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Abstract

The integration of high-level symbolic reasoning with efficient low-level perception is
one of the longstanding challenges in the field of artificial intelligence. This thesis
explores various approaches and techniques for the integration of machine learning
and knowledge representation.

More specifically, in one of the chapters, we shall study how a symbolic method
of programming can be used to explain the behavior and predictions of decision
tree-ensemble models. In another chapter, we shall present a method to embed logic
programs with non-monotonic semantics into matrices, then using a differentiable
method to find vectors that correspond to valid interpretations of the program in
continuous vector spaces.

The main contributions of this thesis are: (1) presenting a novel application of
Answer Set Programming for explaining trained machine learning models, where
we use ASP to generate explainable rule sets from tree-ensemble models, and (2)
developing a method for computing supported models of normal logic programs in
vector spaces using differentiable computation, where normal logic programs are
embedded into matrices and model search is carried out using gradient information.
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1
Introduction

In recent years, we have seen an increasing number of artificial intelligence applications
ranging from personal assistants on smartphones, fraud detection in financial services
to autonomous driving. Many of these applications are supported by machine learning
methods that can learn patterns from large amount of data to make predictions without
human intervention. The rise in computational power brought by multicore CPU and
GPGPU has also contributed to the accelerating trend, and it is taken for granted that
learning algorithms take advantage of parallel processing for faster training. With this
rapid adoption of AI applications in society, we started seeing issues with purely
data-dependent approaches, for example, bias[1], ethics[2] and explainability[3] in AI.

We conjecture that experience from knowledge representation and reasoning (KR&R
or KR for short) can be useful in solving some of the issues we face today in AI. KR is a
subfield of artificial intelligence, dedicated to the representation of knowledge in a
computer understandable format, so that computers can solve complex reasoning
problems automatically. Typical characteristics of KR include the use of symbolic
means to represent knowledge and formal methods like logic to solving problems, as in
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logic programming. Main advantages of symbolic methods in the context of machine
learning include (1) data efficiency, where the algorithms can learn from only a handful
of examples, as opposed to requiring many data points, and (2) symbolic representation,
where the learned rules and concepts are represented in a more human-readable
fashion, as opposed to distributed representation. This raises the question: how can we
combine the techniques of KR and ML in a mutually beneficial manner?

A similar point of view has been studied in another subfield of AI, which we
now call neuro-symbolic artificial intelligence. Different spellings and wordings exist,
including neural-symbolic and neurosymbolic, among others. It is generally accepted
that the term neural refers to the use of artificial neural networks, and symbolic refers
to AI approaches that are based on symbolic manipulation, which also refers to, but
not limited to, methods based on formal logic. The main interest is then to achieve a
best-of-both-worlds scenario, where the strengths of neural and symbolic approaches
are combined to benefit each other. Looking from the symbolic side, the strengths of
neural approaches are: (1) the ability to learn from "raw" data, such as images and
texts, that include noises and imperfections (2) generalization capability, where the
trained model can be tested against unseen data. On the other hand, looking from the
neural side, the strengths of symbolic approaches are: (1) high explainability, thanks to
explicit symbolic representation, (2) the ease with which human expert knowledge
can be incorporated into the design, and (3) provable correctness and soundness of
reasoning process itself.

The potential benefits of combining machine learning and/or neural approaches
with knowledge representation and reasoning approaches have prompted researchers
to work in this area. However, there is much to be explored, especially in terms of
concrete implementations of these integrated systems. The purpose of this thesis is
therefore, in the broadest sense, to explore various approaches and techniques for the
integration of ML and KR. More specifically, in one of the chapters, we shall study
how a symbolic method of programming (Answer Set Programming) can be used to
explain the behavior and predictions of decision tree ensembles. In another chapter, we
shall present a method to embed logic programs with non-monotonic semantics into
matrices, then using a differentiable method to find vectors that correspond to valid
interpretations of the program in continuous vector spaces.
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1.1 Contributions

The main contributions of this thesis are summarized in this section.
Chapter 3 presents a method for generating rule sets as global and local explana-

tions for tree-ensemble learning methods using Answer Set Programming. To this
end, we adopt a decompositional approach where the split structures of the base
decision trees are exploited in the construction of rules, which in turn are assessed
using pattern mining methods encoded in ASP to extract interesting rules.

The main contributions are:

• We present a novel application of Answer Set Programming (ASP) for explaining
trained machine learning models. We propose a method to generate explainable
rule sets from tree-ensemble models with ASP. More broadly, this work con-
tributes to the growing body of knowledge on integrating symbolic reasoning
with machine learning.

• We present how the rule set generation problem can be reformulated as an
optimization problem, where we leverage existing knowledge on declarative
pattern mining with ASP.

• We show how both global and local explanations can be generated by our
approach, while comparative methods tend to focus on either one exclusively.

• To demonstrate the practical applicability of our approach, we provide both
qualitative and quantitative results from evaluations with public datasets, where
machine learning methods are used in a realistic setting.

For reproducibility, we have made the code, datasets and experimental settings
publicly available in the following GitHub repository: https://github.com/atakemura/
treetap

Potions of this chapter were previously published as:

1. A. Takemura and K. Inoue, “Generating Explainable Rule Sets from Tree-Ensemble
Learning Methods by Answer Set Programming,” in Proceedings 37th International
Conference on Logic Programming (Technical Communications), ICLP Technical
Communications 2021, Porto (Virtual Event), 20-27th September 2021 (A. Formisano,

https://github.com/atakemura/treetap
https://github.com/atakemura/treetap
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Y. A. Liu, B. Bogaerts, A. Brik, V. Dahl, C. Dodaro, P. Fodor, G. L. Pozzato,
J. Vennekens, and N.-F. Zhou, eds.), vol. 345 of EPTCS, pp. 127–140, 2021

2. A. Takemura and K. Inoue, “Rule Extraction from Decision Tree Ensembles by
Answer Set Programming,” Sept. 2020. Poster presentation at 17th International
Conference on Principles of Knowledge Representation and Reasoning (KR)

Chapter 4 presents a method for computing supported models of normal logic
programs in vector spaces using gradient information. First, the program is translated
into a definite program and embedded into a matrix representing the program. We
introduce a loss function based on the implementation of the immediate consequence
operator 𝑇𝑃 by matrix-vector multiplication with a suitable thresholding function, and
we incorporate regularization terms into the loss function to avoid undesirable results.
We report the results of several experiments where our method shows promising
performance when used with adaptive gradient update.

The main contributions are:

• Presenting an alternative method for embedding logic programs into matrices,
and designing an almost everywhere differentiable thresholding function.

• Introducing a loss function with regularization terms for computing supported
models, and integrating various gradient update strategies.

• Demonstrating with a help of systematic performance evaluation on a range of
programs, that by selecting appropriate components, it is possible to achieve
much higher performance and stability than the existing method.

Potions of this chapter were previously published as:

1. A. Takemura and K. Inoue, “Gradient-Based Supported Model Computation in
Vector Spaces,” in (to appear) 16th International Conference on Logic Programming
and Non-monotonic Reasoning (LPNMR 2022), 2022

2. A. Takemura and K. Inoue, “Gradient-Based Supported Model Computation in
Vector Spaces,” in Proceedings of the International Conference on Logic Programming
2021 Workshops Co-Located with the 37th International Conference on Logic
Programming (ICLP 2021), Porto, Portugal (Virtual), September 20th-21st, 2021
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(J. Arias, F. A. D’Asaro, A. Dyoub, G. Gupta, M. Hecher, E. LeBlanc, R. Peñaloza,
E. Salazar, A. Saptawijaya, F. Weitkämper, and J. Zangari, eds.), vol. 2970 of CEUR
Workshop Proceedings, CEUR-WS.org, 2021

For reproducibility, we have made the code, datasets and experimental settings
publicly available in the following GitHub repository: https://github.com/atakemura/
grasup

https://github.com/atakemura/grasup
https://github.com/atakemura/grasup
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2
Background

This chapter provides the necessary background on Logic Programming, Answer Set
Programming and Explainability in Machine Learning. Each chapter in this thesis
introduces the necessary background, formalization and definitions that are specific to
that chapter. Thus, for convenience, we present only the definitions that are common to
all of them, and we introduce these topics in a rather informal manner in this chapter.

2.1 Logic Programming

Logic Programming is a declarative form of programming based on formal logic. A
logic program typically consists of a set of rules about a particular problem domain.
The rules are written in the form:

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑚 (𝑚 ≥ 0) (2.1)
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where ℎ is the head of the rule (ℎ𝑒𝑎𝑑 (𝑟 ) = ℎ), and 𝑏1, ..., 𝑏𝑚 are propositional atoms
(literals) that constitute the body (𝑏𝑜𝑑𝑦 (𝑟 ) = {𝑏1, ..., 𝑏𝑚}) of the rule. We use the symbol
← for implication, and ∧ for logical and. The rule (2.1) can be read in plain English as
"ℎ is true if all of 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑚 holds".

More formally, we consider a language L that contains a finite set of propositional
variables defined over a finite alphabet and the logical connectives ¬, ∧, and←. The
Herbrand base, 𝐵𝑃 , is the set of all propositional variables in a logic program 𝑃 . A
definite program is a set of rules of the form (2.1), where ℎ and 𝑏𝑖 are propositional
variables (atoms) in L.

When a rule has no body literals, it is called a 𝑓 𝑎𝑐𝑡 :

ℎ ← (2.2)

which states that ℎ is unconditionally true.

When the head of the body is ⊥, it is called an integrity constraint:

⊥ ← 𝑝 (2.3)

which states that 𝑝 cannot be true. ⊥ in the head is often omitted, thus (2.3) is written
as:

← 𝑝 (2.4)

These are usually used to filter out undesirable situations.

In classical logic, the negation of an atom can be understood as "the atom can
be inferred to be false", however, in logic programming, it is often difficult to prove
that a statement is false. In logic programming, the notion of negation as failure (or
default negation) is used to denote that, when an atom cannot be shown to be true, it is
assumed to be false. For example, a proposition ¬𝑞 under this assumption is true, if 𝑞
cannot be shown to be true.

A program may contain rules with negation as failure literals, and in such cases the
program is said to be a normal program. More formally, a normal program is a set of
rules of the form (2.5) where ℎ and 𝑏𝑖 are propositional variables in L.

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑙 ∧ ¬𝑏𝑙+1 ∧ ¬𝑏𝑙+2 ∧ · · · ∧ ¬𝑏𝑚 (𝑚 ≥ 𝑙 ≥ 0) (2.5)
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We refer to the positive and negative occurrences of atoms in the body as 𝑏𝑜𝑑𝑦+(𝑟 ) =
{𝑏1, . . . , 𝑏𝑙 } and 𝑏𝑜𝑑𝑦−(𝑟 ) = {𝑏𝑙+1, . . . , 𝑏𝑚}, respectively. A normal program is a definite
program if 𝑏𝑜𝑑𝑦−(𝑟 ) = ∅ for every rule 𝑟 ∈ 𝑃 .

2.1.1 Semantics of Logic Programs

An Herbrand interpretation, 𝐼 , of a normal program 𝑃 is a subset of 𝐵𝑃 . A model 𝑀 of 𝑃
is an interpretation of 𝑃 where for every rule 𝑟 ∈ 𝑃 of the form (2.5), 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝑀
and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩𝑀 = ∅ imply ℎ ∈ 𝑀 . A program is called consistent if it has a model. A
model𝑀 of program 𝑃 is minimal if no proper subset of𝑀 is a model of 𝑃 .

The immediate consequence operator 𝑇𝑃 : 2𝐵𝑃 → 2𝐵𝑃 is a function on Herbrand
interpretations. For a definite program 𝑃 with an interpretation 𝐼 , we have:

𝑇𝑃 (𝐼 ) = {ℎ𝑒𝑎𝑑 (𝑟 ) |𝑟 ∈ 𝑃 and𝑏𝑜𝑑𝑦 (𝑟 ) ⊆ 𝐼 } (2.6)

Essentially, 𝑇𝑃 (𝐼 ) shows what can be deduced from an interpretation 𝐼 in a single
step (hence the name). The powers of 𝑇𝑃 are defined as 𝑇 𝑘+1𝑃

(𝐼 ) = 𝑇𝑃 (𝑇 𝑘𝑃 (𝐼 )) (𝑘 ≥ 0)
and 𝑇 0

𝑃
(𝐼 ) = 𝐼 [8]. Given 𝐼 ⊆ 𝐵𝑃 , there is a fixed-point 𝑇 𝑘+1𝑃

(𝐼 ) = 𝑇 𝑘
𝑃
(𝐼 ) (𝑘 ≥ 0). For a

definite program 𝑃 , the least fixed-point 𝑇 𝑘
𝑃
(∅) coincides with the least model of 𝑃 [9].

For a normal program, the immediate consequence operator 𝑇𝑃 is defined as:

𝑇𝑃 (𝐼 ) = {ℎ𝑒𝑎𝑑 (𝑟 ) |𝑟 ∈ 𝑃 and𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝐼 and𝑏𝑜𝑑𝑦−(𝑟 ) ∩ 𝐼 = ∅} (2.7)

For normal logic programs in general, unlike the case for definite programs, computing
the powers of 𝑇𝑃 (∅) is not guaranteed to converge to a fixed-point due to the non-
monotonicity.

A supported model 𝑀 is a model of 𝑃 where for every 𝑝 ∈ 𝑀 , there exists a rule
𝑟 ∈ 𝑃 such that ℎ𝑒𝑎𝑑 (𝑟 ) = 𝑝 , 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝑀 and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩𝑀 = ∅ [8, 10]. In other
words, in supported models, every atom in the model is "explained" or "covered" by
some rules in the program. It is known that a supported model𝑀 of a program 𝑃 is a
fixed point of 𝑇𝑃 , i.e. 𝑇𝑃 (𝑀) = 𝑀[10].

The stable model semantics [11] defines the semantics of normal logic programs
and is the basis of Answer Set Programming. Informally, the main idea of the stable
model semantics is that, given a set of 𝐼 atoms from the language of 𝑃 , we simplify 𝑃
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by partially evaluating all rules containing the negated versions of 𝐼 , then checking
whether the simplified program 𝑃 𝐼 has a Least Herbrand Model (LHM). More concretely:

Definition 1 (Gelfond-Lifschitz reduct[11]). Let 𝑃 be a ground propositional normal
logic program, and 𝐼 be an Herbrand interpretation. Then, the reduct with respect to 𝐼 is
given by:

𝑃 𝐼 = {ℎ𝑒𝑎𝑑 (𝑟 ) ← 𝑏𝑜𝑑𝑦+(𝑟 ) |𝑟 ∈ 𝑃,𝑏𝑜𝑑𝑦−(𝑟 ) ∩ 𝐼 = ∅} (2.8)

By definition, 𝑃 𝐼 is a definite program. 𝐼 is a stable model of 𝑃 if the least Herbrand
model of 𝑃 𝐼 coincides with 𝐼 .

𝐼 = 𝐿𝐻𝑀 (𝑃 𝐼 ) (2.9)

where 𝐿𝐻𝑀 (𝑃 𝐼 ) denotes the least Herbrand model of the definite program 𝑃 𝐼 . The
reduct 𝑃 𝐼 can be obtained procedurally by:

1. delete any rules in 𝑃 that has a negative literal ¬𝑏 in its body where 𝑏 ∈ 𝐼 .

2. delete every literal of the form ¬𝑏 in the bodies of the remaining rules.

Stable models are also supported models of the program, but the converse does not
always hold true. Consider the following program:

𝑝 ← 𝑞

𝑞 ← 𝑝

In this program, there are two supported models, namely ∅ and {𝑝, 𝑞}, however, only ∅
is stable.

2.2 Answer Set Programming

Answer Set Programming (ASP) [12] has its roots in logic programming and non-
monotonic reasoning. It is a declarative programming paradigm often used for solving
hard combinatorial and constraint optimization problems. Unlike query-based logic
programming languages like Prolog, ASP follows a model generation approach using
efficient grounders and solvers (Figure 2.1).
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Problem
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(Stable Models)
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Figure 2.1: A simplified workflow diagram of Answer Set Programming.

The remainder of this section introduces some of the features of modern ASP
solvers, however, this section is not meant to be a complete introduction into ASP. ASP
is an active and rich research field, and we refer interested readers to Lifschitz ([12, 13])
and Gebser et al. ([14, 15]) for a more thorough introduction. The semantics of ASP
(stable model semantics) will be covered in more detail in Chapter 4. We will use the
clingo[15] system1 for the remainder of this thesis2.

In ASP, the logic programs are finite sets of rules of the form (2.5) in the previous
section (Section 2.1). A normal logic program induces a collection of intended
interpretations, which are called answer sets (stable models), defined by the stable
model semantics [11].

Additionally, in modern ASP systems, constructs such as conditional literals and
cardinality constraints are supported. The former in clingo [14] are written in the form:

𝑝 ← 𝑞 : 𝑟 . (2.10)

which yields 𝑝 whenever either 𝑟 is false (thus it does not matter 𝑞 holds or not), or
both 𝑞 and 𝑟 are true. The latter are written in the form

𝑠1 {𝑎1, . . . , 𝑎𝑚} 𝑠2. (2.11)

where 𝑠1 and 𝑠2 are integer constants. The above rule means that "between 𝑠1 and 𝑠2
atoms from 𝑎1, . . . , 𝑎𝑚 are true". Thus, 𝑠1 and 𝑠2 are treated as lower and upper bounds,
respectively.

1https://potassco.org/clingo/
2More specifically, the syntax we show is that of clingo 5.4. The languages of clingo 4 and above are

not fully backward compatible.
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Aggregation actions like #count and #sum are also supported:

#𝑠𝑢𝑚 { 2 : 𝑎𝑝𝑝𝑙𝑒 ; 3 : 𝑏𝑎𝑛𝑎𝑛𝑎 ; 5 : 𝑜𝑟𝑎𝑛𝑔𝑒 } ≤ 10. (2.12)

This aggregate atom evaluates to true if the sum of the weights inside the curly braces
are equal to or less than 10. For example, {apple, orange} is a valid answer because
the sum condition ((2 + 5) ≤ 10) holds. The minimization (or maximization) can be
expressed with #minimize (or #maximize) statements.

The aforementioned features are best described with an example. Consider the
Traveling Salesperson Problem, where the goal is to find the shortest possible route,
visiting each city once and returning to the city of origin, given a set of cities and
distances between them. A problem instance may be given as3:

start(a).

city(a). city(b). city(c). city(d).

road(a,b,10). road(b,c,20). road(c,d,25). road(d,a,40).

road(b,d,30). road(d,c,25). road(c,a,35).

Then, this problem can be solved with:

{ travel(X,Y) } :- road(X,Y,_).

% visit Y by traveling from X to Y

visited(Y) :- travel(X,Y), start(X).

% Y is visited if there’s travel(X,Y) and X is visited

visited(Y) :- travel(X,Y), visited(X).

% you have to visit all cities

:- city(X), not visited(X).

% you cannot travel from X to Y more than once

:- city(X), 2 { travel(X,Y) }.

% you cannot travel from Y to X more than once

:- city(X), 2 { travel(Y,X) }.

% now minimize the distance traveled

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.

3This example was taken from [16]
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#show travel/2.

which gives:

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

with cost of 95 (only optimum answer is shown here).
Moreover, this example illustrates the declarative nature of ASP: there is no

information about exactly "how" to solve the problem in this encoding, instead the user
only has to provide information about "what" the problem is. The ASP solver clingo in
this instance, (gringo system) first removes all function variables by grounding, then
proceeds to calculate the stable models by an answer set solver (clasp system). Thus,
the grounded program may look like:

:~travel(a,b).[10@0,a,b]

:~travel(b,c).[20@0,b,c]

% ... omitted

:-2<=#count{0,travel(d,a):travel(d,a);0,travel(c,a):travel(c,a)}.

:-2<=#count{0,travel(b,c):travel(b,c);0,travel(d,c):travel(d,c)}.

% ... omitted

visited(b):-travel(a,b).

visited(c):-visited(b),travel(b,c).

visited(d):-visited(b),travel(b,d).

% ... omitted

:-not visited(a).

:-not visited(b).

% ... omitted

#show travel/2.

Notice that the minimization statement is translated to weighted weak constraints, and
that the integrity constraint on the number of visits to the same city is "expanded" to
include all possible undesirable cases.
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2.3 Explainability in Machine Learning

The past decade saw a rapid rise in adoption of black-box machine learning models in
automated decision systems. This rapid spread is made possible by the large amount of
data available to machine learning practitioners; however, the data may contain human
biases and prejudices, leading to unfair or wrong decisions. The European Union
General Data Protection Regulation (GDPR) which took effect in 2018, introduced "right
to explanation" clauses, allowing individuals to access "meaningful information about
the logic involved" when automated decision-making takes place4. Although the
legal scope of these clauses is still debated, this nonetheless shows the importance of
explaining black-box decision systems.

The importance of explanation means that it is relevant in multiple industry sectors
and scientific disciplines. In reality, each community addresses the problem from
different perspectives, and assigns different meaning to the term explanation. As of
this writing, in the machine learning community, there is no common mathematical
definition of explanation that is accepted by the community, and it is still an active
research area spanning multiple subfields like natural language processing and
computer vision. Thus, it would appear that a brief literature review is in order.

Firstly, let us clarify the two terms that are often used interchangeably in literature:
interpretability and explainability. Interpretability in machine learning is the ability to
explain or to present in understandable terms to a human [17]. Another definition of
interpretability is: how well a human could understand the decisions in the given
context [18]. As noted earlier, explainability is often used interchangeably with
interpretability, but some emphasize the ability to produce post-hoc explanations for
the black-box models [19]. Nowadays, it is often assumed that a trained machine
learning model is not understandable for humans, however, this is not necessarily the
case; for example, one may use simpler models that are recognized as understandable
to humans, such as simple decision trees, rules and linear models [20].

Secondly, we discuss the methods by which explainability can be achieved. The
example of simpler models that are understandable to humans in the last paragraph
are examples of intrinsic explainability, that is to say, explainability is achieved by

4Article 13(2)(f): "The existence of automated decision-making, including profiling, referred to in
Article 22(1) and (4) and, at least in those cases, meaningful information about the logic involved, as well
as the significance and the envisaged consequences of such processing for the data subject."
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restricting the complexity of the machine learning models. On the other hand, one can
take an already trained and opaque machine learning models, then try to "reverse
engineer" the models by other means which are considered to be explainable. This
latter approach is called post-hoc explainability (or post-hoc interpretability). As the
name implies, post-hoc explanations require a standalone explanation method for
reverse engineering, which may be (but not necessarily) a simpler model. Earlier works
that popularized the post-hoc explainability approach, LIME [21] and SHAP [22, 23] in
particular, used linear models for explanations. A post-hoc explanation method can
either be model specific or model agnostic: a method that only work for certain types of
models is model specific, whereas a method that can work with any machine learning
model is model agnostic.

Thirdly, explanations can be categorized into either global explanations or local
explanations. Global explanation refers to descriptions of how the overall system
works (also referred to as model explanations), and local explanation refers to specific
descriptions of why a certain decision was made (outcome explanation) [20]. The global
explanations are more useful in situations where the explanations behind the opaque
model is needed, for example, when designing systems for faster detection of certain
events such as credit issues or illnesses. In contrast, the local explanations are suitable,
for example, when explaining the outcome of such systems to its users, since they are
more likely to be interested in particular decisions that led to the outcome.
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3
Explaining ML models with ASP

3.1 Introduction

Interpretability in machine learning is the ability to explain or to present in understand-
able terms to a human [17]. Interpretability is particularly important when, for example,
the goal of the user is to gain knowledge from some form of explanations about
the data or process through machine learning models, or when making high-stakes
decisions based on the outputs from the machine learning models where the user
has to be able to trust the models. Explainability is another term that is often used
interchangeably with interpretability, but some emphasize the ability to produce
post-hoc explanations for the black-box models [19]. For convenience, we shall use the
term explanation when referring to post-hoc explanations in this paper.

In this work1, we address the problem of explaining trained tree-ensemble models

1Some parts of this paper were presented as a Technical Communications paper [4] at the 37th
International Conference on Logic Programming (ICLP 2021). The present paper newly describes a
method to produce explanations for each predicted instance (local explanation), in addition to the
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by extracting meaningful rules from them. This problem is of practical relevance
in business domains, where the understanding of the behavior of high-performing
machine learning models and extraction of knowledge in human-readable form can aid
users in the decision-making process. We use Answer Set Programming (ASP) [11, 12] to
generate rule sets from tree-ensembles. ASP is a declarative programming paradigm
for solving difficult search problems. An advantage of using ASP is its expressiveness
and extensibility, especially when representing constraints. To our knowledge, ASP has
never been used in the context of rule set generation from tree-ensembles, although it
has been used in pattern mining [24, 25, 26, 27].

Generating explanations for machine learning models is a challenging task, since
it is often necessary to account for multiple competing objectives. For instance, if
accuracy is the most important metric, then it is in direct conflict with explainability
because accuracy favors specialization while explainability favors generalization. Any
explanation method should also strive to imitate the behavior of learned models as to
minimize misrepresentation of models, which in turn may result in misinterpretation
by the user. While there are many explanation methods available (some are covered in
Section 2), we propose to use ASP as a medium to represent the user requirements
declaratively and to quickly search feasible solutions for faster prototyping. By
implementing a rule selection method as a post-processing step to model training, we
aim to offer an off-the-shelf objective explanation tool as an alternative to subjective
manual rule selection, which can be applied to existing processes with minimum
modification.

To demonstrate the adaptability of our approach, we present implementations
for both global and local explanations of learned tree-ensemble models using our
method. In general, global explanation refers to descriptions of how the overall system
works (also referred to as model explanation), and local explanation refers to specific
descriptions of why a certain decision was made (outcome explanation) [20]. The global
explanations are more useful in situations where the explanations behind the opaque
model is needed, for example, when designing systems for faster detection of certain
events such as credit issues or illnesses. In contrast, the local explanations are suitable,
for example, when explaining the outcome of such systems to its users, since they are

updated ASP encoding for the global explanation method. The experimental section reports new
evaluation results of the updated methods on various datasets, including several additional datasets.



3.1 Introduction 19

Input
Data

Tree En-
semble

training

Extract
Rules

𝑐𝑙𝑎𝑠𝑠 (𝑄) ⇐
𝐵1 ∧ ... ∧ 𝐵𝑟

Assign
Labels

Assign
Metrics

Accuracy, Recall
etc.

(1) Tree Ensemble Processing

labels

trees

Generate
Candidate
Rule Sets

Constraints
Preferences

(2) Answer Set Programming

rules

generate
and test

Rule
Sets

Figure 3.1: Overview of our framework

more likely to be interested in particular decisions that led to the outcome.
We consider the two-step procedure for rule set generation from trained tree-

ensemble models (Figure 3.1): (1) extracting rules from tree-ensembles, and (2)
computing sets of rules according to selection criteria and preferences encoded
declaratively in ASP. For the first step, we employ the efficiency and prediction
capability of modern tree-ensemble algorithms in finding useful feature partitions for
prediction from data. For the second step, we exploit the expressiveness of ASP in
encoding constraints and preference to select useful rules from tree-ensembles, and
rule selection is automated through a declarative encoding. In the end, we obtain the
generated rule sets therefore as explanations for the tree-ensemble models.

We then evaluate our approach using public datasets. For evaluating global
explanations, we use the size and relevance of rules in the rule sets. The number of
rules is often associated with explainability, with many rules being less desirable.
Additionally, we shall also evaluate the number of conditions in the rule sets, as well as
average number of conditions per rule. Performance metrics such as classification
accuracy, precision and recall can be used as a measure of relevance of the rules to the
prediction task. For evaluating local explanations, we use precision and coverage
metrics to compare against existing systems.

This paper makes the following contributions:

• We present a novel application of Answer Set Programming (ASP) for explaining
trained machine learning models. We propose a method to generate explainable
rule sets from tree-ensemble models with ASP. More broadly, this work con-
tributes to the growing body of knowledge on integrating symbolic reasoning
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with machine learning.

• We present how the rule set generation problem can be reformulated as an
optimization problem, where we leverage existing knowledge on declarative
pattern mining with ASP.

• We show how both global and local explanations can be generated by our
approach, while comparative methods tend to focus on either one exclusively.

• To demonstrate the practical applicability of our approach, we provide both
qualitative and quantitative results from evaluations with public datasets, where
machine learning methods are used in a realistic setting.

The rest of this paper is organized as follows. In Section 2 we review and discuss
related works. In Section 3, we review tree-ensembles, ASP and pattern mining. Section
4 presents our method to generate rule sets from tree-ensembles using pattern mining
and optimization encoded in ASP. Section 5 describes global and local explanations in
the context of our approach. Section 6 presents experimental results on public datasets.
Finally, in Section 7 we present the conclusions.

3.2 Related Works

Summarizing tree-ensemble models has been studied in literature, see for example,
Born Again Trees [28], defragTrees [29] and inTrees [30]. While exact methods and
implementations differ among these examples, a popular approach to tree-ensemble
simplification is to create a simplified decision tree model that approximates the
behavior of the original tree-ensemble model. Depending on how the approximate tree
model is constructed, this could lead to a deeper tree with an increased number of
conditions, which makes them difficult to interpret.

Integrating association rule mining and classification is also known, e.g., Class
Association Rules (CARs) [31], where association rules discovered by pattern mining
algorithms are combined to form a classifier. Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) [32] was proposed as an efficient approach for classification
based on association rule mining, and it is a well-known rule-based classifier. In
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CARs and RIPPER, rules are mined from data with dedicated association rule mining
algorithms, then processed to produce a final classifier.

Interpretable classification models is another area of active research. Interpretable
Decision Sets (IDS) [33] are learned through an objective function, which simultaneously
optimizes accuracy and interpretability of the rules. In Scalable Bayesian Rule Lists
(SBRL) [34], probabilistic IF-THEN rule lists are constructed by maximizing the
posterior distribution of rule lists. In RuleFit [35], a sparse linear model is trained
with rules extracted from tree-ensembles. RuleFit is the closest to our work in this
regard, in the sense that both RuleFit and our method extract conditions and rules from
tree-ensembles, but differ in the treatment of rules and representation of final rule sets.
In RuleFit, rules are accompanied by regression coefficients, and it is left up to the user
to further interpret the result.

Lundberg et al. [23] showed how a variant of SHAP [22], which is a post-hoc
explanation method, can be applied to tree-ensembles. While our method does not
produce importance measures for each feature, the information about which rule fired
to reach the prediction can be offered as an explanation in a human-readable format.
Shakerin et al. [36] proposed a method to use LIME weights [21] as a part of learning
heuristics in inductive learning of default theories. Anchors [37] generates a single
high-precision rule as a local explanation with probabilistic guarantees. It should be
noted that both LIME and Anchors require the features to be discretized, while recent
tree-ensemble learning algorithms can work with continuous features. Furthermore,
instead of learning rules with heuristics from data, our method directly handles rules
which exist in decision tree models with answer set solver.

Guns et al. applied constraint programming (CP), a declarative approach, to itemset
mining [38]. This constraint satisfaction perspective led to the development of ASP
encoding of pattern mining [24, 25]. Gebser et al. applied preference handling to
sequential pattern mining [26], and Paramonov et al. extended the declarative pattern
mining [27] by incorporating dominance programming (DP) from Negrevergne et
al. [39] to the specification of constraints. Paramonov et al.[27] proposed a hybrid
approach where the solutions are effectively screened first with dedicated algorithms
for pattern mining tasks, then declarative ASP encoding is used to extract condensed
patterns. While aforementioned works focused on extracting interesting patterns from
transaction or sequence data, our focus in this paper is to generate rule sets from
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tree-ensemble models to help users interpret the behavior of machine learning models.
As for the ASP encoding, we use dominance relations similar to the ones presented in
Paramonov et al. [27] to further constrain the search space.

3.3 Background

In the remainder of this paper, we shall use learning algorithms to refer to methods
used to train models, as in machine learning literature. We use models and explanations
to refer to machine learning models and post-hoc explanations about the said models,
respectively. For the relevant background material on Answer Set Programming, refer to
Section 2.2.

3.3.1 Tree-Ensemble Learning Algorithms

Tree-Ensemble (TE) learning algorithms are machine learning methods widely used in
practice, typically, when learning from tabular datasets. A trained TE model consist of
multiple base decision trees, each trained on an independent subset of the input data.
For example, Random Forests [40] and Gradient Boosted Decision Tree (GBDT) [41]
are tree-ensemble learning algorithms. Recent surge of efficient and effective GBDT
algorithms, e.g., LightGBM [42], has led to wide adoption of TE learning algorithms in
practice. Although individual decision trees are considered to be interpretable [43],
ensembles of decision trees are seen as less interpretable.

The purpose of using TE learning algorithms is to train models that predict the
unknown value of an attribute 𝑦 in the dataset, referred to as labels, using the known
values of other attributes x = (𝑥1, 𝑥2, ..., 𝑥𝑚), referred to as features. For brevity, we
restrict our discussion to classification problems. During the training or learning phase,
each input instance to the TE learning algorithm is a pair of features and labels, i.e.
(x𝑖, 𝑦𝑖), where 𝑖 denotes the instance index, and during the prediction phase, each input
instance only include features, (x𝑖), and the model is tasked to produce predictions 𝑦𝑖 .
A collection of input instances, complete with features and labels, is referred to as a
dataset. Given a dataset D = {(x𝑖, 𝑦𝑖)} with 𝑛 ∈ N examples and𝑚 ∈ N features, a
decision tree classifier 𝑡 will predict the class label 𝑦𝑖 based on the feature vector x𝑖 of
the 𝑖-th sample: 𝑦𝑖 = 𝑡 (x𝑖). A tree-ensemble T uses 𝐾 ∈ N trees and additionally an
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aggregation function 𝑓 over the 𝐾 trees which combines the output from the trees:
𝑦𝑖 = 𝑓 (𝑡𝑘∈𝐾 (x𝑖)). As for Random Forest, for example, 𝑓 is a majority voting scheme (i.e.
argmax of sum), and in GBDT 𝑓 may be a summation followed by softmax to obtain 𝑦𝑖
in terms of probabilities.

In this paper, a decision tree is assumed to be a binary tree where the internal
nodes hold split conditions (e.g., 𝑥1 ≤ 0.5) and leaf nodes hold information related to
class labels, such as the number of supporting data points per class label that have
been assigned to the leaf nodes. Richer collections of decision trees provide higher
performance and less uncertainty in prediction compared to a single decision tree.
Typically, each TE model has specific algorithms for learning base decision trees,
adding more trees and combining outputs from the base trees to produce the final
prediction. In GBDT, the base trees are trained sequentially by fitting the residual
errors from the previous step. Interested readers are referred to [41], and its more
recent implementations, LightGBM [42] and XGBoost [44].

3.3.2 Pattern Mining

In a general setting, the goal of pattern mining is to find interesting patterns from data,
where patterns can be, for example, itemsets, sequences and graphs. For example, in
frequent itemset mining [45], the task is to find all subsets of items that occur together
more than the threshold count in databases. In this work, the patterns of interest are
sets of predictive rules. A predictive rule has the form 𝑐 ⇐ 𝑠1 ∧ 𝑠2∧, ..., 𝑠𝑛 , where 𝑐 is a
class label, and {𝑠𝑖} (1 ≤ 𝑖 ≤ 𝑛) represents conditions.

For pattern mining with constraints, the notion of dominance is important, which
intuitively reflects the pairwise preference relation (<∗) between patterns [39]. Let 𝐶
be a constraint function that maps a pattern to {⊤,⊥}, and let 𝑝 be a pattern, then the
pattern 𝑝 is valid iff 𝐶 (𝑝) = ⊤, otherwise it is invalid. An example of 𝐶 is a function
that checks the support of a pattern is above the threshold. The pattern 𝑝 is said
to be dominated iff there exists a pattern 𝑞 such that 𝑝 <∗ 𝑞 and 𝑞 is valid under 𝐶 .
Dominance relations have been used in ASP encoding for pattern mining [27].

There are existing ASP encodings of pattern mining algorithms, e.g., [24, 26, 27],
that can be used to mine itemsets and sequences. Here, we develop and apply our
encoding on rules to extract interesting rules from tree-ensembles. On the surface, our
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problem setting may appear similar to frequent itemset and sequence mining; however,
rule set generation is different from these pattern mining problems. We can indeed
borrow some ideas from frequent itemset mining for encoding; however, our goal is
not to decompose rules (cf. transactions) into individual conditions (cf. items) then
constructing rule sets (cf. itemsets) from conditions, but rather to treat each rule in
its entirety then combining rules to form rule sets. The body (antecedent) of a rule
can also be seen as a sequence, where the conditions are connected by conjunction
connective ∧, however, in our case, the ordering of conditions does not matter, thus
sequential mining encodings that use slots to represent positional constraints [26]
cannot be applied directly to our problem.

3.4 Rule Set Generation

3.4.1 Problem Statement

The rule set generation problem is represented as a tuple 𝑃 = {𝑅,𝑀,𝐶,𝑂}, where 𝑅
is the set of all rules in the tree-ensemble,𝑀 is the set of meta-data and properties
associated with each rule in 𝑅, 𝐶 is the set of user-defined constraints including
preferences, and 𝑂 is the set of optimization objectives. The goal is to generate a set of
rules from 𝑅 by selection under constraints 𝐶 and optimization objectives 𝑂 , where
constraints and optimization may refer to the meta-data𝑀 . In the following sections,
we describe how we construct each 𝑅, 𝑀 , 𝐶 and 𝑂 , and finally, how we solve this
problem with ASP.

3.4.2 Rule Extraction from Decision Trees

Recall that a tree-ensemble T is a collection of 𝐾 decision trees, and we refer to
individual trees 𝑡𝑘 with subscript 𝑘 . An example of a decision tree-ensemble is shown
in Figure 3.2. A decision tree 𝑡𝑘 has 𝑁𝑡𝑘 nodes and 𝐿𝑡𝑘 leaves. Each node represents a
split condition, and there are 𝐿𝑡𝑘 paths from the root node to the leaves. For simplicity,
we assume only features that have orderable values (continuous features) are present
in the dataset in the examples below.2 The tree on the left in Figure 3.2 has 4 internal

2Real datasets may have unorderable categorical values. For example, in the census dataset, occupation
(Sales, etc.) and education (Bachelors, etc.) are categorical features. Support for categorical feature split
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Figure 3.2: A simple decision tree-ensemble consisting of two decision trees. The rule
associated with each node is given by the conjunction of all conditions associated with
nodes on the paths from the root node to that node.

nodes including the root node with condition [𝑥1 ≤ 0.2] and 5 leaf nodes; therefore
there are 5 paths from the root note to the leaf nodes 1 to 5.

From the left-most path of the decision tree on the left in Figure 3.2, the following
prediction rule is created. We assume that node 1 predicts class label 1 in this instance.3

𝑐𝑙𝑎𝑠𝑠 (1) ⇐ (𝑥1 ≤ 0.2) ∧ (𝑥2 ≤ 4.5) ∧ (𝑥4 ≤ 2)

Assuming that node 2 predicts class label 0, we also construct the following rule (note
the reversal of the condition on 𝑥4):

𝑐𝑙𝑎𝑠𝑠 (0) ⇐ (𝑥1 ≤ 0.2) ∧ (𝑥2 ≤ 4.5) ∧ (𝑥4 > 2)

The set of all rules, 𝑅, is constructed as follows:

1. Enumerate all possible paths from the root node to the leaves.

2. For each path, at each subsequent node on the path to the leaf node, the split
condition of the node is appended to the body (antecedent, set of conditions) of
the rule.

is implementation-dependent, however in general one can replace the continuous split with a subset
selection e.g., 𝑥𝑐 ∈ {𝑥𝑐1, 𝑥𝑐2, ...}

3Label=1 and 0 refer to the attributes in the dataset and have different meaning depending on the
dataset. For example, in the census dataset, label=1 and 0 mean that the personal income is more than
$50,000 and that it is no more than $50,000, respectively.
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3. Compute the predicted class label for each rule. For simplicity, we apply all
conditions in the rule and calculate the most likely class label from the count
data (argmax of counts).

4. Add the generated rules to the candidate rule set 𝑅.

5. Repeat steps 1 to 4 for each tree 𝑡𝑘 where 1 ≤ 𝑘 ≤ 𝐾 , in the ensemble of 𝐾 trees.

By constructing the candidate rule set 𝑅 in this way, the bodies (antecedents)
of rules included in rule sets are guaranteed to exist in at least one of the trees in
the tree-ensemble. Rule sets generated in this manner are therefore faithful to the
representation of the original model in this sense. If we were to construct rules from the
unique set of split conditions, the resulting rule may have combinations of conditions
that do not exist in any of the trees.

Proposition 1. If 𝑅 is constructed according to the steps 1-5, then the bodies of the rules
in 𝑅 exist in at least one of the trees in the tree-ensemble.

Proof. Suppose there is a rule in 𝑅 whose body does not exist in any of the trees. Steps
1 enumerates all possible paths from the root to the leaf nodes, and Step 2 follows the
paths while constructing the bodies of the rules. A non-existent path is excluded from
Step 1. Therefore, if a path does not exist in at least one of the trees in the ensemble, a
rule whose body is constructed from a non-existent path cannot be included in R. A
contradiction. □

Let us assume that (1) all 𝐾 trees in the ensemble are perfect binary decision trees
and have the same height ℎ, (2) there are 𝑛 examples and𝑚 features in the dataset, and
(3) there are no duplicate rules and conditions across trees.

Proposition 2. The maximum size of 𝑅 is 𝐾 × (2ℎ+1 − 2). The reduced size, constructed
by only considering the rules at the leaf nodes, is 𝐾 × 2ℎ .

Proof. The reduced size (𝐾 × 2ℎ) follows immediately from the number of leaf nodes in
a perfect binary decision tree with height ℎ, i.e., 2ℎ. The number of internal nodes is
2ℎ − 1, and by enumerating possible outcomes (True or False) of internal nodes we have
2(2ℎ − 1) = 2ℎ+1 − 2 rules from each tree. □
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In practice, there are duplicate split conditions across trees in a tree-ensemble, so
the unique count of rules is often smaller than the maximum value.

Proposition 3. The time complexity of the proposed method to construct 𝑅 is 𝑂 (𝐾 ×
(2ℎ+1 + 2ℎ+1 ×𝑛 ×ℎ)) for all rules, and𝑂 (𝐾 × (2ℎ+1 + 2ℎ ×𝑛 ×ℎ)) for the reduced size case.

Proof. Enumerating paths to leaf nodes takes 𝑂 (2ℎ+1) time by depth first search. There
are 𝑂 (2ℎ+1) rules for the all rules case, and 𝑂 (2ℎ) rules for the reduced size case. For
each rule, all conditions in a rule need to be applied to the data. Since there are at most
ℎ conditions in a rule, and there are 𝑛 examples, it takes 𝑂 (𝑛 × ℎ) time to apply all
conditions in a rule. □

3.4.3 Computing Metrics and Meta-data for Selection

After the candidate rule set 𝑅 is constructed, we gather information about the
performance and properties of each rule and collect them into a set𝑀 . The meta-data,
or properties, of a rule are information such as the size of the rule, as defined by the
number of conditions in the rule, and the ratio of instances which are covered by the
rule. Performance metrics measure how well a rule can predict class labels. Here we
calculate the following performance metrics: accuracy, precision, recall and F1-score.
For classification tasks, a true positive (TP) refers to an outcome where the model
correctly predicts the positive class, and a true negative (TN) refers to an outcome
where the model correctly predicts the negative class. Conversely, a false positive (FP)
refers to an outcome where the model incorrectly predicts the positive class, and a false
negative (FN) is an outcome where the model incorrectly predicts the negative class.

accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 F1-score = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3.1)

We compute multiple metrics for a single rule, to meet a range of user requirements
for explanation. One user may only be interested in simply the most accurate rules
(maximize accuracy), whereas another user could be interested in more precise rules
(maximize precision), or rules with more balanced performance (maximize F1-score).
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Table 3.1: List of predicates representing a rule in ASP.
Predicate Meaninga
rule(X) X holds the rule index.
condition(X,I) Rule X has condition I.
size(X,L) Number of conditions in rule X (length, L).
predict_class(X,C) Predicted class label C of rule X.
support(X,S) Support S of rule X, the ratio of instances that is

covered by rule X.*
error_rate(X,E) Error rate (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦), E, of the rule X evaluated

in the training data.
accuracy(X,A) Accuracy score A of rule X.*
precision(X,P) Precision score P of rule X.*
recall(X,R) Recall score R of rule X.*
f1_score(X,F) F1-score F of rule X.*

aProperties and metrics marked with asterisks(*) are multiplied by 100 and rounded to the nearest
integer.

The candidate rule set 𝑅 and meta-data set𝑀 are represented as facts in ASP, as
shown in Table 3.1. For example, the first rule in Section 3.4.2 may be represented as
follows4:

% rule 1

rule(1). condition(1,1). condition(1,2). condition(1,3).

support(1,10). size(1,3). accuracy(1,50).

error_rate(1,50). precision(1,30).

recall(1,40). f1_score(1,34). predict_class(1,1).

3.4.4 Encoding Inclusion Criteria and Constraints

As with previous works in pattern mining in ASP, we follow the "generate-and-test"
approach, where a set of potential solutions are generated by a choice rule and
subsequently constraints are used to filter out unacceptable candidates. In the context
of rule set generation, we use a choice rule to generate candidate rule sets that may
constitute a solution. In this section, we introduce the following selection criteria and
constraints: (1) individual rule selection criteria that are applied on a per-rule basis, (2)

4The performance metrics are for illustration purposes only and are chosen arbitrarily.



3.4 Rule Set Generation 29

pairwise constraints that are applied to pairs of rules, and (3) collective constraints that
are applied to a set of rules.

The "generator" choice rule has the following form:

% pick at least 1 rule and at maximum 5 rules for each class.

1 { selected(X) : predict_class(X, K), valid(X) } 5 :- class(K).

The choice rule above generates candidate subsets of size between 1 and 5 from 𝑅,
where we use the selected/1 predicate to indicate that a rule (rule(X)) is included
in the subset. Individual rule selection criteria are integrated into the generator choice
rule by the valid/1 predicate, where a rule rule(X) is valid whenever invalid(X)
cannot be inferred.

valid(X) :- rule(X), not invalid(X).

The following criterion excludes rules with low support from the candidate set:

% exclude rules that apply to less than 5% of instances

invalid(X) :- rule(X), support(X,S), S < 5.

Pairwise constraints can be used to encode dominance relations between rules. For
a rule X to be dominated by Y, Y must be strictly better in one criterion than X and at
least as good as X or better in other criteria. In the following case, we encode the
dominance relation between rules using the accuracy metric and support, where we
prefer rules that are accurate and covers more data.

% cannot be dominated

:- dominated.

% X is dominated by Y

gt_acc_geq_cov(Y) :- selected(X), valid(Y),

accuracy(X,Ax), accuracy(Y,Ay),

support(X,Spx), support(Y,Spy),

Ax < Ay, Spx <= Spy.

geq_acc_gt_cov(Y) :- selected(X), valid(Y),

accuracy(X,Ax), accuracy(Y,Ay),

support(X,Spx), support(Y,Spy),
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Ax <= Ay, Spx < Spy.

dominated :- valid(Y), gt_acc_geq_cov(Y).

dominated :- valid(Y), geq_acc_gt_cov(Y).

Collective constraints are applied to collections of rules, as opposed to individual or
pairs of rules. The following restricts the maximum number of conditions in rule sets,
using the aggregate atom #sum:

% total number of conditions should not exceed 30

:- #sum { S,X : size(X,S), selected(X) } > 30.

We envision two main use-cases for the criteria and constraints introduced in
this section: (1) to generate rule sets with certain properties, and (2) to reduce the
computation time. For (1), the user can use the individual selection criteria to ensure
that the rules included into the candidate rule sets have certain properties, or the
collective constraints to put restrictions on the aggregate properties of the rule sets.
The latter use-case have more practical relevance because in our case, as in pattern
mining, the complexity of a naive "generate-and-test" approach is exponential with
respect to the number of candidates.

To reduce the search space, one can place an upper bound on the size of generated
candidate sets, and use the invalid/1 predicate to prevent unacceptable rules being
included into the candidates, as shown above. Because setting unreasonable conditions
leads to zero rule sets generated, care should be taken when using the selection
criteria and constraints for this purpose. In particular, if any of the metric predicates
listed in Table 3.1 are used in defining invalid/1, e.g., invalid(X) :- rule(X),

metric(X, N), N < B., to avoid all rule(X) being invalid(X), one should respect
the conditions listed in Table 3.2.

Proposition 4. Let the logic program5 be:

1 { selected(X) : valid(X) } 1.

valid(X) :- rule(X), not invalid(X).

invalid(X) :- rule(X), metric(X,N), N < B.

5predict_class/2 and class/1 have been omitted, and the upper bound has been changed to 1
for clarity.
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Table 3.2: List of minimum and maximum values for the bounds used in defining
invalid/1.

Metric Predicate Relation N Intention Condition
size(X,L) N > B L Invalid if the rule

is too long
B ≥ 𝑚𝑖𝑛{L1, ..., L|𝑅 |}

support(X,S) N < B S Invalid if the rule
has low support

B ≤ 𝑚𝑎𝑥{S1, ..., S|𝑅 |}

error_rate(X,E) N > B E Invalid if the rule
has high error
rate

B ≥ 𝑚𝑖𝑛{E1, ..., E|𝑅 |}

accuracy(X,A) N < B A Invalid if the rule
has low accuracy

B ≤ 𝑚𝑎𝑥{A1, ..., A|𝑅 |}

precision(X,P) N < B P Invalid if the rule
has low precision

B ≤ 𝑚𝑎𝑥{P1, ..., P|𝑅 |}

recall(X,R) N < B R Invalid if the rule
has low recall

B ≤ 𝑚𝑎𝑥{R1, ..., R|𝑅 |}

f1_score(X,F) N < B F Invalid if the rule
has low F1-score

B ≤ 𝑚𝑎𝑥{F1, ..., F|𝑅 |}

Then, there is at least one valid rule if B ≤ 𝑚𝑎𝑥 (N1, ..., N|𝑅 |).

Proof. Let B = 1 +𝑚𝑎𝑥 (N1, ..., N|𝑅 |), then by line 3 (N < B), all rules will be invalid,
and valid(X) cannot be inferred. Then, the choice rule (line 1) is not satisfied.
Alternatively, let B =𝑚𝑎𝑥 (N1, ..., N|𝑅 |), then there is at least one rule such that N = B.
Since invalid(X) cannot be inferred for such a rule, it is valid and the choice rule is
satisfied. □

3.4.5 Optimizing Rule Sets

Finally, we pose the rule set generation problem as a multi-objective optimization
problem, given the aforementioned facts and constraints encoded in ASP. The desiderata
for generated rule sets may contain multiple competing objectives. For instance,
we consider a case where the user wishes to collect accurate rules that cover many
instances, while minimizing the number of conditions in the set. This is encoded as a
group of optimization statements:
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% maximize accuracy and support,

% minimize the number of conditions

#maximize { A,X : selected(X), accuracy(X,A)}.

#maximize { S,X : selected(X), support(X,S)}.

#minimize { L,X : selected(X), size(X,L)}.

Instead of maximizing/minimizing the sums of metrics, we may wish to optimize
more nuanced metrics, such as average accuracy and coverage of selected rules:

% maximize average accuracy and coverage

selected_rules(SR) :- SR = #count { I : selected(I) }, SR != 0.

#maximize { Ai/(S*SR)@3,I : selected(I), size(I,S),

accuracy(I,Ai), selected_rules(SR) }.

#maximize { Sp/S@2,I : selected(I), size(I,S), support(I,Sp) }.

This metric can be maximized by selecting the smallest number of short and accurate
rules. Similar metrics can be defined for precision-coverage,

% maximize average precision and coverage

#maximize { Pi/(S*SR)@3,I : selected(I), size(I,S),

precision(I,Pi), selected_rules(SR) }.

#maximize { Sp/S@2,I : selected(I), size(I,S), support(I,Sp) }.

and for precision-recall.

% maximize average precision and recall

#maximize { Pi/(S*SR)@3,I : selected(I), size(I,S),

precision(I,Pi), selected_rules(SR) }.

#maximize { R/S@2,I : selected(I), size(I,S), recall(I,R) }.

For optimization, we introduce a measure of overlap between the rules to be
minimized. Intuitively, minimizing this objective should result in rule sets where rules
share only a few conditions, which should further improve the explainability of the
resulting rule sets. Specifically, we introduce a predicate rule_overlap(X,Y,Cn) to
measure the degree of overlap between rules X and Y.
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% minimize number of shared conditions between rules

rule_overlap(X,Y,Cn) :- selected(X), selected(Y), X!=Y,

Cn = #count { Cx : Cx=Cy, condition(X,Cx), condition(Y,Cy) }.

#minimize { Cn,X : selected(X), selected(Y), rule_overlap(X,Y,Cn) }.

3.5 Rule Set Generation for Global and Local Expla-

nations

In this section, we will describe how to generate global and local explanations with the
rule set generation method. Guidotti et al. defined global explanation as descriptions of
how the overall system works, and local explanation as specific descriptions of why a
certain decision was made [20]. We shall now adopt these definitions to our rule set
generation task from tree-ensemble models.

Definition 2. A global explanation is a set of rules that approximates the overall
predictive behavior of the base tree-ensemble model.

Definition 3. A local explanation is a set of rules that approximates the predictive
behavior of the base tree-ensemble model when applied to a specific prediction instance.

The predictive behavior in this context refers to the method by which the model
makes the prediction (aggregating decision tree outputs) and the outcomes of the
prediction. The differences between the global and local explanations have implications
on the encoding we use for rule set generation.

Recall that we start with the candidate rule set, 𝑅, which is created by processing the
tree-ensemble model. The rules in 𝑅 are different between global and local explanations,
even when the underlying tree-ensemble model is the same. For global explanations,
we can enumerate all rules including internal nodes (Section 3.4.2) regardless of the
outcomes of the rules because we are more interested in obtaining a simpler classifier
with the help of constraints (Section 3.4.4) and optimization criteria (Section 3.4.5). On
the other hand, for local explanations, it is necessary to consider the match between
the rules’ prediction and actual outcome of the tree-ensemble model as to keep the
precision of explanations high.
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By definition, a local explanation should describe the behavior of the model on a
single prediction instance. Thus, we shall make the following modifications to 𝑅 when
generating rule sets for local explanations. We start from the candidate rule set 𝑅 as in
Section 3.4.2, then, for each predicted instance:

1. Identify the leaf nodes that were active during the prediction.

2. Exclude rules that did not participate in the prediction.

3. Replace the outcome of the rule with the predicted label.

After these steps, for each decision tree in a tree-ensemble model, there will be at least
one rule with the outcome that is identical to the predicted label.

Proposition 5. Let 𝐾 be the number of decision trees in a tree-ensemble model, and let
each of the trees have the height of ℎ. Then, the size of the candidate rule set 𝑅, after the
modifications for local explanations, is 𝐾 × ℎ for the all rules case and 𝐾 for the reduced
size case (only rules containing leaf nodes are considered).

Proof. For the all rules case, the longest rule has ℎ conditions, and additionally there
are shorter rules with 1, 2, ..., ℎ − 1 conditions. Thus, if there are 𝐾 decision trees and
all trees have the same height ℎ, there will be 𝐾 × ℎ rules. For the reduced size case,
since there is exactly one leaf node per tree responsible for the prediction, there will be
𝐾 rules. □

3.6 Experiments

We evaluate our rule set generation framework on several public datasets and compare
the performance to existing methods, including rule-based classifiers.

3.6.1 Experimental Setup

We used in total 14 publicly available datasets, where except for the adult6 dataset, all
datasets were taken from the UCI Machine Learning Repository7[46]. We included 3

6https://github.com/propublica/compas-analysis
7https://archive.ics.uci.edu/ml/index.php

https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/index.php
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datasets (adult, credit german, compas) for comparison because they were widely used
in local explainability literature. The adult dataset is actually a subset of the census
dataset, but we included the former for consistency with existing literature and the
latter for demonstrating applicability of our approach to larger datasets. Other datasets
were chosen since they were used in previous works in inductive logic programming.
The summary of these datasets is shown in Table 3.3.

We used clingo 5.4.08 [14] for answer set programming, and set the time-out
to 600 seconds. We used RIPPER implemented in Weka [47] and an open-source
implementation of RuleFit9 where Random Forest was selected as the rule generator,
and scikit-learn10 [48] for general machine learning functionalities. Our experimental
environment is a desktop machine with Ubuntu 18.04, Intel Core i9-9900K 3.6GHz
(8 cores/16 threads) and 64 GB RAM. For reproducibility, all source codes for the
implementation, experiments and preprocessed datasets are available from our GitHub
repository11.

Unless noted otherwise, all experimental results reported here were obtained with
5-fold cross validation, with hyperparameter optimization in each fold. We used optuna
([49]) for hyperparameter optimization (parameter settings shown in Table 3.4). To
obtain results in a reasonable amount of time, we used the reduced size rule extraction
method, where only complete rules leading to the leaf nodes were considered, and the
internal nodes were ignored.

To evaluate the performance of the extracted rule sets, we implemented a naive
rule-based classifier, which is constructed from the rule sets extracted with our method.
In this classifier, we apply the rules sequentially to the validation dataset and if all
conditions within a rule are true for an instance in the dataset, the consequent of the
rule is returned as the predicted class. More formally, given a set of rules 𝑅𝑠 ⊂ 𝑅 with
cardinality |𝑅𝑠 | that shares the same consequent 𝑐𝑙𝑎𝑠𝑠 (𝑄), we represent this rule-based
classifier as the disjunction of antecedents of the rules:

𝑐𝑙𝑎𝑠𝑠 (𝑄) ⇐ 𝑏𝑜𝑑𝑦 (𝑅1) ∨ 𝑏𝑜𝑑𝑦 (𝑅2) ∨ ... ∨ 𝑏𝑜𝑑𝑦 (𝑅𝑟 ) where 1 ≤ 𝑟 ≤ |𝑅𝑠 |

8https://potassco.org/clingo/
9https://github.com/christophM/rulefit
10https://scikit-learn.org/
11https://github.com/atakemura/treetap

https://potassco.org/clingo/
https://github.com/christophM/rulefit
https://scikit-learn.org/
https://github.com/atakemura/treetap
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Table 3.3: Datasets used in the experiments.
Dataset # dataa # featureb Ratio of label = 1 Meaning of 𝑦 = 1
adult 48,842 12 (8) 0.24 income > 50k
autism 704 20 (18) 0.27 screening result
breast 699 9 (9) 0.34 malignant
cars 1,728 6 (6) 0.30 acceptable condition
census 299,285 40 (33) 0.06 income > 50k
compas 7,214 11 (7) 0.28 2 year recidivism
credit australia 690 14 (8) 0.44 application accepted
credit german 1,000 20 (13) 0.30 good creditor
credit taiwan 30,000 23 (10) 0.22 payment next month
heart 270 13 (8) 0.44 disease present
ionosphere 351 34 (0) 0.64 good radar return
kidney 400 24 (13) 0.62 chronic disease
krvskp 3,196 36 (36) 0.52 white can win
voting 435 16 (16) 0.61 democrat

aNumber of data points (rows).
bNumber of features (columns). Number of categorical features is shown in parentheses.

For a given data point, it is possible that there are no rules applicable, and in such cases
the most common class label in the training dataset is returned.

3.6.2 Evaluating Global Explanations

Let us recall that the purpose of generating global explanations is to provide the
user with a simpler model of the original complex model. Thus, we introduce proxy
measures to evaluate (1) the degree to which the model is simplified, by the number of
extracted rules and (2) the number of conditions (literals) in rules, and (3) the relevance
of the extracted rules, by comparing classification performance metrics against the
original model.

We conducted the experiment in the following order. First, we trained Decision
Tree, Random Forest and LightGBM on the datasets in Table 3.3.12 We then applied
our rule set generation method to the trained tree-ensemble models. Finally, we
constructed a naive rule-based classifier using the set of rules extracted in the previous

12Details on hyperparameter optimization are available online on our GitHub repository (https:
//github.com/atakemura/treetap).

https://github.com/atakemura/treetap
https://github.com/atakemura/treetap
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Table 3.4: Search space definition for hyperparameter optimization
Parameter Type Value Range Step
Decision Tree
max_depth integer [2, 9]
min_samples_leaf float [1e-3, 0.2]
min_weight_fraction_leaf float [0, 0.5] 0.01
criterion categorical [gini, entropy]
Random Forest
n_estimators integer [50, 500] 10
max_depth integer [2, 9]
min_samples_leaf float [1e-3, 0.2]
min_weight_fraction_leaf float [0.0, 0.5] 0.01
criterion categorical [gini, entropy]
LightGBM
objective categorical binary
metric categorical binary logloss
num_boost_round integer 500
early_stopping integer 30
learning_rate float [0.01, 0.2] loguniform
max_depth integer [2, 9]
num_leaves integer [2, 100]
min_data_in_leaf integer [1, 500] 10
min_child_weight 0.001, 10 loguniform
feature_fraction float [0.05, 1.0] uniform
subsample float [0.2, 1.0] uniform
subsample_freq int [1, 20]
lambda_l1 [1e-5, 10] loguniform
lambda_l2 [1e-5, 10] loguniform
RuleFit
rule_generator categorical random forest
memory_parameter float [0.0, 1.0] 0.1
lin_standardise boolean
lin_trim_quantile boolean
RIPPER
num_folds integer [2, 5] 1
prune boolean
no_error_check boolean
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step, and calculated performance metrics on the validation set. This process was
repeated in a 5-fold stratified cross validation setting to estimate the performance. We
compare the characteristics of our approach against the known methods RIPPER and
RuleFit.

We used the following selection criteria to filter out rules that were considered
to be undesirable; for example, those rules with low accuracy or low coverage. We
used the same set of selection criteria for all datasets, irrespective of underlying label
distribution or learning algorithms. When the candidate rules violate any one of those
criteria, they are excluded from the candidate rule set, which means that in the worst
case where all the candidate rules violate at least one criterion, this encoding will
result in an empty rule set (see Section 3.4.4).

% exclude long rules

invalid(I) :- size(I,S), S > 10, rule(I).

% exclude inaccurate rules

invalid(I) :- error_rate(I,E), E > 70, rule(I).

% exclude low precision rules

invalid(I) :- precision(I,P), P < 2, rule(I).

% exclude low recall rules

invalid(I) :- recall(I,R), R < 2, rule(I).

% exclude low coverage rules

invalid(I) :- support(I,Sp), Sp < 2, rule(I).

Another scenario in which our method will produce an empty rule set is when the
tree-ensemble contains only "leaf-only" or "stump" trees, that have one leaf node
and no splits. In this case, we have no split information to create candidate rules;
thus, an empty rule set is returned to the user. This is often caused by inadequate
setting of hyperparameters that control the growth of the trees, especially when using
imbalanced datasets. It is however outside the scope of this paper, and we will simply
note such cases (empty rule set returned) in our results without further consideration.

Number of Rules

The average size of candidate rule sets and average size of generated rule set size are
shown in Table 3.5. Rule set size of 1 means that the rule set contains a single rule only.
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As one might expect, the Decision Tree consistently has the smallest candidate rule set,
but in some cases the Random Forest produced considerably more candidate rules
than the LightGBM, e.g., cars, compas. Our method can produce rule sets which are
significantly smaller than the original model, based on the comparison between the
sizes of the candidate rule set |𝑅 | and resulting rule sets.

We will now compare our method to the two benchmark methods, RuleFit and
RIPPER. The average size of generated rule sets is shown in Table 3.6. RuleFit includes
original features (called linear terms) as well as conditions extracted from the tree-
ensembles in the construction of a sparse linear model, that is to say, the counts in
Table 3.6 may be inflated by the linear terms. On the other hand, the output from
RIPPER only contains rules, and RIPPER has rule pruning and rule set optimization
to further reduce the rule set size. Moreover, RIPPER has direct control over which
conditions to include into rules, whereas our method and RuleFit rely on the structure
of the underlying decision trees to construct candidate rules.

Ourmethod consistently produced smaller rule sets compared to RuleFit and RIPPER,
although the difference between our method and RIPPER was not as pronounced when
compared to the difference between our method and RuleFit. RuleFit produced the
largest number of rules compared with other methods, although they were much
smaller than the original Random Forest models (Table 3.5 and 3.5).

Number of Conditions

Another proxy measure for studying the complexity of the extracted rule sets is the
number of conditions (literals) in the individual rules. Depending on the rule induction
algorithm, it is possible to create rule sets with as few rules as possible, while including
many conditions into rules. On the other hand, it is also possible to create many rules
with few conditions. We evaluate this proxy measure from two perspectives: (1) total
number of conditions in rule sets, which can be seen as another proxy for the overall
complexity of the rule sets, and (2) average number of conditions in rules, which can
be seen as a proxy for the readability of individual rules in rule sets.

Table 3.7 shows the total number of conditions in rule sets, averaged over 5 folds.
Overall, the decision tree-based algorithms (decision tree, random forest and LightGBM)
combined with our ASP encoding produces rule sets with small number of conditions
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Table 3.5: Average number of candidate rules (|𝑅 |), size of the generated rule sets (#
rule), averaged over 5 folds. (Global Explanations)

Decision Tree+ASP Random Forest+ASP LightGBM+ASP
Dataset |𝑅 | # rule |𝑅 | # rule |𝑅 | # rule
adult 104.6 1.0 1,774.4 1.4 4,227.6 1.4
autism 2.0 1.0 833.6 1.0 2.0 1.0
breast 17.2 1.0 749.6 1.2 409.4 1.0
cars 41.4 1.0 7,502.0 1.0 1,308.0 1.0
census 81.8 1.0 585.2 1.0 9,533.0 1.0
compas 57.4 1.0 6,702.2 1.0 1,047.6 1.0
credit australia 4.2 1.0 1,832.4 1.2 350.4 1.0
credit german 44.0 1.0 5,638.8 2.0 628.2 1.2
credit taiwan 42.2 1.0 3,975.0 1.0 2,854.2 1.4
heart 6.2 1.2 1,553.6 1.0 213.0 1.4
ionosphere 8.4 1.0 682.4 1.0 315.8 1.0
kidney 7.4 1.0 639.4 1.0 356.6 1.2
krvskp 33.6 1.0 4,122.4 1.0 2,354.6 1.0
voting 10.2 1.0 1,306.2 1.0 153.6 1.0

Table 3.6: Average size of the generated rule sets (# rule), averaged over 5 folds. (Global
Explanations)

Dateset DTa+ASP RFb+ASP LGBMc+ASP RuleFit RIPPER
adult 1.0 1.4 1.4 356.8 24.4
autism 1.0 1.0 1.0 3.2 2.0
breast 1.0 1.2 1.0 148.6 14.8
cars 1.0 1.0 1.0 481.2 28.0
census 1.0 1.0 1.0 895.6 60.6
compas 1.0 1.0 1.0 176.4 10.4
credit australia 1.0 1.2 1.0 58.2 5.4
credit german 1.0 2.0 1.2 438.4 4.2
credit taiwan 1.0 1.0 1.4 113.2 7.2
heart 1.2 1.0 1.4 400.4 5.6
ionosphere 1.0 1.0 1.0 612.2 5.0
kidney 1.0 1.0 1.2 79.2 4.6
krvskp 1.0 1.0 1.0 317.0 17.6
voting 1.0 1.0 1.0 79.8 3.4

aDT=Decision Tree
bRF=Random Forest.
cLGBM=LightGBM.
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Table 3.7: Total number of conditions in rule sets, averaged over 5 folds. (Global
Explanations)

Dateset DTa+ASP RFb+ASP LGBMc+ASP RuleFit RIPPER
adult 4.0 7.0 7.0 1143.4 108.4
autism 1.0 1.0 1.0 4.4 1.0
breast 5.8 6.0 1.0 427.8 19.8
cars 6.4 5.2 1.0 1541.4 101.8
census 8.2 5.4 1.8 2307.4 381.2
compas 3.6 5.8 2.4 559.6 27.6
credit australia 2.2 3.2 2.4 156.4 9.8
credit german 4.0 18.0 3.4 1262.6 8.4
credit taiwan 4.6 6.2 5.6 317.6 18.0
heart 2.2 2.0 3.2 1057.4 13.4
ionosphere 4.2 4.8 4.6 1408.8 6.2
kidney 2.4 2.4 4.0 221.6 7.2
krvskp 6.0 7.8 3.0 998.6 59.2
voting 2.2 1.0 1.8 205.4 5.8

aDT=Decision Tree
bRF=Random Forest.
cLGBM=LightGBM.
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Table 3.8: Average number of conditions for each rule in rule sets, averaged over 5
folds. (Global Explanations)

Dateset DTa+ASP RFb+ASP LGBMc+ASP RuleFit RIPPER
adult 4.0 4.8 5.0 3.2 4.4
autism 1.0 1.0 1.0 1.3 0.5
breast 5.8 5.0 1.0 3.5 1.3
cars 6.4 5.2 1.0 3.3 3.4
census 8.2 5.4 1.8 2.6 6.3
compas 3.6 5.8 2.4 3.2 2.6
credit australia 2.2 3.0 2.4 2.7 1.6
credit german 4.0 9.0 2.4 3.0 2.0
credit taiwan 4.6 6.2 4.0 2.8 2.5
heart 1.8 2.0 2.0 2.0 2.1
ionosphere 4.2 4.8 4.6 2.5 1.1
kidney 2.4 2.4 3.4 2.9 1.5
krvskp 6.0 7.8 3.0 3.2 3.3
voting 2.2 1.0 1.8 2.4 1.3

aDT=Decision Tree
bRF=Random Forest.
cLGBM=LightGBM.

than the benchmark methods. In particular, RuleFit produced rule sets with much
larger number of conditions in all datasets. The results for RIPPER were mixed in this
case; while the number of conditions in rule sets were often similar to our methods, in
other cases it produced rule sets with large number of conditions (e.g., census and cars
datasets).

Table 3.8 shows the average number of conditions per rule in rule sets, averaged
over 5 folds. Contrary to the previous results (Tables 3.6, 3.7), the results are similar
among different methods. When compared to the results for the total number of rules
and conditions in rule sets, we see that RuleFit produces a large number of rules, but
individual rules are short (3 conditions or fewer, on average). RIPPER produced, in
some cases, the smallest rules in terms of average number of conditions per rule.
However, for RIPPER, it should be noted that the figures quoted in Table 3.8 includes
rules with 0 conditions (e.g., a ’default’ rule with empty body, ’=> class 0’), so the
average number of conditions in bodies is likely to be biased towards lower values. The
figures for the ASP-based methods and RuleFit do not include the ’default’ rule, as in
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RIPPER. As for our method, the maximum number of conditions included in each
of the rules is actually capped by the maximum depth of the decision trees in the
ensemble. It can additionally be affected by the ASP encoding, if the user decides to
include it in the selection criteria, however, it was not the case in this experiment.
Note also that the maximum depth in the decision tree training parameter means the
maximum possible depth to which the tree may be grown, and it is not a requirement
for the tree induction algorithm to actually grow to that depth. In our experiments, the
maximum depth parameter in the hyperparameter selection was set to much higher
values than the values in Table 3.8, thus either the hyperparameter tuning algorithm or
the tree-ensemble learning algorithm could have decided that deeper trees were not
necessary.

Relevance of Rules

To quantify the relevance of the extracted rules, we measured the ratio of performance
metrics using the naive rule-based classifier by 5-fold cross validation (Table 3.9
and 3.10). Performance ratio of less than 1.0 means that the rule-based classifier
performed worse than the original classifier (LightGBM and Random Forest), whereas
performance ratio greater than 1.0 means the rule set’s performance is better than the
original classifier. We used a version of the ASP encoding shown in Section 3.4.5 where
the accuracy and coverage are maximized. RIPPER was excluded from this comparison
because it has a built-in rule generation and refinement process, and it does not have a
base model, whereas our method and RuleFit use variants of tree-ensemble models as
base models.

From Table 3.9 we observe that in terms of accuracy, RuleFit generally performs as
well as, or marginally better than, the original Random Forest. On the other hand,
although our method can produce rule sets that are comparable in performance against
the original model, they do not produce rules that perform significantly better. With
Decision Tree and Random Forest, the generated rule sets perform much worse than
the original model, e.g., in kidney, voting. The LightGBM+ASP combination resulted in
the second-best performance overall, where the resulting rules’ performances were
arguably comparable (0.8-0.9 range) to the original model with a few exceptions (e.g.,
census F1-score) where the performance ratio was about half of the original. While
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Table 3.9: Average ratio of rule-based classifier’s performance vs. original tree-
ensembles, averaged over 5 folds. Accuracy and F1-score ratio. (Global Explanations)

Accuracy ratioa F1-score ratio
Dataset DTb RFc LGBMd RuleFit DT RF LGBM RuleFit
adult 0.92 0.93 0.94 1.01 0.34 0.63 0.78 1.11
autism 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01
breast 0.91 0.96 0.95 0.99 0.80 0.93 0.92 0.98
cars 0.80 0.81 0.52 1.01 0.41 0.49 0.44 1.02
census 0.96 1.00 0.80 1.02 0.21 5.17 0.40 10.86
compas 0.96 0.93 0.91 1.01 0.47 0.58 0.78 1.08
credit australia 0.89 0.92 0.88 1.00 0.76 0.86 0.79 1.00
credit german 0.90 0.92 0.79 0.96 0.44 0.86 0.85 1.19
credit taiwan 0.97 0.97 0.99 1.01 0.39 0.62 0.87 1.11
heart 0.88 0.90 0.99 1.01 0.76 0.83 0.95 1.02
ionosphere 0.72 0.70 0.96 0.99 0.85 0.83 0.97 0.99
kidney 0.67 0.62 0.90 0.99 0.81 0.77 0.92 1.00
krvskp 0.53 0.54 0.59 1.02 0.69 0.71 0.67 1.02
voting 0.64 0.64 0.97 1.00 0.78 0.79 0.97 1.00

aPerformance ratio of 1 means the rule set’s performance is identical to the original classifier.
bDT=Decision Tree+ASP.
cRF=Random Forest+ASP.
dLGBM=LightGBM+ASP.

RuleFit’s performance was superior, our method could still produce rule sets with
reasonable performance with much smaller rule sets that are an order of magnitude
smaller than RuleFit. A rather unexpected result was that using our method (Random
Forest) or RuleFit significantly improved the F1-score in the census dataset. In Table
3.10 we can see that recall was the major contributor to this improvement.

Changing Optimization Criteria

The definition of optimization objectives has a direct influence over the performance
of the resulting rule sets, and the objectives need to be set in accordance with user
requirements. The answer sets found by clingo with multiple optimization statements
are optimal regarding the set of goals defined by the user. Instead of using accuracy,
one may use other rule metrics as defined in Table 3.1 such as precision and/or recall.
If there are priorities between optimization criteria, then one could use the priority
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Table 3.10: Average ratio of rule-based classifier’s performance vs. original tree-
ensembles, averaged over 5 folds. Precision and Recall ratio. (Global Explanations)

Precision ratioa Recall ratio
Dataset DTb RFc LGBMd RuleFit DT RF LGBM RuleFit
adult 1.30 1.00 0.86 0.94 0.22 0.69 0.74 1.25
autism 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01
breast 0.97 0.97 0.96 0.99 0.70 0.91 0.88 0.97
cars 1.04 1.06 0.36 1.04 0.26 0.32 0.60 0.99
census 0.07 0.54 0.30 0.75 0.06 6.81 1.26 17.14
compas 1.13 0.85 0.84 0.96 0.34 0.50 0.85 1.18
credit australia 1.16 1.00 1.01 1.01 0.55 0.81 0.70 0.99
credit german 0.81 0.69 0.61 0.77 0.41 0.99 1.16 1.54
credit taiwan 1.01 0.90 0.98 0.98 0.29 0.55 0.84 1.18
heart 0.96 0.94 1.08 1.01 0.68 0.78 0.86 1.07
ionosphere 0.70 0.71 0.98 1.01 1.09 1.03 0.97 0.99
kidney 0.67 0.62 0.91 1.00 1.04 1.00 0.94 1.00
krvskp 0.53 0.54 0.65 1.03 1.00 1.02 0.76 1.01
voting 0.62 0.63 1.01 0.98 1.04 1.05 0.94 1.00

aPerformance ratio of 1 means the rule set’s performance is identical to the original classifier.
bDT=Decision Tree+ASP.
cRF=Random Forest+ASP.
dLGBM=LightGBM+ASP.
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notation (weight@priority) in clingo to define them. Optimal answer sets can be
computed in this way, however, if enumeration of such optimal sets is important, then
one could use the pareto or lexico preference definitions provided by asprin [50] to
enumerate Pareto optimal answer sets. Instead of presenting a single optimal rule set
to the user, this will allow the user to explore other optimal rule sets.

To investigate the effect of changing optimization objectives, we changed the ASP
encoding from max. accuracy-coverage to max. precision-coverage (shown in Section
3.4.4) while keeping other parameters constant. The results are shown in Table 3.11.
Note that it is the ratio of precision score shown in the table, as opposed to accuracy or
F1-score in the earlier tables. Here, since we are optimizing for better precision, we
expect the precision-coverage encoding to produce rule sets with better precision
scores than the accuracy-coverage encoding. For the Decision Tree and Random Forest
+ ASP, the effect was not as pronounced as we expected, but we observed noticeable
differences in datasets compas and credit german. For the LightGBM+ASP combination,
we observed more consistent difference, except for the ionosphere dataset, the encoding
produced intended results in most of the datasets in this experiment.

3.6.3 Evaluating Local Explanations

The purpose of generating local explanations is to provide the user with an explanation
for the model’s prediction for each predicted instance. Here, we use commonly
used metrics local-precision and coverage as proxy measures for the quality of the
explanation.13 The local-precision compares the (black-box) model predictions of
instances covered by the local explanation and the model prediction of the original
instance used to induce the local explanation. The coverage is the ratio of instances in
the validation set that are covered by the local explanation. These two metrics are in a
trade-off relationship, where pursuing high coverage is likely to result in low precision
explanation and vice versa. Additionally, we will also compare the running time to
generate the local explanation.

The experiments were carried out similarly to the global explanation evaluation,
except that: (1) we replaced RIPPER and RuleFit with Anchors, (2) instead of using the

13In the original Anchors paper, the authors use the term precision, but here we add local- to distinguish
from the more commonly used definition of precision.
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Table 3.11: Average ratio of rule-based classifier’s precision vs. original tree-ensembles,
averaged over 5 folds. (Global Explanations)

Decision Tree+ASPa Random Forest+ASP LightGBM+ASP
Dataset acc.covb prec.covc acc.cov prec.cov acc.cov prec.cov
adult 1.30 1.30 1.00 1.13 0.86 1.27
autism 1.00 1.00 1.00 1.00 1.00 1.00
breast 0.97 0.97 0.97 1.04 0.96 1.02
cars 1.04 1.04 1.06 1.06 0.36 0.36
census 0.07 0.24 0.54 0.54 0.30 0.90
compas 1.13 1.27 0.85 1.05 0.84 1.11
credit australia 1.16 1.16 1.00 1.05 1.01 1.04
credit german 0.81 1.28 0.69 0.92 0.61 0.75
credit taiwan 1.01 1.04 0.90 1.08 0.98 1.12
heart 0.96 1.13 0.94 1.02 1.08 1.12
ionosphere 0.70 0.70 0.71 0.71 0.98 0.95
kidney 0.67 0.67 0.62 0.62 0.91 0.97
krvskp 0.53 0.53 0.54 0.54 0.65 0.70
voting 0.62 0.62 0.63 0.63 1.01 1.02

aPerformance ratio of 1 means the rule set’s precision is identical to the original classifier. Numbers
are shown in bold where the performance ratio was better than more than 0.01 compared to the other
encoding.

bacc.cov=accuracy and coverage encoding, see Section 4.
cprec.cov=precision and coverage encoding, see Section 4.
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full validation set, we resampled the validation dataset to generate 100 instances in
each cross-validation fold for each dataset to estimate the metrics, to complete the
experiments in a reasonable amount of time, and (3) in the ASP encoding, we removed
the rule selection criteria to avoid excluding rules that are relevant to the predicted
instance. We were unable to complete Anchors experiment with the census dataset due
to limited memory (64 GB) on our machine. For the running time comparison, we
exclude all data preprocessing, training and tree processing, and focus solely on the
time taken to generate local explanations.

Local-Precision, Coverage and Running Time

The average local-precision, averaged over 5 cross-validation folds, is reported in Table
3.12. Note that while Anchors has a minimum precision threshold (we used the default
0.95 setting), ours do not, and indeed we see that all Anchors explanations have higher
local-precision than the threshold. The Decision Tree will always have exactly one rule
that is relevant to the prediction; therefore, we expect to see exactly 1 local-precision
using our method. For the Random Forest and LightGBM, our method produced local
explanations with local-precision in 0.8-0.9 range for most of the datasets, but Anchors’
explanations had higher local-precision in most cases.

The average coverage, averaged over 5 cross-validation folds, is reported in Table
3.13. Interestingly, when using simpler models such as the Decision Tree and Random
Forest, Anchors can produce rules that have relatively high coverage, but the pattern
does not hold when using a more complex model, which in our case is LightGBM.
With LightGBM, our method consistently outperformed Anchors in terms of coverage
in all datasets, except for the census dataset, which we could not run.

Finally, the average running time per instance is reported in Table 3.14. For the
Decision Tree, Anchors was faster than our method, whereas for the Random Forest
and LightGBM, our method was faster than Anchors in most datasets. We also note
that our method has a more consistent running time of around 2 seconds across all
datasets, regardless of the complexity of the underlying models, whereas Anchors’
running time varies from sub-1 second to tens of seconds, depending on the dataset
and model. This is likely to be caused by the differences in which these methods
query or use information from the original model and generate explanations. In fact,
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Table 3.12: Average local-precision of local explanations, averaged over 5 folds. The
ASP encoding used was precision-coverage. (Local Explanations)

Decision Tree Random Forest LightGBM
Dataset Ours Anchorsa Ours Anchors Ours Anchors
adult 1.00 0.98 0.77 0.99 0.87 1.00
autism 1.00 1.00 0.78 1.00 1.00 1.00
breast 1.00 1.00 0.71 1.00 0.91 0.99
cars 1.00 0.99 0.90 1.00 0.72 1.00
census 1.00 n/a 0.99 n/a 0.94 n/a
compas 1.00 0.99 0.78 0.98 0.89 1.00
credit australia 1.00 1.00 0.74 0.99 0.90 1.00
credit german 1.00 0.98 0.92 1.00 0.86 1.00
credit taiwan 1.00 0.98 0.92 0.99 0.98 1.00
heart 1.00 1.00 0.64 0.99 0.90 1.00
ionosphere 1.00 1.00 0.81 1.00 0.93 1.00
kidney 1.00 0.99 0.80 1.00 0.89 1.00
krvskp 1.00 0.99 0.80 1.00 0.75 1.00
voting 1.00 0.99 0.91 1.00 0.99 0.98

an/a indicates where Anchors ran out of memory on our system.

a significant amount of time is spent in tree processing in our method, whereas in
Anchors the search process is often the most time-consuming step. Nonetheless, this
comparative experiment demonstrated that our method can produce local explanations
in a matter of seconds even when the underlying tree-ensemble is large.

Number of Conditions in Local Explanations

For completeness, we report the number of conditions in local explanations in
this section, calculated in a similar manner to the corresponding metric in global
explanations. For local explanations, the number of rules provided as an explanation is
usually 1, i.e., there is usually only a single rule given as an explanation. Thus, we
focus on the average length (number of conditions in the body) of the rules, instead of
the total number of conditions or the number of rules, as in global explanations. The
results are shown in Table 3.15.

For decision tree and random forest, Anchors produced smaller rules overall
compared to our methods. It is interesting that this trend is completely reversed for
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Table 3.13: Average coverage of local explanations, averaged over 5 folds. The ASP
encoding used was precision-coverage. (Local Explanations)

Decision Tree Random Forest LightGBM
Dataset Ours Anchorsa Ours Anchors Ours Anchors
adult 0.10 0.26 0.14 0.36 0.79 0.01
autism 0.62 0.11 0.17 0.08 0.62 0.11
breast 0.35 0.38 0.32 0.28 0.60 0.04
cars 0.17 0.21 0.06 0.21 0.54 0.01
census 0.20 n/a 0.27 n/a 0.94 n/a
compas 0.10 0.09 0.20 0.12 0.55 0.01
credit australia 0.32 0.48 0.25 0.21 0.33 0.02
credit german 0.17 0.24 0.03 0.07 0.49 0.01
credit taiwan 0.18 0.61 0.07 0.61 0.63 0.01
heart 0.24 0.37 0.29 0.17 0.29 0.03
ionosphere 0.35 0.04 0.39 0.02 0.41 0.02
kidney 0.32 0.11 0.35 0.05 0.51 0.02
krvskp 0.13 0.17 0.14 0.13 0.51 0.01
voting 0.33 0.50 0.42 0.42 0.46 0.04

an/a indicates where Anchors ran out of memory on our system.
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Table 3.14: Average running time per instance, in seconds, averaged over 5 folds. The
ASP encoding used was precision-coverage. (Local Explanations)

Decision Tree Random Forest LightGBM
Dataset Ours Anchorsa Ours Anchors Ours Anchors
adult 1.73 1.86 1.90 4.35 2.09 27.98
autism 1.71 0.84 1.80 8.54 1.86 1.00
breast 1.70 1.04 1.81 16.33 2.13 8.16
cars 1.70 0.17 2.00 3.12 1.92 1.16
census 1.76 n/a 2.04 n/a 2.18 n/a
compas 1.72 0.23 2.02 2.55 1.99 1.27
credit australia 1.70 0.25 1.89 12.78 1.85 2.70
credit german 1.73 1.02 1.95 9.44 1.94 7.52
credit taiwan 1.72 1.57 1.95 4.13 2.19 45.48
heart 1.62 0.25 2.17 12.37 1.73 2.01
ionosphere 1.62 1.26 1.90 19.09 1.73 13.17
kidney 1.70 0.85 1.79 23.01 1.89 10.84
krvskp 1.70 1.16 1.97 10.69 2.12 12.03
voting 1.70 0.33 1.86 18.18 1.88 4.65

an/a indicates where Anchors ran out of memory on our system.
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Table 3.15: Average number of conditions per explanation, averaged over 5 folds. The
ASP encoding used was precision-coverage. (Local Explanations)

Decision Tree Random Forest LightGBM
Dataset Ours Anchorsa Ours Anchors Ours Anchors
adult 8.65 3.31 6.37 3.07 4.94 92.88
autism 1.00 1.55 3.75 2.45 1.00 1.55
breast 4.32 1.48 3.91 2.03 1.41 30.51
cars 4.03 2.20 6.28 2.25 1.17 20.46
census 8.08 n/a 7.86 n/a 7.57 n/a
compas 4.99 3.80 3.74 2.88 3.34 21.92
credit australia 1.87 1.10 3.17 2.48 2.55 39.13
credit german 4.32 3.34 6.32 4.83 2.56 54.22
credit taiwan 5.69 1.90 7.47 1.57 3.99 141.25
heart 2.60 1.50 2.22 2.76 2.62 25.93
ionosphere 3.63 2.78 3.95 2.95 3.50 31.48
kidney 2.84 1.75 2.61 2.31 2.04 41.18
krvskp 4.78 2.62 6.11 3.78 2.52 63.89
voting 2.45 1.22 2.27 2.23 2.06 21.08

an/a indicates where Anchors ran out of memory on our system.
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LightGBM, where our method could produce much more concise rules compared to
Anchors, which sometimes produced rules with over 100 conditions. This result for
LightGBM also highlights the difference between our method and Anchors, in the
sense that, in our method, the search space is constrained by the structures of the
decision trees, so the maximum number of conditions is capped at the maximum depth
of the decision trees, whereas in Anchors, the algorithm can add as many conditions as
necessary to achieve the precision guarantee set by the user.

Summary of Experiments

To conclude the experimental section, we summarize the main results obtained in this
section. For global explanations, we analyzed (1) the average size of generated rule
sets and compared it against known methods, as a proxy measure for the degree of
simplifications, (2) the relative performance of the rule sets and compared it against
known methods, as a proxy measure for the relevance of the explanations, and (3) the
effect of modifying the ASP encoding on the precision metric of the explanations.
Overall, our method was shown to be able to produce smaller rule sets compared to the
known methods, however, in terms of the relevance of the rules, RuleFit performed
better in most cases, demonstrating the trade-off relationship between the complexity
of the explanations and performance.

For local explanations, we compared (1) local-precision, (2) coverage (3) running
time and (4) number of conditions of our method against Anchors. In terms of
local-precision, although our method could produce explanations with reasonably
high precision (0.8-0.9 range), Anchors performed better overall. As for coverage,
we found that explanations generated by our method can cover more examples for
tree-ensemble. Regarding running time, our method had a consistent running time of
around 2 seconds, whereas the running time of Anchors varied between datasets.
The experiments for local explanations also highlights the differences between our
method and Anchors: while Anchors can produce high-precision rules, our method has
advantage in terms of memory requirement and consistent running time.
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3.7 Conclusion

In this work, we presented a method for generating rule sets as global and local
explanations from tree-ensemble models using pattern mining techniques encoded in
ASP. Unlike other explanation methods that focus exclusively on either global or
local explanations, our two-step approach allows us to handle both global and local
explanation tasks. We showed that our method can be applied to two well-known
tree-ensemble learning algorithms, namely Random Forest and LightGBM. Evaluation
on various datasets demonstrated that our method can produce explanations with good
quality in a reasonable amount of time, compared to existing methods.

Adopting the declarative programming paradigm with ASP allows the user to take
advantage of the expressiveness of ASP in representing constraints and optimization
criteria. This makes our approach particularly suitable for situations where fast
prototyping is required, since changing the constraint and optimization settings
require relatively low effort compared to specialized pattern mining algorithms. Useful
explanations can be generated using our approach, and combined with the expressive
ASP encoding, we hope that our method will help the users of tree-ensemble models to
better understand the behavior of such models.

A limitation of our method in terms of scalability is the size of search space, which
is exponential in the number of valid rules. When the number of candidate rules is
large, we suggest using stricter individual rule constraints on the rules, or reducing the
maximum number of rules to be included into rule sets (Section 3.4.4), to achieve
reasonable solving time.

There are a number of directions for further research. First, while the current work
did not modify the conditions in the rules in any way, rule simplification approaches
could be incorporated to remove redundant conditions. Second, we could extend the
current work to support regression problems. More generally, in the future, we plan
to explore how ASP and modern statistical machine learning could be integrated
effectively to produce more interpretable machine learning systems.
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4
Differentiable Supported Model

Computation

4.1 Introduction

With the recent interest in neuro-symbolic approaches, performing logical inference
with linear algebraic methods has been studied as an attractive alternative to symbolic
methods [51, 52]. Prior implementations of neuro-symbolic systems provided interfaces
for the symbolic reasoning engines to handle the outputs from the neural networks as
neural predicates [53, 54]. However, more direct realization of logic programming in
continuous domain remains an open challenge.

A key component in a typical deep neural network is a set of parameters stored
in multidimensional tensors. Thus, performing logical inference in vector spaces
allows us to work with a common type of algebraic objects, which may facilitate neuro-
symbolic integration. While there are many possible ways to achieve neuro-symbolic
integration, in our view, there are two main requirements, one from the neuro-symbolic
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perspective, and the other from the logic programming perspective. (i) The inference
step should be able to handle continuous inputs and support differentiable operations
in continuous domain, or an interface should be provided where the results of symbolic
computation can be translated into continuous domain for the neural networks. (ii)
The semantics of logic programming should be preserved even in continuous domains,
and non-monotonic semantics are preferred over the classical semantics for supporting
commonsense reasoning.

Matrix representations of normal logic programs and a linear algebraic method
for computing the stable models were proposed by Sakama et al. [52]. Using an
alternative matrix representation, Sato et al. computed supported models in vector
spaces via 3-valued completion models of normal logic programs [55]. While the
aforementioned methods would allow one to compute models under non-monotonic
semantics in vector spaces, they use non-differentiable operations that do not use
the gradient-information. More recently, gradient-based search methods have been
proposed for SAT [56], supported and stable model computation [51]. Aspis et al.’s
method uses a matrix representation of the program reduct, the Newton’s method
for root finding for finding fixed points, and a parameterized sigmoid function for
thresholding. Compared to symbolic local search methods that flip one atom at a time
[57], matrix- and gradient-based methods update all assignments simultaneously in
continuous domain, which may reduce the number of restarts compared to discrete
value search.

In the context of gradient-based search, many variations are possible for each
component. In this work, we build upon previous works [56, 51] by presenting an
alternative differentiable method for efficiently computing supported models of normal
logic programs in continuous vector spaces. Our main contributions are:

• Presenting an alternative method for embedding logic programs into matrices,
and designing an almost everywhere differentiable thresholding function.

• Introducing a loss function with regularization terms for computing supported
models, and integrating various gradient update strategies.

• Demonstrating with a help of systematic performance evaluation on a range of
programs, that by selecting appropriate components, it is possible to achieve
much higher performance and stability than the existing method.
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The structure of this section is as follows: Section 4.2 covers the necessary
background and definitions. Section 4.3 presents a method for representing logic
programs with matrices. Section 4.4 introduces the thresholding function, loss function,
and the gradient-based search algorithm for supported models. Section 4.5 presents the
results of experiments designed to test the ability of the algorithm. Finally, Section 4.6
presents the conclusion.

4.2 Background

For a general background material on logic programming, readers are referred to
Section 2.1, since this section only covers materials that are relevant to this chapter.

We consider a language L that contains a finite set of propositional variables
defined over a finite alphabet and the logical connectives ¬, ∧, ∨ and←. The Herbrand
base, 𝐵𝑃 , is the set of all propositional variables in a logic program 𝑃 .

A definite program is a set of rules of the form (4.1) or (4.2), where ℎ and 𝑏𝑖 are
propositional variables (atoms) in L. We refer to (4.2) as an OR-rule, which is a
shorthand for 𝑚 rules: ℎ ← 𝑏1, ℎ ← 𝑏2, . . . , ℎ ← 𝑏𝑚. For each rule 𝑟 we define
ℎ𝑒𝑎𝑑 (𝑟 ) = ℎ and 𝑏𝑜𝑑𝑦 (𝑟 ) = {𝑏1, . . . , 𝑏𝑚}. A rule 𝑟 is a fact if 𝑏𝑜𝑑𝑦 (𝑟 ) = ∅.

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑚 (𝑚 ≥ 0) (4.1)

ℎ ← 𝑏1 ∨ 𝑏2 ∨ · · · ∨ 𝑏𝑚 (𝑚 ≥ 0) (4.2)

A normal program is a set of rules of the form (4.3) where ℎ and 𝑏𝑖 are propositional
variables in L.

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑙 ∧ ¬𝑏𝑙+1 ∧ ¬𝑏𝑙+2 ∧ · · · ∧ ¬𝑏𝑚 (𝑚 ≥ 𝑙 ≥ 0) (4.3)

We refer to the positive and negative occurrences of atoms in the body as 𝑏𝑜𝑑𝑦+(𝑟 ) =
{𝑏1, . . . , 𝑏𝑙 } and 𝑏𝑜𝑑𝑦−(𝑟 ) = {𝑏𝑙+1, . . . , 𝑏𝑚}, respectively. A normal program is a definite
program if 𝑏𝑜𝑑𝑦−(𝑟 ) = ∅ for every rule 𝑟 ∈ 𝑃 .

An Herbrand interpretation 𝐼 , of a normal program 𝑃 is a subset of 𝐵𝑃 . A model 𝑀 of
𝑃 is an interpretation of 𝑃 where for every rule 𝑟 ∈ 𝑃 of the form (4.3), 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝑀
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and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩𝑀 = ∅ imply ℎ ∈ 𝑀 . A program is called consistent if it has a model. A
supported model 𝑀 is a model of 𝑃 where for every 𝑝 ∈ 𝑀 there exists a rule 𝑟 ∈ 𝑃 such
that 𝑝 = ℎ, 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝑀 and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩𝑀 = ∅ [8, 10].

As we shall show later, in this work we transform normal logic programs into
definite programs for searching supported models. Thus, we use the following definition
of the immediate consequence operator 𝑇𝑃 . 𝑇𝑃 : 2𝐵𝑃 → 2𝐵𝑃 is a function on Herbrand
interpretations. For a definite program 𝑃 , we have: 𝑇𝑃 (𝐼 ) = {ℎ |ℎ ← 𝑏1 ∧ · · · ∧ 𝑏𝑚 ∈
𝑃 and {𝑏1, . . . , 𝑏𝑚} ⊆ 𝐼 }∪{ℎ |ℎ ← 𝑏1∨· · ·∨𝑏𝑚 ∈ 𝑃 and {𝑏1, . . . , 𝑏𝑚}∩𝐼 ≠ ∅}. It is known
that a supported model𝑀 of a program 𝑃 is a fixed point of 𝑇𝑃 , i.e. 𝑇𝑃 (𝑀) = 𝑀[10].

Definition 4 (Singly-Defined (SD) Program). A normal program P is an SD-program if
ℎ𝑒𝑎𝑑 (𝑟1) ≠ ℎ𝑒𝑎𝑑 (𝑟2) for any two rules 𝑟1 and 𝑟2 (𝑟1 ≠ 𝑟2) in P.

Any normal program 𝑃 can be converted into an SD-program 𝑃 ′ in the following
manner. If there are more than one rule with the same head (ℎ ← 𝑏𝑜𝑑𝑦 (𝑟1), . . . , ℎ ←
𝑏𝑜𝑑𝑦 (𝑟𝑘), where𝑘 > 1), then replace themwith a set of new rules {ℎ ← 𝑏1∨...∨𝑏𝑘 , 𝑏1 ←
𝑏𝑜𝑑𝑦 (𝑟1), ..., 𝑏𝑘 ← 𝑏𝑜𝑑𝑦 (𝑟𝑘)} containing new atoms {𝑏1, ..., 𝑏𝑘}. This is a stricter
condition than the multiple definitions condition (MD-condition) [52]: for any two rules
𝑟1 and 𝑟2 in 𝑃 , (i) ℎ𝑒𝑎𝑑 (𝑟1) = ℎ𝑒𝑎𝑑 (𝑟2) implies |𝑏𝑜𝑑𝑦+(𝑟1) | ≤ 1 and |𝑏𝑜𝑑𝑦+(𝑟2) | ≤ 1,
and (ii) 𝑏𝑜𝑑𝑦−(𝑟1) ∩ 𝑏𝑜𝑑𝑦−(𝑟2) ≠ ∅ implies |𝑏𝑜𝑑𝑦+(𝑟1) | ≤ 1 and |𝑏𝑜𝑑𝑦+(𝑟2) | ≤ 1. All
SD-programs satisfy the MD condition. We shall assume all programs in this work are
SD-programs.

Given a normal program 𝑃 , it is transformed into a definite program by replacing
the negated literals in rules of the form (4.3) and rewriting:

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑙 ∧ 𝑏𝑙+1 ∧ 𝑏𝑙+2 ∧ · · · ∧ 𝑏𝑚 (𝑚 ≥ 𝑙 ≥ 0) (4.4)

where 𝑏𝑖 are new atoms associated with the negated 𝑏𝑖 . A collection of rules of the
form (4.4) is referred to as the positive form 𝑃+ where 𝐵𝑃+ = 𝐵𝑃 ∪ {𝑎 | 𝑎 ∈ 𝐵𝑃 }. For
transformed rules of the form (4.4), we refer to {𝑏1, . . . , 𝑏𝑙 } as the positive part and
{𝑏𝑙+1, . . . , 𝑏𝑚} as the negative part. After transformation, the program should contain
rules of the forms (4.1), (4.2), or (4.4). By an interpretation 𝐼+ of 𝑃+, we mean any set
of atoms 𝐼+ ⊆ 𝐵𝑃+ that satisfies the condition for any atom 𝑎 ∈ 𝐵𝑃+ , precisely one of
either 𝑎 or 𝑎 belongs to 𝐼+.
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4.3 Representing Logic Programs with Matrices

4.3.1 Relationship between Positive Forms and Supported Mod-
els

Consider a program 𝑝 ← ¬𝑝 , and its positive form 𝑝 ← 𝑝 . 𝑃+ is a definite program,
but it has no supported models in this case due to the restriction we place on the
interpretation: if 𝑝 ∈ 𝐼+ then 𝑝 ∉ 𝐼+ and vice versa. Then in this case, the implication is
that there are no fixed points of 𝑇𝑃+ for 𝑃+ that satisfy the condition 𝑝 ∈ 𝐼+ iff 𝑝 ∉ 𝐼+.
On the other hand, when a model𝑀 of 𝑃 exists, we can show that the corresponding
𝑀+ is a model of 𝑃+.

Proposition 6. Let 𝑃 be a normal program, and let 𝑃+ be its positive form. If𝑀 is a
model of 𝑃 , then 𝑀′ = 𝑀 ∪ {𝑎 | 𝑎 ∈ 𝐵𝑃+ \𝑀} is a model of 𝑃+. Conversely, if 𝑀+ is a
model of 𝑃+, then𝑀+ ∩ 𝐵𝑃 is a model of P.

Proof. Follows from the definition of𝑀′ and𝑀+. Consider𝑀′. Since 𝑎 ∉ 𝑀′ if 𝑎 ∈ 𝑀′

and vice versa, for each rule 𝑟 ∈ 𝑃+, 𝑏𝑜𝑑𝑦 (𝑟 ) ⊆ 𝑀′ implies ℎ𝑒𝑎𝑑 (𝑟 ) = 𝑎 ∈ 𝑀′. Thus,𝑀′

is a model of 𝑃+. Now consider𝑀+. Let 𝐾 = 𝑀+ ∩ 𝐵𝑃 . Given that𝑀+ is a model of 𝑃+

and 𝑎 ∈ 𝐾 if 𝑎 ∈ 𝑀+, for each rule 𝑟 ∈ 𝑃 , 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝐾 and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩ 𝐾 = ∅ implies
ℎ𝑒𝑎𝑑 (𝑟 ) = 𝑎 ∈ 𝐾 . Thus, 𝐾 is a model of 𝑃 . □

Proposition 7. Let𝑀 be a supported model of 𝑃 , and put𝑀′ = 𝑀 ∪ {𝑎 | 𝑎 ∈ 𝐵𝑃+ \𝑀}.
Then, 𝑇𝑃+ (𝑀′) = 𝑀 .

Proof. Suppose 𝑎 ∈ 𝑀 . Since𝑀 is a supported model, there exists a rule 𝑟 ∈ 𝑃 such
that ℎ𝑒𝑎𝑑 (𝑟 ) = 𝑎, 𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ 𝑀 and 𝑏𝑜𝑑𝑦−(𝑟 ) ∩𝑀 = ∅. Correspondingly, there exists
a rule 𝑟 ′ ∈ 𝑃+ such that ℎ𝑒𝑎𝑑 (𝑟 ′) = 𝑎, 𝑏𝑜𝑑𝑦+(𝑟 ′) ⊆ 𝑀′ and 𝑏𝑜𝑑𝑦−(𝑟 ′) ⊆ 𝑀′. That is,
𝑎 ∈ 𝑇𝑃+ (𝑀′). Hence,𝑀 ⊆ 𝑇𝑃+ (𝑀′).

Conversely, suppose 𝑎 ∈ 𝑇𝑃+ (𝑀′). Then, there exists a rule 𝑟 ′ ∈ 𝑃+ such that
ℎ𝑒𝑎𝑑 (𝑟 ′) = 𝑎 and 𝑏𝑜𝑑𝑦 (𝑟 ′) ⊆ 𝑀′. Since𝑀′ is a model of 𝑃+ by Proposition 6, 𝑏𝑜𝑑𝑦 (𝑟 ′) ⊆
𝑀′ implies ℎ𝑒𝑎𝑑 (𝑟 ′) = 𝑎 ∈ 𝑀′. Because 𝑎 is a positive literal, 𝑎 ∈ 𝑀 holds. Hence,
𝑇𝑃+ (𝑀′) ⊆ 𝑀 . Therefore,𝑀 = 𝑇𝑃+ (𝑀′). □

Proposition 8. Let𝑀+ be an interpretation of 𝑃+. If 𝑇𝑃+ (𝑀+) = 𝑀+ ∩ 𝐵𝑃 holds, then
𝑀 = 𝑀+ ∩ 𝐵𝑃 is a supported model of 𝑃 .
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Proof. Suppose 𝑇𝑃+ (𝑀+) = 𝑀+ ∩ 𝐵𝑃 . Because 𝑀+ ∩ 𝐵𝑃 recovers the positive literals
from 𝑀+, for each 𝑎 ∈ (𝑀+ ∩ 𝐵𝑃 ), there exists a rule 𝑟 ∈ 𝑃 such that ℎ𝑒𝑎𝑑 (𝑟 ) = 𝑎,
𝑏𝑜𝑑𝑦+(𝑟 ) ⊆ (𝑀+∩𝐵𝑃 ) and 𝑏𝑜𝑑𝑦−(𝑟 )∩ (𝑀+∩𝐵𝑃 ) = ∅. Thus,𝑀 = 𝑀+∩𝐵𝑃 is a supported
model of 𝑃 . □

4.3.2 Matrix Encoding of Logic Programs

In subsequent sections we shall use the following notations: matrices and vectors are
represented as bold upper-case,M, and lower-case letters,v, respectively. A 1-vector
with length 𝑁 is represented by 1𝑁 . The indices of the entries of matrices and vectors
appear in the subscript, for example,M𝑖 𝑗 refers to the element at 𝑖-th row and 𝑗-th
column of a matrix M and v𝑖 refers to the 𝑖-th element of a column vector v. Let
M𝑖: andM: 𝑗 denote the 𝑖-th row slice and 𝑗-th column slice ofM, respectively. We
denote the horizontal concatenation of matricesM1 andM2 as [M1M2], and denote the
vertical concatenation of column vectors v1 and v2 as [v1; v2].

Let 𝑃 be a normal program with size |𝐵𝑃 | = 𝑁 , 𝑃+ its positive form and 𝐵𝑃+ the
Herbrand base of 𝑃+. Then we have |𝐵𝑃+ | = 2𝑁 since for every 𝑏 ∈ 𝐵𝑃 we add its
negated version 𝑏. We encode atoms appearing in the bodies of the rules ∈ 𝑃+ into a
binary program matrix Q ∈ Z𝑁×2𝑁 .

Definition 5 (Program Matrix). Let 𝑃 be a normal program with |𝐵𝑃 | = 𝑁 and 𝑃+ its
positive form with |𝐵𝑃+ | = 2𝑁 . Then 𝑃+ is represented by a matrix Q ∈ Z𝑁×2𝑁 such that
for each element Q𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 2𝑁 ) in Q,

• Q𝑖 𝑗 = 1 if atom 𝑎 𝑗 ∈ 𝐵𝑃+ (1 ≤ 𝑗 ≤ 2𝑁 ) appears in the body of the rule 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑁 );

• Q𝑖 𝑗 = 0, otherwise.

The 𝑖-th row of Q corresponds to the atom 𝑎𝑖 appearing in the head of the rule 𝑟𝑖 ,
and the 𝑗-th column corresponds to the atom 𝑎 𝑗 (1 ≤ 𝑗 ≤ 2𝑁 ) appearing in the body of
the rules 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑁 ). Atoms that do not appear in the head of any of the rules in 𝑃+

are encoded as zero-only row vectors in Q.
This definition is different from the previous works [51, 52], in that we do not

explicitly include ⊤ and ⊥ in the program matrix, and we do not use fractional values
to encode long rules. In fact, our encoding method is similar to that of [55], except that
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we do not use (2𝑁 × 2𝑁 ) space for the program matrix since we do not encode rules
with 𝑏 ∈ 𝐵𝑃+ in the head.

Definition 6 (Interpretation Vector). Let 𝑃 be a definite program and 𝐵𝑃 = {𝑎1, . . . , 𝑎𝑁 }.
Then an interpretation 𝐼 ⊆ 𝐵𝑃 is represented by a vector v = (v1, . . . , v𝑁 )⊺ ∈ Z𝑁 where
each element v𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) represents the truth value of the proposition 𝑎𝑖 such that
v𝑖 = 1 if 𝑎𝑖 ∈ 𝐼 , otherwise v𝑖 = 0. We assume propositional variables share the common
index such that v𝑖 corresponds to 𝑎𝑖 , and we write var(v𝑖) = 𝑎𝑖 .

Recall that the positive form 𝑃+ of a normal program is a definite program, and all
negated literals in the body are replaced by new atoms, e.g. in (4.4) ¬𝑏𝑙+1 is replaced
by 𝑏𝑙+1. We now extend the definition of interpretation vectors to include relations
between the positive and negative occurrences of atoms, to maintain whenever we
have 𝑏1 ∈ 𝐼 , 𝑏𝑙+1 ∉ 𝐼 and vice versa.

Definition 7 (Companion Vector). Let 𝐵𝑃
𝑃+ ⊆ 𝐵𝑃+ denote the positive part of 𝑃 , 𝐵

𝑁
𝑃+ ⊆ 𝐵𝑃+

denote the negative part of 𝑃 , with size |𝐵𝑃
𝑃+ | = |𝐵

𝑁
𝑃+ | = 𝑁 . Let v𝑃 ∈ Z𝑁 be a vector

representing truth assignments for 𝑎𝑖 ∈ 𝐵𝑃𝑃+ such that v𝑃𝑖 = 1 if 𝑎𝑖 ∈ 𝐼 and v𝑃𝑖 = 0
otherwise. Define a companion vector w ∈ Z2𝑁 representing an interpretation 𝐼+ ⊆ 𝐵𝑃+ as
follows: w = [v𝑃 ; 1𝑁 − v𝑃 ].

4.4 Gradient Descent For Computing Supported Mod-

els

4.4.1 Computing the 𝑇𝑃 Operator in Vector Spaces

Sakama et al. [52] showed that the 𝑇𝑃 operator can be computed in vector spaces using
\ -thresholding. Here we modify \ -thresholding to accommodate our program encoding
method as well as the differentiability requirement.

In previous works [58, 52], the information about the nature of the rules was also
stored in the program matrix Q alongside the atom occurrences; conjunctive rules
with |𝑏𝑜𝑑𝑦 (𝑟𝑖) | > 1 had fractional values Q𝑖 𝑗 = 1/|𝑏𝑜𝑑𝑦 (𝑟𝑖) | and disjunctive bodies had
integer values Q𝑖 𝑗 = 1. Instead, we only store the atom occurrence in Q, and keep
supplementary information in the parameter vector t.
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Definition 8 (Parameter Vector t). A set of parameters to the \ -thresholding is a column
vector t ∈ Z𝑁 such that for each element t𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) in t,

• t𝑖 = |𝑏𝑜𝑑𝑦 (𝑟𝑖) | if the rule 𝑟𝑖 ∈ 𝑃+ is a conjunctive rule, e.g. (4.1), (4.4);

• t𝑖 = 1 if the rule 𝑟𝑖 ∈ 𝑃+ is a disjunctive rule e.g. (4.2);

• t𝑖 = 0, otherwise.

Definition 9 (Parameterized \-thresholding). Let w ∈ Z2𝑁 be a companion vector
representing 𝐼+ ⊆ 𝐵𝑃+ . Given a parameter vector t ∈ Z𝑁 , a program matrix Q ∈ Z𝑁×2𝑁 ,
and a vector y = Qw where y ∈ Z𝑁 , we apply the thresholding function element-wise as
follows:

\t(y𝑖) =

min(max(0, y𝑖 − (t𝑖 − 1)), 1) (t𝑖 ≥ 1)

0 (t𝑖 < 1)
(4.5)

This thresholding function resembles ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ which is an activation function
developed for use in natural language processing [59]. In the originalℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ function,
the range of the linear region is [−1, 1], but here we define the linear region between
[t𝑖 − 1, t𝑖]. This function is almost everywhere differentiable except at y𝑖 = t𝑖 − 1 and
y𝑖 = t𝑖 . The special case t𝑖 < 1 in Equation (4.5) corresponds to the case t𝑖 = 0 where
the head does not appear in the program 𝑃+ and is assumed to be 𝑓 𝑎𝑙𝑠𝑒 .

Intuitively, for the head of a conjunctive rule to be 𝑡𝑟𝑢𝑒 it is sufficient to check
whether all literals in the body hold; otherwise the rule evaluates to 𝑓 𝑎𝑙𝑠𝑒 . Similarly,
for a disjunctive rule, it is sufficient to check whether at least one of the literals in the
body holds for the head to hold.

Proposition 9 (Thresholded 𝑇𝑃 Operator). Let 𝑃+ be the positive form of a normal
program 𝑃 and Q ∈ Z𝑁×2𝑁 its matrix representation. Suppose that 𝐼𝑃 ⊆ 𝐵𝑃

𝑃+ is the positive
part of an interpretation of 𝑃+, and let v be its corresponding vector, i.e., 𝑣𝑖 = 1 iff 𝑎𝑖 ∈ 𝐼𝑃

and 𝑣𝑖 = 0 otherwise, for 𝑖 = 1, ..., 𝑁 . Let w ∈ Z2𝑁 be the companion vector to v. Then
z = [u; 1− u] ∈ Z2𝑁 is the vector representing 𝐽 = 𝑇𝑃 (𝐼 ) satisfying the condition (𝑎 ∈ 𝐽 iff
𝑎 ∉ 𝐽 ), iff u = \t(Qw).

Proof. Consider u = \t(Qw). For u = (u1, . . . , u𝑁 )⊺, by the definition of the thresh-
olding function, u𝑘 = 1 (1 ≤ 𝑘 ≤ 𝑁 ) iff u′

𝑘
≥ t𝑘 in u′ = Qw. Take a row slice
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Q𝑘 :, then u′
𝑘
= Q𝑘 :w = Q𝑘1w1 + · · · + Q𝑘2𝑁w2𝑁 , and u𝑘 = 1 iff u′

𝑘
≥ t𝑘 . Both Q𝑘 :

and w are 0-1 vectors, then it follows that there are at least t𝑘 elements where
Q𝑘 𝑗 = w 𝑗 = 1 (1 ≤ 𝑗 ≤ 2𝑁 ). The first 𝑁 elements of w represent 𝑎𝑖 ∈ 𝐼𝑃 ⊆ 𝐵𝑃𝑃+ if
w𝑖 = 1, and if 𝑎𝑖 ∈ 𝐼𝑃 then 𝑎𝑖 ∉ 𝐼𝑁 ⊆ 𝐵𝑁𝑃+ which is maintained through the definition of
the companion vector w. 1) For a conjunctive rule 𝑎𝑘 ← 𝑎1 ∧ · · · ∧ 𝑎𝑚 (1 ≤ 𝑚 ≤ 2𝑁 ),
{𝑎1, . . . , 𝑎2𝑁 } ∈ 𝐼 implies 𝑎𝑘 ∈ 𝑇𝑃 (𝐼 ). 2) For an OR-rule 𝑎𝑘 ← 𝑎1∨· · ·∨𝑎𝑚 (1 ≤ 𝑚 ≤ 2𝑁 ),
{𝑎1, . . . , 𝑎2𝑁 } ⊆ 𝐼 implies 𝑎𝑘 ∈ 𝑇𝑃 (𝐼 ). 𝑎𝑚 ∈ 𝐼 is represented by z𝑚 = 1 (1 ≤ 𝑚 ≤ 2𝑁 ).
Then by putting 𝐽 = {var(z𝑚) |z𝑚 = 1}, 𝐽 = 𝑇𝑃 (𝐼 ) holds.

Consider 𝐽 = 𝑇𝑃 (𝐼 ). For v = (v1, . . . , v𝑁 )⊺ representing 𝐼𝑃 ⊆ 𝐵𝑃𝑃+ ,w = (v1, . . . , v𝑁 , 1−
v1, . . . , 1−v𝑁 )⊺ is a vector representing 𝐼 ⊆ 𝐵𝑃+ if we set 𝐼 = {var(w𝑖) |w𝑖 = 1}. u′ = Qw
is a vector such that u′

𝑘
≥ t𝑘 (1 ≤ 𝑘 ≤ 𝑁 ) iff var(u′

𝑘
) ∈ 𝑇𝑃 (𝐼 ). Define u = (u1, . . . , u𝑁 )⊺

such that u𝑘 = 1 (1 ≤ 𝑘 ≤ 𝑁 ) iff u′
𝑘
≥ t𝑘 in Qw, and u𝑘 = 0 otherwise. Define

an interpretation 𝐽 ⊆ 𝐵𝑃+ such that it can be partitioned into subsets of positive
and negative occurrences of atoms (𝐽 𝑃 ∪ 𝐽𝑁 ) = 𝐽 ⊆ 𝐵𝑃+ . Since only positive atoms
occur in the head, u represents a positive subset of interpretation 𝐽 𝑃 ⊆ 𝐽 ⊆ 𝐵𝑃+ by
setting 𝐽 𝑃 = {var(u𝑖) |u𝑖 = 1} (1 ≤ 𝑖 ≤ 𝑁 ). If 𝑎𝑖 ∈ 𝑇𝑃 (𝐼 ) then u𝑖 = 1, and 𝑎𝑖 ∉ 𝑇𝑃 (𝐼 )
is represented by 1 − u𝑖 = 0. Conversely, if 𝑎𝑖 ∉ 𝑇𝑃 (𝐼 ) then u𝑖 = 0, and 1 − u𝑖 = 1
represents 𝑎𝑖 ∈ 𝑇𝑃 (𝐼 ). Thus 1 − u represents 𝐽𝑁 ⊆ 𝐽 ⊆ 𝐵𝑃+ . z = [u; 1 − u] is then a
vector representing 𝐽 𝑃 ∪ 𝐽𝑁 = 𝐽 if we set 𝐽 = {var(z𝑚) |z𝑚 = 1} (1 ≤ 𝑚 ≤ 2𝑁 ). Thus
z = [u; 1 − u] represents 𝐽 = 𝑇𝑃 (𝐼 ) if u = \t(Qw).

□

Example 1. Consider the following program:

𝑝 ← 𝑞

𝑞 ← 𝑝 ∧ 𝑟
𝑟 ← ¬𝑝 (4.6)

This program has one supported (stable) model: {𝑟 }. We have 𝐵𝑃 = {𝑝, 𝑞, 𝑟 }, 𝐵𝑃+ =
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{𝑝, 𝑞, 𝑟, 𝑝, 𝑞, 𝑟 }, the matrix representation Q and parameter vector t are:

Q =
©«
𝑝 𝑞 𝑟 𝑝 𝑞 𝑟

𝑝 0 1 0 0 0 0
𝑞 1 0 1 0 0 0
𝑟 0 0 0 1 0 0

ª®®¬ t =
©«

𝑝 1
𝑞 2
𝑟 1

ª®®¬ (4.7)

Suppose an assignment v{𝑟 } = (0 0 1)⊺ is given. The companion vector w is:

w = [v{𝑟 }; 13 − v{𝑟 }] =
(
0 0 1 1 1 0

)⊺
(4.8)

Compute the matrix multiplication product Qw and apply the thresholding:

u = \t(Qw) = \t(
(
0 1 1

)⊺
) =

(
0 0 1

)⊺
= v{𝑟 } (4.9)

Let z be a companion vector to u, i.e. z = [u; 1 − u], then we have

z =
(
0 0 1 1 1 0

)⊺
(4.10)

Define 𝐽 = {var(z𝑚) |z𝑚 = 1}, then we have 𝐽 = {𝑟, 𝑝, 𝑞}, and 𝐽 ∩ 𝐵𝑃 = {𝑟 }.

Proposition 10 (Supported Model Computation with Thresholded𝑇𝑃 ). Let v ∈ Z𝑁 be a
0-1 vector representing a subset of interpretation 𝐼𝑃 ⊆ 𝐼 ⊆ 𝐵𝑃+ , and z = [v; 1𝑁 − v] be its
companion vector representing 𝐼 ⊆ 𝐵𝑃+ satisfying (𝑎 ∈ 𝐼 iff 𝑎 ∉ 𝐼 ). Given a program matrix
Q representing a program 𝑃+ and a thresholding function \t parameterized by a vector t,
the fixed points of 𝑃+ are represented by 0-1 binary vectors z𝐹𝑃 = [v𝐹𝑃 ; 1𝑁 − v𝐹𝑃 ] ∈ Z2𝑁

where v𝐹𝑃 = \t(Qz𝐹𝑃 ). Then z𝐹𝑃 are vectors representing models 𝑀+ of 𝑃+ satisfying
(𝑎 ∈ 𝑀+ iff 𝑎 ∉ 𝑀+) iff \t(Qz𝐹𝑃 ) = v𝐹𝑃 . When such 0-1 binary vector z𝐹𝑃 exists,
𝑀+ ∩ 𝐵𝑃 = 𝑀 is a supported model of 𝑃 .

Proof. Let 𝐼 ⊆ 𝐵𝑃+ be a model of 𝑃+, represented by z𝐹𝑃 . Consider two cases (i)𝑇𝑃 (𝐼 ) = 𝐼
and (ii) v𝐹𝑃 = \t(Qz𝐹𝑃 ). In both cases, by Propositions 7, 8 and 9, if a supported model
of 𝑃 exists, the results hold.

□



4.4 Gradient Descent For Computing Supported Models 65

4.4.2 Loss Function for Computing Supported Models

By the fixed point definition of supported models, a supported model 𝑀 satisfies
v𝑀

𝑃

= \t(Q[v𝑀
𝑃 ; 1𝑁 − v𝑀

𝑃 ]). We now use this definition to design a loss function
which can be minimized using gradient descent. Gradient descent is a method for
minimizing an objective function (loss function), by updating the parameters in
the opposite direction of the gradient of the objective function with respect to the
parameters. The size of the update is determined by the gradient and the step size 𝛼 .

We define a vector f ∈ Z𝑁 which stores information about occurrences of facts in
the program 𝑃+. This vector will be used later during the minimization step to ensure
that facts are not forgotten.

Definition 10 (Fact Vector f). The set of facts in the program 𝑃+ is represented by a
column vector f ∈ Z𝑁 , such that for each element f𝑖 (1 ≤ 𝑖 ≤ 𝑁 ),

• f𝑖 = 1 if the rule 𝑟𝑖 is a fact: 𝑎 ←

• f𝑖 = 0 otherwise.

Definition 11 (Loss Function). Given a program matrix Q, a candidate vector x,
thresholding function \t, and constants _1 and _2, define the loss function as follows:

𝐿(x) = 1
2

(
∥\t(Q[x; 1𝑁 − x]) − x∥2F + _1∥x ⊙ (x − 1𝑁 )∥2F + _2∥f − (x ⊙ f)∥2F

)
(4.11)

where ∥x∥F denotes the Frobenius norm and ⊙ element-wise product.

The first term is derived directly from the fixed point definition of supported
models, and should be 0 if x is a supported model of 𝑃+. The second term, which
resembles a regularization term often used in the machine learning literature, is added
to penalize candidate vectors x that contain fractional values, and is 0 if and only if x is
a 0-1 vector. The third term will be 0 if and only if the facts are preserved, and will be
positive non-zero if any part of the assignment is lost, i.e. by assigning 0 (𝑓 𝑎𝑙𝑠𝑒) to a
fact where f𝑖 = 1.

We introduce submatrices of Q, Q𝑝 ∈ Z𝑁×𝑁 and Q𝑛 ∈ Z𝑁×𝑁 that correspond to the
positive bodies and negative bodies of the matrix, respectively, such that Q = [Q𝑝 Q𝑛]
(horizontal concatenation of submatrices).
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Definition 12 (Gradient of the Loss Function). The gradient of the loss function with
respect to x is given by:

𝜕𝐿(x)
𝜕x

=

(
(Q𝑝 − Q𝑛)𝑇 · \t(Qzx) ⊙

𝜕\t(Qzx)
𝜕x

)
− \t(Qzx − x)

+ _1(x ⊙ (1𝑁 − x) ⊙ (1𝑁 − 2x)) + _2(x ⊙ f − f) (4.12)

where zx ∈ R2𝑁 = [x; 1𝑁 − x] and

𝜕\t(w𝑖)
𝜕x𝑖

=


1 if (t𝑖 ≥ 1) and (t𝑖 − 1) ≤ w𝑖 ≤ t𝑖

0 otherwise
(4.13)

We can update x iteratively using, for example, gradient descent or quasi-Newton’s
method, to reduce the loss to zero. Here we show an example of update rule for
gradient descent. Let 𝛼 be the step size, then the gradient descent update rule is given
by:

xnew ← x − 𝛼 𝜕𝐿(x)
𝜕x

(4.14)

Using this update rule we can design an algorithm to find supported models, as shown
in Algorithm 4.1. Moreover, this formulation allows us to use other gradient update
methods like Newton update [56] or more advanced optimizers like Adam [60], as we
show later in the experiment section.

The convergence characteristics of the gradient descent algorithm are well-known.
Assuming at least one 0-1 vector representing a supported model exists for Q, all we
require for Algorithm 4.1 to converge to the supported model is that the initial vector x
to be in the region surrounding the supported model where the slope points towards
the model. When there are multiple supported models, we expect the algorithm to
converge to different models depending on the choice of initial vector. However, it is
often not known apriori which particular values or regions of x lead to which models.
Thus, we implement a uniform initialization strategy, where the initial values are
drawn from the uniform distributionU(0, 1).

Depending on the program, an optimal 0-1 vector interpretation may not exist, so
we limit the number of iterations to max_iter before assuming non-convergence. With
gradient descent, it is often time-consuming to reduce the loss function completely to
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zero. We therefore implement a "peeking at a solution" heuristic, similar to the one
presented in [56], where while updating x we round x to a 0-1 vector to see whether
the resulting x𝑟 is a solution (Lines 6-8). The output is sensitive to the choice of initial
vector x, and a poor choice may result in non-convergence to optimal solutions. We
alleviate this dependency on the initial vector by introducing the max_retry parameter
and changing the initial vector on each try. This algorithm declares failure to find any
supported models (returns FALSE, Line 12) when both max_retry and max_iter are
exhausted.

Algorithm 4.1 Gradient descent search of supported models
Input: Program matrix Q, Thresholding parameter t, max_retry ≥ 1, max_iter ≥ 1,

𝜖 > 0, step size 𝛼 > 0, _1 > 0, _2 > 0
Output: Supported model x or FALSE
1: for n_try← 1 to max_retry do
2: x← vector sampled fromU(0, 1)
3: for n_iter← 1 to max_iter do
4: x𝑟 ← round(x) ⊲ Rounding heuristic
5: loss← 𝐿(x𝑟 ) ⊲ Loss function, see Def. (11)
6: if (loss ≤ 𝜖) then
7: x← x𝑟
8: return x
9: else
10: gradient← 𝜕𝐿(x)

𝜕x ⊲ Gradient, see Def. (12)
11: x← x − 𝛼 · gradient ⊲ Gradient update
12: return FALSE

4.4.3 Restart Methods

While we use random sampling from the uniform distribution by default for the initial
assignments (Line 2 in Algorithm 4.1), we can modify the assignment method to
potentially improve the performance of our method. Formally, the restart method in
this section concerns the initial assignment of the second try onwards, and not the
initial assignment of the first try (n_try ≥ 2 in Line 2 of Algorithm 4.1). For effectively
setting the initial assignments on the first try, it requires some form of prior knowledge
on the problems, for example, a machine learning model that was trained on a set of
random instances to predict the assignment (interpretations) of atoms. In this chapter,
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unless otherwise noted, the restart method used is ’random sampling’ by default in all
experiments.

Random Sampling

At each try, we set the initial assignment as follows:

x𝑖𝑛𝑖𝑡 = u where u ∼ U(0, 1)

Notably, this essentially discards the results of the last failed attempt, and starts again
from a new set of candidate assignments.

Noise addition

At each try, we add perturbations sampled from the uniform distribution to the last
iterate:

x𝑖𝑛𝑖𝑡 = x𝑙𝑎𝑠𝑡 + n where n ∼ U(−0.5, 0.5)

The intuition behind this update is that we assume the last failed iterate is at a local
minimum, and we aim to escape the local minimum by adding random noise to the last
iterate.

Noisy rounding

At each try, we add perturbations sampled from the uniform distribution to the rounded
last iterate:

x𝑖𝑛𝑖𝑡 = round(x𝑙𝑎𝑠𝑡 ) + n where n ∼ U(−0.5, 0.5)

This is essentially a combination of the ’peeking at the solution’ heuristic and noise
addition, where we aim simultaneously to escape the local minimum and move closer
to an exact 0-1 interpretation vector.

Delta method

At each try, we apply margin thresholding and add a noise vector sampled from the
uniform distribution. Instead of rounding to 0-1 vector, we apply a stricter version of
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rounding with a constant 𝛿 .

x𝑖𝑛𝑖𝑡 = round𝛿 (x𝑙𝑎𝑠𝑡 ) where for each element x𝑖 ∈ x𝑙𝑎𝑠𝑡

x𝑖 =


0 if − 𝛿 ≤ x𝑖 ≤ 𝛿

1 if (1 − 𝛿) ≤ x𝑖 ≤ (1 + 𝛿)

x𝑖 otherwise

Additionally, if the resulting vector from round𝛿 (x𝑙𝑎𝑠𝑡 ) only contains 0 or 1, then we
add a noise vector sampled from the uniform distribution, i.e.,

x𝑖𝑛𝑖𝑡 = round𝛿 (x𝑙𝑎𝑠𝑡 ) + n where n ∼ U(−0.5, 0.5)

For the experiments, the value of 𝛿 is fixed at 0.1. The intuition behind this restart
method is that, when the last value is ’close enough’ to a 0-1 value, we take it as the
next initial vector, and if the last value is outside the range, we update it in the next try.

Tabu list

This is a variation of the Tabu search, a popular metaheuristic used in combinatorial
optimizations. We do not use the ’aspiration criteria’, since the gradient-based search
can perform local search on its own. The pseudocode for the tabu list restart method is
shown in Algorithm 4.2. The intent of this method is to avoid getting stuck in the same

Algorithm 4.2 Tabu list restart method
Input: Last iterate x𝑙𝑎𝑠𝑡
Output: x𝑖𝑛𝑖𝑡
1: tabu_list = FIFO list of fixed length 𝐿
2: flip_index = randomly pick an index (not in tabu_list)
3: if x𝑙𝑎𝑠𝑡 [flip_index] > 0.5 then
4: x𝑖𝑛𝑖𝑡 [flip_index] = 0
5: else
6: x𝑖𝑛𝑖𝑡 [flip_index] = 1
7: return x𝑖𝑛𝑖𝑡

local minimum again by keeping a record of past flips, so that same flip cannot be
allowed in |𝑡𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 | retries.
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4.5 Experiments

All experiments in this section were performed on a desktop machine with the following
specifications: Python 3.7, Intel Core i9-9900K and 64GB RAM.

4.5.1 N -negative loops

Aspis et al. [51] encode the program reduct into a matrix and employ the Newton’s
method for root finding to find fixed points of the program. Their matrix encoding
assumes the MD condition, whereas ours assumes the SD condition. The gradient is
calculated by a Jacobian matrix, and the thresholding operation is carried out with a
parameterized sigmoid. They present two types of sampling methods for setting the
initial vector; uniform sampling, similarly to our method, where the values are sampled
uniformly from [0, 1], and semantic sampling1, where the values are sampled uniformly
from [0, 𝛾⊥] ∪ [𝛾⊤, 1].

Firstly, we consider the “N -negative loops” programs, which involves programs in
the following form: for 1 ≤ 𝑖 ≤ 𝑁 ,

𝑝𝑖 ← not𝑞𝑖
𝑞𝑖 ← not𝑝𝑖

(4.15)

For our algorithm, we use the following parameters: max_iter = 103, 𝜖 = 10−4,
_1 = _2 = 1, 𝛼 = 10−1. For comparison, we also implemented Aspis et al.’s algorithm,
and we used the following settings: max_iter = 103, 𝜖 = 10−4. Both algorithms were
allowed to restart from a new random vector up to 100 times, in case the iteration fails
to find a model. We generated programs of the form Program (4.15) with 𝑁 up to 100,
and then applied the algorithms on each program 10 times. We measured the rate of
success of converging to supported models, and the number of restarts attempted by
the algorithms (Figure 4.1a and Figure 4.1b).

From Figure 4.1a, one can observe that our method, except for the Newton update
at around 𝑁 = 98, could find the correct supported models regardless of the gradient

1𝛾⊥ is an upper bound on false values that variables can take, and 𝛾⊤ is a lower bound on true
values. 𝛾 = 𝑛

𝑛+1 where n is the length of the longest positive part in the rules, and 𝜏 was estimated as
described.[51]
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Figure 4.1: 𝑁 -negative loops. Success rate of computing supported models. SD:
Singly-Defined program, MD: Multiple Definition.
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update method. The gradient descent and Adam updates can solve this task with the
least number of restarts, and in fact, they found the models on their first attempts
(Figure 4.1b). On the other hand, we see a gradual increase in the number of restarts
required for the Newton update method, and the MD method requires more than 100
restarts past 𝑁 = 40 to solve.

The design of the loss function (Section 4.4.2) also contributes to the high success
rate of our method. The second term results in the loss function having non-zero
values at local minima where the interpretation vector is non-binary, and drives the
optimizers away from local minima. The root finding method described in [51] without
this penalty term is prone to the presence of local minima, as shown by the low success
rates.

4.5.2 Choose 1 out of N

Secondly, we consider the “choose 1 out of 𝑁 ” task, where the task is to choose exactly
1 out of 𝑁 options. The programs in this class have the following form:

𝑝1 ← not𝑝2, not 𝑝3, ..., not 𝑝𝑁
𝑝2 ← not𝑝1, not 𝑝3, ..., not 𝑝𝑁

...

𝑝𝑁 ← not 𝑝1, not𝑝2, ..., not𝑝𝑁−1

(4.16)

We generated programs for 𝑁 between 2 and 14, and applied the algorithms using the
same parameters as the "𝑁 -negative loops" task, and repeated the process for 10 times
for each 𝑁 .

In contrast to the previous case, the Newton update turned out to be the most
stable, followed closely by Adam and GD (Figure 4.2). Moreover, for gradient descent,
we observe a steeper increase in the number of restarts past 𝑁 = 10 compared to Adam
(Figure 4.2b). This suggests that adaptive gradient methods, that can change the step
size on the fly, may be better suited for more complex programs.
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Figure 4.2: Choose 1 out of 𝑁 . Success rate of computing supported models. SD:
Singly-Defined program, MD: Multiple Definition.
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Figure 4.3: Randomly generated programs. SD: Singly-Defined program, MD: Multiple
Definition.
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4.5.3 Random Programs

To evaluate our approach on a wide range of programs, we generated random programs
by changing (a) number of atoms [10, 50, 100] (b) number of rules, as a multiplier on
the number of atoms [1, 1.2, 1.4, ..., 2, 2.5, 3] and (c) % chance of literals in the body
being negative [0, 10, 30, ..., 90], and generated 10 instances for each set of parameters
(1,440 instances). Note that we did not fix the size of the body, and the size was sampled
from a uniform distributionU(0, |𝐵𝑃 | − 1) where |𝐵𝑃 | is the number of unique atoms in
the program. During the evaluation, it became apparent that running the MD methods
on programs containing long rules with negation was very time-consuming. Thus, we
created a second set of randomly generated programs, where the number of atoms
was restricted to [10, 15] (960 instances). We applied the algorithms once to each of
the instances with max_try = 10 and max_iter = 100, and recorded success when the
algorithm reached respective convergence criteria.

In Figure 4.3, we plot the number of solved instances vs. cumulative number
of restarts. The dashed lines indicate the ’perfect score’, which is achievable if the
algorithm could find the model successfully on the first try for all instances. Thus, the
closer an algorithm is to this point, the more efficient it is in finding the correct models.
Overall, we see that the Newton update performs the best, followed by Adam. On
smaller datasets, we found that gradient descent was less efficient than the MD method
in terms of number of restarts; however, we may be able to improve the result by
simply increasing the step size.

Run time comparison

As mentioned in the previous section, we found that the run time of the MD methods
on programs containing negations was longer than the SD method. We found two
potential causes for this observation: (a) the evaluation of the program reduct in itself
is time-consuming, and it is exacerbated by the fact that the reduct has to be calculated
multiple times in each iteration step (b) the use of external solver in each iteration. (b)
can be fast if the initial configuration was sufficiently close to the potential solution;
however, it can also be slow when the solver has to run to its max-iteration setting
without actually finding the answer. In general, the larger the program is, it is more
likely that the initial configuration is far from the potential solution.
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As for (a), this stems from the matrix representation of the program using the
Multiple Definition condition, and because the interpretation vector is updated at each
iteration, the program reduct also has to be updated at each iteration. For brevity, in
the following example, we shall omit rules that are not directly relevant.

Example 2. Consider the following program:

𝑝 ← 𝑞

𝑝 ← 𝑟

𝑝 ← 𝑠 ∧ 𝑡 ∧ 𝑢
...(𝑜𝑚𝑖𝑡𝑡𝑒𝑑)

This program satisfies the MD condition, since there is only 1 rule whose head is 𝑝 and the
length of the body is greater than 1. On the other hand, this program does not satisfy the
SD condition, so it is translated into:

𝑝 ← 𝑝1 ∨ 𝑝2 ∨ 𝑝3
𝑝1 ← 𝑞

𝑝2 ← 𝑟

𝑝3 ← 𝑠 ∧ 𝑡 ∧ 𝑢
...(𝑜𝑚𝑖𝑡𝑡𝑒𝑑)

The matrix representation of the MD program, P𝑀𝐷 , according to Sakama et al.’s encoding
[52] on which Aspis et al.’s work [51] is based on, is:

P𝑀𝐷 =

( 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢

𝑝 0 1 1 1/3 1/3 1/3
. . .

)
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On the other hand, in our encoding of the SD program (negative literals omitted),

P𝑆𝐷 =

©«

𝑝 𝑝1 𝑝2 𝑝3 𝑞 𝑟 𝑠 𝑡 𝑢

𝑝 0 1 1 1 0 0 0 0 0
𝑝1 0 0 0 0 1 0 0 0 0
𝑝2 0 0 0 0 0 1 0 0 0
𝑝3 0 0 0 0 0 0 1 1 1

. . .

ª®®®®®®®¬
Note that, aside from the obvious use of fractional values to represent long rules,

the MD matrix is more densely packed compared to the SD matrix, and the SD
representation is more ’unraveled’. In Aspis et al. [51], the matrix representation of the
program reduct is defined as a collection of summation operations over each head
atom, resulting in a matrix that is in the form of P𝑀𝐷 with fractional values. Fractional
values may arise from the negative literals in the body in their definition, but we have
omitted it for simplicity.

In our case (SD representation), for implementing the immediate consequence
operator (𝑇𝑃 ) in a continuous domain, we require only a matrix-vector multiplication
with thresholding. On the other hand, in Aspis et al.’s case, the aforementioned
summation over head atoms is required in addition to the matrix-vector multiplication
and thresholding. We shall now demonstrate the effect of this difference in terms of
run times of both algorithms. For this experiment, we used the restricted set (960
instances) of the randomly generated programs (Figure 4.4).

Figure 4.4 shows the number of solved instances against (log) run time in seconds.
Regardless of the initialization method, the MD method overall requires orders
of magnitude more time to solve an instance compared to the SD method. This
demonstrates another advantage of using our gradient-based computation method
instead of root-finding-based algorithm presented in Aspis et al. [51]: our algorithm
can more effectively take advantage of the matrix processing routines and is much
faster.
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Figure 4.4: Run time on Randomly generated programs. SD: Singly-Defined program,
MD: Multiple Definition.

Effects of same-head rules and negation

The random programs in this section were generated with varying number of atoms,
rules and % chance of negation in the body. In this subsection, we shall study the
effects of adding same-head rules and having more negative literals in the body. Recall
that when we translate normal logic programs into SD programs, we replace the
same-head rules with sets of new rules, which includes rules with replaced heads
and OR-rules. Thus, varying the rules-to-atoms ratio allows us to study the effect on
performance of adding same-head rules to the program. As for the chance of negation,
recall from the "choose 1 out of N" task that the performance of differentiable logic
programming methods deteriorates quite rapidly as the program size increases, when
the chance of negation is at 100% (all literals in the body are negative). The random
programs include variations from 0% negation (definite program, no negation in the
body) to 90% negation (close to "choose 1 out of N" situation).

Figure 4.5 shows the success rates and number of restarts at different settings. The
ratio of number of rules to atoms can be interpreted as follows: when the ratio is
1, there are no rules with duplicate head atoms, so there will be no OR-rules in the
resulting SD program. When the ratio is 2, there are twice as many rules as atoms, so
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Figure 4.5: Randomly generated programs. Effect of adding same-head rules.
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in the resulting SD program, there can be multiple OR-rules.
As for the gradient update rules, the trend remains the same: the Newton update

(adaptive gradient) performed the best overall, followed by Adam, and the vanilla
gradient descent performed the worst. For gradient descent, the success rate of finding
supported models drops quite rapidly as the rules to atom ratio increases. For other
update rules, the drop is not as pronounced as that of gradient descent, but the effect is
still noticeable, as we observe a consistent drop in success rates when the ratio reaches
3.

The plots for the number of restarts required to find supported models successfully
show a similar trend. As the ratio increases, the number of restarts increases, and this
holds for all update methods. As these plots show, the number of same-head rules in
the original program has a negative impact on the performance of our differentiable
method for computing supported models.

Figure 4.6 shows the success rates and number of restarts at different settings of %
chance of negation in body literals. Note that this percentage is not to be understood
as the ratio of negated literals in the body, rather, it is the % chance of each literal being
negated when generating the programs. The overall trend is similar to the same-head
case; adding more negated literals to the body negatively impacts the performance of
our method.

The success rate starts dropping rapidly past 50% in N=50 and N=100 for gradient
descent update (Figures 4.6c, 4.6e), but this drop is delayed until 70% for Newton
update and Adam. For small programs (N=10), this drop was not observed (note that
gradient descent achieves around 80% success rates overall in Figure 4.6a). The number
of restarts required for the algorithm to find supported models increases rapidly past
50% for N=50 and N=100 (Figure 4.6d, 4.6f).

Overall, these experiments demonstrated that there are potentially two classes of
programs which can be considered to be difficult for our method to solve.

1. Programs with more than one set of same-head rules, which results in multiple
OR-rules in the translated SD programs.

2. Programs with high number of negated literals in the bodies of the rules.

Further work on this algorithm could consider improvements in the aforementioned
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Figure 4.6: Randomly generated programs. Effect of negation.
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classes of programs. These improvements might update the thresholding operation,
the restart methods and potentially the loss function itself.

4.5.4 GPU implementation

Because our method is based around vectors and differentiable, it is rather trivial to
re-implement our method for GPU to leverage parallel computational power of modern
GPUs. In this subsection, we study the performance of the GPU implementation
compared against purely CPU-based versions. It should be noted that the current
implementation is preliminary and therefore not fully optimized yet, and performance
is likely to be improved significantly by optimizing for GPU further.

Implementation details

We compare the following implementations: (a) CPU (b) CPU-JIT and (c) GPU. All
implementations are primarily based on the Python language, while (a) is based purely
on the NumPy package, (b) is based on the NumPy package but accelerated by a JIT
compiler offered by the Numba package, and (c) is based on the PyTorch package,
where all matrix operations are offloaded to the GPU (CUDA). We expect (b) to be faster
than (a), but we are interested in the relative performance of (c) because the speed of
(c) is highly implementation- and problem- dependent. In general, GPUs tend to be
faster than CPU when it comes to floating-point matrix multiplication tasks, but using
GPUs incur overhead of transferring data from CPU-side to GPU. For smaller matrices,
therefore, we expect the CPU versions to outperform the naive GPU implementation.

Experimental details

The programs used in this subsection are a superset of the Random Programs. We
generated random programs by changing (a) number of atoms [10, 50, 100, 150, 200] (b)
number of rules, as a multiplier on the number of atoms [1, 1.2, 1.4, ..., 2, 2.5, 3] and
(c) % chance of literals in the body being negative [0, 10, 30, ..., 90], and generated 10
instances for each set of parameters (2,400 instances). We applied the algorithms 10
times to each of the instances with max_try = 100 and max_iter = 100, and recorded
success when the algorithm reached the convergence criteria.
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Discussion

The number of solved instances is plotted against average running time in Figure
4.7. Similarly to the Random Programs experiment, we see the Newton update
scheme outperforms Adam and gradient descent in terms of solved instances given
max_iter = 100 update budget. Interestingly, in all the update schemes, the GPU
implementation was the slowest, and there was more than 5x difference in the
running time compared to the fastest (Numba accelerated CPU-JIT). The sizes of
program matrices in this task were in the order of hundreds, and the overhead in GPU
computation most likely contributed to this result. Increasing the program matrix size,
however, brings another issue: when the size of the problem increases, so does the
number of restarts (see, for example, Figure 4.2b). While faster iteration is indeed
attractive, reducing the number of restarts (and failed iterations) is likely to be more
effective in achieving better solving time.

4.5.5 Restart methods

So far, in the experimental section, we only used random sampling from the uniform
distribution (Line 2 in Algorithm 4.1). This is another part where we can possibly
improve the performance of our method, and in this section we study the effect of
using different restart methods. For the implementation of various restart methods, the
reader is referred to the previous section.

Experimental details

The programs used in this subsection are a superset of the Random Programs, and are
the same as the ones used i n the GPU implementation experiments. We used 3 update
methods and aforementioned 5 restart methods, and executed our method 100 times
for each program with max_try = 100 and max_iter = 100 resulting in total 3,600,000
data points.

Discussion

Figures 4.8 and 4.9 show the plots of cumulative restarts vs. solved instances at various
settings of update and restart method combinations. The general trend with respect to
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Table 4.1: Average time (ms) required to find supported models. Excludes failed
attempts. Underlined figures indicate the fastest combination within the same number
of atoms.

N.atom update Random Noise Noise Round Delta Tabu
Adam 1.74 1.71 1.47 1.89 1.95

10 GD 8.09 3.07 3.70 4.27 3.59
Newton 0.63 0.89 1.00 0.78 0.86
Adam 50.33 25.77 31.01 23.28 30.99

50 GD 134.09 54.08 68.97 79.65 59.25
Newton 16.72 10.77 10.97 11.01 10.92
Adam 56.31 54.11 65.25 38.78 50.28

100 GD 123.90 93.30 117.93 120.43 93.65
Newton 37.68 16.25 17.27 14.71 15.71
Adam 85.82 73.99 82.14 47.61 64.04

150 GD 174.97 122.22 150.05 151.50 111.94
Newton 48.82 22.82 35.36 21.09 19.93
Adam 102.63 129.94 137.25 77.99 104.34

200 GD 214.44 175.73 207.63 217.78 153.92
Newton 70.57 27.95 49.87 24.49 26.36

the update methods remained unchanged; the Newton method performed the best
overall, followed by Adam and gradient descent. The plots for the restart methods,
however, show different characteristics, where the update method can be seen to
be reacting differently to the restart method and vice versa. For example, the best
performing restart method for Adam was the Delta method, while that for gradient
descent was the Noise addition method. It is interesting that, for adaptive gradient
update methods (Adam and the Newton update), Delta, Tabu and Noise addition
always outperformed Random and Noise rounding, but this was not the case for
gradient descent. Moreover, the gap between the three methods (Delta, Tabu and
Noise) is small in the Newton update method (Figure 4.9c) while the gap widens in
Adam and gradient descent.

Table 4.1 shows the average time (in milliseconds) required to find supported
models with various combinations of update and restart methods. For programs with
small number of atoms (below 100), the random and noise addition initialization could
work well, but it should also be noted that the difference between restart methods is
relatively small compared to that in large number of atoms (e.g., N=200). For programs
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with more than 100 atoms, the random and noise addition-based methods performed
noticeably worse than the Delta and Tabu restart methods. With the Newton update
and at N=150 and 200, the random initialization was at least twice as slow as the Delta
and Tabu methods.

With the exception of the Newton update at N=10, the random restart did not
perform as well as the Delta, Noise addition or Tabu methods. This suggests that when
the algorithm fails to find any supported models at the first attempt, there is some
benefit to be gained from reusing some parts of the final assignment of the failed
attempt. It also suggests we might be able to learn information about the problem on
the fly using an online learning algorithm, for example, to improve the performance.

4.5.6 Phase Transition Programs

It has been shown that many NP-hard problems often involve a phase transition,
where the difficulty of solving the given problem increases dramatically. For SAT, and
in particular 3SAT, it is believed that when the clause-to-variable ratio is around 4.3,
the probability of the instance being satisfiable is at 50% [61]. Since many modern ASP
solvers also use SAT solvers under the hood, one wonders if similar phase transition can
be observed for ASP programs. Thus, Zhao and Lin [62] generated random programs
with varying number of rules to atoms ratio, and studied the performance of the
then-state-of-the-art ASP solvers. In summary, for programs with rule length 3 (1
head and 2 body literals), they found that when the ratio of number of rules to atoms
is around 5, the ASP solvers took longer time to solve the program. Although our
algorithm is not meant to be an ASP solver since it finds supported models and not
stable models, it would be interesting to see if the phase transition behavior can be
observed for our differentiable algorithm.

Experimental details

The random programs were generated according to Zhao and Lin [62]. More specifically,
the fixed body length model was used, where 𝐿 and 𝑁 denotes the number of rules and
atoms, respectively.

To generate a fixed body length program 𝑘 − 𝐿𝑃 (𝑁, 𝐿), repeat the following steps
until 𝐿 rules are obtained:
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1. Generate the head by randomly selecting an atom

2. Generate the body by randomly selecting (𝑘 − 1) unique atoms, and negate each
atom with 50% chance

3. If this rule already exists in the program, discard it and restart from Step 1;
otherwise add it to the program.

After 𝐿 rules were obtained, 𝑐𝑙𝑖𝑛𝑔𝑜 was called to check whether the resulting program
has a supported model. If 𝑐𝑙𝑖𝑛𝑔𝑜 returned SAT, then the program was written to a file;
otherwise it was discarded and the algorithm restarted from Step 1 with empty rules.

The value of 𝑘 was fixed at 3 (1 head and 2 body literals), 𝑁 was selected from
[10, 20, 50, 100, 150], 𝐿 was selected according to the 𝐿/𝑁 ratio, which was selected at
0.5 interval from 0.5 to 12, and for each setting of 𝐿/𝑁 , 100 programs were generated.
For each 𝑁 , 2,400 programs were generated, which in total resulted in 12,000 programs.

The parameters used in this section are: 1 update method (Newton), 3 restart
methods (Noise, Delta, Tabu), max_iter=100 and max_try=100.

Discussion

This phase transition programs contain programs with a wider range of proportions of
OR-rules compared to the Random Programs (0.5 to 12 vs 1 to 3). The overall trend in
time taken and number of restarts remain unchanged from the previous study on the
Random Programs: the number of restarts (and hence the time taken) increases rapidly
as soon as OR-rules are added to the program.

Previous study with ASP solvers [62] found a region of hard problems at rules to
atoms ratio (𝐿/𝑁 ) of around 5. Turning to the plots of success rates against (𝐿/𝑁 )
(figures (c)) in Figures 4.10, 4.11 and 4.12, we can observe that the bottoms of the
success rate lines are at around 𝐿/𝑁 = 4. We also note that the "width" of the valley
(region where success rate < 100) is wider than that shown in [62].

The first try success rate (figures (d)) graphs show that, again, as soon as we add
OR-rules to the program, the success rate of finding the correct models drops rapidly.
Also note that, across all restart methods, the programs with larger number of atoms
tend to have lower success rate and longer solving time, e.g., the results for N=10 are
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Figure 4.10: Phase transition programs, update = Newton, restart = Noise
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Figure 4.11: Phase transition programs, update = Newton, restart = Delta
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Figure 4.12: Phase transition programs, update = Newton, restart = Tabu
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consistently better than N=150. Ideally, the algorithm should perform equally well, at
least in terms of success rates, for all values of N used in this experiment.

4.6 Conclusion

We presented a new efficient method for the differentiable computation of supported
models in continuous vector spaces. The experimental results suggest that our
method, when used with adaptive gradient update methods, can find supported models
efficiently starting from a random vector. Currently, our method does not support the
reduct representation, and we leave differentiable stable model computation for future
work. The findings reported in this work are applicable to neuro-symbolic research,
especially in the context of enabling logic programming in continuous domains.
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5
Conclusion

5.1 Conclusion

In this thesis, we explored various approaches and techniques for the integration of
machine learning and knowledge representation. Chapter 3 presented a method for
generating rule sets as global and local explanations for tree-ensemble learning methods
using Answer Set Programming. We implemented a decompositional approach where
the split structures of the base decision trees were exploited in the construction of
rules, which in turn were assessed using pattern mining methods encoded in ASP to
extract interesting rules. The main contributions are:

• We present a novel application of Answer Set Programming (ASP) for explaining
trained machine learning models. We propose a method to generate explainable
rule sets from tree-ensemble models with ASP. More broadly, this work con-
tributes to the growing body of knowledge on integrating symbolic reasoning
with machine learning.
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• We present how the rule set generation problem can be reformulated as an
optimization problem, where we leverage existing knowledge on declarative
pattern mining with ASP.

• We show how both global and local explanations can be generated by our
approach, while comparative methods tend to focus on either one exclusively.

• To demonstrate the practical applicability of our approach, we provide both
qualitative and quantitative results from evaluations with public datasets, where
machine learning methods are used in a realistic setting.

Chapter 4 presents a method for computing supported models of normal logic
programs in vector spaces using gradient information. First, the program is translated
into a definite program and embedded into a matrix representing the program. We
introduce a loss function based on the implementation of the immediate consequence
operator 𝑇𝑃 by matrix-vector multiplication with a suitable thresholding function, and
we incorporate regularization terms into the loss function to avoid undesirable results.
We report the results of several experiments where our method shows promising
performance when used with adaptive gradient update.

The main contributions are:

• Presenting an alternative method for embedding logic programs into matrices,
and designing an almost everywhere differentiable thresholding function.

• Introducing a loss function with regularization terms for computing supported
models, and integrating various gradient update strategies.

• Demonstrating with a help of systematic performance evaluation on a range of
programs, that by selecting appropriate components, it is possible to achieve
much higher performance and stability than the existing method.

5.2 Future Work

As for directions for future research, further work could include:

1. ASP for generating explanations of ML models
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• Regression and multi-class classification problems
Current implementation only supports binary classification; however, it can
be extended to support regression and multi-class classification problems.
Concretely, for supporting regression models, one needs to consider how
decision tree ensembles make prediction, then need to account for the role of
aggregation functions in generating the explanations. As for the multi-class
classification problems, one may extend the current implementation for
binary classifiers to support multiple classes in a one-vs-rest setting.

• Counterfactual examples
For offering more understandable information to the user, one may use
counterfactual examples in conjunction with a local explanation for each
prediction. In general terms, counterfactual examples show how the
decision made by the model can be altered with minimal changes to the
input data. This is a challenging task, but one may discretize the input
feature space and implement a solution in ASP. The search space for realistic
problems is likely to be too large for a naive ASP encoding, however, and
one may need to constrain the search space aggressively to solve it in a
reasonable amount of time.

• Exploiting multi-shot solving
The encoding and solving procedure used in this current implementation
are rather basic, compared to the full capabilities offered by clingo. For any
of the future extensions of this framework, such as the ones listed above, one
may utilize the advanced solver API offered by clingo for efficient solving.
For example, one may execute a coarse search around the example using
wide intervals to obtain candidate regions before executing a fine-grained
search.

2. Differentiable supported model computation

• Effective search and restart strategy
Current search strategy is essentially a continuous version of random search,
and it does not "learn" from failed attempts nor incorporate knowledge
about logic programming in the search strategy. A simple online learning
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method that adjusts the probability distribution, or any metaheuristic like
tabu search may prove to be useful.

• Stable model computation
With the current method of simulating the fixed point search in continuous
space, while one may be able to find stable models when the supported
models and stable models coincide, there are cases where this is not the
case and thus only supported models are found. The implementation of the
immediate consequence (𝑇𝑃 ) operator alone is not enough to guarantee
that the obtained model is minimal with respect to the program reduct.
Thus, one may envision a differentiable method of obtaining stable models,
which supports iteration on the program reduct as well as checking for the
minimal model configuration.

• Continuous logic programming
Theworks presented in this thesis can be applied to domainswith continuous
interpretations easily. It would be interesting, however, to study the
semantics of logic programs in the continuous domain, instead of working
exclusively with discrete interpretations.

• Applications in continuous domain
Past works in the neuro-symbolic literature covered simple image-based
tasks such as MNIST addition. Instead, we propose to solve hard combina-
toric problems such as Hamiltonian cycle, graph coloring and Sudoku in
visual domain. This requires the visual CNN component and the solver part
to be trained simultaneously in an end-to-end fashion, and we believe this
would lead to much more meaningful implementation of neuro-symbolic
architecture.

5.2.1 Towards Integration ofASP-based ExplanationMethod
and Differentiable Logic Programming

As currently implemented, the differences between the projects presented in this
thesis makes the integration a non-trivial task. In this subsection, we shall cover
some of the challenges when considering the integration of these two projects.
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• Domain of the problem
One of the differences between the tree ensemble learning algorithms and
deep neural networks, is the domain of applications. The former tends to be
used with tabular datasets, where the input vectors are often represented
in a 2D table, whereas the latter are often employed with images, audio
tracks, and natural language texts. As of 2022, many of the state-of-the-art
results in the latter domains are achieved with some variants of deep neural
networks. In our context, the explanations generated by the ASP-based
method are human-readable in the sense that the tabular-formatted data
often have meaningful column names attached to them. On the other hand,
signal-based input data like images have little to no human-comprehensible
annotations; it is non-trivial to provide and comprehend a pixel-level
definition of a ’cat’ for example. Thus, this difference needs to be bridged,
or otherwise reconciled in some manner. One may be able to train a
tree ensemble model on top of an existing neural network, then generate
explanations for it, to be used as prior knowledge for the integrated process.
However, this leads to the second challenge, as discussed below.

• Handling of uncertainty and incorrectness
The explanations generated by our method, and by extension, the tree
ensemble learning methods, and decision tree induction algorithms in a
machine learning settings, are only approximations to the original model or
decision functions. Therefore, the rules are not always true in the sense
that it is not always 100% accurate. On the other hand, in a typical logic
programming setting, the rules can only either be evaluated to true or false,
and the program must not contain contradictory statements; otherwise it
becomes inconsistent. In other words, as far as we know, it is not trivial
to handle rules that can sometimes be incorrect, in logic programming.
Additional work is required to integrate rules from machine learning models
into logic programs, and vice versa.
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A
Matrix representation of program reduct

The stable model semantics is the basis of Answer Set Programming. Stable models are
a subclass of supported models, and have additional requirements. Chapter 4 was
broadly based on the supported model semantics, thus in this section, we shall briefly
cover the stable model semantics, and introduce our matrix representation of the
program reduct. For a more formal introduction to the stable model semantics, refer to
Section 2.1.

Consider a normal logic program 𝑃 :

ℎ ← 𝑏1 ∧ 𝑏2 ∧ · · · ∧ 𝑏𝑙 ∧ ¬𝑏𝑙+1 ∧ ¬𝑏𝑙+2 ∧ · · · ∧ ¬𝑏𝑚 (𝑚 ≥ 𝑙 ≥ 0) (A.1)

and the positive and negative occurrences of atoms in the body, 𝑏𝑜𝑑𝑦+(𝑟 ) = {𝑏1, . . . , 𝑏𝑙 }
and 𝑏𝑜𝑑𝑦−(𝑟 ) = {𝑏𝑙+1, . . . , 𝑏𝑚}, respectively.

Informally, the main idea of the stable model semantics is that, given a set of 𝐼
atoms from the language of 𝑃 , we simplify 𝑃 by partially evaluating all rules containing
the negated versions of 𝐼 , then checking whether the simplified program 𝑃 𝐼 has a Least
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Herbrand Model (LHM). The reduct 𝑃 𝐼 can be obtained procedurally by:

1. delete any rules in 𝑃 that has a negative literal ¬𝑏 in its body where 𝑏 ∈ 𝐼 .

2. delete every literal of the form ¬𝑏 in the bodies of the remaining rules.

We are now ready to introduce our matrix representation of program reduct.

Definition 13 (Program Reduct Matrix). Given:

• 𝑃+: the positive form of a normal program 𝑃 .

• Q ∈ Z𝑁×2𝑁 : matrix representation of 𝑃+.

• Q𝑝 ∈ Z𝑁×𝑁 and Q𝑛 ∈ Z𝑁×𝑁 : the submatrices of Q that correspond to the positive
bodies and negative bodies of the matrix, respectively, such that Q = [Q𝑝 Q𝑛]
(horizontal concatenation of submatrices).

• v ∈ Z𝑁 : a subset of an interpretation vector representing 𝑎𝑖 ∈ 𝐼𝑃 ⊆ 𝐵𝑃𝑃+ if 𝑣𝑖 = 1 for
{𝑎1, . . . , 𝑎𝑁 }.

• 𝑚𝑖𝑛1: thresholding function𝑚𝑖𝑛(𝑥, 1).

• 𝐼ℎ𝑠𝑢𝑚=0(X): an indicator vector where the element is 1 if the sum along the horizontal
axis of X is 0.

• 1𝑑𝑖𝑚(x) : a 1-only vector, where the dimension is 𝑑𝑖𝑚(x).

Then the program reduct 𝑃+𝐼 is given by:

𝑃+v =𝑚𝑖𝑛1(Q𝑝 + 𝑑𝑖𝑎𝑔(𝐼ℎ𝑠𝑢𝑚=0(Q𝑝))) ⊙ ((1 −𝑚𝑖𝑛1(Q𝑛v))1⊺𝑑𝑖𝑚(v)) (A.2)

Intuitively, the first term corresponds to the representation of the definite program,
where all literals in the form of ¬𝑏 are deleted, and the second term corresponds to
the first step ("delete any rules ..."). In the first term, +𝑑𝑖𝑎𝑔(𝐼ℎ𝑠𝑢𝑚=0(Q𝑝))) is used to
preserve facts, when the body becomes empty after removing all negative literals.
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Example 3. Consider the following program:

𝑝 ← ¬𝑞
𝑞 ← ¬𝑝

We have:

Q =

( 𝑝 𝑞 𝑝 𝑞

𝑝 0 0 0 1
𝑞 0 0 1 0

)
Suppose an interpretation v{𝑝} = (1 0)⊺ is given. Then, according to the definition, we
obtain

P+v =

( 𝑝 𝑞

𝑝 1 0
𝑞 0 0

)
which correspond to 𝑝 ← 𝑝., and this also happens to be one of the stable models of the
program.

Example 4. Consider the following program:

𝑝 ← 𝑞 ∧ ¬𝑟
𝑞 ← 𝑟 ∧ ¬𝑝
𝑟 ← 𝑝 ∧ ¬𝑞

We have:

Q =
©«
𝑝 𝑞 𝑟 𝑝 𝑞 𝑟

𝑝 0 1 0 0 0 1
𝑞 0 0 1 1 0 0
𝑟 1 0 0 0 1 0

ª®®¬
Suppose an interpretation v{𝑝,𝑞} = (1 1 0)⊺ is given. Then, according to the definition, we
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obtain

P+v =
©«
𝑝 𝑞 𝑟

𝑝 0 1 0
𝑞 0 0 0
𝑟 0 0 0

ª®®¬
which corresponds to 𝑝 ← 𝑞..

While one could simply use this representation to compute the fixed-points of the
𝑇𝑃 operator, it does not guarantee that the resulting model is minimal with respect to
the program reduct. Therefore, in order to obtain stable models, another differentiable
method for computing minimal models of the program reduct has to be developed, and
we leave this for future work.
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