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Abstract

View update is an important mechanism in relational databases. Since a view
is defined by a query over the underlying database, updates on the view must be
translated to the corresponding updates on the database. Existing literature has
shown the ambiguity of this translation that there may be many strategies for
updating the database in order to properly reflect view updates.

To address this ambiguity problem, we propose an effective language-based
approach for making view update strategies programmable and validatable so that
the corresponding view definition is automatically derived without ambiguity.
Specifically, we design a fragment of the Datalog language for specifying update
strategies and propose a validation algorithm for these strategies with an automatic
derivation of the corresponding view definition. Moreover, we present a mechanism
to incrementalize user-written update strategies in order to improve the performance
of updatable views in realistic relational database management systems. We
theoretically prove the soundness and completeness of our approach and practically
validate the efficiency of the framework implementation by experiments on a
benchmark collected from real-world applications. The experiments show that our
validation algorithm is feasible for solving many view update strategies and our
incrementalization can significantly reduce the running time of view updates in
practical relational database management systems.

To enhance the ease of use of Datalog in programming view update strategies,
especially for the case that the user-written programs are not valid, we propose an
efficient approach to interactively debugging Datalog programs so that the user’s
burden is reduced. Specifically, we provide a syntax for users to specify properties
of non-recursive Datalog programs. We present a counterexample generator that
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verifies specified properties and generates counterexamples to show unexpected
behaviors of user-written programs. We design a debugging engine combined
with a dialog-based user interface to assist users in locating bugs in the programs
with the generated counterexamples. We have implemented a prototype of our
approach and demonstrated its feasibility and efficiency.

We further extend our approach to allow using Datalog for programming
view update strategies on knowledge graphs in the RDF (Resource Description
Framework) format. Recursion is the key that gives Datalog the capabilities to
exploit the graph structure of RDF data. To free programmers from understanding
and implementing recursive operators that are more complex than non-recursive
parts, we propose an approach to formulate a Datalog-written view update
strategy as the combination of two parts: a recursive part, which implements
recursive patterns, and a non-recursive one, which is an inner update strategy. On
the one hand, the recursive Datalog rules of the first part are pre-defined and
pre-validated so that their well-behavedness is guaranteed. On the other hand, we
allow programmers to manually write the inner update strategies in non-recursive
Datalog, which are automatically validated. To guarantee the ease of use of
pre-defined recursive programs in constructing a new one, we extend Datalog with
a restricted form of higher-order predicate syntax. To improve the performance of
the Datalog programs, we propose an algorithm to transform all higher-order
predicates into equivalent first-order predicates that can be evaluated efficiently.

We have implemented a framework for our proposed methods. To integrate our
framework with a relational database management system such as PostgreSQL, we
design a compilation algorithm to transform Datalog-written view update strategies
into procedural SQL code. The SQL program consists of all necessary statements
for creating an updatable view in the database. The updatable view uses trigger
mechanisms to automatically invoke the view update strategy in response to
view updates in a single request or transaction. Therefore, programmers can run
Datalog programs in a PostgreSQL database via our provided command-line tool
or web-based user interface.



vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 View Update Strategies in Non-Recursive Datalog . . . . . . 6
1.2.2 Debugging Non-Recursive View Update Strategies . . . . . . 7
1.2.3 Recursive View Update Strategies . . . . . . . . . . . . . . . 7

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Relational Databases and Datalog . . . . . . . . . . . . . . . . . . . 9

2.1.1 Relational databases . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Datalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 View update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Bidirectional Transformations . . . . . . . . . . . . . . . . . . . . . 13
2.4 Rationale of Our Approach . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Language-Based Approaches . . . . . . . . . . . . . . . . . . 16



viii Contents

3 View Update Strategies in Non-Recursive Datalog 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Language for View Update Strategies . . . . . . . . . . . . . . 22

3.2.1 Formulating Update Strategies as Queries Producing Delta
Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 LVGN-Datalog . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Validation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Well-definedness . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Existence of A View Definition Satisfying GetPut . . . . . . 33
3.3.4 The PutGet Property . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Soundness and Completeness . . . . . . . . . . . . . . . . . 39

3.4 Incrementalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 A Debugger for Non-Recursive View Update Strategies 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Counterexample Generation . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Specifying Program Properties . . . . . . . . . . . . . . . . . 58
4.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Generating Counterexamples . . . . . . . . . . . . . . . . . . 60

4.3 Interactively Locating Bugs with Counterexamples . . . . . . . . . 63
4.3.1 Checking Counterexamples . . . . . . . . . . . . . . . . . . . 64
4.3.2 Dialog-based User Debugging Interface . . . . . . . . . . . . 65
4.3.3 Debugging Engine . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Implementation and Experiment . . . . . . . . . . . . . . . . . . . . 72
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Contents ix

5 Recursive View Update Strategies 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 RDF views over general relations . . . . . . . . . . . . . . . 83
5.2.2 Views over RDF Graphs . . . . . . . . . . . . . . . . . . . . 84
5.2.3 RDF views defined with recursions . . . . . . . . . . . . . . 85
5.2.4 Specifying views using higher-order predicates . . . . . . . . 86

5.3 An Extension of Datalog with Higher-Order Predicates . . . . . . . 88
5.3.1 Datalog with Higher-order Predicates . . . . . . . . . . . . . 89
5.3.2 Syntax Restriction . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Translating Higher-Order Predicate into First-Order Predicate 90
5.3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Predefining View update Strategies . . . . . . . . . . . . . . . . . . 95
5.4.1 General relations . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Tree-like RDF graphs . . . . . . . . . . . . . . . . . . . . . . 99
5.4.3 General RDF Graphs . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion 113
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117

Appendix A More details of Chapter 3 131
A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1.1 Proof of Lemma 3.2.7 . . . . . . . . . . . . . . . . . . . . . . 131
A.1.2 Proof of Theorem 3.2.8 . . . . . . . . . . . . . . . . . . . . . 136
A.1.3 Proof of Lemma 3.3.1 . . . . . . . . . . . . . . . . . . . . . . 137
A.1.4 Proof of Lemma 3.3.3 . . . . . . . . . . . . . . . . . . . . . . 137
A.1.5 Proof of Proposition 3.4.2 . . . . . . . . . . . . . . . . . . . 143
A.1.6 Proof of Lemma 3.4.4 . . . . . . . . . . . . . . . . . . . . . . 144



x Contents

A.2 Transformation from safe-range FO formula to Datalog . . . . . . . 146
A.3 Rules for incrementalizing putback programs . . . . . . . . . . . . . 150
A.4 Deriving view deltas . . . . . . . . . . . . . . . . . . . . . . . . . . 151



xi

List of Figures

1.1 A PL/pgSQL program of a trigger procedure. . . . . . . . . . . . . 4

2.1 The view update problem. . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Bidirectional transformation. . . . . . . . . . . . . . . . . . . . . . . 13

3.1 View update strategy put. . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Database and view schema. . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Validation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Incrementalization of putdelta. . . . . . . . . . . . . . . . . . . . . . 41
3.5 View updating time. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Motivating example. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Counterexample generation architecture. . . . . . . . . . . . . . . . 57
4.3 Transformation from Datalog to functions. . . . . . . . . . . . . . . 61
4.4 Strata-based sequentialization. . . . . . . . . . . . . . . . . . . . . . 65
4.5 Debugging interaction example. . . . . . . . . . . . . . . . . . . . . 67
4.6 Debugging demonstration. . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 The Relational Database. . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 An RDF graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 A source graph (on the left) and a view graph (on the right). . . . . 104

A.1 Rules for incrementalizing Datalog putback programs. . . . . . . . . 150





xiii

List of Tables

3.1 Validation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Debugging results. Xindicates that the property is satisfied. . . . . 73

5.1 View update strategies in Datalog with higher-order predicates. . . 109





1

1
Introduction

1.1 Background

1.1.1 Motivation

Nowadays, more and more software and information systems have been
developed with billions of users and an increasingly huge amount of data. To
manage such data, relational database management systems (RDBMS) such
as Oracle Database, MySQL, PostgreSQL, and so forth are widely used as the
backend systems. In relational databases, data are represented as collections of
tables that allow applications to not only query but also update the source data.

Due to the separation of applications and backend databases, programmers
routinely face situations in which data representation used by an application differs
substantially from the data source tables. View is a well-known mechanism to
fulfill this gap [1, 2]. A view is a logical table that is extracted from source tables
by a defining query. By a view, the database exposes only a portion of source data
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with a relevant and compatible representation to applications. Moreover, the
views also contribute to hiding confidential data, reducing space consumption,
speeding up query evaluation [1, 3], database refactoring [4], data integration [2, 5],
interoperating data across multiple databases[6, 7, 8], and so forth. In practice,
most commercial relational DBMSs provide SQL (Structured Query Language)
syntax to define a view. As an example, considering a database of two source
tables r1(A,B) and r2(A,B), the following SQL statement creates a view v as the
union of the two tables:

CREATE VIEW v AS

SELECT * FROM r1

UNION

SELECT * FROM r2;

A significant drawback of views is that a view provides read-only access to
applications and other systems. Once a view is created, it can be queried exactly as
source tables, and thus it is natural to update data on the view. The updatability
of views plays an important role to enable read-write data flows in many essential
applications of using views such as peer-to-peer data exchange, interoperating data
across multiple databases, and so forth.

However, updating views is nontrivial in the sense that a desired update to the
view must be translated into the corresponding update to the source tables so
that the same view can be obtained by the query over the updated source tables
[9, 10, 11, 12, 13].

The existing literature [10, 11] has shown the ambiguity of view updates.
Because the query get is generally not injective, there are potentially many update
translations on the source database that can be used to reflect a given view update.
The following example illustrates the ambiguity issues of view updates.

Example 1.1.1 Consider a database of two source relations r1(A,B) and r2(A,B),
and a view relation v defined as the union of r1 and r2 as mentioned before. To
illustrate the ambiguity of updates to v, consider an attempt to insert a tuple 〈3, 4〉
into the view v. There are three simple ways to update the source database: (i)
insert tuple 〈3, 4〉 into r1, (ii) insert tuple 〈3, 4〉 into r2, and (iii) insert tuple 〈3, 4〉
into both r1 and r2. ut
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The ambiguity issue makes view update an open challenging problem that
that has attracted a lot of attention over the past three decades in database
research [12, 10, 11, 9, 14, 13, 15, 16, 17, 18, 19]. Despite the long history in
database literature, there is no standard solution yet to make relational views
updatable. The existing approaches either impose too many syntactic restrictions
on the view definition get that allow for limited unambiguous update propagation
[11, 20, 9, 21, 22, 19, 23, 17, 24] or provide dialogue mechanisms for users to
manually choose update translations with users’ interaction [14, 18].

An alternative way to make a view updatable is to allow database administrators
to decide and implement a strategy that specifies how view updates are propagated
to the source. In RDBMSs, trigger is a well-known mechanism for developers to
implement such a view update strategy in a trigger procedure. This procedure is
automatically invoked in response to update requests on the view [25]. In this
way, the trigger procedure can be implemented for calculating the corresponding
updates on base tables for each modification on the view and then applying these
updates to the base tables by INSERT, DELETE and UPDATE SQL statements.

In practice, commercial database systems such as PostgreSQL [26] provide
very limited support to automatically make views updatable that even a simple
union view cannot be updated. For the unsupported updatable views, the
programmers commonly take the responsibility of implementing triggers and
associated procedures to handle view updates. Most existing RDBMSs provide
SQL procedural languages such as PL/pgSQL [27] (in PostgreSQL) for trigger
implementation. Figure 1.1 shows an implementation for a trigger on the view v

defined as the union of r1 and r2 as mentioned before. However, it is still difficult
for programmers to define all the necessary triggers and associated actions for
updatable views. Moreover, there is no support tool to verify the correctness of
programmers’ update strategies in the sense that the updatable view and its base
tables are consistent for any view updates.

1.1.2 Research Objectives

To resolve the challenging ambiguity issue of view updates, our objective is to
provide a formal language for programmers to explicitly specify their view update
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1 CREATE OR REPLACE FUNCTION public.view_update() RETURNS TRIGGER
LANGUAGE plpgsql

2 SECURITY DEFINER AS $$
3 DECLARE
4 ...
5 BEGIN
6 IF TG_OP = "INSERT" THEN
7 INSERT INTO r1 SELECT (NEW).*;
8 ELSIF TG_OP = "UPDATE" THEN
9 DELETE FROM r1 WHERE ROW(A, B) = OLD;
10 INSERT INTO r1 SELECT (OLD).*;
11 DELETE FROM r2 WHERE ROW(A, B) = OLD;
12 ELSIF TG_OP = "DELETE" THEN
13 DELETE FROM r1 WHERE ROW(A, B) = OLD;
14 DELETE FROM r2 WHERE ROW(A, B) = OLD;
15 END IF;
16 RETURN NULL;
17 EXCEPTION
18 ...
19 END;
20 $$;
21
22 CREATE TRIGGER view_update_trigger
23 INSTEAD OF INSERT OR UPDATE OR DELETE ON
24 v FOR EACH ROW EXECUTE PROCEDURE view_update();

Figure 1.1: A PL/pgSQL program of a trigger procedure.

strategies. This idea is inspired by the research on bidirectional programming
[28, 29] in the programming language community, where update propagation from
the view to the source is formulated as a so-called putback transformation put,
which maps the updated view and the original source to an updated source. This
put not only captures the view update strategy but also fully describes the view
update behavior. First, it is clear that if we have such a putback transformation,
view updates are reflected in the updated source. Second, and more interestingly,
while there may be many putback transformations for a view definition get, there
is at most one view definition for a putback transformation put for a well-behaved
view update [30, 31, 32, 33, 34]. Thus, get can be deterministically derived from
put in general. Although several languages have been proposed for writing put for
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updatable views over tree-like data structures [35, 33, 34], whether we can design
such a user-friendly and expressive language for solving the classical view update
problem on relations remains unclear.

In contrast to the existing approaches [35, 33, 34] where new domain-specific
languages (DSLs) are designed, our approach is to allow Datalog, a well-known
query language, to be used as a formal language for describing view update
strategies in relational databases.

It might be surprising that Datalog, which is a query language, can be also
used for writing updates. Our main idea is to formulate a view update strategy as
a query over the updated view and the original state of the source tables. Such a
query results in source table updates, which can be represented in two atomic
operations: insertions and deletions. The idea reveals that a view update strategy
can be concisely written in a Datalog program. Specifically, for writing updates,
we extend the Datalog syntax with two simple symbols “+” and “-” that indicate
data insertions and deletions, respectively.

Example 1.1.2 Consider the view in Example 3.2.1. A view update strategy can
be specified in Datalog as follows:

−r1(X, Y ) :− r1(X, Y ),¬v(X, Y ).

−r2(X, Y ) :− r2(X, Y ),¬v(X, Y ).

+r1(X, Y ) :− v(X, Y ),¬r1(X, Y ),¬r2(X, Y ).

The first two rules state that if a tuple 〈X, Y 〉 is in r1 or r2 but not in v, it will be
deleted from r1 or r2, respectively. The last rule states that if a tuple 〈X, Y 〉 is in v
but in neither r1 nor r2, it will be inserted into r1. ut

1.1.3 Main Challenges

There are several challenges in designing a formal language for programming
put, a view update strategy, in relational databases.

• The language is desired to be expressive in practice to cover users’ update
strategies for a variety of views.
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• To make every view update consistent with the source database, an update
strategy put must satisfy some certain properties, as formalized in previous
work [28, 32, 31]. Therefore, there is a need for a validation algorithm to
statically check the well-behavedness of user-written strategies and whether
they respect the view definition if the view is defined beforehand.

• For the cases that the user-written view update strategies are not valid, it is
essential to reduce the users’ burden in detecting the unexpected behaviour
of the program and locating the bugs.

• To be useful in practice rather than just a theoretical framework, the language
must be efficiently optimized and implemented when running in relational
database management systems (RDBMSs).

1.2 Contributions

1.2.1 View Update Strategies in Non-Recursive Datalog

We first consider relational views in practical SQL database management
systems. In these databases, the views are commonly defined by SQL without
recursion. To allow updates to these views, we propose a robust language-based
approach for making view update strategies programmable and validatable.
Specifically, we introduce a novel approach to use Datalog to describe these update
strategies. We propose a validation algorithm to check the well-behavedness
of the written Datalog programs. We present a fragment of the non-recursive
Datalog language for which our validation is both sound and complete. This
fragment not only has good properties in theory but is also useful for solving
practical view updates. Furthermore, we develop an algorithm for optimizing
user-written programs to efficiently implement updatable views in relational
database management systems. We have implemented our proposed approach. The
experimental results show that our framework is feasible and efficient in practice.

This is a joint work with Zhenjiang Hu and Hiroyuki Kato, and was published
at the 46th International Conference on Very Large Data Bases (VLDB 2020)
[36, 37]
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1.2.2 Debugging Non-Recursive View Update Strategies

We consider the cases that the user-written view update strategies are not
valid. Although Datalog is used in many potential applications including database
queries, program analysis, and bidirectional transformations, very few approaches
have been proposed for debugging Datalog programs. The existing approaches
require much users’ effort in finding out unintended behaviors or unexpected
computations of the Datalog program that neither counterexamples nor bug
explanations are provided. We propose an efficient approach to interactively
debugging Datalog programs so that the user’s burden is reduced. Specifically, we
provide a syntax for users to specify properties of non-recursive Datalog programs.
We present a counterexample generator that verifies specified properties and
generates counterexamples to show unexpected behaviors of user-written programs.
We design a debugging engine combined with a dialog-based user interface to assist
users in locating bugs in the programs with the generated counterexamples. We
have implemented a prototype of our approach and demonstrated its feasibility
and efficiency.

This is a joint work with Zhenjiang Hu and Hiroyuki Kato, and was published
at the 18th Asian Symposium on Programming Languages and Systems (APLAS
2020) [38]

1.2.3 Recursive View Update Strategies

We consider views in Resource Description Framework (RDF) where data is
stored in special ternary relations of triples (subject, predicate, object). In practice,
these RDF views can be defined over relational databases (e.g., by using the
W3C standard R2RML mapping language [39]) or knowledge graphs in RDF
format (e.g., by using SPARQL). Due to the complex structure, manipulating
graphs usually requires recursions. Recursion is the key that gives Datalog the
capabilities to exploit the graph structure of RDF data. To free programmers
from understanding and implementing recursive operators that are more complex
than non-recursive parts, we propose an approach to formulate a Datalog-written
view update strategy as the combination of two parts: a recursive part, which
implements recursive patterns, and a non-recursive one, which is an inner update
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strategy. On the one hand, the recursive Datalog rules of the first part are
pre-defined and pre-validated so that their well-behavedness is guaranteed. On the
other hand, we allow programmers to manually write the inner update strategies
in non-recursive Datalog, which are automatically validated. To guarantee the ease
of use of pre-defined recursive programs in constructing a new one, we extend
Datalog with a restricted form of higher-order predicate syntax. To improve the
performance of the Datalog programs, we propose an algorithm to transform all
higher-order predicates into equivalent first-order predicates that can be evaluated
efficiently. We show the expressiveness of our proposed approach by implementing
several classes of view update strategies for some common recursive patterns of
RDF graphs.

This is a joint work with Zhenjiang Hu and Hiroyuki Kato, and was partially
published at the Ninth International Workshop on Bidirectional Transformations
(Bx 2021) [40]

1.3 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we introduce the basic notions
and general related work of the thesis. Chapter 3 presents our approach of using
non-recursive Datalog to program view update strategies. In Chapter 4, we present
a novel method for debugging non-recursive Datalog of view update strategies.
Chapter 5 presents our approach for view update strategies where recursions are
allowed. Finally, we give a summary of the thesis and discuss future work in
Chapter 6.



9

2
Preliminaries

In this chapter, we first briefly review the basic concepts and notations that
will be used throughout this thesis. We then introduce the basics of view update.
Finally, we present general related work as the rationale of our approach.

2.1 Relational Databases and Datalog

2.1.1 Relational databases

A database schema D is a finite sequence of relation names (or predicate
symbols, or simply predicates) 〈r1, . . . , rn〉. Each predicate ri has an associated
arity ni > 0 or an associated sequence of attribute names A1, . . . , Ani

. A database
(instance) D of D assigns to each predicate ri in D a finite ni-ary relation Ri,
D(ri) = Ri.

An atom (or atomic formula) is of the form r(t1, . . . , tk) (or written as r(~t))
such that r is a k-ary predicate and each ti is a term, which is either a constant or
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a variable. When t1, . . . , tk are all constants, r(t1, . . . , tk) is called a ground atom.
A database D can be represented as a set of ground atoms [41, 42], where each

ground atom r(t1, . . . , tk) corresponds to the tuple 〈t1, . . . , tk〉 of relation R in D.
As an example of a relational database, consider a database D that consists of two
relations with respective schemas r1(A,B) and r2(C). Let the actual instances of
these two relations be R1 = {〈1, 2〉, 〈2, 3〉} and R2 = {〈3〉, 〈4〉}, respectively. The
set of ground atoms of the database is D = {r1(1, 2), r1(2, 3), r2(3), r2(4)}.

2.1.2 Datalog

A Datalog program P is a nonempty finite set of rules, and each rule is an
expression of the form [41]:

H :− L1, . . . , Ln.

where H,L1, . . . , Ln are atoms. H is called the rule head, and L1, . . . , Ln is called
the rule body. “ :−” is a variant of the standard logical implication “←” from the
rule body in the right-hand side to the rule head in the left-hand side.

The input of P is a set of ground atoms, called the extensional database (EDB),
physically stored in a relational database. The output of P is all ground atoms
derived through the program P and the EDB, called the intensional database
(IDB). Predicates in P are divided into two categories: the EDB predicates
occurring in the extensional database, and the IDB predicates occurring in the
intensional database. An EDB predicate can never be the head predicate of a
rule. The head predicate of each rule is an IDB predicate. We assume that each
EDB/IDB predicate r corresponds to exactly one EDB/IDB relation R. Following
the convention used in [41], throughout this thesis, we use lowercase characters for
predicate symbols and uppercase characters for variables in Datalog programs. In
a Datalog rule, variables that occur exactly once can be replaced by an anonymous
variable, denoted as “_”.

We can extend the Datalog syntax with negation and built-in predicates, such
as equality (=) and comparison (<,>), in Datalog rule bodies but in a safe way in
which each variable occurring in the negated atoms or the built-in predicates must
also occur in some positive atoms [41].

Let P be a Datalog program and D be the database of all the EDB and IDB
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relations. A tuple ~A of r, or a fact r( ~A), is immediately inferred from P and D if
it satisfies one of the following conditions:

• ~A ∈ R, where R is an EDB relation corresponding to predicate r.

• r( ~A) :− (¬)r1( ~A1), . . . , (¬)rn( ~An). is an instantiation of a rule in P , i.e., all
variables in the rule are substituted with constants. Here, a negative fact
¬ri( ~Ai) holds if the fact ri( ~Ai) does not hold, i.e., ~Ai is not a tuple of ri in
D. This is based on the Closed World Assumption (CWA) [41].

Semantically, evaluating P is computing the minimum database D such that
every tuple in D is immediately inferred from D and P . In other words, we
compute the least fixpoint of the immediate inference operator. In the standard
bottom-up evaluation strategy for Datalog, the least fixpoint is obtained from P

and the input EDB database by deriving all IDB tuples with a finite number of
immediate inferences. To deal with negations in the Datalog program, the Datalog
program is stratified to ensure that all the tuples of an IDB relation are derived
before using any negative facts of this IDB relation in other immediate inferences.
This is because if an IDB relation is incomplete, it is not sufficient to judge a
negative fact of the IDB relation. The sequence of immediate inferences used for
deriving a fact is called a proof of the fact and can be represented in a proof tree
with different levels of the applied rules and facts.

A Datalog program (with extensions) must satisfy the safety conditions
(syntactic restriction) to guarantee that there are a finite number of facts that can
be derived from the Datalog program:

1. Each variable that occurs in the head of a rule must also occur in the body
of that rule [41]

2. Each variable occurring in a negative literal of a rule body also occurs in a
positive literal of the same rule body [41]

3. For the equality of the form x = y where x and y are variables, either x or y
must occur in a positive literal of the same rule body

4. Each variable occurring in a negative literal of equality (¬t1 = t2, where t1
and t2 are terms) must occur in a positive literal of the same rule body
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A Datalog program takes as input a database of EDB relations to derive all
IDB relations, corresponding to IDB predicates in P . A Datalog program P can
have many IDB predicates. If restricting the output of P to an IDB relation R
corresponding to IDB predicate r, we have a Datalog query, denoted as (P,R).
We say that an IDB predicate r (or a query (P,R)) is satisfiable if there exists a
database D such that the IDB relation R in the output of P over D is nonempty
[43].

A Datalog rule is recursive if an IDB predicate appears in both the head and
the body of the rule. A Datalog program is non-recursive (called NR-Datalog) if it
has no recursive rule. Without recursion, Datalog is still an expressive query.
It has been shown that non-recursive Datalog (NR-Datalog¬) query with a goal
of a single IDB relation has the same expressiveness as several query languages
for relational databases such as relational calculus query and relational algebra.
Recall that a relational calculus query over a database is an expression of the form:
{x1, . . . , xm|ϕ}, where ϕ is a well-formed first-order formula over the database,
x1, . . . , xm are free variables of ϕ. Relational algebra is an algebra with primitive
operators including selection, projection, join, union, and set difference.

Theorem 2.1.1 (Equivalence theorem [43]) The relational calculus queries,
the relational algebras, and the family of non-recursive datalog with negation
(NR-Datalog¬) programs that have single-relation output have equivalent expressive
power. ut

It is known that query satisfiability of Datalog with negation is undecidable [43].
If we restrict all negations in Datalog rules to be guarded, the query satisfiability
is decidable. We simplify the definition of guarded negation in Datalog presented
in [44] for the case of non-recursive Datalog as the following:

Definition 2.1.2 (Guarded negation [44]) A non-recursive guarded-negation
Datalog (GN-Datalog) program is a non-recursive Datalog program with negation
where each rule L0 :− L1, . . . , Ln is negation guarded that for each atom Li that is
either negative in the body or positive in the head, the body includes a positive atom
Lj containing all variables occurring in Li. ut

Theorem 2.1.3 (Decidability [44]) Query satisfiability is 2ExpTime-complete
for non-recursive guarded-negation Datalog queries. ut
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Figure 2.1: The view update problem.
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Figure 2.2: Bidirectional transformation.

2.2 View update

Consider a view V defined by a query get over the database S, as shown in
Figure 2.1. An update translator T maps each update u on V to an update
T (u) on S such that it is well-behaved in the sense that after the view update is
propagated to the source, we will obtain the same view from the updated source,
i.e.,

u(V ) = get(T (u)(S))

Given a view definition get, the known view update problem [11] is to derive such
an update translator T .

2.3 Bidirectional Transformations

A bidirectional transformation (BX) [28] is a pair of a forward transformation
get and a backward (putback) transformation put, as shown in Figure 2.2. The
forward transformation get is a query over a source database S that results in
a view relation V . The putback transformation put takes as input the original
database S and an updated view V ′ to produce a new database S ′, and thus
determines a view update strategy. Indeed, given a putback transformation put,
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the view update translation T is obtained as the following:

T (u)(S) = put(S, u(get(S))).

To ensure consistency between the source database and the view, a BX must
satisfy the following round-tripping properties, called GetPut and PutGet:

∀ S, put (S, get(S)) = S (GetPut)

∀ S, V ′, get (put (S, V ′)) = V ′ (PutGet)

The GetPut property ensures that unchanged views correspond to unchanged
sources, while the PutGet property ensures that all view updates are completely
reflected to the source such that the updated view can be computed again from
the query get over the updated source.

Definition 2.3.1 (Validity of Update Strategy)
A view update strategy put is said to be valid if there exists a view definition get
such that put and get satisfy both GetPut and PutGet. ut

The important property that makes putback essential for BXs is that a valid
view update strategy put uniquely determines the view definition get, which
satisfies GetPut and PutGet with put. Therefore, although put is written in a
unidirectional (backward) manner, if put is valid, it can capture both forward and
backward directions. We state the uniqueness of the view definition get in the
following theorem, and the proof can be found in [32].

Theorem 2.3.2 (Uniqueness of View Definition)
Given a view update strategy put, there is at most one view definition get that
satisfies GetPut and PutGet with put. ut

Proof. By contradiction. If there are two view definitions get1 and get2 that
satisfy the condition, then by applying the GetPut and PutGet properties to
the expression E = get1(put(S, get2(S))), we have E = get1(S) and E = get2(S),
respectively. This means that get1(S) = get2(S) for any database S, i.e., get1 and
get2 are equivalent. ut
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Some important characteristics of a valid update strategy put are given in the
following lemma, the proof can be found in [32, 31]:

Lemma 2.3.3 A view update strategy put is valid if, and only if, it satisfies all
the following properties:

1. For all database S, the function f such that f(V ) = put(S, V ) is injective
(PutInjectivity).

2. put is surjective:

∀ S ′ ∃ S, V. put(S, V ) = S ′ (PutSurjectivity)

3. For all views V , the function g such that g(S) = put(S, V ) is idempotent:

put(put(S, V ), V ) = put(S, V ) (PutTwice)

ut

2.4 Rationale of Our Approach

2.4.1 Classical Approaches

The view update problem is a classical problem that has a long history in
database research [12, 10, 11, 9, 14, 45, 13, 15, 46, 47, 16, 23, 17, 24, 18, 19]. It
was realized very early that a database update that reflects a view update may not
always exist, and even if it does exist, it may not be unique [10, 11]. This makes
view update become a very challenging problem.

To solve the ambiguity of translating view updates to updates on base relations,
the concept of view complement is proposed to determine the unique update
translation of a view [9, 21, 22, 19]. Keller [14] enumerates all view update
translations and chooses the one through interaction with database administrators,
thereby solving the ambiguity problem. Some other researchers allow users to
choose the one through an interaction with the user at view definition time [14, 18].
Some other approaches restrict the syntax for defining views [11] that allow for
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unambiguous update propagation. Recently, intention-based approaches have been
proposed to find relevant update policies for several types of views [23, 17, 24].
However, these existing approaches restrict the syntax of view definition and
provide a set of update policies for each kind of view, thus they do not give users
full control over view update strategies.

In another aspect, because some updates on views are not translatable, some
works permit side effects of the view update translator [45] or restrict the kind of
updates that can be performed on a view [13]. Some other works use auxiliary
tables to store the updates, which cannot be applied to the underlying database
[15, 46]. The authors of [47, 16] studied approximation algorithms to minimize the
side effects for propagating deletion from the view to the source database. However,
these existing approaches can only solve a very restricted class of view updates.

2.4.2 Language-Based Approaches

In the programming language community, by generalizing view update as
a synchronization problem between two data structures, considerable modern
approaches has been devoted [29] to this problem not only in relational databases
[20, 48] but also for other data types, such tree [28, 49], graph [50] or string
data [51]. By employing the concept of bidirectional transformations, these
approaches provide domain-specific languages (DSLs) for programmers to specify
updatable views. They can be devided into two categories: get-based and put-based
bidirectional languages.

In the get-based approaches, the language of the forward transformation is
enriched such that it can capture some update intentions of the programmers. A
typical work is [20] that employs bidirectional transformation for view update in
relational databases. The authors propose a bidirectional language, called relational
lenses, by enriching the SQL expression for defining views of projection, selection,
and join. The language guarantees that every expression can be interpreted
forwardly as a view definition and backwardly as an update strategy such that
these backward and forward transformations are well-behaved. A recent work
[48] has shown that incrementalization is necessary for relational lenses to make
this language practical in RDBMSs. However, this language is less expressive
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than general relational algebra; hence, not every updatable view can be written.
Moreover, relational lenses still limit programmers from control over the update
strategy.

In contrast to the get-based approaches, the put-based approahces design a
new DSL for completely write a putback transformation. The key observation in
this approach is that thanks to well-behavedness, putback transformation uniquely
determines the forward one. The uniqueness of get enable us to desing languages
that allow programmers to write their intended update strategies more freely and
derive the get behavior from their putback program. A typical language of this
putback-based approach is BiGUL [33, 34], which supports programming putback
functions declaratively while automatically deriving the corresponding unique
forward transformation. Based on BiGUL, Zan et al. [52] design a putback-based
Haskell library for bidirectional transformations on relations. However, this
language is designed for Haskell data structures; hence, it cannot run directly in
database environments. The transformation from tables in relational databases to
data structures in Haskell would reduce the performance of view updates.

Our work was greatly inspired by the putback-based approach in bidirectional
programming [30, 53, 54, 31, 33, 34]. In contrast to other works, we propose
adopting the Datalog language for implementing view update strategies at the
logical level, which will be optimized and translated to SQL statements to run
efficiently inside an SQL database system.
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3
View Update Strategies in Non-Recursive

Datalog

3.1 Introduction

As mentioned in Chapter 1, view update [9, 10, 11, 12, 13] is an important
mechanism in relational databases. This mechanism allows updates on a view by
translating them into the corresponding updates on the base relations [11]. The
main challenge of view updates is the ambiguity issue. Because the query get is
generally not injective, there may be many update translations on the source
database that can be used to reflect view update [10, 11]. The view update problem
have a long history in database research [12, 10, 11, 9, 14, 13, 15, 16, 17, 18, 19].

In this chapter, we propose a new approach for solving the view updating
problem practically and correctly. The key idea is to provide a formal language for
people to directly program their view update strategies. On the one hand, this
language can be considered a formal treatment of Keller’s dialogue [14], but on the
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other hand, it is unique in that it can fully determine the behavior of bidirectional
update propagation between the source and the view.

This idea is inspired by the research on bidirectional programming [28, 29]
in the programming language community, where update propagation from the
view to the source is formulated as a so-called putback transformation put, which
maps the updated view and the original source to an updated source, as shown in
Figure 2.2. This put not only captures the view update strategy but also fully
describes the view update behavior. First, it is clear that if we have such a putback
transformation, the translation T is obtained for free:

T (u)(S) = put(S, u(get(S))).

Second, and more interestingly, while there may be many putback transformations
for a view definition get, there is at most one view definition for a putback
transformation put for a well-behaved view update [30, 31, 32, 33, 34]. Thus, get
can be deterministically derived from put in general. Although several languages
have been proposed for writing put for updatable views over tree-like data structures
[35, 33, 34], whether we can design such a language for solving the classical view
update problem on relations remains unclear.

There are several challenges in designing a formal language for programming
put, a view update strategy, on relations.

• The language is desired to be expressive in practice to cover users’ update
strategies.

• To make every view update consistent with the source database, an update
strategy put must satisfy some certain properties, as formalized in previous
work [28, 32, 31]. Therefore, there is a need for a validation algorithm to
statically check the well-behavedness of user-written strategies and whether
they respect the view definition if the view is defined beforehand.

• To be useful in practice rather than just a theoretical framework, the
language must be efficiently implemented when running in relational database
management systems (RDBMSs).
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In contrast to the existing approaches [35, 33, 34] where new domain-specific
languages (DSLs) are designed, we argue that Datalog, a well-known query
language, can be used as a formal language for describing view update strategies
in relational databases. Our contributions are summarized as follows.

• We introduce a novel way to use nonrecursive Datalog with negation and
built-in predicates for describing view update strategies. We propose a
validation algorithm for statically checking the well-behavedness of the
described update strategies.

• We identify a fragment of Datalog, called linear-view guarded negation
Datalog (LVGN-Datalog), in which our validation algorithm is both sound
and complete. Furthermore, the algorithm can automatically derive from
view update strategies the corresponding view definition to confirm the view
expected beforehand.

• We develop an incrementalization algorithm to optimize view update strategy
programs. This algorithm integrates the standard incrementalization method
for Datalog with the well-behavedness in view update.

• We have implemented all the algorithms in our framework, called BIRDS1.
The experiments on benchmarks collected in practice show that our framework
is feasible for checking most of the view update strategies. Interestingly,
LVGN-Datalog is expressive enough for solving many types of views and can
be efficiently implemented by incrementalization in existing RDBMSs.

The remainder of this chapter is organized as follows. We present our proposed
method for specifying view update strategies in Datalog in Section 3.2. The
validation and incrementalization algorithms for these update strategies are
described in Section 3.3 and Section 3.4, respectively. Section 3.5 shows the
experimental results of our implementation. Section 3.6 summarizes related works.
Section 3.7 concludes this chapter.

1A prototype implementation is available at https://dangtv.github.io/BIRDS/.

https://dangtv.github.io/BIRDS/
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S ′ S
⊕Apply

V

∆S putdelta

Figure 3.1: View update strategy put.

3.2 The Language for View Update Strategies

As mentioned in the introduction, it may be surprising that the base language
that we are using for view update strategies is nonrecursive Datalog with negation
and built-in predicates (e.g., =, 6=, <, >) [41]. One might wonder how the pure
query language Datalog can be used to describe updates. In this section, we show
that delta relations enable Datalog to describe view update strategies. We will
define a fragment of Datalog, called LVGN-Datalog, which is not only powerful
for describing various view update strategies but also important for our later
validation.

3.2.1 Formulating Update Strategies as Queries Producing

Delta Relations

Recall that a view update strategy is a putback transformation put that takes
as input the original source database and an updated view to produce an updated
source. Our idea of specifying the transformation put in Datalog is to write a
Datalog query that takes as input the original source database and an updated
view to yield updates on the source; thus, the new source can be obtained.

We use delta relations to represent updates to the source database. The concept
of delta relations is not new and is used in the study on the incrementalization of
Datalog programs [55]. Unlike the use of delta relations to describe incrementaliza-
tion algorithms at the meta level, we let users consider both relations and their
corresponding delta relations at the programming level.

Let R be a relation and r be the predicate corresponding to R. Following
[56, 57, 58], we use two delta predicates +r and −r and write +r(~t) and −r(~t) to
denote the insertion and deletion of the tuple ~t into/from relation R, respectively.
An update that replaces tuple ~t with a new one ~t′ is a combination of a deletion
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−r(~t) and an insertion +r(~t). We use a delta relation, denoted as ∆R, to capture
both these deletions and insertions. For example, consider a binary relation
R = {〈1, 2〉, 〈1, 3〉}; applying a delta relation ∆R = {−r(1, 2),+r(1, 1)} to R
results in R′ = {〈1, 1〉, 〈1, 3〉}. Let ∆+

R be the set of insertions and ∆−R be the set
of deletions in ∆R. Applying ∆R to the relation R is to delete tuples in ∆−R from
R and insert tuples in ∆+

R into R. Considering set semantics, the delta application
is the following:

R′ = R⊕∆R = (R \∆−R) ∪∆+
R

An update strategy for a view can now be specified by a set of Datalog rules that
define delta relations of the source database from the updated view.

Example 3.2.1 Consider a source database S, which consists of two base relations,
R1 and R2, with respective schemas r1(A) and r2(A), and a view relation V defined
by a union over R1 and R2: V = get(S) = R1 ∪R2. To illustrate the ambiguity of
updates to V , consider an attempt to insert a tuple 〈3〉 into the view V . There
are three simple ways to update the source database: (i) insert tuple 〈3〉 into
R1, (ii) insert tuple 〈3〉 into R2, and (iii) insert tuple 〈3〉 into both R1 and R2.
Therefore, the update strategy for the view needs to be explicitly specified to resolve
the ambiguity of view updates. Given original source relations R1 and R2 and
an updated view relation V , the following Datalog program is one strategy for
propagating data in the updated view to the source:

−r1(X) :− r1(X),¬v(X).

−r2(X) :− r2(X),¬v(X).

+r1(X) :− v(X),¬r1(X),¬r2(X).

The first two rules state that if a tuple 〈X〉 is in R1 or R2 but not in V , it will be
deleted from R1 or R2, respectively. The last rule states that if a tuple 〈X〉 is in V
but in neither R1 nor R2, it will be inserted into R1. Let the actual instances of the
source and the updated view be S = {r1(1), r2(2), r2(4)} and V = {v(1), v(3), v(4)},
respectively. The input for the Datalog program is a database of both the source
and the view (S, V ) = {r1(1), r2(2), r2(4), v(1), v(3), v(4)}. Thus, the result is delta
relations ∆R1 = {+r1(3)} and ∆R2 = {−r2(2)}. By applying these delta relations
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to S, we obtain a new source database S ′ = {r1(1), r1(3), r2(4)}. ut

Formally, consider a database schema S = 〈r1, . . . , rn〉 and a single view v.
Let S be a source database and V be an updated view relation. We use ∆S to
denote all insertions and deletions of all relations in S. For example, the ∆S in
Example 3.2.1 is ∆S = {+r1(3),−r2(2)}. We say that ∆S is non-contradictory
if it has no insertion/deletion of the same tuple into/from the same relation.
Applying a non-contradictory ∆S to a database S, denoted as S ⊕∆S, is to
apply each delta relation in ∆S to the corresponding relation in S. We use the
pair (S, V ) to denote the database instance I over the schema 〈r1, . . . , rn, v〉 such
that I(ri) = S(ri) for each i ∈ [1, n] and I(v) = V . A view update strategy put is
formulated by a Datalog query putdelta over the database (S, V ) that results in a
∆S (shown in Figure 3.1) as follows:

put(S, V ) = S ⊕ putdelta(S, V ) (3.1)

The Datalog program putdelta is called a Datalog putback program (or putback
program for short). The result of putdelta, ∆S, should be non-contradictory to be
applicable to the original source database S.

Definition 3.2.2 (Well-definedness) A putback program is well defined if, for
every source database S and view relation V , the program results in a non-
contradictory ∆S. ut

3.2.2 LVGN-Datalog

We have seen that nonrecursive Datalog with extensions including negation
and built-in predicates can be used for specifying view update strategies. We
now focus on the extensions of Datalog in which the satisfiability of queries is
decidable. This property plays an important role in guaranteeing that the validity
of putback programs is decidable. Specifically, we define a fragment of Datalog,
LVGN-Datalog, which is an extension of nonrecursive guarded negation Datalog
(GN-Datalog [44]) with equalities, constants, comparisons [41] and linear view
predicate. This Datalog fragment allows not only for writing many practical view
update strategies but also for decidable checking of validity later.
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Nonrecursive GN-Datalog with Equalities, Constants, and Comparisons

We consider a restricted form of negation in Datalog, called GN-Datalog
[59, 44], in which we can decide the satisfiability of any queries. In this way,
we define LVGN-Datalog as an extension of this GN-Datalog fragment without
recursion as follows:

• Equality is of the form t1 = t2, where t1/t2 is either a variable or a constant.

• Comparison predicates < (>) on totally ordered domains in the form of
X < c (X > c), where X is a variable and c is a constant.

• Constants may freely be used in Datalog rule bodies or rule heads without
restriction.

• Every rule is negation guarded [44] such that for every atom L (or equality,
or comparison) occurring either in the rule head or negated in the rule body,
the body must have a positive atom or equality, called a guard, containing all
variables occurring in L.

Example 3.2.3 The following rule is negation guarded:

h(X, Y, Z) :− r1(X, Y, Z)︸ ︷︷ ︸
guard

,¬Z = 1︸ ︷︷ ︸
equality

,¬r2(X, Y, Z).

because the negated atom r2(X, Y, Z), negated equality ¬Z = 1 and the head atom
h(X, Y, Z) are all guarded since all variables X, Y , and Z are in the positive atom
r1(X, Y, Z). ut

Linear View

As formally proven in [31], the putback transformation put must be lossless
(i.e., injective) with respect to the view relation. This means that all information
in the view must be embedded in the updated source. To enable tracking this
behavior of putback programs in LVGN-Datalog, we introduce a restriction called
linear view, which controls the usage of the view in the programs. By linear
view, we mean that the view is linearly used such that there is no self-join and



26 Chapter 3. View Update Strategies in Non-Recursive Datalog

projection on the view. Every program in LVGN-Datalog conforms to the linear
view restriction defined as follows.

Definition 3.2.4 (Linear view) A Datalog putback program conforms to the
linear view restriction if the view occurs only in the rules defining delta relations,
and in each of these delta rules, there is at most one view atom and no anonymous
variable (_) occurs in the view atom. ut

Example 3.2.5 Given a source relation R of arity 3 and a view relation V of
arity 2, consider the following rules of the delta relation ∆R:

−r(X, Y, Z) :− r(X, Y, Z),¬ v(X, Y )︸ ︷︷ ︸
linear view

. (rule1)

−r(X, Y, Z) :− r(X, Y, Z),¬ v(X,_)︸ ︷︷ ︸
projection

. (rule2)

+r(X, Y, Z) :− v(X, Y ), v(Y, Z)︸ ︷︷ ︸
self-join

,¬r(X, Y, Z). (rule3)

(rule1) conforms to the linear view restriction because v(X, Y ) occurs once in
the rule body, whereas (rule2) and (rule3) do not because there is an anonymous
variable (_) in the atom of v in (rule2) and there is a self-join of v in (rule3). ut

Integrity Constraints

Since an updatable view can be treated as a base table, it is natural to create
constraints on the view. Similar to the idea of negative constraints introduced in
[42], we extend the rules in LVGN-Datalog by allowing a truth constant false
(denoted as ⊥) in the rule head for expressing integrity constraints. The linear
view restriction defined in Definition 3.2.4 is also extended that the view predicate
can also occur in the rules having ⊥ in the head. In this way, a constraint, called
the guarded negation constraint, is of the form ∀ ~X,Φ( ~X)→ ⊥, where Φ( ~X) is
the conjunction of all atoms and negated atoms in the rule body and Φ( ~X) is a
guarded negation formula. The universal quantifiers ∀ ~X are omitted in Datalog
rules.
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Example 3.2.6 Consider a view relation v(X, Y, Z). To prevent any tuples having
Z > 2 in the view v, we can use the following constraint: ⊥ :− v(X, Y, Z), Z > 2.

ut

Properties

We say that a query Q is satisfiable if there is an input database D such that
the result of Q over D is nonempty. The problem of determining whether a query
in nonrecursive GN-Datalog is satisfiable is known to be decidable [44]. It is not
surprising that allowing equalities, constants and comparisons in nonrecursive
GN-Datalog does not make the satisfiability problem undecidable since the same
already holds for guarded negation in SQL [44]. The idea is that we can transform
such a GN-Datalog query into an equivalent guarded negation first-order (GNFO)
formula whose satisfiability is decidable [59].

Lemma 3.2.7 The query satisfiability problem is decidable for nonrecursive
GN-Datalog with equalities, constants and comparisons. ut

Given a set of guarded negation constraints Σ and a query Q, we say that Q is
satisfiable under Σ if there is an input database D satisfying all constraints in Σ

such that the result of Q over D is nonempty.

Theorem 3.2.8 The query satisfiability problem for nonrecursive GN-Datalog with
equalities, constants and comparisons under a set of guarded negation constraints
is decidable. ut

3.2.3 A Case Study

We consider a database of five base tables shown in Figure 3.2. The base tables
male, female and others contain personal information. Table ed has all historical
departments of each person, while eed contains only former departments of each
person. We illustrate how to use LVGN-Datalog to describe update strategies for
the views defined in Figure 3.2.

For the view residents, which contains all personal information, we use the
attribute gender to choose relevant base tables for propagating updated tuples in



28 Chapter 3. View Update Strategies in Non-Recursive Datalog

male(emp_name: string, birth_date: date).
female(emp_name: string, birth_date: date).
others(emp_name: string, birth_date: date,

gender: string).
ed(emp_name: string, dept_name: string).
eed(emp_name: string, dept_name: string).

Base tables

ced(E,D) :− ed(E,D),¬ eed(E,D).
residents(E,B,G) :− others(E,B,G).
residents(E,B,‘F’) :− female(E,B).
residents(E,B,‘M’) :− male(E,B).
residents1962(E,B,G) :− residents(E,B,G),

¬B <‘1962-01-01’,¬B >‘1962-12-31’.
employees(E,B,G) :− residents(E,B,G), ced(E,D).
retired(E) :− residents(E,B,G),¬ced(E, _).

Views

Figure 3.2: Database and view schema.

residents. More concretely, if there is a person in residents but not in any of
the source tables male, female and other, we insert this person into the table
corresponding to his/her gender. In contrast, we delete from the source tables
the people who no longer appear in the view. The Datalog putback program for
residents is the following:

+male(E,B) :− residents(E,B,‘M’),

¬ male(E,B),¬ others(E,B,‘M’).

-male(E,B) :− male(E,B),¬ residents(E,B,‘M’).

+female(E,B) :− residents(E,B,G), G =‘F’,

¬ female(E,B),¬ others(E,B,G).

-female(E,B) :− female(E,B),¬ residents(E,B,‘F’).

+others(E,B,G) :− residents(E,B,G),¬ G =‘M’,

¬ G =‘F’,¬ others(E,B,G).

-others(E,B,G) :− others(E,B,G),

¬ residents(E,B,G).
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The view ced contains information about the current departments of each
employee. We express the following update strategy for propagating updated
data in this view to the base tables ed and eed. If a person is in a department
according to ed but he/she is currently no longer in this department according to
ced, this department becomes his/her previous department and thus needs to be
added to eed. If a person used to be in a department according to eed but he/she
returned to this department according to ced, then this department of him/her
needs to be removed from eed.

ed(E,D) :− ced(E,D), ¬ ed(E,D).

-eed(E,D) :− ced(E,D), eed(E,D).

+eed(E,D) :− ed(E,D), ¬ ced(E,D), ¬ eed(E,D).

The view residents1962 is defined from the view residents such that
residents1962 contains all residents that have a birth date in 1962. Interestingly,
because the view residents is now updatable, residents can be considered as
the source relation of residents1962. Therefore, we can write an update strategy
on residents1962 for updating residents instead of updating the base tables
male, female and others as follows:

% Constraints:

⊥ :− residents1962(E,B,G), B >‘1962-12-31’.

⊥ :− residents1962(E,B,G), B <‘1962-01-01’.

% Update rules:

+residents(E,B,G) :− residents1962(E,B,G),

¬ residents(E,B,G).

-residents(E,B,G) :− residents(E,B,G),

¬ B <‘1962-01-01’,

¬ B >‘1962-12-31’,

¬ residents1962(E,B,G).

We define the constraints to guarantee that in the updated view residents1962,
there is no tuple having a value of the attribute birth_date not in 1962. Any
view updates that violate these constraints are rejected. In this way, our update
strategy is to insert into the source table residents any new tuples appearing
in residents1962 but not yet in residents. On the other hand, we delete
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only tuples in residents having birth_date in 1962 if they no longer appear in
residents1962.

The view employees contains residents who are employed, whereas retired
contains residents who retired. Since employees and retired are defined from
two updatable views residents and ced, we can use residents and ced as the
source relations to write an update strategy of employees:

% Constraints:

⊥ :− employees(E,B,G),¬ ced(E, _).

% Update rules:

+residents(E,B,G) :− employees(E,B,G),

¬ residents(E,B,G).

-residents(E,B,G) :− residents(E,B,G),

ced(E, _),¬ employees(E,B,G).

Interestingly, in this strategy, we use a constraint to specify more complicated
restrictions of updates on employees. The constraint implies that there must
be no tuple 〈E,B,G〉 in the updated view employees having the value E of the
attribute emp_name, which cannot be found in any tuples of ced. In other words,
the constraint does not allow insertion into employees an actual new employee
who is not mentioned in the source relation ced. The update strategy then reflects
updates on the view employees to updates on the source residents.

For retired, we describe an update strategy to update the current employment
status of residents as follows:

-ced(E,D) :− ced(E,D), retired(E).

+ced(E,D) :− residents(E, _, _),¬ retired(E),

¬ ced(E, _), D =‘unknown’.

+residents(E,B,G) :− retired(E), G =‘unknown’,

¬ residents(E, _, _), B =‘00-00-00’.

We have presented the formal way to describe view update strategies using
Datalog. In the next section, we will present our proposed validation algorithm for
checking the validity of these update strategies. In fact, if an update strategy
specified in LVGN-Datalog is valid, the corresponding view definition can be
automatically derived and expressed in nonrecursive GN-Datalog with equalities,
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Yes
No

Well-definedness ?

No
Yes

 Existence of a view definition
get satisfying GetPut ?

No
Yes

The PutGet property of get and put ? Invalid

Valid

expected_get Putback program

Figure 3.3: Validation algorithm.

constants and comparisons. For all the update strategies in our case study, the
view definitions derived by our validation algorithm are the same as the expected
ones in Figure 3.2.

3.3 Validation Algorithm

As mentioned in Chapter 2, a view update strategy must be valid (Defini-
tion 2.3.1) to guarantee that every view update is well-behaved. In this section,
we present an algorithm for checking the validity of user-written view update
strategies.

3.3.1 Overview

Checking the validity of a view update strategy based on Definition 2.3.1 is
challenging since it requires constructing a view definition satisfying both the
GetPut and PutGet properties. Instead, we shall propose another way for the
validity check based on the following important fact.

Lemma 3.3.1 Given a valid view update strategy put, if a view definition get

satisfies GetPut, then get must also satisfy PutGet with put. ut

Lemma 3.3.1 implies that if put is valid, we can construct a view definition get
that satisfies both GetPut and PutGet by choosing any get satisfying GetPut.
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By Lemma 3.3.1, the idea of our validation algorithm is detecting contradictions
for the assumption that the given view update strategy put is valid. Assuming that
put is valid, we first check the existence of a view definition get satisfying GetPut

with put. We consider the expected view definition expected_get if available as a
candidate for the get definition and construct the get definition if expected_get
does not satisfy GetPut. Clearly, if get does not exist, we can conclude that put
is invalid. Otherwise, we continue to check whether get also satisfies PutGet

with put (Lemma 3.3.1). If this check passed, we actually complete the validation
and it is sufficient to conclude that put is valid because the get found satisfies both
GetPut and PutGet. Furthermore, the constructed get is useful to confirm the
initially expected view definition especially when they are not the same. For the
case in which the expected view definition is not explicitly specified, the view
definition is automatically derived.

In particular, we are given a putback program putdelta, which is written in
nonrecursive Datalog with negation and built-in predicates, and maybe an expected
view definition (expected_get) if it is explicitly described. The validation algorithm
consists of three passes (see Figure 3.3): (1) checking the well-definedness of the
putback program, (2) checking the existence of a view definition get satisfying
GetPut with the view update strategy put specified by the putback program and
deriving get, and (3) checking whether get and put satisfy PutGet. If one of the
passes fails, we can conclude that put is invalid. Otherwise, put is valid because
the derived get satisfies GetPut and PutGet with put.

3.3.2 Well-definedness

Consider a database schema S = 〈r1, . . . , rn〉 and a view v. Given a putback
program putdelta, the goal is to check whether the delta ∆S resulting from
putdelta is non-contradictory for any source database S and any view relation
V . In other words, we check whether in ∆S, there is no pair of insertion and
deletion, +ri(~t) and −ri(~t), of the same tuple ~t on the same relation Ri. To check
this property, we add the following new rules to putdelta:

di( ~Xi) :− +ri( ~Xi),−ri( ~Xi). (i ∈ [1, n]) (3.2)
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The problem of checking whether ∆S is non-contradictory is reduced to the
problem of checking whether each IDB predicate di in the Datalog program is
unsatisfiable. When putdelta is in LVGN-Datalog, because each rule (3.2) is
trivially negation guarded, according to Theorem 3.2.8, the satisfiability of di is
decidable.

3.3.3 Existence of A View Definition Satisfying GetPut

Consider a view update strategy put specified by a putback program putdelta

and a set of constraints Σ. Assume that put is valid. If an expected view definition
expected_get is explicitly written by users, we check whether expected_get satisfies
GetPut with put. With the view defined by expected_get, the GetPut property
means that put makes no change to the source. Therefore, checking the GetPut

property is reduced to checking the unsatisfiability of each delta relation in the
Datalog program putdelta. This check is decidable if expected_get and putdelta
are in LVGN-Datalog due to Theorem 3.2.8.

If expected_get is not explicitly written or if it does not satisfy GetPut, we
construct a view definition get satisfying GetPut as follows. For each source
database S, we find a steady-state view V such that the putback transformation
put makes no change to the source database S. In other words, V must satisfy the
constraints in Σ and put(S, V ) = S. We define get as the mapping that maps each
S to the V . If there exists an S such that we cannot find any steady-state view,
then there is no view definition satisfying GetPut, and we conclude that put is
invalid. Otherwise, the constructed get satisfies GetPut with put. Moreover, the
view relation V resulting from get over S always satisfies Σ.

Example 3.3.2 (Intuition) Consider the update strategy put in Example 3.2.1.
For an arbitrary source database instance S, the goal is to find a steady-state
view V such that put(S, V ) = S, i.e., both of the source relations R1 and R2 are
unchanged. Recall that the putback transformation put is described by Datalog
rules that compute delta relations of each source relation R1 and R2. For R1, we
compute ∆+

R1
and ∆−R1

, which are the set of insertions and the set of deletions on
R1, respectively. R1 is unchanged if all inserted tuples are already in R1 and all
deleted tuples are actually not in R1. Similarly, for R2, all tuples in ∆−R2

must be



34 Chapter 3. View Update Strategies in Non-Recursive Datalog

not in R2 (we do not have ∆+
R2
). This leads to the following:

∆−R1
∩R1 = ∅

∆−R2
∩R2 = ∅

∆+
R1
\R1 = ∅

(3.3)

Let us transform each delta predicate −r1, −r2, and +r1 in the Datalog program
putdelta to the form of relational calculus query [43]: ϕ−r1 = r1(X) ∧ ¬v(X),
ϕ−r2 = r2(X) ∧ ¬v(X), ϕ+r1 = v(X) ∧ ¬r1(X) ∧ ¬r2(X). The constraint (3.3) is
equivalent to the constraint that all the relational calculus queries ϕ−r1(X) ∧ r1(X),
ϕ−r2(X) ∧ r2(X) and ϕ+r1(X) ∧ ¬r1(X) result in an empty set over the database
(S, V ) of both the source and view relations. In other words, (S, V ) does not satisfy
the following first-order sentences:

(S, V ) 6|= ∃X,ϕ−r1(X) ∧ r1(X)

(S, V ) 6|= ∃X,ϕ−r2(X) ∧ r2(X)

(S, V ) 6|= ∃X,ϕ+r1(X) ∧ ¬r1(X)

By applying ¬∃X, ξ(X) ≡ ∀X, ξ(X)→ ⊥, we have
(S, V ) |= ∀X,ϕ−r1(X) ∧ r1(X)→ ⊥
(S, V ) |= ∀X,ϕ−r2(X) ∧ r2(X)→ ⊥
(S, V ) |= ∀X,ϕ+r1(X) ∧ ¬r1(X)→ ⊥

⇔(S, V ) |=


∀X, r1(X) ∧ ¬v(X) ∧ r1(X)→ ⊥
∀X, r2(X) ∧ ¬v(X) ∧ r2(X)→ ⊥
∀X, v(X) ∧ ¬r1(X) ∧ ¬r2(X) ∧ ¬r1(X)→ ⊥

The idea for checking whether a view relation V satisfying the above logical
sentences exists is that we swap the atom v(X) appearing in these sentences to
either the right-hand side or the left-hand side of the implication formula. For this
purpose, we apply p ∧ ¬q → ⊥ ≡ p→ q and obtain:

⇔(S, V ) |=


∀X, r1(X)→ v(X)

∀X, r2(X)→ v(X)

∀X, v(X)→ ¬(¬r1(X) ∧ ¬r2(X))
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By combining all sentences that have v(X) on the right-hand side and combining
all sentences that have v(X) on the left-hand side, we obtain:

(S, V ) |=

{
∀X, r1(X) ∨ r2(X)→ v(X)

∀X, v(X)→ ¬(¬r1(X) ∧ ¬r2(X))
(3.4)

Note that S is an instance over 〈r1, r2〉 and V is the view relation corresponding to
predicate v. The first sentence provides us the lower bound Vmin of V , which is
the result of a first-order (FO) query2 ψ1 = r1(X) ∨ r2(X) over S. The second
sentence provides us the upper bound Vmax of V , which is the result of the first-
order query ψ2 = ¬(¬r1(X) ∧ ¬r2(X)) over S. In fact, for each S, all the V
such that Vmin ⊆ V ⊆ Vmax satisfy (3.4), i.e., are steady-state instances of the
view. Thus, a steady-state instance V exists if Vmin ⊆ Vmax. Indeed, by applying
equivalence ¬(p ∨ q) ≡ ¬p ∧ ¬q to ψ2, we obtain the same formula as ψ1; hence,
∀X,ψ1(X)→ ψ2(X) holds, leading to that Vmin ⊆ Vmax holds. Now by choosing
Vmin as a steady-state view instance, we can construct a get as the mapping that
maps each S to Vmin. In other words, get is a query equivalent to the FO query
ψ1 over the source S. Since ψ1 is a safe-range formula3, we transform ψ1 to an
equivalent Datalog query4 as follows:

v(X) :− r1(X). (3.5)

v(X) :− r2(X). (3.6)

This is the view definition get that satisfies GetPut with the given view update
strategy put. ut

Checking the existence of a steady-state view

In general, similar to the idea shown in Example 3.3.2, for an arbitrary putback
program putdelta and a set of constraints Σ in LVGN-Datalog, we can always
construct a guarded negation first-order (GNFO) sentence to check whether a

2A FO query ψ over D results in all tuples ~t s.t. D |= ψ(~t).
3ψ is a safe-range FO formula if all the variables in ψ are range restricted [43].
4Due to the equivalence between nonrecursive Datalog queries and safe-range FO formulas

[43].
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steady-state view V satisfying Σ and put(S, V ) = S (i.e., S ⊕ putdelta(S, V ) = S)
exists.

Lemma 3.3.3 Given a LVGN-Datalog putback program putdelta and a set of
guarded negation constraints Σ, there exist first-order formulas φ1, φ2, φ3 such
that for a given database instance S, a view relation V satisfies Σ and S ⊕
putdelta(S, V ) = S iff

(S, V ) |= ∀~Y , v(~Y ) ∧ φ1(~Y )→ ⊥
(S, V ) |= ∀~Y ,¬v(~Y ) ∧ φ2(~Y )→ ⊥
(S, V ) 6|= φ3

(3.7)

where v is the predicate corresponding to the view relation V and φ1, φ2, φ3 have
no occurrence of the view predicate v. Both φ2(~Y ) and φ3 are safe-range GNFO
formulas, and v(~Y ) ∧ φ1(~Y ) is equivalent to a GNFO formula. ut

The third constraint (S, V ) 6|= φ3 in (3.7) is simplified to S 6|= φ3 because the
FO sentence φ3 has no atom of v as a subformula. This means that φ3 must be
unsatisfiable over any database S. Since φ3 is a GNFO sentence, we can check
whether φ3 is satisfiable. If it is satisfiable, we conclude that the view relation V
does not exist; thus, put is invalid.

For the two other constraints in (3.7), by applying the logical equivalence
p ∧ ¬q → ⊥ ≡ p→ q, we have:{

(S, V ) |= ∀~Y , v(~Y )→ ¬φ1(~Y )

(S, V ) |= ∀~Y , φ2(~Y )→ v(~Y )
(3.8)

Because φ1 and φ2 do not contain an atom of v as a subformula, there exists an
instance V if

S |= ∀~Y , φ2(~Y )→ ¬φ1(~Y )

⇔S |= ∀~Y , φ1(~Y ) ∧ φ2(~Y )→ ⊥

This means that the sentence ∃~Y , φ1(~Y ) ∧ φ2(~Y ) is not satisfiable. In this way,
checking the existence of a V is now reduced to checking the satisfiability of
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∃~Y , φ1(~Y ) ∧ φ2(~Y ). The idea of checking the satisfiability of ∃~Y , φ1(~Y ) ∧ φ2(~Y )

is to reduce this problem to that of a GNFO sentence. For this purpose, by
introducing a fresh relation r of an appropriate arity, we have the fact that
∃~Y , φ1(~Y )∧φ2(~Y ) is satisfiable if and only if ∃~Y , r(~Y )∧φ1(~Y )∧φ2(~Y ) is satisfiable.
Because v(~Y ) ∧ φ1(~Y ) is equivalent to a GNFO formula, r(~Y ) ∧ φ1(~Y ) is also
equivalent to a GNFO formula. On the other hand, φ2(~Y ) is equivalent to a GNFO
formula; hence, we can transform ∃~Y , r(~Y ) ∧ φ1(~Y ) ∧ φ2(~Y ) into an equivalent
GNFO sentence whose satisfiability is decidable [59].

Constructing a view definition

If both φ3 and ∃~Y , φ1(~Y ) ∧ φ2(~Y ) are unsatisfiable, there exists a steady-state
view V satisfying Σ such that S ⊕ putdelta(S, V ) = S for each database S. One
steady-state view V is the one resulting from the FO formula φ2 over S. Indeed,
such a V satisfies (3.8); hence, it satisfies Σ and S ⊕ putdelta(S, V ) = S. By
choosing this steady-state view, we can construct a view definition get as the
Datalog query equivalent to φ2 because φ2 is a safe-range formula. The equivalence
of safe-range first-order logic and Datalog was well studied in database theory
[43, 44]. We present the detailed transformation from safe-range FO formula
to Datalog query in Ex A.2. Due to Lemma 3.3.3, φ2 is also negation guarded
and hence, get is in nonrecursive GN-Datalog with equalities, constants and
comparisons.

3.3.4 The PutGet Property

To check the PutGet property that get(put(S, V )) = V for any S and V , we
first construct a Datalog query over database (S, V ) equivalent to the composition
get(put(S, V )). Recall that put(S, V ) = S⊕putdelta(S, V ). The result of put(S, V )

is a new source S ′ obtained by applying ∆S computed from putdelta to the original
source S. Let us use predicate rnewi for the new relation of predicate ri in S after
the update. The result of applying a delta ∆S to the database S is equivalent to
the result of the following Datalog rules (i ∈ [1, n]):

rnewi ( ~Xi) :− ri( ~Xi), ¬ -ri( ~Xi).

rnewi ( ~Xi) :− +ri( ~Xi).



38 Chapter 3. View Update Strategies in Non-Recursive Datalog

By adding these rules to the Datalog putback program putdelta, we derive a new
Datalog program, denoted as newsource, that results in a new source database.
The result of get(put(S, V )) is the same as the result of the Datalog query get over
the new source database computed by the program newsource. Therefore, we can
substitute each EDB predicate ri in the program get with the new program rnewi

and then merge the obtained program with the program newsource to obtain a
Datalog program, denoted as putget. The result of putget over (S, V ) is exactly
the same as the result of get(put(S, V )). For example, the Datalog program putget

for the view update strategy in Example 3.3.2 is:

-r1(X) :− r1(X), ¬ v(X).

-r2(X) :− r2(X), ¬ v(X).

+r1(X) :− v(X), ¬ r1(X), ¬ r2(X).

rnew1 (X) :− r1(X), ¬ -r1(X).

rnew1 (X) :− +r1(X).

rnew2 (X) :− r2(X), ¬ -r2(X).

vnew(X) :− rnew1 (X).

vnew(X) :− rnew2 (X).

Checking the PutGet property is now reduced to checking whether the result
of Datalog query putget over database (S, V ) is the same as the view relation
V . By transforming putget to the FO formula φputget(~Y ), we reduce checking the
PutGet property to checking the satisfiability of the two following sentences:

Φ1 = ∃~Y , φputget(~Y ) ∧ ¬v(~Y ) (3.9)

Φ2 = ∃~Y , v(~Y ) ∧ ¬φputget(~Y ) (3.10)

The PutGet property holds if and only if Φ1 and Φ2 are not satisfiable. Clearly,
if get and putdelta are in LVGN-Datalog, putget is also in LVGN-Datalog, leading
to that φputget(~Y ) is a GNFO formula. Therefore, Φ2 is a GNFO sentence; hence,
its satisfiability is decidable. Φ1 is satisfiable if and only if Φ′1 = ∃~Y , φputget(~Y ) ∧
r(~Y ) ∧ ¬v(~Y ) is satisfiable, where r is a fresh relation of an appropriate arity.
Since Φ′1 is a guarded negation first-order sentence, its satisfiability is decidable by
Theorem 3.2.8.
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Algorithm 1: Validate(expected_get, putdelta, Σ)
1 get ← null;
// Checking the well-definedness of putdelta

2 check if all predicates di (i ∈ [1, n]) in (3.2) are unsatisfiable under Σ;
3 if expected_get is not null then

// Checking if expected_get satisfies GetPut
4 if all delta relations of putdelta are unsatisfiable under Σ with the view

defined by expected_get then
5 get ← expected_get;
6 if (expected_get is null) or (get is null) then

// Constructing a get satisfying GetPut
7 check if φ3 in (3.7) is unsatisfiable under Σ;
8 check if ∃~Y , φ1(~Y )∧φ2(~Y ) (φ1 and φ2 in (3.8)) is unsatisfiable under Σ;

// Constructing a get
9 get← Translating FO formula φ2 in (3.8) to an equivalent Datalog

query;
// Checking the PutGet property

10 check if Φ1 and Φ2 in (3.9) and (3.10) are unsatisfiable under Σ;
11 return get;

3.3.5 Soundness and Completeness

Algorithm 1 summarizes the validation of Datalog putback programs putdelta.
After all the checks have passed, the corresponding view definition is returned and
putdelta is valid. For LVGN-Datalog in which the query satisfiability is decidable
(Theorem 3.2.8), Algorithm 1 is sound and complete.

Theorem 3.3.4 (Soundness and Completeness)

• If a LVGN-Datalog putback program putdelta passes all the checks in Algo-
rithm 1, putdelta is valid.

• Every valid LVGN-Datalog putback program putdelta passes all the checks in
Algorithm 1.

ut

It is remarkable that if putdelta is not in LVGN-Datalog, but in nonrecursive
Datalog with unrestricted negation and built-in predicates, we can still perform
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the checks in the validation algorithm by feeding them to an automated theorem
prover. Though, Algorithm 1 may not terminate and not successfully construct
the view definition get because of the undecidability problem [43, 60]. Therefore,
Algorithm 1 is sound for validating the pair of putdelta and expected_get that
once it terminates, we can conclude putdelta is valid.

3.4 Incrementalization

We have shown that an updatable view is defined by a valid put, which makes
changes to the source to reflect view updates. However, when there is only a small
update on the view, repeating the put computation is not efficient. In this section,
we further optimize the computation of the putback program by exploiting its
well-behavedness and integrating it with the standard incrementalization method
for Datalog.

Consider the steady state before a view update in which both the source and
the view are unchanged; due to the GetPut property, a valid putdelta results in
a ∆S having no effect on the original source S: S ⊕∆S = S. This means that ∆S

can be either an empty set or a nonempty set in which all deletions in ∆S are not
yet in the original source S and all insertions in ∆S are already in S. If the view
is updated by a delta ∆V , there will be some changes to ∆S, denoted as ∆2S,
that have effects on the original source S.

Example 3.4.1 Consider the database in Example 3.2.1: S = {r1(1), r2(2), r2(4)}.
Let ∆S = {+r1(1),+r2(2),−r2(3)} be a delta of S. Clearly, S ⊕ ∆S = S.
Now, we change ∆S by a delta of ∆S, denoted as ∆2S, which includes a set
of deletions to ∆S, ∆2−S = {+r1(1),−r2(3)}, and a set of insertions to ∆S,
∆2+S = {+r1(3),−r2(4)}. We obtain a new delta of S:

∆S ′ = (∆S \∆2−S) ∪∆2+S = {+r1(3),+r2(2),−r2(4)}

and the new database S ′ = S ⊕∆S ′ = {r1(1), r1(3), r2(2)}. In fact, we can also
obtain the same S ′ by applying only ∆2+S directly to S: S ′ = S ⊕∆2+S. ut

Intuitively, for each base relation Ri in the source database S, we obtain the
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Figure 3.4: Incrementalization of putdelta.

new R′i by applying to Ri the delta relations ∆−Ri
and ∆+

Ri
from ∆S. Because all

the tuples in ∆−Ri
are not in Ri and all the tuples in ∆+

Ri
are in Ri, if we remove

some tuples from ∆−Ri
or ∆+

Ri
, then the result R′i has no change. Only the tuples

inserted into ∆−Ri
or ∆+

Ri
make some changes in R′i. Therefore, S ′ can be obtained

by applying to the original S the part ∆2+S of ∆2S, i.e., ∆S ′ and ∆2+S are
interchangeable.

Proposition 3.4.2 Let S be a database and ∆S be a non-contradictory delta of
the database S such that S ⊕∆S = S. Let ∆2S be a delta of ∆S, and the following
equation holds:

S ′ = S ⊕∆S ′ = S ⊕∆2+S

where ∆S ′ = ∆S ⊕∆2S and ∆2+S is the set of new tuples inserted into ∆S by
applying ∆2S. ut

Proposition 3.4.2 is the key observation for deriving from putdelta an incremental
Datalog program ∂put that computes ∆S more efficiently (Figure 3.4). To derive
∂put, we first incrementalize the Datalog program putdelta to obtain Datalog
rules that compute ∆2S from the change ∆V on the view V . This step can be
performed using classical incrementalization methods for Datalog [55]. We then
use ∆2+S in ∆2S as an instance of ∆S for applying to the source S.

Example 3.4.3 (Intuition) Given a source relation R of arity 2 and a view
relation V defined by a selection on R: v(X, Y ) :− r(X, Y ), Y > 2. Consider the
following update strategy with a constraint that updates on V must satisfy the
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selection condition Y > 2:

+r(X, Y ) :− v(X, Y ),¬r(X, Y ).

m(X, Y ) :− r(X, Y ), Y > 2.

−r(X, Y ) :− m(X, Y ),¬v(X, Y ).

Let ∆+
V /∆−V be the set of insertions/deletions into/from the view V . We use two

predicates +v and −v for ∆+
V and ∆−V , respectively. To generate delta rules for

computing changes of ±r when the view is changed by ∆+
V and ∆−V , we adopt the

incremental view maintenance techniques introduced in [55] but in a way that
derives rules for computing the insertion set and deletion set for ±r separately.
When ∆+

V and ∆−V are disjoint, by applying distribution laws for the first Datalog
rule, we derive two rules that define the changes to ∆+

R, a set of insertions ∆+(∆+
R)

and a set of deletions ∆−(∆+
R), as follows:

+(+r)(X, Y ) :− +v(X, Y ),¬r(X, Y ).

−(+r)(X, Y ) :− −v(X, Y ),¬r(X, Y ).

where predicates +(+r) and −(+r) correspond to ∆+(∆+
R) and ∆−(∆+

R), respectively.
Similarly, we derive rules defining changes to ∆−R, ∆+(∆−R) and ∆−(∆−R), as
follows:

+(−r)(X, Y ) :− m(X, Y ),−v(X, Y ).

−(−r)(X, Y ) :− m(X, Y ),+v(X, Y ).

Finally, as stated in Proposition 3.4.2, ∆2+S and ∆S ′ are interchangeable.
Since ∆2+S contains ∆+(∆−R) and ∆+(∆+

R), we can substitute −r and +r for the
predicates +(−r) and +(+r), respectively, to derive the program ∂put as follows:

m(X, Y ) :− r(X, Y ), Y > 2.

+r(X, Y ) :− +v(X, Y ),¬r(X, Y ).

−r(X, Y ) :− m(X, Y ),−v(X, Y ).

Because ∆+
V and ∆−V are generally much smaller than the view V , the computation

of ∆+(∆±R) in the derived rules is more efficient than the computation of ∆±R in
putdelta. ut
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The incrementalization algorithm that transforms a putback program putdelta

in nonrecursive Datalog with negation and built-in predicates into an equivalent
program ∂put is as follows:

• Step 1 : We first stratify the Datalog program putdelta. Let v, l1, . . . , lm,
±r1, . . .± rn be a stratification [41] of the Datalog program putdelta, which
is an order for the evaluation of IDB relations of putdelta.

• Step 2 : To derive rules for computing changes of each IDB relation l1, . . . , lm
when the view v is changed, we adopt the incremental view maintenance
techniques introduced in [55] but in a way that derives rules for computing
each insertion set (+li) and deletion set (−li) on IDB relation li (i ∈ [1,m])
separately (see the details in Ex A.3).

• Step 3 : Similar to Step 2, we continue to derive rules for computing changes
of each IDB relation ±r1, . . .± rn but only for insertions to these relations.
The purpose is to generate rules for computing ∆2+S, i.e., computing the
relations +(±r1), . . .+ (±rn).

• Step 4 : We finally substitute ±ri for +(±ri) (i ∈ [1, n]) in the derived rules
to obtain the incremental program ∂put. This is because ∆2+S can be used
as a instance of ∆S ′ to apply to the source database S (Proposition 3.4.2).

As shown in Example 3.4.3, for a LVGN-Datalog program in which the view
predicate v occurs at most once in each delta rule, the transformation from a
putback program putdelta to an incremental one ∂put is simplified to substituting
+v for positive predicate v and −v for negative predicate ¬v.

Lemma 3.4.4 Every valid LVGN-Datalog putback program putdelta for a view
relation V is equivalent to an incremental program that is derived from putdelta by
substituting delta predicates of the view, +v and −v, for positive and negative
predicates of the view, v and ¬v, respectively. ut
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3.5 Implementation and Evaluation

3.5.1 Implementation

We have implemented a prototype for our proposed validation and in-
crementalization algorithms in Ocaml (The full source code is available at
https://github.com/dangtv/BIRDS). For the case in which the view update
strategy is not in LVGN-Datalog, our framework feeds each check in our vali-
dation algorithm to the Z3 automated theorem prover [61]. As mentioned in
Subsection 3.3.5, the validation algorithm may not terminate, though it is sound
for checking the pair of view definition and update strategy program. We have
also integrated our framework with PostgreSQL [26], a commercial RDBMS, by
translating both the view definition and update strategy in Datalog to equivalent
SQL and trigger programs.

Our translation is conducted because nonrecursive Datalog queries can be
expressed in SQL [43]. We use a similar approach to the translation from
Datalog to SQL used in [46]. The SQL view definition is of the form CREATE VIEW

<view-name> AS <sql-defining-query>. Meanwhile, the implementation for the
update strategy is achieved by generating a SQL program that defines triggers
[62] and associated trigger procedures on the view. These trigger procedures are
automatically invoked in response to view update requests, which can be any SQL
statements of INSERT/DELETE/UPDATE. Our framework also supports combining
multiple SQL statements into one transaction to obtain a larger modification
request on the view. When there are view update requests, the triggers on the
view perform the following steps: (1) handling update requests to the view to
derive deltas of the view (see Ex A.4), (2) checking the constraints if applying
the deltas from step (1) to the view, and (3) computing each delta relation and
applying them to the source. The main trigger is as follows:

CREATE TRIGGER <update-strategy>

INSTEAD OF INSERT OR UPDATE OR DELETE ON <view V >

BEGIN

-- Deriving changes on the view

Derive ∆−V and ∆+
V from view update requests

-- Checking constraints

https://github.com/dangtv/BIRDS
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FOR EACH <constraint ∀ ~X,Φi( ~X)→ ⊥> DO

IF EXISTS (<SQL-query-of Φi( ~X)>) THEN

RAISE "Invalid␣view␣updates";

END IF;

END FOR;

-- Calculating and applying delta relations

FOR EACH <source relation Ri> DO

CREATE TEMP TABLE ∆+
Ri

AS <sql-query-of +ri>;

CREATE TEMP TABLE ∆−Ri
AS <sql-query-of −ri>;

DELETE FROM Ri WHERE ROW (Ri) IN ∆−Ri
;

INSERT INTO Ri SELECT * FROM ∆+
Ri
;

END FOR;

END;

3.5.2 Evaluation

To evaluate our approach, we conduct two experiments. The goal of the
first experiment is to investigate the practical relevance of our proposed method
in describing view update strategies and to evaluate the performance of our
framework in checking these described update strategies. In the second experiment,
we study the efficiency of our incrementalization algorithm when implementing
updatable views in a commercial RDBMS.

Benchmarks

To perform the evaluation, we collect benchmarks of views and update strategies
from two different sources:

• View update examples and exercises collected from the literature: textbooks
[62, 63], online tutorials [64, 65, 66, 67, 68] (triggers, sharded tables, and so
forth), papers [20, 13] and our case study in Section 3.2.

• View update issues asked on online question & answer sites: Database
Administrators Stack Exchange [69] and Stack Overflow Public Q&A [70].
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Table 3.1: Validation results. S, P, SJ, IJ, LJ, RJ, FJ, U, D and A stand for
selection, projection, semi join, inner join, left join, right join, full join, union, set
difference and aggregation, respectively. PK, FK, ID, and C stand for primary key,
foreign key, inclusion dependency, and domain constraint, respectively.

ID View
Operator
in view
definition

Pro-
gram
size

(LOC)

Constraint LVGN-
Datalog

NR-
Data-

log¬,=,<

Valid-
ation
Time
(s)

SQL
(Byte)

Li
te
ra
tu
re

1 car_master P 4 X X 1.74 8447
2 goodstudents P,S 5 C X X 1.86 9182
3 luxuryitems S 5 C X X 1.77 8938
4 usa_city P,S 5 C X X 1.77 9059
5 ced D 6 X X 1.72 8847
6 residents1962 S 6 C X X 1.73 9699
7 employees SJ,P 6 ID X X 1.76 9358
8 researchers SJ,S,P 6 X X 1.79 9058
9 retired SJ,P,D 6 X X 1.76 9048
10 paramountmovies P,S 7 X X 1.81 9721
11 officeinfo P 7 X X 1.8 9963
12 vw_brands U,P 8 C X X 1.78 10932
13 tracks2 P 8 X X 1.81 9824
14 residents U 10 X X 1.77 13504
15 tracks3 S 11 C X X 1.88 14430
16 tracks1 IJ 12 PK 5 X 1.92 95606
17 bstudents IJ,P,S 13 PK 5 X 2.13 22431
18 all_cars IJ 13 PK, FK 5 X 1.89 25013
19 measurement U 13 C, ID X X 1.78 12624
20 newpc IJ,P,S 15 JD 5 X 2.06 44665
21 activestudents IJ,P,S 19 PK, JD 5 X 2.19 31766
22 vw_customers IJ,P 19 PK,FK,JD 5 X 2.92 26286
23 emp_view IJ,P,A - 5 5 - -

Q
&
A

si
te
s

24 ukaz_lok S 6 C X X 1.79 10104
25 message U 8 C X X 1.8 15770
26 outstanding_task P, SJ 10 ID, C X X 10.07 18253
27 poi_view P,IJ 12 PK 5 X 2.1 24741
28 phonelist U 14 C X X 1.94 16553
29 products LJ 16 PK,FK,C 5 X 3.6 58394
30 koncerty IJ 17 PK 5 X 1.93 29147
31 purchaseview P,IJ 19 PK,FK,JD 5 X 1.89 27262
32 vehicle_view P,IJ 20 PK,FK,JD 5 X 2.03 25226
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All experiments on these benchmarks are run using Ubuntu server LTS 16.04 and
PostgreSQL 9.6 on a computer with 2 CPUs and 4 GB RAM.

Results

As mentioned previously, we perform the first experiment to investigate which
users’ update strategies are expressible and validatable by our approach. In our
benchmarks, the collected view update strategies are either implemented in SQL
triggers or naturally described by users/systems. We manually use nonrecursive
Datalog with negation and built-in predicates (NR-Datalog¬,=,<) to specify these
update strategies as putdelta programs5 and input them with the expected view
definition to our framework. Table 3.1 shows the validation results. In terms of
expressiveness, NR-Datalog¬,=,< can be used to formalize most of the view update
strategies with many common integrity constraints except one update strategy for
the aggregation view emp_view (#23). This is because we have not considered
aggregation in Datalog. Interestingly, LVGN-Datalog can also express many update
strategies for many views defined by selection, projection, union, set difference
and semi join. Inner join views such as all_car (#18) are not expressible in
LVGN-Datalog because the definition of inner join is not in guarded negation
Datalog6. LVGN-Datalog is also limited in expressing primary key (functional
dependency) or join dependency because these dependencies are not negation
guarded7. Even for the cases that LVGN-Datalog cannot express, thus far, all the
well-behavedness checks in our experiment terminate after an acceptable time
(approximately a few seconds). The validation time almost increases with the
number of rules in the Datalog programs (program size), but this time also depends
on the complexity of the source and view schema. For example, the update strategy
of message (#25) has the longest validation time because this view and its source
relations have many more attributes than other views. Similarly, the size of the
generated SQL program is larger for the more complex Datalog update strategies.

5For the update strategies implemented in SQL triggers, rewriting them into putdelta programs
can be automated.

6An example of inner join is v(X,Y, Z) :− s1(X,Y ), s2(Y,Z), which is not a guarded negation
Datalog rule.

7Primary key A on relation r(A,B) is expressed by the rule ⊥ :− r(A,B1), r(A,B2),¬B1 = B2,
where the equality B1 = B2 is not guarded.
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Figure 3.5: View updating time.

We perform the second experiment to evaluate the efficiency of the incre-
mentalization algorithm in optimizing view update strategies. Specifically, we
compare the performance of the incrementalized update strategy with the original
one when they are translated into SQL trigger programs and run in PostgreSQL
database. For this experiment, we select some typical views in our benchmarks
including: luxuryitems (Selection), officeinfo (Projection), outstanding_task
(Join) and vw_brands (Union). For each view, we randomly generate data for the
base tables and measure the running time of the view update strategy against the
base table size (number of tuples) when there is an SQL statement that attempts
to modify the view. Figure 3.5 shows the comparison between the original view
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update strategies (black lines) and the incrementalized ones (blue lines). It is clear
that as the size of the base tables increases, our incrementalization significantly
reduces the running time to a constant value, thereby improving the performance
of the view update strategies.

3.6 Related work

Melnik et al. [71] propose a novel declarative mapping language for specifying
the relationship between application entity views and relational databases, which
is compiled into bidirectional views for the view update translation. The user-
specified mappings are validated to guarantee the generated bidirectional views to
roundtrip. Furthermore, the authors introduce the concept of merge views that
together with the bidirectional views contribute to determining complete update
strategies, thereby solving the ambiguity of view updates. Though, merge views
are exclusively used and validating the behavior of this operation with respect to
the roundtripping criterion is not explicitly considered. In comparison to [71],
where the proposed mapping language is restricted to selection-projection views
(no joins), our approach focuses on a specification language, which is in lower
level but more expressive that more view update strategies can be expressed.
Moreover, the full behaviour of the specified view update strategies is validated by
our approach.

3.7 Conclusion

In this chapter, we have introduced a novel approach for relational view update
in which programmers are given full control over deciding and implementing
their view update strategies. We have shown that a view update strategy can
be concisely written in a Datalog program that computes source updates from
the updated view and the original state of the source tables. In this chapter, we
focus on non-recursive Datalog that is expressive enough for practical relational
database management systems where a view and its update strategy are commonly
defined in SQL without recursion.
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Since writing view update strategies is error-prone, we propose a validation
algorithm that statically checks the well-behavedness of user-written programs.
We identify a fragment of Datalog, called linear-view guarded negation Datalog
(LVGN-Datalog), in which our validation algorithm is both sound and complete.
Furthermore, the algorithm can automatically derive from view update strategies
the corresponding view definition to confirm the one expected beforehand. This
fragment not only has good properties in theory but is also useful for solving
practical view updates. Our experiments on benchmarks collected in practice show
that our validation algorithm is feasible and LVGN-Datalog is expressive enough
for solving many view update strategies.

To improve the performance of view update strategy programs, we introduce a
new optimization method by incrementalizing the hand-written programs. The
optimization algorithm integrates the standard incrementalization method for
Datalog with the well-behavedness in view updates. The experiments show that
our incrementalization can significantly reduce the running time of view updates in
practical relational database management systems.

In this chapter, we consider a core fragment of Datalog for programming
view update strategies. In our feature work, more extensions of the Datalog
language will be considered with extended versions of both the validation and
incrementalization algorithms.

The current implementation of our framework is integrated with PostgreSQL
and supports only virtual views in this database management system. As presented
in this chapter, our compiler translates Datalog programs into SQL code that
consists of all necessary statements for creating views with associated triggers
for view updates. By using the same trigger mechanisms for updatable views,
it is straightforward to extend the framework to integrate with other database
management systems such as MySQL, Oracle, and so forth. The designed triggers
in our implementation can be also adapted to work with materialized views.

As mentioned in this chapter, our validation statically checks the well-
behavedness of user-written programs so that programmers can early detect errors
in their programs before executing in real databases. How programmers can find
the details of bugs remains unclear. Therefore, it is important to further support
programmers or the case that the programs are not valid. In the next chapter, we
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shall present our approach to interactively debugging Datalog programs so that
the user’s burden is reduced.
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4
A Debugger for Non-Recursive View

Update Strategies

4.1 Introduction

Datalog, a declarative logic programming language, has many applications in a
variety of domains such as deductive databases [58], data integration [72], program
analysis [73, 74], bidirectional programming [36], and so forth. Verifying Datalog
programs plays an essential role to guarantee the properties of these programs
required by the applications. When a property is not satisfied, it is more important
to reduce the user’s burden in debugging the unexpected behavior of the program.

This kind of debugging problem, which arises when a property of a program is
not satisfied, has not been well studied for Datalog. There are two challenges
in practice. The first challenge is searching for a concrete input database, i.e.,
a counterexample that reveals the unexpected behavior of the program. The
second challenge is locating the buggy Datalog rules that break the property. By
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Precondition: v = get(𝑠!, 𝑠") = 𝑠! ∪ 𝑠"
(v is not updated)

∀𝑋, 𝑌. (𝑠! 𝑋, 𝑌 ∨ 𝑠" 𝑋, 𝑌 ) ↔ 𝑣(𝑋, 𝑌)
----------------------------------------------------
Δ#!
$ (X, Y) :- 𝑠!(X, Y), ¬ v(X, Y). 
Δ#"
$ (X, Y) :- 𝑠"(X, Y), ¬ v(X, Y). 
m(Y, X)  :- v(X, Y), ¬ 𝑠!(X, Y).
Δ#!
% (X, Y) :- m(X, Y), ¬ 𝑠"(X, Y). 

----------------------------------------------------
Postcondition: no changes to 𝑠! or 𝑠"
∀𝑋, 𝑌. Δ&!

$ 𝑋, 𝑌 →⊥
∀𝑋, 𝑌. Δ&"

$ 𝑋, 𝑌 →⊥
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% 𝑋, 𝑌 →⊥
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Figure 4.1: Motivating example. The unexpected tuple and the buggy rule are
highlighted.

adopting the algorithmic debugging method [75], a few approaches were proposed
for debugging Datalog programs [76, 77, 78]. However, the existing approaches
neither provide users a way to specify the properties of Datalog programs nor
generate counterexamples to show the incorrectness of the programs. To locate
a bug, these approaches ask the users many questions about the computation
correctness of the Datalog program. In other words, the users have to find out
whether the Datalog program has unintended interpretations, e.g., the intention
is not met by the program results. Identifying such unintended interpretations
becomes costly when the input database of the program is not small.

An ideal approach to debugging would allow the user to specify the program’s
properties and automatically run all the checks. The properties of a program are
commonly specified by a set of assertions such as equalities, domain constraints,
containments, and so forth. For Datalog, which is a logic programming language
in relational databases, it is intuitive for programmers to specify the assertions
in the forms of relational predicates. For example, one may consider that some
relations of the Datalog program must be equivalent or some relations must be
empty, i.e., the corresponding predicates are always false.

We illustrate with the following example the property specifications and the
debugging problem of Datalog programs.

Example 4.1.1 (Motivating Example: View Update Strategy) In this ex-
ample, we consider an application of Datalog in describing view update strategies.
Suppose that we are given a database of two base relations s1(A,B) and s2(A,B)
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(Figure 4.1) with a view v(A,B) defined over these two relations by a union query:
v = get(s1, s2) = s1 ∪ s2. The following is a buggy Datalog program (denoted as
putdelta) that describes a view update strategy, i.e., a description about how to
update the base relations s1 and s2 through the view v.

∆−s1(X, Y ) :− s1(X, Y ),¬v(X, Y ). (r1)

∆−s2(X, Y ) :− s2(X, Y ),¬v(X, Y ). (r2)

m(Y,X) :− v(X, Y ),¬s1(X, Y ). (r3)

∆+
s1

(X, Y ) :− m(X, Y ),¬s2(X, Y ). (r4)

In putdelta, for a relation, ∆+ and ∆− denote the insertion and deletion sets on
the relation, respectively. Rules (r1) and (r2) state that if a tuple 〈X, Y 〉 is in s1

or s2 but not in v, it will be deleted from s1 or s2, respectively. Rule (r3) checks
the tuples in v but not in s1, and stores these tuples in a mediate relation m. The
last rule states that if a tuple 〈X, Y 〉 is in m but not in s2, it will be inserted into
s1. putdelta takes as input the states of s1, s2, and v to produce the delta relations
of s1 and s2.

Such a putback program putdelta is required to satisfy round-tripping properties
to maintain the consistency of view updates, as formulated in the existing works
[29, 36]. Here, we illustrate the problem with the property (called GetPut) that
in the input of putdelta, if the view is unchanged, i.e., v = s1 ∪ s2, the output of
putdelta must be empty. We use first-order logic sentences (Figure 4.1) to specify
the constraints of the input (called precondition) and the constraints over the
output (called postcondition).

Figure 1 shows a counterexample of GetPut that is a collection of tuples in
the source tables and the view (s1, s2, v). Over this counterexample, the result
of putdelta is ∆−s1 = ∆−s2 = ∅ and ∆+

s1
= {〈b2, a2〉}. That means tuple 〈b2, a2〉 is

inserted into s1. This insertion is not expected by the postcondition. Since the
input of putdelta satisfies the precondition but the output does not satisfy the
postcondition, the GetPut property of putdelta is violated.

The user may wonder why tuple 〈b2, a2〉 of ∆+
s1

occurs unexpectedly in the
output of putdelta. From this unexpected tuple, the problem now is to detect which
rules in the original Datalog program are the causes. Here, in the head of rule (r3),
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the variables X and Y are placed in the wrong positions, and thereby some wrong
tuples are derived. This bug must be fixed to make putdelta satisfy the GetPut

property. ut

We believe that for a required property of a Datalog program, the user may
not only have unexpected mistakes such as typos but also have wrong intentions
that do not conform to the property. Providing suggestions on how to correct the
program is very useful to users but is a challenging issue. In addition, debugging is
an ambiguous process that there are many possible causes for a bug. Therefore, it
is essential to design an interface that lets users interact with the underlying
debugging engine. For example, the user can mark suspicious rules to inspect or
decide how to proceed for the bug ambiguity.

The key insight of this chapter is that counterexamples play a central role
in debugging Datalog programs. First, a program is buggy if and only if a
counterexample exists. Second, to be useful for debugging the Datalog program, a
counterexample is expected to be a realistic and simple database.

Our approach is statically generating such a counterexample rather than
dynamically testing the program with randomly generated test cases as in other
works such as [79]. Over the generated counterexample, bugs can be observed in the
execution results of the Datalog program. Although data provenance techniques
from the database literature [80] can provide useful support to explain how and
why the unexpected results are derived, whether we can use this provenance
information to efficiently track down the detailed source of bugs remains unclear.
In this chapter, we fulfill this gap by a novel method that combines the provenance
information with the user interaction for resolving the ambiguity in debugging. In
summary, this chapter has the following contributions:

• We present a new way to use a syntactic extension of non-recursive Datalog
for specifying the properties of a Datalog program.

• To explain to the user the behavior of the written Datalog program, we
develop a counterexample generator that statically checks specified properties
of non-recursive Datalog programs and generates counterexamples for showing
why the properties are not satisfied.
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Figure 4.2: Counterexample generation architecture.

• To reduce the user’s effort of correcting buggy Datalog programs, we design a
user interface and a provenance-based debugging engine to assist the user in
locating the bugs with the counterexamples. The debugging engine provides
correction hints to the user when the bugs are found.

• To demonstrate the efficiency and the usability of the proposed approach,
we have implemented a prototype of the approach and evaluated it with
Datalog programs in practice. The source code is available upon request.

This chapter is organized as follows. In Section 4.2, we explain the design of
our proposed counterexample generation method. We describe the counterexample-
guided debugging approach in Section 4.3 and the experiment in Section 4.4.
Section 4.5 presents related works. Section 4.6 wraps up this chapter.

4.2 Counterexample Generation

In this section, we present our approach to statically validating and generating
counterexamples for a specified property of a non-recursive Datalog program.

Figure 4.2 shows our counterexample generation architecture. It consists of
two main parts: a validator for statically checking the specified property and a
counterexample generator for finding a counterexample for the property. The
Datalog program with its property specification is first passed to the validator.
If the validator successfully proves that the program satisfies the property, we
conclude there is no counterexample. If the validator fails, the Datalog program
is passed to the counterexample generator. Since many static checks such as
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equivalence for Datalog programs are undecidable [60], in both the validator
and generator, we transform the property of the Datalog program into logical
constraints that can be solved by an SMT solver, even though the termination is
not guaranteed.

4.2.1 Specifying Program Properties

As mentioned previously, rather than introducing a new language, our approach
is to use the same language to specify properties of a non-recursive Datalog program
using preconditions and postconditions. By following the syntax introduced in
[36, 81], we allow Datalog rules to have truth constant false (denoted as ⊥) in the
head. In this way, a precondition, as well as a postcondition, is a set of Datalog
rules that have the following form:

⊥ :− r1( ~X1), . . . rn( ~Xn). (*)

That means ∀ ~X, (r1( ~X1) ∧ . . . ∧ rn( ~Xn))→ ⊥, where ~X are all the free variables.

Example 4.2.1 Consider the GetPut property in Example 4.1.1, which says
that if there is no change to the view v, there is no change to the base tables s1 and
s2. We use non-recursive Datalog to specify the precondition as follows:

vold(X, Y ) :− s1(X, Y ).

vold(X, Y ) :− s2(X, Y ).

⊥ :− v(X, Y ),¬vold(X, Y ).

⊥ :− vold(X, Y ),¬v(X, Y ).

The first two rules store the union of s1 and s2 in a mediate relation vold, and the
last two rules indicate that v is the same as vold, i.e., the view does not change.
And we can specify the postcondition that there is no change to the base tables as
follows.

⊥ :− ∆−s1(X, Y ).

⊥ :− ∆−s2(X, Y ).

⊥ :− ∆+
s1

(X, Y ).

ut
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4.2.2 Validation

We use an SMT solver to prove the specified property of the Datalog program
by translating the property into a first-order logic (FO) sentence. If there is a
proof such that the FO sentence is valid, the property is satisfied.

Our transformation from non-recursive Datalog to first-order logic is based on
the standard transformation [41, 43]. Let P be a non-recursive Datalog program,
we inductively transform each relation r in P and the rules of the precondition
and the postcondition into an equivalent FO formula ϕr as follows:

If r is an EDB relation, ϕr = r( ~Xr) = r(X1, . . . , Xarity(r)).

If r is an IDB relation, i.e., r occurs in the head of m rules:

r( ~Xr) :− α1,1, . . . , α1,n1 .

. . .

r( ~Xr) :− αm,1, . . . , αm,nm .

The FO formula of r, if considering only the i-th rule, is ϕr,i( ~Xr) = ∃ ~Ei,
ni∧
j=1

βi,j,

where ~Ei contains the bound variables of the i-th rule, i.e., the variables not in the
rule head, and

βi,j =


ϕw(~Z), if αi,j is an atom w(~Z)

¬ϕw(~Z), if αi,j is a negated atom ¬w(~Z)

αi,j, if αi,j is an equality or a built-in predicate, e.g., x < y

By combining all the rules of r, we have:

ϕr( ~Xr) =
m∨
i=1

ϕr,i( ~Xr) =
m∨
i=1

(
∃ ~Ei,

ni∧
j=1

βi,j

)

By having the first-order formulas of all the IDB relations, each special Datalog
rule of (*), which has ⊥ in the head in the precondition and postcondition, is
transformed into a first-order sentence: ∀ ~X, (ϕr1( ~X1) ∧ . . . ∧ ϕrn( ~Xn))→ ⊥. The
precondition, as well as the postcondition, is a conjunction of all its FO sentences
transformed from the special Datalog rules.
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Let ϕpre and ϕpost be the first-order sentences of the precondition and the
postcondition, respectively. We employ an automated theorem prover to prove
whether ϕpost holds if ϕpre holds. In other words, we check whether the following
first-order sentence is valid: ϕpre → ϕpost.

4.2.3 Generating Counterexamples

As mentioned previously, to assist the user in debugging a specified property,
we shall generate counterexamples, which are used to guide the user to the location
of bugs. The simpler the counterexamples are, the easier the user can succeed in
debugging the program.

To generate a counterexample, our idea is to create a symbolic database and
transform the evaluation of the Datalog program over the symbolic database with
the specified property into a constraint program in Rosette [82]. The Rosette
symbolic execution runtime translates the program into logical constraints that are
performed by an underlying SMT solver such as Z3 [61]. The result obtained by
the Rosette framework is an interpretation of the symbolic input over which the
specified property of the Datalog program is violated.

To put it more concretely, we construct a symbolic input of the source and view
tables by representing each table as a list of tuples, each tuple is a list, where each
element is a symbolic value. The order and the duplicates of tuples are ignored
because a relation is a set of tuples rather than a list. Considering Example 4.1.1,
assuming that the types of attributes A and B are integer and real, respectively, we
define a symbolic table v as follows (similarly for s1 and s2).

(define-symbolic a1 integer?) (define-symbolic a2 integer?)

(define-symbolic b1 real?) (define-symbolic b2 real?)

(define t1 (list a1 b1)) (define t2 (list a2 b2))

(define v (list t1 t2))

Since string values are not supported in the underlying SMT solvers, in our
transformation, we use an integer symbol for a string attribute. A value for this
integer symbol will be mapped to a string value by using a predefined dictionary,
where the integer value is used as an index to determine the corresponding string
value. In other words, we build up a partial bijective function that maps an integer
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Concat Output

Figure 4.3: Transformation from Datalog to functions.

value to a string in the dictionary. Since the dictionary has finite words, we limit
the values of a string attribute to be in the predefined dictionary. For example, for
a relation r(S : string), we define a symbolic tuple as the following:

(define-symbolic s1 integer?)

(assert (and (< -1 s1) (< s1 dictionary_size)))

(define t1 (list s1))

The assertion in the second line ensures that the value of s1 is in the index range
of the dictionary.

We evaluate a non-recursive Datalog program over a symbolic input by using
four functions: Cartesian product, Filter, Map, and Concat. Figure 4.3 illustrates
the steps for evaluating a relation r. For each rule of r, we first take a cartesian
product over all positive relations in the rule body and then apply a filter (Filter1)
for the join attributes, a filter (Filter2) for all built-in predicates, and another filter
(Filter3) for the negative relations. Over the tuples resulted from these tree filters,
we use a mapping function to select the attributes appearing in the rule head1.

1It is not necessary to filter duplicates here. The duplicates will be eliminated in all the other
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If r is defined by multiple rules, we evaluate r in each rule and concatenate all
the resulted tuples. For a non-recursive Datalog program, which has many IDB
relations, we can inductively evaluate all the IDB relations in the program.

Example 4.2.2 For the first rule in Figure 4.3, we take a cartesian product of
the two positive relations s and u. The result is first filtered by Filter2 to select
only tuples, where the second attribute of s agrees with the first attribute of u, i.e.,
Ys = Yu. Filter2 is applied to select the tuples satisfying X > 1. Filter3 checks
whether there exists a tuple 〈Xt, Zt〉 in t that agrees with the attributes Xs and Zu
in the tuples resulted from Filter2. The mapping function takes a projection over
the three-dimension tuples and results in two-dimension tuples. Function Concat
gets all the tuples computed by the two rules. ut

We now turn to encode the property that is specified by the precondition and
the postcondition. Recall that the precondition, as well as the postcondition, is a
set of Datalog rules having constant ⊥ in the head. To encode these Datalog rules
into Rosette constraints, we first replace ⊥ with a normal predicate, named ∅pre for
the precondition and ∅post for the postcondition, and then encode the evaluation of
the obtained Datalog rules into functions as presented previously. These two
relations, ∅pre and ∅post, are both expected to be empty. With the evaluation of
∅pre and ∅post over the symbolic input presented previously, we first encode the
precondition into an assertion that the length of table ∅pre is equal to 0 as the
following:

(assert (= 0 (length ∅pre)))

We then add another assertion that the length of table ∅post is greater than 0 to
solve the constraint on the symbolic input that the precondition is satisfied but
the postcondition is violated:

(solve (assert (< 0 (length ∅post))))

Algorithm 2 summarizes the main steps in our proposed counterexample
generation. Starting from 0, we increase the maximum size, denoted as n, of each
input EDB table. With a value of n, we construct n symbolic tuples for each EDB

checks and algorithms.
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Algorithm 2: Counterexample generation
1 n← 0 // The maximum size of input tables
2 Success ← False
3 while not Success do
4 n← n+ 1
5 foreach EDB relation ri do // Construct a symbolic input
6 Define ri as a list of n symbolic tuples.

// Encoding the property
7 Replace ⊥ in the precondition/postcondition with ∅pre/∅post.
8 Construct the evaluation of ∅pre and ∅post over the symbolic EDB

relations.
9 Assert the constraints for ∅pre and ∅post:

10 (assert (= 0 (length ∅pre)))
11 (solve (assert (< 0 (length ∅post))))
12 (A list of symbol-value pairs, Success) ← Call the Rosette framework

to resolve the constraints
13 if Success then
14 foreach ri do // Instantiate all the EDB tables
15 Replace each symbol with the corresponding value.
16 Remove duplicates in ri.
17 return the instance of all the EDB tables.

table. We encode the specified property by constructing assertions corresponding
to the precondition and the postcondition. We input these assertions to the
Rosette framework [82] to find a value for each symbol in the input that the
precondition is satisfied but the postcondition is not. If it succeeds, we stop the
while loop, instantiate all the EDB symbolic tables, and eliminate duplicates.
Otherwise, we continue the loop with an increased value of n.

4.3 Interactively Locating Bugs with Counterex-

amples

In this section, we present our method for interactively debugging a non-
recursive Datalog program with counterexamples. Our approach consists of a user
interface and an underlying debugging engine that assists the user in determining
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the location of bugs that cause the unexpected behavior of the program.

4.3.1 Checking Counterexamples

As presented in the previous section, a counterexample is an instance of
the input database of the Datalog program such that the property, which is
specified by the precondition and the postcondition, is not satisfied. Given an
instance of the input database, to check whether the property is violated, we
evaluate the output and check whether the input satisfies the precondition and the
output does not satisfy the postcondition. Recall that both the precondition
and the postcondition are written in Datalog rules with a constant ⊥ in the
head. We check these conditions by replacing ⊥ with ∅pre( ~X)/∅post( ~X) for the
precondition/postcondition, where ~X are variables in the rule body, and evaluating
the obtained Datalog rules. The specified property is violated if ∅pre is empty but
∅post is not empty. Any tuple appearing in ∅post is the symptom of the unexpected
behavior of the Datalog program with respect to the specified property.

Example 4.3.1 Consider the putdelta program with an input database in Exam-
ple 4.1.1 and its GetPut property specified in Example 4.2.1. To check GetPut,
we check the emptiness of ∅pre and ∅post in the following rules:

vold(X, Y ) :− s1(X, Y ).

vold(X, Y ) :− s2(X, Y ).

∅pre(X, Y ) :− v(X, Y ),¬vold(X, Y ).

∅pre(X, Y ) :− vold(X, Y ),¬v(X, Y ).

∅post(X, Y ) :− ∆−s1(X, Y ).

∅post(X, Y ) :− ∆−s2(X, Y ).

∅post(X, Y ) :− ∆+
s1

(X, Y ).

Clearly, in the result, there is no tuple in ∅pre but there is a tuple 〈b2, a2〉 in ∅post.
Therefore, GetPut is violated. ut
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Figure 4.4: Strata-based sequentialization.

4.3.2 Dialog-based User Debugging Interface

Given a counterexample, the debugging problem is to locate the buggy Datalog
rules that cause the symptom that the output is faulty. It is extremely ambiguous
to determine the locations of bugs since there may be many possible reasons
for a fault in the output. Therefore, we allow the user to be involved in the
debugging process by designing a dialog-based interface that asks the user to
confirm and choose relevant options to handle the ambiguity occurring in the
debugging process.

Since Datalog is a declarative programming language, the computation is
not explicitly described in the Datalog program. Rather than constructing the
computation tree or graph from the Datalog program as in other existing works
[76, 77, 78], we shall sequentialize the Datalog program to construct an order of
the rules for the evaluation. In other words, we partition the original Datalog
program into a sequence of smaller parts, where the final output of the program is
obtained by evaluating these parts one by one in the order defined by the sequence.
Similarly, we also sequentialize Datalog rules of the postcondition, where the head
⊥ is replaced by ∅post.

To construct a partition {P1, P2, . . . , Pn} of a Datalog program P , we use the
well-known stratification method for Datalog [41] simplified for the case that there
is no recursion in the Datalog program. Specifically, we use the precedence graph
defined as the following.

Definition 4.3.2 The precedence graph GP of a Datalog program P is a directed
graph, where nodes are the IDB relations of P and edges are relation dependencies:
if r( ~X) :− . . . r′(~Y ) . . . or r( ~X) :− . . .¬ r′(~Y ) . . . is a rule in P , then 〈r′, r〉, which
represents that r′ precedes r, is an edge in GP . ut
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For a precedence graph, we assign to each node, which is a relation, all the
rules of the relation. The rules in each node in the precedence graph form a
stratum. We assign to each stratum a unique position such that if stratum Pi

precedes stratum Pj in the precedence graph, then i < j. Clearly, each stratum in
the graph can be evaluated only after all its preceding stratums are evaluated.

Figure 4.4 shows a program P , which is partitioned into n parts P1, P2, . . . , Pn,
and postcondition rules, which are partitioned into m parts Σ1, . . . ,Σm. The
input of P , which consists of EDB relations, is the input for the first part P1. We
evaluate the output of P by evaluating each part individually that the output of
Pi−1 (IDBi−1) becomes the input of Pi (EDBi) for every part Pi. Similarly, the
output of P is the input of the postcondition rules. By evaluating Σ1, . . . ,Σm in
this order, we obtain ∅post.

Any tuple unexpectedly appearing in ∅post indicates that the specified property
is violated. From this fault symptom, the debugging process is to analyze how the
data is changed after each stratum to detect which stratum contains the bugs. In
the input/output of a stratum, there are two types of faulty tuples: wrong tuples,
which unexpectedly appear, and missing tuples, which cannot be computed as
expected. For example, all the tuples in ∅post are wrong. This is caused by wrong
or missing tuples in the input of Σm, i.e., the output of Σm−1.

For each stratum Pi, if there is a wrong/missing tuple in the output of Pi
(IDBi), we have two possible reasons: Pi contains the buggy rules; or the input of
Pi, which is the output of Pi−1, contains wrong/missing tuples.

Since the root cause of the property violation is in the original Datalog program
P , only P1, P2, . . . , Pn need to be inspected. Meanwhile, the stratums of the
postcondition rules, Σ1, . . . ,Σm, do not need to be inspected. They are used
to detect faulty tuples in the output of P . Our underlying debugging engine
automatically predicts the possible faults in the input of each stratum Σi. In this
way, the possible faults in the output of P are detected without user interaction.

The user interaction is allowed when the underlying debugging engine inspects
the stratums from Pn to P1. At each stratum Pi, when having a faulty tuple in
the output of Pi, we let the user confirm and choose one of the two reasons for
diagnosing the bugs by questioning the user about the validity of IDBi−1, i.e.,
the input of Pi. Specifically, we evaluate all the stratums preceding Pi to obtain
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Figure 4.5: Debugging interaction example.

IDBi−1 and use the faulty output of Pi (IDBi) to predict faulty tuples in IDBi−1.
On one hand, if the user confirms that IDBi−1 is valid, the underlying engine
will suspect Pi to infer possible buggy rules. On the other hand, if the user finds
suspiciousness in IDBi−1, the underlying engine will infer possible wrong/missing
tuples in IDBi−1 assuming Pi is correct, and then question the user to confirm the
relevant faulty tuples.

Example 4.3.3 Figure 4.5 illustrates a debugging session for the putdelta program
and its GetPut property shown in Example 4.1. Here, putdelta is stratified into
four parts, P1, P2, P3, P4, corresponding to the four rules defining the four IDB
relations in the program. There is only one stratum Σ1 for the postcondition rules.

ut

4.3.3 Debugging Engine

We now present our underlying debugging engine that generates debugging
details for the dialog-based user interaction and performs the debugging process
based on the user’s choices. Specifically, the debugging engine traverses all the
stratums from the last one to the first one. At each stratum Pi, the debugging
engine predicts possible faults in the input of the stratum that cause the faults
observed in the output of the stratum and lets the user confirm and choose one
fault. If the user confirms the input of Pi is correct, the engine suspects Pi. In
contrast, if the user chooses one fault, the engine goes to the preceding stratum
Pi−1 for inspecting.

Assuming that the rules in the stratum are correct, and there is a faulty (wrong
or missing) tuple in the output of the stratum, we predict faulty tuples in the
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input of the stratum based on the provenance information of the faulty tuple in
the output that is how it is derived or how it is not derived.

For a wrong tuple in the output of the stratum, its provenance can be explained
by constructing all the proof trees that are used by the stratum to derive the tuple.
In our stratification strategy, each stratum contains only rules of an IDB relation.
Therefore, the maximum height of the proof trees of wrong output tuples is 1. If
a wrong tuple does not belong to the IDB relation, it is derived directly from
the same wrong tuple in the input of the stratum. In contrast, if a wrong tuple
belongs to the IDB relation, it is derived by an immediate inference with rules in
the stratum, thus its proof trees have height 1. The proof trees can be extracted
from the standard bottom-up evaluation strategy [41] of Datalog by assembling all
the immediate inferences.

Example 4.3.4 Considering the putdelta program in Example 4.3.1 and its
stratification in Figure 4.5, the provenance of tuple 〈b2, a2〉 of ∅post in the output of
the last stratum is explained by the following proof tree:

∆+
s1

(b2, a2)

∅post(b2, a2)
[∅post(X, Y ) :− ∆+

s1
(X, Y ).]

where ∆+
s1

(b2, a2) is explained by the previous stratum as the following:
m(b2, a2) ¬s2(b2, a2)

∆+
s1

(b2, a2)
[∆+

s1
(X, Y ) :− m(X, Y ),¬s2(X, Y ).]

ut

From the constructed proof trees, we detect all the faulty tuples in the input
that must be changed to make the wrong tuples in the output disappear. For a
wrong tuple, which is derived directly from the same tuple in the input of the
stratum, we conclude this tuple in the input of the stratum is wrong. For a wrong
tuple derived by the rules of the stratum, all the proof trees of this tuple must be
deconstructed by changing the facts used in these proof trees.

Let w be the IDB relation defined in a stratum Pi, and w( ~A0) be a wrong tuple
in the output of Pi. A proof tree of w( ~A0) has the following form:

(¬)r1( ~A1) . . . (¬)rn( ~An)

w( ~A0)
[w( ~X0) :− (¬)r1( ~X1), . . . , (¬)rn( ~Xn).]

Here, we apply the rule w( ~X0) :− (¬)r1( ~X1), . . . , (¬)rn( ~Xn) with the facts
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(¬)r1( ~A1), . . . , (¬)rn( ~An) to infer w( ~A0). Since w( ~A0) is derived if all the facts
(¬)r1( ~A1), . . . , and (¬)rn( ~An) hold, changing one of (¬)r1( ~A1), . . . , (¬)rn( ~An) is
sufficient to make w( ~A0) not derived, and thus correct w( ~A0). In other words,
w( ~A0) is wrong because one of the facts (¬)r1( ~A1), . . . , (¬)rn( ~An) is wrong. We
exclude facts that are from EDB relations because the EDB database is not
computed by the Datalog program. We raise a question to the user interface to let
the user confirm and choose one wrong tuple. This is repeatedly performed for
each proof tree of each wrong tuple in the output of Pi.

Remark 4.3.5 A fact ¬r( ~A) is wrong iff r( ~A) is missing. This follows from the
closed world assumption (CWA).

A missing tuple, which is not derived in the output of a stratum, is explained
by any proof tree that fails to be constructed. The failed proof tree cannot be
completed because of some facts that are required but do not hold. As presented
previously, in our stratification strategy, each stratum contains only rules of an
IDB relation that the proof trees of a tuple have maximum height 1. A proof tree,
which has height 1, is constructed by instantiating a rule in the stratum. To
avoid constructing an infinite number of proof trees that are not related to the
context of the Datalog program, as other approaches [80], we restrict the Datalog
program to its active domain, which is the set of all constants appearing in the
EDB relations and the program. Specifically, only values in the active domain are
used to instantiate a rule. In this way, we obtain a finite number of proof trees for
a tuple in the output.

We detect the faulty tuples in the input that cause a missing tuple in the
output as follows. If the missing tuple does not belong to the IDB relation defined
by the rules in the stratum, we conclude it is missing in the input of the stratum.
In contrast, we construct a proof tree of the missing tuple by instantiating a rule
in the stratum and then find all the facts not holding in the rule body. Clearly,
these faulty facts explain the missing tuple in the output of the stratum. In this
way, by constructing all the proof trees, we enumerate all possible faults in the
input and raise a question to the user for choosing the most suitable fault. To
reduce the number of possible faults, we also prefer the smaller faults to the bigger
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ones. A fault is smaller if the number of faulty facts in the fault is smaller. The
smaller a fault is, the more easily it can be fixed.

We have predicted all the faults (wrong and missing tuples) in the input of a
stratum based on the assumption that the rules in the stratum are correct. At the
user interface level, we have raised questions to the user to confirm the faults in
the input that cause the faulty tuples in the output. Since a stratum contains only
rules of an IDB relation, named ri, changing the rules in the stratum can only
correct the faulty tuples of ri in the output. Therefore, for the faulty tuples of ri,
if in the input, there is no possible fault or the user confirms no predicted fault is
suitable, we can conclude that the rules in the stratum contain the bugs and start
inspecting the stratum’s rules.

Given a faulty tuple in the output of a stratum and assuming that all the
tuples in the input are correct, the problem is to determine which rules of ri are
wrong or whether a rule is missing. For a wrong tuple in the output, to locate the
corresponding buggy rules, we use the wrong tuple’s proof trees constructed before.
Specifically, all the rules applied in these proof trees are wrong since they must be
changed to make the wrong tuple disappear in the output. For a missing tuple in
the output, the user has two ways to fix the rules for producing the missing tuple.
The first option is changing one of the rules in the stratum so that it can produce
the missing tuple. The second option is adding to the stratum a new rule that can
be applied to derive the missing tuple.

To assist the user in correcting the buggy rules in the stratum, we give the user
correction hints by showing the proof trees of the faulty tuples and showing the
input and the output expected for adding/changing the rules. To be efficient, at
each stratum, we show all these observations to the users for finding the cheapest
way to correct all the bugs found.

Example 4.3.6 We illustrate our debugging approach by considering the putdelta
program in Example 4.1.1 with the PutGet property (see Chapter 2), specified as
follows. There is no rule for the precondition, and the postcondition is:

snew1 (X, Y ) :− s1(X, Y ),¬∆−s1(X, Y ) (r5)

snew1 (X, Y ) :− ∆+
s1

(X, Y ). (r6)
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Figure 4.6: Debugging demonstration.

snew2 (X, Y ) :− s2(X, Y ),¬∆−s2(X, Y ). (r7)

vnew(X, Y ) :− snew1 (X, Y ). (r8)

vnew(X, Y ) :− snew2 (X, Y ). (r9)

⊥ :−vnew(X, Y ),¬v(X, Y ). (r10)

⊥ :−v(X, Y ),¬vnew(X, Y ). (r11)

That means if we apply delta relations, ∆±s1/s2 obtained from the putdelta program,
to the source relations, s1 and s2, and calculate the view vnew again, we expect
vnew to be the same as the initial view v. Let us consider a counterexample of
PutGet as the following: s1 = {〈a1, b1〉}, s2 = ∅, v = {〈a1, b1〉, 〈a2, b2〉}. Over
this counterexample, the result of putdelta is: ∆−s1 = ∆−s1 = ∅, ∆+

s1
= {〈b2, a2〉}.

Thus, vnew = {〈a1, b1〉, 〈b2, a2〉}, leading to that ∅post = {〈a2, b2〉, 〈b2, a2〉} in the
rules (r10) and (r11). Therefore, the PutGet property is violated.

Figure 4.6 illustrates how the causes of the wrong tuples ∅post(a2, b2) and
∅post(b2, a2) are predicted. Here, the putdelta program is stratified into P1, P2, P3,
P4 and the PutGet precondition is stratified into Σ1, Σ2, Σ3, Σ4.

For the wrong tuple ∅post(b2, a2), by using its proof trees at each stratum of
Σ1,Σ2,Σ3 and Σ4, we have wrong tuples vnew(b2, a2), snew1 (b2, a2), snew1 (b2, a2), and
∆+
s1

(b2, a2), respectively. Since stratum Σ2 does not contain any rules defining snew1 ,
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the wrong tuple snew1 (b2, a2) in the output of Σ2 is simply derived from this wrong
tuple snew1 (b2, a2) in the input of Σ2.

For the wrong tuple ∅post(a2, b2), at stratum Σ4, we predict a wrong fact
¬vnew(a2, b2) in the input of Σ4. That means vnew(a2, b2) is missing. At stratum Σ3,
there are two possible proof trees corresponding to rules (r8) and (r9), respectively.
Therefore, there are two possible causes of vnew(a2, b2): snew1 (a2, b2) is missing
or snew2 (a2, b2) is missing. We continue to predict the causes of each of these
tuples snew1 (a2, b2) and snew2 (a2, b2). Eventually, some predicted causes are invalid.
For example, at Σ2, the cause of the missing tuple snew2 (a2, b2) is a missing tuple
s2(a2, b2) which cannot be fixed because s2 is an EDB relation. There is only one
valid cause: ∆+

s1
(a2, b2) is missing.

After predicting the faults in the output of P4, i.e., the output of the putdelta
program, the user interaction is triggered. At stratum P4, assuming P4 is correct,
the cause of the wrong tuple ∆+

s1
(b2, a2) is a wrong tuple m(b2, a2) and the cause

of the missing tuple ∆+
s1

(a2, b2) is a missing tuple m(a2, b2). Here, a question of
confirming whether m(b2, a2) is wrong and whether m(a2, b2) is missing is raised to
the user interface. If the user confirms there is no faulty tuple, the debugging engine
will inspect P4; in contrast, it goes to stratum P3. For inspecting P4, since there is
only one rule (r4) that is used in the proof tree of ∆+

s1
(b2, a2) and ∆+

s1
(a2, b2), (r4)

is a buggy rule. For P3, because no fault in the input of P3 is predicted, the engine
inspects P3 without user interaction. Interestingly, both the choices of inspecting P4

or going to P3 can detect the bug that can be solved. Specifically, changing m(X, Y )

in (r4) to m(Y,X) can make ∆+
s1

(b2, a2) disappear and make ∆+
s1

(a2, b2) appear in
the output, and thus PutGet satisfied. Similarly, changing m(Y,X) in (r3) to
m(X, Y ) can also correct the program. ut

4.4 Implementation and Experiment

We have implemented a prototype for our debugging approach in Ocaml
and integrated it with Rosette [82] and Z3 [61] as the SMT solvers for our
counterexample generation. The user can interact with our system via a command-
line tool. By the tool, the user can start a debugging session with a counterexample
which is automatically generated by the tool or given by the user.
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Table 4.1: Debugging results. Xindicates that the property is satisfied.

ID Program
Rules

(Program &
Properties)

Counterexample
Generation
Time (s)

Counterexample
Size (tuples) Number of

QuestionsDeltaDis GetPut PutGet
1 luxuryitems 12 8.721 X X 2 0
2 ukaz_lok 13 7.162 X X 2 0
3 message 21 10.652 3 2 3 1
4 poi_view 23 10.08 X 2 3 1
5 all_cars 24 11.116 3 2 3 2
6 newpc 26 10.294 X X 3 1
7 products 28 13.614 X X 4 1
8 purchaseview 29 9.153 X 5 X 0
9 vehicle_view 30 timeout - - - -
10 koncerty 32 47.951 X X 5 2
11 phonelist 33 11.035 4 3 4 1

To evaluate our approach, we use non-recursive Datalog programs collected in
Chapter 3. These programs are written for implementing practical view update
strategies that are required to be well-defined (called the DeltaDis property)
and satisfy the round-tripping properties, i.e., GetPut and PutGet, with the
corresponding view definitions to guarantee the consistency between the views
and the source tables. We randomly add bugs to these programs and run an
experiment to evaluate the performance of our approach in debugging these
programs. Specifically, we measure the time for generating counterexamples, the
size of the generated counterexamples, and the number of questions used to ask
the user for locating the bugs. The experiment is performed on a computer of 2
CPUs and 4 GB RAM running Ubuntu Server LTS 16.04. We set up a timeout of
1 minute for generating counterexamples.

Table 4.1 summarizes the results of our experiment. The time for generating
counterexamples and the size of counterexamples almost increase against the
number of rules in the program and the specified properties. The generating time
also depends on the difficulty of the bugs and the complexity of Datalog rules. For
example, phonelist has a smaller generating time than koncerty because the
rules of phonelist are more straightforward. products has a bigger generating
time than purchaseview because PutGet is usually more complex than GetPut.
For vehicle_view, the counterexample generator does not terminate after the
maximum allowed running time. The results show that the number of questions
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used in locating bugs is usually small. This number depends on the complexity
of the program and the difficulty of the bugs. Some simple programs such
as luxuryitems have no question, meanwhile, some bigger programs such as
all_cars and koncerty, which contain more bugs or more user-written rules,
need more questions with the user interaction to find the buggy rules.

4.5 Related Work

Algorithmic debugging [83], also known as declarative debugging, is a semi-
automatic debugging technique that is based on the answers of the programmer to
a series of questions generated automatically by the algorithmic debugger. Due
to its abstraction level, this technique is relevant to declarative programming
languages such as Datalog. Some approaches [76, 77, 78] have been proposed to
apply algorithmic debugging to Datalog. These existing approaches can assist
the user after a fault (i.e., a counterexample) is detected but suffer from the
well-known scalability problems of algorithmic debugging [75] that more user
interaction is required in the debugging process. In our approach, we strengthen
the algorithmic debugging technique applied to non-recursive Datalog by statically
generating minimum-size counterexamples for the debugging process. We exploit
provenance techniques [84, 85, 80] to automatically predict the root causes of
the observed faults of the Datalog programs for reducing the human effort of
answering the questions raised by the algorithmic debugger.

4.6 Conclusion

In this chapter, we have presented a novel debugging approach to non-recursive
Datalog programs. Specifically, we provide a syntax for users to specify properties
of non-recursive Datalog programs. We present a counterexample generator that
verifies specified properties and generates counterexamples to show unexpected
behaviors of user-written programs. Our counterexample generator is combined
with our validation algorithm presented in Chapter 3 to ensure that counterexamples
exist. We use symbolic execution of the Datalog program and employ existing
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constraint solvers to generate simple and useful input data that show the properties
of the program are violated. We design a debugging engine combined with a
dialog-based user interface to assist users in locating bugs in the programs with
the generated counterexamples. The debugging engine exploits why and why-note
data provenance techniques to detect and explain the cause of bugs. We have
implemented a prototype for our approach and demonstrated its feasibility and
efficiency.

Our future work includes improving the performance of the counterexample
generators. As presented in this chapter, our current approach is statically
generating counterexamples that the termination is not guaranteed. As shown in
our experiments, the static generation works well on smaller Datalog programs but
requires more time for bigger ones. In practice, programmers usually write Datalog
programs for realistic database tables and views, and thus counterexamples can be
detected via testing. Therefore, in the case that our counterexample generators do
not terminate, the property specifications can be relaxed to generate a set of
counterexample candidates, i.e., a set of test cases, for the original specifications.
The suitable counterexamples are finally detected by testing over the test cases
that whether the properties are violated.
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5
Recursive View Update Strategies

5.1 Introduction

Resource Description Framework (RDF) has become a popular web standard
where knowledge graphs are stored in the form of triples (subject, predicate, object).
The concept of views in RDF has been studied as a similar concept of views in
relational databases. An RDF view specified by a query or mapping exposes a
portion of source data that is relevant to the application or other system. RDF
views can be used for controlling database access [86] or be materialized and
incrementally maintained [87] for rapidly answering queries. In the setting of
Ontology-Based Data Access (OBDA) [88], the W3C standard R2RML [39] has
been proposed as a language for specifying mappings that expose relational data
as a virtual RDF graph which plays as a view for answering RDF queries, e.g.,
SPARQL queries, over the underlying relational database.

However, most of the mapping languages and RDF query languages for
specifying RDF views are unidirectional in the sense that views provide read-only
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data access. As the classical view update problem, translating updates on an
RDF view to updates on the underlying database is extremely ambiguous that
update strategies need to be specified by the database administrators. Although
some initial efforts [89, 90, 91] have been devoted to translating SPARQL updates
on virtual RDF graphs to SQL update statements on the underlying relational
database, the ambiguity issue of the translation has not been completely resolved.

In this chapter, we aim to solve the view update problem of RDF databases
by a language-based approach as in other existing works [92, 20]. Instead of
automatically translating RDF view updates to source updates, we allow database
administrators to program view update strategies (backward programs) for the
update translation and thus avoid the ambiguity issues. The defining query
(forward program) of the view with the backward program, so-called bidirectional
transformations, provides read-write access to the view.

Although an RDF graph can be stored as a ternary relation (triples), the
existing approach to the relational view update problem is not expressive enough
to deal with ternary relations of RDF graphs. Due to the complex structure,
manipulating the graph requires recursive computation on the ternary relation
such as reachability, closure, and so forth.

Many works in the programming language community have proposed a
promising approach in which a new domain-specific language is designed for
constructing a class of bidirectional transformations over a specific data type such
as relational data, trees, graphs, and so forth. Although these approaches have a
great advantage of guaranteeing the program’s well-behavedness by construction,
they have inherent drawbacks. Firstly, it is difficult to fully understand and control
the behavior of the pre-designed constructors, especially for the backward direction.
For instance, in some languages [20, 28, 49, 50], the backward transformations are
automatically derived from the forward transformations with auxiliary parameters
and thus are difficult to predict. Secondly, although some bidirectional languages
[33] are designed for backward transformations and the forward transformation is
uniquely derived, they require more effort and expertise for the programmers, who
are unfamiliar with the new languages because the backward transformations are
more complicated in comparison with the forward one. Thirdly, the DSLs are
for a specific data type, the extensibility and the reusability of the language are
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limited when dealing with other data types or other classes of update strategies.
Extensibility not only to other data types but also to other classes of update
strategies.

An alternative to designing a new domain-specific language is programming
bidirectional transformations using an existing (unidirectional) language that
frees the programmer from learning a new language and being forced to use new
constructors. The main challenge of this approach is providing a mechanism to
guarantee the well-behavedness of the user-written transformations such as testing
[93] or static check (Chapter 3). In Chapter 3, we have proposed to use a class
of non-recursive Datalog [43] to program view update strategies, i.e., backward
transformations, in relational databases where program properties are statically
validated and the forward transformation is uniquely derived.

Although in Chapter 3, we show that Datalog can be used for programming
view update strategies on relations, the expressive power of recursions in Datalog,
has never been used. Many works [94, 95, 96, 97, 98] have employed the recursion
mechanisms of Datalog to express more recursive queries over RDF (Resource
Description Framework) knowledge graphs that cannot be expressed in SPARQL
[99], a well-known RDF query language. SPARQL has limited navigational
capabilities to exploit the graph structure of RDF data. The language cannot
capture some very natural and useful navigation patterns [100]. Meanwhile,
Datalog is expressive enough for representing every SPARQL query [101, 102, 103,
104, 105, 98] and provides more general forms of recursions for more complex
patterns and recursive queries. This makes Datalog a relevant language to exploit
the structure of RDF graphs and propagate updates. Nevertheless, how Datalog
can be also used in programming bidirectional transformations on knowledge
graphs remains unclear.

Recursion is the key but also the challenge to using Datalog for writing
bidirectional transformations. Firstly, understanding recursive computations
and specifying a view update strategy over a graph or even a tree are expensive
tasks and require more expertise from programmers. Secondly, it is even more
challenging to automatically validate recursive transformation programs. The
fixed-point semantics of Datalog makes the validation problem more complicated
and not expressible in first-order logic.



80 Chapter 5. Recursive View Update Strategies

Our key idea to solve the aforementioned challenges is to formulate a Datalog-
written view update strategy as the combination of two parts: a recursive part,
which implements recursive patterns, and a non-recursive one, which is an inner
update strategy. On the one hand, the recursive Datalog rules of the first part are
predefined and pre-validated so that their well-behavedness is guaranteed. On the
other hand, we allow programmers to manually write the inner update strategies
in non-recursive Datalog, which are automatically validated.

To guarantee the ease of use of pre-defined recursive programs in constructing
a new one, we extend Datalog with a restricted form of higher-order predicate
syntax proposed by previous works [106]. Specifically, the results of pre-defined
recursive Datalog rules are parameterized to be a higher-order predicate and to be
recalled in user-written programs.

Importantly, we syntactically extend Datalog with higher-order predicates
but maintain the first-order semantics of the Datalog program by a translation
algorithm. The algorithm encodes all higher-order predicates into first-order
predicates defined by Datalog rules without additional syntax such as functional
symbols1. Our higher-order syntax restriction not only ensures the translation
algorithm is complete but also guarantees the expressiveness for writing view
update strategies.

This chapter has the following contributions:

• We present a method to use Datalog for specifying view update strategies
among relations and RDF graphs.

• We provide an extension of Datalog with a restricted form of higher-order
syntax for predefining view update strategies that can be reused to define new
ones. This allows view update strategies to be predefined and pre-validated,
and enhances the ease of use for non-expert programmers.

• We design an algorithm to transform the higher-order predicates in user-
written programs into equivalent Datalog rules without higher-order predi-
cates. In this way, the user-written view update strategies can be efficiently
evaluated by existing Datalog engines.

1This is different from HiLog
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Resident
ID Name Gender BornIn Child

Person1 Bob Male 1890 Person2
Person2 John Male 1815
Person3 Mary Female 1900
Person4 Alice Female 1880

Company1
ID Position

Person1 Employee
Person3 Employee
Person4 Founder

Figure 5.1: The Relational Database.

• We show the expressiveness of our proposed approach by implementing
several classes of view update strategies for some common recursive patterns
of RDF graphs.

• We have implemented our approach and conducted experiments to evaluate
the feasibility of our framework.

The remainder of this chapter is organized as follows. In Section 5.2, we illustrate
using Datalog to write view update strategies on RDF graphs. In Section 5.3, we
first present the higher-order syntax extension for Datalog. We then introduce the
translation algorithm that transforms higher-order predicates into normal Datalog
rules, and finally present the validation algorithm for the well-behavedness of
user-written programs. In Section 5.4, we present the applications of our proposed
approach in implementing a variety of recursive view update strategies. Section 5.5
describes an implementation of our approach and experimental results. Section 5.6.
Section 5.7 wraps up this chapter.

5.2 Examples

In this section, we use several examples to illustrate how Datalog can be used
for defining updatable RDF views over relations or RDF graphs. In our approach,
these views are made updatable by explicitly specifying an update strategy. We
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Figure 5.2: An RDF graph.

consider a tree-like RDF graph src2 as shown in Figure 5.2. src is represented by
the following triples:

(Company1, Employee, Person1)

(Person1, Name, "Bob")

(Person1, BornIn, 1890),

(Person1, Child, Person2)

(Person2, Name, "John")

(Person2, BornIn, 1915)

(Company1, Employee, Person3)

(Person3, Name, "Mary")

(Person3, BornIn, 1900)

(Company1, FoundedBy, Group1)

(Group1, Member, Person4)

(Person4, Name, "Alice")

(Person4, BornIn, 1880)

Where each triple of the form (Subject, Predicate, Object) represents an edge from
a subject node to an object node. For example, (Company1, Employee, Person1)

2For simplicity, we use Person1, Company1, Employee, and so forth as the URI references of
nodes and labels.
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means that Company1 has Person1 as an employee.

5.2.1 RDF views over general relations

Since an RDF graph is represented by a set of triples, i.e., a ternary relation,
an RDF view can be defined over other relations by using Datalog. Considering
the database shown in Figure 5.1, we define an RDF graph rdf_view (as shown in
Figure 5.2) over the two source relations as follows:

rdf_view(ID, "Name", N) :- resident(ID, N, G, _, _).

rdf_view(ID, "BornIn", Y) :- resident(ID, _, G, Y, _).

rdf_view(ID, "Child", C) :- resident(ID, _, G, _, C).

rdf_view("Company1", P, ID):- company1(ID, P),

P = "Employee".

rdf_view("Group1", "Member", ID):- company1(ID, P),

P = "Founder".

rdf_view(C, "FoundedBy", ID):- C = "Company1",

ID = "Group1".

The RDF graph is constructed by taking the union of the results from projection
operators over tables resident and company1. The Datalog rules of rdf_view are
all non-recursive. Therefore, we follow our approach in Chapter 3 to use Datalog
to specify an update strategy for rdf_view as the following:

+resident(ID, N, "null", Y, C) :- rdf_view(ID, "Name", N),

rdf_view(ID, "BornIn", Y),

rdf_view(ID, "Child", C),

not resident(ID, N, Y, C).

-resident(ID, N, G, Y, C) :- resident(ID, N, G, Y, C),

not rdf_view(ID, "Name", N).

-resident(ID, N, G, Y, C) :- resident(ID, N, Y, C),

not rdf_view(ID, "BornIn", Y).

-resident(ID, N, G, Y, C) :- resident(ID, N, G, Y, C),

not rdf_view(ID, "Child", C).

+company1(ID, P) :- rdf_view("Company1", P, ID),
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not company1(ID, P), P = "Employee".

founder(ID, "Founder") :- rdf_view("Company1","FoundedBy",GID),

rdf_view(GID, "Member", ID).

+company1(ID, P) :- founder(ID, P),

not company1(ID, P), P = "Founder".

-company1(ID, P) :- company1(ID, P),

not rdf_view("Company1", P, ID),

not founder(ID, P).

5.2.2 Views over RDF Graphs

Consider the source RDF graph src in Figure 5.2, we define a view relation
view by retrieving all the founders’name of Company1 in src as described in the
following Datalog rule:

view(X) :- src("Company1", "Foundedby", G),

src(G, "Member", Z),

src(Z, "Name", X).

The first triple src("Company1", "Foundedby", G) is used to retrieve elements
g of src that have founded Company1, which are stored in variables G. Triple
src(G, "Member", Z) gets all the pairs (g, z), stored in G and Z that z is a member
of g. Similarly, from the third triple src(Z, "Name", X) we retrieve the pairs (z, x)

that x is the name of z. The conjunction of these three triples, i.e., the rule body,
joins the resulted elements g, pairs (g, z), and pairs (z, x). The rule head view(X)

indicates that only elements x stored in X are returned as the final result: view =
{("Alice")}.

The query is a forward transformation that transforms the source graph src

into a view view. Assume that view is changed to view = {("Alice", "Peter")}
that a new person is inserted, to maintain the consistency between the source and
the view, we must specify a strategy to update the source graph. Interestingly,
view is no longer a graph but is a unary relation. Therefore, we can use the
approach in Chapter 3 to write a backward transformation that propagates the
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updated view to the source as the following3:

newfounder(X, Y) :- view(Y), not src(_, Name, Y),

:- URI_Gensrc(Y, X).

+src(X, Name, Y) :- newfounder(X, Y).

+src(G, Member, X) :- src("Company1", "Foundedby", G),

newfounder(X, Y).

-src(G, "Member", X) :- src("Company1", "Foundedby", G),

src(G, "Member", X),

src(X, "Name", N), not view(N).

In the first rule, predicate view(Y ) is used to retrieve elements y of view.
Meanwhile, triple src(_, Name, Y ), where anonymous variable “_” indicates
that its value is not the interest, is used to retrieve elements y that are names
of some subjects in graph src. The negation of src(_, Name, Y ) indicates that
only elements y of view that are not in src are selected to join with the pairs
(y, x) obtained from predicate URI_Gensrc(Y,X). URI_Gensrc maps a name y
to a fresh URI reference x of a new subject. All the pairs (x, y) are then stored
in the head relation newfounder, and used in the second rule to retrieve triple
+src(x,Name, y). Notation +src indicates that the triple will be inserted to src.
Similarly, in the third rule, for each pair (x, y) of newfounder, we also insert a
triple (g,Member, x) to src to ensure that x is a member of the founder group g.
The last rule deletes the membership between g and x if g is the founder group
and the name of x is not in the view.

5.2.3 RDF views defined with recursions

In the previous two examples, the definitions of view are non-recursive. In this
example, we shall illustrate a simple example of a recursively defined view over the
source RDF graph src in Figure 5.2. We define the view by extracting from src

a subtree (the right part in Figure 5.2) that is connected to the root Company1
by a label FoundedBy. To implement this forward transformation, a recursive
computation is required to traverse through the graph structure as the following:

3For simplicity, we show only a part of the complete Datalog program.
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view(X, L, Y) :- src(X, L0, Y), L0 = "FoundedBy".

view(Y, L, Z) :- view(X, L0, Y), src(Y, L, Z).

The first rule retrieves triple (X,L0, Y ) that is the edge with label "FoundedBy"
from the root node to node Group1. The second rule recursively retrieves all the
nodes with edges that can be reached from Group1.

In the view update strategy, given an arbitrary pair of a source src and an
updated view new_view, our update strategy is removing the old view in the
source and then adding to the source the updated view. By following our approach
in Chapter 3, for the source src, we use notation − and + to indicate the deletion
and insertion operations, respectively. The view update strategy is specified in
Datalog as the following:

old_view(X, L, Y) :- src(X, L0, Y), L0 = "FoundedBy".

old_view(Y, L, Z) :- old_view(X, L0, Y), src(Y, L, Z).

-src(X, L, Y) :- old_view(X, L, Y).

+src(X, L, Y) :- new_view(X, L, Y).

In the first two rules, the old view old_view is computed over the source src
by the same Datalog rules of the forward transformation. The last two rules
obtain a new source from the old one by deleting all triple X, Y, Z in the old view
old_view and inserting all triples in the updated view new_view.

5.2.4 Specifying views using higher-order predicates

The view definition in Subsection 5.2.3 extracts a subtree from the source
by using a label "FoundedBy". The view can be formulated as the result of
a forward function on the source: subtreeFoundedByget (src). Both the view and
the source are ternary relations that correspond to predicates view(X,L, Y ) and
src(X,L, Y ), respectively. Therefore, function subtreeFoundedByget can be described
as a higher-order predicate subtree("get")("FoundedBy")(src)(X,L, Y ) that
holds for all triple (X,L, Y ) in the result of subtreeFoundedByget (src). The definition
of higher-order predicate subtree is derived from the view definition as the
following:

subtree(Label)("get")(input_src)(X, L, Y) :-
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input_src(X, L0, Y), L0 = Label.

subtree(Label)("get")(input_src)(Y, L, Z) :-

subtree(Label)("get")(input_src)(X, L0, Y),

input_src(Y, L, Z).

Where subtree is a second-order predicate that is parameterized with an input
source input_src and a label Label

Similarly, the view update strategy can be described as a higher-order predicate
subtree(Label)("put")(src, new_view)(X,L, Y ) as the following:

subtree(Label)("put")(input_src, input_view)(X, L, Y) :-

input_src(X, L, Y),

not subtree(Label)("get")(input_src)(X, L, Y).

subtree(Label)("put")(input_src, input_view)(X, L, Y) :-

input_view(X, L, Y).

These two rules obtain a new source from the old one (input_src) by deleting
all triple X, Y, Z in the old view and inserting all triples in the updated view
input_view. In the first rule, the old view is computed by the higher-order
predicate subtree("get") on the source input_src. By using a negation, the
first rule retrieves only triples (X,L, Y ) in the source but not in the view. The
second rule simply copies all triples (X,L, Y ) in the updated view input_view.

By having higher-order predicates subtree for both the view definition and
update strategy, we can instantiate one view definition:

view(X, Y, Z) :- subtree("FoundedBy"("get"))(src)(X, Y, Z).

and one view update strategy:

new_src(X, Y, Z) :- subtree("FoundedBy")("put")(src, new_view)(

X, Y, Z).

The higher-order predicates have several advantages in programming in
comparison with the Datalog language. Firstly, a higher-order predicate, such as
subtree in our example, can be considered as a macro. Once the predicate is
defined, it can be called later in other Datalog programs without rewriting its
defining rules for different input sources and views. Secondly, by using higher-order
predicates, the Datalog program is well-structured so that each part of the program
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can be written independently by different users. More importantly, once the
Datalog program is well-structured with higher-order predicates, it is possible to
analyze and validate the program.

As an example, we shall further parameterize predicate subtree so that it
takes another higher-order predicate of an inner view definition and an inner view
update strategy, i.e., bidirectional transformation (inner_bx) and returns the
composition of the two bidirectional transformations.

subtree’(inner_bx)(Label)("get")(input_src)(X, L, Y) :-

inner_bx("get")(subtree(Label)("get")(input_src))(X, L, Y).

subtree’(inner_bx)(Label)("put")(input_src, input_view)(X,L,Y)

:- subtree(Label)("put")(

input_src,

inner_bx("put")(

subtree(Label)("get")(input_src),

input_view)

)(X, L, Y).

5.3 An Extension of Datalog with Higher-Order

Predicates

As mentioned in Section 5.1 and Section 5.2, manually writing recursive
Datalog rules for view update strategies is an expensive task for non-expert
programmers. In this section, we formally present the core language used in our
approach. As illustrated in Subsection 5.2.3, in a Datalog program of bidirectional
transformations, we allow higher-order predicates that bring in more flexible
features and advances for defining the transformations. Our core language can
be considered as an extension of Datalog with higher-order predicates in a safe
restricted form or a subclass of HiLog [106] where functional symbols are not
allowed.
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5.3.1 Datalog with Higher-order Predicates

Let V be a countably infinite set of variables, C be a countably infinite set of
constants, and P be a countably infinite set of predicate symbols. We follow
the syntax of higher-order predicates introduced by HiLog[106] that terms are
inductively defined as follows:

• Each x in V ∪ C ∪P is a term.

• If x1, x2 are variables or constants (x1, x2 ∈ V ∪ C ), then x1 = x2, x1 < x2,
x1 > x2 are terms where =, <,> are built-in predicates.

• If t, t1, . . . , tk are terms, then t(t1, . . . , tk) is a term. For the case that t is a
predicate symbol p and t1, . . . , tk are all first-order variables, p(t1, . . . , tk) is
a first-order predicate. Otherwise, t(t1, . . . , tk) is a higher-order predicate.

A Datalog program is a nonempty finite set of rules, each rule is an expression
of the form:

L0 :− L1, . . . , Ln,

and each literal Li is of the form

(¬)P (t11, t12, . . .)(t21, t22, . . .) . . . (tn1, tn2, . . .)

where P is a predicate symbol and the head literal L0 must be positive. Our
syntax is different from HiLog in the sense that we do not allow functional symbols
in Datalog programs. In a rule, a variable x is called a higher-order variable if it
plays as a predicate, i.e., a term x(t) appears in the rule. The other variables are
first-order variables. As a convention, throughout this chapter, we use uppercase
letters to write first-order variables and use lowercase letters for higher-order
variables.

5.3.2 Syntax Restriction

We extend the safety condition from Datalog to Datalog with higher-order
syntax as follows:
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• All first-order variables in the rule head or in a negative predicate must be
safe, i.e., must appear in a positive predicate in the rule body. This follows
the safety condition of Datalog [41].

• Any higher-order variable or predicate symbol t (t ∈ V ∪P) appearing in
the rule body must satisfy one of the following conditions:

– t is a higher-order variable appearing in the rule head.

– t is a predicate symbol that is already defined by some rules or is an
EDB relation symbol.

We accept only the recursion for one rule that a predicate in the rule body also
appears in the rule head. Self-recursively-called higher-order predicates such as
R(p(R)) are not allowed.

Example 5.3.1 The following does not conform to the restriction for higher-order
predicates:

rdf_view(X, L, Y) :- subtree("FoundedBy")("get")(rel)(X, L, Y),

rel(Z).

Here a variable rel appears in the rule body but not in the rule head. ut

5.3.3 Translating Higher-Order Predicate into First-Order

Predicate

In our approach, we extend Datalog with a restricted form of higher-order
predicates. It is remarkable that the higher-order predicates do not make Datalog
more expressive. The higher-order predicates are convenient for reusing predefined
Datalog rules in constructing a new program. Specifically, a higher-order predicate
can be used to generalize the transformations defined in a Datalog program.
We turn a Datalog-written transformation into a more general form defined by
higher-order predicates, which can be reused to construct other Datalog programs.

In this section, we present our translation algorithm that transforms all higher-
order predicates in a program into equivalent first-order predicates with additional
defining Datalog rules. Specifically, the input of our translation algorithm is a
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Datalog program (with higher-order predicates) that defines a first-order predicate,
i.e., a normal relation. The algorithm returns an equivalent Datalog program in
which only first-order predicates are used. The translated Datalog program is used
for realistic execution.

Consider a Datalog program P (with higher-order predicate) and a target
predicate t, the function translate(P, t) returns a translated Datalog program
P ′ and a translated predicate t′ of t. First, for each rule in P we eliminate any
constant c in the rule head by introducing an equality X = c with a fresh variable
X in the rule body and substitute X for c in the rule head. Then translate is
defined for each case of t as follows.

Case 1: t is a variable or a constant or a predicate symbol (t ∈ V ∪ C ∪P).
We keep t unchanged and the translated Datalog program has no rule (∅):

translate(P, t) = (∅, t)

Case 2: t is one of x1 = x2, x1 < x2, and x1 > x2. The result is the same as
Case 1:

translate(P, t) = (∅, t)

Case 3: t is p(X1, X2, . . . , Xn) where p is an EDB relational symbol, X1, X2, . . .,
Xn are first-order variables or constant:

translate(P, p(X1, X2, . . . , Xn)) = (∅, p(X1, X2, . . . , Xn))

Case 4: t is p(t11, . . . , t1m1) . . . (tn1, . . . , tnmn). If p is not defined in P , e.g., p is a
higher-order variable, translate(P, t) is undefined. Otherwise, let (r1), (r2), . . . (rm)

be all the defining rules of p. Each rule (ri) is of the following form:

p(x11, . . . , x1m1) . . . (xn1, . . . , xnmn) :− (¬)t1, (¬)t2, . . . , (¬)tk.

We obtain a new rule (r′i) by substituting each tjk for xjk in rule (ri):

p(t11, . . . , t1m1) . . . (tn1, . . . , tnmn) :− (¬)t′1, (¬)t′2, . . . , (¬)t′k.
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Let ~Xt be all the first-order variables of t, we introduce a fresh predicate name 4

translatedt for t. We translate t into a predicate translatedt( ~Xt) and translate
rule (r′i) into a new rule (r′′i ) by translating each term t′j in the body of rule (r′i).
translate(P, t) is undefined if translate is undefined for any term t′j. Otherwise,
let translate(P, t′j) = (P i

j , translatedt′j(
~Xt′j

)). The translated rule (r′′i ) is as the
following:

translatedt( ~Xt) :−(¬)translatedt′1(
~Xt′1

), (¬)translatedt′2(
~Xt′2

),

. . . , (¬)translatedt′k( ~X ′tk).

Where there is no higher-order predicate. The translated Datalog program of t is
the one that consists of all the translated rules (r′′i ) and all the translated Datalog
programs P i

j of each term t′j in (r′i).

translate(P, t) =(
{(r′′1), (r′′2), . . . (r′′m)} ∪

m⋃
i=1

⋃
j

P i
j , translatedt( ~Xt)

)

It is remarkable that if translate(P, t) is defined, the translated program of t is a
Datalog program that has no higher-order predicate. This can be easily proven by
induction.

Example 5.3.2 Consider our example in Subsection 5.2.4. Let P be the Datalog
program of the view definition, the target predicate is view. We shall find a
translated Datalog program of view that has no higher-order predicate. view is
defined by:

view(X, Y, Z) :- subtree("FoundedBy")("get")(src)(X, Y, Z).

To translate subtree("FoundedBy")("get")(src)(X, Y, Z) we shall unfold the
defining rules of subtree by replacing input_src with src.

subtree("FoundedBy")("get")(src)(X, L, Y) :-

src(X, L0, Y), L0 = "FoundedBy".

4We introduce the same fresh predicate name for t and t′ if t′ can be obtained by substituting
the first-order variables of t′ for the first-order variables in t.
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subtree("FoundedBy")("get")(src)(Y, L, Z) :-

subtree("FoundedBy")("get")(src)(X, L0, Y),

src(Y, L, Z).

Where the two rules of subtree("put") are trivially removed because label "put"
does not match label "get", and thus there is no derivable tuple from these rules.
Predicate subtree("FoundedBy")("get")(src) is replaced with a dummy one
translatedsubtree("FoundedBy")("get")(src). We obtain a new Datalog program:

view(X, Y, Z) :- translatedsubtree("FoundedBy")("get")(src)(X, Y, Z).

translatedsubtree("FoundedBy")("get")(src)(X, L, Y) :-

src(X, L0, Y), L0 = "FoundedBy".

translatedsubtree("FoundedBy")("get")(src)(Y, L, Z) :-

translatedsubtree("FoundedBy")("get")(src)(X, L0, Y), src(Y, L, Z).

where no higher-order predicate appears in the program. ut

Lemma 5.3.3 For a first-order predicate target( ~X) defined by a Datalog program
(with higher-order predicates) P , translate(P, target( ~X)) is defined. ut

Proof. (Sketch) As in the definition of translate, translate(P, t) may be undefined
only in case 4 either when p has no defining rules or when translate is undefined
for a term appearing in the defining rules of p. These cases never occur in the
performance of translate(P, target( ~X)) due to the restriction of higher-order
predicates in a Datalog program and the fact that target( ~X) is a first-order
predicate. Indeed, a defining rule of target( ~X) is of the following form:

target( ~X) :− (¬)t1, (¬)t2, . . . , (¬)tn

In this Datalog rule, there is no higher-order variable in the head. Therefore, in
each term ti of the rule body, there is no higher-order variable and all higher-order
predicate symbols must be defined by some rules in P . In other words, if ti belongs
to case 4 of translate, ti has defining rules. If we substitute ti for the head of
a defining rule (ri) of ti, all the higher-order variables appearing in both the
head and the body of (ri) become predicate symbols defined by some other rules.
Therefore, in each term in the body of rule (ri), there is no higher-order variable
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and all higher-order predicate symbols must be defined. We complete the proof by
induction. ut

Theorem 5.3.4 Let t be a term and P be a Datalog program with higher-order
predicates. If translate(P, t) is defined that translate(P, t) = (P ′, t′), let D be an
EDB database of P and v is a variable assignment for free first-order variables in t:

P (D) |=v t⇔ P ′(D) |=v t
′

Where P (D) and P ′(D) are the results of P and P ′ over D, respectively. ut

Proof. (Sketch) By induction. Case 4 of translate is the nontrivial case. In case
4, the mapping from t to translatedt and the substitution of tjk for xjk in rule (ri)

preserve all free first-order variables. The translated rule (r′′i ) and rule r′i have
the same free first-order variables. Therefore, for a variable assignment v, (ri) is
satisfied if and only if (r′′i ) is satisfied. Moreover, for a translated rule (r′′i ) of a
translated predicate t′, the original rule (ri) of t exists. Recall that P (D) |=v t

indicates that for a variable assignment v, t is derived by a rule (ri), i.e., (ri) is
satisfied. We conclude P (D) |=v t if and only if P ′(D) |=v t

′,
ut

5.3.4 Validation

As mentioned before, our validation is to guarantee the well-behavedness of
user-written view update strategies in Datalog with higher-order predicates. In
other words, the validation statically checks whether the user-written program
satisfies round-tripping properties.

Although all higher-order predicates can be transformed into normal Datalog
rules by our translation algorithm presented in the previous Section, the recursion is
not eliminated so automatically validating the program is challenging. Fortunately,
there are some certain common recursive patterns for each type of RDF graph.
For example, when the RDF graph has a tree structure, one common pattern is
splitting the tree into smaller subtrees for applying simple operators. Therefore, all
the pre-defined programs for these common recursive patterns can be manually
proved.
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In our approach, the pre-defined recursive patterns can be generalized and
encapsulated in higher-order predicates such that the predicates take as input
other higher-order predicates of some simple inner view update strategies (without
recursive computation). The manual proof of a pre-defined recursive pattern
is provided with the assumption that all inner view update strategies are well-
behaved. In this way, validating a view update strategy, which is specified by
using pre-defined recursive patterns with inner view update strategies, is reduced
to validating the inner view update strategies. Since the inner view update
strategies are non-recursive, we employ the validation algorithm (Algorithm 1) to
automatically check the validity.

5.4 Predefining View update Strategies

As mentioned in Section 5.3, a Datalog program, in which both the input and
output are relations, can be parameterized as a single higher-order predicate. In
this section, we show the expressiveness of our approach by implementing update
strategies (backward transformation) for a variety of views defined by common
structural patterns. We first introduce some common computation patterns and
operations that are used for view update strategies. We then show that these
patterns can be implemented as higher-order predicates predefined by Datalog
rules. We consider three types of RDF views and for each type, we introduce
several basic common patterns and operators (e.g., map, split, condition, . . .) as
higher-order predicates:

• The RDF view is defined over general relations.

• The RDF view is defined over a tree-like RDF graph that has no cycle.

• The source of the RDF view is a general graph structure.

For the first types of RDF views, the Datalog program is a simple and non-
recursive view update strategy. The purpose of representing such Datalog programs
by higher-order predicates is to use them as parameters of other higher-order
predicates so that we can achieve the composition of multiple Datalog programs
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or iterate the execution of a simple Datalog program over the whole recursive
structure by calling the predicates of recursive computation patterns. For the
second two types of RDF views (over tree-like RDF graphs or general graph
structures), we consider common and typical Datalog programs that implement
several (recursive) computation patterns over the graph or tree structures. By
encapsulating the program into a single higher-order predicate, the program can
be reused in writing other programs.

5.4.1 General relations

We consider views defined over general relations by common operators in
relational algebra such as projection, selection, join, and so forth. As presented
in Chapter 3, we have shown that view update strategies for these views can
be written in non-recursive Datalog. This is because the relations do not have
recursive structures, both the programs of view definitions (forward direction)
and update strategies (backward direction) are usually non-recursive. In this
section, we show that these view update strategies for each common operator can
be also pre-defined in Datalog rules with higher-order predicates. By using these
pre-defined predicates, view update strategies for views defined with multiple
operators can be clearly constructed in a compositional way rather than writing
the whole new Datalog program.

As an example, consider the RDF view defined over relations in Subsection 5.2.1.
In the backward direction, source updates are computed from the RDF view by
complex operators such as self-join. It is clearer to construct the program as a
composition of two subprograms. In the RDF view, column Gender is not exposed,
thus we can create an intermediate view as a projection of the source relation
resident for defining the final RDF view. In the first step, the intermediate view
is defined as follows:

exposed_resident(ID, N, Y, C) :-

projection("get")(resident)(ID, N, Y, C).

Where projection("get") is a higher-order predicate that describes the forward
direction of the projection as follows:
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projection("get")(input_relation)(ID, N, Y, C) :-

input_relation(ID, N, G, Y, C).

In the second step, we define the RDF view over exposed_resident as follows:

rdf_view(ID, N, Y, C) :-

r2r("get")(exposed_resident)(ID, N, Y, C).

The definition of r2r("get") is as the following:

r2r("get")(input_relation)(ID, "Name", N) :-

input_relation(ID, N, _, _).

r2r("get")(input_relation)(ID, "BornIn", Y) :-

input_relation(ID, _, Y, _).

r2r("get")(input_relation)(ID, "Child", C) :-

input_relation(ID, _, _, C).

It is remarkable that r2r("get") exposes all the information in rdf_view,
and thus enjoys the injectivity property. The backward direction r2r("put") is
defined by outer self-join over a modified view rdf_view’ on column ID.

r2r("put")(rdf_view’)(ID, N, Y, C) :-

rdf_view’(ID, "Name", N),

rdf_view’(ID, "BornIn", Y),

rdf_view’(ID, "Child", C).

r2r("put")(rdf_view’)(ID, N, Y, "null") :-

rdf_view’(ID, "Name", N),

rdf_view’(ID, "BornIn", Y),

¬ rdf_view(ID, "Child", C).

r2r("put")(rdf_view’)(ID, N, "null", C) :-

rdf_view’(ID, "Name", N),

rdf_view’(ID, "Child", C),

¬ rdf_view(ID, "BornIn", Y).

r2r("put")(rdf_view’)(ID, "null", Y, C) :-

rdf_view’(ID, "Name", N),

rdf_view(ID, "BornIn", Y),

¬ rdf_view’(ID, "Child", C).
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r2r("put")(rdf_view’)(ID, N, "null", "null") :-

rdf_view’(ID, "Name", N),

¬ rdf_view’(ID, "BornIn", Y),

¬ rdf_view(ID, "Child", C).

r2r("put")(rdf_view’)(ID, "null", "null", C) :-

rdf_view’(ID, "Child", C),

¬ rdf_view’(ID, "Name", N),

¬ rdf_view(ID, "BornIn", Y).

r2r("put")(rdf_view’)(ID, "null", Y, "null") :-

rdf_view(ID, "BornIn", Y),

¬rdf_view’(ID, "Name", N),

¬ rdf_view’(ID, "Child", C).

The backward direction of projection (projection("put")) is ambiguous since
the column gender is projected away that projection("get") is not injective.
There are multiple ways to fill in the missing column gender. We choose one in
the following definition:

projection("put")(source_resident, exposed_resident’)(ID, N, G,

Y, C) :-

source_resident(ID, N, G, Y, C),

exposed_resident’(ID, N, Y, C).

projection("put")(exposed_resident’)(ID, N, G, Y, C) :-

exposed_resident’(ID, N, Y, C),

¬ source_resident(ID, N, _, Y, C),

resident(ID, _, G, _, _),.

projection("put")(exposed_resident’)(ID, N, "unknown", Y, C) :-

exposed_resident’(ID, N, Y, C),

¬ source_resident(ID, N, _, Y, C),

¬ source_resident(ID, _, _, _, _).

Where the first rule keeps all the unchanged tuples in source_resident, the
second rule computes updated tuples and keeps the column gender unchanged.
The third rule computes the inserted tuple with a value unknown for column
gender. The deleted tuples are discarded.
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The backward transformation from rdf_view to the source relation resident

is a composition:

new_resident(ID, N, G, Y, C) :- projection("put")(

source_resident, r2r("put")(rdf_view’)) (ID, N, G, Y, C).

5.4.2 Tree-like RDF graphs

We now present some useful computation patterns that are implemented in
Datalog and encapsulated in higher-order predicates. For the case that the RDF
graph has a tree structure, we adapt several patterns described in existing works
[92]. For such an inductive tree structure, the computation patterns are in the
form of a three-step operation: split-process-merge. The tree is first decomposed
into subtrees, each subtree is processed by an inner operation and the results are
merged into a single tree. In the rest of this subsection, we shall present some
typical patterns including fork, conditional, and map as presented in [92].

Fork

We shall implement the operation of the xfork lens presented in [92] using
Datalog with higher-order predicates. As in [92] xfork, we first split the original
tree in Figure 5.2 into two subtrees (a left subtree and a right subtree) according
to the labels of the outgoing edges from the root. For each subtree, we apply an
inner bidirectional transformation. Finally, the two tree views obtained from
the two inner bidirectional transformations are merged into a single tree. The
definition of this pattern, called fork_by_label, is written by using higher-order
predicates as follows:

1 hsplit_by_label(rdf_input, Label)("r")(X, L, Y) :-

2 subtree(Label)("get")(rdf_input)(X, L, Y).

3 hsplit_by_label(rdf_input, Label)("l")(X, L, Y) :-

4 rdf_input(X, L, Y),

5 ¬ subtree(Label)("get")(rdf_input)(X, L, Y)..

6
7 % forward interpretation
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8 fork_by_label(bx1, bx2, Label)("get")(rdf_src)(X, L, Y) :-

hmerge(

9 bx1("get")(hsplit_by_label(rdf_src, Label)("l")),

10 bx2("get")(hsplit_by_label(rdf_src, Label)("r")))(X, L, Y).

11
12 % backward transformation

13 fork_by_label(bx1, bx2, Label)("put")(rdf_src_view)(X, L, Y) :-

hmerge(

14 bx1("put")(fork_hsplit_by_label(rdf_src_view, Label)("l")),

15 bx2("put")(fork_hsplit_by_label(rdf_src_view, Label)("r"))

16 )(X, L, Y).

fork_by_label is parameterized with a label and two inner higher-order
predicates bx1 and bx2 corresponding to two inner bidirectional transformations.

The forward direction works as follows. In the definition of hsplit_by_label,
to split the original tree, we use the definition of subtree as described in
Subsection 5.2.4 to extract from the tree in Figure 5.2 the subtree (the right
subtree) where the outgoing edges from the root are labeled by Label. Then
the left subtree, which is the remaining part, is the one that has all the edges
in rdf_src but not in the right subtree and is computed by a set difference
operator. hsplit_by_label is applied to the source RDF graph to split the
source into left and right parts. We use labels "l" and "r" for the left and
right subtrees, respectively. The forward directions of the two inner higher-order
predicates bx1("get") and bx2("get") are then applied to each part before
calling higher-order predicate hmerge to merge the results.

In the backward direction, we have similar operations. fork_hsplit_by_label
is a special version of hsplit_by_label that takes a pair (represented by rdf_src_

view) of the source and the view RDF graphs, splits both the source and the
view, and pairs the left part of the source with the left part of the view, similarly
for the right parts. The backward directions of the two inner higher-order
predicates bx1("put") and bx2("put") are then applied two each pair before
calling higher-order predicate hmerge to merge the results.

Our observation is that an inner bidirectional transformation works on a
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component that is structurally smaller than the original tree, and thus is easier to
manually implement. Meanwhile, writing decomposing operations, e.g., splitting,
requires more knowledge about recursion. Therefore, we predefine a variety of
program templates that employ the recursive computation power of Datalog to
work on tree data structures. Programmers can reuse these templates with their
own arbitrary implementation of inner bidirectional transformations without
recursion.

Condition

We consider the ccond lens presented in [92]. In the definition of ccond, given a
source and a view, we apply one of two inner different bidirectional transformations
(BXs) for the source and the view depending on a condition over the source.
Specifically, if the source satisfies a condition, the forward transformation and the
backward transformation of the first BX are selected as the forward transformation
on the source, and the backward transformation on the source and the updated
view. In contrast, the forward and backward transformations of the second BX
are selected. The ccond lens can be implemented in Datalog with higher-order
predicate as the following:

1 % Backward transformation

2 ccond(bxs)("put")(rdf_src_view)(X, L, Y) :-

3 bxs("condition")(rdf_src_view("source"))(),

4 bxs("first")("put")(rdf_src_view)(X, L, Y).

5 ccond(bxs)("put")(rdf_src_view)(X, L, Y) :-

6 not bxs("condition")(rdf_src_view("source"))(),

7 bxs("second")("put")(rdf_src_view)(X, L, Y).

8
9 % Forward transformation

10 ccond(bxs)("get")(src)(X, L, Y) :-

11 bxs("condition")(src)(),

12 bxs("first")("get")(src)(X, L, Y).

13 ccond(bxs)("get")(src)(X, L, Y) :-

14 not bxs("condition")(src)(),
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15 bxs("second")("get")(src)(X, L, Y).

We use a single higher-order predicate bxs to encapsulate both the inner
bidirectional transformations and the condition such that bxs("condition") corre-
sponds to the higher-order predicate of the condition on the source, bxs("first")
and bxs("second") are the first and the second bidirectional transformations,
respectively. rdf_src_view is a higher-order predicate representing the pair of a
source and a view such that rdf_src_view("source") corresponds to the source
and rdf_src_view("view") corresponds to the view.

Map

We define the map bidirectional transformations in a similar way as the map

lens presented in [92]. Given a source tree stored in a relation rdf_src with a
root R, in the forward transformation, map extracts all the subtrees having a
root as a child of R, applies an inner forward transformation inner_bx("get") to
each subtree, and then merge all the resulted subtrees into a single tree, which is
the view. In the backward transformation, map extracts all the subtrees of the
source as well as the view in a similar way, pairs each view subtree with a source
subtree, applies the inner putback transformation inner_bx("put") to each pair,
and finally merge all the resulted subtrees as a new source. The Datalog program
defining the higher-order predicate map is as the following5:

1 % forward interpretation

2 map_subview(inner_bx)(rdf_src)(R2)(R, L, R2) :-

3 root_of_tree(rdf_src)(R), rdf_src(R, L, R2).

4 map_subview(inner_bx)(rdf_src)(R2)(X2, L, Y2) :-

5 root_of_tree(rdf_src)(R), rdf_src(R, _, R2),

6 inner_bx("get")(rooted_tree(rdf_src, R2))(X2, L, Y2).

7
8 map(inner_bx)("get")(rdf_src)(X, L, Y) :-

9 map_hmerge(map_subview(inner_bx)(rdf_src))(X, L, Y).

10
11 % putback transformation

5For simplicity, we show only the main Datalog rules
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12 map_subsource(inner_bx)(rdf_src_view)(R2)(X, L, Y) :-

13 inner_bx("put")(map_subpair(rdf_src_view)(R2))(X, L, Y).

14
15 map_subsource(inner_bx)(rdf_src_view)(R2)(R, L, R2) :-

16 root_of_tree(rdf_src_view("source"))(R),

17 rdf_src_view("source")(R, L, R2).

18
19 map(inner_bx)(rdf_src_view)(X, L, Y) :-

20 map_hmerge(map_subsource(inner_bx)(rdf_src_view))(X, L, Y).

Here, predicate root_of_tree(rdf_src)(R) holds only if R is the root of
the tree rdf_src. rooted_tree(rdf_src, R2) corresponds to a subtree having
a root R2. map_subview(inner_bx)(rdf_src)(R2) corresponds to a subtree
obtained by applying the inner forward transformation (inner_bx("get")) to the
source subtree rooted by R2. In the first rule, map_subview extract and keep
all the outgoing edges (R,L,R2) of the root R. In the second rule, we apply
inner_bx("get") to each subtree rooted_tree(rdf_src, R2). The third rules
merge the subtrees resulted from map_subview by a predicate map_hmerge.

In the putback transformation of map, we have an additional predicate
map_subpair(rdf_src_view)(R2) corresponding to each pair of a view subtree
and a source subtree rooted by R2. By applying inner_bx("put") to each pair, in
the fourth rule, we obtain map_subsource(inner_bx)(rdf_src_view)(R2) corre-
sponding to the new source subtree rooted by R2. The fifth rule, map_subsource
keeps all the outgoing edges from the root of the source subtree (rdf_src_view
("source")). Finally, we merge all the source subtrees resulted from map_subsource

by using the predicate map_hmerge.

Discussion

The difference between our work and previous combinator lenses is that we do
not limit the programmers to a set of predefined bidirectional transformations, i.e.,
combinator lenses. We allow programmers to write arbitrary implementations of
inner bidirectional transformations. We focus on the RDF format that allows
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Figure 5.3: A source graph (on the left) and a view graph (on the right).

outgoing edges of a vertex to have the same label. In contrast, combinator lenses
represent trees in the forms of mapping (from child labels to subtrees) that do not
allow nodes to have the same labels.

5.4.3 General RDF Graphs

In this section, we present a recursive pattern on general RDF graphs, called
matching strategy, that is useful to program update strategies for an RDF view
defined on an RDF graph. We consider an example presented in [107] where a
graph is transformed into a new graph by a query language (UnCAL) for graphs.
Consider a rooted graph shown in Figure 5.3. The view graph is defined by a
function f of two steps. Starting from the root of the graph, f first erases all
edges until it reaches an a, and then copies the tree, but replaces every b with a
c. Obviously, implementing such a forward transformation function f requires
recursively traversing over all the edges of the graph. To implement f and a
putback transformation (view update strategy) of the view graph using Datalog
we first implement the forward transformation f by introducing an operator of
eliminating ε edges, which are special edges of the graph. We then introduce a
matching strategy that will be used to implement view update strategies for the
graphs.
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Forward transformation

The forward transformation consists of three steps:

1. From the root, erasing all the edges until reaching an edge a

2. Replacing each edge b with edge c

3. Eliminating ε edges

The first step can be simply implemented by finding all the edges, which are
connected to the root by a path containing an edge a, and then replacing all the
other edges with a special edge ε as the following:

1 a_descendant(rdf_src)(PARENT_ID) :- rdf_src(_, "a",PARENT_ID).

2 a_descendant(rdf_src)(CHILD_ID) :-

3 a_descendant(rdf_src)(PARENT_ID),

4 rdf_src(PARENT_ID, _, CHILD_ID).

5
6 erase_until_a(rdf_src)(X, L, Y) :- rdf_src(X, L, Y), L="a".

7 erase_until_a(rdf_src)(X, L, Y) :- rdf_src(X, L, Y),

8 a_descendant(rdf_src)(Y).

9 erase_until_a(rdf_src)(X, ε, Y) :- rdf_src(X, L, Y),

10 not L = "a",

11 not a_descendant(rdf_src)(Y).

The first rule finds all the nodes that have incoming edge a. The second rule
recursively collects all the descendants of the nodes found in the first rule. In this
way, the first two rules define a_descendant(rdf_src) containing all the nodes
that are connected to the root through edge a (and other edges). The third rule
keeps all the edges a in the original graph rdf_src. The fourth rule keeps the
incoming edges of all the nodes resulted by a_descendant(rdf_src). The last
rule replaces all the other edges with ε edges.

The second step simply maps each edge b to an edge c:

1 b_mapsto_c(rdf_src)(X, "c", Y) :- rdf_src(X, L, Y), L="b".

2 b_mapsto_c(rdf_src)(X, L, Y) :- rdf_src(X, L, Y), not L="b".
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To eliminate all ε edges, for each node X that has an incoming edge, which is
not ε, we find all the nodes Y that can be reached by X through only ε edges. We
then copy all the outgoing edges of Y as outgoing edges of X as in the following
definition of extend_with_epsilon:

1 extend_with_epsilon(rdf_src)(X, L, Y) :- rdf_src(X, L, Y),

2 not L = ε.

3 extend_with_epsilon(rdf_src)(X_SUBS, L, Y) :- rdf_src(X, L, Y),

not L = ε, closure(epsilon_binary(rdf_src))(X_SUBS, X).

4
5 eliminate_epsilon(rdf_src)(X, L, Y) :-

6 rooted_graph(extend_with_epsilon(rdf_src), R)(X, L, Y),

7 root_of(rdf_src)(R).

Where the final rule extracts the graph resulted by extend_with_epsilon that
have the same root as the original graph rdf_src

The view graph is defined by a composition of three steps as the following:

rdf_view(X, L, Y) :- eliminate_epsilon(b_mapsto_c(erase_until_a

(rdf_src)))(X, L, Y).

Matching strategy

To implement view update strategies for the view graph, we now introduce
a matching strategy as follows. When there are updates on the view such as
edges that are inserted or deleted or modified, the essential issue is finding the
corresponding edges in the source graph to insert or delete or modify. Our matching
strategy finds all the correspondence between edges of the source and edges of the
view as the following:

1 pair(matching)(X, L, Y) :- normal_pair(matching)(X, L, Y).

2 pair(matching)(X, L, Y) :- epsilon_pair((matching)X, L, Y).

pair takes as input a predicate matching, where matching(X, Y) indicates
that node X of the source graph corresponds to node Y of the view graph.

Each triple X,L, Y in pair represents a pair of node X in the source graph
and node Y in the view graph, label L indicates the types of pair that is either
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"vertical" or "horizontal". There are two cases of computing the pairs:

• Normal pair: X is an existing node in the source graph and the view graph,
respectively.

• ε pair: either X or Y does not exist and thus is inserted into the source or
view graph with an ε edge.

The following Datalog program shows the main implementation of normal_pair.
The full implementation of pair can be found in our code repository6:

1 normal_pair(src_root, "horizontal", view_root) :-

2 root_of_tree(edge_src)(src_root),

3 root_of_tree(edge_view)(view_root).

4 normal_pair(src_id, "vertical", view_id) :-

5 normal_pair(src_id, "horizontal", view_id),

6 vertical_match(src_id, view_id).

7 normal_pair(src_id, "vertical", other_view_id) :-

8 normal_pair(src_id, "horizontal", view_id),

9 src_will_match_view_closure(src_id, view_id,

reachable_view_node),

10 edge_view(reachable_view_node, _, other_view_id),

11 vertical_match(src_id, other_view_id).

12 normal_pair(other_src_id, "vertical", view_id) :-

13 normal_pair(src_id, "horizontal", view_id),

14 not src_will_match_view_closure(src_id, view_id, view_id),

15 view_will_match_src_closure(view_id, src_id, src_id),

16 view_will_match_src_closure(view_id, src_id,

reachable_src_node),

17 edge_src(reachable_src_node, _, other_src_id),

18 vertical_match(other_src_id, view_id).

19 normal_pair(src_child_node, "horizontal", view_child_node) :-

20 normal_pair(src_id, "horizontal", view_id),

21 not src_will_match_view_closure(src_id, view_id, view_id),

6https://github.com/dangtv/BIRDS

https://github.com/dangtv/BIRDS
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22 not view_will_match_src_closure(view_id, src_id, src_id),

23 edge_src(src_id, _, src_child_node),

24 minr(horizontal_match_view_childs(src_child_node,view_id))(

view_child_node).

By having all the pairs, i.e. all the correspondence between nodes in the source
and the view, we then reflect nodes and edges in the view to the corresponding
nodes and edges in the source by a simple inner putback transformation. For
example, we can use the putback transformation of acond [92], which changes the
source edge to b if the view edge is c, and applies identity for other cases.

In our matching strategy, the input predicate matching and the inner bidirec-
tional transformation inner_bx are iterated over all the nodes and edges of the
graph. They are simple to write but decide the behaviour of the complete view
update strategy.

5.5 Experiments

We have implemented a prototype for our proposed approach using Ocaml based
on the framework presented in Chapter 3. Our framework allows programmers to
define higher-order predicates as well as reuse pre-defined higher-order predicates
in constructing new programs of view update strategies. The framework translates
the user-written programs into Datalog programs without higher-order predicates
that can be evaluated by Datalog engines.

To evaluate our approach in terms of expressiveness, we collect views from
a variety of sources including: the literature ([92, 107, 108]), knowledge graph
databases (D2RQ [109, 90], LUBM [110] and DBPedia[111]), examples of the W3C
standard R2RML [39]. We have implemented a library that defines higher-order
predicates of common recursive patterns and used these pre-defined predicates to
write update strategies for the collected views. The results are summarized in the
Table 5.1. The number of translated Datalog rules increases against the number of
Datalog rules with higher-order predicates.
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Table 5.1: View update strategies written in Datalog with higher-order predicates.
Xindicates that the property is validated.

ID Dataset Program Rules Translated rules Validation
(GetPut & PutGet)

1 R2RML employee 9 10 X
2 D2RQ employee 9 10 X
3 LUBM professor 3 6 X
4 DBPedia have_child 21 21 X
5 [92] hoist 2 6 X
6 [92] plunge 2 6 X
7 [92] ccond 2 8 X
8 [92] acond 4 10 X
9 [92] fork 10 25 X
10 [92] map 22 120 X
11 [107] mutual_recursion 19 160 X

5.6 Related Work

Using relational databases to store complex data structures such as trees and
graphs have been attracted a lot of researchers. Edge shredding is a classical
approach [112, 113] to storing tree-structured data such as XML or JSON
documents as trinary relations and thus can be queried by the Datalog language.
The Resource Description Framework (RDF) provides a flexible method for
representing knowledge graphs as triples of the form (subject, predicate, object)
that is compatible with Datalog [102].

Many works and practical systems [114, 109, 115] have been proposed to define
virtual RDF graphs over relational databases. However, most of the mapping
languages and RDF query languages for specifying RDF views are unidirectional
in the sense that views provide read-only data access. Some initial effort has
been devoted to solving the problem of updating such RDF views by translating
SPARQL updates on the view to SQL update statements on the source database
[89, 116, 117, 90, 118]. These existing works provide solutions for updating some
simple types of RDF views and updates.

Datalog with stratified negation [43] has been shown to be expressive enough
to represent every SPARQL query [105, 103, 104, 101, 102]. Therefore, Datalog
has been used as a natural platform for the extensions of SPARQL with richer
navigation and recursive capabilities [94, 119].
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5.7 Conclusion

In this chapter, we have presented our approach of using Datalog (with
recursion) for specifying view update strategies among relations and RDF graphs.
Our key idea to overcome the challenges of both writing and validating recursive
view update strategies is to formulate the program into two parts: a recursive part,
which implements recursive patterns, and a non-recursive one, which is an inner
update strategy. On the one hand, the recursive Datalog rules of the first part are
predefined and pre-validated so that their well-behavedness is guaranteed. On
the other hand, we allow non-expert users to manually write the inner update
strategies in non-recursive Datalog, which are automatically validated.

By extending Datalog with a restricted form of higher-order syntax, we provide
a convenient way to construct view update strategies based on the existing ones.
Specifically, the results of pre-defined recursive Datalog rules are parameterized to
be a higher-order predicate and to be recalled in user-written programs.

Importantly, we syntactically extend Datalog with higher-order predicates
but maintain the first-order semantics of the Datalog program by a translation
algorithm. The algorithm transforms all higher-order predicates into first-order
predicates defined by Datalog rules without additional syntax such as functional
symbols. Our higher-order syntax restriction not only ensures the translation
algorithm is complete but also guarantees the expressiveness for writing view
update strategies.

We have implemented our approach. We show the feasibility of our proposed
approach by implementing a library of common recursive patterns and view update
strategies for RDF views.

Our current implementation is based on a built-in Datalog engine. The
framework can be further integrated with practical RDF database management
systems and scalable Datalog engines to work with real-world big RDF graphs and
views.

In our future work, we consider improving the systematic method for pre-
defining and pre-validating common recursive patterns and view update strategies.
There are theoretical results that the satisfiability of a fragment of Datalog with
recursions and guarded negations is decidable. We believe the verification of
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pre-defined recursive Datalog programs can be partially automated, and thus a
more expressive and useful library of pre-defined programs can be implemented
without much users’ burden.
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6
Conclusion

6.1 Summary

Views are very commonly used in database management systems and view
update is an important mechanism that has many applications in practice. In
general, the view definition is not injective because it is allowed to lose information
in the view. Therefore, an update on the view can be propagated to the source
in more than one way. Automatically choosing one strategy to propagate view
updates to the source faces a lot of challenges because the chosen update strategy
may not satisfy user intentions. The putback-based approach opens a new direction
to resolve this ambiguity issue that rather than defining a view definition and
automatically derive an update strategy for the view, we can explicitly specify
an update strategy from the start and derive the corresponding view definition
without ambiguity.

In this thesis, we have proposed a robust language-based approach to allow
using Datalog, an expressive and user-friendly language, to completely program
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view update strategies in database management systems. This is in sharp contrast
to previous approaches in which the view defining queries are enriched to capture
some certain update intentions. By allowing programmers to explicitly specify
update strategies, our approach provides full programmability and flexibility to the
programmers with the support for program validation, optimization, debugging,
and compilation.

Since most views in relational database management systems are defined by
SQL without recursion, in Chapter 3, we consider a fragment of the non-recursive
Datalog language as a formal language for view update strategies and propose
a validation algorithm to check the well-behavedness of user-written Datalog
programs. We design an incrementalization method to optimize the Datalog
programs before compiling them into SQL code that can run in a practical
database.

Next, by considering the case that the user-written programs are invalid, we
present in Chapter 4 an approach to generating counterexamples that explain to
the users why the programs are not correct. We then design a debugging engine
that assists the users in locating bugs in the programs that are useful to reduce
the burden of correcting programs.

It has been shown in the Resource Description Framework (RDF) that complex
data structures such as trees and graphs can be stored in relational databases
as a special ternary relation, i.e., a set of triples. In Chapter 5, we extend our
approach to use the Datalog language for specifying view update strategies for RDF
databases. We use a restricted form of higher-order syntax of Datalog to provide a
convenient way to encapsulate common recursive computation patterns that are
useful for specific data structures. In this way, a set of common recursive patterns
that are expressive enough to construct view update strategies is pre-defined and
pre-validated.

We have implemented our framework as open-source software. The experimental
results show the performance of our implementation in terms of both compilation
time and running time.
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6.2 Future Work

In our current approach, we consider fragments of Datalog and extensions as
the language for specifying view update strategies. For Datalog, we consider only
set semantics that a relation is a set of distinguished tuples. In most practical
relational database management systems, a table can have duplicated tuples, thus
it is considered as a bag of tuples. Therefore, one important future work of this
thesis is extending the Datalog language with bag semantics so that duplicates in
both the view and source database are allowed while the consistency between them
is maintained. Although bag semantics for Datalog has been attracting researchers
in recent years, how the view update strategies can be validated and optimized
under bag semantics remains unclear.

We have considered several extensions of Datalog such as negations and
comparison operators. Our approach can be further improved by considering
more extensions including arithmetic/boolean expressions and simple functions in
Datalog rules. These extensions allow programmers to conveniently describe more
view update strategies but need to be carefully designed to guarantee the safety of
Datalog programs so that they can be evaluated efficiently.

In another aspect, because an updatable view can be treated as a normal base
table, there are security issues that should be considered in the future. The first
issue arises when the view update strategies are defined by programmers, who do
not have full permission to some underlying tables in the databases. We need a
systematic way for verifying whether these view update strategies conform to the
allowed permission. The second problem is managing data access when views are
shared between different systems and updates to the shared views are made by
untrusted users or untrusted sources. We need a mechanism for controlling access
to the view as well as tracking the data provenance in view update strategies.
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A
More details of Chapter 3

A.1 Proofs

A.1.1 Proof of Lemma 3.2.7

Proof. Let P be a Datalog program in nonrecursive GN-Datalog with equalities,
constants, and comparisons. We shall transform a query (P,R), where R is an
IDB relation corresponding to IDB predicate r in P , into an equivalent guarded
negation first-order (GNFO) formula [59]. Without loss of generality, we assume
that in P , for every pair of head atoms h1( ~X1), h2( ~X2) in P , h1 = h2 implies
~X1 = ~X2 (this can be achieved by variable renaming).

Since there are constants that can occur in both atoms and equalities. We first
remove all constants appearing in atoms by transforming them into constants
appearing in equalities. This can be done by introducing a fresh variable X for
each constant c in the atoms of the Datalog rule (head or body), then adding an
equality X = c to the rule body and substituting X for the constant c. By this
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transformation, we consider equalities of the form X = c and a positive atom as a
guard for negative predicates or head atom of Datalog rules. In other words, for
each head atom or negative predicate β, there is a positive atom p(~Y ) such that all
the free variables in β must appear in p(~Y ) or in an equality of the form X = c.
For example, the following rule

h(Z, 1) :− p(Z,W, 3),¬r(W, 4).

is transformed into

h(Z,X1) :−p(Z,W,X2),¬r(W,X3), X1 = 1, X2 = 3,

X3 = 4.

in which the negated atom r(W,X3) is guarded by the positive atom p(Z,W,X2)

and the equality X3 = 4. The head atom h(Z,X1) is guarded by p(Z,W,X2) and
X1 = 1.

We shall define a FO formula ϕr equivalent to the Datalog query (P,R), i.e, for
every database D, the IDB relation R (corresponding to IDB predicate r in P ) in
the output of P over D (denoted as P (D)|R) is the same as the set of tuple ~t
satisfying ϕr ({~t | ϕ(~t)}). The construction of ϕr is inductively defined as the
following:

• (Base case) r is an EDB predicate, i.e., r ∈ S ∪ {v}: ϕr = r( ~Xr), where ~Xr

denotes (X1, . . . , Xarity(r)).

• (Inductive case) r is an IDB predicate, i.e., r occurs in the head of some
rules. Suppose that there are m rules:

r( ~Xr) :− α1,1, . . . , α1,n1 .

. . .

r( ~Xr) :− αm,1, . . . , αm,nm .
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Let ϕr,i( ~Xr) be the FO formula for r when considering only the i-th rule:

ϕr,i( ~Xr) = ∃ ~Ei,
ni∧
j=1

βi,j

where ~Ei contains the bound variables of the i-th rule (variables not in the
rule head),

βi,j =



ϕw(~Z), if αi,j is an atom w(~Z)

¬ϕw(~Z), if αi,j is a negated atom ¬w(~Z)

αi,j if αi,j is an equality or a negated
equality

C<c(X) if αi,j is a comparison predicate
X < c

C>c(X) if αi,j is a comparison predicate
X > c

Here we introduce fresh predicates C<c(X) and C>c(X) for the comparisons.
We have:

ϕr( ~Xr) =
m∨
i=1

ϕr,i( ~Xr) =
m∨
i=1

(
∃ ~Ei,

ni∧
j=1

βi,j

)

It is not difficult to show that ϕr is equivalent to the Datalog query (P,R).
Indeed, for any database instance D, by induction, we can show that for each IDB
predicate r and each tuple ~t,

r(~t) ∈ P (D)⇔ D |= ϕr(~t)

In each conjunction ϕr,i( ~Xr) = ∃ ~Ei,
∧ni

j=1 βi,j, each negative predicate βi,j is
guarded by a positive atom wi,j(~Y ) and many equalities. Moreover, there exists a
positive atom wi(~Y ) containing all the free variables of ~Xr.

Let us briefly recall the syntax of GNFO formulas with constants proposed by
Bárány et al. [59]. GNFO formulas with constants are generated by the following
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definition:

ϕ ::= r(t1, . . . , tn) | t1 = t2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃xϕ | α ∧ ¬ϕ

where each ti is either a variable or a constant symbol, and, in α ∧ ¬ϕ, α is an
atomic formula of EDB predicate containing all free variables of ϕ.

We now transform ϕr( ~Xr) into a GNFO formula by structural induction on
ϕr( ~Xr). Since GNFO is close under disjunction (ϕ1 ∨ ϕ2), we transform each
conjunction ϕr,i( ~Xr) in the formula ϕr( ~Xr) into a GNFO formula. We first group
each negative predicate βi,j with its guard atom wi,j(~Y ). If a free variable X
appears in βi,j but not in wi,j(~Y ), X must appear in an equality X = c, we then
substitute c for X in βi,j and obtain ϕwi,j

(~Y ) ∧ βi,j, where ~Y contains all the free
variable of βi,j. If two negative predicates share the same guard atom then the
guard atom can be used twice.

ϕr,i( ~Xr) = ∃ ~Ei,

(∧
k

βi,k

)
∧

(∧
j

(ϕwi,j
(~Y ) ∧ βi,j)

)

Because each βi,k in (
∧
k βi,k) is a positive predicate, we inductively transform each

βi,k into a GNFO formula. Now consider each formula ψ = (ϕwi,j
(~Y ) ∧ βi,j).

• If wi,j is an EDB predicate, ϕwi,j
(~Y ) = wi,j(~Y ), thus ψ is a GNFO formula.

• If wi,j is an IDB predicate, by the construction of ϕwi,j
(~Y ), we have ϕwi,j

(~Y ) =∨
l

ϕwl
i,j

(~Y ). As mentioned before in each ϕwl
i,j

(~Y ) there is an IDB atom ul(~Z)

containing all variables of ~Y . Therefore,

ψ =

(∨
l

ϕwl
i,j

(~Y )

)
∧ βi,j

≡
∨
l

ϕwl
i,j

(~Y ) ∧ βi,j

≡
∨
l

ϕwl
i,j

(~Y ) ∧ (ϕul(
~Z) ∧ βi,j)

We continue to inductively transform each ϕwl
i,j

(~Y ) and ϕul(~Z) ∧ βi,j into a
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GNFO formula.

In this way, each formula ϕwi,j
(~Y )∧βi,j is transformed into a GNFO formula. Since

GNFO is close under conjunction and existential quantifier, ϕr( ~Xr) is transformed
into a GNFO formula.

We have constructed an equivalent GNFO formula ϕr( ~Xr) for the Datalog
query (P,R). It is remarkable that in this transformation, we have introduced
many predicate symbols C<c(X) and C>c(X) for built-in predicates < and > in P .
The introduction of new predicates C<c(X) and C>c(X) does not preserve the
meaning of comparison symbols < and >. Therefore, to reduce the satisfiability of
Datalog query (P,R) to the satisfiability of ϕr( ~Xr), we need an axiomatization
for the built-in comparison predicates. We construct a GNFO sentence for this
axiomatization by using the similar technique for GN-SQL(lin) by Bárány et al.
[44]. Let the set of constant symbols in P be {c1, . . . , cn}, which is a finite subset
of a totally ordered domain dom, with c1 < c2 < . . . < cn. The GNFO sentence
that axiomatizes built-in comparison predicates is as follows:

Φ = ∀X,ϕX<c1 ∨ ϕX=c1 ∨ ϕc1<X<c2 ∨ ϕX=c2 ∨ . . . ∨ ϕX>cn

where

ϕX<c1 =


∧
i≤n

(C<ci(X) ∧ ¬(X = ci) ∧ ¬C>ci(X))

if ∃c ∈ dom, c < c1

⊥ otherwise

ϕX=ci = (X = ci) ∧ ¬C<ci(X) ∧ ¬C>ci(X)∧(∧
j<i(C>cj(X) ∧ ¬(X = cj) ∧ ¬C<cj(X))

)
∧(∧

j>i(¬C>cj(X) ∧ ¬(X = cj) ∧ C<cj(X))
)

ϕci<X<ci+1
=

(∧
j≤i(C>cj(X) ∧ ¬(X = cj) ∧ ¬C<cj(X))

)
∧(∧

j>i(¬C>ci(X) ∧ ¬(X = ci) ∧ C<ci(X))
)

if ∃c ∈ dom, ci < c < ci+1

⊥ otherwise
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ϕX>c1 =


∧
i≤n

(¬C<ci(X) ∧ ¬(X = ci) ∧ C>ci(X))

if ∃c ∈ dom, c > cn

⊥ otherwise

By this way, the Datalog query (P,R) is satisfiable if and only if the GNFO
sentence Φ ∧ ϕr( ~Xr) is satisfiable. Indeed, if there is a database D over that
the query (P,R) is not empty, we can construct a signature D′ by copying all
relations from D and use all (finite) the suitable values of the active domain of D
to construct a relation corresponding to each predicate C<ci(X)/C>ci(X). Clearly,
D′ satisfies Φ and ϕr( ~Xr). Conversely, if there is a signature D′ that satisfies Φ

and ϕr( ~Xr) we can construct a database D by an isomorphic copy of all relations
from D′ except the relations corresponding to predicates C<ci(X) and C>ci(X). It
is known that for GNFO formulas, satisfiability over finite structure coincides with
satisfiability over unrestricted structures. In other words, any structures satisfying
the GNFO formula are finite. Therefore D′ is a finite structure, i.e. a database.
Since the satisfiability of a GNFO sentence is decidable, the satisfiability of the
Datalog query (P,R) is also decidable. ut

A.1.2 Proof of Theorem 3.2.8

Proof. As in Lemma 3.2.7, we first transform a query Q in nonrecursive GN-
Datalog with equalities, constants, and comparisons into an equivalent guarded
negation first-order formula ϕr(~Y ). The result of Q over a database D is not
empty iff D satisfies the sentence ∃~Y , ϕr(~Y ). Let Σ be a set of guarded negation
constraints and σi = ∀ ~Xi,Φi( ~Xi) → ⊥ (i ∈ [1,m]) be a constraint in Σ, where
Φi( ~Xi) is a conjunction of (negative) atoms. Clearly, each Φi( ~Xi) is a guarded
negation formula since there is a guard atom in the rule body Φi( ~Xi). We rewrite σi
as an equivalent sentence σi ≡ ¬∃ ~Xi,Φi( ~Xi). Now, the query Q is satisfiable under
Σ iff there exists a database D satisfying all σi such that D satisfies ∃~Y , ϕr(~Y ).
This means that we need to check whether there exists a database D such that
D satisfies all σi and ∃~Y , ϕr(~Y ): D |= (

∧m
i=1 ¬∃ ~Xi,Φ1( ~Xi)) ∧ (∃~Y , ϕr(~Y )). Note

that there is no free variable in ∃ ~Xi,Φi( ~Xi) (i ∈ [1,m]) and all Φ1, . . . ,Φm and
ϕr(~Y ) are GNFO formulas, the conjunction (

∧m
i=1 ¬∃ ~Xi,Φ1( ~XI)) ∧ (∃~Y , ϕr(~Y )) is
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a GNFO formula. Thus, the problem now is reduced to the satisfiability of a
GNFO formula, which is decidable. ut

A.1.3 Proof of Lemma 3.3.1

Proof. From Definition 2.3.1, we know that there exists a view definition getd

that satisfies both GetPut and PutGet with the given valid put. Let get be an
arbitrary view definition satisfying GetPut with put, i.e., put(S, get(S)) = S for
any S. By applying the query getd to both the right-hand side and left-hand side
of this equation, and using the PutGet property of getd and put, we obtain:

getd(put(S, get(S))) = getd(S)⇔ get(S) = getd(S)

This means that get(S) = getd(S) for any S, i.e., get and getd are the same. Thus,
get satisfies PutGet with put.

ut

A.1.4 Proof of Lemma 3.3.3

Let 〈r1, . . . , rn〉 be a source database schema and S be a database instance of
this schema, i.e., S contains all relations R1, . . . , Rn corresponding to the schema
r1, . . . , rn. Let v be a view over the source database. Let Σ be a set of m guarded
negation constraints over the view and the source database; each constraint is of
the form σi = ∀ ~Xi,Φσi(

~Xi)→ ⊥.
Let us consider an LVGN-Datalog putback program putdelta for the view

v. putdelta takes a (updated) view instance V and the original source database
S to result in a delta ∆S of the source. V is a steady state of the view if ∆S

has no effect on the original S, i.e., S ⊕∆S = S. Recall that ∆S contains all
the tuples that need to be inserted/deleted into/from each source relation Ri

(i ∈ [1, n]), represented by two sets ∆+
Ri

and ∆−Ri
for these insertions and deletions,

respectively. S ⊕∆S = S iff

∆−Ri
∩Ri = ∆+

Ri
\Ri = ∅,∀i ∈ [1, n] (A.1)
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Note that each ∆+
Ri
/∆−Ri

is the IDB relation corresponding to delta predicate
+ri/−ri in the result of the Datalog program putdelta over the view and source
database (S, V ). Since putdelta is nonrecursive, we have an equivalent relational
calculus query ϕ−ri( ~Xi)/ϕ+ri(

~Xi) for each ∆+
Ri
/∆−Ri

. Equation (A.1) is equivalent to
the condition that two relational calculus queries ϕ−ri( ~Xi) ∧ ri( ~Xi) and ϕ+ri(

~Xi) ∧
¬ri( ~Xi) must be empty over the view and source database (S, V ). In other words,
the first-order sentences ∃ ~Xi, ϕ−ri(

~Xi) ∧ ri( ~Xi) and ∃ ~Xi, ϕ+ri(
~Xi) ∧ ¬ri( ~Xi) are

not satisfiable over the view and source database (S, V ). Combined with the
constraint set Σ, a steady-state view V satisfies Σ and S ⊕ putdelta(S, V ) = S iff:

(S, V ) 6|= ∃ ~Xi, ϕ−ri(
~Xi) ∧ ri( ~Xi), i ∈ [1, n]

(S, V ) 6|= ∃ ~Xi, ϕ+ri(
~Xi) ∧ ¬ri( ~Xi), i ∈ [1, n]

(S, V ) 6|= ∃ ~Xi,Φσi(
~Xi), i ∈ [n+ 1, n+m]

(A.2)

where ~Xi denotes a tuple of variables. Note that (S, V ) 6|= ξ1 and (S, V ) 6|= ξ2 are
equivalent to (S, V ) 6|= ξ1 ∨ ξ2. Thus, we have:

(S, V ) 6|= ∃ ~Xi, (ϕ−ri(
~Xi) ∧ ri( ~Xi))∨

(ϕ+ri(
~Xi) ∧ ¬ri( ~Xi)), i ∈ [1, n]

(S, V ) 6|= ∃ ~Xi,Φσi(
~Xi), i ∈ [n+ 1, n+m]

(A.3)

We now find such a V satisfying (A.3).

Claim A.1.1 Given a putback program putdelta written in LVGN-Datalog for a
view v and a source schema 〈r1, . . . , rn〉, each relational calculus formula ϕr( ~Xr) of
the query (putdelta, R), where R is an IDB relation corresponding to IDB predicate
r in P , can be rewritten in the following linear-view form:(

p∨
k=1

∃ ~E1k, v(~Y1k) ∧ ψ1k

)
∨

(
q∨

k=1

∃ ~E2k,¬v(~Y2k) ∧ ψ2k

)
∨ ψ3

where view atom v does not appear in ψ1k, ψ2k or ψ3. Each of the formulas
∃ ~E1k, v(~Y1k) ∧ ψ1k, ∃ ~E2k,¬v(~Y2k) ∧ ψ1k and ψ3 is a safe-range GNFO formula and
has the same free variables ~Xr.

Proof. The proof is conducted inductively on the transformation (presented in Sub-
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section A.1.1 - the proof of Lemma 3.2.7) between the Datalog query (putdelta, R)

and an equivalent GNFO formula ϕr( ~Xr). Note that in this transformation, each
ϕr,i is a safe-range1 formula, i.e. is a relational calculus [43].

We inductively prove that every ϕr can be transformed into the linear-view
form. The base case is trivial. For the inductive case, due to the linear-view
restriction, if r is a normal predicate (not a delta predicate), then there is no view
atom v in all the rules defining r; thus, ϕr =

∨m
i=0 ϕr,i is in the linear-view form,

where ψ3 =
∨m
i=0 ϕr,i and p = q = 0. On the other hand, if r is a delta predicate,

in each i-th rule r( ~Xr) :− αi,1, . . . , αi,n1 , there are two cases. The first case is that
there is no αi,j0 of a view atom v, ϕr,i = ∃ ~Ei,

∧ni

j=0 βi,j is in the linear-view form,
where ψ3 = ϕr,i and p = q = 0. In the second case, there is only one αi,j0 , which is
an atom v(~Yi) or a negated atom ¬v(~Yi). Thus, ϕr,i = ∃ ~Ei, v(~Yi) ∧

∧ni

j=0,j 6=j0 βi,j or
ϕr,i = ∃ ~Ei,¬v(~Yi) ∧

∧ni

j=0,j 6=j0 βi,j. Therefore, ϕr,i is rewritten in the linear-view
form. Note that if two formulas are in the linear-view form, then the disjunction of
them can be transformed into the linear-view form. Indeed,(

p1∨
k=1

∃ ~E1k, v(~Y1k) ∧ ψ1k

)
∨

(
q1∨
k=1

∃ ~E2k,¬v(~Y2k) ∧ ψ2k

)
∨ ψ3 ∨(

p2∨
k=p1+1

∃ ~E1k, v(~Y1k) ∧ ψ1k

)
∨(

q2∨
k=q1+1

∃ ~E2k,¬v(~Y2k) ∧ ψ2k

)
∨ ψ′3

≡

(
p2∨
k=1

∃ ~E1k, v(~Y1k) ∧ ψ1k

)
∨(

q2∨
k=1

∃ ~E2k,¬v(~Y2k) ∧ ψ2k

)
∨ (ψ3 ∨ ψ′3)

In this way, ϕr =
m∨
i=1

ϕr,i is rewritten in the linear-view form.

1A first-order formula ψ is a safe-range formula if all variables in ψ are range restricted [43].
In fact, for each nonrecursive Datalog query with negation, there is an equivalent safe-range
first-order formula, and vice versa [43].
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As proven in [44], we can continue to transform each safe-range formula
ϕr,i into a GNFO formula. In other words, in the linear-view form of ϕr,
each ∃ ~E1k, v(~Y1k) ∧ ψ1k and ∃ ~E2k,¬v(~Y2k) ∧ ψ2k, and ψ3 can be transformed
into a safe-rage GNFO formula. In this transformation, if ∃ ~E1k, v(~Y1k) ∧ ψ1k

is transformed into ∃ ~E1k, v(~Y1k) ∧ ψ′1k ∨ v(~Y1k) ∧ ψ′′1k, we will transform it into
(∃ ~E1k, v(~Y1k)∧ψ′1k)∨ ( ~E1k, v(~Y1k)∧ψ′′1k). In this way, we finally obtain a safe-range
GNFO formula of ϕr, which is also in the linear-view form. ut

We now know that the relational calculus formula ϕ±r of each delta predicate
±r is rewritten in the linear-view form. For each constraint σi of the form
∀ ~Xi,Φσi(

~Xi) → ⊥, we can also transform the conjunction Φσi(
~Xi) into the

linear-view form. Indeed, let us consider a new Datalog rule in putdelta as the
following:

bi( ~Xi) :− Φσi(
~Xi).

in which the view is linearly used. The conjunction Φσi(
~Xi) is equivalent to the

relational calculus query ϕbi( ~Xi) of relation bi, which can be transformed into the
linear-view form.

Since ϕ±r( ~Xr) can be rewritten in the linear-view form, the conjunction
ϕ±r( ~Xr)∧r( ~Xr) can be rewritten in the linear-view form by applying the distribution
of existential quantifier over disjunction:

ϕ±r( ~Xr) ∧ r( ~Xr) ≡

(
p∨

k=1

r( ~Xr) ∧ ∃ ~E1k, v(~Y1k) ∧ ψ1k

)
∨(

q∨
k=1

r( ~Xr) ∧ ∃ ~E2k,¬v(~Y2k) ∧ ψ2k

)
∨ (r( ~Xr) ∧ ψ3)

~Xr is the free variable of ϕr( ~Xr); hence, no existential variable in ~E1k or ~E2k is in
~Xr. We can push r( ~Xr) into the existential quantifier ∃ ~E1k/∃ ~E2k and obtain:(

p∨
k=1

∃ ~E1k, v(~Y1k) ∧ r( ~Xr) ∧ ψ1k

)
∨(

q∨
k=1

∃ ~E2k,¬v(~Y2k) ∧ r( ~Xr) ∧ ψ2k

)
∨ (r( ~Xr) ∧ ψ3)
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This is in the linear-view form. Therefore, the disjunction (ϕ+r( ~Xr) ∧ r( ~Xr)) ∨
ϕ−r( ~Xr) ∧ r( ~Xr) can be rewritten in the linear-view form. The constraint (A.3) is
now rewritten as:



(S, V ) 6|= ∃ ~Xi,

(
pi∨
k=1

∃ ~Ei
1k, v(~Y i

1k) ∧ ψi1k
)
∨(

qi∨
k=1

∃ ~Ei
2k,¬v(~Y i

2k) ∧ ψi2k
)
∨ ψi3, i ∈ [1, n]

(S, V ) 6|= ∃ ~Xi,

(
pi∨
k=1

∃ ~Ei
1k, v(~Y i

1k) ∧ ψi1k
)
∨(

qi∨
k=1

∃ ~Ei
2k,¬v(~Y i

2k) ∧ ψi2k
)
∨ ψi3,

i ∈ [n+ 1, n+m]

By applying the distribution of existential quantifier over disjunction

∃ ~Xi, ξ1( ~Xi) ∨ ξ2( ~Xi) ≡ (∃ ~Xi, ξ1( ~Xi)) ∨ (∃ ~Xi, ξ2( ~Xi))

we have: 

(S, V ) 6|=
(

pi∨
k=1

∃ ~Xi, ∃ ~Ei
1k, v(~Y i

1k) ∧ ψi1k
)
∨(

qi∨
k=1

∃ ~Xi, ∃ ~Ei
2k,¬v(~Y i

2k) ∧ ψi2k
)
∨

∃ ~Xi, ψ
i
3, i ∈ [1, n]

(S, V ) 6|=
(

pi∨
k=1

∃ ~Xi, ∃ ~Ei
1k, v(~Y i

1k) ∧ ψi1k
)
∨(

qi∨
k=1

∃ ~Xi, ∃ ~Ei
2k,¬v(~Y i

2k) ∧ ψi2k
)
∨

∃ ~Xi, ψ
i
3, i ∈ [n+ 1, n+m]

Here, we have a disjunction of many formulas on the right-hand side, and we can
apply the equivalence between (S, V ) 6|= ξ1 ∨ ξ2 and ((S, V ) 6|= ξ1) ∧ ((S, V ) 6|= ξ2)

to separate the disjunction on the right-hand side and obtain n3 sentences as
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follows: 
(S, V ) 6|= ∃ ~Ek, v( ~Yk) ∧ ψk, k ∈ [1, n1]

(S, V ) 6|= ∃ ~Ek,¬v( ~Yk) ∧ ψk, k ∈ [n1 + 1, n2]

(S, V ) 6|= ∃ ~Ek, ψk, k ∈ [n2 + 1, n3]

(A.4)

where n1 =
n+m∑
i=1

pi, n2 = n1 +
n+m∑
i=1

qi and n3 = n2 + n+m. All variables in ~Yk are

in ~Ek for any k.

Note that ∃W, v( ~Yk) ∧ ψk ≡ v( ~Yk) ∧ ∃W,ψk if W is not a free variable in v( ~Yk).
In this way, we push existential variables in ~Ek but not in ~Yk, denoted by ~Zk, into
the subformula ψk. In the case that there is a variable X appearing more than
once in ~Yk, we can introduce a new fresh variable X ′ and add the equality X = X ′

to the formulas after the quantifier ∃ ~Yk. For example,

∃Y1Y1Y2, v(Y1, Y1, Y2) ≡ ∃Y1Y
′

1Y2, v(Y1, Y
′

1 , Y2) ∧ Y1 = Y ′1

We then substitute the variables in each ~Yk to obtain the same ~Y = Y1, . . . , Yarity(v)

for each ~Yk. Then, we have n3 FO sentences that (S, V ) must not satisfy:
(S, V ) 6|= ∃~Y , v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek), k ∈ [1, n1]

(S, V ) 6|= ∃~Y ,¬v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek), k ∈ [n1 + 1, n2]

(S, V ) 6|= ∃ ~Ek, ψk( ~Ek), k ∈ [n2 + 1, n3]

Because ((S, V ) 6|= ξ1) ∧ ((S, V ) 6|= ξ2) is equivalent to (S, V ) 6|= ξ1 ∨ ξ2, we have:

(S, V ) 6|=
n1∨
k=1

(∃~Y , v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek))

(S, V ) 6|=
n2∨

k=n1+1

(∃~Y ,¬v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek))

(S, V ) 6|=
n3∨

k=n2+1

(∃ ~Ek, ψk( ~Ek))

By applying the distribution of existential quantifier over disjunction (∃~Y , ξ1(~Y ))∨
(∃~Y , ξ2(~Y )) ≡ ∃~Y , ξ1(~Y ) ∨ ξ2(~Y ), we have:
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

(S, V ) 6|= ∃~Y ,
n1∨
k=1

(v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek))

(S, V ) 6|= ∃~Y ,
n2∨

k=n1+1

(¬v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek))

(S, V ) 6|=
n3∨

k=n2+1

(∃ ~Ek, ψk( ~Ek))

By applying the distribution of conjunction over disjunction (p ∧ q) ∨ (p ∧ r) ≡
p ∧ (q ∨ r), we have: 

(S, V ) 6|= ∃~Y , v(~Y ) ∧ φ1(~Y )

(S, V ) 6|= ∃~Y ,¬v(~Y ) ∧ φ2(~Y )

(S, V ) 6|= φ3

(A.5)

⇔


(S, V ) |= ∀~Y , v(~Y ) ∧ φ1(~Y )→ ⊥
(S, V ) |= ∀~Y ,¬v(~Y ) ∧ φ2(~Y )→ ⊥
(S, V ) 6|= φ3

(A.6)

where φ1 =
∨n1

k=1( ~Zk, ψk( ~Ek)), φ2 =
n2∨

k=n1+1

(∃ ~Zk, ψk( ~Ek)) and φ3 =
n3∨

k=n2+1

(∃ ~Ek, ψk( ~Ek)).

Note that in (A.4), each ∃ ~Ek, ψk (k ∈ [n2 + 1, n3]) is a safe-range GNFO
formula; hence, φ3 is a GNFO sentence. Each ∃ ~Ek,¬v( ~Yk) ∧ ψk (k ∈ [n1 + 1, n2])
is a safe-range GNFO formula, which means that each ψk (k ∈ [n1 + 1, n2]) is
a safe-range GNFO formula; hence, φ2 is a safe-range GNFO formula. Each
∃ ~Ek, v( ~Yk) ∧ ψk, k ∈ [1, n1] is a safe-range GNFO formula; hence, v(~Y ) ∧ φ1(~Y ) ≡∨n1

k=1(∃~Y , v(~Y ) ∧ ∃ ~Zk, ψk( ~Ek)) ≡
∨n1

k=1(∃ ~Ek, v( ~Yk) ∧ ψk), which is a safe-range
GNFO formula.

A.1.5 Proof of Proposition 3.4.2

Proof. Consider a database S over schema 〈r1, . . . , rn〉. S ⊕∆S = S means that
∆−Ri
∩ Ri = ∅ and ∆+

Ri
\ Ri = ∅ (i ∈ [1, n]). Let ∆2S be the change on ∆S, i.e.,

∆2S contains insertions and deletions into/from each ∆+
Ri

and ∆−Ri
. We use ∆±Ri

as an abbreviation for ∆+
Ri

and ∆−Ri
. Let ∆+(∆±Ri

) and ∆−(∆±Ri
) be the set of

insertions and the set of deletions for ∆±Ri
, respectively. The new instance ∆′±Ri

of
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each ∆±Ri
in ∆S is obtained by:

∆′±Ri
= (∆±Ri

\∆−(∆±Ri
)) ∪∆+(∆±Ri

)

We finally obtain a new source database S ′ by applying each ∆′±Ri
in ∆S ′ to the

corresponding relation Ri in database S:

R′i = (Ri \∆′−Ri
) ∪∆′+Ri

= (Ri \ ((∆−Ri
\∆−(∆−Ri

)) ∪∆+(∆−Ri
)))

∪((∆+
Ri
\∆−(∆+

Ri
)) ∪∆+(∆+

Ri
))

Because ∆−Ri
and ∆+

Ri
are disjoint, and because ∆−Ri

∩Ri = ∅ and ∆+
Ri
\Ri = ∅, we

can simplify the above equation to:

R′i = Ri \∆+(∆−Ri
) ∪∆+(∆+

Ri
) (A.7)

Note that ∆+(∆−Ri
) and ∆+(∆+

Ri
) contain all the tuples inserted into ∆−Ri

and
∆+
Ri
, respectively. In other words, ∆+(∆−Ri

) and ∆+(∆+
Ri

) are delta relations in
∆2+S. This means that the source database S ′ is obtained by applying ∆2+S to S:
S ′ = S ⊕∆2+S. ut

A.1.6 Proof of Lemma 3.4.4

Proof. Consider a valid LVGN-Datalog putback program putdelta for a view v

and source database schema 〈r1, . . . , rn〉. Since putdelta is in LVGN-Datalog, the
view predicate occurs only in the rules defining delta relations of the source (±r1,
. . . , ±rn), and at most once in each rule. When the view relation is changed,
only delta relations, ±r1, . . . ,±rn, are changed, all other relations (intermediate
relations) in putdelta are unchanged. Therefore, to incrementalize putdelta, we
use only rules defining delta relations (having a predicate ±ri as the head) to
derive the rules computing changes to the delta relations.

A Datalog rule having a delta predicate ±ri in the head and a view predicate v
in the body is in one of the following forms:

±ri( ~X) :− v(~Y ), Q(~Z). (positive view)
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±ri( ~X) :− ¬ v(~Y ), Q(~Z). (negative view)

where Q(~Z) is the conjunction of the rest of the rule body. Q(~Z) is unchanged,
whereas the view relation v is changed to v′ = (v \ −v ∪+v), where +v and −v
corresponds to the insertions set of deletions set, respectively. Similar to the
incrementalization technique in [55], by distributing joins over set minus and union
we obtain

+(±ri)( ~X) :− +v(~Y ), Q(~Z).

−(±ri)( ~X) :− −v(~Y ), Q(~Z).

for the case of positive view and

+(±ri)( ~X) :− −v(~Y ), Q(~Z).

−(±ri)( ~X) :− +v(~Y ), Q(~Z).

for the case of negative view, where new delta relations are obtained by ±r′i =

(±ri \ −(±ri)) ∪+(±ri).

Proposition 3.4.2 implies that the set of insertions to the delta relation, +(±ri),
can be used as ±r′i to apply to the source relation ri to obtain the same new
source. Therefore, the rule computing −(±ri) is redundant, ±r′i can be computed
by the rules of +(±ri):

±r′i( ~X) :− +v(~Y ), Q(~Z).

for the case of positive view and

±r′i( ~X) :− −v(~Y ), Q(~Z).

for the case of negative view. This shows that the transformation from origin
putdelta to an incremental one is substituting delta predicates of the view, +v and
−v, for positive and negative predicates of the view, v and ¬v, respectively. ut
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A.2 Transformation from safe-range FO formula to

Datalog

In this section, we present the transformation from a safe-range FO formula ϕ
to an equivalent Datalog query.

We first extend the algorithm that transforms a safe-range FO formula ϕ into
an equivalent formula in relational algebra normal form (RANF) described in [43]
to allow built-in predicates (< and >) to occur in ϕ. Let us assume that ϕ is
in safe-range normal form (SRNF) in which there are no universal quantifiers
and no implications, and there is no conjunction or disjunction sign that occurs
directly below a negation sign. Every FO formula can be transformed into an
SRNF formula by inductively applying the following logical equivalences:

• ∀~xψ ≡ ¬∃~x¬ψ

• ϕ→ ψ ≡ ¬ϕ ∨ ψ

• ¬¬ψ ≡ ψ

• ¬(ψ1 ∨ . . . ∨ ψn) ≡ (¬ψ1 ∧ . . . ∧ ¬ψn)

• ¬(ψ1 ∧ . . . ∧ ψn) ≡ (¬ψ1 ∨ . . . ∨ ¬ψn)

The set of range-restricted variables of the FO formula ϕ (rr(ϕ)) is inductively
defined in the same way as [43]:

• if ϕ = R(e1, . . . , en), rr(ϕ) = the set of variables in {e1, . . . , en}

• if ϕ = (x = a) or ϕ = (a = x), rr(ϕ) = x

• if ϕ = ϕ1 ∧ ϕ2, rr(ϕ) = rr(ϕ1) ∪ rr(ϕ2)

• if ϕ = ϕ1 ∧ x = y, rr(ϕ) = rr(ϕ1) if {x, y} ∩ rr(ϕ1) = ∅ and rr(ϕ) =

rr(ϕ1) ∪ {x, y} otherwise

• if ϕ = ϕ1 ∨ ϕ2, rr(φ) = rr(φ1) ∩ rr(φ2)

• if ϕ = ¬ϕ1, rr(ϕ) = ∅
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• if ϕ ∈ {(x > a), (x < a), (x > y), (x < y)}, rr(ϕ) = ∅

• if ϕ = ∃~xϕ1, rr(ϕ) = rr(ϕ1)− ~x if ~x ⊆ rr(ϕ1) and rr(ϕ) = ⊥ otherwise

where for each Z, ⊥ ∪ Z = ⊥ ∩ Z = ⊥ − Z = Z − ⊥ = ⊥, ⊥ indicates that
some quantified variables are not range restricted. Let free(ϕ) be the set of free
variables of ϕ. ϕ is a safe-range FO formula iff rr(ϕ) = free(ϕ).

Definition A.2.1 ([43]) An occurrence of a subformula ψ in ϕ is self-contained
if its root is ∧ or if

• ψ = ψ1 ∨ . . . ∨ ψn and rr(ψ) = rr(ψ1) = . . . = rr(ψn) = free(ψ);

• ψ = ∃~xψ1 and rr(ψ1) = free(ψ1);

A safe-range SRNF formula ϕ is in relational algebra normal form (RANF) if each
subformula of ϕ is self-contained. ut

The algorithm that transforms a safe-range SRNF formula ϕ into an equivalent
RANF formula is based on the following rewrite rules for each subformula ψ in ϕ:

• Push-into-or: If ψ = ψ1 ∧ . . . ∧ ψn ∧ ξ, where ξ = ξ1 ∨ . . . ∨ ξm and
rr(ψ) = free(ψ), but rr(ξ) 6= free(ξ), we nondeterministically choose a
subset {i1, . . . , ik} of {1, . . . , n} such that

ξ′ = (ξ1 ∧ ψi1 ∧ . . . ∧ ψik) ∨ . . . ∨ (ξm ∧ ψi1 ∧ . . . ∧ ψik)

satisfies rr(ξ′) = free(ξ′). Let {j1, . . . , jl} = {1, . . . , n} \ {i1, . . . , ik}, we
rewrite ψ into ψ′:

ψ′ = ψj1 ∧ . . . ∧ ψjl ∧ ξ′

• Push-into-quantifier: If ψ = ψ1 ∧ . . . ∧ ψn ∧ ∃~xξ and rr(ψ) = free(ψ), but
rr(ξ) 6= free(ξ), assuming that no variable in ~x is a free in free(ψ1∧ . . .∧ψn)

(this can be achieved by variable renaming), we nondeterministically choose
a subset {i1, . . . , ik} of {1, . . . , n} such that:

ξ′ = ψi1 ∧ . . . ∧ ψik ∧ ξ
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satisfies rr(ξ′) = free(ξ′). We replace ψ with

ψ′ = ψj1 ∧ . . . ∧ ψjl ∧ ∃~xξ′

where {j1, . . . , jl} = {1, . . . , n} \ {i1, . . . , ik}.

• Push-into-negated-quantifier: If ψ = ψ1 ∧ . . . ∧ ψn ∧ ¬∃~xξ and rr(ψ) =

free(ψ), but rr(ξ) 6= free(ξ), assuming that no variable in ~x is a free
in free(ψ1 ∧ . . . ∧ ψn) (this can be achieved by variable renaming), we
nondeterministically choose a subset {i1, . . . , ik} of {1, . . . , n} such that:

ξ′ = ψi1 ∧ . . . ∧ ψik ∧ ξ

satisfies rr(ξ′) = free(ξ′). We replace ψ with

ψ′ = ψ1 ∧ . . . ∧ ψn ∧ ¬∃~xξ′

ψ′ is equivalent to ψ because the propositional formulas p ∧ q ∧ ¬r and
p ∧ q ∧ ¬(p ∧ r) are equivalent. And we continue to apply the Push-into-
quantifier procedure

Now we transform the RANF formula ϕ into an equivalent Datalog query
(Pϕ, Gϕ). Suppose {x1, . . . , xk} = free(ϕ), (Pϕ, Gϕ) is inductively constructed as
follows:

• If ϕ = R(e1, . . . , en), where {x1, . . . , xk} is the set of free variables in
{e1, . . . , en}:

Pϕ = {Gϕ(x1, . . . , xk) :− R(e1, . . . , en).}

and the datalog query is (Pϕ, Gϕ).

• If ϕ is x = a or a = x:

Pϕ = {Gϕ(x) :− x = a.}

• If ϕ = ψ1∧ . . .∧ψm, we divide {ψ1, . . . , ψm} into a set of positive subformulas
{ψ1, . . . , ψm1} and a set of equalities/inequalities (x = a, a = x, x = x,
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x = y, x > a, x < a, x > y, x < y) {ψm1+1, . . . , ψm2}, and a set of
negative subformulas {¬ψm2+1, . . . ,¬ψm}. Let {xi1, . . . , xiki} = free(ψi), we
inductively construct (Pψi

, Gψi
) for each ψi in {ψ1, . . . , ψm1}, and for each ψi

in {ψm2+1, . . . , ψm}. The Datalog query (Pϕ, Gϕ) is as follows:

Pϕ =

(
m1⋃
i=1

Pψi

)
∪

(
m⋃

i=m2+1

Pψi

)
∪

Gϕ(x1, . . . , xk) :− Gψ1(x11, . . . , x1k1), . . . ,

Gψm1
(xm11, . . . , xm1km1

),

ψm1+1, . . . , ψm2 ,

¬Gψm2+1(x(m2+1)1, . . . ,

x(m2+1)k(m2+1)
), . . . ,

¬Gψm(xm1, . . . , xmkm).


• If ϕ = ψ1 ∨ . . . ∨ ψn, where free(ψ1) = . . . = free(ψn) = {x1, . . . , xk}.
We construct (Pψi

, G) (with the same goal predicate G) for each ψi in
{ψ1, . . . , ψn} and obtain:

Pϕ =
n⋃
i=1

Pψi

Gϕ = G

• If ϕ = ∃y1, . . . , ym, ψ(z1, . . . , zn), where {x1, . . . , xk} = {z1, . . . , zn}\{y1, . . . , ym}:

Pϕ = Pψ ∪ {Gϕ(x1, . . . , xk) :− Gψ(z1, . . . , zn).}

To conclude that the transformation from safe-range FO formula to Datalog
query is correct, i.e. ϕ and (Pϕ, Gϕ) are equivalent, we need to show that for any
database instance D, Pϕ(D)|Gϕ = {~t | D |= ϕ(~t)}, where Pϕ(D)|Gϕ denotes the
restriction of the output of P over D to the relation Gϕ. Indeed, let D be fixed, by
induction, we can show that for each subformula ψ of ϕ and each tuple ~t,

D |= ψ(~t)⇔ Pψ(D) 3 Gψ(~t)
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Join and Selection

h( ~X) :− r1(~Y ), r2(~Z).

vars( ~X) = vars(~Y ) ∪ vars(~Z)

⇓
−h( ~X) :− −r1(~Y ), r2(~Z).

−h( ~X) :− r1(~Y ),−r2(~Z).

+h( ~X) :− +r1(~Y ), rν2(~Z).

+h( ~X) :− rν1(~Y ),+r2(~Z).

hν( ~X) :− rν1(~Y ), rν2(~Z).

Negation

h( ~X) :− r1( ~X),¬r2(~Y ).

vars( ~X) ⊇ vars(~Y )

⇓
−h( ~X) :− −r1( ~X),¬r2(~Y ).

−h( ~X) :− r1( ~X),+r2(~Y ).

+h( ~X) :− +r1( ~X),¬rν2(~Y ).

+h( ~X) :− rν1( ~X),−r2(~Y ).

hν( ~X) :− rν1( ~X),¬rν2(~Y ).

Projection

h( ~X) :− r1( ~X, ~Y ).

⇓
+h( ~X) :− +r1( ~X, ~Y ),¬h( ~X).

−h( ~X) :− −r1( ~X, ~Y ),¬rν1( ~X,_).

hν( ~X) :− rν1( ~X, ~Y ).

Union

h( ~X) :− r1( ~X).

h( ~X) :− r2( ~X).

⇓
−h( ~X) :− −r1( ~X),¬rν2( ~X).

−h( ~X) :− −r2( ~X),¬rν1( ~X).

+h( ~X) :− +r1( ~X).

+h( ~X) :− +r2( ~X).

hν( ~X) :− rν1( ~X).

hν( ~X) :− rν2( ~X).

Figure A.1: Rules for incrementalizing Datalog putback programs. ~X denotes a
tuple of variables, vars( ~X) denotes the set of all variables in ~X.

A.3 Rules for incrementalizing putback programs

Given a putback program putdelta in nonrecursive Datalog with negation
(NR-Datalog¬), we shall derive Datalog rules to compute changes to delta relations
of the source database when the view relation is changed. The derived Datalog
rules form an incrementalized program of putdelta.

Our idea is that we first transform putdelta into an equivalent Datalog program,
in which every IDB relation is defined from at most 2 other relations. We then
inductively apply the incrementalization rules in Figure A.1 to derive Datalog
rules for computing changes to each IDB relation.

Lemma A.3.1 For every NR-Datalog¬ program P with a goal IDB relation R,
there is a NR-Datalog¬ program P ′ in which each IDB relation is defined from at
most two other relations such that the queries (P,R) and (P ′, R) are equivalent. ut
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Proof. (Sketch) There exists such a transformation between these two Datalog
programs because a NR-Datalog¬ query (P,R) is equivalent to a relational algebra
expression, in which each binary relational operator can be simulated by Datalog
rules with two relations in the rule bodies. ut

Considering the set semantics of the Datalog language, we propose rewrite rules
(shown in Figure A.1) for calculating changes to a relation h which is defined from
two relations r1 and r2. In each case of the definition of h, we derive Datalog rules
that compute separately the set of insertions (∆+

h ) and the set of deletions (∆−h )
to h when there are changes to relations r1 and r2. Note that in these derived
Datalog rules, if ∆+

r1
and ∆−r1 are disjoint, then the obtained ∆+

h and ∆−h are
also disjoint. Therefore, we can inductively apply the four incrementalization
rules when h is used to define other IDB relations. We have formally proven the
correctness of these incrementalization rules by using an assistant theorem prover,
stated as the following.

Lemma A.3.2 For each case in Figure A.1, the new relation hν computed from
its defining rules is the same as the result obtained by applying delta relations +h

and −h computed by the derived Datalog rules to the original relation h. ut

Our incrementalization rules can be easily extended for built-in predicates (e.g.,
=, <,>) in the Datalog program by considering these predicates as unchanged
relations in our incrementalization rules.

A.4 Deriving view deltas

Algorithm 3: View-Delta(u1, . . . , un)
1 ∆+

V ← ∅; ∆−V ← ∅;
2 for each DML statement u in u1, . . . , un do
3 Derive the set δ+/δ− of inserted/deleted tuples;
4 ∆+

V ← (∆+
V \ δ−) ∪ δ+;

5 ∆−V ← (∆−V \ δ+) ∪ δ−;

Our incrementalization on putback transformation requires deriving a delta
relation ∆V of the view V in the form of insertions and deletions when there are
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any view update requests. In RDBMSs, these update requests are declarative
DML (data manipulation language) statements of the following forms [62]: INSERT
INTO V VALUES(. . .), DELETE FROM V WHERE <condition>, and UPDATE V SET

attr=expr, ... WHERE <condition>. Fortunately, it is trivial to obtain from
the INSERT/DELETE statement the tuples that need to be inserted or deleted.
Meanwhile, an UPDATE statement on the view can be represented as deletions
followed by insertions; hence, we can also derive the deleted/inserted tuples.

A view update request can be a sequence of DML statements rather than a
single one. This sequence is combined into one transaction by using the SQL
command BEGIN before the sequence and the command END after the sequence. To
address this case, we propose a procedure for calculating ∆+

V and ∆−V of the whole
view update transaction, as shown in Algorithm 3. Concretely, for each DML
statement in the sequence, we derive the insertion set δ+ and the deletion set δ−,
and we merge these changes to ∆+

V and ∆−V . In this way, later statements have
stronger effects than earlier statements. For example, if the sequence is inserting a
tuple ~t and then deleting this tuple, ~t is no longer inserted, i.e., we remove ~t from
∆+
V .
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