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Closely related to outlier and novelty detection, anomaly detection refers to

the technique of distinguishing between unexpected and normal data. Prac-

tical examples include fraud detection, medical diagnosis, surveillance, and

optical inspection, and a common feature of these applications is the discov-

ery of undesirable data.

The difficulty with anomaly detection is that, in many cases, anomalous data

are rarely observed and are of a wide variety; hence, the learning of anomaly

detection models suffers from the difficulty of imbalanced or one-class clas-

sification. Additionally, as the preparation of large amounts of anomalous

data is difficult, training without anomalous data is a preferable approach.

Therefore, the focus of this thesis is upon anomaly detection using only nor-

mal training data. A wide variety of methods have already been proposed

in this field based on traditional machine learning and statistical techniques,

such as one-class classification, likelihood, nearest neighbors, and clustering.

Recently, deep learning methods such as representation learning have been

successfully applied to anomaly detection without using anomalous data for

training. Taking advantage of the effective representation of deep learning,

the features obtained by a pre-trained model, such as VGG and ResNet, can

also be applied to unsupervised anomaly detection. Since deep generative

models are able to learn probability distributions of normal data, they have

been combined for anomaly detection in various ways.

Generative models approximate the true data distribution of observed sam-

ples with probabilistic models. However, generative modeling of high-dimensional

data distributions such as images is difficult, and hence generative models

using deep learning methods have been studied. Most previous anomaly de-

tection studies using deep generative models have taken advantage of the

model characteristic of generating only normal samples. By contrast, only a

few have focused on generating outlier samples and adding them to training.
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In addition to the generative model network, some deep generative models

also use subnetworks such as an encoder and a discriminator for training.

We aim to utilize these subnetworks to improve the efficiency of anomaly

detection.

In this thesis, we propose a method that improves anomaly detection perfor-

mance by generating pseudo-anomalous data from only normal training data

using Generative Adversarial Networks (GANs). Unlike the standard us-

age of GANs, the generator used in the proposed method provides pseudo-

anomalous data and fake-normal data by introducing anomalous states in

the latent variable; this model is known as Anomalous Latent GAN (AL-

GAN). Note that the discriminator of a standard GAN is not necessarily suit-

able for distinguishing between normal and anomalous data. It is trained

to discriminate between real and fake data such that in successful learning,

the two classes are almost similar. By contrast, when training is successful,

the discriminator of ALGAN distinguishes between the group of real-normal

data and the group of fake-normal and pseudo-anomalous data.

We introduce two types of pseudo-anomalous data for training. The first

type of pseudo-anomalous data is called fake-anomalous data. ALGAN uti-

lizes the anomalous latent variables with a larger variance to generate fake-

anomalous data. The other type of pseudo-anomalous data is called buffered

data, which are defined as generated samples during the early stage of the

training process. These are expected to differ from the normal training (real-

normal) data.

The proposed method follows an adversarial training procedure. It provides

a discrimination boundary not only for the real-normal and fake-normal data

but also for the real-normal and pseudo-anomalous data, the latter of which

has a broader support of the distribution. As the training progresses, the
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generator produces samples that resemble real-normal data, and the dis-

criminator cannot distinguish between real-normal and fake-normal data.

The pseudo-anomalous data are clearly different from the real-normal data;

therefore, the discrimination boundary of the discriminator is used to classify

them.

The proposed method for generating pseudo-anomalous data can be applied

to both images and feature vectors. We applied it to three anomaly detection

benchmarks and demonstrated its high accuracy. On MVTec-AD, ALGAN-

image achieved more than 10% higher average accuracy than conventional

image-based methods, and ALGAN-feature exhibited comparable ability to

the feature-based methods. On the COIL-100 dataset, ALGAN performed

almost perfectly.

Real-time prediction is significant to apply anomaly detection in the real

world, where the data generation speed has increased. Reducing compu-

tational costs will contribute to the expansion of the application. The pro-

posed ALGAN exhibited remarkably fast predictions. Compared with con-

ventional methods trained on image data and features, ALGAN could pre-

dict up to tens of times faster while maintaining high performance.
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Chapter 1

Introduction

1.1 Background

Machine learning has been researched and applied in academic and indus-

trial fields in recent years, and many applications have demonstrated re-

markable performance. These results are attributed to the handling of a large

amount of data and high-dimensional data based on advances in information

technology. The Internet of Things (IoT), which connects familiar devices to

the Internet, is growing in popularity, and the data types and collection fre-

quency are increasing as a result.

Real-world machine learning applications suffer from data imbalance prob-

lems (Guo et al., 2008; Johnson and Khoshgoftaar, 2019). For example, while

manufacturing industries can now utilize machine learning methods and IoT

data to improve manufacturing, the collected data becomes more biased as

process capability increases. This could mean that as more facilities are im-

proved, it can become more difficult to collect data on equipment and prod-

uct failures.

In the most severe case, the data to be distinguished can only rarely be ob-

tained or are unavailable entirely. Clearly, manufacturing industries are not

viable if they have equipment that breaks down frequently and processes
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that produce large amounts of defective products, yet it remains difficult to

predict what troubles will occur on a newly launched production line over

time. In order to collect such data in advance, it is necessary to investigate

possible problems and collect data by artificially generating similar situa-

tions.

1.2 Motivation

Anomaly detection refers to the technique of distinguishing between unex-

pected and normal data and is closely related to outlier detection and novelty

detection (Chandola, Banerjee, and Kumar, 2009). Practical examples include

fraud detection to identify unauthorized access (Rodda and Erothi, 2016),

medical diagnosis to discover lesion sites from medical images (Schlegl et al.,

2017), surveillance to find suspicious behavior in real-time videos (Sabokrou

et al., 2015), and optical inspection for detecting defects in industrial prod-

ucts (Bergmann et al., 2019a). A common feature of these applications is the

discovery of undesirable data.

The difficulty with anomaly detection is that, in many cases, anomalous data

are rarely observed and are of a wide variety; hence, the learning of anomaly

detection models suffers from the difficulty of imbalanced or one-class classi-

fication. Various methods have been proposed to address this issue, such as

creating a dataset containing new anomalous data not included in conven-

tional datasets (Perales Gómez et al., 2019), verifying classification perfor-

mance for anomalous data that are rarely observed (Rodda and Erothi, 2016),

and developing a new one-class classifier for complex data such as image

and sequence data (Chalapathy, Menon, and Chawla, 2018). The augmenta-

tion of anomalous data from different sources has also been proposed (e.g.,

out-of-distribution data, Kawachi, Koizumi, and Harada, 2018; Hendrycks,
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Mazeika, and Dietterich, 2018); however, in such cases, undesired biases may

be introduced.

This thesis discusses anomaly detection using only normal training data. Be-

cause the preparation of a large amount of anomalous data is difficult, train-

ing without anomalous data is a preferable approach. In this line of research,

a wide variety of methods have already been proposed based on traditional

machine learning and statistical techniques, such as one-class classification,

likelihood, nearest neighbors, and clustering. See Chandola, Banerjee, and

Kumar (2009) for a comprehensive survey of traditional approaches.

Recently, deep learning methods such as representation learning have been

successfully applied to anomaly detection without using anomalous data for

training. See Chalapathy and Chawla (2019), Ruff et al. (2021), and Pang et

al. (2021) for a comprehensive survey of the deep learning approaches. Tak-

ing advantage of the effective representation of deep learning, the features

obtained by a pre-trained model, such as VGG (Simonyan and Zisserman,

2015) and ResNet (He et al., 2016), are applied to unsupervised anomaly de-

tection (Andrews et al., 2016). Since deep generative models can learn prob-

ability distributions of normal data, they have been combined for anomaly

detection in various ways (Schlegl et al., 2017; Zenati et al., 2018; Akçay,

Atapour-Abarghouei, and Breckon, 2018; Akçay, Atapour-Abarghouei, and

Breckon, 2019; Sabokrou et al., 2018; Liu et al., 2020b; Fan et al., 2020). More

details on anomaly detection without using anomalous data for training are

presented in Chapter 3.

1.3 Research Goal

Generative models approximate the true data distribution of observed sam-

ples with probabilistic models. However, generative modeling of high-dimensional
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data distributions such as images is difficult, and generative models using

deep learning methods have been studied (Kingma and Welling, 2014; Good-

fellow et al., 2014; Rezende and Mohamed, 2015; Sohl-Dickstein et al., 2015;

LeCun and Huang, 2005; Larochelle and Murray, 2011; Song and Ermon,

2019). Due to the limited number of methods that can calculate the likeli-

hood directly (Rezende and Mohamed, 2015; Larochelle and Murray, 2011),

deep generative models are difficult to apply directly to anomaly detection,

and applied methods are developed.

Most previous anomaly detection studies using deep generative models have

taken advantage of the model characteristic of generating only normal sam-

ples (Schlegl et al., 2017; Zenati et al., 2018; Liu et al., 2020b; Fan et al., 2020).

By contrast, few have focused on generating outlier samples and adding

them to training.

In addition to the generative model network, most deep generative mod-

els use sub-networks such as an encoder and a discriminator during train-

ing, and combine the generative model network and the sub-networks for

anomaly detection. To the best of our knowledge, there is no method for

anomaly detection using only sub-networks.

The use of multiple networks increases the number of parameters and con-

sequently increases the computational cost during training and prediction.

Although there are several methods for reducing computational cost dur-

ing prediction, such as pruning (Han et al., 2015; Han, Mao, and Dally, 2016),

knowledge distillation (Hinton, Vinyals, Dean, et al., 2015; Urban et al., 2017),

and quantization (Jacob et al., 2018; Krishnamoorthi, 2018), their application

to anomaly detection using deep generative models is limited (Zhang, Chen,

and Sun, 2021). Applying these techniques after training is inefficient be-

cause it requires second steps of training to fine-tune the parameters.

Therefore, the research questions of this thesis are as follows:
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• Can outliers be generated from a generative model of normal data and

used for anomaly detection?

• Can the sub-networks used in training deep generative models be ex-

ploited for anomaly detection directly?

• Is there a more efficient way?

In this thesis, we propose a method that improves anomaly detection per-

formance by generating pseudo-anomalous data from only normal train-

ing data using Generative Adversarial Networks (GANs, (Goodfellow et al.,

2014)). Unlike the standard usage of GANs, the generator used in the pro-

posed method provides pseudo-anomalous data as well as fake-normal data,

by introducing anomalous states in the latent variable. We call this model

Anomalous Latent GAN (ALGAN). Note that the discriminator of a stan-

dard GAN is not necessarily suitable for distinguishing between normal and

anomalous data. It is trained to discriminate between real and fake data

such that in successful learning, the two classes are almost similar. By con-

trast, when training is successful, the discriminator of ALGAN distinguishes

between the group of real-normal data and the group of fake-normal and

pseudo-anomalous data.

Some state-of-the-art anomaly detection methods specialize in product ap-

pearance inspection from images. For example, DifferNet (Rudolph, Wandt,

and Rosenhahn, 2021) concatenates feature vectors from three different reso-

lution images and uses them to train a model; furthermore, PatchCore (Roth

et al., 2022) uses the hierarchical patches of features to achieve fast and ef-

fective performance. However, these methods presume a pre-trained model

and cannot be trained directly from the image data. By contrast, the proposed

ALGAN can be trained using both images and features.

The proposed ALGAN can detect anomalies using only a discriminator and
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achieves fast prediction times without using methods that reduce computa-

tional costs, which requires two stages of training. Normal training data can

be collected efficiently; however, training time increases with the amount of

training data. In addition, real-time prediction is significant in the real world

(Sabokrou et al., 2015), where the data generation speed has increased (Ah-

mad et al., 2017). Additionally, reducing computational costs will contribute

to the expansion of the application (Menghani, 2021).

The contributions of this study are as follows:

• We propose a novel method for generating pseudo-anomalous data:

adding pseudo-anomalous data to GAN training improves the anomaly

detection performance of the discriminator.

• The proposed method can be applied to both images and feature vec-

tors. Experimental results show that it achieves a state-of-the-art per-

formance compared with image-based methods and comparable ability

to feature-based methods.

• The proposed ALGAN achieved a remarkably fast prediction time, 10.4

to 54.6 times faster than other image-based methods on the benchmark

MVTec-AD dataset.

1.4 Outline

The remainder of this thesis is organized as follows: In Chapter 2, we intro-

duce the theoretical background of generative models and GANs. In Chap-

ter 3, we review relevant anomaly detection methods and explain the evalua-

tion metric for anomaly detection performance. First, likelihood-based tradi-

tional supervised and unsupervised anomaly detection are explained; then,

GAN-based anomaly detection methods and recently developed pre-trained

model’s feature-based anomaly detection methods. Third, we explain the
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evaluation metric for anomaly detection performance. In Chapter 4, we be-

gin by explaining related works using pseudo-anomalous data, which an

immature GAN generator generated or image processed (cut and pasted).

Next, we explain the proposed method details for detecting anomalies us-

ing GANs by generating pseudo-anomalous data. Moreover, we provide an

intuitive understanding of pseudo-anomalous data. In Chapter 5, firstly, we

provide the implementation details, datasets, and evaluation method. We ex-

amine the anomaly detection performances on various datasets and present

the computation time, stability, ablation study, and additional experiments

results. Secondly, we explain hyperparameter selection which cannot use

validation data or can use a small amount of validation data. Thirdly, we

evaluate the impact of differences between normal and anomalous latent

variables on anomaly detection performance. In Chapter 6, we discuss the

advantages of this study, possible future work, and conclusions.
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Chapter 2

Theoretical Background

2.1 Generative Model

A generative model is a model of the data generating process that follows a

certain probability distribution. The generative model is trained by minimiz-

ing a measure of the difference between the two distributions, which are real

and generated data. As a foundation, this section uses Kullback–Leibler (KL)

divergence, a typical divergence to measure the discrepancy, for discussion.

Let 𝑥, 𝑝𝑑𝑎𝑡𝑎 (𝑥), and 𝑝\ (𝑥) be the observed variable, the true data distribution,

and the probabilistic model, respectively. KL divergence is used to measure

similarity between the two probability distributions, and it is defined as fol-

lows:

𝐷𝐾𝐿 (𝑝𝑑𝑎𝑡𝑎 (𝑥)∥𝑝\ (𝑥)) =
∫

𝑝𝑑𝑎𝑡𝑎 (𝑥) log
𝑝𝑑𝑎𝑡𝑎 (𝑥)
𝑝\ (𝑥)

𝑑𝑥. (2.1)
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The probabilistic model is trained to minimize the KL divergence. Eq. (2.1) is

written by

𝐷𝐾𝐿 (𝑝𝑑𝑎𝑡𝑎 (𝑥)∥𝑝\ (𝑥)) =
∫

𝑝𝑑𝑎𝑡𝑎 (𝑥) log
𝑝𝑑𝑎𝑡𝑎 (𝑥)
𝑝\ (𝑥)

𝑑𝑥

=

∫
𝑝𝑑𝑎𝑡𝑎 (𝑥) log 𝑝𝑑𝑎𝑡𝑎 (𝑥)𝑑𝑥 −

∫
𝑝𝑑𝑎𝑡𝑎 (𝑥) log 𝑝\ (𝑥)𝑑𝑥

= E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝑝𝑑𝑎𝑡𝑎 (𝑥)] −E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝑝\ (𝑥)]. (2.2)

The first term of Eq. (2.2) is constant. Therefore, maximizing the second term

of Eq. (2.2) is equivalent to minimizing the KL divergence:

\∗ = arg min
\

𝐷𝐾𝐿 (𝑝𝑑𝑎𝑡𝑎 (𝑥)∥𝑝\ (𝑥))

= arg max
\

E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝑝\ (𝑥)], (2.3)

where \∗ are optimal parameters for 𝑝\ (𝑥).

The true data distribution 𝑝𝑑𝑎𝑡𝑎 (𝑥) is unknown; thus, observed variables 𝑥 are

used to approximate the expectation:

E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝑝\ (𝑥)] ≃
1
𝑁

𝑁∑︁
𝑛=1

log 𝑝\ (𝑥𝑛). (2.4)

From Eq. (2.3) and (2.4):

\∗ = arg max
\

1
𝑁

𝑁∑︁
𝑛=1

log 𝑝\ (𝑥𝑛)

= arg max
\

log
𝑁∏
𝑛=1

𝑝\ (𝑥𝑛)

= arg max
\

log 𝑝(D|\) := arg max
\

log 𝐿 (\), (2.5)

where D = {𝑥1, ..., 𝑥𝑁 } is a set of training samples from the data distribu-

tion, and 𝐿 is likelihood function. This method is known as the maximum
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likelihood estimation. To evaluate Eq. (2.5), we need to be able to express

𝑝\ (𝑥) with parameter \ explicitly (Mohamed and Lakshminarayanan, 2016;

Grover, Dhar, and Ermon, 2018).
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2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs, Goodfellow et al., 2014) are the

implicit generative model using neural networks and replace distribution

modeling with a discrimination problem: the generator 𝐺 (𝑧; \) maps latent

variables 𝑧 to the data space, and the discriminator 𝐷 (𝑥; 𝜙) distinguishes be-

tween real data 𝑥 and the generated samples 𝑥′ = 𝐺 (𝑧). The discriminator

outputs the probability of the input, and real data and generated samples are

labeled with 1 and 0, respectively. The discriminator is trained to maximize

the log-likelihoods log(𝐷 (𝑥)) and log(1 − 𝐷 (𝐺 (𝑧))). Conversely, the gener-

ator is trained to minimize log(1 − 𝐷 (𝐺 (𝑧))) to fool the discriminator. Both

network objectives are given by the following equations:

max
𝐷

𝑉 (𝐷) =
(
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log(𝐷 (𝑥))]

+E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))]
)
, (2.6)

min
𝐺
𝑉 (𝐺) =

(
E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))]

)
, (2.7)

where 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑧 denote the distributions of real data and latent variables,

respectively.

When the discriminator can no longer distinguish between real data and gen-

erated samples, the generator approximately realizes a sampler from the real

data distribution. The objective function of the GANs is obtained by combin-

ing Eq. (2.6) and (2.7) as follows:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) =
(
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log(𝐷 (𝑥))]

+E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))]
)
. (2.8)
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In Eq. (2.8), when the generator 𝑝𝑔 is fixed, the optimal discriminator 𝐷∗ is

given by

𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
. (2.9)

Substituting Eq. (2.9) into Eq. (2.8) leads to following the equation:

𝐶 (𝐺) = max
𝐷

𝑉 (𝐺,𝐷)

= E𝑝𝑑𝑎𝑡𝑎

[
log

𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

]
+E𝑝𝑔

[
log

(
1 − 𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

)]
=

∫
𝑝𝑑𝑎𝑡𝑎 log

𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
𝑑𝑥 +

∫
𝑝𝑔 log

𝑝𝑔

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
𝑑𝑥

=

∫
𝑝𝑑𝑎𝑡𝑎 log

2 · 𝑝𝑑𝑎𝑡𝑎
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

𝑑𝑥 −
∫

𝑝𝑑𝑎𝑡𝑎 log 2 𝑑𝑥

+
∫

𝑝𝑔 log
2 · 𝑝𝑔

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
𝑑𝑥 −

∫
𝑝𝑔 log 2 𝑑𝑥

=

∫
𝑝𝑑𝑎𝑡𝑎 log

2 · 𝑝𝑑𝑎𝑡𝑎
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

𝑑𝑥 +
∫

𝑝𝑔 log
2 · 𝑝𝑔

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
𝑑𝑥 − 2 log 2

=2𝐷𝐽𝑆 (𝑝𝑑𝑎𝑡𝑎∥𝑝𝑔) − 2 log 2, (2.10)

where 𝐷𝐽𝑆 is the Jensen–Shannon (JS) divergence:

𝐷𝐽𝑆 (𝑝𝑑𝑎𝑡𝑎∥𝑝𝑔) =
1
2
𝐷𝐾𝐿

(
𝑝𝑑𝑎𝑡𝑎∥

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
2

)
+ 1

2
𝐷𝐾𝐿

(
𝑝𝑔∥

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔
2

)
. (2.11)

From the above, the generator minimizes the JS divergence under the optimal

discriminator.

Given the optimal generator, the discriminator can distinguish between two

similar classes. Thus, it is nontrivial to determine whether such a discrimi-

nator is suitable for identifying real and anomalous data. When GANs are

trained on a dataset D that includes only normal data, the discriminator has

poor discrimination performance on anomalous data (Schlegl et al., 2017).

This suggests that the discrimination boundary of GANs is not specialized
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in the one-class classification of anomaly detection.



14

Chapter 3

Anomaly Detection

3.1 Traditional Approach

To begin with, we consider the case where probabilistic models are obtained

for the observed data.

3.1.1 Supervised Anomaly Detection

Let us consider the labeled data D = {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛), ..., (𝑥𝑁 , 𝑦𝑁 )} where

labels 𝑦 = 0 and 𝑦 = 1 are defined as normal and anomalous, respectively. An

anomaly detector 𝑝(𝑦 |𝑥,D) is a binary classifier trained by D. The classifier

parameter 𝑤 is expressed by the posterior distribution as follows:

𝑝(D,𝑤) = 𝑝(𝑤 |D)𝑝(D) = 𝑝(D|𝑤)𝑝(𝑤),

𝑝(𝑤 |D) = 𝑝(D|𝑤)𝑝(𝑤)
𝑝(D) , (3.1)

where 𝑝(𝑤) is the prior distribution of 𝑤.
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The likelihood and prior distribution in Eq. (3.1) can be written by:

𝑝(D|𝑤)𝑝(𝑤) = 𝑝(𝑤)
𝑁∏
𝑛=1

𝑝(𝑥𝑛, 𝑦𝑛 |𝑤)

= 𝑝(𝑤)
𝑁∏
𝑛=1

𝑝(𝑦𝑛 |𝑥𝑛,𝑤)𝑝(𝑥𝑛). (3.2)

Because the model evidence 𝑝(D) and 𝑝(𝑥𝑛) are the functions that not in-

clude 𝑤, they can be expressed as follows:

𝑝(𝑤 |D) ∝ 𝑝(𝑤)
𝑁∏
𝑛=1

𝑝(𝑦𝑛 |𝑥𝑛,𝑤). (3.3)

From the above, the classifier is obtained by:

𝑝(𝑦 |𝑥,D) =
∫

𝑝(𝑦 |𝑥,𝑤)𝑝(𝑤 |D)𝑑𝑤. (3.4)

If the classification error is minimized in supervised anomaly detection, the

decision rule is defined as follows:

if log
𝑝(𝑦 = 1|𝑥,D)
𝑝(𝑦 = 0|𝑥,D) > 0, then 𝑦 = 1, else 𝑦 = 0. (3.5)

However, in many cases 𝑝(𝑦 = 1) ≪ 𝑝(𝑦 = 0), the anomalous can be detected

hardly in this threshold. We think conditional distribution 𝑝(𝑥 |𝑦)when labels

are given. Then, a density ratio or likelihood ratio is used for anomaly score.

if log
𝑝(𝑥 |𝑦 = 1,D)
𝑝(𝑥 |𝑦 = 0,D) > 𝜏, then 𝑦 = 1, else 𝑦 = 0, (3.6)

where 𝜏 is a threshold for anomaly detection.
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3.1.2 Unsupervised Anomaly Detection

Let us consider the data D = {𝑥1, ..., 𝑥𝑁 } that are not provided labels. Then,

we assume that the provided data are not included anomalous data. We esti-

mate the probabilistic model withD, and calculate the negative log-likelihood,

so we can detect anomalous.

if − log 𝑝(𝑥 |D) > 𝜏, then 𝑦 = 1, else 𝑦 = 0, (3.7)

where 𝜏 is a threshold for anomaly detection.

3.1.3 Issues with Traditional Methods

Traditional anomaly detection methods may not be able to handle large amounts

of data or high-dimensional data. For example, probabilistic methods such as

kernel density estimation (KDE) (Rosenblatt, 1956; Parzen, 1962) and Gaus-

sian mixture model (GMM) are difficult to apply to high-dimensional data

because it is difficult to estimate high-dimensional probability distributions.

Distance-based methods such as k-nearest neighbors, k-means (MacQueen,

1967), and local outlier factor (LOF) (Breunig et al., 2000) suffer from the curse

of dimensionality. In contrast, one-class support vector machines (OC-SVM)

(Schölkopf et al., 2001) face the problem of computational costs as data vol-

ume increases.

In recent years, deep learning that can efficiently learn from large amounts

of data has been applied to anomaly detection (Chalapathy and Chawla,

2019; Ruff et al., 2021; Pang et al., 2021). Generative models based on deep

learning have made it possible to handle probability distributions of high-

dimensional data. Feature representations obtained by deep learning over-

come the curse of dimensionality and are combined with traditional meth-

ods. Section 3.2 presents the former deep generative model, while Section 3.3
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presents the latter combination of the feature representation from deep learn-

ing and traditional methods.

3.2 GAN-Based Anomaly Detection

G D
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FIGURE 3.1: Overviews of AnoGAN and Efficient GAN-based
Anomaly Detection (EGBAD). (a) AnoGAN is trained by only
normal data with standard GAN training procedure. The la-
tent variable 𝑧 corresponding to given test data 𝑥 is estimated
for anomaly detection. (b) EGBAD is trained using only normal
data in the manner of BiGAN. The Encoder 𝐸 estimates the la-

tent variable 𝑧 corresponding to given test data 𝑥.

Anomaly detection methods using GANs can be divided into two categories:

those using reconstruction errors and those using one-class classifiers. In

early studies (Schlegl et al., 2017; Zenati et al., 2018), the latent variable cor-

responding to given test data was estimated, and the reconstruction error of

the image generated from the latent variable was used as the anomaly score.

AnoGAN (Schlegl et al., 2017) is the earliest method for anomaly detection

using GANs. The generator 𝐺 and the discriminator 𝐷 are trained by only

normal data with standard GAN training procedure. The latent variable 𝑧

corresponding to given test data 𝑥 is estimated for anomaly detection. The

latent variable is iteratively updated by a gradient descent method with the

loss function consisting of image reconstruction error and the discriminator’s
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FIGURE 3.2: Overviews of GANomaly and Skip-GANomaly.
(a) GANomaly uses two encoders that estimate the latent vari-
ables of the input and generated images and detects anomalies
using the reconstruction error between the two latent variables.
(b) Skip-GANomaly is an improvement that employs U-Net ar-
chitecture for the GANomaly’s generator and detects anomalies
using the reconstruction error and the features extracted from

the middle layer of the discriminator.

intermediate feature,

𝑙𝑜𝑠𝑠 = (1 − _) ∥𝑥 − (𝐺 (𝑧))∥1 + _ ∥ 𝑓𝐷 (𝑥) − 𝑓𝐷 (𝐺 (𝑧))∥1 , (3.8)

where _ and 𝑓𝐷 (·) denote the coefficient of weighted sum and the discrimi-

nator’s intermediate feature, respectively. The loss function (3.8) is used as

the anomaly score.

Efficient GAN-based Anomaly Detection (EGBAD) (Zenati et al., 2018) uses

an architecture like BiGAN (Donahue, Krähenbühl, and Darrell, 2017; Du-

moulin et al., 2017) to estimate latent variables using an encoder (Fig. 3.1

(b)). In preparation for anomaly detection, the three networks, the generator

𝐺, the discriminator 𝐷, and the encoder 𝐸 , are trained in the manner of Bi-

GAN with only normal data. The function 𝐴 (3.9), similar to AnoGAN’s loss

function (3.8), is used as the anomaly score.

𝐴 = (1 − _) ∥𝑥 −𝐺 (𝐸 (𝑥))∥1 + _ ∥ 𝑓𝐷 (𝑥) − 𝑓𝐷 (𝐺 (𝐸 (𝑥)))∥1 . (3.9)
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GANomaly (Akçay, Atapour-Abarghouei, and Breckon, 2018) uses two en-

coders that estimate the latent variables of input and generated images. Anomaly

detection is performed using the reconstruction error between the two latent

variables (Fig. 3.2 (a)).

The generator of GANomaly consists of the encoder 𝐺𝐸 and the decoder 𝐺𝐷

that encodes image 𝑥 into latent 𝑧, and the latent is reconstructed into image

𝑥. The reconstructed image is again encoded latent 𝑧 by the encoder 𝐸 . After

the training is finished, anomaly detection is performed using the following

anomaly score 𝐴,

𝐴 = ∥𝐺𝐸 (𝑥) − 𝐸 (𝐺𝐷 (𝐺𝐸 (𝑥)))∥2 . (3.10)

Skip-GANomaly (Akçay, Atapour-Abarghouei, and Breckon, 2019) is an im-

provement that employs U-Net (Ronneberger, Fischer, and Brox, 2015) archi-

tecture for the encoder–decoder of GANomaly’s generator. The generator

is trained to reconstruct training data containing only normal data, and the

discriminator is trained to distinguish between the training data and the re-

constructed data. The anomaly score 𝐴 is calculated using the reconstruction

error and the features extracted from the middle layer of the discriminator,

𝐴 = _ ∥𝑥 −𝐺𝐷 (𝐺𝐸 (𝑥))∥1 + (1 − _) ∥ 𝑓𝐷 (𝑥) − 𝑓𝐷 (𝐺𝐷 (𝐺𝐸 (𝑥)))∥2 . (3.11)

Adversarially Learned One-Class Classifier (ALOCC) (Sabokrou et al., 2018)

exploits reconstructed data and performs anomaly detection with the one-

class classification. An encoder–decoder trained only on normal training

data can reconstruct normal data but may not be able to reconstruct anoma-

lous data successfully. The generator consisting of the encoder–decoder is

trained to reconstruct normal data, and the discriminator learns to discrim-

inate between the training and reconstruction data. The training procedure
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FIGURE 3.3: Overview of Adversarially Learned One-Class
Classifier (ALOCC). The ALOCC performs anomaly detection
using the discriminator. An encoder–decoder trained only on
normal training data may not be able to reconstruct anomalous
data successfully. The reconstruction test data is input to the

discriminator, and the output is used as an anomaly score.

follows standard GANs procedures. During testing, the test data are input

to the generator; the output reconstruction data is input to the discriminator.

The discriminator’s output is used as an anomaly score for anomaly detec-

tion.

𝐴 = −𝐷 (𝐺𝐷 (𝐺𝐸 (𝑥))). (3.12)

However, these methods fail to detect anomalies when data reconstruction is

successful. By contrast, the proposed method does not depend on the recon-

struction error and discriminates directly.

3.3 Anomaly Detection with Pre-Trained Models

Remarkable performance has been demonstrated in a recent work (Bergman,

Cohen, and Hoshen, 2020) in which feature representations were exploited

from pre-trained models on the ImageNet dataset (Deng et al., 2009).

Mahalanobis-AD (Rippel, Mertens, and Merhof, 2021) performs image-level

anomaly detection that an image is normal or anomalous. The hierarchical
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FIGURE 3.4: Feature extraction overview of Mahalanobis-
AD. Mahalanobis-AD extracts features from EfficientNet and
average-pooling is applied to the extracted features. The mean
vector ` ∈ R𝐶 and the covariance matrix Σ ∈ R𝐶×𝐶 are calcu-
lated between the average-pooled features of all training data,
where 𝐶 ⊆ {𝐶1,𝐶2,𝐶3,𝐶4} can be chosen arbitrarily and con-

catenated if multiple.

features of normal data are extracted from pre-trained EfficientNet (Tan and

Le, 2019) and applied average pooling to each channel (Fig. 3.4). The mean

vector ` and the covariance matrix Σ on each channel’s feature are calculated

using normal training data. The anomaly score 𝐴 is calculated with Maha-

lanobis distance between multivariate normal distribution 𝑁 (`,Σ) and hier-

archical features of test data 𝑓𝑎𝑣𝑔 (𝑥) which applied average pooling to each

channel.

𝐴 =

√︃
( 𝑓𝑎𝑣𝑔 (𝑥) − `)𝑇Σ−1( 𝑓𝑎𝑣𝑔 (𝑥) − `). (3.13)

PaDiM (Defard et al., 2021) extends Mahalanobis-AD for pixel-level anomaly

detection using hierarchical features separated into patches (Fig. 3.5). Similar

to Mahalanobis-AD, the mean vectors `𝑖, 𝑗 and the covariance matrices Σ𝑖, 𝑗 on
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FIGURE 3.5: Feature extraction overview for PaDiM, SPADE,
and PatchCore. The features extracted from the pre-trained
model are upsampled to the same dimensions and concate-
nated. The mean vectors `𝑖, 𝑗 ∈ R𝐶 and the covariance matrices
Σ𝑖, 𝑗 ∈ R𝐶×𝐶 are calculated between the features of all train-
ing data, where 𝐶 ⊆ {𝐶1,𝐶2,𝐶3,𝐶4} can be chosen arbitrarily
and concatenated if multiple. PatchCore applies 3 × 3 average-
pooling in [1, 1] strides for the feature maps before upsampling

to reduce a position sensitivity.

each channel’s feature are calculated on each position using normal training

data, where (𝑖, 𝑗) ∈ [1,𝐻] × [1,𝑊] and 𝐻 ×𝑊 denote positions on the feature

map and the feature map resolution. The anomaly score on each position

𝐴𝑖, 𝑗 is calculated with Mahalanobis distance between multivariate normal

distribution 𝑁 (`𝑖, 𝑗 ,Σ𝑖, 𝑗 ) and hierarchical features of test data 𝑓 (𝑥𝑖, 𝑗 ).

𝐴𝑖, 𝑗 =

√︃
( 𝑓 (𝑥𝑖, 𝑗 ) − `𝑖, 𝑗 )𝑇Σ−1

𝑖, 𝑗 ( 𝑓 (𝑥𝑖, 𝑗 ) − `𝑖, 𝑗 ). (3.14)
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SPADE (Cohen and Hoshen, 2020) also performs pixel-level anomaly detec-

tion using hierarchical features separated into patches (Fig. 3.5), but SPADE

uses k-nearest neighbors, whereas Mahalanobis-AD and PaDiM use Maha-

lanobis distance. The memory bank of training data 𝑀𝑖, 𝑗 is created using hi-

erarchical features on each position. K-nearest neighbor distances calculated

between the memory bank and test data features are used to the anomaly

score according to the following equation,

𝐴𝑖, 𝑗 =
1
𝑘

𝑘∑︁
𝑛=1

∥𝑀𝑛
𝑖, 𝑗 − 𝑓 (𝑥𝑖, 𝑗 )∥2. (3.15)

PatchCore (Roth et al., 2022) subsamples the hierarchical features memory

bank of training data and achieves high performance and fast prediction us-

ing k-nearest neighbors (Fig. 3.5). The maximum distance among the 𝑘 sam-

ples selected from the memory bank is used as the anomaly score,

𝐴𝑖, 𝑗 = ∥𝑀∗𝑖, 𝑗 − 𝑓 (𝑥𝑖, 𝑗 )∥2, (3.16)

where 𝑀∗
𝑖, 𝑗 denotes the maximum distance patch of the hierarchical features

in the memory bank.

DifferNet (Rudolph, Wandt, and Rosenhahn, 2021) uses a flow-based model

(Dinh, Sohl-Dickstein, and Bengio, 2017), which is typically computation-

intensive because each layer is the same as the dimensions of input data.

Therefore, pre-trained model features are utilized to reduce data dimension-

ality. The flow-based model can directly calculate likelihood, which is used

for anomaly score.

𝐴 = − log 𝑝𝑧 ( 𝑓𝑁𝐹 ( 𝑓 (𝑥))), (3.17)
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FIGURE 3.6: Feature extraction overview of DifferNet. Differ-
Net extracts features from the last block of AlexNet on three
different resolution images, and average-pooling is applied to
the three extracted features. The three extracted features are
concatenated and inputted into a flow-based model, where

the concatenated feature ∈ R3×𝐶 .

where 𝑓𝑁𝐹 and 𝑝𝑧 (𝑧) denote the flow-based model and a well-defined distri-

bution.

Most of these methods use traditional anomaly detection techniques that re-

quire the use of features, and cannot use images directly for training. By

contrast, the proposed method can use both types of training data.

3.4 Evaluation Metric

In anomaly detection, the performance is evaluated commonly in terms of

the area under the receiver operating characteristic (AUROC) curve, which is

obtained by moving the classification threshold for the ratio of true-positive

and false-positive rates.
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The true-positive rate (𝑇𝑃𝑅) and false-positive rate (𝐹𝑃𝑅) are defined as fol-

lows:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , (3.18)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 , (3.19)

where 𝑇𝑃, 𝐹𝑁 , 𝑇𝑁 , and 𝐹𝑃 mean true positive, false negative, true negative,

and false positive, respectively.

If the result is by chance, then AUROC is 0.5; if positive and negative can be

completely separated, then AUROC is 1.
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Chapter 4

Generating Pseudo Anomalous

Data

4.1 Overview

Fig. 4.1 illustrates the training procedure of our proposed ALGAN. The gen-

erator is trained in the same manner as in standard GANs. Two additional

data types are employed to train the discriminator. One of the data types

is generated from the anomalous latent variable, and the other is a buffer of

data generated during the training process. The buffer size is twice as large

as the training data, and in each epoch, a portion of the old buffer is replaced

with newly generated data.
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FIGURE 4.1: Overview of ALGAN training. (a) Procedure for
training the discriminator 𝐷 with real-normal data 𝑥 (black),
latent variables 𝑧𝑛 ∼ 𝑁 (0, 𝐼) (blue), anomalous latent vari-
ables 𝑧𝑎 ∼ 𝑁 (0,𝜎2𝐼) (red), fake-normal data 𝑥′𝑛 (blue), fake-
anomalous data 𝑥′𝑎 (red), buffered fake-normal data 𝑥𝑛 (blue),
and buffered fake-anomalous data 𝑥𝑎 (red). (b) Procedure for

training the generator 𝐺.
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4.2 Related Work

4.2.1 Pseudo-Anomalous Data

RealLatent variables Fake data
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FIGURE 4.2: Overview of G2D training. (a) GANs are
trained using only normal training data 𝑥, and the generators
{𝐺1,𝐺2, ...,𝐺𝑛} are saved during training. (b) The saved gen-
erators produce immature samples, which are used as pseudo-

anomalous data for anomaly detector 𝐶 training.

Some methods consider the generation of pseudo-anomalous data. Data im-

maturely generated during the training process of GANs have been used as

pseudo-anomalous data for training (Chatillon and Ballester, 2020; Zaheer et

al., 2020; Pourreza et al., 2021). G2D (Pourreza et al., 2021) and history-based

anomaly detector (Chatillon and Ballester, 2020) save generators during the

training process, and the saved generators generate immature samples for

the anomaly detector training (Fig. 4.2).

In CutPaste (Li et al., 2021), patches of random sizes and angles are cut out

from an image and randomly pasted onto the image. The classifier is trained

either from scratch or fine-tuned using normal and pseudo-anomalous data.
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FIGURE 4.3: Overview of CutPaste training. The classifier used
for feature extraction is trained by normal training data and cut-
pasted pseudo-anomalous data. Pseudo-anomalous data are
created by image processing. Patches of random sizes and an-
gles are cut out from an image and randomly pasted onto the

image.

The feature representation by the classifier is then used to calculate the anomaly

score based on the Gaussian density assumption, as introduced in Section 3.3.

The proposed method generates pseudo-anomalous data by introducing anoma-

lous states into latent variables other than using data generated by an imma-

ture generator. Furthermore, it is less biased than techniques that generate

pseudo-anomalous data using prior knowledge like image processing.

4.3 Proposed Method for Generating Pseudo

Anomalous Data

We introduce two types of pseudo-anomalous data for training. They are in

addition to the 𝑥 and 𝑥′𝑛 = 𝐺 (𝑧𝑛) used in the standard GANs described in

Section 2.2, where 𝑥, 𝑥′𝑛, and 𝑧𝑛 are defined as real-normal data, fake-normal

data, and latent variables from 𝑁 (0, 𝐼), respectively.

The first type of pseudo-anomalous data is called fake-anomalous data. AL-

GAN utilizes the anomalous latent variables 𝑧𝑎 ∼ 𝑁 (0,𝜎2𝐼) with a larger

variance (𝜎 > 1) to generate fake-anomalous data 𝑥′𝑎 = 𝐺 (𝑧𝑎). See Fig. 4.4 for
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FIGURE 4.4: Images generated by ALGAN-image. Top row:
Fake-normal data from normal latent variables 𝑁 (0, 𝐼). Bot-
tom row: Fake-anomalous data from anomalous latent vari-

ables 𝑁 (0,𝜎2𝐼), where 𝜎 = 4.

examples of fake-anomalous data. The fake-anomalous images are slightly

degraded compared with the fake-normal images.

The other type of pseudo-anomalous data is called buffered data 𝑥 = {𝑥𝑛, 𝑥𝑎},

which are defined as generated samples during the early stage of the train-

ing process. These are expected to differ from the real-normal data. During

training, the fake samples 𝑥′ = {𝑥′𝑛, 𝑥′𝑎} are stored and used as buffered data.

4.4 Training Methodology

The discriminator is trained to maximize log-likelihoods log(𝐷 (𝑥)), log(1 −

𝐷 (𝑥′)), and log(1 − 𝐷 (𝑥)) to distinguish real-normal data 𝑥 from other data.

Conversely, the generator is trained to generate fake-normal data from 𝑧𝑛,

and minimize log-likelihood log(1−𝐷 (𝐺 (𝑧𝑛))) to fool the discriminator. Both

network objectives are given by the following equations:

max
𝐷

(
E𝑥 [log(𝐷 (𝑥))] + bE𝑧𝑛 [log(1 − 𝐷 (𝑥′))]

+ (1 − b)E𝑧𝑛 [log(1 − 𝐷 (𝑥))]
)
, (4.1)

min
𝐺

(
E𝑧𝑛 [log(1 − 𝐷 (𝐺 (𝑧𝑛)))]

)
, (4.2)
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where b is the ratio of generated data to buffered data. Let 𝛼 be the ratio of

fake-normal data to fake-anomalous data; then, the objective of the discrimi-

nator is given by the following equation:

max
𝐷

(
E𝑥 [log(𝐷 (𝑥))]+𝛼{bE𝑧𝑛 [log(1 − 𝐷 (𝑥′𝑛)]

+(1 − b)E𝑥𝑛 [log(1 − 𝐷 (𝑥𝑛))]}

+(1 − 𝛼){bE𝑧𝑎 [log(1 − 𝐷 (𝑥′𝑎))]

+(1 − b)E𝑥𝑎 [log(1 − 𝐷 (𝑥𝑎))]}
)
. (4.3)

Thus, the discriminator of ALGAN learns the discrimination boundary be-

tween real-normal data and the other types of data. The objective function of

ALGAN is obtained by combining Eq. (4.2) and (4.3) as follows:

min
𝐺

max
𝐷

(
E𝑥 [log(𝐷 (𝑥))]+𝛼{bE𝑧𝑛 [log(1 − 𝐷 (𝐺 (𝑧𝑛)))]

+(1 − b)E𝑥𝑛 [log(1 − 𝐷 (𝑥𝑛))]}

+(1 − 𝛼){bE𝑧𝑎 [log(1 − 𝐷 (𝑥′𝑎))]

+(1 − b)E𝑥𝑎 [log(1 − 𝐷 (𝑥𝑎))]}
)
. (4.4)

The proposed method follows an adversarial training procedure (Fig. 4.1). It

provides a discrimination boundary not only for the real-normal and fake-

normal data but also for the real-normal and pseudo-anomalous data, the

latter of which has a broader support of the distribution. As the training pro-

gresses, the generator produces samples that resemble real-normal data, and

the discriminator cannot distinguish between real-normal and fake-normal

data. The pseudo-anomalous data are clearly different from the real-normal

data; therefore, the discrimination boundary of the discriminator is used to

classify them.
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Algorithm 1 Training algorithm of ALGAN.
Notation: Number of batches, 𝑚; latent variables for 𝐷, 𝑧𝑑 ; latent variables
for 𝐺, 𝑧𝑔.
Hyperparameters: Training epochs (𝑒), update frequency of latent vari-
ables (𝑛𝑧), ratio of normal and anomalous latent variables (𝛼), stan-
dard deviation of anomalous latent (𝜎), and number of updates for 𝐷

(𝑛𝑑𝑖𝑠).
1: for 𝑖 = 1, · · · , 𝑒 do
2: if 𝑖 mod 𝑛𝑧 = 0 then
3: Sample 𝑧𝑑 ∼ 𝛼𝑁 (0, 𝐼) and (1 − 𝛼)𝑁 (0,𝜎2𝐼)
4: Sample 𝑧𝑔 ∼ 𝑁 (0, 𝐼)
5: end if
6: for 𝑗 = 1, · · · ,𝑚 do
7: Sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎
8: for 𝑘 = 1, · · · , 𝑛𝑑𝑖𝑠 do
9: 𝑥′← 𝐺\ (𝑧𝑑)

10: if 𝑖 = 1 then
11: 𝐿𝑜𝑠𝑠𝐷 ← 𝐷𝜙 (𝑥) + 𝐷𝜙 (𝑥′)
12: else
13: Sample buffered data 𝑥 ∼ Buffer
14: 𝐿𝑜𝑠𝑠𝐷 ← 𝐷𝜙 (𝑥) + 𝐷𝜙 (𝑥′) + 𝐷𝜙 (𝑥)
15: end if
16: 𝜙← 𝐴𝑑𝑎𝑚(𝐿𝑜𝑠𝑠𝐷 , 𝜙)
17: end for
18: Buffer← 𝑥′

19: 𝐿𝑜𝑠𝑠𝐺 ← 𝐷𝜙 (𝐺\ (𝑧𝑔))
20: \ ← 𝐴𝑑𝑎𝑚(𝐿𝑜𝑠𝑠𝐺 , \)
21: end for
22: end for
23: return 𝐷𝜙,𝐺\
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FIGURE 4.5: Intuitive interpretation of fake-anomalous data
in the toy problem: fake-anomalous data are added to train-
ing GANs that map 100-dimensional latent variables to 2-
dimensional normal distribution. (a) Fake-anomalous data 𝑥′𝑎
(red) generated by 𝜎 = 4 are distributed to surround the fake-
normal data 𝑥′𝑛 (green). (b) Real-normal data 𝑥 (blue) are over-
laid on the left figure. From the figure, it can be seen that
the generator has been trained successfully and has generated
fake-normal data that approximate the real-normal data dis-
tribution. Thus, the discriminator cannot distinguish between
the real-normal and fake-normal data. By contrast, the fake-
anomalous data can be properly distinguished by adjusting the
discrimination threshold because they are distributed outside.

The pseudo-code for training is presented in Algorithm 1. A feature of AL-

GAN training is the method for updating the parameter 𝜙 of the discrimi-

nator. In line 3 of the pseudo-code, normal and anomalous latent variables

are sampled, and in line 9, fake-normal and fake-anomalous data are pro-

duced from the generator. In line 11, loss is calculated by identifying both

types of data, and in line 16, the parameter 𝜙 of the discriminator is updated.

Fake-normal and fake-anomalous data are buffered in line 18. As there are

no buffered data in the first epoch, the conditional branch for 𝑖 = 1 is required

in line 10. The loss of buffered data is calculated in addition to fake-normal

and fake-anomalous data in line 14 after the branch. The parameter \ of the

generator is updated by only fake-normal data from normal latent variables

in lines 4, 19, and 20.
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Fig. 4.5 provides an intuitive understanding of the training for anomaly de-

tection using fake-anomalous data. The generator is trained to produce fake-

normal data that approximate the distribution of real-normal data. Given

anomalous latent variables, the generator produces fake-anomalous data with

a large variance. The discriminator is trained to distinguish between real-

normal data and the other types of data. Even after real-normal and fake-

normal data become indistinguishable, fake-anomalous data can be identi-

fied because the discrimination boundary is laid between real-normal and

fake-anomalous data.
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Chapter 5

Experiments

An advantage of ALGAN is that it can be used for both the images and

features extracted from a pre-trained model, whereas some state-of-the-art

methods for visual inspection depend on features (Cohen and Hoshen, 2020;

Defard et al., 2021; Roth et al., 2022; Rudolph, Wandt, and Rosenhahn, 2021).

To demonstrate this advantage experimentally, we used two different types

of implementations. We call them ALGAN-image and ALGAN-feature, and

compare them with the relevant methods.

5.1 Implementation Details

5.1.1 Network Architecture and Hyperparameter

ALGAN-image employs an architecture similar to that of DCGAN (Radford,

Metz, and Chintala, 2016). The generator and discriminator use seven trans-

posed convolutional and convolutional layers, respectively.

For ALGAN-feature, WideResNet101 (Zagoruyko and Komodakis, 2016) is

applied to the feature extractor to obtain 2048-dimensional vectors from the

last block with global average pooling (in Fig. 5.1). Both the generator and

discriminator have three fully connected layers.
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FIGURE 5.1: Feature extraction overview of ALGAN-feature.
ALGAN-feature extracts features from the last block of
WideResNet-101 and average-pooling is applied to the ex-
tracted features. Difference from DifferNet, ALGAN-feature

uses a single resolution image feature ∈ R𝐶 .

In both architectures, the generator uses batch normalization (Ioffe and Szegedy,

2015) and the ReLU activation function (Nair and Hinton, 2010), whereas

batch normalization is removed from the output layer. The discriminator

employs spectral normalization (Miyato et al., 2018) and the Leaky-ReLU ac-

tivation function (Maas, Hannun, and Ng, 2013).

The networks were optimized using Adam (Kingma and Ba, 2015) with mo-

mentum 𝛽1 = 0 and 𝛽2 = 0.9, and the learning rates of the generator and

discriminator were set to 2 × 10−4 and 1 × 10−4, respectively. The latent vari-

able 𝑧 had 100 dimensions, and the standard deviation of the anomalous la-

tent variable used 𝜎 = 4. The parameters that determine the ratio of the

pseudo-anomalous data were set to 𝛼 = 0.75 and b = 0.75. The parameters of

Algorithm 1 were set as 𝑛𝑧 = 2 and 𝑛𝑑𝑖𝑠 = 2. The buffer holds twice the batch

size, half of which is randomly replaced by newly generated data.
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The comparison methods were implemented using a DCGAN-like architec-

ture similar to ALGAN-image. In GANomaly (Akçay, Atapour-Abarghouei,

and Breckon, 2018) and Skip-GANomaly (Akçay, Atapour-Abarghouei, and

Breckon, 2019), the dimensions of the latent variables were set to 100 and 512,

respectively. The image resolution used for each method was 256 × 256. All

the models were trained using a batch size of 16.

5.1.2 Software and Hardware

All the models were implemented using Python 3.8.8 and PyTorch 1.8.1 on

Ubuntu 20.04 LTS. An AMD EPYC 7542 32-core processor with 512 GB mem-

ory and an NVIDIA A100-SXM4 40 GB GPU were used for the computations.



Chapter 5. Experiments 38

5.2 Datasets

For performance evaluation, we used three different datasets.

5.2.1 MVTec-AD Dataset
Hazelnut Pill Tile ZipperMetal nut Screw
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FIGURE 5.2: Overview of the expmerimental dataset: MVTec-
AD dataset. Top row: Normal data. Bottom row: Anomalous

data.

This dataset, designed for visual inspection, consists of 5,354 images, com-

prising five texture and 10 object categories (Bergmann et al., 2019b). The

training set contains 3,629 defect-free (normal) images, and the test set con-

tains 467 defect-free (normal) images and 1,258 defective (anomalous) images

(Fig. 5.2, Table 5.1).

5.2.2 Magnetic Tile Defects Dataset (MTD)

This dataset consists of grayscale images with different aspect ratios, includ-

ing 952 defect-free (normal) images and 392 images containing five defect

types (anomalous) (Huang, Qiu, and Yuan, 2020) (Fig. 5.3).

5.2.3 COIL-100 Dataset

This dataset contains 100 different object categories and 7,200 images (Nene,

Nayar, Murase, et al., 1996). Each object category has 72 images rotated every

5◦ (Fig. 5.3).
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TABLE 5.1: Details of MVTec-AD Dataset. First column: cate-
gory name. Second column: number of normal training data.
Third column: number of normal test data. Fourth column:

number of anomalous test data.

Train (normal) Test (normal) Test (anomalous)

Carpet 280 28 89
Grid 264 21 57
Leather 245 32 92
Tile 230 33 84
Wood 247 19 60
Bottle 209 20 63
Cable 224 58 92
Capsule 219 23 109
Hazelnut 391 40 70
MetalNut 220 22 93
Pill 267 26 141
Screw 320 41 119
Toothbrush 60 12 30
Transistor 213 60 40
Zipper 240 32 119

Total 3629 467 1258

Free (Normal) Blowhole (Anomalous) Break (Anomalous)

Crack (Anomalous) Fray (Anomalous) Uneven (Anomalous)

Object 74

Object 16

Object 14

(a) (b)

FIGURE 5.3: Overview of the experimental datasets. (a) Mag-
netic Tile Defects dataset (MTD); (b) Columbia University Im-

age Library dataset (COIL-100)
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5.2.4 Splitting into Training and Validation Sets

Because the training sets of MVTec-AD and MTD contain no defective (anoma-

lous) images, 50% of their respective test sets was used as the validation set,

which was used as the stopping rule.

In MTD, the test set is not provided separately from the training data; there-

fore, 50%, 25%, and 25% of the defect-free (normal) images were used for

training, validation, and testing, respectively.

For COIL-100, 10 categories were selected for normal data and the remain-

ing 90 categories for anomalous data. We used 60%, 20%, and 20% of the

normal data for training, validation, and testing, respectively, and 50% of the

anomalous data were used for validation and 50% for testing.

5.2.5 Pre-Processing and Data Augmentation

In MVTec-AD using ALGAN-image, images were resized to 256 × 256. To

highlight defects, two images were concatenated with the original image and

used as an input image: one was created with max pooling and the other with

average pooling in the channel axis dimension. For the texture categories,

vertical and horizontal flips were applied (however, only horizontal flip was

applied for wood). In the object categories, vertical flip, horizontal flip, and

random rotation were applied to Bottle and Hazelnut. Horizontal flip was

applied to Toothbrush, Transistor, and Zipper. Toothbrush was converted

into grayscale. Random rotation was applied to Metal nut and Screw. Cable,

Capsule, and Pill were only resized.

In MVTec-AD using ALGAN-feature, the texture categories were resized to

224 × 224. Furthermore, the object categories were resized to 256 × 256, and

then center-cropped to 224 × 224. Following Rudolph, Wandt, and Rosen-

hahn (2021)’s procedure, we applied 24 and 64 different angular rotations
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during training and prediction, respectively, but using a single-resolution im-

age.

The images in MTD and COIL-100 were resized to 256 × 256 for ALGAN-

image and 224 × 224 for ALGAN-feature. For ALGAN-image, a horizontal

flip was applied, and for ALGAN-feature, Rudolph, Wandt, and Rosenhahn

(2021)’s procedure was applied for both training and prediction.

5.3 Evaluation Method and Metric

In ALGAN, the real and fake labels are assigned probability 1 and 0, respec-

tively. The real label corresponds to normal data; thus, the anomaly detection

rule is given by the following:

ALGAN(𝑥) =


Normal, if 𝐷 (𝑥) > threshold,

Anomalous, otherwise.
(5.1)

Because the significance of false positives or false negatives depends on their

application, the threshold is chosen by the user.

Accounting for the randomness of the dataset split, we performed 10 exper-

iments with different seed values for each dataset. Performance was evalu-

ated in terms of the area under the receiver operating characteristic (AUROC)

curve.

ALGAN-image was trained on 512 epochs and ALGAN-feature on 192 epochs.

The performances were validated every eight epochs on the validation set,

and the model that showed the best AUROC was saved. The best model was

evaluated on the test set after training.

The image-based methods GANomaly, Skip-GANomaly, and ALOCC, were

trained on 512 epochs and validated every eight epochs as in ALGAN-image.
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The feature-based method, DifferNet, was trained on 192 epochs and vali-

dated every eight epochs, as in ALGAN-feature. The model that showed the

best AUROC in the validation set was saved, and the test set was evaluated

after training.

5.4 Results

5.4.1 Anomaly Detection on MVTec-AD

Training with Image Data

The results on the test data with the model with the best AUROC for vali-

dation (Section 5.3) are listed in Table 5.2. ALGAN-image significantly out-

performed other state-of-the-art image-based methods, such as GANomaly,

Skip-GANomaly, and ALOCC. ALGAN-image showed an average accuracy

of more than 10% compared with the others and attained the best accuracy

for 13 out of the 15 categories.

Our method uses the discriminator to distinguish between normal and anoma-

lous directly from the images. In the Hazelnut and Screw categories, the ro-

tation angle of the object is different in each image. Thus, small changes in

image details caused by slight defects may be buried by large changes in the

image caused by rotation. Consequently, the anomalous data detection per-

formance could not be better than that of the comparison methods in these

categories.

Because the comparison methods use reconstruction error, they fail to detect

anomalous data if the reconstruction is successful. By contrast, our proposed

method, ALGAN-image, uses the discriminator to classify the data and does

not suffer from detection errors due to reconstruction.
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TABLE 5.2: Results obtained on MVTec-AD. ALGAN-image is
compared with methods trained on image data. Top row: mean
AUROC. Bottom row: standard deviation. We report the results
of 10 experiments using each method. The best performance for

each category is indicated in boldface.

GANomaly
Skip-

GANomaly ALOCC
ALGAN
-image

Carpet
0.803 0.829 0.736 0.846
0.070 0.056 0.054 0.041

Grid
0.924 0.816 0.847 0.938
0.088 0.079 0.087 0.057

Leather
0.796 0.787 0.768 0.920
0.079 0.095 0.042 0.041

Tile
0.852 0.941 0.648 0.914
0.034 0.041 0.071 0.034

Wood
0.939 0.969 0.849 0.972
0.029 0.020 0.062 0.022

Bottle
0.704 0.674 0.801 0.948
0.063 0.096 0.075 0.024

Cable
0.686 0.636 0.686 0.877
0.057 0.064 0.053 0.036

Capsule
0.717 0.691 0.707 0.805
0.075 0.068 0.073 0.083

Hazelnut
0.765 0.955 0.697 0.836
0.058 0.036 0.111 0.047

Metal nut
0.698 0.553 0.771 0.811
0.064 0.105 0.066 0.060

Pill
0.772 0.787 0.659 0.819
0.050 0.083 0.043 0.053

Screw
0.567 1.000 0.938 0.811
0.357 0.001 0.076 0.090

Toothbrush
0.774 0.808 0.778 0.933
0.098 0.084 0.102 0.048

Transistor
0.783 0.769 0.745 0.865
0.067 0.094 0.085 0.074

Zipper
0.693 0.675 0.656 0.879
0.052 0.070 0.079 0.025

mean 0.765 0.793 0.752 0.878
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Training with Pre-Trained Features

The results for the feature-based methods are listed in Table 5.3. The re-

sults for DifferNet are the means of 10 different test datasets (see Section 5.3).

The results for GANomaly were obtained from Rudolph, Wandt, and Rosen-

hahn (2021) and the other methods from their respective papers (Cohen and

Hoshen, 2020; Rippel, Mertens, and Merhof, 2021; Defard et al., 2021; Li et

al., 2021; Roth et al., 2022). ALGAN-feature achieved results comparable to

those of DifferNet, whereas PatchCore-25, PaDiM, and CutPaste achieved

better performance. Note, however, that the PatchCore, PaDiM, and Cut-

Paste methods are strongly specialized for pre-trained features.

ALGAN-feature and DifferNet use only a single feature from the last layer of

the pre-trained model; better performing methods use features from multiple

layers. Using features from multiple layers increases the computational costs

owing their high dimensionality. For example, PatchCore (Roth et al., 2022)

divides high-dimensional features into patches and subsamples them to se-

lect useful patches, which results in much higher computational costs. The

prediction time is also longer than that of ALGAN-feature (see Section 5.4.3).

Furthermore, DifferNet (Rudolph, Wandt, and Rosenhahn, 2021) concate-

nates features from three different image resolutions, whereas our proposed

method, ALGAN-feature, achieves comparable performance with only one

resolution.
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5.4.2 Anomaly Detection on Other Datasets

The results obtained on MTD and COIL-100 are listed in Tables 5.4 and 5.5,

respectively. These are the means of 10 trials with the same hyperparame-

ters as those used for MVTec-AD. ALGAN-image achieved state-of-the-art

performance on MTD after training with image data and achieved compara-

ble results to that of PatchCore. On MTD, ALGAN-feature performed worse

than ALGAN-image. This may be because the features useful for anomaly

detection could not be extracted from the last block of WideResNet-101. Be-

cause the features from the deep block in ResNet are biased towards Ima-

geNet (Roth et al., 2022), the features from the shallow block should be used

to identify the more abstract features required for MTD. GANomaly-features,

which extracted features from the last block of the same WideResNet-101, did

not perform well the same as ALGAN-features. On the other hand, Patch-

Core, which performed well, used shallow 2- and 3-block features close to

the input of WideResNet-50. Because DifferNet used three types of last layer

features (448, 224, and 112 pixels) of AlexNet, which has fewer convolutional

layers, the 448-pixel features are considered to perform better because they

can contain abstract features. On the COIL-100 benchmark, all the methods

performed almost perfectly.
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FIGURE 5.4: Histograms of raw output values of the discrim-
inator before input to the sigmoid function in ALGAN-image.
Left: Magnetic Tile Defects. Right: COIL-100. The sign is re-
versed so that the horizontal axis represents the anomaly score.

Fig. 5.4 shows histograms of the raw output values of the discriminator be-

fore they are input into the sigmoid function of ALGAN-image. The distri-

butions of normal and anomalous data are significantly separated. In COIL-

100, normal data have a peaky distribution with fewer variations, whereas

the distribution of anomalous data exhibits a long tail, reflecting the large

variations of anomalous data.

5.4.3 Prediction and Training Times

Table 5.6 compares the prediction times of the models for MVTec-AD. We can

see that ALGAN-image achieved a significantly faster prediction time (10.6

ms), which is 10.4 to 54.6 times faster than those of the other image-based

methods. ALGAN-feature is 1.3 to 2.2 times faster than the other methods

trained on the feature. Fig. 5.5 depicts the prediction time and AUROC per-

formance of the selected methods. ALGAN-image is the fastest and has a

high AUROC, but it is not the highest. ALGAN-feature is faster than the

other feature-based methods while maintaining a competitive AUROC. AL-

GAN and PatchCore exhibit a trade-off between performance and speed.
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FIGURE 5.5: Mean AUROC vs. prediction time for each method
on MVTec-AD.

Considering the fast prediction of ALGAN-image, it can be applied to ex-

pensive tasks such as real-time prediction with a large number of bounding

boxes obtained from object detection (Liu et al., 2020a).

Table 5.7 compares the training times obtained on MVTec-AD. ALGAN-image

is the fastest among the compared methods, with the default number of

epochs described in Section 5.3. Because there is no official implementation

of PatchCore, we did not use the Faiss library (Johnson, Douze, and Jégou,

2021)1, which is used in the original study, but applied our own implemen-

tation.

1Our implementation uses the scikit-learn (Pedregosa et al., 2011) library for core-set se-
lection (Sener and Savarese, 2018) and random projection (Sinha et al., 2020). We confirmed
that our implementation produces an AUROC similar to the results in (Roth et al., 2022).
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5.4.4 Training Stability

Zaheer et al. (2020) reported that GAN-based anomaly detection exhibited

unstable validation results during the training process. Upon validation, our

proposed method exhibited stable results in terms of AUROC (Fig. 5.6).
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(Image)

Skip-

GANomaly

(Image)

FIGURE 5.6: Validation results plotted every 8 epochs dur-
ing the training of the transistor category. ALGAN-image and
ALGAN-feature exhibit stable AUROCs compared with other

GAN-based methods.
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5.5 Ablation Study

Ablation studies were performed to verify the effect of the two types of

pseudo-anomalous data on performance. In ALGAN, buffered data and the

data generated by anomalous latent variables were used as pseudo-anomalous

data. The checkmark in Table 5.8 indicates the type(s) used. Although either

of the two can improve performance, using both works best and reduces

variance. These results validate that the proposed pseudo-anomalous data

are useful for improving anomaly detection performance.

TABLE 5.8: Ablation study results obtained on MVTec-AD with
ALGAN-image. Each experiment was conducted 10 times. The
left side of the mean AUROC column lists the mean and the
right side lists the standard deviation. The best performance is

indicated in boldface.

Buffered Data Anomalous Latent Mean AUROC

0.643 0.097
✓ 0.761 0.102

✓ 0.779 0.104
✓ ✓ 0.878 0.049
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5.6 Hyperparameter Study

We also studied the impact of hyperparameters on anomaly detection perfor-

mance. ALGAN employs the following hyperparameters: 𝜎 is the standard

deviation of the anomalous latent variable, 𝑛𝑧 is the epoch frequency to up-

date the latent variables, 𝑛𝑑𝑖𝑠 is the number of updates per batch on the dis-

criminator, and 𝛼 and b are the fake-anomalous and buffered data balanced

parameter, respectively. Each experiment was conducted 10 times using the

Bottle category of the MVTec-AD dataset.

5.6.1 Standard Deviation 𝜎 for Anomalous Latent Variable

For a small 𝜎, performance is low and peak performance is reached at 𝜎 = 4

or 5. If the 𝜎 value is too large, the support for normal and anomalous data

may be separated, which can degrade performance (Table 5.9).

TABLE 5.9: Impact of 𝜎 changes on performance. Top row:
mean AUROC. Bottom row: standard deviation. Boldface in-

dicates the best result.

𝜎 2 3 4 5 6 8

AUROC 0.859 0.932 0.948 0.947 0.937 0.917
0.058 0.042 0.024 0.025 0.033 0.036

5.6.2 Balance Parameter 𝛼 and b for Fake-normal and Buffered

Data

When 𝛼 is small, the effect of fake-anomalous is large, and when b is small,

the effect of buffered data is large. The performance is high around the val-

ues of 𝛼 = 0.75, b = 0.75 reported in this study. Recalling Eq. (4.3), b is multi-

plied by 𝛼. When 𝛼 = 0.25, b = 0.25, the effect of the fake-anomalous buffer

is greater, and the performance is improved. By contrast, when 𝛼 = 0.85,

b = 0.85, the effect of fake-anomalous and buffered data is smaller, and the
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performance is lower (Table 5.10). The results suggest that the effect of the

fake-anomalous buffer is large, and the parameters 𝛼 and b should be ad-

justed so that the effect is not too small.

TABLE 5.10: Impact of 𝛼 and b change on performance. First
row: mean AUROC. Second row: standard deviation. Boldface

indicates the best result.

b

0.25 0.5 0.75 0.85

𝛼

0.25 0.808 0.720 0.749 0.656
0.085 0.077 0.155 0.162

0.5 0.755 0.814 0.892 0.794
0.148 0.081 0.068 0.157

0.75 0.826 0.860 0.948 0.808
0.138 0.048 0.024 0.122

0.85 0.816 0.846 0.910 0.765
0.094 0.110 0.060 0.153

5.6.3 Update Frequency for Latent Variable and Discrimina-

tor

In this study, 𝑛𝑧 peaked at 2, and 𝑛𝑑𝑖𝑠 was good above 2, but performance

decreased slightly when discriminator updates became excessive (Table 5.11,

5.12). Therefore, 𝑛𝑧 has a considerable impact on the performance and should

be carefully considered and chosen in practical applications.
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TABLE 5.11: Impact of 𝑛𝑧 changes on performance. Top row:
mean AUROC. Bottom row: standard deviation. Boldface indi-

cates the best result.

𝑛𝑧 1 2 3 4

AUROC 0.813 0.948 0.903 0.874
0.121 0.024 0.035 0.104

TABLE 5.12: Impact of 𝑛𝑑𝑖𝑠 changes on performance. Top row:
mean AUROC. Bottom row: standard deviation. Boldface indi-

cates the best result.

𝑛𝑑𝑖𝑠 1 2 3 4

AUROC 0.887 0.948 0.943 0.933
0.082 0.024 0.031 0.049
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5.7 Robustness to Other Anomalous Data

FIGURE 5.7: CutPaste-style processed images. An image patch
sampled from the full image, then color-jittered and pasted

onto the original image.

TABLE 5.13: Results obtained on other anomalous data. Second
row: number of normal test data (real). Third row: number of
anomalous test data (generated). Fourth row: AUROC. Nor-
mal test data and generated anomalous test data were perfectly

classified.

𝜎 = 5 𝜎 = 6 𝜎 = 7 𝜎 = 8 CutPaste-style

Normal 10 10 10 10 10
Anomalous (generated) 32 32 32 32 32

AUROC 1.000 1.000 1.000 1.000 1.000

We also examined the robustness of anomalous data not included in the test

data. From Fig. 4.5, we hypothesized that the generator learns the distri-

bution of real-normal data, and the discriminator lays the discrimination

boundary between high-density and low-density regions of normal data. The

following two types of data were used for the evaluation: fake-anomalous

data generated by 𝜎 = 5 to 8, and CutPaste-style processed images (Li et al.,

2021) on normal data included in the test data. An image patch was sam-

pled from the full image with an area ratio of 20 to 30% and an aspect ratio

between 3 : 1 and 1 : 3, then color-jittered and pasted onto the image.

As in the previous experiments, the discriminator was trained using fake-

anomalous data generated by 𝜎 = 4 in the Bottle category. Test anomalous
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data were generated as the same number of real test data. All the anoma-

lous data, generated by 𝜎 = 5 to 8 and CutPaste images, were classified as

anomalous (in Table 5.13). Thus, these results suggest that the discriminator

learns similar to one-class classification between normal data and the other

data types.
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5.8 How to Determine Hyperparameters?

The hyperparameters described in Section 5.1.1 are recommended basically

when using the proposed method for other practical data. This study con-

ducted experiments on three datasets with the same hyperparameters and

obtained high-performance results (in Section 5.4.1 and 5.4.2).

Assume that training is performed in a situation where anomalous data are

not available. In that case, it is advisable to monitor the discrimination results

of fake-normal data, fake-anomalous data, and buffered data during training.

Once the discriminator is acquiring anomaly detection performance, fake-

normal data will not be well classified, and fake-anomalous and buffered

data will be classified as fake (anomalous). When the generator is well trained,

the anomaly detection performance of the discriminator is also high. The per-

formance of the generator can be quantitatively evaluated by monitoring the

inception score (Salimans et al., 2016) and Fréchet inception distance (Heusel

et al., 2017) of fake-normal data.

If even a small amount of anomalous data are available, such data should

be used for validation. It is difficult to determine an appropriate threshold

discussed in Section 5.3 with the small data. A conservative initial thresh-

old is required, and the ratio of false-positive and false-negative data during

operation should be checked to determine a practical value.



Chapter 5. Experiments 59

5.9 Selection of Latent Variables

The previous experiments in Sections 5.4.1 and 5.4.2 had a wide overlap be-

tween two distributions of the normal and anomalous latent variables. A

wider overlap will generate more similar fake-normal and fake-anomalous

data. On the other hand, with a narrow overlap, the fake-anomalous data

generated from the anomalous latent variables are more different from the

fake-normal data, which may affect anomaly detection performance.

We evaluate the effect of differences in normal and anomalous latent vari-

ables used for training ALGAN on anomaly detection performance. Three

experiments are conducted on the MVTec-AD dataset by changing the latent

variables.

The latent variables used in the three experiments are depicted in Fig. 5.8.

Fig. 5.8 (a) depicts 𝑁 (0, 1) used for normal latent variables and 𝑁 (0,𝜎2)where

𝜎 = 4 used for anomalous latent variables. These latent variables were used

in Sections 5.4.1 and 5.4.2. Fig. 5.8 (b) depicts 𝑁 (0, 1) used for normal latent

variables and 𝑁 (0,𝜎2) where 𝜎 = 4 truncating the values between −2 and

+2 used for anomalous latent variables. Fig. 5.8 (c) depicts 𝑈 (−1, 1) used for

normal latent variables and 𝑈 (−2, 2) truncating the values between −1 and

+1 used for anomalous latent variables. Compared to the latent variables in

Fig. 5.8 (a), which were used in the previous experiment, the latent variables

in Fig. 5.8 (b) overlap less. In Fig. 5.8 (c), the normal latent variables have

a uniform distribution, and there is no overlap with the anomalous latent

variables.

The other experimental conditions follow the ALGAN-feature in Sections 5.1.1,

5.2.4, 5.2.5, and 5.3, but 64 different angular rotations during prediction are

not performed.

The experimental results are shown in Table 5.14. Although there were some
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FIGURE 5.8: The latent variables used in the three experiments.
(a) depicts 𝑁 (0, 1) used for normal latent variables and 𝑁 (0,𝜎2)
where 𝜎 = 4 used for anomalous latent variables. (b) depicts
𝑁 (0, 1) used for normal latent variables and 𝑁 (0,𝜎2) where
𝜎 = 4 truncating the values between −2 and +2 used for anoma-
lous latent variables. (c) depicts𝑈 (−1, 1) used for normal latent
variables and𝑈 (−2, 2) truncating the values between −1 and +1

used for anomalous latent variables.

performance changes in some categories (e.g., Grid, Bottle), there were no

significant differences in mean performance across the three experiments.

From Fig. 4.5, we hypothesized that ALGAN’s discriminator would lay a

discrimination boundary between the high-density and low-density regions

of the normal data. The overlap between the normal and anomalous latent

variables had less effect on the discrimination boundary.
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TABLE 5.14: Results obtained on three different combinations
of normal and anomalous latent variables. Second column: re-
sults on the latent variables in Fig. 5.14 (a). Third column: re-
sults on the latent variables in Fig. 5.14 (b). Fourth column:
results on the latent variables in Fig. 5.14 (c). 𝑡ℎ indicates the
truncated values for the anomalous latent variables. Boldface

indicates the best result.

Normal latent 𝑁 (0, 1) 𝑁 (0, 1) 𝑈 (−1, 1)

Anomalous latent 𝑁 (0,𝜎2) 𝑁 (0,𝜎2) 𝑈 (−2, 2)
𝜎 = 4 𝜎 = 4, 𝑡ℎ = ±2 𝑡ℎ = ±1

Carpet 0.813 0.783 0.811
Grid 0.549 0.643 0.561
Leather 0.980 0.982 0.981
Tile 0.989 0.986 0.987
Wood 0.827 0.813 0.817
Bottle 0.913 0.928 0.806
Cable 0.880 0.857 0.882
Capsule 0.571 0.583 0.580
Hazelnut 0.929 0.954 0.971
Metalnut 0.729 0.760 0.739
Pill 0.714 0.748 0.728
Screw 0.731 0.755 0.789
Toothbrush 0.578 0.522 0.500
Transistor 0.863 0.833 0.855
Zipper 0.974 0.981 0.977

mean 0.803±0.151 0.809±0.146 0.799 ±0.157
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Chapter 6

Conclusion

The key finding of this study is that adding pseudo-anomalous data to train-

ing improves the anomaly detection performance of the discriminator, as

shown in Table 5.8. Fake-anomalous data, one of the pseudo-anomalous data

types, are generated from anomalous latent variables with high entropy. This

method has fewer concerns about biases than adding out-of-distribution data

to the training (Kawachi, Koizumi, and Harada, 2018; Hendrycks, Mazeika,

and Dietterich, 2018) or using prior knowledge to generate pseudo-anomalous

data (Li et al., 2021).

Furthermore, our proposed method uses only the discriminator for anomaly

detection, whereas other image-based methods use multiple networks such

as encoders, decoders, or both. Thus, the prediction time of our method is

faster.

PatchCore (Roth et al., 2022) is a state-of-the-art feature-based method that

uses pre-trained models for images and cannot utilize other types of data.

The same is true for other high-performance methods. By contrast, our pro-

posed method can be directly applied to both images and features. Standard

GANs have the potential to approximate any data distribution. ALGAN, an

extension of standard GANs, has the same potential.
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The evaluation in this study focused on image data. However, it would be

interesting to see the performance of ALGAN for anomaly or novelty detec-

tion in other data types, such as signals (Brophy et al., 2021) and text (de Rosa

and Papa, 2021). This is an important topic for future work.

In this thesis, we proposed a novel GAN-based anomaly detection method

called ALGAN. The ALGAN generator provides pseudo-anomalous data as

well as fake-normal data, by introducing anomalous states in the latent vari-

able. The ALGAN discriminator distinguishes between the group of real-

normal data and the group of fake-normal and pseudo-anomalous data.

The proposed method for generating pseudo-anomalous data can be applied

to both images and feature vectors. We applied it to three anomaly detection

benchmarks and demonstrated its high accuracy.

On MVTec-AD, ALGAN-image achieved more than 10% higher average ac-

curacy than conventional image-based methods, and ALGAN-feature ex-

hibited comparable ability to the feature-based methods. On the COIL-100

dataset, ALGAN performed almost perfectly.

ALGAN exhibited remarkably fast predictions. Compared with methods

trained on image data and features, ALGAN-image could predict 10.4 to 54.6

times faster while maintaining high performance, and ALGAN-feature could

predict 1.3 to 2.2 times faster.
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