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Abstract

The Cisco Annual Internet Report projects that there will be 5.3 billion total Internet

users by 2023, up from 3.9 billion in 2018. The global fixed broadband speeds will reach

110.4 Mbps, up from 45.9 Mbps. The great demand for Internet services (e.g., video

streaming, VoIP, etc.) leads to an exponential growth in the backbone network traffic

and creates a huge challenge for traffic monitoring and traffic engineering (TE). In this

dissertation, we focus on solving the traffic engineering problem in backbone networks

by leveraging Machine Learning (ML) techniques. We consider a network system

which is managed by a centralized controller. The controller has roles of collecting

network states (e.g., measuring the traffic volume) and generating routing rules to

steer the traffic flows. Our main objectives are to optimize the network resources and

increase the Quality of Service (QoS) by minimizing the network monitoring overhead

and avoiding/reducing traffic congestion.

In traffic prediction-based TE approach, we first utilize machine learning models

to have accurately predicted values of future traffic demand. Then we calculate the

routing rules that can adapt to the dynamic traffic and avoid congestion based on

traffic prediction. However, directly applying machine learning techniques suffers from

several problems. The first and second problems are related to the low prediction

accuracy caused by the missing data in both training and testing phases of the ML

model. The first problem is the traffic matrix prediction with partial information.

To reduce traffic monitoring cost, the controller may not measure all the network

information. This can degrade the performance of traffic prediction as well as the TE

tasks. The second problem is the missing values in network traffic datasets. Although

missing values is a common problem in machine learning, without being properly

handled, it can affect the accuracy of the trained ML model. The third problem is
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frequent traffic rerouting. To optimize the network routing, most of the proposed TE

solutions only address the optimization problem in a single snapshot. As a consequence,

traffic flows have to be frequently rerouted to adapt to the dynamic change of traffic

demands. This approach leads to the degradation in the overall network’s QoS. Finally,

when applying ML techniques, many prior studies assume that network information

such as traffic matrix or link utilization is available. However, with the explosion

of traffic and the expansion of the physical network size, obtaining all the network

statistics imposes high monitoring overhead. In addition, a huge amount of data is

required for model training/predicting processes.

In this work, we tackle the aforementioned problems for applying ML to traffic

prediction and traffic engineering: (1) improving the prediction accuracy under

partial traffic monitoring, (2) inferring the missing values in the network datasets,

(3) suppressing the number of traffic rerouting flows, and (4) reducing the network

monitoring overhead. Firstly, to improve the performance of the traffic prediction

model under partial traffic monitoring, we utilize the Convolutional Long Short-Term

Memory (ConvLSTM) model and introduce the data correction algorithm to correct the

outputs of the prediction model. Then, we propose an algorithm to decide the set of

monitored flows in the partial flow monitoring approach. By using the proposed

algorithm, we not only reduce the monitoring overhead but also achieve higher

prediction accuracy. Secondly, we address the missing value problem in network

datasets. Based on Recurrent Neural Network (RNN) and Graph Convolutional Neural

Network (GCN), we propose a novel deep learning model to efficiently learn the

dynamic correlations in partially observed data and estimate the missing values. Then,

we mitigate the traffic rerouting issue in the third problem by optimizing the routing

over a long-time horizon. Specifically, as segment routing (SR) approach has been

widely used to solve TE problems such as minimizing the maximum link utilization of

a network, we introduce a routing scheme called Multi-time-step Segment Routing

(MTSR) by taking the advantage of the DNN models in traffic prediction of multiple

time-steps ahead. In addition, to lower the cost of network monitoring, we propose

an approach that combines traffic prediction with compressive sensing techniques.

Specifically, we first leverage the DNN to predict a partial future traffic matrix using a

small amount of the observed traffic and then utilize the compressive sensing technique

to reconstruct the whole traffic matrix.
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To evaluate the performance of the proposed approaches, we conduct experiments

using different datasets of backbone network traffic. Through extensive experiments,

we show that our machine learning models and the proposed solutions can overcome

the impact of the missing data problem, achieve near-optimal performance in network

traffic routing, and significantly reduce the number of traffic rerouting.
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1
Introduction

1.1 Traffic engineering leveraging traffic prediction

Internet traffic engineering, or TE for short, is concerned with the performance

optimization of operational networks. A major goal of traffic engineering is to facilitate

efficient and reliable network operations while simultaneously optimizing network

resource utilization and traffic performance [32]. The TE’s goals can be done by

steering the traffic in the network to avoid the congestion, protect the links/nodes

failures, and achieve the customer agreements (e.g., bandwidth guarantee). Due to its

important roles, TE has attracted massive attention from both academia and industry

throughout the history of Internet development. Especially, in recent years, we have

witnessed the exponential growth in Internet traffic due to the increasing number of

mobile/IoT devices along with the shifting in the user behaviors due to the pandemic

[11, 43] (e.g., working/entertaining from home). The increase in the traffic volume

creates a strong urge to have more efficient TE solutions that can adapt to the rapid

changes in network traffic.
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Recently, machine learning (ML), especially deep neural network (DNN), has

achieved a lot of success in solving and/or improving the performance of many

networking tasks. Traffic engineering is also benefited from the successes of the

modern ML/DNN techniques to become promising approaches compared to existing

solutions. The ML/DNN techniques can either be used to predict future traffic demands

or directly generate the routing rules. For example, network traffic routing benefits

from several ML/DNN models (e.g., Long Short-Term Memory network) to have

accurately predicted values of future traffic demand, and therefore, the routing rules

can be calculated to adapt to the dynamic network traffic and avoid the congestion.

The experiment’s results demonstrate that applying ML/DNN in solving TE problems

is a promising approach.

Figure 1.1: ML-based traffic engineering in SDN network.

In this dissertation, we focus on solving the traffic engineering problem in the

backbone network by leveraging machine learning techniques. We consider a network

system managed by a centralized controller. The decoupling of the control plane and

the data plane in the network architecture such as Software Defined Networking (SDN)

has opened numerous potentials for applying ML techniques in traffic engineering.

Being able to provide the global view of real-time network’s state and traffic flow
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information, the SDN controller becomes suitable and efficient to utilize/execute the

advanced ML techniques for network routing. Many studies have proposed ML-based

solutions for routing optimization problems. Compared to traditional approaches,

ML-based solutions have some advantages. ML algorithms can quickly generate

routing rules after being trained. In addition, ML algorithms do not need an exact

mathematical model of the underlying network [60].

Figure 1.1 illustrates an ML-based network routing approach in SDN-based network.

ML techniques are used to estimate future traffic demands based on the monitored

network information. The centralized controller is responsible for collecting/monitoring

the network information such as traffic matrices and calculating the routing policy

for each traffic flow using the predicted traffic demands. Thanks to the outputs of

traffic prediction, the network controller can calculate the proactive routing rules in

advance to adapt to the dynamic traffic in the near future. In this way, the controller

can take appropriate actions before traffic congestion occurs and improve Quality of

Service (QoS). Therefore, by improving the prediction accuracy, we can achieve better

performance in traffic engineering.

However, directly applying ML in traffic prediction and network routing faces

several practical problems related to missing data in the network measurement,

frequent traffic rerouting, and high monitoring overhead. The details of the problems

will be presented in Section 1.2.

1.2 Challenges

In the past few years, machine learning and deep neural networks have achieved

great success in many research areas as well as real-world problems such as computer

vision, natural language processing. In networking field, ML/DNN techniques are also

believed to be the keys for breaking the performance of traditional methods used in

many networking problems. However, when applying ML techniques, especially in

traffic prediction-based TE, we face several problems. The details of the problems will

be described as follows.
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1.2.1 Problem 1: Traffic matrix prediction with partial informa-
tion

We first consider the problem of traffic matrix prediction with partial information.

Traffic matrix contains the monitored traffic volume of all source-destination flows

in the network. It plays an important role in many networking applications such

as anomaly detection and network routing. Accurately estimating the future traffic

matrices helps to improve the adaptability of the routing mechanism in a dynamic

network. In traffic matrix prediction problem, although many studies have applied

ML/DNN techniques, the existing solutions focus on improving the accuracy of the

prediction model and assume that network measurements such as traffic matrices are

available. However, due to high monitoring overhead, the traffic matrix may not be

fully obtained (e.g., by applying sparse monitoring [61]). We assume that the network

controller can decide the subset of flows that will be measured. This decision is made

by the controller after every time-step. In this scenario, we face two problems: the poor

prediction accuracy due to the imprecise values in the input and how to determine

which flows to be measured in the next time-step.

Figure 1.2: The predicted value is used as input for the next prediction step since the

traffic is not measured.

In the first problem, at every prediction step, the missing entries in the traffic

matrix will be replaced by the predicted values of the previous prediction steps. Figure

1.2 shows the example of predicting future traffic of one flow by using predicted values

as input when the actual data is not measured. At time-step 5, the controller does

not have the measured data, the predicted value (i.e., the output of step 4) is used as
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input. When performing traffic prediction at step 5, since the input sequence contains

some imprecise data, the prediction accuracy will be decreased. Therefore, the low

monitoring ratio leads to a higher number of imprecise values in the input sequence,

hence the higher prediction error. As the error in the input data results in the error in

the prediction’s output, we call this problem the accumulative error.

In the second problem, the controller needs to determine which flows to be

measured at the next time-step. To reduce the monitoring overhead, we do not measure

all traffic flows, thus choosing appropriate flows to monitor in each time-step becomes

a critical factor in reducing the prediction error. One of the common approaches in

choosing a monitored flow set is to maintain fairness among all the flows. Specifically,

the gaps between every two consecutive monitored time-steps of every flow are kept

to be approximately the same. However, this method may not be effective since the

network flows are dynamic and have various temporal fluctuation patterns. To deal

with this problem, we propose a novel scheme for selecting the next monitored flows,

which exploits the previous prediction results.

1.2.2 Problem 2: Missing values in the training dataset

When applying the machine learning, the quality of the training dataset has a huge

impact on the performance of the trained model. The poor data quality results in low

prediction accuracy. In the networking field, the network dataset usually contains

missing data due to unexpected accidents such as a link down and packet loss. The

missing data problem can prevent advanced analysis and downgrades downstream

applications such as traffic engineering and anomaly detection.

We consider the problem when training the traffic prediction model with data

that contains missing values. In the traffic prediction-based TE approach, a deep

neural network is trained to estimate future traffic demands. In most existing traffic

prediction studies, the model training phase is usually omitted or briefly mentioned,

especially the data preprocessing step. Several problems will be handled before the

data is used in the model’s training step. One of the most common problems in the

data preprocessing is the missing values. Missing values appear in most multivariate

time series, especially in the monitored network traffic data due to high measurement

cost and unavoidable loss. Figure 1.3 illustrate the data preprocessing step in handling
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Figure 1.3: Imputation process is done before training the prediction model.

the missing values. All the missing entries in the data need to be imputed before the

training step. Training the deep learning model with missing data or low accuracy of

imputed data will degrade the model’s performance.

1.2.3 Problem 3: Frequent traffic flows rerouting

Changing the routing path of traffic flows is the common method in TE to avoid

traffic congestion. Most of the proposed TE solutions only address the optimization

problem in a single snapshot (which is called a "time-step" in this dissertation) without

considering the long time horizon. These approaches usually use a traffic matrix

[54] (i.e., traffic demands) of the corresponding time-step as the input to solve the

optimization problem and obtain the routing rules. However, due to the dynamic

network behavior, traffic matrix often varies over time, which may lead to the high

link utilization and network congestion. To adapt to traffic demand variation, the

traditional TE solutions may need to reroute many flows to balance the traffic loads,

leading to significant network disturbance and service disruption. Depending on

the traffic fluctuation, network optimization and traffic rerouting can be performed
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with high frequency (e.g., at every minute). In [9], the authors evaluate the impact of

frequent route changes on TCP flows. Due to the transparency between flow rerouting

and congestion control algorithm, the total throughput of the network is sometimes

observed to nearly 50% drop after rerouting a large number of flows. In addition,

changing the path of traffic flows frequently may degrade the QoS due to the packet

loss or out-of-order delivery as well as the increase in the flow’s completion time

[69], [68]. Therefore, reducing the number of traffic rerouting flows over a long time

horizon need to be taken into the consideration in designing the TE solutions.

1.2.4 Problem 4: High monitoring overhead

When applying ML techniques in traffic engineering, many prior works only focus on

solving routing problems and assuming the network statistics such as traffic matrix or

link utilization are available. However, with the explosion of traffic and the expansion

of the physical network, obtaining all the network statistics imposes high monitoring

overhead. In addition, applying ML/DNN into networking also needs a huge amount

of monitored data for training/predicting processes. Although the quality of the

measurements may have a huge impact on the performance of the TE solution [27],

there are only a few studies that consider the joint problem of network monitoring and

traffic engineering. Moreover, the scalability issue of applying ML/DNN techniques is

often omitted in many ML-based TE studies.

1.3 Objectives and contributions

In this dissertation, our objective is to develop a traffic prediction-based traffic

engineering approach that utilizes machine learning techniques. We study traffic

engineering in the backbone network and tackle the aforementioned problems (Section

1.2): predicting traffic matrix with partial information, imputing missing values in

network datasets, and reducing the number of traffic rerouting as well as the monitoring

overhead.

We introduce a mechanism for correcting the imprecise entries in traffic data,

which results in the improvement in the accuracy of the traffic matrix prediction task.

Then, we propose a novel deep learning model for inferring the missing values in the
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network datasets by exploiting the spatio-temporal in traffic data. Next, we mitigate

the traffic rerouting by optimizing the routing over a long time horizon. We introduce

a routing scheme called multi-time-step segment routing (MTSR for short) by taking

the advantages of the Deep Neural Network in traffic prediction of multiple time-steps

ahead. Finally, to lower the cost of network monitoring, we propose an approach that

combines DNN-based partial prediction with the compressive sensing technique.

The main contributions are summarized as follows:

• We propose a prediction scheme based on Convolutional Recurrent Neural

Network model which can iteratively improve the predicted results of the

previous prediction. Since the predicted results is latter used for the next

prediction round, this scheme can improve the prediction accuracy in overall

(problem 1).

• To alleviate the impact the missing data problem, we design a novel DNN model

based on the Graph Neural Network for imputing the missing values (problem
2).

• We address the routing path change issue in the traffic engineering by formulating

the multi-time-step segment routing (MTSR) problem as an Integer Linear

Programming problem. MTSR leverages the advanced DNN model for multiple

time-steps traffic prediction in order to reduce the number of rerouting flows

over a long time horizon (problem 3).

• Considering the impact of the prediction accuracy, we design three versions of

the MTSR problem and provide the theoretical analysis on the performance

of these proposed versions. In addition, we introduce an efficient local search

based algorithm called LS2SR to solve the MTSR problem in the context of

time-constrained optimization (problem 3).

• We reduce the high monitoring cost in traffic engineering by proposing an

approach that combines the partial network traffic prediction using Deep Neural

Network model with compressive sensing technique (problem 4).

• We conduct extensive experiments using different real backbone network datasets

to evaluate the performance of our proposed methods and compare them to the
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state-of-the-art approaches.

1.4 Dissertation organization

Figure 1.4: Outline of the dissertation.

The remainder of this dissertation is organized as follows. Chapter 2 elaborates on

the background and related work in the area of traffic engineering and machine learning,

respectively. We present our proposed DNN model for future traffic prediction with

partial information in Chapter 3. Then, Chapter 4 gives the details of our approaches to
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tackle the missing values problem in the network data. In chapter 5, we introduce the

routing scheme called multi-time-step segment routing (MTSR) to reduce the number

of rerouted traffic flow over the long-time horizon. First, we present the mathematical

formulations of the MTSR and the theoretical analysis. Then, we describe an effective

heuristic algorithm called LS2SR to solve the MTSR problem. We also give the details of

our proposed method for reducing network monitoring cost by applying partial traffic

prediction and compressive sensing techniques. Finally, in chapter 6, we summarize the

contributions of this dissertation and discuss the limitations and the future direction.

Figure 1.4 illustrates the outline of our dissertation.
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2
Background and related work

In this chapter, we introduce the basic background and notations that are used

throughout the dissertation. First, we provide a brief overview of traffic engineering

and the current state-of-the-art TE approaches in Section 2.1. Then, we introduce the

ML/DNN as well as the compressive sensing techniques in Section 2.2 and 2.3. Finally,

in Section 2.4, we present the existing solutions in traffic prediction, missing data

imputation, and traffic engineering.

2.1 Traffic engineering

2.1.1 Traffic matrix

According to [54], a traffic matrix is defined as an abstract representation of the

traffic volume following between a set of source and destination pairs. Traffic matrix

is a 𝑁 × 𝑁 matrix (𝑁 is the number of nodes in the network) where each element

denotes the amount of aggregated traffic from a source to a destination. The source
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Figure 2.1: An example of a traffic matrix.

and destination, depending on the network layer of study, could be routers or the

whole network. In this work, we focus on the backbone network where the sources

and destinations are the nodes (i.e, routers) in the network and each element of the

traffic matrix depicts the number in bytes of the aggregated flow between two nodes.

Figure 2.1 shows an example of the traffic matrix given by the topology on the left.

Logically, the values of 𝑋𝐴𝐴, 𝑋𝐵𝐵, ... are zero, however, in most cases, they are non-zero

because of aggregation of devices such as a PoP or an AS.

Playing a role as a snapshot of the network situation, the traffic matrix is utilized in

a variety of network management tasks and applications, such as network optimization,

protocol design and anomaly detection. We can exploit a set of traffic matrices for

offline tasks such as network analysis, finding unexpected events (e.g., malicious,

DDoS) or capacity planning. Besides that, if the traffic matrix is exactly known (by

doing network monitoring) or can be predicted precisely, along with the topology

information, the network operator can perform traffic routing or load balancing

effectively and efficiently.

2.1.2 Traditional TE

Congestion minimization is one of the most important objectives in traffic engineering.

This objective is often achieved by minimizing the maximum link utilization (MLU) of

the network. The MLU is calculated as follows:
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𝑢 = max

𝑒∈𝐸

𝑙𝑜𝑎𝑑 (𝑒)
𝑐 (𝑒) (2.1)

where 𝐸, 𝑙𝑜𝑎𝑑 (𝑒), and 𝑐 (𝑒) are the a set of all link in the network, total traffic load on

link 𝑒 , and the capacity of link 𝑒 , respectively. The traffic load on link 𝑒 is calculated by

using the traffic matrix and the routing rules.

In general, there are two routing strategies: adaptive routing and oblivious routing.

In adaptive routing, a path is chosen based on current network information such as the

traffic flow’s demand. Therefore, it can dynamically adapt its routing decisions to the

current traffic in the system. In theory, most of the works in adaptive routing rely on

solving the Multi-Commodity Flow (MCF) problem, obtaining the fractional solutions

in which the traffic flows are arbitrarily split and routed through different paths. In

practice, due to the simplicity, shortest path routing-based approaches such as OSPF,

and IS-IS are widely deployed in many ISP networks. By tuning the link weights

in a distributed manner, shortest path routing can compute the near-optimal set of

forwarding paths. However, their drawbacks are the high re-convergence time and

poor performance when there are changes in the network topology or the traffic

demands. Later, routing techniques such as MPLS and RSVP have provided flexibility

and increased the TE performance by supporting explicit routing paths. However,

MPLS-TE solutions are known for their long convergence times and high cost of

maintaining the TE tunnels.

Different from the adaptive routing mentioned above, oblivious routing performs

traffic routing independently with the current traffic in the network [3], [40]. In fact, in

oblivious routing, the path from a source node to a destination node may be chosen by

only using the information of the network topology. The routing rules of the oblivious

routing strategy are calculated only once time and stored at each node in the network

via routing tables. Therefore, it is easier to implement and does not cause the rerouting

problem. However, oblivious routing faces possible performance loss in the highly

dynamic traffic system. This is the result from restricting the routing rules to a fixed

set of rules instead of considering their adaptive counterparts [41].
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Figure 2.2: Example of segment routing and SR policy.

2.1.3 Segment Routing

Based on the source routing paradigm, segment routing (SR) allows the source node (or

ingress node) to insert a list of Segment Identifiers (Segment ID or SID) to the packet

header. The segment list becomes the set of instructions (SR policy or SR rule) to the

network devices to steer the packet. Although the SID can be used to identify both the

node or link in the network, for simplicity, we only consider the node-segment in this

study. Figure 2.2 shows an example of segment and SR policy. In this example, traffic

from the node 1 is routed to the node 6 using 3 segments: 1-4, 4-3, and 3-6. The SR

policy is a ordered list of the node that traffic from the source node need to visit (i.e.,

<4, 3, 6>), including the destination node. The packets from the source node need to be

routed through all the nodes in the SR policy before being forwarded to the destination.

The shortest path routing (e.g., OSPF) is used to forward the packet within the segment

(e.g., traffic in segment 4-3 is routed through the shortest path from node 4 to node 3).

2.2 Machine learning techniques

Recently, machine learning techniques have been applied to various networking

problems such as traffic routing, demands prediction, and anomaly detection. In

traffic engineering, ML can be used for estimating future traffic demands or directly

generating the routing rules. In this section, we give the background knowledge about

ML/DNN models used for traffic prediction problems. Table 2.1 summarizes the deep

neural network models that are used for traffic prediction.
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Type Model Model name Characteristics

RNN LSTM Long Short-Term Memory

Well-known for handling the time series data

Learning the temporal relations

BiLSTM Bidirectional LSTM

Using two LSTM networks

Learning the temporal relations in both directions of the

time series data

ConvLSTM Convoutional LSTM

Combining the LSTM and Convolutional neural network

Learning the temporal and spatial relations in the traffic data

GNN GCN Graph Convolutional Neural Network

Learning the spatial relations of data in which the relations

have graph-based structure

GWN Graph WaveNet

Learning both temporal and spatial relations of data using

graph convolutional neural network

Table 2.1: Summary of deep learning models for traffic prediction.

2.2.1 Long Short-Term Memory

LSTM unit and LSTM network

A Long Short-Term Memory network (LSTM) is a special Recurrent Neural Network

(RNN) that replaces a standard RNN unit with a LSTM unit. The major innovation

of the LSTM unit is the memory cell 𝑐𝑡 which accumulates the state information.

The LSTM network has the ability to remove or add information to the cell state,

carefully regulated by structures called gated. Gates are the way to optionally let

information through (showed in Fig. 2.3(a)). They are composed of the non-linear

network layer (i.e., sigmoid, relu, etc.). The LSTM network has been proved to be stable

and powerful for modeling long-range dependencies of time series data in various

problems. Therefore it is well-suited for processing and making predictions based

on time series or sequence data. Indeed, LSTM has been applied in many real-life

sequence modeling problems. The unfolded model of the LSTM network (Fig.2.3(b))

shows that the input is processed step-by-step and the outputs of previous steps are

used as the input for the next step. This architecture along with the advantages of the

memory cell in LSTM units make the LSTM network especially suitable for solving the

time series forecasting.

Bidirectional LSTM network

In several problems of Natural Language Processing domain such as predicting the

missing words in a sentence, we need not only the information of the words before

the missing position but also the information of the words after that. The original

LSTM model does not perform well in this problem since it only has one direction
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Figure 2.3: (a) The architecture of LSTM unit and (b) LSTM network.

LSTM LSTM ... LSTM

1+−lT
x

2+−lT
x

T
x

t
x

2
ˆ

+−lT
x

3
ˆ

+−lT
x

1
ˆ

+t
x 1

ˆ
+T

x

t
x

1
ˆ

+t
x

1
ˆ

+T
x

LSTM

Input at step 

Output at step

Predicted value

LSTM unit

t

t

LSTM LSTM ... LSTM… …

……

… …

Figure 2.4: The structure of the Bidirectional LSTM network.

in the data flow. In [47], the authors proposed a modification of the LSTM model

called Bidirectional LSTM. They added another LSTM network to the model and then

concatenated or averaged the outputs from both LSTM networks. The second network

gets the same input as the first network but in the backward order (as shown in Fig.2.4).

The BiLSTM network can "learn" the data from both directions and therefore well

perform in the problems that need to predict/estimate the value in the middle of

time-series data.

Convolutional LSTM network

When working with the data that has a grid-based structure (e.g., image, matrix), the

best approach is to use Convolutional Neural Network (CNN) to extract the spatial

features. Therefore, to extract both spatial and temporal features in the sequential

images/matrices, the authors in [65] have proposed the Convolutional LSTM network

(ConvLSTM) that combines the convolutional operation and the LSTM network.

ConvLSTM is a type of recurrent neural network like LSTM, but the internal matrix
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Figure 2.5: Encoding-forecasting ConvLSTM network for precipitation nowcasting

[65].

multiplications are exchanged with the convolutional operations. As result, the data

that flows through the ConvLSTM has the dimension of 2D or 3D instead of being just

a 1D vector. Figure 2.5 illustrates the architecture of ConvLSTM network used for

precipitation nowcasting.

2.2.2 Graph neural network-based traffic prediction

Graph Neural Network

In recent years, Graph Neural Network (GNN) [59] has become one of the most

successful deep learning models, showing the state-of-the-art in various real-world

problems. Figure 2.6, as an example, illustrates the difference in learning the spatial

information between GNN and CNN. The CNN usually works on the data that has

grid-based structures such as an image or a matrix. The convolution operation takes

the weighted average of node values along with its neighbors. The neighbors of a node

are ordered and have a fixed size. On the other hand, GNN can represent the hidden

relations of the data as a graph and take the average value of the node features along

with its neighbors. Different from the image data, the neighbors of a node can be

unordered and variable in size.

By exploiting the graph-based relations of the data, GNN has been used to model

lots of complex problems such as social networks and brain networks. In the network

traffic prediction problem, GNN can efficiently capture the spatial dependency in the

traffic networks, which is naturally represented by non-Euclidean graph structures.

This graph, which is called traffic graph, is defined as G = (V, E) whereV is the set

of nodes and E is the set of edges. Each node in the traffic graph is associated with a
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(a) 2-D convolutional operation. (b) Graph convolutional opera-

tion.

Figure 2.6: 2-D convolution versus graph convolution [58].

traffic flow in the network. For a single-time step 𝑡 , the node feature matrix 𝑋𝑡 ∈ R𝑁×𝐹

for the traffic graph G contains a specific traffic matrix of the network, where 𝑁 is

the number of nodes in G and 𝐹 is the number of traffic features (e.g., volume, delay,

measurement indicator). An edge 𝑒 ∈ E represents the relation between two nodes (or

two traffic flow).

In [58], the authors have defined a graph-based traffic prediction as follow:

find a function 𝑓 which generate 𝑦 = 𝑓 (𝑋,G), where 𝑦 is the future traffic states,

𝑋 = [𝑋1, ..., 𝑋𝑡 ] is the historical traffic state, and G is the traffic graph.

Graph Convolutional Network

Graph Convolutional Network (GCN) is a special type of deep neural network based

on the combination between GNN and CNN. GCN is used to obtain the hidden features

from the data given its graph-based structure. In the GCN-based traffic prediction

approach, the spatial relation among the nodes in the traffic graph is extracted by

aggregating and transforming the neighborhood information. Let 𝐴 ∈ R𝑁×𝑁 denote

the adjacency matrix of G, and 𝐴̃ be its normalized matrix. 𝑍 ∈ R𝑁×𝑀 denotes the

output and𝑊 ∈ R𝐷×𝑀 denotes the parameters of the deep learning model. In [24],

the graph convolutional operation is defined as 𝑍 = 𝐴̃𝑋𝑊 . In [29], Li et al. proposed

diffusion convolutional layer in which the aggregating neighborhood’s information

process is done with K steps. The diffusion process is characterized by a random walk

on G with transition matrix 𝑃 = 𝐴/𝑠𝑢𝑚𝑟𝑜𝑤 (𝐴) and is expressed in Equation 2.2.
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𝑍 =

𝐾∑︁
𝑘=0

𝑃𝑘𝑋𝑊 (2.2)

Graph WaveNet

One of the limitations of GCN is that it can only capture the spatial dependency on a

fixed graph structure and assumes that the relations among the nodes (i.e., E) in the

graph are given. However, in many problems such as traffic prediction, the relations

among the traffic flows may not be clearly defined and can also be changed over time

(i.e., the dynamic relations). To overcome this limitation, Wu et al. proposed a novel

deep learning model for spatial-temporal graph modeling, called Graph WaveNet

(GWN) [59]. To learn the dynamic relations in the graph, a self-adaptive adjacency

matrix is added in the graph diffusion process. The graph convolutional operation with

self-adaptive adjacency matrix is expressed in Equation 2.3.

𝑍 =

𝐾∑︁
𝑘=0

(𝑃𝑘𝑋𝑊 + 𝐴̃𝑘
𝑎𝑑𝑝
𝑋𝑊𝑎𝑑𝑝) (2.3)

where 𝐴̃𝑎𝑑𝑝 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑅𝑒𝐿𝑈 (𝐸1, 𝐸𝑇2 )) is the self-adaptive adjacency matrix. 𝐴̃𝑎𝑑𝑝 is

calculated using two learnable parameters 𝐸1, 𝐸2 ∈ R𝑁×𝑐 . The 𝑅𝑒𝐿𝑈 function is used to

eliminate the weak connection and the 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 is applied to normalize the adjacency

matrix. By using the learnable parameters to construct the adjacency matrix, GWN can

learn the relations among the nodes in G from the training data.

2.3 Compressive sensing

Compressive sensing (CS) is a well-known technique in signal processing that is used

for the acquisition and/or reconstruction of a signal (e.g., time series data). According

to CS theory [22], the signal can be reconstructed or recovered from a few samples

by exploiting the sparsity characteristic of the original signal. Considering a vector

signal 𝑥 ∈ R𝑛×1 having the sparsity level 𝑘 (i.e., 𝑥 has only 𝑘 ≪ 𝑛 non-zero elements),
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the compressive sensing problem is to recover the sparse vector 𝑥 from the linear

measurement vector 𝑦 = 𝐴𝑥 . 𝐴 ∈ R𝑚×𝑛 is called the measurement matrix or the coding

matrix (𝑚 ≪ 𝑛). Then, we can obtain the signal 𝑥 by solving the following problem:

min

𝑥∈R𝑁×1
| |𝑥 | | subject to 𝑦 = 𝐴𝑥 (2.4)

Problem 2.4 can be solved by using convex relaxation algorithms such as basis

pursuit. For instance, CS problem can be formulated as a Lagrangian relaxation of a

quadratic program [13] as:

𝑥 = argmin

𝑥
| |𝑥 | |1 + 𝜆 | |𝑦 −𝐴𝑥 | |2𝑥 (2.5)

with | |.| |1 and | |.| |2 being 𝑙1-norm and 𝑙2-norm.

2.4 Related work

2.4.1 Traffic matrix prediction

In this section, we will summarize related studies on traffic matrix prediction problems.

Network traffic prediction is an important research problem in routing optimization.

The goal of traffic prediction is to estimate the future trend of traffic demands by

analyzing the historical traffic information. Based on the prediction results, the

network controller can calculate the proactive routing policies in advance to adapt to

the dynamic traffic in near future. In this way, the controller can take appropriate

actions before traffic congestion occurs and improve QoS. Therefore, by improving the

prediction accuracy, we can achieve better performance in traffic engineering tasks.

Since the traffic matrix is one of the most important pieces of information used to

solve the network routing problem in the backbone network, most of the existing

studies focus on estimating the future traffic matrix. Originally, researchers referred to

some simple statistical models such as ARIMA or Gaussian model [71]. However, such

simple models cannot handle the complexity and dynamics of communication behavior

in modern networks. To this end, deep learning techniques have been exploited more
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in predicting traffic [8, 33, 57]. In [57] and [8], the authors utilized the Long Short-Term

Memory and Convolutional Neural Network for capturing the spatial-temporal feature

and predicting the network traffic in data center and cellular networks, respectively. In

the backbone network, Nie et al. used Restricted Boltzmann Machine to capture the

dynamic features of the network. The authors then proposed two separated deep belief

network model for solving the traffic estimation and prediction, independently. More

recently, the results in [4] and [56] showed the superiority of the LSTM network in

modeling the temporal feature and the long-range dependencies of network traffic.

Unfortunately, all the approaches proposed so far assumed that in the prediction

phase, the controller can obtain all information (i.e., full traffic matrix) of the network.

However, due to a large number of traffic flows, collecting all the information leads to

high monitoring overhead. In this work, we consider the case that only a part of the

traffic matrix is measured. The missing values in the traffic matrix are filled by using

the predicted values of the previous steps. To the best of our knowledge, there is no

existing work addressing the problem of traffic prediction under missing ground-truth

data in the backbone network.

2.4.2 Network traffic imputation

In the past decades, various approaches have been developed to address missing values

in time series. The missing values can be filled by using statistical models such as

Autoregressive Moving Average (ARMA) or Autoregressive Integrated Moving Average

(ARIMA) [6]. However, these models are essentially linear and process time series

independently. Therefore, they fail to exploit the correlation between different variables

in multivariate time series. Matrix and tensor factorization were also applied to solve

the data imputation problem. Many tensor completion algorithms have been proposed

based on Alternating Least Square (ALS) such as Localized Tensor Decomposition

(LTC) [64], gradient-based method such as Generalized Canonical Polyadic Tensor

Decomposition (GCP) [18]. Among those, LTC [64] would be seen as the most recent

work on estimating missing values, tailored for network traffic data. In LTC, the traffic

matrix was represented as a 3-way tensor, including days, hours, and origin-destination

dimensions, to exploit the inherent relationship among higher-dimensional data. Also,

LTC divides the huge 3-way traffic tensor into many sub-tensors with highly relevant
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data and performs Canonical Polyadic (CP) decomposition on these substructures. This

approach is claimed to be more efficient than decomposing the original traffic tensor.

However, all of the tensor completion algorithms do not encapsulate the temporal

correlation in time series data. In particular, the imputation data is formed by summing

up the outer product of component matrices. The data which is imputed by CP in each

time step cannot utilize the information from the previous and the following time steps.

Moreover, most of the tensor completion methods rely on a strong assumption that the

tensor data has a low-rank structure.

Other approaches for estimating the missing values are deep learning-based

techniques. Many imputation methods, which are based on Recurrent Neural Network

(RNN) model such as Long Short-term Memory (LSTM) or Gated Recurrent Unit (GRU),

achieve good results in estimating the missing values of time series and sequence

data. Che et al. proposed GRU-D [10], in which the missing data were represented

as the combination of the last observed values and the mean value. GRU-D laid the

foundation for other methods and demonstrated its significantly high performance on

health-care data with labels. Unfortunately, this method can not be directly applicable

in an unsupervised manner on general datasets without the tag for each time series as

our focus on network traffic data. Following GRU-D, Cao et al. introduced Bidirectional

Recurrent Imputation for Time-series (BRITS) as a novel bidirectional LSTM-based

model for multivariate time series recovery [7]. A temporal decay factor and a linear

layer were introduced in the BRITS model, which can help learn the spatial-temporal

features of data recorded in irregular intervals. More recently, Generative Adversarial

Network (GAN) has been used to impute missing values. Luo et al. proposed an

End-to-end GAN (E
2
GAN) [30] for extracting feature representation of time series and

reconstructing it from the low-dimensional vector. E
2
GAN model leverages the GRU-I

cell, which was used in [7], to process the incomplete time series. However, E
2
GAN

only uses a unidirectional recurrent model and does not consider the correlation

between the time series. Most recently, motivated by CP decomposition, NTC model

was introduced in [61], which was specifically designed for imputing network traffic.

However, by taking the index of each observed data as the input, NTC suffers from a

scalability issue when the number of observed data in the training set is significantly

large.

Although many efforts have been devoted to data imputation, most of the deep
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Figure 2.7: Example of network link load traffic under block missing scenarios on two

different days for three links in the Abilene network. The dot lines represent the

missing blocks, while the stars indicate the observed data.

learning methods proposed so far have not focused on the network traffic data.

Therefore, they suffer from the following critical problems. First, most of the methods

mainly focused on the temporal relationship. Some approaches (e.g., BRITS [7]) have

considered leveraging the spatial features, but they only cope with the static spatial

correlations. Meanwhile, the correlations between the time series in the network traffic

data vary significantly over time due to network behavior dynamics. Fig.2.7 visualizes

the traffic load on three different links in the Abilene network to show the variation of

the network behavior. Due to the dynamic of the routing scheme, the correlation

between the links’ traffic is inconsistent. Specifically, the traffic on link 3 shows a high

correlation to that of link 2 on the first day, whereas, on the next day, it appears to be

closely similar to link 1. Second, the existing models have not been evaluated by the

network traffic dataset (e.g., the Abilene dataset). As the network traffic possesses

unique characteristics, as mentioned above, the evaluation results for other data types

are not likely to fit with network traffic data.

2.4.3 Traffic engineering with segment routing

Here, we present an overview of the current SR-based TE solutions. Due to the routing

flexibility, SR has been well investigated in both theoretical analysis and practical

approaches. In [5], the TE problem with segment routing is formulated as a linear

programming problem in which only two segments were considered (by choosing

one intermediate node between the source and destination nodes). Later on, several

works focused on utilizing more than two segments. For example, the authors in [37]
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proposed an optimization model which uses three segments and combines both node

and edge segments. In [21], the authors attained a further improvement on the TE

problem with SR by fully exploiting the SR (n-segment routing with both node and

edge segments) and proposed the first Column Generation-based approach. In [28] and

[38], the authors used the SR to enhance the routing management in Software Defined

Networks. They proposed efficient routing algorithms that can solve the scalability

issues and improve traffic distribution.

For the practical approach, in [14], the authors considered both the unexpected

traffic fluctuation and link failure problems. They proposed a local search-based

algorithm to solve the targeted problems under sub-second constraint. Recently, the

authors in [45, 46] extended the work in [5] by proposing an optimization model to

minimize the number of deployed SR policies.

Although the TE problem with the Segment Routing issue has been well studied,

most of the solutions proposed so far only addressed the local optimization, where they

considered the problem in only a single snapshot. Specifically, the primary approach is

to formulate the problem under a mixed-integer linear programming model, and then

propose heuristic algorithms using various techniques such as local search (srls) [14],
column generation (cg4sr) [21]. This approach usually used the traffic matrix (i.e.,

traffic demands) of the corresponding snapshot as the input. However, due to the

network behavior’s dynamic, the traffic matrix often varies over the snapshots; thus,

leading to the changes in the routing policy obtained. In some rare work [5], the

authors proposed a Traffic Matrix Oblivious Segment Routing which does not require

the traffic matrix to be given prior. The proposed routing policy was designed to work

well for a wide range of traffic demands. Although this approach can alleviate the

overhead caused by routing path change, it may not guarantee the link utilization

constraint, especially with the network’s dynamic behavior. Besides, it was pointed out

in [14] that the Traffic Matrix Oblivious Segment Routing has been showed to only be

practical for offline traffic engineering on relatively-small networks.
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3
Traffic matrix prediction with partial

information

Accurate prediction of the future network traffic plays an important role in various

network problems (e.g. traffic engineering, capacity planning, quality of service

provisioning, etc.). Although the prediction accuracy largely depends on the quality of

historical data, obtaining high quality data by measuring all the network traffic is

impossible or impractical due to the monitoring resources constraints as well as the

dynamics of temporal/spatial fluctuations of the traffic.

In this chapter, we propose novel DNN-based model for traffic prediction under the

lacking of network traffic data. We first introduce the problem statement in Section 3.1.

Then, we present the challenges in Section 3.2. In Section 3.3 and 3.4, we give the

details of our proposed prediction model and the strategy for selecting monitored flows.

We show the performance evaluation of our methods in Section 3.5 and summarize the

contributions in Section 3.7.
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3.1 Problem statement

First, we will describe the network model, as well as terms and notations. The network

is represented by a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes (|𝑉 | = 𝑁 ),
and 𝐸 is the set the network’s links. Each link 𝑒 ∈ 𝐸 has capacity 𝑐 (𝑒). Let 𝑋𝑡 ∈ R𝑁×𝑁

be the traffic matrix at time-step 𝑡 and 𝑥𝑡
𝑠𝑑
∈ 𝑋𝑡 denote the traffic flow from node 𝑠

to 𝑑 (flow 𝑠𝑑 for short, 𝑠, 𝑑 ∈ 𝑉 ) at the time-step 𝑡 . The term “flow 𝑠𝑑" indicates the

aggregated traffic that enters the network at node 𝑠 and exits at node 𝑑 . The traffic

matrix prediction problem is to estimate the traffic matrices of next 𝑇 time-steps

(denoted by 𝑋𝑡+1, ..., 𝑋𝑡+𝑇 ), given the previous 𝐻 measurements (𝑇,𝐻 ≥ 1):

𝑋𝑡+1, ..., 𝑋𝑡+𝑇 = argmax

𝑋𝑡+1,...,𝑋𝑡+𝑇

𝑝 (𝑋𝑡+1, ..., 𝑋𝑡+𝑇 |𝑋𝑡−𝐻+1, ..., 𝑋𝑡 ) (3.1)

Due to the high monitoring overhead, we consider the case of backbone networks

where we cannot obtain all the 𝐻 previous traffic matrices by directly monitoring all

the flows. The monitoring ratio 𝜔 of the network is defined in Equation 3.2. 𝑘 is the

number of monitored flows; 𝑁 × 𝑁 is the total number of flows in the network.

𝜔 =
𝑘

𝑁 × 𝑁 (3.2)

To achieve low monitoring overhead, we choose to reduce the monitoring ratio by

keeping the value of 𝜔 less than 1 which means, at every time-step, only a part of

total flows is observed and then the missing data (the flows without being monitored)

is filled by the predicted value. We call this type of network monitoring as partial
monitoring. To use partial monitoring as the input data for future traffic prediction,

the missing data (the flows without being monitored) is filled by the predicted value.

Therefore, in the traffic matrix prediction with partial information, the inputs contain

both observed data and predicted data, which is obtained from the last prediction

step. Accordingly, the traffic matrix prediction with partial information problem is

formulated as follows:

Input

𝑥
𝑠,𝑑
𝑖

=

{
𝑜
𝑠,𝑑
𝑖

if𝑚
𝑠,𝑑
𝑖

= 1

𝑥
𝑠,𝑑
𝑖

otherwise

∀𝑠, 𝑑 ∈ 𝑉 ; 𝑖 = 𝑡 − 𝐻 + 1, ..., 𝑡
(3.3)
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Output

𝑋𝑡+1, ..., 𝑋𝑡+𝑇 = argmax

𝑋𝑡+1,...,𝑋𝑡+𝑇

𝑝 (𝑋𝑡+1, ..., 𝑋𝑡+𝑇 |𝑋𝑡−𝐻+1, ..., 𝑋𝑡 ) (3.4)

where 𝑜
𝑠,𝑑
𝑖

and 𝑥
𝑠,𝑑
𝑖

denote the observed and predicted traffic volume of flow (𝑠, 𝑑) at

time-step 𝑖 , respectively. The binary variable𝑚
𝑠,𝑑
𝑖

depends on the monitoring strategies,

where𝑚
𝑠,𝑑
𝑖

= 1 indicates that flow (𝑠, 𝑑) is monitored at time-step 𝑖; otherwise, the

value of traffic volume is filled up by the prediction result.

In the so-called partial monitoring, we can randomly determine the flows that are

measured at every time-step or follow a pre-designed strategy. Thank the advances of

new network architectures and technologies such as Software-Defined Networking

(SDN) [31], In-band Network Telemetry (INT) [16],[19], the network operator now can

to measure, retrieve the flow information, and collecting the traffic statistics. We will

discuss the effect of the monitoring strategy on the prediction accuracy in Section 3.4.

3.2 The low accuracy of trafficmatrix prediction with

partial information

We have performed experiments to figure out the impact of imprecise input data on the

results of one-step-ahead prediction (i.e., 𝑇 = 1). In this experiment, we assume that

the network controller can only measure a subset of traffic flows. The monitoring ratio

is set from 10% to 40%. We train a simple LSTM network to estimate the traffic matrix

of the next time-step. The input for the LSTM network is the historical traffic matrices.

However, since the controller cannot measures all traffic flows, we fill the missing

values by the predicted values of the previous prediction step. The low monitoring

ratio leads to the higher number of the imprecise values in the input sequence, hence

the higher prediction error. As the error in the input data results in the error in the

prediction’s output, we call this problem as the accumulative error.

Fig.3.1 shows the one-step-ahead prediction results with various settings of the

monitoring ratio. As showed, the accuracy tends to decrease with the increasing of the

time-steps between two consecutive measured points (i.e., Fig.3.1(a), Fig.3.1(b)). While

in Fig.3.1(d), thanks to the higher percentage of ground-truth data in the input, we
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(c) 30% monitoring ratio.

70 80 90 100 110 120

6
8

1
0

1
2

Timestep

T
ra

ff
ic

 v
o
lu

m
e
 (

M
b
p
s
)

*

Actual Traffic
Predicted Traffic
Measured Points

*
*
*

*
*** ****

*

** *
**** *

(d) 40% monitoring ratio.

Figure 3.1: The effect of monitoring ratio on prediction accuracy (One-step-ahead

prediction using the LSTM network).

can well capture the trend of the flow and achieve high accuracy in forecasting the

future traffic. Therefore, to alleviate the accumulative error while remaining the low

monitoring overhead (which is proportional to the portion of the ground-truth data),

our idea is to perform preprocessing on the imprecise data before feeding it into the

prediction model. Specifically, we propose a novel deep learning model based on the

bidirectional recurrent neural network (the details will be shown in Section 3.3.3).
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Figure 3.2: The overall system of traffic matrix prediction with partial information.

3.3 ConvLSTM-based traffic matrix prediction

3.3.1 Overview of the proposed approach

Figure 3.2 gives the overview of our framework for monitoring the network partially

and predicting future traffic matrix based on partial information. The proposed

approach includes three main modules: traffic matrix prediction, data correction, and

monitored flow determination. The network monitoring function, which measures

and/or collects the traffic data from the network (based on the monitoring strategy), is

out of the scope of this work.

• The traffic matrix prediction The traffic matrix prediction module takes 𝐻

traffic matrices from time-step 𝑡 −𝐻 + 1 to 𝑡 as input and gives the outputs the

next 𝑇 time-steps (i.e., 𝑡 + 1, ..., 𝑡 +𝑇 ). The details of the traffic matrix prediction

module are described in Section 3.3.2.

• Backward data correction To improve the prediction accuracy, the backward

data correction module leverages the information in the output of the prediction

module and the current input to correct the imprecise data in the input. Then the

updated data is continuously used in future prediction (see Section 3.3.3).

• Monitored flow determination The monitored flow determination decides

appropriate flows to be monitored in the next time-step. Our determination

strategy is given by following a heuristic approach, which aims to increase

the traffic forecasting accuracy while remaining a low monitoring overhead.

Specifically, after every time-step, we calculate a weight for each traffic flow by
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using the prediction accuracy and the monitoring statistic. The weight is used to

decide the flows which will be monitored. The details of the determination

strategy are presented in Section 3.4.

3.3.2 Future traffic matrix prediction

Figure 3.3: The sequence of H input matrices of ConvLSTM network.

Although having the advantages in terms of usage memory and computation, the

LSTM model forecasts traffic flows independently, and thus, it can extract only the

temporal feature of time series data. Therefore, by using the LSTM network, we may

not exploit the spatial relation between the traffic flows which have been figured out in

[63]. To this end, we also consider using the Convolutional LSTM network (ConvLSTM)

which can extract both temporal and spatial features of the input sequences.

Convolutional LSTM network [65] (ConvLSTM) is a combination of convolutional

operation and LSTM network. While the LSTM network only takes a 1D array as the

input at each processing step, the ConvLSTM can extract spatio-temporal features

from a sequence of 2D or 3D tensors.

To apply the ConvLSTM network in our problem, we consider the traffic matrix

as a 2D image with the dimension of 𝑁 × 𝑁 , and then we transform them into 3D

tensors with the dimension of (𝑁, 𝑁, 2) by combining the measurement matrix𝑀 and

the traffic matrix. Accordingly, the input of our ConvLSTM network has dimension

(𝐻, 𝑁, 𝑁, 2) which is a sequence of 𝐻 3D tensors (Figure 3.3).

Figure 3.4 illustrates a Convolutional LSTM network for traffic matrix prediction

which contains only one convolutional layer. To construct a deep and complex model,

we can stack other layers on top of the previous ones.
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Figure 3.4: The structure of ConvLSTM network for traffic matrix prediction.

3.3.3 Backward data correction

As described in Section 3.2, the imprecise data in the input has a huge impact on the

prediction accuracy. In this section, we will describe our method to overcome this

problem by correcting the imprecise data. Following the experiment in Section 3.2

(Fig.3.1), we observe that the prediction results become more accurate if the input

sequence contains more precise data. Besides that, the accuracy of the predicted traffic

at a time-step whose previous data is ground-truth data is better than the others. Based

on the above observations, we propose an algorithm which uses the outputs from each

processing step of the ConvLSTM network and the measurement matrices to correct

the imprecise data. To be more specific, considering an example where we predict the

future traffic matrix at time-step 𝑡 + 1 by taking the sequence {𝑋𝑡−𝐻+1, ..., 𝑋𝑡 } as the
input. As using the many-to-many model, after the prediction, we also obtain the

outputs {𝑋𝑡−𝐻+2, ..., 𝑋𝑡+1} whose each element corresponds to one processing step of

the ConvLSTM network. Suppose that 𝑥
𝑠,𝑑
𝑖
∈ 𝑋𝑖 (𝑡 − 𝐻 + 2 ≤ 𝑖 ≤ 𝑡 ) is an imprecise
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Figure 3.5: The forward and backward networks with skip connection.

data and 𝑥
𝑠,𝑑
𝑖
∈ 𝑋𝑖 is its corresponding output in the ConvLSTM network. Because of

the forward direction in the processing step of the ConvLSTM network, the output

𝑥
𝑠,𝑑
𝑖

is generated by taking only the input from time-step 𝑡 − 𝐻 + 1 to 𝑡 − 1. If this
input sequence contains almost ground-truth data, we can imply that 𝑥

𝑠,𝑑
𝑖

may close to

the ground-true value than the current 𝑥
𝑠,𝑑
𝑖

(|𝑥𝑠,𝑑
𝑖
− 𝑜𝑠,𝑑

𝑖
| < |𝑥𝑠,𝑑

𝑖
− 𝑜𝑠,𝑑

𝑖
|). Thus, we may

replace 𝑥
𝑠,𝑑
𝑖

by 𝑥
𝑠,𝑑
𝑖
.

However, we face the problem when the input sequence from time-step 𝑡 −𝐻 + 1 to
𝑖 − 1 contains only a few ground-truth data. In this case, 𝑥

𝑠,𝑑
𝑖

may not close to 𝑜
𝑠,𝑑
𝑖

compared to 𝑥
𝑠,𝑑
𝑖
. To this end, our idea is to leverage the data of the next time-steps

(from 𝑖 + 1 to 𝑡 ) which may include more precise data. To implement the above idea,

besides the current ConvLSTM network we construct an extra network in which the

sequence of input data is fed in the reverse order. To distinguish the two ConvLSTM

networks, the first network is called forward network and the additional network

is called backward network. Our approach is motivated by the BiLSTM which was

introduced in [47]. Thanks to adding a backward network, BiLSTM can be trained by

all available input information in both the past and the future of a specific time frame.

This technique is well known for predicting the missing word in the sentence in the

Natural Language Processing problem. The BiLSTM can acquire the context before and

after the missing position to improve accuracy.

Different from the standard BiLSTM, in each processing step, instead of aggregating

the outputs of the forward and backward networks, we keep them separately (as

showed in Fig.3.5), and use the outputs from the backward network (denoted as 𝑥
𝑠,𝑑
𝑖
) to

update the incorrect data in the input matrices. Therefore, instead of simply replacing
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the 𝑥
𝑠,𝑑
𝑖

by 𝑥
𝑠,𝑑
𝑖
, now we can update it by using the outputs of backward network (i.e.,

𝑥
𝑠,𝑑
𝑖
) which may be predicted using more precise data.

3.3.4 The skip connection

When using the backward outputs to update the imprecise value, the key is the accuracy

of the values generated by the backward network. If the outputs of the backward

network have low accuracy than the current input, the updating may be fail. While in

the forward network, only the output for the future time-step (i.e., 𝑡 + 1) is matter, in

the backward network, all the outputs are important since they participate in the data

correction.

To further increase the accuracy of the backward network, we introduce a skip

connection from the input to the Fully Connected Network as showed in Figure

3.5. The input , which includes the traffic matrix and the measurement matrix, is

concatenated with the result from the backward ConvLSTM layer before go to the

Fully Connected Network. By doing this, we can slightly improve the performance of

the backward network. We have conduct experiments to evaluate the effect of the skip

connection in Section 3.6.3.

3.3.5 The backward data correction algorithm

The updated value of the imprecise data can be calculated by taking the average from

the current value and the backward network output. However, it may decline the

accuracy when the backward network output is generated using imprecise data. To

avoid that, instead of taking the average, we use the weighted average. In order to

determine the contribution of the current value 𝑥
𝑠,𝑑
𝑖

and backward network output 𝑥
𝑠,𝑑
𝑖

in updating the imprecise data, we define parameters 𝛼
𝑠,𝑑
𝑖

which is the confidence

factors of 𝑥
𝑠,𝑑
𝑖

(0 ≤ 𝛼𝑠,𝑑
𝑖
≤ 1). The details of the imprecise data correction algorithm is

described in Algorithm 1 and illustrated by Fig. 3.6. Note that since the outputs of the

backward network are from 𝑡 −𝐻 to 𝑡 − 1 while the input is from time-step 𝑡 −𝐻 + 1 to
𝑡 , we can only apply Algorithm 1 for correcting the imprecise data from time-step

𝑡 − 𝐻 + 1 to 𝑡 − 1. In what follows, we describe the main idea behind Algorithm 1.

The less the ground-truth data contained in the inputs, the less precise the predicted

values, thus 𝑥
𝑠,𝑑
𝑖

should not be updated if the historical data is highly missed. In
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Algorithm 1: Backward data correction

input : 𝑋𝑖 : the previous traffic matrix at time-step 𝑖

𝑋̃𝑖 : the outputs of backward network

𝑀𝑖 : the measurement matrix of 𝑋𝑖
(𝑖 = 𝑡 − 𝐻 + 2, ..., 𝑡 − 1)

output :The updated traffic matrices

1 for 𝑠, 𝑑 ∈ N do
2 for 𝑖 = 𝑡 − 𝐻 + 1 to 𝑡 − 1 do
3 if i+r > t then
4 𝛼

𝑠,𝑑
𝑖
← 0.0;

5 end
6 else

7 𝜇
𝑠,𝑑
𝑖
←

∑𝑟
𝑗=1𝑚

𝑠,𝑑
𝑖+𝑗

𝑟
;

8 𝜌
𝑠,𝑑
𝑖
← 1

ln(𝑟 )+1 ×
∑𝑟
𝑗=1

𝑚
𝑠,𝑑
𝑖+𝑗
𝑗
;

9 𝛼
𝑠,𝑑
𝑖
← 𝜇

𝑠,𝑑
𝑖
× 𝜌𝑠,𝑑

𝑖
;

10 end
11 𝑥

𝑠,𝑑
𝑖
← (1.0 − 𝛼𝑠,𝑑

𝑖
) × 𝑥𝑠,𝑑

𝑖
+ 𝛼𝑠,𝑑

𝑖
× 𝑥𝑠,𝑑

𝑖
;

12 end
13 end
14 return 𝑋𝑖 (𝑖 = 𝑡 − 𝐻 + 2, ..., 𝑡 − 1)

addition, based on the experiment in Section 3.2, the predicted values are more close to

the ground-truth value if the previous time-step’s data is the precise data. Therefore,

we consider the position of the precise data in the input which is used to generate 𝑥
𝑠,𝑑
𝑖

(i.e., 𝑥
𝑠,𝑑
𝑖+1, ..., 𝑥

𝑠,𝑑
𝑡 ). However, some output of the backward network is generated using

too few data, for example the 𝑥
𝑠,𝑑
𝑖−2 is generated using the information from only two

data (i.e., 𝑥
𝑠,𝑑
𝑖−1 and 𝑥

𝑠,𝑑
𝑖
). Therefore, when calculate the confident factor 𝛼

𝑠,𝑑
𝑖
, we only

consider the output that is generated by using 𝑟 data (1 < 𝑟 < 𝐻 ).

Accordingly, in Algorithm 1, we first calculate the monitoring ratio (i.e., 𝜇
𝑠,𝑑
𝑖
) in the

input 𝑥
𝑠,𝑑
𝑖+1, ..., 𝑥

𝑠,𝑑
𝑡 at line 7. Then, we use the equation in line 8 to assess the position of

the precise data in the input (i.e., 𝜌
𝑠,𝑑
𝑖
). After that, the confident factor 𝛼

𝑠,𝑑
𝑖

is calculated

as following:

𝛼
𝑠,𝑑
𝑖

=
1

ln(𝑟 ) + 1 ×
∑𝑟
𝑗=1𝑚

𝑠,𝑑
𝑖+𝑖

𝑟
×

𝑟∑︁
𝑘=1

𝑚
𝑠,𝑑

𝑖+𝑘
𝑘

(3.5)
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We have 𝛼
𝑠,𝑑
𝑖
≤ 1

ln 𝑟+1 ×𝐻𝑟 < 1 where 𝐻𝑟 = 1 + 1

2
+ ... + 1

𝑟
is the sum of Harmonic

series. By using equation (3.5), we guarantee that 𝛼
𝑠,𝑑
𝑖

is always less than 1.0 even in

the case all the inputs are precise.

Figure 3.6: Example of data correction.

In Figure 3.6, we show an example of the data correction algorithm. In this example,

a traffic flow is predicted using 8 time-steps of input and we consider 𝑟 = 4. Suppose

that we want to update the value of imprecise data 𝑥3 ( the (𝑠, 𝑑) is removed for

simplicity). Then, the confident factors are calculated as follows:

𝜇3 =

∑𝑟
𝑗=1𝑚𝑖+𝑗
𝑟

= 1

2

𝜌3 =
1

ln 𝑟+1 ×
∑𝑟

𝑗=1𝑚𝑖+𝑗
𝑟
×∑𝑟

𝑘=1

𝑚𝑖+𝑘
𝑘

= 1

ln 4+1 ×
3

2

𝛼3 = 𝜇3 × 𝜌3 ≈ 0.314

Accordingly, the updated value are calculated as 𝑥3 ← (1 − 𝛼3) × 𝑥3 + 𝛼3 × 𝑥3.

3.4 Monitored flow determination

The monitored flow determination is the mechanism used for selecting the subset

of flows that is observed after every time-step. One of the common approaches in

choosing the set of monitored flows is to satisfy the fairness among all the flows.

Specifically, the gaps between every two consecutive monitored time-steps of every

flow are kept to be approximately the same. However, this method may not be effective

since the network flows are dynamic and have various temporal fluctuation patterns.

In this section, we design a heuristic monitoring strategy called weighted monitoring
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which respects two factors: the recent monitoring statistic and the prediction accuracy.

Our main idea is that at the current time-step 𝑡 , we calculate a weight𝑤
𝑠,𝑑
𝑡 for each

flow (𝑠, 𝑑) and choose at most 𝑘 flows which have the lowest weights to be monitored

at the next time-step (i.e., time-step 𝑡 + 1). The maximum number of flows that can be

monitored depends on the monitoring ratio (i.e., 𝑘 = ⌊𝜔𝑡+1 × 𝑁 × 𝑁 ⌋).
In the following, before going to the details of the weight’s formula, we will

first describe our theoretical basis. To ease the presentation, we call the periods

between the consecutively measured time-steps of a flow non-monitored periods of

that flow. Following the experiment results shown in Section 3.2, we note that the

longer the non-monitored periods, the larger the difference between the predicted

results and the actual traffic. Thus, to reduce the prediction error, we should decrease

the non-monitored periods of all flows. More specifically, the flows that have not been

monitored for a long period should be chosen to be monitored at the next time-step. To

this end, for each flow (𝑠, 𝑑), we define a term named consecutive missing (denoted as

𝑐
𝑠,𝑑
𝑡 ) which is the number of the time-steps from when (𝑠, 𝑑) was last monitored till the

current time-step 𝑡 . The weight should be designed so that it will decline when the

consecutive missing gets high.

Since we do not have the observed data at the time the prediction is made, the

prediction accuracy cannot be calculated. Therefore, to evaluate the prediction accuracy,

we define two terms named forward loss and backward loss. The forward and backward

losses of a flow (𝑠, 𝑑) (denoted as 𝑙
𝑠,𝑑,𝑓

𝑡 and 𝑙
𝑠,𝑑,𝑏
𝑡 , respectively) are defined to assess the

performance of the forward and backward ConvLSTM networks after predicting the

traffic at current time-step 𝑡 . Specifically, 𝑙
𝑠,𝑑,𝑓

𝑡 and 𝑙
𝑠,𝑑,𝑏
𝑡 are defined as the root squared

errors between the outputs and the ground-truth elements in the input (Equations (3.6)

and (3.7)). Note that, if the input contains no ground-truth data, then the losses are

assigned to 𝜉 which is a large positive number.

𝑙
𝑠,𝑑,𝑓

𝑡 ← 1∑𝑡
𝑖=𝑡−𝐻+2𝑚𝑖

𝑡∑︁
𝑖=𝑡−𝐻+2

𝑚
𝑠,𝑑
𝑖
× (𝑥𝑠,𝑑

𝑖
− 𝑥𝑠,𝑑

𝑖
)2 (3.6)

𝑙
𝑠,𝑑,𝑏
𝑡 ← 1∑𝑡−1

𝑖=𝑡−𝐻+1𝑚𝑖

𝑡−1∑︁
𝑖=𝑡−𝐻+1

𝑚
𝑠,𝑑
𝑖
× (𝑥𝑠,𝑑

𝑖
− 𝑥𝑠,𝑑

𝑖
)2 (3.7)

Consequently, the weight is calculated based on the flows’ consecutive missing,
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backward loss, and forward loss.

𝑤
𝑠,𝑑
𝑡 =

1

𝜆1 × 𝑙𝑠,𝑑,𝑓𝑡 + 𝜆2 × 𝑙𝑠,𝑑,𝑏𝑡 + 𝜆3 × 𝑐𝑠,𝑑𝑡
(3.8)

where 𝜆1, 𝜆2 and 𝜆3 are hyper-parameters which are chosen by experiments.

At the end of the time-step 𝑡 , the weights of all flows are calculated, and the first 𝑘

flows with the lowest weights are chosen to be measured at the next time-step.

3.5 Performance evaluation

3.5.1 Evaluation metrics

We evaluate the performance of our proposed model FWBW-LSTM and compare it

with two different models: statistical model ARIMA and LSTM network. We use the

error ratio (𝐸𝑅) as the performance metric to evaluate the prediction accuracy. Besides

that, we also compare the training and the prediction time of all approaches.

• Error ratio (the lower is better) is a metric for measuring the accuracy of the

predicted value. Since the traffic matrices include both observed and predicted

data, we only consider calculate the error of the predicted data (data in which

𝑚
𝑠,𝑑
𝑡 = 0). 𝐸𝑅 can be calculated as follows.

𝐸𝑅 =

√︃∑
𝑠,𝑑∈N

∑𝐻
𝑖=1 (1 −𝑚

𝑠,𝑑
𝑖
) × (𝑥𝑠,𝑑

𝑖
− 𝑜𝑠,𝑑

𝑖
)2√︃∑

𝑠,𝑑∈N
∑𝐻
𝑖=1 (1 −𝑚

𝑠,𝑑
𝑖
) × (𝑜𝑠,𝑑

𝑖
)2

(3.9)

In equations (3.9), 𝐻 is the total number of time-steps in the test set, and 𝑜
𝑠,𝑑
𝑖

is the

ground-truth traffic volume of flow (𝑠, 𝑑) at time-step 𝑖 .

3.5.2 Dataset

We evaluated the performance of our proposed approach by conducting extensive

experiments on the Abilene dataset (available at [70]). In the experiments, we separated

the dataset into 60% for training, 20%, and 20% for testing and validating, respectively.
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LSTM network configurations
No. LSTM layers 1 Recurrent dropout 0.5

No. hidden units 128 No. FC layers 3

ConvLSTM network configurations
No. Convolutional layers 2 No. filters 4/layer

Stride (1,1); (1,1) Filters’ size (3,3); (5,5)

Convolutional dropout 0.5 Recurrent dropout 0.5

Training configurations
Batch size 512 Loss function mse

Optimizer adam No. trained epoches 50

Table 3.1: The configurations of LSTM and ConvLSTM networks.

• Abilene dataset is the real trace data from the backbone network located

in North America which contains 12 nodes (𝑛 = 12). Abilene dataset, which

includes averages over 5 minutes interval of 144 aggregated flows from March 1

to September 11, 2004, has been widely used for performance evaluation in many

traffic matrix prediction studies [62], [63].

3.5.3 Model setting

The experiments have been conducted on a computer that has Intel i7-6900K CPU

@ 3.20GHz, 64 GB memory, and two NVIDIA GeForce GTX 1080Ti. The detailed

configurations of the LSTM and Convolutional LSTM networks are listed in Table 3.1.

For the ARIMA model, we use the "pyramid-arima" library. The library allows us to

quickly perform this grid search and even creates a model object that you can fit the

training data.

3.6 Experimental results

We conducted two types of experiments. First, we evaluated the performance of all the

three algorithms in one-step-ahead traffic matrix prediction (𝑇 = 1). In the second

experiment, we conducted a multi-step-ahead traffic matrix forecasting by predicting

the traffic matrices of 15 minutes ahead of the current time-step (𝑇 = 3). In order to
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Input size

(𝐻 )

Prediction steps

(𝑇 )

Weighted monitoring

parameters

(𝜆1, 𝜆2, 𝜆3)

No. run time

One-step-ahead

prediction

30 1 (2.6, 1.0, 1.0) 50

Multi-step-ahead

prediction

30 3, 6, 9 (2.6, 1.0, 1.0) 50

Table 3.2: Experiment configurations.

perform the multi-step traffic matrices prediction, we apply the Iterated Multi-Step

estimation (IMS) approach [48]. Specifically, we first use the many-to-many model to

predict the traffic matrix of the next time-step and then, iteratively feed the generated

data into the model to get the multi-step future traffic matrices.

In each experiment, we conducted different scenarios in which the monitoring

ratio 𝜔 is varied from 10% to 90% (i.e., the maximum number of monitored flows

per time-step is 𝑘 = 𝜔 × 𝑁 × 𝑁 ). In the experiment, we also applied the different

monitoring strategies for each model: random, fairness and weighted monitoring

(note that the weighted monitoring strategy is only used for FWBW-LSTM model).

Therefore, the results will be showed as following: {model name}-{monitoring strategy}

(e.g., LSTM-FAIRNESS stands for the result of LSTM model using fairness monitoring).

Table 3.2 shows the configuration of each experiments. For each experiment using

random monitoring strategy, we run the experiment 50 times and calculate the average

results.

3.6.1 Comparison of LSTM and ConvLSTM network-based traffic
matrix prediction

In this part, we compare the performance of LSTM and Convolutional LSTM on

one-step-ahead traffic prediction in term of Error Ratio. In the experiments, we apply

the random monitoring for both approach and vary the monitoring ratio from 10% to

90%.

The figure 3.7 indicates that in all the cases of monitoring ratio, LSTM has

outperformed the ConvLSTM. LSTM has 25% less Error Ratio than the figure of

ConvLSTM in average. There are several reasons for the poor performance of
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Figure 3.7: The comparison between LSTM and ConvLSTM-based approach.

Convolutional LSTM network-based approach. First, by adding the convolutional

operation, the Convolutional LSTM network has become more complicated and difficult

for training and hyper-parameter tuning (e.g., selecting the number of filters, filters’

size, etc.). Second, the traffic matrix is formed arbitrarily without considering the

geometrical location of the node. Therefore, the strong correlated flows may not be

located close to each other in which the spatial features can be extracted.

Besides that, the traffic flows in the Abilene dataset may not have strong relations.

For example, we have calculated the pairwise correlation between 25 flows which

are in the 5 × 5 square matrix at the top left of the 𝑁 × 𝑁 Abilene traffic matrix (we

used the data in the first week of the Abilene dataset). Figure 3.8 shows the pairwise

correlation of 25 flows as a heat map. As we can see, most of the flows do not have low

correlations to others. Therefore, for other results presented in this work, we only

consider the LSTM based-approach.

3.6.2 Evaluating the data correction module

To evaluate the performance of the data correction module, we conducted the one-step-

ahead prediction and compared the results of the LSTM model and our approach both

using random monitoring.

Figure 3.9 shows the comparison between the LSTM model and our proposed

model. Overall, with the data correction module, we achieve a lower error ratio in
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Figure 3.8: The pairwise correlation of 25 traffic flows in the 5 × 5 matrix.

the prediction and a higher R2 score than the standard LSTM model. The figure 3.9

indicates that with the backward data correction algorithm, we can reduce the impact

of the imprecise data. The data correction module performs well in medium and high

monitoring ratios. Especially, our model achieves 15.66% less error than the LSTM at

60% monitoring ratio.

The idea of the data correction module is based on the backward network and the

precise data in the input to correct the imprecise one. Therefore when there are few

precise data, our model only makes a slight improvement. As shown in the figure, the

gap in the Error Ratio between LSTM and our approach is small in the low monitoring

ratio case (𝜔 equals 10%).

3.6.3 Evaluating of the skip connection module

In Section 3.3.4, we introduced the skip connection that allows the input directly

concatenates with the output of the LSTM layer. In order to evaluate the effect of

the skip connection, we conducted experiments in one-step-ahead prediction and

compared the Error Ratio between the FWBW-LSTM model with and without the skip

connection. In this experiment, we used the weighted monitoring strategy for both
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Figure 3.9: The effect of data correction module.

models and varied the monitoring ratio from 10% to 90%.
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Figure 3.10: Comparison FWBW-LSTM model with and without skip connection.

In overall, the skip connection shows the advantage in the cases of highly lacking

ground-truth data. The skip connection outperforms in low monitoring ratio cases (by

reducing 10.9%, 11.5%, and 11,2% error in the cases 𝜔 = 20%, 30% and 40%, respectively)

and achieves as same as the results of FWBW-LSTM without skip connection in high

monitoring ratio.
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3.6.4 Evaluating the monitored flow determination module

In Section 3.2, we have mentioned the problem in which it is necessary to have a

monitoring strategy. The monitored flow determination module determines the subset

of flows that need to be monitored at every time-step to obtain the ground-truth data.

We have designed a simple heuristic method called weighted monitoring strategy in

Section 3.4. In this section, we present the performance comparison between three

monitoring strategies: random, fairness, and weighted monitoring. The experiments

were conducted using the FWBW-LSTM model with the increase in monitoring ratio

from 10% to 90%.
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Figure 3.11: The effect of monitoring strategies on traffic matrix prediction.

Figure 3.11 shows the effectiveness of the weighted monitoring in significantly

reducing the Error Ratio. Weighted monitoring achieves 68% and 60% less error than

the random and fairness monitoring in the best case. In the worst-case (i.e., 𝜔 equals

10% and 20%), weighted monitoring has the same performance as fairness monitoring.

In addition, although the results of the fairness strategy are better than the random

strategy in general, its performance decreases in the cases 60% and 70%. Especially, in

the cases of 70% monitoring ratio, the Error Ratio of fairness monitoring is witnessed

higher than that of random monitoring. The answer to this phenomenon is due to the

variation in the temporal fluctuation of the flows, while the fairness strategy only

ensures the same monitoring ratio for every flow in the network.
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𝜔 10% 20% 30% 40% 50% 60% 70% 80% 90%

𝐸𝑅 3.47e9 3348.589 1.322 1.209 0.553 0.497 0.351 0.349 0.331

Table 3.3: The results of ARIMA model in one-step-ahead prediction.

3.6.5 Evaluating the performance of one-step-ahead prediction

In this section, we present the performance comparison between our proposed model

(i.e., FWBW-LSTM with weighted monitoring strategy) and other benchmarks (i.e.,

ARIMA and LSTM). We conducted the one-step-ahead prediction (𝑇 = 1) and varied

the monitoring ratio from 10% to 90%. Note that since the values regarding some

ARIMA’s results are extremely large and lie outside the boundaries of the figures, they

are also presented in Table 3.3.
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Figure 3.12: Performance comparison in one-step-ahead prediction.

It can be seen that our proposal achieves the best performance regarding all the

metrics. LSTM shows the second-best performance and ARIMA is the worst. In general,

the more information we have (i.e., the higher monitoring ratio), the better prediction

accuracy we get. However, considering the increase of 80% in the monitoring ratio

from 10% to 90%, while our approach performs 79.6% improvement in the Error Ratio,

LSTM-FAIRNESS and LSTM-RANDOM models only gain 50.4% and 36.8%, respectively.

Additionally, although the results of the ARMIA model are witnessed a significant

improvement in reducing the error, the ARIMA model has performed poorly when

lacking information (𝜔 ≤ 50%).
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𝜔 10% 20% 30% 40% 50% 60% 70% 80% 90%

𝐸𝑅 1.8e9 94.166 4.780 1.095 0.861 0.613 0.748 0.546 0.710

Table 3.4: The results of ARIMA model in multi-step-ahead prediction.

Comparing LSTM and our proposal, we can see that our approach achieves high

accuracy in most of the experiment scenarios. Specifically, in the best case (i.e.,

𝜔 = 90%), the Error Ratio of our proposed approach is 71% and 60% less than that of

LSTM-RANDOM and LSTM-FAIRNESS, respectively. Moreover, it can be seen that

our proposal in case 𝜔 = 30%, achieves better performance (regarding all metrics)

as LSTM-RANDOM in case 𝜔 = 90%. It can be implied that with our approach we

may reduce 60% of the network monitoring overhead while still achieving the same

prediction accuracy as LSTM-RANDOM does.

The ratio of ground-truth input has a massive impact on the prediction accuracy

of ARIMA. As showed in Table 3.3, when 𝜔 < 60%, we see the dramatical increase

of 𝐸𝑅. Specifically, when 𝜔 = 10%, 𝐸𝑅 becomes extremely large, i.e., 𝐸𝑅 = 3.47e9.

However, when the percentage of ground-truth data in the input is sufficiently large

(i.e., 𝜔 ≥ 70%), ARIMA can perform very well and its performance is close to that of

LSTM. This results strongly emphasizes the advantage of our model in predicting

future traffic with only a small portion of ground-truth information.

3.6.6 Evaluating the performance ofmulti-step-ahead prediction

In this section, we conducted two experiments to evaluate the performance of the

models in multi-step-ahead prediction (𝑇 > 1). In the first experiment, at every

time-step, we predicted the traffic of the next 3 time-steps (equals to 15 minutes in

the Abilene dataset) while letting the monitoring ratio vary from 10% to 90%. In the

second experiment, we fixed the monitoring ratio at 70% but change the value of

𝑇 to 6 and 9. The first experiment shows how precise the model works in different

monitoring ratio while the second one is to see how well the model can predict the

traffic in the far future. In each time-step, our proposed algorithm and LSTM predict

the traffic matrices by applying the Iterated Multi-Step approach, while ARIMA uses

the Direct Multi-Step approach [48]. As in the previous section, the results of ARIMA

are extremely large and then, are presented in table 3.4.
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Figure 3.13: Performance comparison in multi-step-ahead prediction (𝑇 = 3).

Fig.3.13 shows the performance evaluation of all algorithms in terms of 𝐸𝑅. In

general, similar to the first experiment, our approach achieves the best performance in

all scenarios, followed by LSTM and ARIMA. In comparison with LSTM, when 𝜔 = 90%,

the 𝐸𝑅 of our algorithm is about 5.7% and 5.3% less than that of LSTM-RANDOM

and LSTM-FAIRNESS. Similar to the first experiment, ARIMA also shows very poor

performance compared to the other two approaches.
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Figure 3.14: The Error Ratio of all models with different multi-step-ahead prediction.

Comparing the results of the first experiment with the one at section 3.6.5, it can be

seen that the performance of the three algorithms in the multi-step-prediction is worse

than that in the one-step-ahead prediction. Although our results in multi-step-ahead
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prediction are the best in most cases, the degradation when compared with the results

of one-step-ahead prediction experiment is larger than that of ARIMA and LSTM. For

example, in the case 𝜔 = 60%, the prediction errors of ARIMA, LSTM-RANDOM and

LSTM-FAIRNESS increase by only 28.2%, 21.5% and 23.2%, respectively, while that of

FWBW-LSTM-WEIGHTED is 54%.

Figure 3.14 shows the Error Ratio of all models with different values of𝑇 . In general,

our model still shows the best performance in all cases. It is obvious that the higher

the value of 𝑇 , the higher error in the prediction. However, ARIMA has performed

poorly by increasing 234% error in the case 𝑇 = 9 compared to 𝑇 = 3. LSTM-RANDOM,

LSTM-FAIRNESS and FWBW-LSTM, on the other hand, only increase 42.3%, 42% and

23.5% in the same comparison, respectively.

3.6.7 Evaluating the effect of the input size (𝐻 )

The accuracy of statistical models such as ARIMA heavily depends on the amount of

data fed to the model. We have seen in Section 3.6.5 and 3.6.6 the poor performance of

ARIMA when only 30 previous data is used to predict the future value. To evaluate

the effect of the input size (i.e., 𝐻 ), in this section, we present the comparison in the

Error Ratio between ARIMA, LSTM-RANDOM, and FWBW-LSTM-RANDOM with

different values of input size. Since one-day data of the Abilene dataset contains 288

time-steps, the experiments were conducted with 𝐻 equals 36, 72, 144, and 288 which

corresponds to 3-hour, 6-hour, 12-hour, and one-day of previous data is fed to the

model, respectively. We fixed the monitoring ratio at 40%, and run the experiments 50

times for each model, and then plot the average results on Fig.3.15. Note that since the

running time of ARIMA is too long, we only run the experiment 10 times for each

scenario.

According to the results showed in Fig. 3.15, we observe two different trends in the

results of the LSTM-based models (i.e., LSTM-RANDOM and FWBW-LSTM-RANDOM)

and the ARIMA model. First, the performances of LSTM and our proposed model are

steadily low regardless of the input size, although their figures make a small increase

when the input size increases (at 𝐻 = 288). This can be explained as the increase in the

input size leads to the increase in the model complexity (e.g., the number of trainable

variables in the neural network) which make the model hard to train.
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Figure 3.15: The effect of input size.

On the other hand, although the Error Ratio of ARIMA is considerably high at the

low input size experiment (𝐻 = 36), its figure significantly drops in the next case

when 𝐻 = 72 (about 60%) and remains low in the others. Especially, with the input

size equals to 288, the Error Ratio of ARIMA is 25% and 27% less than the LSTM and

FWBW-LSTM. However, since ARIMA is a state space model, we need to fit the data to

the model when we make a prediction for a flow at every time-step. Thus, in the

experiments, the ARIMA takes a long running time doing the traffic prediction for

all the flows at each time-step (about 64.83(s) and 143.13(s) in the cases 𝐻 = 36 and

𝐻 = 288 respectively). In contrast, Deep Learning-based models such as LSTM can be

trained in offline mode and then, used for online traffic predicting.

3.6.8 Evaluating the time complexity

In this part, we evaluate the training and prediction time of the LSTM-based models

(i.e., LSTM and FWBW-LSTM). Besides that, we also compare the models in terms of

the number of trainable parameters and the occupied memory.

LSTM ConvLSTM FWBW-LSTM

Training time (s) 435 129 778

Prediction time (s) 0.08 0.03 0.15

Table 3.5: The training and prediction time of LSTM and FWBW-LSTM.
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LSTM ConvLSTM FWBW-LSTM

Trainable parameters 23425 4465072 214944

Memory usage (MiB) 147 4467 237

Table 3.6: Comparison in the number of parameters and the amount of used memory.

In general, although having a long training time, LSTM, ConvLSTM, and FWBW-

LSTM perform extremely fast in predicting traffic matrix at each time-step (less than a

second). Therefore, LSTM-based models are more suitable for doing online traffic

matrix prediction than the ARIMA model.

According to table 3.5 and 3.6, although being the most complicated model,

ConvLSTM network has lowest training and prediction time. ConvLSTM can reduce

the training and prediction time since it performs traffic prediction for the whole matrix

as one (which means higher memory and computation usage) while LSTM-based

models process the traffic flows separately.

Comparing the LSTM and FWBW-LSTM, while our model has nearly 10 times in

the number of trainable parameters, the training and prediction time is only 2 times

more than that of the LSTM model.

3.7 Summary

In this chapter, we address the traffic matrix prediction problem in backbone networks

where the future traffic is estimated under the lack of precise historical data. We

exploited the Convolutional LSTM network for extracting and modeling the spa-

tiotemporal feature of the traffic matrices. We proposed a novel deep learning model

and techniques which leverage the forward and backward ConvLSTM networks to

correct input data and determine flows monitored at the next timestep. We conducted

extensive experiments for evaluating our proposed approach. The results demonstrated

that the proposed approach outperforms other well-known methods for time series

analysis.
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4
Network traffic imputation

Missing values appear in most multivariate time series, especially in the monitored

network traffic data due to high measurement overhead and unavoidable loss. In

the networking fields, missing data can prevent advanced analysis and downgrades

downstream applications such as traffic engineering and anomaly detection. We

propose GCRINT, a combination between Recurrent Neural Network (RNN) and Graph

Convolutional Neural Network, for filling the missing values of network traffic data.

We use a bidirectional Long Short-Term Memory network and Graph Neural Network

to efficiently learn the spatial-temporal correlations in partially observed data.

4.1 Problem statement

In this work, we target the problem of recovering the missing values in the network

traffic dataset. The imputation process will be done in the data preprocessing step

before the prediction model is trained. The network model and the problem will be

described as follows. The network is represented by a directed graph𝐺 = (𝑉 , 𝐸), where
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𝑉 is the set of nodes (|𝑉 | = 𝑁 ), and 𝐸 is the set of the network’s links. Each link 𝑒 ∈ 𝐸
has capacity 𝑐 (𝑒). The measurement of traffic data is the traffic volume exchanged

between all the source-destination pairs in the network. Thus, the total number of

traffic flows is 𝐷 = 𝑁 2
.

Let 𝑋𝑡 ∈ R𝐷 be the vector of all traffic volumes and 𝑥𝑡𝑖 ∈ 𝑋𝑡 denote the traffic

volume of flow 𝑖 at the time-step 𝑡 . We denote a partially measured data as 𝑋 =

[𝑋1, 𝑋2, ..., 𝑋𝑇 ] (𝑋 ∈ R𝑇×𝐷 ), with 𝑇 the total monitored time-steps. 𝑋 is generally an

incomplete matrix where each column𝑋𝑑 = [𝑥𝑑
1
, ..., 𝑥𝑑

𝑇
] denotes the 𝑑-th time series and

each row𝑋𝑡 = [𝑥1𝑡 , ..., 𝑥𝐷𝑡 ] is the data at time step 𝑡 . We use a mask matrix𝑀 ∈ {0, 1}𝑇×𝐷

to indicate the locations of the missing value, where𝑚𝑑
𝑡 = 0 if 𝑥𝑑𝑡 is the missing value,

and 1, otherwise. The imputation problem can be formulated as:

min

𝑋

𝑇∑︁
𝑡=1

𝐷∑︁
𝑑=1

|𝑥𝑑𝑡 − 𝑥𝑑𝑡 |

𝑠 .𝑡 .

𝑇∑︁
𝑡=1

𝐷∑︁
𝑑=1

𝑚𝑑
𝑡 ∗ |𝑥𝑑𝑡 − 𝑥𝑑𝑡 | = 0

(4.1)

where 𝑥𝑑𝑡 ∈ 𝑋 is the imputed data of 𝑋 .

4.2 Graph convolutional recurrent neural network

for imputing network traffic

We propose Graph Convolutional Recurrent Neural Network for Imputing Network

Traffic (GCRINT), a spatial-temporal deep learning model for network traffic imputation.

GCRINT is a combination of the RNN-based model and Graph-based neural network.

We design a multi-layers model whose each layer has two modules for learning features

in time and space domains. Like BRITS [7], we use a bidirectional LSTM model for

learning the temporal feature in the traffic data. To cope with the dynamic correlation

mentioned above, we use Graph Convolutional Neural Network to exploit the spatial

feature among the traffic flows automatically. Then, each layer’s outputs are combined

by a fully connected layer to obtain the final imputed data. Furthermore, to address the

LSTM model’s scalability in handling long sequences, the input is reduced by half after

each layer. In this way, we can still learn the long-range dependency on deeper layers
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while lowering model complexity.

Figure 4.1: The architecture of GCRINT model.

Figure 4.1 describes the overall architecture of our proposed model. GCRINT is

the combination of BiLSTM and GCN. Overall, the proposed model has three main

modules: an input layer, BiLSTM, and GCN layers. The input layer is responsible for

extracting hidden features from the input, while the BiLSTM and GCN layers are for

learning the temporal and spatial features in the data. GCRINT has multiple layers of

BiLSTM and GCN; thus, it can handle temporal and spatial dependencies at different

levels. After each layer, the number of time-steps in the sequence data is reduced by

half. By skipping some time-steps in the sequence data, we reduce the computational

complexity in the latter layers while still learning the long-term temporal information.

We combine the outputs from each layer and use a fully connected layer to obtain the

final output. Next, we present the details of each module in GCRINT.

4.2.1 Input layer

In contrast to the tensor completion-based approaches [18, 64], which process the

whole data at once, in the deep learning-based approaches, data is divided into

sub-sequences and put into the imputation model sequentially. Let [𝑋1:𝑇 , 𝑀1:𝑇 ] be the
input of the GCRINT model in which 𝑋1:𝑇 is the traffic data of 𝑇 time steps and𝑀1:𝑇 is

its corresponding mask matrix. Thus, the input of GCRINT is a 3D tensor [𝑇, 𝐷, 2] with

two features: the traffic volume and the mask. In the input layer, we use two fully



4.2 Graph convolutional recurrent neural network for imputing network
traffic 53

Figure 4.2: The design of the input layer.

connected networks to obtain the feature representation of the input (as shown in Fig.

4.2.1). After passing the input layer, we receive the output of X1:𝑇 , which is a 3D tensor

with the size of [𝑇, 𝐷, 𝐻𝐼 ] (𝐻𝐼 is the number of hidden units of the fully connected

network in the input layer). Then, X1:𝑇 is fed into the BiLSTM layers.

4.2.2 Temporal feature learning with BiLSTM

Unlike the normal BiLSTM that receives the same input for both forward and backward

LSTM networks, the BiLSTM layer in GCRINT takes inputs with different alignments

for each LSTM propagation direction. Specifically, the forward LSTM takes X1:𝑇−2 as
input and obtains output X 𝑓

2:𝑇−1 for time-steps from 2 to 𝑇 − 1. Similarly, X3:𝑇 and

X𝑏
2:𝑇−1 are the input and output of the backward LSTM. Therefore, from both LSTM

networks, we obtain the output for the same time-steps [2 : 𝑇 − 1]. This technique was
presented in [7] to overcome the backpropagation issue caused by the missing values

in the data. The final output of BiLSTM layer X𝐺 is the mean of X 𝑓
2:𝑇−1 and X

𝑏
2:𝑇−1 (Eq.

4.2).

X𝐺 = tanh ((X 𝑓
2:𝑇−1 + X

𝑏
2:𝑇−1)/2) (4.2)

The output of the BiLSTM layer is a 3D tensor with the size of [𝑇 − 2, 𝐷, 𝐻𝐵], where
𝐻𝐵 is the hidden size of the LSTM networks.
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4.2.3 Spatial feature learning with GCN

The GCN in each layer falls into the spatial-based, node-level graph neural networks.

Each node in the graph represents the traffic of a network flow. We use Diffusion

Convolutional Neural Network to extract the spatial relationships among the traffic

flows, as shown in Equation (4.3).

𝑍 =

𝐾∑︁
𝑘=0

𝑓 (𝑃𝑘X𝐺𝑊𝑘) (4.3)

where X𝐺 is the input of GCN, 𝐾 is the number of diffusion steps, 𝑃𝑘 is the power

series of the transition matrix, 𝑓 (.) is the activation function, and𝑊𝑘 is the learnable

parameters. The transition matrix is computed by 𝑃 = 𝐷−1𝐴 where 𝐴 is the adjacency

matrix of the graph, 𝐷 is the diagonal matrix of node degrees, 𝐷𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 .

However, there is no explicit graph representing the relations among the traffic

flows in this work. Therefore, we adopt the Self-adaptive Adjacency Matrix from [59]

to learn the input data’s adjacency matrix. The Self-adaptive Adjacency Matrix is

obtained by Equation (4.4) proposed in [59].

𝐴𝑎𝑑𝑝 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑅𝑒𝐿𝑈 (𝐸1𝐸𝑇2 )) (4.4)

where 𝐸1, 𝐸2 are the learnable parameters. From (4.3) and (4.4), the DCNN with

Self-adaptive Adjacency Matrix is represented as:

𝑍 =

𝐾∑︁
𝑘=0

𝑓 (𝐴𝑘
𝑎𝑑𝑝
X𝐺𝑊𝑘) (4.5)

The output of the GCN is a 3D tensor 𝑍2:𝑇−1 with size [𝑇 − 2, 𝐷, 𝐻𝐺] (𝐻𝐺 is the

hidden size of the GCN). Finally, The outputs of the GCN in each layer are combined

and fed into a fully connected layer to obtain the final output.
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4.3 Performance evaluation

4.3.1 Datasets and baseline methods

We conduct experiments on two real network datasets: Brain, and Abilene, available at

[36]. Each dataset is divided into three sets: 70% for training, 10% for validating, and

20% for testing. Note that, although the Brain network has 161 nodes in total, most of

them are regional nodes. Therefore, we only consider the aggregated traffic from 9

backbone nodes in the Brain network. The experiment’s results can be reproduced at

[1].

The baseline methods are:

• GCP [18]: the CP decomposition-based tensor completion approach.

• NTC [61]: the network traffic recovery model combines deep learning model

(3D-CNN) and CP decomposition-based approach.

• BRITS [7]: This model is based on a bidirectional recurrent network with GRU-I

cell to impute time series. We do not compare with E
2
GAN [30] because E

2
GAN

uses the same GRU-I cell, and their performances are relatively the same.

4.3.2 Performance metrics

We evaluate the imputation error using the Mean Absolute Error (MAE), which is

calculated by Equation (4.6). For the traffic engineering problem, after obtaining the

routing policy, the MLU is calculated using the actual traffic matrix from the test set.

𝑀𝐴𝐸 =

∑𝑁
𝑡=1

∑𝐷
𝑑=1
(1 −𝑚𝑑

𝑡 ) |𝑥𝑑𝑡 − 𝑥𝑑𝑡 |∑𝑁
𝑡=1

∑𝐷
𝑑=1
(1 −𝑚𝑑

𝑡 )
(4.6)

4.3.3 Generating synthetic missing data

To evaluate the imputation methods, we assume that the original datasets have no

missing values. We synthetically generate the missing data by removing 𝑘% (i.e., the

missing rate) entries from the original data following two missing scenarios. In the

first scenario, the data is removed by two patterns: random missing and block missing
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(a) Random missing.
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(b) Block missing.

Figure 4.3: Example of random and block missing scenarios of Abilene dataset in 144

time-steps (12 hours). The black dots represent the missing values.

as showed in Fig.4.3. In the random missing, the entries are randomly removed, while

in the block missing, a block of entries is removed consecutively. The value of 𝑘 is

varied from 50 to 90.

In the second scenario, we generate the missing data following the link failure

events. In this scenario, we assume that the traffic flow is routed using the shortest

path routing. When the link failure event occurs, all the measured data of the flows

that pass through that link is not recorded. The link failure scenario is generated based

on the study [20]. The details of this scenario will be described in Section 4.3.6.

4.3.4 Evaluating the impacts of the input size

The traffic dataset is divided into sub-sequences by using a sliding window of size 𝑇 .

Then, the missing data in each sub-sequence is recovered. Finally, the imputed data is

obtained by taking the average of the overlapped recovered sub-sequences. In this

experiment, we study the impacts of 𝑇 on the imputation errors of GCRINT. Figure

4.4(a) shows the imputation errors of GCRINT on the Abilene dataset with 60% random

missing values. As can be observed, the MAE decreases when the length of the input

sequence (i.e., 𝑇 ) increases from 16 to 64 but the error increases beyond that. This

phenomenon can be explained as follows. With a longer input sequence, the model
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Figure 4.4: GCRINT on different input sizes.

may receive more information to recover the missing values, thereby increasing the

imputation accuracy. Using 𝑇 = 64, we can reduce 16.8%, 13.4% and 12.6% in MAE

compared to the cases 𝑇 = 16, 32, 48, respectively. However, when the sequence length

is sufficiently large (𝑇 = 80), the imputation model becomes too complicated, which

leads to the LSTM network’s inherent drawbacks in handling long sequences.

The impacts of 𝑇 on the training time is depicted in Fig.4.4(b). There is a trade-off

between imputation accuracy and computational complexity. The larger 𝑇 , the more

computational overhead in both model training and testing. Based on the experiment

results obtained above, 𝑇 should be set to a moderate value of 64. We use this value for

all subsequent experiments.

4.3.5 Evaluating the imputation accuracy on random missing

Figure 4.5 shows the performance comparison of all the methods in terms of MAE

with random and block missing scenarios. Overall, the LSTM-based models (i.e.,

GCRINT and BRITS) outperform the CP decomposition-based approaches (i.e., GCP

and NTC). Our proposed model achieves the best performance in all the scenarios.

All the methods have high imputation errors in the block missing in both datasets

compared to the random missing scenario.

In comparison with GCP and NTC, GCRINT can reduce MAE by at most 80.5% and

68.7% on the Abilene dataset, and 72.0% and 54.4% on the Brain dataset. Comparing

BRITS and GCRINT, while both models have almost the same MAE in the low missing



4.3 Performance evaluation 58

GCP NTC BRITS GCRINT

50% 60% 70% 80% 90%

Missing rate

5

10

15

M
A

E

(a) Abilene - random missing.

50% 60% 70% 80% 90%

Missing rate

5

10

15

M
A

E
(b) Abilene - block missing.

50% 60% 70% 80% 90%

Missing rate

0.5

1.0

M
A

E

1e6

(c) Brain - random missing.

50% 60% 70% 80% 90%

Missing rate

0.50

0.75

1.00

M
A

E

1e6

(d) Brain - block missing.

Figure 4.5: The comparison of all methods in terms of MAE with different missing

scenarios.

rate (i.e., less than 70%), GCRINT achieves better performance when the missing rate

increases. In the highest missing rate, GCRINT reduces MAE by about 35%.

4.3.6 Evaluating the imputation accuracy onmissing data caused
by link failures

In this experiment, we evaluate the performance of the proposed model in imputing

missing data caused by link failures. We assume that the traffic flow is routed using the

shortest path routing. When the link failure occurs, the measured data of the flows
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traveling on that link is missing. We generate the link failure scenarios based on the

study in [20]. We use the Abilene dataset and compare the performance of GCRINT,

BRITS, and NTC in this experiment.
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Figure 4.6: The cumulative distribution of times between failures over the entire

network (a) and the mean time between failures per link (b).

According to the study in [20], a lot of failures happen close to each other. The

mean time between two link failure events of a given link can be as low as a few

minutes or as high as several days. In this experiment, we consider the minimum time

between two failure events that happen in the entire network is 100 minutes, there are

about 15 failure events that happen in one day. Since we use the Abilene dataset which

the data was measured 288 times per day, the maximum percentage of link failure

evens in one-day measurements is approximately 5%. Therefore, we generate the

missing dataset with the percentage of link failure events that varies from 1% to 4%.

Figure 4.6 shows the cumulative distribution of times between failures over the entire

network and the mean time between failures per link when the percentage of link

failure event equals 1% per day. The duration of the failure event is randomly set from 5

to 20 minutes. Table 4.1 shows the missing rate of the generated dataset corresponding

to the percentage of link failure events. Figure 4.7 shows an example of missing values

caused by link failures (1%) of Abilene dataset in 144 time-steps (12 hours).

Table 4.2 shows the performance comparison of GCRINT, BRITS, and NTC on

recovering missing values caused by link failure events. The numbers in the parentheses

are the performance improvements between GCRINT and other methods. We can
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Figure 4.7: Example of missing values caused by link failures of Abilene dataset in 144

time-steps (12 hours). The black dots represent the missing values.

Percentage of link failures (%) 1 2 3 4

Missing rate (%) 2.28 4.49 6.7 8.76

Table 4.1: The missing rate of the generated datasets.

see that the time series completion-based models (GCRINT and BRITS) outperform

the NTC approach. GCRINT can reduce the imputation error by 70% compared to

the results of NTC. In the comparison between GCRINT and BRITS, GCRINT has

better results in most cases. GCRINT reduces the error at most 5% (the case of 4% link

failures) compared to BRITS. As shown in the table, the performance gaps between

GCRINT and BRITS increase along with the increase of the link failure percentage.

Since our model has the GCN module to utilize the spatial information in the data, in

case of a high missing rate, GCRINT can achieve better performance than BRITS

(which can only extract the temporal information).
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Percentage of link failures (%) 1 2 3 4

GCRINT 1.55 1.59 1.63 1.65
BRITS 1.53 (-1.4%) 1.61 (1.29%) 1.71 (4.34%) 1.72 (4.86%)

NTC 5.73 (73.02%) 5.89 (73.06%) 6.16 (73.54%) 6.50 (74.79%)

Table 4.2: Performance comparison of imputation methods on recovering missing

values in network traffic dataset caused by link failure events.

4.3.7 Evaluating the impacts of imputed datasets on traffic
prediction-based TE

Figure 4.8: Traffic Engineering leveraging network traffic imputation.

In this experiment, we evaluate the impact of the imputation methods on traffic

prediction-based TE. There are two separate phases in this experiment: the training

phase and the testing phase (see Figure 4.8). In the training phase, we use imputation

methods (e.g., GCRINT, BRITS, NTC, GCP) to recover the missing values in the training

dataset. After estimating all the missing data, the imputed dataset is used to train a

prediction model (e.g., LSTM network). In the testing phase, the network controller

obtains the future traffic demands using the LSTM network and monitored data. Then,

routing rules are calculated using the 2-segment routing algorithm [5] based on the

predicted values. The maximum link utilization (Equation 4.7 ) is used to evaluate the
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performance of the traffic engineering task. 𝐸, 𝑙𝑜𝑎𝑑 (𝑒), and 𝑐 (𝑒) are the set of network
link, the traffic load on link 𝑒 , and the capacity of link 𝑒 , respectively.

𝑀𝐿𝑈 = max

𝑒∈𝐸

𝑙𝑜𝑎𝑑 (𝑒)
𝑐 (𝑒) (4.7)

In the training phase, the missing rate of the training dataset is set at 50%. The final

results (ie., MLU) are named based on the imputation methods used in the training

phase. In addition, we also train the LSTM network using the data without missing

values (i.e., ground-truth data). The results of this case are named ‘Optimal’. By using

the same prediction model and routing algorithm, we can evaluate the impact of the

different imputation methods on the traffic-prediction-based TE.

Overall, traffic engineering results reflect the imputation methods’ performance, as

shown in Fig.4.9. The average MLU of GCRINT is 22% lower than BRITS in the block

missing scenario of the Abilene dataset. In the Brain dataset, GCRINT also reduces the

MLU by about 70% to 80% on average, compared with that of GCP and NTC.

Although the average MLU of all the methods is close to the optimal, GCP and

NTC suffer from a significantly high MLU in some absurd time-steps, especially in the

Brain dataset. Therefore, the variances of GCP and NTC are considerably larger than

those of GCRINT. Similarly, solving routing using imputed data by BRITS leads to high

link utilization in many time-steps of the Abilene dataset (Fig.4.9(a), 4.9(b)). In most

cases, GCRINT achieves the lowest MLU.

In conclusion, the recovered data provided by our proposed model facilitates the

most stable performance in traffic engineering compared with all recently proposed

methods.
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Figure 4.9: The comparison of imputation methods in traffic prediction-based TE.

4.4 Summary

In this chapter, we present the novel model, namely GCRINT, to address the network

traffic imputation problem. To exploit the unique characteristic of traffic data, GCRINT

is constructed with three main modules for extracting temporal and spatial features.

Extensive experiments demonstrated our model’s effectiveness in real network traffic

datasets (e.g., Brain and Abilene datasets) with different missing scenarios. Moreover,

we showed that GCRINT can improve the performance of downstream network

applications such as traffic engineering.
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5
Traffic prediction-based traffic

engineering

Based on the concept of source routing, segment routing (SR) allows the source or

ingress node to inject a sequence of segment labels into the packet header and specify

the routing path. Due to the routing flexibility, SR has been widely used to solve

traffic engineering (TE) problems such as minimizing the maximum link utilization of

a network. However, most of the prior studies only solve the problems in a single

snapshot without considering network traffic dynamics, resulting in frequent traffic

reroutes. Furthermore, the traditional TE solutions usually require a large amount of

traffic data, leading to high traffic monitoring overhead.

To cope with these issues, we focus on solving the segment routing-based traffic

engineering problems by taking into account future traffic changes. In Section 5.1,

we present the TE problem with 2-segment routing (2SR). Then, we formulate the

multi-time-step segment routing problem (MTSR) with traffic prediction in Section 5.2.

Section 5.3 gives details about our proposed heuristic to solve MTSR problem. In
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addition in Section 5.4, we present a combined approach of MTSR and compressive

sensing for reducing the monitoring cost. The performance evaluation and summary

are showed in Section 5.5 and 5.6, respectively.

5.1 Problem statement

First, we briefly introduce the TE problem with 2-SR. This problem was introduced in

[5] as a traffic matrix aware segment routing. Therefore, some notations and figures

from [5] are reused in this dissertation. However, in contrast with their problem, we do

not consider that the traffic flows can be arbitrarily split and routed by different paths.

The network is represented by an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the

set of nodes (|𝑉 | = 𝑁 ), and 𝐸 is the set of the network’s links. Each link 𝑒 ∈ 𝐸 has a

capacity 𝑐 (𝑒). Let𝑀𝑡 ∈ R𝑁×𝑁 be the traffic matrix at time-step 𝑡 and𝑚𝑡
𝑖 𝑗 ∈ 𝑀𝑡 denote

the traffic flow from node 𝑖 to 𝑗 (flow 𝑖 𝑗 for short, 𝑖, 𝑗 ∈ 𝑉 ) at time step 𝑡 . Let 𝛼𝑘𝑖 𝑗 be the

binary variable which 𝛼𝑘𝑖 𝑗 = 1 indicates that flow 𝑖 𝑗 is routed through intermediate

node 𝑘 , and otherwise. Therefore 𝛼𝑘𝑖 𝑗 can be considered as the routing policy. We

assume that the network is controlled by a central controller such as SDN controller

[12]. The controller plays an important role in collecting the knowledge of the network

(i.e., topology, traffic statistics), predicting future traffic demands, and applying the

routing policy to devices via PCEP [49]. However, the implementation of the controller

is out-of-scope and will be omitted.

In 2-SR, we only need to select one intermediate node 𝑘 for each flow 𝑖 𝑗 . Figure 5.1

shows the example of 2-segment routing path for flow 𝑖 𝑗 with the intermediate node 𝑘 .

The traffic from 𝑖 to 𝑘 and from 𝑘 to 𝑗 is routed through the shortest path between

them. The intermediate node 𝑘 = 𝑖 or 𝑘 = 𝑗 means that flow 𝑖 𝑗 is routed by the shortest

path from 𝑖 to 𝑗 . The problem (called 𝑃0) can be formulated as the following integer

linear program. The variable 𝜃 represents the maximum link utilization.
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Figure 5.1: Illustration of 2-segment routing [5].

𝑃0 :

minimize 𝜃 (5.1)∑︁
𝑘∈𝑉

𝛼𝑘𝑖 𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝑉 (5.2)∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗𝑚𝑡
𝑖 𝑗 ≤ 𝜃𝑐 (𝑒) ∀𝑒 ∈ 𝐸 (5.3)

𝛼𝑘𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 (5.4)

We have 𝑔𝑘𝑖 𝑗 (𝑒) = 𝑓𝑖𝑘 (𝑒) + 𝑓𝑘 𝑗 (𝑒), in which 𝑓𝑖𝑘 (𝑒) = 1 if link 𝑒 is on the shortest path

from 𝑖 to 𝑘 of flow 𝑖 𝑗 with intermediate node 𝑘 and 𝑓𝑖𝑘 (𝑒) = 0, otherwise. Note that in

𝑃0, the maximum link utilization 𝜃 can be greater than 1, which means the network

may be congested. Equations (2) and (4) ensure that all traffic from 𝑖 to 𝑗 is routed and

cannot be split into different paths. Equation (3) depicts that the total traffic load on

link 𝑒 is not greater than the link’s capacity.

By solving the problem above, we can get a routing policy for a single time-step

𝑡 . Although we can also reuse the same routing policy for the next 𝑇 time-step to

mitigate the routing path’s variation, the link utilization constraint may not be assured

due to network traffic’s dynamic behavior. Therefore, for future time-steps, we need to

resolve the problem and update the routing policy. A trivial approach to minimize the

maximum link utilization in the next 𝑇 time-steps is to solve the problem 𝑃0 at every

time-step. This approach may lead to a considerable number of re-routed flows. To this

end, in the next section, we propose an extension of 𝑃0, which addresses the segment

routing problem in multiple steps. We first present the mathematical formulation and

then describe some theoretical analysis.
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Problem Routing cycle Required number of predicted traffic matrices Problem complexity

𝑃0 1 time-step No traffic prediction Low

𝑃1 T time-steps 𝑇 traffic matrices of every time-step in the next cycle High

𝑃2 T time-steps One traffic matrix of maximum demands in the next cycle Low

𝑃3 T time-steps 𝑃 matrices of maximum demands of every sub-periods in the next cycle Medium

Table 5.1: The differences of the problem formulations.

5.2 Multi-time-step Segment Routing

5.2.1 Problem formulations

In this section, we present the formulation of the multi-time-step segment routing

problem (called 𝑃1) and its modified versions (𝑃2 and 𝑃3). As mentioned in Section 5.1,

by solving these problems, we obtain routing policies that can be applied for the next

routing cycle, which is 𝑇 (𝑇 > 1) time-steps ahead. Here 𝑇 is the length of the routing

cycle in the number of time-steps.

Assume that𝑀 = [𝑀1, 𝑀2, ..., 𝑀𝑇 ] are the predicted traffic matrices of the next 𝑇

time-steps, which can be acquired by using the state-of-the-art prediction models such

as in [26], [59]. We extend the problem 𝑃0 for 𝑇 future steps by considering more

constraints corresponding to the traffic demands of each time-step.

𝑃1 :

minimize 𝜃 (5.5)∑︁
𝑘∈𝑉

𝛼𝑘𝑖 𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝑉 (5.6)∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗𝑚𝑡
𝑖 𝑗 ≤ 𝜃𝑐 (𝑒) ∀𝑒 ∈ 𝐸;∀𝑡 ∈ 𝑇 (5.7)

𝛼𝑘𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 (5.8)

It can be seen that 𝑃1 is different from 𝑃0 by the link capacity constraints (7).

Specifically, in 𝑃1, the routing policy 𝛼
𝑘
𝑖 𝑗 needs to satisfy link capacity constraints at

“every" time-step. Due to a larger number of constraints, problem 𝑃1 becomes more

complicated than 𝑃0. Besides that, 𝑃1 requires the prediction of all traffic matrices

of the next 𝑇 time-steps, which remains a significant challenge even with the most

state-of-the-art deep learning models. Obviously, prediction accuracy plays a vital

role in the performance of problem 𝑃1. Unfortunately, the results of some proposed
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prediction models [26], [59] show that the prediction performance worsens when the

number of prediction steps increases. Therefore, to reduce the problem complexity and

alleviate the burden of traffic prediction tasks, we formulate problems 𝑃2 and 𝑃3, which

are the relaxed versions of 𝑃1.

𝑃2 :

minimize 𝜃 (5.9)∑︁
𝑘∈𝑉

𝛼𝑘𝑖 𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝑉 (5.10)∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗 max

𝑡∈𝑇
𝑚𝑡
𝑖 𝑗 ≤ 𝜃𝑐 (𝑒) ∀𝑒 ∈ 𝐸 (5.11)

𝛼𝑘𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 (5.12)

In problem 𝑃2, we only consider the maximum values of each flow 𝑖 𝑗 over the next

𝑇 time-steps. By doing so, 𝑃2 has the same number of constraints as 𝑃0. Besides, we

only need to predict one traffic matrix whose elements are the maximum value of each

traffic flow.

𝑃3 :

minimize 𝜃 (5.13)∑︁
𝑘∈𝑉

𝛼𝑘𝑖 𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝑉 (5.14)∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗 max

𝑡∈𝑇𝑝
𝑚𝑡
𝑖 𝑗 ≤ 𝜃𝑐 (𝑒) ∀𝑒 ∈ 𝐸;∀𝑇𝑝 (5.15)

𝛼𝑘𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 (5.16)

In problem 𝑃3, the routing cycle is divided into 𝑃 sub-periods in which each of them

has 𝑇𝑝 time-steps. Then, similar to 𝑃2, we formulate the problem with the maximum

values of flow 𝑖 𝑗 in each sub-period 𝑇𝑝 . Accordingly, to solve 𝑃3, we only need to

predict 𝑃 traffic matrices, which are the maximum traffic of every flow 𝑖 𝑗 in each

sub-period 𝑇𝑝 .

The differences in the proposed problem formulations are summarized in table 5.1.

In general, the required number of predicted traffic matrices depends on the way we

estimate future traffic.
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5.2.2 Theoretical analysis

In this part, we theoretically analyze the performance ratios of 𝑃2, and 𝑃3 to 𝑃1. Denote

(𝜃 ∗
1
, 𝛼∗

1
), (𝜃 ∗

2
, 𝛼∗

2
), and (𝜃 ∗

3
, 𝛼∗

3
) as the optimal solutions obtained by solving 𝑃1, 𝑃2, and

𝑃3, respectively. We denote 𝑢 (𝑡, 𝑒, 𝛼∗𝑝) the utilization of link 𝑒 when we apply the

routing policy 𝛼∗𝑝 in routing cycle 𝑡 . Then, the maximum link utilization of the network

when applying the routing policy (𝛼∗𝑝), denoted as 𝑢 (𝛼∗𝑝), is defined as follows:

𝑢 (𝛼∗𝑝) = max

∀𝑡,𝑒
𝑢 (𝑡, 𝑒, 𝛼∗𝑝) = max

∀𝑡,𝑒

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗𝑝)

𝑘

𝑖 𝑗
𝑚𝑡
𝑖 𝑗

𝑐 (𝑒)

Theorem 5.1

• 𝜃 ∗
1
= 𝑢 (𝛼∗

1
); 𝜃 ∗

2
≥ 𝑢 (𝛼∗

2
); 𝜃 ∗

3
≥ 𝑢 (𝛼∗

3
)

• 𝜃 ∗
1
≤ 𝜃 ∗

3
≤ 𝜃 ∗

2

Proof. According to (5.7), we have:

𝜃 ∗
1
≥

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗1)𝑘𝑖 𝑗𝑚𝑡

𝑖 𝑗

𝑐 (𝑒) = 𝑢 (𝑡, 𝑒, 𝛼∗𝑝) ∀𝑡, 𝑒

As 𝜃 ∗
1
is the optimal solution of 𝑃1, the following equation holds:

𝜃 ∗
1
= max

∀𝑡,𝑒

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗1)𝑘𝑖 𝑗𝑚

𝑡1
𝑖 𝑗

𝑐 (𝑒) = 𝑢 (𝛼∗
1
)

Concerning 𝑃2, we have:

𝜃 ∗
2
≥

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗2)𝑘𝑖 𝑗 max𝑡𝑚

𝑡
𝑖 𝑗

𝑐 (𝑒) ∀𝑡, 𝑒

≥
∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗2)𝑘𝑖 𝑗𝑚𝑡

𝑖 𝑗

𝑐 (𝑒) ∀𝑡, 𝑒

⇒ 𝜃 ∗
2
≥ max

∀𝑡,𝑒

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒) (𝛼∗2)𝑘𝑖 𝑗𝑚

𝑡2
𝑖 𝑗

𝑐 (𝑒) = 𝑢 (𝛼∗
2
)

Similarly, we have: 𝜃 ∗
3
≥ 𝑢 (𝛼∗

3
). Now, we are going to prove that 𝜃 ∗

1
≤ 𝜃 ∗

3
≤ 𝜃 ∗

2
.
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First, we will prove the following hypothesis: “If (𝛼3, 𝜃3) is a feasible solution of 𝑃3, then
it is also a feasible solution of 𝑃1; if (𝛼2, 𝜃2) is a feasible solution of 𝑃2, then it is also
a feasible solution of 𝑃3". According to this hypothesis, we derive that 𝜃 ∗1 ≤ 𝜃 ∗3 and
𝜃 ∗
3
≤ 𝜃 ∗

2
.

According to (5.15), we have:∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒) (𝛼3)𝑘𝑖 𝑗 max

𝑡∈𝑇𝑝
𝑚𝑡
𝑖 𝑗 ≤ 𝜃3𝑐 (𝑒) ∀𝑇𝑝, 𝑒 (5.17)

As max𝑡∈𝑇𝑝𝑚
𝑡
𝑖 𝑗 ≥ 𝑚𝑡

𝑖 𝑗 (∀𝑡 ∈ 𝑇𝑝 ), from (5.17), we can derive that∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒) (𝛼3)𝑘𝑖 𝑗𝑚𝑡
𝑖 𝑗 ≤ 𝜃3𝑐 (𝑒) ∀𝑡, 𝑒 (5.18)

It means that (𝛼3, 𝜃3) satisfies constraint (5.7), thus it is a feasible solution of 𝑃1.

Similarly, according to (5.11), we have:∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒) (𝛼2)𝑘𝑖 𝑗 max

𝑡∈𝑇
𝑚𝑡
𝑖 𝑗 ≤ 𝜃2𝑐 (𝑒) ∀𝑒 (5.19)

Let 𝑇𝑝 is an arbitrary sub-period of 𝑇 , then max𝑡∈𝑇𝑝𝑚
𝑡
𝑖 𝑗 ≤ max𝑡∈𝑇 𝑚𝑡

𝑖 𝑗 . Therefore, from

(5.19), we have: ∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒) (𝛼2)𝑘𝑖 𝑗 max

𝑡∈𝑇𝑝
𝑚𝑡
𝑖 𝑗 ≤ 𝜃2𝑐 (𝑒) ∀𝑇𝑝, 𝑒 (5.20)

It means that (𝛼2, 𝜃2) satisfies constraint (5.15), thus it is a feasible solution of 𝑃3 ⊓⊔

Remark 1 According to Theorem 5.1, when applying the routing policies obtained from
solving the MTSR problem, the actual maximum link utilization of the network is less
than its theoretical 𝜃 ∗. In addition, since the performance of 𝑃3 is bounded by 𝑃1 and 𝑃2
(𝜃 ∗

1
≤ 𝜃 ∗

3
≤ 𝜃 ∗

2
), we will derive the upper bound of 𝜃

∗
2

𝜃∗
1

which will also be the upper bound of
𝜃∗
3

𝜃∗
1

.

In the following, we will analyze the performance ratio of 𝑃2 and 𝑃3 to 𝑃1.

Theorem 5.2 Let 𝑒∗ be the link with the largest capacity, and 𝑒∗
2
be the link where the

equal sign of constraint (5.11) in 𝑃2 holds; Then, the performance ratio of 𝑃2 to 𝑃1 is upper
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bounded by 𝜆, which is calculated as follows.

𝜆 =

∑
𝑖 𝑗 max𝑡𝑚

𝑡
𝑖 𝑗

max𝑡 max𝑖 𝑗𝑚
𝑡
𝑖 𝑗

𝑐 (𝑒∗)
𝑐 (𝑒∗

2
) (5.21)

Proof. According to (5.11), we have∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒∗2) (𝛼∗2)𝑘𝑖 𝑗 max

𝑡
𝑚𝑡
𝑖 𝑗 = 𝜃

∗
2
𝑐 (𝑒∗

2
) (5.22)

We also have ∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒∗2) (𝛼∗2)𝑘𝑖 𝑗 max

𝑡
𝑚𝑡
𝑖 𝑗 ≤

∑︁
𝑖 𝑗

max

𝑡
𝑚𝑡
𝑖 𝑗 (5.23)

Therefore, from (5.22) and (5.23), we deduce that

𝜃 ∗
2
𝑐 (𝑒∗

2
) ≤

∑︁
𝑖 𝑗

max

𝑡
𝑚𝑡
𝑖 𝑗 (5.24)

Concerning 𝑃1, from constraint (5.7) and the assumption that 𝑒∗ has the largest capacity,

we have

𝜃 ∗
1
𝑐 (𝑒∗) ≥ 𝜃 ∗

1
𝑐 (𝑒) ≥

∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗𝑚𝑡
𝑖 𝑗 ∀𝑡 ;∀𝑒 (5.25)

As

∑
𝑖 𝑗

∑
𝑘 𝑔

𝑘
𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗𝑚𝑡

𝑖 𝑗 is the total amount of traffic routed through link 𝑒 at time-step 𝑡 ,

it should be greater than or equal to the traffic of any pair 𝑖 𝑗 routed through 𝑒 , it means

that ∑︁
𝑖 𝑗

∑︁
𝑘

𝑔𝑘𝑖 𝑗 (𝑒)𝛼𝑘𝑖 𝑗𝑚𝑡
𝑖 𝑗 ≥ max

𝑖 𝑗
𝑚𝑡
𝑖 𝑗 (5.26)

(5.26) holds for all time-steps 𝑡 . Therefore, from (5.25) and (5.26), we deduce that

𝜃 ∗
1
𝑐 (𝑒∗) ≥ max

𝑡
max

𝑖 𝑗
𝑚𝑡
𝑖 𝑗 (5.27)

Finally, from (5.24) and (5.27), we have

𝜃 ∗
2

𝜃 ∗
1

≤
∑
𝑖 𝑗 max𝑡𝑚

𝑡
𝑖 𝑗𝑐 (𝑒∗)

max𝑡 max𝑖 𝑗𝑚
𝑡
𝑖 𝑗
𝑐 (𝑒∗

2
) (5.28)
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⊓⊔

Remark 2 Assuming that all the network links have the same capacity, the performance
ratio 𝜆 largely depends on the current network situation in the routing cycle. If all flows in
the network have similar demands and are stable within the routing cycle, the value of 𝜆
could be much greater than 1. However, since most of flows in the network are mice flows
and the network traffic is extremely dynamic, we have

∑
𝑖 𝑗 max𝑡𝑚

𝑡
𝑖 𝑗 ≈ max𝑡 max𝑖 𝑗𝑚

𝑡
𝑖 𝑗 ,

and then 𝜆 ≈ 1.

According to Theorem 5.2, by solving the MTSR problem with formulation 𝑃2, we

can significantly reduce the problem complexity while still achieving good performance

for the routing policy. In addition, 𝑃2 only requires the predicted values of the maximum

demand instead of the predicted demands of every time-steps in the next routing cycle.

By doing so, 𝑃2 alleviates the difficulty in the traffic prediction task. Therefore, we

formulate the MTSR problem using the 𝑃2 formulation. In the remaining part of this

chapter, when mentioning the MTSR without any specification, we mean the MTSR

with formulation 𝑃2.

5.2.3 Traffic prediction for multi-time-step segment routing

As mentioned in the previous section, accurately predicted traffic matrices are required

as input for all the problem formulations, except in the case we don’t consider traffic

prediction for 𝑃0, i.e., using current traffic for TE. Note that, our objective is not to

develop a new prediction model but to leverage the existing models for addressing the

traffic engineering problem. There is a large number of proposed models for traffic

matrix prediction such as in [4], [26]. Here we adopt the prediction model to meet

the requirements of our problem formulations. For example, in problem 𝑃1, at the

beginning of each routing cycle, the prediction model uses the historical data of the

last 𝐻 time-steps to predict the traffic of the next 𝑇 time-steps. In 𝑃2, the prediction

model only needs to infer the maximum demand for each traffic flow.

In this study, we use GraphWaveNet (GWN) [59] as the prediction model. Motivated

by [35], GWN adopts stacked dilated casual convolutions to extract temporal features

in the historical traffic data. In addition, GWN uses a Graph Convolutional Neural

network with a self-adaptive adjacency matrix module which can exploit the spatial
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relations among traffic flows from training data. By combining these techniques, GWN

can handle spatial-temporal data (e.g., traffic flows) and achieve better prediction

accuracy than other time-series models such as Long Short-Term Memory (LSTM) and

Auto-Regressive Integrated Moving Average (ARIMA). In this work, we apply GWN

for traffic prediction with minor modifications, and the details of the model are out

of the scope and will be omitted. The implementation and the details of the model

training/testing processes for traffic prediction used in this work can be found at [2].

5.3 Local search algorithm for solvingMTSR problem

The MTSR problem described in Section 5.2.1 is an integer programming problem with

a vast search space. Traditional MILP solvers are hardly scaled to large topologies with

more than 20 nodes [14]. Thus, using heuristic or meta-heuristic algorithms would be

the most practical way to solve this problem rapidly. Gay, Hartert, and Vissicchio

proposed a local search algorithm to solve the n-segment routing algorithm. We adapt

the algorithm proposed in [14] to propose a new algorithm that effectively solves the

multi-step segment routing problem by exploiting the structure of 2-segment routing

called Local Search 2 Segment Routing (LS2SR). We also improve LS2SR on solving the

MTSR problem by adding a mechanism to refine the routing policy from the previous

cycle, thereby lessening the routing policy variation over different cycles.

5.3.1 Search space reduction techniques

We begin by investigating the search space of the MTSR problem. In Section 5.2.1, we

have mathematically formulated the MTSR problem by using binary variables 𝛼𝑘𝑖 𝑗

which indicates whether a traffic flow from a source node 𝑖 to a destination node 𝑗 goes

through an intermediate node 𝑘 . These formulations contain two major sources of

redundancy, namely equivalent paths and non-simple paths.

Figure 5.2(b) shows examples of equivalence paths. Consider a flow 𝑖 𝑗 with a

routing path 𝑖 → 𝑎 → 𝑑 → 𝑗 going through two intermediate nodes 𝑎 and 𝑑 . In the

formulations provided in Section 5.2.1, the path 𝑖 → 𝑎 → 𝑑 → 𝑗 is duplicated in the

search space as it is counted as a routing path going through 𝑎 (i.e., 𝛼𝑎𝑖 𝑗 = 1), and also as

a routing path going through 𝑑 (i.e., 𝛼𝑑𝑖 𝑗 = 1).
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(a) Equivalent paths. (b) Non simple paths.

Figure 5.2: Examples of redundant paths in 2-segment routing.

The second type of redundancy is caused by so-called non-simple paths, i.e.,

paths that visit a link more than once. Figure 5.2 illustrates an example of non-

simple path. In this example, the routing path from 𝑖 to 𝑗 with intermediate node

𝑏: 𝑖 → 𝑎 → 𝑏 → 𝑎 → 𝑑 → 𝑗 (represented by dotted line) visits link (𝑎, 𝑏) twice.
Obviously, by pruning the looped route 𝑎 → 𝑏 → 𝑎 we obtain more efficient path

𝑖 → 𝑎 → 𝑑 → 𝑗 . Therefore, including such non-simple paths in the search space only

causes redundant time complexity but can not improve the solution’s goodness. It is

obvious that the route constructed by middle point 𝑎 will cost less than that of middle

point 𝑏.

In the following, we propose a method to construct the routing path search space.

Let P be the set of 2-segment routing paths of all the source and destination pairs, and

P𝑖 𝑗 ∈ P denotes the set of 2-segment routing paths from node 𝑖 to 𝑗 . We construct P
as follows. First, we enumerate all possible 2-segment paths from node 𝑖 to 𝑗 (with all

possible intermediate nodes 𝑘). Then, we remove from P𝑖 𝑗 (∀𝑖, 𝑗 ∈ 𝑉 ) all the redundant
paths defined as above. To reduce the search space, instead of using binary variables

𝛼𝑘𝑖 𝑗 , we use integer variables 𝑥𝑖 𝑗 which indicates the index of a routing path in P𝑖 𝑗 ,
i.e., 𝑥𝑖 𝑗 ∈ {0, 1, ..., |P𝑖 𝑗 |}. Finally, a routing policy at routing cycle 𝑐 is defined by the

combination of all 𝑥𝑖 𝑗 ∀𝑖, 𝑗 ∈ 𝑉 , denoted as 𝑥𝑐 = [𝑥𝑖 𝑗 ].
In the following, we first present the link and flow selection strategy in Section

5.3.2 and then describe the details of LS2SR in Section 5.3.3.
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5.3.2 Link and flow selection strategy

LS2SR falls into the category of improvement-based heuristic algorithms, which starts

from a feasible solution and improves the solution by applying successive changes. In

particular, the initial solution of LS2SR is the shortest path routing. Then, at each

iteration, LS2SR selects a flow that is crucial to minimize the maximum link utilization

and alters its path. Motivated by the algorithm proposed in [14], we design a critical

flow selection strategy in which the link with a higher traffic load will have a higher

chance of being selected. Specifically, a link 𝑒 is selected with a probability 𝑝𝑒 defined

as

𝑝𝑒 =
𝑙𝑜𝑎𝑑 (𝑒)𝛽∑
𝑒∈𝐸 𝑙𝑜𝑎𝑑 (𝑒)𝛽

(5.29)

where 𝛽 ∈ [0, +∞) is the intensification coefficient. If 𝛽 is high, then the selection

distribution will be short-tailed. The link selection method will select a small subset of

the highly loaded edges. Otherwise, the selection becomes more diverse. The reason

behind this heuristic is that changing the path of flow passing through the highly

loaded link will reduce the load in that link, thereby reducing the maximum link

utilization of the whole network.

Subsequently, we select a flow passing through the selected link 𝑒 , by the probability

𝑝𝑖, 𝑗 :

𝑝𝑖, 𝑗 =
(𝑚𝑖 𝑗 )𝛾∑

𝑖 𝑗∈D(𝑒) (𝑚𝑖 𝑗 )𝛾
(5.30)

where D(𝑒) denotes the set of flows routed on link 𝑒 , and 𝛾 is the intensification
coefficient for this selection distribution. Therefore, the large flow routed through the

highly loaded link 𝑒 is rerouted.

5.3.3 Local search for multi-time-step segment routing

In this part, we present the details of LS2SR. To alleviate the routing path change, in

LS2SR, the routing path in the first cycle is initialized by the shortest path; In each

subsequent cycle, the initial routing policy is the routing policy obtained from the

previous cycle. The details of LS2SR are presented in Algorithm 2. We first sort the

paths in P𝑖 𝑗 by the increasing order of their cost (the sum of all the link costs in the

path) and calculate the maximum link utilization corresponding to the initial solution
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Algorithm 2: LS2SR Algorithm

input : network 𝐺 (𝑉 , 𝐸); traffic matrix𝑀 ; initial solution 𝑥𝑐−1,
set of all the routing paths P

output :Routing path 𝑥∗𝑐

1 P = [𝑠𝑜𝑟𝑡 (P𝑖 𝑗 )] ∀𝑖, 𝑗 ∈ 𝑉 𝑥∗𝑐 = 𝑥𝑐−1 𝜃 ∗ = 𝑀𝐿𝑈 (𝐺, 𝑥∗𝑐, 𝑀)
2 while not timeout do
3 𝑒 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑙𝑖𝑛𝑘 (𝐺,𝑀, 𝑥∗𝑐) 𝑖, 𝑗 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑓 𝑙𝑜𝑤 (𝐺,𝑀, 𝑒, 𝑥∗𝑐)

𝑥𝑐 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑡ℎ(𝑥∗𝑐,P𝑖 𝑗 ) 𝜃 = 𝑀𝐿𝑈 (𝐺, 𝑥𝑐, 𝑀)
4 if 𝜃 ∗ − 𝜃 > 𝜖 then
5 𝑥∗𝑐 = 𝑥𝑐 ; 𝜃 ∗ = 𝜃 ;
6 end
7 end
8 return 𝑥∗𝑐

(line 4). The loop from lines 5 to 12 is to search for a new routing solution that may

reduce the maximum link utilization. In each iteration, we first select the link 𝑒 and

flow 𝑖 𝑗 based on the selection strategies described in Section 5.3.2. Then, we choose a

new path from P𝑖 𝑗 for flow 𝑖 𝑗 (line 8). The new path is chosen systematically as follows:

as P𝑖 𝑗 has been sorted by the paths’ cost, we select the path that has the next higher

cost than the current path. The rationale behind this path selection operator is to avoid

the highly loaded link while trying not to select the path with a significantly high cost.

If the maximum link utilization of the newly founded solution 𝑥𝑐 is significantly lower

than the current best solution (i.e. 𝑥∗𝑐 ), then we update the current best solution as line

10. After that, the heuristic algorithm continues to find a new possible solution until

the time limit has been reached. The parameter 𝜖 is defined to determine whether 𝑥∗𝑐

is updated and helps to reduce the number of rerouted flows. We can easily obtain the

routing policy 𝛼𝑘𝑖 𝑗 after getting the final solution 𝑥
∗𝑐
.

5.4 Partial traffic prediction and compressive sensing

In the previous sections, we have presented the multi-time-steps segment routing

(MTSR) strategy to reduce the number of rerouting flows while still achieving the TE

target in a long time horizon. However, we need to cope with the following issues.

First, the performance of MTSR relies on the accuracy of the traffic prediction model
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(i.e., GWN) which requires a large amount of data for the training and predicting

processes. It leads to the high network monitoring cost problem which is often omitted

in the prior ML-based TE studies. Second, MTSR imposes the GWN model to estimate

the future traffic of all flows in the network, leading to the scalability problem when

applying the method to a large-scale network. To overcome these problems, we propose

an approach called MTSR-CS which combines the MTSR and the compressive sensing

technique. In MTSR, we perform network measurement and traffic prediction only on a

subset of flows. Then, the full matrix is reconstructed from the partial traffic prediction

before being used to calculate the routing rules (by using the LS2SR algorithm).

5.4.1 Compressive sensing-based network traffic reconstruction

According to compressive sensing theory, the signal can be reconstructed or recovered

from a few samples by exploiting the sparsity characteristic of the original signal.

Therefore, compressive sensing can be used in reconstructing the network traffic from

a few measurement data (Equation 5.31).

𝑍 = Φ𝑋 (5.31)

where 𝑋 ∈ R𝐹×1 is a vector that contains the traffic volume of all flows. 𝐹 = 𝑁 × 𝑁
is the total number of source-destination flows in the network (𝑁 is the number of

nodes). Note that, instead of using a 𝑁 × 𝑁 matrix to represent the network traffic, it is

represented by a vector that has 𝐹 elements). 𝑍 ∈ R𝐿×1 represents the measured traffic

volumes. 𝐿 is the number of flows that are measured (𝐿 < 𝐹 ). Φ ∈ {0, 1}𝐿×𝐹 is a binary
matrix to indicate the measured flows. Figure 5.3 shows an example of partial traffic

measurement.

However, since network traffic 𝑋 is not sparse in practice, compressive sensing

cannot be directly applied to reconstruct 𝑋 from 𝑍 . To overcome this problem, the

authors in [22] use a transformation matrix 𝐷 ∈ R𝐹×𝐹 to sparsely project 𝑋 in the

transformation domain 𝐷 (Equation 5.32).
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Figure 5.3: Partial traffic measurement. The traffic matrix 𝑋 is represented as a vector.

𝑋 = 𝐷𝑆 (5.32)

where 𝑆 ∈ R𝐹×1 is a sparse projection of 𝑋 . 𝑆 has 𝐾 non-zero entries (𝐾 < 𝐹 ).

From Equation 5.31 and 5.32, we have:

𝑍 = Φ𝐷𝑆 (5.33)

Since 𝑆 is a sparse vector, we can apply compressive sensing to reconstruct 𝑆 from

the measurement 𝑍 . Then the full network traffic 𝑋 can be obtained by using Equation

5.32.

5.4.2 Reconstruct the traffic matrix from the partial traffic
prediction

Unlike the study in [22], we do not use compressive sensing to reconstruct the network

traffic itself but the maximum traffic demand from a partial traffic prediction. Figure

5.4 illustrates our idea on leveraging the proposed technique in [22] to reconstruct the
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predicted traffic matrix from the partial traffic prediction. The input of the routing

algorithm (i.e., MTSR in Section 5.2) is a traffic matrix. The traffic matrix contains the

predicted values of the maximum demands of all traffic flows in the next routing cycle

(e.g., a routing cycle has 𝑇 time-steps). Our idea to reduce the monitoring overhead is

to reconstruct this matrix from a partial traffic prediction. First, we use a prediction

model to estimate the maximum demands of 𝐿 flows. Then, by applying compressive

sensing, we can obtain the maximum traffic demands of all flows. Finally, we can

calculate the routing rules using the LS2SR algorithm (i.e., Algorithm 2). Therefore,

instead of monitoring and predicting the whole traffic matrix, we can monitor and

predict the future demands of a subset of traffic flows and reduce the monitoring

overhead.

Figure 5.4: Illustration of partial traffic prediction and matrix reconstruction using

compressive sensing.

In Equation 5.31, 𝑍 is a vector whose elements are the predicted values of the

maximum demands of 𝐿 flows. 𝑋 is the vector that contains the maximum demands of

all 𝐹 flows. The proposed method has two phases: the training phase and the testing

phase. In the training phase, we use a training dataset to calculate the transformation

matrix 𝐷 and train the prediction model. In the testing phase, at the beginning of
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every routing cycle, we perform partial traffic prediction of the subset of flows. The

maximum demands of other flows will be reconstructed using compressive sensing.

Then, the routing rules are calculated using the LS2SR algorithm. The details will be

described in the following sections.

5.4.3 Training phase

There are two tasks in the training phase: obtaining transformation matrix 𝐷 and

training the prediction model. The training dataset contains the historical measured

traffic volume of all flows. However, since our interest is the maximum demand in a

routing cycle, the original dataset will be transformed into the set of maximum traffic

matrices as shown in Figure 5.5. We generate the maximum matrix by taking the

maximum values of each flow in every routing cycle (𝑇 time-steps). The matrix is

flattened to a vector that has 𝐹 elements. Then, we use the generated data to learn the

transformation matrix 𝐷 and train the prediction model.

Figure 5.5: Generating the training dataset from network traffic matrices.

We can get the transformation matrix 𝐷 by solving the following optimization

problem:

minimize | |𝑋 − 𝐷𝑆 | |2 (5.34)

| |𝑆 (𝑖) | |0 ≤ 𝐾 (5.35)

𝑆 (𝑖) ≥ 0 (5.36)

𝑖 = 1, 2, ..,𝑇 (5.37)
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where 𝐷 ∈ R𝐹×𝐹 and 𝑆 = (𝑆 (1), 𝑆 (2), ..., 𝑆 (𝑇 )) ∈ R𝐹×𝑇 are two unknown variables.

𝑋 = (𝑋 (1), 𝑋 (2), ..., 𝑋 (𝑇 )) ∈ R𝐹×𝑇 represents 𝑇 vectors in the training set. Each

column 𝑆 (𝑖) ⊂ 𝑆 is the sparse representation of the traffic vector 𝑋 (𝑖). 𝐾 is the upper

limit of the number of non-zero entries in the sparse representation.

According to [22], we can use the Alternative Least Square (ALS) to obtain the

solution to the above problem. First, we randomly initialize values for the transformation

matrix 𝐷 . Then, given 𝐷 , we use ALS to determine 𝑆 . Next, based on the obtained 𝑆 ,

we can update the values of 𝐷 . 𝑆 and 𝐷 are iteratively updated until reaching the

terminated conditions (e.g., the maximum iteration). The updating process of 𝐷 is

described as follows. We will update one column of the transformation matrix 𝐷 at a

time. Let 𝑑𝑘 be the 𝑘
𝑡ℎ
column of 𝐷 and 𝑠𝑘 be the 𝑘

𝑡ℎ
row of 𝑆 (where 𝑘 = 1, 2, ..., 𝐹 ).

The multiplication 𝐷𝑆 is divided into the sum of𝑀 rank-1 matrices: 𝐷𝑆 =
∑𝑀
𝑗=1 𝑑 𝑗𝑠 𝑗 .

We have:

𝑋 − 𝐷𝑆 = 𝑋 −
𝑀∑︁
𝑗=1

𝑑 𝑗𝑠 𝑗 = (𝑋 −
𝑀∑︁
𝑗≠𝑘

𝑑 𝑗𝑠 𝑗 ) − 𝑑𝑘𝑠𝑘 = 𝐸𝑘 − 𝑑𝑘𝑠𝑘 (5.38)

Then, to update the 𝑘𝑡ℎ column of 𝐷 , we solve the following optimization problem:

minimize | |𝐸𝑘 − 𝑑𝑘𝑠𝑘 | |2 (5.39)

| |𝑆 (𝑖) | |0 ≤ 𝐾 (5.40)

𝑠𝑘 ≥ 0 (5.41)

𝑖 = 1, 2, ..,𝑇 ;𝑘 = 1, 2, ..., 𝐹 (5.42)

We use Singular Value Decomposition (SVD) to update 𝑑𝑘 and 𝑠𝑘 . For the details of

solving the above problem, please refer to [22]. Then, we repeat the process above to

update other columns of 𝐷 .



5.4 Partial traffic prediction and compressive sensing 82

5.4.4 Testing phase

There are three tasks in the testing phase: predicting maximum future traffic of 𝐿 flows

(i.e., 𝑍 ), reconstructing vector 𝑋 , and calculating network routing rules. The network

controller will perform these tasks at the beginning of every routing cycle. First, we

need to decide the subset of flows to be monitored and predicted. The authors in [69]

show that among the flows in the network, there are so-called “critical flows" that may

have a huge impact on the performance of TE when rerouting them. Therefore, we

choose the top 𝑘% of the largest flows based on their historical volumes (𝑘 = 𝐿/𝐹 ). This
method considerably reduces the monitoring cost since only the top 𝑘% of flows (top-k)

are monitored rather than all flows. Note that the top-k largest flows in the training

data and testing data may be different.

After that, we adapt the GWN model in [59] to directly predict the maximum

demand of each flow in the top-k. Hence, only top-k flows need to be trained and

predicted, which reduces the computational burden and increases the scalability of the

prediction model.

Then, we reconstruct the vector 𝑋 from the partial prediction. Let 𝑍 ∈ R𝐿×1

be the predicted traffic values. We solve the following problem to find the sparse

representation 𝑆 using the transformation matrix 𝐷 , the measurement matrix Φ, and

the predicted traffic vector 𝑍 .

𝑆 = argmin| |𝑆 | |0 (5.43)

𝑍 = Φ𝐷𝑆 (5.44)

𝑆 ≥ 0 (5.45)

Then, we get the reconstruction results of 𝑋 using Equation 5.32.
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Dataset No. nodes No. links Monitoring granularity

Abilene 12 30 5 (min)

Geant 22 72 15 (min)

Table 5.2: Details of the real traffic datasets.

5.5 Performance evaluation

5.5.1 Datasets and performance metrics

We conduct experiments on two real datasets: Abilene and Geant, available at [36]. The

details of the datasets are shown in Table 5.2. We use one month of data for training

the prediction model and two weeks of data for testing. To evaluate the performance of

our proposed methods in cases of large-scale networks, we use REPETITA dataset

[15]. The dataset contains more than 200 topologies of the real backbone network,

whose number of nodes varies from 4 to more than 100. For each topology, five traffic

matrices were generated and adjusted so that the optimal values of the MLU (obtained

from solving the MCF problem) are around 90%. This is the same dataset that was used

to evaluate the scalability of the SRLS approach in [14].

We evaluate the performance of our proposed approach using two main metrics:

the maximum link utilization (MLU), i.e., Equation 5.46, and the average number

of routing changes (RC) per time-step. After obtaining the routing policy, MLU is

calculated using the actual traffic matrix from the test set. RC is the total number of

flows that are rerouted after each routing cycle.

𝑀𝐿𝑈 = max

𝑒∈𝐸

𝑙𝑜𝑎𝑑 (𝑒)
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑒) (5.46)

5.5.2 Evaluating the MTSR approach without traffic prediction

In the first experiment, we evaluate the performance of the routing policy acquired

from the five TE problems 𝑃0, 𝑃1, 𝑃2, 𝑃3, and Traffic Matrix Oblivious Segment Routing

(OR) [5]. Note that we solve the problem 𝑃0 for every time-step and only solve the OR

problem once. The objective of this experiment is to evaluate the performance bound

of the three MTSR approaches (i.e., 𝑃1, 𝑃2, and 𝑃3) in the best scenarios by removing

the impacts of the prediction model. In this experiment, we assume that the future
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Figure 5.6: The maximum link utilization with different routing approaches.
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Figure 5.7: The number of routing changes of different routing approaches.

traffic matrices can be accurately predicted. Therefore, we use the real traffic matrices

from the test set as the inputs for solving the TE problem. We use the solver from the

PuLP library [50] to solve all the problems and obtain the optimal solutions. In all

experiments, the routing cycle length 𝑇 for MTSR schemes is set to 12.

Figure 5.7 shows the results of all approaches on the Abilene and Geant datasets.

Obviously, by solving the TE problem at every time-step, 𝑃0 achieves the best results

in terms of MLU on all datasets. However, although 𝑃0 has a slightly better MLU

compared to 𝑃1, 𝑃2, and 𝑃3 (e.g., about 8% on the Abilene network), it suffers from a

significantly high number of routing changes. The Oblivious Routing (OR) shows the

largest value of MLU on both datasets. Especially on the Geant network, the average

MLU obtained by OR is about 20% higher than that of other approaches.

As mentioned in the theoretical analysis (Section 5.2.2), among the three formula-

tions of the MTSR problem, 𝑃1 has the best performance in comparing the MLU, 𝑃3 and

𝑃2 have come the second and third, respectively. However, the gaps among them
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are relatively small. Although all of the MTSR approaches have a similar number of

routing changes, 𝑃2 reveals the smallest number of routing changes in both datasets.

Based on the observations, we can see four merits for solving the MTSR problem with

𝑃2 formulation: (a) reducing the problem complexity, (b) alleviating the difficulty in

the traffic prediction task, (c) reducing the number of rerouting, and (d) achieving

comparable performance with other approaches. Therefore, in the rest of this chapter,

the presented results of the MTSR are obtained by solving the problem 𝑃2.

5.5.3 Evaluating the MTSR approach with traffic prediction

(a) MLU of 100 time-steps - Abilene network.

(b) MLU of 100 time-steps - Geant network.

Figure 5.8: The maximum link utilization of the first 100 time-steps.

In this experiment, we evaluate the performance of the proposed MTSR approach

(𝑃2) as an online segment routing algorithm using predicted traffic. We assume that all

traffic flows can be monitored. We train a state-of-the-art deep learning model called

Graph WaveNet (GWN) [59] and use the trained model for predicting future traffic
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matrices. The prediction model uses historical data of 𝐻 time-steps to predict the

matrices of maximum demand of each flow in the next routing cycle. The training

details are omitted but can be found at [2]. At the beginning of each cycle, after

obtaining the predicted traffic matrices, we solve the problem and acquire the routing

policies. Then, the actual traffic matrix is used to calculate the maximum link utilization

for every time-step.
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Figure 5.9: The maximum link utilization of different routing approaches.

We use the proposed LS2SR (Algorithm 2 in Section 5.3) for solving the MTSR

problem, given the predicted traffic as the input. We set the length of the routing cycle

as 𝑇 = 12 and the number of historical steps used for the prediction model as 𝐻 = 2𝑇 .

We set 𝛽 = 16 and 𝛾 = 1, which are adopted from [14].

We compare the performance of our proposed MTSR scheme with five other

baselines:

• CFR-RL: in each time-step, a set of critical flows (top 𝑘%) is selected among the

traffic matrix using a Deep Reinforcement Learning algorithm. The selected

flows are rerouted by solving the TE problem while the paths of remained flows

are unchanged.

• Top-K: in each time-step, select top 𝑘% largest flows from the given traffic

matrix. Similar to the CFR-RL method, only selected flows are rerouted based on

the solution obtained from solving the TE problem.

• Top-K Critical (Top-K Crt): similar to the Top-K approach, but it selects the

top 𝑘% largest flows from the five most congested links.
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• 𝑷0: the TE problem is solved in every time step by using the solver from the

PuLP library [50] (same as in Experiment 1).

• Shortest Path (SP): all traffic flows are routed using the shortest paths.
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Figure 5.10: The average number of rerouting flows per time-step.

The CFR-RL, Top-K, and Top-K Critical are adopted from [69]. Based on the results

in [69], the value of 𝑘% equals to 10%. Note that, in [69], new routing paths of the

critical flows are obtained by solving the MCF problem. To have a fair comparison, we

solve it using 2-segment routing. Moreover, to evaluate the performance of the routing

algorithm under the same time constraint, the solving time of all the routing methods

is limited to 10𝑠 . The experiment results are depicted in figures 5.9 and 5.10.

In summary, by applying MTSR, we significantly reduce the number of traffic flows

need to be rerouted per time-step while still achieving an acceptable performance

concerning the MLU.

Figures 5.8(a) and 5.8(b) illustrate the MLU in the first 100 time-steps while Figures

5.9(a) and 5.9(b) show the overall results of all methods. With the Abilene dataset, our

method attains better performance than that of other approaches (excepting 𝑃0). In

contrast, Top-K achieves the lowest MLU on the Geant network. Both MTSR and

CFR-RL show a degradation in the performance due to the significant increase in the

number of flows in the network (from 144 to 484). The ML-based approaches reveal

limitations when dealing with large-scale networks.

Figure 5.10, on the other hand, shows similar results for the two networks in

term of the number of rerouting flows per time-step. In MTSR, the flow paths keep

unchanged within𝑇 time-steps of the routing cycle. CFR-RL, Top-K, and Top-K Critical

result in 10 and 40 rerouting flows per time-steps in the two networks since they

perform the rerouting of at most 10% flows at every time-step.
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5.5.4 Evaluating the scalability of the LS2SR algorithm
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Figure 5.11: The maximum link utilization of different groups of network topology.

In order to evaluate the scalability of our LS2SR algorithm (Algorithm 2 proposed

in Section 5.3), we test the performance using different sized networks from REPETITA

dataset [15] in this experiment. Similar to the experiment in [14], we divide the dataset

into three groups based on the number of nodes in the network topology. Group 1

comprises networks that have less than 20 nodes. The number of nodes in Group 2

varies from 20 to 40. Group 3 contains large networks which have more than 40 nodes.

We compare our results with SRLS in [14] and Shortest Path (SP) routing approach.

Note that SRLS uses n-segment routing for solving the TE problem while LS2SR

only uses 2-segment routing. We conduct the experiment using five synthetic traffic

matrices of each topology and calculate the MLU, the number of rerouting flows per

time-step (RC) and the average delay as performance metrics. The results are showed

in Figures 5.11, 5.12, and 5.13 respectively. The delay is computed by averaging the

delay of all the traffic flows. The delay of a traffic flow is calculated as the sum of link

delays in its path. The link delays provided in the REPETITA dataset represent the
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Figure 5.12: The number of rerouting flows per time-step of different groups of network

topology.

geometrical distance between two nodes. Note that since SP has zero rerouting flow, its

results are not showed in Figure 5.12.

Our proposed approach LS2SR achieves the same performance in term of MLU

compared with SRLS. However, LS2SR has the best results in reducing the number of

rerouting flows, and has similar results compared with SP, and is consistently better

than SRLS concerning the average delay metric.

In our experiments, the maximum link utilization is calculated by using Equation

5.46. The traffic load on link 𝑒 is computed by taking the sum of the traffic volume of

all the flows that pass through link 𝑒 . Since we do not run the network simulation,

depending on the routing rules, the traffic load can be larger than the link capacity.

Therefore, in some cases, the MLU can be larger than 1 or 100%. Especially in the

experiment with the REPETITA dataset, the traffic matrices are scaled so that the

maximally utilized link is loaded at 90% of its capacity in the optimal solution of the

corresponding multi-commodity flow problem.
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Figure 5.13: The average delay per time-step of different groups of network topology.

5.5.5 Evaluating the MTSR approach with compressive sensing

(a) MLU on Abilene dataset. (b) MLU on Geant dataset.

Figure 5.14: The MLU of MTSR-CS with different percentages of monitored flows.

This experiment is designed to evaluate the performance of the approach combining

MTSR for TE and Compressive Sensing for traffic matrix construction. The number of



5.6 Summary 91

monitored flows varied from 1% to 50% of all the flows in the network. We compare

our proposed approach, namely MTSR-CS, with the following methods:

• MTSR-NO-CS: We apply the MTSR scheme to the predicted values of the critical

flows without using CS to reconstruct the full traffic matrix. The missing values

are replaced by zero.

• VAE [23]: Traffic matrix is reconstructed from fully monitored link loads with

the support of the VAEs model.

• MTSR: We use the same method in Experiment 2, where all the traffic flows are

monitored and predicted.

Figures 5.14(a) and 5.14(b) illustrate the performance comparison of all methods

concerning MLU metric. The figures show that with a medium-sized network (e.g.,

Abilene network), MTSR-CS can achieve a similar performance as MTSR while it only

measures 10% of total flows. Considering the case of the Geant dataset, it requires

more than 40% of monitoring flows to achieve the same performance as MTSR. While

MTSR-CS continues to outperform MTSR-NO-CS, the performance gap between them

has greatly declined as the percentage of monitored flows increases. VAE method

achieves relatively good results in the small network (i.e, Abilene network) while

degrading its performance in the larger network (i.e., Geant network). Overall, by using

compressive sensing to reconstruct the traffic matrix from the partially monitored data,

we can reduce the monitoring overhead while maintaining the routing performance.

5.6 Summary

In this chapter, we studied the multi-time-step segment routing (MTSR) with traffic

prediction and addressed two problems: a large number of traffic rerouting and high

traffic monitoring overhead. We leveraged the traffic prediction for performing traffic

engineering while minimizing the number of flows that need to be rerouted. By

considering the problem complexity and the difficulty of multi-step traffic prediction,

we formulated three versions of the MTSR problem. We also provided a theoretical

analysis of the solution of these three formulations. Moreover, we proposed an efficient

algorithm for quickly solving the multi-step segment routing and further reducing the
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number of routing changes. To reduce the monitoring cost, only a set of critical flows

need to be monitored and predicted. And the compressive sensing technique was used

to reconstruct the full matrix from the partially predicted values. Our evaluation on

real network datasets showed that our proposed approach can significantly reduce

the number of routing changes, and meet the requirements for the maximum link

utilization. Besides that, the experimental results of MTSR-CS show that we can reduce

at least 50% of monitoring cost while still achieving the same performance as the

MTSR approach.
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6
Conclusion

6.1 Summary of the dissertation

Traffic engineering (TE) is one of the most critical problems throughout the development

of the Internet, which takes responsibility to facilitate efficient and reliable network

operations while simultaneously optimizing network resource utilization and traffic

performance. With the rapid growth in the amount of network traffic as well as the

dynamic traffic behavior, artificial intelligence and machine learning techniques are

believed to be the key technologies to overcome the limitations of traditional solutions

in TE. However, we face many challenges when applying ML/DNN to networking

problems. In this dissertation, we have addressed three problems in the traffic matrix

prediction and traffic engineering problems leveraging machine learning techniques.

In the first part of this dissertation, we propose a new method, named FWBW-

LSTM, for estimating the future traffic demands when the missing values occur in the

monitored traffic data. Due to the accumulative error caused by missing values, the

existing prediction models result in low prediction accuracy. To overcome this problem,
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based on the Bidirectional LSTM network, we propose the data correction algorithm to

correct the imprecise values in the predicted outputs. In addition, we introduce the

method for selecting the traffic flows that need to be monitored. With the proposed

approach, we can outperform other well-known methods for time series prediction.

In the second part, we propose GCRINT, a graph-based deep neural network, to

impute the missing values in the historical network dataset. From the first part, we

observe that training the deep learning model with a dataset that contains missing

values will degrade its performance. Our approach leverages the graph neural network

to learn the dynamic, spatial relations among the traffic flows. Along with the temporal

relations which are extracted by using the LSTM network, the spatial relation helps

to increase the accuracy of the imputed values. Our experiment’s results on traffic

engineering show that our method can help to improve the performance of network

routing over state-of-the-art approaches.

In the remaining, we address the problem of high frequent traffic rerouting in

traditional TE solutions. We proposed a traffic prediction-aided traffic engineering

approach, named MTSR. We utilize the multi-time-step traffic prediction and formulate

the routing problem by considering the worst-case scenario. The TE is only performed

after a routing cycle (which includes multiple time-steps) to reduce the number of

traffic flows rerouting over the long run. Our proposed approach can accomplish two

objectives: reducing the number of traffic flows rerouting and achieving an acceptable

maximum link utilization which is an important metric in traffic routing. In addition,

we also consider the scenario when only a few traffic flows are measured (to reduce

monitoring cost). We apply compressive sensing to reconstruct the monitored data

before applying the MTSR method. The approach, which is named MTSR-CS, can

reach the same performance as MTSR while reducing at least 50% monitoring cost.

6.2 Discussion and open issues

6.2.1 Network traffic datasets

In this research, we focused on developing DNN models which are used for estimating

the missing values and predicting the future demands in network traffic. In most of our

proposed methods, the network dataset is an important component and has a direct
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impact on the performance and applicability of the DNN models. The performance

evaluations so far were conducted by using well-known historical traffic datasets such

as Abilene and Geant network datasets [36]. However, there is no standardized dataset

for network traffic prediction problems. Besides, due to privacy and lack of shareable

data, there are a few available datasets that can be used in traffic prediction. Most

of the datasets are old and insufficient to train DNN models. Therefore, the trained

models may not be efficiently applied to the complexity increases and behavior of the

current modern networks (e.g., 5G/6G systems).

The synthetic datasets which are generated by mathematical model [53] or network

simulation tools [44, 55] can be an alternative source of network datasets. Besides, by

using synthetic datasets, the experiments can be run with different network scales to

evaluate the scalability of the proposed methods. However, data-driven-based methods

like ML/DNN may not be benefited from synthetic data. Generating network traffic

from a mathematical model seems to follow a probabilistic distribution and may not

reflect the dynamic network behavior. For example, the most common assumption is

that the source-destination flows are uniformly distributed [34]. Therefore, while

synthetic datasets can be used in the performance comparison among ML/DNN-based

methods, the trained models may not be efficiently applied in real network scenarios.

6.2.2 Explainable ML/DNN techniques

In this study, we leverage DNN models as ‘black box’ algorithms to overcome the

limitations of existing solutions. Although the experiment’s results show that our

proposed models can outperform the existing solutions (e.g., improving prediction

accuracy), the machine learning-based approaches suffer several limitations. For

example, being used as ‘black box’ algorithm, machine learning has been criticized for

its limits in extracting knowledge from data, especially in obtaining a performance

guarantee. Since machine learning models are constructed and tested using a specific

dataset, the performance may not be replicated in others. In addition, parameters

tunning in the training phase can have a huge impact on the overall performance of

the DNN model (e.g., the size of data samples/features, and the number of DNN layers).

Therefore, understanding and/or explaining ML techniques to provide a stronger

descriptive approach can be the potential direction. This research directly relates to
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an open topic in the machine learning area called ‘’Explainable AI ’. Although many

scientists focus on interpreting the behavior of the ML model, ‘’Explainable AI ’ remains

a huge challenge, especially in the context of modern deep learning. The explainability

of a machine learning model is usually inverse to its prediction accuracy - the higher

the prediction accuracy, the lower the model explainability [66].

6.2.3 Traffic prediction accuracy versus network routing perfor-
mance

Our objective in this study is to address the practical problem when applying machine

learning models for network traffic prediction and network routing. The experiment’s

results show that higher prediction accuracy usually leads to higher performance

in network routing. We focus on improving the prediction accuracy of the ML

model without considering the relations between the outputs of traffic prediction and

the routing algorithm. In some cases such as low traffic load, the network routing

algorithm does not always require high traffic prediction to achieve acceptable routing

performance. Therefore, in our study (Section 5), instead of trying to accurately

forecast the traffic demands at every time-step, we predict the maximum traffic volume

in the near future. The experiment’s results show that by preparing the worst-case

scenario (i.e., maximum traffic demands), we can achieve similar performance as

accurately knowing the exact traffic demands in the future.

However, it is helpful to study the relationship between prediction accuracy and

the performance of network routing. By investigating this problem, we can estimate

the outcome of the routing problem under the circumstance of increasing or decreasing

the prediction accuracy. In addition, we can develop a new routing approach that

takes into consideration the possibility that the machine learning prediction can be

inaccurate. For example, in [25], the authors devise algorithms for traffic engineering

in IP networks with (possibly) inaccurate traffic matrix prediction.

6.3 Future direction

In this dissertation, we have addressed the TE problem in the backbone network where

the proposed approaches are expected to be executed in a centralized network controller
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(e.g., SDN controller). Although the centralized approaches can benefit from the global

information, these methods show limitations in high monitoring/communicating costs

(e.g., collecting traffic data, exchanging information among network devices and the

controller). These problems become crucial in the 6G network where we have an

extremely large-scaled network (hundreds of network nodes in the core layer and

billions of connected mobile devices at the edges network). In addition, to cope with

the increase in the size of both physical network and traffic demands, it required more

complicated ML models to learn the network behavior.

Recently, a class of machine learning techniques called Deep Reinforcement

Learning (DRL) has showed great potential in solving network control problems. With

the abilities of self-learning and online exploration, DRL stands out among the AI/ML

techniques as a promising method to address the problem of a highly complex and

dynamic network environment. In DRL, an agent will iteratively interact with the

network environment to learn a policy that can maximize a designed reward. In traffic

engineering, Deep Reinforcement Learning is a promising technique to construct

a self-adaptive network routing mechanism [52, 67]. Furthermore, the DRL-based

routing mechanism can be extended to work in the distributed approach by using

the Multi-Agent Reinforcement Learning technique (MARL). MARL includes many

agents which need to learn to cooperate for maximizing a common reward. In the

network routing problem, each agent can be considered as a network node and can

independently decide the path for the incoming traffic [17, 39, 51]. Since each agent

may only need to take responsibility for solving a small part of the routing problem,

MARL can reduce the model complexity, and deduct the communication overhead

compared to the centralized approach.

However, applying MARL in traffic routing is still in an early stage. Most of

the proposed solutions focus on hop-by-hop routing while each network device is

considered an independent agent in the MARL system. The agent will decide the next

destination for the incoming traffic without any cooperation among agents [17, 39]. To

provide the self-adaptive and cooperative network routing mechanism, the following

problem can be considered when applying MARL to traffic routing:

1. Traffic routing in large-scale networks: Although considering a network

node (e.g., router) as an agent can be considered a natural approach in network
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routing, training a large number of agents in a network with thousands of nodes

requires high computational resources. In addition, the overall performance of

the system may degrade due to the difficulty in cooperation between the agents.

To address this problem, hierarchical routing using MARL techniques can be

considered. In hierarchical routing, each agent can take control in a small region

of the network. The high-level agents will have responsibility for forwarding the

traffic between the regions.

2. Cooperation problem in MARL-based traffic routing: Cooperation is one

of the most challenging problems when directly applying MARL to network

routing. In a naive solution, each router or network node can become an agent

and decide the paths for the incoming traffic based on its information. The agent

treats other agents as part of the network and does not aware of their policies

and actions. Since agents are not trained to cooperate, their actions or routing

rules may have conflicts and create problems in network operation. To overcome

this, the centralized training and decentralized execution approach (CTDE) [42]

can be used in training the MARL. Therefore, the agent can learn how to take

actions (i.e., generate routing rules) that can maximize the global reward such as

maximizing the overall traffic throughput or minimizing traffic congestion.

This research direction is expected to address the challenges in the end-to-end

network routing problems of the large-scale and dynamic network environment.

Therefore, an automatic, adaptive routing mechanism can be developed to provide

end-to-end QoS in beyond 5G and 6G systems. The results may open new potential

research directions on integrating AI/ML techniques to satisfy the requirements of

the 6G network and to boost the progress of applying ML in the networking field in

general.
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