
Modeling Rating Relation Vectors in
User-Item Interaction for Hybrid

Collaborative Filtering

by

Phannakan TENGKIATTRAKUL

Dissertation

submitted to the Department of Informatics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

September 2022





Committee

Advisor Dr. Atsuhiro TAKASU

Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. Keizo OYAMA

Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. Akiko AIZAWA

Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. Kenro AIHARA

Professor of Tokyo Metropolitan University

Examiner Dr. Saranya MANEEROJ

Associate Professor of Chulalongkorn University, Bangkok, Thailand





Acknowledgements

I would like to thank the people who helped and supported me during my Ph.D. studies.
Firstly, I would like to express my sincere gratitude to my advisor Professor Takasu

Atsuhiro for the continuous support of my Ph.D study and related research, for his patience,
motivation, and immense knowledge.

I want to thank all the members and internship students in Takasu Laboratory, especially
Takenaka Akiko, for providing a motivating, fun, and positive working environment. Also,
thanks to the people in NII for all the support and fruitful discussions about both research
and life in Japan.

Last but not the least, I would like to thank my family: my parents and to my brother
and sister for supporting me spiritually throughout writing this thesis and my life in general.
Without their tremendous understanding and encouragement in the past few years, it would
be impossible for me to complete my study.





Abstract

Recently, as the amount of information created by people has increased, users found it
difficult to choose items that would best suit them from among the several options available.
Therefore, filtering tools that can recommend appropriate items to users become important.
Recommender Systems (RSs), have been invented and become a key approach to solve
the information overload problem. RSs aim to provide personalized recommendations on
specific items to the individual users based on the users’ individual tastes.

Collaborative Filtering (CF), one of the most popular RSs techniques, usually considers
the influence of neighbors (i.e., users and items) when recommending suitable items for
a target user. CF can be divided into two approaches: neighborhood-based approach and
model-based approach. Both of them have their own advantages and disadvantages. In this
thesis, a hybrid CF model is proposed to combine advantages from neighborhood-based and
model-based together while overcoming their disadvantages. In order to propose a hybrid CF
model, the first challenge is how to efficiently combine neighborhood-based and model-based
models together. Moreover, the problems in both neighborhood-based and model-based
approaches need to be solved.

Since the purpose of this thesis is to apply the neighborhood-based approach concept into
the model-based approach, the first challenge can be considered as how to utilize neighbors
into a hybrid CF model. Information from neighbors can be in many forms, but in this thesis,
I focus on explicit feedback, which can capture the different level of interests from users
better than implicit feedback. By using explicit feedback in the hybrid CF model, a novel
user and item representation is proposed. Unlike traditional embeddings, this thesis proposes
user representation matrix and item representation matrix which represent user and item in a
dense matrix instead of a single vector like in most of existing works. These novel user and
item representations are used to store users and items characteristics which a single vector
cannot and then available for the next purpose which is a rating conversion.

Second, in the neighborhood-based approach, based on real-world assumptions, different
neighbors have different influence levels on the target user. Thus, I propose a module to select
high–quality neighbors (i.e., friends and historical items), instead of randomly selecting



viii

them. Additionally, most neighborhood-based models use the actual ratings from neighbors
to predict the ratings of the target user toward target items without considering the difference
between their rating patterns, which often leads to a low accuracy prediction caused by the
improper rating-range problem. Recently, rating conversion methods have been proposed
to address this issue. Because each user can have a different level of influence on a pair of
target user–item, I propose a friends module, which converts their ratings to match the target
user’s perspective and assigns different weights to each user before modeling latent relations
and predictions. Moreover, since item information is as important as user information, I also
propose an items module, which utilizes the target user’s historical items information to help
predict how much target user would like the target item.

Third, concerning a model-based approach, one point to consider is how to model the
relationship between a pair of user–item and how to optimize the model. In order to keep
information of user–item pair as much as possible, I also learn latent relation vectors between
each user and item by adopting knowledge graph embedding ideas, which can model latent
relation between a specific pair of user–item, also can alleviate the geometric inflexibility
that occur in [39] which they try to put a pair of user and item at the same point in the vector
space.

Finally, all components are combined to build the hybrid CF neural network (NN) model
named attentive hybrid collaborative filtering for rating conversion in recommender systems
(AHCF). The FilmTrust and MovieLens datasets are used in experiments comparing the
proposed method with state-of-the-art methods. The experimental evaluations have shown
that my proposed model is more effective than existing methods.



Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Hybrid Collaborative Filtering: How to apply neighborhood-based
approach to model-based approach . . . . . . . . . . . . . . . . . . 4

1.2.2 Solving Problems in Neighborhood-based CF Approach . . . . . . 5
1.2.3 Solving Problems in Model-based CF Approach . . . . . . . . . . 6

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Utilizing Neighbors in the End-to-end Hybrid CF . . . . . . . . . . 8
1.4.2 Neighbors Selection and Rating Conversion in the End-to-end Hybrid

CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Incorporating Knowledge Graph Embedding to Recommender Systems 8
1.4.4 Integration of Proposed Models . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Basic Recommendation Strategies . . . . . . . . . . . . . . . . . . 14
2.1.3 Challenges in Recommender Systems . . . . . . . . . . . . . . . . 16

2.2 Ant Colony Optimization in Recommender Systems . . . . . . . . . . . . . 18
2.3 Knowledge Graph Embedding . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Translation-based Embedding Models . . . . . . . . . . . . . . . . 20



x Table of contents

2.3.2 Semantic Matching Model . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Semantic Matching Model with Neural Networks . . . . . . . . . . 21

2.4 Improper Rating-range Problem and Rating Conversion . . . . . . . . . . . 22
2.4.1 Linear Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Gaussian Normalization . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Decoupling Normalization . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Deep Learning and Attention Mechanism . . . . . . . . . . . . . . . . . . 24

3 Related Work 27
3.1 Existing Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Collaborative Filtering Recommender Systems . . . . . . . . . . . 28
3.1.3 Hybrid Collaborative Filtering Recommender Systems . . . . . . . 29

3.2 Knowledge Graph Embedding based Recommender Systems . . . . . . . . 30
3.2.1 Translation-based Embedding Model in Recommender Systems . . 31
3.2.2 Knowledge Graph-based Neural Network Recommender Systems . 32

3.3 Rating Conversion Techniques . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Linear Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Lathia’s Rating Conversion Method . . . . . . . . . . . . . . . . . 36
3.3.3 Warat’s Rating Conversion Method . . . . . . . . . . . . . . . . . 37
3.3.4 Ayub’s Rating Conversion . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Rating Conversion on Multi-criteria RSs . . . . . . . . . . . . . . . 39

4 Utilizing Neighbors in a Hybrid CF Model 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Simple Approach to Utilize Neighbors in Hybrid CF . . . . . . . . . . . . 43
4.3 Utilizing Neighbors in End-to-end Hybrid CF Model . . . . . . . . . . . . 43

4.3.1 User Representation Matrix (UR-matrix) . . . . . . . . . . . . . . 45
4.3.2 Item Representation Matrix (IR-matrix) . . . . . . . . . . . . . . . 45

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Neighbors Selection and Rating Conversion in Hybrid CF model 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Trust-based Ant Recommender Systems . . . . . . . . . . . . . . . . . . . 48

5.2.1 Trust Network and Input Representation . . . . . . . . . . . . . . . 48
5.2.2 Ant algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Rating Conversion and Weight Adjustment . . . . . . . . . . . . . 53



Table of contents xi

5.3 Translation-based Embedding Model for Rating Conversion in Recommender
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Neighbor Selections . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 PCA-based Rating Score Conversion . . . . . . . . . . . . . . . . 55
5.3.3 Rating Pattern Extraction . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.4 Score Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Attentive Hybrid Collaborative Filtering . . . . . . . . . . . . . . . . . . . 57
5.4.1 Friends and Historical Items Selection . . . . . . . . . . . . . . . . 57
5.4.2 The Friend Module . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 The Item Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.4 Generating Latent Relations . . . . . . . . . . . . . . . . . . . . . 64

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.1 Comparison between Rating Conversion Methods . . . . . . . . . . 65
5.5.2 Comparison between Neighbors Selection Methods . . . . . . . . . 67

6 Incorporating Knowledge Graph Embedding to Recommender Systems 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Translation-based Embedding Model for Rating Conversion in Recommender

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Embedding Vectors of Users and Items . . . . . . . . . . . . . . . 72

6.3 Attentive Hybrid Collaborative Filtering . . . . . . . . . . . . . . . . . . . 74
6.3.1 The Latent Relation Modeling . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Purpose of Applying Knowledge Graph Embedding technique to

Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.2 Relation Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Integration and Recommendation 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Trust-based Ant Recommender System . . . . . . . . . . . . . . . . . . . 77

7.2.1 Prediction value . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Translation-based Embedding model for Rating Conversion in Recommender
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xii Table of contents

7.3.1 Rating Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recom-
mender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.5.3 Rating prediction and output . . . . . . . . . . . . . . . . . . . . . 119
7.5.4 Optimization and learning . . . . . . . . . . . . . . . . . . . . . . 119
7.5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Summary 121
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Future Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 127



List of figures

2.1 A user rating system from Amazon.com. . . . . . . . . . . . . . . . . . . . 12

2.2 A user-item rating matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Simple illustration of Translation-based Embedding Models (i.e., TransE,
TransH, and TransR). Adapted from [76] . . . . . . . . . . . . . . . . . . . 21

3.1 Recommending items as a knowledge graph completion problem. Adapted
from [59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 An example of user-item KG. Adapted from [82]. . . . . . . . . . . . . . . 33

3.3 Illustration of CPE. Adapted from [77]. . . . . . . . . . . . . . . . . . . . 34

3.4 Geometric Comparisons of LRML and CML. Adapted from [70]. . . . . . 35

3.5 Illustration of LRML architecture. Adapted from [70]. . . . . . . . . . . . 36

4.1 An illustration of (A) traditional user embedding and (B) The proposed user
embedding (UR-matrix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 The constant assigned weight of each raters. . . . . . . . . . . . . . . . . . 53

5.2 Friend selection and historical item selection module . . . . . . . . . . . . 58

5.3 The illustration of the friend module. . . . . . . . . . . . . . . . . . . . . . 62

5.4 The illustration of the item module. . . . . . . . . . . . . . . . . . . . . . 63

7.1 Examples of the prediction calculation . . . . . . . . . . . . . . . . . . . . 79

7.2 A workflow architecture of TransRS . . . . . . . . . . . . . . . . . . . . . 89

7.3 A workflow architecture of AHCF. . . . . . . . . . . . . . . . . . . . . . . 98

7.4 An illustration of a concrete example of my proposed model mechanism.
Suppose there are target user and target item. The goal of RSs is to predict
how much the target user will give to the target item. Our proposed method
will gather the target user’s friends and historical items to help model predict
score of the target user toward the target item. . . . . . . . . . . . . . . . . 100



xiv List of figures

7.5 Schematic illustration of AHCF architecture as an end-to-end NN. This exam-
ple assumes a user–item pair ⟨u,v⟩, with the user’s four friends { f1, f2, f3, f4}
rating item v with rating scores {3,1,3,4}, respectively. . . . . . . . . . . . 104

7.6 Performance of P@10, Re@10, and NDCG w.r.t. (A) different θ and (B)
different λ on three datasets. Note that for Recall@10, because the results on
FilmTrust are very different from ML100K and ML1M, so I use secondary
axis to show results on FilmTrust . . . . . . . . . . . . . . . . . . . . . . . 107

7.7 Loss value and running time of AHCF on ML1M . . . . . . . . . . . . . . 112



List of tables

5.1 Comparison of the model features between TrustAnt [72], TransRS [73],
AHCF [74], and other rating conversion methods . . . . . . . . . . . . . . 65

5.2 Comparison of neighbor selection methods among TransRS [73], AHCF
[74], and other rating conversion methods . . . . . . . . . . . . . . . . . . 68

6.1 Comparison between applying KG to TransRS [73] and AHCF [74] . . . . 75

7.1 MAE and RC of the proposed method and ALT-BAR for 500 users . . . . . 81
7.2 MAE of experiments on different weight adjustment methods for 500 users 82
7.3 MAE of experiments using transposed ratings and raw ratings in the predic-

tion step for 500 users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 MAE of combination experiments for 500 users . . . . . . . . . . . . . . . 83
7.5 Average RC of all experiments for 500 users . . . . . . . . . . . . . . . . . 84
7.6 Dataset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.7 MAE and RMSE of experiments on different rating prediction method . . . 93
7.8 Precision@10 and Recall@10 of experiments on different method . . . . . 94
7.9 MAE, RMSE, Precision@10 and Recall@10 of experiments on different

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.10 Example of users rate items . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.11 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.12 Evaluation results for experiments comparing with different methods . . . . 103
7.13 Evaluation results for experiments comparing the influence of the Item Module108
7.14 Statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.15 Evaluation results for experiments comparing neighborhood-based model,

model-based model, and hybrid model . . . . . . . . . . . . . . . . . . . . 109
7.16 Confusion matrix of recommendation results . . . . . . . . . . . . . . . . . 111
7.17 Evaluation results for experiments on the synthetic dataset with different

number of rating distribution . . . . . . . . . . . . . . . . . . . . . . . . . 116



xvi List of tables

7.18 Comparison between TransRS [73] and AHCF [74] . . . . . . . . . . . . . 118



Chapter 1

Introduction

1.1 Motivation

Recommender systems (RSs) are the systems that were invented and developed to provide a
personalized recommendation on the suitable items that would be satisfied by an individual
user. In recent years, as the amount of information created by people’s daily activities has
increased, it causes an explosion of the information in the modern age. Users have found it
challenging to select products that best suit them from among several options available. As a
result, RSs have been developing over the years to solve the problem of information overload.
Nowadays RSs have become an important engine for many platforms, e.g. e-commerce,
online news, and social network sites (SNS). The key to RSs is in suggesting items to
individual users in hope that recommended items will be satisfactory for the users.

There are many approaches in RSs. The most prevalent and popular approach for
recommending items to a target user (the user to whom recommendations are targeted) is the
collaborative filtering (CF) approach, which is based on the similarity of users or items to
previous interactions. It utilizes historical interaction (e.g., clicks, rates, purchases, etc.) to
infer the user’s preference and recommend items based on the matching score between the
target user and the target item.

Typically, CF can be divided into two approaches: a neighborhood-based approach and
a model-based approach. Although the neighborhood-based approach is simple and works
reasonably well in practice, it requires a high cost in terms of computing time and spatial
complexity. Also, it can suffer from sparsity problems, which is one of the challenges in the
RSs field. Therefore, nowadays, a model-based approach has gained more popularity than a
neighborhood-based approach because it is more capable of handling the problem of sparsity
and scalability. However, the model-based approach requires a great resource to develop the



2 Introduction

model and may lose information when performing dimensionality reduction. In addition, the
model-based approach still suffers from interpretability and lack of explainability.

From the above-mentioned paragraph, it indicates that both the neighborhood-based
approach and model-based approach provide both advantages and disadvantages. In this
thesis, I would like to build a hybrid CF model that leverages and preserves the advantages of
both neighborhood-based and model-based approaches while overcoming their disadvantages.
The challenge of this thesis is how to build and propose a powerful hybrid CF model which
can maintain the advantages of both CF approaches and reduce their disadvantages. Therefore,
this thesis focuses on solving the problems in both the neighborhood-based approach and
model-based approach, and focuses on how to combine them into the hybrid CF model.

In the neighborhood-based approach, people in the real world tend to believe their friends’
opinions when making decisions. Therefore, in CF RSs, the target user’s friends might have
an impact on the target user when making decisions on items. Based on this real-world
assumption, RSs utilize and leverage the opinions of friends to predict how much the target
user would like an item.

Typically, the neighborhood-based approach utilizes user rating data to compute the
similarity between users or items. In order to predict the rating score of the user toward the
target item, CF RS aims to identify the set of the target user’s friends and use their actual
rating scores to determine how much the target user would like the target item. There are
several approaches to finding a set of friends. In case of there is no explicit friendship relation
in the dataset, most RSs often aim to find the set of users who have rated the target item in
the past or have mutual rated items with the target user. Then, the predicted rating score for
the target user toward the target item is then calculated using the actual scores of friends.
However, utilizing the actual rating scores from friends directly often leads to low-accuracy
predictions because of the improper rating-range problem [15].

The improper rating-range problem occurs when the range of rating patterns of each
user is different. Because each user has a unique rating pattern, a rating score needs to be
interpreted. Even if two users give the same item the same score, it does not always indicate
they like it to the same extent if their rating patterns are different. As a result, utilizing the
actual ratings from users who rate items within different ranges to predict the rating score
of the target user is ineffective and may result in low recommendation accuracy. Therefore,
some researchers have adjusted the ratings from several ranges to match the common range
in advance before using them in the prediction step [15, 44, 43, 50]. These methods can be
called rating conversion.

Aside from this improper rating-range problem, there is one more problem to consider
because each of the target user’s friends is likely to have a different level of influence on the



1.1 Motivation 3

target user. In the real world, everyone has biases. It is common to say that all friends are not
equal, with user A having more or less influence on the target user than user B.

Therefore, there should be a module that helps the model in modifying each friend’s
rating score to match the target user’s perspective before using their scores in the calculation.
This can address the issue of improper rating range. Then, to account for each friend’s
differing influence level, this module will assign an individual weight to each user based on
the relation between each friend and the target user–item pair.

For neighborhood-based CF and for such rating conversions, the most essential input is
ratings that involve explicit feedback, which is the input of users regarding their interest in
an item. This is the most helpful information since it directly comes from the user and shows
their direct interest regarding the item. For evaluating the performance of RSs, there are two
popular approaches, which are rating prediction and item ranking. Item ranking has recently
become more popular because some datasets contain implicit feedback and most of recent
works focus on implicit feedback [37, 70]. Implicit feedback is the interaction between a
user and an item that does not have a rating score (i.e., click, buy, rate, etc.). However, some
methods have treated explicit feedback as implicit feedback and input them into their model
[24, 37, 55, 70] which I believe would be preferable if the model could leverage and make
the most use of the data in the form of explicit feedback rather than transforming it into
the implicit feedback form. Because explicit feedback or ratings are more expressive and
more powerful than implicit feedback. Each rating score might imply a different meaning.
In reality, just because a user rates an item does not indicate the user likes that item. For
example, if user A gave a 1-score to item I, it does not mean that user A like item I. User A
might dislike item I, so he/she gave only 1-score. Therefore concrete ratings are important
for prediction in RSs.

Although some works use explicit ratings in their neural network (NN) models, they
only use ratings as a label for optimization [3, 14, 21]. Those ratings were not directly
incorporated as input and ratings did not play an important role in their model architecture.
Also, their user and item representations are usually in the form of one-hot vectors which
do not indicate specific characteristics of user’s ratings or item’s ratings. This thesis aims
to incorporate ratings as an input of this end-to-end CF model and specify the interaction
between a pair of user–item in more detail by rating information.

On the other hand, for the model-based approach, even though some works have shown
that it can provide more accurate results than the neighborhood-based approach, it still has
some flaws and weaknesses.

According to the model-based approach, the modeling process is usually conducted by
machine learning techniques. Recently, some model-based CF models have usually been



4 Introduction

implemented based on NN and deep learning. Collaborative metric learning (CML) [39] is
one of the model-based approach CF that try to assign a user–item pair to the same location
in a vector space by reducing the distance between each user–item interaction, in which their
scoring function is geometrically restrictive [70]. Because their model tries to fit a user and
all his interacted items onto the same point, it causes geometrically congestive and inflexible.
This thesis tries to solve such a problem by utilizing the knowledge graph (KG) embedding
approach to learn the latent relation vector between user–item pairs instead of trying to put
them into the same point in the vector space.

1.2 Problem Definition

According to the motivation in the previous subsection, this thesis focuses on building a hybrid
CF which includes neighborhood-based approach and model-based approach. Therefore,
there are three main problems to consider which are: how to combine neighborhood-based
CF and model-based CF together, problems in the part of neighborhood-based approach, and
problems in the part of model-based approach. All of the sub-problems in three approaches
are listed as follows.

1.2.1 Hybrid Collaborative Filtering: How to apply neighborhood-
based approach to model-based approach

The first challenge of this thesis is how to apply neighborhood-based approach to model-
based approach. This challenge can be considered as how to utilize neighbors into hybrid CF
models.

Utilizing Neighbors in Hybrid CF: Incorporate explicit feedback in an end-to-end
hybrid CF model

Nowadays, most model-based CF RSs utilize implicit feedback to be an input to their
model. If the dataset contains implicit feedback, that is understandable and acceptable.
However, some of them utilize datasets that contain explicit feedback, but treated those
explicit feedback as implicit feedback (i.e, binary score) and utilize implicit feedback in their
models [24, 37, 55, 70] because those models cannot handle explicit feedback. The problem
is that converting explicit feedback into implicit feedback might make a rating score loses its
impactful meaning. For example, if user A rated different items with different rating scores,
it means user A like those items at the different levels. In reality, just because a user interacts
with an item does not indicate the user like that item. Therefore, explicit feedback should



1.2 Problem Definition 5

stay in its original form because specific rating scores are more powerful and can express
more meaning than implicit feedback.

Despite the fact that some works utilize explicit feedback in their model-based CF
model, they only use ratings as a label for optimization of the model [3, 14, 21]. Those
explicit feedback were not directly incorporated as input and were not embedded in user and
item embeddings, so those explicit feedback did not play an important role in their model
architecture. Furthermore, their user and item representations are usually represented in the
form of one-hot vectors which cannot indicate or prove specific characteristics of user’s and
item’s ratings.

According to the above reasons, concrete rating scores are important for prediction in
RSs. The goal of this thesis is to incorporate explicit feedback into an end-to-end model
in which those explicit feedback can specify the characteristics of users and items and can
specify the interaction between user–item pairs in more detail. Therefore, in this thesis, I
propose how to incorporate explicit feedback in the hybrid CF model.

1.2.2 Solving Problems in Neighborhood-based CF Approach

All neighbors are not equal

In the neighborhood-based CF model, systems usually use the opinion of the target user’s
friends (i.e., neighbors who have rated the target item in the past) and use their opinions to
generate recommendations for the target user. In the real world, each friend has a different
influence on the target user. Naturally, people tend to believe their close friends when
deciding to choose something more than their regular friends. Therefore, this indicates that
all friends are not equal.

Because I would like to directly utilize the concept of neighbors in the model-based CF
model, this problem should be carefully considered. This hybrid CF should consist of a
module that can select the high-quality neighbors to have more contribution to the model
than the low-quality users and items.

Rating Conversion between a pair of users

According to the improper rating-range problem in the neighborhood-based CF approach
mentioned in the previous subsection, the actual ratings of neighbors should not be used
directly in the prediction step. They should be converted into the target user’s perspective
first using rating conversion methods.

Most rating conversion methods [4, 15, 50] always convert ratings between a pair of
users in the neighborhood-based CF which is simple and easy to implement. However, a



6 Introduction

rating conversion in a hybrid CF model, which combines both neighborhood-based CF and
model-based CF, is one of the main challenges of this thesis.

Because the main idea is to apply the neighborhood-based concept to model-based CF,
so the rating conversion should be considered on the basis of model-based CF, in which
user, item, and rating representations are usually in embeddings form. Unlike other rating
conversion methods which try to convert rating in scalar form, this thesis proposes how to do
rating conversion in vector form within the model-based CF.

1.2.3 Solving Problems in Model-based CF Approach

Applying Knowledge Graph Embedding concept to a hybrid CF model

One thing to consider in model-based CF is how to model user–item relationships. Recently,
some model-based CF methods try to construct user–item relationships in several ways.
Collaborative Metric Learning (CML) [39] proposed a metric-based learning scheme that
minimizes the distance between user and item vectors of positive interactions. This can learn
user–user similarity and item–item similarity in vector space. However, this method faces
several weaknesses. First, according to its scoring function, it tries to fit a pair of user–item
into the same point in vector space. This might be effective for one–to–many relationships
and small datasets, but for many–to–many relationships and large datasets, this method is
quite not suitable because the optimal point of each user and item will be placed at the same
point in the space. Intuitively, this tries to fit a user and all his interacted items onto the same
point, i.e., geometrically congestive and inflexible.

In order to solve this problem, LRML [70] introduces a new way to construct a latent
relation vector between a pair of user–item by adopting the idea of TransE [12], a translation-
based embedding model that models the relationships between entities in a KG. Instead of
trying to fit a pair of user–item into the same point in the vector space as CML does, LRML
learns an optimal translation between each user–item interaction.

Another reason for introducing the KG embedding technique is that I believe the latent
relation vector can help the model to learn better user and item embedding, which can lead
to better recommendations. Because a vector value often has more expressive power than a
scalar value, so we can expect to obtain higher quality embedding. Additionally, this latent
relation vector is highly personalized because it is generated based on each user–item pair,
so each user–item pair will have its own latent relation vector.



1.3 Objective 7

1.3 Objective

According to the problem definition in the previous subsection, this thesis is proposed under
the following three main objectives.

• Utilizing neighbors and incorporating explicit feedback in the hybrid CF model:
with the purpose of applying the neighborhood-based CF concept into the model-based
CF model, neighbors (i.e., friends and historical items) should be included in this
proposed hybrid CF model. Additionally, those neighbors contain information in the
form of explicit feedback, so explicit feedback should be used in this model. In order
to make the most use of explicit feedback, explicit feedback should be used properly
in the end-to-end CF model with respect to the following properties. First, explicit
feedback should not be transformed into implicit feedback like in some well-known
methods. Second, explicit feedback should be embedded properly in user and item
representations, which can specify characteristics of users and items, instead of using
it only for optimization.

• Neighbors selection and rating conversion between a specific pair of users in the
end-to-end hybrid CF model: because the neighborhood-based approach can be
divided into two approaches: user-based CF and item-based CF, thus neighbors should
come from both user side and item side. Moreover, neighbors should be carefully
selected instead of randomly selected because all neighbors provide different influences
on the target user and the target item. The model must select high-quality neighbors
to participate in more role in the model. For rating conversion, unlike other methods
that can convert only a rating score in a scalar form, this proposed rating conversion
method must allow performing on vector value instead of scalar value. In addition, this
rating conversion must perform in the end-to-end hybrid CF model.

• Applying knowledge graph embedding concept to the hybrid CF model: in order
to get rid of geometric inflexibility in CML, the optimal translation of interaction
between a specific pair of user–item should be learned properly. This translation of
interaction is a latent relation vector. It must be specific to each user–item pair.

1.4 Contribution

This thesis is composed of three main topics which contribute to the previously mentioned
objectives. These contributions are proposed and presented in Attentive Hybrid Collaborative



8 Introduction

Filtering for Rating Conversion in RSs (AHCF) [74]. Note that I have proposed Translation-
based Embedding Model for Rating Conversion in RSs (TransRS) [73], and this TransRS
consists of three main topics listed below but in a different way with AHCF [74]. Moreover,
for the topic of neighbors selection and rating conversion, I have proposed methods in Trust-
based Ant RSs (TrustAnt) [72]. The details of them are described in each chapter of this
thesis.

1.4.1 Utilizing Neighbors in the End-to-end Hybrid CF

First, to utilize neighbors (i.e., friends and historical items) in the end-to-end hybrid CF model,
novel user and item representations are proposed. Unlike traditional model-based RSs which
represent user and item in embeddings, this proposed novel user and item representations
(i.e., UR-matrix and IR-matrix) represent user and item in a form of a dense matrix in which
each row of matrix contributes to rating scores.

The experimental results have shown that my proposed UR-matrix and IR-matrix can help
the model provide better prediction results than the traditional user and item representations.

1.4.2 Neighbors Selection and Rating Conversion in the End-to-end
Hybrid CF

Second, instead of randomly selecting neighbors, the neighbors selection module is proposed
(i.e., friend selection and historical item selection) to select high-quality friends and historical
items to participate more role in the model than the low-quality one. Moreover, the rating
conversion method between a pair of users is proposed to solve the improper rating-range
problem. Unlike the existing rating conversion methods that convert ratings in scalar form,
this rating conversion method in the friend module can convert ratings between users in
embedding vector form within the end-to-end NN model.

The extensive experimental results have shown that with the neighbor selection module,
friend module, and item module, the model can provide better prediction results than the
existing work.

1.4.3 Incorporating Knowledge Graph Embedding to Recommender
Systems

Third, I introduce the KG embedding idea to the end-to-end CF model in order to alleviate
the geometric inflexibility in CML [39] method which tries to place the observed pair of user



1.5 Thesis Organization 9

and item at the same point. Inspired by LRML [70], TransE [12] technique is adopted to be a
scoring function in this hybrid CF end-to-end NN model.

1.4.4 Integration of Proposed Models

Finally, the integration of TrustAnt [72], TransRS [73] and AHCF [74] are described in detail.
This chapter shows how to construct each model and shows the experimental evaluation of
each model. The discussion shows that all works can address the previously mentioned prob-
lem properly. However, AHCF [74] is more efficient because of its end-to-end architecture,
which is more practical than the TransRS [73] which is building blocks architecture, and
more practical than the TrustAnt which is the neighborhood-based CF RSs.

1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 introduces the
background of recommender systems, ant colony optimization, knowledge graph embedding,
rating conversion, and attention mechanism in deep learning. Chapter 3 presents the related
techniques to this work, including the existing RSs, knowledge graph embedding-based RSs,
and rating conversion techniques. From Chapter 4 to Chapter 7, the details of both TransRS
[73] and AHCF [74] will be described in detail based on each topic. Chapter 4 explains
how to utilize neighbors into an end-to-end hybrid CF model. Chapter 5 presents how to
select neighbors and how to perform rating conversion between a pair of users. Chapter 6
presents how to incorporate KG embedding technique to RSs. Chapter 7 demonstrates the
contribution of the models and experimental evaluations of each model. Chapter 8 finally
summarizes the thesis and discusses future work.





Chapter 2

Background

2.1 Recommender Systems

Due to the explosion of the information online in the modern age, recommender systems
(RSs) have been developing over the years to solve the problem of information overload. RSs
have become an important tool for many platforms e.g. e–commerce, online news, and SNS.

The goal of RSs is to suggest and recommend products or items to an individual user in
hope that the recommended item will satisfy the user [1, 62, 63]. RSs have been applied in
many domains, including movie, music, news, etc. The traditional recommendation approach
is categorized into three main approaches, namely the collaborative filtering (CF) approach,
the content-based approach, and the hybrid approach.

Most RSs rely on interactions between users–user, users–items, and items–items. They
use these interactions as input for producing personalized recommendations. Such interac-
tions can be in various formats, such as clicks, likes, and purchases, but the most common
form is the numeric ratings. For example, Figure 2.1 shows the user rating system from
Amazon.com, where users can provide ratings to their purchased products with a score in
the range of 1 to 5. These ratings indicate the user preference levels toward those items.
Commonly, the higher the score they give towards items, the higher their satisfaction towards
those items. Note that rating range 1–5 of Amazon.com is one example of the rating system,
the range of rating scores can be varied on the different systems. For example, Agoda.com
and Booking.com, the search engines for travel and accommodation, use a 10-scale rating
system where users can provide a rating from 1 to 10 to their visited properties on various
criteria. These ratings are used as the main input for the recommendation algorithms for
making personalized recommendations for individual users based on the predicted rating
score of unseen items.



12 Background

Figure 2.1: A user rating system from Amazon.com.

2.1.1 Collaborative Filtering

The most popular and widely utilized technique is the CF approach. It recommends items
to individual users based on their neighbors (i.e., users and items). Typically, CF is further
divided into the neighborhood-based approach and the model-based approach.

Neighborhood-based approach

The neighborhood-based approach, or it can be called the memory-based approach, is a
traditional CF technique that utilizes user or item information in the recommendation step
in which user–item ratings are stored in the system and used directly to predict ratings for
new items. The neighborhood-based approach has several advantages, including simplicity,
justification, and stability [25].

The neighborhood-based approach can be further divided into two types: user-based CF
which the predicted rating of the target user towards the target item is calculated depending
on the target item’s ratings by other similar users and item-based CF which the target item’s
rating is predicted based on how similar items have been rated by the target user. In this
thesis, I utilize both types of neighborhood-based CF approaches.

The neighborhood-based approach can be further divided into two types: user-based
neighborhood-based CF and item-based neighborhood-based CF. To simplify, I will use an
user–based approach and an item–based approach throughout the entire thesis. The details of
each type are defined as follows:



2.1 Recommender Systems 13

• User-based approach: in the user–based CF approach, given a target user and target
item pair, the predicted score of the target user towards the target item is calculated
depending on the target item’s ratings by other similar users. In this approach, the pre-
dicted ratings are predicted using the ratings of neighboring users. The neighborhoods
are defined by similarities among users.

• Item-based approach: opposite to the user–based CF approach, in the item–based CF
approach, given a target user and target item pair, the predicted score of the target user
toward the target item is calculated based on how similar items have been rated by the
target user. In this approach, the predicted ratings are predicted using the target user’s
own rating behavior on neighboring (closely related) items. The neighborhoods in this
approach are defined by similarities among items

Model-based approach

Although the neighborhood-based approach is simple to implement and works reasonably
well in practice, it comes at a high cost in terms of computing time and spatial complexity,
and it can also suffer from sparsity problems. Therefore, the model-based approach, which
learns a predictive model using the user–item ratings, is now gaining popularity. Its main
advantages over the model-based approach are scalability, prediction speed, and avoidance
of overfitting. Therefore, most recent CF models adopt the model-based approach to their
models.

Model-based approach is a recent trend in RSs where machine learning and data mining
methods are used in the context of a predictive model. Recently, the model–based approach
is more popular because of its scalability and faster than the memory–based approach. The
quality of predictions may not be as accurate as with the memory–based approach because
the model–based approach is not using all the information available (depending on the way
the model is built).

Hybrid Collaborative Filtering

The term ‘hybrid’ in general refers to ‘combining different things’ or ‘composed of different
elements’. In RSs, the term hybrid RSs refers to RSs that combine two or more recommenda-
tion techniques to gain better performance with fewer of the drawbacks of any individual one
[13]. However, the term hybrid CF can refer to several kinds of combinations.

First, hybrid CF can refer to CF that combines one of CF techniques (i.e., neighborhood-
based CF or model-based CF) with side information e.g., review, trust, etc. Second, hybrid CF
can refer to CF that combines user-based and item-based neighborhood-based CF approaches.



14 Background

5 4 5 3

4 3 5

5 4 2 4 3

2 2 1

u1
u2
u3
u4

v1 v2 v3 v4 v5

U
se

r

Item

R(u1, v5) = 3

Figure 2.2: A user-item rating matrix.

Another one is hybrid CF which combines neighborhood-based CF and model-based CF
approaches together. In this thesis, I focus on the last one, a hybrid CF which refers to the
CF that combines neighborhood-based CF and model-based CF approaches together.

In this thesis, I propose a hybrid CF network for RSs that combines the advantages of
both the neighborhood-based CF (containing both user-based CF and item-based CF) and
model-based CF approaches.

Recently, research in RSs field is rapidly being developed by researchers all over the
world. The key challenge of RSs is to recommend the right item to individual user based on
their interest. Therefore, user’s interest or user’s preference is the most important thing to
consider to build good recommendations. Over the past few years, several researchers have
tried to find new ways to represent user’s preferences. Some have proposed that Translation-
based embedding model is one of the ways to represent the user’s preferences in the graph
form.

2.1.2 Basic Recommendation Strategies

After the ratings are collected, they can be represented by a user-item rating matrix, as
shown by the example in Figure 2.2. Each row and each column in this matrix respectively
represent each user and each item in the system, whereas each entry of the matrix represents
the corresponding rating of a user given to an item. In Figure 2.2, for example, the user u1

assigned a rating score “5” to the item i1. The main task of a standard recommender system is
to predict the ratings of items that are not yet rated by the individual users, i.e. those denoted
by empty entries in Figure 2.2.

Formally, given User a set of users, Item a set of items, and Rating a set of possible
rating values (e.g. 1 to 5), an objective function R of a standard recommender system can be
defined by:



2.1 Recommender Systems 15

R : User× Item→ Rating. (2.1.1)

After the ratings are computed, the items retrieving the highest prediction scores are
selected as the ones to be recommended to an individual user, implying they are highly
relevant to his/her personal preferences.

Based on the CF approach described in the previous subsection, the model implemented
by the CF approach relies on the ratings from users who shared similar interests and pref-
erences for generating a rating prediction. From Figure 2.2, for example, the user u3 is
very similar to user u1 since they provided similar ratings to similar set of items. Therefore,
the ratings from user u3 on items that do not yet rated by u1 (e.g. v3) can be helpful for
predicting the rating for u1. In this case, u3 can be considered as a neighbor or friend of
u1. The simplest method in a neighborhood-based CF approach is the k-nearest neighbors
(k-NN) technique [1], which makes a prediction by incorporating the ratings from the top k
most similar neighbors to the target user. This method first computes the similarity between
every pair of users by using a similarity metric such as Pearson correlation coefficient, as
expressed by

sim(ua,ub) =
∑v j∈I(ua,ub)(rua,v j − r̄ua)(rub,v j − r̄ub)√

∑v j∈I(ua,ub)(rua,v j − r̄ua)
2
√

∑v j∈I(ua,ub)(rub,v j − r̄ub)
2
, (2.1.2)

where sim(ua,ub) denotes the similarity between users ua and ub, I(ua,ub) is the set of items
rated by both ua and ub, and r̄ua is the average rating of ua. The rating of the user ua on an
unseen item vk can then be estimated by

r̂ua,vk =
∑ub∈Neighbors(ua)(rub,vk− r̄ub)× sim(ua,ub)

∑ub∈Neighbors(ua) |sim(ua,ub)|
, (2.1.3)

where Neighbors(ua) denotes the set of k most similar neighbors of user ua. To produce
an accurate prediction, the neighborhood-based approach requires a significant amount of
mutually-rated items by users, in order to identify high-quality neighbors.

On the other hand, the model-based approach exploits the rating data to build a predictive
model, and uses it for future rating prediction. Many model-based CF techniques have
been proposed, among them the latent factor model [49] is the most popular one due to its
effectiveness in delivering highly accurate predictions. The standard method in latent factor



16 Background

model is the matrix factorization (MF) technique [49] that models a rating as an interaction
between the latent features of user and item. Specifically, each user ui and each item v j are
respectively associated with user and item latent-feature vectors xui and xv j ∈ Rk, where k is
the number of latent dimensions. The rating of user ui for item v j is then estimated by

r̂i, j = xT
ui

xv j . (2.1.4)

The parameters xui and xv j are learned and optimized by minimizing the regularized
square error through a loss function defined by

L = ∑
(i, j)∈O

(ri, j− r̂i, j)
2 +λ (∥xui∥

2 +∥xv j∥
2), (2.1.5)

where O denotes the set of observed user–item rating pairs, ri, j is the observed rating score
of user ui toward item v j, and λ is a constant controlling the regularization rate. (The
regularization term is added to avoid overfitting the observed rating data.)

The parameters xui and xv j can be considered as the representations of user ui and item
v j, respectively, in the latent space. Because they are learned and optimized from observed
ratings, their representation quality depends on the quantity of available historical ratings. For
most rating datasets, however, users typically rate only a few items among all the available
items in the system, which leads to a rating sparsity problem. Such a problem would directly
affect the quality of the user and item representations.

2.1.3 Challenges in Recommender Systems

In the past, content-based filtering was one of the most used approaches in RSs [8, 66].
However, nowadays CF is the most widely used approach in RSs. In this thesis, I focus on
CF RSs, so this subsection will show some of related trends and challenges in RSs.

In order to provide the effective recommendations, there are two common challenges that
RSs aim to achieve: focusing on accuracy and the effectiveness of RSs, and dealing with
sparsity data.

Focusing on Accuracy and the Effectiveness of Recommender Systems

Most research papers in the RSs field focus on accuracy and the effectiveness of the RSs [8].
Because the goal of RSs is to bring the most satisfying items to individual user, researchers



2.1 Recommender Systems 17

seem to assume that an accurate RSs will lead to high user satisfaction. Therefore, the vast
majority of RS methods measure the effectiveness of their recommendation algorithms based
on the prediction accuracy.

The standard RS strategies such as the CF–based approach, which utilize only the rating
data between users and items for making a recommendation, often fail to deliver highly
accurate predictions. The accuracy of a neighborhood-based CF approach relies heavily on
the quality of the neighbors who have rated the target items. Therefore, neighbors selection
is one of the challenges in neighborhood-based CF. Several efforts tried to enhance the
computation of similarity [38, 54]. For example, [38] introduced the weighted Pearson
correlation coefficient by modeling the confidence level among the neighbors. [54] proposed
a novel similarity measure by considering the proportion of common ratings between two
users.

By building a predictive model for future rating prediction, the model-based CF ap-
proach, in contrast, is more scalable than the neighborhood-based CF approach. However,
the prediction made by the model-based CF approach might not be as accurate as the
neighborhood-based CF approach when the user–item rating matrix is dense (i.e., when
there is a sufficient amount of ratings to identify high-quality neighbors). Therefore, several
model-based CF methods have attempted to invent models with more accurate predictions.
For example, many variants of MF have been proposed to improve the prediction accuracy
upon the baselined MF [40, 49, 51, 65]. Recently, a neural network model has been integrated
into a latent factor model to further enhance the prediction accuracy [37].

By considering the advantages of both neighborhood-based and model-based CF ap-
proaches, this thesis aims to build a hybrid CF model which leverages and preserves the
advantages of both neighborhood-based and model-based CF approaches. Therefore, prob-
lems and challenges in both neighborhood-based and model-based CF approaches are need
to be solved. Moreover, one more challenge is how to build a powerful hybrid CF model
which can maintain the advantages of both CF approaches and reduce their disadvantages.

Dealing with Data Sparsity

In many large-scale RSs, there are a large number of users and items. However, in most of
them, many users only provide ratings to a few items, compared to all available items, and
many items might be rated only a few times by the users. Representing this kind of data with
the user-item rating matrix would consequently result in a sparse matrix where most of its
entries are missing. This leads to one of the major challenges in RS, called data sparsity
problem, which directly impacts the predictive performances of many recommendation
algorithms.



18 Background

Since a CF approach relies on historical ratings for future rating prediction, it often suffers
from a rating sparsity problem, where there are insufficient amounts of ratings for producing
an effective recommendation. For example, the neighborhood-based CF approach relies
on the overlapped ratings on the mutually rated items between two users to compute their
similarity. With the sparse user-item rating matrix, such overlapped ratings might be very
few or unavailable, so it makes the computation of user similarity unreliable [22, 33]. This
leads to the ineffective process of identifying the high–quality neighbors, and consequently
reduces the prediction accuracy.

Also, the predictive performance of the model-based CF approach is also affected by the
sparsity problem. By building the predictive models on the sparse rating data, those models
might be trained to over-fitting with the only available user-item pairs. In spite of providing
high accuracy on the training (already seen) data, the over-fitted model tends to provide poor
accuracy on the unseen data.

Many works in RSs field have attempted to alleviate the sparsity problem. For example,
[32, 41] combined content-based recommendation approach with the CF-based approach
by considering similarity of the item characteristics. Moreover, some works applied the
dimensionality reduction techniques such as the singular value decomposition (SVD) [48],
the principle component analysis (PCA) [67], etc., to overcome the rating data sparsity. For
example, [31] used predicted ratings of SVD to fill in missing values in the user-item rating
matrix and then applied the traditional item-based CF to make a recommendation.

In this thesis, I would likm3e to combine the neighborhood-based CF and model-based
CF together to overcome the data sparsity problem by utilizing neighbors, both users and
items, into the hybrid CF model.

2.2 Ant Colony Optimization in Recommender Systems

Ant colony optimization (ACO) is a swarm intelligence method which was proposed by
Dorigo in 1992 [28]. ACO is a probabilistic technique for solving optimization problems that
can be reduced to find a good path through graphs. The ACO process is based on the foraging
behavior of real ants in a colony when they are seeking a path for a good food source. With
this concept of ACO, some researchers in the RSs field have applied ACO to RSs.

In RSs, ACO is usually applied to trust-based RSs, which is one kind of CF RSs that rely
on the concept of trust between users, rather than similarity. In trust-based RSs, the model
usually finds neighbors based on trust value.

In RSs terms, the artificial ants are sent out from the target user into the network to search
for neighbors (i.e., reliable users who would be expected to provide good recommendations)



2.3 Knowledge Graph Embedding 19

just as real ants search for good food sources. The key mechanism from the ant colony (AC)
concept is a ‘pheromone-update’ mechanism. The artificial ants traverse paths and update
the pheromone level on the edges as real ants do.

There are several approaches of ACO and two main ACO techniques have been applied in
trust-based RSs. First, the traditional ant colony (AC) concept, in which the pheromone value
will be updated after all ants have completed each iteration. One iteration means that all ants
in the network have completed their constructed paths, which will include a number of nodes
and edges. Bedi, P. et al. [6] and Kaleroun, A. et al. [46] implemented the traditional AC
concept in their works.

Second, the ant colony system (ACS) represents an improvement on the original ACO.
The ACS concept differs from the original in that the pheromone-update strategy is divided
into two parts. The first path involves a local pheromone update, in which a pheromone value
is updated locally after each step of an ant. This means that the pheromone value on an edge
that the ant chooses to cross will be updated. The second part involves a global pheromone
update, in which the pheromone value will be updated after all ants have completed an
iteration. When all ants have completed one iteration, the pheromone value on some or all
paths will be updated. The paths selected for updating depend on the optimization conditions
adopted by the particular system being proposed. Bellaachia, A. et al. [9] implemented ACS
in their work.

In this thesis, I adopted the ACO concept and applied to trust-based RSs in order to find
high-quality neighbors by mimicking the real ant behavior.

2.3 Knowledge Graph Embedding

Knowledge Graph (KG), also known as a semantic network, is a multi-relational graph that
represents a real-world entities (i.e., objects, events, situations, or concepts) and illustrates
the relationship between them. A KG is made up of three main components: nodes, edges,
and labels. Any object, place, or person can be a node (i.e., entities). An edge defines the
relationship between the nodes. For example, a node could be a movie, like Titanic, and a
director like, James Cameron. An edge would be to categorize the relationship as a direct
relationship, which James Cameron directed in the Titanic movie.

In recent years, KG construction and application gain popularity and a large number of
KGs, such as Freebase, DBpedia, etc. have been created and successfully applied to many
real-world applications [76]. KGs usually store entities and relations in a triple of the form
(head entity, relation, tail entity), also called a fact, indicating that two entities are connected
by a specific relation. The previous example, which explains the relationship between



20 Background

Titanic movie and Jame Cameron, can be represented in a form of (Tinatic, directed_by,
JamesCameron). In spite of the effectiveness in representing structure, the underlying
symbolic nature of such triples makes KGs hard to manipulate.

To address this issue, a knowledge graph embedding (KGE) has been proposed and
quickly gained vast attention. The key idea of KGE is to embed components of a KG
including entities and relations into continuous vector spaces, in order to simplify the
manipulation while maintaining the inherent structure of the KG.

KGE can be roughly divided into 2 groups: Translation-based embedding model and
Semantic matching model. The details of each group are described as follows.

2.3.1 Translation-based Embedding Models

Translation-based embedding models are widely used in the KG field. KG embedding is to
embed components of KG including entities and relations into continuous vector space. This
translation in vector space takes inspiration from Natural Language Processing (NLP) field.

Recently, many KG embedding techniques have been proposed and rapidly gain numerous
attention [76]. TransE [12], which is proposed by Bordes et al., is the simplest and the most
representative translation-based embedding model. It represents both entities and relations as
vectors in the same space. The scoring function of TransE is defined as the distance between
h+ r and t, where h refers to head entity, t refers to tail entity, and r refers to relation between
head and tail entities.

TransE is one of such models and the first translation-based method. TransE is well
known because the principle of TransE can effectively capture the rules of a knowledge
graph although it seems very simple. In spite of its efficiency and simplicity, TransE has flaw
in dealing with 1-to-N, N-to-1, and N-to-N relations. Therefore, various translation-based
embedding models have been proposed and developed over the past few years, e.g. TransH
[78], TransR [53], TransD [42], etc. [76] Figure 2.3 shows the illustration of different
translation-based embedding models.

2.3.2 Semantic Matching Model

Unlike translation-based embedding models, semantic matching models exploit similarity-
based scoring functions. They measure plausibility of facts by matching latent semantics
of entities and relations embodied in their space representations. There are several KGE
semantic matching models, but in this thesis, I focus on the concept of translation-based
embedding model (i.e., TransE), so this subsection will briefly describe their properties.



2.3 Knowledge Graph Embedding 21

Figure 2.3: Simple illustration of Translation-based Embedding Models (i.e., TransE, TransH,
and TransR). Adapted from [76]

RESCAL [58] connects each entity with a vector to capture its latent semantics. Each
relation is represented as a matrix that models pairwise interactions between latent factors.
The score of a fact (h,r, t) is defined by a bilinear function.

fr(h, t) = hT Mrt (2.3.1)

This score captures pairwise interactions between all components of h and t.

DisMult [79] simplifies RESCAL by restricting Mr, to diagonal matrices. For each
relation r, it introduces a vector embedding r ∈ Rd and requires Mr = diag(r). The scoring
function is defined as

fr(h, t) = hT diag(r)t (2.3.2)

This score captures pairwise interactions between only the components of h and t along
the same dimension, and reduces the number of parameters. However, this is over-simplified
and can only deal with symmetric relations which is not powerful enough for general KGs.

2.3.3 Semantic Matching Model with Neural Networks

Apart from RESCAL and its extensions, another type of KG embedding technique is semantic
matching model with neural networks. Semantic Matching Energy (SME) [11] conducts
semantic matching using NN architectures. Given a fact (h,r, t), it first projects entities and
relations to their vector embeddings in the input layer. The relation r is then combined with
the head entity h to get gu(h,r), and with the tail entity t to get gv(t,r) in the hidden layer.
The score function is finally defined as matching gu and gv by their dot product as

fr(h, t) = gu(h,r)T gv(t,r) (2.3.3)



22 Background

Neural Tensor Network (NTN) [69] is another NN architecture. Given a fact (h,r, t), it first
projects entities to their vector embeddings in the input layer. Then the two entities h, t ∈ Rd

are combined by a relation-specific tensor Mr ∈ Rd×d×k (along with other parameters) and
mapped to a non-linear hidden layer. Finally, the relation–specific linear output gives the
score

fr(h, t) = rT tanh(hT Mrt+Mr
1t+Mr

2t+br (2.3.4)

where Mr
1,Mr

2 ∈ Rk×d and b ∈ Rk are relation-specific weight matrices and bias vectors,
respectively.

Multi-Layer Perceptron (MLP) [26] is a simpler approach where each relation (as well
as entity) is associated with a single vector. Given a fact (h,r, t), the vector embeddings are
concatenated in the input layer and mapped to a non-linear hidden layer. The score is then
generated by a linear output layer as

fr(h, t) = wT tanh(M1h+M2r+M3t). (2.3.5)

where M1,M2,M3 ∈Rd×d are the first layer weights, and w∈Rd is the second layer weights,
all shared across different relations.

2.4 Improper Rating-range Problem and Rating Conver-
sion

The improper rating-range problem occurs because each user has their own rating pattern;
the ratings of each user are in different ranges. For example, in a 1–5 rating system, user A
always rates items within a range of 1–3, while user B always rates items only in a 3–5 range.
The meaning of a rating of 3 by user A is different from a rating of 3 by user B. From this
scenario, A rating of 3 by user A would then be similar to a rating of 5 by user B. This means
that using the actual rating from one user to recommend the item for the target user in the
prediction step is improper and this may bring about low accuracy for the recommendations.

Therefore, some researchers have tried to adjust the ratings in different ranges to be in
the same range. The first method is normalization [43, 44]. It converts ratings into a specific
range, usually between 0 and 1 where ‘most dislike’ will be mapped to ‘0’ and ‘most like’ will
be mapped to ‘1’. Many normalization methods are proposed based on different assumptions,
such as linear normalization, Gaussian normalization, and decoupling normalization.



2.4 Improper Rating-range Problem and Rating Conversion 23

2.4.1 Linear Normalization

This method maps ratings based on the maximum and minimum of personal user ratings. By
using the linear function, the normalized rating value rnew

ua
for the user ua’s specific rating is

computed as:

rnew
ua

=
rold

ua
− rua,min +1

rua,max− rua,min +1
, (2.4.1)

where rold
ua

is an original rating of ua, rua,max and rua,min denote the maximum and minimum
ratings user ua has rated, respectively. This normalization method maps ratings based only
on maximum and minimum of the personal user ratings.

2.4.2 Gaussian Normalization

This method considers two factors that affect the variance of ratings among users with similar
interests [43]. The first factor is a difference of a rating from the average ratings. This factor
relates to the fact that some users are more tolerant and tend to give higher ratings than others.
Another factor is the difference in users’ rating scales. This comes from the fact that some
users tend to assign items to a narrow range of ratings, whereas other users tend to assign
items to a wide range. Combining these two factors, the ratings of each user are subtracted
from his average and divided by the variance of his ratings, as expressed by:

rnew
ua

=
rold

ua
− r̄ua

σua

, (2.4.2)

where r̄ua and σua are an average and a standard deviation of user ratings, respectively.

2.4.3 Decoupling Normalization

This method converts a user rating on an item into a probability for that item to be favored by
the user [44]. When the rating rua is going to be normalized, the probability is determined
based on two factors. First, a ratio between two numbers: the number of items which was
rated no more than value rua by the user ua and the number of all items that the user ua has
rated. The high ratio means the rating rua is likely to be favored by the user. The second
factor is a ratio between the other two numbers: the number of items which was rated value
rua by the user ua and the double number of all items that the user has rated. The low ratio
means the rating rua is likely to be favored by the user. Based on these two factors, a special
formula; called halfway cumulative distribution was proposed as:



24 Background

rnew
ua

=
|{v j ∈ Iua|ra, j ≤ rold

ua
}|

Iua

−
|{v j ∈ Iua|ra, j = rold

ua
}|

2|Iua|
, (2.4.3)

where Iua denotes the set of items to which user ua has rated.

However, normalization is not enough because the normalized rating is converted on the
basis of the data of the original user only. The problem can occur if two target users have
different rating patterns but these two target users have the same set of friends. If friend’s
normalized ratings are used for prediction, the recommendation will be the same, which is
improper. For example, target user A usually rated items with a score ‘0.3’ (normalized),
while target user B usually rated items with a score ‘0.7’ (normalized). If these two users
have the same set of friends and the predicted rating from this set of neighbors is ‘0.8’, these
two target users will have the same predicted rating of ‘0.8’. Although the predicted rating
‘0.8’ does not have much effect on user B, it seems quite a high score to user A because his
usual rating is‘0.3’.

Thus, in order to overcome this problem, an algorithm that can converts ratings from
one user to the perspective of the target user is needed to improve the accuracy level of the
recommendations. We call this algorithm as rating conversion.

2.5 Deep Learning and Attention Mechanism

In recent years, NNs and deep learning have been applied to many research fields. Deep
learning is now becoming the most popular technique for information retrieval and RSs [81].

Matrix factorization (MF) [49] is a standard baseline technique for CF that models the
relationship between user and item via their inner product, with several implementations
of deep learning models now being based on MF [30, 37]. One such approach is neural
MF (NeuMF) [37], a recent state-of-the-art deep learning model that combines MF with a
multilayer perceptron (MLP).

The attention mechanism is widely used and is successful for learning a weighted
representation across multiple samples. It was first introduced by Bahdanau, D., et al.
in [5]. Inspired by human visual attention, the goal of the attention mechanism is to reduce
noise and select more informative features for the final prediction. The attention mechanism
has recently become popular in the fields of computer vision, natural language processing,
and RSs [16, 17, 52, 70]. In attention-based methods, inputs are weighted with attention
scores. As such, calculating the attention scores is the most important part of neural attention
models.



2.5 Deep Learning and Attention Mechanism 25

Despite many advanced models emerging each year, with several types of NN and deep-
learning techniques being applied to RSs, RSs still suffer from several challenges, such as
data sparsity and cold start problems. Therefore, applying only deep learning to RSs might
not be the best solution, so many researchers have tried to apply deep learning with other
techniques or additional information to RSs. This thesis also adopts the attention mechanism
in the model and combines it with the neighborhood-based CF concept in building a hybrid
CF RSs.





Chapter 3

Related Work

3.1 Existing Recommender Systems

3.1.1 Overview

Due to the problem of information overload, many RSs have been developed over decades,
to suggest and recommend personalized items to individual users [1, 8, 66]. As mentioned
in Chapter 2.1, traditional RSs can be categorized in three main approaches which are the
CF approach, the content-based approach, and the hybrid approach. The most popular and
widely used approach in RSs is CF, and my thesis focuses on hybrid CF. Therefore, in this
section, I will focus on the existing CF RSs.

Over the past few years, a large number of CF RSs have been developed to solve several
problems, e.g., cold-start problem, sparsity problem, scalability, explainability, etc. [57] In
this thesis, the proposed model is proposed to solve the sparsity problem, explainability, and
the improper rating-range problem.

Sparsity problem occurs when the dataset contains very few ratings from users. Due to
the sparseness of ratings in the user–rating matrix, the model cannot generate a satisfying
recommendation for individual users. This problem is the problem of CF RSs, which gives
unique opportunities to new researchers to find new ways to predict the missing ratings.

According to existing CF RSs, the model-based CF approach becomes more popular
than the neighborhood-based CF because of its advantages. However, the model-based CF
approach still has flaws. Although features of neighborhood are embedded implicitly in the
model-based CF, the inference is intractable because of the hidden/latent factors. Therefore, in
this thesis, I argue that the existing model-based CF RSs are not sufficient to yield satisfactory
embeddings for CF. I believe that the concept of neighbors is still important for RSs. In this
thesis, I would like to integrate the concept of neighbors directly into the model-based CF



28 Related Work

and propose a hybrid CF model. The purpose of integrating neighbors directly into the model
is to increase the explainability of the model. Instead of only hidden/latent factors which lack
explainability, it will be clearer to explain how the recommendations come from when the
neighbors are directly used in the model.

In this chapter, some of the existing CF RSs are briefly explained.

3.1.2 Collaborative Filtering Recommender Systems

Several CF RSs have been proposed over decades. Chen, R. et al. proposed a survey of CF
RSs from traditional methods to hybrid methods based on social networks [19]. They provide
a comprehensive review of existing CF RSs which summarize research papers related to CF
RSs that were published before 2018.

As mentioned in 2.4.3 that CF RSs can be categorized into the neighborhood-based
approach and the model-based approach, so in this subsection, I will show some of the
existing neighborhood-based CF RSs and model-based CF RSs. For the hybrid CF RSs, I
will explain and show some existing hybrid CF RSs in the next subsection.

Neighborhood-based Collaborative Filtering

Neighborhood-based CF recommendation algorithm obtains the similar relationship between
users or items according to the user-item rating matrix, then recommends the items that are
highly rated by similar users for the target user. The traditional neighborhood-based CF can
be categorized into two types: the user-based CF and the item-based CF.

Typical user-based CF (resp. item-based CF) usually calculates the similarity between
two users (resp. two items), and produces a prediction for the user by taking the weighted
average of all ratings. Similarity calculation between users or items is an important part of
this approach. Multiple measures, such as Pearson correlation (Eq. 2.1.2) and vector cosine
based similarity are used for this approach. The cosine similarity between user ua and ub can
be calculated by this equation:

sim(ua,ub) =
∑i ru,irv,i√

∑i r2
u,i

√
∑i r2

v,i

. (3.1.1)

For recommendation, top-n recommendation is the application RSs to produce a set of n
items which might be satisfied by the target user.



3.1 Existing Recommender Systems 29

Model-based Collaborative Filtering

The model-based CF RSs are developed using different data mining, machine learning
algorithms to predict the missing rating. There are many model-based CF RSs that are
proposed over decades. This approach requires a learning phase in advance for finding out
the optimal model parameters before generating recommendations for users. Among the
model-based CF RSs, the latent factor model (LFM), which is the approach that factorizes
the user-item rating matrix into two low-rank matrices: the user feature and the item feature
matrices. This LFM is very competitive and widely adopted to implement RSs. Singular
Value Decomposition (SVD) [48] and Matrix Factorization (MF) [49] are the best-known
methods used in the model-based CF. Both SVD and MF all take advantage of LFM.

In recent years, deep learning is applied to model-based CF RSs. Any neural differentiable
architecture is considered to be ‘deep learning’ if it optimizes a differentiable objective
function using a variant of Stochastic Gradient Descent (SGD). There are many different
architectures in deep learning, such as the Multilayer Perceptron (MLP), the Autoencoder
(AE), the Attentional models (AM), etc. These architectures are utilized in RSs to build deep
learning–based RSs. Neural Collaborative Filtering (NCF) [37] is one of the most popular
state-of-the-art unified frameworks combining MF with the MLP.

3.1.3 Hybrid Collaborative Filtering Recommender Systems

The term hybrid CF RSs can refer to three different kinds of RSs which are:

• RSs that combine the neighborhood-based CF and the model-based CF approaches

• RSs that combine the user-based and item-based neighborhood-based CF approaches

• RSs that combine the CF approach (i.e, neighborhood-based or model-based) with
another approach.

In this thesis, my proposed model is categorized in the first one, which is the hybrid CF
RS that combines the neighborhood-based CF and the model-based CF approaches together.

A hybrid CF model with a deep structure for RSs [27] is proposed by Dong, X. et al. This
hybrid CF model integrates deep representation learning and MF together. They proposed a
deep learning model called additional stacked denoising autoencoder (aSDEA) to integrate
the additional information into the input. This approach seems similar to my proposed model
in which they try to integrate side information of users and items as input of the model. They
use additional information about neighbors explicitly. However, the procedure of utilizing
neighbors is different. Moreover, they binarize explicit data by keeping the ratings of four or



30 Related Work

higher and interpret them as implicit feedback, while I try to keep and make the most use of
all information.

Recently, Pirasteh, P. et al. proposed an enhanced hybrid CF that utilizes movie genres
as additional information to calculate the similarity between items and users [60]. They
calculate four different similarities based on three matrices, namely: user similarity based on
ratings, item similarity based on rating, user similarity based on genres and item similarity
based on genres. Then compute a final prediction for a user (or an item) based on a linear
combination of the individual estimated scores using an ordinary least-squares regression.
This hybrid CF model is straightforward and easy to understand. However, it still relies on
the neighborhood–based approach and it’s not an end-to-end hybrid CF model.

In [45], Juan, W. et al. suggested a hybrid CF RS that combines the K nearest neighbor
(KNN) [23] model and the Extreme Gradient Boosting (XGBoost) [20] model and leverages
the scores predicted by the model-based personalised recommendation algorithm as features
to overcome data sparsity and cold start problem in RSs. The algorithmic principle behind
XGBoost is to pick a few samples and features to construct a classification model.

3.2 Knowledge Graph Embedding based Recommender
Systems

KG embedding involves embedding the components of KG such as entities and relations into
a continuous vector space. Many KG embedding techniques have recently been proposed
and are rapidly gaining attention [76].

Nowadays, KG embedding techniques have been adopted in various fields, including RSs.
Researchers in RSs field have applied KG embedding techniques to RSs for which the RSs
problem is defined as link prediction in a KG comprising users and items as the entities and
ratings as the relations [34]. For example, user u1 rated item i1 can be transform into triple in
KG setting as (u1,rated, i1).

These KG embedding techniques are being applied to RSs to mitigate the challenges
such as data sparsity and cold start problems. Several approaches integrate side information
into the RSs and treat the resultant data as a KG, aiming to address these issues. In this
thesis, I show some related KG embedding-based RSs. They can be roughly categorized into
translation-based embedding models in RSs and KG-based NN RSs.



3.2 Knowledge Graph Embedding based Recommender Systems 31

3.2.1 Translation-based Embedding Model in Recommender Systems

Inspired by the translation-based embedding model, several works applied the translation-
based embedding model in RSs.

Translational Models for Item Recommendation

Palumbo, E. et al. proposed translational models for item recommendation [59]. They
showed that the item recommendation can be seen as a specific case of KG completion
problem, where a special property called ‘feedback’ has to be predicted. See Figure 3.1.
Feedback can be seen as a relation in KG. They applied TransE [12], TransH [78], and
TransR [53] to map entities and relations into a vector space and generate KG embeddings.
Then, they tried to complete the KG by predicting the feedback between a pair user and
item. Finally, they generated the item recommendation by ranking a set of items based on
the predicted feedback.

Learning over Knowledge-Base Embeddings for Recommendation

Zhang, Y. proposed another translational embedding based method. [82] They proposed to
learn over heterogeneous knowledge base embeddings for personalized recommendation by
constructing the user-item knowledge graph, then learn the knowledge base embeddings with
the heterogeneous relations collectively and use these embeddings to produce personalized
recommendations. In their work, they defined 5 types of entities and 6 types of relations,
where the entities include user, item, word, brand, and category, while the relations include
buy,belong to category, belong to brand, mention word, also bought, and also view. Figure
3.2 shows an example of the constructed user-item KG.

Constrained Preference Embedding for Item Recommendation

Wang et al. proposed a method called constrained preference embedding (CPE) to model
users’ behavior. [77] They adopt the idea from translation-based embedding model to embed
user’s behavior information in a high-dimensional space together with users and items. In
this context, users and items are entities and user’s behavior (feedback from user to item) are
relation. The users, items, and relations are represented by d dimensional vectors.

They proposed two item recommendation algorithms CPE-s and CPE-ps based on their
CPE assumption. CPE-s adopt the idea from TransE [12] and CPE-ps adopt the idea from
TransH. [78]

Although all of [59, 82, 77] try to represent users, items, and relations in embedding
vector form, their representation may be improper and inaccurate. The problem can occur if



32 Related Work

Figure 3.1: Recommending items as a knowledge graph completion problem. Adapted from
[59].

the rating pattern of each user are not in the same range. These works do not consider this
problem. This means using the obtained rating vector from these models in the prediction
step may lead to inaccurate recommendations.

3.2.2 Knowledge Graph-based Neural Network Recommender Systems

Apart from applying the translation-based embedding model to RSs, some researchers have
applied KG embedding approach to NN RSs model, which can be called KG-based NN RSs.

Latent Relational Metric Learning

Latent Relational Metric Learning (LRML) [70] is an attention-based memory-augmented
neural architecture that uses a latent relation vector to model the relationship between user–
item pairs in metric space, proposed by Tay et al. LRML tries to mitigate the problems with



3.2 Knowledge Graph Embedding based Recommender Systems 33

Figure 3.2: An example of user-item KG. Adapted from [82].

CML [39], whose scoring function is geometrically restrictive because the objective function
of CML aims to minimize the distance between each user–item pair in Euclidean space. The
scoring function is defined as:

s(p,q)≈ ∥p−q∥2
2, (3.2.1)

where p,q are the user and item vectors respectively.

With this objective function of CML, it causes geometric restrictive because the objective
function tries to fit each user–item pair into the same point in vector space. This geometric
inflexibility causes poor repercussions when the dataset is large or dense since CML tries to
force all of a user’s item interactions onto the same point.

Therefore, LRML adopts the scoring function from TransE [12] to model the latent
relation vector of a user–item pair, instead of assigning them to the same spot, as does CML.
Figure 3.4 shows the difference between LRML and CML.

LRML aims to model user and item pairs using relation vectors based on translational
principle, i.e., p+ r ≈ q. The relation vector r is what separates LRML from simple metric
learning approaches like CML. LRML’s architecture is described in Figure 3.5. A simple
high-level overview of LRML is described as follows.



34 Related Work

Figure 3.3: Illustration of CPE. Adapted from [77].

1. Users and items are converted to dense vector representations using an embedding
layer. p and q are the user and item vectors respectively.

2. Given p and q a relation vector r is generated using a neural attention mechanism over
an augmented memory matrix M. The relation vector r is dependent on user and item,
and is learned to explain the relationship between user and item.

3. LRML optimizes for ∥p+ r−q∥ ≈ 0 using pairwise hinge loss and negative sampling
like in TransE.

Because TransE [12], as proposed by Bordes et al., is both the simplest and the most
representative translation-based KG embedding technique, it is widely used in various fields.
It represents both entities and relations as vectors in the same vector space. This thesis is
inspired by the ideas of LRML and TransE to enable learning an appropriate representation
of users, items, and latent relations. However, my proposed model in this thesis obtains the
latent relation vector differently from LRML which will be described in detail later.



3.3 Rating Conversion Techniques 35

Figure 3.4: Geometric Comparisons of LRML and CML. Adapted from [70].

3.3 Rating Conversion Techniques

In attempts to overcome the problem aforementioned, many rating conversion techniques have
been proposed over the years. Those techniques include linear mapping, Lathia’s transpose
function, Warat’s transpose function, Ayub’s rating conversion and rating conversion on
multi-criteria RSs. In addition, I also proposed a rating conversion technique that works
specifically for trust-based RSs.

3.3.1 Linear Mapping

Linear mapping is similar to linear normalization. [2] It uses a linear function to map the
ratings, but the different point is Linear mapping maps the original rating range to the target
user’s rating range instead of range [0,1]. The linear mapping function that will map user u’s
rating to user A’ rating range is defined as follows:

Linearu→A(R) = (Ru− ru,min) ·
rA,max− rA,min

ru,max− ru,min
+ rA,min (3.3.1)

where rA,max and rA,min denote the maximum rating and minimum rating that user A has
rated, respectively.

Although the linear mapping approach can solve some problems of normalization, some
still occur. First, if there are users who have different rating patterns but have the same
maximum rating and minimum rating, the predicted rating from the same friends is still the
same as occurred in the normalization. Moreover, if the target user has rated items by only
one rating value, all ratings from all friends will be mapped to that value. This makes an
improper prediction since all items receive the same predicted rating.



36 Related Work

Figure 3.5: Illustration of LRML architecture. Adapted from [70].

3.3.2 Lathia’s Rating Conversion Method

Lathia’s rating conversion method is proposed by Lathia, N. et al. [50] This method converts
the ratings between a pair of users based on co-rated items, which is the set of items that have
been rated by both users of that pair. For example, if user A is the target user and we would
like to convert user u’s rating into user A’s perspective. Consider a set S of co-rated items
rated by both user A and user u. If user A has rated for almost all items in S greater than user
u has rated, Lathia’s method assumes that user u’s original rating will be converted to greater
value in user A’s aspect. The converted rating is computed by a weighted mean between the
quantity of each group of ratings in S. Let lowerR, sameR and higherR denote the groups of
items that a target user A has rated less, equal and more than the original rating R of user u,
respectively. The lowerR group decreases the rating from R to (R− 1), sameR unchanges
R and higherR group increase the rating to R+1. Lathia’s method can be described by the
following.

Lathiau→A(R) =
(R−1)|lowerR|+R|sameR|+(R+1)|higherR|

|lowerR|+ |sameR|+ |higherR|
(3.3.2)

However, the problem still occurs if this method is used. For example, suppose user u
have rated fourteen co-rated items with rating ’4’, and target user A have rated less than



3.3 Rating Conversion Techniques 37

’4’ on five items of them, equal to ’4’ on three items of them, and greater than ’4’ on the
remaining six items of them. Computed by Lathia’s method, it will convert rating ’4’ of user
u to ’4.07’ of user A’s perspective. As for the rating that has no historical experience, the
converted rating remains the same as the original one.

3.3.3 Warat’s Rating Conversion Method

Warat’s rating conversion method is proposed by Warat et al. [15]. This work was proposed
to overcome the insufficient co-rated items problem and the rating shifting problem. It was
designed to deal with rating in scalar form. Warat’s method consists of two components: the
original value and the adjusting term. The original value is the rating to be converted and
the adjusting term is an average of the difference between the original rating and the related
target ratings (ratings of the target user on items corresponding to the original rating). Due to
the sparsity of data, there is a chance that there are no actual related target ratings. In that
case, the pseudo ratings derived from matrix factorization [49] are used instead.

The Warat’s function controls the adjusting term with the reducing term which are
confident of generated pseudo ratings and distribution of ratings. The less error and less
deviation of the considered rating lead to more suitable converted ratings. The transposed
rating can be calculated as:

Wu→A(R) = R+
∑i∈βuR(rAi−R)

|βuR|
·DistAu ·Con fA. (3.3.3)

For more understanding, we show how Warat’s method works in three cases. For the first
case, if user u and user A1 shared the same set of items with ratings (2, 2, 2) and (4, 4, 4),
respectively. Since their ratings contain no distribution, if the pseudo ratings from user A
have no error, ‘2’ of user u will be converted exactly to ‘4’ of user A’s perspective. In the
second case, there exists another user A2 who rated the same set of items with distributed
ratings (3, 4, 5), no error. Although the average rating is ‘4’, the converted rating from user u
is only ‘3.1’ since the distribution term reduced the adjusting term from ‘+2’ to ‘+1.1’. The
last case, if there is an error on user A2’s derived pseudo ratings with confidence of 0.8, the
adjusting term is reduced to ‘0.6’, and the converted rating from user u is ‘2.6’.

However, most of them were proposed to deal with ratings only in scalar form. Our
proposed method tries to deal with ratings into vector form, so in this work we propose a new
technique that can convert the ratings in vector form. The details of the proposed method are
described in the next section.



38 Related Work

3.3.4 Ayub’s Rating Conversion

Ayub, M. et al. proposed a Modeling user rating preference behavior to improve the perfor-
mance of the CF based RSs [4]. In this work, they tried to solve the improper rating-range
problem too. They claim that the standard Pearson correlation coefficient (PCC), which is
commonly used for similarity measurement between users in CF RSs, ignores different rating
pattern of each user. Therefore, they proposed an improved similarity measure method that
uses the user’s rating preference behavior (RPB) pattern to find similar users. This proposed
similarity measure is named as improved PCC weighted with RPB (IPWR).

First, they proposed a function RPB between user a and b, RPBa,b in two ways: using
variance and using standard deviation (SD). The cosine function is used to model the RPB of
two users. It can be calculated by follows:

RPB(a,b)using var = cos(|R̄a− R̄b| · |vara− varb|), (3.3.4)

RPB(a,b)using SD = cos(|R̄a− R̄b| · |SDa−SDb|). (3.3.5)

Then they improve the standard PCC because the standard PCC ignores users’ rating
pattern. The improved PCC is denoted by SimIPCC. It can be calculated as follows:

Sim_IPCC(a,b) =
∑ j∈Ia∩Ib

{(Ra, j · R̄a)− (Ra, j · R̄ j)}∗{(Rb, j · R̄b)− (Rb, j · R̄ j)}√
∑ j∈Ia {Ra, j · R̄a)− (Ra, j · R̄ j)}2

√
∑ j∈Ib

{Rb, j · R̄b)− (Rb, j · R̄ j)}2
.

(3.3.6)

The final IPWR similarity measure is a weighted combination between PCC and RBP
which can be calculated as follows:

IPWR(a,b)with variance = α ·RPB(a,b)using var+β ·Sim_IPCC(a,b), (3.3.7)

IPWR(a,b)with SD = α ·RPB(a,b)using SD+β ·Sim_IPCC(a,b). (3.3.8)

The final recommendation are generated as follows:

R̂a,i = R̄a +
∑b∈NN IPWR(a,b) · (Rb,i− R̄b)

∑b∈NN |IPWR(a,b)|
, (3.3.9)

where b denotes a user belonging to the nearest neighbor (NN) network of the user a.



3.3 Rating Conversion Techniques 39

3.3.5 Rating Conversion on Multi-criteria RSs

Apart from rating conversion on a single criterion neighborhood-based CF mentioned above,
some have proposed rating conversion methods on multi-criteria RSs. In some systems, the
users can express their preferences in multiple aspects of items in addition to an overall
rating. The multi-criteria system grants a better opportunity to analyze the user preferences
in more detail, and leads to more personalized and effective recommendations.

Sitkrongwong, P. et al. proposed a multi-criteria rating conversion without relation
loss for RSs [68]. They proposed a novel method that simultaneously converts all criteria
ratings between users to maintain their implicit relations. The multi-criteria ratings are
first normalized by variances of users and principle component analysis (PCA) is applied
to extract user preference patterns. Such patterns are then used for multi–criteria rating
conversion.

After the multi-criteria rating patterns of all users are extracted, they can be used to
convert the rater multi-criteria ratings on each item into the active user’s aspect.

Suppose the task is to convert rater ua multi-criteria ratings on target item i into an active
user ub’s aspect. First, the rating vector ra j of item v j is selected from RV

ua
. This vector is

then subtracted by its mean value to create the modified rating vector rM
a j. To convert to the

aspect of ub, rM
a j is projected into the same plane of ub by multiplying with the feature matrix

Qub of ub by the following:

σb j(a) = Qub(r
M
a j)

T . (3.3.10)

Before it can be used further, σb j(a) needs to be turned back into the original rating scale
by the following:

θb j(a) = σb j(a)+µua, (3.3.11)

where µua = [µua,1 · · ·µua,K] is a mean rating vector which each element contains the mean
value of ratings in each criterion of user ua. After that, the converted rating is used in the
rating prediction step.





Chapter 4

Utilizing Neighbors in a Hybrid CF
Model

4.1 Introduction

In recent years, as the amount of information created by people’s daily activities has increased,
users have found it challenging to select products that best suit them from among the many
options available. As a result, filtering tools that can find and recommend appropriate and
relevant items to users are important. Recommender Systems (RSs) have evolved through
time and have become a key approach for dealing with information overload issues.

In RSs, there are many approaches. The most prevalent and popular approach for
recommending items to the target user (the user to whom recommendations are targeted) is
the collaborative filtering (CF) approach, which is based on the similarity of users or items to
previous interactions. It utilizes historical interaction (e.g., clicks, rates, purchases, etc.) to
infer the user’s preference and recommend items based on the matching score between the
target user and the target item.

Typically, CF can be further divided into two approaches: neighborhood-based approach
and model-based approach. Although the neighborhood-based approach is simple and
works reasonably well in practice, it requires a high cost in terms of computing time and
spatial complexity. Also, it can suffer from sparsity problems. Therefore, nowadays, model-
based approach has gained more popularity than neighborhood-based approach because it
is more capable of handling the problem of sparsity and scalability. However, model-based
approach requires a great resource to develop the model and may lose information when using
dimensionality reduction. Moreover, model-based approach still suffers from interpretability.



42 Utilizing Neighbors in a Hybrid CF Model

From the previous paragraph, it indicates that both neighborhood-based approach and
model-based approach provide both advantages and disadvantages. Whether neighborhood-
based approach or model-based approach, they have their own characteristics and can
provide accurate results depending on the given task. It would be great if we can combine
their advantages in building a hybrid CF model for recommendation which leverage the
advantages of both neighborhood-based and model-based CF approaches while weakening
their disadvantages. The challenges of this idea is how to build and propose the hybrid
CF model which maintains all of the advantages of both CF approaches and reduces their
disadvantages. Therefore, this chapter will focus on how to combine both types of CF into
the one single hybrid CF model.

Recently, most of the research in the RSs field often focuses on the model-based CF
approach which is now on-trend rather than the old-fashion neighborhood-based CF approach.
I also agree that the model-based CF approach is a good choice for building recommender
systems because of its advantages. However, many researchers still doubt in model-based
CF’s prediction because of the lack of explainability. It is difficult to explain how is that
recommendation come from. It would be great if the results can be explained easily like the
result from the neighborhood-based CF approach.

I strongly believe in the idea of traditional neighborhood-based CF approach because of its
simplicity and explainability, so this thesis proposes a hybrid CF which incorporates the idea
of neighborhood-based CF into model-based CF model. When applying the neighborhood-
based idea into model-based CF, we should carefully consider how to include neighbors into
model while preserving characteristics of both neighborhood-based CF and model-based CF
in this proposed hybrid CF model.

Moreover, to make the model more explainable, explicit feedback should be used in this
hybrid CF model because explicit feedback can express more characteristics and can help
the model to learn better user and item representations, which will further result in better
recommendations. Thus, the main idea of this chapter is to incorporate the neighborhood-
based CF idea into a model-based CF which focuses on how to incorporate explicit feedback
into an end-to-end hybrid CF model.

In this chapter, there are two approaches to utilizing neighbors into the hybrid CF models,
which are 1) simple approach to utilize neighbors in TransRS [73], and 2) utilizing neighbors
in AHCF [74] which is the end-to-end hybrid CF model.



4.2 Simple Approach to Utilize Neighbors in Hybrid CF 43

4.2 Simple Approach to Utilize Neighbors in Hybrid CF

In this thesis, hybrid CF refers to a combination between neighborhood-based CF and model-
based CF, which can be roughly categorized into two types: building blocks model and
end-to-end model. The building block model can be separated into several blocks and each
block can do its task within itself, while end-to-end model refers to training a possibly
complex learning system represented by a single model (specifically a deep neural network)
that represents the complete target system, bypassing the intermediate layers usually present
in traditional pipeline designs.

This subsection focuses on utilizing neighbors in a building blocks hybrid CF model.
This proposed method of utilizing neighbors in the hybrid CF model is proposed in TransRS
[73], which is a simple approach to integrate the concept of neighborhood into hybrid CF
model.

Note that TransRS [73] is not an end-to-end hybrid CF model, but consists of three main
steps for the recommendations. In this work, I applied model-based CF into neighborhood-
based CF, so the main part is on the neighborhood-based CF side. This proposed model
consists of three main steps which are: 1) Embedding users and items into the same feature
space, 2) Rating Conversion and 3) Rating Prediction. As a building blocks model, the output
of the previous step will be the input of the next step.

The next subsection will describe the details of how to utilize neighbors in the end-to-end
hybrid CF model.

4.3 Utilizing Neighbors in End-to-end Hybrid CF Model

In the previous subsection, I have described a simple approach to utilized neighbors in
TransRS [73], which is the building blocks hybrid CF model. This subsection demonstrates
how to utilize neighbors in the proposed end-to-end hybrid CF model, AHCF [74], which the
utilization of neighbor is more complex than the previous one.

Since the main idea of this subsection is how to apply neighborhood-based CF con-
cept into model-based CF model, the model structure, including user and item represen-
tations should be carefully considered. This hybrid CF model cannot rely on traditional
neighborhood-based or model-based CF model, so in this chapter, I propose a novel user
and item representations instead of using traditional embeddings.

Most traditional RSs always represent users and items in the form of an embedding
vector. They usually represent each user or item by a single embedding vector. However,
those embedding vectors cannot store specific explicit feedback (i.e., rating score) within



44 Utilizing Neighbors in a Hybrid CF Model

Figure 4.1: An illustration of (A) traditional user embedding and (B) The proposed user
embedding (UR-matrix)

themselves. Even though some work use explicit feedback in their model-based CF model,
they only use ratings as a label for optimization [3, 21, 14]. Those ratings are not directly
incorporated as input and ratings do not play an important role in their model. Also, traditional
user and item embeddings do not indicate specific characteristics of user’s ratings or item’s
ratings.

Since my main intention is to apply the neighborhood-based CF concept to model-based
models, explicit feedback, which is the common form of input of neighborhood-based CF
models is also an important point to consider. Therefore, I would like to incorporate explicit
feedback (i.e., ratings) directly into this proposed model. In order to do that, traditional
user and item representations (i.e., single embedding vector) are unsuitable for my purpose
because a single vector could not store the individual rating patterns and characteristics of
each user and item. Therefore, instead of using a single embedding vector, I propose to
use a dense matrix to represent each user and item, called the user representation matrix
(UR-matrix) and the item representation matrix (IR-matrix), respectively. Note that these
user and item representations are then available for rating conversion in Chapter 5.4.4.

UR-matrix and IR-matrix are proposed to store each user’s and item’s rating information,
in their matrix representations respectively. Unlike traditional single embeddings which can
represent each user and item without specific rating information (or it can be called implicit
feedback), these proposed UR-matrix and IR-matrix can store and represent users and items
with more characteristics by specific rating scores. Refer to Figure 4.1, this illustration shows
differences between traditional user embedding and the proposed UR-matrix. In traditional
RSs models, one user’s embedding is usually represented by a single embedding vector and



4.4 Discussion 45

it will be mapped to a specific point in vector space, showing the overall characteristics of
the user and item. On the other hand, my proposed user’s UR-matrix (resp. item’s IR-matrix)
is represented by a dense matrix with s rows, so it will be mapped to s points in the vector
space which can capture and specify more characteristics of the user than the traditional way.
According to Figure 4.1, suppose that this system accepts rating scores of range 1–5, so the
UR-matrix of user and IR-matrix of item will be mapped to 5 different points in the vector
space. Each point represents how the user rate item with specific s score and how item is
rated by users with specific s score. These matrices will then be used for rating conversion
purposes, which are described in Chapter 5.4.4.

4.3.1 User Representation Matrix (UR-matrix)

For a user u, the UR-matrix is denoted as Uu ∈ Rz×d , where d is the dimensionality of user
and item embeddings and z is number of rating scores. The s-th row of Uu corresponds to a
rating score s and represents an embedding vector of u for s (e.g., the first row of the matrix
represents score 1).

4.3.2 Item Representation Matrix (IR-matrix)

Similar to UR-matrix, for an item v, the IR-matrix is denoted by Vv ∈ Rz×d , where d is the
dimensionality of user and item embeddings and z is number of rating scores. The s-th row
of Vv corresponds to a rating score s and represents an embedding vector of v for s (e.g., the
first row of the matrix represents score 1).

Suppose that the RS accepts rating scores of {1,2,3,4,5}, then the UR-matrix and IR-
matrix comprise five rows and each row represents each rating score in {1,2,3,4,5}. In this
way, the UR-matrix represents how each user rates items and the IR-matrix represents how
items have been rated by users.

Finally, U ∈ Rm×z×d and V ∈ Rn×z×d are embedding tensors that respectively store user
and item embeddings, where m and n are the total numbers of users and items, respectively.

4.4 Discussion

In the previous two subsections, the details of how to utilize neighbors in TransRS [73] and
AHCF [74] are described in detail.

Although both TransRS [73] and AHCF [74] are the hybrid CF model which combine
neighborhood-based CF approach and model-based CF approach together, the structures
of their models are completely different. In TransRS [73], it can be considered as ‘how



46 Utilizing Neighbors in a Hybrid CF Model

to apply model-based idea into neighborhood-based CF model’, while in AHCF [74], it
can be considered as ‘how to apply neighborhood-based idea into model-based CF model’.
Normally, the neighborhood-based CF model is usually easy to implement. It requires a set
of similar users based on cosine similarity or Pearson’s correlation as an input and then takes
the weighted average of their ratings to generate the prediction. As a set of similar users
is a key idea of neighborhood-based CF model and it does not learn any parameter using
optimization algorithm, so if we want to apply model-based idea into neighborhood-based
CF model, the model-based idea can be applied in the step of ‘finding a set of similar users’
or ‘generate the prediction’. In AHCF [73], the model-based idea is applied to both steps.

On the other hand, the model-based CF model uses machine learning to find user ratings
of unrated items (e.g., PCA, SVD, NN, MF, etc.) and generate the prediction based on
obtained ratings. The key difference of model-based approach from the neighborhood-based
approach is that it does not require a set of similar users to generate the prediction. Therefore,
if we want to apply the neighborhood-based idea into the model-based CF model, it can
not be directly applied to model-based CF model without modification. The point is that
the neighborhood-based idea should be implemented in a way of the model-based approach.
Thereby, the procedures of how to utilize neighbors in TransRS [73] and AHCF [74] are
totally different. It depends on the task and purpose.

Thereby, the procedures of how to utilize neighbors in TransRS [73] and AHCF [74]
are totally different. It depends on the task and purpose. In my opinion, as the end-to-end
learning has become popular for deep-learning applications in this era, the method of [74]
described in Chapter 4.3.2 is more practical than [73] method described in Chapter 4.2.



Chapter 5

Neighbors Selection and Rating
Conversion in Hybrid CF model

5.1 Introduction

According to the motivation in Chapter 1, this thesis intends to build a hybrid CF model
which is a combination between neighborhood-based CF and model-based CF some problems
to solve in both neighborhood-based CF and model-based CF. This chapter describes and
discusses how to solve problems in neighborhood-based CF.

In the neighborhood-based CF model, typically, to predict the rating score of the target
user toward the target item, CF RS aims to identify the set of the target user’s friends and use
their actual rating scores to determine how much the target user would like the target item.
There are several approaches to finding a set of friends. If there is no explicit friendship
relation in the dataset, most RSs often aim to find the set of raters, who have rated the target
item in the past. In order to avoid any confusion in this work, I define the set of friends as a
set of users who have rated the target item in the past. Then, the predicted rating score for
the target user toward the target item is then calculated using the actual scores of friends.
However, utilizing the actual rating scores from friends without conversion often leads to
low-accuracy predictions because of the improper rating-range problem [15].

The improper rating-range problem occurs when the range of rating patterns of each
user is different. Because each user has a unique rating pattern, a rating score needs to be
interpreted. Even if two users give the same item the same score, it does not always indicate
they like it to the same extent if their rating patterns are different. As a result, utilizing the
actual ratings from users who rate items within different ranges to predict the rating score of
the target user is ineffective and may result in low recommendation accuracy. Because of this



48 Neighbors Selection and Rating Conversion in Hybrid CF model

issue, some researchers have adjusted the ratings from several ranges to match the common
range in advance [4, 15, 43, 44, 50]. These methods can be called rating conversion.

Additionally, when applying the neighborhood-based idea into model-based CF, neigh-
bors (i.e., friends and historical items) are utilized in the model, so we should carefully
consider the effects of neighbors to the model. In the real world, people tend to believe
their friends’ opinions when deciding to choose something. Naturally, people do not believe
all friends’ opinions with the same level, closed friends or best friends always have more
influences than regular friends. This point is one point to consider as well.

This chapter consists of the details of three main proposed methods to handle the improper
rating-range problem which are 1) Integrating the importance levels of friends into trust-
based ant-colony recommender systems (TrustAnt) in [72], 2) Translation-based Embedding
Model for Rating Conversion in RSs (TransRS) in [73], and 3) Attentive Hybrid Collaborative
Filtering for rating conversion in RSs (AHCF) in [74].

5.2 Trust-based Ant Recommender Systems

TrustAnt [72] is a trust-based RSs which is the extended version of Applying Ant-Colony
Concepts to Trust-Based RSs [71]. This model is categorized in the neighborhood-based CF
RS and it consists of neighbors selection method and rating conversion methods. The details
of this model are as follows.

5.2.1 Trust Network and Input Representation

In this subsection, the details of trust network and input representation, which are used in the
first step of this system, are described as follows.

Create Trust Network

The trust network is modeled as a directed graph G = (V,E), where the set V of nodes
represents users and the set E of directed edges represent trust statements issued among the
users. The input data comprises two matrices.

• [N×M] item-ratings matrix, a matrix that comprises ratings that users have given to
various items in the past, with N rows for the users in the system and M columns for
the items in the system.



5.2 Trust-based Ant Recommender Systems 49

• [N×N] user-trust matrix, a matrix that holds the trust statements issued between pairs
of users in the system, with the rows being the source users issuing the trust statements
and the columns representing the target users about whom trust statements are issued.

Compute Trust Value

When the trust network is created, a trust value is assigned to each edge. In much of the
research, the trust value is computed in terms of similarity and confidence, usually involving
co–rated items. Problems will occur if the data is sparse, and using the similarity value as a
trust value will lead to the problem of ‘trust symmetry’.

If the similarity between user A and B is equal to 0.5, current systems will assign a trust
value of 0.5 from both user A to user B and user B to user A. In real life, even if user A trusts
user B, user B might not trust user A. To solve these problems, I apply the solutions proposed
in [15], to compute the trust value. To reduce the data-sparsity problem, the trust value is
calculated based on features of users and items using the single-value-decomposition (SVD)
method. This decomposes a user-rating matrix R into three matrices:

R =USV t (5.2.1)

where U is the user matrix, S is the reduced matrix, and V t is the transpose matrix of the item
matrix. Each row of matrix U represents a user feature vector. It contains the latent features
presenting the characteristics of each user. Cosine similarity is then applied to these feature
vectors to find the similarity of every pair of users:

simA,B =
∑

n
i=1 Ai×Bi√

∑
n
i=1(Ai)2×

√
∑

n
i=1(Bi)2

(5.2.2)

where Ai is the ith latent feature of user A (the target user), Bi is the ith latent feature of user
B, and n is the number of latent features.

To overcome the trust-symmetry problem, [15] proposed to exploit both the similarity
between a pair of users and the reliability of user B. The “trustworthiness” of user B is
calculated as follows:

trustworthinessB =
ln(nin,B + e)

ln(max({nin,C|C ∈ {userintrustnetwork}})+ e
, (5.2.3)

where e is a natural number, nin,B is the number of in-degree edges for user B, and max({nin,C|C∈
{userintrustnetwork}}) is the maximum number of in-degree edges among users in the trust
network.



50 Neighbors Selection and Rating Conversion in Hybrid CF model

In this proposed model, I propose a new equation to calculate the trust value from A
towards B by merging similarity and trustworthiness from the previous calculation using the
harmonic mean:

trustA→B =
2× trustworthinessB× simA,B

trustworthinessB + simA,B
. (5.2.4)

5.2.2 Ant algorithm

After obtaining the trust network and input representation, the next step is finding the set of
raters for a target user. In this step, I apply the ACO approach. According to the properties
of trust, a trust value is generated by a human, so it can change over time.

To deal with the dynamic nature of the trust value, I apply the ACO approach to this
step using ‘pheromone-update’ strategy that can update trust values. I will call this the “ant
algorithm.”

Ant’s Edge Selection

The purpose of this step in the process is to find the set of raters who have high pheromone
levels. The raters being considered are users who are in the target user’s network (web of
trust) and have a rating r for the target item i. This process is inspired by ALT-BAR [10].
For example, assume that user u1 is a rater for the target user A and always rates items with
scores in the range 1–3, whereas user A always scores in the range 3–5. That is, target user
A’s rating pattern and user u1’s rating pattern involve different ranges. Before calculating
predictions, the model should convert the rater’s rating to match the target user’s perspective.

To understand this more precisely, I will describe the first step of this process. The system
first generates k ants, locating them at the node of the target user, and then calculates the
probability of crossing edges connecting to users in the target user’s web of trust. Then, the
system chooses to cross edges connecting to the user y having the highest probability and the
ant will move to the selected node. Probabilities are calculated by this following equation:

pk
xy =

(τxy)
α(ηxy)

β

∑z∈Nk
x
(τxz)α(ηxz)β

, (5.2.5)

where τxy is the pheromone level on the edge xy, ηxy is the trust value that user x express
towards user y, and α and β are parameters that control the influence of τxy and ηxy, respec-
tively.

As for ALT-BAR [10], this proposed method extends the path (solution) for each of the
artificial ants at each iteration. The process stops when all ant paths have either reached a
length d or have reached a user outside the web of trust (i.e., no more edges can be traversed).



5.2 Trust-based Ant Recommender Systems 51

This proposed method is similar to ALT-BAR, in that each artificial ant stops constructing
its path (solution) within an iteration either when each ant path is of length d or when the ant
reaches a user outside the web of trust. When all k ants stop constructing their paths, it means
that the system has completed one iteration. The process then reiterates by dispatching the k
ants again from the target user node, stopping when the system reaches a certain number of
iterations t. The last iteration of the process will involve k solutions containing raters. Note
that not every solution will contain raters, because raters are the subset of users who have
ratings r for the target item i.

Pheromone-Update Mechanism

In this step, I apply ACS in the same way as does ALT-BAR [10]. The pheromone-update
model of ACS is separated into two parts, namely the local pheromone update and the global
pheromone update.

Local pheromone update: the pheromone-update mechanism that occurs when each ant
k traverses an edge xy. As for ALT-BAR, the pheromone level is adjusted by:

τxy = (1−ρ)(τxy)+(ρ)(τ0
xy), (5.2.6)

where ρ is the pheromone evaporation coefficient, usually set to 0.1, and τ0
xy is the initial

pheromone level on xy, computed by:

τ
0
xy =

Txy

n(ux)∑z∈WOTx Txz
, (5.2.7)

where Txy is the trust value that user x expresses towards user y, n(ux) is the number of users
in the web of trust for user x, and WOTx is the web of trust for user x.

Global pheromone update: in an ACS, this pheromone–update mechanism takes place
after all ants k finish constructing their paths. That is, global pheromone update occurs
at the end of each iteration. The global pheromone–update strategy differs from the local
pheromone–update strategy in that not all edges will be updated, but only the edges that
belong to the best paths constructed in that iteration.

In ACS, the global pheromone update is usually given by:

τxy = (1−ρ)(τxy)+∆Q, (5.2.8)

where ∆Q is a small quantity that will increase the pheromone level on each edge. In general,
∆Q’s goal is to increase pheromone levels on edges. The pheromone level on the edge will
be high when the paths that are to be updated involve a high value for ∆Q.



52 Neighbors Selection and Rating Conversion in Hybrid CF model

In ALT-BAR, the co-rated item is used as one of the factors in updating the global
pheromone value. However, this can lead to the data-sparsity problem. This proposed model
aims to solve this problem by proposing a new global pheromone-update equation.

The proposed equation is inspired by Bedi et al. [7] and Kaleroun et al. [47]. They use
three main factors in this process to calculate the ∆Q value, namely the pheromone level
on the edge, the distances between the active user and other users, and the number of items
rated by each user that are unrated by the active user. These three factors are important but
they are not sufficient to calculate and generate the most accurate solution. To improve the
accuracy, I propose using an additional factor, namely the popularity of each user. If a user is
very popular (many users in the user’s trust network), the directed edge to that user should
have a high pheromone level because that user is a reliable user. I therefore use the original
three factors from [7] and the popularity of the user to calculate ∆Q as:

∆Q =
2 · (τxy · 1

dAy
· Ttracedy

TunratedA
) · (∑y∈WOTz Tzy

n(z) )

(τxy · 1
dAy
· Ttracedy

TunratedA
)+(

∑y∈WOTz Tzy
n(z) )

, (5.2.9)

where τxy is the pheromone level on the edge between user x and user y, dAy is the distance
between the target user A and user y, Ttracedy is the number of items traced by the user at node
y that are unrated by node A, and TunratedA is the total number of items unrated by node A.

As noted above, current global pheromone–update methods do not involve every con-
structed path but only the best path(s) in each iteration, with the update formula varying from
method to method. These methods select paths with high pheromone levels or that contain
reliable users. However, reliable users may not have ratings for the target item. That means
that the best paths may not contain raters. If the system cannot obtain a rater in this step, the
system cannot generate recommendations.

I propose using an optimization condition in the global pheromone–update process that
limits updating to only paths that contain raters. This proposed condition will increase the
likelihood that paths that contain raters will have higher pheromone levels than paths without
raters. It will also lead to greater coverage because it ensures that the system will obtain
more raters from this step than the optimization conditions in current ant-based recommender
methods.



5.2 Trust-based Ant Recommender Systems 53

Figure 5.1: The constant assigned weight of each raters.

5.2.3 Rating Conversion and Weight Adjustment

Rating Conversion

In existing systems [7, 10, 47], the predicted rating is usually calculated by averaging the
actual ratings given by raters. using a rater’s actual rating causes a problem when the rater’s
rating pattern and the target user’s rating pattern involve different ranges.

To convert a rating to the target user’s perspective by using a relation between each user
and the target user, I apply a method based on that of Chalermpornpong et al. [15], who
proposed the rating transpose function, which is called ‘W’s transpose function’ as shown in
Eq. 3.3.3. This is adjusted by including a confidence term and a distribution term.

Weight Adjustment

In existing systems, the predicted rating for the target user is usually calculated without
considering the impact of each rater on the target user. In the real world, a user who is
directly trusted by the target user will have more influence on the target user than a user who
is further away from the target user. Therefore, raters should have different levels of impact
on the target user.

In the first version of this model presented in [71], I assigned a weight to each rater before
generating the recommendation. These weights decrease as raters are further away from the
target user. The final rating score W ′u→A(rui) from the rater is calculated by multiplying the
weight γ by the transposed rating Wu→A(rui) as follows.

W ′u→A(rui) = γ×Wu→A(rui) (5.2.10)

In the previous version [71], it used the constant weights. For example, if the depth d is
10, the distance coefficient was calculated as follows. If the distance from the active user is
one, γ is one. If the distance from the active user is two, γ is 0.9 and so on, until the distance
from the active user is 10, when γ is 0.1, as shown in Figure 5.1. Likewise, with the depth d
of search set as is 20 in the experiments, γ will be {1, 0.95, 0.9, . . . , 0.1, 0.05}.



54 Neighbors Selection and Rating Conversion in Hybrid CF model

Apart from setting the weight γ as a constant value, in [72], I propose another way to
calculate the weight. Constant weights are not suitable for the system if the depth d of the
search is changed. Therefore, I propose a new weight adjustment inspired by the concept
“all friends are not equal”. The concept of “weights in social graphs to improve search” was
proposed by Hangal et al. [36]. They proposed that searches in social networks can be made
more effective by incorporating weighted and directed influence edges in the social graph.
Because this model derives trust-based RSs, the directed influence edges in this model should
be calculated by the trust value.

Instead of using a constant weight for each rater, I propose to use trust value as a factor
in calculating the weight, called a trust weight. The weight that will be assigned to each rater
will be calculated from a trust value and a discount factor based on the distance between
that rater and the active user. The equation to calculate weight for each rater is inspired by
[36]. This model calculates the weight of rater u as follows. For a path P that contains edges
e1,e2, ...,en, where n is the level of rater u:

γu =
n

∏
i=1

(trustei ·D) (5.2.11)

where ei ∈ P and D is a discount factor, which I set to 0.9.

From this equation, because the decay factor decreases with each hop, the model will
obtain a new weight for each rater. Therefore, a rater who is further away from the active user
will receive a lower weight than one who is closer to the active user. Note that the transposed
rating of each rater will be adjusted by the weight obtained from Eq. 5.2.11.

5.3 Translation-based Embedding Model for Rating Con-
version in Recommender Systems

This subsection demonstrates how to select neighbors and apply a rating conversion method
that proposed in TransRS [73].

5.3.1 Neighbor Selections

As most of the RSs use the information or opinion from the target user’s friends or raters to
generate the recommendations, in TransRS [73], I used n best rater(s) of the target user in
the prediction step. Hence, the model first finds the n best raters of a target user.

Inspired by CPE assumption [77],



5.3 Translation-based Embedding Model for Rating Conversion in Recommender Systems55

if u1 and u2 have a similar preference for the same item i, then the vectors of u1

and u2 should be close.

For an item i ∈ I, let Ui denote the set of users who rated i. Then, for a user u and an item
i ∈ I, his/her best rater regarding i is defined as

b f (u, i)≡ argminu′∈Ui
∥⃗v∗u− v⃗∗u′∥2. (5.3.1)

Based on the assumption above, this equation indicates that the best rater is the user who
has the minimum distance from the target user in the vector space.

After obtaining the set of best raters, the rating conversion will be performed on users in
this set. The details of rating conversion is described in the next subsection.

5.3.2 PCA-based Rating Score Conversion

This subsection proposes how to convert rating scores between a pair of users from the
obtained best raters from the previous subsection, which is also proposed in TransRS [73].
There are three main steps in order to achieve this: 1) obtaining user-rating matrix, 2) rating
pattern extraction, and 3) rating score conversion.

User Rating Matrix

For a triple of user u, item i, and rating score s: (u, i,s) in the training data, let us consider
the following vector:

r⃗u,i ≡ v⃗∗i − v⃗∗u . (5.3.2)

This vector is a rating score vector derived from the user and the item embedding vectors.
It is expected to be close to r⃗∗s and referred to an approximate rating vector.

This model obtains a user’s profile; in other words, a user’s preference. The user’s profile
represents how user rates items. User’s profile can be constructed from the approximate
rating vectors. For a user u, let us consider the following matrix consisted of u’s approximate
rating vectors:

R⃗u ≡ (⃗ru,i)
T
i∈Iu

(5.3.3)

where Iu denotes the set of items rated by u and T denotes the transpose of a matrix. Each
row of R⃗u is a row vector of an approximate rating vector of the user u and an item i in Iu, i.e.
r⃗T

u,i. I refer to R⃗u as a user rating matrix.



56 Neighbors Selection and Rating Conversion in Hybrid CF model

5.3.3 Rating Pattern Extraction

After that, I apply the Principal Component Analysis (PCA) [67] to the user rating matrix
to extract each user’s rating pattern. There are two benefits of PCA in RSs: 1) reducing the
dimensionality and 2) finding patterns in the high-dimensional dataset in order to extract the
most crucial characteristics from the data. In this method, I take the latter advantage of PCA
to extract the rating patterns of each user from the user rating matrix.

Following PCA principle [67], I first create the normalized user rating matrix. For a user
u, the mean vector of u’s approximate rating vectors is given by

µ⃗u =
1
|Iu| ∑i∈Iu

r⃗u,i . (5.3.4)

Using the mean vector, the normalized user rating matrix is given by

¯⃗Ru ≡ (⃗ru,i− µ⃗u)
T
i∈Iu

. (5.3.5)

Then, I create a feature matrix Q⃗u which represents u’s rating pattern and calculate the
eigenvectors of the covariance matrix of ¯⃗Ru. After computing all eigenvectors, sort the
eigenvectors in descending order of their eigenvalues. The first row of Q⃗u has the highest
eigenvalue.

5.3.4 Score Conversion

For users a and b, let us convert user b’s rating on target item i into user a’s perspective. First,
the approximate rating vector r⃗b,i of user b on item i is normalized by b’s mean vector. Then
it is converted to the user a’s perspective. The model makes projection onto user a’s space by
multiplying with user a’s feature matrix Q⃗a. Finally, the derived rating score is moved to the
original scale by a’s mean vector µ⃗a. The converted rating score is given by

r⃗b,i,a = Q⃗a(⃗rb,i− µ⃗b)
T + µ⃗a. (5.3.6)

To this point, the converted rating score of target user’s n best rates is obtained and will
be used for the prediction step which will be presented in Chapter 7.3.



5.4 Attentive Hybrid Collaborative Filtering 57

5.4 Attentive Hybrid Collaborative Filtering

In the previous subsection, I have described the details of neighbors selection and rating
conversion using a translation-based embedding model proposed in TransRS [73]. In this sub-
section, the details of neighbor selection and rating conversion based on attention mechanism
proposed in AHCF [74] will be described as follows.

5.4.1 Friends and Historical Items Selection

Before going into the details of rating conversion in the friend module, I would like to firstly
introduce the friend and historical item selection method. Since the numbers of friends and
historical items of each target user are different, and treating all friends and all historical items
at the same level of influence on the target user–item pair is not appropriate because it might
lead to low accuracy prediction. Thus, the model needs to select the high-quality friends and
high-quality historical items to participate more role in the model than the low-quality users
and items. In neighborhood-based CF RSs, similarity levels are widely used for the friend
and item selection methods. According to real-world assumption that close friends should
have more influence on the target user than regular friends, so the user (resp. item) who is
similar or close to the target user (resp. target item) should have more power than the user
(resp. the item) who is not similar to the target user (resp. the target item). In order to solve
this issue, this model adopts an attention mechanism [75] that has been widely used in many
fields and is successful for assigning nonuniform weights [16–18]. This can help model to
adaptively learn the influence of each friend and historical item on the target user–item pair.

Inspired by SAMN [17], which adopts the attention mechanism into their model to
adaptively learn the influence strength of each friend. The goal of their friend-level attention
is to assign non-uniform weights to users’ friends, and the weights are varied when the user
interacts with different items. Therefore, I adopt the same kind of attention layer as in SAMN
[17] to assign non-uniform weights (i.e., similarity score) to users’ friends and historical
items.

This friend and historical item selection modules are shown in Figure 5.2. The full
architecture is shown in Figure 7.3 in Chapter 7.4.4.

Friend selection

According to its protocol, a two-layer network is applied to compute the attention score. For
the friend side, the attention score α f can be computed by using the UR-matrix of the target
user u and the UR-matrix of each friend f . Consider the set Fv of friends with respect to the



58 Neighbors Selection and Rating Conversion in Hybrid CF model

Figure 5.2: Friend selection and historical item selection module

target item v. Let f ∈ Fv be a friend in a user–item pair ⟨u,v⟩. The scoring function of the
friend selection part is then defined as

β f = hT
u ReLU(Wu1Uu +Wu2U f ), (5.4.1)

where Wu1,Wu2 ∈ Rd×a f are the first layer model parameters, hu ∈ Ra f , is the second layer
model parameter, a f denotes the dimensionality of the Friend Selection Attention Layer, and
ReLU is a nonlinear activation function.

The weight for each friend is then obtained by normalizing the attention weights using
the softmax function, as is the common practice for neural attention networks. The attention
score can then be calculated as

α f =
exp(β f )

∑ j∈Fv exp(β j)
. (5.4.2)

Suppose this friend has rated the target item v with a score s and us
f ∈ U f is the s-th

row of friend f ’s UR-matrix. After obtaining the friend attention weight, then the model
will multiply the obtained weight α f with us

f before feeding it into the friend module. The
weighted friend us

f can be calculated as

us
f = α f us

f . (5.4.3)

For more understanding, I will give some concrete examples in accord with the illustration
in Figure 7.4. Suppose that there are 2 users who have rated the target item which are user A
and user B. They rated the target item with 5 and 3 score respectively. These two users and
the target user’s UR-matrices will be fed into the friend selection module. After calculating
the weight of each user by Eq. 5.4.2, suppose that user A’s weight is 0.7 while user B’s
weight is 0.3. It means user A is more similar to the target user, so it leads to more influence
on the target user than user B, so user A will have more weight in calculation. After the



5.4 Attentive Hybrid Collaborative Filtering 59

model gets the weight of each user, I multiply the weight with their vector of representation
matrix. In the case of A, it will be the 5th row of her matrix, while it will be the 3rd row of
user B’s matrix. Then these weighted friends’ vectors will be fed into the friend module.

Historical Item Selection

Likewise, for the historical item side, the attention score αh can be computed by using the
IR-matrix of the target item v and the IR-matrix of each historical item h. Consider the set of
historical items with respect to the target user u (the items that have been rated by the target
user u in the past), denoted as Hu. Let h ∈ Hu be a historical item in a user–item pair ⟨u,v⟩.
The scoring function of the item selection part is then defined as

βh = hT
i ReLU(Wi1Vv +Wi2Vh), (5.4.4)

where Wi1,Wi2 ∈ Rd×a f are the first layer model parameters, and hi ∈ Ra f is the second
layer model parameters.

The weight for each item is then obtained by normalizing the attention weights using the
Softmax function. The attention score can then be calculated as

αh =
exp(βh)

∑ j∈Hu exp(β j)
, (5.4.5)

where Hu is the set of items that target user u has been rated in the past.

Suppose this item has been rated by the target user u with a score s and vs
h ∈ Vh is the

s-th row of item h’s IR-matrix. After obtaining the item attention weight, then the model
will multiply the obtained weight αh with vs

h before feeding it into the item module. The
weighted historical item vs

h can be calculated as

vs
h = αhvs

h. (5.4.6)

According to the illustration in Figure 7.4, suppose that the target user has rated 2 movies
in the past, which are movie X and movie Y. She rated these movies with 2 and 4 score
respectively. These 2 historical items and the target item’s IR-matrices will be fed into the
historical item selection module. After calculating the weight of each item by Eq. 5.4.5,
suppose that movie X’s weight is 0.2 while movie Y’s weight is 0.8. It means item Y is more
similar to the target item than item X. Based on the assumption that the target user shall
prefer an item that is similar to their historical item, in this case, the target user shall prefer
the target item because she rated item Y with 4 score and it is similar to the target item, so
she tends to give around a 4-score to the target item. After obtaining the weight of each item,



60 Neighbors Selection and Rating Conversion in Hybrid CF model

I then multiply the weight with their vector of representation matrix. In the case of item X, it
will be the 2nd row of its IR-matrix, while it will be the 4th row of item Y’s IR-matrix. Then
these weighted historical items’ vectors will be fed into the item module.

5.4.2 The Friend Module

This subsection describes the details of how to do rating conversion in end-to-end hybrid
CF. I have proposed a module named the Friend Module, which aims to convert the target
user’s friend vector to match the target user’s perspective and assign different weights for
individual users. This Friend Module is implemented in AHCF [74].

The input of this module is the friends’ embeddings that can be obtained from the previous
friend selection module (Eq. 5.4.3). The output of the Friend Module is a summation of the
weighted projected vectors of the target user’s friends. To convert friend vectors, I introduce
a user-perspective unit matrix (UPU-matrix) to the model.

Because users have their own individual perspectives on items, the way they rate items
are all different, so it can be inferred that they have their own rating patterns. In most of
traditional neighborhood-based CF, this issue is ignored, so they did not consider the different
rating patterns of each user. Since my assumption is that rating patterns of each user are
different and to use a friend’s rating to predict the rating of the target user towards the target
item, friend’s rating needs to be converted into the target’s user perspective first.

In [61], a local context unit is learned in addition to word embedding to utilize the word-
specific influences of each word on its context words. Inspired by this [61], this proposed
module aims to convert friend vectors to match the target user’s perspective. In other words,
this module needs to learn the specific influences of each friend on the target user. I then adopt
this idea from [61] and introduce a UPU-matrix in addition to the UR-matrix and IR-matrix.
I design the UPU-matrix to represent each user’s individual perspective. Specifically, each
column of the matrix captures a rich range of user preferences. It captures not only the user’s
overall preference but also preferences for specific rating scores. This matrix is learned to
utilize the score-specific influences of each friend on the target user. It then enables the
model to convert friend vectors to best match the target user’s perspective. The UPU-matrix
for user u is denoted by Ku ∈ Rd×z.

After the friend selection step, the model will obtain a set of us
f , which is a set of weighted

friends’ representation vectors on s score. If us
f ∈U f is the s-th row of friend f ’s UR-matrix

and ks
u ∈Ku is the s-th column of target user u’s UPU-matrix, the projected vector of friend

f with respect to the target user u is calculated by

p f = ks
u⊙us

f , (5.4.7)



5.4 Attentive Hybrid Collaborative Filtering 61

where ⊙ is the Hadamard product (i.e., element-wise multiplication).

This equation converts each friend’s representation vector on a score s so as to match the
target user’s perspective. In this step, the model calculates the projected vector p f for each
friend in Fv. The set of friends’ projected vectors with respect to the target user’s perspective
is then input into the Friend Module Attention Layer for weight assignment.

The Friend Module Attention Layer

Because the importance of all friends on a pair of each target user–item is not the same, they
should have different influence levels with respect to the target user, and so any weighting (to
represent relative importance) should also vary. The function of this Friend Module Attention
Layer is different from the previous attention layer. In this step, I would like to vary the
weight for users interacting with different items. The same friend might have a different
influence on the target user when the target item is different. According to the attention
mechanism’s protocol, a two-layer network is applied to compute the attention score α f ,
using the target user u, target item v, and projected friend vector p f as inputs. The scoring
function is then defined as

βp f = hT ReLU(W1u+W2p f +W3v), (5.4.8)

where W1,W2,W3 ∈ Rd×a are the first layer model parameters, h ∈ Ra is the second layer
model parameter, a denotes the dimensionality of the Friend Module Attention Layer.

The final weight for each friend is then obtained by normalizing the attention weights
using the softmax function. The attention score can then be calculated as

αp f =
exp(βp f )

∑ j∈Fv exp(βp j)
, (5.4.9)

where Fv is all friends of user u on the view of item v.

After obtaining the attention weight for each friend, the output of the Attention Layer
represents the summation of the projected vector of friends pF(u,v) . This summation vector
represents all friends’ vectors from the target user’s perspective, with each friend having an
individual weight representing importance to the target user. It can be calculated as

pF(u,v) = ∑
f∈Fv

αp f p f . (5.4.10)

The illustration of the friend module is shown in Figure 5.3 which is a part of full
architecture Figure 7.3 in Chapter 7.4.



62 Neighbors Selection and Rating Conversion in Hybrid CF model

Figure 5.3: The illustration of the friend module.

For better understanding, I would like to continue with a concrete example according
to the illustration in Figure 7.4. After the model obtains the weighted friend’s vector from
the friend selection module, it will be fed into the Friend module. From this example, user
A rated the target item with 5 score, so her weighted vector will be multiplied by the 5-th
column of the target user’s UPU-matrix for rating conversion (Eq. 5.4.7). The model will
do this to all friends, so user B rated target item with 3 score, so his weighted vector will be
multiplied by the 3rd column of the target user’s UPU-matrix (Eq. 5.4.7). To this point, the
model has projected the vector of each friend from the target user’s perspective. After that,
these projected vectors of each friend will go through the friend module attention for weight
assignment (Eq. 5.4.8 and 5.4.9). Suppose that the attention weight that is calculated from
Eq. 5.4.9 of user A and B are 0.8 and 0.2, respectively. Then the model will calculate the
summation vector that represents all friends’ vectors from the target user’s perspective by Eq.
5.4.10, with each friend having an individual weight representing importance to the target
user. In this case, it means that user A will have more weight and influence than user B from
the target user’s perspective.

5.4.3 The Item Module

Apart from user-based CF, in this model, I also consider item-based CF. Some users may have
few friends, so the model may lack information about those users and lead to low accuracy



5.4 Attentive Hybrid Collaborative Filtering 63

Figure 5.4: The illustration of the item module.

prediction. Therefore, I also introduce item-based CF to this model to handle that kind of
user, effectively. Moreover, the friend module only focuses on ‘how users rate items’. In
addition to the friend module, I think we should also consider ‘how items are rated by users’
too. If the model can specify more detail on both the user and item side, the accuracy of the
model might increase.

The inputs of this module are target item v and a set of weighted historical items of target
user which can be obtained from Eq. 5.4.6.

First, aggregate the target item v’s IR-matrix Vv by calculating the means of each column
of the target item’s IR-matrix, represented by vv ∈ Rd . Then, the similarities between the
target item v and weighted historical items of target user h can be computed by their dot
products as

sim(v,h) = vT
v vs

h, (5.4.11)

where vs
h is a weighted historical item that has been rated with a score s by the target user in

the past. This score computes the compatibility between the target item and the historical
items consumed by the user.

Then, the model will normalize similarity scores to be a probability distribution over
historical items by softmax function: α(v,h) = Softmax(sim(v,h)). Finally, the output of this
item module can be calculated by

tHu = RELU( ∑
h∈Hu

α(v,h)vs
h). (5.4.12)

The illustration of the item module is shown in Figure 5.4 which is a part of full architec-
ture Figure 7.3 in Chapter 7.4.

For better understanding, I continue to explain the concrete examples. After the model
obtains the weighted historical item’s vector from the historical item selection module, it



64 Neighbors Selection and Rating Conversion in Hybrid CF model

will be fed into the Item module. From this example, the target item’s IR-matrix will be
aggregated by calculating means of each column. Then, the similarities between the target
item and item X will be calculated by Eq. 5.4.11. The model will do this similarity calculation
between the target item and each historical item. Then, the model will normalize similarity
scores to be a probability distribution over historical items by softmax function. From this
example, suppose that the similarity score of the target item and item X is 0.3 while the
similarity score of the target item and item Y is 0.7. Finally, the output of this item module
can be calculated by Eq. 5.4.12 which indicates that historical item Y plays a more important
role in this calculation and the target user tends to rate the target item with a similar score
that she gave to item Y.

5.4.4 Generating Latent Relations

After the model obtains the summation of friends from the friend module (Eq. 5.4.10), the
model then combines it with the aggregated target user representation vector u ∈ Rd . This
vector is calculated as the means of each column of the UR-matrix. The combination of
the aggregated target-user representation and the summation of friends’ weighted projected
vectors can be calculated as

u∗ = λu+(1−λ )pF(u,v), (5.4.13)

where λ is a parameter which controls the weight between user-based and model-based of
the user part.

Likewise, after obtaining the summation of historical items from the item module (Eq.
5.4.12), the model then combines it with the aggregated target item representation vector
v ∈ Rd . This vector is calculated as the means of each column of the IR-matrix. The
combination of the aggregated target item representation and the summation of historical
items’ weighted vectors can be calculated as

v∗ = θv+(1−θ)tHu, (5.4.14)

where θ is a parameter which controls the weight between neighborhood-based and model-
based of the item part.

Finally, the model generates a latent relation vector r for each user–item pair by multiply-
ing combined user u∗ and combined item v∗ as

r = u∗⊙v∗. (5.4.15)



5.5 Discussion 65

Table 5.1: Comparison of the model features between TrustAnt [72], TransRS [73], AHCF
[74], and other rating conversion methods

Methods TrustAnt TransRS AHCF Other

Ability convert rating
in scalar form

convert rating
in vector form

convert rating
in vector form

convert rating
in scalar form

Input scalar rating pre-trained
embeddings

from previous
module

optimized
embedding

from previous
iteration

scalar rating

Output scalar form vector form vector form scalar form

Optimization ACO
optimization

separately end-to-end no
optimization

This latent relation vector r is dependent on user and item and is learned to best explain
the relationship between a pair of user–item. Note that the latent relation vector r here is
different from r in LRML, which generates their r from only the target user–item pair. My
proposed latent relation vector r is generated from u∗ and v∗ which are respectively derived
from the combination between the target user and friends, and the target item and target
user’s historical items.

5.5 Discussion

According to the previous subsections which describe details of neighbors selection methods
and rating conversion methods of TrustAnt [72], TransRS [73] and AHCF [74], in this
subsection, I will discuss on the similarities and differences among them.

5.5.1 Comparison between Rating Conversion Methods

All rating conversion methods in RSs share the same objective which is converting one’s
rating score into another one’s perspective, then utilize the converted score in the prediction
step. However, each of them has its own characteristics in various aspects. The brief
comparison is described in Table 5.1.

Ability to Convert Rating Score

Typically, rating conversion methods are proposed to solve the improper rating-range problem
which occurs in the the neighborhood-based CF model. The input of the neighborhood-based



66 Neighbors Selection and Rating Conversion in Hybrid CF model

CF model is usually in scalar form and it does not learn any parameter using optimization
algorithm, so it does not contain any embedding. Thus, most of the related rating conversion
methods can only convert rating score in the form of scalar. They cannot convert rating score
in vector form including the proposed rating conversion method in TrustAnt [72], which is
the neighborhood-based CF model. TrustAnt’s rating conversion method can only convert
rating score in scalar form.

In contrast, this thesis focuses on hybrid CF in which the rating score in the proposed
model is not in a form of scalar like in the traditional neighborhood-based CF model. Both
rating conversion methods of TransRS [73] and AHCF [74] convert the rating score of one
user into another user’s perspective in vector form. To the best of my knowledge, there is no
prior research studying the rating conversion in vector form.

However, even though these two proposed rating conversion methods can convert rating
score in the vector form, they perform their tasks differently. Given a pair of target user A
and his/her friend B, the rating conversion method in TranRS [73] can convert rating score
vector from friend B into the target user A’s perspective if we know a approximate rating
vector of user B towards the target item. These approximate rating vectors of users towards
items have to be learned from the previous TransE module, which is independent from the
rating conversion step.

On the other hand, in case of AHCF [74] which is an end-to-end NN CF model, the rating
conversion is performed in a different way from in TransRS [73]. In this model, the rating
conversion step is implemented and embedded within the end-to-end model, meaning that it
does not require pre-trained embeddings like in TransRS [73]. This rating conversion can be
done within the model itself in one single optimization step.

Input of Rating Conversion Methods

In the aspect of input, the existing rating conversion methods always convert rating score in
scalar form, so their input will be a scalar rating score. As well as in TrustAnt [72], whose
input is in scalar form.

In contrast, since my proposed rating conversion methods convert rating score in a
vector form, so the input of my proposed method are embedding vectors, not a scalar. As
compared to the scalar input, the vector input contains more meaningful information which
is consequently more effective in the optimization and rating prediction procedures.

Even though input of both of my proposed rating conversion methods is in vector form,
input used in TransRS [73] and AHCF [74] are different. Because in TransRS [73], I use the
existing TransE embedding model to train users, items, and ratings embeddings as the first
step of the model, then feed the obtained output into the rating conversion step. Therefore,



5.5 Discussion 67

the input of the rating conversion step is the embeddings obtained from TransE embedding
model, which can be catagorized as pre-trained embeddings.

While in AHCF [74], the input of the rating conversion step is different from TransRS
[73]. Because AHCF is an end-to-end NN CF model, it optimizes itself through one single
step. In other words, the input of the rating conversion step is embeddings that are optimized
through rating prediction.

Output of Rating Conversion Methods

Apart from the input of each rating conversion, the output of them are also different as well.
In existing rating conversion methods and TrustAnt [72], the output is always in scalar form.
Then, this obtained scalar output will be used in the prediction step. On the contrary, in my
proposed rating conversion methods TransRS [73] and AHCF [74], the output obtained from
the rating conversion step is in vector form and then will be used in the next step of each
model.

Optimization

Now let me discuss the optimization of model parameters. Generally, the existing rating
conversion methods do not require optimization since they do not learn any parameters.
However, in TrustAnt [72], it adopts the ACO concept, so the optimization in TrustAnt will
be the same as the ACO.

As TransRS [73] is a building blocks model which consists of three components, they
separately do their own task in their own building block (i.e, module). Therefore, in TransRS
[73], the model-based module optimizes within itself, and the neighborhood-based module
has no optimization to perform. On the other hand, AHCF [74] is an end-to-end NN CF
model, so it has one single optimization step through a rating prediction.

5.5.2 Comparison between Neighbors Selection Methods

In this chapter, apart from the rating conversion methods, I also propose different neighbors
selection methods to solve the problem of ‘all friends are not equal’. With this assumption,
each neighbor has its own influence on the target user, so it should be treated differently in
the model. There are several ways of neighbors selection. In the existing neighborhood-
based RSs, they select the neighbors to be used in their models in different ways. The brief
comparison is described in Table 5.2.



68 Neighbors Selection and Rating Conversion in Hybrid CF model

Table 5.2: Comparison of neighbor selection methods among TransRS [73], AHCF [74], and
other rating conversion methods

Methods TrustAnt TransRS AHCF Other

Number of
neighbors

limited to the
depth of
search

fixed friend
size

all friends several

Type ACO distance-based attention
mechanism

cosine
similarity

Number of Neighbors

In this thesis, I proposed three different neighbor selection methods. Although all of them
share the same goal: to select high-quality neighbors, they perform their selection processes
in different ways.

In TrustAnt [72], the model selects raters who have high pheromone levels. This selection
process is based on the depth of search in the trust network. The more depth of search, the
more raters can be found. However, this proposed neighbor selection does not guarantee the
number of found raters. Some high pheromone paths might not contain rater. Therefore, the
number of neighbors in this model depends on the depth of search.

In TransRS [73], the model selects the n best rater(s) to be neighbor(s) of the target user
by computing the distances among users. This selection method is proposed based on the
assumption that if two users have similar preferences, their embeddings should be close in
the vector space. Therefore, the user who is the closest to the target user will be the best rater.
Moreover, because this proposed model is user–based CF, it only selects the user’s neighbors.

According to the number of neighbors, in TransRS [73], the number of neighbors n is one
of the hyperparameters which need to be set manually in advance. I have to tune n to obtain
the best set of neighbors which can consume a lot of resources. This also does not correspond
to a real-world scenario where most users do not share the same number of friends.

While in AHCF [74], we can use all neighbors as an input, then the model will assign
different weights based on similarity between each user and the target user. With this
proposed friend selection method, we do not have to tune the n hyperparameter like in
TransRS [73], which I believe is more practical in real-world situations.

Implementation

There are several ways of neighbor selection in CF RSs. The most common neighbors
selection method in neighborhood-based CF is choosing neighbors based on cosine similarity.



5.5 Discussion 69

On the other hand, my proposed methods are implemented in different ways. In TrustAnt
[72], the neighbors selection method is proposed based on the pheromone in the trust network.
The assumption is that the path that contains high pheromone should consist of high-quality
users. Therefore, this selection method is implemented based on the ACO concept.

In TransRS [73], the neighbors selection method is proposed based on the assumption
that if two users have a similar preference, the vector of them should be close in the vector
space. Therefore, in this model, the user who is the closest to the target user will be the best
rater. We can obtain the best n raters by calculating the distance between the target user and
every user who has rated the target item. The user whose distance from the target user is
minimum will be the best rater of the target user.

In contrast, AHCF [74] the neighbors selection module is based on using the attention
mechanism. This attention mechanism can adaptively learn the similarity between each
friend and the target user, and each historical item and the target item. With this module,
users having the more attention scores will likely have more contribution in the prediction of
the model.





Chapter 6

Incorporating Knowledge Graph
Embedding to Recommender Systems

6.1 Introduction

The previous chapter describes how to solve problems in neighborhood-based CF. This
chapter will focus on the details of how to solve problems in model-based CF.

In this thesis, since I would like to build an efficient hybrid CF model, all components of
the model should be carefully considered. In model-based CF approach, how to model the
relation between user and item is one of the important points to be considered. Collaborative
metric learning (CML) [39], one of model-based CF approach, tried to construct user–item
relationship by minimizing the distance between user–item in vector space, which lead to
the geometric inflexibility problem because it tried to put user–item into the same point in
the vector space. Inspired by Latent relational metric learning (LRML) [70], this work tries
to alleviate the problem of geometric inflexibility by adopting the idea from TransE [12],
the popular KG embedding technique. The KG concept is applied to construct the scoring
function of the model and the optimization of the proposed hybrid model is also inspired by
TransE.

Because the proposed TransRS [73] is not an end-to-end CF model, the KG embedding
technique cannot be applied in the same way as in AHCF [74] does. Therefore, I tried to
apply the KG embedding technique in a different way.

In order to propose the rating conversion method described in previous chapter 5.3.4, we
need to know each user’s rating patterns; in other words, user’s preferences. There are many
methods that can obtain rating patterns of each user. Recently, many researchers have tried to
find novel and efficient ways [59, 82] to represent user’s preferences. Some researchers, for



72 Incorporating Knowledge Graph Embedding to Recommender Systems

example, adopt the idea from the KG field, which is a translation-based embedding model, to
represent users, items, and their relations in graph form [59, 82]. Therefore, in TransRS [73],
KG embedding technique is applied in the early step before the rating conversion. This aims
to obtain embedding vectors of users, items, and relations. The details of this method are
described in the following subsection.

6.2 Translation-based Embedding Model for Rating Con-
version in Recommender Systems

As mentioned in the previous subsection that TransRS [73] adopts KG embedding technique
into the model in a different way from in AHCF [74]. This proposed model applies TransE
[12] as the first step of the model. Applying TransE to the model can generate and represent
the relation between a pair of user and item in vector form, instead of scalar form.

6.2.1 Embedding Vectors of Users and Items

Users and items are usually represented by vectors in a d-dimensional feature space Rd in
RSs. Let U and I denote a set of users and items, respectively. For a user u ∈U and an item
i ∈ I, I denote their feature vector as v⃗u ∈ Rd and v⃗i ∈ Rd , respectively. The relations between
an user-item pair are usually represented by rating score. In many RSs, the rating score is
predicted by the inner product v⃗u · v⃗i of the user and item feature vectors with some additional
terms.

In RSs, user’s explicit feedback is given as a triple (u, i,s) meaning that a user u gives
score s to an item i. Then, a set of explicit feedback forms a (bipartite) graph where nodes
are users and items whereas edges are rating scores. This view leads to another type of model
for users and items embedding. In the literature of knowledge graph, entities and relations
compose a graph and both entities and relations are embedded into the same feature space.

By regarding users and items (resp. scores) as entities (resp. relation), we can make use
of translation-based models which are often used in KG embedding. In the translation-based
models, relations are represented by a feature vector as well. Since a vector has more
expressive power than a scalar, we can expect to obtain higher quality feature vectors of users
and items. Wang et al. proposed a translation-based model for recommender systems called
Constrained Preference Embedding (CPE) [77]. I build a rating conversion model on CPE.



6.2 Translation-based Embedding Model for Rating Conversion in Recommender Systems73

Embedding Model

Suppose a RS accepts ratings scores like {1,2, · · · ,S}. Then, let me introduce rating score
vectors {⃗rs | s = 1,2, · · · ,S}. In translation-based models, a triplet (u, i,s) is modeled as

v⃗i = v⃗u + r⃗s . (6.2.1)

When embedding users and items, the model wants to locate a user u and an item i close to
each other in the feature space if u likes i. Higher score means the user likes the item more.
Therefore, I force the following constraint on the rating score vectors: for any rating score p
and q

∥⃗rp∥2 < ∥⃗rq∥2 i f p > q (6.2.2)

where ∥·∥2 stands for the L2 norm.

Loss Function

In order to learn the model, let me derive the loss function. For a triple (u, i,s), error of the
embedding is given as

s(u, i,s) = ∥⃗vu + r⃗s− v⃗i∥L2
(6.2.3)

from Eq. (6.2.1).
In order to handle constraints Eq. (6.2.2), I introduce the following quantity as in [77]:

C ≡ ∑
p>q

wp,q

e
lng(∥⃗rq∥2

2−∥⃗rp∥2
2) (6.2.4)

where p and q are rating scores; e is a hyperparameter; wp,q is the weight of the preference
comparison between p and q computed by the product between the frequency in the training
triples of p and q; g(·) is a monotonic function.

Unlike CPE, I adopt the margin-based loss as the loss function to learn embeddings of the
users, items, and rating scores. For each triple (u, i,s) in training data ∆, I sample (u′, i′,s′)
which is a corrupted pair (i.e., negative sampling). Finally, the loss function is given as

L≡ ∑
(u,i,s)∈∆

∑
(u′,i′,s′)/∈∆u,i,s

max(0,s(u, i,s)+ γ− s(u′, i′,s′)−C), (6.2.5)

where ∆u,i,s is negative samples by corrupting (u, i,s) with replacing u and i with user and
item as in [12]. The symbol γ is the margin that separates the positive and negative samples.

We can obtain the embedding user vectors {⃗v∗u}u∈U , item vectors {⃗v∗i }i∈I , and rating
score vectors {⃗r∗s}1≤s≤S by minimizing the loss function Eq. (6.2.5).



74 Incorporating Knowledge Graph Embedding to Recommender Systems

6.3 Attentive Hybrid Collaborative Filtering

This subsection explains the details of the final layer of AHCF [74]. This model is an
end-to-end NN. Inspired by LRML [70], it learns latent relation vectors for user–item pairs
by adopting an idea from TransE [12] to model the latent relation vectors. This mitigates the
geometric inflexibility of CML [39], whose objective function aims to place user–item pairs
at the same point by minimizing the distance between each user–item interaction. Therefore,
this proposed model learns the latent relation vector between a user–item pair as follows.

6.3.1 The Latent Relation Modeling

In RSs, there are several options to represent or handle the relation between user and item.
The first one is binary relation, which represents relation in the terms of ‘like’ and ‘dislike’
or ‘unknown’. Another common way to represent relation is a concrete score in scalar form.
In this thesis, I represent the relation between user and item with more complexity than the
binary and scalar score. I propose to represent the relation between user and item in this
model with the latent relation vector, which represents their relation in multi-dimensional
vector space. This latent relation vector is inspired by TransE [12].

For each pair comprising a user u and an item v, the scoring function s(u,v) is defined as

s(u,v) = ∥u+ r−v∥2
2, (6.3.1)

where r is the latent relation vector obtained from Eq. (5.4.15) and ∥·∥2
2 is the L2 norm of the

vector u+ r−v. This equation is adopted from TransE [12] because TransE is the simplest
and most understandable KG embedding technique.

6.3.2 Objective Function

Like TransE [12], I also use the pairwise ranking loss or hinge loss for optimization. For each
positive (observed) user–item pair ⟨u,v⟩, the model performs negative sampling by sampling
a corrupted user–item pair denoted as ⟨u′,v′⟩. The corrupted user–item pair goes through the
same user–item embedding layer. The pairwise hinge loss is then defined as

L = ∑
(u,v)∈∆

∑
(u′,v′)/∈∆

max(0,s(u,v)+Λ− s(u′,v′)), (6.3.2)

where ∆ is the set of all positive user–item pairs and Λ is the margin that separates the
observed pairs and the corrupted samples.



6.4 Discussion 75

Table 6.1: Comparison between applying KG to TransRS [73] and AHCF [74]

Methods TransRS AHCF

Purpose for learning pre-trained
embeddings

for optimization

Relation vector shared relation vectors specific relation vectors

6.4 Discussion

According to the previous subsections 6.2.1 and 6.3.2 that respectively demonstrate how
KG embedding technique are adopted and applied in TransRS [73] and AHCF [74], this
subsection will discuss on the similar and different points between these two approaches.
The brief comparison is described in Table 6.1.

6.4.1 Purpose of Applying Knowledge Graph Embedding technique to
Recommender Systems

The purpose of applying the KG embedding technique to TransRS [73] and AHCF [74] are
different. In TransRS [73], TransE [12] technique with modification is applied to the model
to generate the approximate users, items, and relations vector. In other words, I modified the
traditional TransE KG embedding technique based on the assumption that ‘if user u rate item
i with a high score, vectors of user u and item i should be placed close to each other in the
vector space.’. By adding constraint Eq. 6.2.2 to TransE model, the output from this step are
approximately users, items, and relations vectors.

On the other hand, in AHCF [74], I utilize the idea of TransE [12] to model the latent
relation between user–item pair and mitigate their learning process in the optimization. In this
work, I did not directly utilize the traditional TransE model to generate approximately users,
items, and relations vectors, but only used the idea of how the TransE model relationship
between user and item. With this u+ r−v = 0, I define the scoring function of this model as
in Eq. 6.3.1.

6.4.2 Relation Vector

Apart from the purpose of applying KG embedding to each model, the relation vectors
generated in each model are also different. In TransRS [73], the relation vectors are obtained
from the modified TransE model, which is the first step of TransRS. The relation vectors in
TransRS refers to rating score vectors r, which is one of the model parameters in the first



76 Incorporating Knowledge Graph Embedding to Recommender Systems

module of TransRS. These rating score vectors are shared among users and items in the
vector space. According to TransE’s properties, the relation vectors are shared among entities
in the vector space. Therefore, it can handle only a one-to-one relation, not suitable for
one-to-many, many-to-one, and many-to-many relations. This kind of relation vector learning
might lead to low accuracy prediction because all entities that share the same relation are
forced to be close to each other in the vector space.

On the other hand, in AHCF [74], I adopt only the idea of TransE to model the latent
relation vector between a pair of user–item. This proposed latent relation vector is a unique
and specific relation vector between a pair of user–item unlike in TransE which relation
vectors are shared among entities. With this proposed latent relation vector, it can handle
one-to-many, many-to-one, and many-to-many relations better than in TransRS [73].



Chapter 7

Integration and Recommendation

7.1 Introduction

In previous chapters, I present three main components of this thesis, which are

• Utilizing neighbors into a hybrid CF model (Chapter 4),

• Neighbors selection and Rating Conversion in a hybrid CF (Chapter 5), and

• Incorporating Knowledge Graph Embedding to Recommender Systems (Chapter 6).

In order to build a hybrid CF model, this chapter demonstrates how these components
are combined together for making recommendations. This chapter provides a high-level
explanation on my proposed models, which are 1) Integrating the importance levels of
friends into trust-based ant-colony recommender systems (TrustAnt) [72] in section 7.2,
2) Translation-based Embedding model for Rating Conversion in Recommender Systems
(TransRS) [73] in section 7.3 and 3) Attentive Hybrid Collaborative Filtering for Rating
Conversion in Recommender Systems (AHCF) [74] in section 7.4.

7.2 Trust-based Ant Recommender System

TrustAnt [72] consists of the following two phases:
Learning phase

• Trust network and input representation (see Section 5.2.1)

• Proposed ant algorithm (see Section 5.2.2)

Prediction phase



78 Integration and Recommendation

• Rating conversion and weight adjustment (see Section 5.2.3)

• Rating prediction

In the previous chapters, the details of each step in the learning phase. In this subsection,
I will describe how to do the rating prediction in this model.

7.2.1 Prediction value

After obtaining the final rating W ′ (Eq. 5.2.10) of all selected raters from the best paths, now
the model has suitable ratings from every rater using the same perspective as the target user.
If the weight is a constant value, the model use these ratings to calculate the predicted rating
for the target item i by the target user A as:

pAi =
∑u∈NA

W ′u→A(rui)

n(NA)
, (7.2.1)

where n(NA) is the number of selected raters from the global pheromone-update step.

As mentioned in the previous subsection, this model has two ways to calculate the weight.
If the model obtains the weight from Eq. 5.2.11, the predicted rating for the target item i by
the target user A is calculated as follows:

pAi =
∑

N
u=1W ′u→A(rui)

∑
N
u=1 γu

(7.2.2)

where N is the number of selected raters from the global pheromone-update step.

For example, assume that Figure 7.1 (a) shows the best path from the target user A; it
contains four users. In this path, only users u2 and u4 have ratings for the target item i. Even
if users u2 and u4 both gave scores of five to item i, their scores should not be treated equally.
The first step is to transpose each rater’s rating to the target user’s perspective by using Eq.
3.3.3. Assume that, after transposing, the rating of five by user u2 is transposed to 4.1 while
that by user u4 is transposed to 3.8, as shown in Figure 7.1 (b).

The second step is to adjust the rater’s weight by using Eq. 5.2.10. To achieve this, the
transposed rating of user u2 must be multiplied by the weight of user u2. I will show the
calculations for both constant weight and trust-based weight.

For a constant weight, the transposed rating of user u2 must first be multiplied by 0.9 and
that of user u4 must be multiplied by 0.7, giving ratings of 3.69 and 2.66. The model then
calculates the prediction value via Eq. 7.2.1, and the result is 3.175. This means that target
user A is predicted to rate the target item i with a score of 3.175.



7.2 Trust-based Ant Recommender System 79

Figure 7.1: Examples of the prediction calculation

For a trust-based weight, the transposed rating of user u2 must be multiplied by the weight
that can be calculated by Eq. 5.2.11 and similarly for user u4. Assume that the weights for
user u2 and user u4 are 0.8 and 0.7, respectively. After this step, we have ratings of 3.28 and
2.66. The model then calculates the prediction value via Eq. 7.2.2, and the result is 3.96.

7.2.2 Experimental Evaluation

In this subsection, the details of experiments applying ACO concept to the trust-based RSs
are described. For evaluation, I compare the experimental result with ALT-BAR [10], which
also uses the ACS algorithm.

Dataset

The Epinions dataset was used in this work. It contains 49,290 users who have rated 139,738
unique items at least once. The rating range is 1–5 (5 being the best). The dataset contains
664,824 reviews and there are 487,181 explicit trust statements among the users. The data
are separated into two categories, trust data, and rating data.

The data are very sparse. Most users rate just a few items when compared with the whole
dataset. Some users have not rated anything, and some items are not rated by anyone. I



80 Integration and Recommendation

removed these users and items that have no rating or have fewer than 10 rating records. The
numbers were therefore reduced to 36,363 users and 11,657 items.

In the experiment, I use both the raw dataset and the preprocessed dataset.

Evaluation Metrics

To evaluate this proposed model and compare the results with those obtained with ALT-BAR
[10], I used the mean absolute error (MAE) and rating coverage (RC) as the evaluation
metrics.

Mean Absolute Error (MAE) measures the closeness of the predictions to the eventual
outcomes. It is calculated by averaging the absolute difference between the expected rating
and actual rating for the target item, as follows:

MAE =
1
n

n

∑
i=1
|r̂i− ri| (7.2.3)

where n denotes the number of predicted ratings, r̂i is the predicted rating for target item i,
and ri is the user’s actual rating for the target item i.

Rating Coverage (RC) measures the ability of the RS to predict a rating for a target item,
as follows:

Coverage =
npredict

nactual ×100% (7.2.4)

where npredict refers to the number of predicted ratings and nactual refers to the number of
actual ratings.

Experimental Results

Proposed method vs ALT-BAR
First, I compare the results obtained from running the proposed method on the original

Epinions dataset (not pre-processed) against ALT-BAR.
Because the number of users in the dataset was very large, the network is very large.

Because it was difficult to generate recommendations for the full network, I selected 500 users
who had each rated more than 10 items to ensure that the system would have a reasonable
chance of finding raters.

As mentioned in the previous subsection, there are two ways to adjust weights for each
rater. In this experiment, I used the first weight adjustment algorithm, which adjusts by
a constant value. I used the “leave-one-out” technique to test the ability of the proposed
method to predict items’ ratings. I assigned parameters to each experiment as follows:



7.2 Trust-based Ant Recommender System 81

Table 7.1: MAE and RC of the proposed method and ALT-BAR for 500 users

Evaluation metric
Algorithm

Proposed method ALT-BAR

MAE 0.99 1.02

RC 70.8% 28.8%

• number of ants: k = 10

• number of iterations: t = 10

• search depth: d = 10.

The ALT-BAR is implemented by assigning parameters as follows:

• number of ants: k = 10

• number of iterations: t = 10

• search depth: d = 10

• path trust threshold: 0.2.

Table 7.1 shows that the proposed method generates more accurate predictions than
ALT-BAR, because the MAE for the proposed method is less than that for ALT-BAR. Table
1 also shows that the proposed method provides more coverage than ALT-BAR. From the
experiment with 500 users, the coverage for the proposed method’s prediction is 354 users or
70.8%, whereas the coverage for ALT-BAR’s prediction is only 144 users or 28.8%. This
demonstrates that my proposed method provides more coverage for predictions.

Apart from the comparison between the proposed method and ALT-BAR, I wanted to
test the effects of the proposed weighting methods on the prediction step. I conducted the
following experiments.

Weight adjustment
I compared the effects of the two weighting methods. W1 uses constant weights as

described in Section 5.2.3, and W2 uses weights obtained using Eq. 5.2.11. I also tested a
system with no weight adjustment. I set the parameters as follows:

• number of ants: k = 10



82 Integration and Recommendation

Table 7.2: MAE of experiments on different weight adjustment methods for 500 users

Experiment
Algorithm

W1 W2 No weight

d = 10 0.99 0.96 1.51

d = 20 1.02 1.00 1.75

• number of iterations: t = 5

• search depth: d = 10,20.

This experiment was run on the preprocessed Epinions dataset described in the previous
subsection. I selected the same 500 users as in the previous experiment. To test the effects of
weight adjustment, this experiment used the raw ratings (not transposed ratings) to generate
the recommendations.

Table 7.2 shows that more accurate predictions are generated by W2, which is the trust
weight. This experiment shows that using trust weights is better than using constant weights.
I also showed that the system using both weight W1 and W2 in the prediction step provides
more accurate predictions than the system without weights.

Transposed ratings
Apart from the weight adjustment in the prediction step, I also proposed transposing a

rater’s rating to match the active user’s perspective. Therefore, in this subsection, I tested the
effects of my proposed transposed rating and compared it with the raw rating. I compared the
experimental results between a system using transposed ratings (M1) and one that uses raw
ratings (M2) for different depths of search. Note that, because this experiment tests the effects
of transposed ratings, I did not use the weight adjustment method. M1’s results are calculated
by averaging the transposed ratings while M2’s results are calculated by averaging the raw
ratings. The transposed ratings can be calculated from both real ratings and latent ratings.
The system will use latent ratings when there are no real ratings to use in the calculation.
Because of this, I compared the predictive ability of real and latent ratings by separating
the experiment into two parts. I used the same parameters as in the experiment in previous
subsection. The results are shown in Table 7.3.

Table 7.3 shows that when real ratings are used in the transposing step, system M1 pro-
vides more accurate predictions than M2 for both d = 10 and d = 20. Thus, using transposed
ratings calculated from real ratings to generate the predicted ratings, provides more accurate



7.2 Trust-based Ant Recommender System 83

Table 7.3: MAE of experiments using transposed ratings and raw ratings in the prediction
step for 500 users

Method
Real ratings in transposing step Latent ratings in transposing step

M1 M2 M1 M2

d = 10 1.45 1.51 1.09 1.02

d = 20 1.64 1.75 1.12 1.03

Table 7.4: MAE of combination experiments for 500 users

Method
Real ratings in transposing step Latent ratings in transposing step

M1 M2 M1 M2

d = 10 0.90 1.45 1.07 1.09

d = 20 0.95 1.64 1.15 1.12

recommendations than the traditional method. However, the experimental results in Table
7.3 show that when latent ratings are used in the transposing step, system M2 provides better
accuracy than M1 for both d = 10 and d = 20. It can be concluded that the latent ratings
obtained from Singular Value Decomposition (SVD) are not efficient enough, so using those
latent ratings in the transposing step may provide inefficient transposed ratings. I will discuss
this issue further in the discussion section.

Combination of Transposed Ratings and Weight Adjustment
The experimental results in the previous subsections have shown that the proposed weight

adjustment and transposed ratings can provide more accuracy than the traditional method.
Therefore, in this subsection, I combine these two proposed methods. Because the results in
Table 7.2 show that trust weights provide higher accuracy, I used these trust weights in this
experiment.

This experiment will be separated into two parts, using real and latent ratings in the
transposing step. The parameters are the same as in the experiments above.

System M1 combines transposed ratings with trust weights in the prediction step, while
system M2 uses transposed ratings and averages them. The experimental results are shown
in Table 7.4.

Table 7.4 shows that with real ratings in the transposing step, M1 provides more accurate
predictions than M2 for both d = 10 and d = 20. It can be concluded that using transposed



84 Integration and Recommendation

Table 7.5: Average RC of all experiments for 500 users

Experiment Rating Coverage (RC)

d = 10 77.2%

d = 20 83.2%

ratings calculated from real ratings by applying weight adjustment to each rater, provides
more accurate predictions than transposed ratings without weight adjustment. Although the
results for M1 using real ratings in the transposing step are better than those for M2 for
both d = 10 and d = 20, the results for M1 using latent ratings in the transposing step are
less clear. From Table 7.4, with latent ratings in the transposing step, M1 provides more
accurate recommendations than M2 only for d = 10, while M2 provides more accurate
recommendation than M1 for d = 20. It can be concluded that there may be some raters
located very far away from the active user who will have very small weights. When a very
small weight combines with a transposed rating, the final predicted rating may not be accurate
enough. This issue will be discussed further in the next section.

Rating Coverage
Apart from the accuracy level of all experiments in the previous subsections, I also

measured the RC for each experiment. The results for all experiments are shown in Table 7.5.

Table 7.5 shows that the experiments with d = 10 and d = 20 provide more coverage than
those shown in Table 7.2. From the experiments with 500 users, the coverage for d = 10 is
386 users or 77.2%, and the coverage for d = 20 is 416 users or 83.2%, whereas the coverage
from Table 7.2 (d = 10) is only 354 users or 70.8%. This demonstrates that the use of the
preprocessed dataset provides more coverage for predictions.

7.2.3 Discussion

In the previous subsection, I showed that for the Epinions dataset the proposed method can
provide more accurate predictions with better coverage than can ALT-BAR [10], and that
transposing the raters’ ratings into the active user’s perspective and adjusting the weight of
each rater can improve the accuracy of predictions.

In previous experiments with ALT-BAR, the results were compared with two other
algorithms, traditional CF and (MoleTrust) MT [56]. For the Epinions dataset, those results
demonstrated that ALT-BAR was more accurate and provided more coverage than either CF



7.2 Trust-based Ant Recommender System 85

or MT. Thus, my proposed method can be expected to perform better than both CF and MT
in terms of both accuracy and coverage.

I now discuss the two main contributions: the improved method for selecting high-quality
raters, and the improved prediction step.

Selecting High-quality Raters

To achieve our aim of selecting high-quality raters, the model performed preprocessing of
the dataset and improved the global pheromone-update function. This contribution enables
the system to provide better accuracy and coverage. I also varied the depth of search d to test
its influence on the accuracy level or coverage level.

This contribution has enabled the proposed method to obtain greater accuracy and
coverage than ALT-BAR.

Trust Generation
Trust values are inputs to the system. If the trust values can be suitably represented, good

outputs can be expected. Most datasets, including the one I used, are sparse. I, therefore,
performed a preprocessing step to obtain better input representation. The experimental results
in the previous subsection show that using the preprocessed dataset provides better coverage
than using the original dataset.

I also proposed a method that generates trust values without using co-rated items and
avoids the symmetry problem. This approach yields high-capability trust values, which lead
to accurate recommendation results. Because ALT-BAR uses co-rated items to generate
similarity and uses that similarity to generate trust values, it can incur sparsity problems.

Improvement of the Global Pheromone Update
I improved the process of updating pheromone levels by using an additional factor,

the popularity of each user. In existing systems, only three factors are considered: the
pheromone level on each edge, the distance between each user and the active user, and the
number of items rated by a user that are unrated by the active user. My additional factor
raises the pheromone level for reliable users and helps capture higher–quality raters. These
improvements led to better coverage.

Moreover, I considered the number of raters on a selected path whereas ALT-BAR does
not. I improved the optimization condition to update global pheromone levels by updating
only paths that contain raters. This increases the likelihood that a path containing raters will
have higher pheromone levels than those without raters. Paths that contain more raters will
be more likely to be selected to generate recommendations. Therefore, higher prediction
coverage will be obtained.



86 Integration and Recommendation

The depth of search d is another important parameter in finding more raters. The system
can find more raters with higher values of d: the results have shown that d = 20 can find more
raters than d = 10. However, in terms of accuracy, higher values of d result in higher values
of MAE. Because of the weight adjustment in the second contribution, raters who are located
very far from the active user will be assigned very small weights. As their assigned weight
is very small, those raters are too far away to use because they are not high–quality raters
for the active user. Using their ratings may reduce the accuracy of the predicted ratings for
the active user. It can be concluded that there are trade-offs between coverage and accuracy.
Therefore, using a larger depth of search may provide more coverage, but may also obtain
low-quality raters.

Improving the Prediction Step

The second goal of this work is to improve the prediction step. In this contribution, I tried
to reduce the improper rating-range problem by applying a rating-pattern conversion to
transposed ratings to match the active user’s perspective. Moreover, to obtain more accurate
results, I considered the influence level of each rater based on the distance between the rater
and the active user. This is called weight adjustment.

The experimental results show that this contribution helped the proposed method to
provide more accurate recommendations.

Transposed Ratings
First, I transposed a rater’s rating to match the active user’s perspective instead of using

the raw rating, as ALT-BAR does. The rating value used to generate the recommendation
must be placed within the same range as that used by the active user before it is used.

The experimental results in Table 7.3 show that the accuracy of the system using trans-
posed ratings is only higher than that of the system using raw ratings when real ratings are
used in the transposing step. However, from Table 7.3, if the system uses latent ratings in
the transposing step, the non-transposed ratings provide more accurate predictions than the
transposed ratings for both d = 10 and d = 20. It can be concluded that the latent ratings
obtained from SVD are not efficient enough for use in the transposing step. Therefore, when
inefficient latent ratings are used to generate the transposed ratings, the resulting transposed
ratings may be low quality and inefficient, making the predicted rating also low quality.

Weight Adjustment
As well as transposing the ratings, I also considered the influence level (importance level)

for each rater as a weight calculated from the distance between the rater and the active user.
This work studies two different weight adjustment methods: constant weights and the trust
weights.



7.2 Trust-based Ant Recommender System 87

The experimental results in Table 7.2 show that the system applying weight adjustment
provides more accurate predictions than the system without weight adjustment. Moreover,
the results show that trust weight is better than constant weight. It can be concluded that
the distance between the rater and the active user influences the accuracy level of the
recommendations.

Combination of Transposed Ratings and Weight Adjustment
I also studied the combination of transposed ratings and weight adjustment to test the

ability of my proposed method against the traditional method. The experimental results of
the proposed combined method are shown in the previous subsection. Table 7.4 shows that
the combination of transposed ratings and trust weight adjustment can provide more accurate
results than using either method alone when the transposed ratings are calculated from the
real rating.

On the other hand, the combined method is less successful when latent ratings are used
to calculate the transposed ratings. The results show that if d = 20, the combined method
provides less accurate predictions than transposed ratings with no weight adjustment. This
suggests the following two points.

1. Latent ratings are not real ratings, so they may not be appropriate in the transposing
step. When inappropriate ratings are used, the resulting transposed ratings may have
low quality and may not be good enough to use for predictions.

2. Some raters may be located too far away from the active user. Those raters will be
assigned very small trust weights and combined with transposed ratings, may cause
the final predicted rating to be of low quality.

Thus, if inappropriate latent ratings are combined with inappropriate weight adjustment,
the predicted rating will also have an improper value.

Therefore, with my proposed method, the best recommendations will be obtained if we
use the combination of transposed ratings from real ratings, trust weight adjustment, and
appropriate depth of search.

7.2.4 Conclusion

I have extended previous work of applying the ACO concept to trust-based RSs [71], and
aimed to improve its accuracy and coverage compared with our prior work and other existing
systems.

My proposed method makes two main contributions: 1) it finds higher-quality raters, and
2) it improves the prediction step. With the first of these, we can find high-quality raters



88 Integration and Recommendation

via a new trust-value calculation and a preprocessed dataset. I also improved the global
pheromone-update process by considering four factors: the pheromone level on each edge,
the distance between each user and the active user, the number of items rated by each user that
are unrated by the active user, and the popularity of each user. These four factors improve the
rating process. I also proposed a new optimization condition for updating global pheromone
levels by updating only paths that contain raters. This proposed method enables the system
to find more and better raters.

My second contribution is to improve the prediction step by transposing user ratings
to match the active user’s perspective and assigning a weight for each rater with respect to
the active user before calculating the predictions for the active user. I proposed a constant
weight and a trust weight generated from the trust value of the rater and the distance between
the rater and the active user. With this proposed method, the system could generate more
accurate recommendations and provide a higher RC.

The experimental results and comparisons have demonstrated that my proposed method
can provide more accurate and wider-coverage predictions than the previously proposed
method as well as existing trust-based ant RSs. Moreover, the combination of transposed
ratings with trust weight adjustment and appropriate depth of search d in the prediction step
can provide more accuracy and better RC.

7.3 Translation-based Embedding model for Rating Con-
version in Recommender Systems

This proposed model is built by the following three main steps, which are:

1. Embedding vectors of users and items: extracts the rating pattern of each user and
generates the approximate rating vector of each user. The detail of this step is described
in subsection 6.2.1.

2. Rating score conversion: converts rater’s rating score into target user’s perspective.

3. Rating prediction: predicts the score that the target user will give to the target item.

Figure 7.2 shows the components and flow of the model. As this work is a building boxes
model, the output of the previous step is used to be an input of the next step. The details of
the first two steps are already described in chapter 5 and 6. This section will then focus on
the rating prediction part of the model.



7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems89

Figure 7.2: A workflow architecture of TransRS

7.3.1 Rating Prediction

After obtaining the best rater’s converted rating vector by Eq. (5.3.6), I use these converted
rating vectors to calculate the predicted rating that the target user should give to the target
item. In this step, the idea of CPE is applied to the model by transforming a rating vector to
the preference score. CPE proposed user u’s preference on item i as

pu,i =
1

∥⃗v∗i − v⃗∗u∥2
2 +1

. (7.3.1)

For this proposed method, I include n best rater’s information to predict the preference of
user u on item i. This proposed preference equation is defined as follows:

pu,i = ρ · 1
∥⃗v∗i − v⃗∗u∥2

2 +1
+(1−ρ) · 1

∥⃗rb f (u,i),i,u∥2
2 +1

(7.3.2)

where the rating score used in the second term is the converted best rater’s rating vector given
by Eq. (5.3.6), whereas ρ is the ratio of the linear combination of two score predictions.

Finally, I normalize the obtained preference score into k range score based on each dataset
and this is the predicted rating that the target user u will give to the target item i.



90 Integration and Recommendation

Table 7.6: Dataset summary

Dataset Ratings Users Item

FilmTrust 35,497 1,508 1,036

MovieLens100K 100,000 942 1,682

MovieLens1M 1,000,209 6,040 3,706

In case the number of rater n is more than 1, I do the step explained in 4.2 on each rater.
Then, in step 7.3.1, I calculate the predicted rating of each rater and find the average of
predicted ratings from those n raters.

7.3.2 Experimental Evaluation

To evaluate the ability of n best raters and rating conversion method, in this subsection, I
present details of the experiment applying rating conversion to a translation-based embedding
model in RSs. I compare the experimental results with CPE [77] which also uses translation-
based embedding model concept in RSs. Also, I compare it with Matrix Factorization (MF)
[49] which is a state-of-the-art method in RSs.

Dataset

I evaluate the method using three real-world datasets, which are FilmTrust1 and MovieLens2

(100K and 1M). FilmTrust is a recommendation dataset crawled from the entire FilmTrust
website. MovieLens is a widely adopted benchmark dataset for CF in the application domain
of recommending movies to users. In this work, I use two configurations of MovieLens,
which are MovieLens100k and MovieLens1M. The numbers of users and items of each
dataset are listed in Table 7.6.

Implementation and Parameter Setting

In this model, I have modified the source code of OpenKE [35], an open-source toolkit which
provides a unified framework and various fundamental models to embed KGs into continuous
low-dimensional spaces.

1https://www.librec.net/datasets.html
2https://grouplens.org/datasets/movielens



7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems91

Each dataset is separated into three parts; 60% is used for training, 20% is used for
validation and the remaining 20% is left for testing. All models are trained until convergence.
I optimized all the models by using stochastic gradient descent (SGD) method.

For all the approaches, the embedding dimension d is tuned amongst {10,20,50};
the learning rate is tuned amongst {0.01,0.001.0.0001}; the margin γ is tuned amongst
{0.25,0.5,1.0,2.0}. For the FilmTrust dataset, batch size is tuned amongst {10,20,50}. For
the MovieLens100k dataset, batch size is tuned amongst {120,240,360,480}. For Movie-
Lens1M, batch size is tuned amongst {120,480,1200,3600}. I set e and w fp, fq in Eq. (6.2.4)
to 1 as in CPE.

Evaluation Metrics

In this experiment, I perform the evaluation based on two tasks: rating prediction and ranking
recommendation. To evaluate this proposed model and compare the results with the baseline
methods, I used the mean absolute error (MAE) and root mean square error (RMSE) as the
evaluation metrics for the rating prediction task. For the ranking recommendation task, I
used Precision@k and Recall@k.

Although plenty of studies have shown that the rating prediction task poorly correlates
with the recommender precisions, I would like to show that this proposed method can provide
better accuracy than the other baselines in both ranking recommendation and rating prediction
tasks.

Experimental Results

The objective of this experiment is to test the ability of the rater and rating conversion method.
For this purpose, I compared the experimental results with CPE [77]. First, I divided the
experiments into three main groups:

• CPE: like [77], I only used the target user’s information (approximate rating vectors)
to compute the predicted ratings on target items.

• n best rater(s): since I believe that the rater in the system may have an influence on
the target user, so in the group, I used the rater’s information to compute the predicted
ratings on target items. I refer to this group as nBR.

• CPE with n best rater(s): I combined CPE and n best rater(s). I refer to this group as
CPE + nBR.

Note that n is the number of best raters. In this experiment I set n to 1, 5 and 10.



92 Integration and Recommendation

To test the ability of rating conversion, I conducted three methods on each group, which
are:

• No rating conversion: using obtained rating from Eq. 7.3.1 without any rating
conversion like in CPE.

• Normalization: basic normalization method

xnormalized =
x− xmin

xmax− xmin
(7.3.3)

where x is the target rating, xmin and xmax are the minimum rating and maximum rating
of that user respectively.

• Proposed rating conversion method: unlike the basic normalization method, this
experiment uses rating conversion in Eq. 7.3.2.

Note that normalization and this proposed rating conversion method cannot be applied to
CPE group because there are no rater’s rating to normalize or to convert.

Rating Prediction
There are two common evaluation tasks in RSs, which are rating prediction and ranking

recommendation. In this work, both evaluation tasks are done. First, for the rating prediction,
I predict the score that the target user should give to the target item and use MAE and RMSE
as the evaluation metric. The experimental results are shown in Table 7.7.

From Table 7.7, for FilmTrust dataset, CPE + nBR with the proposed rating conversion
provides the highest accuracy among the others. For MovieLens100K and MovieLens1M, n
best rater(s) with the proposed rating conversion can provide the highest accuracy.

Moreover, the experimental results showed that just normalization is not enough. Apply-
ing the basic normalization method provides worse results than applying my proposed rating
conversion method on all datasets.

From the above mentioned, I intend to show the ability of the target user’s best rater and
my proposed rating conversion method. The experimental results have shown that target
user’s raters have an influence on target user. Including the best raters of the target user to
generate the recommendation can make more accurate predictions than CPE.

According to the number of the best rater n, in Table 7.7, I choose the parameter n that
performs the best result. For FilmTrust, n = 5 provides the best result. For MovieLens100K
and MovieLens1M, n = 10 provides the best result.

Ranking Recommendation



7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems93

Table 7.7: MAE and RMSE of experiments on different rating prediction method

Dataset Method
CPE nBR CPE + nBR

MAE RMSE MAE RMSE MAE RMSE

FilmTrust
No rating conversion 0.7873 0.9532 0.7861 0.9443 0.7855 0.9446

Normalization - - 1.1658 1.4188 0.9476 1.1319

Proposed method - - 0.8109 1.0475 0.7491 0.9196

ML100K
No rating conversion 1.1176 1.4236 0.9709 1.1824 0.9818 1.1905

Normalization - - 1.2188 1.5013 1.0893 1.3294

Proposed method - - 0.9684 1.1614 0.9822 1.1791

ML1M
No rating conversion 1.0792 1.3241 1.0738 1.3187 1.0761 1.3208

Normalization - - 1.3802 1.6939 1.2112 1.4816

Proposed method - - 0.9664 1.1522 1.0106 1.2094

Apart from rating prediction, the ranking recommendation is done in this work. For
ranking recommendation, I ranked the items according to the predicted scores of the item in
the test data. Then, the top k items with the greatest predicted rating score are recommended
to the target user. I used precision@k and recall@k to evaluate this task. They can be
computed by the followings:

Precision@k =
|{Recommended items that are relevant}|

|{Recommended items}|
(7.3.4)

Recall@k =
|{Recommended items that are relevant}|

|{Relevant items}|
(7.3.5)

An item is considered relevant if its actual rating is equal to or greater than a given
threshold. An item is considered to be recommended if its predicted rating is equal to or
greater than the threshold, and it is in the top k items.

In this experiment, I use 3 and 3.5 as the threshold of FilmTrust, and MovieLens,
respectively, and set k to 10. The experimental results are shown in Table 7.8.

For all datasets, this proposed rating conversion method on n best raters provides better
results than CPE only and CPE with n best raters in terms of both Precision@10 and
Recall@10.

For most datasets and baselines, I found that the learning rate = 0.001 works well. For the
embedding dimension d, I found that in FilmTrust and MovieLens100K, d = 10 works well.



94 Integration and Recommendation

Table 7.8: Precision@10 and Recall@10 of experiments on different method

Dataset Method
CPE nBR CPE + nBR

P@10 Re@10 P@10 Re@10 P@10 Re@10

FilmTrust
No rating conversion 0.6791 0.5642 0.5162 0.3697 0.5281 0.3921

Normalization - - 0.5515 0.3027 0.5185 0.4283

Proposed method - - 0.6904 0.6382 0.6893 0.6371

ML100K
No rating conversion 0.5576 0.6274 0.5630 0.6434 0.5621 0.6385

Normalization - - 0.5148 0.4261 0.5321 0.4900

Proposed method - - 0.5939 0.6628 0.5652 0.6403

ML1M
No rating conversion 0.5176 0.4335 0.5185 0.4283 0.5177 0.4306

Normalization - - 0.6088 0.3336 0.4845 0.3163

Proposed method - - 0.6734 0.5881 0.5412 0.5236

However, in MovieLens1M, d = 50 works well. For the margin γ , I found that it depends on
datasets; γ= 1.0 works well in FilmTrust, γ = 0.25 works well in MovieLens100K, and γ=
0.5 works well in MovieLens1M. For the batch size B, I found that it depends on the size of
the dataset as well; B = 10 works well in FilmTrust, B = 360 works well in MovieLens100K,
and B = 1200 works well in MovieLens1M.

Comparison with Matrix Factorization

Apart from comparing this proposed method in TransRS [73] with CPE and another rating
conversion method, I also compared this proposed model with Matrix Factorization (MF)
[49] which is the state-of-the-art method in RSs field. MF is a standard baseline for CF that
models the relationship between user and item by inner products. In this experiment, I used
MF-based algorithms in the Surprise library 3. The MF-based algorithm that I chose is biased
SVD. The parameters are all set as default as in the Surprise library. The experimental results
are shown in Table 7.9.

In Table 7.9, I choose the results that provide the best performance on each dataset from
Table 7.7 and 7.8 to compare with MF.

Although my proposed method cannot provide a better accuracy result than MF, it can
be applicable with more datasets while MF cannot. This proposed model which adopts the
idea of TransE [12], a translation-based embedding model in the KG field, can be applicable

3https://surprise.readthedocs.io



7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems95

Table 7.9: MAE, RMSE, Precision@10 and Recall@10 of experiments on different method

Dataset Method MAE RMSE P@10 R@10

FilmTrust
MF 0.6369 0.7988 0.7630 0.7484

nBR 0.7491 0.9196 0.6904 0.6382

ML100K
MF 0.7626 0.9586 0.6893 0.5134

nBR 0.9684 1.1614 0.5939 0.6628

ML1M
MF 0.7022 0.8897 0.7768 0.5385

nBR 0.9664 1.1522 0.6734 0.5881

with KG-like or graph-like datasets. This means not only rating information can be used
to generate the recommendations, but we can integrate the other relations in the model to
make the recommendations as well. For example, the FilmTrust dataset also provides trust
property which is the relation between a pair of users. From trust information, we can model
FilmTrust in the same way as in KG. Therefore, my proposed method can be applied to this
dataset and then obtain the trust embedding vectors like rating embedding vectors, and can
further use these trust embedding vectors to generate the recommendations. In other datasets,
they may contain many explicit relations, e.g. buy, view, click, etc. which are relations
between a pair of user and item. With these several kinds of relations, this proposed model
can make better recommendations for users.

7.3.3 Discussion

In the previous section, I have shown that my proposed method can provide more accurate
results in both rating prediction and ranking recommendation on all datasets.

Rater integration

Our proposed method is introduced to integrate n best rater in the model instead of only
using the target user’s information like CPE. I showed that including n best rater(s) can help
the model to generate a better recommendation.

Although translation-based embedding models use every user’s information in learning
phrases, it does not utilize the benefit of friendship, which is the prominent point of CF, in
the learning procedure. Therefore, I introduce to integrate friendship, in the form of n best
rater(s), which is the prominent point of CF to the translation-based embedding model.



96 Integration and Recommendation

Table 7.10: Example of users rate items

Rating User u1 User u2 User u3

i1 1 3 2

i2 2 3 2

i3 3 3 2

i4 4 3 2

i5 5 3 2

According to the experimental results, using the best rater’s approximate rating vectors in
the prediction step provides better results than a model without the best rater. However, using
best rater’s approximate rating vectors directly (e.g., without rating conversion method) and
applying normalization provide lower accuracy than applying my proposed rating conversion
before prediction.

Efficiency of Rating Conversion

Apart from n best rater integration, I also apply different rating conversion methods on those
raters. The experimental result showed that my proposed method can provide a more accurate
result than n best rater(s) without rating conversion, as well as applying normalization on n
best rater(s). The details of each aspect are described as follows.

Rating Conversion vs. Actual Rating
For the efficiency of rating conversion, I will give some examples where the rating

conversion is more effective than no rating conversion. For this purpose, I first give the
example of users rate items in Table 7.10.

According to Table 7.10, suppose that user u1 is a target user and item i2 is a target item.
From Table 7.10, the predicted rating should be ‘2’. Suppose that user u3 is the target user’s
best rater, and these two users have different rating patterns. Suppose that the u1’s preference
on i2 (denoted by pu1,i2) is ‘3.4’, and u3’s preference on i2 is ‘2.1’. Thus, the predicted rating
of u1 towards i2 using Eq. 7.3.2 will be ‘2.75’. However, if we consider the different rating
patterns of u1 and u3 and convert u3’s rating into u1’s perspective first, we will get a more
accurate prediction. If the rating conversion method is applied to this case, suppose that u3’s
preference on i2 is converted to ‘1.8’. Therefore, the predicted rating of u1 towards i2 will be
‘2.6’, which is closer to the actual rating than without rating conversion.

Rating Conversion vs. Normalization



7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems97

This proposed rating conversion method also provides a better result than a normalization.
I will give an example of why rating conversion is better than a basic normalization.

If two target users have different rating patterns but these two target users have the same
set of rater(s), applying basic normalization is not enough. From Table 7.10, suppose that
user u1 and user u2 are target users. If the target item is item i2, normalized rating of u1 on
i2 is ‘0.25’ while normalized rating of u2 on i2 is ‘1’. Suppose that these two target users
have the same rater which is user u3, so the normalized rating of u3 on i2 is ‘1’. These two
target users will have the same predicted rating ‘1’ on i2. Although the predicted rating is
accurate on u2, but it is a quite high score for user u1 because his actual rating should be
‘0.25’. Therefore, the rating conversion method able to provide a more accurate prediction
than a normalization under this circumstance.

Ranking Recommendation

Apart from the rating prediction, I also evaluate this proposed method by ranking recommen-
dation. The experimental result showed that my proposed method on MovieLens (100K and
1M) dataset also provides better recommendation results in both terms of precision@10 and
recall@10.

Moreover, the experimental results showed that only n best raters provide better results
than CPE with n best raters. It can be concluded that the best rater(s) have an influence on
the target user and the converted ratings of those best raters lead the model to generate good
predictions.

7.3.4 Conclusion

In this work, I propose a translation-based embedding model with rating conversion in RSs
by adjusting the obtained embedding vectors, which represent the relation between user and
item.

Based on the experimental results and comparisons, I have demonstrated that my proposed
method can provide more accurate predictions than the CPE for all datasets in terms of both
rating prediction and ranking recommendation. Integrating friendship, which is n best rater’s
opinion, in the prediction step can provide a more accurate result than the original CPE
method. Moreover, applying this proposed rating conversion method to the best rater’s ratings
provides better accuracy than both not applying the rating conversion method and the basic
normalization method.



98 Integration and Recommendation

Figure 7.3: A workflow architecture of AHCF.

7.4 Attentive Hybrid Collaborative Filtering for Rating
Conversion in Recommender Systems

In this subsection, an overview of the Attentive Hybrid Collaborative Filtering for Rating
Conversion in Recommender Systems, i.e. AHCF, is presented. The workflow of AHCF is
illustrated in Figure 7.3.

Features of the proposed model are as follows.

• Each of the users and items is converted to a dense matrix representation. Note that I
introduce a dense matrix to represent a user and an item, unlike many RSs that use a
single vector for this purpose. The details of this process are described in section 4.3.

• For each target user and target item pair, the model works on both sides parallelly as
follows.



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 99

We select the set of friends (users who have rated the target item in the past) and
the set of historical items (items that have been rated by the target user in the past).
Note that in this work, I use a dataset that has no explicit friend relationship between
users, so I defined the term ‘friends’ as users who have rated the target item in the past.
This will be described in section 5.4.1.

Then I use the obtained set of friends as an input of the Friend Module. This
step generates a summation of the weighted projected vectors of the target user’s
friends, effectively realizing both rating conversion and weight assignment. This will
be described in section 5.4.2.

Similarly, I input the obtained historical items into the Item Module. This step
generates a summation of item vectors of the target user’s historical items based on the
similarity between each historical item and the target item. This will be described in
section 5.4.3.

• From the user side, the model aggregates the target user representation matrix into a
single vector and combines it with the projected vectors of the target user’s friends
obtained in the previous step. From the item side, the model also aggregates the target
items representation matrix into a single vector and combines it with the vectors of
the target user’s rated items obtained in the previous steps. It then calculates the latent
relation vector r, which is dependent on both user and item. This will be described in
section 5.4.4.

• Finally, the model uses pairwise hinge loss and negative sampling to optimize ∥u+

r−v∥ ≈ 0 which is the scoring function derived from TransE, one of KG embedding
technique. This will be described in section 6.3.

To provide a better understanding of this model, the concrete examples are shown as
follows. According to Figure 7.4, suppose that the target item is a cartoon movie. The model
wants to predict how much the target user would like this target item. Our model will gather
information from both the target user’s friends (i.e., users who have rated the target item
in the past) and the target user’s historical items (i.e., items that the target user has rated in
the past), to help the model predict the rating that target user would give to the target item.
For the friend side, the model will compare similarities between the target user and each
friend. Friends who are more similar to the target user would have more influence on the
target user than friends who are less similar to the target user. In this case, suppose that user
A (the girl with glasses), who rated 5 score to this movie, is more similar to the target user,
then the target user tends to rate the target item with a high score. For the item side, the



100 Integration and Recommendation

Figure 7.4: An illustration of a concrete example of my proposed model mechanism. Suppose
there are target user and target item. The goal of RSs is to predict how much the target user
will give to the target item. Our proposed method will gather the target user’s friends and
historical items to help model predict score of the target user toward the target item.



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 101

model will compare similarities between the target item and each historical item. Suppose
that she rated 2 items in the past, which are horror movie and fantasy movie with 2 and 4
scores, respectively. My assumption is the target user tends to like similar items. In this case,
suppose that the fantasy movie is more similar to the target item and she rated the fantasy
movie with a 4-score, so she tends to rate the target item with a high score too. Note that this
example will be used for the explanation entire this thesis.

7.4.1 Inference

After obtaining the optimized user’s UR-matrices, user’s UPU-matrices, and item’s IR-
matrices (i.e., U,V,K), as well as all model parameters, the recommendation for each user is
then reduced to a ranking problem among their negative items (i.e., items in the dataset that
the target user has not rated in the past) based on estimated score s(u,v) from Eq. 6.3.1.

7.4.2 Experimental Evaluation

In this subsection, I present details of the experiments. The experimental evaluation is
designed to answer several research questions (RQs).

• RQ1: Is the proposed model more accurate than existing state-of-the-art methods for
collaborative ranking?

• RQ2: Does the proposed UR-matrix and IR-matrix improve the model’s performance?

• RQ3: Does the Friend Module and the Item Module affect the model’s performance?

• RQ4: Does the combination of neighborhood-based CF and the model-based CF,
namely hybrid CF, provide better results than only neighborhood-based CF or only
model-based CF?

Datasets

I evaluated the method using three real datasets, which are FilmTrust4 and two datasets from
MovieLens5. FilmTrust is a recommendation dataset extracted from the entire FilmTrust
website. MovieLens is a widely adopted benchmark dataset for CF in the application domain
of recommending movies to users. In this work, I use two configurations of MovieLens,
namely MovieLens100k and MovieLens1M. The numbers of users and items in each dataset
are listed in Table 7.11.

4https://www.librec.net/datasets.html
5https://grouplens.org/datasets/movielens



102 Integration and Recommendation

Algorithm 1 Attentive Hybrid Collaborative Filtering* (AHCF*)
Input: User-item interaction matrix R.
Output: Latent feature matrix U, V, K and model parameters Θ

1: Initialize U, V, K, and models parameters Θ with normal distribution
2: repeat
3: for all (u,v) ∈ R do
4: Find a set of Fv and Hu
5: for all f ∈ Fv do ▷ Friend selection
6: β f ← hT

u ReLU(Wu1Uu +Wu2U f )

7: α f ←
exp(β f )

∑ j∈Fv exp(β j)

8: us
f ← α f us

f
9: end for

10: for all h ∈ Hu do ▷ Historical item selection
11: βh← hT

i ReLU(Wi1Vv +Wi2Vh)

12: αh← exp(βh)
∑ j∈Hu exp(β j)

13: vs
h = αhvs

h
14: end for
15: for all f ∈ Fv do ▷ Friend module
16: p f ← ks

u⊙us
f

17: βp f ← hT ReLU(W1u+W2p f +W3v)

18: αp f ←
exp(βp f )

∑ j∈Fv exp(βp j )

19: end for
20: pF(u,v) ← ∑ f∈Fv αp f p f
21: for all h ∈ Hu do ▷ Item module
22: sim(v,h)← vT

v vs
h

23: α(v,h)← So f tmax(sim(v,h))
24: end for
25: tHu ← RELU(∑h∈Hu α(v,h)vs

h)
26: u∗← λu+(1−λ )pF(u,v) ▷ Combined user
27: v∗ = θv+(1−θ)tHu ▷ Combined item
28: r← u∗⊙v∗ ▷ Generate latent relation
29: end for
30: for all ϑ ∈ {U,V,K,Θ} do
31: update ϑ w.r.t L = ∑(u,v)∈∆ ∑(u′,v′)/∈∆ max(0,s(u,v)+Λ− s(u′,v′))
32: end for
33: until convergence
34: return U,V,K and Θ



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 103

Table 7.11: Datasets

Dataset #Users #Items #Ratings

FilmTrust 1,508 2,071 35,497

MovieLens100K 943 1,682 100,000

MovieLens1M 6,040 3,706 1,000,209

Table 7.12: Evaluation results for experiments comparing with different methods

Dataset Metrics AHCF* AHCF AHCF- LRML NeuMF GMF

FilmTrust

P@10 0.3124 0.3129 0.3090 0.3022 0.3121 0.3196
Re@10 0.6145 0.6021 0.5968 0.5751 0.5580 0.5834

F1 0.4142 0.4118 0.4072 0.3962 0.4003 0.4129

MAP 0.4511 0.4446 0.4371 0.4293 0.4258 0.4403

MRR 0.5779 0.5719 0.5622 0.5500 0.5322 0.5571

NDCG 0.6282 0.6232 0.6158 0.6105 0.6020 0.6143

ML100K

P@10 0.3458 0.3177 0.2996 0.2858 0.2507 0.1856

Re@10 0.2337 0.2095 0.1994 0.1907 0.1461 0.0883

F1 0.2789 0.2524 0.2394 0.2288 0.1846 0.1200

MAP 0.2792 0.2493 0.2417 0.2276 0.1810 0.1325

MRR 0.6371 0.6047 0.5999 0.5658 0.4985 0.4342

NDCG 0.6133 0.5878 0.5814 0.5684 0.5196 0.4639

ML1M

P@10 0.3383 0.3310 0.3129 0.2295 0.2016 0.1841

Re@10 0.1538 0.1371 0.1357 0.0937 0.0763 0.0662

F1 0.2115 0.1939 0.1893 0.1331 0.1107 0.0974

MAP 0.2286 0.2151 0.2050 0.1376 0.1290 0.0997

MRR 0.6144 0.5963 0.5821 0.4767 0.4413 0.3768

NDCG 0.5869 0.5755 0.5643 0.5020 0.4825 0.4521



104 Integration and Recommendation

Figure 7.5: Schematic illustration of AHCF architecture as an end-to-end NN. This example
assumes a user–item pair ⟨u,v⟩, with the user’s four friends { f1, f2, f3, f4} rating item v with
rating scores {3,1,3,4}, respectively.



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 105

Existing Baselines

For each of the three datasets, I conducted experiments where I compared my proposed
model with the following existing methods.

• Latent relational matrix learning LRML [70]: an end-to-end attention-based memory-
augmented neural architecture that models the relationship between users and items in
metric space using latent relation vectors.

• Generalized matrix factorization (GMF) [37]: an implementation of MF [49], a
standard baseline for CF that models the relationship between users and items using
inner products.

• NeuMF [37]: a state-of-the-art unified framework combining MF with an MLP.

• AHCF [74]: my previous proposed method which contains only UR-matrix and friend
module (See Figure 7.5).

Note that in the experiment, I call this extended model as AHCF* which is the improved
version of AHCF, and AHCF- refers to the proposed model without the proposed friend
module and the item module.

Implementation and Parameter Settings

In this work, I modified the source code of DeepRec, an open-source toolkit for deep-learning-
based Recommendation systems [80], which includes several algorithms expressed in Python
and Tensorflow6. DeepRec also includes the LRML, GMF, and NeuMF models.

All models were trained until convergence. I optimized the models by using AdaGrad
[29], a stochastic optimization method that adapts the learning rate to the parameters. For
all models, the dimension d was tuned amongst {50, 100, 200}, the learning rate was tuned
amongst {0.1, 0.01, 0.001}, and the batch size is tuned amongst {256, 512, 1024}. For
models that minimized the hinge loss, the margin γ was tuned amongst {0.1, 0.2, 0.5, 1.0}.
For the proposed model, the attention size a was tuned amongst {50, 100, 200}, random
number of friends and items are tuned among {5, 10, 20, 50}, λ and θ are tuned among {0.0,
0.5, 1.0}. For the LRML model, I set the number of memory slices to 20, as recommended
in [70]. Note that I did not use pretrained models in the NeuMF model to enable a fair
comparison. For simplicity, each training instance was paired with only a single negative
sample. All embeddings and model parameters were normally initialized with a standard
deviation of 0.01.

6https://www.tensorflow.org



106 Integration and Recommendation

Evaluation Protocol and Metrics

Each dataset was separated into two parts: 80% for training and the remaining 20% for
testing. In the training phase, I sampled a single negative sampling for each user–item pair.
After training the models, I performed the ranking recommendation task on the test set. Given
a user–item pair ⟨u,v⟩, the negative samplings were all ⟨u,v′⟩, where v′ is the set of items that
had no interaction with the target user u. I used all the ranking-based metrics implemented in
DeepRec [80], namely precision@n (P@10), recall@n (Re@10), F1 score, mean average
precision (MAP), mean reciprocal rank (MRR), and normalized discounted cumulative gain
(NDCG). These ranking-based metrics can evaluate the degree of effectiveness of the model.

Experimental Results

I compared the performance of the proposed model, AHCF*, with the existing methods
listed above, including the previous version of AHCF [74]. Table 7.12 shows the empirical
results for the proposed model and the existing methods for the three benchmark datasets.
The results show that my proposed model was the best-performing model by most evaluation
metrics and datasets. The proposed AHCF* can provide better results than the previous
version AHCF [74]. This answers RQ1 in the affirmative (i.e., the extended proposed model
AHCF* can offer better effective recommendations in the collaborative ranking than existing
systems).

For the FilmTrust dataset, my proposed model was the most accurate with respect to
Re@10, MAP, MRR, and NDCG, but the GMF model performed best with respect to P@10.
For the MovieLens100K and MovieLens1M datasets, my proposed model was the best-
performing model for all evaluation metrics.

Adding Friend Module
In [74], I proposed the friend module and UR-matrix first. According to the experimental

results in Table 7.12, the results have shown that AHCF (with the friend module) provides
better results than AHCF- (without the friend module). It can be concluded that adding friend
module to the model can help the model perform better and provide better results.

Adding Item Module
The previous version of AHCF [74] contains only the Friend Module for neighborhood-

based CF and I have already shown that the Friend Module, which is neighborhood-based
CF, can help the model-based network provide better results in [74]. The Friend Module can



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 107

be categorized as user-based neighborhood-based CF. In the extended version AHCF*, I add
item-based neighborhood-based CF by proposing an additional Item Module.

To test the ability of the Item Module, I compare the performance of the current proposed
model AHCF* both with and without the Item Module by setting λ = 0.5 for Eq. 5.4.13, and
vary the value of θ in Eq. 5.4.14 which controls the usage of the Item Module with [0.0,1.0]
with a step of 0.1. Figure 7.6 (A) shows P@10, Re@10, and NDCG on three datasets for this
experimental setting. The experimental results have shown that θ = {0.4,0.5,0.6} provide
better result than other θ for all metrics on every datasets.

Figure 7.6: Performance of P@10, Re@10, and NDCG w.r.t. (A) different θ and (B) different
λ on three datasets. Note that for Recall@10, because the results on FilmTrust are very
different from ML100K and ML1M, so I use secondary axis to show results on FilmTrust

Furthermore, I also compare the performance of my proposed AHCF* both with and
without the Friend Module by setting θ = 0.5 for Eq. 5.4.14, and vary the value of λ in
Eq. 5.4.13 which controls the usage of the Friend Module with [0.0,1.0] with a step of 0.1.
Figure 7.6 (B) shows P@10, Re@10, and NDCG on three datasets for this experimental
setting. The experimental results have shown that λ = {0.4,0.5,0.6} provides better results
than other λ for all metrics on every datasets.

Therefore, I select the results of λ = 0.5 and θ = 0.5 to show the empirical results in Table
7.13, which shows the empirical results for this experimental setting on θ = {0.0,0.5,1.0}.



108 Integration and Recommendation

Table 7.13: Evaluation results for experiments comparing the influence of the Item Module

Dataset Metrics
θ

0.0 0.5 1.0

FilmTrust
P@10 0.3096 0.3124 0.3090

Re@10 0.5939 0.6145 0.5919

NDCG 0.6060 0.6282 0.6046

ML100K
P@10 0.3347 0.3458 0.3401

Re@10 0.2290 0.2337 0.2298

NDCG 0.6101 0.6133 0.6096

ML1M
P@10 0.3302 0.3383 0.3315

Re@10 0.1473 0.1538 0.1483

NDCG 0.5793 0.5869 0.5802

The results show that the model with λ = 0.5 and θ = 0.5 provide better results for most
metrics and datasets. It can be concluded that adding the item module to this proposed model
can offer better accurate results.
Statistical hypothesis testing

Since the evaluation results of AHCF*, AHCF, and AHCF- are close to each other, I did
the statistical test to show that evaluation results from the improved AHCF* are significantly
different from AHCF and AHCF-. In this work, I use a paired samples t-test, a widely used
statistical test that is used to compare the means of two samples when each observation in
one sample can be paired with an observation in the other sample. In this case, I would like
to test whether the predictions of the same set of users obtained from different methods are
significantly different or not.

I use the statistics algorithm in Scipy library7 to perform the paired samples t-test with
the following hypotheses with a p-value threshold = 0.05:

• H0 : µ1 = µ2

• H1 : µ1 ̸= µ2

The statistical t-test results are shown in Table 7.14. Since the obtained p-values from
every datasets are less than the threshold of 0.05, then we can reject the null hypothesis of

7https://www.scipy.org



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 109

Table 7.14: Statistical hypothesis testing

Dataset AHCF* vs AHCF AHCF* vs AHCF-

FilmTrust 0.0105 0.0170

MovieLens100K 0.0445 0.0373

MovieLens1M 0.0246 0.0251

Table 7.15: Evaluation results for experiments comparing neighborhood-based model, model-
based model, and hybrid model

Dataset Metrics Neighborhood Hybrid Model

FilmTrust
P@10 0.3083 0.3124 0.3087

Re@10 0.5896 0.6145 0.5919

NDCG 0.6007 0.6282 0.5974

ML100K
P@10 0.3396 0.3458 0.3373

Re@10 0.2308 0.2337 0.2296

NDCG 0.6086 0.6133 0.6092

ML1M
P@10 0.3304 0.3383 0.3320

Re@10 0.1482 0.1536 0.1392

NDCG 0.5794 0.5869 0.5805

equal averages and can interpret that the predictions from the improved version AHCF* are
different from the previous version.

False Analysis

Since I perform the ranking recommendation task on the test set, which will generate top-k
items for the target users. For evaluation, the ranking-based metrics is calculated based on
the confusion matrix of recommendation results shown in Table 7.16.

The assumption of false positive case: why not relevant items are recommended to the
target user?

• High quality target user’s friends have rated those items in the past.

• Those items are similar to the target user’s historical items.



110 Integration and Recommendation

The assumption of false negative case: why relevant items are not recommended to the
target user?

• High quality target user’s friends haven’t rated those items in the past.

• Those items are not similar to the target user’s historical items.

For this analysis, I choose some examples to explain. The first example is the example of
user u100 from the ML100k dataset.

The generated top-10 recommendation list: [180, 171, 422, 215, 49, 227, 567, 81, 404,
221].

The set of relevant items that have not been recommended (FN): [20, 41, 53, 63, 76, 80,
87, 94, 117, 121, 131, 141, 150, 153, 156, 217, 218, 225, 226, 232, 239, 317, 322, 333, 339,
356, 424, 430, 442, 450, 455, 461, 469, 501, 558, 575, 606, 609, 657, 659, 664, 677, 685,
701, 718, 742, 771, 819, 1034].

The set of recommended items that are relevant (TP): [180, 171, 215, 49, 227, 567, 81,
404, 221].

The set of recommended items that are not relevant (FP): [422].
According to the example of this user, from the recommendation list, 9 items are True

Positive (TP) and 1 item is False Positive (FP). Therefore, this recommendation is good. To
investigate why items in the FN set are not recommended, I will find a set of high quality
friends first, by selecting top-10 friends who have the highest similarity value to the target
user. The ID of the top-10 friends of the target user are [824, 180, 356, 937, 140, 347, 707,
533, 871, 791].

Looking into the set of FN, there are 49 relevant items that have not been recommended.
Among these 49 items, only 11 items have been rated by one of top 10 high quality friends.
The rest of the 38 items have not been rated by the high-quality friends. I compare similarities
between a set of FN and a set of u100’s historical items. The average similarities between
FN and u100’s historical items is 0.001016. It means the items in FN set quite not similar to
u100’s historical items, so they are not recommended in the top-10 recommendation list to
the target user.

For the False Positive case, there is only one item recommended to a target user. When
looking into the set of top-10 friends of the target user. This recommended item was rated by
the friends who have the highest similarity value to the target user (i.e., u824). Therefore, this
is one of the reasons why this item is recommended in the recommendation list.

The second example is user u1 from the ML100k dataset.
The generated top-10 recommendation list is [285, 268, 293, 332, 301, 327, 244, 318,

747, 267].



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 111

Table 7.16: Confusion matrix of recommendation results

Relevant Not relevant

Recommended top-k True Positive (TP) False Positive (FP)

Not recommended False Negative (FN) True Negative (TN)

The set of relevant items that have not been recommended in the list (FN): [9, 12, 126,
254, 277, 278, 279, 307, 315].

The set of recommended items that are relevant (TP): [285, 268].

The set of recommended items that are not relevant (FP): [293, 332, 301, 327, 244, 318,
747, 267].

According to the example of user u1, from the top-10 recommendation list, only 2 items
are True Positive (TP) and 8 items are False Positive (FP). Compared to the above example
of user u100, this recommendation list is not quite good because only 2 relevant items are
recommended.

To investigate why items in the FN set are not recommended, I do the same procedure as
the above example. The ID of top-10 friends of user u1 are [180, 732, 485, 893, 781, 459, 14,
78, 930, 935].

Then, I look into the set of FN, there are 9 items that have not been recommended in the
recommendation list. First, I compare the similarities of items in FN with user u1’s historical
items. The average similarity between FN and user u1’s historical items is 0.0488. Then, I
compare the similarities of items in TP with user u1’s historical items. The average similarity
between TP and user u1’s historical items is 0.1131.

From this investigation, it can be concluded that the items that have more similarity
value to the target user’s historical items will be recommended in the recommendation list,
while the items that have less similarity value to the target user’s historical items will not be
recommended in the recommendation list.

For the false positive case, among the items in the FP set, I found that many users in the
top-10 friends have rated those items in the FP set. Moreover, when I compare the similarities
between items in the FP set and the user u1’s historical items, the average similarity value is
0.0531, which is higher than the FN set. Therefore, items in the FP set are recommended
instead of items in the FN set because items in the FP set are more similar to the target user’s
historical items.



112 Integration and Recommendation

Figure 7.7: Loss value and running time of AHCF on ML1M

Computation and Time Complexity

According to the algorithm shown in Algorithm 1, this model’s overall time complexity is
O(n3). First, the model iterates through the entire user-item pairs in an outer loop. Then
for each user-item pair, each module iterates through the data in an inner loop. This will be
O(n2) for one epoch of training. For training, the model repeats its steps until convergence.
Therefore, the overall complexity of training will be O(n3).

The experiments are conducted on GPU server Nvidia Tesla V100. In one epoch, I train
the model with mini-batches. For ML1M, the training data is 800,000 records. If the batch
size is 1024, it will be around 782 iterations per epoch. From the experiment, in the learning
phase of ML1M, AHCF* takes around 0.35 seconds per iteration. Therefore, one epoch of
training takes around 274 seconds or 4.57 minutes. Figure 7.7 shows the chart between loss
and time used in each epoch.

By ablation analysis, which removes the neighbors selection module, friend module, and
item module, the computation time is similar to the full version of AHCF* which is around
0.32 seconds per iteration. Therefore, adding these modules to the model does not increase
time complexity significantly.

However, the larger dataset takes more time to train than the smaller dataset.

7.4.3 Discussion

In the previous subsection, I showed that my proposed model can provide the most accurate
ranking recommendations for all datasets tested. In this subsection, I will discuss the
evaluation results in several aspects as follows.



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 113

Performance of the Proposed UR-Matrix and IR-Matrix

In the previous work [74], I have proposed UR-matrix, the novel user representation for
incorporating explicit feedback into the model via user presentation. Instead of representing
the user with a single embedding vector, UR-matrix represents each user by matrix which
stores rating information of users and expresses how each user rates items. The previous
experimental result gives the comparative results that using the UR-matrix instead of using a
traditional single vector can lead to more accurate ranking recommendations. These provide
an answer to RQ2 of UR-matrix, namely that using the proposed UR-matrix in the model
can provide more accurate recommendation than the traditional embedding style.

In the extended model, I also propose an IR-matrix in addition to the UR-matrix which
works as same as UR-matrix but for the item side. IR-matrix represents each item by matrix
instead of a single embedding vector, which stores rating information of items and expresses
how each item was rated by users. Table 7.13 gives the comparative results for the previous
model [74] which contains only the UR-matrix and the current version which contains both
the UR-matrix and IR-matrix. These provide an answer to RQ2 of IR-matrix, namely that
using the proposed IR-matrix in addition to the UR-matrix leads to more accurate ranking
recommendations for all metrics and all datasets tested.

To conclude, this is because a dense matrix can express more meaningful user and item
features than can a single embedding vector. In particular, a matrix in which each row
is related to the user’s rating and item’s rating information can store more relevant and
specific characteristics of the user and the item than can a single vector. Moreover, it is better
suited and directly applicable to rating conversion, unlike the traditional approach to user
embedding. In addition, integrating IR-matrix into the proposed model brings about richer
information of the item side to the model.

Performance of the Friend Module and the Item Module

In previous work [74], I made three assumptions on user-based CF: 1) friends’ opinions
affect the target user’s decision to choose items, 2) each user has their own rating patterns,
and 3) friends can be more or less important to the target user. These assumptions are all
implemented in the Friend Module.

In addition to the Friend Module, in the extended model, I also include item-based CF
to the proposed model and made the assumption that target users shall prefer items that
are similar to their historical interacted items. This assumption is implemented in the Item
Module. The comparison between the previous model (i.e., without the Item Module) and



114 Integration and Recommendation

this new model (i.e., with the Item Module) has shown that the Item Module can help provide
better recommendations.

I have shown three reasons why the Friend Module has a positive effect in the previous
work. First, my UR-matrix integrates explicit feedback (ratings) into each friend repre-
sentation matrix as input, thereby expressing how each user rates items and capturing this
richer information in a way that a traditional single embedding vector cannot. Second, the
UPU-matrix can convert each friend’s specific ratings to match the target user’s perspective
in the Friend Module and thereby mitigate the improper rating-range problem. Finally, a
nonuniform weight is assigned to each friend to indicate the relative importance of each
friend to a pair of target user–item.

The reasons why the Item Module can help the model provide better results are as follows.
First, similar to the Friend Module, the proposed IR-matrix integrates explicit feedback into
each historical item representation matrix as input, so it can express how each item is rated
by users and also capture more information than a single vector. Second, according to my
assumption that users shall prefer items that are similar to their historical interacted items,
this module can transfer the target user’s historical items into the proposed model based on
the similarity between the target user’s historical items and the target item.

These provide an answer to RQ3, namely that the Friend Module and the Item Module
enhance the model’s performance.

Combination of neighborhood-based CF and model-based CF

Since my assumption is combining neighborhood-based CF with model-based CF, namely
hybrid CF, can provide better recommendation results than only neighborhood-based CF
alone or only model-based CF alone. To answer RQ4, I tune the hyper-parameters λ and θ

which control the weight between neighborhood-based CF and model-based CF. In Table
7.15, the comparison has shown that hybrid CF, in which combining neighborhood-based CF
and model-based CF (i.e., λ = 0.5 and θ = 0.5) can help provide better recommendations
than neighborhood-based CF alone (i.e., λ = 0.0 and θ = 0.0) or model-based CF alone (i.e.,
λ = 1.0 and θ = 1.0).

Because neighborhood-based CF and model-based CF are both functional in RSs and
they both provide their own advantages. Thus, combining neighborhood-based CF and
model-based CF in equivalent or similar ratios in RSs can provide better recommendation
results than only neighborhood-based CF or only model-based CF. This can provide an
answer to RQ4.



7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender
Systems 115

Performance comparison between AHCF* and AHCF

According to Table 7.12, the result shows that the improved version AHCF* provides better
results than the previous version AHCF [74]. However, I notice that the improvement of the
results over AHCF is less than 2% for the FilmTrust dataset, whereas it is less than 10-12%
in ML100K and ML1M datasets.

One possible factor is rating ranges s of each dataset are not equal. In this paper,
FilmTrust’s rating range is a set of {1,2,3,4}, while rating range of ML100K and ML1M
are {1,2,3,4,5}. Since this work focuses on and pays attention to the individual rating score,
the proposed AHCF* may work well on the dataset that provides a wider range of ratings.
In the previous work [74], I have shown that the model representing the user in the s-rows
matrix achieves better results than the model in a single embedding vector.

I evaluate this assumption by a small experiment on ML100K and ML1M datasets by
separating rating range s-score into binary score [1,2]. I set the threshold T and binary score
B(s) are defined as follows.

B(s) =

1,s < T

2,s≥ T
The results obtained from AHCF* on binary rating representation are better than a single

embedding vector but less than the original s-score. Moreover, my framework contains a
rating conversion method which converts specific ratings between a specific pair of user–item.
The conversion method should work better on datasets that contain a wider rating range.
Therefore, we can interpret that the number of rating range affects AHCF* performance.

Another possible factor that affects the performance of the model is the sparsity of data. I
notice that the density of the FilmTrust dataset is 1.14%, whereas the density of ML100K
and ML1M are 6.30% and 4.47%, respectively. It might be concluded that the sparsity of
data affects the model performance. However, we have to carefully investigate this issue in
several aspects. There might be another factor that affects the performance of the proposed
AHCF*.

Performance of AHCF* on different number of ratings distributions

I also study how the distribution of ratings affects the AHCF*. Our assumption is that
different distributions of ratings affect the model. If the dataset contains a number of high
scores more than a number of less scores, the model should perform better. I generate
synthetic data with different numbers of rating distributions as follows.

1. Users always rate items with a low score more than a high score



116 Integration and Recommendation

Table 7.17: Evaluation results for experiments on the synthetic dataset with different number
of rating distribution

Metrics 1 2 3

P@10 0.2285 0.4025 0.7575
Re@10 0.0893 0.1272 0.2017
NDCG 0.6372 0.7492 0.9137

2. Users always rate items with a low score and high score equally

3. Users always rate items with a high score more than a low score

I generate a full interaction matrix with rating ranges of {1,2,3,4,5} between 200 users
and 200 items with three different numbers of ratings above. The number of interactions is
40,000 records for all three datasets. I do the experiment on these three synthetic datasets
with AHCF* by the setting of λ = 0.5 and θ = 0.5.

The results in Table 7.17 have shown that AHCF* performs best results on the 3rd
synthetic data with users always rate items with a high score more than a low score and
performs worst results on the 1st synthetic data with users always rate items with a low score
more than a high score.

Because AHCF* evaluates the result by ranking recommendation, the model will rec-
ommend items with higher predicted scores. If the dataset contains a high number of high
rating scores {4,5}, AHCF* learns user and item representations from those given high
rating scores. Therefore, we can expect to obtain the user and item representations which
correspond to those given high scores and the recommendation should be good as well. In
contrast, if the dataset contains a high number of low rating scores {1,2}, AHCF* learns
user and item representations from those that give low rating scores. Then the obtained
user and item representations will be corresponded to low rating scores which leads to bad
recommendations.

Moreover, I have learned from this experiment that explicit feedback (i.e., rating score) is
important for a recommendation. Even though these 3 sets of synthetic data contain the same
number of records, the results are different because ‘user rates item’ does not interpret that
‘user likes item’.



7.5 Discussion 117

7.4.4 Conclusion

In this work, I propose an end-to-end KG-based attentive hybrid CF NN architecture for
rating conversion in RSs and ranking recommendations, using explicit feedback. Different
from traditional RSs, I propose efficient and novel input representations, which are UR-matrix
and IR-matrix, to enable the direct incorporation of explicit feedback (ratings) into the model
via input representation. The UR-matrix and IR-matrix can store more relevant information
and specific characteristics of users and items, respectively. Our proposed model includes:
(1) a Friend Module (user-based CF) that first converts friends’ ratings to match the target
user’s perspective, and then assigns a nonuniform individual weight to each user, (2) an Item
Module (item-based CF) that can capture relations between the target item and target user’s
historical items based on their similarity. The experimental results show that the proposed
model can provide more accurate results than existing methods.

7.5 Discussion

In subsection 7.2, 7.3 and 7.4, the details of TrustAnt [72], TransRS [73] and AHCF [74]
are presented respectively. Since the main purpose of this thesis is focusing on a hybrid CF
RSs, therefore, in this subsection, I will discuss the differences between these two proposed
models (i.e., TransRS and AHCF) because TrustAnt is a neighborhood-based CF model.

Even though these TransRS and AHCF are categorized as the hybrid CF model in RSs,
they do not share the same main idea. Also, they perform and generate the recommendations
in different ways. The brief comparison is described in Table 7.18.

7.5.1 Model Architecture

The former one TransRS [73] is a translation-based embedding model which consists of
three main steps. First, the model feeds positive triplets of (user, item,rating) in TransE [12]
KG embedding model. By applying constraints like those in CPE [77], in the first step, the
user, item, and relation embedding vectors are generated, which will be used in the next
step. Second, for each pair of target user–item, find a set of n target user’s best friends and
then perform the PCA-based rating conversion method which is described in 4.2. After
the second step, the converted embedding vectors of n best friends are obtained. Finally,
these obtained embedding vectors will be fed in the rating prediction step and predict the
score that the target user will give to the target item. From these steps, TransRS [73] can be
categorized as a building blocks model in which each step is a module that takes an input
from the previous one and generates output for the next. This kind of architecture may look



118 Integration and Recommendation

Table 7.18: Comparison between TransRS [73] and AHCF [74]

Methods TransRS AHCF

Model architecture building blocks end-to-end NN

Model parameters only model-based block
contains model parameters

one set model parameters

Rating prediction and
output

scalar form vector form

Optimization and learning only in model-based
blocks

in whole end-to-end model

Evaluation rating prediction &
ranking recommendation

ranking recommendation

quite simple to understand and implement when comparing the end-to-end models since
each module can handle its own objective without relying on the others. However, it requires
a lot of computational resources. Moreover, the building blocks model is outdated, since
researchers are recently more interested in an end-to-end, which are more practical and easier
to reproduce the results.

While the latter one, AHCF [74] is categorized as an end-to-end NN model, which is
a modern approach and more practical than the building blocks model. Unlike the former
model, even though this end-to-end model consists of several modules, it can train the given
train dataset and can generate the recommendation within the model itself in one single
optimization. Because of its effectiveness in utilization and reproducing the results, recent
research in the RSs field usually proposed recommendation models based on this end-to-end
model.

7.5.2 Model parameters

Model parameters are properties of training data that will be learned during the learning
process in the model-based CF model. Since TransRS [73] is a model that consists of building
blocks, only model-based blocks contain the model parameters, which will be optimized
within their own blocks. In TransRS [73], the first step of generating user, item, and relation
embeddings is implemented by TransE embedding techniques, all embeddings are model
parameters and they are trained and optimized within the first step.

On the other hand, based on the end-to-end model properties, the model parameters of
AHCF [74] are trained and optimized in a single model, so it is like a one-stop service which
is better than the building blocks.



7.5 Discussion 119

7.5.3 Rating prediction and output

In RSs, rating prediction is one of the most important steps. Generally, RSs will predict the
rating score of the target user towards the target item, and those predicted rating scores are
usually in a scalar form.

According to my proposed models, the rating prediction of each model is different. In
TransRS [73], because it is a hybrid CF model which is implemented based on ‘applying
model-based CF idea to neighborhood-based CF model’, the prediction step is similar to the
traditional neighborhood-based CF. It can predict the rating score of the target user towards
to the target item in scalar form. The output of this model is a predicted rating score in scalar
value.

Unlike TransRS [73], AHCF [74] does not predict the rating score of the target user
towards the target item in scalar form. Based on the model architecture and its optimization,
the objective of the model is to predict relative distances between inputs. Therefore, the task
of the model is not a rating prediction, but rather a ranking recommendation. Therefore, this
model does not predict the concrete rating score in scalar form like traditional neighborhood-
based CF models do. It generates a specific latent relation vector of the target user towards
the target item.

7.5.4 Optimization and learning

Because the prediction step of TransRS [73] is a neighborhood-based CF model which is
based on the memory-based approach, it does not contain any optimization and learning
processes. On the other hand, AHCF [74] is an end-to-end NN CF model which essentially
requires the optimization and learning processes as important parts of the model. In this
work, I use pairwise hinge loss and AdaGrad [29] as the optimization.

Unlike other loss functions, such as cross-entropy loss or MAE loss, whose objective is
to learn to predict directly a label, a value, or a set or values given an input, the objective of
the pairwise hinge loss is to predict relative distances between inputs. AHCF tries to model
the users and items embeddings based on the idea of TransE. Therefore, this pairwise hinge
loss is suitable for the model.

7.5.5 Evaluation

In RSs, to evaluate the performance of the model, there are two popular approaches, which
are rating prediction and item ranking recommendation. In TransRS [73], since the output of



120 Integration and Recommendation

the model is in a scalar predicted rating form, it is possible to do both rating prediction and
item ranking recommendation.

On the other hand, in AHCF [74], only the item ranking recommendation is implemented
since this model is implemented and optimized by a pairwise hinge loss, which is the ranking
loss, and the output is in a vector form rather than a scalar rating. Therefore, AHCF cannot
do the rating prediction to evaluate the performance of the model.

Nowadays, item ranking recommendation becomes more popular than rating prediction
because it is more practical than rating prediction. According to the scenario in the real
world, for example, when a user wants to watch a movie, the RSs always gives the user a list
of movies he/she might like. This is the item ranking recommendation which is generated
based on the preference of each user. On the other hand, rating prediction usually generates
prediction only of a specific pair of user–item in the test dataset. Therefore, item ranking
recommendation is more practical than rating prediction.



Chapter 8

Summary

8.1 Summary

This thesis presents a novel approach for the hybrid CF RSs which can leverage and combine
the advantages of both neighborhood-based CF approach and model-based CF approach
in building the efficient hybrid CF RSs. As a hybrid CF model, the main challenge is how
to combine neighborhood-based approach and model-based approach together. Moreover,
each approach still suffers from their own problems, so these problems are need to be solved
during proposing a novel hybrid CF RSs.

The main research which contributes to this thesis is Attentive Hybrid Collaborative
Filtering for Rating Conversion in Recommender Systems (AHCF) [74].

First, an approach to utilize neighbors into a hybrid CF model is proposed in [74]. Since
the main idea of this thesis is to apply the neighborhood-based idea into the model-based CF
model, so the model structure, including user and item representations are newly proposed in
this work. Unlike traditional existing CF RSs models, the novel user and item representations,
called user representation matrix (UR-matrix) and item representation matrix (IR-matrix) are
introduced to this model. In order to store neighbors’ information which is usually in the
form of explicit feedback, UR-matrix and IR-matrix can store and specify characteristics of
each user and item respectively.

Second, in the neighborhood-based CF approach, the issues to consider in this thesis
are: 1) different influence of neighbors on the target user and 2) different rating patterns of
users. According to the first issue, all friends’ influences are not equal from the target user’s
perspective. The closest friend should have the most influence on the target user and should
participate the most role in the model. Likewise, for the item side, the historical item that
is most similar to the target item should have more influence than the less similar historical
item. Thus, the friends and historical items selection module are proposed to solve this issue.



122 Summary

In addition to the first issue, the second issue of the neighborhood-based CF approach,
which is different rating patterns of users, is solved in the model too. Due to the improper
rating-range problem that occurs when users have different rating patterns, the rating of
friends should be converted into the target user’s perspective before prediction. The rating
conversion between a pair of user is proposed in the friend module which can be categorized
as a user-based CF that first converts friends’ ratings to match the target user’s perspective,
and then assigns a nonuniform individual weight to each user Moreover, the item module
which can be categorized as item-based CF is proposed to capture relations between the
target item and target user’s historical items based on their similarity.

Third, in the model-based CF approach, we need to consider how to model the relationship
between user and item. Some of the model-based CF models try to construct user–item
relationship by minimizing the distance between user and item in vector space. In order to
prevent the geometric inflexibility problem, the TransE [12] concept, one of the most popular
translation-based KG embedding models, is introduced to this proposed model. In this work,
the latent relation between a pair target user–item is constructed from two components: 1)
combination between the target user and his/her friends (obtained from Eq. 5.4.13) and 2)
combination between target item and target user’s historical items (obtained from Eq. 5.4.14).
Then the optimization of this model is learned based on the TransE idea.

With AHCF model that consists of all proposed components to solve the aforementioned
problems in both neighborhood-based and model-based CF approaches, the experimental
results have shown that the proposed model provides better effectiveness than existing
methods.

In addition to the main work of AHCF, I have proposed two more models, which are
Translation-based Embedding model for Rating Conversion in RSs (TransRS) [73] and
Integrating the importance levels of friends into trust-based ant-colony RSs (TrustAnt) [72].
The proposed model in [73] is a hybrid CF model which tries to combine neighborhood-based
and model-based CF approach into the model. Although TransRS is a hybrid CF RS, the
model architecture is a pipeline model instead of the end-to-end model.

The proposed model TrustAnt in [72] is a neighborhood-based CF model. This model is
included in this thesis because it consists of a rating conversion method to solve the improper
rating-range problem, which is one of the main challenges of this thesis.

8.2 Future Plan

For future work, there are three further challenges that are possible to be extended.



8.2 Future Plan 123

First, there is room to improve the rating conversion method. Inspired by Coherence and
inconsistencies in rating behavior: estimating the magic barrier of RSs [64], they observed
that user coherence affects the recommendation results. They separated users into 2 groups,
which are 1) easy to predict (more coherence) and 2) difficult to predict (less coherence),
and they show that training and testing the model with the easy group can provide more
accurate results than training and testing with the difficult group. In their model, they extract
the coherence of users by genre of movies. By integrating the coherence of users, it might
increase the effectiveness of the model.

Second, neighbors selection method can be improved by additional information. Since
in [72], I use trust information to form the graph of users and use the ACO concept with
trust value to find high-quality neighbors. Because this model is the neighborhood-based
CF model and it might not practical for recent problems, so in future, I plan to include the
additional information (e.g., trust relation) to the end-to-end NN hybrid CF model to find
high-quality neighbors and hope that the model can learn better user and item representations.

Finally, I plan to generate explainable recommendations. According to the [83], explain-
able recommendation refers to personalized recommendation algorithms that address the
problem of why - they not only provide users or system designers with recommendation
results, but also explanations to clarify why such items are recommended. Explainable
AI aims to develop models that can explain their (or other model’s) decisions for system
designers or normal users. There are several styles of recommendation explanations, such as
explanations based on relevant users or items, which are closely related to the idea behind
user-based or item-based CF methods. According to the architecture of the AHCF model,
which consists of both user-based and item-based CF concepts, it is possible to answer
the problem of why such items are recommended in more detail. However, it need more
experimental evaluation, so I would like to take this idea for the next step of future work.





Publication list

Journals

• P. Tengkiattrakul, S. Maneeroj, and A. Takasu, “Integrating the Importance Levels of
Friends into Trust-based Ant-colony Recommender Systems”, International Journal of
Web Information System, Vol. 15 No. 1, pp. 28-46, 2019.

International conference

• P. Tengkiattrakul, S. Maneeroj, and A. Takasu, “Translation-based Embedding Model
for Rating Conversion in Recommender Systems”, In IEEE/WIC/ACM International
Conference on Web Intelligence (WI ’19), pp. 217–224, October 2019. (Full Paper)

• P. Tengkiattrakul, S. Maneeroj, and A. Takasu, “Attentive Hybrid Collaborative Fil-
tering for Rating Conversion in Recommender Systems”, In: Brambilla, M., Chbeir,
R., Frasincar, F., Manolescu, I. (eds) Web Engineering (ICWE 2021), Springer, Cham,
pp.151–165, May 2021. (Full Paper)





Bibliography

[1] Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 17(6):734–749.

[2] Aggarwal, C. C., Wolf, J. L., Wu, K.-L., and Yu, P. S. (1999). Horting hatches an egg: A
new graph-theoretic approach to collaborative filtering. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’99,
pages 201–212, New York, NY, USA. ACM.

[3] Ahamed, M. T. and Afroge, S. (2019). A recommender system based on deep neural net-
work and matrix factorization for collaborative filtering. In 2019 International Conference
on Electrical, Computer and Communication Engineering (ECCE), pages 1–5.

[4] Ayub, M., Ghazanfar, M. A., Mehmood, Z., Saba, T., Alharbey, R., Munshi, A. M.,
and Alrige, M. A. (2019). Modeling user rating preference behavior to improve the
performance of the collaborative filtering based recommender systems. PLOS ONE,
14(8):1–29.

[5] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate.

[6] Bedi, P. and Sharma, R. (2012a). Trust based recommender system using ant colony for
trust computation. Expert Systems with Applications, 39(1):1183–1190.

[7] Bedi, P. and Sharma, R. (2012b). Trust based recommender system using ant colony for
trust computation. Expert Systems with Applications, 39(1):1183–1190.

[8] Beel, J., Gipp, B., Langer, S., and Breitinger, C. (2016). Research-paper recommender
systems: a literature survey. International Journal on Digital Libraries, 17(4):305–338.

[9] Bellaachia, A. and Alathel, D. (2016a). Improving the recommendation accuracy for
cold start users in trust-based recommender systems. International Journal of Computer
and Communication Engineering, 5:206–214.

[10] Bellaachia, A. and Alathel, D. (2016b). Improving the recommendation accuracy for
cold start users in trust-based recommender systems. International Journal of Computer
and Communication Engineering, 5:206–214.

[11] Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2014). A semantic matching energy
function for learning with multi-relational data. Machine Learning, 94(2):233–259.



128 Bibliography

[12] Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., and Yakhnenko, O. (2013).
Translating embeddings for modeling multi-relational data. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
pages 2787–2795, USA. Curran Associates Inc.

[13] Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370.

[14] Catherine, R. and Cohen, W. (2017). Transnets: Learning to transform for recommenda-
tion. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys
’17, page 288–296, New York, NY, USA. Association for Computing Machinery.

[15] Chalermpornpong, W., Maneeroj, S., and Atsuhiro, T. (2013). Rating pattern formation
for better recommendation. In 2013 24th International Workshop on Database and Expert
Systems Applications, pages 146–151.

[16] Chen, C., Zhang, M., Liu, Y., and Ma, S. (2018a). Neural attentional rating regression
with review-level explanations. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, pages 1583–1592, Republic and Canton of Geneva, CHE. International World
Wide Web Conferences Steering Committee.

[17] Chen, C., Zhang, M., Liu, Y., and Ma, S. (2019a). Social attentional memory network:
Modeling aspect- and friend-level differences in recommendation. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, WSDM ’19,
pages 177–185, New York, NY, USA. Association for Computing Machinery.

[18] Chen, J., Zhang, H., He, X., Nie, L., Liu, W., and Chua, T.-S. (2017). Attentive
collaborative filtering: Multimedia recommendation with item- and component-level
attention. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, page 335–344, New York, NY,
USA. Association for Computing Machinery.

[19] Chen, R., Hua, Q., Chang, Y.-S., Wang, B., Zhang, L., and Kong, X. (2018b). A survey
of collaborative filtering-based recommender systems: From traditional methods to hybrid
methods based on social networks. IEEE Access, 6:64301–64320.

[20] Chen, T. and Guestrin, C. (2016). XGBoost. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM.

[21] Chen, W., Cai, F., Chen, H., and Rijke, M. D. (2019b). Joint neural collaborative
filtering for recommender systems. ACM Trans. Inf. Syst., 37(4).

[22] Chen, Y., Wu, C., Xie, M., and Guo, X. (2011). Solving the sparsity problem in
recommender systems using association retrieval. Journal of Computers, 6:1896–1902.

[23] Cunningham, P. and Delany, S. J. (2022). k-nearest neighbour classifiers - a tutorial.
ACM Computing Surveys, 54(6):1–25.

[24] Deng, Z., Huang, L., Wang, C., Lai, J., and Yu, P. S. (2019). Deepcf: A unified
framework of representation learning and matching function learning in recommender
system. CoRR, abs/1901.04704.



Bibliography 129

[25] Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of neighborhood-based
recommendation methods. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors,
Recommender Systems Handbook, pages 107–144. Springer.

[26] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T.,
Sun, S., and Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, page 601–610, New York, NY, USA.
Association for Computing Machinery.

[27] Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., and Zhang, F. (2017). A hybrid collaborative
filtering model with deep structure for recommender systems. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17, page 1309–1315. AAAI Press.

[28] Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE
Computational Intelligence Magazine, 1(4):28–39.

[29] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159.

[30] Dziugaite, G. K. and Roy, D. M. (2015). Neural network matrix factorization. CoRR,
abs/1511.06443.

[31] Gong, S., Ye, H., and Dai, Y. (2009). Combining singular value decomposition and item-
based recommender in collaborative filtering. In 2009 Second International Workshop on
Knowledge Discovery and Data Mining, pages 769–772.

[32] Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J.,
and Riedl, J. (1999). Combining collaborative filtering with personal agents for better
recommendations. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference
Innovative Applications of Artificial Intelligence, AAAI ’99/IAAI ’99, pages 439–446,
USA. American Association for Artificial Intelligence.

[33] Grčar, M., Mladenić, D., Fortuna, B., and Grobelnik, M. (2006). Data sparsity issues
in the collaborative filtering framework. In Advances in Web Mining and Web Usage
Analysis: 7th International Workshop on Knowledge Discovery on the Web, WebKDD
2005, pages 58–76.

[34] Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., and He, Q. (2020). A survey
on knowledge graph-based recommender systems. ArXiv, abs/2003.00911.

[35] Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., and Li, J. (2018). Openke: An
open toolkit for knowledge embedding. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages
139–144. Association for Computational Linguistics.

[36] Hangal, S., MacLean, D., Lam, M. S., and Heer, J. (2010). All friends are not equal:
Using weights in social graphs to improve search. In Workshop on Social Network Mining
& Analysis, ACM KDD.



130 Bibliography

[37] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural collaborative
filtering. In Proceedings of the 26th International Conference on World Wide Web, WWW
’17, pages 173–182, Republic and Canton of Geneva, CHE. International World Wide
Web Conferences Steering Committee.

[38] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. (1999). An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’99, pages 230–237, New York, NY, USA. Association for Computing
Machinery.

[39] Hsieh, C.-K., Yang, L., Cui, Y., Lin, T.-Y., Belongie, S., and Estrin, D. (2017). Collabo-
rative metric learning. In Proceedings of the 26th International Conference on World Wide
Web, WWW ’17, pages 193–201, Republic and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

[40] Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, ICDM ’08, page 263–272, USA. IEEE Computer Society.

[41] Huang, Z., Chung, W., Ong, T.-H., and Chen, H. (2002). A graph-based recommender
system for digital library. In Proceedings of the 2nd ACM/IEEE-CS Joint Conference
on Digital Libraries, JCDL ’02, pages 65–73, New York, NY, USA. Association for
Computing Machinery.

[42] Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. (2015). Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 687–696, Beijing, China. Association
for Computational Linguistics.

[43] Jin, R. and Si, L. (2004). A study of methods for normalizing user ratings in collabora-
tive filtering. In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’04, pages 568–569, New
York, NY, USA. ACM.

[44] Jin, R., Si, L., Zhai, C., and Callan, J. (2003). Collaborative filtering with decoupled
models for preferences and ratings. In Proceedings of the Twelfth International Conference
on Information and Knowledge Management, CIKM ’03, pages 309–316, New York, NY,
USA. ACM.

[45] Juan, W., Yue-xin, L., and Chun-ying, W. (2019). Survey of recommendation based on
collaborative filtering. Journal of Physics: Conference Series, 1314(1):012078.

[46] Kaleroun, A. and Batra, S. (2014a). Collaborating trust and item-prediction with ant
colony for recommendation. In 2014 Seventh International Conference on Contemporary
Computing (IC3), pages 334–339, Los Alamitos, CA, USA. IEEE Computer Society.

[47] Kaleroun, A. and Batra, S. (2014b). Collaborating trust and item-prediction with ant
colony for recommendation. In 2014 Seventh International Conference on Contemporary
Computing (IC3), pages 334–339.



Bibliography 131

[48] Klema, V. and Laub, A. (1980). The singular value decomposition: Its computation
and some applications. IEEE Transactions on Automatic Control, 25(2):164–176.

[49] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37.

[50] Lathia, N., Hailes, S., and Capra, L. (2008). Trust-based collaborative filtering. In
Karabulut, Y., Mitchell, J., Herrmann, P., and Jensen, C. D., editors, Trust Management II,
pages 119–134, Boston, MA. Springer US.

[51] Lee, D. D. and Seung, H. S. (2000). Algorithms for non-negative matrix factorization.
In Proceedings of the 13th International Conference on Neural Information Processing
Systems - NIPS ’00, pages 535–541.

[52] Li, M., Tei, K., and Fukazawa, Y. (2019). An efficient co-attention neural network for
social recommendation. In IEEE/WIC/ACM International Conference on Web Intelligence,
WI ’19, pages 34–42, New York, NY, USA. Association for Computing Machinery.

[53] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015). Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages 2181–2187. AAAI Press.

[54] Liu, H., Hu, Z., Mian, A., Tian, H., and Zhu, X. (2014). A new user similarity
model to improve the accuracy of collaborative filtering. Knowledge-Based Systems,
56(C):156–166.

[55] Liu, Y., Wang, S., Khan, M. S. A., and He, J. (2018). A novel deep hybrid recommender
system based on auto-encoder with neural collaborative filtering. Big Data Min. Anal.,
1:211–221.

[56] Massa, P. and Avesani, P. (2007). Trust-aware recommender systems. In Proceedings
of the 2007 ACM Conference on Recommender Systems, RecSys ’07, page 17–24, New
York, NY, USA. Association for Computing Machinery.

[57] Mishra, N., Chaturvedi, S., Vij, A., and Tripathi, S. (2021). Research problems in
recommender systems. Journal of Physics: Conference Series, 1717(1):012002.

[58] Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective
learning on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, page 809–816, Madison, WI,
USA. Omnipress.

[59] Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., and Ferro, E. (2018).
Translational models for item recommendation. In Gangemi, A., Gentile, A. L., Nuzzolese,
A. G., Rudolph, S., Maleshkova, M., Paulheim, H., Pan, J. Z., and Alam, M., editors, The
Semantic Web: ESWC 2018 Satellite Events, pages 478–490, Cham. Springer International
Publishing.

[60] Pirasteh, P., Bouguelia, M.-R., and Santosh, K. C. (2021). Personalized recommenda-
tion: an enhanced hybrid collaborative filtering. Advances in Computational Intelligence,
1(4):1.



132 Bibliography

[61] Qiao, C., Huang, B., Niu, G., Li, D., Dong, D., He, W., Yu, D., and Wu, H. (2018). A
new method of region embedding for text classification. In International Conference on
Learning Representations.

[62] Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (2010). Recommender Systems
Handbook. Springer-Verlag, Berlin, Heidelberg, 1st edition.

[63] Ricci, F., Shapira, B., and Rokach, L. (2015). Recommender systems handbook, Second
edition. Springer New York, NY.

[64] Said, A. and Bellogín, A. (2018). Coherence and inconsistencies in rating behavior:
Estimating the magic barrier of recommender systems. User Modeling and User-Adapted
Interaction, 28(2):97–125.

[65] Salakhutdinov, R. and Mnih, A. (2007). Probabilistic matrix factorization. In Proceed-
ings of the 20th International Conference on Neural Information Processing Systems -
NIPS ’07, pages 1257–1264.

[66] Sharma, M., Mittal, R., Bharati, A., Saxena, D., and Singh, A. (2022). A survey and
classification on recommendation systems.

[67] Shlens, J. (2014). A tutorial on principal component analysis. CoRR, abs/1404.1100.

[68] Sitkrongwong, P., Maneeroj, S., and Takasu, A. (2019). Multi-criteria rating conversion
without relation loss for recommender systems. International Journal of Computers and
Applications.

[69] Socher, R., Chen, D., Manning, C. D., and Ng, A. Y. (2013). Reasoning with neural
tensor networks for knowledge base completion. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems - Volume 1, NIPS’13, page
926–934, Red Hook, NY, USA. Curran Associates Inc.

[70] Tay, Y., Anh Tuan, L., and Hui, S. C. (2018). Latent relational metric learning via
memory-based attention for collaborative ranking. In Proceedings of the 2018 World
Wide Web Conference, WWW ’18, pages 729–739, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering Committee.

[71] Tengkiattrakul, P., Maneeroj, S., and Takasu, A. (2016). Applying ant-colony concepts
to trust-based recommender systems. In Proceedings of the 18th International Conference
on Information Integration and Web-Based Applications and Services, iiWAS ’16, page
34–41, New York, NY, USA. Association for Computing Machinery.

[72] Tengkiattrakul, P., Maneeroj, S., and Takasu, A. (2019a). Integrating the importance
levels of friends into trust-based ant-colony recommender systems. International Journal
of Web Information Systems, 15(1):28–46.

[73] Tengkiattrakul, P., Maneeroj, S., and Takasu, A. (2019b). Translation-based embedding
model for rating conversion in recommender systems. In IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’19, pages 217–224, New York, NY, USA. Associa-
tion for Computing Machinery.



Bibliography 133

[74] Tengkiattrakul, P., Maneeroj, S., and Takasu, A. (2021). Attentive hybrid collaborative
filtering for rating conversion in recommender systems. In Brambilla, M., Chbeir, R.,
Frasincar, F., and Manolescu, I., editors, Web Engineering, pages 151–165, Cham. Springer
International Publishing.

[75] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

[76] Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743.

[77] Wang, X., Xu, C., Guo, Y., and Qian, H. (2016). Constrained preference embedding for
item recommendation. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, pages 2139–2145. AAAI Press.

[78] Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, AAAI’14, pages 1112–1119. AAAI Press.

[79] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2014). Embedding entities and
relations for learning and inference in knowledge bases.

[80] Zhang, S., Tay, Y., Yao, L., Wu, B., and Sun, A. (2019a). Deeprec: An open-source
toolkit for deep learning based recommendation. CoRR, abs/1905.10536.

[81] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender
system: A survey and new perspectives. ACM Comput. Surv., 52(1).

[82] Zhang, Y., Ai, Q., Chen, X., and Wang, P. (2018). Learning over knowledge-base
embeddings for recommendation. CoRR, abs/1803.06540.

[83] Zhang, Y. and Chen, X. (2020). Explainable recommendation: A survey and new
perspectives. Foundations and Trends® in Information Retrieval, 14(1):1–101.




	Committee
	Acknowledgements
	Abstract

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.2.1 Hybrid Collaborative Filtering: How to apply neighborhood-based approach to model-based approach
	1.2.2 Solving Problems in Neighborhood-based CF Approach
	1.2.3 Solving Problems in Model-based CF Approach

	1.3 Objective
	1.4 Contribution
	1.4.1 Utilizing Neighbors in the End-to-end Hybrid CF
	1.4.2 Neighbors Selection and Rating Conversion in the End-to-end Hybrid CF
	1.4.3 Incorporating Knowledge Graph Embedding to Recommender Systems
	1.4.4 Integration of Proposed Models

	1.5 Thesis Organization

	2 Background
	2.1 Recommender Systems
	2.1.1 Collaborative Filtering
	2.1.2 Basic Recommendation Strategies
	2.1.3 Challenges in Recommender Systems

	2.2 Ant Colony Optimization in Recommender Systems
	2.3 Knowledge Graph Embedding
	2.3.1 Translation-based Embedding Models
	2.3.2 Semantic Matching Model
	2.3.3 Semantic Matching Model with Neural Networks

	2.4 Improper Rating-range Problem and Rating Conversion
	2.4.1 Linear Normalization
	2.4.2 Gaussian Normalization
	2.4.3 Decoupling Normalization

	2.5 Deep Learning and Attention Mechanism

	3 Related Work
	3.1 Existing Recommender Systems
	3.1.1 Overview
	3.1.2 Collaborative Filtering Recommender Systems
	3.1.3 Hybrid Collaborative Filtering Recommender Systems

	3.2 Knowledge Graph Embedding based Recommender Systems
	3.2.1 Translation-based Embedding Model in Recommender Systems
	3.2.2 Knowledge Graph-based Neural Network Recommender Systems

	3.3 Rating Conversion Techniques
	3.3.1 Linear Mapping
	3.3.2 Lathia's Rating Conversion Method
	3.3.3 Warat's Rating Conversion Method
	3.3.4 Ayub's Rating Conversion
	3.3.5 Rating Conversion on Multi-criteria RSs


	4 Utilizing Neighbors in a Hybrid CF Model
	4.1 Introduction
	4.2 Simple Approach to Utilize Neighbors in Hybrid CF
	4.3 Utilizing Neighbors in End-to-end Hybrid CF Model
	4.3.1 User Representation Matrix (UR-matrix)
	4.3.2 Item Representation Matrix (IR-matrix)

	4.4 Discussion

	5 Neighbors Selection and Rating Conversion in Hybrid CF model
	5.1 Introduction
	5.2 Trust-based Ant Recommender Systems
	5.2.1 Trust Network and Input Representation
	5.2.2 Ant algorithm
	5.2.3 Rating Conversion and Weight Adjustment

	5.3 Translation-based Embedding Model for Rating Conversion in Recommender Systems
	5.3.1 Neighbor Selections
	5.3.2 PCA-based Rating Score Conversion
	5.3.3 Rating Pattern Extraction
	5.3.4 Score Conversion

	5.4 Attentive Hybrid Collaborative Filtering
	5.4.1 Friends and Historical Items Selection
	5.4.2 The Friend Module
	5.4.3 The Item Module
	5.4.4 Generating Latent Relations

	5.5 Discussion
	5.5.1 Comparison between Rating Conversion Methods
	5.5.2 Comparison between Neighbors Selection Methods


	6 Incorporating Knowledge Graph Embedding to Recommender Systems
	6.1 Introduction
	6.2 Translation-based Embedding Model for Rating Conversion in Recommender Systems
	6.2.1 Embedding Vectors of Users and Items

	6.3 Attentive Hybrid Collaborative Filtering
	6.3.1 The Latent Relation Modeling
	6.3.2 Objective Function

	6.4 Discussion
	6.4.1 Purpose of Applying Knowledge Graph Embedding technique to Recommender Systems
	6.4.2 Relation Vector


	7 Integration and Recommendation
	7.1 Introduction
	7.2 Trust-based Ant Recommender System
	7.2.1 Prediction value
	7.2.2 Experimental Evaluation
	7.2.3 Discussion
	7.2.4 Conclusion

	7.3 Translation-based Embedding model for Rating Conversion in Recommender Systems
	7.3.1 Rating Prediction
	7.3.2 Experimental Evaluation
	7.3.3 Discussion
	7.3.4 Conclusion

	7.4 Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender Systems
	7.4.1 Inference
	7.4.2 Experimental Evaluation
	7.4.3 Discussion
	7.4.4 Conclusion

	7.5 Discussion
	7.5.1 Model Architecture
	7.5.2 Model parameters
	7.5.3 Rating prediction and output
	7.5.4 Optimization and learning
	7.5.5 Evaluation


	8 Summary
	8.1 Summary
	8.2 Future Plan

	Bibliography

