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Abstract

Recently, 5G wireless networks introduced three new use cases: Enhanced Mobile
Broadband (eMBB) for high data rate transmissions, Ultra-Reliable Low Latency
Communications (URLLC) enabling high reliability and low latency of connections,
and Massive Machine Type Communications (mMTC) for supporting low data rate
communications of a massive number of devices. Given the forecasted exponential
growth of mobile data traffic and the unprecedented diversification of applications
with the spread of the Internet of Things (IoT) applications, Beyond 5G (B5G) and
6G wireless networks will be facing more daunting challenges of Quality of Service
(QoS) provision as compared to 5G. Towards this end, future networks are expected to
leverage these promising directions: the joint exploitation of a wide range of spectrum
from Sub-6GHz to mmWaves for multi-interface connectivity, Al-enabled network

entities and energy efficient Deep Learning (DL).

In such a context, this thesis investigates the fundamental issues of wireless access
design, namely user association and interference management at user side, and develops
new radio resource allocation optimization methods at Access Point (AP) side to
enhance global network performances while satisfying individual user QoS constraints.
Unlike most of existing studies, we focus on the situation where both user devices and
APs are equipped by multiple wireless interfaces, and by DL capabilities. For that,
wireless access optimization methods to support multiple applications/interfaces
simultaneously with heterogeneous types of QoS and levels, requested by each user
device, are investigated. Namely, depending on the QoS requirements and the state of
the dynamically varying wireless environment, each application should be served on
the most suitable wireless interface at a given time, to offer the utmost user satisfaction

to the maximum number of users over the whole network.
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Namely, we first consider the problem of user-to-multiple APs association, where a
user requesting several applications with different QoS constraints can be served by
multiple APs simultaneously, in current Sub-6GHz wireless system. We propose two
distributed user-to-multiple APs association methods that leverage Reinforcement
Learning (RL), namely Q-Learning (QL) at each user device, enabling each user to
optimize its own association decision while aiming at global network optimization.
Then, to cope with large-scale networks, we extend this initial QL-based association
method by making use of Deep RL (DRL) tools such as DQN and Double DQN (DDQN)
based on Deep Neural Networks (DNN). Based on that, in the Sub-6GHz/mmWave
integrated networks envisioned for B5G/6G, we handle the issue of joint user-to-
multiple APs association and beamforming by proposing a scheme where DNN-enabled
user devices optimize their requests (APs,interfaces), while APs perform a greedy-based
beamforming to select their best sets of users. The goal is to maximize the system

throughput while satisfying the users’ QoS requirements and APs’ load constraints.

Running such DL functionalities generally requires tremendous energy consump-
tion, which may be prohibitive for battery-limited user devices. Indeed, a large amount
of energy is consumed not only for DNN computations using massive data, but also to
access, read and write data in the device memory. As Energy Efficiency (EE) will
become one of the major Key Performance Indicators (KPI) in B5G/6G system, we also
investigate the EE issue of DQN-based method at the user device. In particular, unlike
existing works, we conduct a comprehensive analysis of the energy consumption for
both computation and data access by DNN. Based on that, to obtain higher EE and
better cope with dynamic environments, we enhance our proposed DQN-based user
association and beamforming scheme by proposing an adaptive e-greedy strategy
which enables the user to explore whenever notable changes of its surrounding
environment are detected. Moreover, to further improve the network performance, we
design a beamforming method based on Branch-and-Bound algorithm at AP side,
taking into account the features of mmWave bands. The trade-off between achievable
network performances and energy costs at user side is then investigated.

Finally, since realizing extreme reliability is another of the major milestones paving
the way towards B5G, we also consider the issue of reliability enhancement for mMTC
use case under Sub6GHz/mmWave integrated systems. For that, we design a method
based on the Risk-Averse Averaged Q-Learning (RAQL) framework, whereby each AP



avoids to transmit on interfaces with high risks of violating devices’ Packet Loss Rate
(PLR) targets, based on limited feedback from their associated devices.

We assess our proposed methods through numerical evaluations over various
network settings. These results show that the proposed approach enables all users to
associate to multiple APs/interfaces distributively and efficiently, while satisfying
their heterogeneous QoS requirements and enhancing the long-term global sum-rate.
Moreover, the proposed algorithms are also shown to outperform benchmark methods,
both in terms of global sum-rate and application outage probabilities. In particular,
the proposed methods enable to cope with dynamic environments and to strike a
balanced trade-off between network sum-rate, QoS satisfaction of diverse applications,
as well as user energy consumption. In case of reliability enhancement, the proposed
RAQL-based method can significantly improve network performance by increasing the
global successful packet delivery rate while reducing individual PLRs as compared to

baseline algorithms.
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Introduction

1.1 Background and Research Motivation

The fifth generation of wireless network, 5G, enabled to provide higher data rate,
lower latency and higher capacity than its preceding 4G Long-Term Evolution (LTE)
network by introducing three use cases with different characteristics: Enhanced
Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC)
and Massive Machine Type Communications (mMTC) [3]. Namely, eMBB enables
stable connections with very high data rates as required by Virtual Reality (VR), while
URLLC provides low latency and high reliability communications, but at a low data
rate transmission. Requiring typically low data rates and low reliability level of Packet
Error Rate (PER) (10™!), mMTC supports a massive number of Internet of Things (IoT)
devices.

While these initial 5G networks and services were launched in 2020 in several
countries, academia and industries worldwide are currently advancing research

on future communication systems, namely Beyond 5G (B5G) and 6G. Compared
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Figure 1.1: Multiple requirements for Beyond 5G/6G networks described in [1]

to 5G, B5G networks are expected to support more extreme amounts of mobile
data traffic, owing to the ever increasing number of mobile subscribers across the
world. This tendency is accelerated by the spread of IoT and Internet of Everything
(IoE) services [1,4], e.g., smart cities, factory automation, connected vehicles, digital
health, etc.. To this end, such diversification of IoT/IoE applications will also require
various Quality of Service (QoS) constraints as defined in 5G, but with more stringent
levels encompassing ultra-high data rate, ultra-low latency, extreme reliability and
ultra-massive connectivity. In particular, these diverse and stringent QoS requirements
should not only scale up each of the 5G performance objectives (e.g., thousand-fold
increase of data rates, ten-fold increase of connected devices per km?, ten-fold decrease
of latency) but should be also achieved simultaneously [1] as shown in Fig. 1.1. As
a result, the three aforementioned 5G use cases would give rise to new use cases,
for instance, eMBB high data rate services along with very low latency, or massive

connectivity with extreme reliability levels that could go down to 107°.

In addition, energy efficiency is considered as one of the new major Key Performance
Indicators (KPI) for B5G and 6G. As indicated in [5], the energy consumption of

information and communication technology (ICT) can exceed 50% of the global
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electricity, contributing to 23% of the global greenhouse gas emissions by 2030, most
of which is accounted for wireless networks [6,7]. Namely, it is estimated that 1
GWh of energy is consumed for 1 Petabyte of mobile data communication, which will
entail an extremely high power consumption, given the 2 Zettabytes of expected
data annually generated by the massive amounts of future IoT devices. Along with
the growing awareness of the global warming situation, energy efficiency should
be become the prime goal wireless system optimization, while enhancing the other
network performances.

To meet such technical challenges, future wireless networks are envisioned to build
upon the following major axes: 1) the joint exploitation of a wide range of frequencies
from Sub-6GHz to millimeter waves (mmWave) and Terahertz towards 6G, 2) Artificial
Intelligence (AI) and Machine Learning (ML)-based technologies at all network levels
ranging from core cloud to edge devices, and 3) energy-saving techniques for highly
energy-efficient next-generation systems as provisioned by B5G/6G networks. Such
prospects come from the following reasons.

Firstly, the conventional frequency bands for mobile communication systems,
located in the Sub-6GHz region, will soon be unable to cope with the aforementioned
stringent requirements of B5G and 6G applications, due to severe spectrum scarcity.
High-frequency mmWave utilization is hence essential due to their high capacity and
massive availability. However, these high-frequency bands suffer from high path
loss and signal blockage sensitivity [8]. Thus, the joint exploitation of Sub-6GHz
and mmWave bands is considered as a potential solution by jointly achieving high
system capacity (of mmWave) and robustness (of Sub-6GHz) to wireless channel
impairments [9]. Moreover, such a wide range of spectrum allows each wireless entity
to be equipped with multiple wireless interfaces for the joint usage of B5G, Wireless
Local Area Network (WLAN), Wireless Body Area Network (WBAN), IoT protocols,
etc., thereby providing multi-interface connectivity [10].

Secondly, due to the uncertain and highly dynamic and interfering wireless
environments of the dense and large-scale future networks, the integration of Al
and ML-based techniques at all network levels becomes inevitable. So far, many
research works have developed Al-based technologies, in particular, Deep Learning
(DL) methods to improve the performance of more and more complex networks.

However, Al capabilities have been mostly assumed at the cloud core or edge cloud
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as in Mobile Edge Computing (MEC). As we move towards 6G, user devices should
be equipped with such Al capabilities, which is necessary to improve the network
performance comprehensively for fulfilling the stringent requirements of B5G/6G
networks. Nevertheless, performing these Al functionalities comes at the cost of
tremendous energy requirements, as current DL techniques based on Deep Neural
Networks (DNN) consume a large amount of energy, not only for computing a huge
amount of data, but also to transfer and access such data in the memory [2]. This is
even more crucial for battery-limited user devices, which requires novel energy-saving

techniques for exploiting Al-enabled communications.

In such a context, this thesis aims at investigating the fundamental issues of
wireless access design, namely user association and interference management, and
developing new radio resource allocation optimization methods to enhance global
network performances while satisfying individual user QoS constraints. Namely, we
focus on the B5G use cases whereby each user device and AP are equipped by multiple
wireless interfaces, and by deep learning functionalities. We investigate wireless
access optimization methods for supporting multiple applications simultaneously
with heterogeneous types of QoS and levels, requested by each user device. That is,
depending on the QoS requirements and the state of the dynamically varying wireless
environment, each application should be served on the most suitable wireless interface
at a given time, to offer the utmost user satisfaction to the maximum number of users

over the whole network.

In particular, we investigate the three following issues, then for each, the wireless
access optimization methods are proposed. Firstly, we consider the issue of joint
distributed user-to-AP association at user devices and optimization of user selection
and beamforming at APs, where DNN-enabled user devices optimize their best sets of
APs to request at any time, while based on these requests, APs optimize user selection
and beamforming. The goal is to maximize the system throughput while the users’ QoS
requirements and APs’ load constraints are satisfied. Then, given that user association
selection is performed by DNN-enabled user devices, the energy consumption at these
devices is investigated. Finally, we consider the issue of reliability enhancement for
mMTC communications which will become paramount for B5G as mentioned above.
Namely, APs optimize their interface selection and packet transmission through their

Al functionalities to improve the reliability of the whole system, while satisfying the
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PER requirement of each user device, given a stringent delay constraint.

1.2 Thesis contributions

Before giving the details of our thesis contributions, we provide the global view of
the positioning of our work within the related literature. In Fig. 1.2, we illustrate
the global view of our contributions concerning the user association and energy
efficiency issues (Chapters 3, 4 and 5), while Fig. 1.3 illustrates our contributions
related to reliability enhancement (Chapter 6). Firstly, as shown in Fig. 1.2, there are
two major approaches for handling the user association problem, which are centralized
or distributed approaches. In this thesis, we have developed a distributed approach
which combines a multiple-APs selection phase at the user device side, and based
on these requests, the user selection and beamforming optimization takes place at
each AP, where all APs interfere mutually. In particular, we investigate ML-based
methods, i.e., Reinforcement Learning (RL) and DL that are envisioned as key enabling
technologies for future wireless networks. In addition, while existing DL methods
based on DNN either ignore or consider only part of its energy consumption, we take
into account the entire DNN energy consumption in the optimized design of our

proposed user-to-multiple APs association method.

Next, Fig. 1.3 illustrates our contributions related to reliability enhancement for
mMTC types of applications. So far, the reliability of URLLC and mMTC types of
services in 5G was improved by means of packet transmission duplication, splitting,
and redundant coding. In most cases, these methods also relied on the knowledge of
perfect instantaneous Channel State Information (CSI) and/or the knowledge of channel
statistics between APs and users, which may not be available in reality, especially in
mMTC use case which involves simplistic IoT devices with scarce computation and
battery capabilities. Therefore, the target in this thesis is to improve reliability for
mMTC use case where only perfect average CSI knowledge could be leveraged, by
increasing the number of IoT devices whose reliability QoS (namely, required packet
loss rate (PLR) level) is satisfied.

In details, our main contributions in this thesis are listed as follows and presented

in Fig. 1.4.
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Chapter 1. Introduction

1. To the best of our knowledge, this is one of the first research enabling user-
to-multiple APs association where a user requiring several applications with
different QoS requirements can be served by multiple APs and interfaces, instead
of by only one AP as conventional association methods, simultaneously and
without global Channel State Information (CSI). As a preliminary study, we
investigate this issue in a wireless system which only operates on Sub-6GHz
band and propose two distributed methods that leverage Reinforcement Learning
(RL), namely Q-Learning (QL) at each user device. The proposed QL-based
methods enable each user to optimize its own association decision while aiming
at global network optimization. Then, to cope with large-scale networks, we
extend this initial QL-based association method by making use of Deep RL (DRL)
tools such as Deep Q-Network (DQN) and Double DQN (DDQN).

2. In Sub-6GHz/mmWave integrated systems envisioned for B5G/6G, the user-
to-multiple APs association issue becomes more challenging as compared to
single band networks, as the combination of users, APs and interfaces should be
jointly optimized. In addition, we also take into account the features of high path
loss and signal blockage sensitivity of mmWave band. For that, we propose
distributed DQN-based algorithms for joint user-to-multiple APs association
and beamforming in Sub-6GHz/mmWave integrated networks. Namely, at user
side, each user device optimizes its own association requests (AP, interface)
for each application through its own DQN. Then based on these requests, the
beamforming and user selection are optimized at the AP side by our proposed
greedy-like method with low complexity without incurring high costs in terms

of signaling and CSI overheads.

3. Regarding the energy aspect of the future systems, we make a comprehensive
evaluation of the energy efficiency (EE) metric at the user device for the
proposed DQN-based methods of user-to-multiple APs association in the Sub-
6GHz/mmWave integrated networks. Unlike existing works, the overall energy
consumption at the user side is analyzed, including the energy required for
operating the DQN, namely for DQN computation as well as memory data access.
Based on that, to improve the energy efficiency and to better cope with the

dynamics of the mobile environment, we enhance the proposed DQN-based user-



1.3 Thesis organization 9

to-multiple APs association and beamforming methods by introducing an adaptive
e-greedy DON policy at the user side for encouraging the online exploration of
new potential APs and interfaces whenever a change of environment is detected.
In particular, the beamforming implementation at the AP side is enhanced by the

proposed method based on Branch-and-Bound algorithm.

4. For enhancing the reliability of future wireless systems, we investigate the issue
of interface selection and packet scheduling at AP side, where the goal is to
maximize the global successful packet delivery rate under device Packet Loss
Rate (PLR) constraint in Sub-6GHz/mmWave networks. We design a method
based on the Risk-Averse Averaged Q-Learning (RAQL) framework [11] for
handling this issue, whereby each AP avoids to transmit on interfaces with high
risks of violating devices’ PLR targets, based on limited feedback from their

associated devices.

5. We assess all proposed methods through numerical evaluations over various
network settings. These results not only demonstrate the necessity of user-
to-multiple APs/interfaces association in the context of B5G systems, but also
show that the proposed approach enables all users to associate to multiple
APs/interfaces distributively and efficiently, while satisfying their heterogeneous
QoS requirements and enhancing the network performance. Moreover, the
proposed algorithms are also shown to outperform benchmark methods, both in
terms of global sum-rate, application outage probabilities and user fairness. In
particular, the proposed methods enable to cope with dynamic environments and
to strike a balanced trade-off between network sum-rate, QoS satisfaction of
diverse applications, as well as user energy consumption. Concerning reliability
improvement, the proposed methods based on RAQL can significantly improve
network performance by increasing the global successful packet delivery rate

while reducing individual PLRs as compared to baseline algorithms.

1.3 Thesis organization

The remaining chapters of this thesis are organized as follows.
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In Chapter 2, a comprehensive survey of the state-of-the-art for wireless access
optimization is presented.

In Chapter 3, the problem of user-to-multiple APs association is first investigated
in current Sub-6GHz networks. An overview of studies on this issue in the literature is
given. We then formulate the user-to-multiple APs association with various constraints
mathematically. We first propose two distributed methods based on QL to handle
the formulated problem. Then, we extend these proposed methods by using DQN
and DDQN frameworks to further enhance the performances and to cope with the
large-scale networks. All proposed methods are evaluated and discussed on several
network settings and compared to the corresponding baseline algorithms.

Chapter 4 continues to study on the issue of user-to-multiple APs association but
jointly with beamforming in Sub-6GHz/mmWave integrated networks. A DQN-based
method of joint user-to-multiple APs association and beamforming is proposed and
evaluated through numerical simulations.

Chapter 5 conducts a comprehensive analysis of the energy consumption for
operating the DQN functionalities at the user side. Based on that, we enhance the
proposed DQN-based algorithm in Chapter 4 for not only improving energy efficiency,
but also better coping with the dynamic environment. Then, the trade-off between
achievable network performances and energy costs at the user side of the proposed
algorithm is investigated and evaluated through numerical simulations.

In Chapter 6, the issue of reliability enhancement for mMTC use case is investigated.
This issue is formulated as an optimization problem of interface selection and packet
scheduling under users’ PLR constraints. The algorithms based on RAQL are presented
in detail and its effectiveness are assessed through numerical results.

Chapter 7 summarizes the main points of the thesis and provides the research

direction for future work.
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Related Work

2.1 User-to-AP association methods

The problem of user-to-AP association has been identified as one of the key radio
resource management issues governing the performance of future dense wireless
networks [12]. Most existing user-to-AP association schemes allow each user to
associate with the AP that provides the strongest received signal strength (RSSI) [13],
resulting into intense congestion at this AP in hot spot scenarios, and hence high
outage probability for these users, which requires more efficient user association
methods for addressing not only this drawback but also other requirements of future
wireless networks. So far, there have been many works handling this issue, which can

be categorized into centralized and distributed approaches.
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Centralized approaches

Reference [14] proposed a gradient descent-based user association method for
maximizing the network utility while balancing load among APs. In [15], the association
solution based on Nash bargaining was adopted for guaranteeing their fairness
and load balance while the user minimum rate constraints are satisfied. In [16],
users are associated to appropriate small cells for minimizing the latency, energy
consumption and interference of network through a search algorithm based on Pareto
optimality. Concerning the spectrum and energy efficiency, [17] addressed the joint
user association and resource allocation through a framework composed of nonlinear
fractional programming and dual decomposition techniques. However, these methods
require global and perfect Channel State Information (CSI) knowledge of all the links
at the centralized scheduler. Moreover, they incur prohibitively high costs in terms of
computational complexity, power and signaling overhead, making them unsuitable for
B5G networks.

More recently, a centralized data-driven approach was proposed in [18,19], where a
robust optimal user association map, pre-calculated at the BS, is used to determine
the actual served users in real-time. However, this method is limited to the specific
area whose optimal association data is available before hand, making it difficult to

generalize to other regions.

Inspired by the success of the ML-based methods from other research fields,
learning-based user association methods have been emerged. For instance, a method
based on an actor-critic DL for efficient joint user association and bandwidth allocation
in a dense downlink mobile network was proposed in [20]. Making use of a pre-trained
DNN, reference [21] designed a centralized user association scheme that can provide a
real-time solution through MEC. However, this scheme requires a long training phase,

for gathering large amounts of historical data of the global network environment.

In general, the centralized methods requires a large number of data including
perfect global CSI of the whole network, historical knowledge of the network area
with wireless environment, which is not always available and consumes a lot of time

for collecting and processing before being usable.
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Distributed approaches

To overcome the drawbacks of these centralized methods, distributed approaches
with partial knowledge of the network environment have been considered. For
instance, [22] modelled the competitive behavior among users and APs as a dynamic
matching game and then presented a distributed matching algorithm for optimizing
user-to-AP association. In heterogeneous networks, [23] proposed a distributed strategy
of energy-efficient and fair user association based on Lagrange dual method, in order to
maximize a global network utility. The authors of [24] developed a distributed scheme
where each user independently selects one AP to associate, given a success probability
metric, based on bandit theory without any prior information at users. In [25], a
semi-distributed method based on Alternating Direction Method of Multipliers (ADMM)
was introduced to handle the joint issue of user association and user scheduling for load
balancing in heterogeneous networks. However, these methods require significant time
to converge as the network size grows, making them difficult to apply to large-scale

networks and delay-stringent applications.

This is why more recently, distributed learning-methods are interested. Reference
[26] designed a method using Deep Deterministic Policy Gradient in the context of
online video streaming services with MEC. In [27], the authors provided an online DRL
method using multiple DNNs to generate solutions for the training data set of the user
association problem in heterogeneous systems. However, this method still requires the
channel information of the whole network at the input of the DNNs. References [28-31]
also designed learning-based methods for distributed user association, where it is
generally assumed that each user has knowledge of the QoS satisfaction status of all

other users in the network, which is unrealistic.

One major observation is that, all these above methods do not allow each user to be
associated to multiple APs simultaneously, which is a fundamental limitation that
hinders the joint satisfaction of heterogeneous types of applications and services, as
will be required in future networks. To overcome this drawback and to achieve much
higher user satisfaction, each user device should be able to connect to different radio
interfaces across different APs for their various applications. Thus, developing new
approaches and solutions tailored to the issue of user-to-multiple APs association is

crucial.
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Moreover, as envisioned, every entity in the network will be equipped with both
Sub-6GHz and mmWave interfaces, thereby forming integrated networks. However,
in the literature, most studies investigated user-to-AP association issue in either
sub-6GHz [30] or mmWave systems [32,33]. In spite of considering a system of
mmWave APs and sub-6GHz APs, references [34,35] proposed centralized methods to
associate each user to one AP, under the ideal assumption of perfect knowledge of
blockages, which is not applicable for B5G large-scale networks.

Hence, to the best of our knowledge, so far, no study investigating the issue
of user-to-multiple APs association, especially in Sub-6GHz/mmWave integrated
networks without any assumption of perfect CSI knowledge at both APs and users,
which will be one of the objects of this thesis. In particular, this issue will be handled
in a distributed manner at user devices by DL techniques which is envisioned for

future wireless networks.

2.2 Energy efficiency of DNN-based access methods

As aforementioned discussion in Chapter 1, the energy efficiency (EE) will become
one of the major KPIs in future networks. Meanwhile, Al-enabled network entities,
mostly leveraging DL techniques based on DNN, are envisioned as one of supporting
factors for enabling B5G/6G. Although DNNSs are took advantage in many DL-based
methods and provide high performance, it is expensive in energy cost. Therefore,
energy efficiency in processing of DNNs is inevitable. To tackle this issue, approaches
from both the algorithm design and hardware architecture have been investigated.

Several works of the hardware architecture for EE can be found in [36,37] which is
to handle compressed form of DNN, or in [38] for introducing a large MAC array
which allow to reuse some weights and activation values instead of loading each time
of using.

In the algorithm aspect, one main focus is to reduce the number of weights and
Multiples and Accumulates (MAC) operations. For instance, [39] proposed a prunning
technique to increase the weight sparsity level. However, [40] showed that this methods
reduce confidence of DNN predictions, resulting in much lower performance in some
tasks. More importantly, this approach only decreases the storing space in memory,

but doesn’t actually reduces the energy consumption as showed in [41]. Namely, the



2.3 Reliability improvement through multi-interface connectivity 15

DNN model SqueezeNet consumes more energy than AlexNetrequires which has more
weights. This is because, as indicated in [2,42], a large amount of energy is consumed
not only for DNN computations using massive data, but also to data movement which
includes accessing, reading and writing data in the device memory. Therefore, energy
consumption of DNN should not be based only on the number of weights and MACs of
DNN computation. However, so far, this crucial aspect had been discarded in most
previous works. Although [43] proposed a machine learning-based method to improve
EE, the actual energy consumed by DNN was not considered. Recently, [44] proposed
an Artificial Neural Network (ANN)-based method to optimize the global energy
efficiency of a single-cell system. Despite considering an energy eflicient design of the
DNN, the energy consumption for data movement was not accounted for, although this
was shown in [2,42] to be dominant as compared to the energy consumption for
computation. Furthermore, the DNN of [44] is located at a centralized cloud server, not
within user devices.

Therefore, a full study of the overall energy consumption required by DNNSs is
needed, which will be conducted in this thesis. Moreover, based on this study, we then
enhance our proposed DQN-based user-to-multiple AP association method in order to
obtain a higher EE for devices and the trade-off between trade-off between achievable

network performances and energy costs of user devices will be also investigated.

2.3 Reliability improvement through multi-interface

connectivity

As shown in Fig. 1.1, realizing extreme reliability is another of the major mile-
stones paving the way towards B5G, especially for IoT/IoE communications such as
autonomous driving, remote medecine.

In the literature, many approaches were proposed to enhance the reliability of
wireless communications. One of the main approaches is to exploit multi-connectivity
over multiple transmission paths, through, e.g., packet cloning, message splitting,
or optimized path selection, among others [45-47]. In [47], a method for coding
over multiple interfaces was proposed, whereby the packet splitting weights were

optimized based on the statistical models of each interface, in order to improve the
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latency-reliability trade-off.

However, these methods assumed perfect CSI knowledge which may not be
available in reality. Moreover, multi-interface diversity was not exploited, which
makes the current approaches unsuitable for B5G networks with joint exploitation
both Sub-6GHz and mmWave. This motivates us to consider the issue of reliability
improvement for packet transmission under such networks where every entity is

equipped by both Sub-6GHz and mmWave interfaces.
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Learning-based User-to-Multiple Access
Points Association in Sub-6GHz

Networks

3.1 Introduction

The issue of user-to-AP association was considered in many works as mentioned in
section 2. However, these studies were not able to fulfil the requirements of future
networks as each user is restricted to be served by only one AP at a time. In this
chapter, we first investigate the issue of user-to-multiple APs association, where a user
requiring several applications can be served by several APs simultaneously, in the
current Sub-6GHz systems. In particular, unlike previous works [14,17,27], we do
not make any assumption for global CSI knowledge at both user and AP sides. This
problem is formulated as a network sum-rate maximization such that the required

QoS constraints for each user and application, and AP load constraints are satisfied.



Chapter 3. Learning-based User-to-Multiple APs Association in Sub-6GHz
18 Networks

This issue is non-trivial even in current Sub-6GHz networks due to the dynamics and
uncertainties of the wireless environment in the absence of CSI knowledge. We then
first propose two QL-based distributed user association methods, where each user is
able to learn its best set of APs to be connected to at any time, solely based on local
knowledge of its surrounding wireless environment. It is worthwhile noting that the
considered user-to-multiple APs association is fundamentally different to Coordinated
Multipoint (CoMP)-like approaches, as in our case all APs are uncoordinated and take
their allocation and association decisions independently.

Although QL guarantees convergence towards the optimal policy as long as all
states and actions are visited often enough, this method is hardly applicable to scenarios
with large state/action spaces. To address this essential problem, we hence propose
user-to-multiple APs association methods exploiting DRL, and in particular, DQL
based on Deep Q-Networks [48]. However, an intrinsic drawback of DQN is the
overestimation issue of Q-values which introduces bias in the optimal action selection.
As explained in [49], this problem can be efficiently tackled by Double DQN (DDQN)
which makes use of different DQNs for Q-value estimation and action selection.
Therefore, we also propose a method leveraging the DDQN technique to further
enhance the network performance.

Particularly, for each proposed association algorithm, two types of distribution level
are developed: the first, termed Fully Distributed-QL (Fully Distributed-DQN/DDQN)
method, is based on minimal decision feedback from APs towards users, and the
second, termed Partially Distributed-QL (Partially Distributed-DQN/DDQN) method,
further improves the achievable network performance by letting each user acquire

additional local information regarding its neighboring user requirements.

3.2 System model

We consider a downlink network composed of a set B of fixed APs and a set K of
randomly located static users’, as depicted in Fig. 3.1. All APs operate on the same
bandwidth for sake of spectrum efficiency, but interfere among each other as in a

realistic environment. In each scheduling frame ¢, each user k € K requests a set of

'We assume user positions to be fixed under low user mobility scenarios.
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Figure 3.1: User-to-multiple APs association in Sub-6GHz networks

applications ¥, in which each application f requests either a minimum rate constraint
Ryr or a maximum delay time constraint Ty r. For convenience, we denote the set of
applications requesting Ry as Fi, and the set of applications requesting Ty as Fq.
Hence, i, U Frq = Fr and Fi, N Fiq = 0.

The achievable data rate ry¢(t) at user k for application f provided by AP b at

frame t is computed by
rokf(t) = Wlog(1 + ypk (1)), (3.1)

where W is the bandwidth. yy ¢(¢) denotes the Signal to Interference-plus-Noise Ratio
(SINR) at user k with application f for the transmit signal from AP b, which is given as

| P (81 o (2)

S |he@)Ppp () + Woz
bEB\b

(3.2)

Yokr(t) =

Here hyi(t) € C denotes the complex channel coefficient between AP b and user k,
including path loss and small-scale fading effects; pyir(t) € R" is the transmit power
from AP b to user k for application f, which is assumed to be known and fixed. The
term o2 denotes the Additive White Gaussian Noise (AWGN) power. Since they use the
same bandwidth, all other APs b’ € B\{b} cause interference to user k served by AP b,

with full transmit power py.

Next, the delay time dyi s required for serving application f of user k by AP b at



Chapter 3. Learning-based User-to-Multiple APs Association in Sub-6GHz
20 Networks

frame t is given by
$

dpf(t) = (3.3)

roif(t)
where s¢ denotes the file size of application f.

All APs are assumed to be able to serve any requested application unless their
maximum load limit is violated. As in [28], the load of AP b for serving application f of

user k is computed by

) HifTokr(t) 34

where my and i denote the mean arrival rate in number of packets per seconds,
and the mean packet size of application f in bits, respectively. Hence, assuming an
orthogonal allocation of wireless resources in frequency or time for serving user
applications as in [28], AP b will become overloaded if its total load exceeds the

normalized value of 1, namely if

(1) = D D Xpkp(Oorr(t) > 1, (3.5)

keK feFi

where xpi£(t) is an association variable defined as,

1, if AP b serves application f of user k at frame t,
xpkf(t) = (3.6)

0 otherwise.

3.3 Problem formulation

We consider the long-term global average sum-rate maximization problem, under
user QoS constraints in terms of minimum data rate Ry and maximum delay time Ty s
for each user k, application f, and AP load constraints, which is formulated as in (3.7).

The objective function (3.7) expresses the long-term average sum-rate over all
applications, users and APs in the network. Constraint (3.7a) sets the binary nature of
association variables x, ¢(t) defined in (3.6). Eq. (3.7b) constrains each application
requested by each user to be served by a unique AP. The minimum data rate and the

maximum delay time for each application are specified by (3.7¢) and (3.7d), respectively.
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Finally, the load constraint for each AP b is reflected in (3.7¢).

max E; Z Z Z xbkf(t)rbkf(t) , (3.7)
per (t) beB kek feTy
s.t. xprf(t) € {0,1}, Vb € B,k € K, f € F, (3.7a)
Z xpif(t) =1, Yk e K\Vf € Ty, (3.7b)
beB
D %ok (Oreep(t) > Rep, Yk € K VS € F, (3.7¢)
beB
D %ok O dpiep(t) < Tip,  Vk € K Vf € Fra, (3.7d)
beB
Oy(t) = Z Z xpkp(D)Porr(t) <1, Vb e B. (3.7¢)
keXK feFi

Problem (3.7) is a combinatorial optimization problem which cannot be solved in
polynomial time. This becomes especially intricate in a B5G setting where a large
number of users with conflicting QoS constraints and creating high interference levels,
should be simultaneously satisfied. Furthermore, distributed association methods
based on local network and channel state information, are deemed necessary. To meet
these goals, we first propose to make use of reinforcement learning, in particular
Q-learning [50]. Then to cope with large-scale networks, we propose to leverage
self-learning and self-optimization by exploiting deep reinforcement learning (DRL) at

the user side, as explained in the next sections.

3.4 Formulation as a Markov Decision Process (MDP)

We first formulate the considered distributed problem as an MDP. Based on that,
the proposed distributed methods based on QL, DQN/DDQN can be devised, whereby
each user learns the best set of APs to request in each time frame, so as to satisfy the
heterogeneous QoS requirements of each application as explained in next sections.

An MDP is a discrete time stochastic control process defined by four elements
(state space, action space, transition probability, reward function). As shown in Fig. 3.2,
each user is an agent who takes its decision of requesting APs for its applications. At

each scheduling frame t, the user knows its current state s;, i.e., its current association
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Figure 3.2: An MDP model of user-to-multiple APs association in Sub-6GHz networks

between its applications and APs, and takes action ay, i.e., requesting for the next frame
the same or different APs for each application. The user then moves to a new state s;,;
and receives an immediate reward r; from the environment. One major observation
here is that, the transition probability P(s;.1|a;, s;) is unknown to the user, since the
association decisions for each application on each interface, though based on user
requests, are taken by each AP given the current wireless environment and traffic
distribution. Therefore, we propose to solve this problem by means of RL and DRL, in
particular based on QL and DQN/DDOQN due to its efficiency for handling similar issues

in wireless systems as shown in [28,30] and for coping with large state/action spaces.

3.5 Proposed QL-based user-to-multiple APs associa-

tion methods

To make problem (3.7) tractable by DL, we consider optimizing the long-term average
network sum-rate under (3.7b)-(3.7¢), but keeping a short-term QoS contraint for (3.7¢)
and (3.7d). Namely, constraints (3.7c) and (3.7d) should still be satisfied respectively for
short-term rates ryx s and delay time dpx ¢ that are impacted by instantaneous channel
fading effects. To this end, we propose two distributed QL approaches where each user
in the system acts as an agent taking independent decisions (action) given its current
state and based on its local knowledge of the environment. We define state and action

space of user k as follows.

+ User State: The state si(t) of agent k in state space Sk is the current association

between required applications f of user k and each AP b at the beginning of
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frame t, i.e,

si(t) € Sp = {xbkf(t), Vb e B,Vf € 7—;} (3.8)
Due to (3.7b) which constrains each application f of user k to be served by one
AP, the maximum number of possible states of each agent is (C|1B|)|7’7<| = Bf*. That
is, instead of considering all {0, 1} combinations of all APs and all applications,
which results into 25%% elements as in previous works, our state space definition
allows it to be compactly represented by B+ elements, thereby reducing the

number of rows required in the Q-tables in case of QL-based method and hence

memory usage in user terminals.

« User Action: Given its current association state si(t) and immediate reward
defined in the sequel, user k selects by action ai(t) in its action space Ay, its
desired future APs to be associated to for frame ¢ + 1, under the restriction (3.7b),

namely

ak(t) € Au = {ans ()| 3 anes(t) = LVS € Fif. (39)
beB

Here, apir(t) are the binary variables of association requests, defined as

1, if user k requests AP b for application f € 7

apkf(t) = { (3.10)

0, otherwise.

Similarly, Ay has a maximum of (C|18|)|ﬁ| = B« possible actions. Note also that,

by definition of this action space, constraint (3.7b) is guaranteed to hold.

« Q-function: For each selected action ai(t) at state si(t), the corresponding

Q-value is given by [50]

O(sk(t). ax(t)) = O[5k, k(1)) + (T(t
+ B max Q(sk(t £ 1), ak) - Q(sk(t), ak(t))), (3.11)

ap €Ak

where I'x(¢) denotes the immediate reward achieved by action a; selected by user

k at frame t.

Based on the above definitions, we propose our QL-based user association methods

described in Algorithm 3.1 and explained as follows.
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Algorithm 3.1: Proposed QL-based User Association Algorithm

1 Decay factor A, greedy policy factor e, weights wyk, wog;
2 for each userk € K do

3 Initialize Q-table Q with zero-values;

4 Random initial state sg;

fort=12...,T do

for each userk € K do

£—eXA;

if random number p < ¢ then Select action a; randomly;
else Select action a; with highest Q(sk, ag);

° 0 N @

10 for each APb € B do

11 Consider requests, select users/applications (if necessary) by greedy
method ;
12 Feedback to users, data transmission;

13 for each userk € K do

14 Calculate the reward of action a; by (3.12) ;
15 Update Q(sg, ax) by (3.11);
16 Move to the new state s « s;c;

Step 1- At the user side, with probability 1-¢, each user selects action ag(t) as in (3.9)
with the highest Q-value from its own Q-table for its current state si(t), then sends its

request ay(t) to the desired AP for each application f in ¥ (Lines 6 to 9).

Step 2- After receiving all user requests, each AP decides to accept these requests
or not based on its current load, i.e., if ®,(t) < 1, AP b will serve all requested
applications. Otherwise, AP b drops some applications by a greedy manner, namely,
the user/application requests ayi¢(t) corresponding to the highest load ¢y () will be
eliminated until the constraint ®;(¢) < 1 is satisfied. This is because the objective of this
problem is to maximize the total system throughput while satisfying all user/application
QoS requirements. In addition, for a given file size, lower achievable rates entail higher
loads at the AP. After this phase, AP b sends its association decision xpr(t) to its
requested user through feedback. (Lines 10 to 12)

Step 3- At the user side, based on the feedback from APs, each user calculates its

immediate reward I'x(¢) which is the weighted sum of two terms, cx and (¢}, + cgk)
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with corresponding weights wy; and wyy, namely

[r(t) = wigcie(t) + wax (cgk(t) + cgk(t)). (3.12)

Here ¢y is the reward for user k as its requested application f € F; was actually

served by the selected AP, and satisfied the corresponding QoS, given by

ci(®) = D D T (xpiep(t) = 1L, rpiep(t) = Riep) apiep(Orpge()
beB feFi,

+ 5 D T Gappept) = L dpiep(t) < Tiep)apkp(W)rpep(t), (3.13)
beB feFka

with the indicator function 7 (.).

On the contrary, if user k’s requested applications’ QoS were not satisfied or if they
were dropped by APs, user k calculates its penalties, given by c;,_ if the application has
a minimum rate requirement, i.e., f € ¥, and by c‘zik if the application has a maximum
delay requirement, i.e., f € 4. The immediate reward depends upon the type of
feedback from its requested APs, from which users may get more or less knowledge of
their local wireless environment. Thus, we considered two types of AP feedback,
based on which two methods are designed, namely, the Proposed Fully Distributed
QL Association and the Proposed Partially Distributed QL Association, described in
Sections 3.5.1 and 3.5.2, respectively. Finally, user k updates its own Q-table for the
pair (si(t), ax(t)) by (3.11) and move to its new state (Lines 13 to 16). This process is
repeated over frames until convergence of the reward, or the maximum number of

frames is reached.

3.5.1 Proposed fully distributed QL-based association

In this algorithm, each user receives the minimal feedback €y including only its

desired APs’ allocation decision, i.e,
Qui(t) = {xpip(D)lapr(t) = 1 & f € Fi}. (3.14)

In other words, each user knows only about its own instantaneous channel information



Chapter 3. Learning-based User-to-Multiple APs Association in Sub-6GHz
26 Networks

with its serving APs, but has no knowledge about other users’ channel states nor
requested QoS. Therefore, the penalties c;,, c; of user k are calculated solely using its
local channel state information, following (3.15a) if user k is served by AP b but at a
rate lower than Rif, and by (3.16a) if user k is served by AP b but with a delay time
larger than Ty, respectively If user k’s application f is dropped by its selected AP b,
the penalties Czk’ zk’

(3.15b), (3.16b),

which is to emphasize how bad this action is, are computed by

= 2 X T (xprf(t) = Lrprp(t) < Rp)apkp(t ), 75 (@)
Cgk(t) _] beB feﬁr bif ) (315)

- I (x 0)a
bereﬁr (xprf(t) = 0)apkf(t )rbkf

= 2 2 T (xpkp(t) = Ldpkp(t) > Trp)apkf(t)—1— Gy ® - (q),

ka
cd (t) = b;s FEFra 2 o - Oy o) (3.16)
X apk .
beB feFra oS b Ty
In (3.15) and (3.16), the ratios - )Et) and Tbk(j;) enable to weight the impact of the

incurred loss according to the actual rate and delay QoS, but also to the instantaneous
channel quality: the higher the required rate Ry (or the lower the required delay time
Txr) and the lower the channel quality (expressed by instantaneous rates ry ¢(t) or by

instantaneous serving time dpf(t)), the larger the penalty.

3.5.2 Proposed partially distributed QL-based association

In this algorithm, the users will receive additional information from the feedback of
its desired APs. Namely, in addition to their own instantaneous channel information
and requested APs’ association decisions, each user will also gain knowledge about its
own load relative to that of neighboring competitors who had requested the same APs.

Hence, the feedback Q. sent to user k, is now given as

Qui(t) = {xpp(t), ok p(D)lapicr(t) = 1 & Vf € Fies N (t), Ni ()}, (3.17)
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where N (1), Ng(t) are normalization factors for dropped applications with minimum

rate and maximum delay time requirements respectively, given as

Rk’f’

N, (t) = I (apkr /() = 1, xpp :(£) = 0) : (3.18)
’ k%( ! ! rokrp(t)
f'€Fir
d dpk’ f
Ny = >3 T(aprp(t) = 1, xp0p(2) = 0) : (3.19)
S T (1)
f'€Fka
Taking advantage of this improved local environment knowledge, we now update
the computation of penalty terms c;,, (zik as
-2 T (xprer(t) = 1,1 < Rir)aprr(t , (a
bereTk, (xpk£(t) = 1, 1prp(t) < Ricp)apks( ),bkf ()
ey (t) = Rep (3.20)
70)
-2 T (xprp(t) = 0)aprr(t) ok £(2) ﬁ;kft : (b)

beB fe?‘-‘k,

= 2 2 T (xpkp(t) = Lirpkp(t) < Rep)aprr(t )ka(t), (a)

beB feF
& py=) T s (3.21)
T (D)
-2 T (xpf(t) = O)Gbkf(t)¢bkf(t) - (b)
beB fe?-'kd

In (3.20b) and (3.21b), the penalty terms in the case of overloaded APs, are improved
by weighting each dropped application by its load contribution ¢y ¢(t) upon its
requested AP b, and also by normalizing the previous weight %f(t)’ dl’;T’;(t) by the
term N, (), N,f(t) respectively, which incorporates the rate as well as delay time
requirements and instantaneous channel qualities of all other dropped users. These
new definitions enable to set adequate penalties to each user, relatively to each other’s
loads, required rates, required serving time, and instantaneous channels, yet with only

local information.

3.6 Extension to DQN/DDQN-based user-to-multiple

APs association methods

We extend the proposed QL-based algorithms in section 3.5 by making use of DQN
and DDQN techniques, which enables these methods to be applicable in large-scale
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Figure 3.3: DON structure for user-to-multiple APs association in Sub-6GHz networks

networks. The proposed DQN/DDQN-based methods also define the state and action
spaces of agents by (3.8), (3.9), respectively. However, instead of selecting an action

through a Q-table, each user now uses a DQN for making its selection.

Figure 3.3 depicts the DQN structure used in our proposed DQN/DDQN-based
algorithms. The input layer represents the current state si(t) of user k including
variables xpif(t), and the output layer gives the approximated Q-values for each
available action in (3.9), calculated through the hidden layers based on the set of DNN
weight parameters 0, . It is worth noting that, here the number of available APs and
requested applications are fixed and determine the size of the DQN’s input/output
layers. This is reasonable as those parameters can be assumed to vary slowly in the
case of static or low mobility users, as confirmed by our simulation results in Section
3.7.3. In general, those parameters should undergo slow and smooth variations as
compared to users’ learning time, and hence users will be able to learn them online

without having to re-train their DQN/DDQN from scratch.

In the conventional Q-Learning algorithm presented in Section 3.5, only the
Q-value Q(s(t), ax(t)) for the current state and selected action ay(t) is calculated at
each iteration and memorized in a Q-table, as in [50]. By contrast, in the DQL approach
taken here, the goal of the DNN at each user device is to learn an approximated Q-value

function. At each iteration, this Q-function approximation is updated for all available



3.6 Extension to DQN/DDQN-based user association methods 29

actions at the same time based on the DQN [48] or DDQN [49] techniques, making
Q-Learning applicable to large state/action spaces, and hence, to large-scale networks.

After performing its selected action, user k receives its immediate reward I'x(t),
which is used to update the set of DNN parameters 0}(. In the case of DQN, this update
is made such that the loss function below is minimized through stochastic gradient

descent, given the discount factor y,

2
.EI?QN _ [Q(sk(t), ar(t); 9,2) — | Te(t) + ynlgx O(si(t + 1), a;c; 9,’;))] ) (3.22)
k

From (3.22), it can be observed that DQN Q is used both for action selection and
evaluation, which is useful for saving the computational burden and memory storage
of user devices, but may suffer from substantial Q-value overestimation issues [49]. On
the contrary, by using two DQNs, one for action selection and the other for Q-value
estimation, the DDQN is expected to overcome this drawback but at the cost of higher
memory space consumption and increased computational complexity, which may be
quite detrimental for computation and battery-limited user devices. Namely, a DDQN
combines two different DQNs: in addition to the first DON Q, a second DQN Q’ is built
with the same structure, however its set of parameters 6’ ]tc is copied from the first only
DON periodically, i.e., every [ frames. Then, DQN Q serves for action selection, while
DQN (' serves for state/action evaluation. In this case, the set of parameters ¢’ is

updated by minimizing the following loss function,

2
Qlsk(t), a(1); 6;) - (Fk(t) + }’Q'(Sk(t +1), arg max Q(s(t + 1), ay; 0,); 9,?))] .

(3.23)
In both Egs. (3.22) and (3.23), the immediate reward T'x(¢) is the same as (3.12)

LEDQN _

defined in the proposed QL-based method. Based on that, we also designe two methods,
namely, the Proposed Fully Distributed DQON (DDQN) Association and the Proposed
Partially Distributed DON (DDQN) Association as the same way with those in case of
QL-based algortithm. Namely, Proposed Fully Distributed DON (DDQN) Association

methods calculate the terms ¢}, cgk of the reward (3.12) by (3.15) and (3.16), respectively,



Chapter 3. Learning-based User-to-Multiple APs Association in Sub-6GHz
30 Networks

Algorithm 3.2: Proposed DQN/DDQN-based User Association Algorithms

1 Decay factor A, greedy factor ¢, weights wyx, wog;

2 for each userk € K do

3 Initialize DQN/DDQN Q with random weight values 6;
4 Random initial state sg;

fort=12...,Tdo

for each userk € K do

£—eXA;

if random number p < ¢ then Select action a; randomly;
else Select action a; with highest Q(sg, ag; 9,?);

e 0 N @

10 for each APb € B do

11 Consider requests, select users/applications (if necessary) by greedy
method ;
12 Feedback to users, data transmission;

13 for each user k € K do

14 Calculate the reward of action a; by (3.12) ;
15 Update 6} by (3.22) or (3.23);
16 | Move to the new state sy « s}{;

whereas Proposed Partially Distributed DON (DDQN) Association algorithms use (3.20)
and (3.21). The pseudo-code of the proposed DQN/DDQB-based algorithm are then
given by Algorithm 3.2.

3.7 Numerical Evaluation

3.7.1 Simulation settings

We assess our proposed methods on three scenarios by varying the number of APs
and users. Namely, with a small scale, scenario 1 is composed of 2 APs and 3 fixed
users, whereas scenario 2 is composed of 9 APs and 10 users uniformly distributed over
the network area as shown in Figs. 3.4a and 3.4b, respectively. In Fig. 3.4c, scenario
3 with a larger-scale network is composed of 25 APs and 50 uniformly distributed
users. Scenario 1 with a few of APs and users is deployed in order to analyze in detail

the basic performance of the proposed methods, whereas scenarios 2 and 3 would
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Figure 3.4: Simulation scenarios

correspond to applications in, e.g., smart factories, where associating devices with
multiple APs simultaneously would help achieving multiple applications with various
QoS constraints.

First, the proposed QL-based methods are evaluated assuming that each user
requires two applications with different rate requirements Ry ; = 6 Mpbs, Ry, = 3 Mbps
in small-scale scenarios 1 and 2.

Next, we evaluate the proposed DQN/DDQN-based algorithms in both small and
larger-scale networks. Namely, in scenario 2 (Fig. 3.4b), we consider two cases: first is
the same as above, i.e., each user requires rate requirements Rx; = 6 Mbps, Ryx = 3 Mbps
for two different applications, and second, each user requests three applications among
which two applications have the same minimum rate requirements as in the first case,
while the third application has a maximum delay time requirement of T3, = 1 ms. In
the larger-scale network (scenario 3 - Fig. 3.4c), each user requires two applications
with minimum rate requirements R;; = 6 Mbps and maximum delay time T3; = 1 ms.

In all evaluations, block Rayleigh fading channels are assumed, where each user
channel coefficient remains fixed during a frame, but changes randomly across frames.
Users are assumed fixed during each episode of 2500 frames in scenario 1 and of
10000 frames in scenarios 2 and 3. It is reasonable to assume that user positions will
remain fixed during the users’ learning time under low user mobility scenarios, as
will be confirmed by the simulations results. However, results are averaged over 100
random user positions. Remaining parameters values are given in Table 6.1. For fair

comparison, reward weights (wy, wy) have been manually tuned to yield the “best"
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Table 3.1: Simulation Parameters

Parameter Description
Transmit Power Py s 5 dBm
Noise power o2 -169 dBm/Hz
Bandwidth 10 MHz
Channel fading model Rayleigh fading
Path loss model 140.7 + 37.6log,,(d)

(d: AP-user distance [Km])
Mean packet arrival rate (A fﬁ) 0.1 Mbps

Learning rate « 0.8
Discount factor y 0.9
Epsilon ¢ 0.5
Decay factor A 0.995
Weight (wq, wy) (0.8, 0.2)

performance for each algorithm. That is, preliminary evaluations over varying values
of (w1, wy) have shown that the best setting for both proposed and baseline algorithms
was (0.8, 0.2), though the algorithms do not exhibit large performance variations for
(w1, wp) € [0.1,0.9]%. Therefore, in the sequel, (wq, wz) will be fixed to (0.8, 0.2), though
marginal performance gains may be achieved by an exhaustive search over (wq, wy), at
the cost of higher computational complexity.

The DQN/DDOQN is built with two hidden fully connected layers using Softmax
activation function. The number of neural nodes per hidden layer is 16, the memory
size is set to 100. The period / for updating the weights of the DDQN target network is
set to 5. Finally, it is worth mentioning that in our proposed algorithms, the training
phase is performed online, which allows to assess their performance when users
need to learn the mobile environment from scratch. This is possible thanks to the
simple DQN structure with reduced number of nodes and layers that guarantees good

convergence behaviors, as shown in the sequel.

3.7.2 Benchmark schemes

First, to evaluate the effectiveness of the distributed approaches, we compare the

proposed schemes with a centralized exhaustive search giving the optimal solution and
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a centralized QL method. We then also compare our proposed methods with reference
distributed algorithms for a comprehensive evaluation. These baseline methods are
described as follows.

1) Centralized Exhaustive Search (Ref. ES): In each frame, the best association
is selected for each user and application through exhaustive search. First, a list of
possible associations for each user and application to a certain AP, i.e., satisfying all
requirements without overloading any AP, is issued. Then, the association providing
the largest instantaneous sum-rate is selected. If no possible association exists, i.e.,
some QoS or AP load constraints are impossible to satisfy, the association yielding the
highest sum-rate without those constraints is chosen. Given the intractably high
complexity of such exhaustive search, this algorithm can be only evaluated in scenario
1 (Fig. 3.4a).

2) Centralized Q-learning (Ref. centralized QL): In this centralized algorithm,
we consider a genie who decides the associations for all users and applications
simultaneously, for maximizing the total sum-rate of the system and satisfying user
QoS requirements. The state, action space and the cost function in the centralized

Q-learning model for problem (3.7) are defined as follows.

« State: The state variable s(t) is now defined as the current association of all

users and all required applications to all APs, which is written as

s() €S = {xbkf(t) € (0,1}, Vb € B,Vk € K,Vf € ﬁ} (3.24)

Given the constraint that each application may be served by only one AP, the size

KIX|F| — BKF

of this state space is (C|IB|) , which obviously grows exponentially

with the number of users and applications.

« Action: Similarly, action a(t) is the set of association requests towards APs, for

each user and application, i.e.,

at) € A = {abkf(t) € {0,1} | D apes(t) = 1, Vb € B,Vk € K, Vf € ﬁ} (3.25)
beB

The maximum number of candidates in the action space is hence (C|13|)|7<|><|(F| =
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BKE,

« Reward: Given the centralized structure of this model, the reward function

sums up all user individual rewards, as follows

T(t) = > wici(t) + wach () + ch), (3.26)
keK

where c1x(t), ¢, (t), cgk(t) are given as in Egs. (3.13), (3.20) and (3.21), respectively.

« Q-value: The Q-value of current state s(t) and selected action a(t) is now updated

by

Q(s(t), a(t)) —(1- a)Q(s(t), a(t)) ra (F(t) ; ﬁﬁe};‘(Q(s(t £ 1), a)) . (3.27)

The pseudo-code for the centralized Q-learning algorithm is given in Algorithm 3.3.
Similar to the proposed distributed methods, an e-greedy QL-based strategy is applied
by the genie, as shown in Algorithm 3.3.

Algorithm 3.3: Centralized QL-based User Association Algorithm

1 Learning rate «, discount factor y, decay factor A, greedy policy factor €, weight
Wi, W23

2 Initialize Q-table Q with zero-values;

3 Random an initial state s;

4 while true do

5 € — ex
6 if random a number p < € then
7 L Select action a randomly;
8 else
9 L Select action a corresponding to the highest O(s, a);
10 Calculate the reward of action a by (3.26);
11 Update Q(s, a) by (3.27);
2 | s > s’ is the new state after making selected action a;

3) Reference distributed methods: Since no distributed algorithms so far enable

the association of a user to multiple APs, we consider the baseline algorithms which
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follows the structure of proposed schemes. However, the difference lies in the definition

of the reward function. Namely, the reward function for an action selected by user k is

r .d

given by (3.12), but where ¢y and Chps Cop

are defined similarly to the rewards of [30]

under QoS constraints,

ik = > O apkf(DT (ppep(t) = D) (rpp(t) — Rep), (3.28)
beB feFy

Che = 2y > ankf(OT Geprp(t) = 0)(rpip(t) — Riy). (3.29)
beB feFir

¢ = 25 > avkr(DT (ks (t) = 0)(Tiy = dii(8)). (3.30)
beB feFra

By calculating the difference between instantaneous rate 4 (t) and the required
rate Ry, Eq. (3.28) expresses how much gain user k obtains if it is served by AP b for f,
whereas Eqs. (3.29) and (3.30) expresses the penalty incurred to user k if application f
is dropped.

Based on that, the following distributed benchmarks are compared to evaluate the

proposed algorithms:

+ Reference distributed Q-Learning (Ref. distributed QL): This method is similar
to the proposed fully distributed QL algorithm, but calculates the rewards by Eqgs.
(3.28), (3.29) and (3.30).

« Reference Basic DQN (DDQN) (Ref. basic DON (DDQN)): This method is
similar to Ref. distributed QL, but uses DQN (DDQN).

» Reference Basic DQN (DDQN)-Single AP (Ref. basic DON (DDQN)-Single AP):
This method is similar to Ref. basic DON (DDQN), but constrains each user to
request only one AP for all its applications at each scheduling frame as the most

of existing studies.

+ Reference greedy (Ref. Greedy): At each scheduling frame, the APs providing
best instantaneous Signal-to-Noise Ratios (SNR) will be requested by each user.

Namely, the user will send its association request to the AP with higher SNRs,
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Figure 3.5: The average achieved data rate per user per application, scenario 1,
two applications per user

according to the order of QoS priorities. Then the number of requested APs is

equal to the number of required applications of each user.

For convenience, we denote the Proposed Fully Distributed QL (DQN,DDQON)
Association and Proposed Partially Distributed QL (DQN,DDQN) Association algorithms as

Prop. fully distributed QL (DQN,DDQN) and Prop. partially distributed QL (DQN,DDQN)),
respectively.

3.7.3 Simulation results

3.7.3.1 Scenario 1, two applications, Ry; = 6 Mbps, Ry, = 3 Mbps

This small-scale network scenario is considered so as to compare the performances
of distributed QL-based algorithms with centralized methods including the high-
complexity exhaustive search and centralized QL algorithms.

Fig. 3.5 shows the achieved data rates averaged over frames for each application

and each user. It can be observed that user 3 with the worst interference environment
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gets a lower rate compared to users 1 and 2, in all algorithms. For users 1 and 2 with
better wireless environment, the performances of the proposed fully distributed and
partially distributed algorithms outperform that of the reference distributed and
even the centralized Q-learning algorithm, which requires much more frames to
converge given the much larger state space. In addition, the proposed algorithms do
not degrade too much the performance achieved by exhaustive search. Moreover, the
partially distributed and centralized approaches show the most effective learning trend
where the application 1 with higher Ry obtains a higher rate, unlike the reference
distributed and proposed fully distributed schemes. This suggests that the reward
function design used for the proposed partially distributed algorithm is well suited for

handling heterogeneous QoS requirements.

Table 3.2 presents the percentage of outage events averaged over users and for
each application, where an outage occurs whenever the short term average user rate
Fokf(t) = Zf:tT xpk r(D)rpif(t) over a small number of frames T = 5 (5 ms for 1ms-frame)
falls below the required application rate Ry . Fig. 3.6 shows the corresponding
evolution of these user outages over frames. Again, we can see that the proposed fully
distributed and proposed partially distributed algorithms outperform the performance
of the reference basic distributed one, while performing close to that achieved by
centralized Q-learning. Also, it can be observed that the application 1 with larger Ry ¢

has a higher outage ratio compared to application 2 in all learning-based algorithms.

Table 3.2: Average outage ratio (%) per application (App), scenario 1, two applications

S 01 | Ref ES Ref. Ref. Prop. fully Prop. partially
cenario - Centralized QL | distributed QL | distributed QL | distributed QL

App 1 0.0 4.46 9.90 3.52 3.74

App 2 0.0 1.07 5.61 0.90 0.84

Next, the cumulative distribution function (CDF) of the APs’ load is shown in
Fig. 3.7. Given the symmetry of the situations of AP 1 and AP 2, their loads should
be shared equally. Clearly, a better load balancing is achieved by the exhaustive,
centralized and proposed partially distributed algorithm as compared to the reference

and proposed fully distributed algorithms.
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3.7.3.2 Scenario 2, two applications, Ry; = 6 Mbps, Ry, = 3 Mbps

In this scenario, due to the exploding number of states and actions (920 each),
computing solutions with exhaustive search and centralized Q-Learning becomes

infeasible. Therefore, the proposed algorithms are compared with the reference basic

distributed algorithm.

QL-based methods:

We first compare the QL-based methods, namely Prop. fully distributed QL, Prop.
partially distributed QL and Ref. distributed QL.

Figure 3.8 shows the achievable data rate per application averaged over all users and
positions. It can be observed that all considered algorithms converge well. Compared
to the baseline method, both proposed algorithms significantly improve the rates of
each application. Namely, the rates of Prop. fully distributed QL and proposed partially
distributed QL achieve 100% and 130% higher gains compared to the reference scheme,
respectively. In addition, the proposed partially distributed method clearly provides a
higher rate to the application with larger requirement Ry, by contrast to the baseline
one. This shows that our algorithm successfully adapts its allocated rates to the specific
QoS requirements.

Next, we consider the evolution of user outage across frames for each application,
averaged over users and positions. This averaged user outage is evaluated based on
short-term served user rate as present in Section 3.7.3.1. As shown in Fig. 3.9, the
proposed algorithms outperform the baseline one with 43% (fully distributed) and
66% (partially distributed) lower outage probabilities for application 1 and 39% (fully
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distributed) and 61% (partially distributed) lower outage probabilities for application
2. Although all algorithms reduce their outage occurrences through learning, our
proposed schemes, especially the partially distributed one, not only reduce outage
events, but also improve fairness between applications as shown by the tightening of
the two curves in Figs. (3.9b) and (3.9¢).

Finally, the cumulative distribution function (CDF) of the load for each AP is
presented in Fig. 3.10. We observe that the proposed partially distributed QL achieves
the best fairness in terms of load among APs, while even decreasing the burden per AP.

Hence, our proposed learning-based distributed user to multiple APs association
methods enable to jointly enhance global network throughput and application QoS
fulfillment, while improving the load balancing among interfering APs and reducing
the load per AP.

DON/DDQN-based methods:

In this part, we evaluate DQN/DDQN-based methods and also Ref. Greedy.
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We show the evolution of data rates over scheduling time frames, as well as of
outage given by the DQN/DDQN-based algorithms in Figs. 3.11 and 3.12, respectively,
then the average sum-rate and outage of all algorithms including Ref. Greedy are given
in Table 3.3.

Firstly, Fig. 3.11 shows the achievable data rate per application averaged over
all users and positions by DQON/DDQN-based algorithms. We can observe that all
algorithms converge well. Namely, Ref. Basic DON/DDQN-Single AP converge after
about 500 frames, whereas Ref. Basic DON/DDQON and the proposed algorithms need
1000 and 2000 frames to converge, respectively”. This is because in the reference basic
DQON/DDQN-Single AP algorithms, each user requests the same APs for all of its
applications, thereby reducing the action space and taking a shorter time to converge.

In general, the DQN-based methods achieve similar average rates as their corre-
sponding DDQN-based algorithms. It can be observed that all user-to-multiple AP
association algorithms achieve higher sum-rate than Ref. basic DON/DDQN-Single AP.
This proves the aforementioned necessity of allowing users to associate with several
APs in the context of B5G systems. Compared to Ref. basic DON/DDQN, all proposed
algorithms significantly improve the rates of each application. Namely Prop. fully
distributed DON/DDQN achieve a 69% rate increase for application 1 and 106% for
application 2, whereas Prop. partially distributed DON/DDQN achieve 68% and 85% rate
increase for applications 1 and 2, respectively. In addition, Fig. 3.11 also shows that all
algorithms can allocate a higher rate to the application with higher requirement Ry,
especially for Ref. Basic-DON/DDQN and Prop. partially distributed DON/DDQN.

Next, we consider the evolution of user outage, averaged over all users and positions.
Interestingly, although reference user-to-single AP association methods provide
the same data rate for all applications, their outage are much different as shown in
Figs. 3.11 (a), (e) since they have different QoS requirements. This again indicates
the advantage of proposed user-to-multiple APs association methods. As shown in
Fig. 3.12, both DOQN and DDQN-based reference algorithms are outperformed by
proposed algorithms. Namely, Prop. fully distributed DQN/DDQN provide 76% and 85%
lower outage probabilities for applications 1, 2 respectively, whereas 83% and 86%

lower outage levels are observed for applications 1 and 2 by Prop. partially distributed

%If we consider each frame to be of 1 ms, the proposed algorithms can converge after 2s for the small
network Scenario 1.
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Figure 3.11: Average data rates [Mbps] per application, scenario 2,
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Figure 3.12: Average user outage [%] per application, scenario 2,
two applications per user

DQN/DDQN. Compared to their DQN-based counterparts, the DDQN-based proposed
methods provide slightly better outage performance, especially for application 2.
In addition, compared to Prop. fully distributed DON/DDQN, Prop. partially distributed
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Table 3.3: Average sum-rate [Mbps] and outage [%] after convergence, scenario 2, two
applications per user

Algorithms Sum-rate Ap;?;ltaigp 5
Ref. Greedy 37.9 0.39 73.5
Ref. Basic DQN-Single AP 34.6 53.1 28.3
Ref. Basic DDQN-Single AP 35.1 53.0 26.2
Ref. Basic DQON 38.6 44.6 443
Ref. Basic DDQN 36.3 51.0 44.8
Prop. Fully Distributed DON 68.3 11.8 8.2
Prop. Fully Distributed DDQN 69.0 12.0 6.54
Prop. Partially Distributed DON 64.7 9.35 6.49
Prop. Partially Distributed DDQN 65.0 880 6.06

DQON/DDQN achieve better outage fairness between applications, as seen by the smaller
gaps between each outage curve as shown in Figs. 3.12.

From Table 3.3, we can observe that Ref. Greedy achieves the lowest outage level for
application 1 because users always request the best AP for this application. However,
application 2 suffers much higher outage, up to 73.5% compared to 0.39% of application
1. Therefore, this algorithm cannot guarantee the fairness among different QoS
applications. Moreover, this algorithm is also outperformed by proposed algorithms in

terms of sum-rate.

3.7.3.3 Scenario 2, three applications, Ry; = 6 Mbps, Ry, = 3 Mbps, Tyxs = 1 ms

In this scenario where each user requests 3 applications, we evaluate DQN/DDQN-
based methods in comparison with Ref. Greedy.

Fig. 3.13 presents the average user rates for application 1 and 2 for DQN/DDQN-
based algorithms. Similarly to the previous case, Ref. Basic DON/DDQN-Single AP
provides the same data rate for all applications, while user-to-multiple AP association
methods provide higher data rate for application 1 and lower data rate for application 2.
Again, among algorithms enabling user-to-multiple APs association, it can be observed
that proposed algorithms outperform reference ones. Meanwhile, for the delay-
stringent application 3, Fig. 3.14 shows that all DQN/DDQN-based algorithms provide

the same performance. However, as shown in Fig. 3.15, the proposed algorithms provide
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Figure 3.13: Average data rates [Mbps] per application, scenario 2,
three applications per user

lower outage probabilities not only for applications 1 and 2, but also for application 3
as compared to Ref. Basic DON/DDQN-Single AP and Ref. Basic-DQN/DDQN. This
proves that our proposed algorithms significantly improve the association decisions as

well as rate allocation compared to the benchmarks.

It can be also observed in Fig. 3.13 that the algorithms based on DDQN achieve
slightly higher average rates compared to their DQN-based counterparts, in particular
for application 1 regarding Prop. partially distributed DDQN, and for application 2
regarding Ref. Basic-DDQN. The rate gap between the two application curves is also
more pronounced for DDQN-based algorithms than that for DQN-based ones.

In addition, it is interesting to observe that Prop. partially distributed DON/DDQN
provide the best fairness among applications as the three curves in Fig. 3.15 can be
hardly distinguished, whereas Ref. Basic-DQN shows the largest gap between the two
rate-constrained applications and the delay-constrained application (Fig. 3.15(b)). In
conclusion, the reference algorithms cannot handle well the QoS diversity of the
multiple applications required by each user, for instance, rate versus delay in this
case. This can be explained as follows: Ref. Basic-DQN/DDOQN calculate the penalties
Cop cgk by the difference between the served rate/delay and the corresponding QoS
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Figure 3.14: Average delays [s] per application, scenario 2,
three applications per user

requirement, however these raw differences are hardly comparable among themselves.
By contrast, by using the ratio between each QoS requirement and the served rate or
delay, the proposed algorithms can alleviate this drawback and hence gaurantee better

fairness among applications, as observed in Fig. 3.15.

The average sum-rate and outage after convergence per application of all algorithms
for Scenario 1 with three required applications are given in Table 3.4. Again, we can
see that the greedy method cannot work well in the context of various QoS constraints,
as only application 1 with highest QoS requirement is served well while the other
applications undergo high outage. In addition, Prop. Fully Distributed DON/DDQN
obtains highest sum-rate, but at the cost of higher outage probability for all applications
as compared to Prop. Partially Distributed DQN/DDQN.

3.7.3.4 Scenario 3, two applications, Ry; = 6 Mbps, Ty, = 1 ms

Similar to the previous case, the DQN/DDQN-based methods are compared with
Ref. Greedy in this scenario.

Considering a dense and large-scale interfering network, Figs. 3.16 and 3.17 show
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Figure 3.15: Average user outage [%] per application, scenario 2,
three applications per user

the average user rate of application 1 and the average delay of application 2 for all
DON/DDQN-based algorithms. It can be observed that even in the large-scale network,
Ref. Basic DON/DDQN-Single AP still converge quickly after 500 frames, while Ref.
Basic DON/DDQN and the proposed algorithms take more time, though limited to 2000
and 4000 frames, respectively. In spite of a slightly slower convergence compared to the
reference schemes, the proposed methods provide higher rate for application 1 which
requires the minimum rate QoS, and the same delay for application 2 as compared
to Ref. Basic-DQN/DDQN, which is lower than that of Ref. Basic DON/DDQN-Single
AP. Like previous scenarios, Ref. Basic-DQN/DDQN also result into the largest gaps
between both outage probability curves as shown in Fig. 3.18(b), (f).

In particular, the average outage probability of application 1 amounts to 76%, and to
25% for application 2. Prop. fully distributed DON/DDQN significantly reduce this gap
with 34% outage for application 1 and 25% outage for application 2. As expected, Prop.
partially distributed DON/DDOQON still provide the best fairness and lowest outage
for both applications with 23% and 19% outage probabilities for applications 1 and 2,

respectively.

Table 3.5 summarizes the average sum-rate and outage after convergence per
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Table 3.4: Average sum-rate [Mbps] and outage [%] after convergence, scenario 2, three
applications per user

Algorithms Sum-rate App 1 O;:; ;gée App3
Ref. Greedy 37.0 040 999 974
Ref. Basic DQN-Single AP 34.4 533  30.0 462
Ref. Basic DDQN-Single AP 34.5 53.1 28.5 45.8
Ref. Basic DQON 413 73.0 72.1 37.0
Ref. Basic DDQN 42.6 48.3 64.5 68.3
Prop. Fully Distributed DON 80.6 33.3 323 23.9
Prop. Fully Distributed DDON 85.1 324 29.6 18.5
Prop. Partially Distributed DQON 72.2 19.1 16.3 16.8
Prop. Partially Distributed DDQN 76.7 17.6 16.3  15.0

application given by all algorithms for Scenario 2. Similarly to previous scenarios, Ref.
Basic DON/DDQN-Single AP achieves the lowest average sum-rate, whereas the greedy
method gets the most unfair outage between two applications. In spite of allowing
users to associate with multiple APs, Ref. Basic DON/DDQN still obtain low average
sum-rate, only about 28 Mbps while getting very high outage for application 1.
Finally, the cumulative distribution function (CDF) of the load per AP is presented
in Fig. 3.19. We observe that all algorithms satisfy the load constraint of each AP. In
particular, Prop. partially distributed DON/DDQN achieve the best fairness in terms of
load among APs, as shown by the more compact distribution of the CDF curves of all
APs, as compared to Ref. Basic-DQN/DDQN-Single AP, Ref. Basic-DQN/DDQN and to
Prop. fully distributed DON/DDQN. Furthermore, Prop. partially distributed DON/DDQN

achieves the lowest burden per AP as well.

Interestingly, we can observe from our simulation results that, although the DDQN-
based proposed methods perform generally better compared to their DQN-based
counterparts, the performance gains are rather limited. Therefore, the DQN-based
approach may be more appropriate for computation and battery-limited user devices,
whereas DDQN-based methods can be useful if there are no such constraints. Hence,
the most appropriate proposed method may be chosen according to the specific needs

in terms of performance levels, and depending on the user devices’ processing, memory
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and battery capabilities.
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Figure 3.18: Average user outage [%] per application, scenario 3,
two applications per user
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Figure 3.19: CDF load per AP, scenario 3, two applications per user

3.8 Summary

We have investigated the issue of user-to-multiple AP association, where a user

requiring various applications with different QoS may be served by multiple APs
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Table 3.5: Average sum-rate [Mbps] and outage [%] after convergence, scenario 3
network, two applications per user

Algorithms Sum-rate Apportafi;p 5
Ref. Greedy 34.8 0.12 97.7
Ref. Basic DQN-Single AP 14.9 52.7 45.4
Ref. Basic DDQN-Single AP 15.0 53.0 45.7
Ref. Basic DQN 28.0 75.8 25.4
Ref. Basic DDQN 29.2 75.7 25.0
Prop. Fully Distributed DON 45.8 33.6 25.4
Prop. Fully Distributed DDQN 46.2 33.3 25.0
Prop. Partially Distributed DON 45.0 23.5 19.8
Prop. Partially Distributed DDQN 48.2 222 183

simultaneously, in the current Sub-6GHz system. As a a preliminary study to address
this novel issue, we proposed two distributed QL-based methods at user devices
with different amounts of local feedback from requested APs. Then, to cope with a
large-scale envisioned B5G/6G, we extend these two proposed methods by exploiting
the DQN and DDQN-based deep reinforcement learning frameworks. Numerical
results show the effectiveness of the proposed methods against reference methods
by not only improving multiple objectives such as sum-rate and QoS satisfaction
levels, but also enhancing outage fairness among applications, as well as AP load
balancing. Unlike reference schemes, the proposed methods are particularly well suited

for handling heterogeneous types of QoS requirements.
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Deep Q-Network based Joint User
Association and Beamforming in
Integrated Sub-6GHz/mmWave Network

4.1 Introduction

To cope with the stringent requirements of B5G/6G applications, deep interests are
turned towards the integration of mmWave and Sub-6GHz interfaces, aiming at jointly
exploiting the high reliability of Sub-6GHz, and high capacity and massive spectrum
availability of mmWave despite their severe propagation characteristics of high path
loss and signal blockage. Although various studies have been conducted so far, many
research issues are yet to be solved for enabling a seamless integration of mmWave
and Sub-6GHz technologies, in particular the issues of user-to-AP association and

performance optimization as mentioned in section 2.



Chapter 4. Deep Q-Network based Joint User Association and Beamforming in
52 Integrated Sub-6GHz/mmWave Network
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Figure 4.1: An integrated mmWave/Sub-6GHz system

Therefore, in this chapter, we continue to investigate the problem of user-to-
multiple APs association, but now in Sub-6GHz/mmWave integrated systems. In such a
system, each user may request several applications, and may be supported by multiple
APs and interfaces simultaneously, making this issue is more complicated compared to
the one in the Sub-6GHz systems of the previous chapter. Based on results of Chapter
3, we propose to make use of a DRL technique based on DQN in order to solve this
challenging problem. Namely, the mobile users autonomously learn, through their own
DON, the best APs and interface, mmWave or Sub-6GHz, to be requested for each of
their applications, by using only locally available information and such that the global
utility of the system is optimized. Based on these user and application requests, each
AP decides which user/application to serve on each interface, depending on its load
capability. In addition, for the mmWave interface, a user clustering and beamforming
algorithm is devised, which optimizes the beam direction and beamwidth serving each

user cluster at every time frame, so as to maximize the utility of the overall system.

4.2 System Model

We consider the downlink of a wireless network consisting of a set 8 of fixed APs
and a set K of randomly located users as shown in Fig. 4.1. Each AP b € 8 and user

k € K are assumed to operate on both Sub-6GHz and mmWave bands simultaneously.
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In each scheduling frame ¢, each user k requests multiple applications f € %,
where ¥y is the set of applications of user k. Each application f requested by user
k has a minimum rate constraint’ Ris. In each scheduling frame and interface
v € I = {sub,mW}, every AP b € B has a power budget of p, and may serve any
application, provided its maximum load is not attained.

For Sub-6GHz band, no beamforming is assumed, i.e., the Signal-to-Interference
plus Noise Ratio (SINR) from AP b to user k for application f is thus given by
PR ORI ()

Sires\(b) PP (ORI () + Weubos

Vokp(t) = (4.1)

where pZ‘Ig’C is the transmit power between AP b and user k for application f on
Sub-6GHz interface, hZ‘]ib denotes the channel power (i.e., hzzb = |}~12‘]ib|2, with };Z‘Iib the
complex channel coefficient) between AP b and user k, and crﬁ is the Additive White

Gaussian Noise (AWGN) power. The interference term toward user k served by AP b is

sub

b
For mmWave band, the tuple (0y, fpr) defines parameters of a transmit beam from

composed of all non-serving APs b’ € B\{b} with total transmit power p

AP b to user k, where Oy, Byi are the width and direction” of the AP beam, respectively.
Every Oy takes values from the discrete set of beamwidths Dy, whereas S takes

continuous values in [0, 277]. Hence, the SINR is given as

— Pﬁ‘}lhﬁw(%k, Bk Ovies k)

bkf ILK;I]IC\}]

) 4.2
+ mecrﬁ 42

where pZ‘}C\}/ is the transmit power between AP b and user k for application f on

mmWave interface. h‘g}{W(Qbk, Brk ébk, ﬁbk) is the power of the channel between AP
b and user k and is a function of the width and direction of AP b’s transmit beam

(Bpk, Prr) and of user k’s receive beam (ébk, [;bk) given by [51],

hokOpics Boks Opics o) = GOk Boie) G Ok Boe)PLok, (4.3)

where PLy; denotes the path loss between AP b and user k. Gg"(@bk, Bri), (N}lfc{x(ébk, ﬁbk)

!Our method can be easily extended to other constraints such as latency as did in Chapter 3
2Only azimuthal angle is considered here, however, the elevation angle may be included as well.
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are the transmit and receive beam gains of AP b and user k, defined as

y Gmain ,if0< :|LOS_ |<9L
Gy (Obk» Bok) = { . (@) ¢ =\ = Pol< %3 (4.4)

, otherwise

. ) _ |RpLloS _ 2 6

GR*(Obi, i) = { ,
€ , otherwise
Here, [3[%,‘:5 is the line-of-sight (LoS) angle between AP b and user k, G™" and € are the

gains of the main lobe and side lobe beams, respectively, where G™" is given by

main 21 — (2” - 9)6 . 0
GM(p) = ——F—— i |gl< . (4.6)
In (4.2), Iﬁc\}] denotes the interference power at user k served by AP b,
Iﬁ\}/ = 2 2, p;)r’lkwf’hllj}zv(eb’k” By, Ok B (4.7)

b'eB\{b} k'.f’

where k” € K is served by other APs b’ for f” € 7.

At the user side, for simplicity, the beamwidth and beam direction are assumed to
be fixed as in [51], namely, ébk = 90° and ,3~bk = IE,?S if AP b serves user k on mmWave
interface. Also, the power from each AP on each interface is assumed to be equally
divided among its served users and applications [52].

In case of blockage, i.e., non-LoS (NLoS) situation, mmWave transmissions will
result into zero rate [53]. Finally, the rate of user k associated to AP b for application f

can be modeled as

Waup log, (1 + YZ‘E?(”)’ if user k is served on Sub-6GHz band,
rokf(t) =1 Wnw log,(1 + yi‘;c\}/(t)), if user k is served on mmWave band in LoS,
0, if user k is served on mmWave band in NLoS.

(4.8)

AP b’s load for serving user k, application f, is set as [28]

HicsToip(t) (49)

Pokr(t) =
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where Ay s is the mean arrival rate in number of packets per seconds, and ﬁ the mean
packet size of application f in bits. Hence, as in [28], assuming an orthogonal allocation
of wireless resources in time or frequency for its own allocated user applications,
AP b is overloaded on each interface v € 7 = {sub, mW} if the sum of all its served

applications’ loads exceeds 1, namely if

QY1) = > > Xy (Ouip(t) > LVv e T, (4.10)

kek fei

where x;, f(t) is the association binary variable defined as

1, if AP b serves user k for applicationf at frame ¢
Xy f(t) = with interface v, (4.11)

0 otherwise.

4.3 Problem formulation

We formulate the average network sum-rate maximization problem, under minimum
rate constraints Ry s for each user k, application f and the APs’ load constraints, as

follows:

max E; Z Z Z ngkf(t)rbkf(t) (4.12)

X (0 beB ke feFy vel
Opic (). Box (1)
s.t. kaf(t) €{0,1},Vb e B,k e K, f € %z, (4.12a)
Opi(t) € Dy, Ppr € [0,27],Vb € B,k € K, (4.12b)
> Zx;kf(t) = 1,Vk € K,Vf € Fz, (4.12¢)
beBvel
Z Z xgkf(t)rbkf(t) > ka, Vk € K,Vf € Fx, (4.12d)
beBvel
CHOESDIE FOPois(t) < LYb € B. (4.12¢)
keK feFx

The objective function (4.12) is the long-term average sum-rate over all APs, users and
applications. Eqs. (4.122a) and (4.12b) give the domains of definition for each variable.

Eq. (4.12¢) constrains each application requested by a user to be served by a unique
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AP and one interface. The minimum rate constraint for each application is given by
(4.12d). Finally, (4.12¢) reflects the AP load constraint for each interface.

This problem is a mixed-integer non-convex optimization problem which cannot
be solved in polynomial time. Compared to the initial work of [54], the problem in
integrated mmWave and Sub-6GHz networks becomes even more intricate, as we have
to optimize not only the user-to-APs association per application, but also the interface
allocation and the beamforming parameters. Thus, to solve this problem efficiently and
in a distributed manner, the proposed method leverages the powerful capabilities of

DRL as explained next.

4.4 Proposed Distributed Algorithm

Similar as in the previous chapter, we first formulate the considered distributed
problem as an MDP. Then, the proposed distributed method based on DQN is devised,
whereby each user learns the best set of (AP, interface) to request in each time frame,

so as to satisfy the heterogeneous QoS requirements of each application.

4.4.1 Formulation as an MDP

As shown in Fig. 4.2, each user is an agent who takes its decision of requesting
APs/interfaces for its applications. At each scheduling frame ¢, the user knows its current
state s;, i.e., its current association between its applications and APs/interfaces, and
takes action a,, i.e., requesting for the next frame the same or different APs/interfaces
for each application. The user then moves to a new state s;,; and receives an immediate
reward r; from the environment. One major observation here is that, the transition
probability P(s;.1]|a;, s;) is unknown to the user, since the association decisions for each
application on each interface, though based on user requests, are taken by each AP
given the current wireless environment and traffic distribution. Therefore, we propose
to solve this problem by means of DRL, in particular based on DQN due to its efficiency
for handling similar issues in wireless systems and for coping with large state/action

spaces.
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Figure 4.2: MDP model of the considered problem (4.12)

4.4.2 Proposed Distributed DQN-based Method

We define below the state and action spaces of each user.

« User State: Unlike the previous definition of state in Chapter 3 where each user
state was defined as the association between each user/application and each AP,
we now also consider the blockage status between users and APs. Therefore, the
state of each user k at time ¢, denoted by si(¢) in the state space Sk, is defined as
the actual association between user k for its required applications/interfaces and

each AP b, and the current estimated blockage status oy, with AP b,
se(t) € Sy = {xgk () € (0.1}, 0() € {0,1),Yb € B.Vf € Fi, Vv € f}, (4.13)

where oy is equal to 1 if user k’s LoS direction towards AP b is blocked, otherwise

it is set to 0.

Here, we consider a simple blockage estimation method as follows. Note that the
goal of this work is not to propose a new blockage estimation method, hence any
other blockage estimation method applies. User k calculates the short-term

average SNR over X consecutive scheduling frames based on pilot signals from
AP b, ie.,
_ 1 £
Epi(t) = X > &),
T=t—X+1

where bkw(r) is the instantaneous SNR on mmWave interface at time 7, then
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compares it with the long-term moving average SNR up to time ¢, defined by

(t — Dépilt — 1) + EV(2)

Epi(t) = ; .

Given a pre-defined threshold Ay, if the gap between short-term and long-term
moving average SNRs becomes |&(t) — fbk(t)|> Ag, the user will estimate
that it has changed its blockage status (from unblocked to blocked or vice
versa), otherwise that it has not changed. Results show that even with this
simple, imperfect blockage status prediction, the proposed method achieves high

performances.

« User Action: ax(t) is the desired future association of user k with APs and
interfaces for its applications at time ¢. Users only choose among valid actions, i.e,
they request a unique AP/interface per application, and do not request mmWave

interfaces estimated to be blocked. Action gy is hence given by

a(t) € Ay = {agkf(t) e {01} ap, = LVb e B,
beB

Vf € Vv € T and afi¥(t) = 1iff oy = o}. (4.14)

The DON designed in Fig. 4.3 enables to approximate the Q-values of each state-
action pair, and hence to select the optimal action for each state. The input layer
is the state si(t) of user k, which includes xbka(t) and opx(t) of (4.13), and the output
layer gives the Q-values for each available action as in (4.14). In order to minimize
the inherent model complexity, we limit the number of hidden layers as well as of
neural nodes as shown in simulation settings. Next, we propose the DQN-based User

Association and Beamforming method described in Algorithm 4.1.

Step 1- At the user side, given the probability of exploration ¢ € (0, 1), with probability
1-¢, each user selects action ag(t) as in (4.14) from the output of its DQN based on
its current state, then sends its request ai(t) to the desired (AP, interface) for each

application f in 7 (Lines 5 to 8).
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Figure 4.3: DQN structure for user-to-multiple APs association in Sub-6GHz/mmWave
integrated network

Algorithm 4.1: Proposed DQN-based user association and Beamforming
(Prop. DQN-UABF) method

1 for each user k € K do
2 Initialize DQN Q with random weight values Q;
3 Random initial state si;

fort=1,2..,Tdo

for each user k € K do

Ee—eXA;

if random number p < ¢ then Select action g randomly;
else Select action a; with max Q(sg, ax; k)

9 for each APb € B do

0 N G B

10 Select users for Sub-6GHz by greedy method [54];
11 Select users for mmWave by Algorithm 4.2;
12 Feedback to users, downlink transmission;

13 for each user k € K do

14 Calculate reward of action aj by (4.18) ;
15 Update Q; by (4.21);

16 Move to the new state s « s'x;
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Step 2- After receiving all user requests, APs perform different user association
strategies for each interface. Denoting R}, K}’ as the set of users requesting AP b with
interface v and the set of users accepted by AP b with interface v, respectively,

« For v = Sub-6GHz, each AP selects users based on its utility function ‘LI;,(‘Kbsub), ie.,
such that the sum-rate of selected users/applications satisfying the load constraint

(4.12e) is maximized,

U TGP = DT D) rrpOU@™ @) < 1), (4.15)
ke(](Zub feﬁSUb

where I(.) is the indicator function. To solve this, we make use of the greedy method
of [54], where APs select their best users with lowest load in (4.9), until they are
overloaded.

« For v = mmWave, given the narrow beam characteristics, each AP needs to consider
the relative positions of requesting users for beamforming optimization. We propose
Algorithm 4.2 that clusters requesting users and optimizes beamforming parameters.
The utility function of each user k is thus set as the sum-rate of its applications

satisfying (4.12d),

Ub) = > aﬁ\}/(t)Xﬁ\}v(t)rbkf(t)l(rbkf(t) > Ryf). (4.16)
feFk

At AP side, due to the lack of information about other APs nor the interference
experienced by user k, the AP can not exactly know ry;¢. Instead, it makes use of
ok f(t) = Winw log,(1 + fﬁc\}’(t)), where SINR fﬁ‘}v is estimated under the assumption of
side lobe beam interference and maximum transmit power (i.e., the power budget) from
all other APs. Then the user with highest utility (4.16) estimated by 7 s is selected as
the seed of the cluster Cp. From this seed, the AP considers its neighboring users to be
added to the cluster in a greedy manner. The beamwidth is defined as the smallest
value in set Dy that covers all users in the cluster, and the beam direction is taken as
the center of the beamwidth. One candidate is added to the cluster if, given the new

beamwidth and direction, this adjunction does not decrease AP b’s utility given as the
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estimated sum-rate of selected users/applications satisfying load constraint (4.12¢),

Up(Cp ) = D D FrepOU@FV(8) < 1). (4.17)
kefGrW feFmW

The algorithm 4.2 stops when (4.17) stops increasing.

Algorithm 4.2: User Clustering and AP beamforming
Cluster Cp, « 0, 0}, «— O™,
for each userk € Rznw do

L Compute the user utility of user k by (4.16);

N =

w

4 Choose the best user k* with highest utility, then
Cp < G U{K™},
Ry — Rp\{k*};

5 while R, # 0 do

6 Candidates < 0;

7 for each userk’ € R, do

8 if 30 € Dy covers {C, U k’} then

9 L Candidates < Candidates U {k’};

10 if Candidates == () then break;
11 for k' € Candidates do

12 0’ = min {6 € Dy|6 covers {C, Uk'}};
13 if Up(Cp UK'|0") > Uy(Cy|0p) then
14 Cp, — CyUK;

15 O, — 0’;

16 Ry — Rp\{K'};

17 break;

18 f, <« center of the beamwidth 6}, ;
19 return Cy, 0y, B

The association decision x,, f(t) is then sent to users through feedback (Lines 9 to
12).
Step 3- At the user side, based on the feedback from APs, each user calculates its
immediate reward I';(t) by

Tr(t) = wig Z ¢ (8) + wa Z Cyp (1), (4.18)

vel vel
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where ¢! are the rewards for QoS-satisfied and QoS-unsatisfied applications of

1k’ 2k
user k, respectively,

¢t = S ST = 1 k() > Rep)al () ”"f © (4.19)
f f
beB feFi
R

= 3 3 T (1) = Lrep(t) < Reg) X afy () —, (4.20a)
y beB feFr rokf(t)
Cy (1) = Ris

_ %f;ﬁl(x;’k f(t 0)ay, f( ) (t) (4.20b)

In (4.19), the reward is the sum-rate of QoS-satisfied applications for each interface,
normalized by each bandwidth W,. The purpose of this normalization is to guarantee
reward-fairness among the two interfaces, as they provide drastically different rate
levels. If user k is served by AP b on interface v but at lower rate than Ry, ¢, is
calculated by (4.20a). But if this application is dropped or blocked (in the case of
mmWave interface), then ¢, is calculated by (4.20b), where 7y (t) is estimated by user
k. On Sub-6GHz interface, the user can estimate 7y ¢(t) by using (4.1). However, on
mmWave interface, as the AP’s beamwidth and direction is unknown to the dropped
user, we propose to estimate fi(t) assuming the narrowest beamwidth and LoS
direction, and only side-lobe interference € from other APs. Note that, as in [54], users
whose applications are dropped, blocked or whose served rates are lower than Ry, will

be in outage.

Then based on these rewards, each user k updates the weights Q,tc of its DON at
each scheduling time frame t, such that its loss function £ is minimized through
stochastic gradient descent as in [55], then moves to its new state (actual associa-

tion/application/interface), with

2
Ly = (Q(Sk, ar; Q) — Tk + amaxy Q(sy, ai; Qi))) : (4.21)

where « is the discount factor (Lines 14 to 16).
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4.5 Numerical Evaluation

The proposed algorithms are evaluated in two types of networks: firstly, a small
network (Fig. 4.4) composed of 4 APs and 4 fixed users, and secondly, a larger network
(Fig. 4.5) composed of 9 APs and 15 users uniformly distributed over the whole
network area. In both scenarios, each user requires two applications with minimum
rate requirements Ri; = 100 Mbps, Ry, = 1 Mbps. This means that, while the small
network is a reasonable scenario for an initial evaluation of the proposed methods, the
large network, where 30 applications should be supported at anytime by only 9 APs
simultaneously, represents a heavy and challenging environment as in urban hot spot
scenarios.. To assess the influence of obstacles, one or two obstructions (black circles)
are placed as shown in Figs. 4.4 and 4.5, then removed during two periods, namely
from frames 2000 - 4000 and from frames 6000 — 8000.

Block Rayleigh fading channels are assumed, where each channel coefficient
remains fixed during a frame, but changes randomly across frames. Users are assumed
fixed during each episode T of 10000 frames. In the larger network case, results are
averaged over 50 random user positions. We have built our own simulator using
Python 2.7. Detailed simulation settings, including path loss models, are presented in
Table 4.1.

The DOQN (Fig. 4.3) is built with two hidden fully connected layers using Softmax
activation function. The number of neural nodes per hidden layer is 16, the memory
size is set to 100 and the batch size is 20. Then, learning parameters are set as [30] with
a =0.9, e = 0.5, and decay factor A = 0.995. Weights (w1x, wyi) in (4.18) are (0.8, 0.2) as
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Table 4.1: Simulation Parameters

Parameter Description

Transmit Power py 5 dBm

Noise power o2 -169 dBm/Hz

Bandwidth 10 MHz

Channel fading model Rayleigh fading

Path loss model - Sub-6GHz
LoS Path loss model - mmWave
NLoS Path loss model - mmWave [56]

38.5 + 30log,(d)

61.4 + 20log,,(d) + X5, X5 ~ Gauss(0; 5.8 dB)
72 + 29.2log,,(d) + X7, X5 ~ Gauss(0; 8.7 dB)
(d: AP-user distance [m])

Mean packet arrival rate (Ax fé)

0.1 Mbps

X

3

in Chapter 3.

4.5.1 Benchmark schemes

The following two benchmarks are evaluated:

» Reference Basic-DQN (Ref. Basic-DQON): This method is similar to the reference

QL-based scheme in [54], but translated to integrated networks and using DQN.
User state and action are respectively the current association and its desired
association between its applications and APs/interfaces. After receiving all
requests, APs select users for each interface as in our proposed algorithm, but

only a unique user with narrowest beam is supported by each mmWave.

Reference Action Elimination (AE)-DQN (Ref. AE-DQON): In this method
proposed in [57], the DQN is combined with an Action Elimination Network
(AEN) based on linear contextual bandit model, that eliminates invalid actions
(such as APs in NLoS) given a specified state. An action is valid if its value given
by the AEN with its current state is within a pre-defined confidence ellipsoid.
Among a set of valid actions provided by the AEN, with probability 1 — ¢, the
action with highest Q-value given by the DON is chosen. Further details can be
found in [57]. After receiving all requests, procedure at APs is the same as in our

proposed algorithm and the users also calculate their rewards by (4.18). Due to
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its high computational complexity, this scheme is only evaluated in the small

network.

4.5.2 Simulation Results

4.5.2.1 Small network

Fig. 4.6 shows the achievable data rate per application averaged over frames. We
can see that all algorithms converge well and satisfy QoS requirements. We observe
that, while our proposed algorithm outperforms both benchmarks for application
1, they provide much higher data rates for application 2, despite its much lower
requirement (Rx, << Rk1). Prop. DQON-UABF hence adapts better its allocated rates to
each of the QoS levels.

Moreover, we can observe in Fig. 4.7 that Prop. DQON-UABF achieves lower user
outage probabilities for both applications, i.e., the probability that the QoS target is not
met. Indeed, the proposed method achieves a reduction of 80% and 83% for applications
1 and 2 vs. Ref. Basic-DQN, and a reduction of 75% and 51% for applications 1 and 2
vs. Ref. AE-DQON. In addition, despite obtaining high data rates, Ref. Basic-DQON still
gets high outage probabilities for both applications, as only a small number of users
is allocated with extremely high data rates while the others are dropped. That is,
Ref. Basic-DQON tends to allocate mmWave interface for both applications, but only a
unique user with narrowest beam is supported by each AP. The users in Ref. AE-DON
also prefer to request mmWave interface for both applications, but more users are
satisfied thanks to the clustering algorithm. However, Ref. AE-DON cannot guarantee
a fair QoS satisfaction between applications 1 and 2, with 48% and 16% outage levels,
respectively. By contrast, Prop. DON-UABF not only achieves lower outage, but also
guarantees outage fairness between both applications, having 12% and 8% outage
levels, respectively. This is because the proposed algorithm successfully learns to
allocate mmWave band for application 1 and Sub-6GHz band for application 2, thanks

to its specific state space and reward design.
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Figure 4.7: The average user outage per application in small network

4.5.2.2 Larger network

As explained above, in the larger network, the proposed algorithm can be only
compared to Ref. Basic-DON. Figure 4.8 shows the data rate for each application
averaged over all users and positions. Interestingly, Ref. Basic-DON provides a higher
rate for application 2 with lower Ry than for application 1, whereas Prop. DON-UABF
enables a tailored rate provision given the level of Ry .

Moreover, although Ref. Basic-DON improves the average rate of both applications
over time, its outage probabilities also increase as shown in Fig. 4.9. This is also
because Ref. Basic-DON tends to allocate mmWave interface for both applications, and

only users with highest utilities are supported. Furthermore, the proposed algorithm
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Figure 4.9: The average user outage per application in larger network

provides lower outage compared to Ref. Basic-DQON, namely 45% and 51% reductions
for applications 1 and 2, respectively. In addition, the outage probabilities for each
application are 45% and 36% for Ref. Basic-DON, vs. 18% and 15% for Prof. DON-UABF.
This again proves that our proposed method greatly enhances outage fairness among

applications.

Finally, we show the cumulative distribution function (CDF) of the load for each
AP/interface in Figs. 4.10 and 4.11. It can be observed that all algorithms largely satisfy
the load constraint of each AP and each interface. In particular, for Sub-6GHz interface,
the proposed algorithm achieves lower load as well as better load fairness among APs

compared to Ref. Basic-DON. On the mmWave interface, the AP load given by Ref.
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Basic-DON is a bit lower than that of Prop. DON-UABF. This is due to the fact that Ref.
Basic-DON only serves an unique user with narrowest beam, whereas the proposed

algorithm can serve more users efficiently, while guaranteeing the load constraint.

4.6 Summary

We have investigated the issue of joint user-to-multiple AP association and
beamforming in Sub-6GHz/mmWave integrated networks, whereby a user requiring
several applications may be served by several APs and interfaces simultaneously. To

address this intricate issue, we have proposed the DQN-based user association and
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beamforming method, that enables distributed learning by each user with minimal
feedback from local APs. Simulation results have shown the effectiveness of the
proposed method against benchmarks, by notably reducing user outage, while

improving outage fairness among applications.
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Energy Efficiency Study of Deep
Q-Network based User Association
Methods in Sub-6GHz/mmWave
Integrated Networks

5.1 Introduction

In this chapter, we focus on the energy efficiency study of the DQN-based user-
to-multiple APs association method proposed in the previous chapter, for B5G
Sub-6GHz/mmWave integrated networks. We first conduct a comprehensive analysis
of the energy consumption for both computation and data access for operating each

user’s DQN, unlike in previous works.

Based on that, we enhance the proposed DQN-based user association and beam-
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forming method in Chapter 4, which enables not only higher energy efficiency, but also
to better cope with dynamic environments. Namely, the adaptive e-greedy strategy
is proposed to allow user devices to favor exploration whenever notable changes
of its surrounding environment are detected. In addition, to further improve the
network performance, instead of making use of the greedy algorithm 4.2 as in Chapter
4, we design a Branch-and-Bound-based algorithm [58] to cope with the features of
mmWave bands, for solving user clustering and beamforming at AP side. Finally, the
trade-off between achievable network performances and energy costs at user side is

also investigated through numerical evaluations.

5.2 Analysis of DQN energy consumption

We analyze the energy consumed for running the proposed DQN-based user
association and beamforming (Prop. DON-UABF described in Algorithm 4.1) method at
every user device. Power consumption arises from signaling and data transmissions
between each user and their requested/serving APs, as well as the power consumed at
the user DQN, including:

« P}: the hardware power required to keep user k’s device activated,

. ng: wireless power transmission for downlink/uplink signaling, data transmis-
sion and CSI feedback,

. P}zroc: processing power for DQN computation tasks,

. Pgata: power required for data movement, i.e., for accessing user k’s memory and
to read/write the data required for operating its DQN, such as the DQN weight

updates, and experience replay updates.

Here, Pli and ng are fixed. In the sequel, P}:roc and Pl‘jata are analyzed in detail.

5.2.1 Energy consumption for user DQN processing P,l:roc

DON processing includes two major tasks: firstly, forward propagation for obtaining

the best action given the current state, and secondly, DQN weight updates through
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experience replay [48], which comprises forward and backward propagation, as well
as the derivation operation of stochastic gradient descent. These actions require
substantial power to perform basic Multiplication-and-Accumulation (MAC) operations
depending on the number of neurons and links in the DNN.

We denote by L the number of hidden layers, N; (I = 1..N) the number of neurons
in layer [ and Ny, N, the number of input and output nodes, respectively. Spatch is the
size of a mini-batch in the experience replay technique. Then, similarly to [44], we
express the power consumed for DQN processing as a function of the number of layers

and neurons, as

L+1 L+1
P]groc = (Z Nl—lNl + Nl) Punit + (Z 2N1_1N[ + 3Nl) SbatchPunita (5'1)
I=1 I=1

where Pnit is the power required for a basic MAC operation, similarly to [2,42].

In (5.1), the first term is the power consumed for computing the best action which

L+1
I=1

Ny neurons through L hidden layers, producing N;.; values at the output layer. During

requires a total of >;"" N;_; N; multiplications to feed data from the input layer with
this process, N; values at each hidden layer and at the output layer go through the
activation function. The second term in (5.1) is the power required for updating the
DON weight, where the DQN needs to replay a mini-batch with Sp,ch experiences in
memory. Similarly to [44], each experience requires a forward propagation given its
stored state, a backward propagation from the output layer to the input layer, which
also performs ZIL:II N;_1N; multiplications, and calculating the derivative of the loss

function (4.21) through Nj real multiplications for each layer [ with [ = 1..N + 1.

. data
5.2.2 Energy consumption for user DQN data movement P;

This major energy consuming task had not been considered in previous works such
as [44]. The power for data movement is consumed whenever the DQN accesses its
stored weights in order to calculate the Q-values for all its output nodes, and to store
the data of this new experience into its memory. Similarly, the target DQN used for
computing the target Q-values, needs to read and write its experiences and weights in
the memory. Given the multi-level memory hierarchy in modern hardwares in order

to reduce delay and energy consumption, energy for data movement is not only a
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Figure 5.1: A memory hierarchy and data movement flow [2]

function of the number of layers and neurons in the DQN, but also depends on the data

storage location as well as the memory hierarchy.

Without loss of generality, we here consider a memory hierarchy with three levels
as in [2] and illustrated in Fig. 5.1: Register File (RF), Cache (Buffer), and Dynamic
Random Access Memory (DRAM), where the energy costs to access data in the DRAM
and in the Cache are respectively 200 times and 6 times more than that in the RF,
which represents the unit energy cost Pyt in terms of the energy for a MAC on a
commercial 65nm process [2]. That is, DRAM can store much larger amounts of data
compared to Cache and RF, but at the cost of much higher energy consumption. With
the current hardware technology, the amounts of data that can be stored at each level
are estimated to be 0.5-1 kilobytes (kB) in RF, 100-500 kB in Cache [2]. Hence, any data
of more than 500 kB needs to be stored in DRAM. In the sequel, we consider two typical
scenarios, depending on the amounts of data to be stored: the “heavy” case where the
weights of both DQN and target DON are stored in DRAM, and experiences in Cache,

and the second “light” case, where all weights and experiences are stored in Cache.

In the first scenario, during forward propagation, the DQN loads the weights from
the DRAM and the input node values from the Cache to perform matrix multiplications,
and stores its experience in the Cache. During DQN’s weight updating process, a
mini-batch of experiences is loaded from the Cache, then the weights of both DQN
and target DQN in DRAM, as well as the input node values in Cache are also fed for
matrix multiplication. The derivation results are stored in Cache, before writing the

new weights to DRAM. Namely, to calculate a matrix multiplication in forward and
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backward propagation between input nodes at layer / — 1 and weights of size N;_;Nj at
layer I (I = 1..L + 1), the DON needs to access the DRAM N;_; N, times to load these
weights to the Cache. Then, these weights and the input of layer [ — 1 are loaded to
Arithmetic Logic Units (ALU) through Cache and RF, each requiring N;_{N; + N;_;
accesses. At ALU, N;_;N; MAC operations are performed and their results are written
in the RF. Next, the RF is accessed again to read the accumulation results for computing
N; final results, which are written in Cache. In addition, during backward propagation,
after the Nj final results at each layer [ are obtained, they are stored and then loaded
from the RF to calculate derivatives by N; real multiplications before being stored in
Cache. Finally, these derivatives and corresponding weights are again fed to the RF,
then to ALU to update the weights, before saving the new weights into DRAM. From

the above, the consumed power for DQN data movement P;jata in this scenario is given

by

L+1 L+1

dat. )
Pka a = Z PMMI + Pcache +( Sbatch X Pcache + 2 Z PMM
I=1 —_ I=1
Power for ————

loading experiences .
g exp Power in forward

Power in forward propagation
& backward propagation

L+1
+ 2Ny XPrr  +(Pcache + Prr + Poram) > N1 N ) (5.2)
—_— =1

Power for derivatives

Power for updating weights

where Ppram, Pcache and Pgr are the consumed energy for accessing DRAM, Cache and
RF, respectively. Their units are normalized by Py, with Prp = Pyt as in [2]. PII\AM is
the total power consumed for a matrix multiplication at layer /, which, from the above

explanation, is computed by
Pint = (NI-tNDPoram + (Ni<tNp + Nicg + Ni)Peache + 2NiiN; + Ni)Pre.— (5.3)
In the second “light” scenario of data storage, all processes relating to DRAM are,

instead, performed in the Cache. Therefore, similarly as above, we can compute P,fata

by
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L+1 L+1
dat. )
Pka a = Z PMMI + Pcache +( Sbatch X Pcache + 2 Z PMM
I=1 —_ I=1

Power for ————
loading experiences

Power in forward

Power in forward propagation
& backward propagation

L+1
b ANIX P+ @Peane + Pr) 2 NNy ), (5.4)
— I=1

Power for derivatives

Power for updating weights

where

Pl = (NZiNDPCache + (N1t Nj + Ni_y + N)Pcache + CNi_iNj + Ni_p)Pre.  (5.5)

Based on the system and power consumption models above, we define the energy
efficiency for each user k as the ratio between the sum of converged data rates for all

its requested applications and its total power consumption, given by

2beB 2ifeFi Tokf
c Tx proc data
Pk + Pk + Pk + Pk

EEy = (5.6)

As such, in order to enhance the EE, each user needs to improve its achieved rate
over frames while minimizing its energy consumption. Given a specific structure of
DON with a fixed number of hidden layers and hidden neural nodes, as well as a fixed
number of possible actions (which can be kept in a low value for energy reduction as
in our proposed scheme explained in next section), the consumed power of user can be
considered as a constant. Therefore, improving EE means achieving higher data rates
over frames, thereby also reducing the user outage probability. In addition, by the
latency definition as in Eq. (3.3) which is a ratio between the file size of the application
and its data rate, EE enhancement also reduce the delay time of serving the required

application of the user.
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5.3 The proposed adaptive ¢-greedy DQN

Considering the same problem defined in section 4.4, we here enhance the proposed
DQN-based user association and beamforming (Prop. DON-UABF) method described in
Chapter 4, which enables to cope with the dynamic network environment and most

importantly, to improve energy efficiency.

Namely, in this enhancement, instead of applying the original e-greedy method of
reference [48] as in Prop. DON-UABF, we design a new strategy coined as adaptive
e-greedy for controlling the ratios of exploration and exploitation, which enables to
better cope with dynamic environments. This is because in the original e-greedy
method (depicted in Fig. 5.2), mobile users firstly explore the environment with a high
probability ¢ (Fig. 5.2(a)) and exploit the actions maximizing their approximated Q-
function with a small probability 1-¢. As ¢ decreases over the following iterations, only
exploitation is performed even when the environment changes drastically (Fig. 5.2(b), in
which case the best actions computed by their DQNs may not be suitable anymore. The
proposed adaptive e-greedy DQN method is hence designed to allow users to perform
ad-hoc explorations as depicted in Fig. 5.3, whenever significant changes are detected in
their surrounding environments, in particular in terms of wireless channel quality and
blockage occurrences. The details of the proposed DQN-based User Association with the

adaptive e-greedy method are given in Algorithm 5.1, which can be described as follows.

Step 1- Whenever a change is detected, user k updates its own list of Bp,.x-best APs

among all APs in its sensing area, based on estimated channel qualities and blockages
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Algorithm 5.1: Proposed DQN-based Association and Beamforming with
Adaptive e-greedy Method

1 for each user k € K do

2 bestAPSet;[0] «— Bpax-best APs at time t = 0 ;

3 Initialize DQN Q with random weight values C;
4

5

Initialize state s; based on bestAPSety;

& < &o;
6 fort=12...,Tdo
7 for each user k € K do
8 bestAPSety[t] < Bmax-best APs at time t;
9 if bestAPSety[t]# bestAPSeti[t — 1] then & « &g;
10 else g «— ¢ X A;
11 if random number p<ej then Select random action ay;
12 else Select action a; with max Q(s, ax; Q/tc);
13 for each APb € B do
14 Select users for Sub-6GHz, mmWave by Branch-and Bound algorithm
and feed back to users;

15 for each userk € K do

16 Calculate reward of action ay by (4.18) ;
17 Update Q; by (4.21);
18 | Move to the new state sy « sk;

over its links to those APs, and resets its probability of exploration ¢ to the initial value
(Fig. 5.3(b)), allowing exploration of those new APs and interfaces. Otherwise, ¢ is
decreased by a decay factor A (Fig. 5.3(a)). Then, with probability 1-¢, user k selects
action ai(t) from the output of its DQN based on its current state, and sends its request

ai(t) to the desired (AP, interface) for each application f in 7 (Lines 7-14).

Step 2- After receiving all user requests, APs perform different user association and

beamforming strategies for each interface (Lines 15-17).

We denote by K}’ the set of users requesting association to AP b with interface v.
Given interface v, the following problem needs to be handled by AP b, i.e, AP b’s

sum-rate maximization under its load constraint,
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, max Z Z xgkf(t)rbkf(t) (5.7)
4 (D00k) ey e
s.t. @, (t) = Z Z xgkf(t)gzﬁbkf(t) <1 (5.7a)
keX, feFi

v

bk f?
but with real valued weight items. Instead of applying a greedy method as in Prop.

DQN-UABF to solve (5.7), we here design a method based on Branch-and-Bound [59],

but where the upper bound value at each branching node is calculated based on

It may be observed that regarding variable x;, ., (5.7) is a 0-1 Knapsack problem,

the greedy solution in Prop. DON-UABEF, thereby guaranteeing a better solution for

14

bkf
Branch-and-Bound-based method for solving (5.7) are given in Algorithm 5.2 and

x}, . and Oy which enables higher network performances. The psedou code of this
explained in details in the next section.

After solving (5.7) for each interface v, APs send their association decision to their
users through feedback.
Step 3- This step is the same as Step 3 in Prop. DQN-UABF explained in Chapter 4.

5.4 Proposed Branch-and-Bound-based algorithm for

solving user clustering and beamforming

The idea of the B&B algorithm is to partition all feasible solutions into sub-classes
with their corresponding upper bound performance values. Then, the partitioning
process for each sub-class, called branching, is pursued until each feasible solution
belongs to exactly one smaller sub-class, and stopped if its upper bound value is
smaller than that of other sub-classes. A feasible solution is reached if the value of
its objective function is greater than those of all sub-classes, and than those of all
previously obtained solutions.

Based on this, the details of the proposed B&B-based optimization method for
solving (5.7) are given as follows.

Node definition: Each node of the B&B tree is given as a tuple (A, R, C,U),

where A, R, C are the sets of accepted devices, rejected devices and candidate devices,
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Figure 5.4: Illustration of the proposed Branch-and-Bound based algorithm
for solving (5.7)

respectively. The term U gives the upper bound value of the node.

Upper bound calculation: The key step of the B&B algorithm is to calculate U
for each node. In this study, we apply the greedy algorithm described in Chapter 4 for

upper bound calculation, which guarantees the low complexity.

Next, the pseudo-code of the proposed B&B-based algorithm for solving (5.7) is
presented in Algorithm 5.2 and illustrated in Fig. 5.4. Firstly, we calculate rate ry; and
load contribution ¢y of each device k € K given the smallest beamwidth and the
closest beam direction in Dy to the LoS direction of AP b and device k. Next, we sort
the devices in decreasing order of 5’7’; and initialize the first node ny with empty sets A,
R, and the candidates’ set C with all ordered devices, while the node’s upper bound U
is set to 0 (Lines 1-4). Then, the branching process is performed as follows. Among the
nodes that are not branched yet, we select the one having the highest U, denoted as n*,
and branch it. Namely, we branch n* on the first device in its candidate set C* into two
nodes (sub-classes): one is to accept this device, the other is to reject it, and calculate

their respective U values by the greedy algorithm in Prop. DON-UABF (Lines 6-9). This
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process is iterated until no candidate remains in the selected node, i.e., all devices are
already considered to be accepted or rejected (Line 11). Finally, the node for which
C = 0, and with the highest U value provides the solution to Problem (5.7). We set
xpr = 1 for all devices k € A*, B} to the direction closest to the bisection direction of

angle 01({{‘*) and 0, to the smallest beamwidth covering all devices in A* (Lines 13-15).

Algorithm 5.2: Proposed Branch-and-Bound based Algorithm for solving (5.7)

// Initialization

1 for devicek € K do
2 Calculate rp, dpx by (4.8), (4.9) respectively with 0 = Oin,

L By = arg minges, {1 — B };
3 Cy « Order devices in decreasing order of %;
4 Make first node ny <« (Ag =0, Ry = 0,Co, Uy = 0) ;
// Do branching
while true do
Find unbranched node n; = (A;, R, C;, U; = U*) with highest U™;
if C; # 0 then

Branch n; on the first device k in C; into two sub-nodes:

njp < (\7{] Uk, RJ', Cj\k, Uﬂ), Njp <— (ﬂj,Rj Uk, Cj\k, sz);

9 Calculate U}y, Uj, for nji, nj, respectively by the greedy algorithm in
Prop. DQON-UABF;

e N @

10 else
1 {7bumk// Solution found

12 Optimal node n* « (A*, R*,C* = 0,U"): the node with highest U;
13 Set xp = 1,Vk € A,

1 f, < argmingep,{|f — direction of bisection of ¢9$*)|};

15 0, « argming{6 € Dy covering all devices € A*};

16 Return xp, ﬁ;, 9;;
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5.5 Investigation of the trade-off between network

performances and energy costs at user side

5.5.1 Simulation settings

We investigate the trade-off between the achievable network performances and
energy costs at user side for the proposed algorithms through numerical simulations.
Namely, the proposed methods are evaluated in a network composed of 9 APs and 5
fixed users as depicted in Fig. 5.5, where several users such as 1, 2 and 5 are in the
center of the network, whereas others are in the edge. This scenario allows us to
evaluate the effect of users’ channel qualities given their positions, on the proposed
algorithm’s performance. Among them, user 3’s link to AP 1 is obstructed by an
obstacle (black circle) which is removed during two periods, namely from frames 2000
— 4000 and from frames 6000 — 8000, which is to assess the behavior of the e-greedy
strategy in exploring new APs as the environment changes. Furthermore, all APs
located in the LoS direction of any user-AP link are considered as obstacles, resulting
into NLoS links in the mmWave band. Then, to assess the effectiveness of the proposed
algorithm in dynamic environment, user 3 will be moving following the green path
with Pedestrian speed (i.e., 1.15m/s [58]), while other users will remain fixed as shown

in Fig. 5.6.

In both static and dynamic scenarios, each user requires four applications: two
downlink (DL) applications with different minimum rate QoS: Rpr; = 100Mbps, Rpr; =
1Mbps; and two uplink (UL) applications with minimum rate QoS Ryr; = 10Mbps, Rur
= 0.1Mbps.

For the fixed users, block Rayleigh fading channels are assumed, where each
channel coefficient remains fixed during each scheduling frame of 1 ms, but changes
randomly across frames. For the moving user 3, large scale fading parameters are
assumed fixed over each period of 10 frames, while small scale fading still changes
randomly every frame. The total number of simulated frames is 10000. We built our
own simulator using Python 2.7. Detailed simulation settings are given in Table 5.1
where the transmit powers are considered to be fixed regardless to AP-user distance,

which will be optimized in the future work.
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Table 5.1: Simulation Parameters

Parameter Description
DL/UL transmit power (pfkL ];V, pg}v (5, 1.5) dBm
Noise power at user, AP sides -169 dBm/Hz, -174 dBm/Hz
Sub-6GHz, mmWave Bandwidth 10 MHz, 1 GHz
Small-scale fading model Rayleigh fading

Path loss model - Sub-6GHz 38.5 + 30log,,(d)

LoS Path loss model - mmWave 61.4 + 20log,,(d) + X5, X; ~ Gauss(0; 5.8 dB)
NLoS Path loss model - mmWave | 72 + 29.2log,,(d) + X,+, X5 ~ Gauss(0; 8.7 dB)
(d: AP-user distance [m])

Mean packet arrival rate (my fﬁ) 0.1 Mbps

Since user devices are fundamentally battery-limited, we assume the simplest yet
effective DQN which is built with two fully connected hidden layers using Softmax
activation function. The number of neural nodes per hidden layer is 16, the memory
size is set to 100 and the batch size is 20. Then, learning parameters are set as the same
proposed DQN-based methods in previous chapters with y = 0.9, ¢ = 0.5, and decay
factor A = 0.995. Weights (wig, wyx) in (4.18) are (0.5, 0.5). Moreover, P, and ng are
fixed to 10 mW and 3 mW, while P;; is set to 1 mW as in [44].

We compare the proposed algorithm with adaptive ¢ value to the reference algorithm
Ref. DON where each user exploits a similar DQN to explore all APs, i.e., B,y is fixed

to 9, but can only be served by the interfaces of a unique AP simultaneously, as in
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Figure 5.7: Average data rate over time frames, per application, static scenario

existing systems. To simplify, the proposed algorithm with adaptive e-greedy will be
denoted as Prop Buax-best APs, where By refers to the number of candidate APs that
are explored simultaneously. That is, by focusing on a small number of APs which
provide the best SNR at each frame, users are expected to reduce their DQN power
consumption, but should also guarantee a good performance. To clarify this trade-off,

we investigate the cases of Bpax = 9, 7, 5, 3 and 2 best candidate APs.

5.5.2 Static Scenario

In Fig. 5.7, we present the average data rate evolution over frames per application

for the proposed and reference algorithms. The total sum-rates of all applications and
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Table 5.2: Average sum-rate [Gbps], outage [%], total power consumption [W] and EE
[Mbits/J], Static scenario

Algorithms | Sum-rate Outage Total consumed power EE
Ref. DOQN 6.99 25.8 1005.1 0.007
Prop 9-best APs 9.31 3.09 1005.1 0.009
Prop 7-best APs 8.59 3.17 329.0 0.026
Prop 5-best APs 9.76 7.72 4.5 2.17
Prop 3-best APs 9.67 1.65 0.3 32.2
Prop 2-best APs 9.53 1.98 0.04 238.3

average outage are given in Table 5.2. We can observe that all algorithms converge
well and satisfy the QoS requirement for each application. All proposed methods
outperform the reference one in terms of average sum-rate and outage. Namely, despite
exploring the same number of APs, Prop 9-best APs achieves 1.3 times higher sum-rate

while providing 8.3 times lower outage probability compared to Ref. DON.

Furthermore, we show the power consumed for user DQN processing and data
movement given by Ref. DON and the proposed algorithms with all considered values
of Bpax in Fig. 5.8. Then, their total consumed power, including the four elements
described in Section 5.2, and energy efficiency are also given in Table 5.2. Given
Bmax-best APs and two interfaces (Sub-6GHz and mmWave) per AP, each user may
explore a total number of 4 (applications)-permutations of 2Bp,x APs/interfaces. Then
for Ref. DON, Prop 9-best APs and Prop 7-best APs, the number of possible actions
becomes huge, resulting in storing the weights of both DOQN and target DQN in
DRAM and thereby consuming the data movement power in Eq. (5.2). This is why
their consumed energy is extremely high as shown in Fig. 5.8. On the contrary, with
Bmax = 5,3 or 2-best APs, each user needs to explore only 4-permutations of 10, 6 or 4
APs/interfaces respectively, which enables both DQN and target DQN weights to be

stored in the Cache, for the data movement power in (5.4).

In more details, compared to Prop 7-best APs, Prop 9-best APs gets higher data
rate for the same outage level, but at the cost of higher energy consumption as two
more APs are explored every frame. On the contrary, when users request only 5 best
APs, the outage level is increased as more conflicts occur among neighboring users.

However, Prop 3-best APs results into a lower outage despite the reduced number of
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Figure 5.8: Power consumption of user DQN processing and data movement

requested APs. This is because, by exploring only the 3 best APs, each user tends to
request different sets of APs, thereby decreasing their conflicts. However, with Prop
2-best APs, each user needs to systematically request those 4 interfaces for their 4
applications, leaving no room for improvement. That is why Prop 2-best APs suffers

from higher outage compared to Prop 3-best APs.

Overall, the proposed method with By, = 2 or 3 provide the lowest outage levels
and approach the highest sum-rate, for a very low total power consumption as shown
in Table 5.2. Namely, under this scenario, Byy,x = 3 or 2 result into the best trade-offs
between system performance and energy costs, the former for outage minimization, and
the latter, for energy efficiency maximization due to its minimal power consumption.
Based on this observation, we will evaluate the proposed algorithm with By, = 3 best

APs in the dynamic scenario.

5.5.3 Dynamic Scenario

In Fig. 5.9, we show the average data rate evolution over frames per application
for Prop. 3-best APs and Ref. DON. It can be observed that both algorithms converge
well even in the dynamic case. However, after convergence at about frame 3000, the

reference method discloses a decreasing tendency for most applications, except for UL
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App. 1, whereas Prop. 3-best APs keeps increasing the average data rate for DL App. 1
and UL App. 2. The rates for DL App. 2 and UL App. 1 achieved by the proposed
algorithm have a slight decrease during frames 5000-8000, but increase again thereafter.
These behaviors can be explained by analyzing the actual AP association of moving
user 3, shown in Fig. 5.10. For Ref. DON, after 3000 frames, user 3 tends to request AP 4
on both interfaces for DL App. 1 and UL App. 2, and to request AP1-mW for DL App. 2,
AP2-mW for UL App. 1. This would be a good behavior if user 3 were fixed as in the
previous scenario where user 3 was always close to these APs. However when moving,
the connections with these APs are no longer suitable for user 3, especially as it moves
out of the coverage areas of APs 1, 2 and 4. Moreover, as the exploration probability ¢
is not adapted under new environments, user 3 is unable to learn to request other APs,
resulting in lower data rates over time. On the contrary, in Fig. 5.10(b), by resetting ¢
whenever new candidate best APs are detected, the proposed algorithm allows moving
user 3 to request these new APs along with its mobility pattern, thereby enhancing
the system performance. In addition, we can observe that at the beginning, moving
user 3 changes its association requests very often, according to the changes of best
APs. However, after about 3000 frames, although the set of best APs is still updated
frequently, user 3 can quickly reach a stable association request among these best APs,

as indicated by the presence of horizontal lines.
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Table 5.3: Average sum-rate [Gbps], outage [%], total power consumption [W]
and EE [Mbits/J], Dynamic Scenario

Algorithms | Sum-rate Outage Total consumed power EE
Ref. DQN 6.82 35.1 1005.1 0.007
Prop 3-best APs 9.52 6.23 0.3 31.7

Finally, the total sum-rate of all applications and average outage in this dynamic
scenario are presented in Table 5.3. As expected, the proposed algorithm with 3-best
APs outperforms the reference one in all aspects. Namely, Prop. 3-best AP gains 40%
higher sum-rate, while guaranteeing 80% lower outage probability than Ref. DON.
Notably, the proposed algorithm considerably improves the energy efficiency.

5.6 Summary

In this chapter, the overall energy consumption at the user device for running
its DQN has been analyzed in details. Based on that, we have introduced two
enhancements, namely, the adaptive e-greedy policy and Branch-and-Bound based
user association and beamforming, for the proposed DQN-based association and
beamforming algorithm presented in Chapter 4. These enhancements improve not
only the network performance, but also the energy efficiency, especially in dynamic
environments. Numerical results show that, thanks to the adaptive e-greedy policy and
by adequately setting the number of explored APs By,x, the proposed method enables
to strike a balanced trade-off between network sum-rate, QoS satisfaction of diverse

applications, as well as user energy consumption.
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Risk-Averse Reinforcement Learning for
Reliability Enhancement in

Sub-6GHz/mmWave Integrated Networks

6.1 Introduction

As discussed in Chapter 1, reliability is another key requirement of 5G, which
will become increasingly important in B5G systems. So far, many approaches have
been taken in the literature to enhance the reliability of wireless communications as
mentioned in Chapter 2, in particular in the context of massive IoT connectivity.

Recently, key findings within the machine learning community in the field of
Risk-Sensitive Reinforcement Learning (RSRL) have triggered the design of learning-
based methods for improving reliability without prior knowledge of such network
statistics. Based on the seminal paper of [60], this RSRL approach was shown to be
highly efficient in [61], which studied the problem of beamforming and transmit power
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optimization for URLLC applications. In [62], a different approach of RSRL was taken,
by re-engineering the QL algorithm such that the probability of visiting a risk-state
(i.e., target PLR violation state) is minimized. However, these works do not exploit
multi-interface diversity and are not applicable to Sub-6GHz/mmWave integrated
networks envisioned in B5G.

In this chapter, we aim at improving the reliability of a Sub-6GHz/mmWave
integrated network based on a novel RSRL approach, without prior knowledge of the
statistics of each interface. Specifically, our proposed method enables to learn the
adequate interfaces (Sub-6GHz, mmWave, or both) to be selected for each user and
every scheduling time frame, solely based on the ACK/NACK feedback information
from each user. Indeed, to be compatible with the stringent latency requirements
and limited device capabilities of mMTC and URLLC types of applications such as in
automated factories, instantaneous CSI is assumed unavailable in the considered system.
In addition, mmWave signals may undergo severe dropouts, due to their blockage
sensitivity, particularly in such factory scenarios. To cope with the uncertainties and
dynamics of the wireless environment in the absence of CSI knowledge or statistical
interface models, we propose to leverage upon a new and highly efficient approach
initially developed in the context of trading markets, coined as Risk-Averse Averaged
Q-Learning (RAQL) [11]. Based on this approach, each AP learns to optimize its
interface selection for each device in order to maximize the overall successful packet

delivery rate, while avoiding the risk of unsatisfied PLR requirement for each device.

6.2 System model

We consider the downlink transmissions in a wireless network composed of
multiple APs serving a number of IoT devices, all equipped by both Sub-6GHz and
mmWave interfaces. As shown in Fig. 6.1, AP b transmits desired packets to a set K of
IoT devices, while they receive DL interferences from all other APs b" # b.

At the beginning of each scheduling frame t, AP b has Li(t) packets, each of size
d in number of bits, to be transmitted to device k € K. Li(t) can be modeled as an
independent and identically distributed (i.i.d) random variable following, e.g., the
truncated Poisson distribution as in [62].

AP b transmits these packets through N subchannels on the Sub-6GHz interface, and
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Figure 6.1: System model: DL transmissions to IoT devices, Sub-6GHz and mmWave interfaces

through M beams on the mmWave interface. Each Sub-6GHz subchannel or mmWave
beam can be allocated to a unique device, in each scheduling time frame. However,
multiple devices can be supported in each frame, over the different subchannels in

Sub-6GHz and beams in mmWave.

In Sub-6GHz band, the Signal-to-Interference plus Noise Ratio (SINR) from AP b to
device k on subchannel n is,

sub(t) _ pzllitr)z(t)hzllgr)z(t)

Ybkn b 2’
Izzn + M/subo'n

(6.1)

where transmit power pZ‘,fr’l from AP b to device k on subchannel n is assumed equal
among subchannels, and Wy, is the bandwidth per subchannel. The term hzlli}; is the
channel power between AP b and device k on subchannel n, given by hzllil:l(t) = |i~12‘]il:l(t)|2
with sz‘Ifr’l(t) the complex channel coefficient including small-scale and large-scale
fading effects. The term o2 denotes the Additive White Gaussian Noise (AWGN) power
and IZEE is the interference power from APs b’ # b towards device k on subchannel n,

where it is assumed that all APs transmit with full power.

For the mmWave interface, assuming analog beamforming, the transmit beamwidth
and beam direction from AP b to device k on beam m are denoted as Oy, and Bpim,
respectively, and adjusted depending on the served device k at each beam m and time
frame ¢. For simplicity and without loss of generality, the receive beam gain G,Ij" at the

device k will be assumed fixed as in [51].

To maximize the achievable rate, Oy, is set to the narrowest beamwidth, and Sy,
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is given by the Line-of-Sight (LoS) direction from AP b to device k. Hence, the SINR at
device k served by AP b on beam m is given as

W mW
mwW _ pzr]lcmhg]l(m (Obkms ,Bbkm)

bkm

) 6.2
+ meag 6.2

where p;}r}x, h‘br}x are the transmit power and channel power between AP b and device
k on beam m, respectively, and Wy,w is the bandwidth. The channel power hg;x isa

function of transmit beamwidth and direction on beam m,

KW Optoms Boicm) = Gp(Obims Bokm) A PLytnGRY, (6.3)

where fzg;x and PLy,, denote small-scale fading and path loss between AP b and device
k on beam m, and Gy,(Opkm, Brkm) is the main transmit beam gain between AP b and
device k, modeled as [51]

21w — (21 — Oppm )€
Gp(Opkms Pokm) = ( bim)

s 6.4
Obiem (6.4)

where € is the side lobe beam gain. In (6.2), I;’;(\Z denotes the interference power
from all APs b’ # b towards device k served by AP b, computed based on their side lobe
beam gains.

The achievable rate of device k served by AP b is hence

Waup log, (1 + yzzg(t)), if device k is allocated Sub-6GHz subchannel n,

r/ (t) =
bk Waw log,(1 + yzr]‘(\l(t)), if device k is allocated mmWave beam m,

(6.5)

where v = {Sub, mW} (Sub 6GHz or mmWave). Given the low delay requirements
of IoT applications, no instantaneous CSI feedback is assumed from devices to APs,
as in [62]. Hence, APs should make allocation decisions without the knowledge of
achievable rates (6.5). In addition, it should be noted that mmWave transmissions
result in a small but non-zero rate with non-LoS (NLoS) path loss in case of blockage.

We denote as [}(t) € {0,..., Lx(t)} the number of transmit packets to device k on
interface v at frame ¢, where lzub(t) + l]‘:‘W(t) < Li(t), as Li(t) is the total number of

queued packets at frame ¢ '. Then, the number of successfully received packets Q)

1Given the low latency requirements of targeted applications, packets that were not served in
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at device k on each interface, can be calculated by AP b based on device k’s ACK
feedback, by

(@)

QLD = >l t), (6.6)
I=1

where @/ (t) denotes the feedback from device k for packet I on interface v for frame ¢,

where
1 for ACK packets
a),:l(t) = (6.7)
0 for NACK packets.
Moreover, within a frame of duration T;, the maximum number of packets of size d bits

that can be received successfully at device k on interface v is given by

(1) X T

lV
d

D=1 . (6.8)

It should be noted that l]:’max is unknown at the AP, since er(t) is unknown. It is
thus assumed that if [} (¢) < l,:,max(t), i.e., the number of transmit packets is smaller
than that can be received by device k in its allocated subchannel or beam, all these
packets will be successfully received and their ACKs will be fed back to the AP. But if
L) = l;c/,max(t)’ then [ (¢) — lz)max(t) packets will be in NACK state.

Based on the above, we define the PLR of device k for frame ¢ by averaging over

packet loss occurrences up to frame ¢ over both interfaces, as

t sub + omW
) = 23 [1 - 2 (69)

= 19 (r) + 1MW () I
Qb (r)+QImW(7)

interfacés forkframe 7. Finally, the PLR of device k at frame ¢ on each interface is

where expresses the Packet Successful Delivery Rate (PSR) over both

updated as

lpv(t - 1) if 1)(t) =
QV

(D) = O] o
HE=Dpit—1)+(1- %) if I/(1) >

0
(6.10)
0

previous frames are dropped, as in [62].
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with p/(0) = 0,Vv = {Sub, mW}.

6.3 Problem formulation

We formulate the problem of maximizing the long-term average PSR over all

devices, while satisfying individual PLR constraints set to pmayx here, as

1« Q@)+ V(e
max B |[— > kb() kw() (6.11)

propvo | Kige BRE )
st B, V@) e {0,..., Li(t)}, Vk € K, (6.11a)
B () + V(1) < Li(t), VK € K, (6.11b)
SECO <N, S IVl < M, (6.11¢)

kex kek
i qub(r) + Qmw(r) VE € % 611d)
1-— < Pmax, Yk € K. 6.11
lsub 7,') + lmW( ) S Pma

=

Eq. (6.11a) sets the domain of definition for each variable. Eq. (6.11b) expresses that
the number of allocated packets on both interfaces should not exceed that of generated
packets. Egs. (6.11c) fixes the maximum amount of resources on each interface. Finally,
Eq. (6.11d) constrains the PLR of each device to be lower than target ppax. Given the
intractability of this problem, we design a RL framework based on the MDP model

explained next.

6.4 Proposed method

We first formulate the considered distributed problem as a MDP. Then, the proposed
method based on Risk-Averse Averaged Q-Learning (RAQL) is devised, whereby each
AP learns to optimize interface selection for packet transmission to devices in each

time frame, in order to best satisfy the PLR requirement for each device.
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Figure 6.2: MDP model of the interface selection and packet scheduling in
Sub-6GHz/mmWave integrated networks

6.4.1 Markov Decision Process Formulation

The goal is to maximize the long-term PSR averaged over all devices, while
satisfying the individual PLR constraints for each device, set to pmay here. This problem
can be modeled as an MDP as depicted in Fig. 6.2, characterized by its state space,
action space, transition probabilities and reward function whose detailed definitions
will be given in subsection 6.4.3. Namely, each AP is an agent that takes its decisions of
interface selection and packet scheduling. At each frame ¢, the AP knows the current
state environment s; composed of the current PLR satisfaction levels of its associated
devices and their feedback status for previous frame t — 1. Based on s;, the AP takes
action a;, i.e., it decides the number of packets to be transmitted over each interface
for each device for current frame t, then obtains an immediate reward r; from the
environment, which then moves to a new state s;.1. Here, the AP has no knowledge of
the transition probabilities P(s;.1[s;, a;) since information such as instantaneous CSIs
or interface statistics are unknown. We thus exploit the RL framework to address this
problem [50].

6.4.2 Risk-Averse Reinforcement Learning

To best meet the severe reliability requirements, we propose to exploit a newly
developed approach of RSRL in [11], coined as the Risk-Averse Averaged Q-Learning
(RAQL). Compared to traditional RL methods such as QL whose goal is to maximize
the expected return, conventional RSRL as in [60] introduced the notion of risk, linked

to the variance of the reward. The RAQL proposed in [11] achieves further variance
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reductions, thereby reducing risk, while also providing convergence guarantees.

Formally, instead of taking the expected reward as the objective function as in

traditional RL, the following expected utility of the reward is used [60] [11]

Jr = %Eﬂ,h [exP (ﬁ i rt)] , (6.12)

where the expectation is over the stochastic policy 7 : S X A — [0, 1], which is a
probability distribution function for choosing actions, and channel realizations h over

both interfaces. By taking the Taylor expansion of (6.12),

Ern [i rt] + gVar [i rt] + O(%), (6.13)

t=0 t=0

it is clear that f < 0 makes the objective function to be risk-averse, as the expected

reward can be maximized while its variance is minimized.

While the algorithm of [60] was proven to converge to the optimum of (6.12),
the RAQL of [11] enabled to further reduce the training variance by choosing more
risk-averse actions, thereby potentially reducing the convergence time to the optimum
of (6.12). This is achieved by training multiple Q-tables in parallel. Then, to select more
stable actions, the sample variance of those Q-tables is used as an approximation to the
true variance, from which a risk-averse Q-table is computed and used for risk-averse

action selection. Next, we explain the details of the proposed algorithm based on
RAQL.

6.4.3 Proposed RAQL based interface selection and packet
scheduling method

The proposed RAQL based algorithm takes place at each AP, where the state and
action spaces are defined as follows.
State: s(t) is the current QoS satisfaction level in terms of PLR, for all devices k € K at
frame t, and their latest ACK feedback for packets sent at frame (¢ — 1), i.e,,

s(t) = (w3 (t), W™ (1), (¢ - 1), QW (¢ - 1), Vk € K}, (6.14)
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where
1 ifpl(t) <
ul(t) = Pill) < Pumax (6.15)
0 otherwise.

As such, the maximum number of possible actions for each user k is [2(L; + 1)]?,
resulting a total the cardinality of state spaces of [2(L; + 1)]4%].

Action: a(t) is the interface choice over which each device’s packets will be transmitted.
To avoid the explosion of the action space size and to make the proposed method
scalable for future work, we propose to condense the interface selection task and
packet scheduling tasks into the three actions ay(t) for device k defined next, based on
the following rationale. While APs don’t have instantaneous CSI knowledge, it is
reasonable to assume that the long-term CSI such as average path loss or average SINRs
are known, based on sporadic feedback. Hence, each AP can perform subchannel and
beam allocation based on the average CSI of each device. In that case, all subchannels
are equivalent for each device, so APs can randomly choose each subchannel to be
allocated to each device. Then, each AP’s scheduling task amounts to deciding the
number of packets to be transmitted per subchannel for each device. The maximum
number of packets that can be successfully received by device k from AP b during

framelength T; can be estimated as

. r, X T
bk S
e = 121, (6.16)
where 7}, is the known average rate of device k on interface v. Actions a(t) are hence

given as

« ai(t) = 0: only Sub-6GHz interface is used and the number of transmit packets

are
FU(t) = min{l* L0}, V(@) = o, (6.17)

k,max’

* ai(t) = 1: only mmWave interface is used and the number of transmit packets are

By =0, 1mV(t) = min{I™V | Li(t)}, (6.18)

k,max’

* ai(t) = 2: both Sub-6GHz and mmWave interfaces are used, but with higher
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priority on mmWave by maximizing its transmit packets to take advantage of its

high data rates,
Y = min([P | Li(t)) (6.19)
min(5® (1), L) — "™V (1)) if V(1) < Li(p),
pub(p) - (a8 Lie(8) = L7 (2)) o (1) < Li(2) (6.20)

1 otherwise.

Finally, overall action a(t) is given for all devices, under the constraints of the number

of subchannels and beams, as

a(t) = {ap(t) € {0,1, 2}, Vk € 7(‘ S Iag(t) = 0) + Kax(t) = 2) < N

< & > Wax(t) = 1) + ar(t) = 2) < M}. (6.21)
keX

In case of a sufficient number of subchannels and beams, i.e., the resource constraint is
satisfied, the maximum number of possible actions is 311,

Reward: r(s(t), a(t)) denotes the immediate reward achieved by performing action a(t)
at frame ¢, given by the average PSR over devices. In particular, this reward function
also takes into account the risk state defined in (6.15). Based on the ACK/NACK

feedbacks (6.7) from which the AP gets Q) (¢) in (6), the reward is computed as

—_

L @Y

rls(e).a(e) = 1 > 3

e B0+ IV (o)

1 -u™@) - 1 -u™().  (6.22)

Obviously, when uZ(t) = 0, i.e., device k is in a risk state for not satisfying its PLR as
in (6.15), the reward is penalized. In other words, a risk-averse action has a higher
probability of achieving a higher reward, thereby of being selected.

The details of the proposed RAQL based interface selection and packet scheduling
method are given in Algorithm 6.1. Namely, at the beginning, the AP initializes I
Q-tables, along with table V to count the number of selections of each action a given
state s. The corresponding learning rate « is also initially set to 0 and the algorithm
starts with a random state (Lines 1-2). At each frame t, a Q-table is randomly chosen
and used to calculate a risk-averse Q-table by (6.23) (Lines 3-5).
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) R Si_1(Qi(s, a) — O(s, a))?
P

Qls,a) = Q(s, a) - 1 : (6.23)

where A, is the risk control parameter and Q(s, a) = % Zle Ql(s, a) is the average

Q-table.

Algorithm 6.1: Proposed interface selection and scheduling algorithm based
on Risk-Averse Average Q-Learning

Input:Exploration rate ¢, decay factor A, number of Q-tables I, risk control
parameter A,, utility function parameter f
1 fori=1,...,Ido
2 L Initialize Q' = 0, V! = 0, &' = 0, state s;

sfort=12,...,T do

4 Take a Q-table randomly: Q = O, where
H < Random number in [1,...,1];

5 Compute Q by (6.23); € «— € X A;

6 if random number p < ¢ then

7 L Select random action a

8 else Select action a with max Q(s, a);

9 Perform action a and receive a reward by (6.22);
10 Generate a mask J € R! ~ Poisson(1);

11 fori=1,...,Ido

12 if J; = 1 then

13 Update Q' by (6.24);

14 Update Vi(s,a) = Vi(s,a) + 1;

15 Update (s, a) = V,»(ls’a);
16 Move to the new state;

Next, given the current state and exploration rate ¢, action a(t) is selected by
the e-greedy strategy. The AP transmits packets based on the selected action, and
receives the immediate reward (6.22) (Lines 6-9). Finally, the Poisson masks guarantee

parallel updates of the Q tables, V and «, for the current state-action pair (s, a). Unlike
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conventional QL as in [50], RAQL updates its Q-function by

Q(s(2), a(t)) = Q(s(t), a(t)) + a(s(2), a(t))
X[4%W}Mm+yQ?Q@U+m®—QQMJ®»—m+ (6.24)

where a(s(t), a(t)) is the learning rate for the state-action pair (s(t), a(t)), y is a discount
factor and u(x) is a monotonically increasing concave utility function, given as in [11,60]
by

u(x) = —e’, (6.25)

with f < 0. The environment then moves to a new state (Lines 10-16). This process is

repeated until the maximum number of frames T is reached.

6.5 Numerical evaluations

6.5.1 Simulation Settings

The proposed algorithms are evaluated in various scenarios by varying the number
of devices K and the number of Sub-6GHz subchannels N and mmWave beams M,
where each subchannel has different channel power due to small-scale and large-scale
fading effects, while each beam has a smallest beamwidth and its direction is assumed
to be adjustable for LoS direction from AP to the considered user. We consider two
scenarios with different network statistics: the small network (Scenario 1) in Fig. 6.3(a)
with K = 3, N = M = 4, and the larger network (Scenario 2) in Fig. 6.3(b) with K = 10,
N = M = 16 which produces up to 3'° possible actions. In scenario 1, devices 1 and 2
are at the same distance to the AP, but device 2’s link is blocked by an obstacle (the
black diamond), and device 3 is the farthest one, allowing us to access the behavior of
the proposed algorithm in term of interface usage distribution. Besides these three
devices, other seven devices with different distances and directions to the AP are added
in scenario 2, where devices 2 and 6’s links are blocked, for generating more uncertain
environment. In both scenarios, the number of transmit packets to each device per time
frame is set to 6, i.e,. Li(t) = 6, for all T = 10000 frames. The PLR requirement pp,x is

set to 0.1. Moreover, all devices are assumed to be fixed but undergo block Rayleigh
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Figure 6.3: Simulation scenarios (obstacles in black diamonds)

Table 6.1: Simulation Parameters

Parameter Description

Transmit power (p;‘]i];, p;}:;) 5 dBm

Noise power at device sides -169 dBm/Hz

Bandwidth (Sub-6GHz, mmWave) (100 MHz, 1 GHz)

Carrier frequency (Sub-6GHz, mmWave) | (2 GHz, 28 GHz)

Small-scale fading model Rayleigh fading

Path loss - Sub-6GHz 38.5 + 30log,,(d)

LoS Path loss - mW 61.4 + 20log,,(d) + X5, X5 ~ N(0,5.8 dB)

NLoS Path loss - mmWave [56] 72 + 29.2log,(d) + X7, X5 ~ N(0; 8.7 dB)
(d: AP-user distance [m])

channel fading, i.e., the channel coefficient for each subchannel (beam) remains fixed
during each frame of 1 ms, but changes randomly across frames.

We built our own simulator using Keras API and Numpy library in Python 2.7. Detailed
settings of the wireless system are given in Table 6.1. For the proposed method, the
number of Q-tables I is set to 2 or 4; the risk control A, and utility function parameters
B are set to 0.5 and —0.5, respectively. Learning parameters are set as in [54] to y = 0.9,
¢ = 0.5, and decay factor A = 0.995.

The algorithms are also evaluated in terms of the metric AP = % Z]Ikil(pm&lX - Pk)s
which quantifies the margin to the target PLR, averaged over devices. As lower PLR

levels are preferred, the higher A, the better the performance.
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6.5.2 Benchmark schemes

We compare the proposed algorithm to RSQL [60] and the standard Q-Learning [50]

approaches:

+ Reference RSQL with three actions (Ref. RSQL-3a): This method has the same
state/action/reward definitions as the proposed one, but uses the conventional
RSRL of [60] with one Q-table, without any risk-averse O-table.

+ Reference QL with three actions (Ref. QL-3a): This is similar to the above, but
using basic QL of [50].

In addition, all algorithms are evaluated with only two types of actions instead of three,
where either Sub-6GHz or mmWave interface can be used but not both simultaneously
(i.e., ar € {0,1}), as in most existing methods in the literature. These methods will be
denoted by suffix “2a” instead of “3a”.

6.5.3 Simulation Results

6.5.3.1 Scenario 1

Firstly, the reward evolution against time frames in Fig. 6.4 shows that all algorithms
converge well. When using four Q-tables, the reward for the proposed method even
keeps increasing after 10000 frames. The algorithms with only two possible actions
are all outperformed by their three-action counterparts. We also note that Prop.
RAQL-2Q-3a requires a training time of around 5000 frames and Prop. RAQL-4Q-3a,
around 8000 frames, namely 5 and 8 seconds, respectively, when learning from scratch.
In practice, this training period can be made offline, so this does not reflect the delay
during actual packet transmissions which are initiated once the network has been
trained. Furthermore, less time would be required in the case of online learning for
coping with subsequent variations of the network environment. These aspects will be
investigated in depth in the future work.

Next, the detailed results in Table 6.2 show that the proposed methods outperform
all baselines in terms of reward, average PSR over devices, individual PLRs as well
as A, metric. In addition, we can see that by allowing to transmit over Sub-6Ghz

and mmWave simultaneously, the overall performance is greatly improved. Namely,
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Figure 6.4: Reward evolution of all algorithms, scenario 1

all reference methods with two possible actions and Ref. QL-3a only satisfy the LoS
device 1 which is also the closest to the AP and hence, whose target PLR is easiest to
meet. By contrast, the other devices suffer very high PLRs. By allowing three possible
actions and being risk-sensitive, Ref. RSQL-3a also satisfies the PLR constraint of the
farthest device 3 besides device 1, but not that of device 2 whose link is blocked. By our
proposed methods based on RAQL using 2 and 4 Q-tables, all devices can finally satisfy

their PLR requirements.

Table 6.2: Detailed results for scenario 1

. Avg. PLR A
Algorithm Reward Success  q1 - - A,
Ref. QL-2a 0.540 0.846  0.004 0.271 0.188 -0.054
Ref. RSQL-2a 0.585 0.861 0.005 0.260 0.153 -0.039

Ref. RAQL-2Q-2a 0.638 0.879  0.003 0.220 0.140 -0.021
Ref. RAQL-4Q-2a 0.672 0.889  0.003 0.185 0.145 -0.011
Ref. QL-3a 0.709 0.903 0.002 0.149 0.140 0.003
Ref. RSQL-3a 0.796 0.930 0.003 0.133 0.077 0.029
Prop. RAQL-2Q-3a 0.827 0.942 0.002 0.091 0.081 0.042
Prop. RAQL-4Q-3a 0.987 0.946 0.003 0.088 0.072 0.046

The evolution of the PLR perceived by each device and the interface usage
distribution for each device are shown in Figs. 6.5 and 6.6, in the case of three actions.

Again, we observe that device 1 with the best channel conditions can be easily satisfied
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Figure 6.6: Interface usage distribution per device, scenario 1

by all algorithms. For edge device 3, Ref. RSQL-3a enables to satisfy its PLR requirement
by using more the mmWave or both interfaces, as in proposed algorithms. For blocked
device 2, all algorithms show a decreasing tendency of its PLR over time, by using
more the Sub-6Ghz interface as shown in Fig. 6.6. However, the proposed RAQL-based

algorithms are the only ones enable to satisfy its PLR target, by learning to mostly use
Sub-6Ghz.

6.5.3.2 Scenario 2

Fig. 6.7 shows the reward evolution over frames for all algorithms. It can be
observed that the three-action methods improve over their two-action counterparts,
and the proposed methods largely outperform the baselines ones as shown in Figs.
6.7(a) and (b).

The detail results are given in Table 6.3. We can see that although the three-action
methods achieve higher average PSR over devices than the two-action algorithms,
they still suffer from negative A,. This means that the PLRs of many devices are

much higher than their target PLR. In particular, Prop. RAQL-4Q-3a provides the best
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Figure 6.7: Reward evolution of all algorithms, scenario 2

Table 6.3: Detailed numerical results for scenario 2

Algorithm Reward Avg. Success A,
Ref. QL-2a 1.377 0.858 -0.0422
Ref. RSQL-2a 1.551 0.859 -0.0414
Ref: RAQL-2Q-2a 1.657 0.861 -0.0393
Ref: RAQL-4Q-2a 1.765 0.861 -0.0392
Ref. QL-3a 2.878 0.890 -0.0095
Ref. RSQL-3a 2.918 0.891 -0.0086
Prop. RAQL-2Q-3a 3.813 0.893 -0.0070
Prop. RAQL-40-3a | 3.891 0.894 -0.0060
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performance in terms of reward, average PSR over devices, achieving a 4.2% increase of
average PSR and up to 7 times higher A, as compared to Ref. QL-2a.

Next, we show the number of outage devices for all algorithms in Fig. 6.8. It can be
observed that, three-action algorithms can significantly reduce the number of outage
devices compared to the two-action methods. Among them, the proposed algorithms

provide the lowest number of outage devices.

6.6 Summary

We have investigated the issue of improving the reliability of IoT packet trans-
missions without perfect CSI knowledge, by exploiting multi-connectivity over the
Sub-6GHz and mmWave interfaces of B5G integrated networks. We have proposed a
method based on Risk-Averse Average Q-Learning, enabling the AP to optimize its
own interface selection decision with minimal feedback from devices. Numerical
results showed the effectiveness of the proposed method compared to the baselines, by
enhancing the overall successful packet reception rate while reducing individual PLRs,

despite unknown channel fluctuations.
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Conclusions and Future Perspectives

7.1 Conclusions

This thesis investigated wireless access optimization and multi-interface connectiv-
ity for future networks by focusing upon three major directions: the joint exploitation
of a wide range of spectrum from Sub-6GHz to mmWaves, Al-enabled capabilities
at devices or AP and energy efficient Deep Learning. In such a context, the study

explored and designed RL-based solutions for three major issues:
« User-to-multiple APs association,

+ Energy efficiency enhancement of the DQN-based methods for User-to-multiple

APs association,

« Reliability enhancement for mMTC use case.
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7.1.1 User-to-multiple APs association

Devising efficient user-to-AP association methods is essential for guaranteeing
stringent system performance metrics required by B5G/6G networks. However, all
these diverse and strict QoS requirements can hardly be fully satisfied by restricting
each user to associate with only one AP as in most existing studies. Allowing each
user to connect to different radio interfaces across different APs, much higher user
satisfaction levels may be achieved. To verify this, we hence investigated the issue of
user-to-multiple APs association in two systems and proposed RL/DRL-based multi-AP
association at user side, and radio resource allocation optimization at the AP side,
under a harsh environment where all APs mutually interfere and where no global CSI

knowledge is available for users nor APs.

In Sub-6GHz networks

Firstly, we considered the scenario where each user device requests multiple
applications with various QoS requirements, thereby requiring to be served by different
APs simultaneously. For this, we proposed algorithms based on Q-Learning, DQON
and DDOQN techniques at the user side, each of which had two versions: the fully
distributed method where users receive the minimal feedback notifying only their
desired APs’ association decision, and the partially distributed method where an
additional information of local environment regarding the outage of neighboring
users is also fed back to the users. The numerical results showed that multiple APs
association enables higher network performance than single AP association scheme.
Moreover, the proposed algorithms work well and provide the highest performance
compared to baseline methods. The partially distributed schemes slightly enhance the
performance compared to the fully distributed methods. In addition, the DQN-based

methods obtain a performance close to their corresponding DDQN-based counterparts.

In Sub-6GHz/mmWave integrated networks

In these systems, users need to perform both AP and interface selections to
make association requests, which increases the difficulty of the user-to-multiple APs

association problem. Moreover, to enhance the whole network performance, we then
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proposed a DQN-based user association and beamforming method which took into
account the features of high path loss and obstacle sensitivity of mmWave bands.
Namely, user devices learn to optimize the pair (AP, interface) for their requested
applications through their own DQNs, whereas APs perform greedy strategies on
each interface for deciding the users/applications to be served or to be dropped. The
simulation results showed that the proposed algorithm is efficient for solving the
issue-to-multiple APs association in Sub-6GHz/mmWave integrated networks by
enhancing the network performance while better satisfying the QoS requirement

compared to the reference methods.

7.1.2 Energy efficiency enhancement of the DQN-based methods

for User-to-multiple APs association

Given the proposed DQN-based method for user-to-multiple APs association
implemented at the user side, we conducted a comprehensive analysis of energy
consumption on both computation and data access for operating the DQN. Then, to
cope with the dynamics of environments, and particularly to improve the energy
efficiency for DQN-enabled user devices and the network performance, we enhanced
the proposed algorithm of user-to-multiple APs association and beamforming by
1) introducing the adaptive e-greedy policy which allows devices to do exploration
whenever the significant changes of their surrounding environments are detected, and
2) adapting the classic Branch-and-Bound algorithm for user selection and beamforming
at AP side on mmWave interface. Based on that, we investigated the trade-off between
achievable network performances and energy cost at the user side. The numerical
results showed that the proposed enhanced frameworks work efficiently even in the
dynamic environments given moving user with a pedestrian velocity. In particular, the
proposed adaptive e-greedy user association and beamforming methods achieve much
higher energy efficiency than the benchmark schemes by allowing the user devices to
explore a subset of APs at each time frame instead of all available APs in their sensing

area.
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7.1.3 Reliability enhancement for mMTC use case

In the Sub-6GHz/mmWave integrated systems, we also investigated the issue of
reliability enhancement for mMTC use case through interface selection (Sub-6GHz,
mmWave or both) and packet scheduling. It should be noted that the delay requirement
is inherent to reliability. In our work, we assumed that a packet is dropped and
considered in outage if it is not received within a frame duration. The proposed
Risk-Averse Average Q-Learning based algorithm allows the DQN-enabled APs to
optimize their decisions across interfaces and the number of packets to be transmitted
to their associated users while avoiding the risk states. The simulation results showed
that the proposed method can enhance the reliability of the system while satisfying

more users than the baseline methods.

7.2 Future perspectives

The aforementioned achieved results of this thesis show a promising approach to
apply RL/DRL, namely QL/DOQON techniques, in wireless systems due to their high
performances and their ability for handling the uncertainty of wireless environments.
At user side, QL/DQN-based methods enable users to independently learn the dynamics
of their surrounding mobile environment including the impact of APs’ scheduler and
traffic distribution, for optimizing their requests, thereby achieving high data rate and
low outage probability. At AP side, the method based on RL techniques, namely RAQL,
allows the AP to leverage the average CSI, instead of perfect instantaneous CSI which
may not be available, for achieving higher reliability of the whole network with a lower
number of outage users. However, energy-efficient DQN-based methods are necessary,
especially as they are performed at user devices. In addition, the performance of
RAQL-based method at AP side in large networks was still not optimized, which should
be further enhanced. The findings of thesis also open some interesting directions,

which can be listed as follows.

» Highly dynamic environments: Mobile users move in and out of the coverage
area of APs, even with high velocities, creating challenging dynamics of interfer-
ence and AP traffic loads. In addition, users also have their own changes of

application requirements, i.e., they do not usually keep the same demands for the
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same applications during their operating time. In the context of B5G/6G, this
becomes more uncertain with the expected Terahertz communication, resulting

in more dynamic and unstable wireless environment.

For the user-to-AP association issue, the proposed adaptive e-greedy strategy
seems to be no longer suitable to handle such context as user devices will
keep doing exploration with a small probability of exploitation, making the
networks difficult to converge. This requires novel techniques to speed up their
learning processes. A potential solution for that is to apply transfer learning
frameworks [63] allowing the agents to learn from the trained data of different

but related problems, instead of learning from scratch.

Regarding reliability enhancement being based on QL techniques, the proposed
RAQL-based method suffers from the necessity of visiting all states and actions
for guaranteeing its convergence. Consequently, this method becomes inadequate
to handle such highly dynamic environments. For that, a direct extension of
the RAQL-based method is to leverage DRL techniques, where the AP will be
equipped with several DQNs to perform risk-averse deep learning, which is
expected to achieve high reliability while enhancing the convergence time. In
addition, to further cope with the highly dynamic environments, methods based

on transfer learning techniques can be also beneficial, similarly to above.

Integration of DNN energy constraints: In this thesis, we showed that a huge
amount of power is consumed by DNN operation for optimizing wireless access.
Given the limited-energy devices, the conventional DQN-based schemes seem
to be inapplicable. Therefore, the proposed simple yet efficient energy-aware
DOQN-based method opens a direction for the joint optimization of wireless
communication protocols and DNN operation at the device side. For that,
integration of DNN energy constraints into the wireless access optimization
problem can be a promising way. In such a context, new DNN-based methods
need to be investigated to take into account the DNN energy constraints while
optimizing the network performances. One possible approach is to leverage the
framework of [64] where the sparsity level of DNN can be adjusted depending
on the current available device energy through binary input masks of all DNN

layers. Hence, only APs/interfaces corresponding to active nodes and weights
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(which are not masked) are explored. As such, devices with a high energy budget
can spend full capacity of their DNNs, whereas under a low energy situation,
some nodes and weights should be put inactive, for optimizing their wireless

access requests.

« Scalability issue: A fundamental difficulty to apply RL, namely QL, in op-
timization problems is its scalability since the agent needs to store Q-values
for all possible pairs (states, actions) and requires a long training time before
convergence. It is more challenging for centralized QL-based methods with
an exponentially increasing number of states and actions as the problem size
becomes larger. This situation can be observed in the reliability enhancement
issue. Namely, in the proposed RAQL-based method, the sizes of the state and
action spaces are exponential functions of the number of users. Moreover, the
proposed scheme was not optimized, for very large networks. One solution
is to integrate an action elimination technique [65] where upper and lower
estimated Q-values are used to eliminate actions, i.e., whenever the upper
estimated Q-value of an action is below the lower estimated Q-values of other
actions, that action is eliminated. However, this approach may cause a higher
computational complexity compared to primary QL methods, which should be
considered in designing algorithms. One more potential solution is to extend
the RAQL-based methods by making use of DRL as mention above. By this,
besides the aforementioned convergence issue, the scalability issue can be also
controlled in two other aspects: 1) no need to store the Q-values of all possible
pairs of states and actions, 2) adjustment of number of hidden layers and hidden

nodes to provide a good performance given the size of wireless networks.

Similarly, the scalability of proposed DQN/DDQN-based methods for the issue of
user to AP association can be handled to guarantee the good performance for
large-scale networks by adjusting the size of DNN. However, since these methods
are performed at limited-battery user devices, setting the number of hidden
layers and hidden neural nodes should be cautious, which again requires to
investigate the trade-off between the network performance and energy efficiency.
In such a context, the proposed adaptive e-greedy strategy seems to be useful.

This is because by limiting the number By« of explored APs, the number of
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actions and states can be reduced, thereby enabling a small number of hidden
layers and hidden nodes for obtaining an acceptable performance. Moreover,
the small number of actions also reduces the energy consumption by DNN. In
addition, in the case of large number of applications and interfaces, the proposed
method is still applicable. Namely, if the user needs to request all APs in its
sensing area to obtain its minimum requirement, it has no choice. Otherwise, by
considering By, that is lower than the total number of APs, we can achieve a

good performance whereas saving energy consumption as discussed.

In addition, so far, the number of hidden layers and hidden nodes were set
through manual tuning in general, by running many sample experiments, with
the goal of maximizing training and validation accuracies. Our work opens up an
interesting direction for tuning these parameters, where the aim would be to
strike a desired trade-off between energy costs and accuracy levels, which will be

considered in future work.

Application of the proposed user-to-multiple APs association methods
across different systems: Considering the issue where each user device requests
several applications simultaneously, each of which can be served in different
systems, such as 5G, WLAN or LPWA, the proposed user-to-multiple APs
association methods need to be adapted to handle the impact of 1) heterogeneous
interferences, and wireless signal features, 2) heterogeneous signaling and
protocol procedures. Obviously, beside suffering interferences from APs in
one system, the user would also encounter interferences from other systems,
which may significantly reduce its achievable performances. Moreover, each
system operates upon different physical layer technologies providing different
connection qualities. For example, LPWA provides long-range communication at
the cost of low power and low data rate, whereas WLAN supports high data rates
with higher transmit power. These factors should hence be carefully modelled in
the proposed user-to-multiple APs association, especially in the reward function
design. Furthermore, the current method assumes each device is basically
connected to its set of requested interfaces, and that any application may be
served freely through both interfaces. If these interfaces belong to different

wireless technologies, the effects of heterogeneous signaling, protocol procedures
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and incurred delays should also be incorporated in the DRL framework. Although
the proposed method incorporates the differences between mmWave and Sub-
6GHz interfaces, it still needs to be carefully re-designed to cope with these

additional levels of heterogeneities.

» Hand-off issues: Considering the hand-off event when a user device switches to
other APs instead of staying with its current associated APs, under the proposed
user-to-multiple APs association scheme, the static user may suffer from too
frequent hand-off events due to its exploration at the beginning. However,
this situation will be gradually reduced when the user shifts towards more
exploitation. In the case of mobile users performing the adaptive e-greedy
strategy, the users experience even more hand-off events. Although this proposed
scheme enables the mobile users to converge fast given a fixed set of APs,
such handoff issue still needs to be enhanced. One straight solution is to set a
constraint where a user has to stay with the current association APs at least a
defined period of frames before they can change. However, this may reduce the
network performance when users associate with “bad” APs, but cannot request
other APs immediately. This trade-off design can be further investigated in the

extended work.

7.3 Concluding remarks

In this thesis, we studied the design of wireless access protocols and radio resource
allocation for fulfilling the stringent requirements of future wireless networks by
exploiting multi-interface connectivity and Al functionalities. Namely, three issues:
user-to-multiple APs association, energy efficiency of Deep Neural Network-based
methods and reliability enhancement for mMTC use case, are investigated. For the
first issue, we aimed at designing a framework where reinforcement learning-based
user-to-multiple APs method is performed at user devices for enabling them to
optimize their own APs/interfaces association requests, while APs optimize their user
selection and beamforming. Our goal is to maximize the global network performance
while satisfying all individual user QoS requirements. For that, user-to-multiple APs
association methods are based on Q-Learning (QL)/Deep Q-Networks (DQN) or Double
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DON (DDQN) to handle the dynamics and uncertainty of wireless environments,
and APs optimized their beamforming and user selection through greedy-like and
Branch-and-Bound-based methods. We then analyzed comprehensively the energy
consumption of Deep Neural Network, for both computation and data movement, in
the proposed DQN-based user-to-multiple APs association method. Based on that, we
enhanced the energy efficiency of the proposed algorithm by introducing an adaptive
e-greedy and By strategies. The key idea is to let each user explore only an adaptive
subset of best APs according to the dynamics of the mobile environment, instead of
exploring all available APs, and to adapt this APs’ subset according to the desired
trade-off level of communication quality and energy consumption. Finally, concerning
the reliability enhancement of mMTC use case which is crucial in B5G/6G, we aimed at
designing a method which allows the APs to exploit multi-interface connectivity for
maximizing the packet successful rate while satisfying the packet loss rate (PLR) of
each user. For that, Risk-averse aversage QL was leveraged, enabling the APs to avoid
the risk of violating the PLR requirement and thereby improve the system’s reliability.

We believe that our findings and ideas can be adapted to further improve the
performance of future wireless networks under more challenging scenarios such as
high mobility cases and large-scale and high density networks, as discussed through

the open directions and perspectives.
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