
7.9 DS-OTV mission lifetime cumulative Δ𝑣 evaluation for successive

missions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.10 Example Multiple Periodic Transfers (MPTs) used in the detailed

phasing analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.11 Multiple Periodic Transfers (MPTs) with three-impulse maneuvers

combination for detailed phasing. . . . . . . . . . . . . . . . . . . . . . 162
7.12 Two mission lifetime analyses cases used in the trade-off study. . . . . 166



xvii

List of Tables

2.1 Parameters of the Sun-Earth System used in this research. . . . . . . . 29

3.1 Constraints for the SQNLP algorithm for a (multiple) 𝑛-impulse maneuver. 51

4.1 Equivalence between notations for the periodic orbit families used in
this research and literature. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Multiple Orbital Crossings Search Algorithm (MOCSA) database result
format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Properties of the 6 example full I-0.5O-E maneuvers. . . . . . . . . . . . 93
5.3 Characteristics of the Multiple Periodic Transfer (MPT) example cases. 102

6.1 Lagrange Point and Lyapunov Orbit insertion maneuver examples
properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Lagrange Point Stand-by maneuver examples characteristics. . . . . . . 115
6.3 Lagrange Point insertion maneuver combination for DS-OTV mission. 116
6.4 Direct phasing maneuver database format. . . . . . . . . . . . . . . . . 128
6.5 Variables to calculate phasing maneuvers, obtained from DIOPA. . . . . 131
6.6 Period of the orbits used for the in-orbit phasing by direct transfers study. 133

7.1 Parameters of the OTV and mission spacecraft for the case studies. . . 144
7.2 Characteristics of Lyapunov and Low Prograde Orbits used in the SPT

feasibility discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3 Constraints for the SQNLP algorithm for detailed phasing trajectories. 149
7.4 Properties of the three-impulse maneuvers for detailed phasing. . . . . 150



xviii List of Tables

7.5 Insertion maneuver from LEO to different DS-OTV parking orbits. . . . 152
7.6 DS-OTV lifetime evaluation with Single Periodic Transfers (SPTs). . . . 156
7.7 Characteristics of the Multiple Periodic Transfer (MPT) example cases

for feasibility analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.8 Insertion-𝑛Orbit-Exit Scheme (I-nO-E) schemes and the correspondent

Change in Phase (CP) maneuvers used as building blocks. . . . . . . . . 162
7.9 DS-OTV mission lifetime analysis using two different Lagrange Point

Stand-by Transfers philosophies. . . . . . . . . . . . . . . . . . . . . . . 167
7.10 Mission servicing lifetime analysis for the OTV. . . . . . . . . . . . . . 168



xix

List of Algorithms

1 Multiple Orbital Crossings Search Algorithm (MOCSA) First Step: Low
Prograde Orbits and parametrized Lyapunov Orbits crossings search. . . 90

2 Multiple Orbital Crossings Search Algorithm (MOCSA) Second Step:
Lyapunov Orbits and stored preliminary crossings search. . . . . . . . . 91

3 Direct In-Orbit Phasing Algorithm (DIOPA) First Step: find crossings
between propagated trajectories and parametrized orbits. . . . . . . . . 129

4 Direct In-Orbit Phasing Algorithm (DIOPA) Second Step: refine crossings
with propagated parking orbits . . . . . . . . . . . . . . . . . . . . . . . 130





xxi

List of Acronyms

ATV Automated Transfer Vehicle

CP Change in Phase

CRTBP Circular Restricted Three-Body Problem

DCM Direction Cosine Matrix

DESTINY+ Demonstration and Experiment of Space Technology for INterplanetary
voYage Phaethon fLyby and dUst Science

DIOPA Direct In-Orbit Phasing Algorithm

DLR German Aerospace Center or Deutsches Zentrum für Luft- und Raumfahrt

DOF Degree Of Freedom

DRO Distant Retrograde Orbit

DS-OTV Deep Space Orbit Transfer Vehicle

EDVEGA Electric Delta-V Earth Gravity Assist

ESA European Space Agency

FDIR Fault Detection, Isolation, and Recovery

FLA Flash Lamp



xxii List of Acronyms

GEO Geostationary Orbit

GTO Geostationary Transfer Orbit

I-0.5O-E Insertion-0.5Orbit-Exit Scheme

I-1.5O-E Insertion-1.5Orbit-Exit Scheme

I-1O-E Insertion-1Orbit-Exit Scheme

I-2.5O-E Insertion-2.5Orbit-Exit Scheme

I-2O-E Insertion-2Orbit-Exit Scheme

I-3.5O-E Insertion-3.5Orbit-Exit Scheme

I-3O-E Insertion-3Orbit-Exit Scheme

I-nO-E Insertion-𝑛Orbit-Exit Scheme

IKAROS Interplanetary Kite-craft Accelerated by Radiation Of the Sun

ISAS/JAXA Institute of Space and Astronautical Science/Japanese Aerospace Explo-
ration Agency

ISS International Space Station

LEO Low Earth Orbit

LP Lagrange Point

LPO Low Prograde Orbit

LRF Laser Range Finder

MASCOT Mobile Asteroid Surface Scout

MATLAB MATrix LABoratory

MIT Massachusetts Institute of Technology



List of Acronyms xxiii

MOCSA Multiple Orbital Crossings Search Algorithm

MPT Multiple Periodic Transfer

MUSES-C Mu Space Engineering Spacecraft C

NASA National Aeronautics and Space Administration

NEO Near-Earth Object

NRHO Near-Rectilinear Halo Orbit

OKEANOS Oversize Kite-craft for Exploration and AstroNautics in the Outer Solar
system

ONC Optical Navigation Camera

OTV Orbit Transfer Vehicle

PPTD Pin-Point Touchdown

RCS Reaction Control System

SPT Single Periodic Transfer

SQNLP Sequential Quadratic Non-Linear Programming

SRP Solar Radiation Pressure

STM State Transition Matrix

STS Space Transportation System

SV State Vector

TAD Time Ahead Docking

TDD Time Delayed Docking

TM Target Marker



xxiv List of Acronyms

TOBO Time-on-Base-Orbit

ToF Time-of-Flight

TOTO Time-on-Temporary-Orbit

USSR Union of Soviet Socialist Republics

ZVC Zero Velocity Curve



1

1
Introduction and Background

Humanity has, through its history, always placed a great emphasis on the sky and
whats beyond. While early civilizations imbued mysticism and magical properties to
the celestial bodies, efforts to understand what surrounds our planet advanced at a
steady pace with each scientific and technological breakthrough. During the 20th

century, humanity was able to, not only observe from Earth, but start exploring space.
Since then, Low Earth Orbit (LEO) missions were succeeded by higher altitude missions,
Moon, and Solar System planets exploration missions. With recent years’ development
in space exploration, scientific objectives have become more diverse, including
numerous missions to small celestial bodies (Rosetta[1, 2], OSIRIS-Rex[3], Hayabusa[4],
Hayabusa2[5, 6], DART[7, 8]) and recurring visits to Solar System planets (BepiColombo
to Mercury[9]). These wide array of objectives have driven the development of novel
space travel techniques (Interplanetary Kite-craft Accelerated by Radiation Of the
Sun (IKAROS)[10], Oversize Kite-craft for Exploration and AstroNautics in the Outer
Solar system (OKEANOS)[11] with solar sails, Demonstration and Experiment of
Space Technology for INterplanetary voYage Phaethon fLyby and dUst Science
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(DESTINY+)[12, 13] with continuous low thrust engines), as well as systems that
enable repeatable access to space[14, 15, 16, 17]. Currently, new mission concepts
are developed leveraging novel technologies that make them more feasible (Europa
Clipper[18], Icarus asteroid mission[19], Calathus mission concept to Ceres[20], new
sample return missions on the success of Rosetta and Philae[2]). In parallel, National
Aeronautics and Space Administration (NASA)’s Artemis program, has been taking
the center stage on human spaceflight, more specifically with the Lunar Gateway1.
This has kickstarted a renewed interest in the development of space infrastructure
for recurrent use: including Cubesats for auxiliary purposes[21], active space debris
removal[22, 23], but most importantly, it has made apparent the necessity of studies
on the feasibility, use and dynamical environment surrounding auxiliary spacecraft
and their interactions with other spacecraft[24]. New concepts for space transports,
orbital stations, space tugs or Automated Transfer Vehicles (ATVs) and their impact in
current and near future space development are common and varied in their scope: from
the more infrastructure-based[25], to the focused on the robotics and manipulators
subsystems used during the on-orbit servicing[26, 27] and the ones investigating the
autonomous operation of such highly complex systems[28]. Alternatives to the current
Lunar Gateway design are also commonly proposed, including different concepts
that allow faster and more available transport to the Moon[29, 24, 30, 31], Mars[32],
or expanding current LEO capabilities for the future, including the capability of
interplanetary exploration by the European Space Agency (ESA)[33].

The Deep Space Orbit Transfer Vehicle (DS-OTV) has been introduced in the
past[34] as a concept to separate the roles of ’transportation to the destination’ and
’exploration at the destination’ to two spacecraft, instead of one (not unlike the Mars
transport concept in [32]). The main merit of such a design is the specialization of each
spacecraft on each role, decreasing complexity, and the possibility of standardization of
the OTV between different mission. While previous works show big picture studies
on the merits of a DS-OTV[34, 29, 27, 25], the feasibility of such an architecture
depends, among many factors, on the orbital placement of the OTV and its ease
of access from the Earth, and the possibility of rendezvous between the OTV and
successive mission spacecraft[29, 24]. Lagrange or Libration point orbits have long

1"Explore Moon to Mars" https://www.nasa.gov/specials/moontomars/index.html NASA. Accessed
on: 11/04/2022.

https://www.nasa.gov/specials/moontomars/index.html
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been considered for similar purposes and have been extensively studied in the
literature.[35, 36, 37, 38, 39, 40] Of special interest are orbits in the vicinity of the L1,2
Lagrange Points, as their physical location and dynamical structure allow for the design
of fuel efficient transfer trajectories. These include planar and vertical Lyapunov, Halo
and Near-Rectilinear Halo Orbit (NRHO)[38, 41]. Other orbits centered around the
Earth, such as Distant Retrograde Orbit (DRO), Low Prograde Orbit (LPO)[42] and
other bifurcation families from them are also significant as intermediate trajectories.
The rendezvous, or phasing, problem in complex dynamical environments has been
studied for years with different focuses, as it is critical for such a concept to work. Some
studies focus on LEO problems[43, 44], others focus on heliocentric orbits[45, 46, 47],
and another subset tackle the Circular Restricted Three-Body Problem (CRTBP)[38, 40]
or include 𝑛-body perturbations[48]. More specifically, phasing is defined as the act of
connecting trajectories at arbitrary timings to arbitrary directions, not only the fact of
keeping relative positions constant (as is done in cases of formation flying[49, 50, 51])
or reducing the relative motion (for rendezvous control algorithms[52, 53, 44]). This is
important because parking orbits in the Lagrange Points vicinity have their own
periodicity, which will not be the same as the launch and Earth departing trajectories,
and obtaining these phasing trajectories for long mission operation schedules is not
straight forward. Most studies choose to use relative motion reference frames[54, 55, 56]
and focus on optimization techniques with specific requirements on orbital placement
and launch methods, aligning with the specifications of specific missions such as the
Lunar Gateway[57, 58, 59, 24, 38, 41, 60], DART[7, 8, 61] or other arbitrary, pre-selected
location[62, 63, 17]. These techniques offer the advantage of designing very robust,
safe trajectories for rendezvous problems, but are limited to the applicability region
where they were designed, or have very narrow constraints in the transfer and parking
orbit they use, so generalizing for other applications becomes difficult. A subset of
studies focused on repeatable lunar access use a cycler infrastructure to guarantee
periodic availability from two origin points.[17] Most of the techniques used in this
work is based on the difference in period between combinations of orbits, which is the
basis of the resonance phenomenon in classical astrodynamics. A resonance exists
when there is a simple integer relationship between frequencies or periods.[64] There
exists many kinds of resonances, which occur under different conditions, and the
existence and usage of resonant orbits in trajectory design is not a novelty (having the



4 Chapter 1. Introduction and Background

first proposals all the way back to the 1960s [65]). The main usage of such resonances
has been for trajectory design in support of celestial bodies flybys (most solar system
exploration use it, but specially missions in very complex multi-body environments like
the Jovian environment[66, 67, 68] and most recently the tour design for the Europa
Clipper Mission[18]), and have been proposed for transfer mechanisms in multi-body
environments[69]. However, the usage as phasing mechanisms has not been explored
in detail, and the applications proposed in this work differ to the classical usages.

1.1 Aims and Methods of this Research

The DS-OTV concept introduced in this work differs slightly from that of the
references([34, 33, 32]), leveraging technical heritage from Hayabusa2 to design
an architecture with recurring access to space by placing an OTV in a parking orbit in
the Earth’s vicinity. Using the OTV for refueling purposes in future missions would
bring the launch mass down, increase the availability of launch windows and allow
flexibility against delays and launcher vehicles used (identified in [19] as a major point
when searching for scientific objectives), like the Epsilon or the future H3[70, 71].

For the previous reasons, in this work, a study of candidate periodic orbit families for
the OTV’s parking orbits and phasing trajectories is presented. The focus is put on the
characterization of the transfers between them with regards to availability, fuel usage
andmaneuver time. The work is concerned with the usage of transfers between different
periodic orbits for phasing (to facilitate rendezvous maneuvers between spacecraft
orbiting the orbits). In the past, numerous studies have focused on specific unique
or optimal maneuvers (like in [45, 51, 44, 43, 40], where the optimization of control
algorithms take center stage). However, leveraging the periodic orbits themselves
and their transfers has not been directly studied, especially the existence of phasing
possibilities by direct transfers between periodic orbits. Previous studies concerned with
the cislunar problem (and the difference in dynamics and applications that this entails)
have a similar scope: more specifically in [48] numerical propagation techniques,
the exploitation of the symmetries of the system and optimization algorithms for
constrained trajectories are used, however they focus on optimal two-impulse trans-
lunar orbits under the perturbation of the Sun, without introducing the phasing
problem. The same can be said for [39], where even though the study of periodic orbits
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in the vicinity of the Earth is expanded by including quasi-periodic orbits, they do not
tackle any phasing maneuvers, focusing entirely on the application for eclipse avoiding
trajectories. Although the techniques developed in these previous studies can be
applied to the current problem, they do not offer solutions to the main questions.
Therefore, in this work different classifications and tools specifically designed to
provide insights into the phasing problem are introduced. From the available solutions,
favorable candidate orbits are isolated, and once promising combinations are found,
specific parameters and terminology are created to compare their performance and
create a benchmark under which all the analyses done in this and future work are
based. The main concern when analyzing the results is to benchmark the performance
of different combination of parking orbits and find out the most important properties
to be taken into account when designing specific mission maneuvers, but also taking
into account the overall design of a DS-OTV mission scenario. For this purpose, launch
and lifetime performance metrics are introduced.

The previous results are extended with the study of phasing maneuvers between
spacecraft along the same periodic orbit but with different starting locations. With this
idea, firstly, Lagrange Point and Lyapunov Orbit stand-by transfers are introduced, in
which a spacecraft placed in the Lagrange Point exploits the stationary location to
facilitate the phasing with regards to other candidate periodic orbits in the study. The
Lagrange Points in the CRTBP are physical spaces which remain at a fixed position
relative to the primary bodies (the Sun and the Earth). This means that a spacecraft
placed at the exact point of a Lagrange Point could theoretically wait for an indefinite
amount of time with zero expenditure of fuel and execute the transfer maneuver to a
transfer or parking orbit at the exact moment needed, without any other constraint.
However, insertion and exit to such a position is not free, and different parking and
transfer orbits might need different conditions in order to take advantage of these
technique. With the same objective, direct transfers from and to the different periodic
orbits at different positions are also taken into account. The study does not focus on
specific unique or optimal maneuvers, but on the overall structure of possible solutions,
especially in the existence of low energy transfers by leveraging the stable and unstable
manifold structures emanating from the periodic orbits. These methods are applied to
the candidate orbits and their performance are compared to try to establish a baseline
for the viability of these maneuvers with regards to timing possibilities and fuel spent.
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Since such studies are numerically intensive, a combination of numerical propaga-
tion techniques, the exploitation of the symmetries of the CRTBP and parametrization
algorithms for the periodic orbits are used to streamline the search. Part of the aim of
this study is to introduce these new methods and techniques used in the context of
mission design for the DS-OTV in the complex dynamics of the Sun-Earth environment.

Finally, mission feasibility analyses are performed taking into account the different
phasing possibilities found in the previous parts. Special care is put into trying to
design lifetime analyses that can emulate an actual DS-OTV mission scenario, used to
evaluate the feasibility of the concept and the operations proposed in a holistic manner.

1.2 Past ISAS/JAXA Missions

The DS-OTV is a concept mission being proposed and worked in the context of the Solar
System exploration of Institute of Space and Astronautical Science/Japanese Aerospace
Exploration Agency (ISAS/JAXA), and even more, directly based on technology
heritage from past missions of the agency. For this reason, it is worth to do a very brief
summary, for context, of at least the most directly related missions.

1.2.1 Hayabusa (Launched 2003)

Hayabusa (formerly known as Mu Space Engineering Spacecraft C (MUSES-C))
launched in May 2003 and arrived at the target asteroid Itokawa in September 2005.
During development, the scientific target of Hayabusa was intended to be a different
one, but had to be updated after delays in the launch date. With its success, ISAS/JAXA
accomplished the take off from an extra-terrestrial body’s surface (other than the
Moon) and the first asteroid sample return mission[4]. The Hayabusa mission had a
combination of scientific and technology demonstration objectives, as it is common in
space exploration missions, such as ion engine propulsion usage, optical autonomous
navigation and guidance, asteroid sample collection, sample recovery at Earth and low
thrust and gravity assist maneuver combination[72].

Hayabusa (in Fig. 1.1a during its final inspection) had a 510 kg wet mass, and used a
combination of ion engine propulsion and gravity assist maneuvers (Electric Delta-V
Earth Gravity Assist (EDVEGA), Fig. 1.1b) to reach Itokawa after 2 years. At the
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(a) Hayabusa final inspection. (b) Hayabusa interplanetary round-trip plan.

Figure 1.1: Hayabusa (MUSES-C) photo and mission plan[73].

asteroid, Hayabusa touched down twice, collecting samples, and successfully returned
to Earth in 2010 after an extended accidental trip back where several subsystems
malfunctioned[73]. With Hayabusa’s success, the technological demonstration of
several novel techniques, and the lessons learned, ISAS/JAXA planned successive
missions to other small Solar System bodies.

1.2.2 IKAROS (Launched 2010)

IKAROS is a technology demonstration and validation mission that was the first
successful interplanetary Solar Power Sail in the world. Launched together with
another ISAS/JAXAmission (Akatsuki, or Planet-C) in 2010, it performed interplanetary
solar-sailing from the Earth to Venus. Its main objectives were the deployment of a
solar sail in space, the use of thin film solar cells attached on the sail for solar power
generation, the verification of Solar Radiation Pressure (SRP) acting on the solar
sail, and the demonstration of solar sailing guidance and navigation techniques[10].
IKAROS uses its passive spin-stabilizing method to deploy the sail membrane and
keep its shape. IKAROS successfully met its principal objectives at the end of 2010
(Fig. 1.2), but had an extended mission phase until March 2012. The last contact with
the spacecraft, as of the date of this thesis publication, had been in May 21st 2015. The
spacecraft entered hibernation mode for the 5th time, as expected, at a distance of
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about 110 × 106 km from Earth2.

Figure 1.2: Mission sequence of IKAROS[10].

1.2.3 Hayabusa2 (Launched 2014)

Hayabusa2, following from the first Hayabusa mission as an asteroid sample return
mission from ISAS/JAXA, launched in 2010. The baseline design and operation is
strongly influenced by Hayabusa, improving upon the original design and the IKAROS
mission from the lessons learned. Hayabusa2, as Hayabusa did, used an Earth fly-by to
obtain a low-thrust trajectory to reach its destination[5].

Hayabusa2 arrived at its target objective, asteroid 1999JU3 (or Ryugu) on June 2018
(Fig. 1.3a) and performed its main objectives, which included deploying of a small lander
named Mobile Asteroid Surface Scout (MASCOT) developed by the German Aerospace
Center or Deutsches Zentrum für Luft- und Raumfahrt (DLR)[75], observations of the
asteroid, and most importantly, touchdown and sample collection[76, 6, 77, 74]. The
optical navigation used by Hayabusa and its Optical Navigation Camera (ONC) was
improved and used, with Target Markers (TMs) to aid in the touchdown, as well as all
the operations experience (Fig. 1.3b). After almost two years, Hayabusa2 returned the
capsule with Ryugu’s samples to Earth for further analysis[78]. After dropping the
capsule with the samples, Hayabusa2 continued its trip around the Solar System on an
extended mission that will take it to perform a fly-by of asteroid 2001 CC21 and reach

2JAXA (2022). Small Solar Power Sail Demonstrator ’IKAROS’ (2022). (Website) http://global.jaxa.jp/
projects/sat/ikaros/topics.html#topics4743 Date consulted: 2022-04-10

http://global.jaxa.jp/projects/sat/ikaros/topics.html# topics4743
http://global.jaxa.jp/projects/sat/ikaros/topics.html# topics4743
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(a) An ONC-T image captured by Hayabusa2 at
Home Position on June 30, 2018.

(b) ONC-W1 image captured after touchdown
at February 21, 22:30UT at an approximate
altitude of 25 m. The circle indicates the 6 m
circle of the landing target L08-E1, and a bright
dot at the arrow tip is the Target Marker (TM).

Figure 1.3: Asteroid Ryugu and Hayabusa2 casting a shadow on its surface after
touchdown[74].

and rendezvous with its final target body, 1998 KY26, after 10 years more in orbit3.
More details on the operations and the instruments themselves are given in Chapter 4,
in the context of the technological heritage from Hayabusa2 used to conceptualize and
design the DS-OTV.

1.3 Past (and alternative) Orbit Transfer Vehicle Con-

cepts

The Orbit Transfer Vehicle (OTV) concept (also sometimes referred as Space Tug), in
its most general form, as an auxiliary vehicle used to aid in the transport of cargo
in space between orbits or other spacecraft, is nothing new. Stretching the concept
to the distant past, larger ships used for long distance travel used to moor in deep
waters, while smaller ships were used to ferry the cargo to and from the shore. When
humanity started envisioning space travel, visionary fiction authors started toying with

3Hayabusa2 Press conference materials - 15 September 2020 http://www.hayabusa2.jaxa.jp/enjoy/
material/press/Hayabusa2_Press_20200915_ver9_en2.pdf Date consulted: 2022-04-10

http://www.hayabusa2.jaxa.jp/enjoy/material/press/Hayabusa2_Press_20200915_ver9_en2.pdf
http://www.hayabusa2.jaxa.jp/enjoy/material/press/Hayabusa2_Press_20200915_ver9_en2.pdf
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similar concepts (from the spaceships themselves in Jules Verne’s De la Terre à la Lune
and Autour de la Lune in the 1860s, to 2014 Christopher Nolan’s Interstellar) that paved
the way to actual real life systems. Authors like Isaac Asimov, Robert. A. Heinlein and
Arthur C. Clarke created concepts that inspired later technologies. Perhaps some of the
most early and accurate representations of OTVs are in the highly influential (and very
current due to its 2021 film adaptation by Denis Villeneuve) 1965 Frank Herbert novel
Dune, where there is a Spacing Guild which has a monopoly on its only purpose: the
transport of people and goods between different galaxies and planet’s systems. While
we are still far away from such technology, OTVs (or similar concepts) have been
designed and even flown during the short history of space exploration and utilization.

(a) Commemorative stamp from 1968 of the
first automatic docking in space by KOSMOS
186 and KOSMOS 188 spacecraft in 19674.

(b) Apollo 11’s Eagle’s ascent stage approaching
Columbia for docking in lunar orbit5.

Figure 1.4: First steps towards the development of the OTV concept by the USSR and
NASA in the 1960s.

First steps towards a functioning OTV were done by the Soviet Union (officially
Union of Soviet Socialist Republics (USSR)) in 1967, when they demonstrated fully

4By USSR Post - Scanned 600 dpi by User Matsievsky from personal collection, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=40804591.

5By Michael Collins - NASA (hi-res), Public Domain, https://commons.wikimedia.org/w/index.php?
curid=506841.

https://commons.wikimedia.org/w/index.php?curid=40804591
https://commons.wikimedia.org/w/index.php?curid=506841
https://commons.wikimedia.org/w/index.php?curid=506841
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automatic rendezvous and docking with their KOSMOS 186 and KOSMOS 188 spacecraft
of the Soyuz program (Fig. 1.4a), followed by the Soyuz 4 and Soyuz 5 spacecraft in
early 1969, which emulated the same feat but crewed, having two cosmonauts transfer
from one to the other. Almost concurrently, the United States were developing their
Mercury, Gemini and finally Apollo programs, which reached similar milestones and
even surpassed them with the first lunar landing of Apollo 11 in 1969, whose Command
Module Columbia stayed in lunar orbit, docked with the Lunar Module Eagle (Fig. 1.4b),
and transported the astronauts back to Earth. Successive milestones by space agencies
brought the space stations into reality, from Skylab,Mir, the current International
Space Station (ISS) and the Chinese Tiangong, and its servicing spacecraft. Although
the space station concept differs from the OTV concept, the technologies needed for
transport, docking and orbital maintenance are common.

(a) Detailed proposed propulsion module design
for an OTV concept[79].

(b) Integrated space transportation systems.
1990’s scenario[80].

Figure 1.5: Integrated space transportation systems and OTV concepts from NASA
studies during the 1980s.

During the years, numerous studies have been done evaluation possible designs
and the feasibility of different OTV concepts. The 1982 study [79] by Eldon E. Davis
from Boeing Aerospace Company for NASA already discussed the feasibility of an
OTV between LEO and Geostationary Orbit (GEO), even comparing a ground-based
OTV to a future space-based OTV, and describing the key technologies needed to
develop the concept, including infrastructure, propulsion, mission operation, debris
protection and cost analyses, among others (Fig. 1.5a). Prior to that, a 1980 study
[81] focused entirely on the propulsion system of a proposed OTV. Another 1984
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study [80] by NASA’s Larry P. Cooper delved into more detail into the propulsion
issues of such an OTV, and included the possibility of usage for planetary access.
Quoting the same report by Cooper (1984), during these years, the idea was that "For
the 1990s and beyond it is envisioned that an integrated Space Transporation (sic)
System consisting of the Space Shuttle, a Space Station, an Orbit Maneuvering Vehicle
and an Orbit Transfer Vehicle will exist to deploy, service and retrieve payloads in high
or geosynchronous orbit (GEO)" (p. 1). Such concept can be seen in Fig. 1.5b. This
study was not isolated, the entire space community thought that such an architecture
was in the near future. In the same decade, we can even find alternative designs
presented in universities during conferences [82]. All these studies and concepts came
from the original Space Transportation System (STS) studies by NASA to extend
operations beyond the Apollo program, which ended up becoming the Space Shuttle
Program, placing huge emphasis on reusable spacecraft. The continued technological
development brought studies on electric propulsion for such spacecraft [83], and more
alternative designs in universities and research centers such as Massachusetts Institute
of Technology (MIT) [84]. Even though the benefit of time allows us to see that this
future never came, undoubtedly influenced by the high cost and under performance of
the Space Shuttle, including its retirement announcement in 20046, and its final flight
in 20117, studies regarding possible OTVs never ceased entering the new millennium,
even if they might have slowed down. Such studies include trade-space studies of large
quantities of combinations of designs as in [85], and even the precursor in ISAS/JAXA
of the concept here explored, by Kawaguchi in 2003 [86], and expanded by Kawakatsu
in 2007 [34], already openly presenting and exploring the usage of an OTV for aiding
in deep space exploration.

However, the OTV concept, and more generally, the space infrastructure, space
recurrent access and re-usability in space all came back to prominence during the past
10-15 years, when the barrier to access space was lowered and the private industry
started an accelerated growth. On top of that, NASA unveiled a renewed focus on
the Moon and the infrastructure to put humans on its surface again with its Artemis

6Bush, George (January 14, 2004). "President Bush Announces New Vision for Space Exploration
Program" https://history.nasa.gov/Bush%20SEP.htm. NASA. Accessed on: 11/04/2022

7"Completing the Mission" (Jul 23, 2011) https://www.nasa.gov/multimedia/imagegallery/image_
feature_2015.html NASA. Accessed on: 11/04/2022

https://history.nasa.gov/Bush%20SEP.htm
https://www.nasa.gov/multimedia/imagegallery/image_feature_2015.html
https://www.nasa.gov/multimedia/imagegallery/image_feature_2015.html
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(a) Comparison of lunar orbits and change-
in-velocity (Δ𝑉 ) transfers in the Artemis
Program[31].

(b) Current concepts of the Lunar Gateway
(courtesy of NASA)[16].

Figure 1.6: The Artemis Program and its Lunar Gateway have re-ignited the study of
OTVs and the technology surrounding them.

Program8 (Fig. 1.6a). In this new plan, one of the touchstones is the development of
the Lunar Gateway9 (Fig. 1.6b), what is basically an OTV on a lunar orbit that will
serve as a cargo depot and bridge between Earth and Moon spacecraft. Following the
announcement and the start of the development of the Lunar Gateway, numerous
studies started supporting it and developing the technologies needed to operate it. It is
impossible to account for all the studies, however, some of them propose the usage of
CubeSats in combination with the Lunar Gateway, for science missions [16] or for
inspection and maintenance [21] (in Fig. 1.7a), another subset propose support adding
extra spacecraft to support the Gateway, in the form of a Space Tug [14, 31] (Fig. 1.7b),
a new Human Landing System [30] or a reusable re-entry vehicle [87]. Of course, a
huge number of authors have been studying the dynamical environment in which the
Lunar Gateway will be placed, a NRHO around the Moon, to find optimal trajectories
and maneuvers [57, 58, 59, 24, 38, 41, 60], optimal rendezvous operations [29].

But the Lunar Gateway concept has also made researchers design and study
8"Explore Moon to Mars" https://www.nasa.gov/specials/moontomars/index.html NASA. Accessed

on: 11/04/2022.
9"NASA Unveils Sustainable Campaign to Return to Moon, on to Mars" https://www.nasa.gov/

feature/nasa-unveils-sustainable-campaign-to-return-to-moon-on-to-mars/ NASA. Accessed on:
11/04/2022.

https://www.nasa.gov/specials/moontomars/index.html
https://www.nasa.gov/feature/nasa-unveils-sustainable-campaign-to-return-to-moon-on-to-mars/
https://www.nasa.gov/feature/nasa-unveils-sustainable-campaign-to-return-to-moon-on-to-mars/
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(a) Design reference mission and ConOps for Cube-
Sats inspecting the Lunar Gateway[21].

(b) Proposed Lunar Space Tug mission
concept[14].

Figure 1.7: Supporting concepts for the Lunar Gateway appeared in recent years.

alternative OTV and space infrastructure concepts, wanting to make more use of
the technology developed or already creating the concepts of the future. Navigation
schemes [33, 88], lunar cyclers with periodic access [17], an OTV-like concept for
recurrent access to Mars [32] (Fig. 1.8a) or more generally studies exploring the
possibilities of exploration using these new technologies [25, 27] (Fig. 1.8b) are
becoming more common.

(a) Concept of Operation diagram for a reusable
Laser-Thermal Propulsion System[32].

(b) A conceptual illustration of the future cislu-
nar resources ecosystem[25].

Figure 1.8: New space infrastructure concepts studied for the mid-term future.
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1.4 Outline of the Thesis

Chapter 1 introduces the background information on the concepts introduced in this
research, detailing past missions that influenced the work and the concept itself, as
well as the main objectives of the thesis.

Chapter 2 provides all the theoretical background used in the research, focusing
on the dynamical model, the CRTBP, while Chapter 3 details the trajectory design
methods and dynamical structures used in this work to support the main research.
While the main part of these chapters is a collection of well-known and researched
information, the latter parts introduce novel methods tailored for this work.

Chapter 4 provides an in-depth description of the DS-OTV concept that is worked
through all the thesis, including the technical heritage that it uses, the different mission
phases, and an initial exploration of candidate orbital structures to be used.

Chapter 5 presents results regarding transfers between different candidate orbit
families. Single and multiple periodic transfers are studied, and the potential use of
these transfers as a phasing mechanism for spacecraft is evaluated with the creation of
performance parameters and comparison tools. Additional methods for improving the
phasing capabilities of these transfers are introduced, and the evaluation over the
lifetime of a DS-OTV mission is done with regards to fuel usage and time constraints.

Chapter 6 changes the focus to phasing maneuvers between spacecraft along the
same periodic orbit but with different starting locations. With this idea, Lagrange Point
and Lyapunov Orbit stand-by transfers are introduced, and direct transfers from and
to the different periodic orbits at different positions are also taken into account. To
aid in the study, new tools and algorithms are designed and executed, with similar
performance parameters to the previous chapter.

In Chapter 7 mission feasibility analyses are performed taking into account the
different phasing possibilities found in the previous parts. Special care is put into
trying to design lifetime analyses that can emulate an actual DS-OTV mission scenario,
used to evaluate the feasibility of the concept and the operations proposed in a holistic
manner.

Finally, the conclusions are presented in Chapter 8 focusing on the main research
findings, research impacts and limitations, and including future work needed to be
done to further develop the concept.
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2
The Circular Restricted Three-Body

Problem (CRTBP)

The current formulation of astrodynamics is an evolution of many different researchers
and schools throughout time. However, we can pinpoint the start at the moment the
mathematical tools to analyze the problem were first formalized, in Newton’s Principia
(officially named Philosophiæ Naturalis Principia Mathematica)[89]. In his work, Newton
formulated Newton’s Laws of Motion, a cornerstone of classical mechanics. The birth
of the basic equations and laws used in astrodynamics is detailed in Appendix A. It is
noteworthy to point out that Kepler formulated his three laws of planetary motion
during the previous century, which were corroborated and explained by Newton’s
laws. The three laws of planetary motion by Kepler are included in Appendix A

In its most general form, the astrodynamics problem can be defined as the motions
of any given bodies (point masses) moving under the influence of their mutual
gravitational attraction (assuming no external forces acting on the system). Applying
Newton’s Laws, we obtain, for the general case of an 𝑛 body system:
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d2𝑟 𝑖
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where 𝑟 𝑖 𝑗 and𝑚𝑖 are the relative position vector and mass of the 𝑖-th body, and
𝐺 = 6.674 × 10−11 N m2 kg−2 is the gravitational constant. The equation of motion of
body 𝑖 may be written as three scalar second-order differential equations, while the
motion of 𝑛 bodies can be described with 3𝑛 second-order differential equations. The
more bodies taken into account, the more complicated their interactions become.
For 𝑛 = 2, the problem was solved by J. Bernouilli in 1710. For 𝑛 > 2 there is no
general analytical solution and reliance in numerical integration techniques is needed,
although some solutions are present for very specific three-body cases. As all these
cases are too extensive to explain, or even list, we will narrow the content included
in this thesis to the used systems. In order to develop the research in this work, we
need to define a narrower version of the 𝑛-body problem that suits the context of the
mission design. We will focus on the CRTBP. For this specific case of the three-body
problem, the following assumptions are made:

• The mass of two bodies is much larger than the mass of the third body. Then, the
third body moves in the gravity field of the two massive bodies, but the effect of
the gravitational attraction by the third body on the motion of these massive
bodies can be neglected.

• The two massive bodies move in circular orbits about the barycenter of the
system.

This case is ideal for studying the motion of a spacecraft in the vicinity of the Earth,
while taking into account the influence of the Sun’s gravity. With the orbits of the two
massive bodies known (Sun and Earth), the problem is to determine the motion of the
third body (spacecraft). The general three-body problem is thus reduced from nine
second-order differential equations to three second-order ones. The two main bodies
move as if they form a two-body system (in a single plane and always positioned
diametrically opposite). This assumption only holds if the mass of the third body,
the spacecraft, is zero. Even though this is not true, the mass of any spacecraft in
comparison with both the mass of the Sun and the Earth is small enough to assume it.
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2.1 Equations of Motion

(a) Inertial and rotating frames in the CRTBP
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(b) Distances in the CRTBP.

Figure 2.1: The Circular Restricted Three-Body Problem (CRTBP).

We choose a (pseudo-) inertial reference frame b[Z with origin 𝑂 at the barycenter
of the system of three bodies and with the Z -axis perpendicular to the plane in which
the two bodies are moving. The barycenter is located on the line connecting the two
bodies, and the coordinates of the main bodies 𝑃1 and 𝑃2 are, respectively (b1, [1, 0) and
(b2, [2, 0); the coordinates of the third body are (b, [, Z ) (not restricted to the b[-plane).
The equation of motion with respect to the inertial reference frame is

d2𝑟
d𝑡2 = −𝐺𝑚1

𝑟 31
𝑟 1 −𝐺

𝑚2

𝑟 32
𝑟 2 , (2.2)

where

𝑟 21 = (b − b1)2 + ([ − [1)2 + Z 2 ; 𝑟 22 = (b − b2)2 + ([ − [2)2 + Z 2 . (2.3)

Since both massive bodies move in circular orbits about 𝑂 , we conclude that:

• The distances 𝑂𝑃1 and 𝑂𝑃2 are constant.

• The line segment 𝑃1𝑃2 rotates about 𝑂 with a constant angular velocity.

A new reference frame 𝑋𝑌𝑍 is chosen, with origin at 𝑂 and of which the 𝑋 -axis
coincides with 𝑃1𝑃2. The 𝑋𝑌 -plane coincides with the b[-plane, and it rotates about the
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Z -axis (𝑍 -axis) with a constant angular velocity 𝜔 (= d\
d𝑡 ) (Fig. 2.1). When the velocity

of 𝑃 with respect to the inertial reference frame is indicated by d𝑟
d𝑡 and with respect to

the rotating reference frame by 𝜕𝑟
𝜕𝑡
, the following expression holds:

d𝑟
d𝑡 =

𝜕𝑟

𝜕𝑡
+ 𝜔 × 𝑟 , (2.4)

where 𝜔 has the magnitude 𝜔 and is directed along the 𝑍 -axis. This relation
between the time derivatives of a vector in both reference frames is generally applicable,
so we can also write:

d
d𝑡

(
𝜕𝑟

𝜕𝑡

)
=
𝜕2𝑟

𝜕𝑡2
+ 𝜔 × 𝜕𝑟

𝜕𝑡
. (2.5)

Differentiation of Eq. (2.4) gives the acceleration with respect to the inertial
reference frame

d2𝑟
d𝑡2 =

d
d𝑡

(
𝜕𝑟

𝜕𝑡

)
+ 𝜔 × d𝑟

d𝑡 . (2.6)

Taking into account that 𝜔 is constant, substitution of Eq. (2.4) and Eq. (2.5) into
Eq. (2.6) gives

d2𝑟
d𝑡2 =

𝜕2𝑟

𝜕𝑡2
+ 2𝜔 × 𝜕𝑟

𝜕𝑡
+ 𝜔 × (𝜔 × 𝑟 ) . (2.7)

Substitution of Eq. (2.7) into Eq. (2.2) yields the equation of motion of 𝑃 with respect
to the rotating reference frame:

𝜕2𝑟

𝜕𝑡2
= −𝐺

(
𝑚1

𝑟 31
𝑟 1 +

𝑚2

𝑟 32
𝑟 2

)
− 2𝜔 × 𝜕𝑟

𝜕𝑡
− 𝜔 × (𝜔 × 𝑟 ) . (2.8)

In this rotating reference frame, two extra accelerations appear: the second term on
the right-hand side of Eq. (2.8) is the Coriolis acceleration, while the third term on the
right-hand side is the centrifugal acceleration.

2.2 Adimensional Equations of Motion

Equation (2.8) is dependent on the mass of the massive bodies of the system. To
simplify the equations, we can adimensionalize it with a new unit of mass, length and
time. As a new unit of mass we take (𝑚1 +𝑚2). We require that ` ≤ 1/2, which means
that if the masses of both bodies are not equal, body 𝑃1 has the larger mass. Then the
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masses of the main bodies become:

𝑚1 = 1 − ` ; 𝑚2 = ` . (2.9)

As a unit of length, the distance 𝑃1𝑃2 is selected. Since 𝑂 is the barycenter of the
system,

𝑂𝑃1
𝑂𝑃2

=
𝑚2
𝑚1

=
`

1 − ` 𝑜𝑟 ` (𝑂𝑃1 +𝑂𝑃2) = 𝑂𝑃1 . (2.10)

Because 𝑂𝑃1 +𝑂𝑃2 has, with the new unit of length the value 1, we obtain

𝑂𝑃1 = ` ; 𝑂𝑃2 = 1 − ` . (2.11)

As a unit of time we choose 1/𝜔 . Using the new non-dimensional units, Eq. (2.8)
can be written as

𝜔2 (𝑃1𝑃2)
𝜕2 (𝑟/𝑃1𝑃2)
𝜕𝜔2𝑡2

= −𝐺


𝑚1
𝑚1+𝑚2(
𝑟1
𝑃1𝑃2

)3 𝑟 1
𝑃1𝑃2

+
𝑚2

𝑚1+𝑚2(
𝑟2
𝑃1𝑃2

)3 𝑟 2
𝑃1𝑃2


(𝑚1 +𝑚2)
(𝑃1𝑃2)2

−2𝜔𝑒𝑧 ×
𝜕 (𝑟/𝑃1𝑃2)

𝜕𝜔𝑡
𝜔 (𝑃1𝑃2) − 𝜔𝑒𝑧 ×

(
𝜔𝑒𝑧 ×

𝑟

𝑃1𝑃2

)
𝑃1𝑃2

, (2.12)

where 𝑒𝑧 is the unit vector along the 𝑍 -axis. Replacing the new quantities and
indicating them by ∗:

𝜕2𝑟 ∗

𝜕 (𝑡∗)2
= − 𝐺

𝜔2

[
1 − `
𝑟 ∗31

𝑟 ∗1 +
`

𝑟 ∗32
𝑟 ∗2

]
− 2𝑒𝑧 ×

𝜕𝑟 ∗

𝜕𝑡∗
− 𝑒𝑧 × (𝑒𝑧 × 𝑟 ∗) . (2.13)

If 𝑃2 (and thus also 𝑃1) moves in a circular orbit about 𝑂 , the motion of 𝑃2 is given
by:

𝑚2𝜔
2 (𝑂𝑃2) = 𝐺

𝑚1𝑚2

(𝑃1𝑃2)2
or 𝐺

𝜔2 =
(𝑂𝑃2) (𝑃1𝑃2)2

𝑚1
=
1 − `
1 − ` = 1 . (2.14)

With Eq. (2.14) and omitting the index ∗ for simplicity, rewrite Eq. (2.13) as

𝜕2𝑟

𝜕𝑡2
= −

(
1 − `
𝑟 31

𝑟 1 +
`

𝑟 32
𝑟 2

)
− 2𝑒𝑧 ×

𝜕𝑟

𝜕𝑡
− 𝑒𝑧 × (𝑒𝑧 × 𝑟 ) . (2.15)
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Using the following relations

𝑟 1 = (` + 𝑥) 𝑒𝑥 + 𝑦𝑒𝑦 + 𝑧𝑒𝑧 ; 𝑟 2 = − (1 − ` + 𝑥) 𝑒𝑥 + 𝑦𝑒𝑦 + 𝑧𝑒𝑧

𝑟 = 𝑥𝑒𝑥 + 𝑦𝑒𝑦 + 𝑧𝑒𝑧 ; 𝜕𝑟

𝜕𝑡
= ¤𝑥𝑒𝑥 + ¤𝑦𝑒𝑦 + ¤𝑧𝑒𝑧

𝑒𝑧 ×
𝜕𝑟

𝜕𝑡
= ¤𝑥𝑒𝑥 − ¤𝑦𝑒𝑦 ; 𝑒𝑧 × (𝑒𝑧 × 𝑟 ) = −𝑥𝑒𝑥 − 𝑦𝑒𝑦

, (2.16)

we can rewrite Eq. (2.15) as three scalar equations:

¥𝑥 − 2 ¤𝑦 = 𝑥 − 1 − `
𝑟 31

(` + 𝑥) + `

𝑟 32
(1 − ` − 𝑥) ,

¥𝑦 + 2 ¤𝑥 = 𝑦 − 1 − `
𝑟 31

𝑦 − `

𝑟 32
𝑦 ,

¥𝑧 = − 1 − `
𝑟 31

𝑧 − `

𝑟 32
𝑧 ,

(2.17)

where the notations · and ·· indicate velocity and acceleration and

𝑟 21 = (` + 𝑥)2 + 𝑦2 + 𝑧2 ; 𝑟 22 = (1 − ` − 𝑥)2 + 𝑦2 + 𝑧2 . (2.18)

To simplify the notation, we can introduce a scalar function,𝑈 , of spatial coordinates:

𝑈 =
1
2
(
𝑥2 + 𝑦2

)
+ 1 − `

𝑟1
+ `

𝑟2
, (2.19)

which we can apply partial differentiation to, giving

𝜕𝑈

𝜕𝑥
= 𝑥 − 1 − `

𝑟 31
(` + 𝑥) + `

𝑟 32
(1 − ` − 𝑥) ,

𝜕𝑈

𝜕𝑦
= 𝑦 − 1 − `

𝑟 31
𝑦 − `

𝑟 32
𝑦 ,

𝜕𝑈

𝜕𝑧
= − 1 − `

𝑟 31
𝑧 − `

𝑟 32
𝑧 ,

(2.20)

Combining Eq. (2.17) and Eq. (2.20) gives the compact notation of the equations of
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motion:
¥𝑥 − 2 ¤𝑦 =

𝜕𝑈

𝜕𝑥
,

¥𝑦 + 2 ¤𝑥 =
𝜕𝑈

𝜕𝑦
,

¥𝑧 =
𝜕𝑈

𝜕𝑧
.

(2.21)

In this notation, 𝑈 is a potential function that accounts for both the gravitational
forces and the centrifugal force, but cannot account for the Coriolis force, as it is
a function of velocity components. The force field described by the potential 𝑈 is
non-central, and𝑈 is not explicitly a function of time, which means that the force field
is conservative.

2.3 Conversion Between Reference Frames

Before continuing, it is beneficial to detail how the conversion between the inertial
reference frame and the rotating reference frame, in adimensional coordinates, can be
done. In order to transform between the two systems, the Direction Cosine Matrix
(DCM) needs to be defined, which is the relationship between both systems. The DCM
from an inertial frame to a rotating one is defined as

𝐶𝑟𝑖 (𝑡) =

cos 𝑡 sin 𝑡 0
− sin 𝑡 cos 𝑡 0

0 0 1

 . (2.22)

The DCM is naturally dependent on time; however, instead of carrying the notation
𝐶𝑟𝑖 (𝑡), the simplified version𝐶𝑟𝑖 will be used. With the DCM defined, the transformation
of components between a position in the inertial frame to a rotating frame becomes

𝑟𝑟 = 𝐶
𝑟
𝑖 𝑟𝑖 or 𝑟𝑟 =


cos 𝑡 sin 𝑡 0
− sin 𝑡 cos 𝑡 0

0 0 1

 𝑟𝑖 , (2.23)

where 𝑟𝑟 and 𝑟𝑖 are the state vectors in the rotating and inertial frame respectively. In
the case of the velocity, the conversion becomes slightly more complex, and takes the
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form of
¤𝑟𝑟 = ¤𝐶𝑟𝑖 𝑟𝑖 +𝐶𝑟𝑖 ¤𝑟𝑖 . (2.24)

The derivative of the DCM is given by

¤𝐶𝑟𝑖 = −

0 −1 0
1 0 0
0 0 0

 𝐶
𝑟
𝑖 , (2.25)

so the Eq. (2.24) can be written as

¤𝑟𝑟 = −

0 −1 0
1 0 0
0 0 0



cos 𝑡 sin 𝑡 0
− sin 𝑡 cos 𝑡 0

0 0 1

 𝑟𝑖 +

cos 𝑡 sin 𝑡 0
− sin 𝑡 cos 𝑡 0

0 0 1

 ¤𝑟𝑖 . (2.26)

The opposite case, transforming from rotating frame to inertial frame, has similar
expressions. The inverse DCM needs to be found and defined, but luckily, as the DCM
is orthogonal, the inverse of the matrix is also its transpose (𝐶𝐶−1 = 𝐶𝐶𝑇 = 𝐶𝑇𝐶 = 𝐼 ).
Therefore

𝐶𝑖𝑟 = 𝐶
𝑟
𝑖
−1

= 𝐶𝑟𝑖
𝑇
=


cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0
0 0 1

 , (2.27)

and the transformation of position from the rotating frame to the inertial frame is

𝑟𝑖 = 𝐶
𝑖
𝑟𝑟𝑟 or 𝑟𝑖 =


cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0
0 0 1

 𝑟𝑟 . (2.28)

Equivalently, the transformation of velocity components from the rotating frame to the
inertial frame becomes

¤𝑟𝑖 = ¤𝐶𝑖𝑟𝑟𝑟 +𝐶𝑖𝑟 ¤𝑟𝑟 . (2.29)
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But in this case the derivative of the DCM is given by

¤𝐶𝑖𝑟 = −𝐶𝑖𝑟


0 1 0
−1 0 0
0 0 0

 , (2.30)

so the expanded version of Eq.(2.29) is

¤𝑟𝑖 = −

cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0
0 0 1



0 1 0
−1 0 0
0 0 0

 𝑟𝑟 +

cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0
0 0 1

 ¤𝑟𝑟 . (2.31)

2.4 Jacobi’s Integral

Multiplication of each equation of Eq. (2.21) by ¤𝑥 , ¤𝑦 and ¤𝑧 respectively and summation
of the results gives

¤𝑥 ¥𝑥 + ¤𝑦 ¥𝑦 + ¤𝑧 ¥𝑧 = ¤𝑥 𝜕𝑈
𝜕𝑥

+ ¤𝑦 𝜕𝑈
𝜕𝑦

+ ¤𝑧 𝜕𝑈
𝜕𝑧

. (2.32)

Since𝑈 is only a function of the spatial coordinates 𝑥 , 𝑦 and 𝑧 and not explicitly of
time:

d𝑈
d𝑡 =

𝜕𝑈

𝜕𝑥
¤𝑥 + 𝜕𝑈

𝜕𝑦
¤𝑦 + 𝜕𝑈

𝜕𝑧
¤𝑧 , (2.33)

and combination of Eq. (2.32) and Eq. (2.33) gives, after integration:

¤𝑥2 + ¤𝑦2 + ¤𝑧2 = 2𝑈 −𝐶 or 𝑉 2 = 2𝑈 −𝐶 . (2.34)

In Eq. (2.34), the value of the integration constant 𝐶 is determined by the position
and velocity of the body 𝑃 at time 𝑡 = 0, and 𝑉 indicates the velocity of 𝑃 with respect
to the rotating reference frame. Equation (2.34) is defined as the Jacobi’s Integral, and
is the only algebraic integral of motion that exists in the CRTBP. This total energy
integral gives the relation between the velocity and position of the body with negligible
mass with respect to a rotating reference frame 𝑋𝑌𝑍 , of which the 𝑋 -axis coincides
with the line connecting the two main bodies and of which the 𝑋𝑌 -plane coincides
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with the orbital plane of the two main bodies. The constant 𝐶 is referred to as Jacobi’s
Constant and may be expressed, according to Eq. (2.19) and Eq. (2.34) as:

𝐶 = 𝑥2 + 𝑦2 + 2 (1 − `)
𝑟1

+ 2`
𝑟2

−𝑉 2 . (2.35)

2.5 Lagrange Points

For a given `, we can find the roots of Hill’s Equation for different values of𝐶 . At some
specific value, some roots are going to coincide. If we analyze the behavior of the roots
with different axis crossings, we find that at these points, starting with 𝐿1 but it holds
for all 𝐿 points, the following condition holds:

𝜕𝑈

𝜕𝑥
=
𝜕𝑈

𝜕𝑦
=
𝜕𝑈

𝜕𝑧
= 0 . (2.36)

And substitution of Eq. (2.36) into Eq. (2.20) gives:

𝑥 − 1 − `
𝑟 31

(` + 𝑥) + `

𝑟 32
(1 − ` − 𝑥) = 0 ,

𝑦

(
1 − 1 − `

𝑟 31
− `

𝑟 32

)
= 0 ,

𝑧

(
1 − `
𝑟 31

− `

𝑟 32

)
= 0 .

(2.37)

Because 𝑟1 and 𝑟2 are positive and 0 < ` < 1/2, Eq. (2.37) yields 𝑧 = 0, which means
that the five Lagrange points 𝐿1 to 𝐿5 are located in the 𝑋𝑌 -plane. Combination of
Eq. (2.18) and Eq. (2.37) gives the first solution:

𝑦 = 0 ,

𝑥 − (1 − `) ` + 𝑥
|` + 𝑥 |3

+ ` 1 − ` − 𝑥
|1 − ` − 𝑥 |3

= 0 .
(2.38)

Although this equation cannot be solved in a closed analytical way, the 𝑥 part has
three real roots, corresponding to the 𝑥-coordinates of the points 𝐿1, 𝐿2 and 𝐿3, located
on the 𝑋 -axis. Eq. (2.38) yields the following series expansions for the dimensionless
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Figure 2.2: Non-dimensional distances 𝛾1, 𝛾2 and 𝛾3 used to find the location of the
co-linear Lagrange Points.

distances between the points 𝐿1, 𝐿2, 𝐿3 and the main bodies.

𝛼 =
`

(1 − `) ; 𝛽 =

(
1
3𝛼

)1/3
,

𝛾1 = 𝛽 −
1
3𝛽

2 − 1
9𝛽

3 − 23
81𝛽

4 + O
(
𝛽5
)
,

𝛾2 = 𝛽 +
1
3𝛽

2 − 1
9𝛽

3 − 31
81𝛽

4 + O
(
𝛽5
)
,

𝛾3 = 1 − 7
12𝛼 + 7

12𝛼
2 − 13223

20736𝛼
3 + O

(
𝛼4

)
.

(2.39)

The second solution of Eq. (2.37) can be found by solving:

𝑥 − 1 − `
𝑟 31

(` + 𝑥) + `

𝑟 32
(1 − ` − 𝑥) = 0 ,

1 − 1 − `
𝑟 31

− `

𝑟 32
= 0 .

(2.40)

Multiplication of the second equation by − (` + 𝑥) and adding this result to the first
gives the solution 𝑟2 = 1. Multiplication of the second by (1 − ` − 𝑥) and adding this
result to the first gives 𝑟1 = 1. The second solution to Eq. (2.37) is then:

𝑟1 = 𝑟2 = 1 . (2.41)

These solutions correspond to the points 𝐿4 and 𝐿5. They form an equilateral
triangle with the two main bodies and the coordinates of the points 𝐿4 and 𝐿5 are:

𝑥 =
1
2 − ` ; 𝑦 = ±12

√
3 . (2.42)



28 Chapter 2. The Circular Restricted Three-Body Problem (CRTBP)

Substitution of Eq. (2.41) and Eq. (2.42) into Eq. (2.18) gives:

𝑈𝐿4,𝐿5 =
1
2
(
`2 − ` + 3

)
. (2.43)

The minimum value of 𝐶 for which the surfaces of Hill exist, and thus for which
the space in which the third body can move is bounded, can be found from the first
equation of Eq. (2.47) and Eq. (2.43) (and with the condition 0 < ` < 1/2):

𝐶min = `2 − ` + 3 = 2.75 +
(
` − 1

2

)2
−→ 2.75 ≤ 𝐶min < 3 . (2.44)

Substitution of Eq. (2.36), which formulates the conditions in the 𝐿 points, into
Eq. (2.21) gives:

¥𝑥 − 2 ¤𝑦 = 0 ,

¥𝑦 + 2 ¤𝑥 = 0 ,

¥𝑧 = 0 .

(2.45)

And when a body with zero velocity is located at an 𝐿 point, then according to
Eq. (2.45):

¥𝑥 = ¥𝑦 = ¥𝑧 = 0 . (2.46)

The body does not experience an acceleration with respect to the rotating reference
frame. These points are equilibrium points and are called Lagrange (or Libration)
Points. At this point, it is beneficial to introduce the parameters of the system used in
this research, the Sun-Earth CRTBP. The parameters can be seen in Table 2.1, and they
include the mass ratio `, the adimensionalization parameters, and the coordinates of
the Lagrange Points in the adimensional system.

2.6 Zero Velocity Curves (ZVCs) (or Hill’s Surfaces)

A special case of Jacobi’s Integral occurs when the velocity of the small body 𝑃 is zero.
Then, according to Eq. (2.34) (or with Eq. (2.19)):

2𝑈 = 𝐶 or 𝑥2 + 𝑦2 + 2 (1 − `)
𝑟1

+ 2`
𝑟2

= 𝐶 , (2.47)
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Table 2.1: Parameters of the Sun-Earth System used in this research. Retrieved from
SPICE[90, 91].

Parameter Value
Mass ratio 3.003480594 · 10−6
Characteristic Length 149597870.7 km
Characteristic Time 365.25635 days
Characteristic Velocity 29.7847 km/s
𝐿1 admin. coordinates (0.990026594, 0)
𝐿2 admin. coordinates (1.010034116, 0)
𝐿3 admin. coordinates (1.000001251, 0)
𝐿4 admin. coordinates (0.499996997, 0.866025404)
𝐿5 admin. coordinates (0.499996997,−0.866025404)

where the expressions for 𝑟1 and 𝑟2 are given by Eq. (2.18). This equation describes
the Hill’s Surfaces, or Zero Velocity Curves (ZVCs). These are surfaces in 𝑋𝑌𝑍 -space
on which the velocity of the third body is zero. They are symmetric with respect to the
𝑋𝑌 - and 𝑋𝑍 -planes and, when ` = 1/2, with respect to the 𝑌𝑍 -plane. The surfaces are
contained within a cylinder whose axis is the 𝑍 -axis and whose radius is

√
𝐶 , to which

certain of the folds are asymptotic at 𝑧2 = ∞: as 𝑧2 increases, 𝑟1 and 𝑟2 increase and
Eq. (2.47) approaches as a limit

𝑥2 + 𝑦2 = 𝐶 . (2.48)

Since for any real body 𝑉 2 ≥ 0, the region in space where the third body can move
is given by:

2𝑈 = 𝑥2 + 𝑦2 + 2 (1 − `)
𝑟1

+ 2`
𝑟2

≥ 𝐶 . (2.49)

Although we cannot determine the orbit of the third body, with Eq. (2.49) we can
determine which part of the 𝑋𝑌𝑍 -space is accessible to the third body for a given
value of 𝐶 (initial conditions). The part of the realm that is not accessible at a specific
value of𝑈 is therefore called the Forbidden Region. As can be seen in Fig. 2.3, there are
ZVCs shaped around the Lagrange Points that act as a natural barrier in space. If we
call𝐶𝑖 the value of the Jacobi constant for which the velocity is null at 𝐿𝑖 , the following
cases are possible:
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Figure 2.3: Zero Velocity Curves (ZVCs) of the Lagrange Points.

1. 𝐶 ≤ 𝐿4,5: the particle is allowed motion everywhere in the system.

2. 𝐿4,5 < 𝐶 < 𝐿3: two regions appear, around 𝐿4 and 𝐿5, that are not accessible at
these energy levels.

3. 𝐿3 < 𝐶 < 𝐿2: the barrier created by the ZVCs completely close passage at 𝐿3,
isolating the interior region of the system from the exterior. However, passage
through 𝐿2 is still possible, so in very specific circumstances a particle can still
transition between realms.

4. 𝐿2 < 𝐶 < 𝐿1: the neck region at 𝐿2 is closed, completely isolating the interior and
exterior regions. However, change between the region near the larger and the
smaller primaries is still possible through the 𝐿1 neck.

5. 𝐶 > 𝐿1: the passage at 𝐿1 is sealed off, restricting a particle’s motion to whichever
realm it started, either the exterior, the region around the smaller primary, or the
region around the larger primary.
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2.7 Symmetries of the System

Even though the symmetries of the system have beenmentioned during the development
of this chapter, they haven’t been formalized yet. It is worth explicitly listing them,
as they are fundamental to the creation of periodic orbits and other noteworthy
trajectories of this work by reducing the computation burden of the algorithms. In the
CRTBP, the following symmetries hold:

(𝑦, 𝑡) → (−𝑦,−𝑡) ,
(𝑦, 𝑧, 𝑡) → (−𝑦,−𝑧,−𝑡) ,

(𝑧) → (−𝑧) ,
( ¤𝑥, ¤𝑧) → (− ¤𝑥,−¤𝑧) ,
( ¤𝑥) → (− ¤𝑥) .

(2.50)

An important point in these symmetries, is that they are not only in the physical
space, but they also encompass the temporal space. These symmetries, introduced sixty
years ago as Theorem of Image Trajectories, and expanded more recently by the same
author in [92], have been used extensively for trajectory/orbit design[37, 93]. For the
purpose of this research, they will be applied for designing periodic orbits symmetric
to the 𝑋𝑍 plane, as well as to reduce the computation of transfers, as will be explained
in the following chapters.
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3
Trajectory Design Methods and

Dynamical Structures

In this chapter, the methods and different dynamical structures used to generate the
orbits and trajectories for this work are detailed. As a general rule, the methods are
explained from less to more specificity, i.e. they are being used as initial guesses for
the next level, that refines the results. However, not all the results obtained need
such a level of detail for them to be meaningful, so not all methods are used for all
trajectories. The exception for this is Section 3.7, which explains a method unrelated to
the refinement of the solution of the previous ones. Instead, it describes a scheme used
in conjunction with the other algorithms to aid in the design process. The general
forms are presented here, and in each chapter the specifics of how are they used
are explained. Section 3.3 and Section 3.4 are not trajectory design methods in its
strict definition, but they are dynamical structures or properties that aid in the design
process. They are placed in this chapter for completeness sake, and because they use
concepts introduced here and they make the flow of the text better.
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3.1 Grid Search

Grid search is a widely used searching and optimization algorithm where the variables
of interest are divided into grids of predetermined sizes and an iterative scheme is run
through them. For any search space comprised of 𝑛 independent variables, each of them
is divided into 𝑖 steps and the 𝑛𝑖 possibilities are executed to find a desirable solutions
that satisfies a performance parameter, either meeting minimum requirements, or
having the best performance among all the solution states. However, this method is
computationally expensive, as all possible states have to be tried (reason why it is
also referred as a brute-force solution), so application to very general problems is
problematic. In order to mitigate this, approximations or simplifications are usually
done, such as having large grids that are manageable, and then applying finer grid
searches or other local optimization algorithms to the most promising solutions, or
carefully selecting the amount of steps for each different variable (example usage in
Fig. 3.1, where the intersections of each divided variable would be evaluated).

Figure 3.1: Grid search technique: dividing two independent variables into 𝑖 steps.

Grid search will not be exclusively used in this research, but as a tool combined
with other methods and algorithms, complementing the thoroughness of a pure grid
search algorithm with methods that counter its computational cost.
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3.2 Differential Correction / Single Shooting Algo-

rithm

Differential correction algorithms are numerical methods used to compute periodic
orbits in the CRTBP, as well as other trajectories, when specific requirements are
met. It uses first guesses obtained from analytical approximations or literature, and
produces the initial conditions of a periodic orbit or trajectory through an iterative
numerical computation (modified version of Newton’s method). The basic mechanism
is a targeting algorithm that changes initial conditions as a function of the error on the
final conditions.

Throughout this work, many different versions of a Differential Correction
Algorithm have been used. In this section, the basic form is introduced, and in future
chapters, when each is applied, the specific conditions used are further explained.
For the general case, the Single Shooting Algorithm, we introduce the state vector X
comprised by the position and velocity vectors. This vector is a function of time, and its
derivative ¤X is dependent on the full natural dynamics of the problem, 𝐹 (in Eq. (2.21)):

X =



𝑥

𝑦

𝑧

¤𝑥
¤𝑦
¤𝑧


−→ ¤X =



¤𝑥
¤𝑦
¤𝑧
¥𝑥
¥𝑦
¥𝑧


= 𝐹 (X, 𝑡) . (3.1)

The final objective of the Single Shooting Algorithm is to adjust the initial state
X(𝑡0) through small variations 𝛿X(𝑡0) such that the corrected trajectory will reach
the desired state X(𝑡𝑑) close to X(𝑡). In order to find the flow map from initial to
final conditions, we introduce the State Transition Matrix (STM) Φ, which is a linear
transformation of a non-linear system over short periods of time:

Φ(𝑡, 𝑡0) =
𝜕𝑋 (𝑡)
𝜕𝑋 (𝑡0)

; Φ(𝑡0, 𝑡0) = 𝐼

Initial condition is the identity matrix
. (3.2)
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In order to obtain the STM at any point in time, we can propagate it with:

¤Φ(𝑡, 𝑡0) = 𝐴(𝑡)Φ(𝑡, 𝑡0) , 𝐴(𝑡) = 𝜕𝐹 (X, 𝑡)
𝜕X

, (3.3)

where 𝐴(𝑡) is the Jacobian Matrix:

𝐴(𝜏) =
[
03×3 𝐼3×3

𝑈𝑋𝑋 Ω

]
; 𝑈𝑋𝑋 =


𝑈𝑥𝑥 𝑈𝑥𝑦 𝑈𝑥𝑧

𝑈𝑦𝑥 𝑈𝑦𝑦 𝑈𝑦𝑧

𝑈𝑧𝑥 𝑈𝑧𝑦 𝑈𝑧𝑧

 ; Ω =


0 2 0
−2 0 0
0 0 0

 . (3.4)

While the potential𝑈 , and its double derivatives𝑈𝑋𝑋 are (with 𝑟1 being the distance
to the primary and 𝑟2 the distance to the secondary):

𝑈 =
1 − `
|𝑟1 |

+ `

|𝑟2 |
+ 1
2 (𝑥

2 + 𝑦2) (3.5)

𝑈𝑥𝑥 = 1 − 1 − `
𝑟 31

− `

𝑟 32
+ 3(1 − `) (𝑥 + `)2

𝑟 51
+ 3` (𝑥 − 1 + `)2

𝑟 52
,

𝑈𝑦𝑦 = 1 − 1 − `
𝑟 31

− `

𝑟 32
+ 3(1 − `)𝑦

2

𝑟 51
+ 3`𝑦

2

𝑟 52
,

𝑈𝑧𝑧 = 1 − 1 − `
𝑟 31

− `

𝑟 32
+ 3(1 − `)𝑧

2

𝑟 51
+ 3`𝑧

2

𝑟 52
,

𝑈𝑥𝑦 = 𝑈𝑦𝑥 = 3(1 − `) (𝑥 + `) 𝑦
𝑟 51

+ 3` (𝑥 − 1 + `) 𝑦
𝑟 52
,

𝑈𝑥𝑧 = 𝑈𝑧𝑥 = 3(1 − `) (𝑥 + `) 𝑧
𝑟 51

+ 3` (𝑥 − 1 + `) 𝑧
𝑟 52
,

𝑈𝑦𝑧 = 𝑈𝑧𝑦 = 3(1 − `) (𝑥 + `)𝑧 · 𝑦
𝑟 51

+ 3` (𝑥 − 1 + `)𝑧 · 𝑦
𝑟 52

.

(3.6)

The general algorithm for the Single Shooting Algorithm, using the STM is then:

1. Define the initial state vector X0 with initial position and velocity vectors r0 and
v0. Define the final state vector that we want to reach at 𝑡 𝑓 as X𝑓 = [r𝑓 v𝑓 ]𝑇 :

X0 =

[
r0
v0

]
, X𝑓 =

[
r𝑓
v𝑓

]
. (3.7)
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2. Apply the constraints necessary. The constrains are particular for each case,
but in this work we focus on planar periodic orbits with 𝑋𝑍 symmetry, so as a
general rule the final and initial positions are constrained.

3. We propagate the system from X0 up to some time 𝑡 𝑓 . If the 𝑋𝑍 orbits are
searched, the propagation can be up until the next crossing of the plane after
half an orbit. After propagation, the deviation between actual and desired final
states is 𝛿X𝑓 .

4. Express the required deviation in the initial state 𝛿X0 to reach the target state X𝑓

as:

𝛿X𝑓 = Φ(𝑡 𝑓 , 𝑡0)𝛿X0 or
[
𝛿r𝑓
𝛿v𝑓

]
=

[
Φ𝑟𝑟 (𝑡 𝑓 , 𝑡0) Φ𝑟𝑣 (𝑡 𝑓 , 𝑡0)
Φ𝑣𝑟 (𝑡 𝑓 , 𝑡0) Φ𝑣𝑣 (𝑡 𝑓 , 𝑡0)

] [
𝛿r0
𝛿v0

]
. (3.8)

5. Set the change in initial position to zero (from the constrain), and obtain the
change in initial velocity as function of deviation of final position:

𝛿v0 = Φ𝑟𝑣 (𝑡 𝑓 , 𝑡0)−1𝛿r𝑓 . (3.9)

6. Finally, the initial value of X is modified as follows at every iteration:

X0
𝑖+1 = X0

𝑖 + ΔX0 =

{
𝑥𝑖

𝑣𝑖

}
+
{
0
𝛿𝑣0

}
. (3.10)

As the STM is only a linear approximation, the correction will most probably
not converge directly. However, given a good initial guess, the convergence of the
algorithm is very fast, and it finalizes after just some iterations of the scheme. While
the Single Shooting Algorithm alone is already useful to find periodic orbits, in
order to find a whole family of orbits, a Numerical Continuation scheme is needed.
Some implementations completely decouple the Differential Correction step from the
Numerical Continuation one; however, in this research a combined scheme detailed in
the next section will be used, were the Single Shooting Algorithm is slightly modified.



38 Chapter 3. Trajectory Design Methods and Dynamical Structures

3.3 Orbit Stability

Having introduced the STM properly, it is beneficial to do a parenthesis at this point to
discuss the notion of orbit stability, before continuing to the other methods, as it is an
important concept that appears throughout the work. The stability of an orbit refers to
how well it withstands perturbations that act upon it without significantly altering
said orbit. Two stability criteria/tools can be defined, the Poincaré Section and the
Stability Index. As only the Stability Index is used throughout the work, we will focus
on that one.

3.3.1 Monodromy Matrix

The main tool needed for determining the stability of a periodic orbit is the Monodromy
Matrix 𝚽𝑀 . The Monodromy Matrix is the STM evaluated after one orbital period 𝑇
(Eq. (3.11)). The point where the STM is evaluated, the initial/final point of the periodic
orbit, is a fixed point in a stroboscopic map, and the Monodromy Matrix serves as a
discrete linear map near the fixed point located at the origin of the map. This map is
also called a Poincaré map[94].

𝚽𝑀 = 𝚽(𝑡0 +𝑇, 𝑡0) (3.11)

The study of the stability of the eigenvalues of 𝚽𝑀 gives information about the
overall orbit’s stability (and are used to isolate intersections with other families of
orbits). For a planar periodic orbit, four eigenvalues of 𝚽𝑀 exist, while for three
dimensional orbits there are six, all in reciprocal pairs. For a stable orbit, all eigenvalues
will be on the unit circle, where for an unstable orbit, at least one eigenvalue will
be outside the unit circle (the further away the more unstable). A system with no
characteristic multipliers on the unit circle is called hyperbolic. The Monodromy
Matrix of the orbits in the CRTBP is symplectic, meaning that if _ and _ are eigenvalues
of 𝚽𝑀 , also their inverse _−1 and _−1 are eigenvalues (from Lyapunov’s Theorem):

_2 =
1
_1
, _4 =

1
_3
, _5 = _6 = 1 . (3.12)

Since the solution is periodic, two of the six eigenvalues are equal to one. The other
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four include a pair associated with the stable/unstable subspace, and the final pair
represents the center subspace. More specifically, for a planar orbit in the CRTBP,
one pair of eigenvalues are equal to unity (_1 = _2 = _ = 1), and the other pair are
real (_3 = _ > 1 and _4 = 1/_3 = 1/_). Each eigenvalue characterizes a motion (or
perturbation) in the direction of its eigenvector, defining the stability of the orbit. The
result of a perturbation along the eigenvector of an eigenvalue, with different values is:

Real eigenvalue, within [−1, 1]: stable - perturbations along eigenvector will be
naturally mitigated and damped.

Real eigenvalue, outside [−1, 1]: unstable - perturbations along eigenvector will
grow with time.

Imaginary eigenvalue: Perturbations along the eigenvector oscillate about the
initial state every period.

However, a periodic orbit has different eigenvalues. To establish the linear stability
condition of the whole periodic orbit, all of them need to be taken into account.
However, since the eigenvalues come out in reciprocal pairs, we can take advantage of
this to simplify the definition. We can define this linear stability conditions as:

• If and only if all
��_ 𝑗 �� = 1, the periodic orbit is linearly stable.

• Otherwise, the periodic orbit is unstable.

In this definition, the real/imaginary part of the eigenvalue is not mentioned,
therefore _ 𝑗 can be a complex number. The calculation of the eigenvalues of the
Monodromy Matrix has not been detailed in this section, as there are many methods
available. However, one such method will be introduced in the next section, as it gives
an extra advantage regarding the definition of orbit stability.

3.3.2 Stability Index

Checking the eigenvalues of the Monodromy Matrix for orbit stability works well, and
is a method used in many other disciplines when studying the behavior of dynamical
systems. However, it would be even more beneficial to have the information of the
stability of an orbit encoded in a single parameter. This is the reasoning behind the
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introduction of a Stability Index. Alternative stability indices have been introduced in
the past, most notably by Howell[35] and later Grebow[95]. Although serving the same
functionality, they vary on their computation and their scale, so both will be introduced
for completeness sake. The first method, from [35], obtains the stability indices directly
from the eigenvalues of the Monodromy Matrix, following the analytical approach.
The stability index is only an approximation, and it becomes less accurate when the
eigenvalues are large.

For the General Case In the case of the eigenvalue pair associated with the
stable/unstable subspace, there is one stable and one unstable mode. The stability
index a is defined as the average of the (reciprocal) pair of multipliers associated with
the stable subspace (

��_𝑊𝑠

�� < 1) and unstable subspace (
��_𝑊𝑢

�� > 1):

a =
1
2

(��_𝑊𝑠
�� + ��_𝑊𝑢

��) . (3.13)

Since we highlighted before that for the periodic orbits case we have reciprocal
pairs of eigenvalues _1, 1/_1, _2, 1/_2, a solution will be periodic only if the modulus of
_ is equal to 1. Since a complex _ will be accompanied by its conjugate, all _ must be
on the unit circle for stability. Rewriting the stability index:

a𝑖 =
1
2

(
_𝑖 +

1
_𝑖

)
, 𝑖 = 1, 2 , (3.14)

and for a given orbit, stability is obtained if

|a𝑖 | ≤ 1, 𝑖 = 1, 2 and a ∈ R . (3.15)

Alternative Stability Indices

The alternative stability indices introduced by Grebow in [95] avoid calculating the
eigenvalues of the Monodromy Matrix directly, and instead find the eigenvalues as a
combination of the stability indices (with notation 𝜎1 and 𝜎2). The procedure to obtain
them is the following:

1. Compute the Monodromy Matrix 𝚽𝑀 by evaluating the STM after one orbital
period 𝑇 .
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2. Compute the supporting parameters 𝛼 , 𝛽 and 𝐷 :

𝛼 = 2 − Tr(𝚽𝑀 ) ; 𝛽 =
𝛼2 + 2 − Tr(𝚽2

𝑀 )
2 ; Δ = 𝛼2 − 4(𝛽 − 2) . (3.16)

3. Compute the stability indices 𝜎1 and 𝜎2:

𝜎1 =
1
2

(
𝛼 +

√
Δ
)

; 𝜎2 =
1
2

(
𝛼 −

√
Δ
)
. (3.17)

4. Compute the 2 eigenvalues that correspond to the stable/unstable subspace:

_1 = −
𝜎1 +

√︃
𝜎21 − 4

2 ; _2 = −
𝜎2 +

√︃
𝜎22 − 4

2 . (3.18)

5. (Optional) Compute the other 4 eigenvalues, which are:

_3 =
1
_1

; _4 =
1
_2

; _5 = _6 = 1 . (3.19)

As a note, the stability indices from [95] relate to the ones from [35] by

a1 =
1
2𝜎1 ; a2 =

1
2𝜎2 . (3.20)

The stability condition with these new stability indices then becomes:

• If σ1 ,σ2 ∈ R and |σ1 |, |σ2 | < 2, the periodic orbit is linearly stable.

• Otherwise, the periodic orbit is unstable.

The inclusion of these stability indices avoids the necessity of explicitly calculating
the eigenvalues of the Monodromy Matrix, and are at the same time easier to check
when looking for stability information than 6 eigenvalues.

For the Planar Case As the orbits used in this work are planar, it is beneficial to
clearly define the stability index for the planar case. Since we are not including the 𝑍
dimension in the calculation, the calculation of the stability indices is simplified, and
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we can work with only one of them. We will change the notation to 𝑘 , to differentiate
the case. The stability index 𝑘 is then:

𝑘 = 𝑡𝑟 (𝚽M) − 2 ≃ _ + 1
_
. (3.21)

While dealing with planar orbits, only one pair of eigenvalues stores the stability
information. In this case, the trace of the Monodromy Matrix 𝑡𝑟 (𝚽M) can be obtained
with:

𝑡𝑟 (𝚽M) = _1 + _2 + _3 + _4 = 1 + 1 + _ + 1
_
, (3.22)

where _ > 1. The stability condition is still the same as before, i.e. the periodic orbit is
stable if 𝑘 is within the range of ±2. This definition of stability index is the one that
will be used during this work, if the contrary is not indicated.

3.4 Invariant Manifolds Theory

Having introduced the concepts of orbital stability and the tools used to calculate
it (Monodromy Matrix and its eigenvalues), one of the most interesting dynamical
structures derived from them can also be introduced. On an unstable periodic orbit, the
Invariant Manifolds define all the trajectories a particle or spacecraft can take, at any
point, when perturbed in the direction of the orbit’s local eigenvectors. All unstable
orbits have at least one stable and at least one unstable eigenvalue, so we can define at
least two sets of trajectories, which together define the invariant manifolds of an
unstable orbit:

• Unstable Invariant Manifolds WU, which contain the set of all trajectories which
can lead from a perturbation in the direction of the orbit’s unstable eigenvectors.

• Stable Invariant ManifoldsWS, which define all the possible trajectories a particle
can take to asymptotically arrive along that orbit’s stable eigenvector.

As these trajectories are obtained by just slightly perturbing a periodic orbit, they
have a very similar energy level. This fact has been used in the past to aid in the design
of low energy trajectories: by placing a spacecraft in a stable invariant manifold of
an orbit, such spacecraft will naturally (asymptotically) insert itself to such orbit,
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needing very limited extra energy for the final maneuver. Such trajectories have also
been suggested to be used in the unstable invariant manifold case for disposing of
spacecraft after its mission has finished, with also a very small amount of energy used.
Combination of both unstable and stable invariant manifolds that intersect has also
been suggested as a mechanism for transfers between periodic orbits with similar
energy levels for low energy transfers, or even using the same orbit’s unstable and
stable manifolds. Such transfers are called heteroclinic transfers (for a transfer from
one orbit to another), and homoclinic transfers (from one orbit to itself)[36, 96, 37, 97].

Although transfers exploiting invariant manifolds seem ideal, they do present
stringent constraints, as not any transfer can be obtained by using only invariant
manifolds. Therefore, in this work they will be mainly used as a base from which to
further construct transfers that satisfy the design requirements of the mission.

Computation of the invariant manifolds associated to periodic orbits

The direction of the stable and unstable invariant manifolds are given by the eigenvalues
and the eigenvectors of the Monodromy Matrix. In order to obtain initial conditions
for the propagation of the invariant manifolds, we use the eigenvectors, as they offer
local approximations of the stable 𝐸𝑆 and unstable 𝐸𝑈 sub-spaces. Each of the stable
and unstable spaces consist of two branches of approaching and leaving trajectories
from different directions, as the eigenvectors’ directions have two signs (positive and
negative). Applying a small perturbation in the direction of the eigenvector results in a
local estimate of the one-dimensional manifold associated with the fixed point. After a
local estimate has been determined, the trajectory on the manifold associated with the
point can be further propagated through numerical integration.

Given the eigenvectors of the Monodromy Matrix, the local estimate of the stable
and unstable invariant manifolds, 𝑋𝑆 and 𝑋𝑈 , can be computed as:

𝑋𝑆 = 𝑥 (𝑡𝑖) ± 𝜖 ·𝑉𝑊𝑆 (𝑡𝑖) and 𝑋𝑈 = 𝑥 (𝑡𝑖) ± 𝜖 ·𝑉𝑊𝑈 (𝑡𝑖) , (3.23)

where 𝑉𝑊𝑠 (𝑡𝑖) and 𝑉𝑊𝑢 (𝑡𝑖) are defined by

𝑉𝑊𝑆 (𝑡𝑖) =
𝑌𝑊𝑆 (𝑡𝑖)𝑌𝑊𝑆 (𝑡𝑖)

 and 𝑉𝑊𝑈 (𝑡𝑖) =
𝑌𝑊𝑈 (𝑡𝑖)𝑌𝑊𝑈 (𝑡𝑖)

 . (3.24)
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In these equations, 𝑌𝑊𝑆 (𝑡𝑖) = [𝑥𝑠𝑦𝑠𝑧𝑠 ¤𝑥𝑠 ¤𝑦𝑠 ¤𝑧𝑠]𝑇 and 𝑌𝑊𝑈 (𝑡𝑖) = [𝑥𝑢𝑦𝑢𝑧𝑢 ¤𝑥𝑢 ¤𝑦𝑢 ¤𝑧𝑢]𝑇 are
the stable and unstable eigenvectors respectively, and they need to be normalized.
Equation (3.23) shows the perturbation of a point of an unstable orbit by an initial
displacement (perturbation) 𝜖 along the stable or unstable directions of the (normalized)
eigenvectors. Selection of the 𝜖 value depends on the dynamical system studied, but
while it can be adjusted, it cannot be completely arbitrarily chosen. Larger values of
𝜖 will give a starting position that is further along the invariant manifold from the
perturbed point, but will not change the dynamics in itself. However, 𝜖 needs to be
small enough enough to be within the range of validity of the linear approximation
that invariant manifold theory is based on. Some valid initial values for 𝜖 are in the
range of 10−3 for the Earth-Moon system and 10−6 for the Sun-Earth system. At this
point, the procedure to obtain invariant manifolds at any point of a periodic orbit can
be detailed as:

1. Propagate the periodic orbit up to the point of interest.

2. Calculate the Monodromy Matrix at that position.

3. Obtain the eigenvalues and eigenvectors of the Monodromy Matrix.

4. Perturb the initial position in the direction of the desired (stable or unstable)
eigenvector.

And repeat the process for each required point. However, by exploiting the STM, an
eigenvector at any point of the periodic orbit can be shifted along the orbit, avoiding
the recalculation of the Monodromy Matrix and its eigenvectors at each step. The
process then becomes:

1. Calculate the Monodromy Matrix 𝚽M at the initial point of the periodic orbit 𝑡0.

2. Obtain the eigenvalues and eigenvectors of the Monodromy Matrix.

3. Shift the eigenvectors from the initial position to the new desired position for
the invariant manifolds 𝑡𝑖 by:

𝑌𝑊𝑆 (𝑡𝑖) = 𝚽(𝑡𝑖, 𝑡0)𝑌𝑊𝑆 (𝑡0) or 𝑌𝑊𝑈 (𝑡𝑖) = 𝚽(𝑡𝑖, 𝑡0)𝑌𝑊𝑈 (𝑡0) . (3.25)
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This shift is quick and accurate, and it limits the necessity to calculate the
Monodromy Matrix at numerous points in the orbit, only having the propagate
the STM 𝚽 along the orbit from the original point 𝑡0 to the desired point 𝑡𝑖 ,
which can be done at a small computation cost at the same time the orbit itself is
propagated.

Substituting the expressions from Eq. (3.25) to Eq. (3.24) the invariant manifolds can
then be calculated. Then the state vectors 𝑋𝑆 and 𝑋𝑈 are used as the initial condition
for the integration of the non-linear dynamics, which gives the manifold trajectories.
For the numerical propagation of the unstable manifold, a forward integration in time
is required, whereas in the case of the stable manifold, a backwards integration in time
is needed.

3.5 Numerical Continuation / First Order Predictor-

Corrector Algorithm

While Differential Correction can be used to obtain periodic orbits, it is not enough to
generate families of periodic orbits, i.e. periodic orbits that share some property. A
Numerical Continuation scheme is needed for this. Usually, families of periodic orbits
are designed by progressively increasing their amplitude, or increasing/decreasing a
specific parameter of the orbits, designated as the family parameter. A manual way to
do this is to pick by hand the parameter, and then:

1. Perturb the initial conditions of a periodic orbit in the direction of the chosen
family parameter.

2. From these new initial conditions, execute a Differential Correction Algorithm to
obtain a new orbit in the family.

And iteratively repeat the process as many times as needed. This is the basic scheme
of a Numerical Continuation Algorithm. A similar structure can be used to obtain
not only periodic orbit, but other trajectories, if the targeting and ’perturbation’
of the initial parameters is done correctly. However, manually doing the process
is cumbersome, prone to errors and breakages, and does not perform well when
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reaching maxima/minima of the family parameters or bifurcation points (points
where two orbital families cross, and depending on the perturbation a jump between
families is possible). For this reason, we introduce here the an algorithm by Robin and
Markellos from [98], where by cleverly defining the family parameter as a function of
the system, it combines and automates the process of searching for periodic orbit
families (combining the Differential Correction and Numerical Continuation schemes).
In their reasoning, Robin and Markellos detail that a ’zeroth order predictor’ would be
inefficient, requiring many iterations of the corrector for the periodicity criterion to be
satisfied, and requiring small increments in the family parameter for convergence.
Therefore, they recommend implementing a first or second order predictor to increase
performance and accuracy. Higher order predictors are even more accurate, but are
much more cumbersome to implement and require either higher-order variations to
be calculated, or more complex starting procedures to be devised. In the original
paper, they detail the first and second order predictors, but here only the first order is
explained, as it is sufficient for the results needed in this work. This linear predictor
algorithm (as well as the corrector included) is based on a first-order Taylor series
expansion of the periodicity conditions, and incorporates a simple criterion for selecting
the most suitable family parameter at any point along a family of symmetric periodic
orbits.

Before starting with the proper algorithm from [98], some more information on the
dynamics of the system and the periodic orbits we can obtain is beneficial. The search
for an orbit belonging to a family is simplified by applying the Periodicity Theorem of
Roy and Ovenden[99]: Any solution in which two mirror configurations occur at distinct
epochs is periodic. It is valid in the general 𝑛-body problem. In the CRTBP there are two
possible types of mirror configurations:

• Type A (on-axis) mirror configuration. The mass-less third body is located
on the 𝑋 -axis, the axis of the primaries, with its instantaneous velocity vector
perpendicular to the axis.

• Type P (in-plane) mirror configuration. The particle is located in the 𝑋𝑍 -plane
with its instantaneous velocity vector normal to the plane.

Various combinations of these two types of mirror configuration occurring at the
two epochs result in periodic orbits having different symmetry properties.



3.5 Numerical Continuation / First Order Predictor-Corrector Algorithm 47

• Two same type mirror configurations Simply-symmetric orbit:

– Two type P mirror configurations, the orbit possesses symmetry with
respect to the 𝑋𝑍 -plane (plane symmetric).

– Two type A mirror configurations, the orbit possesses symmetry with
respect to the 𝑋 -axis (axisymmetric).

• Two different typemirror configurationsDoubly-symmetric orbit: symmetric
with respect to both the 𝑋𝑍 -plane and the 𝑋 -axis.

Before calculating the periodic orbits, it is important to determine which kind of
symmetry are we targeting. Another important point, is that even though we are
searching for orbits while exploiting the symmetries, it is beneficial to do the trial
integration of the Differential Correction part of the algorithm up to a specified epoch
instead of a specified physical position (the crossing of the symmetry planes), as the
orbital period is a continuous variable along any branch of any periodic orbital family,
keeping the algorithm’s execution smooth and avoid breakages.

In a type (A) mirror configuration the state vector x = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) has the
form

x = (𝑥1, 0, 0, 0, 𝑥5, 𝑥6) , (3.26)

where 𝑥1, 𝑥5 and 𝑥6 may have any values. In a type (P) mirror configuration the state
vector has the form

x = (𝑥1, 0, 𝑥3, 0, 𝑥5, 0) , (3.27)

where the components𝑥1, 𝑥3 and𝑥5may have any values. Omitting the zero components,
the initial conditions of a symmetric periodic orbit starting from a mirror configuration
may therefore be written as (𝑥01, 𝑥05, 𝑥0𝑖), where the subscript 𝑖 = 3 for a type (P) and
𝑖 = 6 for a type (A) mirror configuration at the initial epoch. Integrating the equations
of motion with these initial conditions up to epoch 𝑡 , the final state vector is expressed
as the left part of Eq. (3.28). Since the initial conditions are chosen to satisfy a mirror
configuration, the orbit will be periodic if at some epoch 𝑡 ≠ 0 the final conditions also
satisfy the mirror configuration. The right hand side of Eq. (3.28) is the periodicity
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condition:

x = x(𝑥01, 𝑥05, 𝑥0𝑖 ; 𝑡) ;
𝑥2(𝑥01, 𝑥05, 𝑥0𝑖 ; 𝑡) = 0 ,

𝑥4(𝑥01, 𝑥05, 𝑥0𝑖 ; 𝑡) = 0 ,

𝑥 𝑗 (𝑥01, 𝑥05, 𝑥0𝑖 ; 𝑡) = 0 ,

(3.28)

where 𝑗 = 3 for a type (A) and 𝑗 = 6 for a type (P) mirror configuration at epoch 𝑡 .
The remaining three final conditions are free to have any value. Assuming the initial
conditions 𝑥101, 𝑥105, 𝑥10𝑖 and period 𝑇 1 of an orbit satisfying the periodicity condition
(Eq. (3.28)) are known, then, within computation accuracy, we have:

𝑥12 = 𝑥2(𝑥101, 𝑥105, 𝑥10𝑖 ; 𝑡1) = 0 ,

𝑥14 = 𝑥4(𝑥101, 𝑥105, 𝑥10𝑖 ; 𝑡1) = 0 ,

𝑥1𝑗 = 𝑥 𝑗 (𝑥101, 𝑥105, 𝑥10𝑖 ; 𝑡1) = 0 ,

(3.29)

where 𝑡1 is the epoch of the second mirror configuration (𝑡1 = 𝑇 1/2 or 𝑇 1/4
depending on the orbital symmetry). If (𝑥201, 𝑥205, 𝑥20𝑖 ; 𝑡2) are the corresponding
parameters of another orbit of the same family in the neighborhood of the known orbit,
such that the quantities

Δ𝑥01 = 𝑥
2
01 − 𝑥101 ,

Δ𝑥05 = 𝑥
2
05 − 𝑥105 ,

Δ𝑥0𝑖 = 𝑥
2
0𝑖 − 𝑥10𝑖 ,

Δ𝑡 = 𝑡2 − 𝑡1 ,

(3.30)

are small. Substituting these into the periodicity conditions for the second orbit and
expanding in Taylor series to first order in the Δ’s we obtain the basic form of the
linear predictor algorithm:

𝑣21Δ𝑥01 + 𝑣25Δ𝑥05 + 𝑣2𝑖Δ𝑥0𝑖 + 𝑓2Δ𝑡 = 0 ,

𝑣41Δ𝑥01 + 𝑣45Δ𝑥05 + 𝑣4𝑖Δ𝑥0𝑖 + 𝑓4Δ𝑡 = 0 ,

𝑣 𝑗1Δ𝑥01 + 𝑣 𝑗5Δ𝑥05 + 𝑣 𝑗𝑖Δ𝑥0𝑖 + 𝑓 𝑗Δ𝑡 = 0 .

(3.31)

The values of the first-order variations 𝑣𝑘𝑙 and time derivatives 𝑓𝑘 appearing as
coefficients in the Eq. (3.31) are those for the known orbit. This system has one degree
of freedom, allowing an arbitrary constraint to be applied. At this point is when we
define the family parameter, the parameter to which a fixed increment is given at every
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new iteration. Here is where the careful selection of family parameter is important, as
otherwise, the predictor-corrector scheme will break down and require manual re-start.
To overcome this problem, Robin and Markellos suggest rewriting the equations in
terms of the variable subscript notation 𝐾 , 𝐿 and𝑀 (which can be selected as any
permutation of 1, 5 and 𝑖). By suitable definition of 𝐾 it is possible to, without loss of
generality, specify the value of the increment Δ𝑥0𝐾 and solve for Δ𝑥0𝐿 , Δ𝑥0𝑀 and Δ𝑡 .

𝑣2𝐾Δ𝑥0𝐾 + 𝑣2𝐿Δ𝑥0𝐿 + 𝑣2𝑀Δ𝑥0𝑀 + 𝑓2Δ𝑡 = 0 ,

𝑣4𝐾Δ𝑥0𝐾 + 𝑣4𝐿Δ𝑥0𝐿 + 𝑣4𝑀Δ𝑥0𝑀 + 𝑓4Δ𝑡 = 0 ,

𝑣 𝑗𝐾Δ𝑥0𝐾 + 𝑣 𝑗𝐿Δ𝑥0𝐿 + 𝑣 𝑗𝑀Δ𝑥0𝑀 + 𝑓𝑗Δ𝑡 = 0 ,

→
𝑣2𝐿Δ𝑥0𝐿 + 𝑣2𝑀Δ𝑥0𝑀 + 𝑓2Δ𝑡 = −𝑣2𝐾Δ𝑥0𝐾 ,

𝑣4𝐿Δ𝑥0𝐿 + 𝑣4𝑀Δ𝑥0𝑀 + 𝑓4Δ𝑡 = −𝑣4𝐾Δ𝑥0𝐾 ,

𝑣 𝑗𝐿Δ𝑥0𝐿 + 𝑣 𝑗𝑀Δ𝑥0𝑀 + 𝑓𝑗Δ𝑡 = −𝑣 𝑗𝐾Δ𝑥0𝐾 .

(3.32)

A criterion for selecting the family parameter on a ’local’ basis (for selecting 𝐾 from
the set (1, 5, 𝑖) each time the predictor is to be applied, can be established in terms of
the determinants

𝐷1 =


𝑣2𝑖 𝑣25 𝑓2

𝑣4𝑖 𝑣45 𝑓4

𝑣 𝑗𝑖 𝑣 𝑗5 𝑓 𝑗

 ; 𝐷5 =


𝑣21 𝑣2𝑖 𝑓2

𝑣41 𝑣4𝑖 𝑓4

𝑣 𝑗1 𝑣 𝑗𝑖 𝑓 𝑗

 ; 𝐷𝑖 =


𝑣25 𝑣21 𝑓2

𝑣45 𝑣41 𝑓4

𝑣 𝑗5 𝑣 𝑗1 𝑓 𝑗

 . (3.33)

The local family parameter is selected as the initial condition 𝑥0𝐾 corresponding to
the determinant𝐷𝐾 having the largest absolute value among the set (𝐷1, 𝐷5, 𝐷𝑖). This is
equivalent to specifying a fixed increment in the most rapidly-varying initial condition,
thus ensuring that difficulties associated with extrema in the initial conditions along
the branch are avoided. Having chosen the value of the subscript 𝐾 according to this
criterion, Δ𝑥0𝐾 is assigned an appropriate value and the right hand side of Eq. (3.32)
solved for Δ𝑥0𝐿 , Δ𝑥0𝑀 and Δ𝑡 (the subscripts 𝐿 and𝑀 being defined as the remaining
two from the set (1, 5, 𝑖)). We obtain:

Δ𝑥0𝐿 = Δ𝑥0𝐾𝐷𝐿/𝐷𝐾 ,
Δ𝑥0𝑀 = Δ𝑥0𝐾𝐷𝑀/𝐷𝐾 ,

Δ𝑡 = Δ𝑥0𝐾𝐷/𝐷𝐾 ,

with 𝐷 =


𝑣21 𝑣25 𝑣2𝑖

𝑣41 𝑣45 𝑣4𝑖

𝑣 𝑗1 𝑣 𝑗5 𝑣 𝑗𝑖

 . (3.34)

The predicted values of the parameters (𝑥201, 𝑥205, 𝑥20𝑖) and 𝑡2 are then obtained from
Eq. (3.30). When the corrector algorithm is applied to improve the accuracy of the
parameters, the local family parameter 𝑥0𝐾 is kept fixed, 𝐾 being selected on the basis
of the predictor criterion. This ensures that the corrector will converge successfully to
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the orbit. By testing the relative absolute magnitudes of the three determinants in
Eq. (3.33) every time the predictor is used, and redefining 𝐾 , 𝐿 and𝑀 as necessary, we
can proceed along the branch identifying orbits at roughly equal intervals without the
interruptions caused by extrema when the family parameter is fixed.

3.6 SQNLP Algorithm for Constrained Non-Linear

Optimization

A Sequential Quadratic Non-Linear Programming (SQNLP) algorithm will be used in
some instances of this work for constrained nonlinear optimization as a complement to
the algorithms described previously. Some requirements for transfer trajectories are
difficult to satisfy with Differential Correction algorithms, so the more complex and
powerful Sequential Quadratic Non-Linear Programming (SQNLP) algorithm will be
used, as it can handle better some of the constrains that come with the CRTBP. However,
the design of a SQNLP algorithm from the ground up is out of the scope of this work:
the fmincon routine from MATrix LABoratory (MATLAB) will be implemented and
used. Because the inner workings of fmincon are already documented in detail in the
official documentation10, only the applied parts to the trajectory design in the CRTBP
context are included here.

Figure 3.2: Sequential Quadratic Non-Linear Programming (SQNLP) general algorithm
constrains for a trajectory.

In order to implement a SQNLP algorithm, since the algorithm is a local optimization
algorithm, an initial trajectory guess needs to be used. Each case needs a specific viable
guess (specified in each appropriate chapter); however, as a general rule, a trajectory
obtained through a promising Invariant Manifold or a trajectory designed through

10MATLAB fmincon documentation: https://www.mathworks.com/help/optim/ug/fmincon.html.

https://www.mathworks.com/help/optim/ug/fmincon.html
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Differential Correction that gets close to the desired requirements will be used as
initial guesses, containing initial position and velocities and an approximate ToF.

The basis of the SQNLP algorithm is the definition of a function, four sets of
parameters and some optional other parameters:

1. Nonlinear Function.

2. Equality or Inequality Constrains.

3. Optimization Variables.

4. Initial Guess.

5. (Optional) Lower and Upper Bounds.

The fmincon routine tries to find the (optimum) minimum of the nonlinear
multivariable function in the vicinity of the initial guess that satisfies both the equality
and inequality constrains (within tolerance). It can additionally be given certain lower
and upper bounds to the variables. In the context of trajectory design in the CRTBP,
the basic usage of the SQNLP algorithm will be used in a two impulse trajectory like
the one shown in Fig. 3.2. The nonlinear function is the equation of motion under
the CRTBP dynamics, constraining starting and end positions, and optionally ToF,
while leaving the Δ𝑣 (changes in velocity) variable. As an optimization objective,
during trajectory design it is always good to aim for minimum Δ𝑣 consumption
(Δ𝑣 = Δ𝑣1 + Δ𝑣2), if no other hard requirement has higher priority.

Table 3.1: Constraints for the SQNLP algorithm for a (multiple) 𝑛-impulse maneuver.

Constraint Equality Equation
𝑛-Point 𝑥 Position Δ𝑥 = 𝑥𝑛+ − 𝑥𝑛− = 0
𝑛-Point 𝑦 Position Δ𝑦 = 𝑦𝑛+ − 𝑦𝑛− = 0
𝑛-Point 𝑧 Position Δ𝑧 = 𝑧𝑛+ − 𝑧𝑛− = 0
𝑛-Point 𝑥 Velocity Δ𝑣𝑥 = 𝑣𝑥𝑛+ − 𝑣𝑥𝑛− = 0
𝑛-Point 𝑦 Velocity Δ𝑣𝑦 = 𝑣𝑦𝑛+ − 𝑣𝑦𝑛− = 0
𝑛-Point 𝑧 Velocity Δ𝑣𝑧 = 𝑣𝑧𝑛+ − 𝑣𝑧𝑛− = 0

In the case that two impulse trajectories are not able to fulfill the trajectory design
requirements, extra Degrees Of Freedom (DOFs) can be added to relax the constrains.
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One such method could be to divide the trajectory into 𝑛 legs instead of just two, while
keeping the continuity constrains to obtain for a continuous trajectory (Fig. 3.3). In
this way, the algorithm may be able to converge trajectories that were not possible
before. The constrains for such a case are summarized in Table 3.1, by enforcing both
position and velocity continuity at the mid-points, and ToF continuity for the whole
algorithm, although no specific ToF or mid-points exact position are defined.

Figure 3.3: SQNLP algorithm with multiple legs for highly constrained trajectories.

Another method can be to transform the two-impulse maneuver to an 𝑛-impulse
maneuver, with the simplest of these cases being a three-impulse maneuver. This
allows a third Δ𝑣 correction maneuver during the trajectory (having a Δ𝑣 at initial
point and end-point, and an extra at the mid-point). To allow for the extra Δ𝑣 maneuver,
the scheme is re-written in a different form: the initial trajectory is divided in two
legs, starting from both initial and final positions, and propagating each trajectory
forward and backward in time respectively for an approximate of half of the ToF each
leg. However, the timing of the mid-trajectory maneuver is not forced for the final
solution, meaning that the exact timing for the mid-point patch point is left free for the
algorithm to use in the optimization process. The optimization variable then becomes

Δ𝑣 = Δ𝑣1 + Δ𝑣2 + Δ𝑣3 , (3.35)

where Δ𝑣2 is the difference between the end of both legs’ propagation (forward and
backward in time), i.e. Δ𝑣2 = 𝑣2+−𝑣2−. With the constrain on the mid-position enforced,
the trajectory becomes continuous with three (minimized) Δ𝑣 impulses. This method is
just a modification of the general one, and is the one used in Section 7.2.2, so the
exact implementation details will be left for that section, as the constrains and other
variables are dependent on the specific problem.
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3.7 Periodic Orbit Parametrization

When looking for crossings between periodic orbits or intersecting trajectories in
general, the large state space of the CRTBP makes it difficult to obtain results efficiently
if a large quantity of variables or orbits are searched. For specific trajectories targeting
very defined problems, that might be mitigated by carefully selecting the space to search
so that it is small enough for the computing power available. Of course, the methods
introduced in this chapter also help with simplifying the problem. However, when
searching for trends and the structure of the dynamics over entire orbits, restricting
the search space impacts the results, so it is not entirely feasible. For this reason, a
periodic orbit parametrization scheme is introduced that exploits the symmetries and
other dynamical structures of the problem to reduce the complexity of the search. The
parametrization method in itself is not used independently, but in conjunction with
other tailor-made algorithms. However, to keep this section as general as possible, only
the basics will be covered, and the specific details of each implementation and the
surrounding algorithm will be explained in the unique application’s section.
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(x,y)(x,y)
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(a) Lyapunov Orbit polar coordinates
around Lagrange Points in terms of \ .
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Figure 3.4: Periodic orbit with polar coordinates, using different central points.

Polar coordinates will be used to parametrize the base periodic orbit, selecting the
center depending on the periodic orbit studied and the case explored in particular. More
details on the periodic orbit families and their structure will be given in Section 4.3, but
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in order to explain the algorithm properly, some information needs to be referenced
here. Summarizing, either the Lagrange Points 𝐿1 or 𝐿2, the Earth (the secondary in the
CRTBP), or a new suitably selected point will be used. The parametrizations in each
case will be done in terms of the angle from the positive 𝑥-axis in the counter-clockwise
direction. With this, the parametrization with polar coordinates is done by simply
shifting the origin of the parking orbit to the new origin (corresponding Lagrange
Point, in Fig. 3.4a or the new center, in Fig. 3.4b), and then obtaining the distance to the
new origin and angle with the 𝑥-axis for each point of the trajectory.

With this method, we have a 1-to-1 map from angle \ to radius (Figure 3.5a).
Depending on the application, the parametrization can be further simplified by only
taking into consideration the region of interest of the periodic orbit, i.e. if crossings at
one side of the Lagrange Point or Earth are being looked for, only half the orbit needs
to be parametrized. The next step is to fit an analytical expression to this curve. Due to
the geometry of these orbits, the most common used expressions, such as polynomials,
do not offer good results. Two alternatives have been used in this work, depending on
the use-case: a Fourier series fit and a smoothing spline fit. They will be separately
explained in the following sections.

3.7.1 Fourier Series Fit

The first alternative is to use a Fourier series fit, a sum of sine and cosine functions
that describes a periodic series, to approximate the general shape of the orbits. The
trigonometric Fourier series takes the form of Equation 3.36:

𝑟 = 𝑎0 +
𝑛∑︁
𝑖=1

𝑎𝑖 cos(𝑖𝑤\ ) + 𝑏𝑖 sin(𝑖𝑤\ ) . (3.36)

Different Fourier series fits are tried, with increasing order. As expected, the
higher order the Fourier fit, the less error we have (Fig. 3.5b, with the goodness-of-fit
statistics for the same example Lyapunov Orbit). Starting from a Fourier 4 fit, the
error becomes negligible, and since the difference in computation for these kinds of
analytical functions is imperceptible, a Fourier 8 fit is chosen. The resulting expression
is a Fourier series fitted to the parametrized orbit, used as an approximation of the
original orbit. Since it is an 8th order Fourier series, the expression has a constant term
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Figure 3.5: Parametrized Lyapunov Orbit Fourier 1-8 Fits (Fig. 3.5a) and their respective
statistics (Fig. 3.5b).

and 16 trigonometric terms. Equation (3.37) shows an example of such an expression
for a Lyapunov Orbit, with the distance as a function of the angle \ .

𝑟 (\ ) =156.41 − 282.274 cos(0.6686 · \ ) + 0.04359 sin(0.6686 · \ )
+ 206.6949 cos(2 · 0.6686 · \ ) − 0.06477 sin(2 · 0.6686 · \ )
− 121.52 cos(3 · 0.6686 · \ ) + 0.058566 sin(3 · 0.6686 · \ )
+ 56.2239 cos(4 · 0.6686 · \ ) − 0.03748 sin(4 · 0.6686 · \ )
− 19.786 cos(5 · 0.6686 · \ ) + 0.01733 sin(5 · 0.6686 · \ )
+ 4.9941 cos(6 · 0.6686 · \ ) − 0.0056 sin(6 · 0.6686 · \ )
− 0.80774 cos(7 · 0.6686 · \ ) + 0.00115 sin(7 · 0.6686 · \ )
+ 0.06308 cos(8 · 0.6686 · \ ) − 0.0001144 sin(8 · 0.6686 · \ )

(3.37)

3.7.2 Smoothing Spline Fit

There are occasions where a Fourier series fit does not have enough good definition for
the purposes of this work, for example, where entire orbits need to be parametrized or
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the shapes of the orbits does not work well with the Fourier series. An alternative to
the Fourier series fit is a smoothing spline fit. Curve fitting and appropriate functions
is a very in-depth field, which is outside of the scope of this work. We will use the
MATLAB implementation of the method, so as to avoid unnecessary complexity. A
very brief overview is included here for completeness sake.

The smoothing spline fit is based on a smoothing function from the data constructed
with the specified smoothing parameter 𝑝 and the specified weights𝑤𝑖 . The smoothing
spline minimizes

𝑝
∑︁
𝑖

𝑤𝑖 (𝑦𝑖 − 𝑠 (𝑥𝑖))2 + (1 − 𝑝)
∫ (

d2𝑠
d𝑥2

)2
d𝑥 (3.38)

In the implementation used in this research, the default values for the weights are
used𝑤𝑖 = 1 for all data points, and 𝑝 is not specified, allowing the algorithm itself to
choose the appropriate value. The value ranges from 𝑝 = 0, producing a least-squares
straight line fit, to 𝑝 = 1 producing a cubic spline interpolant. Usage of the function is
simple, feeding a database of distances 𝑟 and angles \ to the algorithm, and using the
obtained fit function for the algorithms directly, in an equivalent method as the Fourier
series fit.
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4
Deep Space Orbit Transfer Vehicle

(DS-OTV) Concept

Space exploration missions have had diverse scientific and engineering objectives since
the beginning of space exploration. While in the past, each mission was treated mostly
as one-offs with different objectives and methodologies, in recent years there is a
push for re-usability and to design systems that enable repeatable access to space
(Section 1.3). The experience and heritage from past missions allows for newer space
architectures. In this chapter, one such architecture is introduced, with the concept
of the Deep Space Orbit Transfer Vehicle motivated and driven by Hayabusa and
Hayabusa2 technology. This architecture could allow for low-cost recurring access to
space, widening the number of celestial bodies accessible for small and medium class
exploration missions. By placing an Orbit Transfer Vehicle in a parking orbit in the
Earth’s vicinity, the OTV can be used for refueling purposes for future missions, which
would bring benefits such as lower mass at launch for the successive missions, allowing
for smaller and lower-cost launchers like the Epsilon or the future H3 to be used,
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higher availability of launch windows and flexibility against delays and unforeseen
circumstances.

This chapter presents the DS-OTV concept by first introducing in detail the heritage
from Hayabusa2 used in the design of the DS-OTV in Section 4.1. In Section 4.2 the
mission structure and design concept is introduced, by separating each phase of
the mission and evaluating the benefits, possible drawbacks or difficulties and the
feasibility of such an architecture, both in the specific technologies involved in each
phase and in the overall sense. Finally, Section 4.3 evaluates the possible candidate
parking orbits in the Earth’s vicinity for the DS-OTV taking into consideration the
mission design previously explained, in order to build the foundation for the rest of the
research work.

4.1 Hayabusa2 Heritage

Figure 4.1: External view of the Hayabusa2 spacecraft[5].

Hayabusa2 is the follow-up from the first Hayabusa mission, and the second
asteroid sample return mission from ISAS/JAXA. It reached asteroid 1999JU3 (or
Ryugu), performed in-situ scientific operations and analysis, including gathering
samples. It came back to Earth with samples collected from the surface, and is on its
way to the extended mission scientific objectives. The Hayabusa2 baseline design and
operation is strongly influenced by the technological heritage of the first Hayabusa
mission. This allowed an extremely short development time, taking in total for design,
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(a) Hayabusa2 touchdown procedure.
(b) Hayabusa2 touchdown loop adapted to DS-
OTV.

Figure 4.2: Hayabusa2 touchdown procedure/loop and adaptation to rendezvous[26].

production and test around 4.5 years. The components were improved to upgraded
alternatives and the methodologies and operations refined thanks to the experience of
the previous Hayabusa and IKAROS missions[5]. An external view of the components
and instruments of Hayabusa2 is shown in Fig. 4.1. Some of the equipment highlighted
include antennas for communication purposes (two high gain antennas, Ka-band and
H-band, and two X-band antennas, middle and low gain antennas), an ion engine and
Solar Array Panels for propulsion and energy respectively, and Reaction Control
System (RCS) thrusters, ONC, TMs and Star Trackers for attitude determination and
control. Hayabusa2 includes an array of scientific instruments that were used for
analyzing the conditions at Ryugu: a deployable camera, a near infrared spectrometer,
the sample horn, small carry-on impactor and reentry capsule used for the surface
samples, a thermal infrared imager, and finally the MASCOT lander and MINERVA-II
rovers that were deployed.

On July 11th 2019, Hayabusa2 achieved its second touchdown on the asteroid
Ryugu with a 60 cm accuracy[74]. The landing was accomplished based on the
Pin-Point Touchdown (PPTD) Scheme, which adopts an autonomous optical navigation
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(a) Hayabusa2 touchdown simulator adapted to two spacecraft
rendezvous with TMs.

(b) Prototype docking mecha-
nism for DS-OTV.

Figure 4.3: Hayabusa2 adapted docking procedure and mechanism[26].

and 6 DOFs guidance and control algorithm using RCS thrusters. While vertical
navigation is done by the Laser Range Finder (LRF), lateral navigation adopts the TM
Tracking method, which utilizes retro-reflective deployable TM as artificial landmarks
illuminated by either a Flash Lamp (FLA) mounted on the spacecraft or by the Sun.
The position of these TM is recognized on the optical images captured and processed
onboard by the spacecraft (Fig. 4.2a shows an example schematic of the LRF, TM
Tracking and FLA in action for precision touchdown). The PPTD scheme’s robustness
and effectiveness, as well as its reliability were proven by two successful autonomous
touchdowns of Hayabusa2 against the rocky asteroid Ryugu[100] .

Since these two touchdowns with Ryugu can also be seen as autonomous rendezvous
in deep space, basically the same proven technology and maneuver sequence will
be used by the OTV architecture. While some of the Hayabusa2 instruments are
very specific for the kind of scientific work done on asteroids, the other equipment
(and operations) can be updated, re-fitted and re-purposed to be used for DS-OTV
operations. More specifically, the equipment used during the touchdown sequence of
Hayabusa2 with Ryugu. Figure 4.2b shows how the touchdown loop of Hayabusa2
can be adapted to a rendezvous scenario with just small modifications. What was
assumed to be an inert asteroid in the original mission design is now assumed to be a
passive spacecraft, allowing the rest of the procedure to use the same flow. TMs will
be placed on the target spacecraft, while the chaser will execute all the rendezvous
and docking maneuvers mainly by optical navigation. Other technologies can aid
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the procedure, for example using ground based Orbit Determination (Same Beam
Interferometry) for the distant rendezvous maneuvers before changing to relative
navigation, or the re-use of the LRF for distance estimation. The OTV will not only use
the Hayabusa2 guidance, navigation and control scheme, but also the autonomous
sequence management, including Fault Detection, Isolation, and Recovery (FDIR).

When focusing on the docking mechanism itself, the Hayabusa2 sample collector
has been used as inspiration for designing and prototyping concepts, combining the
sample collector with the TMs, as well as novel docking mechanisms. The docking
maneuver has already been started to be studied with the re-purposed Hayabusa2
touchdown simulator (Fig. 4.3a). Docking mechanism prototypes have already started
to be developed and tested (Fig. 4.3b)[26] .

More details on how the DS-OTV concept will draw from Hayabusa2 and its
heritage are shown in the following sections, where the actual DS-OTV architecture
being proposed is introduced and explained.

4.2 DS-OTV Mission Design

In order to tackle the actual DS-OTV mission design, this see different phases of the
mission are divided in sections. Section 4.2.1 introduces the general concept and the
overall architecture description, Section 4.2.2 describes operation maneuvers executed
during the lifetime of the DS-OTV mission, including the docking and rendezvous
phase between the OTV and the mission spacecraft, the launch possibilities, orbit
insertion and posterior Earth gravity assist, and finally Section 4.2.3 introduces possible
mission sequences during the lifetime of the DS-OTV mission.

4.2.1 Overall Architecture

The basis of the DS-OTV architecture consists of the Orbit Transfer Vehicle (OTV)
placed in a parking orbit in the Earth’s vicinity that is used as a staging point for
missions targeted further away. We can use this OTV with successive missions,
for refueling, changing the timings to better target the scientific objectives or even
leveraging its propulsion system to help the missions reach more difficult targets. A
nominal mission scenario is depicted in Fig. 4.4.



62 Chapter 4. Deep Space Orbit Transfer Vehicle (DS-OTV) Concept

11

33

22

44

Lagrange 
PointEarth

Figure 4.4: Deep Space Orbit Transfer Vehicle (DS-OTV) mission architecture. (1) The
spacecraft leaves the Earth and transfers to the parking orbit of the DS-OTV. (2) The
spacecraft docks with the OTV to re-fuel. (3) The spacecraft undocks and leaves the
parking orbit. (4) After an Earth gravity assist, the spacecraft starts its journey to the
selected objective.

Once the OTV is already in the parking orbit, the mission spacecraft can be launched
at any interval required. These mission spacecraft would be launched and inserted into
a transfer orbit headed to the OTV parking orbit, and then the mission spacecraft
makes a rendezvous with the OTV and docks with it. During the time the spacecraft
are docked, the mission spacecraft can be refueled, and both spacecraft can adjust their
orbit to prepare for the eventual release to the mission objective. At the appropriate
time, the spacecraft undock and the mission spacecraft is inserted into a transfer orbit,
leaving the parking orbit towards the Earth. At the closest approach to Earth, the
mission spacecraft executes an Earth gravity assist to escape from the Earth-Moon
system and head towards its main mission objective. Alternative mission scenarios
can be used if needed. One such scenario could see the OTV leaving the parking
orbit and inserting itself into the transfer orbit. In this way, the OTV and mission
spacecraft could rendezvous and dock directly after launch in the transfer orbit, and
the OTV thrusters and fuel could be used for trajectory correction and insertion into
the Earth gravity assist trajectory for the mission spacecraft. By using this strategy, the
mission spacecraft would save all the fuel for the deep space trajectory corrections and
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operations in the objective’s vicinity. These kind of scenarios are explained in detailed
in Section 4.2.3.

Figure 4.5: Dynamical system influence on the DS-OTV architecture.

The CRTBP introduced before is common to any three-body system, in the case
that involves the design of the DS-OTV, either the Sun-Earth (+spacecraft) or the
Earth-Moon (+spacecraft). Therefore, the existence of Lagrange Points and periodic
orbits occurs in both systems. This raises the question of which system is more adequate
to develop the DS-OTV infrastructure, as there are advantages and disadvantages
in both scenarios. The Lagrange Points and periodic orbits corresponding to the
Earth-Moon system are closer to the Earth and in general have shorter periods;
it is also the system where the previously mentioned Lunar Gateway by NASA is
being built.[16, 24, 25] In the same studies regarding the Artemis program, as well as
previously conceptualized space infrastructure, such designs were also suggested for
aiding in deep space exploration.[80] However, even though the Sun-Earth Lagrange
Points are farther away and have larger periods, their locations provide advantages
over the Earth-Moon system.[36] It is relevant to point out that the OTV will have
long periods of stand-by operation in-between the successive mission spacecraft
launches. At the locations at the Sun-Earth Lagrange Points vicinity, these periods
could potentially be used for scientific observations. The vicinity of the L2 provides a
clear unobstructed view of the universe with both the Earth and the Sun at the back,
while the vicinity of L1 might be useful for solar wind research, and for observations
of Near-Earth Objects (NEOs) when they orbit nearby, clearly illuminated by the
Sun and with the Earth as a backdrop. Maybe even more important for the DS-OTV
design requirements might be the actual location and ease of transfer to interplanetary
space. Such an architecture already carries a complex logistic burden when planning
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schedules and operations, and the Sun-Earth system provides some simplification to
it, as their location with regards to the rest of the solar system is only dependent
on the parking orbit chosen and the Earth’s orbit around the Sun. In opposition,
the Earth-Moon dynamical environment period is faster (roughly 1 month, versus 1
year for the Sun-Earth), so both the relative locations of the parking orbits in the
Earth-Moon system, as well as the location of the entire system itself (position of the
Earth relative to the Sun), needs to be taken into account when designing escape
trajectories (Fig. 4.5). In the best case scenario, this complicates the selection process
of scientific objectives, in the worst case scenario, severely restricts the available
maneuvers. For this reason, the study is restricted to the Sun-Earth environment.

Selection of appropriate transfer and parking orbits is an essential part of the
mission design, as the orbital structure will dictate the timings of the mission, including
transfer times, stand-by times and minimum and maximum docking times, but also
the ease of access to the architecture, the launching possibilities and the objectives
available for the missions. Therefore, the entire Section 4.3 is devoted to discuss and
argument the selection.

4.2.2 Operation Maneuvers

During the lifetime of the DS-OTV architecture, the spacecraft are going to execute
different maneuvers to aid in their operations. Since these maneuvers influence the
design parameters of the orbits and trajectories selected for the architecture, it is
beneficial to introduce them in a general way.

Once the DS-OTV and the mission spacecraft are in the same general area, the
rendezvous and docking procedures take preference. The DS-OTV rendezvous and
docking procedures will rely heavily on the technology of the Hayabusa2 spacecraft
(introduced in Section 4.1). The autonomous touchdowns of Hayabusa2 demonstrated
the applicability of the technology as autonomous rendezvous in deep space, which
can be re-used for the DS-OTV. In the PPTD Scheme, TMs can be placed on the
mission spacecraft, remaining passive, while the OTV will execute all the rendezvous
and docking maneuvers, mainly by optical navigation. Other technologies can aid
the procedure, for example using ground based Orbit Determination (Same Beam
Interferometry) for the distant rendezvous maneuvers before changing to relative
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navigation or the re-use of the LRF for distance estimation (Fig. 4.3a). The OTV will
not only use the Hayabusa2 guidance, navigation and control scheme, but also the
autonomous sequence management, including FDIR.

Figure 4.6: Geostationary Transfer Orbit (GTO) and equivalent maneuver proposed for
insertion into parking orbits.

Regarding the launch procedures, the main advantage of the DS-OTV architecture
is that it would benefit from lower mass at launch for the successive missions, allowing
for smaller and lower-cost launchers like the Epsilon or the future H3 to be used.[70]
The mission spacecraft can be launched at nearly dry mass, re-fueling later at the OTV,
and this architecture would also bring higher availability of launch windows and
flexibility against delays and unforeseen circumstances. Some launch possibilities apart
from a direct insertion into the parking orbit or transfer orbit include insertion into
either of the target orbits by means of a highly elliptical launch transfer orbit akin to a
Geostationary Transfer Orbit (GTO), with an apogee kick for the insertion maneuver
(Fig. 4.6) or launching into a LEO, and then using a lunar gravity assist to insert into
the transfer orbit (Fig. 4.7).

The other important transfer maneuver in this architecture is the exit maneuver
of the parking orbit and the insertion into the interplanetary trajectory bound for
each mission spacecraft’s objective. With expectations of small mission spacecraft
with limited thrusting capabilities, and to save as much fuel as possible for later
operations near the mission objectives, the nominal sequence would include the
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Figure 4.7: Alternative insertion trajectory to transfer orbits by lunar fly-by. From a
Low Earth Orbit (LEO), the spacecraft is inserted into a trans-lunar orbit to execute a
close fly-by with the Moon to insert itself into the transfer orbit.

mission spacecraft’s exit from the parking orbit and subsequent Powered Earth Gravity
Assist (equivalent to the EDVEGA of previous ISAS/JAXA missions). This maneuver
will take the mission spacecraft along an orbit with a low Earth perigee, and at its
closest point to Earth the mission spacecraft will perform a burn to increase the
effectiveness of the gravity assist (Fig. 4.8). Under this circumstances, a 𝑣∞ = 4 km/s or
an orbit with a characteristic energy 𝐶3 = 16 km2/s2 can be achieved with a Δ𝑣 = 700
m/s burn.

Figure 4.8: Insertion into the deep space trajectory by means of a Powered Earth
Gravity Assist.

For some specific missions, the mission spacecraft might not be able to provide a
high enough Δ𝑣 during the gravity assist. In this cases, an alternative sequence where
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the OTV stays docked with the mission spacecraft for a longer time can be used. In this
scenario, the OTV will perform all the maneuvers to prepare for the gravity assist, and
will use its thrusters to provide the necessary Δ𝑣 , releasing the mission spacecraft
shortly afterwards already in its escape trajectory. After this maneuver, the OTV will
insert itself back into the parking orbit, either directly or by means of a decelerating
Earth Gravity Assist.

4.2.3 Mission Sequence

This final part of this section summarizes a full hypothetical DS-OTV mission sequence
by combining the information from previous sections. This will serve as a showcase of
possible scenarios for different mission requirements.

Figure 4.9: Mission sequence timeline for the Deep Space Orbit Transfer Vehicle
(DS-OTV) with 4 mission spacecraft. Dark gray colors are used for OTV architecture
transfers, red colors for deep space trajectories and green for Earth synchronous orbits.

Figure 4.9 shows a timeline diagram of a DS-OTV mission sequence which includes
4 mission spacecraft with alternative operation procedures. The OTV together with
the first mission spacecraft, amounting to a combined 5 ton launch are inserted into
the transfer and parking orbits with a capable launcher, for example the future H3.
Once in the parking orbit, the mission spacecraft undocks and transfers back to Earth
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for a powered gravity assist and insertion into the deep space trajectory towards its
objective. A second mission spacecraft is launched at nearly dry mass (around 300-350
kg) with a smaller launcher, e.g. the Japanese Epsilon, inserted into the parking orbit
and docked with the OTV. During the fueling of the mission spacecraft, the OTV
performs a phasing maneuver to prepare the mission spacecraft for the correct timing.
Afterwards, in an equivalent sequence to the first mission spacecraft, the second one
undocks, performs a gravity assist and leaves to its objective, while the OTV stays
in the parking orbit. For the third mission, the first part is analogous to the second
mission, with the Epsilon rocket inserting the mission spacecraft into the transfer
and parking orbits, and the mission spacecraft docking with the OTV for re-fueling.
Instead of undocking and performing the gravity assist on itself, in this alternative
sequence, the OTV and mission spacecraft remain docked during the journey to Earth,
and the OTV is the one performing the powered gravity assist while carrying the
mission spacecraft. This maneuver inserts both spacecraft into a one year higher
energy synchronous orbit that brings them back to Earth, where the mission spacecraft
executes a second gravity assist to insert itself into the final trajectory. At the same
time, the OTV performs a decelerating gravity assist and inserts itself back to the
transfer and parking orbits. The last mission sequence sees the OTV insert itself to the
transfer orbit to Earth, where it directly rendezvous with the mission spacecraft, which
does not need to do any maneuvers. Once in the transfer orbit, the OTV re-fuels the
mission spacecraft and adapts the phasing to the expected one. After undocking, the
OTV goes back to stand-by in the parking orbit, while the mission spacecraft executes
the powered gravity assist to insert into the desired deep space trajectory. Depending
on the fuel left after these sequences, extra mission spacecraft could be launched or the
OTV could be used for additional scientific observations.

The maneuvers and the mission sequences presented in this section serve the
purpose of introducing the concept of the DS-OTV. This information is meant to give
context and background to the studies done in the latter chapters of this work. While
all of the maneuvers and possibilities here presented will not be fully addressed in
this text, the concepts will be used when evaluating the results and the merits and
drawbacks of the suggested maneuvers. The work in this thesis will mainly deal with
the phasing maneuvers used to facilitate the rendezvous and docking parts of the
architecture, a fundamental part in the feasibility of such a mission. More specifically,
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some of the mission scenarios introduced in this latter section will be referenced when
designing trajectories for phasing maneuvers in latter chapters, specifically to study
their feasibility with regards to fuel usage or time taken (for example in Chapter 7).
However, the first part of this work, in the following section, is focused on identifying
possible candidate orbits used as a base for the rest of the maneuvers designed.

4.3 Candidate Parking Orbits

In this section, the aim is to create and group families of orbits that share common
interesting properties with regards to the design of a DS-OTV architecture. Therefore,
we are investigating the orbits in the Sun-Earth CRTBP. However, the aim is not to
strictly find and identify families of periodic orbits. Is not an exhaustive periodic
orbit families search, and although the classification generally aligns with previous
literature, a modified notation is used that groups different parts of orbital families in a
convenient way. Due to this, in the following paragraphs and figures, the families are
labeled descriptively, a short description is provided, and equivalent families found in
previous classification efforts are given for comparison purposes (Table 4.1). For this
study, the orbital families are restricted to the ecliptic, the 𝑋𝑌 plane, to simplify the
search. The families are generated with the Differential Correction and Numerical
Continuation methods from Chapter 3, from initial guesses from literature[42, 101] .

Table 4.1: Equivalence between notations for the periodic orbit families used in
this research and Russell[102], Dei Tos[103], Broucke[104] and Henon[42] (Hill
approximation).

Used notation in this research Russel (2006)[102] Dei Tos
(2018)[103]

Broucke
(1968)[104]

Henon
(1969)[42]

𝐿1 Lyapunov 𝐿1 - 𝐺 𝑐
𝐿2 Lyapunov 𝐿2 - 𝐼 𝑎
DRO (Distant Retrograde Orbits) DRO DRO 𝐶 𝑓
Circle-Diamond central Egg-Diamond

and Circle-Egg
central 𝑔1
and 𝑔2

central 𝐻1
and 𝐻2

𝑔

𝐿1 Low Prograde Circle-Egg 𝑔1 𝐻1 left branch
𝑔′

𝐿2 Low Prograde Egg-Diamond 𝑔2 𝐻2 right
branch 𝑔′

𝐿1 Lyapunov (Fig. 4.10a) and 𝐿2 Lyapunov (Fig. 4.10b) Orbits are centered around
the 𝐿1 and 𝐿2 points respectively, with prograde motion. They are almost-symmetric
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(a) 𝐿1 Lyapunov Orbits (b) 𝐿2 Lyapunov Orbits

(c) Distant Retrograde Orbits (d) Circle-Diamond Orbits

(e) 𝐿1 Low Prograde Orbits (f) 𝐿2 Low Prograde Orbits

Figure 4.10: Planar Periodic Orbit families in the Earth’s vicinity. Earth size not to scale.
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with respect to the Earth, start from a quasi-elliptical shape and grow to a kidney bean
shape towards the Earth. DROs, in Fig. 4.10c, are centered around the Earth, with a
retrograde motion, and starting as an almost circle. The family grows from a circular
shape to an elliptical shape the further it gets from the Earth. As the term ’distant’
describes, the whole family starts further away from the Earth’s location than the
other orbits in the Earth’s vicinity.

Circle-Diamond Orbits (Fig. 4.10d) are centered around the Earth, with a prograde
motion, and starting as almost circular. The family grows from a circular shape to an
elliptical and later a diamond shape, shrinking at the crossing points with the 𝑥-axis as
it progresses past the change from circle to diamond shape. Although these orbits
are not an actual family in the strict definition, but an overlap of the central part of
two other families found in literature, they are grouped together as a separate group
because they are almost symmetric with respect to the Earth and they include regions
very close to the bifurcation points to other families. 𝐿1 Low Prograde (Fig. 4.10e)
and 𝐿2 Low Prograde (Fig. 4.10f) Orbits bifurcate from an overlapping region with
the Circle-Diamond family, and as they evolve they get closer to the Earth at one
extreme, while getting close to the physical space occupied by the 𝐿1 Lyapunov and
𝐿2 Lyapunov Orbits respectively at the other extreme. They are almost-symmetric
counterparts with respect to the Earth, and at the closest point to the Earth they reach
low altitudes. The grouping of orbital families done in this section loosely follows the
one developed in [42], where the Hill approximation of the CRTBP was used. Although
the Hill approximation is not applied in this research, this description is found more
meaningful for the intent and analysis done in this work.

4.3.1 Parking and Transfer Orbit Candidates Selection

To ease with the classification and selection of candidate orbits, a stability and energy
plot is used (Fig. 4.11). This plot condenses in a 2D figure some of the most important
orbital parameters for this analysis i.e., initial states (crossing with the 𝑥-axis), Jacobi
Constant values, and the stability index[105]. Since all the periodic orbits in this study
are symmetric with respect to the 𝑥-axis, with the knowledge of the 𝑥0 coordinate
(𝑥-axis crossing) and the Jacobi Constant, it is possible to obtain the remaining non-zero
initial state ¤𝑦0. The color coding represents the value of the stability index of each
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orbit in the family, noting again that any orbit with stability index value |𝑝 | < 2 is
stable, and starting from 2, the larger the stability index the more unstable the orbit is.
The stability index is capped at 5 at the upper limit, since otherwise the color-coding
would make it difficult to appreciate the details at lower stability indices. This is also
supported by the fact that separating stable and unstable orbits is the interesting part,
and the details of the level of instability are not important for this study. However,
in the interest of completeness, it can be noted that periodic orbital families in the
vicinity of the Libration Points have been extensively studied, including their stability
and the stationkeeping costs that they incur. Previous studies in different kind of
orbits went into detail in control laws implementations for stationkeeping, finding
results for nominal conditions (i.e. without any severe malfunction in orbital control or
determination) in the range of a maximum of 5 m/s per year, sometimes getting well
under 1 m/s.[97, 106, 107] These values will be shown to be almost negligible in the
discussions later on, as higher value impulsive maneuvers are needed for phasing
trajectories, including the proximity operations, rendezvous and docking procedures.
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Figure 4.11: Stability and Energy Plot of Planar Periodic Orbits in the Earth’s Vicinity.

Figure 4.11 shows that, except for the DRO family, all orbits lie in a very narrow
region with respect to their Jacobi Constant value (approximately 3.0005 ≤ 𝐶 ≤ 3.001),
having similar energy levels. It is also worth noting that the DRO family of orbits
has very low values of stability indices; although that makes them good for lower
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station-keeping costs, it also means that low energy transfers into and out of the orbits
will be difficult. The combination of higher stability and distance from the Earth makes
them not attractive for the usage in the DS-OTV, with increasing periods, transfer
times and potentially fuel usage all being negative aspects. The families around 𝐿1 and
𝐿2 Lagrange Points share similar structures, and both groups generate equivalent
dynamical structures. The zoomed-in boxes in Fig. 4.11 show a detailed view of the
orbit families around the Lagrange Points. Here it can be seen that the Lyapunov
Orbit families are mildly unstable, a shared characteristic with some parts of the
Circle-Diamond family and the Low Prograde family, more specifically the orbits that
get the closest the Lagrange Points. Although the instability of orbits carry more
station-keeping costs than the stable counterparts, it also indicates the possibility of
access to these orbits with low energy maneuvers. Moreover, it can be seen that the
Lyapunov and Low Prograde families around each Lagrange Point share most of the
same configuration space. This fact can be used to design fast impulsive transfers
between overlapping parts of the orbital families. This is specially interesting for
the sections where both orbital families share the same physical space and only a
small difference in energy level, indicating that a small change in velocity is sufficient
to execute a transfer. These kind of transfers are the ones that will be explored in
this research, as they have the most direct application to the design of the DS-OTV.
Therefore, from this section onward, the focus will be on the Lyapunov and Low
Prograde Orbit families and their intersections. Other orbital families may also prove
to be adequate for the DS-OTV design, a full extensive search is necessary to guarantee
an appropriate selection. However, the selection of a reduced pool of orbits is necessary
to limit the scope of the research and to keep it feasible, and later the same methods
and results can be expanded to other types of orbits. Therefore, the main reasons for
focusing exclusively on these families are:

• Both families overlap in the configuration space.

• Both families have a region with very similar levels of the Jacobi Constant.

• A portion of the Low Prograde family has low Earth altitudes, while on the other
extreme they get very close to the configuration space of the Lyapunov family.

• Orbits of similar characteristics are available on both sides of the Earth (vicinity
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of the L1 and L2), allowing for accelerating and decelerating (as well as both
directions) Earth Flybys. This can be used to obtain a larger array of possible
mission objectives.

These reasons lead us to believe that a combination of orbits from these families can be
successfully used in the DS-OTV context, more specifically, due to the possibilities of
transfers and phasing maneuvers. These transfers will be explored in detail in the
following chapters, where different methods are used to design auxiliary trajectories
useful in the context of the DS-OTV. It is to be noted that only transfers between orbits
in each sub-space, L1 or L2 separately will be studied, as transfers between both areas
have been already proved and researched in literature[37], and although they might
help with exit maneuvers to deep space, do not directly contributed to the phasing
problem solution sought for in this research.
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5
Periodic Orbital Transfers as Phasing

Mechanism

This chapter will focus on the search and utilization of intersections of periodic
orbit families. The chapter will focus exclusively on finding direct instantaneous
transfers between orbits by means of the trajectories of both orbits crossing in the
configuration space. It will follow the same logic thread as the previous chapters of the
thesis, progressing from less to more complex implementations, and it will include the
methods and algorithms used (and specifically created) for this purpose. Section 5.1
explores cases where the candidate periodic orbit families intersect once each period,
the simplest case (although this restricts the circumstances and possibilities of such
transfers), and Section 5.2 focuses on the more complex case where periodic orbits
intersect more than once. While Section 5.1.1 and Sections 5.2.1, 5.2.2 and 5.2.3 deal
with the search and construction of the periodic transfers themselves, including
the physical properties and crossing locations, the latter parts of each section deals
with the actual objective of the research: to facilitate the design of the DS-OTV
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orbital architecture. Therefore, these maneuvers become important when taking
into consideration situations where the spacecraft do not have adequate timings and
are not in sync in the orbits. In these cases the rendezvous and docking procedures
are only possible when the spacecraft are brought together. Section 5.1.2 details the
application of Single Periodic Transfers (SPTs) for phasing possibilities (change of
relative positions) between spacecraft orbiting in the DS-OTV architecture, while
Sections 5.2.4 and 5.2.5 focus on the equivalent for Multiple Periodic Transfers (MPTs),
with additional operation and phasing possibilities.

5.1 Single Periodic Transfers for Candidate Orbits

With the candidate parking orbit families (Lyapunov and Low Prograde Orbit families)
selected in Section 4.3 as the base of the DS-OTV architecture, in this section the
possibility to use them in combination is investigated, with transfers between orbits
of these families. Section 5.1.1 focuses on the physical crossings’ properties, while
Section 5.1.2 expands the results to include the phasing possibilities that the periodic
crossings provide.

5.1.1 Single Periodic Transfers Evaluation

The orbit families around both Lagrange Points show equivalent structures, and both
are symmetric with respect to the 𝑥 axis. This symmetry will be used to explore the
simplest and most direct transfer, an impulsive maneuver to immediately transfer
between a Lyapunov and a Low Prograde Orbit that intersect once at each period,
a Single Periodic Transfer (SPT). A Poincaré Section placed at 𝑦 = 0 is used. This
means all intersections that will be found are located on the 𝑦 = 0 plane, and the orbit
combinations will only have one intersection per period.

Figure 5.1 shows the Poincaré Section at 𝑦 = 0 with the Lyapunov and Low
Prograde families plotted. For clarity, only the crossings of the Poincaré Section on
the shared physical space between both families are plotted. The figure shows the
crossing of the 𝑥-axis for each orbit of the family in the abscissa axis and the absolute
value of the instant velocity 𝑣𝑦 at the crossing of the axis in the ordinate, again for
clarity. The color-coding is kept as the stability index for context and consistency
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Figure 5.1: Poincaré Section at 𝑦 = 0, |𝑣𝑦0 | > 0 for the Lyapunov and Low Prograde
Orbit families. Included are the zoomed-in parts of overlapping sections of the families,
labeled a), b), c) and d).

with Fig. 4.11. The boxed zoomed-in parts show the detail of the most interesting
regions. In these regions, both families share the same configuration space while
having very close instant velocities. The two curves diverge from the inner crossings
to the outer crossings: the gaps marked with a) and c) are the closest the two families
are velocity-wise, at a difference Δ𝑣𝑦,a) = 31.4 m/s and Δ𝑣𝑦,c) = 29.5 m/s respectively.
The gaps marked with b) and d) are at a slightly larger difference Δ𝑣𝑦,b) = 52.9 m/s and
Δ𝑣𝑦,d) = 55.3 m/s. Any change between the two groups of orbits in these regions will
be possible at the 𝑥-axis crossing with an impulsive maneuver of 31.4 ≤ Δ𝑣𝑦 ≤ 52.9
and 29.5 ≤ Δ𝑣𝑦 ≤ 55.3m/s for the families in the vicinity of 𝐿1 and 𝐿2 respectively.
The example candidate transfers a) and b) are shown in Fig. 5.2 for reference, with
equivalent results available for the families in 𝐿1.

The orbit combinations found in these regions near the Lagrange Points can
have different uses in a DS-OTV architecture. One example usage would have the
OTV placed in a parking Lyapunov Orbit, while using the Low Prograde Orbit as a
temporary transfer orbit after launch and after re-supply for the successive mission
spacecraft. Another combination would make the OTV use both orbits freely to adjust
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Figure 5.2: L2 Lyapunov and Low Prograde Orbit families candidate transfers. Case 𝑎)
and 𝑏) refer to the cases marked in Fig. 5.1.

its relative position with a mission spacecraft. Although this kind of transfers are very
direct and fuel efficient, they have very stringent requirements in the execution of the
maneuvers and the usage of parking orbits available. As will be shown in Section 5.1.2,
the transfer possibilities (and the phasing possibilities that they enable) are limited, and
once in the parking orbit, a spacecraft needs to wait a whole period to get the next
transfer possibility. Finding orbits in these families that cross more than once per
period would relax the requirements.

5.1.2 Single Periodic Transfers Orbital Phasing Possibilities

To quantify the application of the phasing maneuvers in the context of the DS-OTV,
the previously obtained results will be used and evaluated to see how well they can
change the relative position of spacecraft orbiting these orbits. The most direct way to
find out is to compare the periods of the crossing orbits, evaluating the ratio of periods
and time between crossings. When we take into account the Single Periodic Transfers
(SPTs) combinations, each couple of orbits only have one crossing point in each period
(Fig. 5.3). Therefore, the only transfer possibility will happen once at a full period of
one specific orbit. The change in phase between spacecraft orbiting each one of these
two orbits will then be the difference in period between the two orbits (as shown in
Fig. 5.3 with the overlapped temporary orbit period on the base orbit period). However,
in order to build a base from where to expand the possibilities when more complicated
maneuvers are done, proper concepts need to be defined to compare the effectiveness
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of the maneuvers.

Figure 5.3: A Single Periodic Transfer (SPT) maneuver between two periodic orbits.

Single Periodic Transfers as Phasing Mechanism Nomenclature

In order to compare all combinations of orbits available at the vicinity of Lagrange
Points L1 and L2 we will compare each maneuver with a Change in Phase (CP) quantity,
defined in Eq. (5.1). While the CP in time units (CP𝑏𝑎𝑠𝑒,𝑡 ) is useful to identify the change
in phase for both orbits in the couple, the percentage of phase change relative to the
period of the base orbit (CP𝑏𝑎𝑠𝑒,%) gives a more intuitive understanding of how much
phase difference can be overcame for two spacecraft orbiting the same orbit. This
makes the percentage of CP dependent on which of two orbits of the couple is used as
a base. Switching between the two orbits gives access to both CP by means of the SPTs
described in Section 5.1.

CP𝑏𝑎𝑠𝑒,𝑡 =
(
𝑇𝑡𝑒𝑚𝑝 −𝑇𝑏𝑎𝑠𝑒

)
· 𝑛 (5.1a)

CP𝑏𝑎𝑠𝑒,% =

(
𝑇𝑡𝑒𝑚𝑝

𝑇𝑏𝑎𝑠𝑒
− 1

)
· 100𝑛 (5.1b)

In Eq. (5.1), the period 𝑇 of each the base orbit and the temporary orbit is used,
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with base being Lyapunov or Low Prograde Orbit depending on the case, and temp
being the other. 𝑛 is the number of full orbits elapsed on the temporary orbit: if the
base orbit is the Lyapunov, 𝑛 would be the number of full periods orbited in the Low
Prograde Orbit before transferring back to the Lyapunov, and the equivalent for the
case with the Low Prograde Orbit as the base. As was pointed out in the introduction
in Chapter 1, the derivation of the CP uses (in this first case, and in all successive cases
later on) the relationships between periods of different orbits. This method heavily
borrows from the classical astrodynamics phenomenon of resonance (and resonant
orbits in particular). Resonance occurs when there is a simple integer relationship
between frequencies or periods,[64] and although the classical definition of resonance
can still be used for phasing purposes, it falls short for the objective of this work.
Typically, a resonance is denoted with the relationship of the periods of two orbits as
the ratio 𝑝:𝑞, where each of the values represent the period of each of the orbits. The
equivalence with the notation here introduced would be integer 𝑛 multiple values of
CP: for example a 1:2 resonance would equal a 𝑛 · 100% CP. This works very well
when the objective is to find one of the orbital primaries multiple times (for flyby
or exploration purposes), however, this definition is very stiff, and greatly restricts
the phasing possibilities. Therefore, non-integer values of resonances are included
(and actually sought for) int his research, as they include the phasing possibilities
(the actual objective of the research). In order to not bend the formal definition of
clearly-established concepts, throughout this work the CP values will be used, instead
of including the resonance concepts.

Single Periodic Transfers as Phasing Mechanism Results

Figures 5.4a and 5.4b show the results for the SPTs case, for the orbits around L1
and L2 respectively. We restricted the results in this plot to 𝑛 = 1. For clarity, only a
selection of the cases has been plotted; however, all the other cases follow the same
trends shown in the graphs. Each of the orbit families as the base are shown with a
different shaped marker, with the orbital period of each orbit in the 𝑥-axis and the
CP in percentage in the 𝑦-axis. If 𝑛 > 1 is needed, the CP is directly multiplied by
the appropriate value of orbits 𝑛 in the temporary orbit. We can recover the change
in phase in time units by simply multiplying the change in phase by the period of



5.1 Single Periodic Transfers for Candidate Orbits 81

60 80 100 120 140 160 180 200

Period of Base Orbit (days)

-100

-50

0

50

100

150

200

C
h
an

g
e 

in
 P

h
as

e 
(%

 o
f 

B
as

e 
O

rb
it

 P
er

io
d
)

Single Periodic Transfers for Phase Change

L1 Low Prograde as base
L1 Lyapunov as base

a
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Figure 5.4: Single Periodic Transfers (SPTs) for Change in Phase (CP) maneuvers, with
marks for example combinations.
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Figure 5.5: Example Single Periodic Transfers (SPTs) for phasing from Fig. 5.4, marked
𝑎 and 𝑏 respectively.

the base orbit. In the cases where the CP is higher than 100%, the second spacecraft
spends more than one period of the base orbit in the temporary trajectory before
transferring back. For these cases, the effective CP is CP = CPCP>100% − 100. However,
the full maneuver takes the total amount of time obtained from CP ·𝑇𝑏𝑎𝑠𝑒 . A positive
CP means that after a full maneuver, the spacecraft that stayed in the base orbit will
have gained phase over the other, i.e. it will be more ahead in the orbit trajectory than
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the other, while the opposite is the case for negatives CP. Multiples of 100% for CP, as
well as 0% CP keep the same relative position between spacecraft. Each SPT consists of
a pair of orbits, and the results for each of the orbits used as a base are connected with
a line. Two example combinations, marked with 𝑎 and 𝑏 are shown in Fig. 5.5a and
Fig. 5.5b for visual clarity.
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Figure 5.6: Low Prograde Orbits Single Periodic Transfers (SPTs) comparison of period
and Δ𝑣 .

The results for the orbital families around both Lagrange Points show the same
structure, with only very slight differences, as the orbital families around both Lagrange
Points are very similar. We can see from the graphs that for each pair of orbits, if the
CP for one orbit as a base is positive, the CP for the other orbit will be negative. For
each of the orbital pairs, there exist many maneuvers that can be used to adjust the
phase between two spacecraft to a good degree. A combination of temporary orbits
in the Lyapunov or the Low Prograde Orbit can, over time, accumulate the desired
change in phase. However, the amount of orbital periods needed to obtain the correct
phasing might be too high for mission design purposes or other requirements, so a
design with better possibilities might prove more useful.

Figure 5.6 shows the relationship between Low Prograde Orbits in the pairs and the
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Figure 5.7: Single Periodic Transfers (SPTs) orbits’ period and size properties.

Δ𝑣 needed for the SPT. We can see that the longer the period of the Low Prograde
Orbit, the smaller the Δ𝑣 needed for the transfer to/from the Lyapunov Orbit. As can be
seen from Fig 5.7, Low Prograde Orbit period is generally inversely proportional to the
Lyapunov Orbit size in each pair (except for the longest Low Prograde Orbits, which
have slightly larger Lyapunov Orbits than the trend would show), which indicates a
direct relationship between Lyapunov Orbit size and Δ𝑣 of the SPT. Cases for orbits in
the vicinity of L1 and L2 follow the exact same pattern.

5.2 Multiple Periodic Transfers for Candidate Orbits

In this section, the search for combinations of orbits of both candidate parking orbit
families (Lyapunov and Low Prograde Orbit families) selected in Section 4.3 will be
expanded to allow for more phasing and transfer possibilities. With Multiple Periodic
Transfers (MPTs), different operations and maneuvers can be designed for diverse
scenarios. Again, the symmetries of the system with respect to the 𝑥-axis will be
exploited to ease the search. However, the search for multiple crossings for each period
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of the orbits is more involved than the search for single crossings case. Therefore, a
new algorithm called MOCSA has been designed to facilitate it. The algorithm is not
built from scratch, but instead is built using the techniques and methods described
in Chapter 3. This section will be organized in the following manner: Section 5.2.1
defines the nomenclature and the properties/values used for this analysis upfront,
Section 5.2.2 introduces the MOCSA in detail, including pseudo-code to aid in future
implementations, Section 5.2.3 shows the results of application of the MOCSA to
the entire families of candidate parking orbits (Lyapunov and Low Prograde Orbit
families), including example trajectories, and finally Section 5.2.4 and Section 5.2.5
apply the results to different purposes in the DS-OTV architecture, dealing with rapid
servicing maneuvers and the usage of the Multiple Periodic Transfers (MPTs) for
phasing opportunities.

5.2.1 Multiple Periodic Transfers Nomenclature

As mentioned above, it is first beneficial to introduce and define the quantitative
properties and nomenclature to be used in the analysis and comparisons in this section.
With Fig. 5.8 showing a basic MPT, where a Lyapunov and a Low Prograde Orbit have
symmetric crossing points with respect to the 𝑥-axis, the following quantities are
defined:

• ∆v [meters/second] - Difference in instantaneous velocity needed to change a
spacecraft’s state vector.

• Maneuver - Every time there is an impulsive change in the state vector of a
spacecraft. In the case of crossings and transfers between different trajectories
a maneuver will consist of the crossing coordinates and the difference in
instantaneous velocity (i.e. Δ𝑣 between the two trajectories).

• Insertion-𝑛Orbit-Exit Scheme (I-nO-E) - Transfer scheme between two orbits
with the purpose of insertion to the temporary orbit (OTV Parking Orbit) and
rendezvous with the OTV, or with the purpose of change in phase by waiting in
a temporary orbit before re-insertion. 𝑛 is the number of full orbits spent in
the temporary orbit before exiting and inserting back into the original orbit,
with 𝑛 = 0.5meaning exit before one full period of the orbit has elapsed (i.e.
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Figure 5.8: A full Multiple Periodic Transfer (MPT) maneuver between two candidate
parking orbits, with its Insertion and Exit Points. The portion of the orbit highlighted
in green is defined as Time-on-Temporary-Orbit (TOTO).

exiting the temporary orbit at the next crossing available). In the cases where the
spacecraft stay for not full periods, increments in 0.5 are going to be used to
signal this for simplicity, even if the time elapsed is not 0.5 of the orbit’s period.

• Time-on-Temporary-Orbit (TOTO) - Time spent on the temporary orbit,
before re-inserting back to the original orbit.

• Full Maneuver - Addition of all the maneuvers used in a specific operation
scheme, including insertion to, and exit from the temporary orbits.

The definition of these concepts allows for an in-depth analysis of the different
combinations available with MPTs. Most of the analysis in the research will be focused
on the Insertion-0.5Orbit-Exit Scheme (I-0.5O-E), as it has the most direct application.
In this case, a full maneuver will be defined as the combination of two successive
crossings between a pair of orbits, as shown in Fig. 5.8. However, the usage of other
type of schemes for different requirements will be also explored later, as it allows for
better phasing capabilities.
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5.2.2 Multiple Orbital Crossings Algorithm (MOCSA)

To search for combinations of Low Prograde and Lyapunov Orbits with multiple
crossings, the Multiple Orbital Crossings Search Algorithm (MOCSA) was developed.
This algorithm circumvents the need to restrict first the phase space location of the
crossings (i.e. creating a Poincare Section in the desired crossing search space), as in
this case the location of the intersections is not known beforehand. A brute force
algorithm with a grid search-like structure can be used, but it is very computationally
expensive, consisting of multiple nested loops with entire periodic orbits families
propagated for each time step. This becomes very burdensome once the search space is
large.
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Figure 5.9: Flowchart of the Multiple Orbital Crossings Search Algorithm (MOCSA).

A flowchart summarizing the MOCSA is shown in Fig. 5.9, while in the rest of
this section, a detailed explanation of each part of the algorithm is done, including a
detailed pseudo-code implementation of the algorithm. For details about each specific
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method, Chapter 3 should be consulted, as here only a brief explanation and the
particularities of the method adapted for this problem are explained. The MOCSA uses
simple parametrization and curve fitting techniques combined, as well as exploits the
symmetries of the CRTBP, to separate the problem into an effective two-step algorithm
to find the crossings between different orbits of two families.

Orbit Parametrization and Analytic Expression Fit

The method introduced in Section 3.7 is used to parametrize the periodic orbits and fit
an analytic expression. Polar coordinates are used to parametrize Lyapunov Orbits,
with the Lagrange Points as a center (left of Fig. 5.10), in terms of the angle \ from the
positive 𝑥-axis in the counter-clockwise direction.
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Figure 5.10: Lyapunov (left) and Low Prograde (right) Orbits, parametrized with angle
\ with respect to the Lagrange Point as a new center.

Thanks to the analyses in previous sections, we know the overlap in the families
is happening in the inner section of the Lyapunov Orbit (the region between the
Lagrange Point and the Earth). The parametrization is done then only for the part of
the orbit with 𝑥 > 0 in the new coordinates. With this method, a 1-to-1 map from polar
angle to radius is obtained. The parametrized orbits then are fitted with analytical
expression for fast evaluation. In this case, an 8th order Fourier Series fit is used, in
line with the expressions from Eq. (3.36) and Eq. (3.37). With the Lyapunov Orbits
parametrization coefficients stored in a database, the MOCSA can be executed as a
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two-step scheme. The first step searches the crossings between the Low Prograde
Orbits in the family and the parametrized Lyapunov Orbits, while the second step
refines the solution based on the propagated Lyapunov Orbits.

MOCSA First Step

The first step uses the propagated Low Prograde Orbits and searches crossings
with the parametrized expressions approximating the Lyapunov Orbits. Each Low
Prograde Orbit in the family is propagated successively. For each time step in the orbit
propagation, the Cartesian coordinates are converted to polar coordinates with an
equivalent method to the one used to parametrize the Lyapunov Orbits (right diagram
of Fig. 5.10). At each time step the crossing check is executed with each parametrized
Lyapunov Orbit. The crossing check takes the form

𝑟Param LO(\LPO,𝑡 ) − 𝑟LPO𝑖 ,𝑡 = 0 , (5.2)

where 𝑟 and \ are the polar coordinates of a propagated point of orbit 𝑖 at time 𝑡 for the
Low Prograde Orbit (LPO), and the evaluation of the analytical expression obtained
from parametrizing the Lyapunov Orbits (LO). This check searches for zeros, within
tolerance, and stores the state vector and propagation time of the successful cases.

MOCSA Second Step

The second step of the algorithm takes as input the results of the first step, the crossings
between the parametrized Lyapunov Orbit and the Low Prograde Orbit and refines
them. It searches for the closest match between the CRTBP-propagated Lyapunov
Orbits and the stored crossings, and saves the state vectors of the Lyapunov Orbit,
as well as the propagation time at that point. With this refining step, a very good
approximation of crossing events between two propagated trajectories is obtained
without the overhead of a brute force search on the whole solution space.

The second step check takes the form

𝑟stored LPO crossings𝑖 − 𝑟LO𝑖 ,𝑡 = 0 , (5.3)

with 𝑟 being the distance in polar coordinates of a propagated point of orbit 𝑖 at
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time 𝑡 for the Lyapunov Orbit, and the stored results of the first check for the Low
Prograde Orbit. However, due to the numerical particularities of the search algorithm,
this condition is never met. By calculating the distance between discrete points and
propagated trajectory, numerical errors never render a zero: by definition the distance
(in absolute value) does not exist as a negative (see Fig. 5.11 left-hand side for visual
representation). This problem could be bypassed by increasing the tolerance of the
algorithm, but then false positive would lower the results’ accuracy. Instead, we search
for a minimum of the distance during the propagation by evaluating the derivative of
the expression to zero (Fig. 5.11, right-hand side). This workaround also gives us
maxima points in the distance, but these results can be discarded with a simple check.
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Figure 5.11: MOCSA second step: crossings of events and propagated Lyapunov Orbit.
Distance crossing check (left) and event distance minimum search graph (right).

Results Database

The MOCSA is run through a set of Lyapunov and Low Prograde Orbits, and the
results obtained are stored in a database with appropriate information to analyze the
results. An iterative cleaning algorithm is done to guarantee that no duplicates of the
same crossing are reported, and that the crossing state vectors are consistent. Table 5.1
shows the structure of the database with the stored results. The database structure
allows for the search of different combinations of crossings to form maneuvers, as each
combination of Lyapunov and Low Prograde Orbit is labeled individually.

Pseudo-code implementation of the MOCSA is also included for later ease of
implementation. To aid in the representation, the full algorithm is divided into two
here, each part detailing each of the two steps of the full algorithm. The result of the
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Table 5.1: MOCSA database result format. First column indicates index of the column
(including length of each property). T stands for period of the orbit, Time-of-Flight
(ToF), and State Vector (SV) (3 position + 3 velocities).

1 2 3 4 - 9 10 11 12 13 - 18

Lyapunov Orbit
database index

T ToF since
start

Crossing
SV

Low Prograde Orbit
database index

T ToF since
start

Crossing
SV

first step (Algorithm 1) is used as input of the second step (Algorithm 2).

Algorithm 1:Multiple Orbital Crossings Search Algorithm (MOCSA) First
Step: Low Prograde Orbits and parametrized Lyapunov Orbits crossings
search.
Data: CRTBP parameters, Initial Conditions and period for Low Prograde

Orbits (LPO), and parametrized Lyapunov Orbits (LO).
Result: Low Prograde Orbits and parametrized Lyapunov Orbits crossings.

1 Load Low Prograde Orbit Family Initial Conditions and parametrized Lyapunov
Orbits;

2 while Low Prograde Orbit Family not finished do
3 Load 𝑖𝑡ℎ Low Prograde Orbit Parameters;
4 Start Low Prograde Orbit Propagation to time 𝑡 , 𝑆𝑉LPO,𝑡 ;
5 while Propagation is not finished (𝑡 < 𝑇LPO) do
6 Translate 𝑆𝑉LPO,𝑡 origin to 𝐿1 or 2;
7 Calculate polar coordinates from origin, 𝑟LPO,𝑡 and \LPO,𝑡 ;
8 Load 𝑗𝑡ℎ parametrized Lyapunov Orbit Expression;
9 Check for crossings: input \LPO,𝑡 into the parametrized Lyapunov Orbit

expressions;
10 while Parametrized Lyapunov Orbit Family not finished do
11 if 𝑟LO𝑗 (\LPO,𝑡 ) − 𝑟LPO𝑖 ,𝑡 = 0 then
12 Store the data of the crossing;
13 end
14 Update current parametrized Lyapunov Orbit 𝑗𝑡ℎ = 𝑗𝑡ℎ + 1;
15 end
16 Propagate the Low Prograde Orbit to time step 𝑡 = 𝑡 + 1,

𝑆𝑉LPO,𝑡 = 𝑆𝑉LPO,𝑡+1.;
17 end
18 Update current Low Prograde Orbit 𝑖𝑡ℎ = 𝑖𝑡ℎ + 1;
19 end
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Algorithm 2: Multiple Orbital Crossings Search Algorithm (MOCSA) Second
Step: Lyapunov Orbits and stored preliminary crossings search.
Data: CRTBP parameters, Initial Conditions and period for Lyapunov Orbits,

and previously calculated database of crossings in Algorithm 1.
Result: Corrected Preliminary Crossings with original Lyapunov Orbits.

1 Load Lyapunov Orbit Family Initial Conditions and Preliminary Crossings
Database;

2 while Lyapunov Orbit Family not finished do
3 Load 𝑖𝑡ℎ Lyapunov Orbit Parameters;
4 Select Preliminary Crossings from database that correspond to 𝑖𝑡ℎ Lyapunov

Orbit, 𝑆𝑉LPOp,𝑖 ;
5 Start Lyapunov Orbit Propagation to time 𝑡 , 𝑆𝑉LO,𝑡 ;
6 while Propagation is not finished (𝑡 < 𝑇LO) do
7 Load 𝑗𝑡ℎ Preliminary Crossings data;
8 Check for crossings;
9 while Preliminary Crossings data not finished do
10 if 𝑆𝑉LPOp,𝑖 𝑗 and 𝑆𝑉LO𝑖 ,𝑡 coincide && Quadrant is correct then
11 Store the coordinates of the crossing;
12 end
13 Update current Preliminary Crossings 𝑗𝑡ℎ = 𝑗𝑡ℎ + 1;
14 end
15 Propagate the Lyapunov Orbit to time step 𝑡 = 𝑡 + 1, 𝑆𝑉LO,𝑡 = 𝑆𝑉LO,𝑡+1.;
16 end
17 Update current Lyapunov Orbit 𝑖𝑡ℎ = 𝑖𝑡ℎ + 1;
18 end

5.2.3 Lyapunov and Low Prograde Orbits Multiple Transfers
Results

The results obtained by the application of the MOCSA to the full candidate parking
orbit families in the study (Lyapunov and Low Prograde Orbit families, for both L1 and
L2 Lagrange Points) are discussed in this section. Figure. 5.12 shows the I-0.5O-E
results when using the Low Prograde Orbit as the base, and the Lyapunov Orbit as
the ’temporary’ orbit. Figure 5.12d includes the combinations for the families in the
L1 Lagrange Point, with the insertion point on the positive 𝑦-axis, and exit on the
negative 𝑦-axis (as in Fig. 5.8). Figure 5.12e has the equivalent results for the families in
the vicinity of the L2 Lagrange Point. In this case, the insertion and exit points are in
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(a) I-0.5O-E example 1.
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(b) I-0.5O-E example 2.
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(c) I-0.5O-E example 3.
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(d) Results for the L1 orbit families. Examples
shown in Fig. 5.12a, Fig. 5.12b and Fig. 5.12c.
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(e) Results for the L2 orbit families. Examples
shown in Fig. 5.12f, Fig. 5.12g and Fig. 5.12h.
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(f) I-0.5O-E example 4.
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(g) I-0.5O-E example 5.
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(h) I-0.5O-E example 6.

Figure 5.12: I-0.5O-E maneuver Δ𝑣 (insertion to and exit from Lyapunov Orbit) vs
Time-on-Temporary-Orbit (TOTO), Lyapunov Orbits in this case.
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the opposite sides of the 𝑦-axis (insertion in the negative, exit in the positive). Both
graphs show the TOTO in days on the 𝑥-axis and the full maneuver Δ𝑣 in absolute
value on the 𝑦-axis. The detailed properties of this example combinations are included
in Table 5.2.

Table 5.2: Properties of the 6 example full I-0.5O-E maneuvers from Fig. 5.12.

Lyapunov Orbit
Period (days)

Low Prograde Orbit
Period (days)

TOTO
(days)

Maneuver
Δ𝑣 (m/s)

Example 1 178.13 183.56 17.7 71.5
Example 2 179.43 164.59 34.81 560.1
Example 3 178.20 169.98 41.79 314.1
Example 4 180.38 181.35 36.99 135.1
Example 5 192.99 160.00 16.80 1389.5
Example 6 216.65 179.90 7.20 2420.7

We see that in both cases, the L1 and L2 orbit families, there are combinations
with TOTOs in the whole interval 0 ≤ 𝑇𝑂𝑇𝑂 ≤ 53 days. Also in both cases, the
whole interval is available for low Δ𝑣 values, up to 0.3 km/s. The most interesting
combinations are at the lower part of the graph, showing that for similar amounts of
Δ𝑣 , the entire range of TOTO solutions is available. At the lowest extreme, where
TOTO tends to 0, we would obtain equivalent combinations to the SPTs described
in the previous section. Some example combinations are highlighted to showcase
them individually and obtain a better physical understanding. Figure 5.12a, Fig. 5.12b
and Fig. 5.12c show combinations for the L1 Lagrange Point families, while Fig. 5.12f,
Fig. 5.12g and Fig. 5.12h are the combinations for the L2 orbit families. The first four
cases show combinations in the lower Δ𝑣 region, with TOTOs of 17.7, 34.81, 41.79 and
36.99 days respectively. These combinations have in common that the orbits have
approximately the same size: the overall velocities are similar, and the crossings happen
in regions where both velocity vectors have advantageous directions. Figure 5.12g
and Figure 5.12h are included for completeness, showing the higher Δ𝑣 parts of the
graph. In these cases, the Lyapunov Orbits become larger and increases in velocity,
which makes the crossings a lot less appealing regarding fuel consumption. However,
the TOTO doesn’t follow the same relationship, as they stay quite short. Also of
interest is that the higher the Δ𝑣 of the orbit combinations, the less availability of
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TOTO possibilities. This is due to the fact that from a certain size of Lyapunov Orbits,
the crossings of all of them with the Low Prograde Orbit family happens at around the
same physical space, keeping the TOTOs at similar values.

Evidently, the I-0.5O-E combination is not the only possibility that exists, as
increasing the time that a spacecraft stays on the (temporary) Lyapunov Orbit, raises
the previously mentioned Insertion-1Orbit-Exit Scheme (I-1O-E), Insertion-1.5Orbit-
Exit Scheme (I-1.5O-E) combinations and so on. However, each maneuver of these
combinations is still the same, only changing the TOTO. There is also the possibility of
using the Lyapunov Orbit as the base, and the Low Prograde Orbit as the temporary
orbit, which would render different TOTO values. The results from Fig. 5.12 and
the database obtained from the execution of the MOCSA can still be used to derive
these different/longer maneuvers. The importance of these combinations becomes
more apparent when dealing with the concept of CP, so they will be explored in later
sections, after the appropriate parameters are introduced (Section 5.2.5).

5.2.4 Multiple Periodic Transfers for Fast Servicing

The most direct application for the MPTs comes from the I-0.5O-E maneuver, as
previously stated, and can be thought as a fast servicing operation. In this scenario, the
OTV is orbiting a parking Lyapunov Orbit, and the mission spacecraft is launched
and inserted into a Low Prograde Orbit. When the mission spacecraft arrives at the
vicinity of the Lagrange Points, either the mission spacecraft can insert itself into the
Lyapunov Orbit and rendezvous with the OTV, or the OTV can insert itself into the
Low Prograde Orbit and rendezvous there with the mission spacecraft. This would
happen in the insertion point, and the time between there and the successive exit point
is the effective servicing time available before undocking of the spacecraft. After that,
the mission spacecraft is ready and can execute the exit maneuvers to deep space
trajectories. This structure gives the shortest and fastest possibilities for servicing
spacecraft originally in two different orbits.

In the previous section, the TOTO already gives information on how these
maneuvers can be used for fast servicing. In this section, a more in depth analysis is
done to complement the concept and evaluate the possibilities. Figure 5.13 and Fig. 5.14
show the structure of the maneuver possibilities for the L1 and L2 orbital families
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Figure 5.13: Rapid servicing maneuvers’ properties for the L1 orbital families. Compari-
son of orbital size, period, maneuver Δ𝑣 and servicing time (TOTO).

respectively, using the most characteristic properties of each of the orbits used in
the combination (period for the Low Prograde Orbits and 𝑦-axis orbital size for the
Lyapunov Orbits), and including color-coding for the servicing time available for each
combination (in the form of TOTO) and the total maneuver Δ𝑣 (insertion to and exit
from the temporary orbit) with the size of each data point. Recalling Fig. 5.7, it is
shown that the period and the perigee altitude of the Low Prograde Orbits have an
inverse relation, meaning orbits with longer periods have lower perigee altitudes. The
maneuvers shown in these graphs are capped at total Δ𝑣 usage of 400 m/s, as higher
values would not be useful for spacecraft operations in the DS-OTV architecture (and it
helps with the clarity of the results). Both figures include a separate zoomed section
fro the areas where the amount of possible maneuvers make it difficult to discern them
individually.

The results for the orbits at the vicinity of both Lagrange Points share a similar
structure, as expected by the results already shown in Fig. 5.12. As there are many
combinations and possibilities, one rule to describe the structures seen is not enough,
but some trends are clearly seen. In general, when maneuvers include larger Lyapunov
Orbits, the maneuver Δ𝑣 increases. For the TOTO, except orbits between sizes 350000-
450000 km, it stays in the low ranges, 15 days at max, while the orbits in the specified
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Figure 5.14: Rapid servicing maneuvers’ properties for the L1 orbital families. Compari-
son of orbital size, period, maneuver Δ𝑣 and servicing time (TOTO).

range have TOTO values that can get to two months (however, that is also dependent
on the Low Prograde Orbital period). Low Prograde Orbits with shorter periods have
slightly higher maneuver Δ𝑣 values, while the TOTO values stay low for orbits with
short periods, and more diversity of results appear for orbits with periods higher than
150-160 days. Most of the combinations, and more importantly, the combinations with
lower Δ𝑣 values, are concentrated at those areas, so a more closer look is done there
with the zoomed sections. In these sections the previous trends can be more clearly
seen, with larger maneuver Δ𝑣 values for larger Lyapunov Orbits and shorter period
Low Prograde Orbits. It can also be seen that for any specific Low Prograde Orbit,
maneuver combinations with any value of TOTO seem to exist up to 50 days (more
clearly seen in the case for the L1 orbits, as smaller Lyapunov Orbits were included in
the study), with a strong correlation between larger TOTO and maneuver Δ𝑣 .

Although the selection of specific candidate orbits for any mission are highly
dependent on the mission requirements themselves and the technology involved (how
fast can the rendezvous and docking be done, how long does the propellant transfer
take), some general pointers can be extracted from the combinations found in this
short analysis. In general, smaller Lyapunov Orbits are preferable if available: they still
provide a wide array of TOTO possibilities available, while having Δ𝑣 usages on the
lower end of the spectrum (with many options below 150 m/s). Regarding the selection
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of Low Prograde Orbits, orbits with shorter periods have less combinations available
(and with less favorable properties for the maneuvers). Therefore, if the objective is to
implement an architecture with fast servicing operations in mind, the most desirable
orbital combinations are found with Lyapunov Orbits of sizes smaller than 450000 km,
and Low Prograde Orbits with periods starting at 150 days, up to the max of 185 days
(corresponding to perigees of 100000 to 20000 km).

5.2.5 Multiple Periodic Transfers for Orbital Phasing

To quantify the application of the phasing maneuvers in the context of the DS-OTV,
the previously obtained results will be used and evaluated to see how well they can
change the relative position of spacecraft orbiting these orbits. The most direct way
to find out is to compare the periods of the crossing orbits, evaluating the ratio of
periods and time between crossings. In the case of using MPTs for orbital phasing,
the possibilities increase compared to the SPTs. Any couple of orbits will have two
crossings between them, so the differences between the periods of the two orbits
and the time elapsed between two consecutive crossings of the orbits can be used
advantageously to obtain more combinations and a wider range of CP. The same
notation as in the previous section is used, with base and temp to denote the period of
the two orbits used. However, in this case, we need to introduce the variables for the
time spent on the temporary orbit and in the base orbit in the calculations. For the
former, we re-use the variable from Section 5.2.1, TOTO which was defined as the time
elapsed in the orbit not considered the base, for two consecutive crossings. For the
latter, we define the equivalent concept of Time-on-Base-Orbit (TOBO), which is the
time that elapsed between the same two consecutive crossings but in the base orbit.
Figure 5.15 shows graphically the definition of the two concepts for a pair of orbits in
the MPT configuration, with Fig. 5.15a showing the case with the Low Prograde Orbit
as the base, while Fig. 5.15b shows the case for the Lyapunov Orbit as the base.

Multiple Periodic Transfers as Phasing Mechanism Nomenclature

With these concepts defined, we can construct the change in phase maneuvers. In
contrast with the case of using SPTs, where only one possibility was available for each
pair of orbits, for the MPTs we can define the same CP as before, where one full period
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(a) Case for the Low Prograde Orbit as the base. (b) Case for the Lyapunov Orbit as the base.

Figure 5.15: Multiple Periodic Transfers (MPTs) for a short Change in Phase (CP)
maneuver with the defined concepts.

(a) Case for the Low Prograde Orbit as the base. (b) Case for the Lyapunov Orbit as the base.

Figure 5.16: Multiple Periodic Transfers (MPTs) for a long Change in Phase (CP)
maneuver with the defined concepts.

is orbited in the temporary orbit CP𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 , plus an extra two possibilities where the
short and long paths between two successive crossings are used, respectively CP𝑠ℎ𝑜𝑟𝑡
(the case already shown in Fig. 5.15) and CP𝑙𝑜𝑛𝑔 (shown in Fig. 5.16 for the cases of Low
Prograde and Lyapunov Orbits as base respectively). The short path can be visually
seen as the ’inner’ path between crossings, while the long path is the ’outer’. These
two new possibilities are obtained with the differences between TOBO and TOTO, as
well as the orbital periods, and can be combined with one or multiple CP𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 for
more flexibility. The expression for these cases are
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CP𝑠ℎ𝑜𝑟𝑡,𝑡 = TOTO − TOBO → CP𝑠ℎ𝑜𝑟𝑡,% =
TOTO − TOBO

𝑇𝑏𝑎𝑠𝑒
· 100 ,

CP𝑙𝑜𝑛𝑔,𝑡 =
(
𝑇𝑡𝑒𝑚𝑝 − TOTO

)
− (𝑇𝑏𝑎𝑠𝑒 − TOBO) → CP𝑙𝑜𝑛𝑔,% =

(
𝑇𝑡𝑒𝑚𝑝 − TOTO

)
− (𝑇𝑏𝑎𝑠𝑒 − TOBO)

𝑇𝑏𝑎𝑠𝑒
· 100 ,

CP𝑛 𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑,𝑡 =
(
𝑇𝑡𝑒𝑚𝑝 − 𝑇𝑏𝑎𝑠𝑒

)
· 𝑛 → CP𝑛 𝑓 𝑢𝑙𝑙𝑝𝑒𝑟𝑖𝑜𝑑,% =

(
𝑇𝑡𝑒𝑚𝑝

𝑇𝑏𝑎𝑠𝑒
− 1

)
· 100𝑛 ,

CP𝑛 𝑓 𝑢𝑙𝑙+𝑠ℎ𝑜𝑟𝑡 = CP𝑛 𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 + CP𝑠ℎ𝑜𝑟𝑡 ,

CP𝑛 𝑓 𝑢𝑙𝑙+𝑙𝑜𝑛𝑔 = CP𝑛 𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 + CP𝑙𝑜𝑛𝑔 .

(5.4)

Multiple Periodic Transfers for Orbital Phasing Results

The results of applying the expressions of Eq. (5.4) to the MPTs databases are shown in
Fig. 5.17 and Fig. 5.18 for the orbit families in the vicinity of the L1 and L2 Lagrange
Points respectively. For simplicity’s sake, 𝑛 has been kept to a maximum of 1. The
cases for CP𝑠ℎ𝑜𝑟𝑡 and CP𝑙𝑜𝑛𝑔 correspond to the I-0.5O-E explained before. A CP𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑
with 𝑛 = 1 is a I-1O-E, while the cases CP𝑓 𝑢𝑙𝑙+𝑙𝑜𝑛𝑔 and CP𝑓 𝑢𝑙𝑙+𝑠ℎ𝑜𝑟𝑡 , also with 𝑛 = 1,
correspond to a case of I-1.5O-E.

Figure 5.17a shows the whole family of results for the L1 family of orbits (with
selected results plotted for readability). Both cases with the Low Prograde Orbits as
base and the Lyapunov Orbits as base are presented. In this instance, when using Low
Prograde Orbit as base, one spacecraft stays in the Low Prograde Orbit, while the other
executes the phasing maneuvers by transferring to the Lyapunov Orbit (’temporary’
orbit), and coming back at the specific time. The opposite is the case for Lyapunov
Orbit as base, starting at the Lyapunov Orbit, transferring to the Low Prograde Orbit
(the ’temporary’ orbit now), and then coming back. The figure uses the same structure
as the one with SPTs, so the same caveats and conclusions are applicable here. An
extra plot is added for the purpose of clarity in Fig. 5.17b with just some hand-picked
combinations of orbits, and the lines linking the cases for two crossing orbits but
with different base orbit used are shown. The trends shown in these plots can be
generalized to the full extent of solutions. Figure 5.18a shows the equivalent results for
the L2 orbital families (and Fig. 5.18b the detailed part). The structure is equivalent to
the results obtain for the L1 families, with no discernible differences, except that longer
periodic orbits were used, to obtain more diversity of results.

Figure 5.17a and Figure 5.18a are difficult to make sense out of, however, we can
see some clear properties: Low Prograde Orbits have, in general, shorter periods than
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(a) Overall structure of the results, with both orbit families as base.
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L1 Low Prograde as base short

L1 Low Prograde as base long

L1 Low Prograde as base full period

L1 Low Prograde as base full + short

L1 Low Prograde as base full + long

L1 Lyapunov as base short

L1 Lyapunov as base long

L1 Lyapunov as base full period

L1 Lyapunov as base full + short

L1 Lyapunov as base full + long

Case 1

Case 2

Case 3
Case 4

Case 5
Case 7

Case 6 Case 8

(b) Detail of the results with selected combinations of Lyapunov/Low Prograde Orbits linked.

Figure 5.17: Multiple Periodic Transfers (MPTs) for phasing maneuvers for the families
of orbits in the vicinity of L1. Example cases properties in Table 5.3.

Lyapunov Orbits, but the spread is also larger. Therefore, the CP available is increased
both in overall magnitude (up to 400% of the base period), and possibilities (for each
orbit combination, 5 possibilities exist instead of 1) compared to the SPT case (which
only went up to around 200%). The case for the Lyapunov Orbits is similar, where
although compressed in a smaller period spread, the larger possibilities exist. In both
cases, a large quantity of CP possibilities, especially for the short cases, is concentrated
near the 0% value, meaning that both the TOTO and the TOBO were of similar value. It
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(a) Overall structure of the results, with both orbit families as base.
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Multiple Periodic Transfers for Phase Change L2 Orbits
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(b) Detail of the results with selected combinations of Lyapunov/Low Prograde Orbits linked.

Figure 5.18: Multiple Periodic Transfers (MPTs) for phasing maneuvers for the families
of orbits in the vicinity of L2. Example cases properties in Table 5.3.

is interesting to see how the distribution of CP possibilities appears, and how the
physical properties of the orbits affect it (as well as the magnitudes for Δ𝑣 transfers).
For this, an examination of Fig. 5.17b and Fig. 5.18b is better suited.

In these two figures, example cases are singled out, linking the equivalent Low
Prograde and Lyapunov Orbit CPs with a line, making it more clear to see the properties.
Each case is also labeled, and their characteristics are listed in Table 5.3 for easier
reference, including the total maneuver Δ𝑣 . When executing a phasing maneuver
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Table 5.3: Characteristics of the Multiple Periodic Transfer (MPT) example cases from
Fig. 5.17 and Fig. 5.18.

Lyapunov Orbit as Base (CP as % of Period) Low Prograde Orbit as Base (CP as % of Period)
Case Pe-

riod
(days)

CP
short

CP
long

CP
full

CP full
+ short

CP
full +
long

Pe-
riod
(days)

CP
short

CP
long

CP
full

CP full
+ short

CP
full +
long

Maneu-
ver Δ𝑣
(m/s)

1 196.19 2.9 −63.3 −60.4 −57.6 −123.7 77.64 −7.3 158 152.7 145.4 312.7 646
2 196.19 7.1 −65.2 −58.1 −51 −123.3 82.19 −17 155.7 138.7 121.7 294.5 821
3 191.84 8.4 −62.7 −54.3 −45.9 −117 87.69 −18.4 137.2 118.8 100.4 256 768
4 188.50 9.9 −60.1 −50.2 −40.3 −110.3 93.85 −19.9 120.7 100.9 81 221.6 717
5 183.85 13.2 −54.3 −41.1 −27.9 −95.4 108.30 −22.4 92.2 69.8 47.3 162 616
6 181.33 16.85 −48.75−31.9 −15 −80.6 123.49 −24.7 71.6 46.8 22.1 118.4 541
7 179.97 21.7 −43.7 −22 −0.38 −65.8 140.30 −27.8 56.1 28.3 0.48 84.3 501
8 179.43 27.3 −40.8 −13.5 13.7 −54.3 155.14 −31.5 47.2 15.7 −15.9 62.9 508
9 219.30 2.4 −69.6 −67.2 −64.8 −136.8 71.96 −7.4 212.1 204.7 197.3 416.9 823
10 205.45 8.2 −69.5 −61.3 −53.1 −130.7 79.55 −21.1 179.4 158.3 137.1 337.7 1000
11 205.03 14.6 −72 −57.3 −42.7 −129.3 87.50 −34.3 168.6 134.3 100 303 1190
12 199.98 17.8 −70.4 −52.6 −34.9 −123 94.75 −37.5 148.6 111.1 73.6 259.6 1140
13 192.99 24.8 −66.9 −42.1 −17.3 −109 111.78 −42.8 115.5 72.7 29.9 188.1 1036
14 189.61 31.9 −64.6 −32.8 −0.89 −97.4 127.50 −47.4 96.1 48.7 1.3 144.8 984
15 189.48 44.3 −67.3 −23 21.3 −90.3 145.93 −57.6 87.4 29.8 −27.7 117.2 1101
16 189.48 58.8 −71 −12.3 46.5 −83.3 166.27 −67 80.9 14 −53 94.9 1259

with a MPT, two individual maneuvers need to be executed: insertion from base
orbit to temporary orbit, and exit from temporary orbit to base orbit. However, each
of these maneuvers, irrespective of the crossing where it is executed, has the same
Δ𝑣 expenditure, so the total maneuver Δ𝑣 usage is double any individual maneuver,
and that is the one listed in the table. The example cases were hand-picked to show
different properties and possibilities while using a MPT maneuver. In both families
of orbits, around L1 and L2, the cases with short Low Prograde Orbits (cases 1 − 4
and 9 − 12) were chosen with combinations with Lyapunov Orbits that made the CP
available form three clear groups: short CP stayed around 0%, full period + long CP
was the highest, and the rest were clustered in the mid-point, with very little difference.
This is a property of cases where the TOTO and TOBO are similar (for both short and
long cases). In opposition, cases 5 − 8 and 13 − 16 were chosen with a larger spread of
CP available, up to the end extreme, where the last case of each family shows again
three clusters, but this time the full period case is alone at the mid-point, with the
other cases concentrated at the extremes. In this instance, the full period case had
small absolute values of CP (around 0%), which made the addition to either the short or
long case change very little. Figure 5.19 shows 4 cases (for brevity’s sake) of these
combinations, where it can be seen how the different crossings influence the results.

Finally, it is worth pointing out that, although the phasing possibilities increase
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Figure 5.19: Example Multiple Periodic Transfer (MPT) for different orbital cases
highlighted in Fig. 5.17, Fig. 5.18 and Table 5.3.

considerably (as will be shown in more in Section 7.3), the values for Δ𝑣 are all
considerably larger than most of the SPT cases (some of the larger SPT maneuvers had
a total of around 600 m/s Δ𝑣 , while the smallest example highlighted here is already
higher than that, at 646 m/s). This was to be expected, as the crossings in the SPT cases
needed very small changes in velocity to insert, as the crossings were practically
tangential, while the MPT cases range from almost tangential (and thus very similar in
CP properties and Δ𝑣 expenditures to the SPTs), to practically perpendicular, needed
very high amounts of Δ𝑣 to completely change direction. It needs to be stressed that
low fuel MPT exist, as shown in Fig. 5.12, the purpose of this work was to show
the available possibilities, and not focus entirely on optimal or minimal transfers.
Thus, optimality took a backseat to diversity in the results here presented, but will be
expanded in future research.
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6
In-Orbit Phasing Mechanisms

In opposition from Chapter 5, which focused on the search and utilization of intersec-
tions of periodic orbit families, this chapter will focus the possibilities restricted to each
orbit on its own. More specifically, this chapter will focus on the possibilities to design
phasing maneuvers with trajectories that originate and end at the same orbit, so that
no temporary periodic orbit is needed. As with previous chapters, each section will
focus on a different framework, and it will include the methods and algorithms used
(and specifically created) for this purpose. Section 6.1 will focus on the exploitation of
the Lagrange Points themselves as an intermediary stand-by point for phasing. Due to
this, the focus will be on the Lyapunov Orbit families, as they are centered around the
Lagrange Points. Section 6.2 will deal with direct transfers from and to a periodic orbit,
without using a stand-by point, and thus will include possibilities for Low Prograde
Orbits and Lyapunov Orbits.
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6.1 In-Orbit Phasing by Lagrange Point Stand-by

Transfers

The focus of this section is studying the possibility of facilitating future rendezvous
maneuvers of spacecraft in the DS-OTV architecture by using either stand-by Lyapunov
Orbits or parking directly at the Lagrange Point, reducing the influence of the chosen
parking orbit on the overall mission constraints. The Lagrange Points in the CRTBP are
physical spaces which remain at a fixed position relative to the primary bodies (the Sun
and the Earth). Although the limitations of using the Lagrange Points (and their close
locations) for long term operations due to solar noise in communications were already
highlighted and discussed during the development of the first missions using Libration
Points orbits in the 1970s (NASA’s International Sun-Earth Explorer-3, or ISEE-3),[108]
temporary short term usage is still possible. A spacecraft placed at the location of a
Lagrange Point could theoretically wait for an indefinite amount of time with zero
expenditure of fuel and execute the transfer maneuver to a transfer or parking orbit at
the exact moment needed, without any other constraint. However, insertion and exit
to such a position is not free, and different parking and transfer orbits might need
different conditions in order to take advantage of these technique. Due to the physical
characteristics of the problem, the search is limited to the use of the Lyapunov Orbit
family of candidate orbits (shown in Fig. 6.1a, their properties in Fig. 6.1b). More
specifically, the search is restricted to the family surrounding the co-linear Lagrange
Point between the Sun and the Earth, L1, to keep the length contained, as equivalent
results are found for orbits around L2.

The study presented here evaluates the feasibility of the usage of Lagrange
Point Stand-by Transfers (transferring to the Lagrange Point, waiting for some
time, and executing a transfer maneuver to the desired orbit afterwards) under two
complementary cases: transfer directly from launch to the Lagrange Point or Lyapunov
Orbit, and then executing the maneuver to insert into a periodic orbit; and transfer
from a parking orbit to the Lagrange Point, stay in stand-by for some time, and transfer
back to a periodic orbit (the same of origin or a different one). The fuel usage (Δ𝑣)
and ToFs of such maneuvers will be evaluated and the different scenarios compared.
Since low fuel usage is a widespread optimization parameter for space missions, the
objective will be to find the lowest fuel usage viable cases, and as such, the invariant
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(a) 𝐿1 Lyapunov periodic orbit family
used in this study.
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(b) 𝐿1 periodic Lyapunov orbit family properties used
for this study.

Figure 6.1: 𝐿1 Lyapunov Orbit family used in the Lagrange Point Stand-by Transfers
study and their properties.

manifolds will be exploited as first approximation guesses for the different maneuvers.

This section will be structured in the following manner: in Section 6.1.1 the general
phasing maneuver’s procedure and the necessary parameters to qualify the merits of
each design is introduced, as well as the design and implementation of the algorithm to
search for the transfer maneuvers, and in Section 6.1.2 the performance of different
orbits is compared to try to establish a baseline for the viability of these maneuvers
with regards of timing possibilities and fuel spent, including suggesting alternative
possibilities. As with previous studies, the lifetime and mission design analyses are all
gathered in Chapter 7, for easier comparison.

6.1.1 Lagrange Points Stand-by Transfer Trajectories Design

In this section, we will introduce the types of transfers we will study in the following
section, describing their characteristics and the possible utility they have. We separate
the maneuvers into two types: insertion from launch into a Lagrange Point or Lyapunov
Orbit, and transfers from Lyapunov Orbit to Lagrange Point and vice versa.
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Launch to Lagrange Point or Lyapunov Orbit Insertion Maneuver

The first case we introduce concerns the scenario where a missions spacecraft has been
just launched and wants to be inserted directly to the Lagrange Point or a specific
Lyapunov Orbit, in order to later target the appropriate parking orbit to rendezvous
with the OTV. We assume the spacecraft is inserted into a circular parking LEO with
an altitude of 250 km (and therefore a velocity of 7.75 km/s), and the target position is
the Lagrange Point with 0 residual velocity, or the specific Lyapunov Orbit with the
appropriate velocity in order to insert itself into the orbit. Even though the primary
assumption under which the DS-OTV mission is being designed is that the launcher
will insert the spacecraft into a transfer orbit directly, and not into a LEO, the exact
characteristics of the launcher are not yet decided, so using the same starting point
for all transfers will normalize their performance when we evaluate them, and any
changes to the launcher will affect all maneuvers equally so the results will still be valid
under the new assumptions. A schematic of such maneuvers can be seen in Fig. 6.2.

Figure 6.2: Example Lagrange Point and Lyapunov Orbit insertion maneuvers from
launch, at a Low Earth Orbit (LEO).

In order to find these transfers, the stable invariant manifolds of the Lyapunov
Orbits will be calculated by slightly perturbing the periodic orbits and propagating
backwards in time (Section 3.4 for details) until they get close to the physical space of
the parking LEO. An example of these invariant manifolds can be seen in Fig. 6.3. From
literature[108, 37], and experience, we can narrow down the locations of the candidate
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trajectories. From these first guesses, a grid search (Section 3.1) is done with the usage
of a SQNLP optimization algorithm to search for optimal insertion trajectories with
regards to total Δ𝑣 and ToF (described in detail in Section 3.6). The differences in
velocity at both ends of the trajectory (exit from LEO and insertion to Lyapunov Orbit)
will be the total additional Δ𝑣 needed for this maneuver: while the Δ𝑣 at Earth side will
be high, the Δ𝑣 at the Lyapunov Orbit insertion point will be small, as it starts from an
initial guess of virtually 0 (the invariant manifold initial perturbation), which will give
a good approximation of the performance of the maneuver for different Lyapunov
Orbits. The case for insertion into the Lagrange Point directly is the limit case for this
maneuver, equivalent to inserting to the smallest Lyapunov Orbit.
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Figure 6.3: Stable Invariant Manifolds used as initial guesses for the insertion and
transfer maneuvers.

Lyapunov Orbit to Lagrange Point Insertion Maneuver (and vice versa)

The second case we introduce concerns multiple similar scenarios: either the OTV or
spacecraft is already orbiting a Lyapunov (parking) Orbit and needs to change its
phase with respect to the other mission spacecraft in order to rendezvous, or needs to
transfer to a different Lyapunov Orbit, or the case where a mission spacecraft needs
to wait an arbitrary amount of time before transferring to its interplanetary final
trajectory, and has no other way to acquire the change in phase necessary than to
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insert itself to the Lagrange Point. In any of these cases, the transfer trajectory will
concern a Lyapunov Orbit and the Lagrange Point: in the case where it wants to be
inserted to the Lagrange Point to wait, the beginning of the trajectory will be the
Lyapunov Orbit and the end the Lagrange Point, and vice versa. As with the previous
case, when talking about inserting to the Lagrange Point, we will aim for null residual
velocity, while when talking about inserting into the Lyapunov Orbit the final velocity
will be that of the periodic orbit at that specific point. A schematic of such maneuvers
can be seen in Fig. 6.4.

XX

YY

LL

ΔvStandby1
ΔvRndzv1

ΔvRndzv2

ΔvStandby2

OTVOTV

SCSC

Figure 6.4: Example DS-OTV phasing maneuver procedure through a Lagrange Point
Stand-by Trajectory.

The same kind of procedure as the one described in the previous section will be
used to obtain initial guesses for the trajectories, with slight modifications. In this case,
the target point is always the Lagrange Point coordinates with null residual velocity,
while the stable invariant manifolds will be used for transfers from the Lagrange Point
to the Lyapunov Orbit, propagating backwards in time, and the unstable invariant
manifolds will be used for transfers from the Lyapunov Orbit to the Lagrange Point,
with forward time propagation. The invariant manifolds are used as initial guesses,
and a re-implementation of Single Shooting Differential Correction and Numerical
Continuation algorithms (introduced in Section 3.2 and Section 3.5 respectively) will be
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used to refine the solution by fixing the initial position (at the Lyapunov Orbits) and
progressively getting the final position to the Lagrange Point. Example initial guesses
for this maneuver are also the same as the previous section (and can be seen in Fig. 6.3,
in this case we concern ourselves with trajectories in the vicinity of the Lagrange Point
only).

The re-implementation of the previously defined Single Shooting Differential
Correction Algorithm and Numerical Continuation Algorithm deviates from the one
basic usage of the algorithms, as a different objective is used in conjunction with the
Numerical Continuation Algorithm[37]. The exact method used for this section will be
shortly explained for context. The trajectories in this study will be based on initial
guesses based on Invariant Manifolds trajectories from the periodic orbits (in the stable
and unstable domain, depending on the specific application). These trajectories will be
then corrected with the Differential Correction Algorithm to obtain a final, feasible
trajectory with the desired characteristics. However, the transfer trajectories initial
guesses and the desired final state are not close enough in order to be able to correct
the trajectory directly with the Differential Correction Algorithm. To solve that, we
implement a Numerical Continuation Algorithm on top of the Differential Correction
Algorithm to generate a family of trajectories that gets progressively close to the final
solution. This Numerical Continuation Algorithm divides the difference between the
Manifold-based initial guess trajectory and the final position into smaller problems
that can be solved by the Differential Correction Algorithm. The general flow of the
whole algorithm becomes then:

1. Obtain difference in 𝑥 coordinate between invariant Manifold initial guess and
desired final trajectory, the Lagrange Point, and divide it in smaller sections Δ𝑥 ,
called family parameter.

2. From the initial guess, create a new initial guess trajectory at

𝑥new = 𝑥previous initial guess − Δ𝑥 .

3. Use the Single Shooting Differential Correction Algorithm to correct the trajectory
until it converges to 𝑥𝑛𝑒𝑤 .

4. Set 𝑥previous initial guess = 𝑥𝑛𝑒𝑤 .
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5. Repeat Steps 2-4 until 𝑥new = 𝑥final trajectory.

As we are dealing with low energy transfers obtained from perturbed periodic
orbits and physically situated either in highly chaotic regions (the vicinity of the
Lagrange Point), or near a singularity of the CRTBP (near the Earth, at LEO), the
algorithm is very sensible to the family parameter. At times, it is impossible to converge
the Single Shooting Differential Correction Algorithm, so an adaptive family parameter
is chosen, where it adapts automatically after each failed try, reducing or expanding
depending on the situation. Its implementation is similar to the one described in [98].
The combination of the Single Shooting Differential Correction Algorithm and the
Numerical Continuation gives the insertion trajectories that we are seeking.

6.1.2 Lagrange Point Stand-by Transfers Results

As with Section 6.1.1, this section will be divided in different separate parts: the first
part for the insertion problem from LEO to Lyapunov Orbits and Lagrange Point, the
second part for the transfers between the Lyapunov Orbits and the Lagrange Point,
and finally an analysis combining both maneuvers.
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Figure 6.5: Lyapunov Orbit insertion as a function of orbit size (Δ𝑣 and ToF).
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Launch to Lagrange Point or Lyapunov Orbit Insertion Maneuver

The first results, shown in Fig. 6.5, concern the case of insertion to Lyapunov Orbit
from launch LEO parking orbit. We use size of Lyapunov Orbit at the symmetry axis
(𝑥-axis) as a comparison tool, with a size of 0 being the singular case of insertion to the
Lagrange Point directly. Figure 6.5’s left 𝑦-axis plots the insertion Δ𝑣 in m/s, taking
into account only the insertion maneuver at the Lyapunov Orbit, while the right 𝑦-axis
plots the ToF between exit from LEO to insertion to Lyapunov Orbit. The Δ𝑣 needed
for exiting the parking LEO remains pretty constant in all the Lyapunov Orbit family,
at around 3.1830 km/s, with only a ±0.03% deviation, or 1.1 m/s. For this reason, it has
been left out of the graph.
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Figure 6.6: Lagrange Point and Lyapunov Orbit insertion example maneuvers (small
and large orbits, from Table 6.1).

Figure 6.5 clearly shows the trend in insertion maneuvers. There is a relationship
between increasing orbit size and lower insertion Δ𝑣 . This is consistent with the
difference in Jacobi Constant with increasing orbit size. Looking at the ToFs, the
relationship is also there, except inversely proportional, increasing the insertion ToF
with Lyapunov Orbit size increase. Figure 6.6 shows a couple example Lyapunov
Orbits (orange and purple), with the insertion maneuvers from the LEO (yellow and
green), as well as the insertion maneuver from LEO to the Lagrange Point directly. The
characteristics of these example trajectories are shown in Table 6.1.
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Table 6.1: Lagrange Point and Lyapunov Orbit insertion maneuver examples properties.

Insertion Δ𝑣 (km/s)
Size (km) Period (days) Insertion ToF (days) LEO Orbit Total

Lagrange Point − − 36.31 3.18211 0.339392 3.521503
Small 243800 176.05 43.78 3.182089 0.226162 3.408251
Large 651000 182.73 62.87 3.184129 0.081281 3.26541

Lyapunov Orbit to Lagrange Point Insertion Maneuver (and vice versa)

The second part of results, shown in Fig. 6.7, concern the case of transfers between a
Lyapunov Orbit and a parking position at the Lagrange Point (and vice versa). We
use, again, the size of Lyapunov Orbit at the symmetry axis (𝑥-axis) as a comparison
tool. Once again, the left 𝑦-axis plots the insertion Δ𝑣 in m/s, taking into account
both parking orbit and Lagrange Point maneuvers, while the right 𝑦-axis plots the
ToF between both maneuvers. More specifically, Fig. 6.7a shows the results for
the maneuver a spacecraft would execute to exit a Lyapunov Orbit and park itself
completely stationary at the 𝐿1 Lagrange Point, while Fig. 6.7b shows the exact opposite
maneuver, starting stationary at the Lagrange Point and ending at the Lyapunov Orbit.
The former maneuver exploits the unstable invariant manifolds of the Lyapunov Orbits
as a base for the transfer maneuvers, while the latter exploits the stable invariant
manifolds for the same purpose.
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(a) Lyapunov Orbit-to-LP case.
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(b) LP-to-Lyapunov Orbit case.

Figure 6.7: Lyapunov Orbit-to-Lagrange Point maneuvers (and vice versa) as a function
of orbit size (Δ𝑣 and ToF respectively).
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(a) Small Lyapunov Orbit case.
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(b) Large Lyapunov Orbit case.

Figure 6.8: Lyapunov Orbit to Lagrange Point (and vice versa) example maneuvers
(from Table 6.2).

At first glance it can be seen that both cases are almost exact replicas with differences
of less than 1 m/s for the maneuver Δ𝑣 insertion/exit for the same orbit, while the
differences for ToF are of the order of 1 h. For both cases, the Δ𝑣 increases linearly
with the size of the orbit, and it has to be noted that since the maneuvers are following
the invariant manifolds closely, most of the Δ𝑣 expenditure is allocated for breaking at
exactly the Lagrange Point (or leaving it), while the spacecraft drifts naturally in/out of
the Lyapunov Orbit. The increase in Δ𝑣 expenditure with orbit size is also in agreement
with the energy difference between the Lagrange Point and the Lyapunov Orbit family
as they get larger. For the ToF case, the relationship between size and time resembles a
logarithmic curve, with values up to 200 days. The values are relatively large, but that
is due to the intrinsic stability of the Lyapunov Orbit family, which makes the invariant
manifolds evolve slowly in time. By slightly increasing the Δ𝑣 impulse required at the
Lyapunov Orbit side, the invariant manifold could be accelerated and the ToF reduced,
if needed.

Table 6.2: Lagrange Point Stand-by maneuver examples characteristics.

Lyapunov to LP LP to Lyapunov
Size
(km)

Period
(days)

Transfer Δ𝑣
(m/s)

Transfer ToF
(days)

Transfer Δ𝑣
(m/s)

Transfer
ToF

Small 243800 176.05 145.69 167.44 145.68 167.42
Large 651000 182.73 378.4 196.59 378.41 196.57

Figure 6.8 shows a couple example Lyapunov Orbits (Fig. 6.8a the small case and
Fig. 6.8b the large case, both detailed in Table 6.1 and Fig. 6.6) with both maneuvers to
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transfer to (orange trajectories) and from (yellow trajectories) the Lagrange Point. The
characteristics of these transfers are summarized in Table 6.2. All maneuvers shown in
Fig. 6.7 follow similar invariant manifold-based trajectories, so only these are shown
for clarity.

Maneuver combination for launch scenario

Table 6.3: Lagrange Point insertion maneuver combination for DS-OTV mission, using
different sizes of Lyapunov Orbits.

Transfer Δ𝑣 (km/s) Transfer ToF (days)
Size
(km)

Period
(days)

Orbit LP Total Or-
bit

Stand-
by

LP Total

LP − − − 3.521503 3.521503 − − 36.31 36.31
Small 243800 176.04 3.408251 0.14569 3.553941 43.78 167.24 167.44 378.46
Large 651000 182.73 3.26541 0.3784 3.64381 52.87 153.5 196.59 402.96

To wrap up this part of the analysis, a study of combinations of the maneuvers
introduced in this part of the chapter will be done in order to evaluate the maneuvers
of the launch scenario. One of the questions that prompted this analysis was to assess
which kind of maneuver would be more advantageous for the DS-OTV architecture for
a launch scenario. With the main advantage of placing a spacecraft directly on the
Lagrange Point being that the period of the parking orbit disappears from the picture,
making any phase change maneuver theoretically possible, the main question then
becomes which strategy is the best in order to place the spacecraft in the Lagrange
Point. Two possibilities are contemplated:

1. Insert the spacecraft to the Lagrange Point directly from launch.

2. Insert the spacecraft to a Lyapunov Orbit (with less Δ𝑣 requirements) first, and
then moving it to the Lagrange Point.

The next maneuver would be to then move the spacecraft from the Lagrange Point
into the final orbit, where the rendezvous between spacecraft would happen. However,
since this maneuver would be the same irrespective of the inserting maneuver, it
will not be taken into account into the comparison. The results for insertion into
the Lagrange Point, and two different sized handpicked examples from Fig. 6.5 and
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Fig. 6.7a are shown in Table 6.3, including the orbital properties, the amount of Δ𝑣
for each part of the maneuver, and the ToFs for each separate part of the maneuver.
When inserting to a Lyapunov Orbit, the time the spacecraft awaits in stand-by is also
shown, as the position in which the insertion into the orbit, and the transfer to the
Lagrange Point are done is important for the total amount of time a maneuver will
take. Figure 6.9 plots the trajectories for the two Lyapunov Orbit example cases.
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(a) Launch scenario with small Lyapunov Orbit.
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(b) Launch scenario with large Lyapunov Orbit.

Figure 6.9: Lagrange Point Stand-by Transfer combination for launch scenario (from
Table 6.3).

The results shown in Table 6.3 are very clear. First of all, we must bring the
attention, again, to the fact that even though the two orbits have very different sizes,
the period differences between them are almost negligible. Regarding the transfer Δ𝑣
needed, even though the insertion to the Lagrange Point is higher than the insertion to
any of the Lyapunov Orbits, when taking into account the extra Δ𝑣 needed to transfer
from the orbits to the Lagrange Point, the result is the opposite, as the larger the
Lyapunov Orbit used, the higher the total Δ𝑣 ends up being. When taking into account
the transfer ToF, the result is even more definitive. Insertion to the Lagrange Point is
the fastest case, without any caveats: inserting into larger Lyapunov Orbits takes
longer, and the stand-by time needed before starting the transfer into the Lagrange
Points adds even more waiting time, as well as the actual transfer, which adds the most
time of all the maneuvers, due to the slowly evolving nature of the invariant manifolds
used as a base. Of course the stand-by and transfer times can be shortened by more
specifically designing the trajectories and using higher Δ𝑣 impulsive maneuvers, but
then the total Δ𝑣 increases even more, making it futile.
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These results show a clear conclusion: when launching the OTV barring any other
mission requirement or restriction, inserting directly onto the Lagrange Point gives the
lowest Δ𝑣 and ToF results, while allowing the spacecraft to be able to theoretically
transfer to any other trajectory with arbitrary phasing. Further analysis on the
feasibility of this strategy and the impact on the lifetime operations of a DS-OTV
mission are concentrated in Chapter 7, as new concepts need to be introduced.
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6.2 In-Orbit Phasing by Direct Transfers

This section presents the study of a selection of candidate parking orbits with the focus
on the maneuvers that allow for a change in phase between two spacecraft along the
same periodic orbit but with different starting locations. The study does not focus on
specific unique or optimal maneuvers, but on the overall structure of possible solutions,
especially in the existence of low energy transfers by leveraging and using as a base
the stable and unstable invariant manifold structures emanating from the periodic
orbits. Even if the direct usage of these trajectories is not practical, the insight obtained
from them can be used as a base for the design of other optimal multi-impulse transfer
maneuvers.

Since such a study is numerically intensive, a combination of numerical propagation
techniques, the exploitation of the symmetries of the CRTBP and parametrization
algorithms for the candidate parking orbits are used to streamline the search (all
described in a general manner in Chapter 3). With the objective of finding manifolds
arriving at, or departing from, the periodic orbit, and that cross the original orbit
additional times, we use a two-step approach. This algorithm separates the initial
localization of the crossings’ area between the phasing maneuver and the parking
orbit, and the refinement of the solution, in a similar fashion to the one described
in Section 5.2.2. In this way, the more numerically taxing algorithm is done over a
smaller set of possible solutions, and the overall process is sped up. This method is
applied to a selected set of candidate parking orbit families, and results are obtained
and analyzed to find the general structure. The main concerns when analyzing the
results is to find phase changing maneuver possibilities with a combination of low Δ𝑣

(i.e. fuel) and appropriate ToFs. As analyzing entire families of periodic orbits for these
phasing trajectories is very time consuming, and would entail numerous repeated
results, a subset of representative orbits are selected from the candidate parking orbits
introduced in Section 4.3.1. Since the focus in the entire study has been on Lyapunov
and Low Prograde Orbit families, the same orbital families are singled out (Fig. 6.10).
From these two families of orbits, three benchmark orbits are selected for each the
Lyapunov (Fig. 6.10c) and Low Prograde (Fig. 6.10d) Orbit families. shown in . As
previously stated, for compactness’ sake, the focus is on L1 orbit families, as equivalent
results can be found for orbits around L2.
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(a) 𝐿1 Lyapunov Orbit family. (b) 𝐿1 Low Prograde Orbit family.

0.99 0.995 1 1.005 1.01

X (AU)

-0.01

-0.005

0

0.005

0.01

Y
 (

A
U

)

DS-OTV Parking Orbit Examples

Earth

Lagrange Points

Lyapunov Orbit 1

Lyapunov Orbit 2

Lyapunov Orbit 3

(c) 𝐿1 Lyapunov Benchmark Orbits.
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Figure 6.10: Orbit families used in the in-orbit direct transfers phasing study. Earth size
not to scale.

This section is organized as follows: Section 6.2.1 introduces the general idea and
concept for the in-orbit phasing direct transfers, as well as the nomenclature used in
this section to evaluate their performance; Section 6.2.2 introduces the algorithm
developed to generate the in-orbit phasing direct trajectories; Section 6.2.3 details how
the different Change in Phase (CP) and maneuvers are calculated for the different
cases; and finally Section 6.2.4 presents the generated phasing direct trajectories and
analyzes the results obtained.
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6.2.1 Direct Transfers Nomenclature and Definition

In order to find and classify the phasing and transfer trajectories obtained in this study,
new concepts need to be defined. Phasing maneuvers are used to change the in-orbit
phase of a spacecraft orbiting a parking orbit. The phase is defined as the time elapsed
since the beginning of the orbit, however the beginning of the orbit is arbitrary, so for
this study is defined as the positive direction of the 𝑥-axis. When two spacecraft have
different phases in the same orbit, they cannot rendezvous, as they will keep their
relative in-orbit phase constant. In order to rendezvous two spacecraft in the same
orbit, the phase needs to be the same, and to accomplish this a phasing maneuver needs
to be executed. In this study, it is assumed that the mission spacecraft stays in the
parking orbit, while the OTV executes the phasing maneuvers. This is chosen on the
basis of the DS-OTV architecture description, where the mission spacecraft is launched
at near dry mass, and thus has not much fuel available to execute maneuvers (until it
can re-fuel from the OTV, after docking and servicing). However, it is also arbitrary,
and the opposite is also possible; to keep the nomenclature consistent, the OTV will be
the one referred as the one executing the phasing maneuvers. These concepts describe
the type of transfer the OTV is executing (shown in Fig 6.11a), and are:

(a) Example concept for the phasing maneuvers.
(b) Phasing maneuver proper-
ties.

Figure 6.11: Direct transfers phasing new concepts.
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• Time Ahead Docking (TAD) - when the OTV "catches up" to the spacecraft in
a temporary trajectory (upper case in Fig 6.11a). In this case, the OTV starts
from behind the spacecraft, and covers a longer trajectory with the same ToF as
the spacecraft in the parking orbit. Another way of seeing it, is that the OTV
executing the maneuver has a shorter ToF than the spacecraft staying on the
parking orbit.

• Time Delayed Docking (TDD) - when the OTV "waits" for the spacecraft in a
temporary trajectory (lower case in Fig 6.11a). In this case, the OTV starts from
ahead of the spacecraft, and covers a shorter trajectory with the same ToF as
the spacecraft in the parking orbit. Another way of seeing it, is that the OTV
executing the maneuver has a longer ToF than the spacecraft staying on the
parking orbit.

Each TAD or TDD maneuver has 3 main properties that are of interest for this
study. They are derived from the state vectors and timings of the transfer trajectories
crossings. These properties are shown in Fig. 6.11b, and are:

• Change in Phase (CP) [% of Orbit Change] - Difference between the two
original positions of the OTV and the spacecraft in the original orbit. It will be
positive if the OTV is ahead of the spacecraft (TDD), and negative when the OTV
is behind the spacecraft (TAD).

• Time-of-Flight (ToF) [time] - Effective time of the maneuver, from the OTV’s
departure from the orbit to the re-insertion to the orbit. The ToF of the maneuver
will obviously be the same for the spacecraft and the OTV.

• Total 𝚫v [meters/second] - Total Δ𝑣 of the maneuver, including departure from
orbit and insertion to orbit Δ𝑣 . Since the manifolds are used, we will consider the
perturbation Δ𝑣 as zero. This is not possible in reality, but the perturbation is
very small compared to the other impulsive maneuvers and any other impulsive
maneuver designed using the manifolds as a basis, so we consider it negligible
for simplicity’s sake.
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6.2.2 Direct In-Orbit Phasing Algorithm (DIOPA)

As in the previous studies, the CRTBP will be used as the dynamical model (Chapter 2),
and the methods and algorithms used to design the trajectories are all implementations
of the techniques introduced in Chapter 3 specifically tailored for this case. So as
not to repeat previously developed content, here we will only mention that the
periodic orbits and their families used as candidates are obtained through Differential
Correction (Section 3.2) and Numerical Continuation (Section 3.5) algorithms. We want
to systematically find orbit-to-same-orbit transfers and classify them according to
different properties. However, specific maneuvers are not the objective of the research,
but trends and general structures. In this study, the stable and unstable manifolds of
the parking orbits are going to be used to obtain the general structure of the transfer
trajectories solution space. These trajectories can be used as initial design tools for
more complex trajectories using impulsive maneuvers to optimize them.
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Figure 6.12: Flowchart of the Direct In-Orbit Phasing Algorithm (DIOPA).

However, an orbit is not a plane on which a Poincare Section can be created to
study the possible intersections between trajectories (as in the case for SPTs). Moreover,
within one orbit, many starting points need to be created and propagated in order
to visualize the general structure of the possible transfers. And in order to have a
good view of the options, a large amount of candidate orbits have to be studied. A
brute force algorithm with a grid search-like structure can be used, but it is very
computationally expensive, consisting of multiple nested loops with entire periodic
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orbits and transfer trajectories propagated for each time step. This becomes very
burdensome once the search space is large. Therefore, and in the same vein as in the
previous cases, the Direct In-Orbit Phasing Algorithm (DIOPA) is built combining
different techniques from Chapter 3 and modifying them accordingly. The DIOPA will
be used to mitigate some of the problems listed above.

A flowchart summarizing the DIOPA is shown in Fig. 6.12, while in the rest of
this section, a detailed explanation of each part of the algorithm is done, including a
detailed pseudo-code implementation of the algorithm. The DIOPA uses (as is the case
in the MOCSA), the orbit parametrization and curve fitting techniques (Section 3.7)
and the symmetries of the CRTBP to separate the problem into an effective two-step
algorithm to find the transfer trajectories distribution and properties for the Lyapunov
Orbit and Low Prograde Orbit families.

Orbit Parametrization and Analytic Expression Fit

XX

YY

1Te1Te

rr

θθ

(x,y)(x,y)

LL

(a) Lyapunov Orbit parametrization
around Lagrange Points in terms of \ .

(b) Low Prograde Orbit parametrization around the
new center in terms of \ .

Figure 6.13: Lyapunov and Low Prograde Orbits, parametrized in terms of angle \ for
application to Direct In-Orbit Phasing Algorithm (DIOPA).

The same method introduced in Section 3.7 is used to parametrize the periodic
orbits and fit an analytic expression. Polar coordinates are used to parametrize the
base periodic orbits studied. In the case of the Lyapunov L1 and L2 orbit families,
since they are centered around the L1 and L2 Lagrange Points, the center will be the
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Lagrange Points. In the case of the Low Prograde Orbit families, they are surrounding
the Earth, however, the shape of some of the members of the family makes the Earth
not a good choice for the center, as some regions are not able to be parametrized
well, producing discontinuities and uncertainties. Therefore, a new center will be
used for the parametrization, at the mid-point between the orbital crossings with the
𝑥-axis. This new center will be different for each Low Prograde Orbit, but since all
the transfers will be done from and to the same orbit, this is not a problem. Both
parametrizations will be done in terms of the angle from the positive 𝑥-axis in the
counter-clockwise direction (see Fig. 6.13). With this, the parametrization with polar
coordinates is done by simply shifting the origin of the parking orbit to the new origin
(Lagrange Point or the new central point), and then obtaining the distance to the new
origin and angle with the 𝑥-axis for each point of the trajectory.

This method gives a 1-to-1 map from angle \ to radius. The next step is to fit
an analytical expression to this curve. The basic method is the same introduced in
Section 3.7, and as discussed in Section 3.7.1 and Section 3.7.2, some of the most
common expressions are not adequate. For the Lyapunov Orbit case, the same 8th order
Fourier Series fit as in the MOCSA is used, as it is enough to characterize the shape.
However, for the Low Prograde Orbits, as the shape is more complex, the Fourier
Series fit is not good enough, so the smoothing spline fit is used instead (detailed
in Section 3.7.2). The coefficients of both the Lyapunov Orbit (Fourier Series fit)
parametrization and Low Prograde Orbit (smoothing spline fit) parametrization are
stored in a database, and these coefficients are then used to evaluate the expressions in
each execution of the DIOPA.

Manifolds Generation for Initial Guesses

The trajectories studied are based on the stable and unstable invariant manifolds of the
parking orbits. A more detailed explanation on how these invariant manifolds are
computed is in Section 3.4, but a short description is included here for continuity’s
sake. The orbit is discretized into an arbitrary amount of points along its trajectory.
The points are equally distributed along the orbit with regards to the time and period,
not geometry. The invariant manifolds are calculated by perturbing the parking orbit
a small amount 𝜖 in the direction of the eigenvectors of the state vectors at each
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Figure 6.14: Lyapunov Orbits with invariant manifolds transfer trajectories.

discretized point. The trajectory is left to drift naturally forward and backward for a
specific amount of time, for the unstable and the stable manifolds respectively. Fig. 6.14
shows a selection of Lyapunov Parking Orbits with the manifolds propagated. The
intersections of these manifolds with the parking orbits would be the insertion points
for the phasing maneuvers. As the manifolds evolve very slowly in time, an alternative
will be used: the trajectory will have an impulsive Δ𝑣 injection along the direction of
the eigenvector of the manifold. This is equivalent to starting the manifold later in
time, so computation power is saved. Once the trajectory is found, an optimization
algorithm can be used to minimize the impulsive Δ𝑣 injection. For convenience’s sake,
just the word manifold is used to define these trajectories, even if they would not be
strictly manifolds in their definition. With the orbit parametrization and the process to
obtain the trajectories detailed, the two step DIOPA can be explained now.

DIOPA First Step

The first step of the DIOPA is to calculate the crossings of the invariant manifolds
(either the stable or unstable ones) with the parametrized Parking Orbit. The manifolds
are generated and propagated from the predefined starting points in the parking
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orbit, and crossing checks are done with the analytical expressions obtained from the
parametrized parking orbit. The crossing check takes the form

𝑟Man,𝑖,𝑡 − 𝑟PO(\Man,𝑖,𝑡 ) = 0 , (6.1)

where 𝑟 and \ are the polar coordinates of a propagated invariant manifold of orbit 𝑖 at
time 𝑡 , and the evaluation of the analytical expression obtained from parametrizing the
Parking Orbit (PO), either the Lyapunov or the Low Prograde Orbit. This check searches
for zeros, within numerical tolerance, and stores the state vector and propagation time
of the successful cases. The propagation is done in the directions of both the stable
and unstable eigenvectors. In the former case, the spacecraft would do an impulsive
maneuver during orbit and naturally drift back to the parking orbit, while in the latter
case, the spacecraft is slightly perturbed and drifts out of the orbit and executes an
impulsive thrust on the next crossing to insert itself back. The state vectors and ToFs
for the transfer maneuvers are stored, and will be used to refine the solution in the
second step of the algorithm.

DIOPA Second Step

The second step for the DIOPA refines the results obtained in the first step by checking
the overlaps between the crossings of the transfer trajectories and the parametrized
parking orbit with the original (non-parametrized, propagated in the CRTBP) parking
orbit. The state vectors at the crossing points, as well as the ToFs on the parking orbit
since the start of the propagation are stored. By refining the first storage crossing points,
we obtain a very good approximation of crossing events between two propagated
trajectories (the parking orbit and the transfer trajectory), while bypassing the need
to execute a brute force search on the whole solution space. However, the second
step check is not as straightforward as the first step check, the same caveats found
in Section 5.2.2, and detailed in Fig. 5.11. The particularity of looking for crossings
between a trajectory and a point, makes it difficult, so the smallest distance is looked
for instead, by evaluating the derivative of the expression and looking for a zero there.
This carries more post-processing burden for cleaning the results after the procedure,
but it works well.
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Results Database

Table 6.4: Direct phasing maneuver database format. T stands for period of the orbit,
Man. stands for Manifold, Time-of-Flight (ToF), and State Vector (SV) (3 position + 3
velocities). The 25𝑡ℎ index is a switch to signal if the maneuver is on the stable or the
unstable manifold.

1 2 3 4 5 - 10 11 12 - 17 18 19 - 24 25

Orbit
database
index

T Man.
start
index

Man.
start
ToF

Man.
start
SV

Orbit
trajectory

ToF

Orbit
crossing

SV

Man.
transfer
ToF

Man.
crossing

SV

Stable/
Unstable
Manifold

The DIOPA is used on the benchmark orbits described in the beginning of the
section. After cleaning the results of false positives and organizing them, a database of
crossings is created and the results are classified and stored, in preparation for further
analysis. The format of the database is shown in Table 6.4.

Pseudo-code implementation of the two steps of the DIOPA is included in Algo-
rithm 3 and Algorithm 4, for ease of implementation. The DIOPA described here is
specifically tailored for finding phasing or transfers trajectories in periodic orbits in
the CRTBP, but it can be expanded to include other cases.

6.2.3 Change in Phase and Maneuver Calculation

With the database from Section 6.2.2, the appropriate variables described in Section 6.2.1
(CP, ToF and maneuver Δ𝑣) can be calculated for each case. Although these concepts
have been introduced and used in previous studies in this work, and their usage here is
similar in order to keep consistency, the particularity of the in-orbit direct transfers
means that the calculation methods change slightly. In order to not introduce confusion,
they will be clearly defined in this section, both conceptually and mathematically.

The first variable to take into account is the ToF of the maneuver, which is the
simplest one. Any of the in-orbit direct phasing maneuvers’ ToF is the time it has
taken the OTV to follow the invariant manifold-based phasing maneuver, from exit
from the parking orbit to re-insertion to the same orbit later on. This time is explicitly
saved in the database, so no further consideration needs to be taken into account.

The second variable to calculate is the fuel usage, the total Δ𝑣 used to execute the
maneuver. Since these maneuvers are based on the invariant manifolds, the start
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Algorithm 3: Direct In-Orbit Phasing Algorithm (DIOPA) First Step: find
crossings between propagated trajectories and parametrized orbits.
Data: CRTBP parameters, Initial Conditions and period for Parking Orbits (PO),

parametrized Parking Orbits (PO).
Result: Phasing trajectories crossings between propagated manifolds and

parametrized parking orbits.
1 Load Parking Orbit Family Initial Conditions, Period and parametrization

coefficients;
2 while Parking Orbit Family not finished do
3 Load 𝑖𝑡ℎ Parking Orbit Parameters;
4 Discretize Parking Orbit into 𝑛 equally distributed points wrt to time;
5 while 𝑗 < 𝑛 do
6 Propagate Parking Orbit up to 𝑗𝑡ℎ point, 𝑡 𝑗 and obtain State Vector

𝑆𝑉PO,𝑡 𝑗 ;
7 Calculate Eigenvector at 𝑆𝑉PO,𝑡 𝑗 ;
8 Add perturbation 𝜖 along eigenvector direction at 𝑆𝑉PO,𝑡 𝑗 , for

𝑆𝑉Man, 𝑗 = 𝜖 · 𝑆𝑉PO,𝑡 𝑗 ;
9 Start manifold propagation to time 𝑡 , 𝑆𝑉Man, 𝑗,𝑡 ;

10 while Propagation is not finished (𝑡 < 𝑡Man,final) do
11 Translate 𝑆𝑉Man, 𝑗,𝑡 origin to new origin with 𝑆𝑉ParamOrigin;
12 Calculate polar coordinates from origin, 𝑟Man, 𝑗,𝑡 and \Man, 𝑗,𝑡 ;
13 Load parametrized Parking Orbit;
14 Check for crossings: input \Man, 𝑗,𝑡 in parametrized Parking Orbit

expression;
15 if 𝑟Man, 𝑗,𝑡 − 𝑟PO(\Man, 𝑗,𝑡 ) = 0 then
16 Store the data of the preliminary crossing;
17 end
18 Propagate manifold to time step 𝑡 = 𝑡 + 1, 𝑆𝑉Man, 𝑗,𝑡 = 𝑆𝑉Man, 𝑗,𝑡+1;
19 end
20 Update manifold starting position 𝑗 = 𝑗 + 1;
21 end
22 Execute Second Step (Algorithm 4).;
23 Update current Parking Orbit 𝑖𝑡ℎ = 𝑖𝑡ℎ + 1;
24 end

(or end, depending on if the spacecraft is following the unstable or stable invariant
manifold) will have a very small amount of Δ𝑣 (in the largest perturbation case,
1 m/s). Compared to the maneuvers executed at the other end of the trajectory,
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Algorithm 4: Direct In-Orbit Phasing Algorithm (DIOPA) Second Step: refine
crossings with propagated parking orbits
Data: CRTBP parameters, Initial Conditions and period for Parking Orbits (PO),

previously calculated database of crossings in Algorithm 3.
Result: Phasing trajectories from/to a propagated parking orbit, with crossing

positions and ToFs.
1 Start Parking Orbit propagation to time 𝑡 , 𝑆𝑉PO,𝑡 ;
2 while Propagation is not finished (𝑡 < 𝑇PO) do
3 Check for crossings: Load 𝑗𝑡ℎ preliminary crossings data;
4 while Preliminary crossings data not finished do
5 if 𝑆𝑉PO,𝑡 and 𝑆𝑉crossing, 𝑗 coincide && Quadrant is correct then
6 Store the coordinates of the crossing;
7 end
8 Update current preliminary crossing 𝑗𝑡ℎ = 𝑗𝑡ℎ + 1;
9 end

10 Propagate the Parking Orbit to time step 𝑡 = 𝑡 + 1, 𝑆𝑉PO,𝑡 = 𝑆𝑉PO,𝑡+1.;
11 end

when intersecting the orbit again, the amount is nearly negligible, so it is left out for
simplicity’s sake. Therefore, the total Δ𝑣 of each maneuver will be the magnitude of
the velocity difference at the intersection between phasing trajectory and periodic orbit

Δ𝑣 = ∥𝑣Man Cross − 𝑣Orbit Cross∥ . (6.2)

Finally, the last variable is the CP. As described in previous sections, the main
property used to calculate the CP will be the differences in time spent in each trajectory,
the phasing maneuver by the OTV and the periodic orbit trajectory by the mission
spacecraft. The general explanation on how it is calculated has already been given in
the nomenclature section, and it works conceptually, but it is not easy to directly
calculate the CP from the information obtained with the DIOPA by just using the
definitions given previously. Therefore, an adaptation using the data stored in Table 6.4
is introduced here: the variables used for the CP calculation are shown in Table 6.5,
including a short explanation of the actual physical meaning. They are also plotted in
Fig. 6.15.

To clarify, it is to be noted that both TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 and TOF𝑂𝑟𝑏𝑖𝑡 refer to the time
elapsed orbiting the actual periodic orbit, while TOF𝑀𝑎𝑛 refers to the time elapsed
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Table 6.5: Variables to calculate phasing maneuvers, obtained from DIOPA, stored in
Table 6.4 and shown in Fig. 6.15.

Variable Database column
(Table 6.4)

Symbol Explanation

Parking Orbit
Period

2 T Period of the parking orbit used as base.

Manifold Start
ToF

4 TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 Time elapsed since the beginning of the periodic orbit
(Earth-facing 𝑥-axis crossing) until the point in the
periodic orbit where the invariant manifold used for
the phasing trajectory starts.

Orbit Trajectory
ToF

11 TOF𝑂𝑟𝑏𝑖𝑡 Time elapsed since the beginning of the periodic orbit
(Earth-facing 𝑥-axis crossing) until the point in the
periodic orbit where the invariant manifold used for
the phasing trajectory intersects the periodic orbit (to
finalize the phasing maneuver).

Manifold
Transfer ToF

18 TOF𝑀𝑎𝑛 Actual invariant-manifold based phasing trajectory.
Time elapsed since the start of the invariant manifold
until the crossing of the invariant manifold with the
periodic orbit, counting the actual manifold trajectory
time.

Stable/Unstable
Manifold

25 - Switch determining if the invariant manifold used for
the transfer is the unstable or the stable, since the
expressions used for the CP are slightly different. It is
not actively used in the calculation.

traveling on the invariant manifold, between exit and re-insertion to the periodic orbit.
With these variables defined, the CP can be calculated as follows. For the unstable
manifold cases (with the subscript 𝑢):

if TOF𝑂𝑟𝑏𝑖𝑡 > TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 then:

CP𝑢,% =
TOF𝑀𝑎𝑛 − (TOF𝑂𝑟𝑏𝑖𝑡 − TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 )

𝑇
· 100 ,

if TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 > TOF𝑂𝑟𝑏𝑖𝑡 then:

CP𝑢,% =
TOF𝑀𝑎𝑛 − (TOF𝑂𝑟𝑏𝑖𝑡 + (𝑇 − TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 ))

𝑇
· 100 .

(6.3)

And the stable manifold cases (with the subscript 𝑠):

if TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 > TOF𝑂𝑟𝑏𝑖𝑡 then:

CP𝑠,% =
TOF𝑀𝑎𝑛 − (TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 − TOF𝑂𝑟𝑏𝑖𝑡 )

𝑇
· 100 ,

if TOF𝑂𝑟𝑏𝑖𝑡 > TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 then:

CP𝑠,% =
TOF𝑀𝑎𝑛 − (TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 + (𝑇 − TOF𝑂𝑟𝑏𝑖𝑡 ))

𝑇
· 100 .

(6.4)
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Although these expressions might be less straightforward to conceptualize than the
physical locations of the spacecraft moving relative to each other, the differences in
times encapsulates the same meaning: how much CP is it possible with one maneuver,
so that two spacecraft that originally were separate, can get in the same phase.

(a) Case for TOF𝑂𝑟𝑏𝑖𝑡 > TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 . (b) Case for TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 > TOF𝑂𝑟𝑏𝑖𝑡 .

Figure 6.15: Variables used to calculate the in-orbit Change in Phase (CP) for the
unstable invariant manifold case. Equivalent methods are used for the stable case,
exchanging the positions of TOF𝑀𝑎𝑛 𝑠𝑡𝑎𝑟𝑡 and TOF𝑂𝑟𝑏𝑖𝑡 .

6.2.4 Direct Transfers Phasing Results

We apply the DIOPA to the 3 benchmark orbits for each of the 2 periodic orbit families
from Fig. 6.10 separately. The orbits are labeled orbit 1, 2 and 3 with increasing period
(and size in the case of the Lyapunov Orbits). The results for the Lyapunov Orbits
can be seen in Fig. 6.16, while the results for the Low Prograde Orbits can be seen in
Fig. 6.20. Table 6.6 lists the 6 benchmark orbits and their periods, in order to have a
reference for the ToFs and the change in phase. In order to speed up the manifold
propagation and to have denser results, four increasing values for the perturbations
were used, 𝜖 = [1.5, 3, 4.5, 9] · 10−5.

For the 6 cases, the higher the period of the orbit, the larger the distribution of
Δ𝑣 maneuvers available (that come with increasing Δ𝑣). However, in all cases there
are options for relatively low Δ𝑣 available. Due to the fact that the DS-OTV mission
architecture is aiming to be used recurrently during a short time frame during the
OTV mission’s lifetime, the maximum period studied is capped to 1 year. This is



6.2 In-Orbit Phasing by Direct Transfers 133

Table 6.6: Period of the orbits used for the in-orbit phasing by direct transfers study.

𝐿1 Lyapunov Orbits Period (days) 𝐿1 Low Prograde Orbits Period (days)
Orbit 1 175.52 116.90
Orbit 2 179.97 157
Orbit 3 196.19 168.34

because the frequency of the missions is planned to be around that time.[109] Due to
the nature of the manifolds (perturbations, without any impulse maneuver to speed up
the trajectory), the distribution of all possible phasing maneuvers is skewed toward
TDD maneuvers (the positive subspace of solutions, CP> 0). It is worth noting too, that
most low CP phasing maneuvers similar: they stay close to the original trajectory
and re-insert very fast (low ToF). These maneuvers also have low Δ𝑣 but might not
prove very useful, as perturbation in real life scenarios might make them not feasible.
Therefore, it is more interesting to focus on other kinds of maneuvers for the study of
the results. These results show the natural dynamics allowing for transfers, and are to
be taken as basis for ad hoc trajectory design with more defined requirements.

The results for the three Lyapunov Orbit cases are shown in Fig. 6.16. In each of the
cases, two examples are shown in Fig. 6.17, Fig. 6.18 and Fig. 6.19 to provide a physical
perspective to the results (including an arrow for the periodic orbit trajectory direction).
The results in Fig. 6.16a show the cases for the smaller and shorter Lyapunov Orbit.
This case is the most clear one, showing a constant possibility of phasing maneuvers
between -45% to 80% CP, with low amounts of ToF, a maximum of less than 200 days.
The structure is also very consistent, with a larger CP coinciding with larger ToFs, and
having a symmetrical structure for TDD and TAD maneuvers with CPs lower than
50%, with increasing CP increasing Δ𝑣 of the maneuver. For the TDD maneuvers
with higher than 50% CP, the Δ𝑣 starts to decrease, due to the nature of the folding of
the manifolds around the orbit coinciding with the shape of the orbit more closely.
However, all cases have an overall small Δ𝑣 , with a maximum of 200 m/s. A TAD and a
TDD maneuver are shown for reference (in Fig. 6.17a and Fig. 6.17b respectively),
showing trajectories that follow the original orbit closely for the most part.

The results in Fig. 6.16b show the cases for the medium size and period Lyapunov
Orbit. This case follows a very similar structure as the previous one, with a dominance
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(a) Lyapunov Orbit 1.
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(b) Lyapunov Orbit 2.
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(c) Lyapunov Orbit 3.

Figure 6.16: Direct transfer phasing maneuvers for 3 Lyapunov Orbits (Table 6.6).

(a) Direct phasing maneuver example 1 (TAD). (b) Direct phasing maneuver example 2 (TDD).

Figure 6.17: Lyapunov Orbit 1 direct phasing maneuvers examples (from Fig. 6.16a).

in TDD maneuvers, but still having an availability of up to 25% TAD maneuvers.
However, while some cases have low values of Δ𝑣 , most cases have considerably
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(a) Direct phasing maneuver example 3 (TDD). (b) Direct phasing maneuver example 4 (TDD).

Figure 6.18: Lyapunov Orbit 2 direct phasing maneuver examples (from Fig. 6.16b).

larger values for the equivalent results, going up to almost 700 m/s for the worst case
transfers (50% TDD). This orbit is larger, and the structure of the revolving manifolds
allows for longer ToF transfers, that come with higher CP, but also generally higher Δ𝑣 ,
except some cases. The two examples marked, are part of a new type of transfers not
available in the smaller orbit case, that revolve around the Earth before coming back to
the orbit. Fig. 6.18a shows a case where the exit from the orbit has the same general
direction as the periodic orbit trajectory, having lower Δ𝑣 , while Fig. 6.18b has a more
impulsive exit, adding up higher Δ𝑣 costs.

Finally, Fig. 6.16c shows the longest Lyapunov Orbit case. At first glance, this case
looks similar to the medium size case, but there are stark differences. Although there
are possibilities of transfers for very low Δ𝑣 values, these are concentrated at the full
period cases (0% and 100% CP), while the rest of the cases have around double the Δ𝑣
cost compared to the medium size orbit (up to 1400 m/s). There is also the possibility of
transfers at half the period ToF (50% and 150%) that existed in the medium size for low
Δ𝑣 values, but are non-existent in this orbit. In general, all transfers have larger ToF
values, due to the longer base period orbit (and larger physical size), and the structure
of the manifolds that these properties provide. The two examples shown in Fig. 6.19
are chosen to show the large difference in Δ𝑣 , with again example 5 having better
insert/exit points that 6, as well as the existence of both direct transfers that stay close
to the orbit, as well as the ones that go around the Earth, as the previous case.
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(a) Direct phasing maneuver example 5 (TDD). (b) Direct phasing maneuver example 6 (TDD).

Figure 6.19: Lyapunov Orbit 3 direct phasing maneuver examples (from Fig. 6.16c).

The example orbits of the L1 Low Prograde orbit family are the other cases shown
here, with the results in Fig. 6.20, with the same structure of two examples for each
orbit shown in Fig. 6.21, Fig. 6.22 and Fig. 6.23. In general, the same structures as the
Lyapunov Orbit cases are apparent, especially the fact that very limited TAD cases
appear naturally, compared to the higher availability of TDD cases. Fig. 6.20a shows
the first orbit, with shorter period and a more circular shape. Here is where the results
differ the most: while the Lyapunov case increased the availability of CP maneuvers
with period and size, the shorter case of Low Prograde Orbit has the most available
phasing maneuvers for larger values of CP, going as high as TDD 300%. The values of
Δ𝑣 are quite similar to the Lyapunov case, topping at around 170 m/s the worst case
(outliers), while staying bellow 125 m/s for most of the other cases. However, longer
ToFs appear, increasing progressively with CP, until the year mark. To be noted here
also, is that most cases are concentrated around the full period values (0%, 100%, 200%
and 300%) with very little availability at the mid-points, and increasing Δ𝑣 expenditure.
Seeing the example cases in Fig. 6.21, the reason appears clearly: this family of orbit
has low values of stability indices, meaning (from Section 4.3) that it is less unstable
(more stable). That means that, if they exist (some of the orbits are stable, and thus
they don’t have stable/unstable manifolds), the invariant manifolds evolve very slowly,
staying close to the original orbit in an almost periodic motion.

Fig. 6.20b shows the medium orbit, with a lower perigee and starting to flatten at
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(a) Low Prograde Orbit 1.
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(b) Low Prograde Orbit 2.
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(c) Low Prograde Orbit 3.

Figure 6.20: Direct transfer phasing maneuvers for 3 Low Prograde Orbits (Table 6.6).

(a) Direct phasing maneuver example 1 (TDD). (b) Direct phasing maneuver example 2 (TDD).

Figure 6.21: Low Prograde Orbit 1 direct phasing maneuver examples (from Fig. 6.20a).

the apogee. As with the previous cases, while some of the low Δ𝑣 phasing maneuvers
still exist (concentrated at the same CP points as in the shorter case), a lot more cases
appear with values of Δ𝑣 well in the km/s area, granting availability of maneuvers all
the way from TAD 20% up to TDD 220%. Curiously, the TDD maneuvers available are
also lower in terms of CP, going only up to that 220% instead of 300%: this is due to the
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one year ToF cut-off previously mentioned. Higher CP maneuvers exist, but they have
longer than desirable ToFs. Two more examples are shown in Fig. 6.22, which in this
case deviate more from the original trajectory, due to the higher value of stability
index of the periodic orbit. Both examples have a Δ𝑣 of around 700 m/s, but due to the
difference in ToF provide different values of CP. There is nothing much more of note in
these cases, as they follow previously explained structures for their properties.

(a) Direct phasing maneuver example 3 (TDD). (b) Direct phasing maneuver example 4 (TDD).

Figure 6.22: Low Prograde Orbit 2 direct phasing maneuver examples (from Fig. 6.20b).

(a) Direct phasing maneuver example 5 (TAD). (b) Direct phasing maneuver example 6 (TDD).

Figure 6.23: Low Prograde Orbit 3 direct phasing maneuver examples (from Fig. 6.20c).

Finally, Fig. 6.20c shows the results for the longer Low Prograde Orbit case, with the
lower perigee and flatter apogee (lower than the previous case). The trend explained in
the previous orbit is also present here: even larger values of Δ𝑣 maneuvers available
(up to 4.5 km/s the very worst case), while due to ToF constrains, less opportunities for
high CP cases (a maximum of 200% CP). A TAD and a TDD example are shown in
Fig. 6.23, being the case in Fig. 6.23a a relatively low Δ𝑣 case (200 m/s), while Fig. 6.23b
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shows a very high Δ𝑣 example (2500 m/s). We can see that the same phenomena are
apparent, the lower Δ𝑣 cases have more suitable insertion points, following the same
general flow of trajectory, while the larger Δ𝑣 case needs a very impulsive maneuver to
insert. The example 6 also shows an interesting manifold-based trajectory, where the
Earth fly-by changes the trajectory completely and allows for another revolution of
Earth before finally inserting itself into the parking trajectory again.

(a) Lyapunov Orbit 1.

(b) Lyapunov Orbit 2. (c) Lyapunov Orbit 3.

Figure 6.24: Direct phasing maneuvers distribution for 3 Lyapunov Orbits.

An alternative view of the results shown in Fig. 6.16 and Fig. 6.20 can show more
insights into the structure of the transfer possibilities available. In this case, the start
and end point of the phasing maneuver are plotted in the 𝑥 and 𝑦-axis respectively,
in the angular form (0 − 360◦, similar to the process used to parametrize the base
orbits). For both orbits, the angular position starts at the right-hand side crossing of
the CRTBP 𝑥-axis, and follows the trajectory direction (meaning counter-clockwise for
the Lyapunov Orbits and clockwise for the Low Prograde Orbits). This is chosen to
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facilitate the reading of the results, since the phasing trajectories generally follow
the same direction as the base orbit trajectory. The CP is represented in the color
coding, while the size of the points represent the Δ𝑣 of the maneuver (size is difficult to
properly distinguish, but it is only for reference purposes and to distinguish extreme
variations in the trends, and is normalized to each orbit’s range of Δ𝑣).

Figure 6.24 shows the results of the maneuver distribution analysis for the Lyapunov
Orbit examples. The first thing to notice, is that for all three orbits (and arguably all 3
Low Prograde Orbits too, but more details later), the results are symmetric with respect
to the northwest-southeast diagonal. In the Lyapunov Orbit 1 case, the structure is
very clear, concentrating most of the possible solutions on the start and end points 90◦

and 270◦ with some deviations around them, but pretty sparse results otherwise. These
areas also concentrated the lowest CP maneuvers, as well as the lowest Δ𝑣 . These
points are the two furthest points from the 𝑥-axis (with max 𝑦 value), where the ’curve’
of the orbit is. What we can see, is that the manifolds follow the orbit closely for the
most part, and those areas are the ones where the rotation makes them intersect the
orbital trajectory. We also see some points at the areas between 0 − 90◦ and 270 − 360◦,
but only for maneuvers that start also at these area (the part of the orbit facing the
Earth), while another group of solutions is at the other part (90 − 270◦), but again only
for trajectories that start there. This shows that most maneuvers not in the 90◦ and
270◦ areas, start and end at the same general area. The cases for Lyapunov Orbits 2 and
3 are slightly different: while the same patterns at 90◦ and 270◦ still appear (with slight
deviations, as the orbit become more kidney-shaped, having the furthest points not at
exactly those points any more), both of these orbits have transfer possibilities at the
exact opposite parts than orbit 1. Most trajectories that start at the areas 0 − 90◦ and
270 − 360◦ do not end at those areas any more, but at at the region 70 − 270◦ (again,
approximately), while trajectories that start at those areas end at the opposite ends.
Both orbits have many more transfer possibilities (even more so orbit 3), due to the
sizes increasing, but at the cost of a lot higher Δ𝑣 .

Figure 6.25 shows the results of this analysis for the Low Prograde Orbit family’s
examples. The Low Prograde Orbit 1 case shows a similar structure to the ones just
discussed. Most solutions start and end concentrated around two specific areas, 125◦

and 240◦, which also provide the highest availability of CP, but at the expense of
higher Δ𝑣 than maneuvers at other areas. In this case, the lowest Δ𝑣 maneuvers still
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(a) Low Prograde Orbit 1.

(b) Low Prograde Orbit 2. (c) Low Prograde Orbit 3.

Figure 6.25: Direct phasing maneuvers distribution for 3 Low Prograde Orbits.

provide the lowest CP, but are following an approximate southwest-northeast diagonal,
merging or deviating from the clusters at the 125◦ and 240◦ areas. These transfers
seem to be orbiting close to the original trajectory for times close to multiples of
the original period, creating these shapes (which is in accordance with the previous
example transfers shown in Fig. 6.21). The results for orbit 2 are quite different, with
transfer possibilities all over. There is still a noticeable cluster around similar areas,
but not as prominent, and now a new structure has appeared. From the ’square’
cluster at start-end points 150 − 220◦, two parabolic structures appear (one on the
lower start-point area, one on the higher end-point area, in the 𝑋 and 𝑌 directions
respectively). These are trajectories that either start and end (or the opposite) at the
perigee and apogees points of the orbit (the flatter part near the Lagrange Point). The
results of orbit 3 follow the exact same structure (with a wider parabola, since the
flat part near the Lagrange Point is more pronounced), while having a more defined
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solution space (less possible trajectories that do not start/end around the regions
previously mentioned).

To finish the analysis, it is important to reiterate the exploratory nature of the work.
Purely using invariant manifolds as transfer trajectories is impractical, and the results
here corroborate it: the ToF for most maneuvers is relatively high compared to the
planned time between mission servicing operations, and most of the maneuvers have
values of Δ𝑣 extremely high for the nature of these operations. Since these manifold
trajectories are based on perturbations of the base orbit, they are also very sensitive to
other perturbations on the near-Earth environment (SRP, other gravitational bodies,
and even the perturbations added by higher fidelity models of the Earth). However, an
optimization algorithm can very well be used with these trajectories as a base, which
will make finding more favorable exit/insertion points in most cases, smoothing the
operations and lowering the Δ𝑣 requirements, similar to the examples shown in the
Lagrange Point Stand-by study (Section 6.1).
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7
Mission Lifetime and Trade-off Analyses

In this chapter, the results from the previous chapters and studies will be used in
conjunction to try to paint a better picture of the feasibility of the DS-OTV architecture,
or more specifically, of the periodic orbits and phasing possibilities discovered during
this work. Specifically, the lifetime of a DS-OTV mission will be evaluated in order
to draw conclusions on the trade-off between using different combinations (with
larger/smaller Lyapunov Orbits, and shorter/longer Low Prograde Orbits). The focus
is on the Δ𝑣 usage of the OTV spacecraft itself (insertion into the architecture, and
transfers for phasing maneuvers) as well as the impact the architecture has on the
successive mission spacecraft (with regards to both Δ𝑣 usage and ToF/stand-by time
between phasing maneuvers and end of the servicing), while using the previously
introduced and studied phasing maneuvers. Even though all trajectory designs in this
context will strive to as low Δ𝑣 requirements as possible, the point where propellant
savings are done might be more important than the total amount, i.e. saving propellant
for maneuvers done by the mission spacecraft might be more beneficial than saving
overall propellant, if the OTV is able to cover for the difference, and the difference is
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not too large. However, since the propellant available at the OTV serves two purposes
(maneuvering of the OTV, as well as re-fueling successive mission spacecraft),[26] the
distinction is not so clear, as savings in OTV propellant usage might be used for extra
mission servicing operations. The question then becomes, how can the trade-off be
evaluated between different usage cases in terms of total and specific propellant usage.

7.1 DS-OTV Properties for the Analyses

In some of the analysis done in this chapter, it becomes difficult to grasp exactly how
much the Δ𝑣 usage for each spacecraft affects the overall picture of the architecture.
Therefore, tentative values for the spacecraft being studied are introduced: with an
OTV with 5 ton wet mass (4 ton of which are propellant available for maneuvering and
servicing), and mission spacecraft with a dry mass of 350 kg and the capacity to store
up to 400 kg of propellant. Using Tsiolkovsky’s rocket equation,

𝑀wet = 𝑀dry𝑒
Δ𝑣/(𝐼𝑠𝑝𝑔0) , (7.1)

where 𝑔0 is the standard gravity (defined as 9.80665 m/s2), the amount of propellant
used for the different maneuvers in each case can be estimated.

Table 7.1: Parameters of the OTV and mission spacecraft for the case studies.[26, 71]

Parameter Symbol Value
OTV Initial wet mass 𝑀wet 5000 kg
OTV dry mass 𝑀dry 1000 kg
Mission spacecraft dry mass 𝑚dry 350 kg
Mission spacecraft tank capacity - 400 kg
Specific Impulse (both spacecraft) 𝐼𝑠𝑝 280 s

7.2 Single Periodic Transfers Feasibility Analysis

In this section, a feasibility study of the usage of SPTs developed in Section 5.1 for
phasing possibilities is detailed, applying the concept of the DS-OTV to the SPTs. This
application will give a more general view of the SPT maneuvers in the context of the
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DS-OTV, and will serve as a feasibility analysis for their application, comparing results
between different maneuvers. First, Section 7.2.1 introduces the benchmark orbits that
will be used and the peculiarities they have with respect to the SPTs possibilities. A
continuation, Section 7.2.2 introduces the three impulse maneuvers used for detailed
phasing, as well as the methodology used to find them, and analyzes the results of these
detailed phasing maneuvers in the context of this section. Up until this point, candidate
parking orbits and phasing transfer maneuvers have been evaluated by themselves.
Section 7.2.3 will introduce these candidate architectures in a possible mission design
scenario to complement the study and evaluate their feasibility with more real case
constraints. Finally, a mission lifetime analysis is done in Section 7.2.4 using the
previous results, including an operations breakdown and an in-depth discussion of the
propellant and time usage for different strategies serves as conclusion in Section 7.2.5.

7.2.1 Singular Period Transfers Feasibility Analysis

Table 7.2: Characteristics of Lyapunov and Low Prograde Orbits used in the SPT
feasibility discussion (Figs. 5.6, 5.7 and 7.1).

Lyapunov Orbit Low Prograde Orbit
Case Size

(km)
Period
(days)

Jacobi
Const.

SPT
CP %

Perigee Alt.
(km)

Period
(days)

Jacobi
Const.

SPT
CP %

Transfer Δ𝑣
(m/s)

1 340294 177.00 3.0008726 −9.4 89303 160.33 3.0008475 10.4 53
2 373448 177.41 3.0008807 −22.1 138969 138.26 3.0008383 28.3 87
3 518098 179.73 3.0008882 −38.4 208179 110.78 3.0007891 62.2 152

In order to investigate more in detail the potential and utility of SPTs for phasing
trajectories, from this section onward we will be using a subset of orbit combinations
as a benchmark study. We select orbit combinations with different sizes and different
base SPT CP. The three orbit combinations’ characteristics are detailed in Table 7.2,
while they are shown in Fig. 7.1. The three cases are also highlighted in Figs 5.6 and
5.7 for more context. Period, Jacobi Constant, SPT CP and transfer Δ𝑣 have all been
introduced previously. The Lyapunov Orbits size refers to the distance in the 𝑥-axis
between both crossings of the symmetry axis, while the Low Prograde Perigee Altitude
is the distance at closest approach of the Low Prograde Orbit to the Earth’s surface
(coinciding with one of the 𝑥-axis crossings). All Lyapunov Orbits in the benchmark
combinations have approximately the same period (varying only from 177 to 179.73
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days), even though the size, Jacobi Constant and SPT CP variations are considerable.
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Figure 7.1: Orbits used in the Single Periodic Transfer (SPT) feasibility study (character-
istics showed in Table 7.2).

As the Lyapunov Orbits get larger, the perigee altitude of the Low Prograde Orbits
higher, while the period gets shorter. This makes the SPT CP for Low Prograde Orbits
based maneuvers to get progressively larger, which coincides with increasing direct
transfer Δ𝑣 usage. Focusing on the CP with the Low Prograde as a base, each of this
three orbital combinations give, for increasing Lyapunov size, a 10.4%, 28.3% and 62.2%
CP, equivalent to 16.67, 39.13 and 68.91 days. For a pair of spacecraft in each of these
orbital combinations, only multiples of these phase differences can be overcome using
SPT. This can be seen in Fig. 7.2, where the gaps between the multiples of the CP are
apparent, which gives raise to the conclusion that combination 1 is more favorable
than combination 2, and combination 2 is more favorable than combination 3: both the
Δ𝑣 is lower, and the difference in SPT CP is smaller, which gives more flexibility when
designing the phasing strategy. However, even in the case for combination 1, a 10%
difference in phase is considerable, and it would be beneficial to design a strategy to
make more detailed phasing strategies.

7.2.2 Three-Impulse Maneuvers for Detailed Phasing

To overcome the limitation of the discrete CP when using SPTs, an extra maneuver can
be used. By designing a temporary trajectory with a determined ToF, a specific CP
can be obtained that complements that given by the SPT. The base for this auxiliary
maneuver will be half a period of one of the two orbits in the SPT scheme (we arbitrarily
selected the Low Prograde Orbit, but equivalent results can be obtained using the
Lyapunov Orbit), and a search for a trajectory closely following the periodic orbit but
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Figure 7.2: Discrete phasing when using Single Periodic Transfers (SPTs) for Cases 1, 2
and 3 (Table 7.2 and Fig. 7.1).

with a slightly different ToF will be executed. However, in the CRTBP framework, it is
not easy to obtain specific trajectories that satisfy very stringent constraints (in this
case, initial and final positions, and a specific ToF) with only 2 impulses allowed).
Therefore, we add a third mid-trajectory impulse that allows for such trajectories to be
found with very small Δ𝑣 usage (Fig. 7.3). The Single Shooting algorithm is not robust
enough for these trajectories, so we need to use an alternative SQNLP algorithm for
constrained nonlinear optimization. This algorithm is detailed in Section 3.6, so here
only a brief description is done to aid in the discussion’s continuity, and the specifics of
the implementation for the three-impulse maneuvers are introduced.

The mentioned SQNLP algorithm for constrained nonlinear optimization is used to
design the detailed phasing trajectories to complement the SPT. The algorithm is, in a
general way, the same as introduced in Section 3.6, however, some of the constrains
and optimization values change slightly. The algorithm takes an initial guess base
trajectory, and improves the performance by searching a local optimal solution within
the constrains given to it. As base trajectories for the initial guesses, we will use the
original half period of the Low Prograde Orbit, i.e. initial position at the 𝑥-axis crossing
furthest away from the Earth and final position at the 𝑥-axis crossing closest to the
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Figure 7.3: Three-impulse maneuver diagram for detailed phasing.

Earth. However, while keeping the initial and final positions fixed, we adapt the ToF for
each specific case in order to obtain the desired CP. We start by taking the original ToF
of the trajectory and change it by slightly increasing/decreasing it in order to obtain
CP corresponding to 1% increments/decrements from 0 to the CP given by the SPT:

TOFlonger =
(
CP
100 + 1

)
TOF ,

TOFshorter =
(
1 − CP

100

)
TOF .

(7.2)

In an example case with a SPT having a 10% CP, we obtain increasing ToFs equivalent
to CP in the range 11 − 19%, and we obtain decreasing ToFs equivalent to CP in the
range 1 − 9%. These ToFs are going to be used with the same initial/final positions as
initial guesses for the algorithm.

The basis of the SQNLP algorithm scheme is shown in Fig. 7.4. The trajectory
is divided in two legs, one starting from the initial state 𝑋1 that is propagated ToF−
forward in time to 𝑋2−, and a second one starting from the final state 𝑋3 that is
propagated ToF+ backward in time to 𝑋2+. The first guess for the propagation time
for each leg is half of the desired ToF. The algorithm tries to patch the mid-point
between both legs while enforcing the constrains (summarized in Table 7.3) and at the
same time optimizing for minimum Δ𝑣 usage. The constrains in Table 7.3 are the
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Figure 7.4: SQNLP algorithm for detailed phasing trajectories design.

sames as the ones in the general case (Table 7.3), however, for the detailed phasing
three-impulse maneuvers, the ToF is kept fixed (to enforce the desired CP), and an
additional constrain is added for the mid-point Δ𝑣 .

Table 7.3: Constraints for the SQNLP algorithm for detailed phasing trajectories.

Constraint Equality Equation
Time-of-Flight (ToF) ToF = ToF− + ToF+
Mid-Point 𝑥 Position Δ𝑥 = 𝑥2+ − 𝑥2− = 0
Mid-Point 𝑦 Position Δ𝑦 = 𝑦2+ − 𝑦2− = 0
Mid-Point 𝑧 Position Δ𝑧 = 𝑧2+ − 𝑧2− = 0
Mid-Point 𝑥 Velocity Δ𝑣𝑥2 = 𝑣𝑥2+ − 𝑣𝑥2−
Mid-Point 𝑦 Velocity Δ𝑣𝑦2 = 𝑣𝑦2+ − 𝑣𝑦2−
Mid-Point 𝑧 Velocity Δ𝑣𝑧2 = 𝑣𝑧2+ − 𝑣𝑧2−

The algorithm is using half of the total ToF as initial guess for each leg; however,
that is not forced for the final solution, meaning that the exact timing for the mid-point
patch point is left free for the algorithm to use in the optimization process. While the
initial and final positions are kept fixed, the algorithm is allowed to modify the initial
and final states’ velocities by adding Δ𝑣1 and Δ𝑣3 respectively. The algorithm will then
search for a trajectory that satisfies the constrains from Table 7.3 while minimizing the
total Δ𝑣 , calculated as

Δ𝑣 = Δ𝑣1 + Δ𝑣2 + Δ𝑣3 =

=

√︃
Δ𝑣2𝑥1 + Δ𝑣2𝑦1 + Δ𝑣2𝑧1 +

√︃
Δ𝑣2𝑥2 + Δ𝑣2𝑦2 + Δ𝑣2𝑧2 +

√︃
Δ𝑣2𝑥3 + Δ𝑣2𝑦3 + Δ𝑣2𝑧3 .

(7.3)

The result for each trajectory that has an equivalent CP (if the base CP is 10%, a CP
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of 5% and 15% would be an equivalent ±5% difference in CP) is compared, and the one
with the lowest total Δ𝑣 is selected.

The results with minimum Δ𝑣 for each of the different cases in CP are added to the
base SPT as a phasing mechanism to allow for each combination of orbits to have
any percentage of CP available. The results can be seen in Fig. 7.5 and Table 7.4. We
can see that for each specific case, the minimum Δ𝑣 case occurs, obviously, for the
cases where only the CP given by the original SPT is used. As the CP deviates more
from the original SPT case, the Δ𝑣 increases, until it reaches a maximum point, and
then decreases again until the next multiple of the SPT CP is reached. This point is
approximately at the mid-point between both SPT CP, and coincides with the change
between the optimality of TOFlonger and TOFshorter. This is because the further away
from the original ToF a maneuver is, the more it deviates from the periodic orbit, and
the larger the Δ𝑣 is necessary to satisfy the constrains.

Table 7.4: Properties of the three-impulse maneuvers for detailed phasing.

Single Periodic Transfer (SPT) Worst Case Three-Impulse Maneuver
Change in Phase

(CP) (%)
Δ𝑣

(m/s)
Maneuver ToF

(days)
Change in Phase

(CP) (%)
Δ𝑣

(m/s)
Maneuver ToF

(days)
Case
1

10.4 53 177.00 5.4 1 84.49

Case
2

28.3 87 177.41 15.3 2 79.71

Case
3

62.2 152 179.73 37.2 5 76.00

Details of the performance of these three-impulse maneuvers are shown in Table 7.4.
We see that the three-impulse maneuvers for detailed phasing follow closely the
trajectory of the period orbit, and the maneuvers’ Δ𝑣 are very similar to the base
maneuver Δ𝑣 . The differences are, for Case 1, 2 and 3 only an extra 1, 2 and 5 m/s of
added Δ𝑣 for the worst case scenario. We see that the thesis detailed previously in
which combinations of SPT with as low as possible CP are preferable: introducing an
extra maneuver for detailed phasing gets progressively more expensive the higher the
SPT CP is, even if in general they remain small. However, it is worth considering the
maneuver time in these results, which will be explored in detail in Section 7.2.4, as fuel
usage is not the only important variable, and a consideration of maneuver time could
influence the final decision regarding optimality of the architecture.
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Figure 7.5: Single Periodic Transfer (SPT) combined with three-impulse maneuvers for
detailed phasing.

7.2.3 Launch and Insertion to Parking Orbit

This section introduces the launch and insertion to the Parking Orbit, in order to
later target the appropriate parking orbit to rendezvous with the OTV (or insert the
OTV into the appropriate order, for the first mission). Since launch vehicles may vary
in their performance (and this is outside of the scope of this study), we assume the
spacecraft is firstly inserted into a circular parking LEO with an altitude of 250km (and
therefor a velocity of 7.75 km/s). In this way, we assume equal conditions for any
launch vehicle used, and it can be later adapted when the characteristics for each
specific mission are defined. From the LEO, the spacecraft will target an insertion into
one of the previously selected Parking Orbits. A schematic of such maneuvers can be
seen in Fig. 7.6.

To find the transfers, stable manifolds of the Parking Orbits will be calculated by
slightly perturbing the periodic orbits and propagating backwards in time until a
crossing with the 𝑦-axis is found near the physical space of the parking LEO. From
literature[37], we know that manifolds from Lagrange Point Orbits will have crossings
on the far side of the Earth from the Lagrange Point, which is also advantageous for
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Figure 7.6: Insertion maneuver to parking orbits from LEO after launch.

the insertion maneuver. From these first guesses, a Differential Correction (Single
Shooting) and Numerical Continuation Algorithm (slightly modified from the ones
described in Section 3.2 and Section 3.5) will be used to refine the solution by fixing the
initial position (insertion to Parking Orbit) and progressively getting the final position
to LEO. The differences in velocity at both extremes of the trajectory will be the total
additional Δ𝑣 needed for this maneuver: while the Δ𝑣 at Earth side will be high, the Δ𝑣
at the Parking Orbit insertion point will be small, as it starts from an initial guess of
virtually 0 (the manifold initial perturbation), which will give a good approximation of
the performance of the maneuver for different Parking Orbits.

Table 7.5: Insertion maneuver from LEO to different DS-OTV parking orbits.

Insertion Δ𝑣 (km/s) Insertion ToF (days)
Case 1 3.524 129.21
Case 2 3.469 129.60
Case 3 3.249 133.16

While the results from Table 7.2 show that when using transfers as phasing
mechanism the best options are, with respect to Δ𝑣 consumption, successively, Case 1,
2 and 3, when taking into account the insertion into the pair of orbits, the picture flips.
Case 1 has an insertion Δ𝑣 55 m/s higher than Case 2, while Case 2 has an insertion Δ𝑣

220 m/s higher than Case 3. The ToFs are virtually identical for insertion into any of
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the three cases.
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Figure 7.7: Insertion maneuver and Single Periodic Transfer (SPT) detailed phasing
combination.

In Fig. 7.7, a combination of the insertion maneuver and a phasing maneuver by
SPT is plotted in a similar fashion as the original three-impulse maneuver graph in
Section 7.2.2 (Fig. 7.5). Even with the small increase in Δ𝑣 when using the three-impulse
maneuvers detailed phasing, Case 3 still has the least amount of total Δ𝑣 (for an
insertion and a phasing maneuver added together). The reasoning behind the maneuver
time brought before now is even more clear: Case 1 has the larger Δ𝑣 requirements
while having higher maneuver time requirements. The inclusion of the insertion
maneuver from launch really skews the results into favoring a combination of orbits
with disparate periods, having higher SPT CP that can be refined with a detailed
phasing maneuver. With that taken into account, it becomes obvious that choosing
the best option from the combination of parking orbits needs to take into account
a full DS-OTV lifetime analysis, as the break-point between front-loading the Δ𝑣
expenditure when inserting to the orbital architecture, versus choosing an option with
less Δ𝑣 insertion cost and higher SPT for phasing needs to be determined, as well as
the possible increments of maneuver time that it encompasses.
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7.2.4 Mission Lifetime Analysis

Since the most important factor in the DS-OTV architecture is how many mission
spacecraft it can service. the maneuvers in isolation do not show a complete picture. The
two limiting factors for the number of missions are the propellant usage for operations
(the less propellant used for operations, the more can be allocated for servicing mission
spacecraft) and the timing of the operations (duration of the operations can be a
constrain on mission spacecraft design, and constrain the frequency of successive
missions). Focusing on the SPT maneuvers, in the next two sections both factors are
analyzed, and an overall picture of the combined evaluation is given.

DS-OTV Mission Lifetime Operations Breakdown

Before getting into the evaluation of the different fuel usage and mission timeline, it is
beneficial to break down the lifetime operations of a typical DS-OTV mission scenario
using SPT as the main phasing mechanism. All analyses in this section will follow the
same operations for the DS-OTV mission (shown in Fig. 7.8), these being:

1. OTV Launch and insertion into parking orbit system (i.e. pair of Lyapunov
and Low Prograde Orbits). This first launch might include a mission spacecraft
docked with the OTV that can undock when in orbit, but it is irrelevant for the
evaluation of the rest of the mission.

2. Launch of next mission spacecraft into the parking orbit system. We will
consider insertion into the Low Prograde Orbit, as it will be the one used as base.
However, the Lyapunov Orbit could be used as base and the Low Prograde Orbit
as temporary for similar results.

3. The OTV executes a SPT from the Low Prograde Orbit to the Lyapunov Orbit, in
order to start the phasing maneuver.

4. The OTV stays in stand-by orbiting in the Lyapunov Orbit for 𝑛 full periods,
which brings it closer to be in-phase with the mission spacecraft orbiting the
Low Prograde Orbit. 𝑛 depends on the SPTCP.

5. The OTV executes a SPT from the Lyapunov Orbit to the Low Prograde Orbit.
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6. If necessary, the OTV executes a three-impulse maneuver for detailed phasing,
bringing both spacecraft in-phase and ready for proximity rendezvous operations.

7. After servicing the mission spacecraft, the OTV undocks. The mission spacecraft
leaves the parking orbit towards its scientific objective, while the OTV waits
on the Low Prograde Orbit for the next mission spacecraft (and the procedure
repeats from step 2).

8. The DS-OTV mission lifetime operations are considered finished when the OTV
is not able to service any further mission spacecraft. This could be due to any
external factor, but we will focus on the one that has the most direct input in the
design: the reserve fuel for mission spacecraft has run out.

Figure 7.8: DS-OTV mission operation breakdown for the trade-off analysis.

Propellant Usage Evaluation

From the results in Fig. 7.5 and Section 7.2.3, we can see that while the phasing
maneuvers have lower Δ𝑣 usage with smaller Lyapunov Orbit size, the case for insertion
is the opposite. To find the trade-off point, we follow the operations breakdown from
the previous section. As each mission spacecraft only has one maneuver taken into
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account (the insertion into the parking orbits), and all other maneuvers are left to the
OTV, the propellant usage for each case for the mission spacecraft will be constant and
equal for each successive mission. This can be seen in Table 7.6, which would still
maintain that, from the perspective of the mission spacecraft, Case 3 is more favorable
than Case 2, and Case 2 is more favorable than 1. Although the argument that the
insertion maneuver Δ𝑣 will be mostly provided by the launcher and not the mission
spacecraft themselves can be made, making this less influential, having as low as
possible insertion costs guarantees different launcher availability and lowers launcher
selection constrains (both the vehicle itself and the location).

Table 7.6: DS-OTV lifetime evaluation with Single Periodic Transfers (SPTs). OTV Δ𝑣
usage (cumulative) and mission spacecraft Δ𝑣 usage (per mission).

Δ𝑣 Usage (km/s)
Case 1 Case 2 Case 3

OTV (cum.) Mission Spacecraft OTV (cum.) Mission Spacecraft OTV(cum.) Mission Spacecraft

OTV Insertion 3.524 - 3.469 - 3.249 -
Mission 1 3.63 3.524 3.643 3.469 3.553 3.249
Mission 2 3.736 3.524 3.817 3.469 3.857 3.249
Mission 3 3.842 3.524 3.991 3.469 4.161 3.249
Mission 4 3.948 3.524 4.165 3.469 4.465 3.249
Mission 5 4.054 3.524 4.339 3.469 4.769 3.249
Mission 6 4.160 3.524 4.513 3.469 5.073 3.249

When looking at the OTV’s perspective, the initial launch maneuver is again
fixed and the same as each mission spacecraft launch. However, as the OTV will
execute numerous maneuvers during its lifetime, and these maneuvers have different
requirements for the different cases, the cumulative Δ𝑣 (sum of all Δ𝑣 used by the OTV
up to, and including, the current mission) will be used. For each servicing, the OTV is
expected to execute at the very least two SPT (operations 3 and 5, i.e. transferring
from Low Prograde Orbit to Lyapunov Orbit and back), and additionally a third
detailed phasing maneuver. As detailed in Table 7.4, the three-impulse detailed phasing
maneuver has a very small impact even in the worst case scenario, so for simplicity’s
sake it will not be included, as it would not alter the results. For each mission spacecraft
servicing, the OTV will spend the equivalent of two SPT, corresponding to 104, 174
and 304 m/s for Case 1, 2 and 3 respectively. The cumulative Δ𝑣 usage on maneuvers
for the OTV can be seen in the OTV column of Table 7.6. For more clarity, the same Δ𝑣
usage is plotted in Fig. 7.9 for the three cases. We can see that only for one mission
servicing, Case 3 is still the one with the lowest cumulative Δ𝑣 usage. At the time of
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the second mission servicing this is not the case any more, with Case 3 having higher
Δ𝑣 usage than the other two cases, and after that the differences keep increasing in
favor of Case 1, and to a lesser extent, Case 2. As having a DS-OTV architecture for
just one mission is not worthwhile, the answer is obvious. While having a higher
barrier of entry for mission spacecraft (insertion maneuver) is still something to take
into account, it is obvious that from the point of view of the lifetime Δ𝑣 usage of the
OTV, Case 1 (and thus, smaller Lyapunov Orbit sizes and longer Low Prograde Orbit
combinations) are the best alternative.
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Figure 7.9: DS-OTV mission lifetime cumulative Δ𝑣 evaluation for successive missions.

Maneuver Time Evaluation

Apart from the propellant usage, it is worth considering the maneuver time in these
analyses. As detailed in Table 7.5, the insertion maneuver times for the three cases
considered are roughly the same, so we will focus entirely on the on-orbit stand-by
time and phasing maneuver time. Keeping the assumption of using the Low Prograde
Orbits as the base orbits in the scheme, each SPT has a maneuver time equal to one
period of the Lyapunov Orbit in the pair: as the whole Lyapunov Orbit family has
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similar period values, the maneuver time for the simple SPT maneuver is very similar
in all three cases. That means that if the required phasing maneuver is exactly the value
of the SPTCP (from Table 7.4, 10.4%, 28.4% and 62.2% for Case 1, 2 and 3 respectively),
the maneuver time would be similar. When the CP needed is not that exact number
(which would happen most of the time) and more granularity is needed, for example a
CP of 75%, the detailed phasing maneuver greatly changes that. Following the results
of Table 7.4 and the lifetime operations breakdown of Section 7.2.4, this amount of CP
would require, for each specific case:

• Case 1: Transfer from Low Prograde to Lyapunov Orbit, 7 full periods stand-by,
and then a detailed phasing maneuver for 2.2% CP. Total maneuver time is
1320.93 days.

• Case 2: Transfer from Low Prograde to Lyapunov Orbit, 2 full periods stand-by,
and then a detailed phasing maneuver for 18.4% CP. Total maneuver time is
436.67 days.

• Case 3: Transfer from Low Prograde to Lyapunov Orbit, 1 full periods stand-by,
and then a detailed phasing maneuver for 12.8% CP. Total maneuver time is
242.27 days.

At the same time, and as explained in the previous section, there are two effective
transfers for each maneuver (from Low Prograde Orbit to Lyapunov Orbit, stand-by,
and then re-inserting to Low Prograde Orbit), which equal a propellant usage equivalent
to 104, 174 and 304 m/s for Cases 1, 2 and 3 respectively. As we are seeing, even
though Case 1 seems the most adequate for an architecture using SPT for phasing
purposes from the Δ𝑣 point of view, the low CP for each orbital period makes the
stand-by time extremely long compared to Cases 2 and 3. These consideration might
be more important than any Δ𝑣 savings possible for each specific mission. In the first
design iterations and concepts for the DS-OTV, the plan that was brought up was to
launch mission spacecraft with a frequency of around 1 year, which would make
Case 1 completely infeasible for many scenarios, the one described here included.
At this point it even might negate the whole usage of SPT as phasing mechanism,
necessitating an alternative method. However, this is out of the scope of this study and
will be expanded in further research.
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Another timing constraint to take into account is the stand-by time of the mission
spacecraft. If the operation windows of the mission spacecraft are very narrow, either
due to space travel requirements or general lifetime of the spacecraft’ components, it
would be beneficial to keep the parking orbit of the spacecraft as short as possible.
This would allow for shorter worst case scenario stand-by times. As Lyapunov Orbits
have very similar orbital periods, this supports the use of Low Prograde Orbits as the
parking orbit, and even more so the shorter ones, meaning Case 3 would be more
advantageous than Case 2, with Case 1 being the worst.

7.2.5 Feasibility and Mission Lifetime Trade-off Discussion

From the analyses in the previous sections, and the lifetime analysis in the last part
of the study, we can try to draw some final conclusions regarding the optimality
of different pairs of orbits in this architecture. Starting from Fig. 4.11, we see that
orbits in both the Lyapunov and Low Prograde Orbits have similar levels of Jacobi
Constant (energy level) and stability parameters. This suggested that insertion into
these orbits would have similar propellant usage and require similar maneuvers. This
is corroborated in Table 7.5, showing that although some cases have slightly higher
insertion costs, when accounting for other maneuvers needed for the architecture to
function (Section 7.2.4), it becomes less important. Here also enters the launcher
selection: as it is not decided yet, we cannot draw a strict line with the requirements,
but it seems plausible that any launcher being able to insert into one case, it would also
be able to be used for the others.

Focusing on the SPT, propellant usage ranges between around 30 m/s to almost
300m/s (Fig. 5.6). Although the difference is considerable from the lower cases to
the higher ones makes it feasible to execute any kind of maneuver, the difference
really comes to light with cumulative Δ𝑣 usage during the lifetime of an OTV (Fig. 7.9).
Orbital pairs with similar orbital period had the lower range of Δ𝑣 SPT, and should be
favored in order to maximize the amount of mission serviced during the OTV lifetime,
as this is a key design advantage of such an architecture. However, these kind of
orbital combinations, although allowing for very small CP maneuvers when using
SPT, are not suitable for larger phasing maneuver requirements, as they maneuver
time skyrockets. It seems obvious then, that if the objective is to make us of SPT as
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a phasing mechanism, the orbital periods should be different enough to allow for
the maneuvers described previously, and then using detailed phasing maneuvers
(Section 7.2.2) to compensate for the missing phasing.

However, designing a mission scenario with the objective of using a specific orbital
mechanism, instead of maximizing mission output by using the orbital mechanisms
available is counterproductive. We have seen that in order to use SPT as phasing
mechanisms, the parking orbits used need to be carefully chosen, and even then,
alternative transfer trajectories are needed for most of the cases in order to effectively
bring the spacecraft in phase and ready for rendezvous. At this point it becomes
obvious that relying entirely on this concept is not feasible, and alternative methods of
phasing, or even different parking orbits need to be studied that suit the conditions
better. This does not mean SPT as phasing mechanism are completely useless, but that
they should be used as one tool more in a group of different possible strategies to aid
in the design of a DS-OTV mission architecture, as their periodic and mostly stable
nature, they fact that transfers between orbits can be executed instantly and with
relatively low Δ𝑣 usage, and the ease of access from/to Earth still make them favorable
candidates to be taken into account.

7.3 Multiple Periodic Transfers Feasibility Analysis

In this section, a more detailed analysis of the phasing possibilities of the MPT will be
done, akin to the one done in Section 7.2. To keep the results readable, and the length
contained, the focus will be set in orbits in the L1 families, and the Low Prograde
Orbits are going to be used as a base. Equivalent results can be obtained for orbits in
the L2 families, and using Lyapunov Orbits as a base for the specific cases discussed
here (or any other case), is just a matter of substituting the CP values for the ones
obtained in previous sections.

First, it is worth showing the hand-picked combinations of orbits that will be used
as benchmark. From the chosen cases in the previous section, Case 3, Case 5 and Case
7 will be further studied (shown in Fig. 7.10). The selection of these cases is again done
with the main objective of showing the variety of possibilities and the properties they
have. Table 7.7 reproduces the results from Table 5.3 for the specific cases selected,
with only the appropriate CP values used for the Low Prograde Orbit as a base study,
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Table 7.7: Characteristics of the Multiple Periodic Transfer (MPT) example cases for
feasibility analysis, from Fig. 5.17 and Fig. 5.18.

Lyapunov
Orbit Period

(days)

Low Prograde
Orbit Period

(days)

CP
short

CP
long

CP
full

CP full
+ short

CP
full +
long

MPT
Man. Δ𝑣
(m/s)

Worst Case
Three-Imp. Man.

Δ𝑣 (m/s)
Case
3

191.84 87.69 −18.4 137.2 118.8 100.4 256 768 8

Case
5

183.85 108.30 −22.4 92.2 69.8 47.3 162 616 4

Case
7

179.97 140.30 −27.8 56.1 28.3 0.48 84.3 501 2

as well as some extra information useful to give context (Δ𝑣 usage of the maneuvers, as
well as the later explained detailed three-impulse maneuver Δ𝑣 usage). However, it is
worth noting that the values for the previously defined CP𝑓 𝑢𝑙𝑙+𝑠ℎ𝑜𝑟𝑡 and CP𝑓 𝑢𝑙𝑙+𝑙𝑜𝑛𝑔 are
only the first of the maneuvers that can be done (I-1.5O-E), but in this part of the study
more combinations will be used.
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Figure 7.10: Example Multiple Periodic Transfers (MPTs) used in the detailed phasing
analysis (characteristics showed in Table 7.2).

The basis of the study is exactly the same as in Section 7.2, i.e. evaluating the
possibilities of phasing when using periodical transfers, this time MPT, over a period of
time. Even though the MPT have more possible cases, these transfers are still discrete
in nature, like the SPT, so a three-impulse maneuver for detailed phasing is executed
when even more precision is needed for the phasing result. The conceptualization and
process used to obtain these maneuvers, as well as the limitations and particularities
are all exactly the same as the ones in Section 7.2.2, and will not be repeated here to not
increase the length of the text, so the reader is referred to that section for the details.
However, there is a particularity to take into account: SPTs had constant periodic
transfer opportunities due to the nature of the orbital crossings, while MPTs have
more complex possibilities due to the combination. In the first section of this part of
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Table 7.8: Insertion-𝑛Orbit-Exit Scheme (I-nO-E) schemes and the correspondent
Change in Phase (CP) maneuvers used as building blocks.

Insertion-𝑛Orbit-Exit Scheme (I-nO-E) Change in Phase (CP) details
I-0.5O-E CP𝑠ℎ𝑜𝑟𝑡 or CP𝑙𝑜𝑛𝑔
I-1O-E CP𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑
I-1.5O-E CP𝑓 𝑢𝑙𝑙 + CP𝑠ℎ𝑜𝑟𝑡 or CP𝑓 𝑢𝑙𝑙 + CP𝑙𝑜𝑛𝑔
I-2O-E CP2 𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑
I-2.5O-E CP2 𝑓 𝑢𝑙𝑙 + CP𝑠ℎ𝑜𝑟𝑡 or CP2 𝑓 𝑢𝑙𝑙 + CP𝑙𝑜𝑛𝑔
I-3O-E CP3 𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑
I-3.5O-E CP3 𝑓 𝑢𝑙𝑙 + CP𝑠ℎ𝑜𝑟𝑡 or CP3 𝑓 𝑢𝑙𝑙 + CP𝑙𝑜𝑛𝑔

...
...

the text, we introduced the Insertion-𝑛Orbit-Exit Scheme (I-nO-E) nomenclature,
but the entire analysis has been mostly focused on the I-0.5O-E (CP𝑠ℎ𝑜𝑟𝑡 and CP𝑓 𝑢𝑙𝑙 ),
I-1O-E (CP𝑓 𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 ) and I-1.5O-E (CP𝑓 𝑢𝑙𝑙+𝑠ℎ𝑜𝑟𝑡 and CP𝑓 𝑢𝑙𝑙+𝑙𝑜𝑛𝑔). When more than one
full period is used for phasing, these concepts need to be refined and combined. In
Table 7.8, further details on how these schemes are built are presented, with the specific
CPs used in each case.
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Figure 7.11: Multiple Periodic Transfers (MPTs) with three-impulse maneuvers
combination for detailed phasing.

The full results for the three cases selected are shown in Fig. 7.11. Each of the three
cases is shown in a different color, and each of the probabilities in a different shape
(with I-1.5O-E and successive cases shown with only CP𝑠ℎ𝑜𝑟𝑡 or CP𝑙𝑜𝑛𝑔, to make the
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graph less convoluted). Some of the different I-nO-E schemes are marked, for more
clarity. As the study of insertion to the orbits is dealt with in detail in Section 7.2,
and again in an alternative case study in Section 6.1, and it is dependent mainly on
the energy level of the orbits used (and it doesn’t have influence in the later phasing
maneuvers), this maneuver has been left out to focus just on the phasing. Here we
can see that each of the benchmark cases exhibits very different behaviors: while
Case 7 has very regular MPT available, and all clustered together (meaning the MPT
possibility doesn’t provide much more available maneuvers than a simple SPT would),
Case 5 has more or less regular possibilities, but due to the different maneuvers in
action, as each different MPT case is further apart. Finally, Case 3 is the most different,
with fewer possibilities and very spread out, although in each of the different clusters,
a bit of detail can be obtained by combining the I-1O-E with a short or long stand-by.
We can also see that, according to Table 7.7, since the CP𝑠ℎ𝑜𝑟𝑡 of the three cases are
negative, and the CP𝑙𝑜𝑛𝑔 is larger than the CP𝑓 𝑢𝑙𝑙 , it is not clear or direct that a larger
I-nO-E maneuver will have a larger CP. The three impulse maneuvers for detailed
phasing follow the same structure as the results shown in Section 7.2, with very low
Δ𝑣 compared to the overall maneuvers. When analyzing the the lifetime operations of
a DS-OTV mission, when deploying the exact same strategy described in the previous
sections (and shown in Fig. 7.8), and only changing the SPT phasing maneuver for
the MPT maneuvers shown in this section, the same results as the ones provided in
Section 7.2.4 are found: while Case 7 needs less Δ𝑣 for the phasing maneuvers than
Case 5 and Case 3 (having the latter one the worst performance), introducing the
insertion maneuver and taking the OTV lifetime operation into consideration (with the
same caveats as before), Case 5 and specially Case 3 end up having lesser cumulative
propellant usage for the maneuvers themselves, prolonging the OTV operation life.

7.4 Lagrange Point Stand-by Maneuvers Feasibility

Analysis

When using a Lagrange Point Stand-by Maneuver, the insertion after launch for the
OTV question has a very clear answer (shown in Section 6.1.2). However, the DS-OTV
architecture contemplates the use of multiple missions during its lifetime, and one of
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the promoted advantages of such architecture is the ability to launch the successive
mission spacecraft at almost dry mass, lessening the requirements burden and cost at
launch.[71] The points raised in the introduction of the chapter become very important.
The main topic at search in this analysis is how can the trade-off be evaluated between
different usage cases in terms of total and specific propellant usage. For this reason, in
this section, we will evaluate different scenarios where the mission spacecraft are
being launched to different positions, and either the mission spacecraft executes the
phasing maneuvers, or the OTV executes them, and how this difference affects the
overall result.

7.4.1 Mission Operations Breakdown

The scenario used in the analysis is the following:

1. The OTV is orbiting its parking orbit (small or large Lyapunov Orbit from
the Lagrange Point Stand-by Transfers study, Section 6.1.2), as parking at the
Lagrange Point directly is not feasible in the long run due to stability and general
mission design constrains).[108]

2. The next mission spacecraft is launched, and needs to rendezvous with the OTV
at the parking orbit. To that effect, two alternative trajectory designs can be used:

• Case 1: the mission spacecraft is launched towards the Lagrange Point
directly. It parks there for a definite amount of time, and at the right time it
transfers to the parking orbit, where it can rendezvous with the OTV.

• Case 2: the mission spacecraft is launched and inserted directly to the
parking Lyapunov Orbit. At the same time, the OTV transfers from the
parking orbit to the Lagrange Point, parks there for a definite amount of
time, and at the right time, it transfers back to the parking orbit, where it
can rendezvous with the mission spacecraft.

3. After servicing operations, the mission spacecraft (or the mission spacecraft
together with the OTV) would execute the maneuvers necessary to prepare for
exit from the parking orbit, and after undocking the mission spacecraft would
leave for its scientific objective.
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4. The OTV would then repeat the same procedures for the following mission
spacecraft.

For these maneuvers, two main assumptions are made to simplify the study. We
assume that the launcher and upper stage kick engine takes care of all the Δ𝑣 at the
mission spacecraft’s LEO start point (between 3.182 − 3.1841m/s, from Table 6.1).
If the launcher is not able to provide all the Δ𝑣 necessary, the mission spacecraft is
responsible to provide the difference; however, this difference is going to be very
similar with all cases, and might be ignored. Another point to take into account is that
usually the heavier the payload at launch, the less Δ𝑣 is able to be provided by the
launcher. Therefore, cases where the mission spacecraft needs to carry extra propellant
for its maneuvers might carry extra penalty. We also assume that for the comparison
made here, the mission spacecraft and the OTV will undock at the parking orbit, and
the mission spacecraft will leave to its objective via an Earth swing-by.[71] Since these
maneuvers are highly launcher and specific mission dependent, they are left out of the
analysis for propellant usage purposes, but they should be taken into account for more
precise estimations.

These two cases are used as trade-off comparison examples for two different
operation philosophies:

1. In Case 1, the mission spacecraft carries most of the maneuver burden, aiming
for maximum OTV propellant savings. This strategy would, in theory, maximize
mission servicing capabilities for the DS-OTV architecture, but does not allow
for almost dry mass launch for the mission spacecraft, as it needs propellant to
maneuver and rendezvous with the OTV. After docking, the mission spacecraft
can replenish its propellant tank, and leave for its scientific objective with the
full Δ𝑣 required.

2. In Case 2, the OTV executes most of the maneuvers for phasing and rendezvous
with the mission spacecraft. This strategy allows for minimizing mission
spacecraft weight at launch, as the launcher can provide most of the initial Δ𝑣
required for orbital insertion, and the propellant necessary for the rest of the
maneuvers before docking is small. However, the OTV has to spend more of its
propellant for maneuvers, leaving less available for future mission servicing.
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Figure 7.12: Two mission lifetime analyses cases used in the trade-off study.

7.4.2 Mission Lifetime Analysis

Both strategies are shown in Fig. 7.12 in a timeline graph for both spacecrafts, with
each status/position shown in different levels for ease of visual understanding. As
insertion times into the Lagrange Point or Lyapunov Orbits increase, at the worst case
scenario by 30 days, and the transfers between orbits and Lagrange Point, as well as
the stand-by time at the Lagrange Point itself is highly dependent on each mission’s
specific constrains and phasing requirements (and should be optimized individually),
the ToF discussion has been left out of this discussion, and the focus is put on the more
critical propellant usage aspect of the maneuvers.

The Δ𝑣 totals for a single mission for each spacecraft are shown in Table 7.9. We
can ask two questions:

1. Which parking orbit is better, a smaller one or a larger one?

2. Which architecture is better, Case 1 or Case 2?

We can clearly see that Case 1 has the overall lesser Δ𝑣 usage for small and large
orbit cases. We can also see that for both cases, the small Lyapunov Orbit has an
overall lower Δ𝑣 spending. Looking at the totals, it also seems that Case 1 might be
more adequate, as the Δ𝑣 spending is smaller than Case 2 (small orbit difference is
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Table 7.9: DS-OTV mission lifetime analysis using two different Lagrange Point
Stand-by Transfers philosophies, with each spacecraft’s Δ𝑣 usage for the small and
large Lyapunov Orbits.

OTV transfer Δ𝑣 (m/s) Mission spacecraft transfer Δ𝑣 (m/s)
Orbit to

LP
LP to
Orbit

Total LP
insertion

LP to
Orbit

Orbit
insertion

Total Total Δ𝑣
(m/s)

Case 1 Small - - - 339.392 145.68 - 485.072 485.072
Large - - - 339.392 378.41 - 717.802 717.802

Case 2 Small 145.69 145.68 291.37 - - 226.162 226.162 517.532
Large 378.4 378.41 756.81 - - 81.281 81.281 838.091

32.46 m/s, while large orbit difference is 120.289 m/s). Case 1 also has less maneuvers
overall (2 maneuvers, while Case 2 has 3 maneuvers). However, in Case 1 all the
maneuvers are done by the mission spacecraft, meaning that the Δ𝑣 needed to break at
the Lagrange Point after launch, and transfer from the Lagrange Point to the parking
orbit afterwards needs to be provided by the mission spacecraft. This means that in
Case 1, the mission spacecraft needs to launch with, at the very least, 485.072 and
717.802 m/s of Δ𝑣 (equivalent to propellant mass), for the small and large Lyapunov
orbit cases respectively. Comparatively, in Case 2, the Δ𝑣 needed by the mission
spacecraft before re-fueling at the OTV is considerably smaller, at 226.162 and 81.281
m/s, a difference of 258.91 and 636.521 m/s respectively. For Case 1, the OTV does not
need to execute any phasing or transfer maneuver, and therefore has all propellant
available for servicing mission spacecraft. For Case 2, the OTV will execute the phasing
maneuver, spending 291.37 and 756.81 m/s for small and large orbits respectively.

Using Tsiolkovsky’s rocket equation (Eq. (7.1)), and the estimated DS-OTV mission
characteristics from Table 7.1, the values of Δ𝑣 can be converted into propellant usage
for each of the maneuvers. To simplify the analysis, the OTV original insertion will
be not taken into account (as it might have a mission spacecraft already docked,
which would influence how much propellant is left[71]). To begin with, we obtain
the propellant mass needed for the mission spacecraft for each case. For Case 1, the
mission spacecraft will have to be launched with, at least, 63 and 105 kg of propellant
respectively for the small and large Lyapunov Orbit cases, while the propellant needed
for the mission spacecraft maneuvers in Case 2 is 31 and 11 kg. The propellant usage
for the OTV is not so straight-forward to calculate, as each successive maneuver,
although requiring the same Δ𝑣 , will use slightly less propellant, as the wet mass of
the OTV will be smaller every time. Each mission servicing will expend the OTV
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maneuvering Δ𝑣 equivalent propellant and the 400 kg additional propellant that will be
transferred to the mission spacecraft. The results for the number of mission being
able to be serviced by the OTV in each of the separate cases is shown in Table 7.10
(without taking into account any other propellant usage for close proximity and
docking procedures, station-keeping, or any other extra maneuvers needed).

Table 7.10: Mission servicing lifetime analysis for the OTV. 1) last servicing of 174 kg of
propellant. 2)253 kg of propellant left, not enough for OTV phasing maneuver.

OTV wet mass after each servicing (kg)
Start 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Case 1 5000 4600 4200 3800 3400 3000 2600 2200 1800 1400 1000
Case 2 Small 5000 4096 3284 2554 1896 1306 10001) - - - -

Large 5000 3396 2178 12532) - - - - - - -

This analysis clarifies the situation. Focusing for the moment on Case 1, a total of
10 spacecraft could be serviced (in both small and large Lyapunov Orbit cases), as the
entire 4 ton propellant deposit can be used for this purpose. For Case 2, since the OTV
is executing the phasing maneuvers, some propellant needs to be allocated to that. In
the small Lyapunov Orbit case, the OTV can fully service 5 mission spacecraft, while
having enough propellant left for a partial servicing of a 6th mission spacecraft (of 174
kg propellant, less than half the normal amount). An OTV in a large Lyapunov Orbit
would only be able to service 2 mission spacecraft, and would have 253 kg of propellant
left in its tank, 50 kg short of the necessary amount for a new phasing maneuver.

With these results, we are able to partially answer the questions that were postulated
previously regarding the feasibility of either architecture, and the importance of
the orbital size in the analysis. Lyapunov Orbit size has a considerable influence in
the lifetime expectations of the DS-OTV mission: larger orbits carry additional Δ𝑣
expenses that cannot be ignored, handicapping both Case 1 (by needing an extra 42 kg
of propellant at launch in these specific examples) and Case 2 (by drastically reducing
the amount of servicing missions from 5-6 to 2).

1. Which kind of parking orbit is better, a smaller one or a larger one?

Answer: Within mission requirements and constrains (regarding power, com-
munications, etc.), smaller Libration Point orbits provide better environments,
reducing the propellant required for phasing maneuvers and at launch.
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Answering the second question proves a bit more complicated, due to the lack of
concrete launcher characteristics. At face value, it seems Case 1 is clearly superior,
being able to service 10 mission spacecraft for any parking orbit used, compared to the
5− 6 and 2 servicing operations of Case 2 for small and large Lyapunov Orbit. However,
the mass at launch for each of the mission spacecraft is considerably different, and
doubles for the small orbit (from 31 to 63 kg) and is almost ten times larger for the
large orbit case (from 11 to 105 kg). Taking into account the dry mass of the mission
spacecraft of 350 kg, the launch mass of Case 1 is increased by 8.4% for the small
orbital size and by 26% for the larger orbital size. At this point, the discussion cannot
be advanced further, as the answer to if an increase of 32 and 94 kg of launch mass is
feasible is entirely dependent on the launcher selected. Previous launches of Japanese
missions,[5] as well as previous studies,[26] indicate that these values of mass launch
are feasible; however, if the target of the DS-OTV architecture was to use smaller and
more readily available launcher vehicles, this might become a problem.

2. Which architecture is better, Case 1 or Case 2?

Answer: If an increase of launch mass of up to 26% (to a total of 455 kg launch
mass) is acceptable, Case 1 is superior, as it allows for more missions serviced. If
launch vehicle constrains limit the launch mass, Case 2 is more desirable, as
allows launching at dry mass with an additional worst case scenario of 31 kg of
propellant.
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8
Conclusions and Future Work

In this work, phasing trajectories have been introduced and designed for a future Deep
Space Orbit Transfer Vehicle (DS-OTV) mission. In a multi-spacecraft architecture,
phasing strategies are paramount to the feasibility of the concept, and as such, need
to be extensively studied. The most prominent novelties introduced have been the
systematization of the maneuvers’ nomenclatures, the creation of tools to find any
possible combination, as well as the classification and evaluation of the results with
regards to different metrics.

In Chapter 1, an in-depth literature review and historical look on previous OTV
concepts has been done. The focus has been put on highlighting possible heritage from
two fronts, past ISAS/JAXA missions for in-house technology, and past OTV missions
in general for study methods and previously studied concepts. In this part of the thesis,
a lack of studies on OTV concepts on deep space (i.e. not Earth orbit) was found,
which also introduced a lack of proper tools and concepts to tackle such a concept.
These included, but were not limited to, the study of a wide array of candidate orbits
for OTV parking purposes, as well as the existence of concepts to properly create
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and characterize phasing trajectories and their availability in these orbits, as most
past studies have focused on either Earth orbital systems, or targeted very specific
orbital constraints related to existing missions. Therefore, the dynamical models and
mathematical concepts, as well as the trajectory design techniques used as a basis for
the research have been introduced in Chapter 2 and Chapter 3 respectively. These
included existing well-known techniques, as well as the building blocks for novel
algorithms introduced in this research for the purpose of filling the voids found in
previous studies.

Chapter 4 introduces and showcases the design of the Deep Space Orbit Transfer
Vehicle (DS-OTV) mission studied in this work. The new mission concept, based
on Hayabusa2 technical heritage, can aid in the successive development of multiple
deep space exploration missions by leveraging an OTV in the Earth’s vicinity. In this
chapter, it was shown how the existence of such an OTV can aid in the launching and
operations of successive deep space exploration missions by reducing costs during
launch, adding flexibility in the operations phase and extending the range of reachable
objectives for small class missions with limited propulsion capabilities. The different
concepts used from this point onward in the research were introduced, including
scenarios for inserting into the transfer and parking orbits, escaping the parking orbit
and inserting into deep space trajectories, and finally an overall mission sequence and
how it could adapt to the different scenarios previously exposed. In the last section of
this chapter, periodic orbits in the Earth’s vicinity that could serve as transfer and
parking orbits for the spacecraft were surveyed. From the different orbit families, and
due to their characteristics, a combination of orbits in the Lyapunov and Low Prograde
families was chosen to further study. The Low Prograde Orbits selected have a very low
perigee altitude, which allows for rapid insertion and flyby opportunities. These Low
Prograde Orbits share a dynamical space with the Lyapunov Orbit family, a property
that can be used to adjust the phasing between the OTV and mission spacecraft.

In Chapter 5 the possibilities that these orbits could bring to a DS-OTV architecture
by means of phasing maneuvers was further studied by introducing periodic transfers
as a mechanism. Low Prograde Orbits have direct and low Δ𝑣 transfer requirements to
the Lyapunov Orbits, a property that can be used to adjust the phasing between the
OTV and mission spacecraft. Specific parameters and terminology were created and
introduced in order to be able to compare the performance and characterize their
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properties and usability as phasing mechanism. Single and multiple periodic transfers
were separately treated, as they bring increasing complexity, and typical mission
scenarios were introduced. The performance indices were evaluated as a factor of fuel
usage, time spent, change in phase obtained and the physical properties of the orbits
themselves. Detailed results were showcased for a subset of chosen orbital pairs in
order to further study their usability, and a method to refine the phasing maneuvers
was introduced in order to make the different combinations usable. A feasibility and
performance study of a DS-OTV mission using these orbits as base was done, and the
different possible maneuvers and limitations that such an architecture brings were
found. The performance was compared, and a trade-off study focusing on fuel usage
and time constrains was done, giving indications on which combinations are more
advantageous due to the different metrics. It was found that while periodic transfers
are not able to give as detailed change in phase as it would be needed in order to cover
100% of the possibilities, they are able to bring the spacecraft to advantageous situations
with very low amounts of Δ𝑣 and reasonable time frames. At these points, detailed
phasing maneuvers that add only a slight amount of Δ𝑣 can be used to effectively bring
the spacecraft to a rendezvous situation. The main novelties introduced in this Chapter,
apart from the possible phasing maneuvers themselves, was the introduction and usage
of specific concepts created ad hoc for phasing problems, as well as the techniques
to study these maneuvers, including the novel Multiple Orbital Crossings Search
Algorithm (MOCSA) used to deal with the more complex multiple periodic transfers.

While the previous chapter focused on tandem orbits to facilitate phasing opportu-
nities, alternative phasing scenarios were introduced in Chapter 6, which focused on
in-orbit strategies for phasing, without the necessity of extra periodic orbits. Two
main methods were introduced, the first of them focusing on the exploitation of the
Lagrange Points as a temporary aid, and the second analyzing direct transfers from
and to the same orbit.

The Lagrange Point stand-by transfers were designed to reduce the influence
of the parking orbit in the phasing maneuver design. The generation of insertion
maneuvers from a tentative LEO after launch, to the Lyapunov Orbit family, including
the singular case of inserting directly into the Lagrange Point, at the center of the orbit
family was done. The focus was put on the Δ𝑣 and ToF usage for the insertion to each
orbit, and the results were compared in order to find ideal insertion trajectories into
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the Lagrange Point, for easing the successive phasing. The results show a trade-off,
with decreasing fuel usage with increasing orbit size, and the opposite for the ToF.
The next part of the study analyzed the transfers between the Lyapunov Orbits and
the Lagrange Point. These maneuvers can be used if an insertion to the Lagrange
Point is not directly feasible, or the spacecraft is already orbiting in space. A linear
relationship between Δ𝑣 and size of the Lyapunov Orbit was found, and ToF also
increased with orbit size. Since most of the Lyapunov Orbit family shares very similar
periods, using smaller orbits (while fulfilling any other mission constrains) was the
most adequate maneuver, as the Δ𝑣 was smaller and ToF shorter. Finally, example
combination maneuvers were constructed, from launch to Lagrange Point insertion,
including the stand-by phasing position. The performance of each case and the reasons
behind the differences in Δ𝑣 and ToF were evaluated. Three main cases were compared,
ranging from insertion directly into the Lagrange Point, to the usage of a small and
large Lyapunov Orbit. It was found that when inserting directly from launch, when
no other constrains are present, using directly the Lagrange Point as a temporary
stand-by point for phasing was the most beneficial strategy both in terms of fuel
usage and ToF. Regarding a lifetime analysis for the DS-OTV, two cases were taken
into account for successive mission spacecraft that needed to rendezvous with the
OTV. With the limited mission constrains available at the time of the writing of this
research, a characterization of the fuel and time used for each case was done, and a
rationalization of which cases would suit better different mission scenarios. The final
decision is highly dependent on launcher performance and the number of missions
planned to be serviced by the DS-OTV, so firm conclusions were difficult to obtain.
However, the main trade-off is between lower Δ𝑣 expenditure, but having the mission
spacecraft execute the maneuvers, or higher Δ𝑣 maneuvers done by the OTV. This
could render the most optimal maneuvers found here not feasible, if the actual fuel
availability of mission spacecraft after launch is low, due to launching with smaller
vehicles or at near dry-mass.

Direct transfers for in-orbit phasing were introduced in the second part of Chapter 6.
Auxiliary trajectories based on invariant manifolds of selected benchmark parking
orbits of the Lyapunov and Low Prograde families were used as a base for these direct
transfers. The introduction of the Direct In-Orbit Phasing Algorithm (DIOPA), as well
as more ad hoc concepts for the study of these phasing maneuvers were the main



175

novelty of this section. The algorithm was used to find the trajectories, and a study on
the availability of them, the fuel usage, the ToF and the phasing possibilities that they
provide was done. Different dynamical structures to facilitate phasing were found,
highlighting the availability of a wide range of phasing possibilities for all studied
orbits, but at the cost of high fuel usage and/or ToF (before any specific optimization
was done). This section also analyzed the structure of the results in the context of the
distribution of the possible maneuvers on the physical space of the orbits. Due to the
periods of these orbits and the timing constrains of successive launched missions, not
only is the ToF of phasing maneuvers important, but also the locations where these
maneuvers can be executed. Interesting results were found, favoring different locations
for each of the orbital families, both in density of solutions and the characteristics
themselves.

Chapter 7 takes some of the possible phasing maneuvers introduced in previous
chapters and introduces them into a lifetime feasibility study of a DS-OTV mission.
Different scenarios were taken into account, and the results analyzed with the objective
of finding the overall best combination of orbits and maneuvers with regards to
amount of serviced mission spacecraft, break-even point between different orbital
combinations, and how this affects the lifetime operations of a DS-OTV. However, the
lack of actual mission requirements and constrains for the OTV and any of the mission
spacecraft severely limits the extent of this study, as analyzing any and all possible
combinations is near-impossible in a reasonable time-frame.

Finally, and summarizing, this work tries to contribute to the design process of this
novel concept by combining the possible phasing maneuvers available and examining
their possibilities and weak points. While designing optimum solutions without clearly
predefined requirements is a moot point, the main result of this research is to give an
insight into the performance of a general DS-OTV mission design with the hope to help
narrow down large space of possible solutions to be further studied. Another notable
contribution is the creation of a framework and nomenclature in which to analyze the
phasing maneuvers which, as far as the author was able to research, did not exist in the
past. This includes the tools and methods used to obtain and process these maneuvers.
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8.1 Recommendations for Future Work

This work has laid out the basics of the DS-OTV concept introduced, and the results
here presented can be used as building blocks to continue the research and development
of such a mission. However, there is much more to be analyzed with regards to the
DS-OTV.

In future works, more information on the properties of the spacecraft and launcher
involved need to be used, in order to draw better conclusions. If any more mission
restrictions are available, the use of planar orbits, or even the Lagrange Point itself
(due to solar interference for communications, power restrictions, etc.) might not be
feasible, so out-of-plane alternatives should be studied. The halo family of orbits,
bifurcated from the Lyapunov Orbit family becomes an interesting choice as it shares
most of its characteristics, while avoiding some of the drawbacks. Another topic worth
investigating is the phasing for specific scientific objectives for the mission spacecraft,
as even though theoretically any phasing is possible, there might be some restrictions
that need to be taken into account, and the orbital families in the vicinity of the L2
Lagrange Point might be more adequate, so more detail needs to be put there, including
power requirements. In addition, once some candidate promising cases are selected, an
optimization algorithm would help with the comparison to current and past flown
missions that used the Lagrange Points, and the feasibility of the usage of stand-by
trajectories for the DS-OTV mission architecture could be better assessed.
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A
Classical Mechanics

In this appendix chapter, classical mechanics developed by Newton and Kepler are
introduced. These formulations are the touchstone upon which all of the current
astrodynamics field is based on. In order to keep the main body of the Thesis streamlined
and to help with completeness of the work, they are explained here. Appendix A
introduces Newton’s formulation, while Appendix A details Kepler’s Laws of Planetary
Motion.

Newton’s Classical Mechanics

The current formulation of astrodynamics is an evolution of many different researchers
and schools throughout time. However, we can pinpoint the start at the moment the
mathematical tools to analyze the problem were first formalized, in Newton’s Principia
(officially named Philosophiæ Naturalis Principia Mathematica)[89]. In his work,
Newton formulated Newton’s Laws of Motion, a cornerstone of classical mechanics.
These laws read, in modern terminology:
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First law Every particle continues in its state of rest or uniform motion in a straight
line relative to an inertial reference frame, unless it is compelled to change that
state by forces acting upon it.

Second law The time rate of change of linear momentum of a particle relative to an
inertial reference frame is proportional to the resultant of all forces acting upon
that particle and is collinear with and in the direction of the resultant force:

𝐹 =
d
d𝑡

(
𝑚𝑉

)
=

d
d𝑡

(
𝑚
d𝑟
d𝑡

)
. (A.1)

Third law If two particles exert forces on each other, these forces are equal in
magnitude and opposite in direction (action = reaction).

In the same work, Newton also formulated the Law of Gravitation, which states
that two particles attract each other with a force directly proportional to their masses
and inversely proportional to the square of the distance between them. In mathematical
notation, it takes the form

𝐹 = 𝐺
𝑚1𝑚2
𝑟 2

, (A.2)

where 𝑟 is the distance between the two particles. In this formulation, the inertial
mass of the object is identical to its gravitational mass, 𝐺 is assumed to be constant,
and the gravitational force acts instantaneously. If we take the simplest form, where
we only consider two bodies, we consider only the force acting on particle𝑚2 due to
the mutual gravitational attraction between𝑚1 and𝑚2:

𝐹 2 = −𝐺𝑚1𝑚2

𝑟 32
𝑟2 , (A.3)

where 𝑟 2 is the position vector from𝑚1 to𝑚2. In this form, the force acting on𝑚2

can be imagined to be caused by a gravity field generated by𝑚1. The strength of this
gravity field is the force per unit of mass of𝑚2 at its location:

𝑔2 = −𝐺𝑚1

𝑟 32
𝑟 2 . (A.4)
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Introducing the scalar quantity

𝑈2 = −𝐺𝑚1
𝑟2

+𝑈20 , (A.5)

where 𝑈20 is an arbitrary constant, 𝑈2 becomes a function of the relative positions of
bodies𝑚2 to𝑚1. This gravity potential, upon partial differentiation to the position
coordinates, derives the local field strength (from Eq. (A.4) and Eq. (A.5)):

𝑔2 = −∇2𝑈2 , (A.6)

where ∇2 is the nabla operator (gradient). Therefore, 𝑈2 is the potential of the force
field generated by body𝑚1 at the location of body𝑚2, and the potential energy of body
𝑚2 is𝑚2𝑈2. This force field, under the current assumptions, is conservative, i.e. it
is not explicitly depending on time, and the sum of potential and kinetic energy of
a body moving in this force field is constant. In astrodynamics, it is customary to
choose the potential at infinity equal to zero, 𝑈20− = 0. Thus, at any other distance the
gravitational potential is negative, and the gravitational potential of a particle𝑚1 at an
arbitrary distance, 𝑟 , can be expressed as:

𝑈 = −𝐺𝑚1
𝑟
. (A.7)

Kepler’s Laws of Planetary Motion

Kepler’s Laws of Planetary Motion, published by Johannes Kepler between 1609 and
1619, describe the orbits of the planets around the Sun. They can be summarized, with
additional comments that explain the behavior Kepler saw with modern concepts, as:

Kepler’s First Law The orbit of a planet is an ellipse with the Sun at one of the two
focal points (modeled as a two-body system with the Sun and the planet).

Kepler’s Second Law A line segment from the Sun to the planet sweeps out equal
areas in equal lengths of time (due to conservation of energy, and trading
potential energy for kinetic energy).

Kepler’s Third Law The square of the planets orbital period is proportional to the
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cube root of the semi major axis of it’s orbit, or, in equation form:

𝑇 3 =
4𝜋2

𝐺
(
𝑚𝑠 +𝑚𝑝

) 𝑎3 , (A.8)

where𝑇 is the planet’s orbital period, 𝑎 is the semi-major axis,𝑚𝑠 and𝑚𝑝 are the
masses of the Sun and the planet respectively, and𝐺 is the universal gravitational
constant. Additionally, this also defines the Mean Angular Motion 𝑛 as:

𝑛 =
2𝜋
𝑇

(A.9)
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B
Reference Frames Details

In this chapter, more details that were not included in Chapter 2 about the reference
frames and their particularities are included. These definitions and details are not
directly referenced or used in the research, but are still interesting to explain in detail
and complement the derivations and general flow of the work. They are not strictly
ordered and the sections may not follow one after another directly as in the main text
of the body, but are still included for completeness.

Inertial Reference Frames

An Inertial Reference Frame’s, also called Newtonian Reference Frame, formal definition
can be derived from Newton’s first law:

An inertial reference frame is a reference frame with respect to which a
particle remains at rest or in uniform rectilinear motion if no resultant
force acts upon that particle.
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From the formal definition it follows that if one inertial reference frame is known,
immediately an entire class of inertial reference frames is known: the family comprised
of those that perform a uniform rectilinear translational (no rotational) motion with
respect to the original inertial reference frame and which the time differs only by a
constant from the time in the original inertial reference frame.

Galilean Transformations Used to transform between the coordinates of two refer-
ence frames which differ only by constant relative motion within the constructs
of Newtonian physics.

In practice, we cannot use ’true’ inertial reference frames and we have to work
with pseudo-inertial reference frames. We simply choose reference frames for which we
can neglect the accelerations and rotations relative to a ’true’ reference frame while
still getting adequate results.

The transformation between an inertial and a rotational frame needs to account for
the Coriolis and centrifugal apparent accelerations due to the rotation of the frame.

Inertial Forces Definitions

Inertial or fictitious forces that seem to act on objects that are in motion within a frame
of reference that rotates respect to an inertial frame. They are proportional to the mass
of the body upon which they act.

Coriolis Force It is proportional to the rotation rate and acts in a direction perpendic-
ular to the rotation axis and ot the velocity of the body in the rotating frame (the
component of its velocity that is perpendicular to the axis of rotation).

Centrifugal Force It is proportional to the square of the rotation rate. Acts outwards
in the radial direction and is proportional to the distance of the body from the
axis of the rotating frame.
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