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Abstract

Data analysis with a large size of data from various public or enterprise data sources
allows us to discover new knowledge or rules that no one has found so far. Data analysis
thus has been recognized as a promising process for decision making by business people
or policy making by governments in these days.

Data preparation is an essential process as the first step of data analysis. Data from
various sources is often in a non-relational or unstructured form and is not able to be
directly inserted into a downstream information system, like a database or visualization
systems. Data analysts transform such raw data into a desired format that can be
easily consumed by other systems. Such a data preparation task regularly involves
reformatting data values, reconstructing layout of tables, looking up values with keys
from other tables, and integrating multiple data sources, often requiring programming
skills. Therefore, it is a laborious and time-consuming task for data analysts who have
limited coding skills. Generally, data analysts spend more time for preparing data than
analyzing it: the process takes up to 80% of data analyst’s time.

Programming by example (PBE) is a technique that makes this troublesome task easier
for data analysts by automatically generating programs for data transformation. PBE
is one research field of program synthesis. In a program synthesis problem, a program
synthesizer takes a program specification from users and then automatically generates
a program according to the specification. Meanwhile, in a PBE problem, a program
synthesizer takes an input-output example as a specification from users and then auto-
matically generates a program consistent with the input-output example. The system
with a PBE program synthesizer should solve the data preparation problem. It allows a
user to synthesize a program through specifying a desired transformation by providing
an input-output example. The user only needs to know how to describe the transformed
data without knowing any particular transformation operation or programming code.

In past years, researchers have been studying PBE using techniques based on non-
neural algorithms such like graph search algorithm or version space algebra. Many
researchers started studying PBE using techniques based on ML approaches in recent
years, inspired from many successes of machine learning (ML) or neural network models.
One example of such study, RobustFill, has been proposed as a neural network model
that generates a string transformation program. It employs an encoder-decoder model
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that consists of two long-short-term-memory (LSTM) architectures. Once the model is
trained via supervised training, it translates input-output strings into the corresponding
transformation program.

Although RobustFill shows a feasibility of ML-based PBE system and possibility of
its application to string transformation, it does not support both syntactic (string) and
layout transformations. Syntactic transformations re-format each cell content of a table,
whereas layout transforms re-construct the layout of a table. The transformations in
data preparation are composed by combining these transforms. We call these transforms
as tabular transformation collectively.

The goal of this dissertation is to realize an ML-based PBE for tabular transformations.
This is the first ML-based PBE for tabular transformations to the best of our knowledge.
Furthermore, our experiments show that our neural model outperforms the existing non-
neural PBE system for tabular transformations, thus indicating that our neural approach
to synthesizing tabular transformation programs is promising. Our contributions are as
follows.

First, we propose a new ML-based PBE system for tabular transformations. The ML-
based PBE system is an encoder-decoder model based on the Transformer neural network
which is known as the state-of-the-art translation neural network. Since tabular trans-
formations have more intricate data structures and complicated transformations than
string transformations, it requires larger expressive power, therefore, a larger number of
parameters for the neural network models. The LSTM network which is used in con-
ventional ML-based PBE systems is difficult to have such large parameters, because the
LSTM network spends much longer time to train its parameters due to its sequential
processing feature of recurrent neural networks. Thus, the LSTM cannot have such
an expressive power that is capable of learning tabular transformations in a practical
training time. To address this shortage, we propose a Transformer-based model as an
ML-based PBE system instead of the LSTM.

Next, we propose an embedding method that embeds two-dimensional tabular data
into the Transformer neural network model. We introduce tabular positional encodings
which encodes the positions of each location of the tabular data. The tabular posi-
tional encodings deal with the tabular data in the Transformer model properly. This
method allows us to embed each row index, column index and the local position in a
cell of input-output example tables to represent two(or more)-dimensional positions in
the Transformer network. Our experiments show that the tabular positional encodings
improve the performance of Transformer-based model through learning and capturing
the structure of two-dimensional tabular data.
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Finally, we propose two decoding methods, multistep beam search and Program Vali-
dation (PV)-Beam Search. Our Transformer-based model generates a sequence which
corresponds to a program for input-output example tables from the Transformer decoder
in the encoder-decoder model. The Transformer decoder firstly outputs how likely each
program component occurs according to the provided input-output examples. Next, it
generates the most likely programs from the likelihoods. Generally, the generations of
the most likely programs from the likelihoods is performed by beam search. However,
the beam search is not a technique designed for program generation, thereby causing an
inefficient exploration of the program search space. Our proposed two variants of beam
search are optimized for the program generation task, hence generating correct programs
at higher probability than the original beam search. Our experimental results ensure
that the Transformer-based model with our proposed decoding method outperforms the
conventional PBE system for tabular transformations.
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Chapter

1
Introduction

1.1 Overview

1.1.1 Data Preparation

Data integration from a variety of data sources into a unified format is a time-consuming
and labor-intensive task for engineers or domain specialists. ETL (Extract, Transform,
Load) has long been a popular approach tackling this challenge on data integration. It
became a popular concept from the 1970s and is often used in data integration tasks.
It is composed of three-phase processes where it firstly extracts wanted data from data
sources, then transforms data from various formats into a common pre-defined format,
and finally loads data into a data container like a data-warehouse or a data mart.
Through this processes, ETL systems integrate data from distributed or heterogeneous
sources into data with a unified format. Many products for ETL has been released
including well-known representative products like PowerCenter [1] and DataStage [2].

On the other hand, data preparation, called data wrangling as well, has emerged in recent
years. It is a technique to prepare data from raw data which may come from disparate
data sources into a form that can readily be analysed for business or analytical purpose.

These two techniques, ETL and data preparation, are similar in functions where both
techniques transform heterogeneous data from multiple sources into a unified format to
integrate them. In contrast, they are different in target users and applications [3].
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ETL tools are intended to be used by IT professionals like developers or IT staffs who
have programming expertise to some extent. ETL users make data conversion processes
not only using graphical user interfaces (GUIs) equipped in ETL tools, but also using
glue languages like Perl, Python and shell script or declarative languages like SQLs.
The users use GUIs for typical easy processing, and conversely coding for uncommon
complicated processing.

Additionally, ETL is intended to be used to extract kind of well-structured data from
data sources such as Enterprise Resources Planning (ERP) [4], Customer Relationship
Management (CRM) [5], or Human Resource (HR) databases in an organization or an
enterprise. Then, it load transformed data into a data warehouse or a data mart which
generates any kind of regular reports.

Data preparation tools are intended to be used by non-IT professionals such as domain
specialists, scientists, physicians or executives. Data preparation aims to allow such
users to convert their data easily for loading it into Business Intelligent (BI) tools or
statistical analytics tools, consequently enabling the users to analyze their data quickly
in an agile and flexible manner.

Data preparation is on focus these days due to its feature of civilizing novice IT users to
data analytics. It leads such users to obtain new cutting-edge ideas and insights from the
knowledge, through utilizing a lot of domain knowledge of those users effectively. This
is the reason why we focus on realizing a more efficient and effective data preparation
technique in this dissertation.

1.1.2 Challenges in Data Preparation

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Deployment Data

Evaluation

Figure 1.1: The process diagram showing relationships of phrases in CRISP-DM
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CRISP-DM [6] diagram illustrated in Figure 1.1 represents data analysis processes. Data
preparation is the pre-processing phase of modeling in the diagram. This phase includes
a lot of time-consuming and cumbersome tasks for novice users, and thus is known to
enforce analysts to spend their time as much as 50 to 80 percent of total time spent in
data analysis [7]. Therefore, this data preparation task has long been a high hurdle in
data analysis.

Here we illustrate an example of such transformations often seen in data preparation
tasks. Suppose a data analyst wants to utilize a semi-structured tabular data shown in
Table 1.1. This data needs to be stored in a database so that it can then be analyzed by
downstream information systems or visualization systems. Since Table 1.1 was created
without considering such later data analysis, it needs to be converted into a relational
form that can be stored in a database such as Table 1.2.

Table 1.1: An unstructured spreadsheet. This example is featured in Foofah [8]

Name Numbers
Alice Tel: (03)7345-3850

Fax: (03)7001-1400

Bob Tel: (045)873-9639
Fax: (045)873-8762

Carol Tel: (06)2340-0987
Fax: (06)2340-6701

Table 1.2: A relational form of Table 1.1. This example is featured in Foofah [8]

Tel Fax
Alice (03)7345-3850 (03)7001-1400
Bob (045)873-9639 (045)873-8762
Carol (06)2340-0987 (06)2340-6701

As pointed out in Gulwani et al. [9], transformations seen in many data preparation tasks
are divided into two types: syntactic transformations and table layout transformations.
Syntactic transformations convert the formats of cell contents, whereas layout transfor-
mations rearrange cell positions in the spreadsheet without changing the cell contents.
The example here also consists of these transformations. We call such a transformation
as tabular transformation in our study.

This task is difficult for users with little expertise to perform, because the task consists
of a sequence of various kinds of transforms which is difficult for novice users to build
in mind.

To eliminate this hurdle, various approaches have been studied. Potter’s Wheel [10] is
an earlier work that develops an interactive tool for data cleaning, which are known as
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data preparation in recent years. One of the main contributions of this work is defining
transforms needed in data preparation tasks. The authors of Potter’s Wheel set their
goal to designing transforms easy to specify graphically, flexible enough to be applied
interactively, and at the same time powerful enough to express most common transforms.
They choose a set of transforms to balance these goals. The set of transforms involves
Format, Add, Drop, Copy, Merge, Split, Divide, Filter, Fold, and UnFold.

Data preparation tools such as OpenRefine [11], Trifacta [12], Tableau Prep [13], Pax-
ata [14] and Alteryx [15] are proposed and developed in recent years, as open source
software (OSS) [11] and as commercial products [12–15]. These tools equip many data-
transformation functions which allow users to convert tabular data into a desired form
viewing data as spreadsheet grids. A data preparation project Wrangler [16] designs
its wrangler transformation language using the set of transforms proposed in Potter’s
Wheel. To our knowledge, other data preparation tools basically equip a similar set of
transforms to that of Potter’s Wheel.

However, even if users attempt to perform such tabular transformations using modern
data preparation tools, they still find difficult to complete this task. Especially, syntactic
transforms like Merge and Split include glue and splitter parameters often need regex-
based parameters, and Filter is conditioned by predicate based on regular expressions as
well. In addition, layout transforms like Fold and Unfold are simply difficult for users to
follow how table cells move from sources to destinations as a result of the transform.

To address such a problem on the difficulty of successfully making tabular transforma-
tions, we propose using a Programming by Example (PBE) technique to automatically
assemble tabular transformations from a user-provided input-output examples. We hope
that the PBE system allows users to easily generate complicated tabular transforma-
tions.

1.1.3 Programming by Example

PBE is one type of program synthesis that has been studied for a long time [17]. Pro-
gram synthesis is a technique that generates programs consistent with the specification
conditions given by users. PBE takes an input-output example as a specification con-
dition given by users. Thus, it allows users to automatically create a program by only
providing input-output examples. It would be extremely helpful for users, since all they
must know in performing data transformation is how to describe the desired output
example.
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Foofah [8] is a PBE study for generating a tabular transformation. It is built around
techniques for solving search problems, that is, finding a program that converts a given
input table to the output one from a huge program space. Such a search approach
usually involves complex search algorithms and pruning rules, and requires considerable
engineering effort in their design, development, modifications, and possible extensions.
Although Foofah is a representative study that suits to our problem domain that targets
onto tabular transformation, there is more room to improve its methodology by a more
modern approach such like machine learning for example.

Recently, many PBE studies based on Machine Learning (ML) approaches have emerged.
Researchers are greatly motivated to these studies because their transformation scope
can be easily expanded by simply enriching the training dataset. The previous work
RobustFIll [18] and the work by Parisotto et al. [19] propose ML-based PBE using
an encoder-decoder model based on Long Short Term Memory (LSTM) neural model.
Inspired from the success of LSTM in translation problem, RobustFill models their
PBE problem as a translation one, where it translates an input-output example into
the corresponding program. The experimental results show that an ML-based PBE has
a competitive accuracy to the conventional non-neural PBE, and furthermore, achieves
noise robustness that a non-neural PBE lacks. However, these studies aim to string
transformation, not tabular transformation.

1.2 Contributions

In this dissertation, we propose a new ML approach to achieving PBE for tabular trans-
formation, which is required in data preparation scenarios. The contributions of this
dissertation are as follows:

• We propose a new ML-based PBE system for tabular transformations. We adopt
a Transformer architecture upon an encoder-decoder model as an ML model for
PBE. The model generates programs from a user-given input-output example in
analogy with translation between two different languages as in translation from
Japanese to English. Our experiments show that our Transformer-based model
extremely outperforms the conventional LSTM-based model in performance of
benchmark datasets for tabular transformations.

• We propose an embedding method to deal with two-dimensional tabular data upon
neural network models. We implemented two types of tabular positional encoding,
named as ATPE and CTPE, and two variants of the embedding layer, namely sinu-
soidal and learned. These methods allow us to embed each row index, column index
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and the local position of input-output example tables to represent two(or more)-
dimensional positions in the Transformer network. Our experiments indicate that
the tabular positional encoding improves the performance of Transformer-based
model through learning and capturing the structure of two-dimensional tabular
data.

• We propose two types of decoding methods called multistep beam search, which is
suitable for finding a consistent program by running beam search multiple times,
and PV (Program Validation)-beam search, which realizes efficient beam search by
searching only the hypothesis space that is valid as a program. Our proposed two
variants of beam search are optimized for the program generation task. Hence, it
generates correct programs at higher probability than the original beam search.
Our experimental results ensure that the Transformer-based model with proposed
decoding method outperforms that with original beam search.

• We implemented the Transformer-based model with both proposed methods de-
scribed above and evaluated the performance in experiments. Notably, our three
proposals above can be applied to our model at the same time and improve
their performance accumulatively. We empirically show that our Transformer-
based model with our proposed decoding methods and tabular positional encoding
markedly achieved better performance compared to the conventional search-based
(non-neural) method which has been the most advanced study of PBE for tabular
transformations.

1.3 Outline

The remainder of this dissertation is organized as follows.

We formally define the problem to solve in this dissertation in Chapter 2, and explore
the literature related to this dissertation in Chapter 3. In Chapter 4, we present the
Transformer-based model that generates a tabular transformation for input-output ex-
ample tables, and next propose the embedding methods enabling the neural network
models to handle two-dimensional tabular data. This chapter is mostly based on our
work [20] and [21]. And then, in Chapter 5, we propose the decoding methods optimized
for program generation, and it thereby generates programs efficiently. This chapter is
mostly based on our work [20]. In Chapter 6, we evaluate our model with all of our con-
tributions and discuss about practical PBE. Chapter 7 finally concludes this dissertation
and presents directions for future work.
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Chapter

2
Problem Formulation

2.1 Problem Definition

We now formally define the PBE problem discussed in this dissertation. We can define
the PBE problem for tabular transformation formally as below.

Definition 2.1. (PBE Problem). Let ei be an example tabular data extracted from
Ri, which is a raw tabular data to be transformed, and eo be the tabular data the user
wants to be transformed from ei. Given a user-provided pair of examples E = (ei, eo),
synthesize a program P such that eo = P(ei).

Here, a raw tabular data Ri is a table with two-dimensional grids, and notably includes
schematic information like column names as well as data.

A program P consists of a sequence of operations for tabular transformations, each
of which transforms a tabular data into another tabular data. We do not introduce
control structures like conditionals and loops to the program, thus, the program is a
loop-free sequence of operations. Notably, this loop-free program could restrict us from
undetermined number of iterations and then result in unrolled loops. However, we
observe loop-free programs is successfully applied to prior works on data preparation [8,
10, 16], thus we also use loop-free programs as in the prior works.

Definition 2.2. (Tabular transformation program P). P is a tabular transformation
program, which is a loop-free sequence of operations (o0, o1, · · · , ok). oi = (opi, par1, · · · )
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is an operation with operator opi and its parameters (par1, · · · ) that transforms an input
table ti into an output table ti+1, namely, ti+1 = oi(ti).

In other expressions, a tabular transformation program P is a sequence of operations
(o1, o2, · · · , ok) which obeys a chain rule where t1 = o0(ei), t2 = o1(t1), · · · , eo = ok(tk).

A domain-specific language determines a program space to be searched for programs con-
sistent with an example. The domain-specific language for our tabular transformation
is composed of a set of operators and parameters {op1, op2, . . . , par1, par2, . . .} listed in
Table 2.3.

2.2 Tabular Transformation

We formally describe tabular transformation in this section to make the scope of our
problem clear. The tabular transformation is composed of syntactic transformations
and layout transformations which are originally defined as a set of transforms for a data
cleaning system studied in the work “Potter’s Wheel” [10].

We first describe the definitions of transforms for Potter’s Wheel, and then show the
operations for our PBE system and how to define our operations drawing from the
Potter’s Wheel transforms.

2.2.1 Transforms for Potter’s Wheel

Here, let us present the definitions of transforms for Potter’s Wheel. The operations for
Foofah and our study are drawn from these transforms. We also discuss the expressive
power of these transforms, and a scenario where data analysts often see in tabular
transformation tasks.

Table 2.2 defines the transforms designed in Potter’s Wheel except for Unfold and Un-
foldSet whose definition is complex and thus described in individual sections. We use
notation defined in Table 2.1 here and throughout this section.

In the following section, we present all definitions of the transforms for Potter’s Wheel,
which are categorized into three types of transformations: individual data values, one row
to one row mappings (vertical transforms), and mappings of multiple rows (horizontal
transforms).
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Table 2.1: Notations for Table 2.2

Notation Description
R a relation with n columns
i, j column indices and ai denotes the value of a column in a row
x and glue values
f a function mapping a value into another value
x⊕ y concatenates x and y
splitter a string or a regular expression
left(x, splitter) the left part of x split by splitter
right(x, splitter) the right part of x split by splitter
predicate a function returning a boolean

Table 2.2: Definitions of Potter’s Wheel’s transforms. This table is adapted from
Potter’s Wheel [10]

Transform Definition
Format φ(R, i, f) = {(a1, · · · , ai−1, ai+1, · · · , an, f(ai)) | (a1, · · · , an) ∈ R}
Drop π(R, i) = {(a1, · · · , ai−1, ai+1, · · · , an) | (a1, · · · , an) ∈ R}
Add α(R, x) = {(a1, · · · , an, x) | (a1, · · · , an) ∈ R}

{(a1, · · · , ai−1, ai+1, · · · , an) | (a1, · · · , an) ∈ R}
Copy κ(R, i) = {(a1, · · · , an, ai) | (a1, · · · , an) ∈ R}
Merge µ(R, i, j, glue) = {(a1, · · · , ai−1, ai+1, · · · , aj−1, aj+1, · · · , an, ai ⊕ glue⊕ aj) | (a1, · · · , an) ∈ R}
Split ω(R, i, splitter) = {(a1, · · · , ai−1, ai+1, · · · , an, left(ai, splitter), right(ai, splitter))

| (a1, · · · , an) ∈ R}
Divide δ(R, i, predicate) = {(a1, · · · , ai−1, ai+1, · · · , an, ai, null) | (a1, · · · , an) ∈ R ∧ predicate(ai)} ∪

{(a1, · · · , ai−1, ai+1, · · · , an, null, ai) | (a1, · · · , an) ∈ R ∧ ¬predicate(ai)}
Fold λ(R, i1, i2, · · · , ik) = {(a1, · · · , ai1−1, ai1+1, · · · , ai2−1, ai2+1, · · · , aik−1, aik+1, · · · , an, ail

) |
(a1, · · · , an) ∈ R ∧ 1 ≤ l ≤ k}

Filter σ(R, predicate) = {(a1, · · · , an) | (a1, · · · , an) ∈ R ∧ predicte((a1, · · · , an))}

2.2.1.1 Transform of Individual Data Values

Format: Format applies a function to the value of a column in all rows. It includes
functions of regular-expression-based substitutions and arithmetic operations. To sup-
port higher-order transformations, it allows for demoting names of columns and tables
into column values. e.g. a value “George” in a Name column can be Format-ed into
a self-describing representation “<\Name>George<Name>” using the substitution “.*”
to “<\\\C>\1<\C>” where “\C” is a special character that denotes a column name. In
addition, user defined functions (UDFs) can be defined to deal with situations involv-
ing complex types or specialized transformations (e.g. converting address, telephone
number, date, etc. into another form).

Expressive Power: UDFs clearly allow Format to perform all transformations on indi-
vidual data values.

2.2.1.2 Vertical Transforms: One Row to One Row Mappings

Vertical transforms are one-to-one mappings of tuples that typically perform column
operations to unify data collected from multiple sources into a common format.
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Drop, Copy, Add: Drop drops a column and Copy copies a column into next to the
last column. Add adds a new column whose values can be set to a constant, a random
number or a serial number. The last is often used for unique identifiers for data merged
from different sources.

Merge with glue, Split by splitter: Merge concatenates values in two columns inter-
posing a constant (the glue) in the middle to form a single new column. Split splits a
column into two columns specifying either a position or a regular expression.

These operators are particularly useful for handling schematic differences. For example,
suppose that names are specified in two columns FirstName and LastName in source A
and Name column with a format of LastName, FirstName in source B. Assume that the
Name column in source B has been mapped separately from the FirstName and LastName
columns in source A, and the two sources are merged as seen in Figure 2.1. The user
first Format names of the LastName, FirstName into FirstName LastName, then Split them
into two columns, and then Merge the corresponding LastName columns and FirstName
columns each other.

Carol, Smith

Davis Bob

Frank, Miller

Brown Mallory

Format
‘(.*),(.*)’ to ‘∖2 ∖1’

Smith Carol

Davis Bob

Miller Frank

Brown Mallory

Smith Carol

Davis Bob

Miller Frank

Brown Mallory

Split with space

Merge
Smith Carol

Davis Bob

Miller Frank

Brown Mallory

Smith Carol

Davis Bob

Miller Frank

Brown Mallory

Merge

Source A Source B

Figure 2.1: Merge and Split. This figure is based on Potter’s Wheel [10]

Divide: Divide divides a column according to the condition specified by predicate. Sup-
pose that the Name column of source B has instead been mapped onto the FirstName
column of source A as shown in the first column of the table in Figure 2.2. Divide is
applied to vertically divide the first column into two columns using a predicate. As a
result, the original values are going to the first or second column depending on whether
they satisfy the predicate or not; the values consistent with the predicate moves to the
first column and others to the second column.
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Carol, Smith

Bob Davis

Frank, Miller

Mallory Brown

Divide (like ‘,’)
Carol, Smith

Bob Davis

Frank, Miller

Mallory Brown

Figure 2.2: Divide. This figure is based on Potter’s Wheel [10]

The motivation for Divide is to support conditional transformation. It is needed to
bunch values with logically different patterns (maybe from multiple sources) into sep-
arate columns. Predicates based on arithmetic and regular-expression-match are sup-
ported in Potter’s Wheel. Absence of the separate Divide transform complicates the GUI
of Potter’s Wheel, because all other vertical transforms would have to accept predicates
in their specification.

Expressive Power: The completeness of the vertical transforms for all one-to-one
mappings of tuples is derived from the power of the Format; We can Merge all columns
with a suitable glue, Format the result, and Split using a glue, to perform any one-to-one
mapping of tuples. This is formally described as follows:

Theorem 2.3. Vertical Transforms, along with Format, can be used to perform all one-
to-one mappings of rows.

Proof. Suppose we want to transform a row (a1, a2, · · · , an) into (b1, b2, · · · , bm). Let
bi be defined as bi = gi(ai1 , ai2 , · · · , ail

), where {ail
| 0 ≤ l ≤ n} is a set of values

picked up from (a1, a2, · · · , an). Assuming that | is a character that does not exist
in the alphabets contained in the transforming or transformed rows, this transform is
performed as follows: split(Format(merge(a1, a2, · · · , an, |), udf), |) where split and merge
are m-ary and n-ary variants of Split and Merge transforms respectively, and udf is a
UDF that converts a1|a2| · · · |an into b1|b2| · · · |bm.

Although Format, Merge and Split are functionally complete, Divide, Add, Drop and
Copy are also provided as well for usability reasons, because many operations are more
naturally specified through these transforms.

In addition, Drop and Copy allow us to perform transformations using only g1, · · · , gm

which are often expressed in terms of regular-expression and arithmetic-expression based
Format. It allows us to avoid user programming as possible. Since multiple functions gi

uses an argument aj and a Format automatically drops old value, the value needs to be
copied explicitly. We can obtain each bi through first making a Copy of ai1 , · · · , ail

, and
then applying gi over them to form bi. After applying this process to form b1, · · · , bm,
we Drop a1, · · · , an.
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2.2.1.3 Horizontal Transforms 1

One-to-Many Mappings: Horizontal transforms help to tackle higher-order schematic
Heterogeneities [22] where information is stored partly in data values, and partly in the
schema. Figure 2.3 shows an example of higher-order schematic heterogeneities where
a student’s grades are listed as one row per course in the right schema of 2.3, and as
multiple columns of the same row in the left schema. A transform from the left to right
schemas in Figure 2.3 is an example of one-to-many transforms which are described in
this section and any-to-many transforms are described in the next section.

Name Math English

Bob 70 75

Alice 87 42

Mallory 92 72

Name

Bob Math 70

Bob English 75

Alice Math 87

Alice English 42

Mallory Math 92

Mallory English 72

Figure 2.3: Higher order schematic heterogeneities. This figure is based on Potter’s
Wheel [10]

Fold: Fold converts one row into multiple rows; Fold folds a set of columns that follows
from a specified column as defined in Table 2.2.

Name Math English
Bob 70 75

Alice 87 42

Mallory 92 72

Name
Bob Math 70

Bob English 75

Alice Math 87

Alice English 42

Mallory Math 92

Mallory English 72

Name
Bob Math:70 English:75

Alice Math:87 English:42

Mallory Math:92 English:72

2 Formats
(demotes)

Name
Bob Math:70

Bob English:75

Alice Math:87

Alice English:42

Mallory Math:92

Mallory English:72

Fold

Split

Figure 2.4: Demotes (Formats), Fold and Split. This figure is based on Potter’s
Wheel [10]

Figure 2.4 shows an example of converting a table that contains some pieces of informa-
tion about student and the corresponding grades. To resolve higher-order heterogeneities
of this table, the subject names are demoted into the rows through Format, multiple
grades are folded together through Fold and finally separated the subject from the grade
through Split. Fold is drawn from the fold restructuing operator of SchemaSQL [23, 24]
except that the fold operator of SchemaSQL both demotes column names and folds
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columns together at the same time. Potter’s Wheel separates the demoting and folding
functions into two operators, Format and Fold, because there are many situations where
there are no meaningful column names to demote. Figure 2.5 shows an example of fold-
ing a set of values into a single column without demoting. It is notable that Fold needs
the ability of performing arbitrary many columns at the same time because a series of
two-column folds does not lead correct semantics as shown in Figure 2.6.

Family Members
Davis Alice, Bob

Smith Carol

Miller Frank, Oscar

Family
Davis Alice Bob

Smith Carol

Miller Frank Oscar

Split

Family
Davis Alice

Davis Bob

Smith Carol

Smith

Miller Frank

Miller Oscar

Fold

Figure 2.5: Folding without demoting. This figure is based on Potter’s Wheel [10]

Bob Math:70 English:75 Physics:54

Alice Math:87 English:42 Physics:88

Bob Math:70 Physics:54

Bob English:75 Physics:54

Alice Math:87 Physics:88

Alice English:42 Physics:88

Fold Bob Math:70

Bob Physics:54

Bob English:75

Bob Physics:54

Alice Math:87

Alice Physics:88

Alice English:42

Alice Physics:88

Fold

Figure 2.6: A series of Two-column Fold. This figure is based on Potter’s Wheel [10]

Filter: Filter is one of 1-to-1 or 1-to-0 mappings. Filter eliminates unnecessary rows
using the predicate provided by users. Potter’s wheel supports arithmetic and regular
expression-based predicates as well as UDFs.

Expressive Power: The combination of Fold, Filter, and vertical transforms and Format
allows us to perform all one-to-many mapping of rows in a table. This theorem is proved
as described below.

Theorem 2.4. Horizontal Transforms when combined with Vertical transforms and For-
mat can perform all one-to-many mappings of rows.

Proof. Suppose that we want to map a row (a1, a2, · · · , an) to a set of rows
{(b1,1, . . . , b1,m), (b2,1, . . . , b2,m), . . . , (bk,1, . . . , bk,m)}. ahe number of output rows k itself
can vary as a function of (a1, a2, · · · , an). Let K be the maximum value of k for all rows
in the domain of the desired mapping. Assume that | is a character not present in the
alphabet from which the values are chosen.
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We first perform a one-to-one mapping on (a1, a2, · · · , an) to form
a(b1,1|b1,2| · · · |b1,m, b2,1|b2,2| · · · |b2,m, . . . , bk,1|bk,2| · · · |bk,m, NULL, NULL, · · · )
with K − k NULLs at the end. We then perform a K way Fold and a Filter to remove
all the resulting NULLs. Finally, we perform a m-way Split by | to get the desired
mapping.

In addition to this, demoting through Format and folding/unfolding through Fold/Unfold
allow us to move information between schema and data, which consequently flatten and
unflatten tables.

Fold and Unfold transforms are basically similar to those of restructuring operators
of SchemaSQL [23, 24]. For more detailed analysis of the expressive power of these
transforms, see the literatures [23–25].

2.2.1.4 Horizontal Transforms 2: Many-to-Many Mappings

Transforms mapping multiple rows into one or more rows are the most generic ones.
Such transforms are often quite useful for higher-order transformations.

Unfold: Unfold unflattens tables and moves information from data values to column
names. Figure 2.7 shows an example of this unflattening process for a table using Unfold
transform.

Unfold(2,3)

Name
Bob Math 70

Bob English 75

Alice Math 87

Alice English 42

Mallory Physics 92

Mallory English 72

Oscar Physics 79

Name Math English Physics

Bob 70 75

Alice 87 42

Mallory 72 92

Oscar 79

Figure 2.7: An Unfold transform. This figure is based on Potter’s Wheel [10]

Notably, Unfold is not the exact inverse of Fold. Fold takes a set of columns and folds
them into one column, replicating other columns, whereas Unfold takes two columns (not
one column) and collects rows that have the same values in all the other columns, and
finally unfolds the two chosen columns. Unfold takes two columns because values in one
column are used as column names to align the values in the other column.

Unfold transform is formally defined as follows. Unfold(T, i, j) on the i-th and j-th
columns of a table T with n columns named (c1 . . . cn) produces a new table with n+m−2
columns named (c1 · · · ci−1, ci+1 · · · cj−1, cj+1 · · · cn, u1 · · ·um) where {u1 · · ·um} are the
maximal set of distinct values of the i-th column in T .
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Every set of rows produces exactly one row, where the set of rows have identical values
in all columns except the i-th and j-th columns. Specifically, suppose a set S is a set of
k rows in T (a1 · · · ai−1, ul, ai+1 · · · aj−1, vl, aj+1 · · · an) where l takes k ∈ {1, · · · ,m} dis-
tinct values , the set of rows S produces a row (a1 · · · ai−1, ai+1 · · · aj−1, aj+1, · · · , an, v1, v2, · · · vm).
If the set of rows S does not have a row with up ∈ {u1 · · ·um} in the j-th column, the
vp in a produced row is set to NULL.

This Unfold transform is exactly similar to the unfold restructuring operation of SchemaSQL [23,
24]. Moreover, there is also another variant of Unfold transform that restructures set
valued attributes. This variant is used in a situation where there is no explicit column
name as we can see an example in Figure 2.8.

UnfoldSet

Family
Davis Alice

Davis Bob

Smith Carol

Smith Grace

Davis Frank

Family (members)
Davis Alice Bob Frank

Smith Carol Grace

Figure 2.8: An Unfold transform without an explicit column name to align. This
figure is based on Potter’s Wheel [10]

Unfold Variant: We often need to unfold sets of value without column names to align
the unfolded values as seen in an example in Figure 2.8. The variant of Unfold is formally
defined as UnfoldSet transform as below.

UnfoldSet(T, i) on the i-th column of a table T with n columns named (c1 · · · cn) produces
a new table with n+m−1 columns named (c1 · · · ci−1, ci+1 · · · cn, NULL,NULL, · · ·NULL)
with the m number of NULLs where m is the size of the largest set of rows in T with
identical values in all columns except the i-th column. Specifically, suppose a set of k
rows S = {(a1, a2, · · · , ai−1, vl, ai+1, · · · , an) | l = 1, 2, · · · , k} with identical values in all
columns except the i-th column, every set of rows S in T produces one row
(a1, a2, · · · , ai−1, ai+1, · · · , an, v1, v2, · · · , vk, NULL, · · · , NULL) with the (m−k) num-
ber of NULLs.

Note that the ordering of u1, u2 · · ·um is not specified, because UnfoldSet does not make
an alignment. The family members’ names could be permuted in the unfolded table
in the example in Figure 2.8. A default ordering, such as lexical order, depends on
implementations.

Expressive Power: Fold allows us to flatten tables into a unified schema where all
schematic information is in columns, whereas UnFold allows us to revert the unified
schema into a form where some information is in column names. Fold (with Format)
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and Unfold transforms are able to move information between schema and data, thereby
resolving schematic heterogeneities.

These transforms are basically similar to the operators of SchemaSQL. For more detailed
analysis of their expressive power, refer to the literature [23–25].

2.2.1.5 Summary of Expressive Power of Potter’s Wheel

The transforms of Potter’s Wheel support all one-to-many (including one-to-one and
one-to-zero) transformations of rows in table. In addition, they support moving infor-
mation between schema and data, and flattening and unflattening tables, thus resolving
schematic heterogeneities.

2.2.2 Operations for Our Study

The tabular transformation in our study is defined as a sequence of operations. Each
operation is composed of an operator and corresponding parameters. Table 2.3 lists the
operations which are inspired by Foofah [8]. They are very similar to those of Foofah
with differences highlighted in the table. Foofah derives their operations from transforms
of Potter’s Wheel described in Section 2.2.1, re-defining them in order to meet them to
purposes of PBE tasks. Some operators are newly added for simplifying programs or
increasing expressive power, whereas other operators are deleted because they do not
match to the concept of PBE: program specifications are given by examples.

Our Operations are described in the following sections with the reasons why they are
employed or not employed.

2.2.2.1 Operations Almost Similar to Those of Potter’s Wheel

Operations Drop, Copy, Split, MergeToOne, Divide, Fold and Unfold have almost similar
functions to those with analogous names of Potter’s Wheel transforms.

Each of our Fold and Unfold corresponds to each variant of fold/unfold transforms
without moving information between data and schema (namely, demoting). That is,
our Fold corresponds to Fold for Potter’s Wheel and our Unfold to UnfoldSet for Pot-
ter’s Wheel. Another pair of variants of fold/unfold operations with demoting, Fold-
Header/UnFoldHeader, are detailed in Section 2.2.2.3.
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Table 2.3: Operations for tabular transformation in our study (differences from
the original Foofah operator is flagged in bold)

Operator Description
MoveToEnd(pos) Moves a column to the last position (replaces

Foofah’s original Move operator)
MoveFromEnd(pos) Moves the last column to another position (replaces

Foofah’s original Move operator)
Drop(pos) Drops a column
Copy(pos) Duplicates a column to the following position
CopyToDest(pos, pos) Duplicates a column to another position (newly

added)
Fill(pos) Fills empty cells in a column with the one above
Split(delim|delimregex, pos) Splits a column into two columns at the occurrence of

a delimiter or the match of a regex
MergeToOne(delim, pos) Merges two or more columns after a position by a de-

limiter
Divide(predicate, pos) Divides a column into two columns whereby one sat-

isfies the predicate and the other does not
Extract(regex, pos) Extracts the first match at a column with addition of

the matched column (newly added)
Fold(pos) Folds all the columns after the specified column into

one column
Unfold() Expands the folded columns of the table
FoldHeader(pos) Folds the column names and the values of all the

columns after the specified position
UnFoldHeader(pos) Transform the folded columns into a relational form

whereby the column names are placed in the table
header

Delete(pos) Deletes rows which have an empty cell at the specified
column

DeleteEmptyCols() Deletes columns where the all cells are empty
Transpose() Transposes rows and columns of the table
Wrap(pos) Concatenates rows which have the same values at the

specified column
WrapToOne() Concatenates all rows to one row of the table
WrapEveryKRows(k) Concatenates every k row of the table into one row
Numeric parameters Description
pos Position of a column
k Number of rows wrapped
Non-numeric parameters Description
delimregex (newly added) [-_!@#$%ˆ&*| ,./:;<>\(\)\[\]]
delim One of delimiter from: -, , @, #, $, &, *, |, ’ ’, ’,’, ’.’,

/, :, ;, <, >, [, ], (, )
regex, predicate One of regular expression from: \w+, \d+,

\W+, [ˆ\d]+, \d+\.*\d+, [ˆ\d\.]+, ˆ0+$,
\d{1,2}:\d{1,2}, (\d{1,4}/)?\d{1,2}/\d{1,2}
(some regular expressions are newly added)
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2.2.2.2 Operations Deleted

Our operators do not include transforms Format, Filter, and Add. PBE synthesizes
programs through a specification provided as examples that users demand. Accordingly,
PBE, with this special programming paradigm, is not suited to such operations which
are originally defined to use in tools with graphical user interface like Potter’s Wheel.

Potter’s wheel has Format that includes functions of regex-based substitutions, arith-
metic operations, and UDFs. We provide Extract (see Section 2.2.2.3) instead of the
regex-based substitution. Extract, combining with MergeToOne, theoretically performs
similar transformation to the regex-based substitution of Format.

The arithmetic operations have less meaning in PBE. When users make arithmetic
examples, they need to calculate output values using a calculator or functions in pro-
gramming language except for pretty simple calculations. Therefore, synthesizing an
arithmetic program conflicts the concept of PBE where users describe desired output
example.

We do not prepare UDF related function for our PBE system. Users cannot define
customized functions on demand in using PBE system, because user-defined operators
need to be registered to PBE system previously.

We do not prepare Filter that eliminates unnecessary rows using a predicate. Predi-
cates are expressed by arithmetic conditions or regex-based conditions. As to arithmetic
conditions (for example, ai > 3), they are difficult to be specified by example, because
infinite number of examples are needed in the worst case to specify such an arithmetic
condition. As to regex-based conditions, Divide (see in Section 2.2.2.4), Drop (see in
Section 2.2.2.1), and Delete (see in Section 2.2.2.4) in our operations can instead theo-
retically perform a transformation similar to Filter with regex-based predicate.

Thus, our operations restrict transforms with the arithmetic calculation, arithmetic
predicates, and UDFs, whereas it supports regex-based functions by combining other
operations.

2.2.2.3 Operations Added or Modified for Simplifying Program

Operations CopyToDest, MoveToEnd, MoveFromEnd, Extract, FoldHeader, UnFoldHeader
are additionally defined for simplifying generated programs and thus searching programs
efficiently. Although these operations have already semantically equivalent combination
of operations, we provide them to generate a simple and natural program.
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Copy and Drop in Potter’s Wheel need a lot of transforms to perform coping or mov-
ing arbitrary i-th column to j-th column (coping required columns to next to the last
column in desired order, and then, drooping original columns). We added CopyToDest,
MoveToEnd, MoveFromEnd to prevent such too many transforms. We can copy i-th col-
umn to j-th column directly using CopyToDest, and move i-th column to j-th column
using MoveToEnd and MoveFromEnd in order.

We newly added Extract that extracts a word or number from a column based on a pat-
tern expressed by regular-expression based predicate. The operation partially performs
the regex-based substitution in Format of Potter’s Wheel as described in Section 2.2.2.2.

We also provide FoldHeader and UnFoldHeader. These operations are variants of fold/un-
fold that involve operations moving column names between column headers and data.
FoldHeader, for example, performs all operations (2Formats, Fold, and Split) in Figure 2.4
in one operation, consequently it transforms an unflatten table with column headers
into a flatten table with column names embedded in data. In contrast, UnFoldHeader is
equivalent to Unfold of Potter’s Wheel. It transforms a flatten table with column names
embedded in data into an unflatten table with column headers.

2.2.2.4 Operations Added for Increasing Expressive Power

Operations Fill, Delete, DeleteEmptyCols, Transpose, Wrap, WrapToOne and WrapEvery-
Rows are added in the previous work Wrangler [16] and Foofah [8]. The works found
these operations are needed for resolving problems in real scenarios and added them
to their work. Many tabular data practically include some blocks of information on
a spreadsheet which are divided with empty lines, so that humans can visually recog-
nize each disparate information. Furthermore, there are also many tabular data where
schema information is embedded vertically on the left side of a spreadsheet for human’s
readability or other reasons. We suppose Fill, Delete, and DeleteEmptyCols are useful for
converting such data with empty lines, Transpose, Wrap, WrapToOne and WrapEveryRows
for restructuring schema.

2.2.2.5 Summary of Expressive Power of Our Operations

Our operations support all one-to-many transformations of rows in table. They also
support moving information between schema and data, and flattening and unflattening
tables as well. Thus, they can resolve schematic heterogeneities, as Potter’s Wheel do,
with a few restrictions on arithmetic calculations, arithmetic predicates, and UDFs.
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In addition, they support additional operations that resolve problems in practical data
preparation scenarios including conversions of tables with the empty rows and columns
and restructure of the schema formats.

2.2.3 A Tabular Transformation Example

A tabular transformation program that converts from Table1.1 into Table1.2 can be
constituted by an appropriate sequence of operations listed in Table 2.3. The following
list is an example of sequence of operations converting the input Table 1.1 into the
output Table 1.2

• Split(“:”, 2): split the column 2 with the delimiter “:”, which converts Table 1.1
to Table 2.4.

• Delete(2): delete rows including an empty cell at the column 2, which converts
Table 2.4 to Table 2.5.

• Fill(1): fill empty cells by the value above at the column 1, which converts Table 2.5
to Table 2.6.

• UnFold(): unfold the table, which converts Table 2.6 to Table 1.2.

Table 2.4: The table converted by splitting the second column of Table 1.1 with ’:’.

Name Numbers
Alice Tel (03)7345-3850

Fax (03)7001-1400

Bob Tel (045)873-9639
Fax (045)873-8762

Carol Tel (06)2340-0987
Fax (06)2340-6701

Table 2.5: The table converted by deleting rows that are blank in the second column
from Table 2.4

Alice Tel (03)7345-3850
Fax (03)7001-1400

Bob Tel (045)873-9639
Fax (045)873-8762

Carol Tel (06)2340-0987
Fax (06)2340-6701
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Table 2.6: The table converted by filling each blank cell in the first column of Table 2.5
by the cell above.

Alice Tel (03)7345-3850
Alice Fax (03)7001-1400
Bob Tel (045)873-9639
Bob Fax (045)873-8762
Carol Tel (06)2340-0987
Carol Fax (06)2340-6701

2.3 Overview of ML-based PBE system

Training Phase inference Phase

Neural Model

(Trained)
Neural Model

beam search

Input Table Output Table Program

・
・
・

training dataset

Input Table Output Table

one example

Program

Input Table Output Table Program

Input Table Output Table Program

Input Table Output Table Program

Figure 2.9: System overview of our approach

Fig. 2.9 gives an overview of the system architecture used in our approach. The pro-
cessing in our system can be split into a training phase and an inference phase.

In the training phase, the neural model is trained using training datasets, which are
composed of pairs of input-output tables and the corresponding programs.

In the inference phase, given an example of an input-output table, the previously trained
model generates a candidate program, and eventually provides a final program consistent
with the example.
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Chapter

3
Related Work

3.1 Data Preparation

3.1.1 SchemaSQL

Miller et al. [22] argues that SchemaSQL [23, 24] can be used to tackle schematic
heterogeneity problems. Schematic heterogeneity means a situation where multiple
databases and tables have disparate schemas. Data utilization requires integration of
these databases and tables into one determined schema. Thus, our tabular transfor-
mation problem is quite similar to schematic heterogeneity problem which SchemaSQL
solves.

SchemaSQL is a declarative language proposed in the works [23, 24]. It is a higher
order extension of SQL. SQL makes use of tuple variables that range over the tuples of
a relation declared in the from clause of a query. Extending SQL, SchemaSQL permits
three additional types of variables: database, relation and attribute variables and creates
views using these variables.

We show an example that explains how SchemaSQL creates views with extra variables.
Figure 3.1 illustrates three relational schemas for stock information. All three schemas
specify similar information about prices of company stocks. Suppose we want to obtain
views with relational schema s1 translating from schemas s2 and s3. In that case, SQL
can not create such views independent on data stored in tables, because SQL does not
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Shema: s1

company date priceTable: stock

Shema: s2

date priceTable: coA

date priceTable: coB

date priceTable: coCShema: s3

date coA coB coC ・・Table: stock

Figure 3.1: Three stock schemas. Attribute names are described in italic.
Schema sl has a relational table whose attributes are a company name, a date, and the
price of the company’s stock on that date. Schema s2 has separate relational tables
for all companies. Labels of the tables represent company names. Schema s3 has a
table that contains the price of a company’s stock of that date recorded in separate
attributes. In Schema s3, the company names are labels for a set of attributes each

containing price information. This example is adapted from Miller et al. [22]

permit quantification over relation or attribute names. If the set of company names
changes, the view definition by SQL would need to be altered. On the other hand,
SchemaSQL can create views by higher order queries independent on data described in
Listing 3.1.

create view v2 (company , data , price ) as
select R, T.data , T. price
from s2 ->R, R T

create view v3 (company , data , price ) as
select A, T.data , T.A
from s3 :: stock ->A, S3 :: stock T
where A <> ’date ’

Listing 3.1: SchemaSQL views. This example is adapted from Miller et.al [22]

In Listing 3.1, s2->R declares R to be a relation variable ranging over all relations in
s2. The s3::stock->A declares the variable A to be an attribute variable ranging over
all attribute names in the relation stock in s3 as well. And the variable T is a tuple
variable declared ranging over the tuples of the relation stock in s3.

Thus, SchemaSQL introduces higher-order transformations used in Potter’s Wheel [10].

3.1.2 Potter’s Wheel

Potter’s Wheel [10] proposes an interactive framework for data preparation. It enables
users to build transformations interactively by doing or undoing transforms in a intuitive,
graphical manner through a spreadsheet-like interface. It has served as an exemplary
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model for following studies and products on data preparation tools like Wrangler [16]
which is the original study of Trifacta [12].

It supports a set of transformations composed of syntactic and layout transforms, which
we call tabular transformations. These transforms are drawn from SchemaSQL which can
be used for transformations within data records as well as higher-order transformations
that resolve schematic heterogeneities. The transforms can also be used for conversions
between some nested self-describing data and flat data formats. For further detail of the
transforms of Potter’s Wheel, refer to Section 2.2.1.

3.1.3 Wrangler and Recent Works

Wrangler [16] is an interactive system for creating data transformations. It allows users
to manipulate data visualized on its user-interface (UI) directly, with automatic infer-
ence and suggestion of relevant transforms. Users can iteratively explore the candidate
transforms and preview their effects on the UI. Thus, Wrangler significantly reduces
users’ time to specify transforms.

Futhermore, Wrangler has an underlying declarative transformation language. It also
keeps histoiries of user’s interactive manipulations and support review, refinement, and
annotation of the transformation histories written in the transformation language, thus
promoting robust, auditable transforms instead of manual editing.

Wrangler extends the Potter’s Wheel with some key differences. It inherits map trans-
forms like delete, extract, cutting, and splitting, and reshape transforms like fold and
unfold, and in contrast extending their transforms with lookups, joins, positional,
sorting, aggregatoin, and schema transforms.

Wrangler is an original work of Trifacta [12] and has been a pioneering work for the line
of recent data preparation tools like Tableau Prep [13], Paxata [14] and Alteryx [15].
They equip many modern features needed for efficient data preparation processing within
their sophisticated GUIs.

The GUIs equip interactive grids that allow users to perform simple text transformations,
such as trimming a string, cleaning up data columns and extracting necessary rows
through filters. Moreover, Trifacta have a feature for suggesting contextually the most
relevant transform with a temporal window that shows the preview of result of the
transform as in Wrangler (See Figure 3.2). Furthermore, their GUIs can give an overview
of data type, data distribution and transform code to understand the characteristics of
the overall data the user has and transforms the user is adapting (See Figure 3.3).
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Figure 3.2: Trifacta Interface for Suggestion of Transform. This figure is a screenshot
from the web cite [12]

Figure 3.3: Trifacta Interface for Overview. This figure is a screenshot from the web
cite [12]

Though these recent data preparation tools have many features that reduce efforts and
costs of analysts, specifying transforms and their parameters is still difficult for novice
users. To address this challenge, we pursue to apply PBE techniques to data preparation
task, thus enabling novice users to automatically transform by just describing how they
want to transform.

3.2 PBE

PBE is a subfield of program synthesis, where a program specification is given by input-
ouptut examples. Although writing the specification in program synthesis is difficult for
those even with programming skills, writing the concrete input-output examples in PBE
is much easier for users without programming expertise, thereby enables them to create
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programs without tasks such as designing, coding and debugging. PBE is a promising
approach that enables users like business users, domain specialists, and data analysts to
generate programs for automating repetitive tasks.

Techniques that synthesize programs from given specifications are used to many appli-
cations such like graphics [26], code repair [27, 28], code suggestion [29, 30], concurrent
programming [31]. Among these applications, as described in Section 1, we focus on the
study about applying the PBE technique on “data preparation” (or data wrangling in
some literatures) especially for tabular transformation.

PBE is realized on the top of search algorithms that search a program consistent with
input-output examples from a huge hypothesis program space. In order to tackle solving
exponentially large program space, many search techniques that reduce the program
space by using pruning rules or semantic constraints have been developed. On the other
hand, in recent years, stochastic search algorithms that leverage statistical or machine
learning techniques have emerged. This approach is what we are interested in this
dissertation.

We describe some PBE studies closely relevant to our study in the following sections. We
call the PBE that uses stochastic search algorithms as “ML-based PBE” and the PBE
that does not use stochastic search algorithms as “search-based PBE” in the following
sections.

3.2.1 Search-Based PBE Studies

Many researchers have been studied PBE for long years. Here, we take a look around
search-based PBE studies for data transformation. Data transformations, including
tabular transformations we focus on in this dissertation, has been one of the most useful
applications of PBE as mentioned in the book by Gulwani et al. [17].

FlashFill [9] is a representative work on PBE generating string transformations (syntactic
transformations) once a user provides a set of examples. Refer to the further detail of
this study in the next section Section 3.2.1.1.

Singh et al. [32] propose a transformation language for semantic transformations that
combines table lookup operations and syntactic transformations. The semantic trans-
formations involve string manipulations that need to be interpreted using a column
entry from some relational table, or some standard data type such as date, time, or
currency. They have developed the synthesizer that generate programs of the semantic
transformations from examples users provide.
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PBE can be applicable to number transformations and date transformations. Singh et
al. present a PBE that generates programs for number transformations like format-
ting and rounding [32]. They also present a PBE system for cleaning data types [33],
proposing a DSL with probabilistic semantics that is parameterized with declarative data
type definitions. The PBE system allows for learning transformations on non-uniform,
unstructured, and ambiguous data from a few input-output examples, for instance, nor-
malizing data with complex date formats into a unified format.

Raza et al. [34] propose a predictive synthesis technique for splitting a long string into
various sub-fields. Data extraction tasks are easy for a human observer to predict the
desired extraction by just observing the input data itself. This technique enables splitting
without any user specification but from just the input data: namely, splitting from given
input-only examples.

FlashRelate [35] allows extracting relational data from semi-structured spreadsheets.
Users often create a virtually high-dimensional data through spacial layouts involving
headers, whitespace, and relative positioning on a two-dimensional spreadsheet. Al-
though such semi-structured data suits for human understanding with the visual repre-
sentation, whereas, complicates data manipulation. FlashRelate allows users to provide
examples of tuples in an output table, and then generate a program that extract more
tuples from an input semi-structured spreadsheet. FlashExtract [36] is a framework for
data extraction by examples as well. It synthesizes programs that extract tabular data
from text files, log files, or webpages. It allows users to give some positive/negative
instances as examples, and then extracts all instances into the output table.

ProgFromEx [37] is a PBE system that generate programs for layout transformation that
rearranges the layout of semi-structured tables into structured relational form, keeping
the textual content of any data element unchanged.

These PBE algorithms described above allow generating programs for various data types
and transformations. However, none of these supports tabular transformations that
involves both syntactic transformations and layout transformations.

Foofah [8] is a PBE system that firstly tackle the tabular transformations. This system
supports the tabular transformations that involve almost transforms proposed in Potter’s
Wheel [10] detailed in Section 2.2. In this dissertation, we aim to realize an ML-based
PBE system that handles such transformations supported in Foofah. We take a look
around Foofah in Section 3.2.1.2.
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3.2.1.1 FlashFill

FlashFill [9] is a typical example of research that applies PBE to solve data preparation
tasks, especially string transformation in Excel cells. Fig. 3.4 illustrates that once the
user provides desired examples in (row 2, col. B) and (row 3, col.B), FlashFill learns
a program that extracts the two words preceding “@” mark from col. A and converts
them to lowercase and concatenates by a white space. Thus, it allows users to transform
strings simply by giving examples of what they want, without using complicated Excel
macros.

Figure 3.4: FlashFill: an extension of Microsoft Excel

Designing a search algorithm that finds programs consistent with the input-output ex-
amples from a huge search space is the most important challenge for realizing the PBE
system. One concept for restricting search space is defining a domain specific language
(DSL) for the focusing domain. FlashFill DSL focuses on the string transformation.
The FlashFill DSL represents programs that transform an n-ary tuple of strings into
another string. These programs involve computing substrings of the strings in the input
tuple, and then concatenating them appropriately. There is also support for loops and
conditional computation for rich string transformations.

FlashFill searches the program space for a program that matches the example efficiently
using a pruning technique called as Version Space Algebra.

3.2.1.2 Foofah

Foofah [8] is a PBE study for dealing with tabular transformation that includes syntactic
and layout transformations among the data preparation tasks. Foofah targets the same
problem that we focus on in our study (see Section 2.1).

Foofah uses the A* algorithm, a graph search algorithm, to make the search process more
efficient. Figure 3.5 illustrates the A* algorithm processing that solves the problem
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described in Section 2.1. A* algorithm searches the shortest path that reaches from
the initial state (Ti) to the final state (To), and then the path represents the program
(P1, P2, . . . Pn) where each Pi is defined as operators in Table 2.3. To find the path, A*
algorithm computes the cost f(n) = g(n) + h(n) where g(n) is the cost to reach state
n from the initial state and h(n) is the heuristic function that approximates cost of the
cheapest path from state n to the goal state. A* algorithm finds the shortest path by
visiting the state that has the cheapest f(n) at each search step.

Ti

T1
P1

T2

P2 To

g(T2) h(T2)

Figure 3.5: A* algorithm searches the path that is cheapest in the cost f(n) =
g(n) + h(n). g(T2) in this figure is the cost from Ti to T2 which is the addition of the
cost between Ti and T1 and the cost between T1 and T2. h(T2) is the approximated

cost between T2 and To which is computed by TED Batch.

The correct estimation of the heuristic function h(n) is essential for the A* search per-
formance. In order to estimate the heuristic functions, Foofah introduces the Table Edit
Distance (TED) which estimates a distance between tables. TED is defined as the table
dissimilarity as below.

TED(T1, T2) = min
(p1,··· ,pk)∈P (T1,T2)

k∑
i=i

cost(pi) (3.1)

TED is the minimum total cost of table edit operations needed to transform T1 to T2

where P (T1, T2) denotes the set of edit paths transforming T1 to T2 and cost(pi) is the
cost of each table edit operation pi which is defined in Table 3.1. Computing TED in real
time is not practical, therefore Foofah uses an efficient greedy algorithm to approximate
TED (see the literature [8] for the algorithm in detail).

Furthermore, Table Edit Distance Batch (TED Batch) is designed to modify TED to fit
into their problem. The number of operations is overestimated in definition 3.1 where
the unit of operations is cell level. In order to fit the TED into their problem, they
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Table 3.1: Table edit operators. This list is adapted from Foofah [8]

Operator Description
Add Add a cell to table
Delete Remove a cell from table
Move Move a cell from location (x1, y1) to (x2, y2)
Transform Syntactically transform a cell into a new cell

developed TED Batch that approximates the number of operations defined in Table 2.3
where the unit of operations is column or row level by grouping operations into batches
and compacting the cost of each batch.

Foofah realizes a search-based PBE by leveraging the A* search search algorithm, the
TED Batch as the heuristic function to estimate the cost between tables. In addition,
pruning rules are developed with their heuristic insight in order to reduce the program
space and improve the runtime of the search.

Although Foofah is able to solve the same problem we are interested in, tabular trans-
formation, it is necessary to be developed on the basis of developer’s heuristic insight
and engineering efforts to enable the search algorithm to work efficiently.

Thus, our study aims to establish an ML-based PBE for tabular transformation which
is based on a stochastic approach where the PBE system is able to be improved in a
data-driven manner.

3.2.2 ML-based PBE Studies

The neural methods are expected to extend a model by simply increasing the number
of training data without the need for laborious technical development. Thus, realizing
PBE using neural methods has attracted much attention in recent years [18, 38–40].

RobustFill proposed by Devlin et al. [18] is a pioneering PBE system using neural
networks. We introduce this work in the next section Section 3.2.2.1.

Kalyan et al. [38] propose a hybrid synthesis technique that combines both symbolic
logic techniques and neural models for string transformation with DSLs similar to that
of FlashFill. The model realizes a real-item program synthesis, leveraging powerful RNN
encoders and a deductive symbolic search framework.

Singh [39] presents a PBE system called BlinkFill, whose DSL also consists of syntactic
string transformations similar to that of FlashFill. BlinkFill uses semi-supervised learn-
ing technique to reduce ambiguity by using a data structure that represents a large set
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of logical patterns that are shared across the input data and efficiently learn substring
expressions.

Bavishi et al. [40] propose a neural program candidate generator that produces functions
and arguments of APIs for Python pandas libraries for an input-output example provided
in data frame form.

In these studies described above, neural encoders encode input-output examples into
a representation, and neural decoders or search algorithms generate programs or APIs
from the representation given from the encoder. These neural system can enhance their
expressiveness by training new training data. However, no system generates programs
for tabular transformations defined in Chapter 2.

3.2.2.1 RobustFill

RobustFill [18] is a fundamental study for PBE using neural methods and is used as a
basis of many other studies on ML-based PBE. It achieves a string transformation PBE
by leveraging an LSTM model.

RobustFill generates a string transformation which is composed of operations for string
manipulations from user-given examples. The string transformation of RobustFill is con-
structed from a DSL which is defined based on substring extractions, string conversions
and constant strings. The DSL of RobustFill is similar to those of FlashFill [9].

A neural model is trained fully supervised on a large corpus of synthetic I/O Ex-
ample + Program pairs in training phase. It takes n pairs of input-output strings
(I1, O1), · · · , (In, On) and is trained so that it generates the corresponding program P

as output.

LSTM LSTM LSTM

I O P

Basic LSTM Model

biLSTM biLSTM biLSTM

I O P

Attention bi-directional LSTM Model

Figure 3.6: Neural sub-network architecture for single example. A dotted line from
x to y means that x attends to y. This figure is based on RobustFill [18]

The architecture of the neural model is illustrated in Figure 3.6 and Figure 3.7. Fig-
ure 3.6 shows single-example sub-network models which only take a single example (I,O)
as input and produce a program P as output. Each single-example sub-network is con-
structed by long short term memory (LSTM) networks which are illustrated as rectangles
and characterized by variations of attention mechanisms [41] and bi-directional LSTM
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LSTM LSTM LSTM

I1 O1 P1

FC

LSTM LSTM LSTM

In On Pn

・・・・・

FC

・・
MaxPool

Softmax

n examples

Figure 3.7: Neural network architecture for multi-example pooling. This figure is
based on RobustFill [18]

networks. In order to solve the problem with multiple pairs of I/O examples, a multiple-
example network model which is composed of multiple single-example sub-networks is
proposed. Figure 3.7 shows the multi-example network model. The multi-example net-
work model takes multiple pairs of I/O examples and generates a program corresponding
to the pairs of I/O examples. It pools hidden states of P1, ·, Pn at max pool layer and
feed into a single output softmax layer and eventually outputs probabilities of a program
corresponding to the pairs of I/O examples.

Robustfill is an ML-based PBE but not for tabular transformation. To the best of our
knowledge, no neural PBE for tabular transformation has been proposed and imple-
mented.

3.3 Encoder-Decoder Neural Networks

As in Robustfill [18], some studies on ML-based PBE use encoder-decoder models [19,
38, 42]. The encoder-decoder model is typically applied to machine translation problems
[41, 43, 44], For this reason, ML-based PBE studies have applied the encoder-decoder
model to the PBE problem, regarding the PBE problem as a translation problem from
input-output examples to a corresponding program.

Parisotto et al. [19] propose an encoder-decoder model that uses a cross correlation I/O
network as the encoder and a recursive-reverse-recursive neural network (R3NN) as the
decoder. The cross correlation I/O network produces a representation of I/O examples,
and given the representation, R3NN synthesizes a program by incrementally expanding
partial programs.

Kalyan et al. [38] propose an ML-based model using an LSTM-based encoder that en-
codes I/O examples and production rules, and predicts the score of a candidate pro-
duction for the given examples. Consequently, their proposed search method generates
programs based on the scores that the encoder outputs.
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Although we also formulate our ML-based PBE model as an encoder-decoder model,
we use more sophisticated model, Transformer, in our encoder-decoder model. In this
Section, we overview the two kinds of models used in the encoder-decoder model. The
first is the conventional LSTM neural network and the second is the Transformer.

3.3.1 Long Short Term Memory (LSTM)

An RNN is a network with loops. Applied to a time-series sequence or a word sequence,
this loop allows information in previous loops persist in the network and enables RNN
to deal with dependencies between different time steps (iterations of the loop). RNNs’
limitation is difficulty of learning with a too long gap between two time steps.

LSTM is one type of recurrent neural networks (RNN) and capable of handling such
a long-term dependencies. The computational graph of a LSTM netrowk is illustrated
in Figure 3.8. A LSTM network takes an input sequence (x0, · · · , xt, · · · ) and output a
hidden sequence (h0, · · · , ht, · · · ). xt and ht is computed by the values on the previous
time step xt−1 and ht−1.

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

(3.2)

σ σ tanh σ

xt

ht

x
tanh

+

x x

ht+1ht-1

xt-1 xt+1

Figure 3.8: LSTM network. An unrolled representation of the repeated LSTM module
from time step t− 1 to t+ 1

Where σ(·) is a sigmoid function and Wf , Wi and WC are the weights and bf , bi and
bC are the biases of the LSTM network. The sigmoid layer outputs numbers between
zero and one. A value of zero means “forget the value” and a value of one means “retain
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the value”. This layer is called “forget gate layer” and is essential for capability of
memorizing a long-term temporal dependency in LSTM.

A sequence-to-sequence model can be constructed with an LSTM encoder and an LSTM
decoder [45]. A sequence-to-sequence model is illustrated in Figure 3.9. The encoder
inputs “A B C” and outputs the last hidden state and the decoder takes the last hidden
state from the encoder and the end-of-sequence token and outputs “ W X Y Z” decoding
using a simple left-to-right beam-search. Thus, a sequence-to-sequence model realizes a
machine translation system using LSTM encoder and decoder.

LSTM

A

LSTM

B

LSTM

C

LSTM

<eos>

LSTM

W

LSTM

X

LSTM

Y

LSTM

Z

W X Y Z <eos>

Figure 3.9: A illustration for sequence to sequence model. This is an example model
that reads “A B C ” and produces “W X Y Z” as the output sentence. This figure is

based on Sutskever et al. [45]

3.3.2 Transformer

The RNN like LSTM has been studied and applied as a basis of sequence-to-sequence
models and has achieved a high performance in sequence modeling and transduction
problems such as language modeling and machine translation.

However, recurrent models need a sequential computation where, aligning the positions
of an input sequence to time steps, they generate a sequence of hidden states ht at time
t using ht−1 at the previous time t−1 recursively. This sequential computation prevents
parallelization, which becomes critical at longer sequence lengths.

The Transformer model achieves the simple model based on attention mechanism, dis-
pensing with the recurrent nature and establishes the state-of-the-art performance in
translation quality [46].

The model architecture of the Transformer is shown in Figure 3.10. It is composed of
an encoder (left half of Figure 3.10) and a decoder (right half of Figure 3.10).

The encoder is composed of a stack of N = 6 layers. Each layer has a multi-head
self-attention sub-layer, and a position-wise fully connected feed-forward sub-layer net-
work. Furthermore, it has a residual connection around each sub-layer followed by layer
normalization.
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The decoder is also composed of a stack of N = 6 layers. Each layer has a sub-layer
which computes multi-head attention over the output of the encoder stack in addition
to the sub-layers similar to that of encoder. The self-attention sub-layer in the decoder
is masked to prevent predictions for position i from unseen outputs at positions larger
than i.

Input
Embedding

Output
Embedding

+

Add & Norm

Feed 
Forward

Add & Norm

Multi-Head
Attention

+

Add & Norm

Multi-Head
Attention

Add & Norm
Masked
Multi-Head
Attention

Feed 
Forward

Linear

Softmax

Output Probabilities

Add & Norm

Positional
Encoding

Positional
Encoding

x N x N

Inputs Outputs (shifted right)

Figure 3.10: Transformer model architecture. This figure is based on Vaswani et
al. [46]

The sub-layer that has the most essential role in the Transformer model is the attention
sub-layer. The Transformer employs the “scaled dot-product attention” as the attention
mechanism.

√
dk, and apply a softmax function to obtain the weights on the values.

The scaled dot-product attention is computed as follows.

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V (3.3)

Where Q is a set of query vectors packed together into a matrix, and keys and values
are also packed into matrix K and V , and the dimension of queries and keys are dk and
values dv.
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The Transformer performs a multi-head attention instead of single scaled dot-product
attention as seen in Figure 3.11. The multi-head attentions linearly project the queries,
keys and values h times with different, learned linear projections to dk, dk and dv di-
mensions, respectively. And then, these are concatenated and then projected again.

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V W V

i )
(3.4)

where the projections are learned parameters of WQ
i ∈ Rdmodel×dk

i , WK
i ∈ Rdmodel×dk

i ,
W V

i ∈ Rdmodel×dv
i and WO ∈ Rdv×hdmodel

i . The value of h = 8 in the Transformer
original work. The individual h attention heads perform differently with each different
projection. The Transformer uses multi-head attentions in “encoder-decoder attention
layers”, “self attention layers in the encoder” and “self attention layers in the decoder”.

Although the Transformer is entirely based on only attentions and therefore has a sim-
ple architecture, the powerful performance and simple structure of Transformer has
attracted many researchers with variety of applications rather than neural translation
machines. The representative applications of Transformer model are the pre-trained
large-scale language model such like Bidirectional Encoder Representations from Trans-
formers(BERT) [47], Generative Pre-trained Transformer (GPT)-1/2/3 [48–50] which
employ the Transformer encoder [47] or decoder [48–50] as a basic component of the
architecture and achieve remarkable results in various tasks.

Scaled Dot-Product Attention

Linear Linear Linear

concat

Linear

Scaled Dot-Product Attention

Linear Linear Linear

V K Q

・・・・ x h

Multi-Head Attention

Figure 3.11: Multi head attention
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3.3.3 Transformer-based model on Larger Data

As described in later chapters, we achieved better performance than the conventional
methods. However, performance of training and inferring larger data remains a chal-
lenge. Simply increasing the table size for the training data does not improve perfor-
mance, as described in 4.6.2.2. We are planning to improve our model to accept larger
table sizes in the training data by revising the model network referring to the studies like
Longformer [51] and related other works [52, 53]. Transformer-based models in these
studies have a local windowed attention mechanism that enables the model to perform
the attention processing in lower computational and memory costs and consequently
scale to larger input documents. The attention mechanism is realized by sparsifying the
self attention matrix according to a periodical attention pattern.

3.3.4 Synthesizing Realistic Training Data

Preparing a training dataset which has a distribution similar to the real data is a im-
portant issue for any neural network model. There are studies to synthesize a training
dataset for neural networks for program synthesis [54–57].

Shin et al. [54] propose a methodology for controlling and evaluating the bias of synthetic
data distributions by ensuring greater uniformity over the salient random variables.
Their method shows good performance in a deep neural model for Karel domain that
have more complex DSLs than that for string transformations.

Clymo et al. [55] propose a constraint based method using an SMT solver to synthesize
inputs which cover a diverse set of behaviors for a given program. Their method synthe-
size datasets for DeepCoder [58] which is a program synthesis system for manipulating
list of integers.

Suh et al. [56] propose a adversarial method to generate a training set applicable to
PCCoder [59]. Their adversarial approach builds a training set iteratively. In each
iteration, it finds data distributions on which the PBE model performs poorly and then
adds data drawn from those distributions to the training set, thus generating test sets
that are less likely to overestimate the perfance of a PBE model.

Although some works study on synthesizing training datasets for ML-based PBE as
described above, no work studies on synthesizing tabular data and corresponding tabular
transformation. Thus, we first formulate a method synthesizing tabular data in uniform
distribution as described in Section 4.6.1.2.
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3.3.5 Training Objectives

The encoder-decoder models, which is typically used in neural machine translation [43],
are trained to generate sentences that are similar to the reference (target) sentences.
The training is performed based on maximum likelihood optimization, specifically min-
imizing cross-entropy loss between the reference and the generated sentence. ML-based
PBE approaches using an encoder-decoder model [18, 19] are also trained in the similar
objective optimization.

However, the true objectives for these models are rather different from maximum likeli-
hood. Indeed, many translation models pursue better BLEU scores [43, 60, 61]. Simi-
larly, our PBE model aims to generate programs valid for input examples or consistent
with input-output examples.

In order to directly optimize the model to the true objective, some studies [43, 60–63]
has been considered to refine their models using policy gradient reinforcement learning
as in REINFORCE algorithms proposed in the work by Williams [64]. Ranzato et
al. [60], Wu et al. [43], Wiseman et al. [65] applied this approach to translation, Guu et
al. [62] to “program to language”, Zaremba & Sutskever [61] to Neural Turing Machine
(NTM), and Bunel et al. [63] to program synthesis. Studying using this approach will
be proposed in future work.

3.4 Two-dimensional Tabular Data Embeddings

Researchers have paid their attentions on handling structured tabular data in neural
network models in table understanding and document understanding studies such as
cell-classification [66, 67], table classification [68], table-to-text [69], and document clas-
sification [70]. The neural network models used in these studies are the conventional
ones like RNN [66, 67], LSTM and CNN [68], RNNs and CNN [69], and hierarchical
attention mechanisms [70].

Whereas, some studies [71, 72] employing embedding layers for two-dimensional data
to the Transformer model have emerged these days. The embedding layers enable the
Transformer model, which originally learns one-dimensional positions on a sequential
data, to learn the positions of two dimensional data. In the following section, we intro-
duce the literatures embedding two-dimensional data into the Transformer-based model.
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3.4.1 TAPAS

TAPAS (for Table Parser) [71] is a question answering model that reasons out an answer
drawn from a table with respect to a question that users provide. TAPAS predicts
a minimal program by selecting a subset of the table cells and a possible aggregation
operation to be executed on top of them (See Figure 3.12). It can predict the aggregation
operations from natural language without the need to specify them in some formalism.

Ran
k Name No. of 

reigns
Combined 
days

1 Lou Thesz 3 3749
2 Ric Flair 8 3103
3 Harley Race 7 1799
4 Dory Funk Jr. 1 1563
5 Dan Severn 2 1559
6 Gene Kiniski 1 1131

Table

Q1: Which wrestler had the most number of reigns?
A1: Ric Flair

Q2: Average time as champions for top 2 wrestlers?
A2: AVG(3749, 3103) = 3426

Q3: How many world champions are there with only one reign?
A3: 7

Q4: What is the number of reigns for Harley Race?
A4: 7

Q5.1: Which of the following wrestlers were ranked in the bottom 3?
A5.1: { Dory Funk Jr, Dan Severn, Gene Kiniski }

Q5.2: Out of these, who had more than one reign?
A5.2: Dan Severn

Figure 3.12: A table (left) corresponding example questions (right). TAPAS predicts
a minimal program that create an answer for a question using the contents of the Table.

This figure is based on TAPAS [71]

TAPAS is implemented based on BERT architecture [47] with additional positional em-
beddings that capture tabular structure and with two classification layers for selecting
cells and predicting a corresponding aggregation operator. TAPAS firstly flattens a table
into a sequence of words by splitting the table into word tokens and concatenating it
with the question tokens in front of the tokens of the table. And then, it appends sev-
eral types of positional embeddings into the sequence of words. The types of positional
embeddings are Position ID, Segment ID, Column ID, Row ID, and Rank ID. Introduc-
ing these positional embeddings in the model based on the BERT architecture, TAPAS

succeeded to capture the two-dimensional table positions and achieved higher accuracy
than other existing works.

3.4.2 Vision Transformer

The Vision Transformer [72] is a Transformer-based model targeting at solving computer
vision tasks. Whereas Convolutional architectures has remained dominant in computer
vision research in recent years, some studies applying the attention-based Transformer
architectures to such tasks like image recognition has emerged. The Vision Transformer
is the representative work among these studies.
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Figure 3.13: Vision Transformer. This figure is based on Dosovitskiy et al. [72]

An overview of the model is illustrated in Figure 3.13. To handle 2D images in the
Transformer, image x ∈ RH×W×C is reshaped into a sequence of flattened 2D patches
xp ∈ RN×(P 2·C), where (H,W ) is the resolution of the original image, C is the number of
channels, (P, P ) is the resolution of each image patch, and N = HW/P 2 is the resulting
number of patches which is the input sequence length. The flattened patches (P 2 · C
dimension) are mapped to the constant latent vector size of the model (D dimension)
through a trainable linear projection.

Positional embedding are added to the patch embeddings to retain positional infor-
mation. One-dimensional position embeddings are used as the positional embeddings.
Although 2D-aware positional embeddings are also used in this work, they do not show
a significant performance gain in these settings. Two-dimensional positional embeddings
are composed of X-embedding and Y -embedding, which are learned and have size D/2.
Two embeddings are concatenated to get the final positional embedding for the patch.

Inspired from these studies like TAPAS (describe in Section 3.4.1) and Vision Transformer
(described in Section 3.4.2), we have designed our tabular positional encoding that
embeds a pair of input-output tabular data and handle them in the Transformer-based
model. We propose this tabular positional encoding in Chapter 4.
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3.5 Beam Search

The beam search techniques have been studied for many years, particularly as a search
method for generating from sequence-to-sequence model [45] [65] [73] and for natural-
language-processing (NLP) applications [74] [75]. Our model, which is based on the
sequence-to-sequence model, also generates a program by search algorithms like beam
search. However, the beam search strategy of NLP may be different from that of our
program generation. Thus, our beam search requires new method for optimizing the
metric where generating more programs consistent with user-given examples is better.

Some studies aim to find metric-driven search technique. Yang et al. [76] propose a
re-scoring method for candidate scores based on the candidate size, focusing on solv-
ing the sequence length ratio problem which they call as “beam search curse”. They
propose several methods to address this problem and show their hyperparameter-free
method achieves a performance improvement in the BLEU metric. Leblond et al. [77]
have investigated many decoding algorithms and found which algorithm is best heavily
depends on the characteristics of the goal metric. Additionally, they introduce a Monte-
Carlo Tree Search based method and show its competitiveness. These studies show the
importance of selecting search method depending on the goal metric, thus inspiring us to
develop variants of beam search methods for program generation described in Chapter 5.

Other Studies aim to make the beam search more efficient, and resulting in more accurate
sequence generation as below.

Freitag et al. [73] introduce several variants of beam search for the machine translation
task. They propose a flexible beam search strategy whose candidate size varies at each
time step depending on the candidate scores. The beam search prunes the search graph,
thus, speeds up the decoding process without losing translation quality.

Diverse beam decoding [78] modifies the basic beam search by penalizing scores of can-
didates that are siblings, thus exploring hypotheses from diverse parents. Studies like
iterative beam search [75] also diversely explore search space by performing multiple
beam searches, and thus achieving good performance on generating diverse sequences
for such tasks as dialog response generation, collaborative story generation, and im-
age captioning. These studies can speed up the beam search and improves decoding
performance.

In this dissertation, we pursue beam search techniques that fit to our problem, program
generation, and consequently propose two types of novel techniques described in Chap-
ter 5 and compare them with iterative beam search [75]. Refer to the next section for
detail of iterative beam search.
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3.5.1 Iterative Beam Search

Iterative beam search [75] focuses on generating diverse sequences for tasks such as
dialog response generation. This study is an example that adopts beam search results
suitable for applications. It searches wider search space by performing beam searches
multiple times. Eliminating the explored candidates in previous iterations from search
space in successive search iterations, it explores wide search space with less computa-
tional cost.

Suppose that beam search maintains a set of beam size K hypotheses Ht at time step t:

Ht = {(y1
1, · · · , y1

t ), · · · , (yK
1 , · · · , yK

t )} (3.5)

Where (yK
1 , · · · , yK

t ) is the K-th candidate at time step t.

The search space over which beam search has explored can be characterized by the
union of all partial hypothesis sets: S0 = ⋃T

t=1Ht , where the subscript 0 means the
first iteration of multiple beam searches. Re-running beam search with an increased
beam width K results in overlapping the search space significantly with S0. Instead,
the interactive beam search keeps the beam size K constant and performs multiple
iteration of beam search, ensuring that any previously explored space S̃<l = ⋃l−1

l′=0 Sl′ is
not included in a subsequent iteration of beam search.

This can be done by setting the score of each candidate to negative infinity when the
candidate is included in S̃<l. This procedure ensures that a new partial hypothesis set
of beam search in the l-th iteration minimally overlaps with the search space explored
in the previous iterations of beam search.

Thus, the iterative beam search produces more diverse set of candidates than traditional
beam search by exploring larger hypothesis spaces with minimum overlaps of spaces in
multiple iterations of beam search.
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Chapter

4
Transformer-based Neural Model

for Tabular Data

4.1 Transformer-based Encoder-Decoder Model

Since tabular transformations need larger structured data and complex transforms on
its data, the neural network model for tabular transformations must have higher ex-
pressive power than that for string transformations. Transformer is a state-of-the-art
ML model for NLP tasks proposed by Vaswani et al.[46]. Its architecture is based on
attention mechanisms and has the ability of training their large scale parameters by
high-level parallelization and short training times, thus achieving higher performance
in even complicated tasks than conventional recurrent neural network such as LSTM.
Hence, our Transformer-based PBE model for tabular transformations achieves better
performance than LSTM-based one. This model is realized by dispensing with recurrent
and convolutional processing entirely.

Fig. 4.1 illustrates our Transformer-based model. In order to feed a pair of input-output
tables and a program into the Transformer model, they are linearized to token sequences
as described in Sections 4.2 and 4.3, respectively.
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Figure 4.1: The Transformer-based model

4.2 Tabular Data Linearization

Tabular data is linearized into a serialized structure in order to feed the tabular data
into the sequential encoder-decoder model. Fig. 4.2 shows the preliminary model that
we developed in our study as this linearization processing. First, each string in each
cell of the input table is separated into character-level tokens with special characters
<eoc> and <eol> that represent the boundaries of columns and rows respectively and
linearized to a sequence of tokens.

Linearizes into a character-level sequence
inserting the separators between row and column boundaries

ʻNʼ ʻaʼ ʻmʼ ̒ eʼ <eoc> ʻNʼ ʻuʼ ʻmʼ ̒ bʼ ʼeʼ ̓ rʼ ʻsʼ <eol> ʻAʼ ʻlʼ ʻIʼ ʼcʼ ̓ eʼ <eoc> ʻTʼ ʻeʻ ʻlʼ ̒ :ʼ ̒  ʻ ʻ(ʻ ̒ 0ʼ ̒ 3ʼ …

Figure 4.2: Linearization processing for tabular data
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In addition, in the Transformer-based model, we concatenate the input table and output
table by introducing the special token <sep> to represent the separation point between
the two tables.

4.2.1 Scanning Direction

There are two possible options for scanning directions in linearizing the tables, namely
horizontal and vertical (see Fig. 4.3). Because an actual table generally stores infor-
mation about the same record in the row direction and information about the same
attribute in the column direction, we can expect to observe some differences in model
performance depending on the scanning direction.

00 01 02 03

10 11 12 13

20 21 22 23

00 10 20 01 11 21 02 12 22 03 13 23 00 01 02 03 10 11 12 13 20 21 22 23

Tabular data

Linearized Sequence

Vertical scan

00 01 02 03

10 11 12 13

20 21 22 23

Tabular data

horizontal scan

Linearized Sequence

Figure 4.3: Two types of scanning directions: vertical scanning on the left and hori-
zontal scanning on the right

4.3 Program Linearization

A program is also linearized into a sequence of operation tokens. An operation token is
constructed from the Operators, its numeric parameters and its non-numeric parameters
listed in Table 2.3 according to the tokenization rules. We have the following two options
for tokenization rules.

4.3.1 Separated Token Rule

In separated token rule, a combination of operator and non-numeric parameter corre-
sponds to one token, and a numeric parameter to one token individually. For example,
Extract("\w+", 1) is represented by two tokens. The first token is Extract("\w+’", pos)
and the second one is the numeric parameter ”1”.
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The vocabulary size of operation tokens in separated token rule is 100 including the spe-
cial tokens. Separated token rule is used in our preliminary experiments in Section 4.6.2,
4.6.3.

4.3.2 Combined Token Rule

In combined token rule, a combination of operator, non-numeric parameter and numeric
parameter corresponds to one token. For example, Extract("\w+", 1) is represented by
one token.

The vocabulary size of operation tokens in combined token rule is 2148 including the
special tokens. Combined token rule is used in our experiment of Section 4.6.4 and
Chapter 5.

4.4 Model Description

We explain the model architecture of the Transformer-based encoder-decoder model in
this section. Let a token sequence of input-output tables be t and a token sequence
of program be o. The Transformer embedding layers embed t and o and append the
positional encoding PE.

x0 = EncoderEmbedding(t) + PE

y0 = DecoderEmbedding(o) + PE

Let xi = (xi
0, x

i
1, · · · , xi

n) be the output of the ith layer of the Transformer encoder, where
xi

j ∈ Rdemb and demb is the embedding dimension size. Similarly, let yi = (yi
0, y

i
1, · · · , yi

m)
be the output of the ith layer of the Transformer decoder, where yi

j ∈ Rdemb . The
Transformer encoder and decoder are structured with the stacked layers as described in
the following expressions.

xi = TransformerEncoderLayer ith(xi−1)

yi = TransformerDecoderLayer ith(yi−1, xi)

When all computations in the encoder and decoder sublayers have terminated, the out-
put from the last sublayer of decoder ylast is provided. The linear and softmax layers
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at the last part of the Transformer-based model (see Fig. 4.1) compute the program
probabilities from ylast.

Thus, the program probabilities are output by feeding a sequence of tokens of input-
output tables and a sequence of tokens of a program into the sequential encoder-decoder
model. For a set Tio of token indexes for the input-output tables and the token sequence
length n of the linearized input-output tables, we denote a token sequence of the input-
output tables as an integer vector t = (t0, t1, · · · , tn) where ti ∈ Tio. For a set O of token
indexes for the program and the token sequence lengthm of the sequence the program, we
denote a token sequence of a program as an integer vector o = (o0, o1, · · · , om) where oi ∈
O. Now, program probabilities can be represented as a sequence p = (p0,p1, · · · ,pm),
where pi ∈ R|O|. The variable pi = P (z | o<i, t) represents the conditional probability
distribution of the discrete random variable z ∈ O at position i when (o0, o1, · · · , oi−1)
and t are given.

Training Phase

<sos>

squence of tokens of reference program 

Inference Phase

<sos>

Chosen by beam search processing 

p0 p1 pm

t

・・・

・・・o0 o1 om

p0 p1 pm・・・

z0 z1 zm

t

Encoder
Layers

Decoder
Layers

Encoder
Layers

Decoder
Layers

Figure 4.4: Decoding process in the encoder-decoder model

The left part of Fig. 4.4 shows the decoding process during the training phase. The
program probabilities p are output after inputting a sequence of tokens for input-output
tables t into the encoder layer and a sequence of tokens for the program (shifted by 1
token (<sos>)) into the decoder layer. We can compute the cross-entropy loss from p

and (the one-hot vector of) o, and then proceed to training with the aim of reducing
the loss value.

The right part of Fig. 4.4 shows the decoding process during the inference phase. In
this phase, beam search processes the decoding via autoregression and generates the
candidates of the programs. The basic beam search processing is as follows. In the first
step, given a token <sos> at the decoder layer and the token sequence t at the encoder
layer, the decoder outputs the conditional probability p0 = P (z |<sos>, t) at position
t = 0. Using beam search with the beam size of 1 gives the token z0 ∈ O having the
highest probability to give to the decoder at the next position. In the next step, given
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the token sequence t at the encoder layer and tokens <sos> and z0 at the decoder layer,
the decoder outputs the conditional probability p1 = P (z | z0, <sos>, t) at position
t = 1. Again, beam search determines the token z1 ∈ O having the highest score given
by the equation 4.1 with respect to the tokens <sos>, z0 and z1 to give to the decoder
at the next position. In this way, the token zt is found having the highest score at each
position t.

score = log(
t∏

i=0
P (z | z<i, t))

=
t∑

i=0
log(P (z | z<i, t)). (4.1)

The beam search terminates when the end-of-sequence token <eos> has the highest
score at positions t < m, finally obtaining one candidate z = (z0, z1, · · · , zt−1).

The procedure of beam search with a beam size of K > 0 is described in Algorithm 1.
The beam search maintains K number of candidates Hcand

t of token sequences (each
token sequence is called as hypothesis h) at each position t . At each position t, each
hypothesis h in the previous candidates Hcand

t−1 is concatenated by each token z ∈ O
(line 8 in Algorithm 1), and the scores for concatenated hypotheses h are given by
equation 4.1 (line 9 in Algorithm 1). The hypotheses are ranked by the score and the
top-K hypotheses are kept in the candidates Hcand

t (line 10-22 in Algorithm 1). When
<eos> token is selected as a candidate, the K value is reduced by one and the candidate
is placed in the “final-candidate” list Hfinal (line 16-18 in Algorithm 1). When the beam
size K becomes zero, the search stops with a final candidate list containing K number
of candidates (line 19-20 in Algorithm 1). Finally, we can get the program by selecting
a hypothesis from the final candidate list and the hypothesis into the program form.

Not all the programs in the candidates are consistent with the input-output tables.
Therefore, in order to select a consistent program, each program is picked out of the
final candidate list one-by-one and checked whether each program is consistent with the
input-output tables. Once the consistency check on a program is successful, it’s the
solution for the input-output tables. If no successful program is found from the final
candidate list, it is regarded as a failure of finding the solution for the input-output
tables.
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Algorithm 1 basic beam search
Require: K . Beam size
Ensure: Hfinal . Hypotheses obtained finally

1: Hcand
0 ← {h} where h = ( <sos> )

2: Hfinal ← ∅
3: for t ∈ N in ascending order do
4: Ht ← ∅
5: St ← ∅
6: for h ∈ Hcand

t−1 do
7: for z ∈ O do
8: h← h||z . || concatenates tokens
9: s← score(h) . score given by equation 4.1

10: Ht ← Ht ∪ {h}
11: St ← St ∪ {s}
12: sort St by scores
13: sort Ht by the same order to St

14: Hcand
t ← ∅

15: for h ∈ Ht in order do
16: if The last token of h is <eos> then
17: Hfinal ← Hfinal ∪ {h}
18: K ← K − 1
19: if K = 0 then
20: return Hfinal

21: if | Hcand
t |< K then

22: Hcand
t ← Hcand

t ∪ {h}

4.5 Transformer-based Model with Tabular Positional En-
codings

4.5.1 Positional Encoding

Figure 4.5 illustrates our Transformer-based model. The attention-based layers of the
Transformer-based model are invariant with respect to the order of input sequences.
Therefore, the network modules that encode positions of sequences are necessary in or-
der to learn the positions of sequences on the Transformer-based model. The network
modules are called as the “positional encoding” described in leftmost side of Figure 4.5.
The positional encoding uses a sinusoidal function as expressed by the following expres-
sions [46].

PE(pos,2i) = sin(pos/100002iD/dmodel)

PE(pos,2i+1) = cos(pos/100002iD/dmodel) (4.2)
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Encoder-Decoder Multi-Head Attention

Input table

Linearized Input-output table

Output table

N x

Linearized& Shifted Program

Program

N x

Output Probabilities

Positional Encoding

Linearize and concatenate tables

Embedding
Positional Encoding

or
Tabular Positional 

Encoding

Proposed method

Transformer Encoder
(Self-Attention)

Transformer Encoder
(Masked Multi-Head

Self-Attention)

Softmax & Linear

Embedding

Linearize

＋ ＋

Figure 4.5: The Transformer-based model

Here, 2i, 2i− 1 are the dimension indexes of the model, pos is the position, dmodel is the
dimension size of the model and D = 1. Positions are embedded by adding this PEs
into the linearized input-output table at each position pos.

Our Transformer-based model uses positional encoding to embed the one-dimensional
positions in the linearized tabular data. Once a token sequence of the I/O tables are fed
into the model, they are embedded in the embedding layer. After that, the positional
encoding is added to the embedded sequence in order to embed the position of each
embedded token.

4.5.2 Tabular Positional Encoding

We propose the Tabular Positional Encoding (TPE) that improve the positional encoding
of Transformer-based model described in the previous sections. Replacing the positional
encoding to proposed tabular positional encoding (as seen in Figure 4.5), we introduce
the encoding method which embeds the positions of two-dimensional structured tabular
data and thereby deals with a pair of I/O tables well in the Transfomer-based model.

We propose two types of tabular positional encoding which represents the positions in
two-dimensional tabular data.

• Additive Tabular Positional Encoding (ATPE)

• Concatenative Tabular Positional Encoding (CTPE)
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The positional encoding is replaced by either ATPE or CTPE. It is added to the embed-
ded linearized input-output table at the former step of Transformer encoder layers. Both
types of tabular positional encodings are composed of four kinds of indexes in tabular
data as in Figure 4.6.

• Row Index represents the indexes of rows in a table

• Column Index represents the indexes of columns in a table

• Separator Index denotes input table or output table

• Local Position Index represents the indexes of strings inside a table cell

Linearized
I/O tables

Row
Index

Column
Index

Separator
Index

Local Position
Index

Input table Output table

cat 5
dog 3

cat dog
5 3

Tabular
Positional
Encoding
(A2PE or C2PE)

c a g<eol> <sep>t 5<eoc> d o 3<eoc> c a g <eol>t 5<eoc> d o 3<eoc>

＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋

0 0 10 0 1 1 1 0 0 00 10 0 1

0 0 00 1 0 0 1 0 0 10 01 1 1

0 0 00 0 0 0 0 1 1 11 11 1 1

0 1 22 0 0 1 0 0 1 22 00 1 0

Figure 4.6: Tabular positional encodings

4.5.2.1 Additive Tabular Positional Encoding (ATPE)

We designed the additive tabular positional encoding inspired from the work TAPAS

[71]. The vector of ATPE P EA
pos is computed by addition of all positional encodings.

Let be the vector of positional encoding of row, column, separator, local position as
P Er

pos, P Ec
pos, P Es

pos, and P El
pos respectively, then

P EA
pos = P Er

row + P Ec
col + P Es

sep + P El
local (4.3)

where each row, col, sep, and local represents row index, column index, index denoting
input or output table, and local position of a table cell, respectively at position pos.
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4.5.2.2 Concatenative Tabular Positional Encoding (CTPE)

We also designed the concatenative tabular positional encoding (CTPE) inspired from
the work by Wang et al. [79]. The vector of CTPE P EC

pos is computed by concatenating
all positional encodings, namely

P EC
pos = [P Er

row; P Ec
col; P Es

sep; P El
local] (4.4)

4.5.3 Positional Encoding Implementations

There are two types of implementations for positional encodings, namely fixed encoding
and learned encoding. We evaluated in our experiments each tabular positional encoding
(ATPE, CTPE) with each encoding implementation (fixed, learned).

4.5.3.1 Fixed Encoding

In fixed encoding, each positional encoding, namely P Er
pos, P Ec

pos, P Es
pos and P El

pos

is encoded into fixed value as expressed by the sinusoidal function in Equation 4.2.

P Er
pos = P Ec

pos = P Es
pos = P El

pos

= (PE(pos,0), PE(pos,1), . . . , PE(pos,dmodel/D−1)) (4.5)

The parameter D = 1 for ATPE, whereas D = 4 for CTPE.

4.5.3.2 Learned Encoding

In learned encoding, each positional encoding is encoded by a feed forward network
Rmaxlenpos×dmodel with learnable parameters, where maxlenpos is the maximum length
of position pos. Thus, each vector P Er

pos, P Ec
pos, P Es

pos, and P El
pos at a position

pos are learned during supervised training at the same time with other neural network
parameters of the Transformer-based model.
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4.6 Experiments

4.6.1 Experimental Settings

4.6.1.1 Metrics

There are two metrics for evaluating the performance of PBE systems [18], namely
consistency and generalization. We can formally describe the definitions of consistency
and generalization with notation used in Section 2.1 as below.

Definition 4.1. (Consistency) Given an example E = (ei, eo), consistency measures
whether the PBE system generates a program P such that eo = P(ei), where ei is an
example tabular data extracted from the raw tabular data Ri, and eo is the tabular data
the user wants to be transformed from ei.

Definition 4.2. (Generalization) Given an example E = (ei, eo), generalization mea-
sures whether the PBE system generates a program P such that eo = P(ei) ∧ Ro =
P(Ri), where Ro is the tabular data the user wants to be transformed from Ri.

Consistency is the important metric and is used mainly to evaluate our proposed models
in this dissertation. We define accuracy as the proportion of benchmark tests for which
the PBE system is successful in terms of consistency.

Generalization is also another important metric, with several past works [80–82] par-
ticularly focusing on it. The evaluations in terms of generalization are described in
6.2.2.

4.6.1.2 Training Datasets

Preparing a large-scale training dataset for PBE ML model is quite difficult, because such
a dataset is composed of many input-output pairs of tabular data with corresponding
transformation programs. We therefore synthesized the training datasets as in previous
works [18, 54, 55].

In order to construct the training data, we employed the random sampling and gen-
eration methodology shown in Fig. 4.7. An input table and a program are randomly
synthesized with tokens, namely characters and operations respectively, which are ran-
domly sampled in a uniform distribution.

The input table is synthesized with ASCII characters, numbers, and punctuation char-
acters. The size of the string in a cell, number of rows and columns of the table are
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1) ExtractColumn("¥W+", 1) 
2) MoveColumnToEnd(0)

Input table
(randomly sampled)

Program
(randomly sampled)

Output table

TEks C-$n[B0fE

44-o0B6r /&g.kJ

V wU$-q5em

1k:- 7(S

4TWwU$OS dbxdM-

-$ C-$n[B0fE TEks

/& /&g.kJ 44-o0B6r

$- wU$-q5em V

( 7(S 1k:-

- dbxdM- 4TWwU$OS

Figure 4.7: An example of synthesizing training data

also randomly chosen, up to a predefined maximum value. In our experiments, these
maximum values for strings, rows, and columns were set as 10, 5, and 5, respectively.

Each program is a sequence of tokens generated from operators and its arguments ran-
domly sampled from items given in Table 2.3. The length of each program is up to
the predefined maximum size. The maximum size is parameterized from 3 to 8, and its
default value is 6 in our experiments.

An output table is generated by transforming the synthesized input table using the
synthesized program. Because a program might fail in transforming the input table,
program synthesis is repeated until the synthesized program no longer fails in trans-
forming the input table.

We prepared training datasets of various sizes (each item comprises an input-output
table pair and the corresponding program): 1,024 (1K), 10,240 (10K), 1,024,000 (1M),
2,048,000 (2M), 4,096,000 (4M), and 10,240,000 (10M). Each training dataset was par-
titioned, with 90% used for training and 10% for validation.

4.6.1.3 Benchmark Datasets

We evaluated our models using the evaluation benchmark proposed and used in Foofah
[8]1. This benchmark is composed of 250 tests gathered from previous works and con-
structed to evaluate tabular-data transformation tasks.

Input Table Output Table

George Math:65 French:42 History:98

Anna Math:43 French:78 History:32

Bob Math:75 French:68 History:46

Math French History

George 65 42 98

Anna 43 78 32

Bob 75 68 46

Figure 4.8: An example of “small” benchmark: exp0 potters wheel fold 2 3. This is
picked from Foofah [8]

1https://github.com/markjin1990/foofah_benchmarks
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Input Table

Output Table

Bureau of I.A.
Regional Director Numbers

Niles C. Tel:(800)645-8397
Fax:(907)586-7252

Jean H. Tel:(918)781-4600
Fax:(918)781-4604

Frank K. Tel:(615)564-6500
Fax:(615)564-6701

Eddard S. Tel:(404)555-0121
Fax:(404)555-0139

Tel Fax

Niles C. (800)645-8397 (907)586-7252

Jean H. (918)781-4600 (918)781-4604

Frank K. (615)564-6500 (615)564-6701

Eddard S. (404)555-0121 (404)555-0139

Figure 4.9: An example of “large” benchmark: exp0 proactive wrangling complex 4.
This is picked from Foofah [8]

We divided the benchmark into two parts according to the size of the table. The “small”
benchmark involves tables with rows smaller than 5 and columns smaller than 5, whereas
the remaining ones are referred as “large”. Figure 4.8 shows an example of “small”
benchmark, and Figure 4.9 “large” benchmark. The “small” benchmark was composed
of 73 tests, as opposed to 177 for the “large” benchmark. The “all” benchmark includes
all 250 tests.

4.6.1.4 Hyperparameters

We describe hyperparameters for the structures of neural networks and those for training.

Table 4.1: Hyperparameters common for all experiments

Hyperparameters LSTM-based Transformer-based
Learning rate 0.005 0.0001
Optimizer SGD w/ gradient clip Adam w/ gradient clip
Loss function Cross-entropy loss Cross-entropy loss
Emb. dimension 256 256
FFN dimension - 2048
Multihead atten. - 8
Dropout rate 0.2 0.2
Network structure Bidirectional LSTM Transformer layers = 2 or 6
inference timeout 30 (seconds) 30 (seconds)

Common Parameters Table 4.1 lists the hyperparameters commonly used in all
experiments in this study. This lists up hyperparameters for LSTM-based model and
those for our Transformer-based model.
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Note that the inference timeout is set to 30 seconds. The inference process in neural
model (LSTM-based and Transformer-based model), where the beam search are explor-
ing an answer program, is terminated when elapsed time exceeds 30 seconds. In other
words, we measured the performance of our system through examining whether the sys-
tem generates a program consistent with examples in 30 seconds or not. The searching
process of search-based method is equally terminated at 30 seconds as well.

Parameters different depending on Experiments Table 4.2 lists the parameters
that varies depending on experiments.

Table 4.2: Parameters varying on experiments.
“default” in “special tokens” means ’<sep> + <eoc> + <eol>’.

“*” means that various parameter values are examined in the Section.

Section token
rule

special
tokens

scan di-
rection

table
size

# sam-
ples

program
length

#
layers

beam
size

TPE

4.6.2.1 sep * * 5× 5 1M 6 2 or 6 100 -
4.6.2.2 sep default horizontal * 1M 6 2 or 6 100 -
4.6.2.3 sep default horizontal 5× 5 * 6 2 or 6 100 -
4.6.2.4 sep default horizontal 5× 5 1M * 2 or 6 100 -
4.6.3 sep default horizontal 5× 5 1M 6 2 or 6 100 -
4.6.4 comb default horizontal 5× 5 10M 6 6 100 *
5 comb default horizontal 5× 5 10M 6 6 * -
6.1 comb default horizontal 5× 5 10M 6 6 100, 500 best

The “Section” column denotes the section where each experiment is conducted. The
“token rule” is the tokenization rule for program linearization (see Section 4.3.1 and
Section 4.3.2); “sep” corresponds to “separated token rule” and “comb” to “combined
token rule”. The “special tokens” denotes special tokens used for tabular data lineariza-
tion (see Section 4.2), and similarly the “scan direction” is variations of scan directions
(see Section 4.2.1).

The columns “table size”, “# samples”, and “program length” are parameters relevant
to training data. Section 4.6.1.2 describes how to synthesize the set of training data
using these parameters. The column “# layers” denotes the number of sub-layers that
constitute the encoder and decoder of Transformer-based model. It is set to 2 or 6.

The beam size was set to 100 as default in the experiments in Chapter 4. Experiments
for variety of beam sizes are conducted in Chapter 5 in order to evaluate the impact of
beam size to the performance of program generation.

The “TPE” column means Tabular Positional Encodings. The experiments with ’-’ for
the “TPE” column evaluates the Transformer-based model without Tabular Positional
Encoding , namely the model with conventional Positional Encoding. The experiment

56



Experiments

’best’ for the “TPE” column selected the best performed model among the models with
various types of TPEs conducted in the experiments in Section 4.6.4.

4.6.1.5 Hardware and Software Settings

We trained our model and evaluated it using one GPU slot of an NVIDIA Tesla V100-
PCIE GPU with 32 GB memory. An Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz
with 132 GB memory was used to run the search-based PBE system (based on Foofah).

We developed and evaluated both types of neural models using the Pytorch library [83]2

and our Transformer-based model using the fairseq toolkit [84]3.

4.6.1.6 Baselines

Attention Attention

LinearizeLinearize

Input table Output table Program

Linearize

Linearized
Input table

Linearized
Output table

Linearized & 
Shifted Program

Output
Probabilities

Bi-Directional 
LSTM Encoder

Bi-Directional 
LSTM Encoder

Bi-Directional 
LSTM Encoder

Embedding Embedding Embedding

Softmax & Linear

Figure 4.10: LSTM-based model

The LSTM-based Baseline System We developed a baseline system using an
LSTM model, which is a well-known sequential encoder-decoder model, with reference
to the Attention-A model in the work RobustFill [18]. Note that RobustFill is designed
for the string PBE. We adopted the model as tabular transform PBE to compare with our

2https://pytorch.org/
3https://github.com/pytorch/fairseq
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neural model using tabular data linearization (see Section 4.2) and program linearization
(see Section 4.3). See Figure 4.10 for an overview of the model.

As in RobustFill, we composed our model with three bi-directional LSTM [85] modules
which can memorize information from both directions between past and future. Thus,
we expect that bi-directional LSTM modules can learn well vertical and horizontal in-
terrelationships of components of tabular data in both directions.

An LSTM module is an encoder for an input table and another encoder for an output
table, and the last one is a decoder for the program. We use the attention mechanism
introduced in the work by Luong et al. [41] for our model to memorize the interrelation-
ships between an input table, an output table and the program in training phase. The
attention structure of ours is similar to those of Attention-A structure in Robustfill.
That is, the output encoder makes attention to the input encoder and the program
decoder makes attention to the output encoder. Although more complicated attention
structures are proposed in Robustfill literature, they concluded Attention-A was most
simple and sufficiently effective, so we employed the similar structure.

A pair of input-output tables is linearized to a sequence of tokens as in Section 4.2.
After that, the sequence of tokens is embedded at the embedding layer and fed into the
bi-directional LSTM encoder. Each encoder encodes the embedded sequence to a fixed
length hidden vector and provides the vector to the next LSTM network as the initial
vector. The encoder for input table provides the hidden vector to the one for output
table, and the encoder for output table to the decoder for program.

In the training phase, the program is linearized to a sequence of tokens in a similar man-
ner as in Section 4.3. The program tokens are composed of the operators and parameters
listed in Table 2.3. Additionally, the start of sequence token, denoted by <sos>, is in-
serted at the foremost left side of the sequence of program tokens, shifting the sequence
to right, and the end of sequence token, denoted by <eos>, is appended to the last of
the sequence. The shifted sequence of program tokens is embedded at the embedding
layer and fed into the bi-directional LSTM decoder. Provided the hidden vector from the
encoder and embedded shifted sequence of program tokens, the decoder predicts each
program token at the next time stamp in auto-regressive manner using teacher forcing
[86], eventually decodes entire sequence of program tokens probabilistically.

In the evaluation phase, once training is complete, the decoder decodes multiple candi-
date sequences of program tokens using beam search [45]. And then, a program which
satisfies the input-output examples is selected from the candidates as the answer.
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The Search-based Baseline System We implemented Foofah as a baseline search-
based system to compare our neural model using A∗graph search as the core search
algorithm with the table-edit-distance (TED) batch as the heuristic function and the
same pruning rules as with Foofah. Foofah searches a program which consistent with the
given input-output example tables by combining the operators and parameters listed in
Table 2.3 with this search algorithm.

4.6.2 Preliminary Experiments using a Variety of Training Data

We first conducted some experiments to decide several default values for parameters in
synthesizing training data. The parameters have some options in linearization methods
(scanning direction and special tokens), program length, number of samples and table
size. The experiments for the parameters are described in Section 4.6.2.1, 4.6.2.4, 4.6.2.3
and 4.6.2.2, respectively.

4.6.2.1 Comparison of Linearization Methods

We show how much impact our linearization methods proposed in Section 4.2 and 4.2.1
make on the performance of the PBE task. In order to investigate the impact of special
symbols, we ablated each special symbols in the linearization processing and experi-
mented over the ablated models. We conducted this ablation study on the Transformer-
based model with layer 2 and 6. The corresponding experimental results for the special
symbols are listed in Table 4.3.

Table 4.3: Experimental results of various linearization methods. The bold values
denote best performance over the results in each Transformer layer.

Transformer
layers

special symbols scan direction accuracy on
small data

accuracy on
large data

2 no special (A) horizontal 54.7 4.5
2 +sep (B) horizontal 64.3 20.3
2 +sep +eoc (C) horizontal 80.8 29.3
2 +sep +eol (D) horizontal 76.7 20.9
2 +sep + eoc + eol horizontal (E) 87.6 33.8
2 +sep + eoc + eol vertical (F) 87.6 40.1
6 no special (A) horizontal 50.6 3.3
6 +sep (B) horizontal 64.3 25.4
6 +sep +eoc (C) horizontal 78.0 23.7
6 +sep +eol (D) horizontal 72.6 20.9
6 +sep + eoc + eol horizontal (E) 86.3 36.1
6 +sep + eoc + eol vertical (F) 86.3 31.0
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Figure 4.11: Accuracy with respect to linearization variations

These results are also shown as a bar graph in Fig. 4.11. The vertical axis denotes
accuracy on the small data (top) and on the large data (bottom). The horizontal axis
denotes linearization variations and each variation is denoted by the alphabetical symbols
below.

A no special symbol is used

B only special symbol <sep> is used

C special symbols <sep> and <eoc> are used

D special symbols <sep> and <eol> are used

E special symbols <sep> and <eoc> and <eol> are used and horizontal scanning
direction.

F special symbols <sep> and <eoc> and <eol> are used and scanning direction is
vertical

In variations A-E, scanning direction is horizontal, and in F, scanning direction is ver-
tical. Fig. 4.11 shows accuracy performance improves as the special symbols are intro-
duced. The symbol <sep> which is the boundary of input-output tables (B) and <eoc>
which is the boundary of columns of tables (C) improve accuracy performance. On the
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other hand, <eol> which is the boundary of rows of tables (D) has less impact on perfor-
mance improvement than <eoc>. The model with all symbols has the most impact on
the performance improvement. In this study, we have confirmed that the linearization
method helps the model to capture the table structure of a two-dimensional input-output
table pair to some extent with the special symbols that represent two-dimensional table
structures.

We also compare the difference of the performance between horizontal scan (E) and
vertical scan (F). We did not observe notable difference of accuracy performance in
scanning direction in our experiments.

We use the variation E as the default value in the following experiments.

4.6.2.2 Comparison of Models Trained on Large Size Tables

We trained our model with a training dataset containing only large-table-size items and
reevaluated the models. The results are given in Table 4.4 and shown as a bar plot
in Fig. 4.12. (The notation m × n in the results indicates that the row size of the
table is m and the column size is n, respectively.) This result shows that using large-
table-size training datasets does not improve the performance. Training the model with
table sizes of 20× 20 and 30× 30 in the training datasets did not converge the learning
process and gave even worse results. We consider this problem to be a limitation of
our current Transformer-based model. Since the Transformer is known that it might
not train and perform well with much longer input sequence with more than thousands
tokens, increasing the size of tables in training data does not have effect on improving
the performance of the Transformer model.

Table 4.4: Experimental results for models trained on large size of tables. The bold
values denote best performance over the results in each Transformer layer.

Transformer
layers

table size accuracy on small data accuracy on large data

2 5×5 87.6 33.8
2 6×6 82.1 36.1
2 7×7 79.4 39.5
2 8×8 86.3 35.5
2 9×9 79.4 34.4
6 5×5 86.3 36.1
6 6×6 83.5 35.5
6 7×7 87.6 33.8
6 8×8 87.6 40.1
6 9×9 82.1 32.2
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Figure 4.12: Accuracy with respect to table size for the training data

Some studies like Longformer [51] handle such a long input sequence in Transformer-
based models. A pair of input-output tables with table-size of more than 10× 10 could
be converted to a sequence with more than thousands of tokens. Applying Longformer’s
technique is possibly effective to address the problem on such large-size tables. We would
work on this challenge in future work.

4.6.2.3 Comparison of Models Trained on Various Numbers of Samples

We examined the performance on training datasets of various sizes. The corresponding
experimental results are listed in Table 4.5. Fig. 4.13 gives these experimental results
as a bar plot.

We can note that, in general, as the number of training samples increases, the accuracy
for both large and small datasets also increase.
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Table 4.5: Accuracy with respect to # of samples of training data. The bold values
denote the best performance over the results in each Transformer layer.

Transformer
layers

# of samples accuracy on small data accuracy on large data

2 10K 52.0 6.2
2 100K 67.1 18.0
2 1M 87.6 33.8
2 2M 80.8 31.7
2 4M 90.4 34.4
2 10M 82.1 36.7
6 10K 52.0 2.25
6 100K 65.7 12.4
6 1M 86.3 36.1
6 2M 90.4 34.4
6 4M 93.1 41.8
6 10M 95.8 42.3
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Figure 4.13: Accuracy with respect to number of samples in training data

A second tendency is that the 6-layer Transformer-based model shows higher accuracy
with large-scale training data (1M, 2M, 4M, 10M) than the 2-layer model with a few
exceptions. Because increasing the numbers in the training dataset enables the models
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to learn a larger variety of tabular data and achieve a more expressive ability, we hypoth-
esize that the model with the larger capacity (the 6-layer model) can learn expressive
representations more effectively.

4.6.2.4 Comparison of Models for a Variety of Program Lengths

We evaluated the accuracy with respect to program length. The corresponding exper-
imental results are listed in Table 4.6. Fig. 4.14 shows these experimental results in
bar-plot form.

Although we observe no significant differences for the variety of program lengths, the
accuracy for the 6-layer model is always higher than for the 2-layer model for the program
length over 6. This indicates that the 6-layer model has sufficient capacity to train via
datasets containing long programs (as was also found in Section 4.6.2.3).

In the following Section 4.6.4, Chapter 5, and Section 6.1, we use 10M for the number of
samples in training data and 6 for the program length of training data in the following
experiments, because these values show nearly the best performances in Sections 4.6.2.3
and 4.6.2.4.

Table 4.6: Accuracy with respect to program length in training data. The bold values
denote the best performance over the results in each Transformer layer.

Transformer
layers

program
length

accuracy on small data accuracy on large data

2 3 87.6 33.8
2 4 87.6 37.8
2 5 94.5 36.7
2 6 82.1 36.7
2 7 89.0 37.8
2 8 82.1 37.8
6 3 86.3 36.1
6 4 91.7 35.5
6 5 91.7 40.1
6 6 95.8 42.3
6 7 90.4 41.2
6 8 93.1 41.8

64



Experiments

0

25

50

75

100
ac

cu
ra

cy
 (%

)

Layer2 on small data
Layer6 on small data

4 5 6 7 8
program length of training data

0

25

50

75

100

ac
cu

ra
cy

 (%
) Layer2 on large data

Layer6 on large data

Figure 4.14: Accuracy with respect to program length in training data

4.6.3 Comparison of the LSTM-based Model and the Transformer-
based Model

We compared a baseline (LSTM-based) model (see Section 4.6.1.6) and our Transformer-
based models with 2 and 6 layers in terms of the learning time required to train them.
Table 4.7 gives the training times for each model.

Table 4.7: Average time required to train each model in one epoch and the number
of parameters for each model

Model No. of parameters Time / epoch (seconds)
LSTM-based 3,538,432 6729
Transformer (2 layers) 14,861,824 480
Transformer (6 layers) 44,287,488 1125

Note that the LSTM-based model took much longer to train for one epoch in average,
despite the much smaller number of parameters for the LSTM-based model than for the
Transformer-based models. Fig. 4.15 shows the learning curves of these models. The
loss value for the Transformer model decreases rapidly and reaches a stable point of
validation loss after about one day for the 6-layer model and about two days for the
2-layer model. These two models finish their training at this point. However, the loss
curve for the LSTM-based model decreases very slowly and does not reach a stable point
of validation loss, even after 14 days.
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Figure 4.15: Learning curves

Experimental results in Table 4.8 give the accuracy for the benchmarks of the LSTM-
based model and both Transformer-based models (2-layer and 6-layer). The Transformer-
based models outperform the LSTM-based model for both large and small benchmarks.
The reason might be that the Transformer-based model has a greater capacity to learn
a statistical distribution and capture the features of the training datasets much more
quickly than LSTM-based model.

While the Transformer-based model might be better performed by being trained from
a much larger variety of datasets as described in the following experiments, the LSTM-
based model can not be trained any more due to the much longer training time.

Table 4.8: Accuracy of LSTM-based model and Transformer-based models. The bold
values denote the best performance over all results.

model accuracy on small data accuracy on large data
LSTM-based 69.8 10.7
Transformer (2 layers) 87.6 33.8
Transformer (6 layers) 86.3 36.1
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4.6.4 Comparison of Variations of Tabular Positional Embeddings and
Baselines

In this section, we evaluate the accuracy performance of the tabular positional encoding
(TPE). The experimental results are listed in Table 4.9. We set the parameters as
defined in Section 4.6.1.4.

“PE” as the TPE type in the list denotes the result of the Transformer-based model
with the original positional encoding and is the baseline in this evaluation. “ATPE” and
“CTPE“ denotes the results of the Transformer-based model with the tabular positional
encoding proposed in this study in Section 4.5.2.1, and 4.5.2.2 respectively.

We found that the Transformer-based models with tabular positional encoding espe-
cially outperform the baseline model significantly regarding accuracy on large-size data.
Considering accuracy on small-size data, they are almost comparable to the baseline
model. This means that the proposed tabular positional encoding can deal with two-
dimensional structural data and provide an ability of encoding two-dimensional positions
with Transformer-based model.

Next, we compared the performance of ATPE and CTPE, and found that the perfor-
mance of CTPE is better than that of ATPE in both cases of sinusoidal and learned.

Furthermore, We also compared the performance of sinusoidal and learned, and found
that the performance of sinusoidal is better than that of learned in both cases of ATPE
and CTPE. This tendency of ATPE and CTPE and that of sinusoidal and learned are
a little different in the result with proposed decoding methods. The result is shown in
the experiments described in Section 6.1.

Table 4.9: Accuracy of the Transformer-based model with tabular positional encoding
and baselines. The bold values denotes the best performance over the benchmarks.

TPE type sinusoidal or learned accuracy on small data accuracy on large data
PE sinusoidal 93.1 46.8
ATPE sinusoidal 91.7 55.3
CTPE sinusoidal 91.7 55.9
ATPE learned 91.7 49.1
CTPE learned 91.7 54.2
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4.7 Visualization of Attentions

4.7.1 Attention Weights

In this section, we investigate how attentions of our proposed model learn their weights.
Transformer has attentions as their core mechanism. Our Transformer-based model
consists of encoder and decoder, and they have three types of attentions in their neural
networks: self-attention in encoder, cross-attention across encoder and decoder, and
self-attention in decoder. Equation 3.3 in Section 4.1 shows that attention is computed
with query Q, key K, and value V . The weight of attention

softmax

(
QKT

√
dk

)

denotes how strongly the query Q relates the key K. By inspecting these weights
of attentions, we can interpret how the Transformer-based model learns their neural
parameters.

In this section, we inspect the average weights of multi-head attention in our proposed
model. They are computed by the weights of multi-head attention expressed as below.

softmax

(
QiKi

T

√
dk

)

Where Qi = WQ
i Q, Ki = WK

i K. WQ
i and WK

i are the learned weight parameters for the
head i. Thus, we obtain an average weight of multi-head attentions as in Equation 4.6.

In the next section, we inspect the attention wrights in our model using this definition.

avgi∈multiheads

(
softmax

(
QiKi

T

√
dk

))
(4.6)

4.7.2 An Example of Attention

We select a dataset “exp0 33 3” from our evaluation benchmarks as an example to take
a deeper look regarding attention weights. Figure 4.16 shows the input-output example
of exp0 33 3. Listing 4.1 shows the program “WrapOneRow” that transforms multiple
rows to one row, which transforms the input table into the output table of exp0 33 3.
[’ WrapOneRow ’, {}]

Listing 4.1: Program for exp0 33 3
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Input Output

Figure 4.16: Input-output example for exp0 33 3

Figure 4.17 shows heatmaps of the attention weights of self-attention in the encoder
of our model. They are the attention weights computed with the given input-output
examples and corresponding reference program of exp0 33 3.

Each of six heatmaps in Figure 4.17 shows the attention weights of each sub-layer in
the Transformer encoder. The top-left heatmap is that of 0th sub-layer (the bottom
sub-layer), and the right-lower heatmaps are those of upper sub-layers, and then the
bottom-right heapmap is that of 5th sub-layer (the top sub-layer). The queries are
aligned on the horizontal axis of the heatmaps, and the keys on the vertical axis. In the
case of the self-attention in encoder, the queries and keys are both input-output example
linearized into a sequence.

We observed from these heatmaps that a query attends to the same key strongly particu-
larly in lower sub-layers. In other words, the attentions strongly appears at the diagonal
elements of the heatmap . That is, the queries locally attend to the keys around the di-
agonal elements of the heatmap in lower sub-layers, and contrarily they globally attend
to the keys through the whole heatmap in higher sub-layers. The rectangle patterns in
the higher sub-layers mean word-to-word attentions in cells of tables, which captures
the tabular cell structure of the table, whereas the line patterns in the lower sub-layers
mean character-to-character attentions.

Additionally, queries and keys of boundary special characters, <eoc>, <eol>, <sep> at-
tend strongly. These characters are crucial to represent the tabular structure of the table
and its transformation, thus, these attention weights may reflect this transformation.

Figure 4.18 shows heatmaps of the attention weights of cross-attention across encoder
and decoder for exp0 33 3. The queries in the horizontal axis represents the input-output
example and the keys in the vertical axis the program.

We observed that heatmaps of 0th, 1th, and 5th sub-layer show that the query <eoc>
attends strongly to the key “WrapOneRow” operation. This attention weights reflect
the function of this operation which converts <eol> into <eoc>.

Figure 4.19 shows heatmaps of the attention weights of self-attention in decoder for
exp0 33 3. The queries in the horizontal axis and the keys in the vertical axis the
program represents both the program. Apparently, the attention weights in the right
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Figure 4.17: Self attention in encoder for exp0 33 3

Figure 4.18: Cross attention across encoder and decoder for exp0 33 3

70



Visualization of Attentions

upper region of heatmaps are zero. This means that the self-attention in decoder is
masked from the attentions from the future queries in order to prevent the decoder
process from cribbing the next operation of the reference program in training data.

We cannot find other features to mention here regarding the self-attentions in decoder,
except for the strong attention weight at <sos>, which is the start of the sequence of a
program and thus is always anchored at the start position.

Figure 4.19: Self attention in decoder for exp0 33 3
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5
Decoding Methods for Program

Space Exploration

As written in 4.4, in our encoder-decoder model, beam search generates a sequence which
corresponds to a program for an input-output example from the Transformer decoder.
The Transformer decoder firstly outputs how likely each program component occurs for
the input-output examples provided, and then beam search generates the most likely
programs from the likelihoods.

Although beam search is a widely-used technique to generate sequences from the decoder
of the encoder-decoder model and is especially used in NLP tasks, it is not a technique
designed for program generation, thereby causes an inefficient exploration of the program
search space. Focusing on the fact that the PBE task is a search problem finding
consistent programs, we propose two methods to enhance the basic beam search method
for the program generation task in this chapter.

5.1 Multistep beam search

We focus on the intermediate tables created by transforming the input table into the
output table. We assume that intermediate tables is closer to the output table than the
input table. Therefore, the beam search that originates from the intermediate table is
more successful than the one that stems from the input table.
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On this assumption, we designed a multistep beam search which repeats beam search
for multiple times changing the origin of beam search into other intermediate tables,
and eventually finds the solution.

Algorithm 2 describes the procedure of the multistep beam search.

Algorithm 2 multistep beam search
Require: ninput . Node that represents the input table
Require: noutput . Node that represents the output table
Require: K . Beam size
Ensure: P . Program consistent with input-output tables

1: T ← ({ninput}, ∅)
2: while timeout doesn’t occur do
3: npick ← pickup node(T )
4: H ← beam search(npick, noutput,K) . basic beam search
5: for i ∈ {0 · · ·K − 1} do
6: S ← generate sequence(npick,Hi) . S = (N ′, E ′)
7: if ∃n ∈ N ′ such that n is identical to noutput then
8: return P . operation sequence from ninput to noutput

9: T ← graft(T ,S)
10: T ← prune(T )

In order to keep the candidates of the intermediate tables and efficiently handle them, we
maintain a directed tree structure T = (N , E) that comprises a set of nodes N = {ni |
i ∈ Z} and a set of directed edges E = {ei | i ∈ Z}. (see Fig. 5.1). This tree structure
represents the space already explored by the multistep beam search. Each node ni

represents a table and each directed edge ei represents an operation that transforms a
table into another table.

T is a tree structure that has the following features.

• The root node of T is the node ninput representing the given input table.

• A child node nchild is the result of applying a directed edge ei to a parent node
nparent. We also denote this relation in the form nchild = ei(nparent).

• ∀ni ∈ N is not identical to ∀nj ∈ N \ {ni}

The multistep beam search firstly “picks up” a node npick from T that is an origin node
of a beam search (see Line 3 in Algorithm 2). In the first step, the ninput is picked up
as the npick, because T includes only the node ninput.

Next, it invokes a basic beam search with the origin node npick, the goal node noutput,
namely the output table, and beam size K, returning the set of hypotheses H = ∪K−1

i=0 Hi

(see Line 4 in Algorithm 2).
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For each hypothesis Hi, a sequence S = (N ′, E ′) is generated, which contains the op-
eration sequence E ′ = (e′0, e′1, · · · , e′t), where e′t = <eos>. Applying the operation se-
quence E ′ to each npick in order, we obtain a sequence S = (N ′, E ′), such that N ′ =
{npick, n

′
1, n
′
2, · · · , null, null} and E ′ = {e′0, e′1, · · · , null, null}, where n′1 = e0(npick),

n′2 = e′1(n′1), etc. (see Line 6 in Algorithm 2 and Fig. 5.1). If the application of the
operation to a node fails, all subsequent processing in this operation sequence will fail
(denoted by null). The null entries are then deleted from N ′ and E ′.

Figure 5.1: Tree structure T and sequence S

If some n ∈ N ′ is identical to noutput, the corresponding operation sequence from ninput

to noutput is considered as the desired program P (see Line 8 in Algorithm 2).

To merge the sequence S into the directed tree T , the first node npick of S is grafted
onto the npick of T (see Line 9 in Algorithm 2 and Fig. 5.2) It then prunes the edge
and node that reach the identical nodes among T and S that have longer paths from
the root node ninput of T (see Line 10 in Algorithm 2 and Fig. 5.3). Using this pruning
process, we can avoid identical nodes in T , keep T simple, and make it efficient to run
the operations over all T .

This merging process is applied to all hypotheses, and then it proceeds to the next
pick-up (see Line 3 in Algorithm 2).

graft

Figure 5.2: Graft processing

Pick-up processing can be based on either of two strategies, namely a shortest-path
strategy or a longest-path strategy. Using a shortest-path strategy, the node with the
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identical

Figure 5.3: Prune processing

shortest path from ninput is picked up, whereas the node with the longest path is picked
up under a longest-path strategy.

After a node is picked up, the node is marked as done and never picked up in the
subsequent processing. This procedure is repeated until a program consistent with the
given input-output table is generated or a timeout occurs.

5.2 PV-Beam Search

Here we propose a beam search method called as PV-beam search. Basic beam search
keeps candidates including even programs that cannot create any output table and never
become any correct programs. In order to improve the efficiency of the basic beam search
procedure, we propose the PV-beam search that removes invalid hypotheses in the inner
loop of beam search procedure and keeps only valid hypotheses.

The PV-beam search is described in Algorithm 3. It is different from the basic beam
search at line 16-19 in Algorithm 3.

It synthesizes a program P from hypothesis h, and checks whether the program can
transform the input table into any table, and if not, removes the corresponding hypoth-
esis from candidates Hcand

t . Therefore it searches only the valid hypothesis space and
finds a correct program efficiently.

5.3 Experiments

5.3.1 Experimental Results

We conducted some experiments in order to evaluate our proposed beam search variants
multistep beam search and PV-beam search comparing conventional basic beam search
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Algorithm 3 PV-beam search
Require: input table . input table
Require: K . Beam size
Ensure: Hfinal . Hypotheses obtained finally

1: Hcand
0 ← {h} where h = ( <sos> )

2: Hfinal ← ∅
3: for t ∈ N in acsending order do
4: Ht ← ∅
5: St ← ∅
6: for h ∈ Hcand

t−1 do
7: for z ∈ O do
8: h← h||z . || concatenates tokens
9: s← score(h) . score given by equation 4.1

10: Ht ← Ht ∪ {h}
11: St ← St ∪ {s}
12: sort St by scores
13: sort Ht by the same order to St

14: Hcand
t ← ∅

15: for h ∈ Ht in order do
16: synthesize a program P from hypothesis h
17: output table = P (input table)
18: if output table is not a valid table then
19: continue
20: if the last token of h is <eos> then
21: Hfinal ← Hfinal ∪ {h}
22: K ← K − 1
23: if K = 0 then
24: return Hfinal

25: if | Hcand
t |< K then

26: Hcand
t ← Hcand

t ∪ {h}

and iterative beam search in previous literatures.

We used the experimental settings similar to those of Chapter 4.6.4 except for the
parameter of beam size as described in Section 4.6.1.4. In order to examine how each
beam search variants react for various beam size, we conducted experiments varying the
beam size beginning from 1, gradually increasing, finally reaching at 1000. Table 5.1
shows these experimental results.

5.3.2 Comparison of Various Beam Search Methods

In this section, we compare the accuracy of our proposed multistep beam search and
PV-beam search with basic beam search and iterative beam search.

We implemented the iterative beam search with reference to the work [75] to compare
with our proposed decoding methods. The iterative beam search repeats the basic beam
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Table 5.1: Accuracy with respect to beam size for various decoding methods. The
bold values are the best performance over the results.

Model Decoding
method

Beam
width

accuracy on
small data

accuracy on
large data

Transformer-based basic 1 76.7 22.5
5 89.0 32.2
10 89.0 35.5
50 91.7 43.5
100 93.1 46.8
500 93.1 51.4
1000 94.5 50.2

iterative 1 86.3 40.6
5 90.4 37.2
10 90.4 40.6
50 91.7 43.5
100 93.1 46.8
500 93.1 51.4
1000 94.5 50.2

MS shortest 1 86.8 29.9
5 94.5 41.8
10 94.5 45.1
50 94.5 49.1
100 94.5 50.8
500 95.8 53.1
1000 97.2 51.4

PV-beam 1 80.8 24.2
5 89.0 38.4
10 89.0 44.6
50 91.7 57.6
100 93.1 62.7
500 94.5 64.4
1000 97.2 60.4

lstm-based - 100 69.8 10.7
search-based [8] - - 73.9 63.2

search iteratively avoiding searching the hypotheses seen in the previous iterations and
eventually searches wider search space diversely.

We set the beam size from 1 to 1000 and a timeout to 30 seconds in our experiments.
Each experiment aborts when the timeout occurs. In the experiments of the following
sections, the combined token rule described in 4.3 is employed as a program linearization
method.

The experimental results here are given in Table 5.1 and Fig. 5.4 shows plots for these
results.
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The performance of the basic beam search improves by increasing the beam size because
the possibility that correct hypotheses get to be removed decreases with the increased
beam size.

The performance of the iterative beam search outperforms the basic beam search with
the small beam size because the iterative beam search repeats the basic beam search
and thereby searches the extensive search spaces. However, its performance is not better
than the basic beam search with the beam size of over 50 because the second iteration
of iterative beam search takes over 30 seconds to execute due to the time-consuming
process of checking whether each hypothesis has explored in the previous iteration.

The performance of the multistep beam search with the shortest path strategy is shown
in the experimental results. We selected the shortest path strategy because we observed
the performance of it is slightly better than or equals to that for longest path strategy
in almost experimental settings. The performance of the multistep beam search betters
according to the increase of beam size and achieves the best at the beam size of 500,
eventually outperforming the iterative beam search and the basic beam search.

Since multistep beam search repeats the basic beam search changing the starting point
of the search until it succeeds to find a consistent program, it always succeeds whenever
the basic beam search does. The light-weight computational cost of it results in outper-
forming the basic beam search with every beam size, although the iterative beam search
does not outperform the basic beam search with the beam size over 50

The performance of the PV-beam search outperforms other beam search methods with
beam size of over 50 in terms of the accuracy on all data and achieves the best accuracy
among other beam search methods.

5.3.3 Comparison of the Proposed Beam Search Methods and Base-
lines

We show the experimental results of two baseline systems (LSTM-based system and
search-based system) and the Transformer model with/without our proposed beam
search methods (basic beam search, multistep beam search and PV-beam search) and
compare their performance. The results are listed in Table 5.1 and summarized in Ta-
ble 5.2.

Note that experimental results in this Section are not those of the Transformer-based
model with tabular positional encoding in Chapter 4, but of the Transformer-based
model only with decoding methods in this Chapter 5.
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Figure 5.4: Accuracy of various types of beam search with respect to beam width.
The top panel (a) is for benchmarks of small data, the center for those of large data,

and the bottom for those of all data.
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Table 5.2: Accuracy of baselines and proposed methods. The bold values denotes the
best performance over the benchmarks.

model decoding method accuracy (small data) accuracy (large data)
search-based [8] - 73.9 63.2
LSTM - 69.8 10.7
Transformer basic beam (beam=100) 93.1 46.8
Transformer basic beam (beam=500) 93.1 51.4
Transformer multistep (beam=100) 94.5 50.8
Transformer multistep (beam=500) 95.8 53.1
Transformer PV-baem (beam=100) 93.1 62.7
Transformer PV-beam (beam=500) 94.5 64.4

The LSTM-based system shows the worst performance on both small and large data.
As described in Section 4.6.3, this is mainly because LSTM-based system does not have
enough expressiveness for tabular transformation and can not be trained by large-scale
training data. Therefore, the transformer model outperforms the LSTM-based system
considerably.

The search-based system, which is the best system ever developed for tabular transfor-
mation PBE system to the best of our knowledge, shows the performance independent
on the size of data and achieves good performance even on large data. While the
Transformer model have outperformed the search-based system on small data, it has
been difficult for the transformer-based model to outperform the search-based system
on large data. However, the Transformer-based system with our proposed PV-beam
search (beam=500) achieved better accuracy even on large data than the search-based
system due to the efficient program generation processing of PV-beam search.

Finally, we compare our Transformer-based systems and the baseline systems in terms
of response performance. Fig. 5.5 shows the comparisons of the response time of ex-
periments from Table 5.2, namely two baseline systems and the Transformer models
with/without proposed decoding methods with beam size of 100. The horizontal axis
shows the response time from the start of the inference and the vertical axis shows the
corresponding accuracy at that response time.

Each panel shows the Transformer models outperforms the LSTM-based system on every
benchmark data from start to the timeout (30 seconds).

The top panel (a) shows that the Transformer-based models better the search-based
system on small benchmark data in terms of accuracy from the start to the timeout.

The center panel (b) shows that the Transformer-based model with PV-beam search
outperforms the search-based system except for a few seconds from start and ends up
with almost even eventually, and the Transformer-based model with multistep beam
search has a better response than other systems for the first few seconds.
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Figure 5.5: Accuracy with respect to elapsed time (beam size = 100). The top panel
(a) shows the response performance for small benchmark data, center panel (b) for

large benchmark data, and bottom panel (c) for all benchmark data.
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The bottom panel (c) shows that the Transformer-based model with PV-beam search
outperforms the search-based system from start to timeout. And it also shows the
Transformer-based model with multistep beam search has a much better response than
other systems.

We observe in our experiments the Transformer model with PV-beam search with beam
size of 500 (see Fig. 5.6) is inferior to the search-based method for a few seconds from
the start time due to the high computational cost of the program validation process
(line 16-18 in Algorithm 3). Thus, we conclude that the Transformer-based model with
PV-beam search by beam size 100 is the best system considering the balance of both
the final accuracy and the response performance.

We also observe that Transformer-based model with PV-beam search with beam size of
500 would be better if the final accuracy is preferred. And the Transformer-based model
with multistep beam search would be better in the situation where a quick response is
more desirable.
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Figure 5.6: Accuracy with respect to elapsed time (beam size = 500). The top panel
(a) shows the response performance for small benchmark data, center panel (b) for

large benchmark data, and bottom panel (c) for all benchmark data.
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6
Transformer-based Model with

TPE and PV-Beam Search

In this chapter, we focus on the neural model that we finally obtained through this study:
the Transformer-based model with both tabular positional encoding (TPE) in Chapter 4
and PV-beam search, which performs best in Chapter 5. We first experimentally evaluate
the model in Section 6.1, and then discuss how to construct a practical PBE system using
this model in Section 6.2.

6.1 Experimental Evaluation

In this Section, we show the experimental results of the Transformer-based model with
both tabular positional encoding (from Chapter 4) and PV-beam search, which performs
best in Chapter 5. We used the experimental settings written in Section 4.6.1. We set a
timeout to 30 seconds. Each experiment aborts when it exceeds the timeout. Table 6.1)
shows the experimental results of our proposed models and the baseline systems in terms
of accuracy.

We compare our proposed model with two types of baselines in our experiments. The
first baseline is a search-based (non-neural) method that simulates the work Foofah
[8] described in Section 4.6.1.6. It is referred as ”Search-based“ in the experimental
results. The second one is the Transformer-based model that was the best in the accuracy
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Table 6.1: Accuracy of baselines and proposed models. The bold number represents
the best performance over a benchmark set.

Model beam
size

accuracy
(small data)

accuracy
(large data)

accuracy
(all data)

Search-based [8] - 73.9 63.2 66.4
Transformer (best in Section 5.3.3) 100 93.1 62.7 71.6
Transformer w/ ATPE (sinusoidal) 100 91.7 68.3 75.2
Transformer w/ ATPE (learned) 100 91.7 64.4 72.4
Transformer w/ CTPE (sinusoidal) 100 91.7 69.4 76.0
Transformer w/ CTPE (learned) 100 91.7 70.6 76.8
Transformer (best in Section 5.3.3) 500 94.5 64.4 73.1
Transformer w/ ATPE (sinusoidal) 500 94.5 72.3 78.8
Transformer w/ ATPE (learned) 500 93.1 70.0 76.8
Transformer w/ CTPE (sinusoidal) 500 91.7 69.4 76.0
Transformer w/ CTPE (learned) 500 91.7 72.3 78.0

performance in Section 5.3.3 with the PV-beam method and beam size 500. It is referred
as ”Transformer”’ in the experimental results. We no longer compare with the baseline
of LSTM-based neural method described in Section 4.6.1.6 because we already know our
proposed Transformer-based model outperforms it significantly on the experiments in
previous Sections.

Our models proposed in Section 4.5.2 are referred as ”ATPE” and ”CTPE”. Each model is
implemented both by the fixed encoding with sinusoidal function referred as ”sinusoidal”
and by the learned encoding denoted as ”learned”.

First, these experimental results show the ML-based models, namely Transformer, ATPE
and CTPE outperform the search-based method in both the large and the small datasets.
Especially, the Transformer has a large advantage in small datasets. This shows the ML-
based models can deal well with small-size tabular data resulting in better performance
in the small datasets compared to the conventional search-based method.

Second, our proposed models, ATPE and CTPE, are comparable to the Transformer
in the small datasets, and are significantly better than the Transformer in the large
datasets. This result shows that our proposed models represent the vertical and hori-
zontal dependencies between tabular cells by embedding the positions of two-dimensional
structure directly, and are promising models for encoding two-dimensional tabular data.

We do not find remarkable difference in the accuracy performance between ATPE and
CTPE and between sinusoidal and learned. Their performance is comparable to each
other. The model that achieves the best performance among all models is the ATPE
with sinusoidal function.

Finally, we compare our proposed models and the baselines in terms of their response
time performance. We choose the ATPE with sinusoidal function which achieved the
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Figure 6.1: Accuracy with respect to the elapsed time. The top panel (a) shows the
performance in terms of the response with the small benchmark datasets, the center
panel (b) shows the results with the large benchmark datasets, and the bottom panel

(c) shows the results with all benchmark datasets.
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best performance in Table 6.1. The bottom panel (c) of Figure 6.1 compares the response
performance of the search-based method and ML-based models with beam size 100 and
500 with all datasets. Our proposed model, ATPE with beam size 100, achieved the
best performance in the time range from start to about 15 seconds. And ATPE with
beam size 500 outperforms that with beam size 100 when the time elapses longer than
15 seconds. This means a larger beam size expands the solution space of beam search
and takes a longer time to solve the problem.

Thus, we suggest that our proposed model with beam size 500 is better if the final
accuracy is the preferred metric, whereas our proposed model with beam size 100 would
be better if a rapid response is more desirable.

6.2 Towards Practical PBE Systems

6.2.1 Iterative PBE System

We now explain the practical goal of our PBE system by demonstrating examples.

so
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s

Figure 6.2: The left-hand table is the original table to be transformed, and the right-
hand table is the table desired

Suppose a data analyst wants to transform a large table with some hundreds of rows
as seen in Fig. 6.2. Since transforming such a large table is a very cumbersome and
time-consuming task, she instead tries creating a program that transforms the whole
original table into the desired table using a PBE system. Creating a transformation
program using the PBE system requires iteration steps across the PBE system and the
human as described below.

In the initial step, she creates a small input-output example table through extracting an
input example from the original table and creating an output example from scratch as
shown in Fig. 6.3. Then, when she commands the PBE system, it synthesizes a program
(in Listing 6.1) based on her example.
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Figure 6.3: Input-output example tables used in the first step: the left-hand table is
the input example and the right-hand table is the desired output

Figure 6.4: Input-output example tables used in the second step: the left-hand table
is the input example and the right-hand table is the desired output

Split (1, ’:’)
Fill (0)
UnFoldHeader (1)

Listing 6.1: Transformation program for the initial step

After that, she runs the synthesized program on the whole original table to validate that
the program outputs the table as she intends. In this case, the program runs incompletely
because the program did not learn the transformations for the table headers and the
blank lines; the examples does not include these items like headers and blank lines.

In the second step, she modifies the first example including the table headers and the
blank lines as shown in Fig. 6.4. This time, she ensures that the synthesized program
outputs the table she intends and consequently finds the correct program (in Listing 6.2).

Split (1, ’:’)
Delete (2)
Fill (0)
UnFoldHeader (1)

Listing 6.2: Transformation program for the second step

She can eventually obtain a user-intended program through repeating the iteration of
modifying examples, synthesizing a program, and validating the program.

The goal of the PBE system is not only synthesizing a correct program quickly. There
are five requirements for the PBE system as below.

• Reducing the cost of one iteration

– Easiness of creating and giving examples
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– Consistent and fast program synthesis

– Easiness of validation

• Reducing the number of iterations

– Generalization of program

– Resolving Failure cases

Easiness of Creating and Giving Examples Creating examples and giving them
into the PBE system is repeated many times iteratively until the intended program
is completely synthesized. Creating examples for tabular transformations is relatively
more complicated than string transformations. Therefore, creating input-output exam-
ples easily and quickly is critical for the usability of PBE for tabular transformations.
Furthermore, giving the examples into the PBE system must be also an easy and quick
operation for users like one-click action. Although it is an interesting issue, we do not
expand our discussion on user-interface related questions as they are out of the scope of
this study.

Consistent and Fast Program Synthesis The PBE system needs to be able to
rapidly synthesize the program consistent with user-given examples. We have focused on
the consistency metric through this dissertation and achieved good performance using
our proposed model.

Easiness of Validation The validation process is also repeated many times itera-
tively. In the validation process, users transform the original data using the synthesized
program and then check if the output data is what they want or not. Large original and
transformed data, which possibly ranges to some thousands of rows or columns, prevent
users to view the entire data in one screen at a time. Thus, finding erroneous region from
such large data efficiently is difficult for users. An ideal PBE system involves functions
of highlighting or visualizing the regions that should be focused from the whole data.
Although it is also an interesting issue, we do not expand our discussion on user-interface
related questions as they are out of the scope of this study.

Generalization of Program The PBE system that successively synthesizes the user-
intended program from smaller and clueless examples can reduce the iteration number.
The metric that measures this ability is called generalization. We discuss the perfor-
mance of generalization for our proposed model in Section 6.2.2.
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Resolving Failure Cases The PBE system often fails generating programs for sev-
eral reasons. Providing some good hints is crucial for amending the failure and conse-
quently reduce the iteration number. We discuss the challenges in several failure cases
in Section 6.2.3.

6.2.2 Generalization

Generalization (see Section 4.6.1.1) is a key metric for a practical PBE system. The
goal of PBE users is synthesizing a program that is able to transform not only the
user-provided example data but also the original data successfully. The generalization
performance is the ability of synthesizing a program that can transform the original data
and is regarded as more important than consistency in a practical PBE system. A PBE
system with good generalization performance suppresses the number of user’s iteration
seen in the Section 6.2.1 and allows users to obtain the solution they want quickly.

In this section, we evaluate the generalization of our proposed model and existing search-
based method. The Foofah datasets are composed of 250 datasets with 50 independent
benchmarks. Each benchmark has five datasets that represent an identical tabular-
transformation but different in table size.

Let Di be a dataset (input-output tables) of a benchmark for size i ∈ 1, 2, 3, 4, 5 .
Inclusion relation holds as follows.

D1 ⊂ D2 ⊂ D3 ⊂ D4 ⊂ D5

Where the relation Di ⊂ Dj means dataset Di is a part of dataset Dj . Notably here, we
define that the inclusion symbol “⊂” denotes whether a table includes the cells of another
table or not, apart from the strict definition in set theory. Figure 6.5 shows an example
dataset of D1 (left) and D2 (right) from a benchmark named “exp0 10”. It shows that
the input–output tables of D1 are part of those of D2. Additionally, Figure 6.6 shows
the example for D3 and D4, and Figure 6.7 shows the example for D5. These examples
show datasets Di satisfy the relation Di ⊂ Dj for i < j.

We evaluated our model by ensuring whether each program synthesized from datasets
Di for i ∈ 1, 2, 3, 4 successfully transforms an input table of D5 into an output table
of D5 or not. Table 6.2 shows the generalization performance of our proposed model
that performs best over experiments in Section 6.1. “Consistent programs” denotes the
number of benchmarks that can synthesize programs that transform the input table of
Di into the output table of Di. “Generalized programs” are those that can transform
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Input Input

Output

Output

Figure 6.5: Input-output tables of D1 (left) and D2 (right) in exp0 10 benchmark

Input Input

Output

Output

Figure 6.6: Input-output tables of D3 (left) and D4 (right) in exp0 10 benchmark

Input

Output

Figure 6.7: Input-output tables of D5 in exp0 10 benchmark
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the input table of D5 into output table of D5. “Consistency (%)” is the ratio of the
benchmarks where a consistent program is synthesized, whereas “generalization (%)” is
the ratio of the benchmark where a generalized program is synthesized.

Table 6.2: Generalization (our proposed model)

dataset size consistent
programs

generalized
programs

consistency
(%)

generalization
(%)

D1 46 22 86.0 44.0
D2 41 38 82.0 76.0
D3 38 38 76.0 76.0
D4 38 38 76.0 76.0
D5 34 34 68.0 68.0

Table 6.2 shows that the consistency decreases as the dataset size increases because
synthesizing problem is more difficult for larger dataset size, whereas the generalization
increases as the dataset size increases from D1 to D2 because expressiveness of D2 is
higher than D1. The generalization of D1 is extremely low, because a considerable
number of datasets of D1 are too small to express the transformation of D5. This
means PBE systems have no way that synthesizes generalized programs from such small
examples without enough clues for generalization. The generalization of D2 significantly
better that of D1 and achieves 76%. The generalization and consistency are equal from
D3 toD5. This means dataset size larger thanD3 have sufficient expressiveness in all tests
for generating programs consistent with the dataset of D5. However, the generalization
of D3 to D5 does not better that of D2 because consistency of those dataset size never
better than 76%. Thus, the generalization achieves the best at D2 in our proposed
model.

Table 6.3: Generalization (search-based)

dataset size consistent
programs

generalized
programs

consistency
(%)

generalization
(%)

D1 37 19 74.0 38.0
D2 36 34 72.0 68.0
D3 34 33 68.0 66.0
D4 30 30 60.0 60.0
D5 30 30 60.0 60.0

Table 6.3 shows the generalization of search-based method. Our model outperforms
the existing search-based method in terms of both consistency and generalization in all
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datasets Di for i ∈ {1, 2, 3, 4, 5}. Notably, better generalization of our model comes from
the better consistency. Accordingly, the performance feature in sole generalization of
our proposed model is almost similar to that of search-based method. For example, the
generalization of search-based method is the best (68%) at D2 as well as that of our
proposed model.

6.2.3 Resolving Failure Cases

PBE is a black-box and obscure system for PBE users. When the PBE system fails
to generate a program, all users can do is providing additional or renewed examples.
However, PBE systems merely offer hints that help users to reason out what causes
the failure, and merely provides a synthesis process and generated programs easy to
understand.

Failures in program synthesis are categorized into three failure cases:

• Ambiguous Specification: the PBE system successes generating programs, but
it’s wrong solution.

• Solvable Failure: the PBE system fails generating programs despite with solvable
program space.

• Unsolvable Failure: the PBE system fails generating programs due to unsolvable
program space”.

These failure cases can be formally described as follows. Let P (Program space) to be
the set of all programs that the PBE system can express, E (Explored space) ⊂ P to be
the set of all programs the PBE system has explored, C (Consistent programs) to be the
set of all consistent programs that user-given examples can express, and G (Generalized
programs) ⊂ C to be the set of all programs that the user wants to obtain. Specifically,
a success situation can be expressed using a set relation E ∩ G 6= ∅ and this relation
illustrated in Figure 6.8.

6.2.3.1 Ambiguous Specification

PBE systems possibly generate programs consistent with user-given examples but incon-
sistent with unseen data. This case is formally expressed with E ∩G = ∅ ∧ E ∩C 6= ∅
and is illustrated in Figure 6.9.

This failure case results from ambiguity of the user-given examples. However, providing
additional examples that disambiguate their intent is often hard for users. Mayer et
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Figure 6.8: Venn Diagram for a success case
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Figure 6.9: Venn Diagram for a ambiguous specification case

al. [87] and some studies [88, 89] tackle this problem in an active learning manner
by automatically suggesting input examples that distinguish multiple programs. Peleg
et al. [90] allows users to directly specify which parts of a generated program must
be included or excluded in the next iteration. These approaches can be applied to our
proposed system in principle, and consequently improve our interactive PBE system
discussed in Section 6.2.1.

6.2.3.2 Solvable Failure

PBE systems possibly fail generating programs consistent with user-given examples.
The case means the PBE system fails finding a solution despite the program space ex-
plored includes solutions (i.e., programs consistent with examples). This case is formally
expressed with E ∩ C = ∅ ∧ P ∩ C 6= ∅ and is illustrated in Figure 6.10.

This failure mainly results from high complexity of user-given example, thus is possibly
resolved by providing examples decomposing a complex example to simpler example.
Little work has been done against this failure. Zhang et al. [91] proposes an interpretable
synthesizer for regular expressions that shows the underlying synthesis process to users
and thus providing hints to them in the next iteration. However, users hardly understand
the underlying synthesis process (for example, program space explored in the current
step). This challenge remains difficult for now and have to be solved in future work
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Figure 6.10: Venn Diagram for a solvable failure case

6.2.3.3 Unsolvable Failure

This case means the PBE system fails finding a solution because the program space
explored never includes solutions. This case is formally expressed with P ∩ C = ∅ and
is illustrated in Figure 6.11.

P
E

C
G

Figure 6.11: Venn Diagram for a unsolvable failure case

This case often occurs because many users are novice for the PBE system, and naturally
unfamiliar with how expressive programs the PBE system can generate. In this case,
users have to give up using the PBE system, and attempt to select other techniques,
including those equipped in data preparation tools to solve their problem.

However, users hardly know which is better providing simpler examples to the PBE
system or giving up using the PBE system. A technique of successfully detecting if the
user-given example is solvable or not is strongly expected, but is difficult to realize for
now.

6.2.4 Practical Data Preparation System

Data preparation includes a lot of tasks: not only data transformation, but also import-
ing data, cleaning & cleansing data, enriching data, understanding data.
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Importing data Data preparation leverages various formats of data from vari-
ous sources: structured data collected from relational database management systems
(RDBMS) and DWH; semi-structured data from NoSQL, CSV, XML, and the Web;
and unstructured data from text documents, and log files. Hence, data preparation
tools require functions able to read various data formats and convert them into an inner
format viewable in a spreadsheet of the tools.

Cleaning & Cleansing data Data preparation cleans the data and makes its qual-
ity high enough to inject into post-process systems like business intelligence (BI) tools
and statistical tools. Pre-processing includes removing outliers, filling missing values,
filtering, and entity resolution as well as tabular transformation discussed in this disser-
tation.

Enriching Data Data preparation enriches the data with external data, collected
external data from various sources like Web sites, open data from governments, and free
or commercial data published by various organizations. Enrichment techniques include
schema matching, lookup, and joining of external tables.

Understanding data Data preparation requires the data understanding process for
knowing the nature of the unfamiliar data and validating if the data is transformed well.
Data understanding includes detecting erroneous/missing values, datatype inference,
profiling, aggregation, and visualizing these results. Data preparation includes many
tasks as described above. Users tackle data preparation by conducting these tasks back
and forth each other. Thus, data preparation requires tools that integrate features for
these tasks seamlessly and allow users to complete these tasks in one package. Many
data preparation tools equip this feature in a user interface and integrate these tasks.

Our neural model should be integrated in such a data preparation tools. PBE can solve
only tabular transformation tasks, which is just one part of data preparation, thus it is
difficult to be used as a tool isolated from other data preparation functions.

FlashFill [9] is a representative product integrated into Microsoft Excel. However, it
supports only syntactic (string) transformations. Wrex [92] proposes a PBE system inte-
grated as a Jupyter notebook extension. This system allows synthesizing readable codes
in Python language for dataframe transformation by providing an output dataframe in
the code block on the Jupyter notebook. It integrates the PBE task and other tasks on
the Jupyter notebook. However, Jupyter notebooks are suitable for Python program-
mers but not for novice users without coding skills.
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For those considerations, we conclude that our model best be embedded into data prepa-
ration tools like OpenRefine [11], and Trifacta [12]. Our model embedded in a data
preparation tools will help users make tabular transformations only by providing exam-
ples in iterative manner without specifying operators and parameter.

97



Chapter

7
Conclusion

7.1 Summary

In this dissertation, we have proposed a new ML approach to realize PBE for tabular
transformations. As far as we know, our Transformer-based neural model is the first of
its kind, even for non-tabular-transformation PBE.

In order to handle tabular transformations, we have proposed the Transformer-based
model that enables learning large scale parameters of neural network and therefore
acquires the ability to express programs of tabular data. The Transformer-based model
achieves faster and more expressive performance than the LSTM model (baseline) used
in conventional ML-based PBE research.

We have also proposed the tabular positional encoding that enables the Transformer-
based model to learn the two-dimensional positions of each element and thus learn
the tabular structure of tabular data. We have designed two types of tabular positional
encoding called ATPE and CTPE and also evaluated the model with learned parameters
and fixed ones. We have experimentally ensured the Transformer-based model with
this tabular positional encoding outperforms the models without the tabular positional
encoding.

In addition, we have proposed multistep beam search and the PV-Beam search, which
optimize the conventional beam search for program generation. We had experiments
that compare the accuracy performance of the model with our proposed beam search
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and that with basic beam search. As a result, we found that the PV-beam search
surpasses the accuracy and response of the baselines and the multistep beam search
realizes much shorter response time than the search-based system.

Finally, we compared our proposed Transformer-based models that includes tabular
positional encoding and multistep beam search and PV-beam search as the decoding
methodology to the baselines (LSTM-based model and search-based model) in experi-
ments. We found that our proposed models achieve superior performance to baselines
and provide a high-performance and scalable ML model for tabular transformation PBE.
Thus, the model enables users to perform table transformation easily and effortlessly.

We can conclude that our model allows users to generate a correct program quickly
from user-supplied small examples and obtain a final program using the PBE system
interactively.

7.2 Other Applications

Our achievements are applicable not only to PBE for tabular transformation but also
other applications. Especially, two-dimensional tabular positional encoding can be used
in many table understanding tasks using the Transformer encoder.

For example, we can consider applying it to cell-classification studies [66, 67, 93] that
classifies cells in a spreadsheet into semantic types like: “data”, “attributes”, “meta-
data”, “header” or “derived”, to discover tables and then infer the layout of the table
automatically. The table-to-text tasks can also benefit from it [69, 94]. In a table-to-
text task, given a region of a table as input, a natural language sentence is generated
from the selected table region. Additionally, semantic parsing (query answering) on tab-
ular data [95] is also a promising application as seen in TAPAS [71] which uses a close
technique to ours. Given tabular data and query (in natural language in many cases)
related to the tabular data, a semantic parsing task reads the given tabular data and
then answers to the query the most salient data in the tabular data.

Our method helps the Transformer encoder to learn the structure of tabular data ade-
quately, thus improves many table understanding tasks described above.

7.3 Future Work

In this section, we give some future directions for the remaining work in this dissertation.
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Future Work

7.3.1 Directions for Study of Improving our model

Large-Scale Tabular Data Although our proposed model has accomplished a sig-
nificant improvement from the preliminary LSTM-based model for large-size benchmark
datasets, the model is less efficient for large-size benchmarks than small-size ones. Ap-
plying variants of Transformer model for a large document or sequence including Long-
former [51] possibly solves this challenge. Refer to Section 3.3.3 for more details.

Synthesis of Training Data Our synthesis method of training data proposed in
Section 4.6.1.2 relies on uniformly sampling values from all possible parameter ranges.
More sophisticated methods including [54], which as described in Section 3.3.4 makes
uniform sampling for only given salient variables, can synthesize training data with more
real data distribution.

Reinforcement Learning Our ML-based models are trained to maximize the like-
lihood of reference programs in training data. However, if possible, we want to train
the model to maximize the possibility of generating a program that transforms an input
example into a valid table or the output example ideally. Reinforcement learning may
be a possible solution as described in Section 3.3.5.

Benchmark Datasets We used the benchmark datasets from Foofah [8] to evaluate
the performance of our model. The benchmark datasets of Foofah are constructed
by broadly collecting from the prior works like Wrangler [16] and Potter’s Wheel [10].
However, we think more heterogeneous benchmark data are needed from various sources
including open data from governments for example, to study a PBE system applicable
to the real-world scenarios. Collecting and organizing such benchmark datasets is left
as a work to be done.

7.3.2 Directions for Study of Managing the PBE system

Extensibility Neural network models can extend their expressiveness by retraining
the model with the data including the already trained one and newly added one. How-
ever, the cost (time) of retraining a huge training data is considerably high. We expect
techniques of fine-tuning or transfer-learning with small additional training data could
possibly solve the challenge. Studies on extending our model using these techniques are
proposed as future work.
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Future Work

Practical PBE System As we discussed in Section 6.2, many challenges remain
to be solved in realizing a practical PBE system. Such system requires not only studies
on the program synthesizer, but also, more crucially, those on how to integrate the
synthesizer into the system with helpful user interactions and adequate expressive power
to eliminate the user’s high hurdles to data transformation.
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