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This thesis considers about quantitative risk management using Extreme Value

Theory (EVT). We specifically focus on the use of EVT to study extreme financial

market risk, which is the risk of losses arising from movements in market prices,

from a quantitative point of view. This is because quantitative risk management has

now become a standard requirement for all financial institutions due to an increase

in number of extreme market risk events, especially post 1980s. Such events include

the Black Monday of 1987, the Dot-Com Bubble of 2000, the Global Financial Crisis

of 2007-2008, and the recent COVID-19 recession of 2020. Extreme market events are

rare but have high severity. The risk stemming from these extreme events is called

tail risk, which contributes to the propagation of deep and unpredictable financial

crises. Tail risk is clearly related to extreme events and hence the use of EVT is

natural and effective.

The standards of quantitative risk management are laid down by Basel Com-

mittee on Banking Supervision (BCBS). Financial institutions are asked to estimate

specific risk measures so that they can protect themselves against future extreme

market catastrophes. Risk measures can be understood as providing a risk assess-

ment in the form of capital amount that are set aside to absorb unexpected future

losses. Recently, the BCBS announced a change in the risk measure used for capital

requirements in internal market risk models, moving from the Value-at-Risk (VaR)

to the Expected Shortfall (ES). VaR is defined as a measure of the potential losses on

a portfolio of financial instruments resulting from market movements over a given

time horizon and for a probability level. Similarly, ES is a measure of the mean of the

losses exceeding VaR at a given probability level. The amendment is driven by the

fact that VaR could not predict or cover the extreme losses during the turbulence of

2007-2008 crisis and mathematically does not satisfy the important coherence prop-

erty.

It is no surprise that the switching from VaR to ES has generated many reactions

from both the practical sector and the academic sector as evidenced by the numer-

ous literatures. The backtesting approach established by the BCBS, which tests the

accuracy of ES estimates, is causing the problem. More specifically, financial insti-

tutions now face the paradox of using ES for computing their market risk capital

requirements and using VaR for backtesting ES. For this reason, both estimation and
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backtesting of VaR are still important nowadays because sensible ES estimates are

based on correctly specified VaR estimates by the definition of ES. This was the moti-

vation for the proposal of a two-step bias-reduced conditional EVT approach called

GARCH-UGH for the estimation of one-step ahead dynamic extreme VaR. At the

same time, there has not been sufficient investigation to establish the superiority of

a certain estimator of ES relative to the others in the literature and no particular type

of ES model is prescribed in the framework of the BCBS. We thus considered the

estimation of dynamic extreme ES based on our proposed GARCH-UGH approach

and the use of the first-order asymptotic equivalence between VaR and ES. More-

over, we also tackled an urgent problem of which ES backtesting methods can be

used in practice as we can expect that upcoming regulations will require financial

institutions to backtest ES without using VaR backtesting methods.

We tackle the question of estimating the VaR of loss return distribution at ex-

treme levels, which is an important question in financial applications, both from

operational and regulatory perspectives. In particular, the dynamic estimation of

extreme VaR given the recent past has received substantial attention because the

occurrence of extreme financial events has increased since 1980s. Moreover, an accu-

rate estimation of VaR is still essential in practice even if the BCBS changed the risk

measure for the calculation of capital requirements from VaR to ES. This is because

sensible estimation of ES is based on correctly specified VaR estimates. We pro-

pose here a new two-step bias-reduced estimation methodology for the estimation

of one-step ahead dynamic extreme VaR, called GARCH-UGH (Unbiased Gomes-de

Haan), whereby financial returns are first filtered using an AR-GARCH model, and

then a bias-reduced estimator of extreme quantiles is applied to the standardized

residuals. We analyze the performance of our approach on four financial time se-

ries, which are the Dow Jones, NASDAQ and Nikkei stock indices, and the Japanese

Yen/British Pound exchange rate. Our results indicate that the GARCH-UGH esti-

mates of the dynamic extreme VaR are more accurate than those obtained either by

historical simulation, conventional AR-GARCH filtering with Gaussian or Student-t

innovations, or AR-GARCH filtering with standard extreme value estimates, both

from the perspective of in-sample and out-of-sample traditional VaR backtestings,

which are the unconditional and conditional coverage tests. The numerical results
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of comparative VaR backtesting, which is based on the Diebold-Mariano test, also

support the use of the GARCH-UGH approach by yielding definitive answers to the

cases when GARCH-UGH and GARCH-EVT approaches are either all accepted, or

all rejected in the traditional VaR backtestings. In addition, our bias-reduction pro-

cedure will be designed to be robust to departure from the independence assump-

tion, and as such will be able to handle residual dependence present after filter-

ing in the first step. Our finite-sample results also illustrate that the GARCH-UGH

method leads to one-step ahead extreme conditional VaR estimates that are less sen-

sitive to the choice of sample fraction, and hence mitigates the difficulty in selecting

the optimal number of observations for the estimations. Finally, the computational

cost of GARCH-UGH is lower than that of conventional GARCH-EVT: the extreme

value step in the GARCH-UGH method is semiparametric with an automatic and

fast recipe for the estimations of the one-step ahead extreme conditional VaR, while

the competing GARCH-EVT method is based on a parametric fit of the Generalized

Pareto Distribution to the residuals using Maximum Likelihood Estimation.

We also extend the GARCH-UGH approach used in dynamic extreme VaR es-

timation to the dynamic extreme ES estimation by means of the asymptotic equiv-

alence between quantile (VaR) and ES. This is motivated by the fact that there has

not been sufficient investigation to establish the superiority of a certain estimator

of ES relative to the others in the literature and no particular type of ES model is

prescribed in the framework of the BCBS. Our results show that the GARCH-UGH

approach produces more accurate ES estimates than those obtained by basic estima-

tion methods, both from the perspective of traditional and comparative ES backtest-

ings. We use the exceedance residual test, the conditional calibration test and the

expected shortfall regression test for traditional backtestings, and Diebold-Mariano

test again based on the joint elicitability of VaR and ES for comparative backtesting.

When compared to other EVT-type methods, comparative backtestings with chosen

two scoring functions result in a good agreement with the GARCH-UGH approach

being the best estimator of ES, while traditional backtestings are not always in line

with the superiority of our proposed approach.

In contrast to the estimation of dynamic extreme ES where most of the existing
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methods including the ones we referred and proposed for VaR estimation can eas-

ily be adapted to the ES, such adaptions are not straight-forward for backtesting

ES estimates. Based on the strict definition of backtesting, we understand that a

backtesting for specific risk measure should only require its estimates and realized

returns as input variables. In contrast to the VaR, fulfilling this definition for ES is

very difficult task because ES is strongly related to the VaR through its definition

and joint elicitability. As in every statistical method, each of different ES backtest-

ing methods has its strengths and weaknesses. We thus strongly suggest adopting

a two-stage backtesting framework, i.e., the use of both traditional and comparative

backtestings for risk measures that will enhance the regulatory framework for fi-

nancial institutions by providing the correct incentives for accuracy of risk measure

estimates. More precisely, the comparative backtesting methods can be used by fi-

nancial institutions internally to select better performing methods among competing

alternatives when traditional backtestings methods do not yield definitive answers

as competitive methods are all accepted, or all rejected. Supplementing with com-

parative backtestings is essential, and hence can adequately quantify the risks even

though they still have some drawbacks to consider for the practical use, e.g., there

exists no optimal scoring function with any theoretical guarantee. We think that

the major challenge of the regulations of BCBS in the implementation of the ES as a

risk measure for market risk is the unavailability of simple tools for its evaluation.

We also believe that the findings of the estimation and backtesting of risk measures

for tail risks in volatile financial market given in Chapter 3 and 4 would be useful

for developing regulatory framework of the BCBS and monetary policies aimed at

mitigating tail risks.
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Chapter 1

General Introduction

1.1 Quantitative risk management

In this thesis the focus is on the use of Extreme Value Theory (EVT) to study ex-

treme (financial) market risk, which is the risk of losses arising from movements in

market prices, from a quantitative point of view. This is because quantitative risk

management has now become a standard requirement for all financial institutions

due to an increase in number of extreme market risk events, especially post 1980s.

Extreme market events are rare but have high severity. The risk stemming from

these extreme events is called tail risk, which contributes to the propagation of deep

and unpredictable financial crises. Tail risk is clearly related to extreme events, and

hence the estimation of risk measure heavily relies on accurate estimation of a tail of

the underlying distribution. Let us consider the model of risk measure called Value-

at-Risk (VaR) based on an assumption of Gaussian data distribution as an example.

These models ignore the tail risk and therefore tend to underestimate it at volatile

period and overestimate at normal period.

The use of EVT is urgently necessary in risk management, particularly in relation

to tail risks, as the occurrence of extreme financial market events are increasingly fre-

quent in the post-1980s. Such events include the Black Monday of 1987, the Dot-Com

Bubble of 2000, the Global Financial Crisis of 2007-2008, and the recent COVID-19

recession of 2020. A non-exhaustive chronology of extreme market events, i.e. fi-

nancial crises, is given in Table A1 of Chakraborty et al. (2021). Prior to the Global

Financial Crisis began in mid-August 2007, the potential for sudden extreme fluctu-

ations in volatility of financial market variables had been severely underestimated
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and the prevalence of tail risks was largely neglected. Orlowski (2012) states that it

was a major contributing factor to the unprecedented scale of this crisis. Regarding

the global pandemic of COVID-19, Zhang et al. (2020) find that the rapid spread of

COVID-19 has created an unprecedented level of rise in risk, causing financial in-

stitutions to suffer against massive losses in a very short period of time. They also

report that the standard deviation of daily returns of S&P500 was increased from

0.0069 to 0.0268 within one month at the outbreak of COVID-19. Abuzayed et al.

(2021) study the extreme risk spillover among global financial markets and their re-

sult show that there exists a high degree of integration in the extreme risk of the

stock market system during the COVID-19 outbreak. Li et al. (2022) use the risk

measures called VaR and find that COVID-19 indeed increased the risk exposure

of equity markets, with the US showing the greatest average impact among other

countries. Therefore, the measurement of extreme market risk is essential for finan-

cial institutions. At the same time, we have to admit that for measuring extreme

risk the tail part of a underlying loss distribution is difficult to estimate, and hence

involves substantial model uncertainty.

The standards of quantitative risk management are laid down by Basel Commit-

tee on Banking Supervision (BCBS). Financial institutions are asked to estimate spe-

cific risk measures so that they can protect themselves against future extreme market

catastrophes. Risk measures can be understood as providing a risk assessment in the

form of capital amount that are set aside to absorb unexpected future losses. A re-

view of extreme market risk measures (for example, Sharma 2012; Chakraborty et

al. 2021; He et al. 2022) reveal that risk measures have improved over the past three

decades from the naive standard deviation of price returns to the recent VaR and

Expected Shortfall (ES). These two risk measures are the heart of this thesis (appear

everywhere especially in Chapter 3 and 4), which are main tools for quantifying the

riskiness that is implied by the variability of losses and the tails of their distribution.

In practice there was a lively debate of which risk measure would be best in

regulatory framework over the last or two decades. The debate mainly focused on

aforementioned VaR and ES. Recently, the BCBS announced a change in the risk mea-

sure used for capital requirements in internal market risk models, moving from the

VaR to the ES. In other words, the quantitative standards made under Basel II (Basel
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Committee on Banking Supervision 2009) was amended by Basel III (Basel Commit-

tee on Banking Supervision 2019). To check what has been changed, see for example

Sharma (2012). The amendment is driven by the fact that VaR could not predict or

cover the losses during the turbulence of 2007-2008 crisis, revealing its major draw-

back unfortunately. Moreover, VaR mathematically does not satisfy the important

property called coherence given in Artzner et al. (1999), while ES does (discussed in

Subsection 1.2.2). The purpose of Basel Accord III is to cover the shortcomings that

regulations failed to capture during 2007-2008 crisis.

It is no surprise that the switching from VaR to ES has generated many reactions

from both the practical sector and the academic sector as evidenced by the numerous

literature of ES given in Section 4.2. The backtesting approach established by Basel

Committee on Banking Supervision (2019), which tests the accuracy of ES estimates,

is causing the problem. More specifically, financial institutions now face the para-

dox of using ES for computing their market risk capital requirements and using VaR

for backtesting ES. For this reason, both estimation and backtesting of VaR are still

important nowadays because sensible ES estimates are based on correctly specified

VaR estimates. This was the motivation for the proposal of a bias-reduced condi-

tional EVT approach called GARCH-UGH in Chapter 3. Finally, an introduction of

ES brought some new challenges regarding the backtesting and also the choice of

estimation methods, discussed in Chapter 4.

1.2 Basic concepts in risk management

In this section, we briefly describe a collection of empirical observations of financial

data, properties of risk measures, VaR, ES and other alternative risk measures exist

in the literature. These materials are fundamental concepts used in the quantitative

risk management.

In this thesis, we denote asset prices, e.g., a stock, index, and exchange rate,

by pt where t refers to a day, but can indicate any frequency, e.g., hourly, weekly,

monthly and yearly.The financial data we consider are the negative daily log-returns

and expressed by Xt = − log(pt/pt−1) in Subsection 3.2.1. The log-returns are also
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defined as continuously compounded returns in Danielsson (2011). They play an

important role in the background of many financial calculations.

1.2.1 The stylized facts of financial time series

The stylized facts of financial time series are gathered from empirical observations

and inference drawn from these observations. See Cont (2001), Danielsson (2011)

and McNeil et al. (2015) for a comprehensive study. They apply to most, if not all, fi-

nancial time series including the daily negative log-returns on indices and exchange

rates. For a single time series of financial returns, some stylized facts are as follows:

heavy tails, absence of autocorrelations and volatility.

Heavy tails - empirical data show that financial returns exhibit very large (i.e.

extreme) positive or negative returns, which are very unlikely to be observed if a

normal distribution is implied. Financial returns are hence leptokurtic. The normal

distribution also cannot capture the skewness of financial returns. The formal defi-

nition of heavy tails can be found in Section 2.2 and Subsection 3.2.3 in terms of the

regular variation and tail quantile function, respectively.

Absence of autocorrelations - autocorrelations of financial returns are generally

insignificant but they exhibit strong serial dependence, especially in their second

moment (Ergen 2015).

Volatility - volatility, the standard deviation of returns, appears to vary over

time. Financial returns exhibit a phenomenon known as volatility clustering. It is

the tendency for extreme returns to be followed by other extreme returns together, so

that we observe many days of high volatility followed by many days of low volatil-

ity. Danielsson and de Vries (1997) state that the changing volatility is often absent

from monthly financial returns, but the property of heavy tails does not fade.

1.2.2 Risk measure and its properties

There is no universal definition of risk and its measure. It is natural to measure risk

in terms of probability distributions and useful to represent the risk of an asset as a

single number, which is comparable with other assets. A risk measure η is defined

on some spaces of random variables (r.v.s). In this thesis, we only consider risk
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measures that are law-invariant; that is, two real-valued r.v.s. X1 and X2 satisfy

P(X1 ≤ x) = P(X2 ≤ x), x ∈ R⇒ η(X1) = η(X2).

Therefore, risk measures are mappings from spaces of probability distributions of

r.v.s to real numbers. The desirable properties of risk measures as follows: coherence,

robustness, elicitability and backtestability. We now explain them briefly in order.

Coherence - Artzner et al. (1999) propose that a risk measure η is coherent if

it satisfies the following axioms that are monotonicity, homogeneity, translation in-

variance and subadditivity.

• η is monotonic if for all X1 and X2 it holds that X1 ≤ X2 ⇒ η(X1) ≤ η(X2).

• η is homogenous if for all X and c ≥ 0 it holds that η(cX) = cη(X).

• η is translation invariant if for all X and c ∈ R it holds that η(X + c) = η(X)+ c

(see Axiom 2.19 in McNeil et al. 2015, p.73).

• η is subadditive if for all X1 and X2 it holds that η(X1 + X2) ≤ η(X1) + η(X2).

The other commonly used axioms for risk measures in the literature are given in

He et al. (2022). The subadditivity axiom fails to hold for VaR in general, so VaR is

not a coherent risk measure. The lack of subadditivity contradicts the notion that

there should be a diversification merit associated with merging portfolios. In other

words, the total risk on a portfolio should not be greater than the sum of the risks

of the consistent parts of the portfolio (Artzner et al. 1999). On the other hand, ES

is a coherent risk measure. The controversies about whether VaR really violates the

subadditivity axiom or not are discussed in for example Danielsson (2011) and He et

al. (2022). They find that VaR is subadditive in the special case when financial returns

are normally distributed and only violates when the tails are extremely heavy.

Robustness - He et al. (2022) state that a risk measure η is robust if it can accom-

modate model misspecification and has statistical robustness regarding the changes

in data. The formal definition of robustness in the sense of the Wasserstein distance

is given in Emmer et al. (2015) and other definition is given in Cont et al. (2010),

which relates more to the sensitivity to outliers in the data sample than to mere
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measurement errors. Ergen (2015) tests the robust performance of the model of the

conditional VaR estimation called GARCH-EVT (McNeil and Frey 2000), which is

the model we will discuss in Chapter 3 and 4.

Elicitability - Gneiting (2011) states that a risk measure η, i.e. a statistical func-

tional, is elicitable if it admits a strictly consistent scoring, i.e. loss, function. A

scoring function is strictly consistent for a risk measure η if the risk measure can be

obtained by minimizing the expected value of the score. The formal and mathemat-

ical definition of elicitability is presented in Subsection 4.5.1. Elicitability is a helpful

decision-theoretic framework for the determination of optimal point forecasts. It can

be used to compare in a natural way (yet not the only way) the performance of dif-

ferent estimation methods of risk measures VaR and ES. Hence, elicitability is crucial

for what is called the comparative backtesting, which will be explained in Section 3.5

and 4.5.

Some commonly used scoring functions are given in Emmer et al. (2015). The

mean functional is elicited by the squared error, an alternative risk measure called

expectile (see Bellini and Di Bernardino 2015 and Ziegel 2016) is elicited by the

weighted squared error, the median is elicited by the absolute error and the VaR,

i.e. quantile, is elicited by the weighted absolute error. However, Gneiting (2011)

has pointed out that ES is not elicitable. This had a big influence and initiated ac-

tive new researches on the feasibility of backtesting ES (see Chapter 4 for a detailed

discussion).

Backtestability - There was a myth that a lack of elicitability means the risk mea-

sure, for example ES, cannot be backtested. The highly influential papers Acerbi and

Szekely (2014) and Emmer et al. (2015) have argued that elicitability is not relevant

for backtesting risk measures but rather for comparing the performance of different

estimation methods. We thus think that a lack of elicitability is not a hurdle to back-

test ES. Indeed, ES cannot be backtested through any scoring functions but there is

no reason why it could not be done using another methods that do not exploit the

eliciability or use the idea called joint elicitability of VaR and ES (see again Chapter

4 for a detailed discussion).



1.2. Basic concepts in risk management 7

1.2.3 Value-at-Risk (VaR)

In this thesis, we consider that the generic financial position X is a real-valued ran-

dom variable, that is the random profit if X > 0 or loss if X < 0. As mentioned

previously, we normally focus on the daily negative log-returns.

The most widely known risk measure is Value-at-Risk (VaR), first devised by J.P.

Morgan on the aftermath of the Black Monday of 1987. VaR is defined as a measure

of the potential loss on a portfolio of financial instruments resulting from market

movements over a given time horizon and for a given distribution of historical re-

turns and probability level, i.e. confidence level. VaR is merely a quantile of the loss

distribution. Mathematically, for a probability level τ ∈ (0, 1), generally τ tends to

1, the τth quantile (VaR) of a distribution F is

VaRτ(X) = qτ = inf{x ∈ R : F(x) ≥ τ}.

Based on above definition, it is known that 100(1− τ)% of losses will be higher

than the VaR qτ at level τ, but the VaR alone cannot give any further information

about the size of these large losses. As mentioned in Section 1.1 with VaR being non-

coherent, these two weaknesses pushed the Basel Committee to recommend calcu-

lating the Expected Shortfall (ES) as an alternative to the VaR. A detailed discussion

of pros and cons of VaR with ES is given in Section 4.1.

From a regulatory point of view, Basel III Accord (Basel Committee on Banking

Supervision 2019) provides the backtesting requirements of ES, which is computed

on daily basis, using VaR. It says that at trading desk (i.e. a group of traders), back-

testing must compare one-day ahead VaR measure, which is calibrated to the most

recent 12 month’s data and equally weighted, at both τ = 0.975 and 0.99, using at

least one year of current observations. Moreover, it states that financial institutions

may also implement backtesting VaR for probability levels other than τ = 0.99, or

may perform other statistical tests not set out in the standard. This was the motiva-

tion of the research in Chapter 3 that is the proposal of a bias-reduced approach for

dynamic extreme VaR estimation called GARCH-UGH.



8 Chapter 1. General Introduction

1.2.4 Expected Shortfall (ES)

An alternative risk measure replacing VaR is the ES (also known as Conditional

VaR), which is a measure of the mean of potential (extreme) losses X exceeding the

VaRτ(X) at a given probability level τ. Mathematically, for τ ∈ (0, 1), generally τ

tends to 1, the τth ES is defined as

ESτ(X) = eτ = E[X | X > VaRτ(X)] =
1

1− τ

∫ 1

τ
VaRs(X)ds.

Unlike VaR, which only contains information on one point quantile itself, ES con-

tains information from the whole right tail (supposing negative returns). On the

other hand, the major drawback of ES is its difficulty to be backtested because it

lacks the elicitability property, mentioned in Subsection 1.2.2. Again, a detailed dis-

cussion of pros and cons of ES is given in Section 4.1.

From a regulatory point of view, Basel III Accord (Basel Committee on Banking

Supervision 2019) sets the ES as the new risk measure for the purpose of calculating

market risk capital requirements, replacing VaR. In calculating ES, financial institu-

tions must use a probability level τ = 0.975. Notice that the probability level for ES

is lower than for the VaR due to the fact that ES is systematically greater than VaR

based on the definition. Keeping a probability level τ = 0.99 leads to overly conser-

vative ES. Furthermore, it is stated that no particular type of ES model is prescribed

in the framework, which is the motivation of the research in Chapter 4.

1.2.5 Other risk measures

Other risk measures that can be considered as alternatives to VaR and ES are the

followings: median shortfall, range VaR and expectile. Note that methods of both

estimation and backtesting of these measures are not considered in this thesis.

Median Shortfall (MS) - In contrast to ES, which is the mean of loss X exceeding

VaR, Median Shortfall (MD) is the median of the loss size conditional on that the

loss exceeds VaR at level τ. It is introduced by Kou et al. (2013) to mitigate the

nonelicitability of ES. Mathematically, for a probability level τ ∈ (0, 1), the MS of X

is defined as

MSτ(X) = VaR(1+τ)/2(X).
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Based on the equation above, one can notice that the MS does not quantify the size

of large losses beyond VaR(1+τ)/2, which means that it has a same problem as VaR.

Conversely, MS is simple to backtest because we can use the methods of backtesting

VaR directly while ES is difficult to backtest. MS is also statistically robust as it uses

the median of the tail distribution instead of the mean and the median is robust. Ac-

tually He et al. (2022) argue that the MS is a better option than the ES for calculating

the capital requirements in the Basel Accords due to above nice properties.

Range Value-at-Risk (RVaR) - Cont et al. (2010) propose the risk measure called

RVaR (also known as interquantile expectation) that is an interpolation between VaR

and ES. It takes account of a trade-off between ES’s sensitivity to the potential losses

and VaR’s robustness. For a probability level 0 < τ1 < τ2 < 1, RVaRτ1,τ2 is defined as

the average of all VaRτ between τ1 and τ2. Mathematically, Fissler and Ziegel (2021)

show that

RVARτ1,τ2(X) =
1

τ2 − τ1

∫ τ2

τ1

VaRτ(X)dτ

if τ1 < τ2 and VaRτ2 if τ1 = τ2. Note that RVaR is not elicitable like ES and its

backtesting is expected to be difficult.

Expectile - Daouia et al. (2018) explain that the notion of expectiles is a least

square analogue of quantiles. As Koenker and Bassett (1978) defined the quantiles

as the minimization framework of an absolute error loss, Newey and Powell (1987)

introduced the expectiles as the minimizers of a quadratic loss, for a probability level

τ ∈ (0, 1):

epτ(X) = argmin
x∈R

E[ξτ(X− x)− ξτ(X)],

where ξτ(x) =| τ − 1(x ≤ 0) | x2 with the indicator function 1. It is given in Bellini

and Di Bernardino (2015) that epτ(X) = E[X] when τ = 1
2 so that the expectiles can

be seen as the generalization of the mean just as the quantiles generalize the median.

Regarding the quantitative risk management, using the expectile with τ = 0.99855

leads to comparable risk measures as VaR0.99 and ES0.975 under the standard nor-

mal distribution. Unlike VaR and ES, the expectiles are only elicitable and coherent

risk measures, and are possible to quantify extreme risks exceeding the VaR (Ziegel

2016). While expectiles can be treated as alternative risk measures to VaR and ES,

they can be used to estimate VaR and ES using an asymptotic equivalence between
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expectiles (Taylor 2008; Daouia et al. 2020; Daouia et al. 2021). Moreover, sample

expectiles produce a class of smooth curves as functions of the probability level τ

unlike sample quantiles (Daouia et al. 2018). On the other hand as it can be seen

from the definition of expectiles, it lacks a visual and intuitive interpretation unlike

VaR and ES. Emmer et al. (2015) state that there is no sufficient evidence to justify

replacement of ES by expectiles in applications. It is now clear that expectiles are

becoming increasingly popular in the finance literature.

1.3 Methodology of VaR and ES estimations

We list the methodologies for the VaR and ES estimation based on different statistical

and volatility models often used in the literature. They are categorized into four

broad types as follows: nonparametric, parametric, semiparametric and EVT, where

in fact EVT appears in other three categories. We did not use all methods but some

are used in the applications in Chapter 3 and 4. See Section 3.2 and 4.3.1 for our

proposed estimation methods of VaR and ES, and Section 3.3 and 4.3.2 for other

methods used in the applications. We also clarify the difference between conditional

and unconditional estimation methods, which is further discussed in Section 2.3 in

relation to the use of EVT in finance. Conditional means an effect of volatility of

financial time series is considered and for unconditional it is not considered. We

believe that it is necessary to incorporate dynamic changes in the market to reflect

the most updated risk level for more accurate estimation of risk measures VaR and

ES.

Nonparametric - The most widely used nonparametric VaR method is historical

simulation (HS), which is also most popular in the industry. It requires no assump-

tion in underlying distribution and estimates by simply finding the quantile of the

empirical distribution of historical financial returns. Apart from being the simplest

method, HS has the advantage that it is able to model the heavy tails and hence de-

rives VaR estimates that perform better than Gaussian approaches (Hendricks 1996).

However, VaR estimates based on HS have high standard error, especially for a high

(or extreme) probability level representing tail events in market. This finding agrees

with our results in the applications.
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Parametric - The most common distributional assumption for financial returns

in the estimation of (either conditional or unconditional) VaR is normality. However,

methods based on normal distribution severely underestimate extreme VaR and ES

because they fail to account for heavy tails.

This fact led to the improvement of parametric estimations in three ways. Firstly,

it is to consider the suitable conditional volatility modeling that are Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH)-type (Bollerslev 1986; Jalal

and Rockinger 2008; Danielsson 2011; Furió and Climent 2013; Youssef et al. 2015;

Zhao et al. 2019) and Realized Volatility models (Corsi 2009; Bee et al. 2016; Degian-

nakis and Potamia 2017). Secondly, it is to take account of asymmetric and heavy-

tailed distributions (Ergen 2015; Righi and Ceretta 2015). It is known that Student’s

t distribution fits the financial data better in the tails than the normal distribution.

Empirical studies from aforementioned papers find that VaR and ES estimates based

on the skewed Student’s t distribution are more accurate than the estimates based

on the normal and Student’s t distribution. Lastly, it is to improve the performance

of the estimation methods with higher conditional moment, i.e. skewness and kur-

tosis, by using Corner Fisher expansion and Gram Charlier expansion (Wong and So

2003; So and Wong 2012).

Semiparametric - The commonly used approaches in this field are the EVT, the

Filtered Historical Simulation (FHS) and the Conditional Autoregressive VaR (CAViaR).

The EVT provides a theoretical and practical foundation for modeling extreme events

statistically (Coles 2001; Beirlant et al. 2004; de Haan and Ferreira 2006; Reiss and

Thomas 2007). The FHS (Barone-Adesi et al. 2002) extends the idea of volatility ad-

justments to HS, which is in fact a hybrid method combining HS and Monte Carlo

simulation (Novales and Garcia-Jorcano 2019). The CAViaR (Engle and Manganelli

2004) directly estimates the dynamics of risk measures instead of constructing under

some specific distributional assumption, even the empirical one (Righi and Ceretta

2015).

EVT - EVT considers only the tails of the distribution of financial returns without

making any specific assumption concerning the center of the distribution. Uncon-

ditional EVT methods and the use of EVT in finance are explained in Chapter 2.
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Conditional EVT methods of VaR and ES estimations such as the influential two-

step GARCH-EVT framework (McNeil and Frey 2000; McNeil et al. 2015) and our

proposed approach (Kaibuchi et al. 2022) are discussed in Chapter 3 and 4.

1.4 Backtesting

Backtesting of risk measures is of the same importance as their estimation. From

a regulatory point of view, financial institutions must make sure that the models

they used to estimate risk measures VaR and ES are accurate. According to Basel

Committee on Banking Supervision (2019), backtesting is the process of comparing

the ex-ante estimates of risk measures with the ex-post realized financial returns to

assess the conservation of risk measurement systems. Strict definition is also give in

Bayer and Dimitriadis (2020b), which basically state that backtesting for specific risk

measure is only allowed to require estimates of this risk measure as input variables

besides the realized returns. This strict version of definition will be relevant to ES

(see Chapter 4) and not VaR. See also for example, Danielsson (2011) and McNeil

et al. (2015), as a reference for backtestings used in practice.

We discuss the backtestings from two different aspects as follows: approaches

(direct, based on elicitability and indirect) and types (traditional and comparative).

In this section, we only introduce the concepts and details are reserved for Chapter

3 and 4.

Direct backtesting - This approach examines whether the estimates of risk mea-

sures VaR and ES under a certain model match with the unknown true values of

risk measures or not. More precisely, we test whether the point estimates of risk

measures are acceptable or not. For backtesting VaR, the tests are often based on a

hit sequence of VaR violations It = 1{xt > q̂τ(Xt)}. If a VaR estimation method is

accurate, then the sequence (It) should approximately be an independent sequence

of Bernoulli variables with success probability p = 1− τ. Based on such observa-

tions, the unconditional likelihood ratio coverage test is proposed by Kupiec (1995),

also known as the proportion of failures (POF) test, which tests the distributional

assumption. In the similar manner, Basel Committee on Banking Supervision (2019)

adopted the traffic light approach, which counts the number of VaR violations and
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classifies the model into three backtesting zones, distinguished by colors into a hi-

erarchy responses. Christoffersen (1998) proposes independence and conditional

coverage, i.e. joint, tests based on a first-order Markov process model to check in-

dependence property and both properties as the name suggests, respectively. How-

ever, there have been no methods for direct backtesting ES in the existing literature

(He et al. 2022).

Backtesting based on elicitability - This approach is based on the forecast eval-

uation framework based on the Diebold-Mariano (D-M) test (Diebold and Mariano

1995; Bellini et al. 2019). D-M test is the test of null hypothesis of no difference in the

accuracy of two competing forecasts of risk measures by means of realized scoring

functions. Since scoring functions are used, risk measures to be assessed must be

elicitable, which means that VaR can be backtested and ES cannot be backtested by

this approach.

Indirect backtesting - This approach is indirect in the sense that it either exam-

ines auxiliary quantities that are closely related to specific risk measure, e.g., ES, or

backtests by means of the joint elicitability, i.e., coelicitability (see Section 4.5.1) of a

collection of risk measures, e.g., a pair of VaR and ES. The former kind of approach

has been proposed for backtesting ES in the literature because VaR can be backtested

easily based on the VaR violations. These tests require the entire return distribution,

tail return distribution, the cumulative violation process (Wong 2008; Acerbi and

Szekely 2014; Costanzino and Curran 2015; Du and Escanciano 2015; Löser et al.

2018), use multiple probability level for a risk measure (Emmer et al. 2015; Kratz

et al. 2018; Basel Committee on Banking Supervision 2019), or utilize VaR and the

volatility in addition to ES (McNeil and Frey 2000; Righi and Ceretta 2013; Nolde

and Ziegel 2017). Strictly speaking, this type of indirect backtesting should not be

regarded as a suitable backtesting approach for ES because a rejection of the null hy-

pothesis of above tests do not necessarily imply that the ES estimates are wrong and

simply implies that some auxiliary quantities are wrong. This belief is supported by

the strict definition of backtesting given in Bayer and Dimitriadis (2020b).

The latter is actually the D-M test using the scoring functions of a pair of VaR and

ES, thanks to Fissler and Ziegel (2016) who have shown that the pair (VaR, ES) are

joint elicitable with respect to the set of loss distributions. This observation has led
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researchers to uncover new type of backtesting that evaluates the accuracy of VaR

and ES jointly.

Traditional backtesting - This backtesting can be viewed as a model verifica-

tion test, and includes direct backtesting and the former kind of indirect backtesting.

Hence, traditional backtestings are concerned with assessing some optimality prop-

erty of a set of risk measure estimates and not suited to compare different estimation

methods for risk measures.They perform a statistical tests for the null hypothesis:

H0 : The risk measure estimates are correct.

If H0 is not rejected, then the risk measure estimates are deemed to be adequate.

Generally, the traditional backtestings with the hypothesis H0 are not relevant to

elicitability of the risk measure and are not aimed at model comparison and ranking.

Comparative backtesting - This backtesting is better suited for model compar-

ison on the basis of forecasting accuracy, and includes the D-M tests based on elic-

itability and joint elicitability. In order to compare the estimation performance of two

models, say the competing and benchmark models, and decide which one is better,

we can use the comparative version of the traffic light approach (i.e. three-zone ap-

proach) in the Basel III for the VaR (Basel Committee on Banking Supervision 2019)

proposed by Fissler and Ziegel (2016) and Nolde and Ziegel (2017). In this compar-

ative backtesting, we consider the two following two hypotheses:

H−0 : The competing model predicts at least as well as the benchmark model,

H+
0 : The competing model predicts at most as well as the benchmark model.

The null hypothesis H−0 is an analogue of H0 but adapted to a comparative setting.

The other hypothesis H+
0 is more conservative in the sense that a backtest is passed

if we can reject H+
0 . By this hypothesis, we can explicitly control the type I error of

accepting an inferior competing model over a benchmark model.

In this thesis, we use both traditional and comparative backtestings to check

the accuracy of our proposed approach compared to other basic and EVT-type ap-

proaches in the VaR and ES estimations, given in Chapter 3 and 4, respectively. We

believe that the use of both backtestings for risk measures, i.e. adopting a two-stage
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backtesting framework, will enhance the regulatory framework for financial insti-

tutions by providing the correct incentives for accuracy of risk measure estimates.

Furthermore, we classify backtestings as traditional and comparative throughout

this thesis following the classification given in Nolde and Ziegel (2017).

1.5 Motivation for this thesis

In this section, we introduce the motivation for using EVT for quantitative risk man-

agement, estimating dynamic extreme VaR in Chapter 3 and ES in Chapter 4.

The occurrence of extreme financial market events are increasingly frequent in

the post 1980s. Traditional estimation methods for VaR and ES, for example, HS and

normal distribution, suffer from major drawbacks that were revealed during the tur-

bulence of extreme financial crises. They tend to underestimate the risk measures

severely and the prevalence of tail risks was largely neglected. The accurate estima-

tion of extreme market risk had been receiving a lot of attention in quantitative risk

management since it is difficult to model unexpected extreme events that usually

lie outside the domain of available financial observations. Hence, the use of EVT in

the estimation of risk measures is natural and this motivated the development of an

alternative approach of VaR and ES estimations called GARCH-UGH.

Although Basel Committee on Banking Supervision (2019) changed the risk mea-

sure for capital requirements in the internal market risk model from VaR to ES, es-

timation of VaR is still needed in practice. This is because sensible estimation of ES

is based on correctly specified VaR estimates by the definition of ES, i.e. ES is the

mean of losses exceeding VaR. The more accurate the VaR estimates are, the more

accurate the ES estimates. Moreover, we think that it is necessary to incorporate

dynamic changes in the market to reflect the most updated risk level. We therefore

considered a novel conditional EVT method for extreme VaR estimation in Chapter

3.

With regard to estimation of ES, there has not been sufficient investigation to es-

tablish the superiority of a certain estimator relative to the others in the literature.

In addition, no particular type of ES model is prescribed in the framework of Basel

Committee on Banking Supervision (2019). We thus proposed a novel approach of
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dynamic extreme ES estimation, which is based on our proposed GARCH-UGH ap-

proach and the use of asymptotic equivalence between VaR (quantile) and ES, in

Chapter 4. Regarding the backtesting of ES, Basel Committee on Banking Supervi-

sion (2019) still demands financial institutions to use traditional VaR backtesting for

ES. At the same time, we can expect that upcoming regulations will require them

to backtest ES without using VaR backtesting method. We also tackled an urgent

problem of which ES backtesting methods can be used in the practice.

1.6 Outline of this thesis

In Chapter 2, we briefly describe the statistical aspects of Extreme Value Theory fo-

cusing on the tail estimation methods for heavy-tail (i.e. Pareto) distributions that

are the cornerstone of the use of EVT in finance. We look at the important concepts

of EVT such as extreme value index, extreme value condition and second-order con-

dition. For tail estimation methods, we rely on the heavy-tail property and estimate

extreme value index, extreme quantile (VaR) and second-order parameter, which is

required for bias-reduction procedures. In particular, we focus on the famous Hill

estimator (Hill 1975), Weissman quantile estimator (Weissman 1978), Peaks-Over-

Threshold method using the generalized Pareto distribution (Pickands 1975) and

second-order parameter estimator by Gomes et al. (2002) (actually given in Chapter

3) for the purpose of introducing our EVT-type method for VaR and ES estimations.

We also review both unconditional and conditional VaR and ES methods based on

EVT with the limitations in finance.

In Chapter 3, we tackle the question of estimating the VaR of loss return distribu-

tion at extreme levels, which is an important question in financial applications, both

from operational and regulatory perspectives. In particular, the dynamic estimation

of extreme VaR given the recent past has received substantial attention because the

occurrence of extreme financial events has increased since 1980s including the Black

Monday of 1987, the Dot-Com Bubble of 2000, the Global Financial Crisis of 2007-

2008, and the recent COVID-19 recession of 2020. Moreover, accurate estimation of

VaR is still essential in practice even if Basel Committee on Banking Supervision

(2019) changed the risk measure for the calculation of capital requirements from
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VaR to ES. This is because sensible estimation of ES is based on correctly specified

VaR estimates by the fact that ES is the mean of losses exceeding VaR. We propose

here a new two-step bias-reduced estimation methodology for the estimation of one-

step ahead dynamic extreme VaR, called GARCH-UGH (Unbiased Gomes-de Haan),

whereby financial returns are first filtered using an AR-GARCH model, and then a

bias-reduced estimator of extreme quantiles is applied to the standardized residuals.

We analyze the performance of our approach on four financial time series, which are

the Dow Jones, NASDAQ and Nikkei stock indices, and the Japanese Yen/British

Pound exchange rate. Our results indicate that the GARCH-UGH estimates of the

dynamic extreme VaR are more accurate than those obtained either by historical

simulation, conventional AR-GARCH filtering with Gaussian or Student-t innova-

tions, or AR-GARCH filtering with standard extreme value estimates, both from the

perspective of in-sample and out-of-sample traditional VaR backtestings, which are

the unconditional coverage test by Kupiec (1995) and conditional coverage test by

Christoffersen (1998). The numerical results of comparative VaR backtesting, which

is based on the Diebold-Mariano test (Diebold and Mariano 1995), also support the

use of the GARCH-UGH approach by yielding definitive answers to the cases when

GARCH-UGH and GARCH-EVT approaches are either all accepted, or all rejected

in the traditional VaR backtestings. In addition, our bias-reduction procedure will

be designed to be robust to departure from the independence assumption, and as

such will be able to handle residual dependence present after filtering in the first

step. Our finite-sample results will also illustrate that the GARCH-UGH method

leads to one-step ahead extreme conditional VaR estimates that are less sensitive to

the choice of sample fraction, and hence mitigates the difficulty in selecting the op-

timal number of observations for the estimations. Finally, the computational cost of

GARCH-UGH is lower than that of conventional GARCH-EVT: the extreme value

step in the GARCH-UGH method is semiparametric with an automatic and fast

recipe for the estimations of the one-step ahead extreme conditional VaRs, while

the competing GARCH-EVT method is based on a parametric fit of the Generalized

Pareto Distribution (GPD) to the residuals using Maximum Likelihood Estimation.

In Chapter 4, we extend the GARCH-UGH approach used in dynamic extreme

VaR estimation to the dynamic extreme ES estimation by means of the asymptotic
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equivalence between quantile (VaR) and ES. This is motivated by the fact that there

has not been sufficient investigation to establish the superiority of a certain estima-

tor of ES relative to the others in the literature and no particular type of ES model is

prescribed in the framework of the Basel Committee on Banking Supervision (2019).

Our results show that the GARCH-UGH approach produces more accurate ES es-

timates than those obtained by basic estimation methods, both from the perspec-

tive of traditional and comparative ES backtestings. We use the exceedance residual

test (McNeil and Frey 2000), the conditional calibration test (Nolde and Ziegel 2017)

and the expected shortfall regression test (Bayer and Dimitriadis 2020b) for tradi-

tional backtestings, and Diebold-Mariano test again based on the joint elicitability of

VaR and ES for comparative backtesting. When compared to other EVT-type meth-

ods, comparative backtestings with chosen two scoring functions result in a good

agreement with the GARCH-UGH approach being the best estimator of ES, while

traditional backtestings are not always in line with the superiority of our proposed

approach.

Chapter 5 is the conclusion of this thesis. In summary, we believe that the find-

ings of both estimation and backtesting of risk measures for tail risks in financial

extreme market given in Chapter 3 and 4 would be useful for developing regulatory

framework of the BCBS and monetary policies aimed at mitigating tail risks. We

strongly suggest adopting a two-stage backtesting framework, i.e., the use of both

traditional and comparative backtestings for risk measures that will enhance the

regulatory framework for financial institutions by providing the correct incentives

for accuracy of risk measure estimates. More precisely, the comparative backtesting

methods can be used by financial institutions internally to select better perform-

ing methods among competing alternatives when traditional backtestings methods

do not yield definitive answers as competitive methods are all accepted, or all re-

jected. Supplementing with comparative backtestings is essential, and hence can

adequately quantify the risks even though they still have some drawbacks to con-

sider for the practical use, e.g., there exists no optimal scoring function with any

theoretical guarantee.
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Chapter 2

Statistical aspects of Extreme Value

Theory (EVT)

2.1 Extreme Value Theory

Extreme Value Theory (EVT) is a branch of probability theory associated with limit-

ing laws for extreme values in large samples. Statistically, it uses only extreme event

data, focuses on analyzing the tail regions of distributions and allows the extrap-

olation beyond available data to forecast unforeseen extreme events. On the other

hand, many statistical models focus on the whole distribution at the expense of less

consideration in the tails. Thus, EVT could potentially provide better risk measure

estimates in quantitative risk management. EVT has a long and successful history.

We referred to many excellent books including Beirlant et al. (2004), de Haan and

Ferreira (2006) and Resnick (2007) for a detailed theory of extreme values, Coles

(2001) and Reiss and Thomas (2007) for the practical applications, and Embrechts et

al. (1997), Danielsson (2011) and McNeil et al. (2015) for the applications in finance.

In this chapter, we briefly describe the statistical aspects of EVT focusing on the

tail estimation methods for heavy-tail, i.e., Pareto, distributions that are the corner-

stone of the use of EVT in finance. We look at the important concepts of EVT such

as extreme value index, extreme value condition and second-order condition. For

tail estimation methods, we rely on the heavy-tail property, and estimate extreme

value index, extreme quantile (VaR) and second-order parameter, which is required

for bias-reduction procedures. In particular, we focus on the famous Hill estimator

(Hill 1975), Weissman quantile estimator (Weissman 1978), Peaks-Over-Threshold
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method using the generalized Pareto distribution (Pickands 1975) and second-order

parameter estimator by Gomes et al. (2002) (actually given in Chapter 3) for the pur-

pose of introducing our EVT-type method for estimations of VaR and ES. We also

review both unconditional and conditional estimation methods of VaR and ES based

on EVT with the limitations of EVT in finance.

2.1.1 Asymptotic model formulation

In Chapter 2, we consider i.i.d. random variables X1, ..., Xn representing financial

losses with finite mean µ, finite variance σ2 and common distribution function F. We

also assume that the second moment E(X2) < ∞ and the underlying distribution

function F is continuous and strictly increasing to avoid an overly mathematical

treatment. Later in Chapter 3 and 4 we relax the assumption of independence and

consider a time series of dependent losses, which will be negative log-returns for a

stock, index or exchange rate.

The EVT has been developed in parallel with the central limit theory and in fact

the two theories have some similarities. The central limit theory is concerned with

the limiting behaviour of the partial sums Sn = X1 + X2 + · · · + Xn as n → ∞.

Hence, the probabilistic problem is expressed as follows:

P
(

Sn − nµ√
nσ2

≤ x
)
→ Φ(x) as n→ ∞,

where Φ is the distribution function of the standard normal distribution

Φ(x) =
1

2π

∫ x

−∞
e−u2/2du.

On the other hand, the EVT is concerned with the limiting behaviour of the sample

extremes, either max(X1, X2, ..., Xn) or min(X1, X2, ..., Xn) as n → ∞. In this thesis,

we will always consider the maximum and it is defined by

Xn,n = max(X1, X2, ..., Xn).
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Of course, we can study the minimum due to the relation

min(X1, X2, ..., Xn) = −max(−X1,−X2, ...,−Xn).

We are interested in the possible limit distributions of the maximum Xn,n in the sim-

ilar way the central limit theory is derived for the partial sums Sn.

In theory we can derive the asymptotic distribution of the maximum Xn,n as

n→ ∞ exactly using an assumption of the sample:

P(Xn,n ≤ x) = P(X1 ≤ x, ..., Xn ≤ x)

= P(X1 ≤ x)× · · · × P(Xn ≤ x)

= Fn(x), ∀n.

(2.1)

We now proceed by looking at the asymptotic behaviour of Fn in (2.1). Let x∗ be the

right endpoint of F, which is given by x∗ := sup{x : F(x) < 1}. We know that the

maximum, which corresponds to the extreme event occurs near the upper end of F,

thus the behaviour of the maximum Xn,n is related to the right tail of the distribution

F near the right endpoint. This means that

Xn,n
P→ x∗, as n→ ∞,

where P→ indicates the convergence in probability. Using the above idea, we now

obtain that Fn(x) → 0 as n → ∞ for x < x∗ and Fn(x) = 1 for x ≥ x∗. This case is

known as a degenerate limit distribution that is non-informative. In order to avoid

this difficulty, a normalization of Xn,n is needed.

Suppose we can find a sequence of positive numbers {an; n ≥ 1} and a sequence

of numbers {bn; n ≥ 1} such that (Xn,n − bn)/an, the sequence of normalized max-

ima, then it converges in distribution as follows:

P
(

Xn,n − bn

an
≤ x

)
= Fn(anx + bn)→ G(x) as n→ ∞, (2.2)

where G is a non-degenerate distribution function. This development of the model

is the cornerstone of EVT so it appears in many literature, for instance, Coles (2001),
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Beirlant et al. (2004) and de Haan and Ferreira (2006).

From this asymptotic distribution of Xn,n in (2.2), there are two problems to con-

sider. The first problem is known as the extremal limit problem. We want to identify

the class of non-degenerate distributions G that can appear as a possible limit in

(2.2). It has been solved by by Fisher, Tippett and Gnedenko (see Section 2.1.2). The

second problem is the domain of attraction problem. For each of those limit distribu-

tions found in the extremal limit problem, we want to find necessary and sufficient

conditions on the underlying distribution functions F such that (2.2) holds. This is

briefly touched in Section 2.1.4 as it is not our main interest in this thesis.

2.1.2 Fisher-Tippett-Gnedenko Theorem

To answer the extremal limit problem, we will now look at the theoretical foundation

of EVT known as the Fisher-Tippett-Gnedenko three-types theorem.

Theorem(Fisher-Tippett-Gnedenko theorem, Embrechts et al. 1997; Coles 2001; Beir-

lant et al. 2004; de Haan and Ferreira 2006). If there exists a sequence of of positive

numbers {an; n ≥ 1} and a sequence of numbers {bn; n ≥ 1} such that

P
(

Xn,n − bn

an
≤ x

)
→ G(x) as n→ ∞,

where G is a non-degenerate distribution function, then G must belong to one of the

following three distribution functions (α > 0)

• Fréchet: Φ(x) =

{
0, if x ≤ 0,
exp(−x−α), if x ≥ 0,

• Weibull: Ψ(x) =

{
exp(−|x|α), if x ≤ 0,
1, if x ≥ 0,

• Gumbel: Λ(x) = exp(− exp(−x)), −∞ < x < ∞.

This theorem states that the normalized maxima (Xn,n− bn)/an converge in distribu-

tion to one of the three types of distributions that are Fréchet, Weibull and Gumbel.

The remarkable characteristic of this theorem is that the three types of distributions

are the only possible limits for the distribution of the normalized maxima, regard-

less of the underlying distribution function F. It is in the sense that it provides an

extreme value analogue of the central limit theory explained in section 2.1.1. Note
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that the proof of this theorem is omitted, which is given in Beirlant et al. (2004) using

the idea of transformation from the convergence in distribution to the convergence

of expectations.

2.1.3 Extreme value index (EVI)

Three types of distributions discussed in previous section can be thought of as mem-

bers of a simple one-parametric family of distribution that is known as the general-

ized extreme value (GEV) or the extreme value distribution. The distribution func-

tion of the standard GEV distribution is given by

Gγ(x) = exp(−(1 + γx)−1/γ), for 1 + γx > 0, (2.3)

where γ = 1/α is a new parameter introduced. The real quantity γ is called the

extreme value index (EVI) also known as the shape parameter. It is a key parameter

in the whole of extreme value analysis since it indicates the heaviness of the tail, i.e.,

how extreme and how frequent extreme events can be under the given probability

distribution. Therefore, the knowledge and understanding of γ are necessary for the

tail estimators for extreme quantiles (VaR) of X (discussed in Section 2.2).

The extreme value distribution given in Equation (2.3) is generalized in the sense

that the parametric form subsumes three types of distribution based on the value of

γ. We can see that the sign of EVI is the dominating factor in the description of the

tail behaviour of the underlying distribution F. For that reason, we will distinguish

between three cases where γ > 0, γ < 0 and the intermediate case where γ = 0 and

they are widely known as Fréchet-Pareto, Weibull and Gumbel cases, respectively.

Let us consider the behaviour of F in its right tail for three cases separately:

• For γ > 0 (Fréchet-Pareto), the right endpoint of the distribution is infinity and

an absence of positive exponential moments, i.e., they are infinite, is visible

from (2.3). Tails decline by a power law. We say that a distribution is heavy-

tailed if above condition is satisfied (see Foss et al. 2013), thus 1− Gγ is heavy-

tailed (also known as fat-tailed).
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• For γ < 0 (Weibull), the right endpoint of the distribution is finite and −1/γ

from (2.3) so 1− Gγ is short-tailed (also known as thin-tailed).

• For γ = 0 (Gumbel), the right endpoint of the distribution is infinity but all

exponential moments are finite and an exponential decay appears. A distribu-

tion F is called light-tailed if above condition is satisfied (see Foss et al. 2013),

hence 1− Gγ is light-tailed.

In this thesis, we assume that the tails of the financial returns to be heavy-tailed

(γ > 0) for VaR and ES estimations in Chapter 3 and 4. This assumption is ubiq-

uitous in actuarial and financial risk management (see Embrechts et al. 1997 and

Resnick 2007).

2.1.4 First-order condition

We present the condition required on distribution function F for the normalized

maxima Xn,n to have the limiting distribution G, which was illustrated in the Fisher-

Tippett-Gnedenko theorem. This condition is known as the first-order condition or

the extreme value condition. Let U be the tail quantile function defined by

U(x) = q
(

1− 1
x

)

where q is the quantile function. It is the generalized inverse of 1/(1 − F), i.e.,

U(y) = F←
(

1− 1
y

)
for y ≥ 1. Then, the distribution function F is in the domain

of attraction of the extreme value distribution Gγ if and only if there exists a positive

(or first-order auxiliary) function a such that,

lim
x→∞

U(xu)−U(x)
a(x)

= hγ(u) :=


uγ − 1

γ
, γ 6= 0,

log u, γ = 0,
(Cγ(a)) (2.4)

holds for all u > 0. Note that most of the EVI estimators that are based on a set

of upper order statistics k are motivated by this condition. These estimators will be

introduced in Section 2.2.1 and 2.2.4. Additionally, it is an important framework for

the derivation of the second-order condition given in next section.

In this section, we also explain briefly the basic of the theory of regular variation

that will show up in Section 2.2. Let ` be a positive measurable function on (0, ∞).
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We say that ` is regularly varying of index θ ∈ R if

lim
x→∞

`(xu)
`(x)

= uθ for all u > 0.

In the case θ = 0, the function ` is called slowly varying. The slowly varying function

thus satisfies the condition

`(xu)
`(x)

→ 1 as x → ∞. (2.5)

Moreover, there is another property of the slowly varying function to mention (see

Beirlant et al. 2004), which is

lim
x→∞

log `(x)
log x

= 0. (2.6)

2.1.5 Second-order condition

We are going to develop a second order condition related to (Cγ) (2.4). It is used to

derive the asymptotic behaviour of several EVI estimators such as the Hill estimator

(2.10) and the Pickands estimator (2.12), which lead to the derivation of the bias-

reduced EVI estimators. The important asymptotically bias-reduced Hill estimator

by de Haan et al. (2016) is also based on this second-order condition and used in the

proposal of dynamic extreme VaR and ES estimators in Chapter 3 and 4.

Once again we start with the extreme value (or first-order) condition (Cγ), given

by

lim
x→∞

U(xu)−U(x)
a(x)

=
uγ − 1

γ
=: hγ(u),

for each u > 0. The first-order condition is concerned with the convergence in dis-

tribution of the normalized maxima Xn,n to have the limiting distribution G whereas

for the second-order condition the convergence rate is the main interest. The follow-

ing second-order condition has been defined in de Haan and Ferreira (2006) and is

commonly used in many literature (see for example Caeiro and Gomes 2010; Fraga

Alves et al. 2003; Gomes et al. 2002; Gomes and Martins 2002; Peng 1998).

The function U is said to satisfy the second-order condition if for some positive

first-order auxiliary function a and some positive or negative second-order auxiliary
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function b with limx→∞ b(x) = 0,

lim
x→∞

U(xu)−U(x)
a(x) − uγ−1

γ

b(x)
= Hγ,ρ(u) :=

1
ρ

(
uγ+ρ − 1

γ + ρ
− uγ − 1

γ

)
, (2.7)

holds for all u > 0, where ρ ≤ 0 is a second-order parameter and |b(x)| is of regular

variation with index ρ. This ρ controls the speed of convergence in (Cγ). More pre-

cisely, the function b therefore controls the rate of convergence in the condition (2.4):

the larger |ρ| is, the faster |b| converges to 0, and the smaller the error in the approx-

imation of the right tail of U by a Pareto tail is. This makes it possible to precisely

quantify the bias of the EVI and extreme quantile (VaR) estimators. Besides, it is

known that the estimation of ρ is difficult. Some estimators of ρ have been proposed

in the literature (see Section 2.2.4.3).

We propose our bias-reduced VaR and ES estimators that are built on the second-

order estimator of Gomes et al. (2002), explained in Section 3.2.3. Note that the first-

order condition (2.4) and second-order condition (2.7) are given in alternative forms

by the Equations (3.4) and (3.7) in Chapter 3, respectively.

2.2 Tail estimation methods for Pareto-type distributions

We consider X1, X2, ..., Xn, n i.i.d. random variables representing financial losses

with common distribution function F, and let X1,n ≤ X2,n ≤ · · · ≤ Xn,n denote the

order statistics based on the first n observations. In this section we suppose that F is

of Pareto-type, i.e., the class of heavy-tailed distributions, referred to as the Fréchet

maximum domain of attraction with EVI 0 < γ < 1. This means that there exists a

slowly varying function `F for which

1− F(x) = x−1/γ`F(x), (2.8)

where γ is a positive EVI and x > 0 large enough. We can present this model in

terms of U equivalently

U(x) = xγ`U(x), (2.9)
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where `U is again slowly varying. Note that the condition (Cγ(a)) in (2.4) is equiv-

alent with the existence of `F(x) and `U(x) for which (2.8) and (2.9), respectively.

Examples of distributions of Fréchet-Pareto type are given in Table 2.1.

Distribution 1− F(x) Extreme value in-
dex (EVI)

Pareto(α) x−α,
x > 1;α > 0

1
α

Fréchet(α) 1− exp(−x−α),
x > 0;α > 0

1
α

Burr(β, τ, λ)
(type XII)

(
β

β+xτ

)λ
,

x > 0;β, τ, λ > 0

1
λτ

Student’s t
|Tn|

∫ ∞
x

2Γ
(

n+1
2

)
√

nπΓ
(

n
2

)(1 + ω2

n

)− n+1
2 dω,

x > 0;n > 0

1
n

TABLE 2.1: A list of distributions in the Fréchet domain.

In this section, we will consider the estimations of the EVI and extreme quan-

tiles (VaR) of the distribution F. Our main interests are the famous Hill estimator

(Hill 1975), Weissman quantile estimator (Weissman 1978), Peaks-Over-Threshold

method using the generalized Pareto distribution (Pickands 1975) and second-order

parameter estimator by Gomes et al. (2002) (actually given in Chapter 3).

An important challenge in the applications of the EVT based on k upper order

statistics is choice of the tail sample fractions, i.e., how many very large or extreme

values of the sample to be used in the statistical analysis. This determines whether

extreme value models provide good extrapolation or not. It would be unrealistic

to assume that only the maximum Xn,n contains valuable information on the tail

behaviour but lower order statistics may not contain such information. Further-

more, other reason is that choice of the optimal k affects the estimators, which will

be discussed later. By choosing small k (upper order statistics), in this case few ob-

servations will be used in the tail estimation, which results in estimators with small

bias but large variances. On the other hand, choosing large k (lower order statistics)

causes the estimators to have small variances but large bias. Thus, the selection of

optimal k is vital to balance the bias component and variance component. This will

be covered further in Section 2.2.5. Finally, we clarify that we consider the order

statistics Xn−k,n with n → ∞, k = k(n) → ∞, and k(n)/n → 0. These are called the
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intermediate order statistics, which are known to be connected with EVT.

2.2.1 Hill method

Hill estimator - first estimator of EVI (γ > 0) is the Hill estimator (Hill 1975) given

by

Hk,n ≡ γ̂H
k =

1
k

k

∑
i=1

log Xn−i+1,n − log Xn−k,n, k = 1, ..., n− 1, (2.10)

where the term inside summation is the log of spacing between two order statistics.

It plays a central role in many applications because it is derived as the maximum

likelihood estimator of the Pareto distribution, that is one of the important represen-

tatives of the heavy-tailed distributions. It is inspired by the fact that the definition

of a Pareto-type tail (2.8) can be re-written as

lim
t→∞

1− F(tx)
1− F(t)

= lim
t→∞

(xt)−1/γ

t−1/γ

`F(xt)
`F(t)

= x−1/γ for any x > 1,

due to the condition `(xt)/`(t) → 1 (2.5). This means that the distribution of the

relative excesses over a high threshold t conditionally on Xi > t is approximately a

strict Pareto distribution (see Table 2.1):

P
(

X
t
> x | X > t

)
≈ x−1/γ = x−α for any x > 1.

By letting Yj = Xi/t, the likelihood equation and so the MLE for this Pareto distribu-

tion are found to obtain the Hill estimator, which is considered as the probabilistic

construction in Beirlant et al. (2004).

Properties of Hill estimator - an important property of the Hill estimator is

that γ̂H
k is a consistent estimator for γ if we use the order statistics Xn−k,n with

n, k(n) → ∞ and k(n)/n → 0, i.e., if we use intermediate order statistics. Proof

of consistency is shown in Mason (1982) using law of large numbers for sums of

extreme order statistics and also in de Haan and Ferreira (2006) via a different ap-

proach. It is also asymptotically normally distributed (see for example Chapters 3

and 4 in de Haan and Ferreira 2006). However, there are some drawbacks in spite of

these nice properties. They are as follows:

• Limited ranges of γ, i.e., γ > 0.
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• For every choice of k, we obtain different estimates of γ. It is quite sensitive

to the number of upper order statistics used in the estimation. We usually

plot the estimates of γ against k to check the behaviour of the EVI estimators.

In the case of γ̂H
k , the Hill plot {(k, γ̂H

k ) : 1 ≤ k ≤ n − 1} is yielded. These

plots typically show the large volatility, i.e., far from being constant, which

makes the estimator difficult to use in practice if no further guideline is given

for selection of the optimal tail sample fraction k (see Section 2.2.5). This is

illustrated in Figure 2.1a.

• In many cases, γ̂H
k overestimates the true value of γ. As a result, the substantial

bias can appear (illustrated in Figure 2.1b) due to the slow convergence of the

slowly varying part in the model. The slower the term log `(x)/ log x in (2.6)

tends to zero as x → ∞, the slower the ultimate linearity appears in a Pareto

QQ-plot. One way to overcome this problems is to use the larger sample sizes

n so that γ̂H
k becomes unbiased for smaller values of k. Other way is the con-

struction of the bias-reduced estimator of EVI, which is discussed in Section

2.2.4.3 and used in Chapter 3 and 4.

• Since γ̂H
k is based on the log-transformed data, it is not-invariant with respects

to the shifts of the data. This property is shared by the estimators based on

log-transformed data, including the moment estimator in Section 2.2.4.1.

2.2.2 Weissman quantile estimator

In this section, we explain the estimation of extreme quantiles (VaR) and correspond-

ing extreme tail probabilities via the approach proposed by Weissman (1978). For the

estimation of the extreme quantile, we want to estimate the τ(= 1− p)th quantile

based on a sample size n:

qτ ≡ Q(1− p) = inf{x : F(x) ≥ τ}

where in fact p = pn since it depends on n. The Weissman quantile (VaR) estimator

is given by

q̂τ = Xn−k,n

(
k

np

)γ̂H
k

. (2.11)
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(a) (k, γ̂H
k ) (b) (k, Bias(k))

FIGURE 2.1: (a) The Hill plot (k, γ̂H
k ) for simulated datasets of size n =

1000 from Pareto(1) and (b) the bias plot (k, Bias(k)) for simulated
datasets of size n = 1000 from Fréchet(1).

We are particularly interested in the case in which a small exceedance probability

pn is outside the range of data. This allows us to estimate an extreme quantile qτ that

is to the right of all or almost all observations so that we can extrapolate outside the

range of available observations. This means that pn needs to satisfy the conditions

pn → 0 as n → ∞ and npn = o(k), i.e. , npn equals a very small number. Choices of

pn are, for instance, 1/n, 1/n2 and 1/(n log n).

2.2.3 Peaks-Over-Threshold (POT) method

Peaks-Over-Threshold (POT) is the commonly used parametric EVT approach in

finance, which is an alternative to the Hill-based estimator. When estimating VaR

and ES, it essentially consists in fitting the generalized Pareto distribution (GPD) to

the financial returns (see Chapter 3 and 4).

Under the i.i.d. condition, we consider the distribution function of excess Y =

X − u over a fixed high threshold u. The corresponding excess distribution above

the threshold u is given by

Fu(y) = P(Y = X− u ≤ y|X > u) =
F(y + u)− F(u)

1− F(u)
, y ≥ 0.
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The famous Pickands (1975) shows that the GPD occurs naturally as the limit distri-

bution of the scaled excesses of i.i.d. random variables over high thresholds. Under

this POT method, any observations that exceed a high threshold are modeled sepa-

rately from non-extreme observations. The excesses Y from a fixed high threshold u

follow a GPD Y = X− u ∼ GPD(γ, β) if

Fu(y) ≈ GPDγ,β(y) =


1−

(
1 +

γy
β

)−1/γ
, γ 6= 0,

1− exp
(
− y

β

)
, γ = 0,

where β > 0 is a scale parameter, γ is the EVI, i.e., tail shape parameter as explained

with the support y ≥ 0 when γ ≥ 0 and 0 ≤ y ≤ −β/γ when γ < 0.

In practice, we fix the number of data in the tail to be k where k < n and use

the proportion of tail data k/n. This effectively gives us a random threshold at the

kth upper order statistic and we hence use the same setting as the Hill (2.10) and

Weissman quantile estimators (2.11). For a probability level τ = 1− p, the extreme

quantile (VaR) estimator by the POT approach is given by

q̂τ = Xn−k,n +
β̂

γ̂

(( p
k/n

)−γ̂
− 1
)

, γ̂ 6= 0.

McNeil and Frey (2000) show that the EVT method based on the POT approach

estimates more stable extreme quantiles than those obtained by the Hill estimator.

2.2.4 Other methods of EVI and second-order parameter estimations

2.2.4.1 EVI estimators for γ ∈ R

Pickands estimator - one of the simplest and oldest well-known estimator for a gen-

eral EVI γ ∈ R is the Pickands estimator from Pickands (1975):

γ̂P
k =

1
log 2

log
(Xn−dk/4e+1,n − Xn−dk/2e+1,n

Xn−dk/2e+1,n − Xn−k+1,n

)
, k = 1, ..., n. (2.12)

It can be found through the following expansion based on the extreme value condi-

tion (2.4): since one can write a(x) = xγ`(x) with the limiting relation a(xu)/a(x)→
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uγ, we find that

1
log 2

log
(

U(4x)−U(2x)
U(2x)−U(x)

)
=

1
log 2

log
(

U(4x)−U(2x)
a(2x)

a(2x)
a(x)

a(x)
U(2x)−U(x)

)
→ 1

log 2
log
(

hγ(2)2γ

hγ(2)

)
=

1
log 2

(log 2)γ = γ, x → ∞.

We have shown that above expression with theoretical U(x) tends to γ so replacing

it by its empirical version Ûn(x) = Xn−dn/xe+1,n leads to the Pickands estimator.

Due to the simplicity, weak consistency, shift and scale invariant, and asymp-

totic normality (see de Haan and Ferreira 2006) of γ̂P, it is quite appealing but has

large asymptotic variance, which results in jagged path as a function of k in plots.

In practice, we want to avoid this type of paths for better tail estimation. It is also

very sensitive to the choice of the number of upper order statistics used for estima-

tion and hence it should be not used in practice for small or moderate sample sizes,

for example, when n < 500. To overcome this disadvantage, the refined Pickands

estimator was introduced in Drees (1995).

Moment estimator - this EVI estimator generalizes the Hill estimator (2.10) for

the case γ > 0 to general cases γ ∈ R by means of an application of a shift to the data.

The resulting estimator is called the moment estimator, which has been introduced

by Dekkers et al. (1989):

γ̂M
k = M(1)

k + 1− 1
2

(
1−

(M(1)
k )2

M(2)
k

)−1

, (2.13)

where

M(α)
k :=

1
k

k

∑
i=1

(log Xn−i+1,n − log Xn−k,n)
α, α > 0. (2.14)

We can notice from (2.14) that γ̂H
k = M(1)

k .

The moment estimator works as a diagnosis when the true value of EVI is un-

known in the real data analysis due to its nice properties such as unlimited range

of γ, consistency and asymptotic normality (see de Haan and Ferreira 2006 and

Dekkers et al. 1989). Basically, the consistency of the moment estimator follows from
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(M(1)
k )2

M(2)
k

P⇒


1
2

, if γ ≥ 0,
1− 2γ

2(1− γ)
, if γ < 0,

as k(n), n→ ∞ and k(n)/n→ 0, and

γ̂H
k

P⇒
{

γ, if γ ≥ 0,
0, if γ < 0,

since the slope of the Pareto QQ-plot when γ ≤ 0 tends to zero near the higher

observations. However, it usually has a high variance for small values of k and a

high bias for large k, in the same way as the most of the classical EVI estimators.

Besides, it is not shift invariant.

2.2.4.2 EVI estimators for specific ranges

Negative moment estimator - for γ < 0, we shall sometimes work with

γ̂NM
k := γ̂M

k −M(1)
k = 1− 1

2

(
1−

(M(1)
k )2

M(2)
k

)−1

, (2.15)

which is called the negative moment estimator (see de Haan and Ferreira 2006 and

Caeiro and Gomes 2010). We can see from this equation that the moment estimator

in (2.13) is the combination of two estimators: the Hill estimator in (2.10) that is

consistent for γ+ := max(0, γ) and the negative moment estimator in (2.15) that is

consistent for γ− := min(0, γ). The remarkable feature of γ̂NM
k is that it has the same

asymptotic variance as γ̂M
k when γ < 0. In Caeiro and Gomes (2010), due to this

remark, an asymptotic unbiased estimator for γ < 0 based on the negative moment

estimator was established. It is found that when γ < 0 this asymptotic bias-reduced

estimator works well because of a smaller asymptotic bias but the same asymptotic

variance as the moment estimator.

Probability-Weighted moment estimator - we review the EVI estimator, which

is not based on log-transformed data. It is the probability-weighted moment estima-

tor (PWM) of Hosking and Wallis (1987). It is derived as the one of the parameter

estimations for the generalized Pareto distribution (GPD) that can be uniform, expo-

nential or Pareto distributions depending on the shape parameters. This estimator
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works for γ < 1 since moments and probability-weighted moments do not exist

when γ ≥ 1 for GPD. The PWM estimator consists of two statistics

Pn =
1
k

k

∑
i=1

Xn−i+1,n − Xn−k,n,

and

Qn =
1
k

k

∑
i=1

i
k
(Xn−i+1,n − Xn−k,n),

which lead to the estimator

γ̂PWM
k =

Pn − 4Qn

Pn − 2Qn
. (2.16)

Note that the PWM estimator is a ratio of the weighted sum of order statistics and

the statistic Pn is the empirical mean excess function. Moreover, it is found by

Hosking and Wallis (1987) that the scale i/k in the statistic Qn can be replaced with

(i− 0.35)/k, which may improve the finite sample behaviour without affecting the

asymptotic behaviour of PWM estimator.

Because of its simplicity, shift and scale invariance, it is still used in many appli-

cations. However, there are some problems to discuss. Firstly, its range limitation

γ < 1 does not allow us to use for strong heavy tail cases. Secondly, the convergence

of γ̂PWM
k to γ is different for 1

2 < γ < 1 and γ < 1
2 , and the asymptotic normality is

only valid for γ < 1
2 (see de Haan and Ferreira 2006).

2.2.4.3 Asymptotically unbiased EVI estimators with second-order parameter

In this section, four asymptotically bias-reduced estimators from Peng (1998), Hall

and Welsh (1985) and Fraga Alves et al. (2003) are introduced briefly. Note that the

estimator of second-order parameter by Gomes et al. (2002), which is actually used

in our applications is given in Section 3.2.3. The remarkable characteristic of these

estimators is that the bias is reduced even if we use a large number of upper order

statistics, i.e., for large k, when other classical EVI estimators have a high bias.

We assume that the second-order condition (2.7) is satisfied, which also implies

that the first-order condition (2.4) is fulfilled. An asymptotically unbiased estimator
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based on the Hill estimator for γ > 0 (Peng 1998) is given by

γ̂UH
k = γ̂H

k −
M(2)

k − 2(γ̂H
k )2

2γ̂H
k ρ̂1

(1− ρ̂1), (2.17)

where M(2)
k is the statistic M(α)

k (2.14) when α = 2 and

ρ̂1 =
1

log 2
log

M(2)
n/(2 log n) − 2

(
M(1)

n/(2 log n)

)2

M(2)
n/ log n − 2

(
M(1)

n/ log n

)2

is the estimator of the second-order parameter ρ ≤ 0. Similarly, we introduce the

unbiased estimator based on the Pickands estimator for γ ∈ R, which is defined by

γ̂UP
k = γ̂P

k −
γ̂P

k − γ̂P
k/4

1− 4ρ̂2

where

ρ̂2 =
1

log 2
log

γ̂P
n/(2 log n) − γ̂P

n/(4 log n)

γ̂P
n/ log n − γ̂P

n/(2 log n)

is the estimator of ρ ≤ 0. The study of the asymptotic normality and its proof are

covered in Peng (1998).

We shall next deal with few other estimators of ρ, which are also built upon the

statistics M(α)
k (2.14). Hall and Welsh (1985) provide the estimator of ρ, given by

ρ̂3 = −

∣∣∣∣∣∣log

∣∣∣∣∣∣
1/M(1)

[n0.9]
− 1/M(1)

[n0.5]

1/M(1)
[n0.95]

− 1/M(1)
[n0.5]

∣∣∣∣∣∣
/

log
[n0.9]

[n0.95]

∣∣∣∣∣∣.
When we substitute ρ̂3 into the Peng’s asymptotically unbiased estimator (2.17) re-

placing ρ̂1, we obtain a new estimator for γ. Gomes and Martins (2002) find that

this bias-reduced estimator has a high variance, which has the same property as the

original estimator using ρ̂1. Fraga Alves et al. (2003) also propose the estimator of

second-order parameter ρ, which depends on a tuning parameter ω ≥ 0. It is de-

fined as

ρ̂4 ≡ ρ̂
(ω)
k = −

∣∣∣∣∣3(T
(ω)
k − 1)

T(ω)
k − 3

∣∣∣∣∣,
where
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T(ω)
k =


(M(1)

k )ω − (M(2)
k/2)

ω/2

(M(2)
k/2)

ω/2 − (M(3)
k/6)

ω/3
, if ω > 0,

log(M(1)
k )− 1

2 log(M(2)
k/2)

1
2 log(M(2)

k/2)−
1
3 log(M(3)

k/6)
, if ω = 0.

Under adequate general conditions, it is an asymptotically normal estimator of ρ,

whenever ρ < 0. This means that it exhibits highly stable sample paths as a function

of k, while other estimators show their fluctuations. In practice, it is known that

ρ-estimators of Gomes et al. (2002) in Chapter 3 and Fraga Alves et al. (2003) work

well in practice.

2.2.5 Optimal threshold selection

Recall that an important challenge in the implementation of EVT in practice is to

choose a threshold, i.e., tail sample fraction, that will define the tail of the distribu-

tion of financial returns. In other words, it is necessary to select the number of upper

observations that can be considered as the effective sample size for the extrapolation

outside the range of available observations. Thus, successful practical applications

of extreme values heavily depend on the determination of optimal k.

Selecting the optimal tail sample fraction k is known as the difficult task in ex-

treme value analysis for two reasons. Firstly, there is no straightforward approach

for the optimal selection: see Scarrott and MacDonald (2012) and Echaust and Just

(2020) for a review of extreme value threshold. Secondly, there is a bias-variance

tradeoff. By choosing a low level of k, few observations are used in estimation that

results in a high level of the estimation variance. With a high level of k, the variance

is reduced, but at the cost of an increasing bias.

Regarding the implementation of EVT in dynamic extreme VaR and ES estima-

tions, the literature about threshold selection is still scarce for practical cases in

which the i.i.d. condition is not appropriate. As far as we are aware, a threshold

is selected as a fixed quantile of the empirical data in most cases, for example, Mc-

Neil and Frey (2000), Fernandez (2005), Youssef et al. (2015), Bee et al. (2016) and

Karmakar and Paul (2019) chose the 90th quantile and Ergen (2015) chose the 92nd

and 94th quantiles of the loss distribution as a threshold. In comparison with the
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fixed threshold approach, Echaust and Just (2020) used four different optimal tail

selection algorithms, which include the path stability method, the automated Eye-

Ball method, the minimization of asymptotic mean squared error method and the

distance metric method. In order to tackle the problem of selecting the optimal tail

sample fraction k, we use the bias correction method of an EVI and an extreme quan-

tile for extreme VaR and ES estimations even if we need more than the first-order

condition (2.4). Nonetheless, the bias correction method is preferred because the

choice of optimal k is less crucial.

2.3 Use of EVT in finance

It has been found in previous studies such as Embrechts et al. (1997), Danielsson

(2011) and McNeil et al. (2015) that the heavy-tailed distributions describe suffi-

ciently well the tail structure of financial data. In this thesis, we use EVT to estimate

risk measures VaR and ES. EVT uses only extreme event data, focuses only on the

tails, and allows the extrapolation beyond available data, while traditional econo-

metric models focus on the whole distribution at the expense of less consideration

in the tails. Thus, EVT could potentially provide better VaR estimates.

There have been a number of literature that discuss the use of EVT for estimat-

ing unconditional VaR. Some examples include: Danielsson and de Vries (1997), who

propose the estimation of unconditional VaR by a semiparametric method combin-

ing historical simulation with parametric estimation of the tails of the return distri-

bution; Danielsson and Morimoto (2000), who apply EVT to estimate unconditional

VaR of Japanese financial data and find that the EVT method estimates better VaRs

than GARCH-type models in terms of accuracy and stability; Drees (2003), who es-

tablishes the asymptotic normality of the extreme quantile estimator for a stationary

β-mixing time series and applies to the NASDAQ Composite index to estimate the

unconditional VaR; de Haan et al. (2016), who introduce an asymptotically unbiased

estimator of extreme quantile for a β-mixing time series and apply to the Dow Jones

Industrial Average index to estimate the unconditional VaR; Chavez-Demoulin and

Guillou (2018), who propose an alternative asymptotically bias-corrected estimator

of the extreme quantile for a β-mixing time series and apply to the S&P500 index to
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estimate the unconditional VaR. For estimating unconditional ES, Righi and Ceretta

(2015) evaluated unconditional quantile and expectile regression-based models for

one-day ahead (daily) ES estimation.

Regarding the extensive literature of the estimations of conditional VaR and ES,

they are given in Section 3.1 and Section 4.2, respectively. Most of the EVT methods

to estimate conditional VaR and ES are based on the GARCH-EVT framework by the

influential paper McNeil and Frey (2000), whereby financial returns are first filtered

using an AR-GARCH model, and then the GPD is fitted to the standardized resid-

uals. Note that our proposed bias-reduced EVT method called the GARCH-UGH is

also influenced by the GARCH-EVT framework. Merit of using the conditional EVT

model is that under a correct specification of the conditional mean and variance, the

filtered residuals will be approximately i.i.d., which matches with an assumption of

EVT methods.

In studies of the VaR and ES estimations, one should deal with unconditional

and conditional return distributions separately. The unconditional VaR and ES are

appropriate for the forecast of potential large losses in longer time horizon, for ex-

ample, when we consider long-term investment decisions. Although the uncon-

ditional VaR and ES based on EVT routinely assume that financial returns are in-

dependent and identically distributed (i.i.d.), financial institutions often prefer the

unconditional VaR to avoid undesirable fluctuation of risk limit widely over time

for traders and portfolio managers (Danielsson and de Vries 1997). On the other

hand, the conditional VaR and ES are more appropriate for short time horizon when

we deal with day-to-day risks and short-term risk management by capturing the

dynamics and the vital properties of financial asset returns such as volatility clus-

tering and leptokurtosis. The conditional VaR and ES give the better understanding

of the riskiness of the portfolio because the riskiness of the portfolio varies with the

changing volatility. Moreover, Diebold et al. (2000) point out that the assumption of

i.i.d. data for estimating the unconditional VaR based on EVT is very often violated

for conditionally heteroscedastic financial time series. It is our present position that

the problem of choosing an appropriate risk measure for the given situation based

on theoretical and practical considerations should be separated from the statistical

problem of estimating more accurate risk measures.
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In this thesis, we focus only on the estimations of conditional VaR and ES. We be-

lieve that it is necessary to incorporate dynamic changes in the market to reflect the

most updated risk level. Again, EVT is an accurate candidate framework to model

the tails of the distribution for extreme market events and hence used in Chapter 3

and 4.

2.3.1 Limitations of EVT in finance

We finally list two limitations that must be tackled to apply EVT to financial returns

to estimate dynamic extreme VaR and ES. Firstly, basic EVT models assume that fi-

nancial realizations from i.i.d. samples, which are not realistic. For that, we first

filter the financial returns using an AR-GARCH model and apply EVT models to

the approximately i.i.d. residuals. Our bias-reduction procedure will be designed

to be robust to departure from the independence assumption, and as such will be

able to handle residual dependence present after filtering. Secondly, the most im-

portant parameter of EVT models, which is EVI (tail shape prameter), is sensitive

to the threshold selection (optimal tail sample fraction). Our approach leads to ex-

treme conditional VaR and ES estimates that are less sensitive to the choice of sample

fraction, and hence mitigates the difficulty in selecting the optimal number of obser-

vations for estimations.
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Chapter 3

Dynamic extreme Value-at-Risk

estimation by GARCH-UGH

3.1 Introduction

A major concern in financial risk management is to quantify the risk associated to

high-impact, low-probability extreme losses. The most widely known risk measure

is Value-at-Risk (VaR), defined as a quantile of the loss distribution. Even though

the Basel Committee on Banking Supervision recommends the use of VaR at high

levels (see for example Basel Committee on Banking Supervision 2013), it has been

criticized several times in the financial literature for two main reasons. First, the VaR

only measures the frequency of observations below or above the predictor and not

their magnitude: this means that, while it is known that 100(1− τ)% of losses will be

higher than the VaR qτ at level τ, the VaR alone cannot give any further information

about the size of these large losses. Second, the VaR is not a coherent risk measure in

the sense of Artzner et al. (1999), because it is not sub-additive in general, meaning

that it does not abide by the intuitive diversification principle stating that a portfo-

lio built on several financial assets carries less risk than a portfolio solely consisting

of one of these assets. These two weaknesses pushed the Basel Committee to also

recommend calculating the Expected Shortfall (or Conditional Value-at-Risk) as a

complement or alternative to the VaR. In practice, this is hampered by the fact that

the Expected Shortfall is not elicitable in the sense of Gneiting (2011), and therefore

the development of a simple backtesting methodology for the Expected Shortfall is
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not clear (see Deng and Qiu 2021 for a very recent comprehensive study of backtest-

ing procedures for the Expected Shortfall).

This is why the accurate estimation of VaR is worth pursuing, and is our focus in

this paper. An estimation of the unconditional VaR (that is, of the common distribu-

tion of returns over time, assumed to be stationary) is appropriate for the estimation

of potential large levels of loss over the long term, for example with the goal of

making long-term investment decisions. On the other hand, the conditional VaR is

more appropriate for day-to-day and short-term risk management by capturing the

dynamics and the key properties of financial asset returns such as volatility clus-

tering and leptokurtosis. The estimation of the extreme conditional VaR, on which

we focus in this paper, therefore gives a better understanding of the riskiness of the

portfolio because this riskiness varies with the changing volatility. Quantifying the

risk associated to extreme losses can then be done by estimating an extreme quantile

of order 1− p, where p = p(n) → 0 as the available sample size n of the data tends

to infinity.

There are two main classes of methods to estimate the conditional VaR. Non-

parametric historical simulation (HS) relies on observed data directly, and uses the

empirical distribution of past losses without assuming any specific distribution, see

Danielsson (2011) and McNeil et al. (2015). Although HS is easy to implement, the

estimation of extreme quantiles using HS is difficult as the extrapolation beyond ob-

served returns is impossible because this method essentially assumes that one of the

observed returns is expected to be the next period return. By contrast, the parametric

approach generally refers to the use of an econometric model of volatility dynam-

ics such as, among many others, the Generalized Autoregressive Conditional Het-

eroskedasticity (GARCH) model of Bollerslev (1986). These models estimate VaRs

reflecting the conditional heteroskedasticity of financial data. However, at extreme

levels GARCH-type models assuming a normal distribution of the innovation vari-

able tend to underestimate risk because this assumption is not well-suited to the

estimation of heavy-tailedness in the conditional returns of financial time series.

To overcome the problems of purely nonparametric or parametric estimations

of extreme VaR, McNeil and Frey (2000) propose a two-step approach combining
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a GARCH-type model and Extreme Value Theory (EVT), referred to as GARCH-

EVT throughout. EVT focuses only on the tails and allows the extrapolation beyond

available data, while traditional econometric models focus on the whole distribu-

tion with less consideration of the tails. The key idea of the GARCH-EVT method

is to estimate the dynamic extreme VaR by first filtering financial time series with a

GARCH-type model to estimate the current volatility, and then by applying the EVT

method to the standardized residuals for estimating the tails of the residual distribu-

tion. This approach has been widely used to estimate the extreme conditional VaR.

For instance Byström (2004) and Fernandez (2005) find GARCH-EVT to give accu-

rate VaR estimates for standard and extreme quantiles compared with GARCH-type

models and unconditional EVT methods on stock market data collected across the

US, Latin America, Europe and Asia. Being a two-step procedure based on GARCH-

type filtering, the accuracy of the GARCH-EVT approach has been debated. Chavez-

Demoulin et al. (2005) point out that estimates of the extreme conditional VaR via

the GARCH-EVT approach are sensitive to the fitting of a GARCH-type model to

the dataset in the first step. On the other hand, Furió and Climent (2013) and Jalal

and Rockinger (2008) have concluded that there is no evidence of any difference in

the final VaR estimates, regardless of the particular GARCH model selected to filter

financial data.

Since the debate on filtering, several modifications of the conventional GARCH-

EVT method have been suggested in the literature to provide a more accurate calcu-

lation of the residuals before applying the EVT method in the second step. Yi et al.

(2014) propose a semiparametric version of GARCH-EVT based on quantile regres-

sion. Youssef et al. (2015) adapt the FIGARCH, HYGARCH and FIAPARCH mod-

els to estimate extreme conditional VaRs for crude oil and gasoline market. Bee et

al. (2016) propose an approach called realized EVT where returns are pre-whitened

with a high-frequency based volatility model. Zhao et al. (2019) develop hybrid

time-varying long-memory GARCH-EVT models by using a variety of fractional

GARCH models. To the best of our knowledge, little work has been carried out on

the EVT step itself; Ergen (2015) uses the skewed t-distribution that is fitted to the

standardized residuals from the GARCH step in order to recover a fully parametric

specification. In the context of estimation and inference of unconditional extreme
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VaR, bias correction is a key concern and has an extensive history (see e.g. Cai et

al. 2013 for a review). de Haan et al., 2016 develop a semiparametric bias-reduced

estimator of extreme unconditional VaR in stationary time series. However, such im-

provements have not been investigated so far in the specific context of dynamic esti-

mation of extreme quantiles of financial time series.

This is the contribution of the present paper. More precisely, in the context of the

estimation of the one-step ahead dynamic extreme VaR, we develop a new method-

ology called GARCH-UGH (standing for Unbiased Gomes-de Haan, after de Haan

et al. 2016 and Gomes et al. 2002). The novelty in this methodology is that, instead

of applying the Peaks-Over-Threshold (POT) method in the GARCH-EVT approach

as in McNeil and Frey (2000), we use an asymptotically unbiased estimator, derived

from the work of de Haan et al., 2016, of the extreme quantile applied to the stan-

dardized residuals from the GARCH step. We analyze the performance of our ap-

proach on four financial time series, which are the Dow Jones, NASDAQ and Nikkei

stock indices, and the Japanese Yen/British Pound exchange rate. As we shall illus-

trate, our results indicate that GARCH-UGH provides substantially more accurate

one-step ahead extreme conditional VaRs than either HS, the conventional GARCH-

N method (that is, the standard GARCH specification of heteroskedasticity with

normal innovations), its GARCH-t analogue where the innovations are Student-t

distributed, the GARCH-EVT approach, or simple UGH without filtering, based on

the performance of the in-sample and out-of-sample backtestings. In addition, our

bias-reduction procedure will be designed to be robust to departure from the in-

dependence assumption, and as such will be able to handle residual dependence

present after filtering in the first step. Our finite-sample results will also illustrate

that the GARCH-UGH method leads to one-step ahead extreme conditional VaR es-

timates that are less sensitive to the choice of sample fraction, and hence mitigates

the difficulty in selecting the optimal number of observations for the estimations.

Finally, the computational cost of GARCH-UGH is lower than that of conventional

GARCH-EVT: the extreme value step in the GARCH-UGH method is semiparamet-

ric with an automatic and fast recipe for the estimations of the one-step ahead ex-

treme conditional VaRs, while the GARCH-EVT method is based on a parametric

fit of the Generalized Pareto Distribution (GPD) to the residuals using Maximum
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Likelihood Estimation.

The rest of the paper is organized as follows. Section 3.2 presents our proposed

framework and methodology. Section 3.3, 3.4 and 3.5 explain the methods of basic

VaR estimation approaches and backtesing approaches for the empirical analysis.

Section 3.6 first describes the four financial time series used in the empirical analysis,

and discusses the performance of our proposed approach through in-sample and

out-of-sample traditional and comparative backtestings of one-step ahead extreme

VaRs compared to the existing approaches.

3.2 The GARCH-UGH method and framework

3.2.1 Settings

Let pt be a daily-recorded price for a stock, index or exchange rate, and let Xt =

− log(pt/pt−1) be the negative daily log-return on this price, i.e., financial returns.

We assume that the dynamics of Xt are governed by

Xt = µt + σtZt, (3.1)

where µt ∈ R and σt > 0 denote the (conditional) mean and standard deviation, and

the innovations Zt form a strictly stationary white noise process, that is, they are

i.i.d. with zero mean, unit variance and common marginal distribution function FZ.

We assume that for each t, µt and σt are measurable with respect to the σ−algebra

Ft−1 representing the information about the return process available up to time t− 1.

We are concerned with estimating extreme conditional quantiles of these nega-

tive log-returns. Recall that for a probability level τ ∈ (0, 1), the τth unconditional

quantile of a distribution F is qτ = inf{x ∈ R : F(x) ≥ τ}. Here we focus on the

one-step ahead quantile, that is, the estimation of the conditional extreme quantile

of Xt+1 given Ft, whose order τ tends to 1 as the available sample size n goes to in-

finity. In this case, by location equivariance and positive homogeneity of quantiles,

the one-step ahead conditional quantile (or VaR) of Xt+1 can be written as

qτ(Xt+1 | Ft) = µt+1 + σt+1qτ(Z), (3.2)
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where qτ(Z) is the common τth quantile of the marginal distribution of the innova-

tions Zt. The problem of estimating qτ(Xt+1 | Ft) can then be tackled by estimating

the mean and standard deviation components µt+1 and σt+1 and the unconditional

quantile qτ(Z). Given estimates µ̂t+1, σ̂t+1 and q̂τ(Z) of these quantities, an estimate

of qτ(Xt+1 | Ft) is then

q̂τ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1q̂τ(Z).

In calculating this estimate, there are three main difficulties. First, one has to estimate

µt+1 and σt+1, which supposes that an appropriate model and estimation method

have to be chosen. Second, the innovations Zt are unobserved, which means that the

estimation of qτ(Z) has to be based on residuals following the estimation of µt+1 and

σt+1. A third difficulty is specific to our context: we wish here to estimate a dynamic

extreme VaR, that is, a conditional quantile qτ(Xt+1 | Ft) with τ very close to 1.

In such contexts, it is well-known that traditional nonparametric estimators become

inconsistent (see for example the monographs by Beirlant et al. 2004 and Embrechts

et al. 1997), and adapted extrapolation methodologies have to be employed.

Our GARCH-UGH method combines estimation of the mean and standard devi-

ation in a GARCH-type model with a flexible bias-reduced extrapolation methodol-

ogy for the estimation of qτ(Z) (τ ↑ 1) using the residuals obtained after estimation

of the model structure. We describe these two steps successively below.

3.2.2 GARCH step

In order to estimate µt+1 and σt+1, one should select a particular model in the class

(3.1). Many different models for volatility dynamics have been used in the literature

of GARCH-EVT approach, as we highlighted in our literature review in Section 3.1

(see also Danielsson 2011; McNeil et al. 2015). Here we use an AR(1) model for the

dynamics of the conditional mean, and a parsimonious but effective GARCH(1,1)

model for the volatility, as in the original GARCH-EVT approach; this will allow us

to subsequently illustrate how improving the second, EVT-based step can result in

more accurate estimates of extreme conditional VaR.
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We thus model the conditional mean of the series by

µt = φXt−1,

for some φ ∈ (−1, 1), and the conditional variance of the mean-adjusted series εt =

Xt − µt by

σ2
t = κ0 + κ1ε2

t−1 + κ2σ2
t−1,

where κ0, κ1, κ2 > 0. Necessary and sufficient conditions for the stationarity of a

model following GARCH(1,1) dynamics are given in Chapter 2 of Francq and Za-

koïan (2010); the condition κ1 + κ2 < 1 is a simple sufficient condition guaranteeing

stationarity. The model is therefore the AR(1)-GARCH(1,1) model

Xt = µt + σtZt, with µt = φXt−1 and σ2
t = κ0 + κ1(Xt−1 − µt−1)

2 + κ2σ2
t−1. (3.3)

In Equation (3.3), the innovations Zt are i.i.d. with zero mean, unit variance.

In order to make one-step ahead predictions at time t, we fix a memory n so

that at the end of time t, the financial data consist of the last n negative log-returns

Xt−j, for 0 ≤ j ≤ n − 1. We then fit the AR(1)-GARCH(1,1) model to the data

(Xt−n+1, . . . , Xt−1, Xt) using Gaussian Quasi-Maximum Likelihood Estimation (QMLE),

that is, by maximizing the likelihood constructed by assuming that the innovations

Zt are i.i.d. Gaussian with zero mean and unit variance. The R package rugarch (Galanos

and Kley, 2022) has been used for the estimation. While of course the innovations

Zt will not be Gaussian in general (and indeed in our UGH step we shall assume

that they are heavy-tailed), the QMLE method yields a consistent and asymptoti-

cally normal estimator, see for example Francq and Zakoïan (2004) for a theoretical

analysis. One may also put a strong heavy-tailed parametric specification on Zt,

such as assuming that they are location-scale Student distributed; this was tried in

our analysis of financial log-returns but did not improve results substantially.

Let (φ̂, κ̂0, κ̂1, κ̂2) be the Gaussian QMLE estimates. Choosing sensible starting

values for ε̂2
t−n and σ̂2

t−n (for example, constant values as in Section 7.1 of Francq

and Zakoïan (2010)), estimates of the conditional mean and the conditional standard
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deviation, (µ̂t−n+1, . . . , µ̂t−1, µ̂t) and (σ̂t−n+1, . . . , σ̂t−1, σ̂t) respectively, can be calcu-

lated from Equation (3.3) recursively. This leads to the residuals

(Ẑt−n+1, . . . , Ẑt) =

(
Xt−n+1 − µ̂t−n+1

σ̂t−n+1
, . . . ,

Xt − µ̂t

σ̂t

)
.

We end this step by calculating the estimates of the conditional mean and standard

deviation for time t + 1, which are the obvious one-step ahead forecasts, as follows:

µ̂t+1 = φ̂Xt,

σ̂t+1 =
√

κ̂0 + κ̂1ε̂2
t + κ̂2σ̂2

t ,

where ε̂t = Xt − µ̂t. In summary, this first GARCH step of the method consists in

fitting an AR(1)-GARCH(1,1) model to the negative log-returns at a certain past time

horizon n (not too small so that the method produces reasonable results, and not too

large so that the AR-GARCH model is believable over this time period), using a

Gaussian QMLE, leading to forecasts µ̂t+1 and σ̂t+1 and standardized residuals Ẑt−j,

0 ≤ j ≤ n− 1.

3.2.3 UGH step

With standardized residuals at our disposal, we can now discuss the estimation of

the extreme quantile qτ(Z) of the innovations Zt, for τ ↑ 1. The residuals Ẑt−j,

0 ≤ j ≤ n − 1, approximate the true unobservable Zt−j. Assume that the under-

lying distribution of these Zt−j is heavy-tailed, that is (see Theorem 1.2.1 p.19 and

Corollary 1.2.10 p.23 in de Haan and Ferreira 2006 and also Section 2.1.4)

lim
t→∞

U(tz)
U(t)

= zγ, ∀z > 0, where U(t) = q1−t−1(Z). (3.4)

In other words, we assume the tail of the innovations to be approximately Pareto,

with the so-called extreme value index γ tuning how heavy the tail is. This assump-

tion is ubiquitous in actuarial and financial risk management (see e.g. p.9 of Em-

brechts et al. 1997, p.1 of Resnick 2007 and also Section 2.1.3). This makes it possible

to construct extrapolated extreme quantile estimators: the classical Weissman quan-

tile estimator (see Weissman 1978 and Section 2.2.2) of a quantile qτ(Z) = q1−p(Z)
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with p = 1− τ close to 0 (meaning, in mathematical terms, that p = p(n) → 0 as

n→ ∞) is then

q1−p(Z) =
(

k
np

)γk

Zn−k,n (3.5)

where Z1,n ≤ Z2,n ≤ · · · ≤ Zn,n are the order statistics from Zt−n+1, . . . , Zt and γk

is a consistent estimator of γ. The tuning parameter k denotes the effective sample

size for the estimation: this parameter should be chosen not too small, so that the

variance of the estimator is reasonable, but also not too large so that the bias coming

from the use of the extrapolation relationship (3.4) does not dominate. The most

common estimator γk of γ is the Hill estimator (introduced in Hill 1975 and see

Section 2.2.1):

γk = γH
k =

1
k

k

∑
i=1

log Zn−i+1,n − log Zn−k,n. (3.6)

The Hill and Weissman estimators can be shown to be asymptotically Gaussian un-

der suitable conditions on k = k(n) (see for example Chapters 3 and 4 in de Haan

and Ferreira 2006). A reasonable idea to define an estimator of q1−p(Z) in our con-

text is then to use the estimators defined in Equations (3.5) and (3.6) with the order

statistics of the residuals, Ẑn−j,n, in place of the unobservable Zn−j,n.

The choice of the parameter k requires solving a bias-variance tradeoff for which

there is no straightforward approach (see Section 2.2.5). Indeed, with a low k, the

estimators use observations that are very informative about the extremes, but their

low number results in a high variance. With a high k, the variance is reduced, but

at the cost of taking into account observations that are further into the bulk of the

distribution and thus carry bias. One possible way to make the choice of k easier

is to work on correcting this bias. This can be done under the following so-called

second-order condition on U:

lim
t→∞

1
A(t)

(
U(tz)
U(t)

− zγ

)
= zγ zρ − 1

ρ
, ∀z > 0, (3.7)

where ρ ≤ 0 is called the second-order parameter and A is a positive or negative

function converging to 0 at infinity, such that |A| is regularly varying with index

ρ. See Equation (6.35) p.341 in Embrechts et al., 1997 and Section 2.1.5 and, in our

parametrization, Theorem 2.3.9 p.48 in de Haan and Ferreira, 2006. The function A
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therefore controls the rate of convergence in Equation (3.4): the larger |ρ| is, the faster

|A| converges to 0, and the smaller the error in the approximation of the right tail of

U by a Pareto tail is. This makes it possible to precisely quantify the bias of the Hill

and Weissman estimators, and to correct for this bias by estimating the function A

and the parameter ρ. This results in bias-corrected Hill and Weissman estimators for

which the selection of k is typically much easier because their performance is much

more stable.

Our idea in this second, UGH step is to apply such bias-corrected estimators

constructed in de Haan et al. (2016) (and built on second-order parameter estimators

of Gomes et al. 2002, hence the name UGH, for Unbiased Gomes-de Haan) to our

residuals obtained from the GARCH step. Our estimator of ρ motivated by Gomes

et al. (2002) is

ρ̂
(α)
k = (s(α))←(S(α)

k ).

Here α /∈ {1/2, 1} is a positive tuning parameter, s(α)
←

denotes the generalized (left-

continuous) inverse of the function

s(α)(ρ) =
ρ2(1− (1− ρ)2α − 2αρ(1− ρ)2α−1)

(1− (1− ρ)α+1 − (α + 1)ρ(1− ρ)α)2 ,

and we set

S(α)
k =

α(α + 1)2Γ2(α)

4 Γ(2α)

R(2α)
k

(R(α+1)
k )2

,

with R(α)
k =

M(α)
k − Γ(α + 1)(M(1)

k )α

M(2)
k − 2(M(1)

k )2
and M(α)

k =
1
k

k

∑
i=1

(log Ẑn−i+1,n − log Ẑn−k,n)
α.

The version of ρ̂
(α)
k with the true innovations Zk instead of the residuals is known to

be consistent under a so-called third-order condition which further strengthens (3.7).

Here we choose α = 2 since, on fully observed data, this appears to yield the smallest

mean squared error following the numerical simulations of Gomes et al. (2002). This

results in the estimator

ρ̂
(2)
k =

−4 + 6S(2)
k +

√
3S(2)

k − 2

4S(2)
k − 3
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provided 2/3 ≤ S(2)
k ≤ 3/4, where

S(2)
k =

3
4
[M(4)

k − 24(M(1)
k )4][M(2)

k − 2(M(1)
k )2]

[M(3)
k − 6(M(1)

k )3]2
.

[This expression corrects a typo in p.375 of de Haan et al. (2016).] It is clear that

ρ̂
(2)
k does not exist if S(2)

k /∈ [2/3, 3/4]. In practice, we select the value of k in this

estimator by setting

kρ = sup
{

k : k ≤ min
(

m− 1,
2m

log log m

)
and ρ̂

(2)
k exists

}
. (3.8)

Here m is the number of positive observations in the sample. The intuition is that

even though this estimator of ρ requires a choice of k, this choice should be different

from its counterpart used in the estimation of γ, and indeed intuitively the value of

k in the estimator of ρ should be rather high in order to allow the methodology to

identify the bias coming from including observations belonging to the bulk of the

distribution (which correspond to a high k). We then estimate ρ by ρ̂kρ
= ρ̂

(2)
kρ

. If the

set on the right-hand side of (3.8) is empty, we define ρ̂kρ
= −1 as recommended

in p.117 of Section 4.5.1 in Beirlant et al. (2004), in p.212-215 in Gomes et al., 2000

and in p.195 of Section 6.6 in Reiss and Thomas, 2007. The choice ρ̂kρ
= −1 is an ad

hoc compromise between bias reduction and variability of the estimators; note that

the estimation of the constant ρ is known to be a difficult problem in finite samples

(see Gomes et al. 2009, p.298 and Goegebeur et al. 2010, p.2638, where it is seen

that estimators of ρ typically have a low rate of convergence). The parameter γ is

then estimated using the residual-based version of the bias-corrected Hill estimator

introduced in de Haan et al. (2016):

γ̂k,kρ
= γ̂H

k −
M(2)

k − 2(γ̂H
k )2

2γ̂H
k ρ̂kρ

(1− ρ̂kρ
)−1

. (3.9)

The addend in the right-hand side corresponds to the bias correction. We now have

all the necessary ingredients to define our residual-based, bias-corrected estimator
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of unconditional extreme quantiles of Z:

q̂1−p(Z) =
(

k
np

)γ̂k,kρ

Ẑn−k,n ×
(

1−
[
M(2)

k − 2(γ̂H
k )2][1− ρ̂kρ

]2

2γ̂H
k ρ̂2

kρ

[
1−

(
k

np

)ρ̂kρ

])
.

(3.10)

This corresponds to a slightly different version of the estimator in Section 4.3 of de

Haan et al. (2016), given later by Chavez-Demoulin and Guillou (2018), who pointed

out a mistake in the analysis of de Haan et al. (2016). The use of γ̂k,kρ
rather than the

Hill estimator in the extrapolation will correct the bias due to the estimation of the

extreme value index; the multiplier corrects the bias specifically due to the use of

the Pareto distribution for the extrapolation of extreme quantiles. The versions of

these estimators for fully observed data work when this data is weakly serially de-

pendent, as shown in Chavez-Demoulin and Guillou (2018). As such, our proposed

method will be robust to the presence of residual dependence after filtering and to

model misspecification in the sense of Hill (2015). We shall also show that the choice

of k for this estimator is not as crucial in finite samples as for the traditional Hill esti-

mator, because this estimator has reasonably good performance across a large range

of values of k.

Note that if the Zt−j, 0 ≤ j ≤ n − 1 are independent, then Theorem 4.2 of de

Haan et al. (2016) suggests that

√
k

log(k/np)

(
q̂1−p(Z)
q1−p(Z)

− 1
)

d−−→ N
(

0,
γ2

ρ2 (ρ
2 + (1− ρ)2)

)
.

A standard Gaussian 95% asymptotic confidence interval for the extreme quantile

q1−p(Z), p ↓ 0 is then given by

q̂1−p(Z)

1± 1.96√
k/ log( k

np )
×

√√√√ γ̂2
k,kρ

ρ̂2
kρ

(ρ̂2
kρ
+ (1− ρ̂kρ

)2)

 .

This asymptotic Gaussian confidence interval is easy to implement, but of course its

validity relies on assuming that the negative log-returns are correctly filtered using

the AR-GARCH model.
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3.2.4 Summary and output of the GARCH-UGH method

The GARCH-UGH approach may be briefly summarized by the following two suc-

cessive steps:

1. GARCH step: based on n previous observations at time t, fit an AR(1)-GARCH(1,1)

model to the negative daily log-returns data using a Gaussian QMLE. Obtain

µ̂t+1 and σ̂t+1 using the fitted model and compute standardized residuals. See

Section 3.2.2 for full details on this GARCH step, similar to the first step in Mc-

Neil and Frey, 2000.

2. UGH step: use these standardized residuals as proxies for the true unobserved

innovations Zt−j, 0 ≤ j ≤ n− 1, to construct the asymptotically unbiased tail

quantile estimator q̂1−p(Z) in (3.10). See Section 3.2.3 for full details on this

UGH step which is a different, residual-based new version of the procedure

of de Haan et al., 2016.

Combining the two steps results in the final GARCH-UGH estimator

q̂τ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1q̂τ(Z), τ = 1− p, p close to 0.

The goal of our real data analysis is to examine the finite-sample performance of this

estimator for low exceedance probabilities, that is, τ close to 1.

3.3 VaR estimation methods for comparison

In this section, we will explain other five methods for VaR estimation, which are used

to compare with our proposed GARCH-UGH approach in the empirical analysis in

Section 3.6. Some methods are already described in Section 1.3 briefly.

Historical simulation (HS) method - the nonparametric HS method is based on

the observed data instead of making distributional assumptions about the financial

returns. Past returns are used to predict future returns and hence its VaR is simply

the empirical quantile of the series Xt at the desired quantile level. As mentioned in

Section 3.1, HS is easy to implement but the estimation of extreme quantiles using
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HS is difficult as the extrapolation beyond observed returns is impossible. More-

over, for VaR estimation using HS, the inclusion or exclusion of one or even more

observations of the sample can cause large fluctuations in the VaR estimate, while

no guidelines exist for assessing which estimate is better (Danielsson and de Vries

1997).

GARCH-N (normal) method - this method uses the same filtering step as ex-

plained in Section 3.2.2, but assumes in the quantile estimation step also that the

innovations Zt are i.i.d. N (0, 1). The extreme conditional VaR is then calculated as

q̂τ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1Φ−1(τ),

where Φ is the cumulative distribution function of the standard normal distribu-

tion. This approach is also called as normal GARCH (see Danielsson 2011 and Ergen

2015).

GARCH-t method - this method again uses the filtering step of Section 3.2.2,

but assumes in the extreme quantile estimation step that the standardized residuals

from the GARCH step are Student-t distributed. With the two-step framework, the

extreme conditional VaR is calculated as

q̂τ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1T−1
ν (τ),

where Tν is the cumulative distribution function of the standard Student-t distribu-

tion with ν degrees of freedom. This corresponds to the two-step estimation method

discussed on p.1017 of Ergen (2015) with skewed normal and Student-t as alterna-

tives.

UGH (Unbiased Gomes-de Haan) method - this method applies the UGH step

directly to the series Xt without filtering (see Section 3.2.3).

GARCH-EVT method - the conventional GARCH-EVT method as described

in McNeil and Frey (2000). This consists, first, in the same filtering step as described

in Section 3.2.2. Standardized residuals are then recorded and a Generalized Pareto

distribution (GPD) is fitted using a maximum likelihood estimator, thus producing

a VaR estimate q̂τ(Z). This method therefore differs from ours as far as the extreme



3.4. Traditional VaR backtesting 55

value step is concerned.

Under an approximately i.i.d. condition after filtering step, we consider the dis-

tribution function of excess Y = Z − u over a fixed high threshold u. The corre-

sponding excess distribution above the threshold u is given by

Fu(y) = P(Y = Z− u ≤ y|Z > u) =
F(y + u)− F(u)

1− F(u)
, y ≥ 0.

The famous Pickands (1975) shows that the GPD occurs naturally as the limit dis-

tribution of the scaled excesses of i.i.d. random variables over high thresholds. The

excesses Y from a fixed high threshold u follow a GPD Y = Z− u ∼ GPD(γ, β) if

Fu(y) ≈ GPDγ,β(y) =


1−

(
1 +

γy
β

)−1/γ
, γ 6= 0,

1− exp
(
− y

β

)
, γ = 0,

where β > 0 is a scale parameter, γ is the EVI with the support y ≥ 0 when γ ≥ 0

and 0 ≤ y ≤ −β/γ when γ < 0.

In practice, we fix the number of data in the tail to be k where k < n and use

the proportion of tail data k/n. For a probability level τ = 1− p, the estimator of

unconditional extreme quantiles of Z is given by

q̂τ(Z) = Ẑn−k,n +
β̂

γ̂

(( p
k/n

)−γ̂
− 1
)

, γ̂ 6= 0.

Then, the one-step ahead conditional quantile (VaR) based on GARCH-EVT is ob-

tained by substituting q̂τ(Z) above into the Equation (3.2).

3.4 Traditional VaR backtesting

Recall that backtesting is carried out to examine the accuracy of the one-step ahead

extreme conditional VaR estimators provided by each approach. In this section, we

consider the traditional backtestings, which can be viewed as a model verification.

They examine whether the estimates of VaR under a certain model match with the

unknown true values of VaR

Traditional VaR backtesting compares the ex-ante VaR estimates q̂τ(Xt | Ft−1)

with the ex-post realized negative log-returns in a time window WT, with a VaR
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violation at time t said to occur whenever xt > q̂τ(Xt | Ft−1). Define a hit sequence

of VaR violations as It = 1{xt > q̂τ(Xt | Ft−1)}. If a VaR estimation method is

accurate, then the sequence (It) should approximately be an independent sequence

of Bernoulli variables with success probability p = 1− τ. Both the distributional

and independence properties are equally important. A VaR estimation method with

too few VaR violations will tend to overestimate risk and therefore to be excessively

conservative in financial terms, while too many VaR violations mean that risk is

underestimated, leading to insufficient provision of capital and therefore potential

insolvency in case of large losses. Besides, a violation of the independence property

typically arises when there is a clustering of VaR violations.

One common criticism of traditional VaR backtesting is that it only takes into

account the number of VaR violations and not their size, and may be misleading

(Bellini et al. 2019). Moreover, Holzmann and Eulert (2014) show that traditional

VaR backtesting is insensitive with respect to the increasing information.

3.4.1 Unconditional coverage test

In order to test the distributional assumption, we use the unconditional likelihood

ratio coverage test proposed by Kupiec (1995), also known as Kupiec test or POF

test, for Proportion Of Failures: fix a time window WT, let N = ∑t∈WT
It be the

observed number of VaR violations over WT and p be the theoretical violation rate.

The Kupiec test statistic is the likelihood ratio (LR) statistic given by

LRuc = −2 log{pN(1− p)T−N}+ 2 log
{(

N
T

)N(
1− N

T

)T−N}
.

Under the null hypothesis that the It are independent and Bernoulli distributed with

success probability p, the test statistic LRuc is asymptotically χ2 distributed with

1 degree of freedom. The Kupiec test rejects this null hypothesis with asymptotic

type I error α when LRuc > χ2
1,1−α, where χ2

1,1−α is the (1− α)−quantile of the χ2

distribution with 1 degree of freedom. As the number of VaR violations get closer to

the expected ones, the probability values from the hypothesis test increases giving

more comfort for the performance of the model.
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3.4.2 Independence and Conditional coverage tests

To test the independence property, we use another likelihood ratio test called the

conditional coverage test, proposed in Christoffersen (1998) and also known as the

Christoffersen test and joint test. This test is based on testing for first-order Markov

dependence, with the test statistic being given by

LRcc = −2 log{pN(1− p)T−N}+ 2 log{π̂N00
00 π̂N01

01 π̂N10
10 π̂N11

11 }.

Here Nij = ∑t∈WT
1{It+1 = j, It = i} and π̂ij = Nij/(Ni0 + Ni1). Under the null hy-

pothesis that the sequence (It) is independent and identically distributed as Bernoulli

with parameter p, the test statistic LRcc is asymptotically χ2 distributed with 2 de-

grees of freedom, and the conditional coverage test then rejects this null hypothesis

with asymptotic type I error α when LRcc > χ2
2,1−α (the (1− α)−quantile of the χ2

distribution with 2 degrees of freedom). Strictly speaking the conditional coverage

test only assesses departure from either independence or stationarity, but in fact the

test statistic is the sum of the unconditional coverage test statistic LRuc and a likeli-

hood ratio test statistic of independence LRind:

LRcc = LRuc + LRind

with LRind = −2 log
{(

N
T

)N(
1− N

T

)T−N}
+ 2 log{π̂N00

00 π̂N01
01 π̂N10

10 π̂N11
11 }.

The quantity LRind is nothing but a likelihood ratio test statistic of independence

versus nontrivial first-order Markov dynamics of the sequence (It), which rejects in-

dependence of (It) provided LRuc > χ2
1,1−α. Since χ2

2,1−α = χ2
1,1−α + χ2

1,1−α, checking

stationarity and independence via the pair of test statistics (LRuc, LRind) is exactly

equivalent to checking them via the unconditional and conditional coverage tests.

We therefore use both the unconditional and conditional coverage tests to assess the

performance of our dynamic extreme VaR estimators. This constitutes a backtest-

ing approach in the spirit of the one suggested by the Basel Committee on Banking

Supervision.
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3.4.3 Other tests

The other main coverage test is the Basel Committee’s Traffic Light coverage test

(Basel Committee on Banking Supervision 2019), which is first introduced in 1996.

It counts the number of VaR violations for a certain probability level and classifies

the model into three backtesting zones, distinguished by colors into a hierarchy of

responses. The light zones are as follows.

• Green zone, which suggests there is no problem with the accuracy of a bank’s

model.

• Yellow zone, which indicates there is no definitive conclusion of accuracy of a

bank’s model. It is generally deemed more likely for inaccurate models than

for accurate models.

• Red zone, which corresponds to a result that there is almost certainly a problem

with a bank’s risk model.

The color of the zone determines the amount of additional capital charges required

from green to red being the most punitive. The table of boundaries of three zones

and corresponding supervisory response based on a sample 250 observations is

given in p.82 of Basel Committee on Banking Supervision (2019).

While the conditional coverage test is often used in practice, it has the disad-

vantage that it only examines the independence of the first VaR violation, and does

not test whether the number of days between the VaR violations and realized re-

turns are independent over time. The dynamic quantile test proposed by Engle and

Manganelli (2004) overcomes this problem by using both values and series of VaR

violations. The concept of this test is that VaR violation at time t should not depend

on VaR violations, VaR or any information set Ft−1 available at time t− 1.They use a

linear regression model that links current VaR violations to past ones. Define an aux-

iliary hit sequence of VaR violations as Hitt(p) = It(p)− p. In the test, the regression

model is estimated with

Hitt(p) = β0 +
q

∑
i=1

βi Hitt−i(p) + βq+1q̂τ(Xt | Ft−1) +
n

∑
j=1

βq+j+1Xjt + εt,
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where Xj are explanatory variables contained in Ft−1. The null hypothesis for this

test is that

H0 : βi = 0, i = 0, 1, 2, ..., q + n + 1.

This H0 means that the sequence of Hitt is uncorrelated with any information from

the set Ft−1 when the 1-step ahead VaR is estimated, which implies, in particular,

that the current VaR violations are uncorrelated with past VaR violations. Under the

true H0, the Wald test statistic of the dynamic quantile test (see Engle and Manganelli

2004) has an asymptotic χ2
q+n+2,1−α distribution. This test is useful for identifying an

incorrect VaR estimation, which is not rejected by, for example, tests of Kupiec and

Christoffersen.

3.5 Comparative VaR backtesting (Diebold-Mariano test)

Evaluating a sequence of risk measure estimates using a certain method is differ-

ent from comparing estimation methods. Recall that the comparative backtesting is

better suited for model comparison on the basis of forecasting accuracy while tra-

ditional backtesting explained in Section 3.4 is viewed as a model verification. In

practice (also illustrated in Section 3.6), there are cases when traditional backtest-

ing methods do not yield definitive answers because the estimation methods are

all accepted or all rejected. The comparative backtestings enable to conduct direct

comparisons of estimation methods when traditional backtestings are not working

efficiently.

Recall also from Section 1.2.2 that Gneiting (2011) states a risk measure is elic-

itable if it admits a strictly consistent scoring function. It is strictly consistent for a

specific risk measure if the risk measure can be obtained by minimizing the expected

value of the score (see Section 4.5.1 for the details). Indeed, VaR is the minimizers of

the expected value of an appropriate piecewise linear score (see for example, Bellini

and Di Bernardino 2015 and Nolde and Ziegel 2017). In the financial literature, the

existence of scoring function gives a natural way to compare the accuracy of two dif-

ferent estimation models, i.e., to test the comparative hypothesis, which states one

estimation model is better than another, by means of the Diebold-Mariano test on

the difference of two realized scores.
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The idea of comparative VaR backtesting is to reject the estimation method if the

realized scores of VaR is too high. In order to compare the estimation performances

of two models, say competing and benchmark models, and decide which one is

better, we use the comparative version of the traffic light approach (i.e. three-zone

approach) in the Basel III for the VaR (Basel Committee on Banking Supervision

2019) proposed by Fissler and Ziegel (2016) and Nolde and Ziegel (2017), which is

based on the Diebold-Mariano (DM) test (Diebold and Mariano 1995).

In this comparative backtesting, we consider the following two hypotheses:

H−0 : The competing model predicts at least as well as the benchmark model,

H+
0 : The competing model predicts at most as well as the benchmark model.

The null hypothesis H−0 is an analogue of H0 of traditional backtesting but adapted

to a comparative setting. The other hypothesis H+
0 is more conservative in the sense

that a backtest is passed if we can reject H+
0 . By this hypothesis, we can explicitly

control the type I error of accepting an inferior competing model over a benchmark

model.

For a sequence of VaR estimates, q̂τ,1, q̂τ,2, ..., q̂τ,N , and corresponding realized

returns x1, x2, ..., xN , the realized VaR scores S1
VaR(q̂τ,N , xN) are formed for a com-

peting model. For a benchmark model, the same process is applied leading to

S2
VaR(q̂τ,N , xN). The comparative VaR backtesting treats SVaR as a loss function and

forms the t-statistic based on the DM test as follows:

DM =

√
Nd

σ̂N
, d =

1
N

N

∑
t=1

(S1
VaR(q̂τ,t, xt)− S2

VaR(q̂τ,t, xt)), (3.11)

where d is the sample mean of the loss differential of VaR estimates between the com-

peting model (Model 1) and the benchmark model (Model 2), and σ̂N is a suitable

estimate of the asymptotic standard deviation of d. Under proper mixing conditions,

the test statistic is asymptotically standard normal N(0, 1); see Diebold and Mariano

(1995) and Holzmann and Eulert (2014).

An estimation of the long-run variance σ2
N is a delicate mission. In fact, σ2

N can

be expressed as the spectral density of the loss differential dt = S1
VaR(q̂τ,t, xt) −
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S2
VaR(q̂τ,t, xt) at frequency 0. We use the suitable heteroskedasticity and autocor-

relation consistent (HAC) estimator to estimate the variance of d (3.11) as the form

of autocorrelation and heteroskedasticity is unknown. See for example, Newey and

West (1994), Andrews (1991) and Zeileis (2004) for the HAC estimator in the econo-

metric literature.

The HAC estimator concerns with the estimation of covariance matrix of param-

eter estimators in the linear model. We consider the linear regression model

di = rT
i β + ui, i = 1, ..., N,

where the loss differential di is dependent variable, ri is the regressor that is 1 in our

case with coefficient vector β and error term ui. Under suitable regularity conditions,

the coefficients β are consistently estimated by Ordinary Least Squares (OLS), giving

the well-known estimator

β̂ = (RTR)−1RTd,

with R in the form of N × 1 vector in our case and their covariance matrix is ex-

pressed as

(σ̂2
N =)Var(β̂) =

(
1
N

RTR
)−1 1

N
Φ
(

1
N

RTR
)−1

, (3.12)

where Φ = 1
N RTVar(u)R is the covariance matrix of the estimating functions Vi(β) =

ri(di − rT
i β). In the general linear model where we assume independent and ho-

moskedastic errors with zero mean and variance σ2, Var(β̂) can be consistently esti-

mated by plugging in the usual OLS estimator σ̂2. In our case when the assumption

of independence and/or homoskedasticity is violated (or unknown), using the OLS

estimator will lead to biased estimator of Var(β̂). Use of the HAC estimator solves

this problem by plugging in the estimator of Φ into the Equation (3.12), which is

consistent in the presence of autocorrelation and heteroskedasticity. An estimate Φ̂

by HAC is given as

Φ̂ =
1
N

N

∑
i,j=1

w|i−j|V̂iV̂T
j , (3.13)

where Vi is the estimating function and w = (w0, w1, ..., wN−1) is the vector of the
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weights. It is assumed that the autocorrelations decrease as the lag ` = |i − j| in-

creases, which implies the weights decrease as the lag increases. It is obvious from

the Equation (3.13) that the appropriate choice of the vector of weights is essential

for the estimator Φ̂. See different choices of weights given in Zeileis (2004). In our

research, we use the linearly decaying weights by Newey and West (1994)

w` = 1− `

L + 1
,

where L is the maximum lag. Lag ` is chosen via the non-parametric bandwidth se-

lection procedure of Newey and West (1994), which automatically select the number

of autocovariances to use in computing the HAC estimator. We use prewhitening

filter here because the numerical experiments of Newey and West (1994) reveal that

prewhitening with a first-order vector autoregression improves the size of the test

statistics. In summary, plugging in Φ̂ by HAC, which uses the linearly decaying

weights, into Var(β̂) (3.12) leads to our desired variance of d, σ̂2
N .

We now discuss the mathematical expression of consistent scoring functions of

VaR. It is given in Fissler et al. (2015) and Nolde and Ziegel (2017) that all scoring

functions of the form

SVaR(q, x) = (1− τ − 1{x > q})G(q) + 1{x > q}G(x) (3.14)

are consistent for VaR qτ for a probability level τ ∈ (0, 1) where G is an increasing

function on R. Note that the scoring functions used in the DM test do not have to be

quadratic and symmetric, and are negatively oriented that is, the smaller the better.

For the comparative VaR backtesting using the DM test (3.11) in our empirical anal-

ysis in Section 3.6, we use the particular scoring functions introduced in Nolde and

Ziegel (2017) although there exist a large number of choices for consistent scoring

functions for VaR in the literature. A scoring function is said to be h-homogeneous

if S(cq, cx) = chS(q, x) for all q, x and the constant c > 0 (see Nolde and Ziegel 2017

for the discussion of positive homogeneity of the scoring function for ranking risk

measures).
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First scoring function of VaR is when G(q) = q and G(x) = x are chosen in the

general form (3.14), which leads to the classical 1-homogeneous choice

SVaR(q, x) = (1− τ − 1{x > q})q + 1{x > q}x. (3.15)

Second one is to choose G(q) = log q and G(x) = log x with q, x > 0 leading to the

alternative 0-homogeneous choice

SVaR(q, x) = (1− τ − 1{x > q}) log q + 1{x > q} log x. (3.16)

Financial returns exhibit heavy-tails and this might limit the choice of a suitable

scoring function. We emphasize that at present there exists no particular optimal

scoring function for specific risk measures with any theoretical guarantee to use

in the comparative VaR backtesting. Moreover, we refer to 0-homogeneous and 1-

homogeneous choices of VaR scoring functions as h = 0 and h = 1 in the empirical

analysis given in Section 3.6.3, respectively.

We finally explain the decisions taken in the comparative VaR backtesting based

on the DM test under the null hypotheses H−0 and H+
0 . Under H−0 , the comparative

backtesting is passed for the competing model (Model 1) if the null hypothesis fails

to be rejected. The competing model is then considered as better model than the

benchmark (Model 2) in this specific situation and it simply means that this null

hypothesis cannot be falsified. On the other hand, under H+
0 the backtesting for the

competing model is passed if the null hypothesis is rejected. The decisions taken

under H−0 and H+
0 where the colors used match with the traffic light approach of the

Basel Committee on Banking Supervision (2019) are shown in the Figure 1 of Fissler

et al. (2015). The green zone corresponds to the case when H−0 is not rejected and H+
0

is rejected, which suggests that the competing model is considered as better than the

benchmark model. The yellow zone is when only one of the backtestings under H−0

and H+
0 is passed and we cannot conclude which model performs the best. The red

zone corresponds to the case when both backtestings fail to be passed, indicating a

problem with the competing model. Note that we use the comparative backtesting

based on the DM test for ES as well. Comparative ES backtesting is not exactly same
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as the VaR version because ES is not elicitable and we have to employ the idea of

joint elicitability to obtain the scoring function of (VaR, ES), discussed in Section 4.5.

3.6 Empirical analysis of four financial time series

3.6.1 Descriptive statistics and basic statistical tests

We consider historical daily negative log-returns of three financial indices and an

exchange rate, all made of n = 4000 observations (will be used in Chapter 4 as well):

• The Dow Jones Industrial Average (DJ) from 23 December 1993 to 9 November

2009;

• The Nasdaq Stock Market Index (NASDAQ) from 30 August 1993 to 16 July

2009;

• The Nikkei 225 (NIKKEI) from 14 May 1993 to 12 August 2009;

• The Japanese Yen-British Pound exchange rate (JPY/GBP) from 2 January 2000

to 14 December 2010.

The data have been taken from the R package qrmdata (Hofert and Hornik, 2016)

and are represented in Figure 3.1. The graphs show that these negative log-returns

are extremely volatile around the 2007-2008 financial crisis, which created a succes-

sion of extreme positive and negative returns over short time horizons. A noticeable

degree of volatility clustering is also detected from a visual inspection of Figure 3.1,

revealing the presence of heteroskedasticity. Including a turbulent period from a fi-

nancial risk management perspective is crucial in order to examine how dynamic ex-

treme VaR estimators behave. An inspection of more recent financial data collected

during the COVID-19 crisis did not reveal a more substantial degree of volatility, so

we focus on the well-studied subprime crisis in order to assess the quality of our

forecasts.

Descriptive statistics and basic statistical tests applied to the negative log-returns

on the four financial time series are reported in Table 3.1. According to the descrip-

tive statistics, the means of the negative log-returns of all series are close to zero, and

negative log-returns are leptokurtic. The Jarque-Bera test statistics indicate that the
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Gaussian distribution is not suitable for any of these series of negative log-returns.

All four series pass the augmented Dickey-Fuller (ADF) test, indicating that they can

be considered stationary for modeling purposes. The Ljung-Box test applied to the

squared negative log-returns, with orders 1 and 10, rejects the null hypothesis of no

autocorrelation, indicating the presence of substantial conditional heteroskedastic-

ity in all series. This provides justification for our use of GARCH-type models with

these data.

TABLE 3.1: Summary of descriptive statistics and basic statistical
tests for daily negative log-returns on DJ, NASDAQ, NIKKEI and

JPY/GBP.

DJ NASDAQ NIKKEI JPY/GBP
Sample size 4000 4000 4000 4000
Mean −0.000250 −0.000355 −0.000169 −0.0000557
Median −0.000460 −0.00123 −0.0000177 0
Maximum 0.0820 0.111 0.121 0.0600
Minimum −0.105 −0.172 −0.132 −0.0640
Standard deviation 0.0119 0.0203 0.0155 0.00626
Skewness 0.117 −0.110 0.175 −0.586
Kurtosis 8.096 4.469 5.579 10.931
J-B test 10933∗ 3337.3∗ 5207.9∗ 2014.6∗

(0.0000) (0.0000) (0.0000) (0.0000)
Q(1) 13.159∗ 12.098∗ 6.680∗ 128.68∗

(0.000) (0.001) (0.010) (0.000)
Q(5) 37.723∗ 37.62∗ 14.429∗ 146.47∗

(0.000) (0.000) (0.013) (0.000)
Q(10) 50.388∗ 42.192∗ 23.023∗ 150.37∗

(0.000) (0.000) (0.011) (0.000)
Q2(1) 131.54∗ 207.21∗ 248.32∗ 275.36∗

(0.000) (0.000) (0.000) (0.000)
Q2(10) 2613.3∗ 1907.5∗ 3183.4∗ 1650.4∗

(0.000) (0.000) (0.000) (0.000)
ADF test −15.782∗∗ −14.794∗∗ −15.967∗∗ −16.415∗∗

Notes: A kurtosis greater than 3 indicates that the dataset has heavier
tails than a normal distribution. J-B stands for the Jarque-Bera test,
Q(n) and Q2(n) are the Ljung-Box tests for autocorrelation at lags n
in the negative log-return series and squared negative log-returns, re-
spectively. The ADF test is the augmented Dickey-Fuller stationarity
test statistic without trend. The p-values are given between brackets.

∗∗, ∗ denote significance at 1% and 5% levels, respectively.

In this thesis, we compare six methods in total:

• The nonparametric HS method is based on the observed data, and its VaR is

simply the empirical quantile of the series Xt at the desired quantile level.
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FIGURE 3.1: Daily negative log-returns of four financial time series:
DJ, NASDAQ, NIKKEI and JPY/GBP.

• The GARCH-N (normal) method uses the same filtering step as explained in

Section 3.2.2, but assumes in the quantile estimation step also that the innova-

tions Zt are i.i.d. N (0, 1). The extreme conditional VaR is then calculated as

q̂τ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1Φ−1(τ), where Φ is the cumulative distribution

function of the standard normal distribution.

• The GARCH-t method again uses the filtering step of Section 3.2.2, but as-

sumes in the quantile estimation step that the standardized residuals from the

GARCH step are Student-t distributed. This corresponds to the two-step esti-

mation method discussed on p.1017 of Ergen (2015).

• The bias-reduced UGH method without filtering: this method applies the UGH

step directly to the series Xt.
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• The conventional GARCH-EVT method as described in McNeil and Frey (2000).

This consists, first, in the same filtering step as described in Section 3.2.2. Stan-

dardized residuals are then recorded and a Generalized Pareto distribution is

fitted using a maximum likelihood estimator, thus producing a VaR estimate

q̃τ(Z). This method therefore differs from ours as far as the extreme value step

is concerned.

• The proposed GARCH-UGH method.

A comparison with the basic estimation methods (HS, GARCH-N and GARCH-t)

indicates the importance of extreme value methods in the estimation of the dynamic

extreme VaR. Besides, a comparison with the UGH method (without filtering) al-

lows us to see how effective filtering is, and a comparison with the GARCH-EVT

method (not featuring bias reduction) will illustrate the benefit of bias reduction at

the extreme value step after filtering.

We present in-sample and out-of-sample evaluations of one-step ahead condi-

tional VaR estimates at different τ levels and choices of k by means of traditional

and comparative backtestings in Sections 3.6.2 and 3.6.3, respectively: in-sample

estimation investigates the fit of the approaches to high volatile returns, while out-

of-sample estimation tests how well the method predicts extreme VaR. Furthermore,

supplementary simulations when the GARCH model is misspecifed and the innova-

tions are normally distributed, i.e., not assuming heavy-tail, are given in Appendix

B.

3.6.2 In-sample dynamic extreme VaR estimation and backtesting

We start by estimating in-sample one-step ahead conditional extreme VaRs qτ(Xt+1 |

Ft) for τ ∈ {0.99, 0.995, 0.999}. For these in-sample evaluations, all methods (HS,

GARCH-N and GARCH-t, UGH without filtering, GARCH-EVT without bias re-

duction, and our proposed GARCH-UGH method) are implemented on a fixed in-

sample testing window WT, which consists of 3000 observations; this follows advice

by Danielsson (2011) which suggests that this testing window WT should cover at

least 4 years of data, or approximately 1000 observations, for a reliable statistical

analysis. Specifically, we use:
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• The time period from 8 December 1997 to 9 November 2009 for the Dow Jones,

• The time period from 13 August 1997 to 16 July 2009 for the NASDAQ,

• The time period from 29 May 1997 to 12 August 2009 for the Nikkei,

• The time period from 28 September 2002 to 14 December 2010 for the JPY/GBP

exchange rate.

This allows us to focus on extreme VaR estimation around the 2007-2008 financial

crisis, of which a consequence was a succession of extremely large negative log-

returns in a very short timeframe. This should be considered a challenging problem.

In each case, we implement the three methods on these 3000 observations. The

HS and UGH method work directly on the series Xt, without filtering, the esti-

mate then being q̄τ(Xt+1 | Ft) = q̄τ(X), where q̄τ(X) is the empirical τth quantile

of the data for the HS method and, for the UGH method, q̄τ(X) = q̂τ(X) is ob-

tained as in Section 3.2.3 with the Xt in place of the Ẑt. By contrast, the GARCH-N,

GARCH-t, GARCH-EVT and GARCH-UGH methods filter the data using an AR(1)-

GARCH(1,1) model Xt = µt + σtZt with a Gaussian QMLE, and then estimate qτ(Z)

on the basis of the residuals obtained from this filtering with an approach specific

to each method, before obtaining the final extreme VaR estimate by combining the

AR(1)-GARCH(1,1) estimates and the estimate of qτ(Z). In these four methods, the

difference lies in how qτ(Z) is estimated. In addition, we calculate another version

of the GARCH-UGH estimate where the estimator ρ̂kρ
is replaced throughout by the

constant−1, as mentioned in Section 3.2.3. If this other version has a number of VaR

violations closer to the expected number of violations (which is known and equal to

3000(1− τ) where τ is the VaR level), we retain this version.

3.6.2.1 Comparison with EVT-type methods

Results from Tables 3.2-3.5 indicate that, on the basis of in-sample validation and

compared to the other two methods geared towards extreme value estimation (GARCH-

EVT and UGH), the proposed GARCH-UGH approach is the most successful for
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estimating one-step ahead extreme VaRs that satisfy both unconditional and condi-

tional coverage properties. Across all samples and in terms of number of VaR viola-

tions only, in 46 out of 60 cases our GARCH-UGH approach is closest to the mark.

In addition, although the unfiltered UGH estimate is somewhat reasonable in terms

of number of VaR violations, it is not appropriate because it lacks responsiveness to

the time-varying volatility and volatility clustering: Figure 3.2a illustrates that the

non-dynamic nature of the UGH estimate leaves it unable to respond immediately

to high volatility, and VaR violations tend to cluster. By contrast, the conditional VaR

estimates obtained by our GARCH-UGH approach (Figure 3.2b) clearly respond to

the changing volatility with no clustering of VaR violations, while bias reduction

results in closer numbers of VaR violations to the expected numbers than with the

conventional GARCH-EVT. Numerically, the GARCH-UGH method never fails ei-

ther the Kupiec or Christoffersen tests, whereas the GARCH-EVT method fails 7 and

5 times out of 60 cases, respectively. The bias correction at the extreme value step

appears to be very effective for the accurate estimation of one-step ahead dynamic

extreme VaRs. It leads to results that seem less sensitive to the choice of sample frac-

tion k than the conventional GARCH-EVT method: see Tables 3.2-3.5, where results

appear to be consistently good across a large range of values of k.

3.6.2.2 Comparison with basic estimation methods

In addition, Table 3.6 shows the superiority of the GARCH-UGH approach when

it is compared with the basic estimation methods (HS, GARCH-N and GARCH-t)

that are commonly used by practitioners in financial risk management. Note that

the number of VaR violations for GARCH-UGH shown in the Table 3.6 corresponds

to when the optimal (according to Tables 3.2-3.5) sample fraction is chosen from 5%

to 25% for the estimation of dynamic extreme VaR. For all cases, HS provides the

same number of VaR violations as theoretically expected ones. This is because the

nonparametric HS method gives the (length of testing window × (1− τ))th ordered

value in the sample as the VaR at quantile level τ from the non-updated ordered

observations, which always ends up producing the same number of VaR violations

as theoretically expected. Hence, in-sample HS is trivial and we exclude it from the

comparison for in-sample estimation; we will see in the out-of-sample backtestings
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TABLE 3.2: In-sample evaluations of one-step ahead conditional VaR
estimates from 8 December 1997 to 9 November 2009 at different
quantile levels for the negative log-returns of DJ index by means of
the number of VaR violations, unconditional and conditional cover-

age tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
DJ:
0.999 Quantile
Expected 3 3 3 3 3
UGH 4 5 2 2 3

(0.583, 0.855) (0.292, 0.569) (0.538, 0.826) (0.538, 0.826) (1.000, 0.997)
GARCH-UGH 2 2 2 2 2

(0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826)
GARCH-EVT 2 2 2 2 4

(0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.583, 0.855)
0.995 Quantile
Expected 15 15 15 15 15
UGH 18 18 16 18 20

(0.452, 0.012) (0.452, 0.012) (0.798, 0.009) (0.452, 0.012) (0.218, 0.011)
GARCH-UGH 15 14 14 15 15

(1.000, 0.927) (0.793, 0.905) (0.793, 0.905) (1.000, 0.927) (1.000, 0.927)
GARCH-EVT 13 13 13 13 13

(0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821)
0.99 Quantile
Expected 30 30 30 30 30
UGH 34 34 34 36 39

(0.472, 0.018) (0.472, 0.018) (0.472, 0.018) (0.286, 0.018) (0.114, 0.014)
GARCH-UGH 27 28 29 31 33

(0.576, 0.669) (0.711, 0.717) (0.854, 0.741) (0.855, 0.711) (0.588, 0.598)
GARCH-EVT 23 23 22 22 20

(0.180, 0.341) (0.180, 0.341) (0.123, 0.259) (0.123, 0.259) (0.050, 0.130)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.3: In-sample evaluations of one-step ahead conditional VaR
estimates from 13 August 1997 to 16 July 2009 at different quantile
levels for the negative log-returns of NASDAQ index by means of the
number of VaR violations, unconditional and conditional coverage

tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
NASDAQ:
0.999 Quantile
Expected 3 3 3 3 3
UGH 3 1 1 1 1

(1.000, 0.997) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 4 4 4 4 2

(0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.538, 0.826)
GARCH-EVT 4 4 4 4 4

(0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855)
0.995 Quantile
Expected 15 15 15 15 15
UGH 21 21 21 19 21

(0.143, 0.295) (0.143, 0.295) (0.143, 0.295) (0.320, 0.541) (0.143, 0.295)
GARCH-UGH 14 14 14 14 13

(0.793, 0.905) (0.793, 0.905) (0.793, 0.905) (0.793, 0.905) (0.596, 0.821)
GARCH-EVT 13 13 10 10 10

(0.596, 0.821) (0.596, 0.821) (0.168, 0.374) (0.168, 0.374) (0.168, 0.374)
0.99 Quantile
Expected 30 30 30 30 30
UGH 32 33 33 35 37

(0.717, 0.609) (0.588, 0.135) (0.588, 0.135) (0.371, 0.127) (0.215, 0.106)
GARCH-UGH 23 23 23 25 25

(0.180, 0.341) (0.180, 0.341) (0.180, 0.341) (0.345, 0.519) (0.345, 0.519)
GARCH-EVT 22 17 16 16 16

(0.123, 0.259) (0.009, 0.031) (0.005, 0.017) (0.005, 0.017) (0.005, 0.017)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.4: In-sample evaluations of one-step ahead conditional VaR
estimates from 29 May 1997 to 12 August 2009 at different quantile
levels for the negative log-returns of NIKKEI index by means of the
number of VaR violations, unconditional and conditional coverage

tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
NIKKEI:
0.999 Quantile
Expected 3 3 3 3 3
UGH 4 4 4 4 1

(0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.179, 0.406)
GARCH-UGH 4 2 4 4 1

(0.583, 0.885) (0.538, 0.826) (0.583, 0.885) (0.583, 0.885) (0.179, 0.406)
GARCH-EVT 5 5 5 5 5

(0.292, 0.569) (0.292, 0.569) (0.292, 0.569) (0.292, 0.569) (0.292, 0.569)
0.995 Quantile
Expected 15 15 15 15 15
UGH 15 15 17 18 21

(1.000, 0.178) (1.000, 0.178) (0.612, 0.199) (0.452, 0.190) (0.143, 0.114)
GARCH-UGH 13 13 13 13 12

(0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.421, 0.689)
GARCH-EVT 13 12 12 12 12

(0.596, 0.821) (0.421, 0.689) (0.421, 0.689) (0.421, 0.689) (0.421, 0.689)
0.99 Quantile
Expected 30 30 30 30 30
UGH 32 32 34 36 38

(0.717, 0.609) (0.717 0.609) (0.472, 0.562) (0.286 0.427) (0.159, 0.297)
GARCH-UGH 26 25 26 31 28

(0.453, 0.601) (0.345, 0.519) (0.453, 0.601) (0.855, 0.711) (0.711, 0.666)
GARCH-EVT 25 24 21 19 18

(0.345, 0.287) (0.254, 0.430) (0.081, 0.188) (0.030, 0.085) (0.017, 0.049)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.5: In-sample evaluations of one-step ahead conditional VaR
estimates from 28 September 2002 to 14 December 2010 at different
quantile levels for the negative log-returns of JPY/GBP exchange rate
by means of the number of VaR violations, unconditional and condi-

tional coverage tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
JPY/GBP:
0.999 Quantile
Expected 3 3 3 3 3
UGH 2 2 1 1 1

(0.538, 0.826) (0.538, 0.826) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 3 2 3 2 2

(1.000, 0.997) (0.538, 0.826) (1.000, 0.997) (0.538, 0.826) (0.538, 0.826)
GARCH-EVT 3 3 3 3 3

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
0.995 Quantile
Expected 15 15 15 15 15
UGH 16 17 16 18 28

(0.798, 0.195) (0.612, 0.199) (0.798 0.195) (0.452, 0.190) (0.003, 0.000)
GARCH-UGH 16 14 14 14 16

(0.798, 0.888) (0.793, 0.905) (0.793, 0.905) (0.793, 0.905) (0.798, 0.888)
GARCH-EVT 11 11 11 11 10

(0.277, 0.532) (0.277, 0.532) (0.277, 0.532) (0.277, 0.532) (0.168, 0.374)
0.99 Quantile
Expected 30 30 30 30 30
UGH 38 40 41 41 46

(0.159, 0.002) (0.081, 0.002) (0.056, 0.001) (0.056, 0.001) (0.006, 0.001)
GARCH-UGH 31 32 31 29 22

(0.855, 0.612) (0.717, 0.609) (0.855, 0.612) (0.854, 0.556) (0.123, 0.259)
GARCH-EVT 29 29 28 24 22

(0.854, 0.556) (0.854, 0.556) (0.711, 0.501) (0.254, 0.430) (0.123, 0.259)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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FIGURE 3.2: Twelve years (8 December 1997 to 9 November 2009) of
in-sample backtesting of the DJ index, and 99.5%-VaR violations by
(a) the UGH approach and (b) the GARCH-UGH approach when the
top 15% of observations are used for the estimation. Red cross marks

denote the VaR violations.
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that HS performs worse out of all estimation methods. Across all samples, in 11

out of 12 cases our GARCH-UGH approach is closest to the mark and never fails

any tests, with the GARCH-N approach performing worse since it cannot capture

heavy tails. The GARCH-N and GARCH-t methods are not reliable approaches for

the estimation of dynamic extreme VaR because GARCH-N fails to pass the Kupiec

and Christoffersen tests 6 and 5 times out of 12 cases, and GARCH-t fails 4 and 3

times respectively.

3.6.3 Out-of-sample dynamic extreme VaR estimation and backtesting

We now focus on the out-of-sample estimation (that is, prediction) of one-step ahead

VaR via the same six approaches, again at level τ ∈ {0.99, 0.995, 0.999}. We consider

the following samples of data:

• The time period from 23 December 1993 to 9 November 2009 for the Dow Jones,

• The time period from 30 August 1993 to 16 July 2009 for the NASDAQ,

• The time period from 14 May 1993 to 12 August 2009 for the Nikkei,

• The time period from 2 January 2000 to 14 December 2010 for the JPY/GBP

exchange rate.

In order to carry out this out-of-sample backtest, we adopt a rolling window esti-

mation approach. Specifically, we first fix a testing window WT in each case, which

corresponds to the periods of time considered in our in-sample evaluation (8 De-

cember 1997 to 9 November 2009 for the Dow Jones, 13 August 1997 to 16 July 2009

for the Nasdaq, 29 May 1997 to 12 August 2009 for the Nikkei, 28 September 2002

to 14 December 2010 for the JPY/GBP exchange rate). At each time t in this testing

window WT, we use a window of length WE of prior information in order to predict

the conditional VaR on time t + 1 (with parameter estimates updated when the es-

timation window changes), which is then compared to the observed log-return on

day t + 1. Various choices of WE have been made in the literature: here we choose

WE = 1000 as in McNeil and Frey (2000), corresponding to approximately four years

of model calibration for each prediction with stock market data, and three years with

exchange rate data. Regarding the use of the GARCH-UGH method specifically,
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TABLE 3.6: In-sample evaluations of one-step ahead conditional VaR
estimates by basic estimation methods at different quantile levels
for the negative log-returns of DJ, NASDAQ, NIKKEI indices and
JPY/GBP exchange rate (time period given in Section 3.6.2) by means
of the number of VaR violations, unconditional and conditional cov-

erage tests.

DJ NASDAQ NIKKEI JPY/GBP
Testing window 3000 3000 3000 3000
0.999 Quantile
Expected 3 3 3 3
HS 3 3 3 3

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
GARCH-N 13 9 11 7

(0.000, 0.000) (0.005, 0.020) (0.000, 0.002) (0.049, 0.142)
GARCH-t 2 4 2 1

(0.538, 0.826) (0.583, 0.855) (0.538, 0.826) (0.179, 0.406)
GARCH-UGH 2 4 4 3

(0.538, 0.826) (0.583, 0.855) (0.583, 0.855) (1.000, 0.997)
0.995 Quantile
Expected 15 15 15 15
HS 15 15 15 15

(1.000, 0.007) (1.000, 0.923) (1.000, 0.178) (1.000, 0.178)
GARCH-N 28 16 25 20

(0.003, 0.008) (0.798, 0.888) (0.018, 0.005) (0.218, 0.410)
GARCH-t 13 10 12 1

(0.596, 0.821) (0.168, 0.374) (0.421, 0.689) (0.000, 0.000)
GARCH-UGH 15 14 13 16

(1.000, 0.927) (0.793, 0.905) (0.596, 0.821) (0.798, 0.888)
0.99 Quantile
Expected 30 30 30 30
HS 30 30 30 30

(1.000, 0.112) (1.000, 0.594) (1.000, 0.594) (1.000, 0.012)
GARCH-N 43 27 41 38

(0.025, 0.044) (0.576, 0.669) (0.056, 0.091) (0.159, 0.297)
GARCH-t 20 16 18 3

(0.051, 0.130) (0.005, 0.017) (0.017, 0.053) (0.000, 0.000)
GARCH-UGH 29 25 31 31

(0.854, 0.741) (0.345, 0.519) (0.855, 0711) (0.855, 0.612)

Notes: The closest number of VaR violations to the theoretically ex-
pected number is highlighted in bold, excluding historical simulation
(HS). The number of VaR violations for GARCH-UGH is reported
when the optimal sample fraction is selected according to Tables 3.2-
3.5. The p-values for the unconditional coverage test by Kupiec (1995)
and conditional coverage test by Christoffersen (1998) are given in

brackets in order.
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we retain the implementation suggested by the results of in-sample backtesting. In

other words, on a given data set and for a given value of k, if we observed during

in-sample backtesting that the choice ρ̂kρ
= −1 performed better, then we retain

this choice for out-of-sample estimation; otherwise, we estimate ρ as indicated in

Section 3.2.3 (see Tables A.1-A.4 in Appendix A).

Figure 3.3 shows the out-of-sample estimation of EVI by GARCH-UGH and

GARCH-EVT approaches using the top 15% of observations from rolling estimation

windows WE made of 1000 observations for four financial time series. It is reason-

able to assume the heavy-tail of the underlying distribution for the GARCH-UGH

approach as the estimates of EVI are stable between 0.2 and 0.4. On the other hand,

the GARCH-EVT approach yields unstable EVI estimates ranging from 0.2 to −0.4

that are not only sensitive to the number of upper order statistics used in the estima-

tion but also to the rolling estimation window, although it is still valid because the

range of EVI for GARCH-EVT is not limited to γ > 0.

3.6.3.1 Comparison with EVT-type methods

Traditional VaR backtesting

Tables 3.7-3.10 gather the numerical results for the comparison between the GARCH-

EVT, GARCH-UGH and UGH methods. It can be seen that again, the suggested

GARCH-UGH approach appears to be best overall. In 47 out of 60 cases, the GARCH-

UGH approach yields the closest number of VaR violations to the theoretically ex-

pected numbers, while the unfiltered UGH method fares worst. Based on the Kupiec

test, the GARCH-UGH approach fails twice, whereas the GARCH-EVT and UGH

fail 6 and 49 times out of 60 cases, respectively. On one occasion GARCH-UGH fails

the Christoffersen test, while the GARCH-EVT and UGH methods fail 0 and 43 times

out of 60 cases. GARCH-UGH typically performs better than other approaches ex-

cept possibly when the top 5% and 10% of observations are used (for the choice of

k); this is because the bias is not the dominating term in the bias-variance tradeoff

when k is small.

Comparative VaR backtesting

Tables 3.11-3.14 display the traffic light matrices of comparative VaR backtesting

given in Section 3.5 for three EVT-type methods, three quantile levels, five different
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FIGURE 3.3: Out-of-sample estimation of extreme value index (EVI)
by GARCH-UGH (blue line) and GARCH-EVT (red line) approaches
using the top 15% of observations from rolling estimation windows
made of 1000 observations for four financial time series: DJ, NAS-

DAQ, NIKKEI and JPY/GBP.
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TABLE 3.7: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional VaR estimates by EVT-type methods from 8
December 1997 to 9 November 2009 at different quantile levels for
the negative log-returns of DJ index by means of the number of VaR

violations, unconditional and conditional coverage tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%
DJ:
0.999 Quantile
Expected 3 3 3 3 3
UGH 10 9 9 7 6

(0.001, 0.006) (0.005, 0.020) (0.005, 0.020) (0.049, 0.142) (0.128, 0.310)
GARCH-UGH 3 3 3 3 3

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
GARCH-EVT 3 4 4 4 4

(1.000, 0.997) (0.583, 0.885) (0.583, 0.885) (0.583, 0.885) (0.583, 0.855)
0.995 Quantile
Expected 15 15 15 15 15
UGH 40 40 40 36 29

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.001, 0.001)
GARCH-UGH 19 18 18 16 14

(0.320, 0.541) (0.452, 0.676) (0.452, 0.676) (0.798, 0.888) (0.793, 0.905)
GARCH-EVT 19 18 18 17 17

(0.320, 0.541) (0.452, 0.676) (0.452, 0.676) (0.612, 0.798) (0.612, 0.798)
0.99 Quantile
Expected 30 30 30 30 30
UGH 62 64 63 63 61

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
GARCH-UGH 33 35 32 31 28

(0.588, 0.598) (0.371, 0.433) (0.717, 0.663) (0.855, 0.711) (0.711, 0.717)
GARCH-EVT 33 30 30 28 27

(0.588, 0.598) (1.000, 0.738) (1.000, 0.738) (0.711, 0.717) (0.576, 0.669)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.8: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional VaR estimates by EVT-type methods from 13
August 1997 to 16 July 2009 at different quantile levels for the nega-
tive log-returns of NASDAQ index by means of the number of VaR

violations, unconditional and conditional coverage tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%
NASDAQ:
0.999 Quantile
Expected 3 3 3 3 3
UGH 10 8 7 4 3

(0.001, 0.006) (0.017, 0.057) (0.049, 0.142) (0.583, 0.855) (1.000, 0.997)
GARCH-UGH 6 5 5 4 3

(0.128, 0.370) (0.292, 0.569) (0.292, 0.569) (0.583, 0.855) (1.000, 0.997)
GARCH-EVT 7 7 7 7 7

(0.049, 0.142) (0.049, 0.142) (0.049, 0.142) (0.049, 0.142) (0.049, 0.142)
0.995 Quantile
Expected 15 15 15 15 15
UGH 39 37 35 36 40

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
GARCH-UGH 20 17 15 16 13

(0.218, 0.410) (0.612, 0.798) (1.000, 0.927) (0.798, 0.888) (0.596, 0.821)
GARCH-EVT 16 14 13 13 13

(0.798, 0.888) (0.793, 0.905) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821)
0.99 Quantile
Expected 30 30 30 30 30
UGH 74 74 70 65 62

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
GARCH-UGH 34 35 31 30 25

(0.427, 0.544) (0.371, 0.490) (0.855, 0.612) (1.000, 0.594) (0.345, 0.287)
GARCH-EVT 31 28 28 24 23

(0.855, 0.612) (0.711, 0.501) (0.711, 0.501) (0.254, 0.430) (0.180, 0.341)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.9: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional VaR estimates by EVT-type methods from 29
May 1997 to 12 August 2009 at different quantile levels for the neg-
ative log-returns of NIKKEI index by means of the number of VaR

violations, unconditional and conditional coverage tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%
NIKKEI:
0.999 Quantile
Expected 3 3 3 3 3
UGH 7 6 6 5 5

(0.049, 0.142) (0.128, 0.310) (0.128, 0.310) (0.292, 0.569) (0.292, 0.569)
GARCH-UGH 4 3 2 2 1

(0.583, 0.855) (1.000, 0.997) (0.538, 0.826) (0.538, 0.826) (0.179, 0.406)
GARCH-EVT 5 4 6 6 6

(0.292, 0.569) (0.583, 0.855) (0.128, 0.310) (0.128, 0.310) (0.128, 0.310)
0.995 Quantile
Expected 15 15 15 15 15
UGH 34 34 34 30 23

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.055, 0.062)
GARCH-UGH 15 15 15 15 12

(1.000, 0.927) (1.000, 0.927) (1.000, 0.927) (1.000, 0.927) (0.421, 0.689)
GARCH-EVT 13 14 13 12 12

(0.596, 0.821) (0.793, 0.905) (0.596, 0.821) (0.421, 0.689) (0.421, 0.689)
0.99 Quantile
Expected 30 30 30 30 30
UGH 46 47 46 45 53

(0.006, 0.011) (0.004, 0.007) (0.004, 0.007) (0.010, 0.015) (0.000 0.000)
GARCH-UGH 33 33 33 30 36

(0.588, 0.598) (0.588, 0.598) (0.588, 0.598) (1.000, 0.738) (0.286, 0.365)
GARCH-EVT 32 29 27 27 26

(0.717, 0.663) (0.854, 0.741) (0.576, 0.669) (0.576, 0.669) (0.453, 0.601)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE 3.10: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by EVT-type methods from
28 September 2002 to 14 December 2010 at different quantile levels for
the negative log-returns of JPY/GBP exchange rate by means of the
number of VaR violations, unconditional and conditional coverage

tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%
JPY/GBP:
0.999 Quantile
Expected 3 3 3 3 3
UGH 7 7 6 4 4

(0.049, 0.142) (0.049, 0.142) (0.128, 0.310) (0.583, 0.855) (0.583, 0.855)
GARCH-UGH 3 2 2 2 2

(1.000, 0.997) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826)
GARCH-EVT 6 5 5 6 7

(0.128, 0.310) (0.292, 0.569) (0.292, 0.569) (0.128, 0.310) (0.049, 0.142)
0.995 Quantile
Expected 15 15 15 15 15
UGH 25 27 27 34 45

(0.018, 0.028) (0.005, 0.010) (0.005, 0.010) (0.000, 0.000) (0.000, 0.000)
GARCH-UGH 21 18 15 14 12

(0.143, 0.295) (0.452, 0.676) (1.000, 0.927) (0.793, 0.905) (0.421, 0.689)
GARCH-EVT 19 19 20 20 20

(0.320, 0.541) (0.320, 0.541) (0.219, 0.410) (0.219, 0.410) (0.219, 0.410)
0.99 Quantile
Expected 30 30 30 30 30
UGH 47 56 55 59 67

(0.004, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
GARCH-UGH 42 46 40 38 34

(0.038, 0.064) (0.006, 0.012) (0.081, 0.127) (0.159, 0.227) (0.472, 0.523)
GARCH-EVT 38 37 38 38 36

(0.159, 0.227) (0.215, 0.292) (0.159, 0.227) (0.159, 0.227) (0.286, 0.365)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.



3.6. Empirical analysis of four financial time series 83

threshold selections and four financial time series when h = 0 VaR scoring function

of the form (3.16) is used. Recall that h = 0 and h = 1 in this context mean that

0-homogeneous and 1-homogeneous choices of VaR scoring functions, respectively,

given in Section 3.5. The competing models are given in the vertical axis with the

benchmark models along the horizontal axis. Using the t-statistic based on the DM

test (3.11), we reject the hypothesis H−0 at the test level 5% if 1−Φ(DM) ≤ 0.05 while

the hypothesis H+
0 is rejected if Φ(DM) ≤ 0.05. Under H−0 , the comparative back-

testing is passed for the competing model if the null hypothesis fails to be rejected.

On the other hand, under H+
0 the backtesting for the competing model is passed if

the null hypothesis is rejected. The green zone corresponds to the case when H−0

is not rejected and H+
0 is rejected, which suggests that the competing model is con-

sidered as better than the benchmark model. The yellow zone is when only one of

the backtestings under H−0 and H+
0 is passed and we cannot conclude which model

performs the best. The red zone corresponds to the case when both backtestings fail

to be passed, indicating a problem with the competing model.

As with the results of traditional VaR backtestings, it is illustrated that our pro-

posed GARCH-UGH approach appears to be best overall. In 50 out of 60 cases, the

GARCH-UGH approach is considered as better than GARCH-EVT approach based

on the realized scores of VaR. We can also observe the similar trend as the results

of the traditional backtestings that is, GARCH-UGH generally performs better than

GARCH-EVT except when top 5% and 10% of observations are used due to the bias-

variance trade-off. When GARCH-EVT is considered as better than GARCH-UGH,

it indeed has the closest number of VaR violations to the theoretically expected num-

bers, which is consistent with the results of traditional backtestings again.

Tables 3.15-3.18 show the traffic light matrices for the h = 1 VaR scoring func-

tion given as the form (3.15). In 44 out of 60 cases, the GARCH-UGH approach is

considered as better than the GARCH-EVT approach with 3 cases of no decisions

taken. Comparative backtestings with two scoring functions and traditional back-

testings result in a good agreement with the GARCH-UGH approach being the best

estimator of VaR, while the unfiltered UGH being the worst estimator, i.e., failing

the comparative backtestings against all the other methods. In the case of VaR, h = 1

scoring function has the worse discrimination ability than the h = 0 one especially
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TABLE 3.11: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 8 December 1997 to 9 November 2009 at
different quantile levels for the negative log-returns of DJ index by
means of the Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.12: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 13 August 1997 to 16 July 2009 at differ-
ent quantile levels for the negative log-returns of NASDAQ index by
means of the Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.13: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 29 May 1997 to 12 August 2009 at differ-
ent quantile levels for the negative log-returns of NIKKEI index by
means of the Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.14: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 28 September 2002 to 14 December 2010
at different quantile levels for the negative log-returns of JPY/GBP
exchange rate by means of the Diebold-Mariano test using h = 0 VaR

scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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at level τ = 0.999. However, it does not mean that the form h = 0 is the optimal

scoring function for the VaR because there exists no theoretical support to use in

practice. Comparative VaR backtestings rank the VaR estimation methods based on

the realized VaR scores. They hence yield definitive answers to the cases when the

estimation methods are all accepted or all rejected in the traditional VaR backtest-

ings, especially when GARCH-UGH and GARCH-EVT approaches have the same

number of VaR violations and are indistinguishable.

TABLE 3.15: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 8 December 1997 to 9 November 2009 at
different quantile levels for the negative log-returns of DJ index by
means of the Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.16: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 13 August 1997 to 16 July 2009 at differ-
ent quantile levels for the negative log-returns of NASDAQ index by
means of the Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.17: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 29 May 1997 to 12 August 2009 at differ-
ent quantile levels for the negative log-returns of NIKKEI index by
means of the Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 3.18: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods from 28 September 2002 to 14 December 2010
at different quantile levels for the negative log-returns of JPY/GBP
exchange rate by means of the Diebold-Mariano test using h = 1 VaR

scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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3.6.3.2 Comparison with basic estimation methods

Traditional VaR backtesting

Table 3.19 also supports the use of the GARCH-UGH approach for the estima-

tion of dynamic extreme VaR because it outperforms the basic HS, GARCH-N and

GARCH-t estimation methods. In 12 out of 12 cases our GARCH-UGH approach

(with optimal sample fraction according to Tables 3.7-3.10) is closest to the mark. It

also never fails either of the Kupiec and Christoffersen tests, while HS fails 8 and 7

times, GARCH-N fails 10 and 10 times, and GARCH-t fails 3 and 2 times out of 12

cases, respectively.

Comparative VaR backtesting

Tables 3.20-3.23 and 3.24-3.27 display the traffic light matrices of comparative

VaR backtesting (see Section 3.5) for six estimation methods given in Section 3.3,

three quantile levels and four financial time series when h = 0 (3.16) and h = 1 (3.15)

VaR scoring functions are used, respectively. The optimal sample fraction for 3 EVT-

type methods is selected based on the performance in the out-of-sample traditional

VaR backtestings (see Tables 3.7-3.10).

As with the results of traditional VaR backtestings, it is illustrated that our pro-

posed GARCH-UGH approach appears to be best overall, outperforming other five

estimation methods. The two scoring functions result in a good agreement with

GARCH-UGH approach being the better estimator in 11 out of 12 cases when com-

pared to the basic HS, GARCH-N and GARCH-t approaches. It also suggests that

there was no difference in the discrimination ability of both chosen VaR scoring func-

tions having 2 cases of no decisions made in each function. HS, GARCH-N and

UGH approaches generally perform worse than the other three approaches as they

consider neither heavy-tail nor volatility.

We conclude from our empirical analysis that the proposed GARCH-UGH ap-

proach provides better one-step ahead dynamic extreme VaR estimates for financial

time series than the benchmark conventional GARCH-EVT approach of McNeil and

Frey (2000) and the other basic estimation approaches we have tested based on his-

torical simulation or traditional fully parametric models. This can be seen from both
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TABLE 3.19: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by basic estimation meth-
ods at different quantile levels for the negative log-returns of DJ,
NASDAQ, NIKKEI indices and JPY/GBP exchange rate (time period
given in Section 3.6.3) by means of the number of VaR violations, un-

conditional and conditional coverage tests.

DJ NASDAQ NIKKEI JPY/GBP
Testing window 3000 3000 3000 3000
Estimation window 1000 1000 1000 1000
0.999 Quantile
Expected 3 3 3 3
HS 4 5 7 6

(0.583, 0.855) (0.292, 0.569) (0.049, 0.142) (0.128, 0.310)
GARCH-N 19 11 11 10

(0.000, 0.000) (0.000, 0.002) (0.000, 0.002) (0.001, 0.006)
GARCH-t 3 7 5 1

(1.000, 0.997) (0.049, 0.142) (0.292, 0.569) (0.179, 0.406)
GARCH-UGH 3 3 3 3

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
0.995 Quantile
Expected 15 15 15 15
HS 36 39 24 21

(0.000, 0.000) (0.000, 0.000) (0.032, 0.042) (0.143, 0.114)
GARCH-N 34 22 29 29

(0.000, 0.000) (0.090, 0.086) (0.001, 0.004) (0.001, 0.004)
GARCH-t 17 16 13 1

(0.612, 0.798) (0.798, 0.888) (0.596, 0.821) (0.000, 0.000)
GARCH-UGH 14 15 15 15

(0.793, 0.905) (1.000, 0.927) (1.000, 0.927) (1.000, 0.927)
0.99 Quantile
Expected 30 30 30 30
HS 57 68 44 44

(0.000, 0.000) (0.000, 0.000) (0.016, 0.022) (0.016, 0.022)
GARCH-N 56 38 44 45

(0.000, 0.000) (0.159, 0.297) (0.016, 0.029) (0.010, 0.019)
GARCH-t 26 25 20 2

(0.453, 0.601) (0.345, 0.287) (0.051, 0.130) (0.000, 0.000)
GARCH-UGH 31 30 30 34

(0.855, 0.711) (1.000, 0.594) (1.000, 0.738) (0.472, 0.523)

Notes: The closest number of VaR violations to the theoretically ex-
pected number is highlighted in bold. The number of VaR violations
for GARCH-UGH is when the optimal sample fraction is selected ac-
cording to Tables 3.7-3.10. The p-values for the unconditional cover-
age test by Kupiec (1995) and conditional coverage test by Christof-

fersen (1998) are given in brackets in order.
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TABLE 3.20: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 8 December 1997 to 9 November 2009 at different quantile lev-
els for the negative log-returns of DJ index by means of the Diebold-

Mariano test using h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(5%)
GARCH-UGH
(15%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(15%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.7).
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TABLE 3.21: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 13 August 1997 to 16 July 2009 at different quantile levels for
the negative log-returns of NASDAQ index by means of the Diebold-

Mariano test using h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(15%)
GARCH-EVT
(10%)
GARCH-UGH
(15%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(5%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.8).
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TABLE 3.22: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 29 May 1997 to 12 August 2009 at different quantile levels for
the negative log-returns of NIKKEI index by means of the Diebold-

Mariano test using h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(10%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.9).
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TABLE 3.23: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 28 September 2002 to 14 December 2010 at different quantile lev-
els for the negative log-returns of JPY/GBP exchange rate by means

of the Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(15%)
GARCH-UGH
(5%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(5%)
GARCH-UGH
(15%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.10).
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TABLE 3.24: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 8 December 1997 to 9 November 2009 at different quantile lev-
els for the negative log-returns of DJ index by means of the Diebold-

Mariano test using h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(5%)
GARCH-UGH
(15%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(15%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.7).
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TABLE 3.25: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 13 August 1997 to 16 July 2009 at different quantile levels for
the negative log-returns of NASDAQ index by means of the Diebold-

Mariano test using h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(15%)
GARCH-EVT
(10%)
GARCH-UGH
(15%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(5%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.8).
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TABLE 3.26: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 29 May 1997 to 12 August 2009 at different quantile levels for
the negative log-returns of NIKKEI index by means of the Diebold-

Mariano test using h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(10%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.9).
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TABLE 3.27: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
from 28 September 2002 to 14 December 2010 at different quantile lev-
els for the negative log-returns of JPY/GBP exchange rate by means

of the Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(25%)
GARCH-EVT
(15%)
GARCH-UGH
(5%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(5%)
GARCH-UGH
(15%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(25%)
GARCH-UGH
(25%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table 3.10).
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the in-sample and the out-of-sample estimations at several quantile levels τ, includ-

ing the very high τ = 0.999 corresponding to a 99.9% VaR, and a large range of

sample fractions k, due to the effect of the bias correction. Let us also point out that

the GARCH-UGH method is carried out using an automatic recipe for the estimation

of the extreme value index and extreme quantile, making it computationally cheap.

3.6.3.3 Constructing confidence interval of GARCH-UGH estimates

The corresponding plots of out-of-sample backtesting are shown in Figures 3.4-3.7

with the corresponding 95% asymptotic Gaussian confidence intervals correspond-

ing to the GARCH-UGH estimation method in Figure 3.8: the confidence interval is

given by

µ̂t+1 + σ̂t+1q̂1−p(Z)

1± 1.96√
k/ log( k

np )
×

√√√√ γ̂2
k,kρ

ρ̂2
kρ

(ρ̂2
kρ
+ (1− ρ̂kρ

)2)

 .

It is clearly seen that the GARCH-UGH and GARCH-EVT estimates have the same

dynamics, with the bias correction shifting the estimate upwards or downwards de-

pending on the rolling estimation window.
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FIGURE 3.4: Out-of-sample backtesting of the DJ index from 8 De-
cember 1997 to 9 November 2009, and 99.9%-VaR estimates calcu-
lated using rolling estimation windows made of 1000 observations,
with k corresponding to the top 15% observations from this window.
GARCH-UGH (blue line), GARCH-EVT (red line) and UGH (dark
green line) estimates are superimposed on the negative log-returns

(black line).
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FIGURE 3.5: Out-of-sample backtesting of the NASDAQ index from
13 August 1997 to 16 July 2009, and 99.9%-VaR estimates calculated
using rolling estimation windows made of 1000 observations, with
k corresponding to the top 20% of observations from this window.
GARCH-UGH (blue line), GARCH-EVT (red line) and UGH (dark
green line) estimates are superimposed on the negative log-returns

(black line).
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FIGURE 3.6: Out-of-sample backtesting of the NIKKEI index from
29 May 1997 to 12 August 2009, and 99.9%-VaR estimates calculated
using rolling estimation windows made of 1000 observations, with
k corresponding to the top 10% of observations from this window.
GARCH-UGH (blue line), GARCH-EVT (red line) and UGH (dark
green line) estimates are superimposed on the negative log-returns

(black line).
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FIGURE 3.7: Out-of-sample backtesting of the JPY/GBP exchange
rate from 28 September 2002 to 14 December 2010, and 99.9%-VaR
estimates calculated using rolling estimation windows made of 1000
observations, with k corresponding to the top 10% of observations
from this window. GARCH-UGH (blue line), GARCH-EVT (red line)
and UGH (dark green line) estimates are superimposed on the nega-

tive log-returns (black line).
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FIGURE 3.8: Out-of-sample backtesting of the DJ index from 8 De-
cember 1997 to 9 November 2009, and 99.9%-VaR estimates calcu-
lated using rolling estimation windows made of 1000 observations,
with k corresponding to the top 15% observations from this window.
GARCH-UGH (blue solid line) estimates are superimposed on the
negative log-returns (black line) with the 95% asymptotic Gaussian

confidence intervals (blue dashed line).
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Chapter 4

Dynamic extreme Expected

Shortfall estimation by

GARCH-UGH

4.1 Introduction

Recall from Chapter 1 and 3 that recently the BCBS announced a change in the risk

measure used for capital requirements in internal market risk models, moving from

the VaR to the ES despite VaR’s universality and conceptual simplicity. In practice

there was a lively debate of which risk measure either VaR or ES would be best in

regulatory framework over the last or two decades. In this section, we revise the

pros and cons of both VaR and ES that were part of the debate, and describe the

problems and aims of this chapter.

The following list discusses the pros and cons of both VaR and ES (not exhaus-

tive):

• Tail risk information: VaR only measures the frequency of observations below

or above the predictor and not their magnitude, i.e., severity of tail losses. This

means that, while it is known that 100(1− τ)% of losses will be higher than

the VaR qτ at level τ, the VaR alone cannot give any further information about

the size of these large losses. It is revealed for example during the turbulence

of 2007-2008 crisis. The ES on the hand does give information of tail loss by

definition as it is the mean of potential extreme losses exceeding the VaR.
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• Coherence: VaR is not a coherent risk measure in the sense of Artzner et al.

(1999), because it is not subadditive in general, meaning that it does not abide

by the intuitive diversification principle stating that a portfolio built on several

financial assets carries less risk than a portfolio solely consisting of one of these

assets. Contrary to the VaR, ES is a coherent risk measure satisfying all axioms

including monotonicity, homogeneity, translation invariance and subadditiv-

ity.

• Robustness: VaR is shown to be more robust than ES. We say that a risk mea-

sure is robust if it can accommodate model misspecification and is robust sta-

tistically regarding the changes in data. He et al. (2022) describe the statistical

robustness of VaR and ES using four tools that are influence functions, asymp-

totic breakdown points, finite sample breakdown points and Hampel robust-

ness (see also Emmer et al. 2015 for the detailed discussion).

• Elicitability: elicitability is a helpful decision-theoretic framework for the de-

termination of optimal point forecasts, which can be used to compare the per-

formance of different estimation methods of VaR and ES in the comparative

backtesting (see Section 3.5 and 4.5). While the VaR (quantile) is elicitable,

Gneiting (2011) points out that ES is not elicitable. This means that there exists

no scoring function SES(e, y) such that the ES estimate e of the true ES y can

be obtained as the e that minimizes SES(e, y). Given this definition, it is quite

obvious that ES is not elicitable because there is no concrete realized data to be

compared to the estimates of ES.

• Backtestability: the method of VaR backtesting is conceptually simple since it

is based on the number of VaR violations, explained in Section 3.4. On the

other hand, one of the major drawback of ES is its difficulty to be backtested.

Researches from the academic sector and the practical sector are still struggling

to find an optimal backtesting method that is both mathematically consistent

and practically implementable. Recent theoretical progress in the research of

ES has made the backtesting ES a viable task; see next Section 4.2 for a very

recent literature review of backtesting procedures of ES. This difficulty of ES

is mainly due to the fact that ES is highly model dependent and particularly
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sensitive to the extreme tails as the estimation of ES relies on the estimation of

VaR by definition. Clearly, VaR is not model dependent and easy to evaluate.

With regard to estimation of ES, there has not been sufficient investigation to

establish the superiority of a certain estimator relative to the others in the literature,

discussed in Section 4.2. In addition, no particular type of ES model is prescribed in

the framework of Basel Committee on Banking Supervision (2019). In Section 4.3.1,

we propose a novel approach of dynamic extreme ES estimation, which is based on

our proposed GARCH-UGH approach from Chapter 3 and the use of asymptotic

equivalence between VaR (quantile) and ES. Regarding the backtesting of ES, Basel

Committee on Banking Supervision (2019) still demands financial institutions to use

traditional VaR backtesting for ES. At the same time, we can expect that upcoming

regulations will require them to backtest ES without using VaR backtesting method.

We also tackle an urgent problem of which ES backtesting methods can be used in

the practice (see Section 4.4 and 4.5).

4.2 Comprehensive study of ES

In this section, we review the ES from the perspectives of estimation and backtesting

methods.

Estimation methods

There have been a number of literature that discuss the use of EVT for estimating

(one-step and multi-step ahead) unconditional and conditional ES. We start from the

two-step frameworks for the estimation of ES. McNeil and Frey (2000) use GARCH-

EVT approach (see Section 4.3.2) to estimate 1-step ahead conditional ES and suggest

to use a heavy-tailed distribution, preferably using EVT instead of normal distribu-

tion to model the standardized residuals after filtering in GARCH-EVT framework.

Righi and Ceretta (2015) evaluate the several methods of unconditional, conditional

and quantile/expectile regression-based models for 1-step ahead VaR and ES esti-

mations. They find that the poor VaR estimates will result in the bad ES predictions.

Bee et al. (2016) propose the two-step realized EVT approach, where financial returns

are prewhitened with a high-frequency volatility model instead of GARCH model to
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estimate 1-step and 10-step ahead VaR and ES. According to their results, GARCH-

type filters perform slightly better than the high-frequency based filters although

the realized EVT approach seems preferable at the longer time horizons when es-

timating multi-step ahead conditional ES. Novales and Garcia-Jorcano (2019) com-

bine the semiparametric filtered historical simulation and EVT, i.e., POT approach,

to estimate 10-step ahead conditional ES, which corrects the overestimation of risk

by EVT-based models. Their result suggests that conditional EVT-based models to

produce more accurate 1-step and 10-step ahead ES estimates than non-EVT based

models.

We also look at the cases when EVT methods are not used. So and Wong (2012)

estimate multi-step ahead ES under GARCH models that is computationally feasi-

ble to use in practice, compare to any Monte Carlo method that requires heavy com-

putational effort to make the method widely applicable. Their estimation method

combines the exact estimation of conditional kurtosis and GARCH models, which is

based on the idea from Wong and So (2003). Lönnbark (2016) studies four different

approaches including the method based on a skewed-t distribution to compare the

estimations of multi-step ahead VaR and ES. Degiannakis and Potamia (2017) exploit

the inter-day and intra-day volatility models to construct two-step GARCH-skewed

t (see Section 4.3.2) and realized skewed t frameworks for the estimations of multi-

step ahead conditional VaR and ES. Their models provide accurate estimations of

VaR and ES in the case of 97.5% confidence level that is set up by Basel Committee

on Banking Supervision (2019) but not in the case of the higher 99% confidence level.

Lastly we check the estimation of ES by means of the expectile. Taylor (2008) in-

troduces the expectile-based unconditional VaR and ES that are only estimated at an

intermediate level, i.e, not qτ(Z) (τ ↑ 1), although financial institutions are typically

interested in the extreme region. Daouia et al. (2018) and Daouia et al. (2020) pro-

pose a novel extreme expectile-based unconditional VaR and ES. Their method relies

on the popular Hill estimator (3.6), Weissman quantile estimator (3.5), heavy-tailed

property (3.4) and on the asymptotic equivalence between quantiles and expectiles

(4.3) to transform quantile-based VaR and ES into expectile-based ones. Daouia et al.
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(2021) introduce the estimator of EVI (tail index) that is based on weighted combi-

nations of top order statistics and asymmetric least squares estimates. This result-

ing estimator called expectHill is used to estimate unconditional quantile-based and

expectile-based ES. See Section 1.2.5 for the pros and cons of using the expectiles

instead of quantiles.

Backtesting methods

In contrast to the estimations of unconditional and conditional ES where most

of the existing models including the ones we referred and proposed for the VaR in

Chapter 3 can easily be adapted to the ES, such adaptions are not straight-forward

for backtesting ES estimates (Emmer et al. 2015). The main difficulty in backtesting

ES, which is already discussed in Chapter 1 and Section 4.1, is its nonelicitability

(Gneiting 2011; Fissler and Ziegel 2016). More specifically, there is no analogue to

the hit sequence of VaR violations that lies at the heart of almost all traditional VaR

backtestings apart from the comparative version. However, there are continuously

growing literature regarding the traditional and comparative backtesting methods

of ES, driven by the recent transition from VaR to ES in the Basel framework Basel

Committee on Banking Supervision (2019). From the practical point of view, sudden

appearance of multiple ES backtesting methods may not be that blessing because

it is often difficult to find a middle ground between a reliable test of ES and the

ease of the implementation in practice. A very recent comprehensive study of ES

backtesting methods is given in Novales and Garcia-Jorcano (2019) and Deng and

Qiu (2021), who check the performances of tests in terms of stability over different

models, sensitivity to the sample sizes and computational burden.

We classify traditional ES backtesting methods into 5 groups by the inputs re-

quired for the tests as follows: using the whole or tail distribution of the financial

returns, using multiple quantile levels of VaR, using ES, VaR and volatility (or short-

fall deviation), using the pair of VaR and ES and using only ES. We also review

the comparative ES backtesting, which is similar to the comparative VaR backtest-

ing (see Section 3.5). As in every statistical method, every different ES backtesting

methods which will be presented have their strengths and weaknesses.

Whole or tail distribution - For this group, they require the whole or tail dis-

tribution of the returns or equivalently the cumulative violation process
∫ τ

0 1{xt >
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q̂s,t}ds. Wong (2008) introduces the saddlepoint approximation test, which allows

for detecting the deficiency of a model based on just one or two VaR violations. It

is typically not model-free as it relies on a normal distribution and incurs a higher

level of analytical costs for the researchers. Acerbi and Szekely (2014) introduce three

model-free nonparametric tests (Z1, Z2, Z3) that exploit the law of large numbers for

the VaR violation process. As they are model-free they depend neither on the form

nor on the parameters of the parent distribution. However, they have to satisfy as-

sumptions of continuity of the distribution function, the probability density function

of financial returns and also the independence. The test Z1 is testing ES after VaR

which is based on the idea that if VaR has been tested already we can separately

test the magnitude of the realized VaR violations against the ES estimates. While

Z1 is insensitive to an excessive number of VaR violations as it is an average taken

over these violations, the test Z2 jointly evaluates frequency and magnitude of them.

Acerbi and Szekely (2014) show that Z2 is most powerful test among three tests and

believe that Z1 with the Basel Committee’s Traffic Light coverage test in Section 3.4.3

or Z2 alone represent valid ES backtesting method for Basel regulation. As far as we

are aware, the test Z3 is not used in the existing literature as it is less natural than

other two. Costanzino and Curran (2015) develop a ES backtesting method, which

exploits the fact that ES is an average of a continuum of VaR levels, and this method

tests if the whole tail of the distribution beyond the VaR has been estimated cor-

rectly. It is similar to the unconditional coverage test of VaR by Kupiec (1995) in

Section 3.4.1. Du and Escanciano (2015) propose ES backtesting method based on

the cumulative violation process, which is the natural analogue of the conditional

coverage test of VaR by Christoffersen (1998) in Section 3.4.2, extending the idea of

Costanzino and Curran (2015). Löser et al. (2018) introduce a closely related test to

Costanzino and Curran (2015) and Du and Escanciano (2015) in which the cumula-

tive violation process is treated as a series of Bernoulli distributions and uniformly

distributed r.v.s.

Multiple quantile levels - For this group, the estimates of ES are backtested indi-

rectly by simultaneously backtesting a number of VaR estimates at different quantile

levels instead of working on ES directly. This is natural due to the definition of ES

(see Section 1.2.4). Emmer et al. (2015) propose a ES backtesting method based on a
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simple linear quantile approximation. The ES estimate is obtained as the average of

multiple VaRs at different quantile levels, which is given as follows:

eτ =
1
τ

∫ τ

0
qsds

≈ 1
4
[qτ + q0.75τ+0.25 + q0.5τ+0.5 + q0.25τ+0.75].

(4.1)

where ESτ = eτ and VaRτ = qτ. The Kupiec test (Kupiec 1995) is applied to all cases

(qτ, q0.75τ+0.25, q0.5τ+0.5 and q0.25τ+0.75) and the ES estimate can be considered reliable

if all VaR estimates successfully pass the test. Kratz et al. (2018) generalize the idea

of (4.1) by considering quantile levels τ1, τ2, ..., τN of

τj = τ +
j− 1

N
(1− τ), j = 1, ..., N

where τ may take the value of 0.975 corresponding to the Basel rules for banks.

Their test called multinomial backtest could easily be performed as a regular routine

as it is carried out in the same way as the Kupiec test on the financial data. Note

that Basel Committee on Banking Supervision (2019) suggests to use a variant of ES

backtesting method by Emmer et al. (2015) expressed by the Equation (4.1) based on

two quantile levels at 0.975 and 0.99.

Triplet of ES, VaR and volatility - The ES backtesting methods that require a

triplet of ES, VaR and volatility are quiet often used in the literature. One of the first

and most frequently used ES backtesting method is the exceedance residual (ER) test

by McNeil and Frey (2000).This test is based on the size of the discrepancy between

the returns xt and ES estimates eτ,t in the event of VaR violation. In other words, they

are interested in the ES-specified exceedance residuals exceeding the VaR estimates,

defined as

ert = (xt − êτ,t)1{xt > q̂τ,t}.

This ert is a martingale difference sequence given that estimates êτ,t and q̂τ,t are true

conditional on the information about the return process available up to time t− 1,

Ft−1. When exceedance residuals are standardized by a given volatility estimates

ert/σ̂t, we call it standardized ER. This ES backtesting method relies on the definition

of the martingale difference sequence and tests whether the expected value of the
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standardized ER is zero, i.e., E[ert/σ̂t] = 0. See Section 4.4.2 for the details of this

test. Righi and Ceretta (2013) extend the ER test of McNeil and Frey (2000) using

the shortfall deviation that is the dispersion only for the VaR violations, i.e., the

square root of the truncated variance for VaRτ, instead of the volatility estimates for

the full sample. Nolde and Ziegel (2017) propose the ES backtesting based on the

concept of conditional calibration (CC), which tests whether the expected value of

the identification functions of the respective functional, i.e. ES, is zero. When CC

test requires volatility estimates, it is said to be general CC test. See Section 4.4.3 for

the details of this test.

Pair of VaR and ES - Examples include the non-standardized ER test of McNeil

and Frey (2000) and the CC test of Nolde and Ziegel (2017) that are called simple

(or raw) ER test and simple CC test: see again Section 4.4.2 and 4.4.3 for the details,

respectively.

ES only - The estimates of ES are backtested directly in contrast to the above 4

methods, which use the auxiliary quantities, i.e., not exactly ES risk measures but

rather some values including ES, instead of the ES itself. Bayer and Dimitriadis

(2020b) introduce the first direct ES backtesting method based on their strict defi-

nition of backtesting stating that only ES estimates are allowed as an input variable

besides the realized returns for backtesting ES. They introduce the expected shortfall

regression (ESR) tests, which extend the classical method of Mincer and Zarnowitz

(1969) to ES-specific versions. See Section 4.4.4 for the details of this test.

Comparative - Unlike traditional ES backtesting, comparative ES backtesting

is based on the concept of joint elicitability of VaR and ES (Section 4.5.1) and the

Diebold-Mariano (DM) test of Diebold and Mariano (1995), proposed by Fissler et

al. (2015) and Nolde and Ziegel (2017). Comparative VaR backtesting is already

introduced in Section 3.5 and ES-specific version will be introduced in Section 4.5.

Acerbi and Szekely (2017) introduce a backtesting method called the ridge test based

on a transformed version of the scoring function of VaR, which can be used for both

model comparison and validation purposes.

In our empirical analysis of four financial time series (DJ, NASDAQ, NIKKEI

and JPY/GBP) for backtesting and estimating ES (Section 4.6), we use simple and

standardized ER tests of McNeil and Frey (2000), general and simple CC tests of
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Nolde and Ziegel (2017), and thee types (strict, auxiliary and intercept) of ESR tests

of Bayer and Dimitriadis (2020b).

4.3 Expected Shortfall (ES) estimation methods

No particular type of ES model is prescribed in the framework of Basel Committee

on Banking Supervision (2019) although the BCBS announced a change in the risk

measure used for capital requirements in internal market risk models, moving from

VaR to ES. With regard to estimation of ES, there has not been sufficient investiga-

tion to establish the superiority of a certain estimator relative to the others in the

literature, discussed in Section 4.2. The drawbacks of traditional approaches given

in Section 1.3 and the need to accurately forecast the extreme market risks has mo-

tivated the development of an alternative method of ES estimation. We propose a

novel approach of dynamic extreme ES estimation, which is based on our proposed

GARCH-UGH approach (Kaibuchi et al. 2022) from Chapter 3 and the use of asymp-

totic equivalence between VaR (quantile) and ES.

4.3.1 GARCH-UGH method

The setting for the GARCH-UGH method for dynamic (extreme) ES is same as the

dynamic extreme VaR in Section 3.2. Recall that we assume the dynamics of negative

daily log-return Xt are governed by

Xt = µt + σtZt,

where µt ∈ R and σt > 0 denote the (conditional) mean and standard deviation,

and the innovations Zt form a strictly stationary white noise process, that is, they

are i.i.d. with zero mean, unit variance and common marginal distribution function

FZ. Here we focus on the one-step ahead expected shortfall (ES), that is, the estima-

tion of the conditional (extreme) ES of Xt+1 given Ft, whose order τ tends to 1 as

the available sample size n goes to infinity. Similar to the VaR, the one-step ahead

conditional ES of Xt+1 can be written as

eτ(Xt+1 | Ft) = µt+1 + σt+1eτ(Z), (4.2)
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where eτ(Z) = E[Z | Z > qτ(Z)] is the τth unconditional ES of the marginal dis-

tribution of the innovations Zt (see Section 1.2.4) and qτ(Z) is the τth unconditional

quantile (see Section 1.2.3).

In calculating this estimate (4.2), there are four main difficulties. First, one has to

estimate µt+1 and σt+1, which supposes that an appropriate model and estimation

method have to be chosen. Second, the innovations Zt are unobserved, which means

that the estimation of eτ(Z) has to be based on residuals following the estimation of

µt+1 and σt+1. Third and fourth difficulty are specific to our context. Third, we wish

here to estimate a dynamic extreme conditional ES, that is, eτ(Xt+1 | Ft) with τ

very close to 1. In such contexts, it is well-known that traditional nonparametric es-

timators become inconsistent and adapted extrapolation methodologies have to be

employed. Lastly, the resulting estimator of the τth unconditional ES of residuals

êτ(Z) heavily depends on the estimated τth unconditional quantile qτ(Z) by defini-

tion of ES and the EVI γ̂ due to the use of asymptotic equivalence between VaR and

ES (see Equation 4.4 later). In this sense, êτ(Z) may inherit the vexing defects of both

qτ(Z) and γ̂.

In this framework for the ES estimation, we first follow the GARCH-UGH ap-

proach of Kaibuchi et al. (2022) where we estimate the mean and standard deviation

in a GARCH-type model (Section 3.2.2) and use bias-corrected Weissman quantile

estimator (3.10) to the filtered residuals for the estimation of unconditional qτ(Z)

(τ ↑ 1) (Section 3.2.3). We then rely on the asymptotic equivalence between quantile

(VaR) and ES to estimate unconditional eτ(Z) of residuals. The asymptotic equiv-

alence between expectile and expectile-based ES, which is epeτ(Z) = E[Z | Z >

epτ(Z)] where epτ is the τth expectile (see Section 1.2.5), is given in Proposition 4 of

Daouia et al. (2020). The asymptotic equivalence between quantile and expectile has

also been found in Bellini and Di Bernardino (2015) and Daouia et al. (2018) as

epτ

qτ
∼ (γ−1 − 1)−γ, τ → 1, (4.3)

where γ is the EVI given in Section 2.1.3. Therefore, the asymptotic equivalence of
epeτ

epτ
is nothing but one between quantile and ES expressed as eτ

qτ
as the factor (4.3)

cancels out. Following Daouia et al. (2020), we now assume that E[Z−] < ∞ where
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Z− = min(Z, 0) denotes the negative part of Z. We further assume that first-order

condition (3.4) holds with 0 < γ < 1, implying that Z has a Pareto-type distribution.

The assumption of E[Z−] < ∞ and 0 < γ < 1 ensures that the first moment of Z

exists, and thus ES of Z are well-defined. Then, as τ → 1,

eτ

qτ
∼ (1− γ)−1. (4.4)

This relationship is also given in Novales and Garcia-Jorcano (2019). By further con-

sidering the second-order condition (3.7), Daouia et al. (2020) establish a precise con-

trol of the remainder term in the asymptotic equivalence of epeτ

epτ
, which is naturally

extended to (4.4):

eτ

qτ
=

1
1− γ

(
1− γ2(γ−1 − 1)γ

qτ
(E[Z] + o(1))

+
1− γ

(1− γ− ρ)2 (γ
−1 − 1)−ρ A((1− τ)−1)(1 + o(1))

) (4.5)

where ρ ≤ 0 is the second-order parameter and A is a positive or negative function

converging to 0 at infinity, such that |A| is regularly varying with index ρ (see Section

3.2.3).

Given estimates µ̂t+1, σ̂t+1 and q̂τ(Z) of these quantities with the asymptotic

equivalence eτ
qτ

(4.4), an estimate of eτ(Xt+1 | Ft) is then

êτ(Xt+1 | Ft) = µ̂t+1 + σ̂t+1q̂τ(Z)(1− γ̂k,kρ
)−1, (4.6)

where γ̂k,kρ
is the bias-corrected Hill estimator of de Haan et al. (2016).

4.3.2 Other methods

In this section, we will explain briefly other five methods for ES estimation, which

are used to compare with our proposed GARCH-UGH approach in the empirical

analysis in Section 4.6. Their VaR estimation methods are already described in Sec-

tion 3.3.

For Historical Simulation (HS) method, the τth unconditional ES is obtained by

taking the mean of all returns Xt equal to or above the estimated VaR, which is
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simply the empirical quantile of Xt at the desired quantile level.

For parametric GARCH-N and GARCH-t methods, these method use the same

filtering step as explained in Section 3.2.3 and assume that the standardized resid-

uals are normally and Student-t distributed, respectively. Since we only consider

continuous distributions, the τth unconditional ES is estimated via the numerical

integration following the definition of ES given as:

eτ(Z) = E[Z | Z > qτ(Z)] =
1

1− τ

∫ 1

τ
qs(Z)ds.

where the qτ is the τth quantile F̂−1
τ (Z) estimated in Section 3.3.

For UGH method, we use the UGH step (Section 3.2.3) directly to the series Xt

without filtering and apply the asymptotic equivalence between VaR and ES (4.4) to

estimate the τth unconditional ES.

For GARCH-EVT method, we consider the distribution function of excesses Z−

qτ(Z) over a fixed higher threshold qτ(Z) under an approximately i.i.d. condition

after filtering step. Note that we considered the excesses Z− u over a high threshold

u for the VaR estimation in Section 2.2.3 and 3.3. It is given in McNeil and Frey

(2000) that excesses Z− qτ(Z) also have a GPD distribution with the same EVI γ but

a different scaling parameter β. For a quantile level τ, the estimator of unconditional

ES of Z is given by

êτ(Z) = E[Z | Z > q̂τ(Z)] = q̂τ(Z)
(

1
1− β̂

+
β̂− γ̂Ẑn−k,n

(1− γ̂)q̂τ(Z)

)
.

Then, the one-step ahead conditional ES based on GARCH-EVT is obtained by sub-

stituting êτ(Z) above into the Equation (4.2).

4.4 Traditional ES backtesting

We have discussed in Section 1.4 that the traditional backtesting is viewed as a model

verification test. These tests are concerned with assessing some optimality property

of a set of risk measure estimates and not suited to compare different estimation
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methods for risk measures. They perform a statistical tests for the null hypothesis:

H0 : The risk measure estimates are correct.

If H0 is not rejected, then the risk measure estimates are deemed to be adequate.

Generally, the traditional backtestings with the hypothesis H0 are not relevant to

elicitability of the risk measure and are not aimed at model comparison and ranking.

Here our focus is to backtest a risk measure ES directly and indirectly by means of

the exceedance residual (ER) test of McNeil and Frey (2000), the conditional calibra-

tion (CC) test of Nolde and Ziegel (2017) and the expected shortfall regression (ESR)

test of Bayer and Dimitriadis (2020b), which are introduced in Section 4.2 briefly.

4.4.1 Problems of backtesting ES

We would like to briefly highlight two problems of backtesting ES before we look

at the traditional ES backtesting methods in detail. As mentioned previously, one of

the major drawback of ES is its difficulty to be backtested.

Firstly, the theoretical ES cannot be compared with the observed returns unlike

the VaR (see Section 3.4) as one would not only look at the number of VaR violations

It = 1{xt > q̂τ(Xt | Ft−1)} but also their sizes. Secondly, most of the ES backtesting

methods exist in the literature including the ones we use in the empirical analysis

test the auxiliary quantities of ES rather than only ES itself unlike VaR (see Section

4.2). These tests require further inputs such as the VaR, the volatility and whole or

tail distributions. Strictly speaking, these tests are not backtesting ES if we follow

the strict definition of backtesting from Bayer and Dimitriadis (2020b). A rejection

of the null hypothesis of these tests does not necessarily imply that the ES estimates

are incorrect as the estimates of other inputs might be incorrect.

4.4.2 Exceedance residual test

Most frequently used traditional ES backtesting is the exceedance residual (ER) test

proposed by McNeil and Frey (2000). This test is based on the size of the discrep-

ancy between returns xt and ES estimates eτ,t in the event of VaR violations. In other
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words, we are interested in the ES-specified exceedance residuals over the VaR esti-

mates, defined as

ert = (xt − êτ,t)1{xt > q̂τ,t}. (4.7)

This quantity ert is a martingale difference sequence given that estimates êτ,t and q̂τ,t

are true conditional on the information about the return process available up to time

t− 1, Ft−1.

In McNeil and Frey (2000), ert, which is called the simple ER, is standardized by a

given volatility estimates σ̂t, i.e., the volatility obtained in the GARCH step, to form

the standardized ER ert/σ̂t. Thus, we have two tests that are either based on simple

(or raw) or standardized ER to carry out. Moreover, Righi and Ceretta (2013) extend

the standardized ER test using the shortfall deviation (SD) that is the dispersion

only for the VaR violations, i.e., the square root of the truncated variance for some

quantile VaRτ, instead of the volatility estimates for the full sample. Mathematically,

it is defined as

SDτ = [Var(X|X > qτ(X))]1/2 =

(
1

1− τ

∫ 1

τ
(qs(X)− es(X))2ds

)1/2

.

Note that we do not use the SD-standardized version of the ER test in the empirical

analysis given in Section 4.6 as it did not show the significance difference from the

conventional standardized ER test in the pre-analysis.

Both simple and standardized ER test rely on the definition of the martingale

difference sequence and test whether the expected value of the ER is zero, i.e., µ =

E[ert] = 0 or µ = E[ert/σ̂t] = 0, as these residuals should behave like an i.i.d. sample

with mean zero. McNeil and Frey (2000) use the estimate

µ̂ =
∑N

t=1 ert

∑N
t=1 1{xt > q̂τ,t}

(4.8)

and test the hypothesis of mean zero using a bootstrap test that makes no assump-

tion about the underlying distribution of the residuals. In our analysis, we test µ

against the one-sided alternative of µ < 0, which indicates that ES is systematically

underestimated and leads to insufficient provision of capital, and also against the

two-sided alternative that µ 6= 0 where the estimated ES is either systematically
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underestimated or overestimated. In summary, two hypotheses are as follows:

H1s
0 : µ ≥ 0 against H1s

1 : µ < 0, and

H2s
0 : µ = 0 against H2s

1 : µ 6= 0.

It is clear from the Equations (4.7) and (4.8) that

µ̂ =
∑N

t=1 xt1{xt > q̂τ,t}
∑N

t=1 1{xt > q̂τ,t}
− ∑N

t=1 êτ,t1{xt > q̂τ,t}
∑N

t=1 1{xt > q̂τ,t}
.

This means that the simple and standardized ER tests compare the empirical mean

of realized returns xt truncated at estimated VaR q̂τ,t to the estimated mean ES êτ,t

when there are VaR violations. These tests thus rejects the null hypothesis whenever

the discrepancy between the VaR and the ES is incorrect while simultaneous mis-

specifications of both estimates of VaR and ES cannot be detected. Note that the ES

backtesting methods of Acerbi and Szekely (2014) are proposed in the same spirit as

the ER test.

4.4.3 Conditional calibration test

Nolde and Ziegel (2017) propose the traditional ES backtesting method based on the

concept of conditional calibration (CC), which tests whether the expected value of

the identification functions of the respective functional, in our case ES, is zero.

Let Θ = (η1, ..., ηd) be a vector of d ≥ 1 risk measures η that are mappings from

some collection of probability distributions P to real numbers. Definition 2 of Nolde

and Ziegel (2017) states that the vector of risk measures Θ is identifiable with respect

to P if there exists a identification function I : Rd ×R→ Rd such that

E[I(r, X)] = 0⇔ r = Θ(X) ∀X, (4.9)

The identifiability is the close concept to the elicitability (see Section 1.2.5 and 4.5.1).

In fact, when d = 1 identifiability implies elicitability under some additional as-

sumptions (Acerbi and Szekely 2017). In most common cases, identifiability and
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elicitability occur jointly when the Equation (4.9) represents the first-order stationar-

ity condition of a scoring function

S(r, x) =
∫ r

I(y, x)dy

whose expected values of the score E[S(r, x)] has a global minimum in the prediction

of a risk measure r = Θ(X). Since the risk measure can be obtained by minimizing

the expected value of the score, a scoring function S(r, x) is strictly consistent for

r. The vector of risk measures Θ are thus elicitable because they admit a strictly

consistent scoring function S(r, x).

Although the identification functions are not uniquely defined, we use the iden-

tification function for the pair (VaRτ, ESτ) at level τ ∈ (0, 1) for the CC test given in

Nolde and Ziegel (2017) as

I(q, e, X) =

 1− τ − 1{X > q}

q− e− 1
1− τ

1{X > q}(q− X),


whose expected value is zero if and only if q and e equal the true VaR and ES of the X,

respectively. We say that the sequence of estimations {qt, et}t=1,...,N is conditionally

calibrated for Θ if

E[I(qt, et, Xt) | Ft−1] = 0

almost surely, for all t ∈ N. Therefore, the conditional calibration (CC) test for a

pair of estimates of the τth VaR q̂t and the τth ES êt is based on the one-sided and

two-sided alternative hypotheses as follows:

H1s
0 : E[I(q̂t, êt, Xt) | Ft−1] ≥ 0 against H1s

1 : E[I(q̂t, êt, Xt) | Ft−1] < 0, and

H2s
0 : E[I(q̂t, êt, Xt) | Ft−1] = 0 against H2s

1 : E[I(q̂t, êt, Xt) | Ft−1] 6= 0,

almost surely, for all t = 1, ..., N. We are particularly concerned with testing against

the one-sided alternative of E[I(q̂t, êt, Xt) | Ft−1] < 0 that the issued ES estimates

are systematically underestimated. From the practitioners’ point of view, overes-

timation of ESτ is not a problem as holding more capital than minimally required

should always be allowed.
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For this test, the requirement E[I(q̂t, êt, Xt) | Ft−1] = 0, almost surely, is equiva-

lent to E[hT
t I(q̂t, êt, Xt)] = 0 for all Ft−1 measurable R2 (d = 2)-valued functions ht.

Following Nolde and Ziegel (2017), we use a Ft−1-measurable sequence {ht}t=1,...,N

of m × 2 (d = 2)-matrices ht, which are called test functions, to use the Wald-type

test statistic:

TCC = N
(

1
N

N

∑
t=1

ht I(q̂t, êt, Xt)

)T

Ω̂−1
N

(
1
N

N

∑
t=1

ht I(q̂t, êt, Xt)

)
,

where

Ω̂N =
1
N

N

∑
t=1

(ht I(q̂t, êt, Xt))(ht I(q̂t, êt, Xt))
T

is a consistent estimator of the covariance of the m-dimensional vector ht I(q̂t, êt, Xt).

Under the null hypothesis, the test statistic TCC is asymptotically χ2 distributed with

m degrees of freedom.

We have two versions of the CC test similarly to the ER test of McNeil and Frey

(2000) that are: the simple CC test, which uses a pair of (VaR, ES) only, and the

general CC test, which requires the additional volatility estimates. For simple CC

test, Nolde and Ziegel (2017) propose to use the (m×m) identity matrix for the test

function ht in both one-sided and two-sided hypotheses. For the general CC test,

they and also Bayer and Dimitriadis (2020b) propose to use

ht =

1 |q̂t| 0 0

0 0 1 σ̂−1
t ,


for the one-sided hypothesis and

ht = σ̂t

(
êt − q̂t

τ
, 1
)

for the two-sided hypothesis, where σ̂t is the estimate of the volatility, i.e., the volatil-

ity obtained in the GARCH step. Note that the CC test for a pair of (VaR, ES) is re-

lated to the ER test of McNeil and Frey (2000) in the case of backtesting ES. Moreover,

the CC test for the VaR is closely related to the VaR backtesting method based on the

number of VaR violations when we choose ht = 1 and an appropriate identification

function of VaR.
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4.4.4 Expected Shortfall regression test

Bayer and Dimitriadis (2020b) introduce the first direct ES backtesting method, which

solely tests the ES in the sense that it only requires ES estimates as input variables

rather than the auxiliary quantities based on for example, the VaR, the volatility and

whole or tail distributions (see Section 4.2). This is motivated by their strict defini-

tion of backtesting in the following (already given briefly in Section 1.4). A backtest

for the sequence of estimates {η̂t}t=1,...,N for the d-dimensional risk measure η rela-

tive to the sequence of realized returns {Xt}t=1,...,N is a function

f : RN ×RN×d → {0, 1},

mapping the series of estimates of risk measures and returns onto the perspective

test decision. It basically states that a backtesting for specific risk measure is only al-

lowed to require estimates of this risk measure as input variables besides the realized

returns. Strictly speaking, tests based on the auxiliary quantities are not backtesting

ES. A rejection of the null hypothesis of these tests does not necessarily imply that

the ES estimates are incorrect as the estimates of other inputs, e.g. the VaR and the

volatility, might be incorrect.

They propose three types of the expected shortfall regression (ESR) tests for

backtesting ES, extending the classical regression-based testing idea of Mincer and

Zarnowitz (1969) to ES-specific versions. They regress the realized returns {Xt}t=1,...,N

on the ES estimates {êt}t=1,...,N and intercept term by using a regression equation for

the functional ES given as

Xt = ω1 + ω2êt + ue
t , (4.10)

where ue
t is the error term and ESτ(ue

t | Ft−1) = 0 almost surely. Since the estimates

êt are calculated given Ft−1, they estimate a regression model that models the τth

conditional ES as linear function

ESτ(Xt | Ft−1) = ω1 + ω2êt,
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where Xt is the response variable and êt is the explanatory variable including an

intercept term. The hypothesis of this test is

H0 : (ω1, ω2) = (0, 1) against H1 : (ω1, ω2) 6= (0, 1).

For correctly specified ES estimates, the intercept ω1 and slope ω2 parameters equal

zero and one, respectively, which is tested by using the Wald-type test statistics.

However, we cannot estimate such a regression model, i.e., estimating the parame-

ters ω, by maximum or generalized method of moment estimations using only the

ES as a input variable because the ES is not elicitable (Gneiting 2011) as explained in

Section 1.2.2 and 4.5.1, and there are no consistent score (or loss) and identification

functions (Section 4.4.3), which could be used as objective functions for estimation

methods. Bayer and Dimitriadis (2020b) use the ES regression equation (4.10) and

also a feasible alternative by specifying an auxiliary VaR (quantile) regression equa-

tion given as

Xt = β1 + β2q̂t + uq
t , (4.11)

where uq
t is the error term and VaRτ(u

q
t | Ft−1) = 0 almost surely. They jointly

estimate the regression parameters (β, ω) by employing a scoring function of a pair

(VaR, ES), which is based on joint elicitability (see Section 4.5.1), from Fissler and

Ziegel (2016) for objective functions of maximum or generalized method of moment

estimations.

The specification of the VaR regression equation in the joint regression model

using Equations (4.10) and (4.11) allows for different ESR tests. First test is the aux-

iliary ESR test where the VaR estimates q̂t are used as the explanatory variable in

the Equation (4.11) but only the ES intercept and slope parameters ω are tested. The

main drawback of the auxiliary ESR test is that it indeed requires both estimates of

VaR and ES as input variables. Hence, it is formally a test of a pair (VaR, ES) like the

ER test of McNeil and Frey (2000) and the CC test of Nolde and Ziegel (2017).

Second test is the strict ESR test where only ES estimates êt are used as the ex-

planatory variable in both Equations (4.10) and (4.11) and only the ES intercept and

slope parameters ω are tested. The problem of this test is the potential model mis-

specification in the VaR regression equation as we use ES estimates êt are used as the
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explanatory variable.

Third test is the intercept ESR test where the slope parameter ω2 is set to be 1 in

the ES regression equation (4.10) and only the ES intercept parameter ω1 is tested.

The restricted regression equation after regressing the ES-specified exceedance er-

rors Xt − êt only on an intercept term is given as

Xt − êt = β1 + β2êt + uq
t and Xt − êt = ω1 + ue

t .

Above equation allows us to define the one-sided and two-sided alternative hy-

potheses as follows:

H1s
0 : ω1 ≥ 0 against H1s

1 : ω1 < 0, and

H2s
0 : ω1 = 0 against H2s

1 : ω1 6= 0.

The merit of using this test is that it solely requires the ES estimates as input variable

like the strict ESR test. It also clarifies whether ES estimates are underestimated or

overestimated unlike other two tests, which are generally unclear how the intercept

ω1 and slope ω2 parameters influence the ES estimates. As mentioned previously,

we are concerned with checking the underestimation of ES because the practitioners

only have to prevent and penalize the underestimation of the financial risks.

Details of the Wald-type test statistics of three tests are provided in Bayer and

Dimitriadis (2020b). Under the null hypothesis, the test statistic of the auxiliary and

strict ESR tests is asymptotically χ2 distributed with 2 degrees of freedom, while the

intercept ESR is asymptotically χ2 distributed with 1 degrees of freedom.

4.5 Comparative ES backtesting

Evaluating a sequence of risk measure estimates using a certain method is different

from comparing estimation methods as we already discussed in Section 1.4. Recall

that the comparative backtesting is better suited for model comparison on the ba-

sis of forecasting accuracy while traditional backtesting explained in Section 4.4 is

viewed as a model verification. In practice (already illustrated in Section 3.6 and

will be in Section 4.6), there are cases when traditional ES backtesting methods do
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not yield definitive answers because the estimation methods are all accepted or all

rejected. Moreover, traditional ES backtesting methods sometimes give a different

conclusion in the decision of the estimation methods, i.e., one test rejects the null

hypothesis of the underestimation of ES estimates while the other accept, which was

not observed in the case of VaR backtesting. Using several methods of traditional ES

backtesting is not sufficient and thus the use of comparative backtesting is desper-

ately required especially for the ES. The comparative backtesting method for ES is

based on the Diebold-Mariano test of Diebold and Mariano (1995), which is similar

to the VaR version, but follows the idea of joint elicitability of VaR and ES (Fissler

and Ziegel 2016), and uses the scoring function of a pair (VaR, ES) instead of the

scoring function of VaR given in Section 3.5.

4.5.1 Elicitability and joint elicitability

In Section 1.2.2 and 4.1 we have mentioned elicitability briefly. Here we will explain

the notion of the elicitability and the mathematical definitions of strictly consistent

scoring function, elicitability and joint elicitability, which are the idea used in Section

3.5 as well. While we assessed some optimality property of a set of ES estimates in

Section 4.4, we now want to compare the different ES estimates êτ,t provided by

competing estimation procedures.

In this type of situation, we consider a scoring function S depending on both the

estimate (i.e. forecast) and the realization. For example, a scoring function could be

S(r, x) = (r− x)2, (squared error)

S(r, x) = |r− x|, (absolute error)

S(r, x) = |(r− x)/x|, (absolute percentage error)

S(r, x) = |(r− x)/r)|, (relative error)

where r is the point estimate and x is the verifying observation. Each of the above

scoring function S measures the distance between r and x. We generally take such

scoring functions to be negatively oriented, that is, the smaller the better. Thus, the

value r minimizing S(r, x) is considered as the more accurate with respect to the

observed value x. We say that a certain risk measure η is elicitable if we can find
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at least one scoring function S such that η(X) with X a random variable minimizes

the expected value of the scoring function S(r) = E[S(r, X)]. In other words, a risk

measure η is elicitable if there exists a scoring function S such that r = η(X) leads to

a minimum score S(r).

The formal definition of scoring function so that a risk measure is elicitable is

now given. Let Θ = (η1, ..., ηd) be a vector of d ≥ 1 risk measures η that are map-

pings from some collection of probability distributions P to real numbers R. The

risk of X is given as Θ(X). Then, a scoring function S : Rd × R → R is strictly

consistent for Θ with respect to P if

E[S(Θ(X), X)] < E[S(r, X)] (4.12)

for all r = (r1, ..., rd) 6= Θ(X) = (η1(X), ..., ηd(X)) (Nolde and Ziegel 2017). The

scoring function S is consistent if equality is included in the Equation (4.12). The

vector of risk measures Θ is elicitable if there exists a scoring function that is strictly

consistent for it, i.e., we have

Θ(X) = arg minr∈RE[S(r, X)]. (4.13)

We look at a simple example before we present the cases for ES. We consider the

mean functional, i.e., η(X) = E[X], which is elicited by the square error S(r, x) =

(r − x)2 (Gneiting 2011). As mentioned previously, this means that the value η(X)

minimizes the expected score

S(r) = E[S(r, X)] = E[(r− X)2], and hence

S(η(X)) = E[(E[X]− X)2] < S(r)

for any value of r 6= η(X). We can see that the mean minimizes the mean squared

error. However, it is not true for any scoring function S because for example, η(X) =

E[X] does not minimize the expected score of the absolute percentage error S(r, x) =

|(r− x)/x|.
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Thus, the elicitability of a risk measure η provides the helpful framework for the

determination of optimal point estimates by ranking the estimated values of η(X)

based on the expected score S. In order to backtest a specific risk measure such as

VaR and ES via the comparative backtesting method, we first need specific scoring

functions that are strictly consistent for a certain risk measure, i.e., the estimates of

that risk measure minimizes the expected score. In the financial literature, the exis-

tence of a scoring function for a certain risk measure gives a natural way to compare

the accuracy of two different estimation models, i.e., to test the comparative hy-

pothesis, which states one estimation model is better than another, by means of the

Diebold-Mariano test (Diebold and Mariano 1995) on the difference of two realized

scores.

While the VaR (quantile) is elicitable as it is the minimizers of the expected value

of an appropriate piecewise linear score (see for example Bellini and Di Bernardino

2015 and Nolde and Ziegel 2017) given in Section 3.5, Gneiting (2011) points out

that ES is not elicitable. This means that there exists no scoring function SES(e, x)

such that the ES estimate e of the true ES x can be obtained as the e that minimizes

SES(e, x). It is quite obvious that ES is not elicitable because there is no concrete

realized data to be compared to the estimates of ES. Therefore, ES alone cannot be

backtested comparatively to decide whether one estimation method is better than

the other given only the realized returns.

However, it turns out that ES is jointly elicitable with VaR, thanks to the pioneer-

ing work done by Fissler et al. (2015) and Fissler and Ziegel (2016). Following the

Equation (4.13), the joint elicitability of VaR and ES is defined as the existence of a

strictly consistent scoring function (4.12) that solves

(VaRτ(X), ESτ(X)) = arg min(q,e)∈R2E[SVaR,ES(q, e, X)] (4.14)

where VaR and ES are the unique minimizers of the expected score and the possible

choices of SVaR,ES are given in Section 4.5.2. Note that the joint elicitability is also

called as the coelicitability (He et al. 2022) and conditional elicitability (Emmer et al.

2015).
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4.5.2 Scoring functions for the pair (VaR, ES)

It is given in Nolde and Ziegel (2017) that the possible choices of the scoring function

SVaR,ES in the Equation (4.14) are of the form

SVaR,ES(q, e, x) = 1{x > q}(−G1(q) + G1(x)− G2(e)(q− x))

+ (1− τ)(G1(q)− G2(e)(e− q) + G2(e)),
(4.15)

where G1 is increasing, G2 is strictly increasing and concave and G ′2 = G2; see Corol-

lary 5.5 of Fissler and Ziegel (2016) for a more detailed discussion. All scoring func-

tions of the form (4.15) are strictly consistent for (VaRτ, ESτ) with τ ∈ (0, 1). The

authors also mention that the above scoring functions remain strictly consistent as

long as we set G1 = 0 and use G2 that is strictly increasing and concave.

For the comparative ES backtesting using the DM test in our empirical analysis

in Section 4.6, we use two particular scoring functions SVaR,ES introduced in Nolde

and Ziegel (2017). First one is to choose G1(x) = 0 and G2 = x1/2, x > 0 in the

general form (4.15), which leads to the (1/2)-homogeneous choice

SVaR,ES(q, e, x) = 1{x > q} x− q
2
√

e
+ (1− τ)

q + e
2
√

e
. (4.16)

Second one is to choose G1(x) = 0 and G2 = log x, x > 0 in the general form (4.15),

which leads to the 0-homogeneous choice given as

SVaR,ES(q, e, x) = 1{x > q} x− q
e

+ (1− τ)

(
q
e
− 1 + log(e)

)
. (4.17)

Concerning the power of Diebold-Mariano test we used in the comparative backtest-

ing, this 0-homogeneous choice has been shown to yield more powerful test than the

h-homogeneous choice with h > 0 in the volatility forecasting literature (see Nolde

and Ziegel 2017 and Deng and Qiu 2021).

We will also present several other choices of strictly consistent scoring functions

for a pair of VaR and ES available in the literature, which suppose that the financial

returns x are the profits. In this case, a general form of the scoring function SVaR,ES
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(Fissler et al. 2015; Fissler and Ziegel 2016) is given by

SVaR,ES(q, e, x) = (1{x ≤ q} − τ)(G1(q)− G1(x))

+
1
τ

G2(e)1{x ≤ q}(q− x) + G2(e)(e− q)− G2(e),
(4.18)

where G1 is increasing, G2 is strictly increasing and convex and G ′2 = G2. The fact

that ES is not elicitable can be clearly seen from the structure of SVaR,ES (4.18) as

the first factor only depends on the VaRτ whereas the second factor depends on

both VaRτ and ESτ. Possible choices for functions G1 and G2 are G1(q) = q and

G2(e) = exp(e), G1(q) = q and G2(e) = exp(e)/(1 + exp(e)) from Fissler et al.

(2015), G1(q) = 0 and G2(e) = −1/e from Patton et al. (2019), and G1(q) = 0 and

G2(e) = exp(e) from Deng and Qiu (2021). Moreover, Acerbi and Szekely (2014)

proposed a 2-homogeneous scoring function for the pair (VaRτ, ESτ) under the ad-

ditional assumption given as ESτ(X) < WVaRτ(X) with a parameter W > 0. As

we have already discussed in Section 3.5, strictly consistent scoring functions for

the pair (VaRτ, ESτ) are not unique and hence we are unaware of which functions

should be used in regulatory settings and in practice.

4.5.3 Diebold-Mariano test and traffic light approach

The framework of comparative backtesting for ES based on the Diebold-Mariano test

of Diebold and Mariano (1995) is same as the test for the VaR given in Section 3.5 but

uses the scoring functions of the pair (VaR, ES) introduced in Section 4.5.2 instead.

Recall that the comparative backtesting is better suited for model comparison on

the basis of forecasting accuracy while traditional backtesting is viewed as a model

verification. In practice (already illustrated in Section 3.6.3), there are cases when

traditional backtesting methods do not yield definitive answers because the estima-

tion methods are all accepted or all rejected. The comparative backtestings enable

to conduct direct comparisons of estimation methods when traditional backtestings

are not working efficiently.

In order to compare the estimation performances of two models, say competing

and benchmark models, and decide which one is better, we use the comparative ver-

sion of the traffic light approach for the ES proposed by Fissler and Ziegel (2016) and
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Nolde and Ziegel (2017), which is based on the Diebold-Mariano test (Diebold and

Mariano 1995). In this comparative ES backtesting, we again consider the following

two hypotheses:

H−0 : The competing model predicts at least as well as the benchmark model,

H+
0 : The competing model predicts at most as well as the benchmark model.

The null hypothesis H−0 is an analogue of H0 of traditional backtesting but adapted

to a comparative setting. The other hypothesis H+
0 is more conservative in the sense

that a backtest is passed if we can reject H+
0 . From a regulatory perspective, when

financial institutions propose a new internal model, they will need strong evidence

to throw away the old one in favour of a new model.

For a sequence of ES estimates, êτ,1, êτ,2, ..., êτ,N , and corresponding sequence of

VaR estimates, q̂τ,1, q̂τ,2, ..., q̂τ,N , and realized returns x1, x2, ..., xN , the realized ES

scores S1
VaR,ES(q̂τ,N , êτ,N , xN) of the form (4.15) given in Section 4.5.2 are calculated

for a competing model. Similarly, S2
VaR,ES(q̂τ,N , êτ,N , xN) is formed for a benchmark

model. The comparative ES backtesting treats SVaR,ES as a loss function and forms

the t-statistic based on the DM test as follows:

DM =

√
Nd

σ̂N
, d =

1
N

N

∑
t=1

(S1
VaR,ES(q̂τ,N , êτ,N , xN)− S2

VaR,ES(q̂τ,N , êτ,N , xN)), (4.19)

where d is the sample mean of the loss differential of the pair (VaR, ES) estimates

between the competing model (Model 1) and the benchmark model (Model 2), and

σ̂N is a suitable estimate of the asymptotic standard deviation of d already given

in Section 3.5. Under proper mixing conditions, the test statistic is asymptotically

standard normal N(0, 1); see Diebold and Mariano (1995) and Holzmann and Eulert

(2014).

We finally recall the decisions taken in the comparative ES backtesting based on

the DM test under the null hypotheses H−0 and H+
0 . Under H−0 , the comparative

backtesting is passed for the competing model (Model 1) if the null hypothesis fails

to be rejected. The competing model is then considered as better model than the

benchmark (Model 2) in this specific situation and it simply means that this null

hypothesis cannot be falsified. On the other hand, under H+
0 the backtesting for the
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competing model is passed if the null hypothesis is rejected. In terms of visualization

of the results, the green zone corresponds to the case when H−0 is not rejected and

H+
0 is rejected, which suggests that the competing model is considered as better than

the benchmark model. The yellow zone is when only one of the backtestings under

H−0 and H+
0 is passed and we cannot conclude which model performs the best. The

red zone corresponds to the case when both backtestings fail to be passed, indicating

a problem with the competing model.

4.6 Out-of-sample dynamic extreme ES estimation and back-

testing

The purpose of this section is to examine the finite-sample performance of our pro-

posed GARCH-UGH approach with other commonly used approaches because there

has not been sufficient investigation to rank certain estimators of ES in the literature.

We also tackle an urgent problem of which ES backtesting methods could be used

in practice and provide some guidance to researchers and financial institutions with

respect to quantitative risk management.

We consider again historical daily negative log-returns of three financial indices

and an exchange rate, all made of n = 4000 observations (already introduced in

Chapter 3):

• The Dow Jones Industrial Average (DJ) from 23 December 1993 to 9 November

2009;

• The Nasdaq Stock Market Index (NASDAQ) from 30 August 1993 to 16 July

2009;

• The Nikkei 225 (NIKKEI) from 14 May 1993 to 12 August 2009;

• The Japanese Yen-British Pound exchange rate (JPY/GBP) from 2 January 2000

to 14 December 2010.

The graphs of these financial time series and descriptive statistics with basic statisti-

cal tests are represented in Figure 3.1 and Table 3.1, respectively.
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We compare our GARCH-UGH approach (see Section 4.3.1) with HS, GARCH-N,

GARCH-t, the bias-reduced UGH and GARCH-EVT (see Section 4.3.2). A compar-

ison with the basic estimation methods (HS, GARCH-N and GARCH-t) indicates

the importance of extreme value methods in the estimation of the dynamic extreme

ES. Moreover, a comparison with the UGH method (without filtering) allows us to

see how effective filtering is, and a comparison with the GARCH-EVT method (not

featuring bias reduction) will illustrate the benefit of bias reduction at the extreme

value step after filtering.

We present out-of-sample evaluations of one-step ahead conditional ES estimates

at different τ levels and choices of k by means of traditional and comparative ES

backtesting methods discussed in Section 4.4 and 4.5, respectively. We compare our

GARCH-UGH approach with other EVT-type methods and with basic estimation

methods in Section 4.6.1 and 4.6.2, respectively. Note that the R package esback

(Bayer and Dimitriadis, 2020a) has been used for traditional backtestings given in

Section 4.4 and sandwich (Zeileis et al., 2022) for the estimation of the asymptotic

standard deviation of the Equation 4.19 in the comparative backtesting given in Sec-

tion 4.5.3 and also in Section 3.5.

4.6.1 Comparison with EVT-type methods

In order to carry out this out-of-sample backtest, we adopt a rolling window esti-

mation approach. Specifically, we first fix a testing window WT in each case, which

corresponds to the periods of time considered in our in-sample evaluation of VaR

given in Section 3.6.2 (8 December 1997 to 9 November 2009 for the Dow Jones, 13

August 1997 to 16 July 2009 for the NASDAQ, 29 May 1997 to 12 August 2009 for the

Nikkei, 28 September 2002 to 14 December 2010 for the JPY/GBP exchange rate). At

each time t in this testing window WT, we use a window of length WE of prior infor-

mation in order to predict the conditional ES on time t+ 1 (with parameter estimates

updated when the estimation window changes), which is then evaluated differently

in each test of ES. Regarding the use of the GARCH-UGH method specifically, we re-

tain the implementation suggested by the results of in-sample VaR backtesting (see

Section 3.6.2). In other words, on a given data set and for a given value of k, if we ob-

served during in-sample VaR backtesting that the choice ρ̂kρ
= −1 performed better,
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then we retain this choice for out-of-sample ES estimation; otherwise, we estimate ρ

as indicated in Section 3.2.3 (see Tables A.1-A.4 in Appendix A).

Traditional ES backtesting

Tables 4.1-4.8 gather the numerical results of traditional ES backtestings for the

comparison between the GARCH-UGH, GARCH-EVT and UGH methods. In the

tables, ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b), CC to

the conditional calibration tests of Nolde and Ziegel (2017) and ER to the exceedance

residuals tests of McNeil and Frey (2000) (details are given in Section 4.4).

Unlike the results obtained in the traditional VaR backtestings, it can be seen that

our proposed GARCH-UGH is not dominant approach and in general all three EVT-

type methods are performing similarly. Based on the strict, auxiliary and intercept

ESR tests, the GARCH-UGH approach fails 17, 17 and 0, whereas the GARCH-EVT

fails 0 in all tests and UGH fails 15, 18 and 12 times out of 60 cases, respectively.

With respect to the general and simple CC tests, the GARCH-UGH and GARCH-

EVT approaches fails 8 and 0, and 2 and 0, respectively, while the unfiltered UGH

method fails 17 times out of 60 cases. Moreover, in the commonly used standardized

and simple ER tests GARCH-UGH and GARCH-EVT fail 9 and 3, and 8 and 18,

respectively, while the UGH method fails 3 times out of 60 cases.

Unlike the cases in the dynamic extreme VaR estimation, GARCH-UGH typi-

cally performs worse than or equal to other approaches, especially in DJ index and

JPY/GBP exchange rate based on the ESR tests. In general, GARCH-UGH tends to

overestimate the one-step ahead conditional ES. This is because the resulting esti-

mator of τth conditional ES (4.6) heavily depends on the estimates of unconditional

VaR q̂τ(Z) (3.10) by the definition of ES and the EVI γ̂ (3.9) by the use of asymptotic

equivalence between VaR and quantile (4.4). In that sense the GARCH-UGH ap-

proach may inherit the vexing defects of q̂τ(Z), γ̂ and even the estimator of second-

order parameter ρ̂ discussed in Section 3.2.3. On the other hand, GARCH-EVT seems

to produce reasonable ES estimates as it neither overestimates nor underestimates

according to the numerical results except the ER tests.

Regarding the methods of traditional ES backtesting, it has been observed that

the two types of ER tests perform differently in reference to the number of failures
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for GARCH-UGH and GARCH-EVT approaches, disagreeing with the empirical ap-

plication of Bayer and Dimitriadis (2020b). It is thought that the use of volatility

obtained in the GARCH step instead of the shortfall deviation, i.e., the dispersion

truncated for some VaR, may have had the effect to this issue. The numerical results

of Tables also illustrate that the backtesting decisions based on the general CC test

are more conservative in contrast to the corresponding simple CC test, which agrees

with the simulation study of Nolde and Ziegel (2017).

In summary, traditional ES backtestings do not yield definitive answers because

GARCH-UGH, GARCH-EVT and even unfiltered UGH approaches are either all ac-

cepted or all rejected in most cases, and they sometimes give a contradicted decision,

i.e., one test rejects the null hypothesis of the underestimation of ES while the oth-

ers accept. We thus check the performance of estimators via the comparative ES

backtesting.

Comparative ES backtesting

Tables 4.9-4.12 display the traffic light matrices of comparative ES backtesting

given in Section 4.5 for three EVT-type methods, three quantile levels, five different

threshold selections and four financial time series when h = 1
2 (VaR, ES) scoring

function of the form (4.16) is used. The competing models are given in the verti-

cal axis with the benchmark models along the horizontal axis. Using the t-statistic

based on the DM test (4.19), we reject the hypothesis H−0 at the test level 5% if

1− Φ(DM) ≤ 0.05 while the hypothesis H+
0 is rejected if Φ(DM) ≤ 0.05. Under

H−0 , the comparative backtesting is passed for the competing model if the null hy-

pothesis fails to be rejected. On the other hand, under H+
0 the backtesting for the

competing model is passed if the null hypothesis is rejected. The green zone corre-

sponds to the case when H−0 is not rejected and H+
0 is rejected, which suggests that

the competing model is considered as better than the benchmark model. The yellow

zone is when only one of the backtestings under H−0 and H+
0 is passed and we can-

not conclude which model performs the best. The red zone corresponds to the case

when both backtestings fail to be passed, indicating a problem with the competing

model.

In contradiction to the results of traditional ES backtestings, it is illustrated that

our proposed GARCH-UGH approach appears to be best overall. In 46 out of 60
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TABLE 4.1: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional ES estimates by EVT-type methods from 8 De-
cember 1997 to 9 November 2009 at different quantile levels for the

negative log-returns of DJ index.

Testing window 3000
Estimation window 1000
0.999 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.030 0.019 0.962 1.000 1.000 0.366 0.621

(0.075) (0.627) (0.157) (0.613) (1.000)
10% 0.002 0.001 0.982 1.000 1.000 1.000 0.743

(0.036) (0.751) (0.029) (0.743) (0.849)
15% 0.030 0.019 0.962 1.000 1.000 0.753 0.753

(0.075) (0.805) (0.000) (1.000) (0.487)
20% 0.002 0.001 0.982 1.000 1.000 0.743 0.743

(0.036) (0.873) (0.017) (1.000) (1.000)
25% 0.030 0.019 0.962 1.000 1.000 0.753 0.753

(0.075) (0.934) (0.001) (1.000) (0.613)
GARCH-EVT 5% 0.499 0.554 0.540 1.000 1.000 0.240 0.366

(0.920) (0.499) (0.649) (0.487) (1.000)
10% 0.503 0.548 0.508 1.000 1.000 0.075 0.222

(0.985) (0.372) (0.847) (0.873) (0.449)
15% 0.499 0.554 0.540 1.000 1.000 0.231 0.296

(0.920) (0.384) (0.852) (0.457) (0.548)
20% 0.503 0.548 0.508 0.926 0.891 0.091 0.168

(0.985) (0.285) (0.859) (0.236) (0.279)
25% 0.499 0.554 0.540 0.932 0.723 0.089 0.113

(0.920) (0.242) (0.779) (0.258) (0.175)
UGH 5% 0.671 0.789 0.477 - 0.374 - 0.805

(0.955) - (0.049) - (0.377)
10% 0.684 0.751 0.797 - 1.000 - 0.961

(0.405) - (0.021) - (0.039)
15% 0.671 0.789 0.477 - 1.000 - 0.969

(0.955) - (0.000) - (0.031)
20% 0.684 0.751 0.797 - 1.000 - 0.982

(0.405) - (0.000) - (0.018)
25% 0.671 0.789 0.477 - 0.719 - 1.000

(0.955) - (0.000) - (0.000)
0.995 ES
GARCH-UGH 5% 0.475 0.467 0.654 1.000 1.000 0.655 0.813

(0.691) (0.882) (0.276) (0.918) (0.401)
10% 0.286 0.322 0.811 1.000 1.000 0.750 0.886

(0.379) (0.426) (0.051) (0.652) (0.201)
15% 0.081 0.104 0.888 1.000 1.000 0.762 0.930

(0.223) (0.179) (0.003) (0.534) (0.096)
20% 0.030 0.019 0.962 1.000 1.000 0.814 0.952

(0.075) (0.078) (0.000) (0.356) (0.060)
25% 0.002 0.001 0.982 1.000 1.000 0.820 0.981

(0.036) (0.051) (0.000) (0.307) (0.022)
GARCH-EVT 5% 0.438 0.439 0.651 1.000 1.000 0.638 0.812

(0.698) (0.925) (0.251) (0.951) (0.411)
10% 0.497 0.486 0.592 1.000 1.000 0.490 0.668

(0.816) (0.738) (0.510) (0.778) (0.782)
15% 0.451 0.491 0.589 1.000 1.000 0.432 0.604

(0.821) (0.655) (0.535) (0.708) (0.897)
20% 0.499 0.554 0.540 1.000 1.000 0.286 0.477

(0.920) (0.483) (0.805) (0.492) (0.823)
25% 0.503 0.548 0.508 1.000 1.000 0.245 0.409

(0.985) (0.438) (0.872) (0.409) (0.711)
UGH 5% 0.093 0.102 0.045 - 0.025 - 0.691

(0.090) - (0.000) - (0.634)
10% 0.167 0.181 0.085 - 0.056 - 0.892

(0.169) - (0.000) - (0.197)
15% 0.378 0.444 0.255 - 0.225 - 0.996

(0.509) - (0.000) - (0.006)
20% 0.671 0.789 0.477 - 0.612 - 1.000

(0.955) - (0.000) - (0.000)
25% 0.684 0.751 0.797 - 1.000 - 0.999

(0.405) - (0.001) - (0.001)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). Thep-values for the

one-sided test are given with the two-sided test in brackets.
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TABLE 4.2: (Cont.) Traditional backtesting: out-of-sample evalua-
tions of one-step ahead conditional ES estimates by EVT-type meth-
ods from 8 December 1997 to 9 November 2009 at different quantile

levels for the negative log-returns of DJ index.

Testing window 3000
Estimation window 1000
0.99 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.443 0.454 0.600 1.000 1.000 0.467 0.559

(0.799) (0.453) (0.809) (0.807) (0.992)
10% 0.396 0.433 0.699 1.000 1.000 0.636 0.678

(0.602) (0.909) (0.214) (0.925) (0.795)
15% 0.254 0.383 0.832 1.000 1.000 0.711 0.787

(0.336) (0.606) (0.096) (0.726) (0.491)
20% 0.100 0.154 0.929 1.000 1.000 0.814 0.868

(0.141) (0.168) (0.007) (0.388) (0.220)
25% 0.006 0.029 0.989 1.000 1.000 0.801 0.891

(0.021) (0.069) (0.000) (0.402) (0.131)
GARCH-EVT 5% 0.450 0.458 0.629 1.000 1.000 0.408 0.463

(0.742) (0.710) (0.615) (0.717) (0.839)
10% 0.446 0.435 0.622 1.000 0.883 0.152 0.242

(0.755) (0.390) (0.951) (0.294) (0.453)
15% 0.423 0.441 0.611 1.000 0.900 0.152 0.229

(0.779) (0.377) (0.941) (0.313) (0.439)
20% 0.506 0.426 0.606 0.978 0.837 0.058 0.130

(0.788) (0.253) (0.917) (0.146) (0.263)
25% 0.483 0.447 0.601 0.780 0.791 0.038 0.080

(0.799) (0.207) (0.758) (0.111) (0.184)
UGH 5% 0.004 0.008 0.003 - 0.003 - 0.082

(0.007) - (0.000) - (0.182)
10% 0.027 0.024 0.022 - 0.006 - 0.368

(0.045) - (0.000) - (0.705)
15% 0.061 0.082 0.046 - 0.022 - 0.805

(0.092) - (0.000) - (0.403)
20% 0.197 0.201 0.133 - 0.066 - 0.948

(0.265) - (0.000) - (0.079)
25% 0.615 0.606 0.392 - 0.230 - 0.995

(0.783) - (0.000) - (0.005)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.



4.6. Out-of-sample dynamic extreme ES estimation and backtesting 137

TABLE 4.3: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional ES estimates by EVT-type methods from 13
August 1997 to 16 July 2009 at different quantile levels for the nega-

tive log-returns of NASDAQ index.

Testing window 3000
Estimation window 1000
0.999 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.307 0.304 0.492 1.000 0.415 0.867 0.155

(0.984) (0.222) (0.470) (0.444) (0.580)
10% 0.573 0.470 0.670 1.000 0.722 0.242 0.208

(0.607) (0.267) (0.654) (0.803) (0.920)
15% 0.307 0.304 0.492 1.000 1.000 0.181 0.893

(0.984) (0.350) (0.085) (0.376) (0.222)
20% 0.573 0.470 0.697 1.000 1.000 0.642 0.943

(0.607) (0.118) (0.000) (1.000) (0.363)
25% 0.307 0.304 0.492 0.000 1.000 0.244 0.756

(0.984) (0.126) (0.000) (1.000) (0.244)
GARCH-EVT 5% 0.220 0.223 0.356 0.620 0.223 0.903 0.097

(0.712) (0.083) (0.295) (0.122) (0.143)
10% 0.236 0.237 0.322 0.225 0.162 0.059 0.065

(0.645) (0.059) (0.258) (0.069) (0.082)
15% 0.220 0.223 0.356 0.398 0.143 0.946 0.066

(0.712) (0.051) (0.240) (0.038) (0.071)
20% 0.236 0.237 0.322 0.168 0.121 0.049 0.051

(0.645) (0.047) (0.215) (0.052) (0.053)
25% 0.220 0.233 0.356 0.298 0.107 0.946 0.052

(0.712) (0.041) (0.197) (0.056) (0.054)
UGH 5% 0.201 0.157 0.296 - 0.248 - 0.318

(0.592) - (0.084) - (0.587)
10% 0.030 0.014 0.870 - 0.570 - 0.615

(0.261) - (0.183) - (0.878)
15% 0.201 0.157 0.296 - 1.000 - 0.771

(0.592) - (0.445) - (0.479)
20% 0.030 0.014 0.870 - 1.000 - 0.876

(0.261) - (0.059) - (0.228)
25% 0.201 0.157 0.296 - 1.000 - 1.000

(0.592) - (0.000) - (0.000)
0.995 ES
GARCH-UGH 5% 0.226 0.232 0.408 0.619 0.646 0.104 0.142

(0.816) (0.243) (0.530) (0.203) (0.275)
10% 0.307 0.304 0.492 1.000 0.994 0.913 0.077

(0.984) (0.233) (0.878) (0.179) (0.170)
15% 0.381 0.365 0.527 0.697 0.750 0.082 0.056

(0.946) (0.188) (0.916) (0.154) (0.123)
20% 0.459 0.412 0.606 1.000 0.898 0.761 0.273

(0.788) (0.460) (0.961) (0.468) (0.507)
25% 0.573 0.470 0.697 0.503 0.867 0.203 0.213

(0.607) (0.428) (0.847) (0.413) (0.414)
GARCH-EVT 5% 0.224 0.228 0.398 0.552 0.596 0.013 0.007

(0.795) (0.066) (0.635) (0.030) (0.022)
10% 0.220 0.233 0.356 0.625 0.488 0.988 0.006

(0.712) (0.038) (0.236) (0.016) (0.012)
15% 0.231 0.222 0.346 0.243 0.434 0.009 0.005

(0.693) (0.029) (0.086) (0.011) (0.006)
20% 0.221 0.236 0.331 0.212 0.380 0.008 0.005

(0.661) (0.027) (0.063) (0.009) (0.006)
25% 0.236 0.237 0.322 0.199 0.346 0.008 0.005

(0.645) (0.027) (0.055) (0.008) (0.006)
UGH 5% 0.133 0.193 0.163 - 0.020 - 0.648

(0.325) - (0.001) - (0.775)
10% 0.201 0.157 0.296 - 0.070 - 0.805

(0.592) - (0.001) - (0.440)
15% 0.122 0.153 0.438 - 0.285 - 0.906

(0.876) - (0.004) - (0.136)
20% 0.091 0.073 0.660 - 1.000 - 0.961

(0.680) - (0.003) - (0.044)
25% 0.030 0.014 0.870 - 1.000 - 0.958

(0.261) - (0.000) - (0.042)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.
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TABLE 4.4: (Cont.) Traditional backtesting: out-of-sample evalua-
tions of one-step ahead conditional ES estimates by EVT-type meth-
ods from 13 August 1997 to 16 July 2009 at different quantile levels

for the negative log-returns of NASDAQ index.

Testing window 3000
Estimation window 1000
0.99 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.113 0.104 0.461 0.717 0.841 0.991 0.012

(0.921) (0.098) (0.770) (0.031) (0.038)
10% 0.186 0.173 0.527 0.504 1.000 0.098 0.085

(0.947) (0.248) (0.664) (0.205) (0.179)
15% 0.364 0.329 0.672 0.368 1.000 0.704 0.293

(0.657) (0.565) (0.740) (0.556) (0.534)
20% 0.510 0.507 0.825 0.281 1.000 0.651 0.610

(0.350) (0.756) (0.266) (0.770) (0.845)
25% 0.127 0.446 0.971 0.043 0.473 0.205 0.797

(0.058) (0.353) (0.020) (0.439) (0.426)
GARCH-EVT 5% 0.174 0.133 0.510 0.357 0.857 0.982 0.023

(0.979) (0.101) (0.915) (0.052) (0.066)
10% 0.176 0.163 0.503 0.119 0.528 0.016 0.016

(0.995) (0.067) (0.632) (0.028) (0.040)
15% 0.181 0.184 0.505 0.123 0.528 0.992 0.012

(0.990) (0.075) (0.632) (0.032) (0.038)
20% 0.200 0.202 0.519 0.026 0.328 0.001 0.008

(0.963) (0.040) (0.108) (0.008) (0.022)
25% 0.200 0.234 0.530 0.014 0.215 0.997 0.024

(0.939) (0.040) (0.051) (0.012) (0.006)
UGH 5% 0.003 0.000 0.027 - 0.001 - 0.512

(0.054) - (0.000) - (0.949)
10% 0.004 0.001 0.065 - 0.004 - 0.748

(0.130) - (0.000) - (0.578)
15% 0.012 0.004 0.159 - 0.018 - 0.918

(0.319) - (0.000) - (0.134)
20% 0.028 0.012 0.353 - 0.114 - 0.971

(0.706) - (0.000) - (0.033)
25% 0.035 0.011 0.631 - 0.500 - 0.984

(0.738) - (0.000) - (0.016)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.
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TABLE 4.5: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional ES estimates by EVT-type methods from 29
May 1997 to 12 August 2009 at different quantile levels for the nega-

tive log-returns of NIKKEI index.

Testing window 3000
Estimation window 1000
0.999 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.575 0.754 0.761 1.000 1.000 0.291 0.709

(0.478) (0.815) (0.807) (1.000) (1.000)
10% 0.463 0.582 0.883 1.000 0.978 0.375 0.625

(0.234) (0.772) (0.853) (0.865) (1.000)
15% 0.575 0.754 0.761 0.225 0.719 0.000 1.000

(0.478) (0.379) (0.012) (0.000) (0.000)
20% 0.463 0.582 0.883 0.365 0.719 0.000 0.000

(0.234) (0.829) (0.169) (0.000) (0.000)
25% 0.575 0.754 0.761 0.000 0.068 0.000 0.000

(0.478) (0.317) (0.000) (0.000) (0.000)
GARCH-EVT 5% 0.593 0.587 0.436 1.000 1.000 0.981 0.651

(0.873) (0.602) (0.661) (0.078) (0.948)
10% 0.593 0.596 0.440 1.000 0.929 0.265 0.315

(0.881) (0.431) (0.858) (0.819) (0.559)
15% 0.593 0.587 0.436 1.000 0.724 0.344 0.630

(0.873) (0.558) (0.472) (0.893) (0.965)
20% 0.593 0.596 0.440 1.000 0.564 0.721 0.436

(0.881) (0.394) (0.462) (0.439) (0.663)
25% 0.593 0.587 0.436 1.000 0.568 0.574 0.526

(0.873) (0.425) (0.466) (0.631) (0.803)
UGH 5% 0.901 0.878 0.441 - 0.466 - 0.707

(0.881) - (0.307) - (0.672)
10% 0.307 0.658 0.761 - 0.804 - 0.694

(0.478) - (0.384) - (0.573)
15% 0.901 0.878 0.441 - 1.000 - 0.951

(0.881) - (0.438) - (0.080)
20% 0.307 0.658 0.761 - 1.000 - 0.742

(0.478) - (0.002) - (0.258)
25% 0.901 0.878 0.441 - 1.000 - 1.000

(0.881) - (0.000) - (0.000)
0.995 ES
GARCH-UGH 5% 0.672 0.677 0.511 1.000 0.750 0.753 0.262

(0.977) (0.462) (0.981) (0.454) (0.480)
10% 0.906 0.855 0.655 1.000 1.000 0.401 0.620

(0.690) (0.899) (0.760) (0.918) (0.865)
15% 0.740 0.797 0.677 1.000 1.000 0.435 0.578

(0.645) (0.994) (0.793) (0.999) (0.958)
20% 0.575 0.754 0.761 1.000 1.000 0.318 0.675

(0.478) (0.658) (0.557) (0.742) (0.743)
25% 0.463 0.582 0.883 0.536 0.578 0.322 0.657

(0.234) (0.580) (0.180) (0.840) (0.857)
GARCH-EVT 5% 0.662 0.724 0.491 1.000 0.615 0.953 0.050

(0.982) (0.209) (0.517) (0.122) (0.122)
10% 0.667 0.605 0.507 1.000 0.592 0.866 0.118

(0.986) (0.314) (0.752) (0.278) (0.251)
15% 0.609 0.584 0.461 0.874 0.472 0.972 0.031

(0.922) (0.167) (0.360) (0.084) (0.081)
20% 0.593 0.587 0.436 0.719 0.426 0.982 0.024

(0.873) (0.109) (0.122) (0.029) (0.041)
25% 0.593 0.596 0.440 0.726 0.426 0.981 0.029

(0.881) (0.113) (0.128) (0.049) (0.065)
UGH 5% 0.142 0.243 0.024 - 0.043 - 0.782

(0.047) - (0.005) - (0.442)
10% 0.298 0.278 0.192 - 0.092 - 0.859

(0.384) - (0.005) - (0.263)
15% 0.619 0.499 0.159 - 0.241 - 0.896

(0.318) - (0.009) - (0.173)
20% 0.901 0.878 0.441 - 0.634 - 0.944

(0.881) - (0.012) - (0.071)
25% 0.307 0.658 0.761 - 1.000 - 0.967

(0.478) - (0.054) - (0.034)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.
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TABLE 4.6: (Cont.) Traditional backtesting: out-of-sample evalua-
tions of one-step ahead conditional ES estimates by EVT-type meth-
ods from 29 May 1997 to 12 August 2009 at different quantile levels

for the negative log-returns of NIKKEI index.

Testing window 3000
Estimation window 1000
0.99 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.674 0.620 0.493 1.000 1.000 0.617 0.457

(0.986) (0.679) (0.829) (0.683) (0.807)
10% 0.612 0.659 0.697 1.000 1.000 0.305 0.726

(0.606) (0.658) (0.506) (0.694) (0.598)
15% 0.380 0.384 0.795 1.000 1.000 0.138 0.897

(0.409) (0.129) (0.075) (0.263) (0.188)
20% 0.203 0.163 0.939 0.246 1.000 0.100 0.942

(0.123) (0.018) (0.002) (0.134) (0.075)
25% 0.771 0.489 0.763 1.000 1.000 0.126 0.939

(0.475) (0.066) (0.036) (0.213) (1.000)
GARCH-EVT 5% 0.721 0.523 0.543 1.000 0.958 0.580 0.476

(0.913) (0.758) (0.860) (0.760) (0.879)
10% 0.753 0.669 0.582 1.000 0.841 0.699 0.331

(0.835) (0.548) (0.982) (0.546) (0.610)
15% 0.766 0.685 0.567 0.628 0.800 0.878 0.148

(0.867) (0.332) (0.784) (0.260) (0.301)
20% 0.766 0.570 0.572 0.681 0.795 0.871 0.172

(0.856) (0.332) (0.787) (0.257) (0.333)
25% 0.757 0.607 0.586 0.465 0.646 0.913 0.140

(0.829) (0.282) (0.638) (0.208) (0.291)
UGH 5% 0.030 0.072 0.005 - 0.009 - 0.143

(0.009) - (0.019) - (0.297)
10% 0.044 0.054 0.008 - 0.019 - 0.278

(0.016) - (0.026) - (0.529)
15% 0.143 0.164 0.028 - 0.049 - 0.478

(0.056) - (0.048) - (0.878)
20% 0.400 0.382 0.092 - 0.140 - 0.732

(0.185) - (0.079) - (0.582)
25% 0.921 0.855 0.404 - 0.521 - 0.926

(0.808) - (0.077) - (0.108)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.
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TABLE 4.7: Traditional backtesting: out-of-sample evaluations of one-
step ahead conditional ES estimates by EVT-type methods from 28
September 2002 to 14 December 2010 at different quantile levels for

the negative log-returns of JPY/GBP exchange rate.

Testing window 3000
Estimation window 1000
0.999 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.004 0.002 0.942 1.000 0.752 0.780 0.220

(0.116) (0.452) (1.000) (0.477) (0.477)
10% 0.000 0.000 0.998 0.510 0.719 0.000 1.000

(0.003) (0.776) (0.572) (0.000) (0.000)
15% 0.004 0.002 0.942 0.188 0.719 0.000 1.000

(0.116) (0.332) (0.128) (0.000) (0.000)
20% 0.000 0.000 0.998 0.036 0.719 0.000 1.000

(0.003) (0.202) (0.011) (0.000) (0.000)
25% 0.004 0.002 0.942 0.001 0.719 0.000 1.000

(0.116) (0.187) (0.000) (0.000) (0.000)
GARCH-EVT 5% 0.905 0.506 0.290 1.000 0.688 0.950 0.050

(0.580) (0.213) (0.471) (0.112) (0.112)
10% 0.627 0.355 0.271 1.000 0.627 0.576 0.662

(0.541) (0.325) (0.625) (0.494) (0.732)
15% 0.905 0.506 0.290 1.000 0.678 1.000 0.815

(0.580) (0.336) (0.640) (0.070) (0.885)
20% 0.627 0.355 0.271 1.000 0.517 0.838 0.161

(0.541) (0.348) (0.449) (0.296) (0.311)
25% 0.905 0.506 0.290 1.000 0.482 0.769 0.243

(0.580) (0.391) (0.309) (0.408) (0.438)
UGH 5% 0.060 0.028 0.145 - 0.388 - 0.039

(0.290) - (0.135) - (0.105)
10% 0.068 0.013 0.097 - 0.697 - 0.471

(0.195) - (0.316) - (0.754)
15% 0.060 0.028 0.145 - 0.946 - 0.612

(0.290) - (0.450) - (0.939)
20% 0.068 0.013 0.097 - 0.297 - 0.143

(0.195) - (0.020) - (0.295)
25% 0.060 0.028 0.145 - 0.136 - 0.005

(0.290) - (0.005) - (0.015)
0.995 ES
GARCH-UGH 5% 0.654 0.627 0.474 1.000 1.000 0.292 0.687

(0.948) (0.678) (0.263) (0.780) (0.893)
10% 0.389 0.344 0.551 1.000 1.000 0.258 0.677

(0.889) (0.203) (0.190) (0.538) (0.689)
15% 0.045 0.052 0.864 0.099 1.000 0.159 0.787

(0.273) (0.057) (0.009) (0.268) (0.373)
20% 0.004 0.002 0.942 0.001 1.000 0.117 0.897

(0.116) (0.013) (0.000) (0.146) (0.137)
25% 0.000 0.000 0.998 0.000 0.578 0.042 0.965

(0.003) (0.007) (0.000) (0.043) (0.037)
GARCH-EVT 5% 0.675 0.767 0.279 1.000 0.940 0.943 0.034

(0.557) (0.240) (0.652) (0.151) (0.118)
10% 0.770 0.505 0.301 1.000 0.591 0.928 0.044

(0.602) (0.267) (0.612) (0.190) (0.139)
15% 0.783 0.564 0.315 1.000 0.688 0.773 0.246

(0.629) (0.467) (0.531) (0.427) (0.453)
20% 0.905 0.506 0.290 1.000 0.496 0.920 0.090

(0.580) (0.280) (0.496) (0.179) (0.215)
25% 0.627 0.355 0.271 1.000 0.443 0.955 0.045

(0.541) (0.236) (0.447) (0.125) (0.136)
UGH 5% 0.262 0.781 0.145 - 0.157 - 0.139

(0.290) - (0.116) - (0.295)
10% 0.955 0.762 0.308 - 0.188 - 0.350

(0.616) - (0.067) - (0.586)
15% 0.399 0.721 0.240 - 0.304 - 0.708

(0.481) - (0.168) - (0.654)
20% 0.060 0.028 0.145 - 0.077 - 0.316

(0.290) - (0.003) - (0.578)
25% 0.068 0.013 0.097 - 0.017 - 0.093

(0.195) - (0.000) - (0.207)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.



142 Chapter 4. Dynamic extreme Expected Shortfall estimation by GARCH-UGH

TABLE 4.8: (Cont.) Traditional backtesting: out-of-sample evalua-
tions of one-step ahead conditional ES estimates by EVT-type meth-
ods from 28 September 2002 to 14 December 2010 at different quantile

levels for the negative log-returns of JPY/GBP exchange rate.

Testing window 3000
Estimation window 1000
0.99 ES % of top obs. used Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
GARCH-UGH 5% 0.632 0.651 0.350 1.000 0.937 0.349 0.661

(0.700) (0.733) (0.119) (0.805) (0.765)
10% 0.609 0.587 0.557 1.000 1.000 0.126 0.890

(0.885) (0.038) (0.008) (0.204) (0.173)
15% 0.319 0.222 0.814 0.989 1.000 0.099 0.928

(0.372) (0.006) (0.002) (0.116) (0.086)
20% 0.066 0.040 0.944 0.102 1.000 0.068 0.971

(0.112) (0.000) (0.000) (0.071) (0.033)
25% 0.001 0.000 0.991 0.000 1.000 0.022 0.996

(0.018) (0.000) (0.000) (0.022) (0.004)
GARCH-EVT 5% 0.714 0.689 0.282 1.000 0.927 0.640 0.362

(0.564) (0.648) (0.393) (0.648) (0.649)
10% 0.612 0.539 0.255 1.000 0.568 0.861 0.255

(0.509) (0.352) (0.503) (0.286) (0.472)
15% 0.619 0.620 0.263 1.000 0.651 0.758 0.325

(0.526) (0.465) (0.426) (0.455) (0.599)
20% 0.633 0.588 0.237 1.000 0.535 0.888 0.134

(0.475) (0.316) (0.495) (0.226) (0.259)
25% 0.695 0.986 0.246 1.000 0.509 0.929 0.082

(0.492) (0.266) (0.552) (0.167) (0.184)
UGH 5% 0.320 0.306 0.083 - 0.048 - 0.155

(0.166) - (0.031) - (0.314)
10% 0.037 0.135 0.041 - 0.048 - 0.460

(0.083) - (0.002) - (0.778)
15% 0.148 0.450 0.066 - 0.061 - 0.776

(0.132) - (0.003) - (0.482)
20% 0.007 0.013 0.032 - 0.014 - 0.155

(0.065) - (0.001) - (0.311)
25% 0.036 0.163 0.021 - 0.001 - 0.005

(0.041) - (0.000) - (0.028)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for

the one-sided test are given with the two-sided test in brackets.
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cases, the GARCH-UGH approach is considered as better than GARCH-EVT ap-

proach with 2 cases of no definitive answers based on the realized scores of (VaR,

ES). We can also observe in comparative backtesting that GARCH-UGH is regarded

as the better estimator than the GARCH-EVT even if it fails one of the traditional ES

backtesting, i.e., ESR tests.

TABLE 4.9: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 8 December 1997 to 9 November 2009 at
different quantile levels for the negative log-returns of DJ index by
means of the Diebold-Mariano test using h = 1

2 (VaR, ES) scoring
function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.

Tables 4.13-4.16 show the traffic light matrices for the h = 0 (VaR, ES) scoring

function given as the form (4.17). In 47 out of 60 cases, the GARCH-UGH approach

is considered as better than the GARCH-EVT approach with 1 case of no decision
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TABLE 4.10: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 13 August 1997 to 16 July 2009 at different
quantile levels for the negative log-returns of NASDAQ index by
means of the Diebold-Mariano test using h = 1

2 (VaR, ES) scoring
function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.



4.6. Out-of-sample dynamic extreme ES estimation and backtesting 145

TABLE 4.11: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 29 May 1997 to 12 August 2009 at different
quantile levels for the negative log-returns of NIKKEI index by means
of the Diebold-Mariano test using h = 1

2 (VaR, ES) scoring function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.



146 Chapter 4. Dynamic extreme Expected Shortfall estimation by GARCH-UGH

TABLE 4.12: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 28 September 2002 to 14 December 2010 at
different quantile levels for the negative log-returns of JPY/GBP ex-
change rate by means of the Diebold-Mariano test using h = 1

2 (VaR,
ES) scoring function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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taken. Comparative backtestings with two scoring functions result in a good agree-

ment with the GARCH-UGH approach being the best estimator of ES, while the

unfiltered UGH being the worst estimator, i.e., failing the comparative backtestings

against other EVT-type methods. Regarding the discrimination ability of two chosen

scoring functions, h = 1
2 and h = 0 (VaR, ES) scoring functions yield 2 and 1 times

of no definitive answers out of 60 cases (see also Section 4.6.2 for the similar trend).

Although it is a subtle difference between two scoring functions, the 0-homogenous

(VaR, ES) scoring function allows us to study heavier-tailed processes than the 1
2 -

homogenous one, which is also found in Nolde and Ziegel (2017).

They indeed yield definitive answers to the cases when the estimation methods

are all accepted or all rejected, although they are not always in line with the results

of traditional ES backtestings. However, results of comparative ES backtestings with

two scoring functions are more or less same as the results of traditional and compar-

ative VaR backtestings based on the number of VaR violations. Righi and Ceretta

(2015) remark that an ES model should be precise when VaR violations occur so the

requirement of a model is that it obtains the correct number of VaR violations com-

pared to the expected ones. It is thus suggested that better VaR estimates tend to

produce better ES estimates.

4.6.2 Comparison with basic estimation methods

Traditional ES backtesting

Tables 4.17-4.20 show the numerical results of traditional ES backtestings for the

comparison between the HS, GARCH-N and GARCH-t methods. Note that in our

case the sample fraction for GARCH-UGH approach is regarded as optimal when

the certain threshold ranging between 5% and 25% has the closet number of VaR

violations to the theoretically expected ones, pass both the Kupiec and Christoffersen

tests (see Tables 3.7-3.10) and pass all traditional ES backtestings (see Tables 4.1-4.8).

Tables support the use of GARCH-UGH approach for the estimation of dynamic

(extreme) ES because it outperforms basic estimation methods, while the GARCH-

N method performing the worst. Our GARCH-UGH approach with optimal sample

fraction never fails the traditional ES backtestings except the strict and auxiliary ESR

tests; in both tests it fails 2 times out of 12 cases. Focusing on the commonly used
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TABLE 4.13: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 8 December 1997 to 9 November 2009 at
different quantile levels for the negative log-returns of DJ index by
means of the Diebold-Mariano test using h = 0 (VaR, ES) scoring

function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 4.14: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 13 August 1997 to 16 July 2009 at different
quantile levels for the negative log-returns of NASDAQ index by
means of the Diebold-Mariano test using h = 0 (VaR, ES) scoring

function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 4.15: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 29 May 1997 to 12 August 2009 at different
quantile levels for the negative log-returns of NIKKEI index by means
of the Diebold-Mariano test using h = 0 (VaR, ES) scoring function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE 4.16: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional ES estimates by
EVT-type methods from 28 September 2002 to 14 December 2010 at
different quantile levels for the negative log-returns of JPY/GBP ex-
change rate by means of the Diebold-Mariano test using h = 0 (VaR,

ES) scoring function.

0.999 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 ES
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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simple CC and simple ER tests, HS fails 6 and 5 times, GARCH-N fails 9 and 11

times, and GARCH-t fails 4 and 5 times out of 12 cases, respectively.

TABLE 4.17: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional ES estimates by basic estimation meth-
ods from 8 December 1997 to 9 November 2009 at different quantile

levels for the negative log-returns of DJ index.

Testing window 3000
Estimation window 1000
0.999 ES Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
HS 0.049 0.012 0.012 - 0.166 - 0.096

(0.024) - (0.123) - (0.096)
GARCH-N 0.001 0.001 0.001 0.017 0.009 0.001 0.001

(0.002) (0.038) (0.001) (0.002) (0.003)
GARCH-t 0.334 0.452 0.688 0.902 0.750 0.000 0.244

(0.594) (0.213) (0.760) (0.000) (0.244)
GARCH-UGH 0.030 0.019 0.962 1.000 1.000 0.753 0.753
(25%) (0.075) (0.934) (0.001) (1.000) (0.613)
0.995 ES
HS 0.102 0.061 0.034 - 0.029 - 0.219

(0.067) - (0.002) - (0.429)
GARCH-N 0.001 0.001 0.001 0.003 0.002 0.000 0.000

(0.002) (0.004) (0.002) (0.001) (0.001)
GARCH-t 0.534 0.499 0.583 1.000 1.000 0.402 0.540

(0.834) (0.634) (0.743) (0.665) (0.973)
GARCH-UGH 0.286 0.322 0.811 1.000 1.000 0.750 0.886
(10%) (0.379) (0.426) (0.051) (0.652) (0.201)
0.99 ES
HS 0.006 0.010 0.004 - 0.004 - 0.021

(0.007) - (0.001) - (0.063)
GARCH-N 0.001 0.001 0.001 0.001 0.001 0.000 0.000

(0.002) (0.002) (0.001) (0.000) (0.000)
GARCH-t 0.362 0.367 0.704 0.675 0.646 0.103 0.219

(0.593) (0.290) (0.708) (0.227) (0.426)
GARCH-UGH 0.100 0.154 0.929 1.000 1.000 0.814 0.868
(20%) (0.141) (0.168) (0.007) (0.388) (0.220)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for
the one-sided test are given with the two-sided test in brackets. The optimal
sample fraction for GARCH-UGH is selected based on the performance in
traditional out-of-sample backtestings of VaR and ES (see Tables 4.1, 4.2, 4.9

and 4.13).

Comparative ES backtesting

Tables 4.21-4.24 and 4.25-4.28 display the traffic light matrices of comparative ES

backtesting (see Section 4.5) for GARCH-UGH with optimal sample fraction and ba-

sic estimation methods given in Section 4.3.2, three quantile levels and four financial

time series when h = 1
2 (4.16) and h = 0 (4.17) (VaR, ES) scoring functions are used,

respectively. The optimal sample fraction is selected based on the performance in

the out-of-sample traditional VaR and ES backtestings as explained previously.
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TABLE 4.18: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional ES estimates by basic estimation methods
from 13 August 1997 to 16 July 2009 at different quantile levels for the

negative log-returns of NASDAQ index.

Testing window 3000
Estimation window 1000
0.999 ES Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
HS 0.082 0.110 0.112 - 0.118 - 0.035

(0.234) - (0.155) - (0.035)
GARCH-N 0.039 0.052 0.144 0.110 0.039 0.994 0.005

(0.287) (0.025) (0.044) (0.006) (0.005)
GARCH-t 0.232 0.204 0.234 0.382 0.138 0.941 0.076

(0.474) (0.052) (0.236) (0.066) (0.094)
GARCH-UGH 0.573 0.470 0.697 1.000 1.000 0.642 0.943
(20%) (0.607) (0.118) (0.000) (1.000) (0.363)
0.995 ES
HS 0.155 0.126 0.120 - 0.009 - 0.421

(0.240) - (0.001) - (0.768)
GARCH-N 0.085 0.080 0.076 0.042 0.117 0.000 1.000

(0.151) (0.089) (0.012) (0.001) (0.000)
GARCH-t 0.240 0.239 0.232 0.327 0.909 0.012 0.991

(0.463) (0.333) (0.055) (0.024) (0.016)
GARCH-UGH 0.459 0.412 0.606 1.000 0.898 0.761 0.273
(20%) (0.788) (0.460) (0.961) (0.468) (0.507)
0.99 ES
HS 0.005 0.000 0.026 - 0.001 - 0.150

(0.053) - (0.000) - (0.313)
GARCH-N 0.033 0.032 0.133 0.191 0.069 1.000 0.000

(0.266) (0.016) (0.135) (0.002) (0.005)
GARCH-t 0.244 0.250 0.373 0.175 0.367 0.994 0.006

(0.746) (0.037) (0.124) (0.004) (0.016)
GARCH-UGH 0.510 0.507 0.825 0.281 1.000 0.651 0.610
(20%) (0.350) (0.756) (0.266) (0.770) (0.845)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for
the one-sided test are given with the two-sided test in brackets. The optimal
sample fraction for GARCH-UGH is selected based on the performance in
traditional out-of-sample backtestings of VaR and ES (see Tables 4.3, 4.4, 4.10

and 4.14).
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TABLE 4.19: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional ES estimates by basic estimation meth-
ods from 29 May 1997 to 12 August 2009 at different quantile levels

for the negative log-returns of NIKKEI index.

Testing window 3000
Estimation window 1000
0.999 ES Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
HS 0.036 0.053 0.047 - 0.114 - 0.025

(0.097) - (0.118) - (0.025)
GARCH-N 0.028 0.029 0.017 0.083 0.030 0.984 0.021

(0.034) (0.033) (0.042) (0.017) (0.022)
GARCH-t 0.603 0.411 0.875 1.000 1.000 0.436 0.631

(0.232) (0.880) (0.491) (0.895) (0.743)
GARCH-UGH 0.463 0.582 0.883 1.000 0.978 0.375 0.625
(10%) (0.224) (0.772) (0.853) (0.865) (1.000)
0.995 ES
HS 0.103 0.130 0.037 - 0.042 - 0.048

(0.073) - (0.077) - (0.117)
GARCH-N 0.025 0.024 0.012 0.052 0.019 0.999 0.008

(0.024) (0.028) (0.019) (0.005) (0.018)
GARCH-t 0.342 0.350 0.705 0.992 0.867 0.803 0.268

(0.590) (0.415) (0.856) (0.401) (0.573)
GARCH-UGH 0.906 0.855 0.655 1.000 1.000 0.401 0.620
(10%) (0.690) (0.899) (0.760) (0.918) (0.865)
0.99 ES
HS 0.036 0.021 0.006 - 0.016 - 0.065

(0.012) - (0.034) - (0.143)
GARCH-N 0.026 0.027 0.021 0.047 0.017 1.000 0.000

(0.043) (0.014) (0.033) (0.002) (0.003)
GARCH-t 0.545 0.392 0.852 0.002 0.037 0.963 0.029

(0.296) (0.157) (0.063) (0.096) (0.075)
GARCH-UGH 0.612 0.659 0.697 1.000 1.000 0.305 0.726
(10%) (0.606) (0.658) (0.506) (0.694) (0.598)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for
the one-sided test are given with the two-sided test in brackets. The optimal
sample fraction for GARCH-UGH is selected based on the performance in
traditional out-of-sample backtestings of VaR and ES (see Tables 4.5, 4.6, 4.11

and 4.15).



4.6. Out-of-sample dynamic extreme ES estimation and backtesting 155

TABLE 4.20: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional ES estimates by basic estimation methods
from 28 September 2002 to 14 December 2010 at different quantile

levels for the negative log-returns of JPY/GBP exchange rate.

Testing window 3000
Estimation window 1000
0.999 ES Str. ESR Aux. ESR Int. ESR Gen. CC Sim. CC Std. ER Sim. ER
HS 0.080 0.198 0.098 - 0.148 - 0.022

(0.198) - (0.252) - (0.022)
GARCH-N 0.262 0.431 0.315 0.378 0.136 0.972 0.032

(0.629) (0.139) (0.079) (0.054) (0.068)
GARCH-t 0.000 0.000 0.819 0.000 0.000 0.000 0.000

(0.299) (0.380) (0.000) (0.000) (0.000)
GARCH-UGH 0.004 0.002 0.942 1.000 0.752 0.780 0.220
(5%) (0.116) (0.452) (1.000) (0.477) (0.477)
0.995 ES
HS 0.173 0.774 0.196 - 0.198 - 0.223

(0.393) - (0.283) - (0.422)
GARCH-N 0.071 0.059 0.022 0.094 0.034 0.998 0.004

(0.044) (0.062) (0.023) (0.007) (0.020)
GARCH-t 0.000 0.000 0.830 0.000 0.000 0.000 0.000

(0.341) (0.317) (0.000) (0.000) (0.000)
GARCH-UGH 0.389 0.344 0.551 1.000 1.000 0.258 0.677
(10%) (0.889) (0.203) (0.190) (0.538) (0.689)
0.99 ES
HS 0.367 0.728 0.169 - 0.163 - 0.483

(0.338) - (0.094) - (0.846)
GARCH-N 0.055 0.115 0.016 0.062 0.022 1.000 0.001

(0.032) (0.029) (0.034) (0.003) (0.006)
GARCH-t 0.000 0.000 0.998 0.000 0.000 1.000 0.000

(0.044) (0.943) (0.000) (0.000) (0.000)
GARCH-UGH 0.319 0.222 0.814 0.989 1.000 0.099 0.928
(15%) (0.372) (0.006) (0.002) (0.116) (0.086)

Notes: ESR refers to the ES regression tests of Bayer and Dimitriadis (2020b),
CC to the conditional calibration tests of Nolde and Ziegel (2017) and ER to
the exceedance residuals tests of McNeil and Frey (2000). The p-values for
the one-sided test are given with the two-sided test in brackets. The optimal
sample fraction for GARCH-UGH is selected based on the performance in
traditional out-of-sample backtestings of VaR and ES (see Tables 4.7, 4.8, 4.12

and 4.16).
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As with the results of traditional VaR backtestings, it is illustrated that our pro-

posed GARCH-UGH approach appears to be best overall, outperforming three ba-

sic estimation methods. The two scoring functions result in a good agreement with

GARCH-UGH approach being the better estimator in 10 out of 12 cases when com-

pared to the HS, GARCH-N and GARCH-t approaches. HS, GARCH-N and UGH

approaches generally perform worse than the GARCH-UGH approach as they con-

sider neither heavy-tail nor volatility.

TABLE 4.21: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates by
basic estimation methods from 8 December 1997 to 9 November 2009
at different quantile levels for the negative log-returns of DJ index
by means of the Diebold-Mariano test using h = 1

2 (VaR, ES) scoring
function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(25%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.1, 4.2, 4.9 and 4.13).
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TABLE 4.22: Comparative backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by basic estimation meth-
ods from 13 August 1997 to 16 July 2009 at different quantile levels for
the negative log-returns of NASDAQ index by means of the Diebold-

Mariano test using h = 1
2 (VaR, ES) scoring function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.3, 4.4, 4.10 and 4.14).
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TABLE 4.23: Comparative backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by basic estimation meth-
ods from 29 May 1997 to 12 August 2009 at different quantile lev-
els for the negative log-returns of NIKKEI index by means of the

Diebold-Mariano test using h = 1
2 (VaR, ES) scoring function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.5, 4.6, 4.11 and 4.15).
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TABLE 4.24: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by basic estimation methods from 28 September 2002 to 14 Decem-
ber 2010 at different quantile levels for the negative log-returns of
JPY/GBP exchange rate by means of the Diebold-Mariano test using

h = 1
2 (VaR, ES) scoring function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(5%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(15%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.7, 4.8, 4.12 and 4.16).
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TABLE 4.25: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates by
basic estimation methods from 8 December 1997 to 9 November 2009
at different quantile levels for the negative log-returns of DJ index
by means of the Diebold-Mariano test using h = 0 (VaR, ES) scoring

function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(25%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.1, 4.2, 4.9 and 4.13).
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TABLE 4.26: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates by
basic estimation methods from 13 August 1997 to 16 July 2009 at dif-
ferent quantile levels for the negative log-returns of NASDAQ index
by means of the Diebold-Mariano test using h = 0 (VaR, ES) scoring

function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(20%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.3, 4.4, 4.10 and 4.14).
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TABLE 4.27: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by basic estimation methods from 29 May 1997 to 12 August 2009 at
different quantile levels for the negative log-returns of NIKKEI index
by means of the Diebold-Mariano test using h = 0 (VaR, ES) scoring

function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.5, 4.6, 4.11 and 4.15).
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TABLE 4.28: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by basic estimation methods from 28 September 2002 to 14 Decem-
ber 2010 at different quantile levels for the negative log-returns of
JPY/GBP exchange rate by means of the Diebold-Mariano test using

h = 0 (VaR, ES) scoring function.

0.999 ES
HS GARCH-N GARCH-t GARCH-UGH

HS
GARCH-N
GARCH-t
GARCH-UGH
(5%)
0.995 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(10%)
0.99 ES

HS GARCH-N GARCH-t GARCH-UGH
HS
GARCH-N
GARCH-t
GARCH-UGH
(15%)

Notes: The optimal sample fraction for GARCH-UGH is selected
based on the performance in traditional out-of-sample backtestings

of VaR and ES (see Tables 4.7, 4.8, 4.12 and 4.16).
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Chapter 5

Conclusions

5.1 Value-at-Risk (VaR)

In Chapter 3 we introduce an extension of the two-step GARCH-EVT approach from

McNeil and Frey (2000) for dynamic extreme VaR estimation, based on a semipara-

metric bias-reduced extreme quantile estimator from de Haan et al. (2016). This dif-

fers from the other papers published in the econometric literature by introducing a

finite-sample improvement at the extreme value step, rather than using a more com-

plicated filter than the AR(1)-GARCH(1,1) filter. Estimation of VaR is still needed in

practice although Basel Committee on Banking Supervision (2019) changed the risk

measure for capital requirements in the internal market risk model from VaR to ES

because sensible estimation of ES is based on correctly specified VaR estimates by

the definition of ES.

We conclude from our empirical analysis that the proposed GARCH-UGH ap-

proach provides better one-step ahead dynamic extreme VaR estimates for financial

time series than the benchmark conventional GARCH-EVT approach of McNeil and

Frey (2000) and the other basic estimation approaches we have tested based on his-

torical simulation or traditional fully parametric models. This can be seen from both

the in-sample and the out-of-sample estimations at several quantile levels τ, includ-

ing the very high τ = 0.999 corresponding to a 99.9% VaR, and a large range of

sample fractions k, due to the effect of the bias correction, from the perspective of

in-sample and out-of-sample traditional VaR backtestings. The numerical results of

comparative VaR backtesting, which is based on the Diebold-Mariano test, also sup-

port the use of the GARCH-UGH approach by yielding definitive answers to the
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cases when GARCH-UGH and GARCH-EVT approaches are either all accepted or

all rejected in the traditional VaR backtestings. Our finite-sample results also illus-

trate that the GARCH-UGH method leads to one-step ahead extreme conditional

VaR estimates that are less sensitive to the choice of sample fraction, and hence

mitigates the difficulty in selecting the optimal number of observations for the es-

timations. Finally, the computational cost of GARCH-UGH is lower than that of

conventional GARCH-EVT: the extreme value step in the GARCH-UGH method is

semiparametric with an automatic and fast recipe for the estimations of the one-

step ahead extreme conditional VaRs, while the competing GARCH-EVT method is

based on a parametric fit of the Generalized Pareto Distribution (GPD) to the resid-

uals using Maximum Likelihood Estimation.

5.2 Expected Shortfall (ES)

In Chapter 4 we extend the GARCH-UGH approach to the dynamic extreme ES esti-

mation by means of the asymptotic equivalence between quantile (VaR) and ES. This

is motivated by the fact that there has not been sufficient investigation to establish

the superiority of a certain estimator of ES relative to the others in the literature and

no particular type of ES model is prescribed in the framework of the BCBS.

We conclude from our empirical analysis that the proposed GARCH-UGH ap-

proach provides better one-step ahead dynamic extreme ES estimates for financial

time series than other EVT-type and basic estimation methods according to the nu-

merical results of comparative ES backtesting based on the joint elicitability of VaR

and ES with the support of traditional ES backtestings that are not always in line

with the comparative results. Our results of both traditional VaR and ES backtest-

ings also show that poor VaR estimates induce the imperfect ES estimates because

incorrect number of VaR violations can lead to low p-values in the traditional ES

backtestings.

In contrast to estimation of dynamic extreme ES where most of the existing mod-

els including the ones we referred and proposed for the VaR estimation can easily

be adapted to the ES, such adaptions are not straight-forward for backtesting ES es-

timates. Regarding the backtesting of ES, Basel Committee on Banking Supervision
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(2019) still demands financial institutions to use traditional VaR backtesting for ES.

At the same time, we can expect that upcoming regulations will require them to

backtest ES without using VaR backtesting method. We also tackle an urgent prob-

lem of which ES backtesting methods can be used in the practice. Based on the strict

definition of backtesting for specific risk measure, i.e., backtesting for ES is only al-

lowed to use estimates of ES and realized returns as input variables, a rejection of

the traditional ES tests does not necessarily imply that the ES is misspecified, but the

estimates for the input components are misspecified. On the other hand, it is true

that the ES is strongly related to the VaR through its definition and joint elicitability,

and thus reasonable to backtest both quantities jointly while checking the different

aspects of mathematical properties as explained in Section 4.4. With respect to the

comparative ES backtesting based on the Diebold-Mariano test, it is very helpful for

practitioners to select better performing methods among competing alternatives as

traditional ES backtestings do not often yield definitive answers because estimation

methods are either all accepted or all rejected and they sometimes give a contra-

dicted decision, i.e., one test rejects the null hypothesis of the underestimation of ES

while the others accept. Moreover, the Diebold-Mariano test using joint elicitabil-

ity of VaR and ES with two hypotheses has strong discrimination ability in terms

of guarding models that are not truly better than the benchmark. From a regula-

tory perspective, it is conservative in the sense than when a new competing model

is proposed, it will need strong evidence to overthrow the old benchmark model in

favour of new competing model. The drawback of comparative ES backtesting is

that as consistent scoring functions of the pair (VaR, ES) are not unique, at present

there exists no particular optimal scoring function with any theoretical guarantee

and using the wrong scoring function for a specific risk measure may result in bi-

ased results.

5.3 Overall conclusion

This thesis considered about quantitative risk management using Extreme Value

Theory (EVT). We specifically focused on the use of EVT to study extreme finan-

cial market risk, which is the risk of losses arising from movements in market prices,
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from a quantitative point of view. The use of EVT in the estimation of risk measures

such as VaR and ES was natural and effective because the occurrence of extreme fi-

nancial market events are increasing in the post 1980s, and commonly used methods,

for example, historical simulation and normal distribution, tend to underestimate

the risk measures severely.

Although Basel Committee on Banking Supervision (2019) changed the risk mea-

sure for capital requirements in the internal market risk model from VaR to ES, esti-

mation of VaR is still needed in practice. This is because financial institutions now

face the paradox of using ES for computing their market risk capital requirements

and using VaR for backtesting ES. More specifically, the sensible estimation of ES is

based on correctly specified VaR estimates by the definition of ES. For this reason,

both estimation and backtesting of VaR are still important even now. In addition, we

believe that it is necessary to incorporate dynamic changes in the market to reflect

the most updated risk level. We therefore proposed a new two-step bias-reduced

estimation methodology for the estimation of one-step ahead dynamic extreme VaR,

called GARCH-UGH (Unbiased Gomes-de Haan), whereby financial returns are first

filtered using an AR-GARCH model, and then a bias-reduced estimator of extreme

quantiles is applied to the standardized residuals in Chapter 3. Our results indicate

that the GARCH-UGH estimates of the dynamic extreme VaR are more accurate

than those obtained either by historical simulation, conventional AR-GARCH filter-

ing with Gaussian or Student-t innovations, or AR-GARCH filtering with standard

extreme value estimates, both from the perspective of traditional and comparative

VaR backtestings.

With regard to the estimation of ES, there has not been sufficient investigation to

establish the superiority of a certain estimator relative to the others in the literature

and no particular type of ES model is prescribed in the framework of Basel Commit-

tee on Banking Supervision (2019). We thus proposed a novel approach of dynamic

extreme ES estimation, which is based on our proposed GARCH-UGH approach

and the use of asymptotic equivalence between VaR (quantile) and ES, in Chapter 4.

Our results show that the GARCH-UGH approach produces more accurate ES esti-

mates than those obtained by basic estimation methods, both from the perspective

of traditional and comparative ES backtestings. When compared to other EVT-type
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methods, comparative backtestings with chosen two scoring functions result in a

good agreement with the GARCH-UGH approach being the best estimator of ES,

while traditional backtestings are not always in line with the superiority of our pro-

posed approach.

Regarding the backtesting of ES, Basel Committee on Banking Supervision (2019)

still demands financial institutions to use traditional VaR backtesting for ES. At the

same time, we can expect that upcoming regulations will require them to backtest

ES without using VaR backtesting methods. We also tackled an urgent problem of

which ES backtesting methods can be used in the practice. With reference to the

strict definition of backtesting given by Bayer and Dimitriadis (2020b), we under-

stand that a backtesting for specific risk measure should only require its estimates

and the realized returns as input variables. In contrast to the VaR, fulfilling this def-

inition for ES is very difficult task because ES is strongly related to the VaR through

its definition and joint elicitability. As in every statistical method, each of different

ES backtesting methods, which is presented in Chapter 4, has its strengths and weak-

nesses. We thus strongly suggest adopting a two-stage backtesting framework, i.e.,

the use of both traditional and comparative backtestings for risk measures that will

enhance the regulatory framework for financial institutions by providing the correct

incentives for accuracy of risk measure estimates. More precisely, the comparative

backtesting methods can be used by financial institutions internally to select better

performing methods among competing alternatives.

Use of traditional backtesting only like in the regulatory framework of BCBS

might not be sufficient because passing a traditional backtesting, i.e., the null hy-

pothesis of the risk measurement procedure is correct is not rejected, does not mean

that one can be sure that the null hypothesis is correct (Nolde and Ziegel 2017).

In practice as shown in our empirical analysis, there are cases when traditional

backtesting methods do not yield definitive answers because competitive estima-

tion methods are all accepted or all rejected. The comparative backtestings enable

us to conduct direct comparisons of estimation methods when traditional backtest-

ings do not work efficiently. In the case of VaR, they have more power than the

traditional ones based on assessing the number of VaR violations since the scoring

functions consider not only the fact that the VaR violations are occurred but also the
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information on the size of the violation. Supplementing with comparative backtest-

ings is essential, and hence can adequately quantify the risks even though they still

have some drawbacks to consider for the practical use, e.g., there exists no optimal

scoring function with any theoretical guarantee. We think that the major challenge of

Basel Committee on Banking Supervision (2019) in the implementation of the ES as a

risk measure for market risk is the unavailability of simple tools for its evaluation as

explained. We also believe that the findings of the estimation and backtesting of risk

measures for tail risks in volatile financial market given in Chapter 3 and 4 would be

useful for developing regulatory framework of BCBS and monetary policies aimed

at mitigating tail risks.

5.4 Future studies

We highlight five possible directions for further investigations. The first one is that

one could replace the AR(1)-GARCH(1,1) filter by a more sophisticated filter. Which

filter should be used is not obvious: one could think about replacing the AR(1) part

by an ARMA(p, q) part, or the GARCH(1,1) part by a GARCH(p, q) part (or a more

complicated asymmetric version), or both (see Section 3.1). This may make it possi-

ble to even better account or the volatility dynamics, whose accurate estimation and

prediction are key.

The second one is the extension of our GARCH-UGH approach to the estima-

tion of the multiple-step ahead conditional extreme VaR and ES. In many cases, a

long-term analysis for the goal of making long-term investment decisions is just as

relevant and important as the short-term risk management. This is because certain

regulations such as those advocated by BCBS require the estimation of the 10-day

ahead VaR at the 99% confidence level, rather than merely the one-step ahead VaR.

In Basel II (Basel Committee on Banking Supervision 2009), financial institutions

were asked to derive 10-day VaR by a simple square-root-of-time scaling of 1-day

VaR in calculating market risk. Similarly, Basel III (Basel Committee on Banking

Supervision 2019) proposed to use the the square-root-of-time scaling to calculate

multi-day ES from 1-day ES. The difficulty in estimating multi-day VaR and ES is

obtaining enough homogeneous data on multi-day returns over non-overlapping
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periods. Using overlapping returns would misrepresent the tail behavior of the re-

turn distributions leading to significant error in extreme VaR and ES estimates. This

motivated the use of scaling law such as square-root-of-time and applying EVI in-

stead of square root (Dacorogna et al. 2001) although it is known that it may lead to

severe biases (Christoffersen 1998; Danielsson and Zigrand 2006; Wang et al. 2010;

Lönnbark 2016; Novales and Garcia-Jorcano 2019).

Danielsson and de Vries (1997), McNeil and Frey (2000) and also Novales and

Garcia-Jorcano (2019) tackle this challenging problem of the multiple-step ahead

estimation using a bootstrap methodology, but bootstrapping with heavy tails is

known to be very difficult to calibrate, especially in the extreme value setup we con-

sidered here. The development of an adaptation of the GARCH-UGH method to the

multiple-step ahead setup for extreme VaR and ES estimations, which stays compu-

tationally manageable and accurate is well beyond the scope of the current paper.

Moreover, it is difficult to construct the formal backtesting methods for multi-step

VaR based on counting the number of VaR violations and even harder for ES because

we are using overlapping multi-step returns.

The third one is the enhancement of our GARCH-UGH approach for the estima-

tion of dynamic extreme ES. While our approach is the second-order approximation

assuming the second-order condition (3.7) on the tail quantile function, we used the

first-order asymptotic equivalence between VaR and ES (4.4) to approximate ES from

VaR. Instead one could instead use the second-order asymptotic equivalence based

on the Equation 4.5, which precisely controls the remainder term neglected in the

first-order approximation.

The fourth one is the consideration of scoring function specific to the extreme

order instead of the intermediate order versions used in the comparative VaR and

ES backtestings (see Equations 3.14 and 4.15). It is interesting to have such scoring

functions, which intensely react to the tail risks, as we compared the performance of

risk measures based on the estimation of extreme quantiles for EVT-type methods.

The five and final perspective is the estimation of alternative dynamic risk mea-

sures as a way of solving the drawbacks of VaR and ES that we highlighted in Sec-

tions 1.2.2 and 4.1. One candidate will be the expectile risk measure (see Newey

and Powell 1987 for the original definition of expectiles in a regression context given
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in Section 1.2.5), which takes into account both the frequency of extreme observa-

tions and their magnitude, and is also shown to be a coherent and elicitable risk

measure in Ziegel (2016) unlike VaR and ES. Moreover, sample expectiles produce a

class of smooth curves as functions of the probability level τ unlike sample quantiles

(Daouia et al. 2018). The use of expectiles has recently received substantial attention

from the perspective of risk management as an alternative tool for quantifying tail

risk (see for example Daouia et al. 2018; Daouia et al. 2020), but the case of dynamic

estimation of extreme expectiles in a financial time series context has not been con-

sidered yet. The development of a GARCH-UGH-based method for the estimation

of dynamic extreme expectiles based on the use of the asymptotic equivalence be-

tween quantiles and expectiles (4.3) will thus be an interesting complement to the

present thesis. Of course, there exists no universally preferred risk measure: the ex-

pectile only has an implicit formulation in general, and is more difficult to interpret

than the VaR and ES.
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Appendix A

In-sample estimation of

second-order parameters

TABLE A.1: In-sample evaluations of one-step ahead conditional VaR
estimates from 8 December 1997 to 9 November 2009 at different
quantile levels for the negative log-returns of DJ index by means of
the number of VaR violations, unconditional and conditional cover-

age tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
DJ:
0.999 Quantile
Expected 3 3 3 3 3
GARCH-UGH 2 2 2 1 1
(Gomes) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 2 2 2 2 2
(ρ̂kρ

= −1) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538, 0.826) (0.538,0.826)

0.995 Quantile
Expected 15 15 15 15 15
GARCH-UGH 19 14 14 15 15
(Gomes) (0.320, 0.541) (0.793, 0.905) (0.793, 0.905) (1.000, 0.927) (1.000, 0.927)
GARCH-UGH 15 21 20 20 23
(ρ̂kρ

= −1) (1.000, 0.927) (0.143, 0.295) (0.218, 0.410) (0.218, 0.410) (0.055, 0.133)

0.99 Quantile
Expected 30 30 30 30 30
GARCH-UGH 27 28 29 31 33
(Gomes) (0.576, 0.669) (0.711, 0.717) (0.854, 0.741) (0.855, 0.711) (0.588, 0.598)
GARCH-UGH 34 35 35 36 41
(ρ̂kρ

= −1) (0.472, 0.523) (0.371, 0.444) (0.371, 0.444) (0.286, 0.365) (0.056, 0.091)

Notes: The VaR violations when ρ̂kρ
= −1 performed better, i.e., had

the closest number of violations to theoretically expected ones, are
highlighted in bold. If we observe that the choice ρ̂kρ

= −1 perform
better, then we retain this choice for out-of-sample estimation. The p-
values for the unconditional coverage test by Kupiec (1995) and con-
ditional coverage test by Christoffersen (1998) are given in brackets

in order.



174 Appendix A. In-sample estimation of second-order parameters

TABLE A.2: In-sample evaluations of one-step ahead conditional VaR
estimates from 13 August 1997 to 16 July 2009 at different quantile
levels for the negative log-returns of NASDAQ index by means of the
number of VaR violations, unconditional and conditional coverage

tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
NASDAQ:
0.999 Quantile
Expected 3 3 3 3 3
GARCH-UGH 4 4 4 4 2
(Gomes) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.583, 0.855) (0.538, 0.826)
GARCH-UGH 6 6 5 5 5
(ρ̂kρ

= −1) (0.128, 0.370) (0.128, 0.370) (0.292, 0.569) (0.292, 0.569) (0.292, 0.569)

0.995 Quantile
Expected 15 15 15 15 15
GARCH-UGH 14 14 12 11 11
(Gomes) (0.793, 0.905) (0.793, 0.905) (0.421, 0.689) (0.277, 0.532) (0.277, 0.532)
GARCH-UGH 20 20 14 14 13
(ρ̂kρ

= −1) (0.218, 0.410) (0.218, 0.410) (0.793, 0.905) (0.793, 0.905) (0.596, 0.821)

0.99 Quantile
Expected 30 30 30 30 30
GARCH-UGH 23 23 23 25 25
(Gomes) (0.180, 0.341) (0.180, 0.341) (0.180, 0.341) (0.345, 0.519) (0.345, 0.519)
GARCH-UGH 41 41 41 36 36
(ρ̂kρ

= −1) (0.056, 0.091) (0.056, 0.091) (0.056, 0.091) (0.286, 0.427) (0286, 0.427)

Notes: The VaR violations when ρ̂kρ
= −1 performed better, i.e., had

the closest number of violations to theoretically expected ones, are
highlighted in bold. If we observe that the choice ρ̂kρ

= −1 perform
better, then we retain this choice for out-of-sample estimation. The p-
values for the unconditional coverage test by Kupiec (1995) and con-
ditional coverage test by Christoffersen (1998) are given in brackets

in order.
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TABLE A.3: In-sample evaluations of one-step ahead conditional VaR
estimates from 29 May 1997 to 12 August 2009 at different quantile
levels for the negative log-returns of NIKKEI index by means of the
number of VaR violations, unconditional and conditional coverage

tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
NIKKEI:
0.999 Quantile
Expected 3 3 3 3 3
GARCH-UGH 4 1 4 1 1
(Gomes) (0.583, 0.885) (0.179, 0.406) (0.583, 0.885) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 4 2 2 4 1
(ρ̂kρ

= −1) (0.583, 0.855) (0.538, 0.826) (0.538, 0.826) (0.583, 0.855) (0.179, 0.406)

0.995 Quantile
Expected 15 15 15 15 15
GARCH-UGH 13 13 12 11 9
(Gomes) (0.596, 0.821) (0.596, 0.821) (0.421, 0.689) (0.277, 0.532) (0.093, 0.238)
GARCH-UGH 13 13 13 13 12
(ρ̂kρ

= −1) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.421, 0.689)

0.99 Quantile
Expected 30 30 30 30 30
GARCH-UGH 26 25 26 31 23
(Gomes) (0.453, 0.601) (0.345, 0.519) (0.453, 0.601) (0.855, 0.711) (0.180, 0.341)
GARCH-EVT 26 25 34 34 28
(ρ̂kρ

= −1) (0.453, 0.601) (0.345, 0.519) (0.472, 0.523) (0.472, 0.523) (0.711, 0.666)

Notes: The VaR violations when ρ̂kρ
= −1 performed better, i.e., had

the closest number of violations to theoretically expected ones, are
highlighted in bold. If we observe that the choice ρ̂kρ

= −1 perform
better, then we retain this choice for out-of-sample estimation. The p-
values for the unconditional coverage test by Kupiec (1995) and con-
ditional coverage test by Christoffersen (1998) are given in brackets

in order.
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TABLE A.4: In-sample evaluations of one-step ahead conditional VaR
estimates from 28 September 2002 to 14 December 2010 at different
quantile levels for the negative log-returns of JPY/GBP exchange rate
by means of the number of VaR violations, unconditional and condi-

tional coverage tests.

Testing window 3000
% of top obs. used 5% 10% 15% 20% 25%
JPY/GBP:
0.999 Quantile
Expected 3 3 3 3 3
GARCH-UGH 3 2 1 1 1
(Gomes) (1.000, 0.997) (0.538, 0.826) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 3 2 3 2 2
(ρ̂kρ

= −1) (1.000, 0.997) (0.538, 0.826) (1.000, 0.997) (0.538, 0.826) (0.538, 0.826)

0.995 Quantile
Expected 15 15 15 15 15
GARCH-UGH 16 14 14 14 16
(Gomes) (0.798, 0.888) (0.793, 0.905) (0.793, 0.905) (0.793, 0.905) (0.798, 0.888)
GARCH-UGH 21 20 18 19 20
(ρ̂kρ

= −1) (0.143, 0.295) (0.218, 0.410) (0.452, 0.676) (0.320, 0.541) (0.218, 0.410)

0.99 Quantile
Expected 30 30 30 30 30
GARCH-UGH 31 32 31 29 22
(Gomes) (0.855, 0.612) (0.717, 0.609) (0.855, 0.612) (0.854, 0.556) (0.123, 0.259)
GARCH-UGH 42 46 45 47 50
(ρ̂kρ

= −1) (0.038, 0.064) (0.006, 0.012) (0.010, 0.019) (0.004, 0.007) (0.001, 0.002)

Notes: The VaR violations when ρ̂kρ
= −1 performed better, i.e., had

the closest number of violations to theoretically expected ones, are
highlighted in bold. If we observe that the choice ρ̂kρ

= −1 perform
better, then we retain this choice for out-of-sample estimation. The p-
values for the unconditional coverage test by Kupiec (1995) and con-
ditional coverage test by Christoffersen (1998) are given in brackets

in order.
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Appendix B

Supplementary simulations

B.1 Simulation setup

Our aim in this section is to compare our GARCH-UGH approach for dynamic ex-

treme VaR estimation with other five approaches discussed in Section 3.3 when the

GARCH model is misspecified and the tail of the innovations is not explicitly heavy,

i.e., assuming normal innovations. The former case is within expectations in the

applications but the latter case is beyond the scope of the assumption because as-

suming heavy-tail is ubiquitous in financial risk management.

To complete this comparison, we consider two data generating processes for sim-

ulating the observations used in our simulation study. The GARCH model we used

is defined as

Xt = σtZt

where σt > 0 denote the (conditional) standard deviation and the innovations Zt

is a strict white noise process, that is, they are i.i.d. with zero mean, unit variance

and common marginal distribution function FZ. We assume that for each t, σt are

measurable with respect to the σ−algebra Ft−1 representing the information about

the return process available up to time t− 1. The sequence Xt follows a GARCH(p,q)

process if, for each t,

σ2
t = α0 +

p

∑
j=1

αjX2
t−j +

q

∑
l=1

βlσ
2
t−l

where αj, βl > 0. In our simulation study, we specifically consider the GARCH(1,2)

models where all parameters are equal to the estimates when GARCH(1,2) model

is fitted to NIKKEI index from 20 February 2008 to 22 October 2021. They are as
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follows

• Model 1: GARCH(1,2) model with Student t innovations with 6.775757 de-

grees of freedom and α̂0 = 0.000005, α̂1 = 0.115598, β̂1 = 0.863749 and

β̂2 = 0.000009.

• Model 2: GARCH(1,2) model with normal innovations and α̂0 = 0.000007,

α̂1 = 0.131618, β̂1 = 0.832505 and β̂2 = 0.004905.

Figure B.1 illustrates the out-of-sample estimation of the Extreme Value Index

(EVI) by GARCH-UGH and GARCH-EVT approaches using the top 10% and 15% of

observations from rolling estimation window made of 1000 observations for models

1 and 2, respectively. For model 1, the distribution of Zt after filtering with misspec-

ified AR(1)-GARCH(1,1) model is heavy-tail because the innovations is set as being

Student t. The estimates of EVI by GARCH-UGH are stable between 0.2 and 0.3

whereas GARCH-EVT yields fluctuating estimates ranging from 0.1 to −0.3. Note

that the heavy-tailed feature of the GARCH models does not depend on whether the

innovations follow a heavy-tailed distribution (de Haan et al. 2016). Nonetheless,

we used t innovations because empirical studies support using heavy-tailed inno-

vations for modeling financial time series (see for example McNeil and Frey 2000).

For model 2, it is not clear whether the tail is explicitly heavy or not by assuming

normal innovations. It can be seen from Figure B.1b that estimated value of EVI is

decreased but it does not guarantee that the distribution of Zt possesses non-heavy

tail. While GARCH-UGH continues to produce EVI estimates as 0.2, GARCH-EVT

now yields γ̂ < 0, which means that it is short-tailed. We use normal distribution as

the distribution of innovations to consider the unexpected scenario for financial risk

management.

In the next section, we present the results of out-of-sample evaluations of one-

step ahead conditional VaR estimates at different τ levels and choices of k by means

of traditional and comparative backtestings. The procedure of out-of-sample esti-

mation and backtesting is given in Section 3.6.3.
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(b) GARCH(1,2) process with normal innovations

FIGURE B.1: Out-of-sample estimation of extreme value index (EVI)
by GARCH-UGH (blue line) and GARCH-EVT (red line) approaches
using the top 10% and 15% of observations from rolling estimation
windows made of 1000 observations for the data generated from

GARCH(1,2) process with t and normal innovations, respectively.

B.2 Simulation results

Tables B.1 and B.2 gather the numerical results for the comparison between the

GARCH-UGH, GARCH-EVT and UGH approaches from the perspective of tradi-

tional VaR backtestings. The corresponding plots of out-of-sample backtesting are

shown in Figures B.2-B.5. For model 1 with t innovations, it can be seen that our

GARCH-UGH approach appears to be best overall. In 11 out of 15 cases, the GARCH-

UGH approach yields the closest number of VaR violations to the theoretically ex-

pected numbers, while the GARCH-EVT and the unfiltered UGH methods yield

the closest ones 6 and 4 times, respectively. All three EVT-type methods never fail

both Kupiec and Christoffersen tests. Surprisingly, for model 2 with normal inno-

vations it is shown again that the GARCH-UGH approach still appears to be best

overall by means of the number of VaR violations. In 12 out of 15 cases, GARCH-

UGH approach yields the closest number of VaR violations, while the UGH meth-

ods fares worst. On no occasion GARCH-UGH and GARCH-EVT approaches fail

the Christoffersen test, while UGH approach fails 7 times out of 15 cases. Based on

the results of traditional VaR backtestings, GARCH-UGH generally performs better

than other EVT-type approaches even if the filtering GARCH model is misspecified

and the innovations Zt are normally distributed.
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TABLE B.1: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by EVT-type methods at
different quantile levels for the data generated from GARCH(1,2) pro-
cess with t innovations by means of the number of VaR violations,

unconditional and conditional coverage tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%

0.999 Quantile
Expected 3 3 3 3 3
UGH 5 2 1 2 1

(0.292, 0.569) (0.538, 0.826) (0.179, 0.406) (0.538, 0.826) (0.179, 0.406)
GARCH-UGH 4 3 3 3 3

(0.583, 0.855) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
GARCH-EVT 4 4 4 4 4

(0.583, 0.885) (0.583, 0.885) (0.583, 0.885) (0.583, 0.885) (0.583, 0.855)
0.995 Quantile
Expected 15 15 15 15 15
UGH 18 15 12 10 9

(0.567, 0.190) (1.000, 0.927) (0.421, 0.689) (0.168, 0.374) (0.093, 0.238)
GARCH-UGH 15 15 14 14 15

(1.000, 0.927) (1.000, 0.927) (0.793, 0.905) (0.793, 0.905) (1.000, 0.927)
GARCH-EVT 15 15 15 15 15

(1.000, 0.927) (1.000, 0.927) (1.000, 0.927) (1.000, 0.927) (1.000, 0.927)
0.99 Quantile
Expected 30 30 30 30 30
UGH 31 31 31 31 27

(0.855, 0.612) (0.855, 0.612) (0.855, 0.612) (0.855, 0.612) (0.576, 0.433)
GARCH-UGH 30 30 28 32 33

(1.000, 0.738) (1.000, 0.738) (0.711, 0.717) (0.717, 0.663) (0.588, 0.598)
GARCH-EVT 27 26 27 24 24

(0.576, 0.669) (0.453, 0.601) (0.576, 0.669) (0.254, 0.430) (0.254, 0.430)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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TABLE B.2: Traditional backtesting: out-of-sample evaluations of
one-step ahead conditional VaR estimates by EVT-type methods at
different quantile levels for the data generated from GARCH(1,2) pro-
cess with normal innovations by means of the number of VaR viola-

tions, unconditional and conditional coverage tests.

Testing window 3000
Estimation window 1000
% of top obs. used 5% 10% 15% 20% 25%

0.999 Quantile
Expected 3 3 3 3 3
UGH 4 1 1 1 1

(0.583, 0.855) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406) (0.179, 0.406)
GARCH-UGH 3 3 3 3 3

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (1.000, 0.997)
GARCH-EVT 3 3 3 4 4

(1.000, 0.997) (1.000, 0.997) (1.000, 0.997) (0.583, 0.885) (0.583, 0.855)
0.995 Quantile
Expected 15 15 15 15 15
UGH 26 23 19 16 12

(0.010, 0.000) (0.055, 0.007) (0.320, 0.170) (0.798, 0.888) (0.421, 0.689)
GARCH-UGH 17 14 14 9 9

(0.612, 0.798) (0.793, 0.905) (0.793, 0.905) (0.093, 0.238) (0.093, 0.238)
GARCH-EVT 15 13 13 13 12

(1.000, 0.927) (0.596, 0.821) (0.596, 0.821) (0.596, 0.821) (0.421, 0.689)
0.99 Quantile
Expected 30 30 30 30 30
UGH 35 35 37 35 35

(0.371, 0.000) (0.371, 0.000) (0.215, 0.000) (0.371, 0.000) (0.371, 0.000)
GARCH-UGH 33 33 32 29 28

(0.588, 0.598) (0.588, 0.598) (0.717, 0.663) (0.854, 0.741) (0.710, 0.717)
GARCH-EVT 27 25 24 24 23

(0.576, 0.669) (0.345, 0.519) (0.254, 0.430) (0.254, 0.430) (0.180, 0.341)

Notes: The closest numbers of VaR violations to theoretically ex-
pected ones are highlighted in bold. The p-values for the uncondi-
tional coverage test by Kupiec (1995) and conditional coverage test

by Christoffersen (1998) are given in brackets in order.
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Tables B.3 and B.4 display the traffic light matrices of comparative VaR back-

testing given in Section 3.5 for three EVT-type methods and for the data generated

from GARCH(1,2) process with t innovations when h = 0 (3.16) and h = 1 (3.15)

VaR scoring functions are used, respectively. Tables B.5 and B.6 display the cases

when the innovations are normally distributed. The competing models are given in

the vertical axis with the benchmark models along the horizontal axis. Using the

t-statistic based on the DM test (3.11), we reject the hypothesis H−0 at the test level

5% if 1−Φ(DM) ≤ 0.05 while the hypothesis H+
0 is rejected if Φ(DM) ≤ 0.05. Un-

der H−0 , the comparative backtesting is passed for the competing model if the null

hypothesis fails to be rejected. On the other hand, under H+
0 the backtesting for the

competing model is passed if the null hypothesis is rejected. The green zone corre-

sponds to the case when H−0 is not rejected and H+
0 is rejected, which suggests that

the competing model is considered as better than the benchmark model. The yellow

zone is when only one of the backtestings under H−0 and H+
0 is passed and we can-

not conclude which model performs the best. The red zone corresponds to the case

when both backtestings fail to be passed, indicating a problem with the competing

model.

It is illustrated that our proposed GARCH-UGH approach appears to be best

overall for GARCH(1,2) model with t innovations. In 22 out of 30 cases, the GARCH-

UGH approach is considered as better than GARCH-EVT approach based on the re-

alized scores of VaR. Comparative backtestings with two scoring functions and tra-

ditional backtestings result in a good agreement with the GARCH-UGH approach

being the best estimator of VaR, while the unfiltered UGH being the worst estima-

tor, i.e., failing the comparative backtestings against all the other methods. On the

other hand, when innovations are normally distributed, GARCH-EVT approach is

considered as better than GARCH-UGH approach in 19 out of 30 cases, which con-

tradicts with the results of traditional VaR backtestings. Figure B.2 suggests that

the GARCH-UGH approach overestimates the VaR during the low-volatile period

although it has the closest number of VaR violations to the theoretically expected

numbers. Comparative VaR backtestings rank the VaR estimation methods based

on the realized VaR scores. They hence yield definitive answers to the cases when
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the estimation methods are all accepted or all rejected in the traditional VaR backtest-

ings, especially when GARCH-UGH and GARCH-EVT approaches have the same

number of VaR violations and are indistinguishable.

TABLE B.3: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods at different quantile levels for the data gener-
ated from GARCH(1,2) process with t innovations by means of the

Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.

Comparison with basic estimation methods

Table B.7 also supports the use of the GARCH-UGH approach for the estimation

of dynamic extreme VaR even supposing the GARCH model is misspecified and

the innovations Zt are normally distributed because it outperforms the basic HS,

GARCH-N and GARCH-t estimation methods. In 5 out of 6 cases our GARCH-

UGH approach (with optimal sample fraction according to Tables B.1-B.2) is closest
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TABLE B.4: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
by EVT-type methods at different quantile levels for the data gener-
ated from GARCH(1,2) process with t innovations by means of the

Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE B.5: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates by
EVT-type methods at different quantile levels for the data generated
from GARCH(1,2) process with normal innovations by means of the

Diebold-Mariano test using h = 0 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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TABLE B.6: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates by
EVT-type methods at different quantile levels for the data generated
from GARCH(1,2) process with normal innovations by means of the

Diebold-Mariano test using h = 1 VaR scoring function.

0.999 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.995 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

0.99 VaR
% of top obs.
used

5% 10% 15% 20% 25%

GARCH-EVT (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-UGH
(competing)

UGH (benchmark)
GARCH-EVT
(competing)

Notes: When the competing model in the row is swapped with the
benchmark model in the column, the results are reversed.
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to the mark. In fact, HS performs best in terms of the number of VaR violations

for the remaining one case but fails the Chirstoffersen test. GARCH-UGH approach

also never fails either of the Kupiec and Christoffersen tests, while HS fails 0 and 1

times, GARCH-N fails 1 and 1 times, and GARCH-t fails 1 and 1 times out of 6 cases,

respectively.

Tables B.8 and B.9 display the traffic light matrices of comparative VaR backtest-

ing (see Section 3.5) for six estimation methods given in Section 3.3, three quantile

levels and the data generated from GARCH(1,2) process with t innovations when

h = 0 (3.16) and h = 1 (3.15) VaR scoring functions are used, respectively. Tables B.10

and B.11 illustrate the cases for normal innovations. The optimal sample fraction for

3 EVT-type methods is selected based on the performance in the out-of-sample tra-

ditional VaR backtestings (see Tables B.1-B.2).

As with the results of traditional VaR backtestings, it is illustrated that our pro-

posed GARCH-UGH approach appears to be best overall for the GARCH(1,2) model

with t innovations even if the filtering model is misspecified. The two scoring func-

tions result in a good agreement with GARCH-UGH approach being the best estima-

tor when compared to the other five methods because it considers both the volatility

change and the heavy-tail of the distribution of the residuals. Inversely, when the

innovations are normally distributed, GARCH-UGH is not dominant approach any-

more compared to the basic HS, GARCH-N and GARCH-t approaches. In this case,

GARCH-EVT approach appears to be best overall because it can handle the cases

when the tail of distribution of the residuals is not clearly heavy-tail. It fits the gen-

eralized Pareto distribution to the residuals for the estimation of EVI and the range

of EVI is not limited to γ > 0.
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TABLE B.7: Traditional backtesting: out-of-sample evaluations
of one-step ahead conditional VaR estimates by basic estimation
methods at different quantile levels for the data generated from
GARCH(1,2) process with t and normal innovations by means of the
number of VaR violations, unconditional and conditional coverage

tests.

GARCH(1,2) with t innovations GARCH(1,2) with normal innovations
Testing window 3000 3000
Estimation window 1000 1000
0.999 Quantile
Expected 3 3
HS 3 1

(1.000, 0.997) (0.179, 0.406)
GARCH-N 12 2

(0.000, 0.000) (0.538, 0.826)
GARCH-t 1 2

(0.179, 0.406) (0.538, 0.826)
GARCH-UGH 3 3
(10%) (1.000, 0.997) (1.000, 0.997)
0.995 Quantile
Expected 15 15
HS 14 21

(0.793, 0.151) (0.143, 0.114)
GARCH-N 23 10

(0.055, 0.133) (0.168, 0.374)
GARCH-t 9 10

(0.093, 0.238) (0.168, 0.374)
GARCH-UGH 15 14
(5%) (1.000, 0.927) (0.793, 0.905)
0.99 Quantile
Expected 30 30
HS 29 30

(0.854, 0.556) (1.000, 0.001)
GARCH-N 40 21

(0.081, 0.127) (0.081, 0.188)
GARCH-t 13 21

(0.000, 0.002) (0.081, 0.188)
GARCH-UGH 30 29
(10%) (1.000, 0.738) (0.854, 0.741)

Notes: The closest number of VaR violations to the theoretically ex-
pected number is highlighted in bold. The number of VaR violations
for GARCH-UGH is when the optimal sample fraction is selected ac-
cording to Tables B.1 and B.2. The p-values for the unconditional cov-
erage test by Kupiec (1995) and conditional coverage test by Christof-

fersen (1998) are given in brackets in order.
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TABLE B.8: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
at different quantile levels for the data generated from GARCH(1,2)
process with t innovations by means of the Diebold-Mariano test us-

ing h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(10%)
GARCH-EVT
(10%)
GARCH-UGH
(5%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(15%)
GARCH-EVT
(15%)
GARCH-UGH
(10%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table B.1).
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TABLE B.9: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
at different quantile levels for the data generated from GARCH(1,2)
process with t innovations by means of the Diebold-Mariano test us-

ing h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(10%)
GARCH-UGH
(10%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(10%)
GARCH-EVT
(10%)
GARCH-UGH
(5%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(15%)
GARCH-EVT
(15%)
GARCH-UGH
(10%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table B.1).
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TABLE B.10: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
at different quantile levels for the data generated from GARCH(1,2)
process with normal innovations by means of the Diebold-Mariano

test using h = 0 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(5%)
GARCH-UGH
(5%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(5%)
GARCH-UGH
(10%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(5%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table B.2).
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TABLE B.11: Comparative backtesting: out-of-sample evaluations
(traffic light matrices) of one-step ahead conditional VaR estimates
at different quantile levels for the data generated from GARCH(1,2)
process with normal innovations by means of the Diebold-Mariano

test using h = 1 VaR scoring function.

0.999 VaR
HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH

HS
GARCH-N
GARCH-t
UGH
(5%)
GARCH-EVT
(5%)
GARCH-UGH
(5%)
0.995 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(5%)
GARCH-UGH
(10%)
0.99 VaR

HS GARCH-N GARCH-t UGH GARCH-EVT GARCH-UGH
HS
GARCH-N
GARCH-t
UGH
(20%)
GARCH-EVT
(5%)
GARCH-UGH
(20%)

Notes: The optimal sample fraction is selected for 3 EVT-type meth-
ods based on the performance in the traditional out-of-sample back-

testings (see Table B.2).
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FIGURE B.2: Out-of-sample backtesting of the data generated from
GARCH(1,2) process with t innovations and 99.9%-VaR estimates cal-
culated using rolling estimation windows made of 1000 observations,
with k corresponding to the top 10% observations from this win-
dow. GARCH-UGH (blue line), GARCH-EVT (red line) and UGH
(dark green line) estimates are superimposed on the simulated pro-

cess (black line).
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FIGURE B.3: Out-of-sample backtesting of the data generated from
GARCH(1,2) process with t innovations and 99.9%-VaR estimates by
HS (blue line), GARCH-N (red line) and GARCH-t (dark green line)
calculated using rolling estimation windows made of 1000 observa-
tions, which are superimposed on the simulated process (black line).
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FIGURE B.4: Out-of-sample backtesting of the data generated from
GARCH(1,2) process with normal innovations and 99.5%-VaR esti-
mates calculated using rolling estimation windows made of 1000 ob-
servations, with k corresponding to the top 10% observations from
this window. GARCH-UGH (blue line), GARCH-EVT (red line) and
UGH (dark green line) estimates are superimposed on the simulated

process (black line).
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FIGURE B.5: Out-of-sample backtesting of the data generated from
GARCH(1,2) process with normal innovations and 99.5%-VaR esti-
mates by HS (blue line), GARCH-N (red line) and GARCH-t (dark
green line) calculated using rolling estimation windows made of
1000 observations, which are superimposed on the simulated process

(black line).
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