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This thesis is devoted to the study of the generalized minimal residual methods (GM-

RES) for least squares problems. GMRES is a robust and efficient Krylov subspace

iterative solver for nonsymmetric systems of linear equations. In this thesis, we apply

GMRES to least squares problems which arise from many applications in science and

engineering, etc. The application of GMRES to least squares problems has been studied,

but there are still many mysteries and interesting phenomenon about it, which moti-

vate this thesis. I would like to use three ‘s’ to introduce this thesis, stability, speed,

and size. We improved the stability of GMRES, and analyzed the convergence for the

preconditioned system which could speed up iterations, and extended the techniques to

problems which contain many right-hand sides.

Chapter 1 gives the background of this thesis. Chapter 2 introduced basics and

notations. From Chapter 3, we propose and analyze methods to improve GMRES for

least squares problems.

At first, we consider using the right-preconditioned GMRES (AB-GMRES) for ob-

taining the minimum-norm solution of inconsistent underdetermined systems of linear

equations. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-

conditioned problems, the iterates may diverge. This is mainly because the Hessenberg

matrix in the GMRES method becomes very ill-conditioned so that the backward sub-

stitution of the resulting triangular system becomes numerically unstable. We propose

a stabilized GMRES method based on solving the normal equations corresponding to

the above triangular system using the standard Cholesky decomposition. This has the

effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead

to an inaccurate solution. This finding seems to contradict the common sense that the

normal equations are not suitable for solving ill conditioned problems, since the prob-

lem would become more ill conditioned. We presented a theorem to illustrate why the

system can become better conditioned using normal equations in the presence of round-

ing errors and also analyzed the importance of the consistency which is ensured by the
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normal equations. We analyzed the structure of the noise due to double precision arith-

metic, which helps to understand how the stabilized method works. We compared our

method with many existing methods, such as TSVD (Truncated Singular Value Decom-

position), Tikhnov regularization and RR(Range Restricted)-GMRES, etc. Numerical

experiments show that the proposed method is robust and efficient, not only for apply-

ing AB-GMRES to underdetermined systems, but also for applying GMRES to severely

ill-conditioned range-symmetric systems of linear equations.

Next, we explain the super-linear convergence of the inner-iteration preconditioned

GMRES method for least squares problems. Inner-iteration preconditioning is a very

fascinating technique which could speed up the convergence by increasing the steps of

inner-iteration. Existing error bounds are usually exponent of the spectral radius, which

under logarithmic function is linear, and cannot illustrate the super-linear convergence

of the method. Increasing the steps of inner-iteration will cluster the eigenvalues of the

preconditioned coefficient matrix. By considering the effect of clustered eigenvalues of

the preconditioned coefficient matrix, we found that eigenvalues which are close to the

center help to quickly diminish the residual to a tiny level. We show that the theoretically

predicted convergence behavior matches numerical experiment results. In the analysis,

we assume that the preconditioned matrix is diagonalizable, but we hope extend the

analysis to cases where the preconditioned coefficient matrix contains Jordan blocks in

future.

Finally, we consider using the block GMRES to solve least squares problems with

multiple right-hand sides. This generates the Krylov subspace and updates the QR de-

composition for the Hessenberg matrix block-wise. The Block GMRES requires a larger

Krylov subspace to converge than the GMRES. However, the total CPU is reduced due

to efficient memory access, and the decrease of the number of iterations per right-hand

side. Further, we propose combining the block GMRES method with block-wise inner-

iteration preconditioning to reduce the number of iterations. Numerical experiments

show that the proposed method is efficient compared to the block GMRES. We also

gave some conjectures in Appendix B for the grade of block GMRES.

In conclusion, this thesis proposes a stabilized method to ensure the stability when

GMRES suffers severe ill-conditioning and analyzes why the method works. Then, it

illustrates the super-linear convergence of the inner-iteration preconditioned GMRES

method for least squares problems, which is not only a new way to analyze the conver-

gence but also can help to design good preconditioners. Finally, it extended the method

to solve for many right-hand sides simultaneously block wise, which saves even more

CPU time and leads to the research on the theory for the block case in the future.



Acknowledgements

Firstly, I would like to express my sincere gratitute to my supervisor Professor Ken

HAYAMI, who guided me from the beginning to the completion of this thesis. He en-

hanced my basic knowledge, showed me the essence of the problems, gave me interesting

problems and also powerful skills when I suffered bottlenecks. His patience and rigorous

logic gave me a good model as a researcher. His trust made me more confident and

could focus on research. I would like to thank him for a great deal of his time and effort

to this work. He made me understand that the essence of education is love. Thus, I

would also thank God for letting me meet such a good supervisor.

I would like to acknowledge my subadvisor Professor Keiichi MORIKUNI, who also

spent a great deal of time on this thesis. His meaningful questions made my research

broader. I learned a lot from his revisisions on my paper.

I would like to thank Professor Junfeng YIN, who is my master course supervisor and

provided the chance to have internship at NII.

I would like to acknowledge my subadvisor Professor Yuji NAKATSUKASA for su-

pervising me for nearly half a year, informing me the trend of numerical linear algebra

and encouraging me to make friends at international meetings, which gave me clues to

analyze the convergence in this research.

I acknowledge my second supervisor Professor Takeaki UNO for considerable support

to complete my PHD career for two years.

I acknowledge my subadvisors Professor Gene CHEUNG, and my examiners Profssors

Akira IMAKURA, Professor Masako KISHIDA, Professor Akihiro SUGIMOTO and

Professor Ryota KOBAYASHI for valuable advice and comments.

I appreciate researchers who visited the Nation Institute of Informatics (NII) and gave

presentations and had discussions, in particular, Professor Miroslav Rozložńık, Professor
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Chapter 1

Introduction

This chapter first gives backgrounds of numerical linear algebra and linear least squares

problems. Then it gives motivations of this thesis, and then ends with objectives and

organizations of the thesis.

1.1 Backgrounds

Numerical linear algebra is a study which combines finite precision computers with

linear algebra. It includes building models for the real world and solving the model

by algorithms. Thus, it is a sub-field of numerical analysis and does not have a clear

boundary with applied mathematics. The core of numerical linear algebra are algo-

rithms. Algorithms usually have a form in linear algebra, and can be implemented

on finite precision computers, which gives approximate solutions. Hence, properties of

algorithms such as convergence are important subjects in numerical linear algebra.

Solving linear least squares problems is not only an important part of numerical

linear algebra but there are also an underlying demand in many fields across science and

engineering, such as tomography, optimization, statistics (linear regression), machine

learning (support vector machine), geodetics (full wave form inversion), computational

finance (option pricing), data mining, image and signal processing and curve fitting,

which have requirements of solving least squares problems. Thus, designing robust and

efficient methods for computing least squares solutions is very important. Traditional

methods for solving least squares problems are direct methods such as the Cholesky

1
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factorization, QR factorization, and the singular value decomposition. These methods

are efficient for solving small dense problems.

However, for large-scale problems, the factorization or decomposition process will be-

come very heavy. Unless one finishes the factorization or decomposition process until

the size of the problem, one can not get the solution. Moreover, many problems arising

from typical applications have a sparse structure, which means most of the entries are

zero. The factorization or decomposition process usually destroys the sparsity of prob-

lems, and fails to take advantage of the sparsity, which can be used in matrix vector

multiplications and save storage. Hence, it is difficult to apply direct methods to large

and sparse problems because of time and storage space limitations.

Iterative methods make use of the sparsity when applying matrix vector multiplica-

tions, and give approximate solutions by an iteration process, and one can stop the

iteration process when one is satisfied with the accuracy of the solution. Iterative meth-

ods are easier to implement on parallel computers than direct methods. There are many

well-established iterative solution methods for the least squares problems, such as the

Kaczmarz method [1], the Cimmino method [2], the Jacobi and successive overrelaxation

methods (JOR and SOR) [3], and the Krylov subspace iterative methods, for example,

the CGLS method [4], LSQR method [5] and LSMR method [6]. These methods are

developed for solving large and sparse linear least squares problems. When the problems

are well-conditioned, these methods converge fast. In the ill-conditioned case, they may

converge slowly or even diverge. Then, preconditioning becomes necessary to acceler-

ate the convergence. Appropriate preconditioners need less storage and save time. For

divergent cases, we need more techniques to overcome it.

The generalized minimal residual method (GMRES) [7] is a robust Krylov subspace

method for solving square systems of linear equations. It searches the solution by gener-

ating a Krylov subspace. Left preconditioning (BA-GMRES) and right preconditioning

(AB-GMRES) [8] are typical ways to precondition GMRES for least squares problems.

As for preconditioners, we have explicit preconditioners, and implicit preconditioners

which we usually call inner-iteration preconditioning[9, 10].

Moreover, there are increasing demands for solving problems with many right-hand

sides. Thus, extending algorithms to the block case becomes important, so that we

also need to analyze the convergence and numerical properties for the block case. These



3

problems and studies existed before, but the demands for the block algorithms motivated

us to investigate GMRES more deeply in the context of least squares problems in this

thesis.

1.2 Motivations

Consider using the right-preconditioned generalized minimal residual (AB-GMRES)

method, which is an efficient method for the underdetermined least squares problems.

Morikuni (Ph.D. thesis, 2013) [9] showed that for some ill-conditioned problems which

contain noise, the iterates of the AB-GMRES method may diverge. The first topic of

the present thesis is to understand the reason why the AB-GMRES method diverges

and find strategies to overcome the divergence.

The second topic also comes from Morikuni’s research on inner-iteration precondition-

ing. This technique has a fascinating effect of improving convergence of the GMRES

method, but classical ways of estimating the convergence fail to explain the effect. Thus,

we want to know what makes the inner-iteration preconditioning so effective. Moreover,

we notice that both block GMRES and the inner-preconditioning technique can reduce

the iteration steps. Thus, we want to research what happens when we combine them

together, since the interaction between them may lead to a fascinating result.

1.3 Objectives

In order to understand what happens in the divergence of AB-GMRES, we will trun-

cate the iteration when the divergence happens and analyze the singular values of the

problem. We also track the whole iterative process to see which part fails to give a

reasonable solution. For the ill-conditioned part, we try to use a well-conditioned one

to approximate, and replace it. With the help of the analysis, we develop a stabilized

GMRES method which has the effect of shifting upwards the tiny singular values of the

matrix in the problem. After that, we compare the proposed method with Tikhonov

regularization, which is a famous technique for ill-conditioned problems. We will also

give the condition when the proposed method works.
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To analyze the inner-iteration preconditioning, we have to analyze the linear sta-

tionary iterative methods at first, and then compute the eigenvalue distribution of the

preconditioned matrix. Then, establish convergence analysis based on the assumption

of the eigenvalue distribution and other conditions. Finally, we obtain a more precise

description of the convergence.

Then, we need to extend the linear stationary iterative methods to the block case.

Further, we present a block GMRES method by changing the QR factorization in GM-

RES to the block case. We combine the block GMRES and inner-iteration together, and

observe the convergence versus the number of right-hand sides and other parameters.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we explain the least

squares problems to be solved, and define the notations. We describe the GMRES

method, which is the most basic algorithm for this thesis. In Chapter 3, we present

the stabilized GMRES, including the relevant theory and previous work, the algorithms

and theory of the stabilized GMRES, comparison with Tikhonov regularization and

other numerical experiments. In Chapter 4, we give a convergence anlysis of inner-

iteration preconditioning and corresponding numerical experiments. In Chapter 5, we

review previous work on methods for solving problems with many right-hand sides, the

inner-iteration preconditioned block GMRES method and also numerical experiments.

In Chapter 6, we conclude the thesis and propose some future work.

All the experiments in this paper were done using MATLAB R2017b in double pre-

cision, unless specified otherwise (where we extended the arithmetic precision by using

the Multiprecision Computing Toolbox for MATLAB [11]), and the computer uesd was

Alienware 15 CAAAW15404JP with CPU Inter(R) Core(TM) i7-7820HK (2.90GHz).



Chapter 2

Preliminaries

This chapter gives relevant concepts which are used in later chapters. It begins with

the elementary notation used throughout this thesis. Then, it introduces the problems

we need to solve. Finally, it presents the GMRES method.

2.1 Basics and notations

Denote the real field by R, and the complex field by C. The uppercase letters denote

matrices, lowercase letters denote vectors or scalars. Denote the identity matrix by I,

and the zero matrix by 0. The subscript of a matrix denotes its size, such as In ∈ Rn×n .

ei denotes the ith column of I. The superscript T denotes transpose, such as aT is

transpose of a, AT is transpose of A. (a, b) denotes the inner product aTb, where a and

b are real vectors. Denote the diagonal matrix


d1 0

d2
. . .

0 dn


by diag(d1 , d2 , . . . , dn).

Let A ∈ Rm×n, and C ∈ Rn×n. min denotes minimum and max denotes maximum.

Then we define the following.

5
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The maximum number of linearly independent columns or rows of A is the rank of

A, and we denote it by rank(A). We say that A is full-row rank if rank(A) = m, and

full-column rank if rank(A) = n. If rank(A) < min(m,n), we say that A is rank-deficient.

Denote the Euclidean vector or matrix norms by ∥ · ∥2, Frobenius norms by ∥ · ∥F .

The condition number κ2(A) = ∥A∥2∥A†∥2, where A† is the pseudoinverse of A.

Let R(A) = {y = Ax |x ∈ Rn} denote the range space of A, N (A) = {x ∈ Rn |Ax = 0}

denote the null space of A. Let S ∈ Rn be a subspace and ∀ mean for all. Then we

denote the orthogonal complement of S by

S⊥ = {u ∈ Rn|(u, v) = 0, ∀v ∈ S}. (2.1)

The subspace spanned by vectors vi ∈ Rn, i = 1, 2, . . . , k is denoted by

span{v1 , v2 , . . . , vk} =
{
w ∈ Rn

∣∣w =
k∑

i=1

civi , ci ∈ R
}
. (2.2)

The subspace generated by C ∈ Rn×n and v ∈ Rn

Kk(C, v) = span{v ,Cv , . . . ,C k−1 v}. (2.3)

is called the Krylov subspace of order k. The Krylov subspace will become invariant

with increase of k, the order d which reaches the invariant subspace is called the grade,

i.e. minimum value of k such that Kk(C, v) = Kk+1(C, v) is the grade of d of C with

respect to v.

If C = CT, C is symmetric, we have the following definitions. We say that C is

positive definite if xTCx > 0, ∀x ̸= 0 ∈ Rn, positive semidefinite if xTCx ≥ 0,∀x ∈ Rn,

negative definite if xTCx < 0,∀x ̸= 0 ∈ Rn. We say C is definite if it is positive definite

or negative definite.

2.2 Problems

Consider the linear least squares problem

min
x∈Rn

∥b−Ax∥2, A ∈ Rm×n, b ∈ Rm. (2.4)
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The least squares problem (2.4) is equivalent to the normal equations

ATAx = ATb. (2.5)

In terms of the shape of the matrix A, if m = n, we have a square coefficient matrix. If

m < n, we say the problem (2.4) is underdetermined, and overdetermined if m > n. In

terms of the right-hand side b, we say the problem (2.4) is consistent if b ∈ R(A), and

inconsistent if b /∈ R(A).

In the square case, if A is full-rank, the problem is consistent. In the underdetermined

case, if A is full-row rank, the problem (2.4) is consistent. If A is rank-deficient, the

problem (2.4) could be inconsistent.

2.3 GMRES

The generalized minimal residual method (GMRES) [7] developed by Yousef Saad

and Martin H. Schultz in 1986, is an iterative method for the numerical solution of

a nonsymmetric square system of linear equations. GMRES is a generalization of the

MINRES method [12] which is developed by Chris Paige and Michael Saunders in 1975.

GMRES generates a Krylov subspace, and finds the solution in the Krylov subspace

by minimizing the residual. Consider the problem with square coefficient matrix

Ax = b, A ∈ Rn×n, b ∈ Rn. (2.6)

Let x0 be the initial solution (in all our numerical experiments, we set x0 = 0), the

initial residual r0 = b−Ax0. Generate the Krylov subspace with A and r0.

Kk(A, r0) = span{r0 ,Ar0 , . . . ,Ak−1 r0}. (2.7)

At each step, we try to find zk ∈ Kk(A, r0) and x = x0 + zk, such that the residual

rk = b−Axk = b−A(x0 + zk) = r0 −Azk is minimized, i.e. minzk∈Kk(A,r0) ∥r0 −Azk∥2.

The Krylov subspace expands by introducing a new vector Axk. The new vector is gen-

erated by the multiplication of previous vector and A. The vectors r0, Ar0, . . . , A
k−1r0
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might be close to linearly dependent. Thus, we need the Arnoldi’s method [13] to build

a set of orthogonal basis for Kk(A, r0).

Algorithm 1 Arnoldi’s method

1: Choose v1 ∈ Rn, ∥v1∥2 = 1,
2: for i = 1, 2, . . . , k do
3: for j = 1, 2, . . . , i do
4: hi,j = (Avi, vj), wi = wi − hj,ivj ,
5: end for
6: hi+1,i = ∥wi∥2, vi+1 = wi/hi+1,i.
7: end for

In a computer, due to rounding errors, hi+1,i generally will not reach 0, but a tiny

value. One should stop the Arnoldi’s method when hi+1,i is near machine epsilon ϵ.

In practice, we prefer a modified version as follows.

Algorithm 2 Arnoldi-Modified Gram-Schmitt

1: Choose v1 ∈ Rn, ∥v1∥2 = 1,
2: for i = 1, 2, . . . , k do
3: wi = Avi,
4: for j = 1, 2, . . . , i do
5: hi,j = wT

i vj , wi = wi − hj,ivj ,
6: end for
7: hi+1,i = ∥wi∥2, vi+1 = wi/hi+1,i.
8: end for

The two versions of the Arnoldi’s method are mathematically equivalent. The dif-

ferences are caused by rounding errors. Modified version is more reliable. But even

Arnoldi-Modified Gram-Schmidt method can lose orthogonality. In that case, one can

redo line 4-6 in Algorithm 2 again or more times, it is know that once is enough, even j

from i to 1 or a random order, which is help to improve the orthogonality of the basis.

Through the orthogonalization process of Arnoldi’s method, the following relation

holds

AVk = Vk+1Hk+1,k, (2.8)

where Vk = {v1, v2, . . . , vk}, Vk+1 = {v1, v2, . . . , vk, vk+1} and Hk+1,k = (hij) ∈ R(i+1)×i.

In paticular, choose v1 = r0/∥r0∥2, start generating the orthogonal basis. After getting

the orthogonal basis Vk = {v1, v2, . . . , vk}, we can express z by the linear combination
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of {v1, v2, . . . , vk}, z = Vky. We minimize the residual by y on the Krylov subspace.

∥r∥2 = ∥b−Ax∥2 = ∥b−A(x0 + z)∥2 = ∥r0 −Az∥2 = ∥r0 −AVky∥2 (2.9)

Notice that r0 = Vk+1∥r0∥2e1, where e1 = (1, 0, . . . , 0)T ∈ Rk+1. Denote β = ∥r0∥2.

Then, we have the following:

∥r0 −AVky∥2 = ∥r0 − Vk+1Hk+1,ky∥2 = ∥Vk+1βe1 − Vk+1Hk+1,ky∥2, (2.10)

∥Vk+1βe1 − Vk+1Hk+1,ky∥22 = ∥Vk+1(βe1 −Hk+1,ky)∥22 (2.11)

= [Vk+1(βe1 −Hk+1,ky)]
TVk+1(βe1 −Hk+1,ky) (2.12)

= (βe1 −Hk+1,ky)
TV T

k+1Vk+1(βe1 −Hk+1,ky) (2.13)

= (βe1 −Hk+1,ky)
TIk+1(βe1 −Hk+1,ky) (2.14)

= (βe1 −Hk+1,ky)
T(βe1 −Hk+1,ky) (2.15)

= ∥βe1 −Hk+1,ky∥22. (2.16)

Thus, we have

∥r∥2 = ∥βe1 −Hk+1,ky∥2. (2.17)

The algorithm of GMRES is as follows.

Algorithm 3 GMRES

1: Choose x0 ∈ Rn, r0 = b−Ax0, v1 = r0/∥r0∥2,
2: for i = 1, 2, . . . , k do
3: wi = Avi,
4: for j = 1, 2, . . . , i do
5: hi,j = wT

i vj , wi = wi − hj,ivj ,
6: end for
7: hi+1,i = ∥wi∥2, vi+1 = wi/hi+1,i

8: Compute yi ∈ Ri which minimizes ∥ri∥2 = ∥∥r0∥2e1 −Hi+1,iyi∥2,
9: xi = x0 + [v1, v2, . . . , vi]yi, ri = b−Axi.

10: if ∥ri∥2 < ϵ∥r0∥2 then
11: stop
12: end if
13: end for

The details of computing yi, preconditioning of GMRES, related theories and the

convergence analysis will be shown in later chapters.



Chapter 3

Stabilized GMRES method

This chapter first introduces the solution of the inconsistent underdetermined least

squares problem. Second, it briefly reviews the AB-GMRES method and a related

theorem. Next, it demonstrates and analyzes the deterioration of the convergence. Then,

it proposes and presents a stabilized GMRES method and explains a regularization effect

of the method based on the normal equations for ill-conditioned problems. Finally,

numerical results for the underdetermined case and the square case are presented [14–

17].

3.1 Introduction

As a motivating instance when the generalized minimal residual (GMRES) method

iterates diverge due to severe ill-conditioning, consider obtaining the minimum-norm

solution of the inconsistent least squares problem:

min
x∈Rn

∥x∥2, such that x ∈ {arg min
ξ∈Rn

∥b −Aξ∥2} (3.1)

where A ∈ Rm×n and b /∈ R(A) ⊆ Rm . Here, R(A) denotes the range space of A.

Such problems may occur in ill-posed problems where b is given by an observation which

contains noise. The problem (3.1) is equivalent to

(ATA)2v = ATb, x = ATAv, (3.2)

10
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and the solution can be expressed by x = A†b, where AT denotes the transpose of A and

A† is the pseudoinverse of A. (See e.g. [18].)

The standard direct method for solving the least squares problem (3.1) is to use the

QR decomposition. However, when A is large and sparse, iterative methods become

necessary. The CGLS [4] and LSQR [5] are mathmetically equivalent to applying the

conjugate gradient (CG) method to the normal equations of the first kind

ATAx = ATb, (3.3)

which is equivalent to

min
x∈Rn

∥b−Ax∥2. (3.4)

CGLS will converge to the minimum-norm solution x = A†b, provided x0 ∈ R(AT)

(See, e.g. [18], p. 291). However, the convergence of these methods deteriorates

for ill-conditioned problems and they require reorthogonalization [8] to improve the

convergence. Here, we say (3.1) is ill-conditioned if the condition number κ2(A) =

∥A∥2∥A†∥2 ≫ 1. Alternatively, the LSMR [6] is mathematically equivalent to applying

MINRES [12] to (3.3).

Hayami et al. [8] proposed preconditioning the m × n rectangular matrix A of the

least squares problem by an n × m rectangular matrix B from the right and the left,

and using the generalized minimal residual (GMRES) method [7] for solving the precon-

ditioned least squares problems (AB-GMRES and BA-GMRES methods, respectively).

For ill-conditioned problems, AB-GMRES and BA-GMRES were shown to be more ro-

bust compared to the preconditioned CGNE and CGLS, respectively. Note here that

BA-GMRES works with Krylov subspaces in n-dimensional space, whereas AB-GMRES

works with Krylov subspaces in m-dimensional space. Since m < n in the underdeter-

mined case, AB-GMRES works in a smaller dimensional space than BA-GMRES and

should be more computationally efficient compared to BA-GMRES for each iteration.

Moreover, AB-GMRES has the advantage that the weight of the norm in (3.1) does

not change for arbitrary B. Thus, we mainly focus on using AB-GMRES to solve the

underdetermined least squares problem (3.1). Morikuni [9] showed that AB-GMRES

may fail to converge to a least squares solution in finite-precision arithmetic for incon-

sistent problems. We will review this phenomenon. The GMRES applied to inconsistent
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problems was also studied in other papers[10, 19–22]. See e.g., [19, 22, 23] for methods

for solving nearly singular systems.

In this paper, we first analyze the deterioration of convergence of AB-GMRES. To

overcome the deterioration, we use the normal equations of the upper triangular matrix

arising in AB-GMRES to change the inconsistent subproblem to a consistent one. In

finite precision arithmetic, forming the normal equations for the subproblem will not

square its condition number as would be predicted by theory. In the ill-conditioned

case, the tiny singular values are shifted upwards due to rounding errors. Then, ap-

plying the standard Cholesky decomposition to the normal equations will result in a

well-conditioned lower triangular matrix, which will ensure that the forward and back-

ward substitutions work stably, and overcome the problem. Our approach using the

normal equations can be considered as a case where rounding errors are beneficial [24].

We analyze why the proposed method works. Numerical experiments on least squares

problems with ill-conditioned rectangular coefficient matrices (Maragal 3T to 7T [25])

show that the proposed method converges to a more accurate numerical solution than

the original AB-GMRES. We also show by numerical experiments that the method is

effective for applying GMRES to inconsistent range-symmetric systems with singular or

severely ill-conditioned square coefficient matrices.

The rest of the paper is organized as follows. In Section 2, we briefly review AB-

GMRES. In Section 3, we demonstrate the deterioration of convergence of AB-GMRES

applied to underdetermined inconsistent least squares problems. In Section 4, we pro-

pose and present the stabilized GMRES method which is based on normal equations

and has a regularization effect for ill-conditioned problems. We also explain why the

method works by performing a rounding error analysis of the method. In Section 5,

numerical experiment results for applying AB-GMRES to inconsistent underdetermined

systems, and for applying GMRES to inconsistent systems with severely ill-conditioned

and singular range-symmetric square coefficient matrices are presented. In Section 6,

we conclude the paper.

All the experiments in this paper were done using MATLAB R2017b in double pre-

cision, unless specified otherwise (where we extended the arithmetic precision using

the Multiprecision Computing Toolbox for MATLAB [11]), and the computer uesd was

Alienware 15 CAAAW15404JP with CPU Inter(R) Core(TM) i7-7820HK (2.90GHz).
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3.2 Deterioration of convergence of AB-GMRES for in-

consistent problems

In this section, we review previous work. First, we introduce the right-preconditioned

GMRES (AB-GMRES). Then, we demonstrate the deterioration of convergence of AB-

GMRES for inconsistent problems. Finally, we cite a related theorem to analyze the

deterioration.

3.2.1 AB-GMRES

The AB-GMRES method of Hayami et al. [8] applies the GMRES method [7] to

min
u∈Rm

∥b−ABu∥2, x = Bu, (3.5)

where B ∈ Rn×m is a preconditioning matrix.

Note the equivalence between the least squares problem (3.4) and the preconditioned

least squares problem (3.5).

Theorem 3.1. (Theorem 3.1 of [8])

min
x∈Rn

∥b−Ax∥2 = min
u∈Rm

∥b−ABu∥2

holds for all b ∈ Rm if and only if R(A) = R(AB).

Lemma 3.2. (Lemma 3.3 of [8])

R(AT) = R(B) =⇒ R(A) = R(AB).

Theorem 3.3. (Theorem 3.6 of [8])

If R(AT) = R(B), then R(AB) = R(BTAT) ⇐⇒ R(A) = R(BT).

The convergence conditions of AB-GMRES are given as follows.

Theorem 3.4. (Theorem 3.7 of [8])

If R(AT) = R(B), then AB-GMRES determines a least squares solution of

minx∈Rn ∥b − Ax∥2 for all b ∈ Rm and for all x0 ∈ Rn if and only if R(A) = R(BT).

Here, x0 = Bu0 is the initial approximate solution of (3.5) when applying AB-GMRES.
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Let r = b−Ax = b−ABu. Note

∥r∥22 = ∥r|R(A)∥22 + ∥r|R(A)⊥∥22 = ∥r|R(A)∥22 + ∥b|R(A)⊥∥22. (3.6)

Here, S⊥ denotes the orthogonal complement of a subspace S, and r|R(A) is the R(A)

component of a vector r. r|R(A)⊥ is the R(A)⊥ (inconsistent) componet of the residual

vector r. Thus, AB-GMRES minimizes ∥r∥22, and hence ∥r|R(A)∥22.

The kth iterate xk of AB-GMRES is given by

xk = x0 +Buk, (3.7)

where uk ∈ Kk(AB, r0) = span{r0, ABr0, . . . , (AB)k−1r0}, so that xk = x0 + zk, where

zk ∈ Kk(BA,Br0) = span{Br0, (BA)Br0, . . . , (BA)k−1Br0}. Hence, if x0 ∈ R(B),

xk ∈ R(B).

If R(B) = R(AT), then xk ∈ R(AT) = N (A)⊥. Further, if R(BT) = R(A), then AB-

GMRES determines a least squares solution xk, i.e., rk|R(A) = 0, where rk = b − Axk,

and that solution xk is the minimum Euclidean norm solution.

The algorithm is given in Algorithm 4 [8]. Here, Hk+1,k = (hij) ∈ R(k+1)×k and

e1 = (1, 0, . . . , 0)T ∈ Rk+1. Algorithm 4 is said to break down when hk+1,k = 0. See

Appendix B of [10].

Algorithm 4 AB-GMRES

1: Choose x0 ∈ Rn, r0 = b−Ax0, v1 = r0/∥r0∥2
2: for k = 1, 2, . . . do
3: wk = ABvk
4: for j = 1, 2, . . . , k do
5: hj,k = wT

k vj , wk = wk − hj,kvj
6: end for
7: hk+1,k = ∥wk∥2, vk+1 = wk/hk+1,k

8: Compute yk ∈ Rk which minimizes ∥rk∥2 = ∥∥r0∥2 e1 −Hk+1,k y∥2
9: xk = x0 +B[v1, v2, . . . , vk]yk, rk = b−Axk

10: if ∥ATrk∥2 < ϵ∥ATr0∥2 then
11: stop
12: end if
13: end for
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To find yk ∈ Rk that minimizes the kth residual norm ∥rk∥2 = ∥∥r0∥2 e1−Hk+1,k yk∥2

in Algorithm 4, the standard approach computes the QR decomposition of Hk+1,k

Hk+1,k = Qk+1Rk+1,k, Rk+1,k =

 Rk

0T

 ∈ R(k+1)×k, (3.8)

whereQk+1 ∈ R(k+1)×(k+1) is an orthogonal matrix andRk ∈ Rk×k is an upper triangular

matrix. Then, backward substitution is used to solve a system with the coefficient matrix

Rk as follows

∥rk∥2 = min
y∈Rk

∥QT
k+1(βe1)−Rk+1,ky∥2, (3.9)

where

β = ∥r0∥2, QT
k+1βe1 =

 tk

ρk+1

 , tk ∈ Rk, ρk+1 ∈ R. (3.10)

Therefore,

yk = argy∈Rk ∥QT
k+1(βe1)−Rk+1,ky∥2 = R−1

k tk, (3.11)

and the kth iterate is given by

xk = x0 + Vkyk, Vk = [v1, v2, . . . , vk] ∈ Rn×k, V T
k Vk = I , (3.12)

where I is the identity matrix, and v1, v2, . . . , vk are the basis vectors of Kk(AB, r0)

defined in Algorithm 4.

From now on, we use AB-GMRES to solve (3.1) with B = AT and x0 ∈ R(AT), e.g.

x0 = 0, which means xk = x0 + zk, where zk ∈ Kk(A
TA,ATr0). Hence, Theorem 3.4

guarantees the convergence in exact arithmetic even in the inconsistent case. However, in

finite precision arithmetic, AB-GMRES may fail to converge to a least squares solution

for inconsistent problems, as shown later.

3.2.2 AB-GMRES for inconsistent problems

In this section, we perform experiments to show that the convergence of AB-GMRES

deteriorates for inconsistent problems. Experiments were done on the transpose of the

matrix Maragal 3 [25], denoted by Maragal 3T etc. Table 3.1 gives the information
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Table 3.1: Information on the Maragal matrices.

matrix m n density[%] rank κ2(A)

Maragal 3T 858 1682 1.27 613 1.10×103

Maragal 4T 1027 1964 1.32 801 9.33×106

Maragal 5T 3296 4654 0.61 2147 1.19×105

Maragal 6T 10144 21251 0.25 8331 2.91×106

Maragal 7T 26525 46845 0.10 20843 8.91×106

0 200 400 600 800
-10

0

10

20

T T

Figure 3.1: κ2(Rk) and relative residual norm versus the number of iterations for
Maragal 3T.

on the Maragal matrices, including the density of nonzero entries, rank and condition

number. Here, the rank and condition number were determined by using the MATLAB

functions spnrank [26] and svd, respectively.

Figure 3.1 shows the relative residual norm ∥ATrk∥2/∥ATb∥2 and κ2(Rk) versus the

number of iterations for AB-GMRES with B = AT for Maragal 3T, where rk = b−Axk,

and the vector b was generated by the MATLAB function rand which returns a vector

whose entries are uniformly distributed in the interval (0, 1). Therefore, generically

b /∈ R(A) and the problem is inconsistent. Here, κ2(Rk)=κ2(Hk+1,k) holds from (3.8).

The value of κ2(Rk) was computed by the MATLAB function cond. The relative residual

norm ∥ATrk∥2/∥ATb∥2 decreased to 10−8 until the 525th iteration, and then increased

sharply. The value of cond(Rk) started to increase rapidly around iterations 450–550.

This observation shows that Rk becomes ill-conditioned before convergence. Thus, AB-

GMRES failed to converge to a least squares solution. This phenomnenon was observed

by Morikuni[9].

The reason why Rk becomes ill-conditioned before convergence in the inconsistent

case will be explained by a theorem in the next subsection.
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3.2.3 GMRES for inconsistent problems

Brown and Walker [19] analyzed the break-down of GMRES.

Let b|R(Â) denote the orthogonal projection of b onto R(Â). Assume

N (Â) =N (ÂT) and grade(Â, b|R(Â)) = k. Here, grade(Â, b̂) for Â ∈ Rm×m, b̂ ∈ Rm

is defined as the minimum k such that Kk+1(Â, b̂) = Kk(Â, b̂). Then, we have the

following lemmas.

Lemma 3.5. Assume N (Â) ∩ R(Â) = {0}, and grade(Â, b|R(Â)) = k. Then,

Kk+1(Â, b|R(Â)) = ÂKk(Â, b|R(Â)) holds.

Proof. Note that

ÂKk(Â, b|R(Â)) = span{Âb|R(Â), Â
2b|R(Â), · · · , Â

kb|R(Â)}

⫅ span{b|R(Â), Âb|R(Â), · · · , Â
kb|R(Â)} = Kk+1 (Â, b|R(Â)).

grade(Â, b|R(Â)) = k implies that

Kk+1(Â, b|R(Â)) = Kk(Â, b|R(Â)) = span{b|R(Â), Âb|R(Â), · · · , Â
k−1 b|R(Â)}.

Hence,

Âkb|R(Â) = c0b|R(Â) + c1Âb|R(Â) + · · ·+ ck−1Â
k−1b|R(Â), ci ∈ R, i = 0, 1, 2, · · · , k − 1.

If c0 = 0,

Âkb|R(Â) = c1Âb|R(Â) + c2Â
2b|R(Â) + · · ·+ ck−1Â

k−1b|R(Â).

Hence,

c1Âb|R(Â) + c2Â
2b|R(Â) + · · ·+ ck−1Â

k−1b|R(Â) − Âkb|R(Â)

= Â(c1b|R(Â) + · · ·+ ck−1Â
k−2b|R(Â) − Âk−1b|R(Â)) = 0.



18

Hence,

c1b|R(Â) + c2Â
2b|R(Â) + · · ·+ ck−1Â

k−2b|R(Â) − Âk−1b|R(Â) ∈ N (Â) ∩R(Â) = {0}.

which implies

Âk−1b|R(Â) = c1b|R(Â) + c2Âb|R(Â) + · · ·+ ck−1Â
k−2b|R(Â).

Thus,

Kk(Â, b|R(Â)) = Kk−1(Â, b|R(Â)),

which contradicts with grade(Â, b|R(Â)) = k. Hence, c0 ̸= 0, and

b|R(Â) = d1Âb|R(Â) + d2Â
2b|R(Â) + · · ·+ dk−1Â

k−1b|R(Â) + dkÂ
kb|R(Â).

Hence,

Kk+1(Â, b|R(Â)) = span{b|R(Â), Âb|R(Â), · · · , Â
kb|R(Â)}

⫅ span{Âb|R(Â), Â
2b|R(Â), · · · , Â

kb|R(Â)} = ÂKk (Â, b|R(Â)).

Thus,

Kk+1(Â, b|R(Â)) = ÂKk(Â, b|R(Â)).

Corollary 3.6. Assume N (Â) = N (ÂT), and grade(Â, b|R(Â)) = k. Then,

Kk+1(Â, b|R(Â)) = ÂKk(Â, b|R(Â)) holds.

Proof. N (Â) = N (ÂT) implies that

N (Â) ∩R(Â) = N (ÂT) ∩R(Â) = R(Â)⊥ ∩R(Â) = {0}.

Hence, from Lemma 3.5, Corollary 3.6 holds.
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Lemma 3.7. Assume N (Â)∩R(Â) = {0}, grade(Â, b|R(Â)) = k, and b /∈ R(Â). Then,

dim(Kk+1(Â, b)) = k + 1 holds.

Proof. Let c0, c1, . . . , ck ∈ R satisfy

c0b+ c1Âb+ · · ·+ ckÂ
kb = 0.

Since N (Â) ∩ R(Â) = {0},

b = b|R(Â) ⊕ b|N (Â),

where b|N (Â) denotes the orthogonal projection of b onto N (Â). Hence,

c0b|N (Â) + c0b|R(Â) + c1Âb|R(Â) + · · ·+ ckÂ
kb|R(Â) = 0.

If c0 ̸= 0

b|N (Â) = −b|R(Â) −
c1
c0
Âb|R(Â) − · · · − ck

c0
Âkb|R(Â) ∈ R(Â).

Hence,

b|N (Â) ∈ N (Â) ∩R(Â) = {0}.

Thus, b|N (Â) = 0, which contradicts b /∈ R(Â). Hence, we have c0 = 0, and

c1Âb+ c2Â
2b+ · · ·+ ckÂ

kb = c1Âb|R(Â) + c2Â
2b|R(Â) + · · ·+ ckÂ

kb|R(Â) = 0.

But, since

dim(span{Âb|R(Â), Â
2b|R(Â), · · · , Â

kb|R(Â)})

= dim(Â span{b|R(Â), Âb|R(Â) · · · , Â
k−1 b|R(Â)}) = dim(ÂKk (Â, b|R(Â))) = k

holds from Lemma 3.5, we have c1 = c2 = · · · = ck = 0, which implies dim(Kk+1 (Â, b)) =

k + 1 .
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Corollary 3.8. Assume N (Â) = N (ÂT), grade(Â, b|R(Â)) = k, and b /∈ R(Â).

Then, dim(Kk+1(Â, b)) = k + 1 holds.

Proof. N (Â) = N (ÂT) implies N (Â) ∩ R(Â) = {0}. Hence, the corollary follows from

Lemma 3.7.

From Lemma 3.5, we have

dim(Kk (Â, b|R(Â))) = dim(Kk+1(Â, b|R(Â)))

= dim(ÂKk (Â, b|R(Â)))

= dim(ÂKk+1(Â, b|R(Â)))

= k.

Since N (Â) =N (ÂT), we obtain Âb|R(Â) = Âb and

dim(ÂKk+1(Â, b)) =dim(ÂKk+1(Â, b|R(Â))) = k. If b /∈ R(Â) and

dim(ÂKk(Â, b)) = k, dim(Kk+1(Â, b)) = k + 1 (See Lemma 3.7).

Let x0 be the initial solution and r0 = b − Âx0. In the inconsistent case, a

least squares solution is obtained at iteration k, and at iteration k + 1 breakdown

occurs because of dim(ÂKk+1(Â, r0)) < dim(Kk+1(Â, r0)), i.e. rank deficiency of

minz∈Kk+1(Â,r0)
∥b − Â(x0 + z )∥2 = minz∈Kk+1(Â,r0)

∥r0 − Âz∥2[19]. This case is also

called the benign breakdown[21].

However, even if N (Â) = N (ÂT), when (3.13) is inconsistent, the

least squares problem minz∈Kk (Â,r0)
∥r0 − Âz∥2 may become ill-conditioned as

shown below.

Brown and Walker [19] introduced an effective condition number to explain why GM-

RES fails to converge for inconsistent least squares problems

min
x∈Rm

∥b − Âx∥2, (3.13)

where Â ∈ Rm×m is singular, in the following Theorem 3.9.
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Theorem 3.9. [19] Assume N (Â) = N (ÂT), and denote the least squares residual of

(3.13) by r∗, the residual at the (k − 1)st iteration by rk−1. If rk−1 ̸= r∗, then

κ2(Ak) ≥
∥Ak∥2
∥Āk∥2

∥rk−1∥2√
∥rk−1∥22 − ∥r∗∥22

, (3.14)

where Ak ≡ Â|Kk(A,r0)and Āk ≡ Â|Kk(A,r0)+span{r∗}. Here, Â|S is the restriction of Â to

a subspace S ⊆ Rm.

Theorem 3.9 implies that GMRES suffers ill-conditioning for b /∈ R(Â) as ∥rk∥ ap-

proaches ∥r∗∥. We can apply Theorem 3.9 to AB-GMRES for least-squares problems

by setting Â ≡ AAT. Theorem 3.9 also implies that even if we choose B as AT, which

satisfies the conditions in Theorem 3.4, AB-GMRES still may not converge numeri-

cally because of the ill-conditioning of Rk, losing accuracy in the solution computed in

finite-precision arithmetic when rk−1 approaches r∗.

3.3 Deterioration of convergence of AB-GMRES applied

to inconsistent underdetermined least squares prob-

lems

In this section, we illustrate, the deterioration of convergence of GMRES by numerical

experiments. There are two points to note in this section. The first point is that the

condition number of Rk tends to become very large as the iteration proceeds for incon-

sistent problems, as already mentioned in section 3.2.2. Due to Hk+1,k = Qk+1Rk+1,k,

the condition number of Hk+1,k is the same as that of Rk, and will also become very

large. The second point is as follows. Since yk = R−1
k tk, yk is obtained by applying

backward substitution to the triangular system

Rkyk = tk. (3.15)

When the triangular system becomes ill-conditioned, backward substitution becomes

numerically unstable, and fails to give an accurate solution yk.

Figure 3.1 shows that at step 550 the relative residual norm suddenly increases. To

understand this increase, observe the singular values of R550.
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Figure 3.2: Singular value distribution of R550 for Maragal 3T in double and quadru-
ple precision arithmetic.
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Figure 3.3: κ2(Rk), ∥yk∥2, and ∥tk − Rkyk∥2/∥tk∥2 versus the number of iterations
for Maragal 3T.

The left of Figure 3.2 shows the singular values of R550 which were computed in double

precision arithmetic. The smallest singular value of R550 is 3.21 × 10−14, which means

that the triangular matrix R550 is very ill-conditioned and nearly singular in double

precision arithmetic.

The right of Figure 3.2 shows the singular values of R550 which were computed in

quadruple precision arithmetic using the Multiprecision Computing Toolbox for MAT-

LAB [11]. The smallest singular value of R550 is 5.39×10−15. Since quadruple precision

is more accurate, from now on, we mainly show singular value distributions computed

in quadruple precision.

Figure 3.3 shows κ2(Rk), ∥yk∥2, and the relative residual norm

∥tk − Rkyk∥2/∥tk∥2 versus the number of iterations for AB-GMRES. The relative

residual norm increases only gradually when the condition number of Rk is less than

108. When the condition number of Rk becomes larger than 1010, the relative residual
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norm starts to increase sharply. This observation shows that when the condition number

of Rk becomes very large, the backward substitution will fail to give an accurate yk. As

a result, we would not get an accurate xk, and the convergence of AB-GMRES would

deteriorate.

3.4 Stabilized GMRES method

In this section, we first propose and present a stabilized GMRES method. Then, we

explain its regularization effect comparing it with other regularization techniques.

3.4.1 The stabilized GMRES

In order to overcome the deterioration of convergence of GMRES for inconsistent

systems, we propose solving the normal equations

RT
kRkyk = RT

k tk (3.16)

instead of Rkyk = tk of (3.15), which we will call the stabilized GMRES. We replace line

8 of Algorithm 4 by Algorithm 5. This makes the system consistent, and stabilizes the

process, as will be shown in the following.

One may also consider using the normal equations of Hk+1,k. However, before break-

down, we use the standard AB-GMRES, which means we do not have to store Hk+1,k.

We only store Rk and update it in each iteration, which is cheaper.

Figure 3.4 shows the relative residual norm ∥ATrk∥2/∥ATr0∥2 versus the number of

iterations for the standard AB-GMRES and stabilized AB-GMRES with B = AT for

Maragal 3T. The stabilized method reaches the relative residual norm level of 10−11

which improves a lot compared to the standard method. The method which we used

for solving the normal equations (3.16) is the standard Cholesky decomposition without

pivoting.

This seems paradoxical, since forming the normal equations whose coefficient matrix

RT
kRk would square the condition number compared to Rk, which would make the

ill-conditioned problem even worse. Why can the stabilized AB-GMRES give a more
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Figure 3.4: Comparison of the standard AB-GMRES with stabilized AB-GMRES for
Maragal 3T.

Algorithm 5 Normal equations stabilization approach

1: Compute the QR decomposition of Hk+1,k = Qk+1Rk+1,k.

2: Rk+1,k =

(
Rk

0T

)
, QT

k+1βe1 =

(
tk

ρk+1

)
, R̃k = RT

kRk, t̃k = RT
k tk.

3: Compute the Cholesky decomposition of R̃k = LLT.
4: Solve Lzk = t̃k by forward substitution.
5: Solve LTyk = zk by backward substitution.

accurate solution? We will explain why the stabilized AB-GMRES works in the next

subsection.

In spite of the above mentioned merits of stabilization, solving the normal equations

in AB-GMRES is expensive. Actually, we only need the stabilized AB-GMRES when Rk

becomes ill-conditioned. Thus, we can speed up the process by switching AB-GMRES

to stabilized AB-GMRES only when Rk becomes ill-conditioned. The condition num-

ber of an incrementaly enlarging triangular matrix can be estimated by techniques in

[27]. In this paper, we adopt the switching strategy by monitoring the relative residual

norm ∥ATrk∥2/∥ATr0∥2. Let ATR(k)=∥ATrk∥2/∥ATr0∥2 for the kth iteration. When

ATR(v)/ mink=1,2,...,v−1ATR(k) > 10, we judge that a jump in relative residual norm

has occured, and we switch AB-GMRES to stabilized AB-GMRES at the vth iteration.

3.4.2 Why the stabilized GMRES method works

Consider solving Rkyk = tk, Rk ∈ Rk×k, tk ∈ Rk by solving the normal equations

(3.16), which, in theory, squares the condition number and makes the problem become
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Figure 3.5: Singular values σk(fld(R
T
550R550)), k = 1, 2, . . . , 550 in quadruple precision
arithmetic.

harder to solve numerically. However, in finite precision arithmetic, the condition num-

ber of the normal equations is not neccessarily squared. We will continue to illustrate

the phenomenon by using the example in Section 3.3.

We used the MATLAB function svd in quadruple precision arithmetic [11] to calculate

the singular values. The smallest singular value of R550 is 5.39× 10−15, so its square is

2.91× 10−29.

Let fl(·) denote the evaluation of an expression in floating point arithmetic and

fld(·) and flq(·) denote the result in double precision arithmetic and quadruple preci-

sion arithimetic, respectively. Figure 3.5 shows that, numerically, the smallest singular

value of fld(R
T
550R550) is 7.21× 10−14, which is much larger than 2.91× 10−29. Further,

the Cholesky factor L of fld(R
T
550R550) = LLT computed in double precision preci-

sion arithmetic has the smallest singular value 3.50 × 10−7, which is also larger than
√
2.91× 10−29 = 5.39 × 10−15. Thus, the triangular systems Lzk = t̃k and LTyk = zk

are better-conditioned than Rkyk = tk, which will ensure the stability of the forward

and backward substitutions and succeeds in obtaining a much more accurate solution

with stability compared to the standard approach as shown in Figure 3.4.

The left of Figure 3.6 compares the singular values σk(fld(R
T
550R550)) and

σk(R550)
2, k = 1, 2, . . . , 550. The first to the 549th singular values of

fld(R
T
550R550) and the corresponding σ(R550)

2 are almost the same, while the last one is

different. What will happen when Rk contains a cluster of small singular values?

The upper triangular matrix R610 contains a cluster of small singular values. The

right of Figure 3.6 compares the singular values σk(fl d(R
T
610R610)) and σk(R610)

2. The
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Figure 3.6: Singular values σk(fld(R
T
550R550)), σk(R550)

2, σk(fld(R
T
610R610)), and

σk(R610)
2 in quadruple precision arithmetic.

larger singular values are the same as the ‘exact’ values, while the smaller singular values

become larger than the ‘exact’ ones.

Experiment results show that finite precision arithmetic has the effect of shifting the

tiny singular values upwards and reduce the condition number of RTR. Besides the fact

that the possibly inconsistent system (3.15) is replaced by the consistent system (3.16),

that is the reason why the normal equations (3.16) help to make the problem easier to

solve.

Next, we computed RT
550R550 in quadruple precision arithmetic and observed

that the smallest singular values of RT
550R550 coincided with the squared sin-

gular values σk(R550)
2 (blue circle symbol) in the left of Figure 3.6, un-

like in double precision computation. Since the maximum of the elements of

|flq(RT
550R550) − fld(R

T
550R550) | is approximately 8.16 × 10−12, double precision arith-

metic contains error of the order of 10−12. Thus, double precision arithmetic has an

effect of regularizing the matrix RT
550R550, since double precision matrix multiplication

is not accurate enough to keep all the information.

3.4.3 Quadruple precision

In order to see the effect of the machine precision on the convergence of AB-GMRES,

we compared the stabilized AB-GMRES with the standard AB-GMRES in quadruple

precision arithmetic for the problem Maragal 3T in Figure 3.13 in terms of the relative

residual norm ∥ATrk∥2/∥ATb∥2 versus the number of iterations. For both methods, the



27

Figure 3.7: Effect of the stabilized method in quadruple precision arithmetic for
Maragal 3T.

relative residual norm reached a lower level of order 10−16 compared to 10−12 and 10−8,

respectively, for double precision arithmetic in Figure 3.4. The curves of the relative

residual norm became smoother compared to double precision. As seen in Figure 3.13,

the relative residual norm of the standard AB-GMRES jumped to 10−1 after reaching

10−16, whereas the relative residual norm of the stabilized GMRES stayed around 10−16.

3.4.4 Rounding error analysis of the stabilized GMRES method

In order to understand the stability of the proposed method, we perform rounding

error analysis. Let u be the unit roundoff [24], which is about 1.11× 10−16 for the IEEE

754 binary 64 (double) in our experiments. The analysis shows that if the condition

number of R ∈ Rn×n is
1

o(n
√
u)

, then the condition number of RTR can be reduced

from
1

o(n2u)
in exact arithmetic to O

(
1

n2u

)
in finite precision arithmetic.

Let fl(x) denote the floating point number corresponding to x. Let A = (aij) ∈

Rm×n, B ∈ Rn×p, and |A| = (|aij |).

Then, we have (cf. [24])

|fl(AB)−AB | ≤ γn |A||B |, where γn :=
nu

1− nu
. (3.17)

Hence,

|fl(RTR)− RTR| ≤ γn |RT||R|. (3.18)
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Let

E = (εij) := fl(RTR)− RTR. (3.19)

Then, we have

|E| = (|εij |) ≤ γn|RT||R|. (3.20)

Let R = UΣV T be the singular value decomposition (SVD) of R ∈ Rn×n, where

U = [u1, u2, . . . , un], V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal matrices, and Σ =

diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Then, note the following.

Lemma 3.10. (|RT||R|)ij ≤ ∥R∥22 = σ2
1.

Proof. Let R = [r1, r2, . . . , rn]. Then,

(|RT||R|)ij = |ri|T|rj | = (|ri|, |rj |)

≤ ∥ri∥2∥rj∥2 ≤ max
1≤i≤n

∥ri∥22

= max
i=1,...,n

∥Rei∥22 ≤ max
∥x∥2=1

∥Rx∥22

≤ ∥R∥22 = σ1
2.

Here, ei is the ith column of the identity matrix.

Hence, we have

|εij | ≤ γn(|RT||R|)ij ≤ γnσ1
2. (3.21)

Let A,B,C be n × n Hermitian matrices, and A = B + C. Denote the eigenvalues of

A, B and C by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B), and

λ1(C) ≥ λ2(C) ≥ · · · ≥ λn(C), respectively. Then, the following Weyl’s inequality (See

e.g. [28, 29])

λk(B) + λn(C) ≤ λk(A) ≤ λk(B) + λ1(C), k = 1, 2 . . . , n, (3.22)

holds.
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Hence, we have

|λk(A)− λk(B)| ≤ ∥C∥2 = ∥A−B∥2, k = 1, 2, . . . , n. (3.23)

Letting A = fl(RTR),B = RTR,C = E , we have

|λk(fl(R
TR))− λk (R

TR)| ≤ ∥E∥2, k = 1, 2, . . . ,n. (3.24)

Let fl(RTR) = Ṽ Σ̃ 2Ṽ T be the SVD of fl(RTR), where

Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n), σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0, which gives

|σ̃2
k − σ2

k| ≤ ∥E∥2, k = 1, 2, . . . ,n. (3.25)

Note

|σ̃2
k − σ2

k| ≤ ∥E∥2 ≤ ∥E∥F

=

√√√√ n∑
i,j=1

|εij |2 ≤

√√√√ n∑
i,j=1

(γnσ12)2

=
√
n2(γnσ12)2 = nγnσ

2
1, k = 1, 2, . . . ,n. (3.26)

Hence,

|σ̃2
k − σ2

k| ≤ nγnσ
2
1, k = 1, 2, . . . ,n, (3.27)

i.e

σ2
k − nγnσ

2
1 ≤ σ̃2

k ≤ σ2
k + nγnσ

2
1, k = 1, 2, . . . ,n, (3.28)

or

σ̃2
k = σ2

k + tknγnσ
2
1, −1 ≤ tk ≤ 1, k = 1, 2, . . . ,n. (3.29)

Recall γn =
nu

1− nu
, u ≈ 1.11 × 10−16. If nu ≪ 1 ⇐⇒ n ≪ 1

u
(≈ 9.01 × 1015 for

double precision arithmetic). Then,

1

1− nu
≈ 1 + nu =⇒ γn =

nu

1− nu
≈ nu(1 + nu) ≈ nu. (3.30)
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Hence,

σ̃2
k ≈ σ2

k + tkn
2uσ2

1, −1 ≤ tk ≤ 1, k = 1, 2, . . . ,n. (3.31)

Then,

σ̃2
1 ≈ σ2

1(1 + t1n
2u), −1 ≤ t1 ≤ 1. (3.32)

We define the following Landau’s symbols:

f(x) = O(g(x)) as x → a denotes that
f(x)

g(x)
is bounded as x → a, (3.33)

and

f(x) = o(g(x)) as x → a denotes that lim
x→a

f(x)

g(x)
= 0. (3.34)

In the following, for instance, o(n
√
u) is defined by letting x = n

√
u, a = 0.

Assume n
√
u ≪ 1 (⇐⇒ n ≪ 1√

u
≈ 9.49 × 107). Then, since,

1√
u
≪ 1

u
, we have

n ≪ 1√
u
≪ 1

u
. Thus, nu ≪ 1.

Assume

κ = κ(R) =
σ1
σn

=
1

o(n
√
u)

⇐⇒ κ2 =
1

o(n2u)
⇐⇒ 1

κ2
= o(n2u) (3.35)

holds. Then,

σ̃2
n ≈ σ2

n + tnn
2uσ2

1 = σ2
1

(
σ2
n

σ2
1

+ tnn
2u

)
= σ2

1

(
1

κ2
+ tnn

2u

)
≈ σ2

1 [o(n2u) + tnn
2u]. (3.36)

Assume |tn| > o(1). (Note that if we assume tn is randomly distributed in the interval

[−1, 1], then, generically, o(1) < |tn| holds.) Then, since −1 ≤ tn ≤ 1, o(1) < |tn| = O(1)

holds. Hence, σ̃2
n ≈ σ2

1tnn
2u. Since σ̃2

n ≥ 0, we have tn > 0 and
1

tn
= O(1).

Hence, from (3.32), (3.36) and
1

tn
= O(1), we have

κ̃2 = κ(fl(RTR)) =
σ̃2
1

σ̃2
n

≈ 1

tnn2u
≈ O

(
1

n2u

)
. (3.37)
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In summary, we have the following theorem.

Theorem 3.11. Let u be the unit roundoff, and R ∈ Rn×n. If n
√
u ≪ 1 and κ(R) =

σ1(R)

σn(R)
=

1

o(n
√
u)

, then, generically, σn(fl(R
TR)) ≈ σ1(R)2 tn n

2u, where o(1) < tn =

O(1), and κ(fl(RTR)) = O

(
1

n2u

)
hold.

Remark 3.12. For IEEE double u ≈ 1.11× 10−16, n
√
u ≪ 1 ⇐⇒ n ≪ 9.49× 107.

Remark 3.13. κ(RTR) =
1

o(n2u)
.

Then, numerical experiments suggest that if LLT is the Cholesky decomposition

of fl(RTR) computed in finite precision, then κ(L) = O

(
1

n
√
u

)
, even when κ(R) =

1

o(n
√
u)

.

Thus, forming the normal equations and applying Cholesky decomposition can lead

to a more stable computation for extremely ill-conditioned systems of equations, and

hence explains why the stabilized GMRES method works without choosing the value of

a regularization parameter such as in TSVD or Tikhonov regularization, which will be

mentioned in § 3.5.1.1 and 3.5.1.2, respectively.

Let us compare estimates with numerical results for the Maragal 3T matrix in Figure

3.6.

For R550, n = 550, σ1(R550) ≈ 1.90× 102, σ550(R550) ≈ 5.39×−15. Hence,

κ(R550) =
σ1(R550)

σ550(R550)
≈ 3.53× 1016 =

1

o(n
√
u)

≫ 1

n
√
u
≈ 1.73× 105.

Thus, σ̃2
n ≈ σ2

1 tn n
2u ≈ 1.21 × 10−6, where o(1) < tn = O(1), and

κ(fl(RTR)) ≈ O

(
1

n2u

)
≈ 2.98 × 1010, whereas in Figure 3.6, σ̃2

n ≈ 7.21 × 10−14,

and κ(fl(RTR)) ≈ 5.00× 1017.

For R610, n = 610, σ1(R610) ≈ 2.13× 102, σ610(R610) ≈ 2.91× 10−15. Hence,

κ(R610) =
σ1(R610)

σ610(R610)
≈ 7.32× 1016 =

1

o(n
√
u)

≫ 1

n
√
u
≈ 1.56× 105.

Thus, σ̃2
n ≈ σ2

1 tn n
2u ≈ 1.87 × 10−6, where o(1) < tn = O(1), and

κ(fl(RTR)) ≈ O

(
1

n2u

)
≈ 2.42 × 1010, whereas in Figure 3.6, σ̃2

n ≈ 1.62 × 10−14,

and κ(fl(RTR)) ≈ 2.77× 1018.
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Table 3.2: Comparison of estimates and numerical experiments for Maragal 3T

R550 (n = 550) R610 (n = 610)

σ̃2
n σ̃2

1/σ̃
2
n σ̃2

n σ̃2
1/σ̃

2
n

Estimates 1.21×10−6 2.98×1010 1.87×10−6 2.42×1010

Numerical experiment (Figure 3.6) 7.21× 10−14 5.00× 1017 1.62× 10−14 2.77× 1018

σ2
n σ2

1/σ
2
n σ2

n σ2
1/σ

2
n

2.91× 10−29 1.25× 1033 8.47× 10−30 5.36× 1033

We summarize the results in Table 3.2. We think there are two reasons for the

overestimation of σ̃2
n. One comes from the inequality ∥E∥2 ≤ ∥E∥F in (3.26). The other

is that tn > o(1), but tn may be considerably samller than 1 in (3.29).

We remark that [30] analyzes the stability of the CholeskyQR2 algorithm using

similar techniques. However, they assume κ(R) ≤ O

(
1√
u

)
, whereas we assume

κ(R) =
1

o(n
√
u)

.

3.4.5 Two advantages of forming the normal equations

When R is singular, R−1 does not exist, and

Ry = t (3.38)

does not have a solution when t /∈ R(R).

If we reformulate (3.38) as a least squares problem

min
y

∥t−Ry∥2, (3.39)

then (3.39) has a solution even when t /∈ R(R). For instance, the minimum-norm

solution of (3.39) is given by y = R†t, where R† is the pseudo-inverse of R.

Note that (3.39) is equivalent to the normal equations

RTRy = RTt. (3.40)

(3.40) is consistent, i.e. RTt ∈ R(RT) = R(RTR), and has a solution.
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Now consider the case when R is nearly singular (severely ill-conditioned), that is

κ(R) =
1

o(n
√
u)

. Then, solving (3.38) by backward substitution fails to give an accurate

solution as shown in Figure 3.3.

On the other hand, we may expect that we may obtain a numerical solution of the

least squares problem (3.39), for instance by approximating y = R†t [31].

In fact, since (3.39) is equivalent to the normal equations, as we have seen in Theorem

3.11, κ(fl(RTR)) = O

(
1

n2u

)
holds while κ(RTR) =

1

o(n2u)
, which gives a numerical

advantage.

Thus, we may say that forming the normal equations (3.40) has two advantages over

the system of equations (3.38). One is that, it makes the system consistent and guaran-

tees the existence of a solution, which opens the possibility of a numerical solution by

some kind of approximation. The other advantage is that the normal equations become

numerically better conditioned than in exact arithmetic.

These two effects work at the same time. Still, one may wonder which effect is

dominant in improving the convergence of GMRES.

Consider executing AB-GMRES in double and quadruple precision arithmetic and

compare t for the same iteration k. Denote R and t in double precision arithmetic as

Rd and td and in quadruple precision arithmetic as Rq and tq.

Solve Rd yds = td by the stabilized AB-GMRES, which is equivalent to solving

RT
dRd yds = RT

d td, and create a right-hand side ts = Rd yds. Then, use backward

substitution to solve Rd ys = ts. The solution ys is nearly the same as yds, as shown

in Figure 3.8. The relative error is ∥ys − yds∥2/∥yds∥2 = 1.87 × 10−11. However, td

and ts are different, especially for the components with large index, as shown in Figure

3.10 (b), which suggests that if we have a consistent ts, we can get a good solution ys

even with ill-conditioned Rd by backward substitution. This suggests that consistency

is important.

In infinite precision ∥Ry − t∥ and ∥Ax − b∥ can be minimized at the same time.

Since, we know that tq makes the relative residuals ∥ATrk∥2/∥ATr0∥2 converge to a

very low level by backward substitution before the relative residuals jump, as shown

in Figure 3.13, we regard tq as a good approximation of t in infinite precision. There

are differences between td and tq, as shown in Figure 3.10 (a) (also for Rd and Rq,
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Figure 3.9: Comparison of yd and yq.

for example, the relative difference between the last component of Maragal3 T at 552

iteration |Rd(552, 552) − Rq(552, 552)|/|Rq(552, 552)| = 2.45 × 10−1), especially for the

components with large index, but ts and tq are similar, as shown in Figure 3.10 (c).

Since, using tq as right-hand side and performing back substitution by Rq can converge

instead of td, and there are differences between them, we conclude that td contains noise.

Another point of view suggests using substitutions to solve RT
d z = RT

d td first, then

solve Rd y = z. This method fails to converge, since z /∈ R(Rd). This also suggests that

consistency is very important. Notice that, after forming the normal equations, and

using Cholesky decomposition, we succeed to converge with L and LT in Algorithm 5,

which suggests that better conditioning makes zk ∈ R(LT). For example, for Maragal 3T
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in 552 iterations, κ(Rd) = 3.94×1016, κ(L) = 5.88×108. We guess that L does not have

a null space numerically. This suggests that even if td contains noise, better conditioned

L can reach a good solution yds rather than Rd, which shows better conditioning is also

important.

We are sure that td /∈ R(Rd), which suggests that td is inaccurate and contains

noise. Thus, we tried to add noise to (3.16), and solve RT
i Riy = RT

i t + η, where

η is a random noise of magnitude 10−8, 10−10, 10−12, which is shown in Figure 3.12

(Note ∥η∥2 = ∥RT
552(ts − tq)∥2 = 1.27 × 10−7). The figure shows that the method still

convergences with noise, but not as well as without noise. Better conditioning makes

(3.16) insensitive to noise. This suggests better conditioning helps to resist the noises

in td and makes the system stable.

3.4.5.1 Properties of the solution given by the stabilized method

When using GMRES to solve

min ∥b−Ax∥2, (3.41)

there is a mathematically equivalent problem

min ∥td −Rdy∥2 (3.42)

to solve for each GMRES iteration in double precision arithmetic. There are four ways

to solve (3.42). They are backward substitution in double precision arithmetic (yd), the

normal equations approach in double precision arithmetic (yds), backward substitution

in quadruple precision arithmetic (yq), the normal equations approach in quadruple

precision arithmetic (yqs). The results are shown in the Table 3.3 and Table 3.4.

yq reached the smallest relative residual and relative normal residual for (3.42), yq is

the least squares solution for (3.42). In terms of the relative error yd is closer to yq than

yds. However, the most interesting thing is that yds gives the best least squares solution

for (3.41), instead of yq. This observation shows that successfully solving (3.42) cannot

ensure solving (3.41) successfully. (3.41) and (3.42) are not equivalent due to noise in t

in double precision arithmetic.
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yd yds yq yqs
∥td −Rdy∥2

∥td∥2
3.21×10−2 7.55×10−2 2.35×10−20 3.27×10−4

∥RT
d (td −Rdy)∥2
∥RT

d td∥2
5.08×10−1 2.57×10−13 9.21×10−20 6.97×10−19

∥y − yq∥2
∥yq∥2

4.86×10−13 1.00 0 4.32×10−3

∥AT(b−Ax)∥2
∥ATb∥2

4.56×10−2 4.21×10−12 4.92×10−2 4.94×10−2

Table 3.3: For Maragal 3T at iter=552.

yd yds yq yqs
∥td −Rdy∥2

∥td∥2
1.37 9.12×10−1 1.19×10−18 2.45×10−3

∥RT(td −Rdy)∥2
∥RT

d td∥2
3.23×101 5.41×10−13 2.29×10−17 2.70×10−16

∥y − yq∥2
∥yq∥2

1.49×10−14 1.00 0 2.69×10−3

∥AT(b−Ax)∥2
∥ATb∥2

2.97×103 3.14×10−11 3.91×102 3.92×102

Table 3.4: For bw42 at iter=220.

When solving (3.41) in double precision arithmetic, the corresponding coefficient ma-

trix and right-hand side of (3.42) are Rd and td, respectively. For quadruple precision

arithmetic, we have Rq and tq. For iteration 552, we get a solution x by using backward

substitution for solving Rq y∗ = tq, and found the relative error for the same steps by

the stabilized method xds is
∥xds − xq∥2

∥xq∥
= 7.81 × 10−10. Thus, we confirmed that the

stabilized method seems to converge to the least squares solution of (3.41). Notice that

y∗ and yds are not close (∥y∗ − yds∥2/∥y∗∥2 = 1.00), since Vd and Vq are different, as

shown in Figure 3.11. Note that, xds = Vd yds, xq = Vq y∗. The column vectors of

Vd lose orthogonality gradually, especially for the last several columns, where the inner

product between different columns of Vd are of order one. Observe that in Figure 3.8 and

Figure 3.9, the components of yds with large k (k ≥ 500) are tiny (it decreases from 2.76

gradually to 1.75× 10−10), whereas yd and yq decrease from 1.96× 109 to 9.59× 10−2,

which means the solution xds is less effected by the loss of orthogonality.

From Figure 3.10, regard tq as accurate, then, tq − td is the total noise which td

contains, ts − td is the inconsistent noise, tq − ts, whose magnitude is of order 10−10 is

very tiny. From Figure 3.12, this is acceptable.

Concluding the above, the stabilized method can converge to the least squares solution
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Figure 3.11: Norm of the columns of Vd − Vq.

even if td contains noise. Consistency eliminated the inconsistent noise in td. Better

conditioning made the system insensitive to noise, as seen in Figure 3.10, and also made

the generated L become better conditioned.

3.4.6 Quadruple precision

In order to see the effect of the machine precision ϵ on the convergence of the AB-

GMRES, we compared the stabilized AB-GMRES with the AB-GMRES in quadruple

precision arithmetic for the problem Maragal 3T in Figure 3.13. For both methods, the

relative residual norm reached a smaller level of 10−16 compared to 10−12 and 10−8,
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Figure 3.12: The stabilized method with noises for Maragal 3T.

Figure 3.13: Effect of the stabilized method in quadruple precision arithmetic for
Maragal 3T.

respectively, for double precision arithmetic in Figure 3.4. The curve of the relative

residual norm became smoother compared to double precision. As seen in Figure 3.13,

the relative residual norm of the AB-GMRES method jumped to 10−1 after reaching

10−16, whereas the relative residual norm of the stabilized GMRES stayed around 10−16.

3.4.7 When the stabilized GMRES method works

The stabilized GMRES does not always stabilize the solution of the upper triangular

system. A counter example is when Rk is a Läuchli matrix [32], implying that RT
kRk

computed in finite precision becomes singular. Indeed, when GMRES is applied to a
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linear system with an EP (equal preojecton) matrix A3, that is N (A3)=N (AT
3 ) such as

A3x =


√
2
2

√
2
2 −

√
6u
6 −

√
6u
6

√
2
2

√
2
2 +

√
6u
6

√
6u
6

0
√
6u
3

√
6u
3

x =


1

0

0

 , (3.43)

where A3 has the null space N (A3) = span{(1,−1, 1)T}, and u is the unit roundoff, the

resulting Rk is a Läuchli matrix.

Apply GMRES with x0 = 0 to (3.43). Let Rk ∈ Rk×k be the upper triangular matrix

obtained at the kth iteration of GMRES. In the second iteration, after applying the

Givens rotation to H3,2, we obtain the following:

R2 =

 1 1

0
√
u

 , RT
2R2 =

 1 1

1 1 + u

 ≃

 1 1

1 1

 . (3.44)

Thus, there is a risk that the stabilized GMRES will give a numerically singular matrix

RT
2R2 in finite precision arithmetic for nonsingularR2. We will analyze this phenomenon.

Note that the following theorem holds from Theorem 8.10 of [24], where |b| =

(|b1|, |b2|, . . . , |bn|)T for b = (b1, b2, . . . , bn)
T ∈ Rn.

Theorem 3.14. Let T = (tij) ∈ Rn×n be a triangular matrix and b ∈ Rn. Then, the

computed solution x̂ obtained from substitution applied to Tx = b satisfies

x̂ = x+O(n2u)M(T )−1|b|. (3.45)

Here, M(T ) = (mij) is the comparison matrix such that

mij =

 |tij |, i = j,

−|tij |, i ̸= j.
(3.46)
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Further, we define the following. Let

O(x) =


O(x)

O(x)
...

O(x)

 ∈ Rn, O(x) = [O(x),O(x), · · · ,O(x)] ∈ Rn×n. (3.47)

We assume that the basic arithmetic operations op = +,−, ∗, / satisfy

fl(x op y) = (x op y)(1 +O(u)) as in [24].

Let x, y ∈ Rn, A ∈ Rn×n. Then,

fl(xTy) = xTy +O(nu)|x|T|y| = xTy +O(nu),

fl(Ax) = Ax+O(nu)|A||x| = Ax+O(nu).

Let C ∈ Rn×n and ∥C∥2 = O(1). We say C ∈ Rn×n is numerically nonsingular if the

statement

fl(Cx ) = O(u) ⇒ x = O(u) (3.48)

holds. Note that this definition of numerical nonsingularity agrees with that of numerical

rank [18] due to the following.

Let the SVD of C = UΣV T, where U, V are orthogonal matrices and Σ =

diag(σ1, σ2, . . . , σn). We assume ∥C∥2 = σ1 = O(1). If the numerical rank of C is r < n,

there is a singular value σi = O(u), r + 1 ≤ i ≤ n. Then, Cx = UΣV Tx = O(u) admits

x′ = V Tx = (x′1, x
′
2, . . . , x

′
n)

T such that x′i = O(1), and hence x = O(1). Thus, C is

numericaly singular. Then, the following theorem holds.

Theorem 3.15. Let Rk = (rij) ∈ Rk×k be an upper-triangular matrix and

Rk+1 =

 Rk d

0T rk+1,k+1

 ∈ R(k+1)×(k+1). (3.49)

Assume that Rk is nonsingular and numerically nonsingular, Rk = O(1),

R−1
k = O(1),M(Rk)

−1 = O(1), d = O(1), and O(k) = O(k2) = O(1). Then, the fol-

lowing holds:

fl(RT
k+1Rk+1) is numerically nonsingular ⇐⇒ fl(r2k+1,k+1) > fl(dTd)O(u).
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The proof is as follows.

fl(RT
k+1Rk+1) is numerically nonsingular ⇐⇒ fl(r2k+1,k+1) > fl(dTd)O(u).

Proof. Note that

RT
k+1Rk+1 =

 Rk 0

dT rk+1,k+1

 Rk d

0T rk+1,k+1

 =

 RT
kRk RT

k d

dTRk dTd+ r2k+1,k+1

 .

Proof of (⇒)

Assume fl(r2k+1,k+1) ≤ fl(dTd)O(u). Then, since

fl(dTd) = dTd+O(ku)dTd = (1 +O(ku))dTd ,

fl(dTd + r2k+1,k+1) = (dTd+ r2k+1,k+1)(1 +O(ku)) = dTd(1 +O(ku)),

Rk = O(1), and d = O(1),

we have

fl(RT
k+1Rk+1) =

 RT
kRk +O(ku)|Rk|T|Rk| RT

k d+O(ku)|Rk|T|d|

dTRk +O(ku)|d|T|Rk| dTd+O(ku)dTd


=

 RT
k

dT

(
Rk d

)
+O(ku). (3.50)

Note (
Rk d

) −R−1
k d

1

 = −RkR
−1
k d+ d = 0,

since Rk is nonsingular.

Hence,

fl(
(

Rk d
) −R−1

k d

1

) = fl{Rk fl(−R−1
k d)+ d} = [fl{Rk fl(−R−1

k d)}+ d ]{1+O(u)}.
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Note here that

fl{Rk fl(−R−1
k d)} = Rk fl(−R−1

k d) +O(ku)|Rk ||R−1
k d |,

and

fl(−R−1
k d) = −R−1

k d +O(k2u)M (Rk )
−1|d | (3.51)

from Theorem 3.14. Hence,

fl(
(

Rk d
) −R−1

k d

1

) = O(k2u)RsM (Rk )
−1|d |+O(ku)|Rk ||R−1

k d | = O(k2u),

since R−1
k = O(1) and M(Rk)

−1 = O(1).

Then,

fl(RT
k+1Rk+1

 −R−1
k d

1

)

= fl({

 RT
k

dT

(
Rk d

)
+O(ku)}

 −R−1
k d+O(k2u)M(Rk)

−1|d|

1

) = O(k2u) = O(u),

since (3.50), (3.51), and O(k2) = O(1). Since

 −R−1
k d

1

 = O(1), RT
k+1Rk+1 is

numerically singular. By contraposition, (⇒) holds.

Proof of (⇐)

Assume RT
k+1Rk+1 is not numerically nonsingular. Then, there exists a vector

 z

w

 ∈
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Rk+1 such that

∣∣∣∣∣∣
 z

w

∣∣∣∣∣∣ > O(u), and

fl{RT
k+1Rk+1

 z

w

} = RT
k+1

Rk+1

 z

w

+ |Rk+1|

∣∣∣∣∣∣
 z

w

∣∣∣∣∣∣O((k + 1)u)

+

∣∣∣RT
k+1

∣∣∣
∣∣∣∣∣∣Rk+1

 z

w

+ |Rk+1|

∣∣∣∣∣∣
 z

w

∣∣∣∣∣∣O((k + 1)u)

∣∣∣∣∣∣O((k + 1)u) = O(u)

assuming O(k + 1) = O(1).

Hence,

fl{RT
k+1Rk+1

 z

w

} =

 RT
kRk RT

k d

dTRk dTd+ r2k+1,k+1

 z

w

+O(u) = O(u).

Thus,

RT
kRsz + wRT

k d = O(u), (3.52)

dTRsz + (dTd+ r2k+1,k+1)w = O(u). (3.53)

(3.52) can be expressed as RT
k (Rsz+wd) = O(u). From Lemma 3.16, RT

k is numerically

nonsingular, so that

Rsz + wd = O(u). (3.54)

Hence, from (3.53), dTRsz + w(dTd + r2k+1,k+1) = dT(Rsz + wd) + wr2k+1,k+1 = O(u).

Thus, wr2k+1,k+1 = O(u). If w = O(u), Rsz = O(u) from (3.54). Since Rk is numerically

nonsingular, z = O(u), which contradicts with the assumption.

Hence, |w| > O(u), so that r2k+1,k+1 = O(u), which gives

fl(r2k+1,k+1) = O(u) ≤ fl(dTd)O(u).

Lemma 3.16. Let n = O(1). If A ∈ Rn×n is numerically nonsingular, and A−1 = O(1),

then AT is numerically nonsingular.

Proof. If

fl(ATx ) = ATx +O(nu)|AT||x | = O(nu),
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Figure 3.14: r2k,k, dTd, and ∥ATrk∥2/∥ATb∥2 for AB-GMRES and stabilized AB-
GMRES for Maragal 3T.

then

fl(xTA) = xTA+OT(nu) = OT(nu).

Thus,

fl(xTAy) = fl(xTA)y +O(nu)|fl(xTA)||y | = O(nu)

holds for all y = O(1).

For arbitrary z = O(1) ∈ Rn , let

y = A−1z = O(1).

Then,

fl(Ay) = Ay +O(nu)|A||y | = z +O(nu)|A||y |.

Hence,

z = fl(Ay) +O(nu)|A||y | = fl(Ay) +O(nu).

Thus, we have

fl(xTz ) = xTz +O(nu)|x |T|z | = fl(xTAy) +O(nu) = O(nu)

for arbitrary z = O(1) ∈ Rn . Hence, x = O(u), so that AT is numerically nonsingular.

Theorem 3.15 gives the necessary and sufficient condition so that the stabilized GM-

RES works at the (k + 1)st iteration, i.e. RT
k+1Rk+1 is numerically nonsingular.
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The difficulty in solving Riyi = ti by backward substitution is not necessarily because

the diagonals of Ri are tiny. The reason is that Ri has tiny singular values. However,

the exceptional example (3.44) exists where the stabilized AB-GMRES does not work.

The condition fl(r2k+1,k+1) > fl(dTd)O(u) in Theorem 3.15 excludes such exceptions.

Figure 3.14 shows r2k+1,k+1 and dTd together with the relative residual norm

∥ATrk∥2/∥ATb∥2 of AB-GMRES and stabilized AB-GMRES for Maragal 3T. The fig-

ure shows that up to 613 iterations, the conditions in Theorem 3.15 are satisfied, and

RT
k+1Rk+1 is numerically nonsingular, so that the stabilized AB-GMRES works.

In fact, for

R2 =

 1 1

0
√
u


of (3.44), σ1(R2) ≈

√
2, σ2(R2) ≈

√
u

2
, so that κ(R2) ≈

2√
u
≈ O

(
1

n
√
u

)
≪ o

(
1

n
√
u

)
,

so the condition (3.4.4) is not satisfied, and the stabilized GMRES is not guaranteed to

work in this case.

3.5 Comparisons with other methods

We show the numerical performance of the proposed stabilized AB-GMRES method

on test matrices, compared with previous methods. All programs for iterative methods

were coded according to the algorithms in [5, 6, 8, 33]. Each method was terminated at

the iteration step which gives the minimum relative residual norm within m iterations,

where m is the number of the rows of the matrix. No restarts were used for GMRES.

Experiments were done for rank-deficient underdetermined matrices whose information

is given in Table 1. Here, we have deleted the zero rows and columns of the test matrices

beforehand. The elements of b were randomly generated using the MATLAB function

rand. Therefore, generically b /∈ R(A) and the problem is inconsistent. Each experiment

was done 10 times for the same right-hand side b and the average of the CPU times are

shown. The symbol - denotes that ∥ATrk∥2/∥ATr0∥2 did not reach 10−8 within m

iterations. The symbol (∗) denotes that we used the MATLAB function chol instead

of Cholesky decomposition without pivoting for solving the normal equations (3.16)

to save CPU time, except for Havard500, for which Cholesky decomposition without

pivoting did not converge. The symbol (&) denotes the case where even using the
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Figure 3.15: Relative residual norm for TSVD stabilized AB-GMRES versus number
of iterations for different values of the regularization parameter µ for Maragal 3T.

MATLAB function chol for solving equation (3.16) failed to converge. Then, we used

the MATLAB function backslash for solving the normal equations (3.16).

3.5.1 Underdetermined inconsistent least squares problems

3.5.1.1 Comparison with Truncated SVD method

Motivated by the stabilized AB-GMRES, we also applied the truncated singular value

decomposition (TSVD) stabilization method and compared it with the stabilized AB-

GMRES. The method modifies Rk by truncating singular values smaller than µ. More

specifically, let Rk = UΣV T be the SVD of Rk, where the columns of U = [u1, u2, . . . , uk]

and V = [v1, v2, . . . , vk] are the left and right singular vectors, respectively, and the

diagonal entries of Σ = diag(σ1, σ2, . . . , σk) are the singular values of Rk in descending

order σ1 ≥ σ2 ≥ · · · ≥ σk. Then, the TSVD approximates Rk ≃
∑j

i=1 σiuiv
T
i with j

such that σj+1 ≤ µσ1 ≤ σj and yk = R−1
k tk ≃

∑j
i=1

1
σi
viu

T
i ti, j ≤ k.

For the problem Maragal 3T, when µ = 10−13, 10−12, . . . , 10−4, the method converges

but when µ is smaller than 10−13 or larger than 10−4, it does not converge as shown in

Figure 3.15. Numerical experiments showed that µ =
√
u ≃ 10−8, where u is the unit

roundoff (about 10−16 in double presion arithmetic), gave the best result among µ =

10−1, 10−2, . . . , 10−16 in terms of the relative residual norm. The convergence behaviour

of the TSVD stabilization method with µ = 10−8 is similar to the stabilized AB-GMRES

method as shown in Figure 3.16, which suggests that eliminating tiny singular values

of Rk which are less than 10−8 is effctive for sovling problem (3.1). However, the
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Figure 3.16: Comparison of the standard AB-GMRES with stabilized and TSVD
stabilized AB-GMRES with µ = 10−8 for Maragal 3T.

TSVD method requires computing the truncated singular value decomposition of Rk,

and requires choosing the value of the threshold parameter µ, whereas the stabilized

AB-GMRES does not require either of them.

3.5.1.2 Comparison with Tikhonov regularization method

Another approach to stabilize AB-GMRES would be to apply Tikhonov regularization.

There are two methods to implement it. The first method is to solve the following square

system:

(RT
kRk + λI)yk = RT

k tk, λ ≥ 0 (3.55)

using the Cholesky decomposition. The second method is to solve the regularized least

suqares problem

min
yk∈Rk

∣∣∣∣∣∣
∣∣∣∣∣∣
 tk

0

−

 Rk
√
λI

 yk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.56)

using the QR decomposition. These two methods are equivalent mathematically. How-

ever, they are not equivalent numerically. The behavior of the first method is similar to

the stabilized AB-GMRES.

Table 3.5 shows that AB-GMRES combined with the first method converges better

when λ = 10−16 than when λ = 10−14 for the problem Maragal 3T. This method can

be used to shift upwards the small singular values, but is less acurrate compared to the

stabilized AB-GMRES.
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Figure 3.17: Relative residual norm for AB-GMRES with Tikhonov regularization
using (3.56) versus number of iterations for different values of the regularization pa-

rameter λ for Maragal 3T.

Table 3.5 also shows that the second method is even more accurate compared with

the stabilized AB-GMRES method. There is no need to form the normal equations,

so that less information is lost due to rounding error. However, one needs to choose

an appropriate value for the regularization parameter λ. Figure 3.17 shows the relative

residual norm ∥ATrk∥2/∥ATr0∥2 for AB-GMRES with Tikhonov regularization using

(3.56) versus the number of iterations for different values of λ for Maragal 3T. According

to Figure 3.17, λ = 10−16 was optimal among 10−12, 10−14, 10−16, and 10−18.

We here note the following.

Theorem 3.17. Let σ1 ≥ σ2 ≥ · · · ≥ σk be the singular values of Rk. Then, the singular

values of

R′
k =

 Rk
√
λI

 (3.57)

are given by
√

σ2
1 + λ ≥

√
σ2
2 + λ ≥ · · · ≥

√
σ2
k + λ.

Proof. Let the singular value decomposition of Rk be given by Rk = UΣV T ∈ Rk×k,

where U, V are orthogonal matrices and Σ = diag(σ1, σ2, . . . , σk ). Let Ik ∈ Rk×k be the

identity matrix. Then, we have R′
k =

 Rk
√
λIk

 = U ′Σ′V T, where U ′ =

 U 0

0 V


and Σ′ =

 Σ
√
λIk

 . Since Σ′TΣ′ = Σ2 + λIk = diag(σ2
1 + λ, σ2

2 + λ, . . . , σ2
k + λ), the

singular values of

 Rk
√
λIk

 are
√
σ2
1 + λ ≥

√
σ2
2 + λ ≥ · · · ≥

√
σ2
k + λ.
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Table 3.5: Attainable smallest relative residual norm ∥ATrk∥2/∥ATr0∥2 for AB-
GMRES with Tikhonov regularization using (3.55) and (3.56), and stabilized AB-

GMRES for Maragal 3T.

matrix Maragal 3TMaragal 4TMaragal 5TMaragal 6TMaragal 7T

iter. 552 597 1304 2440 1864
method (3.55) λ = 10−14 5.08×10−11 5.57×10−8 1.05×10−5 8.26×10−6 4.53×10−6

iter. 570 598 1226 2440 1864
method (3.55) λ = 10−16 5.80×10−12 5.59×10−8 4.22×10−6 8.26×10−6 4.53×10−6

iter. 553 547 1261 2937 2475
method (3.56) λ = 1.6× 10−14 7.54×10−11 5.59×10−8 1.15×10−5 9.12×10−6 2.78×10−7

iter. 551 547 1262 3037 2475
method (3.56) λ = 10−16 3.37×10−12 5.59×10−8 5.64×10−7 1.91×10−6 2.78×10−7

iter. 552 (&) 598 (∗) 1224 (∗) 3000 (∗) 2475
stabilized AB-GMRES 4.86×10−12 5.59×10−8 2.54×10−6 4.56×10−6 2.78×10−7

Then, let

κ ≡ κ2(Rk) =
σ1
σk

, κ′2 ≡ κ2(R
′
k)

2 =
σ2
1 + λ

σ2
1/κ

2 + λ
= 1 +

σ2
1(1− 1/κ2)

σ2
1/κ

2 + λ
. (3.58)

Since κ ≥ 1, dκ′/dλ ≤ 0 for λ ≥ 0 and κ′(λ = 0) = κ, κ′(λ = +∞) = 1. Note also that

λ =
σ2
1[1 + (κ′/κ)2]

κ′2 − 1
. (3.59)

Therefore, for instance, if κ ≫ 1 and we want κ′ =
√
κ,

λ =
σ2
1(1 + 1/κ)

κ− 1
≃ σ2

1

κ
. (3.60)

For example, if κ = 1016 and we want κ′ = 108, we should choose λ ≃ σ2
1 × 10−16.

For Maragal 3T, the largest singular value σ1 is about 12.64, so that we can estimate a

reasonable value of λ ≃ 1.60 × 10−14. However, this estimation assumes κ′ =
√
κ, and

needs an extra cost for computing σ1. See [34] for other estimation techniques for the

regularization parameter.

3.5.1.3 Comparison with the Range Restricted GMRES

We compared the proposed stabilized AB-GMRES with the range restricted AB-

GMRES (RR-AB-GMRES) [33], where the Krylov subspace for the RR-AB-GMRES

with B = AT is Kk(AA
T, AATr0), and the standard AB-GMRES with B = AT.
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Table 3.6: Comparison of the attainable smallest relative residual norm
∥ATrk∥2/∥ATr0∥2.

matrix Maragal 3T Maragal 4T Maragal 5T Maragal 6T Maragal 7T

iter. 531 465 1110 2440 1864
standard AB-GMRES 1.05×10−8 2.09×10−7 5.35×10−6 8.26×10−6 4.53×10−6

iter. 552 (&) 598 (∗) 1224 (∗) 3000 (∗) 2475
stabilized AB-GMRES 4.86×10−12 5.59×10−8 2.54×10−6 4.56×10−6 2.78×10−7

iter. 553 565 1223 2374 2474
RR-AB-GMRES 2.57×10−11 5.59×10−8 3.62×10−6 1.63×10−5 2.78×10−7

Table A.1 gives the number of iterations and the smallest relative residual norm for

the RR-AB-GMRES, the standard and stabilized AB-GMRES for the Maragal matrices.

The table shows that the stabilized AB-GMRES is more accurate than the standard

AB-GMRES. Table A.1 also shows that the stabilized AB-GMRES is generally more

accurate than the RR-AB-GMRES. The stabilized AB-GMRES took more iterations to

attain the same order of the smallest residual norm than the RR-AB-GMRES.

3.5.2 Inconsistent systems with severely ill-conditioned range-

symmetric coefficient matrices

Next, we test the stabilized AB-GMRES on least squares problems

minx∈Rn ∥b − Ax∥2 by GMRES, where A ∈ Rn×n are severely ill-conditioned

range-symmetric (square) matrices given in Table A.3.

These matrices are all numerically singular. We generated the right-hand side b by the

MATLAB function rand, so that the systems are generically inconsistent. We compared

the stabilized AB-GMRES with the standard AB-GMRES and RR-AB-GMRES. Table

A.4 gives the smallest relative residual norm and the corresponding number of iterations.

Table A.6 gives the CPU times in seconds required to obtain relative residual norm

∥ATrk∥2/∥ATr0∥2 < 10−8. The switching strategy which was introduced in Section

3.4.1 was used for the stabilized AB-GMRES when measuing CPU times. The number

of iterations when switching occurred is in brackets.

For Harvard500 and bw42, AB-GMRES could only converge to the level of 10−9

regarding the relative residual norm, while the stabilized AB-GMRES converged to

the level of 10−14. The stabilized AB-GMRES was robust in the sense that it could
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Table 3.7: Information of the singular square matrices.

matrix size density[%] rank κ2(A) application

Harvard500 500 1.05 170 1.30×102 web connectivity
netz4504 1961 0.13 1342 3.41×101 2D/3D finite element problem

TS 2142 0.99 2140 3.52×103 counter example problem
grid2 dual 3136 0.12 3134 8.58×103 2D/3D finite element problem

uk 4828 0.06 4814 6.62×103 undirected graph
bw42 10000 0.05 9999 2.03×103 partial differential equation[19]

msc01050 1050 2.38 1049 1.31×108 2D/3D structural problem
freeFlyingRobot 7 3918 0.20 3881 1.68×1012 optimal control problem

Table 3.8: Comparison of the attainable smallest relative residual norm
∥ATrk∥2/∥ATr0∥2 for inconsistent square linear systems.

matrix Harvard500 netz4504 TS grid2 dual uk bw42

iter. 104 144 1487 3134 4620 715
standard

AB-GMRES 9.38×10−9 4.51×10−10 1.56×10−9 5.98×10−10 1.35×10−9 8.06×10−8

iter. (∗) 134 (&) 201 1613 (∗) 3135 (∗) 4739 (&) 788
stabilized

AB-GMRES 8.46×10−14 1.51×10−14 2.51×10−9 5.53×10−10 6.57×10−10 1.66×10−7

iter. 135 200 1652 3134 4706 1163
RR-

AB-GMRES 7.78×10−14 3.36×10−14 4.56×10−9 6.52×10−8 8.33×10−8 1.56×10−5

Table 3.9: Comparison of the CPU time (seconds) to obtain relative residual norm
∥ATrk∥2/∥ATr0∥2 < 10−8 for inconsistent square linear systems.

matrix Harvard500 netz4504 TS grid2 dual uk bw42

iter. 104 134 1411 3134 4583 -
standard AB-GMRES 4.72×10−2 1.87×10−1 2.14×10 2.16×102 6.93×102 -

iter. 104 134 1531 (182) 3134 4679 (4199) -
stabilized AB-GMRES 4.78×10−2 1.89×10−1 8.19×10 2.21×102 1.93×103 -

iter. 114 153 1530 - - -
RR-AB-GMRES 6.42×10−2 2.62×10−1 2.68×10 - - -
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Table 3.10: Attainable smallest relative residual norm ∥ATrk∥2/∥ATr0∥2 for range
symmetric matrices.

matrix bw42 msc01050 freeFlyingRobot 7

iter. 147 560 1084
standard GMRES 8.08×10−9 4.98×10−8 8.86×10−8

iter. 219 668 3414
stabilized GMRES 2.11×10−11 4.62×10−9 3.24×10−10

iter. 220 564 3183
RR-GMRES 3.13×10−11 2.62×10−6 1.40×10−9
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Figure 3.18: Comparison of GMRES with stabilized GMRES for freeFlyingRobot 7.

continue to compute even when the upper triangular matrix Rk became seriously ill-

conditioned, and the relative residual norm did not increase sharply towards the end,

but just stagnated at a low level, just like for consistent problems.

Thus, our stabilization method also makes AB-GMRES stable for highly ill-

conditioned inconsistent systems with square coefficient matrices.

The coefficient matrix A of bw42 is singular and satisfiesN (A) =N (AT). The problem

comes from a finite-difference discritization of a PDE with periodic boundary condition

(Experiment 4.2 in Brown and Walker[19] with the original b). Since the matrix is range

symmetric, the GMRES, RR-GMRES, and stabilized GMRES can be directly applied

to Ax = b (See [19] Theorem 2.4, [35] Theorem 2.7, and [20] Theorem 3.2.) as shown in

Table A.5. The stabilized GMRES gave a relative residual norm 1.94×10−11 for bw42

at the 219th iteration. The proposed method can be considered as a way of making the

GMRES stable for highly ill-conditioned inconsistent problems.

Figure 3.18 shows comparison of GMRES with stabilized GMRES for a symmetric
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Figure 3.19: Comparison of reorthogonalized GMRES with reorthogonalized stabi-
lized GMRES for freeFlyingRobot 7.

matrix (, which is range symmetric), freeFlyingRobot 7 which contains a cluster of tiny

singular values which gradually decrease to zero. The stabilized GMRES converged to

3.65×10−10 at 3,452 iterations, better than GMRES. But the relative residual increased

after the 3,452 iterations. Hence, we adopted a reorthogonalization strategy which

performs the modified Gram-Schmidt orthogonalization process once more. We replaced

line 4-6 of Algorithm 4 (GMRES version) by Algorithm 6 to reorthogonalize GMRES

and the stabilized GMRES. As in Figure 3.19, after reorthogonalization, the stabilized

GMRES became more stabilized and converged to a relative residual of 6.45× 10−11 at

3,701 iterations.

Algorithm 6 reorthogonalized modified Gram-Schmidt

1: for i = 1, 2 do
2: for j = 1, 2, . . . , k do
3: hj,k = wT

k vj , wk = wk − hj,kvj
4: end for
5: end for

3.6 Concluding Remarks

We proposed a stabilized AB-GMRES method for ill-conditioned underdetermined

and inconsistent least squares problems. It shifts upwards the tiny singular values of

the upper triangular matrix appearing in AB-GMRES, making the process more stable,

giving better convergence, and more accurate solutions compared to AB-GMRES. We

have also given a theoretical analysis to explain why the proposed method works. The
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method is also effective for making GMRES stable for range-symmetric inconsistent least

squares problems with severely ill-conditioned square coefficient matrices.



Chapter 4

Convergence analysis of

inner-iteration preconditioned

GMRES

This chapter first introduces BAG-GMRES and NR-SOR. Then, it reviews inner-

iteration preconditioned GMRES. Then, it analyzes the numerical example and analyzes

the convergence of inner-iteration GMRES. [36, 37]

4.1 Previous work

4.1.1 BA-GMRES method

Consider solving the overdetermined least squares problem

min
x∈Rn

∥b−Ax∥2, A ∈ Rm×n, b ∈ Rm, m > n, (4.1)

by BA-GMRES [8], where B ∈ Rn×m is a preconditioning matrix, which is equivalent

to applying GMRES to

BAx = Bb, A ∈ Rm×n, B ∈ Rn×m, b ∈ Rm, (4.2)

if R(BTBA) = R(A). The algorithm is as follows.

55
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Algorithm 7 BA-GMRES

1: Choose x0 ∈ Rn, r0 = b−Ax0, , w0 = Br0, v1 = w0/∥w0∥2,
2: for i = 1, 2, . . . , k do
3: wi = BAvi,
4: for j = 1, 2, . . . , i do
5: hi,j = wT

i vj , wi = wi − hj,ivj ,
6: end for
7: hi+1,i = ∥wi∥2, vi+1 = wi/hi+1,i,
8: Compute yi ∈ Ri which minimizes ∥wi∥2 = ∥∥w0∥2e1 −Hi+1,iyi∥2,
9: xi = x0 + [v1, v2, . . . , vi]yi, ri = b−Axi.

10: if ∥ATri∥2 < ϵ∥ATr0∥2 then
11: stop
12: end if
13: end for

4.1.2 Stationary iterative method

Stationary iterative methods are a type of iterative solvers for systems of linear equa-

tions. Stationary means a fixed iterative scheme. Thus, it is defined as xk+1 = Φ(xk),

which needs an initial guess x0 to start the iteration. Denote the exact solution of the

system of linear equations Ax = b, with a square coefficient matrix A ∈ Rn×n as x∗.

Denote the error of the kth iterate as ek = xk − x∗. A stationary iterative method is

called linear if there exists a matrix C ∈ Rn×n that satisfies

ek+1 = Cek. (4.3)

Denote the spectral radius of C as ρ(C), i.e. ρ(C) = max{|λi|
∣∣ λi : eigenvalue of C}. If

ρ(C) < 1, then limk→+∞Ck = 0, which can ensure limk→+∞ ek+1 = limk→+∞Cke1 = 0.

Thus, the linear stationary iterative method converges if and only if ρ(C) < 1.

One basic idea of the linear stationary iterative method is matrix splitting of A.

A = M −N, (4.4)

where M is easily invertible. Then, Ax = b is (M −N)x = Mx−Nx = b. Moving Nx

to the right-hand side, we obtain Mx = Nx+ b. Then, we construct an iterative scheme

Mxk+1 = Nxk + b. (4.5)
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If, M is invertible, we have

xk+1 = M−1Nxk +M−1b, (4.6)

and

x∗ = M−1Nx∗ +M−1b. (4.7)

Then, we obtain

ek+1 = xk+1 − x∗ (4.8)

= (M−1Nxk +M−1b)− (M−1Nx∗ +M−1b) (4.9)

= M−1N(xk − x∗) (4.10)

= M−1Nek. (4.11)

Accoriding to (4.3), C = M−1N.

Richardson’s method, Jacobi method, Gauss-Seidel method, successive over-relaxation

method (SOR), symmetric successive over-relaxation (SSOR) and Hermitian / skew-

Hermitian splitting (HSS) method are linear stationary iterative methods based on

different choices of M and N . By choosing proper parameters for each method, the

condition ρ(M−1N) < 1 is ensured.

If x0 = 0, from (4.6), we have

x1 = M−1b. (4.12)

x2 = (M−1N + I)M−1 b. (4.13)

x3 = ((M−1N)2 +M−1N + I)M−1 b. (4.14)

xl = (
l−1∑
i=1

(M−1N)i + I)M−1 b, l ≥ 1 . (4.15)

4.1.3 NR-SOR method

Splitting the matrix A into three parts gives

A = D + L+ U, (4.16)
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where D is the diagonal part, L is the strictly lower triangular part, and, U is the strictly

upper triangular part of A, respectively. The successive over-relaxation (SOR) method

[3] chooses

M =
1

ω
D + L, N = (

1

ω
− 1)D − U. (4.17)

NR-SOR[38–40] is equivalent to applying SOR to the normal equation

ATAx = ATb. (4.18)

as

(M −N)x = ATb (4.19)

The algorithm is given below.

Let ai be the ith column of A, i = 1, 2, . . . , n. Suppose ai ̸= 0, i = 1, 2, . . . , n.

Algorithm 8 NR-SOR

1: Let x0 be the initial solution and r = b−Ax0, 0 < ω < 2.
2: for k = 1, 2, . . . , l do
3: for i = 1, 2, . . . , n do
4: δi = ω(r, ai)/||ai||22,
5: xk+1

i
=xki + δi,

6: r = r − δiai.
7: end for
8: end for

Note that, the computation of ||ai||22 is done only once in the beginning.

4.1.4 Inner-iteration GMRES

Set B = AT in BA-GMRES, which is equivalent to applying GMRES to the normal

equations

ATAx = ATb. (4.20)

. One can precondition this system by an explicit matrix P ∈ Rn×n, which is

PATAx = PATb. (4.21)

. Forming an explicit matrix P needs time and storage space, especially when you need

to form the normal equation matrix ATA explicitly.
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Applying NR-SOR to the normal equations for l steps, which avoids forming the nor-

mal equation matrix ATA of (4.20) explicitly, is equivalent to providing a preconditioning

matrix P (l) such that

P (l)ATAx = P (l)ATb. (4.22)

Introducing a stationary iteration method inside the GMRES iteration instead of

forming an explicit preconditioning matrix to precondition GMRES, gives the inner-

iteration preconditioned GMRES. Morikuni [9] did lots of work on different stationary

iteration methods combined with AB-GMRES or BA-GMRES and compared with other

methods.

As other earlier work, we mention FGMRES [41] which is more related to AB-GMRES

but applying different preconditioners at each step. SOR was used as inner precondi-

tioners with GCR [42], and SOR as inner preconditioners with GMRES[43, 44].

Using NR-SOR as inner-iteration preconditions, is a way of implicit preconditioning,

but has an explicit form for theoretical analysis. In NR-SOR ATA = M−N , from (4.15)

P (l)ATA = (
l−1∑
i=1

(M−1N)i + I)M−1ATA (4.23)

= (
l−1∑
i=1

(M−1N)i + I)M−1 (M −N ) (4.24)

= (

l−1∑
i=1

(M−1N)i + I)(I−M−1N ) (4.25)

=

l−1∑
i=1

(M−1N)i + I−
l∑

i=1

(M−1N )i (4.26)

= I− (M−1N )l (4.27)

= I− (H )l (4.28)

where H = M−1N .

The algorithm for using NR-SOR as inner-iteration preconditioner in BA-GMRES is

as follows.
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Algorithm 9 NR-SOR inner-iteration BA-GMRES

1: Choose x0 ∈ Rn, r0 = b−Ax0,
2: apply l steps SOR to ATAw = ATr0 to obtain w0 = P lATr0, (NR-SOR),
3: v1 = w0/∥w0∥2,
4: for i = 1, 2, . . . , k do
5: ui = Avi,
6: apply l steps SOR to ATAw = ATui to obtain wi = P lATui, (NR-SOR),
7: for j = 1, 2, . . . , i do
8: hi,j = wT

i vj , wi = wi − hj,ivj ,
9: end for

10: hi+1,i = ∥wi∥2, vi+1 = wi/hi+1,i,
11: Compute yi ∈ Ri which minimizes ∥wi∥2 = ∥∥w0∥2e1 −Hi+1,iyi∥2,
12: xi = x0 + [v1, v2, . . . , vi]yi, ri = b−Axi.
13: if ∥ATri∥2 < ϵ∥ATr0∥2 then
14: stop
15: end if
16: end for

4.1.5 Convergence of NR-SOR method

Theorem 4.1. [45] If A is symmetric positive definite and 0 < ω < 2, then,

ρ(M−1N) < 1 for the SOR method.

Proof. A is symmetric, U = LT.

A = L+D + LT, M =
1

ω
D + L, N = −[(1− 1

ω
)D + LT]. (4.29)

Denote the eigenvalue of −M−1N as λ, and v as corresponding eigenvector.

(
1

ω
D + L)−1[(1− 1

ω
)D + LT]v = λv. (4.30)

[(1− 1

ω
)D + LT]v = λ(

1

ω
D + L)v. (4.31)

[(ω − 1)D + ωLT]v = λ(D + ωL)v. (4.32)

Let vH denote the conjugate transpose of v.

vH[(ω − 1)D + ωLT]v = λvH(D + ωL)v. (4.33)

A is symmetric positive definite. Thus,

p = vHDv > 0. (4.34)
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Let

vHLv = α+ iβ, (4.35)

then,

vHLTv = vHLHv = (vHLv)H = α− iβ. (4.36)

Based on (4.34), (4.35), and (4.36),

vH[(ω − 1)D + ωLT]v = (ω − 1)vHDv + ωvHLTv = (ω − 1)p+ ω(α− iβ). (4.37)

vH(D + ωL)v = vHDv + ωvHLv = p+ ω(α+ iβ). (4.38)

A is symmetric positive definite, thus,

vHAv = vH(LT + L+D)v = p+ 2α > 0. (4.39)

Due to p > 0, 0 < ω < 2, and p+ 2α > 0,

p+ ωα = (1− ω

2
)p+

ω

2
(p+ 2α) > 0. (4.40)

Thus,

vH(D + ωL)v = (p+ ωα) + iωβ ̸= 0. (4.41)

From (4.33) and (4.41),

λ =
vH[(ω − 1)D + ωLT]v

vH(D + ωL)v
. (4.42)

From (4.37) and (4.38)

λ =
vH[(ω − 1)D + ωLT]v

vH(D + ωL)v
=

[(ω − 1)p+ ωα]− iωβ

(p+ ωα) + iωβ
(4.43)

|λ|2 = λHλ =
[(ω − 1)p+ ωα]2 + ω2β2

(p+ ωα)2 + ω2β2
(4.44)

(p+ ωα)2 − [(ω − 1)p+ ωα]2 = {p+ ωα+ [(ω − 1)p+ ωα]}{p+ ωα− [(ω − 1)p+ ωα]}

(4.45)

= ωp(p+ 2α)(2− ω) (4.46)

> 0. (4.47)
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Thus,

|λ|2 = [(ω − 1)p+ ωα]2 + ω2β2

(p+ ωα)2 + ω2β2
< 1. (4.48)

As a conclusion, |λ| < 1, which means ρ(M−1N) < 1. Hence, the SOR method con-

verges.

If ATA is symmetric positive definite and 0 < ω < 2, NR-SOR converges and

ρ(M−1N) < 1 from Theorem 4.1. If ATA is symmetric semi-definite, we require the

semi-convergence of M−1N [10]. Thus, ρ(M−1N) ≤ 1.

4.1.6 Convergence of NR-SOR inner-iteration preconditioned BA-

GMRES

NR-SOR inner-iteration BA-GMRES has an effect of speeding up the convergence of

BA-GMRES. [9]

To understand this effect, let us look at the following, where B(l) = P (l)AT.

∥B(l)rk∥2 = min
pk

∥pk(B(l)A)B(l)r0∥2 (4.49)

Here, pk is a polynomial of degree ≤ k which satisfies pk(0) = 1. An upper bound for

∥B(l)rk∥2 was obtained using the spectral radius of H = M−1N [10], where B(l)A =

I − H l . However, the bound is pessimistic and does not explain the observed fast

convergence.

Since ρ(H) ≤ 1, the eigenvalues of B(l)A approach 1 as l increases. The eigenvalues

of B(l)A cluster but the spectral radius of ρ(H l) only changes a little. After l steps of

inner-iteration preconditioning, their exists a cluster of eigenvalues near 1. Later we will

focus on the distribution of eigenvalues to analyze the convergence.
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Figure 4.1: The nonzero singular values of the test matrix A.

4.1.7 Numerical example

We use a test matrix [9] to introduce our analysis.

A = U



1 1 0

0.9 0.9

. . .
. . .

0.1 0.1

0


V T ∈ R100×20. (4.50)

where U ∈ R100×100 and V ∈ R20×20 are orthogonal matrices computed with the QR

factorization of random matrices. Thus, A is rank-deficient, with rank 10.

Figure 4.1 shows the nonzero singular values of A. Figure 4.2 shows the nonzero

eigenvalue of ATA. Figure 4.3 shows the nonzero eigenvalues of H = M−1N . Figre 4.4

show the eigenvalues of B(l)A = P (l)ATA = I−H l , l = 4. Figre 4.5 show the eigenvalues

of B(l)A = P (l)ATA = I−H l , l = 8. Table 4.1 includes the values of above figures.
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Figure 4.2: The nonzero eigenvalues of the normal equation matrix ATA of the test
matrix A.
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Figure 4.3: The nonzero eigenvalues of H = M−1N of the test matrix A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-3

-2

-1

0

1

2

3
10

-4

Figure 4.4: The nonzero eigenvalues of

B(l)A = I−H l(l = 4)

of the test matrix A.
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Figure 4.5: The nonzero eigenvalues of B(l)A = I−H l(l = 8) of the test matrix A.

Table 4.1: The singular values of A, eigenvalues of ATA, H(M−1N),
and B(l)A = I−H l(l = 4, 8).

A ATA H = M−1N B(l)A = I−H l (l = 4) B(l)A = I−H l (l = 8)

1 1.41 2.00 0.00 1.00 1.00
2 1.27 1.62 0.00 1.00 1.00
3 1.31 1.28 0.00 1.00 1.00
4 0.99 0.98 0.01 1.00 1.00
5 0.85 0.72 0.05 1.00 1.00
6 0.71 0.50 0.08 + 0.12i 1.00 + 2.98× 10−4i 1.00 + 1.90× 10−7i
7 0.57 0.32 0.08− 0.12i 1.00− 2.98× 10−4i 1.00− 1.90× 10−7i
8 0.42 0.18 0.32 0.99 1.00
9 0.28 0.08 0.71 0.74 0.93
10 0.14 0.02 0.91 0.30 0.51

4.2 Convergence analysis

Before starting our analysis, we mention that Ipsen used the Vandermonde matrix to

analyze the convergence for GMRES in [46], and for multiple clusters case in [47]. The

main difference is that we start from digonalizable matrices instead of normal matrices

and used different techniques. Our analysis is an estimation of the convergence curve

of the GMRES, and not an upper bound. Moreover, our analysis gives a clearer way to

show how the number of clusters and their radii affect the convergence.
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4.2.1 Convergence analysis of the test problem

Consider the problem

Ãx = b̃, (4.51)

where

Ã = P (l)ATA = B(l)A = I−H l (4.52)

is an n× n square matrix, and

b̃ = P (l)ATb = B(l)b. (4.53)

Let x0 = 0 be the initial solution, then, b̃ is the initial residual.

we use a Krylov subspace,

Kk(Ã, b̃) ≡ span{b̃, Ãb̃, · · · , Ãk−1b̃}, (4.54)

to obtain an approximate solution xk ∈ Kk(Ã, b̃) of (4.51).

If b̃ only contains v1, then Av1, shares the same direction with v1, which means

K1(Ã, b̃) reaches A-invariance, and the grade of Kk(Ã, b̃) is one. If b̃ contains v1 and v2,

then K2(Ã, b̃) reaches A-invariance, and the grade of Kk(Ã, b̃) is two. Other cases have

similar results.

Assume that Ã is diagonalizable, and d is the grade of Kk(Ã,̃b), which means d is the

smallest integer such that Kd(Ã, b̃) = Kd+1(Ã, b̃).

Thus, b̃ is spanned by the eigenvectors v1, v2, . . . , vd corresponding to distinct eigen-

values of λ1, λ2, . . . , λd.

Let, Vd = [v1, · · · , vd], and

b̃ = Vd[1, · · · , 1]T. (4.55)

Ãb̃ = Vd[λ1, · · · , λd]
T (4.56)

Ãk b̃ = Vd[λ
k
1, · · · , λk

d]
T (4.57)
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Table 4.2: The eigenvalues distribution of Ã = B(l)A = I−H l(l = 8)

eigenvalues structure value

λ1 1 + ϵ1 1 + 8.00× 10−15

λ2 1 + ϵ2 1 + 3.11× 10−15

λ3 1 + ϵ3 1 + 2.44× 10−15

λ4 1 + ϵ4 1 + 5.86× 10−11

λ5 1 1
λ6 λ6 1.00 + 1.90× 10−7i
λ7 λ7 1.00− 1.90× 10−7i
λ8 λ8 0.9999
λ9 λ9 0.9325
λ10 λ10 0.5099

Let xk = (̃b, Ãb̃, · · · , Ãk−1b̃)(y1, y2, . . . , yk)
T ∈ Kk(Ã, b̃). Then,

b̃− Ãxk = Vd[1, · · · , 1]T − Ã[̃b, Ãb̃, · · · , Ãk−1b̃]y = Vd[1, · · · , 1]T − VdΛ
k
dy (4.58)

∥b̃− Ãxk∥2 = ∥Vd(Λ
k
dy − [1, · · · , 1]T)∥2 (4.59)

where

Λk
d =


λ1 λ2

1 · · · λk
1

λ2 λ2
2 · · · λk

2

. . . . . . . . . . . .

λd λ2
d · · · λk

d

 ∈ Rd×k. (4.60)

As for the test matrix of (4.50) A ∈ R100×20, Ã = B(l)A = P lATA = I− H l has only

one cluster of eigenvalues around the center 1, and the others are separate eigenvalues

as shown in Figure 4.4 and 4.5 for l = 4, 8. Thus, according to Table 4.2 where d = 10
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(4.60) is

Λ10 =



1 + ϵ1 (1 + ϵ1)
2 · · · (1 + ϵ1)

10

1 + ϵ2 (1 + ϵ2)
2 · · · (1 + ϵ2)

10

1 + ϵ3 (1 + ϵ3)
2 · · · (1 + ϵ3)

10

1 + ϵ4 (1 + ϵ4)
2 · · · (1 + ϵ4)

10

1 1 · · · 1

λ6 λ2
6 · · · λ10

6

λ7 λ2
7 · · · λ10

7

λ8 λ2
8 · · · λ10

8

λ9 λ2
9 · · · λ10

9

λ10 λ2
10 · · · λ10

10



∈ R10×10. (4.61)

At step k < d,

Λϵ =



1 + ϵ1 (1 + ϵ1)
2 · · · (1 + ϵ1)

k

1 + ϵ2 (1 + ϵ2)
2 · · · (1 + ϵ2)

k

1 + ϵ3 (1 + ϵ3)
2 · · · (1 + ϵ3)

k

1 + ϵ4 (1 + ϵ4)
2 · · · (1 + ϵ4)

k

1 1 · · · 1

λ6 λ2
6 · · · λk

6

λ7 λ2
7 · · · λk

7

λ8 λ2
8 · · · λk

8

λ9 λ2
9 · · · λk

9

λ10 λ2
10 · · · λk

10



∈ R10×k. (4.62)

Since, ϵ = maxk |ϵk| < 10−10, k = 1, 2, 3, 4, which is very tiny,
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Λϵ ≈ Λ̃ϵ =



1 + ϵ1 1 + 2ϵ1 · · · 1 + kϵ1

1 + ϵ2 1 + 2ϵ2 · · · 1 + kϵ2

1 + ϵ3 1 + 2ϵ3 · · · 1 + kϵ3

1 + ϵ4 1 + 2ϵ4 · · · 1 + kϵ4

1 1 · · · 1

λ6 λ2
6 · · · λk

6

λ7 λ2
7 · · · λk

7

λ8 λ2
8 · · · λk

8

λ9 λ2
9 · · · λk

9

λ10 λ2
10 · · · λk

10



∈ R10×k. (4.63)

Seperating Λ̃ϵ into two matrices, Λ̃ϵ = Λs + P, where

Λs =



1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

λ6 λ2
6 · · · λk

6

λ7 λ2
7 · · · λk

7

λ8 λ2
8 · · · λk

8

λ9 λ2
9 · · · λk

9

λ10 λ2
10 · · · λk

10



∈ R10×k, P =



ϵ1 2ϵ1 · · · kϵ1

ϵ2 2ϵ2 · · · kϵ2

ϵ3 2ϵ3 · · · kϵ3

ϵ4 2ϵ4 · · · kϵ4

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0



∈ R10×k.

(4.64)

Λ̃s =



1 1 · · · 1

λ6 λ2
6 · · · λk

6

λ7 λ2
7 · · · λk

7

λ8 λ2
8 · · · λk

8

λ9 λ2
9 · · · λk

9

λ10 λ2
10 · · · λk

6


∈ R6×k. (4.65)
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k = 6 ⇒ detΛ̃s =
∏

6≤i<j≤10

(λi − λj)
10∏
i=6

(λi − 1). (4.66)

Because λi ̸= λj ̸= 1 ̸= 0, (6 ≤ i < j ≤ 10),

detΛ̃s ̸= 0 ⇒ rankΛs = 6 (k = 6). (4.67)

Note ∥V (Λsy − [1, 1, · · · , 1]T)∥2 ≤ ∥V ∥2∥Λsy − [1, 1, · · · , 1]T∥2 in general.

∥Λ̃sy − [1, 1, · · · , 1]T∥2 = 0 and ∥Λsy − [1, 1, · · · , 1]T∥2 = 0 share the same solution y

if k = 6.

Note, rankΛs ≤ 6 for k ≤ 6. rankΛs = k (1 ≤ k ≤ 6), rankΛs = 6 (k > 6), if

λi ̸= λj ̸= 1 ̸= 0, (6 ≤ i < j ≤ 10).

Let y1 argminy1∈Rk ∥Λ̃sy1 − [1, · · · , 1]T∥2

min
y

∥Λϵy − [1, · · · , 1]T∥2 ≤ ∥Λϵy1 − [1, · · · , 1]T∥2 (4.68)

≈ ∥Λsy1 − [1, · · · , 1]T + Py1∥2 (4.69)

≤ ∥Λsy1 − [1, · · · , 1]T∥2 + ∥Py1∥2 (4.70)

= ∥Λ̃sy1 − [1, · · · , 1]T∥2 + ∥Py1∥2 (k = 6) (4.71)

= ∥Py1∥2 (k = 6) (4.72)

Notice, when k = 6, ∥Λ̃sy1 − [1, · · · , 1]T∥2 = 0.

∥Λϵy − [1, · · · , 1]T∥2 ≤ ∥Py1∥2, (4.73)
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where y1 = (y11, y
2
1, . . . , y

6
1)

T, and

Py1 =



ϵ1y
1
1 + 2ϵ1y

2
1 + · · ·+ 6ϵ1y

6
1

ϵ2y
1
1 + 2ϵ2y

2
1 + · · ·+ 6ϵ2y

6
1

ϵ3y
1
1 + 2ϵ3y

2
1 + · · ·+ 6ϵ3y

6
1

ϵ4y
1
1 + 2ϵ1y

2
4 + · · ·+ 6ϵ4y

6
1

0

0

0

0

0

0



. (4.74)

Since

∥Λ̃sy1 − [1, · · · , 1]T∥2 = 0. (4.75)

1 1 · · · 1

λ6 λ2
6 · · · λ6

6

λ7 λ2
7 · · · λ6

7

λ8 λ2
8 · · · λ6

8

λ9 λ2
9 · · · λ6

9

λ10 λ2
10 · · · λ6

10





y11

y21

y31

y41

y51

y61


−



1

1

1

1

1

1


=



0

0

0

0

0

0


, (4.76)

which means 1, λ6, λ7, λ8, λ9 and λ10 are roots of

f(c) = y61c
6 + y51c

5 + y41c
4 + y31c

3 + y21c
2 + y11c− 1 = 0. (4.77)

Thus,

f(c) = − 1

λ6λ7λ8λ9λ10
(c− 1)(c− λ6)(c− λ7)(c− λ8)(c− λ9)(c− λ10). (4.78)

f ′(1) = − 1

λ6λ7λ8λ9λ10
(1− λ6)(1− λ7)(1− λ8)(1− λ9)(1− λ10). (4.79)

Also,

f ′(c) = 6y61c
5 + 5y51c

4 + 4y41c
4 + 3y31c

2 + 2y21c1 + y11. (4.80)
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Figure 4.6: ∥B(l)rs∥2(l = 8) versus the number of iterations for the test matrix A in
quadruple precision arithmetic.

f ′(1) = 6y61 + 5y51 + 4y41 + 3y31 + 2y1 + y11. (4.81)

Let ϵ = max{ϵ1, ϵ2, ϵ3, ϵ4} < 10−10. Note that

∥Py1∥2 = ∥(f ′(1)ϵ1, f
′(1)ϵ2, f

′(1)ϵ3, f
′(1)ϵ4)

T∥2 (4.82)

≤ ϵ∥(f ′(1), f ′(1), f ′(1), f ′(1))T∥2 (4.83)

= 2ϵ|f ′(1)|. (4.84)

Since ∥V ∥2 = 2.5068, we reach the final estimate at the 6th iteration

∥B(l)rs∥2 = ∥B(l)(b−Axs)∥2 (4.85)

≤ ∥V ∥2∥Λϵy − [1, · · · , 1]T∥2 (4.86)

≃ ∥V ∥2∥Py1∥2 (4.87)

< ∥V ∥22ϵ|f ′(1)| (4.88)

= 2∥V ∥2ϵ| −
1

λ6λ7λ8λ9λ10
(1− λ6)(1− λ7)(1− λ8)(1− λ9)(1− λ10)| (4.89)

≤ 5.136× 10−10 × 1

0.4754
× 0.4901× 0.0675× 0.0001× (1.8999× 10−7)2

(4.90)

= 3.49× 10−29. (4.91)

If we choose λ6 and λ7 to be in the cluster around 1 , then ϵ < 10−6, and at the 4th

iteration we obtain ∥B(l)rs∥2 < 3.49× 10−12.

Figure 4.6 shows ∥B(l)rs∥2 versus the number of iterations in quadruple precision



73

arithmetic (double precisin arithmetic limits the observation). At the 4th iteration

∥B(l)rs∥2 is approximately 10−12, and at 6th iteration ∥B(l)rs∥2 is approximately 10−29,

which is close to the estimation. Thus, although A has 10 different singular values, the

eigenvalue of the preconditioned matrix BlA is contained in a cluster around 1. Within

several steps, ∥B(l)rs∥2 converges to a tiny level. In other words, it converged near zero

before the grade d.

Ipsen’s upper bounds for non-normal matrix B(l)A in [47] gives ∥B(l)r6∥2 < cϵ∥r0∥2,

where c is a constant that reflects the distance from separate eigenvalues to the cluster

center 1 which is smaller than 0.5 and also reflects the non-normality of B(l)A which

is realted to ∥V ∥2, and ∥r0∥2 = 4.55. Thus, the value of this bound is about 10−1.

Ipsen’s estimation for normal martrix in [46] is ∥B(l)r6∥2 ≈ (1/3) × 0.75∥r0∥2, which

is larger than our estimation, but B(l)A is non-normal. Our work can be regarded as

extending this estimation to the diagonalizable case. Traditional bounds after being log

is a straight line, our paper is devoted to illustrating the super linear convergence.

4.3 General proof of the convergence

In the previous section, we analyzed with a specific test matrix A. In this section,

we assume that Ã = P lATA is diagonalizable and give a similar estimation for the case

when there are more than one cluster, each eigenvalue belongs to a cluster around a

center with a small radius.

If there are s cluster centers at step k,

Λϵ =



c1 + ϵ1 (c1 + ϵ1)
2 · · · (c1 + ϵ1)

k

c1 + ϵ2 (c1 + ϵ2)
2 · · · (c1 + ϵ2)

k

. . . . . . · · · . . .

c2 + ϵi (c2 + ϵi)
2 · · · (c2 + ϵi)

k

. . . . . . . . . . . .

cs + ϵd (cs + ϵd)
2 · · · (cs + ϵd)

k


∈ Rd×k. (4.92)
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When ϵ is very small,

Λ̃ϵ =



c1 + ϵ1 c21 + 2c1ϵ1 · · · ck1 + kck−1
1 ϵ1

c1 + ϵ2 c21 + 2c1ϵ2 · · · ck1 + kck−1
1 ϵ2

. . . . . . · · · . . .

c2 + ϵi c22 + 2c2ϵi · · · ck2 + kck−1
2 ϵi

. . . . . . . . . . . .

cs + ϵd c2s + 2csϵd · · · cks + kck−1
s ϵd


∈ Rd×k. (4.93)

Λϵ ≈ Λ̃ϵ = Λs + P. (4.94)

Λs =



c1 c21 · · · ck1

c1 c21 · · · ck1

. . . . . . · · · . . .

c2 c22 · · · ck2

. . . . . . . . . . . .

cs c2s · · · cks


, P =


ϵ1 2c1ϵ1 · · · kck−1

1 ϵ1

ϵ2 2c1ϵ2 · · · kck−1
1 ϵ2

. . . . . . . . . . . .

ϵd 2csϵd · · · kck−1
s ϵd

 . (4.95)

Delete the same rows of Λs, we obtain Λ̃s,

Λ̃s =


c1 c21 · · · ck1

c2 c22 · · · ck2

. . . . . . . . . . . .

cs c2s · · · cks

 ∈ Rs×k. (4.96)

Let y1 = argminy∈Rk ∥Λ̃sy − [1, · · · , 1]T∥2

∥Λϵy − [1, · · · , 1]T∥2 ≤ ∥Λϵy1 − [1, · · · , 1]T∥2 (4.97)

≈ ∥Λsy1 − [1, · · · , 1]T + Py1∥2 (4.98)

≤ ∥Λsy1 − [1, · · · , 1]T∥2 + ∥Py1∥2 (4.99)

= ∥Λ̃sy1 − [1, · · · , 1]T∥2 + ∥Py1∥2 (k = s). (4.100)
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P =


ϵ1 2c1ϵ1 · · · kck−1

1 ϵ1

ϵ2 2c1ϵ2 · · · kck−1
1 ϵ2

. . . . . . . . . . . .

ϵd 2csϵd · · · kck−1
s ϵd

 (4.101)

Let y1 = (y11, y
2
1, · · · , yk1 )T, then

Py1(ci) = (kyk1c
k−1
i + (k − 1)yk−1

1 ck−2
i + · · ·+ y11)ϵi (4.102)

y1 = min
y∈Rs

∥Λ̃sy − [1, · · · , 1]T∥2 (4.103)

Let ϵ = max{ϵ1, · · · , ϵd}. Define the polynomial f(c̃i) by y1.

f(c̃i) = yk1 c̃i
k + yk−1

1 c̃i
k−1 + · · ·+ y11 c̃i − 1. (4.104)

Thus,

f(c) =
1∏k

i=1 c̃i

k∏
i=1

(c− c̃i). (4.105)

f ′(c̃i) =
1∏k

i=1 c̃i

∏
j=1,··· ,k,j ̸=i

(c̃i − c̃j) (4.106)

f ′(ci) = kyk1c
k−1
i + (k − 1)yk−1

1 ck−2
i + · · ·+ y11 (4.107)

Thus, at step k

∥B(l)(b−Axk)∥2 ≤ ∥V ∥2ϵ∥(f ′(c̃1), f
′(c̃2), . . . , f

′(c̃k))
T∥2 (4.108)

If ∥V ∥2 is not large, and all eigenvalues are well clustered, ∥B(l)(r)∥2 will converge to

a tiny value after s iterations. c̃1 should be in the convex hull of ci, which need to

be proved in future. It indicates that as long as ci are well clustered, c̃1 are also well

clustered. We can calculate y1 of the Vandermonde matrix Λ̃s and observe that the

∥B(l)rs∥2 and its estimate ∥V ∥2(∥Λsy1− [1, · · · , 1]T∥2+ ∥Py1∥2) matches well, as shown

in Figure 4.7.
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Figure 4.7: The ∥B(l)rs∥2(l = 8) of the test matrix A in quadruple precision arith-
metic.



Chapter 5

Inner-iteration preconditioned

block GMRES

This chapter first introduces previous work on the block GMRES method. Then, it

reviews the algorithm of the block GMRES method which is based on the block Arnoldi

method. Then, it gives the inner-iteration preconditioned block GMRES method and

the corresponding numerical experiments. [48, 49]

5.1 Previous work

Consider solving the linear least squares problems with multiple right-hand sides

AX = C, A ∈ Rm×m, C ∈ Rm×p, (5.1)

where A is full-rank.

A natural idea is to do the Cholesky factorization, QR factorization, or the singular

value decomposition of A, and store the information, and reuse it for each right-hand

side. But the factorization process can be heavy, and where A is only available as a

function A active as a vecotr x, hard to access a certain element of the matrix, whereas

it is easy to get the matrix vector product. Thus, we are more interested in solving the

problems with multiple right-hand sides by iterative methods.

The first block method is the block conjugate gradient method which was introduced

by O’Leary[50] for symmetric positive definite matrices. For problems with nonsym-

metric matrices, a block version of GMRES was developed in [51], which is based on a

block Arnoldi process [13]. See also [52]. Many block Arnoldi-type methods differ in

the choice of the inner product [51, 53, 54], as studied in [55]. The convergence of block

GMRES studied in [56] and [57].
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5.2 Inner-iteration preconditioned block GMRES

In this thesis, we are more interested in solving the least squares problems with mul-

tiple right-hand sides,

min ∥AX − C∥F , A ∈ Rm×n, m > n, C ∈ Rm×p. (5.2)

which is needed, for instance, in the Cluster Gauss-Newton method [58] and Non-

negative Matrix Factorization [59].

5.2.1 Block Arnoldi method

In this thesis, we use the Block Arnoldi method given in [38]. The algorithm is as

below.

Algorithm 10 Block Arnoldi method

1: Choose an unitary matrix V1 of dimension n× p.
2: for i = 1, 2, . . . , k do
3: Compute Hi,j = V T

i AVj , i = 1, 2, · · · , j
4: Compute Wj = AVj − Σj

i=1ViHi,j

5: Compute the QR factorization of Wj : Wj = Vj+1Hj+1,j

6: end for

Based on Algorithm 10, we can derive the block GMRES. For A ∈ Rn×n, let X0 ∈
Rn×p be the initial solution, then, the initial residual R0 = C −AX0 ∈ Rn×p, compute

the QR factorization of R0 : R0 = V1R to get V1, and approximate solution Xi = X0+Z,

where Z solves

min
Z∈Ki

∥C −A(X0 + Z)∥F = min
Z∈Ki

∥R0 −AZ∥F

Ki ≡ span{R0 ,AR0 , · · · ,Ai−1R0}.

Vi is the orthonormal basis of Ki, which is obtained by the block Arnoldi method.

C −A(X +X0) = R0 −AX = V1R−AViY = Vi+1(R−H(i+1)p,ipY ) (5.3)

min
Y

||R−H(i+1)p,ipY ||F (5.4)
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When p = 2, i = 3, H86 is a block upper Hessenberg matrix.

H86 =



h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

h31 h32 h33 h34 h35 h36

0 h42 h43 h44 h45 h46

0 0 h53 h54 h55 h56

0 0 0 h64 h65 h66

0 0 0 0 h75 h76

0 0 0 0 0 h86


, R =



r11 r12

0 r22

0 0

0 0

0 0

0 0

0 0

0 0


(5.5)

H(i+1)p,ip = Qi+1Ti+1 (5.6)

Ti+1Y = QT
i+1R (5.7)

T86 =



t11 t12 t13 t14 t15 t16

0 t22 t23 t24 t25 t26

0 0 t33 t34 t35 t36

0 0 0 t44 t45 t46

0 0 0 0 t55 t56

0 0 0 0 0 t66

0 0 0 0 0 0

0 0 0 0 0 0


, QT

i+1R =



∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
r71 r72

0 r82


. (5.8)

We can only solve the triangular system and corresponding right-hand sides by backward

substitution. The 0 rows of T86 correspond to a triangular matrix in the QT
i+1R, which

is made of residuals. We estimate the F -norm of this residual matrix.

Similarly to GMRES, Tm+1 and the corresponding right-hand sides can be updated

step by step by storing the rotation matrix in the QR decomposition.

The algorithm of Block BA-GMRES is as follows.

Algorithm 11 Blcok BA-GMRES

1: Choose X0 ∈ Rn×p, R0 = C −AX0, [V1, R] = qr(BR0),
2: for i = 1, 2, . . . , k do
3: Wi = BAVi,
4: for j = 1, 2, . . . , i do
5: Hi,j = V T

j Wi, Wi = Wi − VjHi,j ,
6: end for
7: [Vi+1, Hi+1,i] = qr(Wi),
8: Compute Yi ∈ Ri×p which minimizes ∥Ri∥F = ∥R−H(i+1)p,ipYi∥F ,
9: Xi = X0 + [V1, V2, . . . , Vi]Yi, Ri = C −AXi.

10: if ∥ATRi∥F < ϵ∥ATR0∥F then
11: stop
12: end if
13: end for
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5.3 Inner-iteration block BA-GMRES

In order to get inner-iteration block BA-GMRES, we need to adapt the stationary

methods to block algorithms at first. We still use NR-SOR as the main method. The

block NR-SOR is developed from algorithm 8 (NR-SOR), the algorithm is given as

follows.

Algorithm 12 Block NR-SOR

1: Let X0 be the initial solution and R = C −AX0, 0 < ω < 2.
2: for k = 1, 2, . . . , l do
3: for i = 1, 2, . . . , n do
4: ∆T

i = (ω/||ai||22)RTai,
5: Xk+1

i
T = Xk

i
T +∆T

i ,
6: R = R− ai∆

T
i (rank-1 update).

7: end for
8: end for

Consider the case B = AT in block BA-GMRES, and combine the block BA-GMRES

with block NR-SOR. Then, the algorithm is as follows.

Algorithm 13 NR-SOR inner-iteration block BA-GMRES

1: Choose X0 ∈ Rn×p, R0 = C −AX0,
2: apply l steps SOR to ATAw = ATR0 to obtain W0 = P lATR0, (NR-SOR),
3: [V1, R] = qr(W0),
4: for i = 1, 2, . . . , k do
5: Ui = AVi,
6: apply l steps SOR to ATAW = ATUi to obtain Wi = P lATUi, (NR-SOR)
7: for j = 1, 2, . . . , i do
8: Hi,j = V T

j Wi, Wi = Wi − VjHi,j ,
9: end for

10: [Vi+1, Hi+1,i] = qr(Wi),
11: Compute Yi ∈ Ri×p which minimizes ∥Ri∥F = ∥R−H(i+1)p,ipYi∥F ,
12: Xi = X0 + [V1, V2, . . . , Vi]Yi, Ri = C −AXi.
13: if ∥ATRi∥F < ϵ∥ATR0∥F then
14: stop
15: end if
16: end for

5.4 Numerical experiments

5.4.1 Numerical experiments of block BA-GMRES

Figure 5.1 shows the experiment with the matrix Maragal3 given in Table 3.1, whose

size is 1682×858 and the rank is 613. The BA-GMRES needs 547 steps to converge for
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Figure 5.1: The comparison between BA-GMRES and block BA-GMRES (p=3, B =
AT).

Table 5.1: Iteration steps and CPU time of Block BA-GMRES

p iteration steps CPU time (s) ∥ATRi∥F /∥ATR0∥F
1 547 0.4075 8.91× 10−15

2 285 0.6229 9.27× 10−15

3 195 0.3908 6.65× 10−15

4 149 0.3268 6.27× 10−15

5 121 0.2722 6.16× 10−15

6 102 0.2344 6.18× 10−15

7 88 0.2307 5.36× 10−15

1 right-hand side. The block BA-GMRES needs 195 steps to converge for 3 right-hand

sides, slightly larger than 1/3 steps of BA-GMRES. The relative residual norm of both

methods reached a level of 10−14. Thus, we test more cases and compute the CPU time,

the stopping criterion is ϵ = 10−14, where p represents the number of the right-hand

sides.

Table 5.1 shows the numerical results of the block BA-GMRES for p = 2, 3, . . . , 7,

where p = 1 is the BA-GMRES. The relative residual norm ∥ATRi∥F /∥ATR0∥F reached

a similar level 10−14, and did not become larger for more right-hand sides cases. The

CPU time decreased for more right-hand sides. For p = 7, the CPU is only 0.2307s

which means solving 7 problems at the same time is faster than solving 1 problem which

costs 0.4075s. The first reason is the effect of the block algorithm, where the memory

access is more efficient compared to the non-block algorithm. The second reason is the

iteration steps is decreasing with the increase of the number of right-hand sides. The

numerical results showed that the block BA-GMRES is efficient.
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Table 5.2: CPU time of block BA-GMRES and IP Block BA-GMRES

p Iter.(B=AT) CPU (s) Iter.(IP) CPU (s)

1 547 0.4075 201 0.2535
2 285 0.6229 126 0.2025
3 195 0.3908 92 0.1707
4 149 0.3268 76 0.1751
5 121 0.2722 65 0.1728
6 102 0.2344 58 0.1728
7 88 0.2307 53 0.1842

5.4.2 Numerical experiments of NR-SOR inner-iteration preconditioned

block BA-GMRES

We also tested Maragal3 with the NR-SOR inner-iteration block BA-GMRES, where

the number of inner-iteration was set to 1. In MATLAB, doing more inner-iteration

steps is time consuming, but for 1 inner iteration it can be implemented by backward

substitution, which is equivalent to the backslash for a triangular system. The result is

as below, where IP stands for inner-iteration preconditioned block BA-GMERES (NR-

SOR).

Table 5.2 shows the comparison of the CPU of the block BA-GMRES and the block

IP BA-GMRES. As for iteration steps, the block IP BA-GMRES is nearly half of the

block BA-GMRES. But the inner-iteration process costs time, so that the CPU time is

not half. The CPU time decreased after using the inner-iteration preconditioning. The

best result is for p = 6, which means solving 6 problems at the same time only needs

0.1728s. The numerical result shows the proposed method is more effective than the

block BA-GMRES.



Chapter 6

Conclusion and future work

6.1 Concluding Remarks

We proposed a stabilized AB-GMRES method for ill-conditioned underdetermined

and inconsistent least squares problems. It shifts upwards the tiny singular values of

the upper triangular matrix appearing in AB-GMRES, making the process more stable,

giving better convergence, and more accurate solutions compared to AB-GMRES. The

method is also effective for making AB-GMRES stable for inconsistent least squares

problems with highly ill-conditioned square coefficient matrices.

Next, we analyzed the convergence of inner-iteration preconditioned GMRES method

for overdetermined least squares problems based on the distribution of the eigenvalues of

the preconditioned matrix. One can choose some eigenvalue λi as a center, and choose ϵi

as the radius, where many eigenvalues λ lie in |λ−λi| < ϵi. Let ϵ = max ϵi. Assume there

are j + 1 clusters of the eigenvalues of B(l)A. If B(l)A is diagonalizable, we can prove

that at step j + 1, the upper bound of the residual ∥B(l)rj+1∥ is O(
∏j

1(1− λj)ϵ). This

explains why the inner-iteration preconditioning enables the convergence in a relatively

small number of steps. Due to the clustering of the eigenvalues, at j+1 steps, ∥B(l)rj+1∥
can converge to a tiny value.

Finally, we proposed the block IP-GMRES method, which combines the inner-iteration

preconditioning technique and the block GREMSmethod. The proposed method reduces

the iteration steps by nearly a half and also reduces the CPU time compared to the block

GMRES method, which means the proposed method is effective.

6.2 Future work

For the stabilized method, the LDLT decomposition needs to be compared with the QR

decomposition. For the convergence analysis, the non diagonalizable (Jordan block) case
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needs to be analyzed. The convergence for cases with multiple clusters also need more

research. For the IP block-GMRES part, coding in C and analyzing the convergence

versus the number of inner-iteration steps is needed. The grade of block

grade(A,C ) = min{d |Kd (A,C ) = Kd+1(A,C )} (6.1)

is also interesting, and the convergence analysis of IP block GMRES will be investigated.



Appendix A

Previous work

A.1 Comparisons with other methods

A.1.1 Underdetermined inconsistent least squares problems

First, we compared the stabilized AB-GMRES with the range restricted AB-GMRES

(RR-AB-GMRES) [33], where the Krylov subspace for the RR-AB-GMRES with B =

AT is Ki(AA
T, AATr0), AB-GMRES with B = AT, BA-GMRES with B = AT, LSQR

[5] and LSMR [6]. All programs for iterative methods were coded according to the

algorithms in [5, 6, 8, 33]. Each method was terminated at the iteration step which

gives the minimum relative residual norm within m iterations, where m is the number of

the rows of the matrix. No restarts were used for GMRES. Experiments were done for

rank-deficient matrices whose information is given in Table 1. Here, we have deleted the

zero rows and columns of the test matrices beforehand. The elements of b were randomly

generated using the MATLAB function rand. Each experiment was done 10 times for

the same right hand side b and the average of the CPU times are shown. Symbol -

denotes that ∥ATri∥2/∥ATr0∥2 did not reach 10−8 within 20n iterations.

Table A.1 shows that the stabilized AB-GMRES is generally more accurate than the

RR-AB-GMRES. The stabilized AB-GMRES took more iterations to attain the same

order of the smallest residual norm than the RR-AB-GMRES. Table A.1 also shows that

for the same underdetermined least squares problems, the BA-GMRES was the best in

terms of the attainable smallest relative residual norm and that the LSQR and LSMR

are comparable to the BA-GMRES, but require less CPU time according to Tabel A.2.
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Table A.1: Comparison of the attainable smallest relative residual norm
∥ATri∥2/∥ATr0∥2.

matrix Maragal 3T Maragal 4T Maragal 5T Maragal 6T Maragal 7T

iter. 531 465 1110 2440 1864
standard AB-GMRES 1.05×10−8 2.09×10−7 5.35×10−6 8.26×10−6 4.53×10−6

iter. 552 598 1226 3002 2459
stabilized AB-GMRES 5.99×10−12 5.59×10−8 4.22×10−6 3.88×10−6 2.80×10−7

iter. 553 565 1223 2374 2474
RR-AB-GMRES 2.57×10−11 5.59×10−8 3.62×10−6 1.63×10−5 2.78×10−7

iter. 562 626 1263 4373 5658
BA-GMRES 2.88×10−14 7.92×10−11 2.29×10−12 5.12×10−11 2.03×10−10

iter. 1682 2375 4576 151013 97348
LSQR 5.64×10−14 2.77×10−10 1.11×10−11 5.87×10−10 1.33×10−9

iter. 1654 2308 4273 127450 70242
LSMR 5.51×10−14 3.00×10−10 3.25×10−11 4.16×10−10 9.95×10−10

Table A.2: Comparison of the CPU time (seconds) to obtain relative residual norm
∥ATri∥2/∥ATr0∥2 < 10−8.

matrix Maragal 3T Maragal 4T Maragal 5T Maragal 6T Maragal 7T

iter. - - - - -
standard AB-GMRES - - - - -

iter. 546 (526) - - - -
stabilized AB-GMRES 2.01 - - - -

iter. 545 - - - -
RR-AB-GMRES 1.84 - - - -

iter. 530 608 1232 3623 5001
BA-GMRES 2.10 3.19 4.25×101 1.81×103 9.20×103

iter. 1465 2120 4032 101893 54444
LSQR 1.27×10−1 2.56×10−1 1.49 2.93×102 4.33×102

iter. 1456 1989 4013 54017 31206
LSMR 1.25×10−1 2.37×10−1 1.49 1.50×102 2.23×102
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Table A.3: Information of the singular square matrices.

matrix size density[%] rank κ2(A) application

Harvard500 500 1.05 170 1.30×102 web connectivity
netz4504 1961 0.13 1342 3.41×101 2D/3D finite element problem

TS 2142 0.99 2140 3.52×103 counter example problem
grid2 dual 3136 0.12 3134 8.58×103 2D/3D finite element problem

uk 4828 0.06 4814 6.62×103 undirected graph
bw42 10000 0.05 9999 2.03×103 partial differential equation [19]

A.1.2 Inconsistent systems with highly ill-conditioned square coeffi-

cient matrices

The stabilized AB-GMRES is not restricted to solving underdetermined problems

but can also be applied to solving the least squares problem minx∈Rn ∥b− Ax∥2, where
A ∈ Rn×n is a highly ill-conditioned square matrix. Thus, we also test on square matrices

of different kinds. Table A.3 gives the information of the matrices.

These matrices are all numerically singular. We generated the right-hand side b by

the MATLAB function rand, so that the systems are generically inconsistent. We com-

pared the stabilized AB-GMRES with the standard AB-GMRES, RR-AB-GMRES, BA-

GMRES with B = AT, LSMR [6], and LSQR [5]. Table A.4 gives the smallest relative

residual norm and the number of iterations. Table A.6 gives the CPU times in seconds

required to obtain relative residual norm ∥ATri∥2/∥ATr0∥2 < 10−8. The switching strat-

egy which was introduced in Section 3.4.1 was used for the stabilized AB-GMRES when

measuing CPU times. The number of iterations when switching occurred is in brackets.

Table A.4 shows that for most problems the BA-GMRES was the best in terms of ac-

curacy of relative residual norm. The LSQR and LSMR are similar and are comparable

to the BA-GMRES, beacuse they all change the inconsistent problem into a consis-

tent problem. The LSQR and LSMR are more suitable for large and sparse problems

compared to the BA-GMRES because they require less CPU time and memory.

For Harvard500 and bw42, the AB-GMRES could only converge to the level of 10−9

regarding the relative residual norm, while the stabilized AB-GMRES converged to

the level of 10−14. The stabilized AB-GMRES was robust in the sense that it could

continue to compute even when the upper triangular matrix Ri became seriously ill-

conditioned, and the relative residual norm did not increase sharply towards the end,

but just stagnated at a low level, just like for consistent problems. Comparing the CPU

time in Tabel A.6, LSMR was the fastest. The stabilized AB-GMRES was usually faster

than BA-GMRES.
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Table A.4: Comparison of the attainable smallest relative residual norm
∥ATri∥2/∥ATr0∥2 for inconsistent square linear systems.

matrix Harvard500 netz4504 TS grid2 dual uk bw42

iter. 104 144 1487 3134 4620 715
standard

AB-GMRES 9.38×10−94.51×10−10 1.56×10−95.98×10−10 1.35×10−9 8.06×10−8

iter. 175 201 1617 3135 4779 788
stabilized

AB-GMRES 4.53×10−141.51×10−14 1.54×10−9 1.14×10−96.81×10−10 1.66×10−7

iter. 135 200 1652 3134 4706 1163
RR-AB-GMRES 7.78×10−143.36×10−14 4.56×10−9 6.52×10−8 8.33×10−8 1.56×10−5

iter. 139 194 1628 3134 4724 1520
BA-GMRES 1.91×10−157.27×10−168.43×10−131.23×10−136.94×10−141.97×10−11

iter. 391 198 6047 12549 6249 1256
LSQR 3.59×10−155.86×10−161.96×10−122.51×10−136.56×10−141.59×10−11

iter. 338 195 6219 12497 6199 1212
LSMR 2.01×10−155.97×10−161.25×10−122.34×10−137.35×10−141.60×10−11

Table A.5: Attainable smallest relative residual norm ∥ATri∥2/∥ATr0∥2 for bw42.

method iter. mini ∥ATri∥2/∥ATr0∥2
standard GMRES 147 8.08×10−9

stabilized GMRES 219 1.94×10−11

RR-GMRES 220 3.13×10−11

Table A.6: Comparison of the CPU time (seconds) to obtain relative residual norm
∥ATri∥2/∥ATr0∥2 < 10−8 for inconsistent square linear systems.

matrix Harvard500 netz4504 TSgrid2 dual uk bw42

iter. 104 134 1411 3134 4583 -
standard

AB-GMRES 4.72×10−21.87×10−1 2.14×10 2.16×102 6.93×102 -

iter. 104 1341531 (182) 31344679 (4199) -
stabilized

AB-GMRES 4.78×10−21.89×10−1 8.19×10 2.21×102 1.93×103 -

iter. 114 153 1530 - - -
RR-AB-GMRES 6.42×10−22.62×10−1 2.68×10 - - -

iter. 103 131 1379 3134 4562 738
BA-GMRES 5.48×10−21.72×10−1 2.06×10 2.44×102 7.55×102 2.33×10

iter. 222 134 4239 11802 5948 913
LSQR 5.63×10−36.61×10−3 7.86×10−1 1.15 8.65×10−13.12×10−1

iter. 215 132 3913 11746 5898 655
LSMR 5.34×10−36.42×10−3 7.04×10−1 1.15 8.42×10−12.32×10−1
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Thus, our stabilization method also makes AB-GMRES stable for highly ill-conditioned

inconsistent systems with square coefficient matrices.

The coefficient matrix A of bw42 is singular and satisfiesN (A) =N (AT). The problem

comes from a finite-difference discritization of a PDE with periodic boundary condition

(Experiment 4.2 in Brown and Walker [19] with the original b). Since the matrix is range

symmetric, the GMRES, RR-GMRES, and stabilized GMRES can be directly applied

to Ax = b (See [19] Theorem 2.4, [35] Theorem 2.7, and [20] Theorem 3.2.) as shown in

Table A.5. The stabilized GMRES gave the relative residual norm 1.94×10−11 for bw42

at the 219th iteration, similar to the BA-GMRES.



Appendix B

Grade of Block GMRES

For the multiple right hand sides problem,

AX = C, C = [c1, · · · , cp]. (B.1)

The span of the block C is

< C >= span{c1 , · · · , cp} (B.2)

The grade for the block C can be defined by the block Krylov subspace

Kd(A,C) =< C > + < AC > +...+ < Ad−1C >, (B.3)

as follows:

grade(A,C) = min{d|Kd(A,C) = Kd+1(A,C)}. (B.4)

For a random diagonalizable matrix A ∈ R10×10, let vk, k = 1, 2, . . . , 10, be the kth

eigenvector. The test results are collected in Table B.1. The Grade of a block C is

influenced by the structure of the block, like the eigenvectors contained in the block,

and whether the ci, i = 1, 2, . . . , p are independent or not. The grade of the block has

an upper bound, for a random case it is supposed to be n
p , where n is the number of

essentially different eigenvectors.

c1 contains four eigenvectors, thus, it needs four iteration steps to reach A-invariance.

For the same reason, c2 needs three. Because c1 and c2 are linearly independent, the

combination of c1 and c2 needs the maximum of them, four steps to become A-invariant.

But c1 and v1, only need three, since v1, c1, Av1, Ac1, A
2v1 and A2c1 can make up the

space given by c1, Ac1, A
2c1 and A3c1. If c1 combine with the v1 − v2, you only need

two steps. Notice that the maximum grade among cases which contain two right-hand

sides is five, but it can be less than five in special cases. Generically, each right-hand

side contains all eigenvectors. Thus, the grade is usually
⌈
n
p

⌉
.
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Table B.1: Grade of block with different structure of ci.

p C Iteration steps (Grade for reaching invariant)

1 c1 = v1 + v2 + v3 + v4 4
1 c2 = v8 + v9 + v10 3
2 [c1 c2] 4
2 [c1 v1] 3
2 [c1 v1 − v2] 2
2 [c1 v1 − v2 + v3] 2
2 [c1 + c2 v1] 5

Table B.2: Case when eigenvalue 1 has multiplicity 10.

p Iteration steps (Grade for reaching invariant)

1 25
2 13
3 9
4 7
8 4

12 3
24 2

Table B.3: Case when eigenvalues 1 and 2 have multiplicity 10.

p Iteration steps (Grade for reaching invariant)

1 24
2 13
3 10
4 8
8 5

12 4
24 3

We test examples for a diagonal matrix A ∈ R34×34, where the eigenvalue 1 has

multiplicity 10, other simple eigenvalues are 2, 3, . . . , 25. We generate right-hand sides

randomly.

From Table B.2, the eigenvalue 1 has multiplicity. We conjecture that the grade is

approximately
⌈
n−1
p

⌉
+ 1.

For a diagonal matrix A ∈ R42×42, where eigenvalues 1 and 2 have multiplicity 10,

other simple eigenvalues are 3, 4, . . . , 24. We generate right-hand sides randomly.

From Table B.3, where two eigenvalues have multiplicity 10, the grade is supposed to

be
⌈
n−2
p

⌉
+ 2, where n is the number of eigenvalues.

We conjecture that, if A contains i eigenvalues which have multiplicities, the grade is⌈
n−i
p

⌉
+ i, where p is the number of right-hand sides in the block, n is the number of
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different eigenvalues and i is the number of eigenvalues which have multiplicities. This

suggests that you may need extra iterations for the eigenvalues which have multiplicities.
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