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Abstract

Third-party web tracking has been used for collecting and correlating user browsing
behavior. It is becoming more and more ubiquitous, thus this brings an increase
in privacy concerns from Internet users. Due to the increasing use of ad-blocking
and third-party web tracking protections, tracking providers have introduced new
techniques to continue maximizing their pro�t based on user data. As the recent
sophisticated techniques, the third-party tracking providers have leveraged cooperation
from the �rst-party for tracking user activities. Thus, in this dissertation, we focus
on the �rst-party cooperation-based third-party web tracking, including CNAME
cloaking-based tracking and PII leakage-based tracking. In particular, third parties have
leveraged cooperation from the �rst-party by using �rst-party subdomain Canonical
Name Record or Alias (CNAME) record in the Domain Name System (DNS), to bypass
the �lter lists in browsers and extensions that disguise requests to a third-party tracker
as �rst-party ones; they also have leveraged cooperation from the �rst-party by using
user’s personally identi�able information (PII) of �rst-party authentication �ows, to
create an identi�cation that is a persistent identity. The goals of this dissertation are
to perform a �rst in-depth analysis of the �rst-party cooperation-based third-party
web tracking and develop the countermeasures to protect user privacy against these
tracking techniques on the Internet.

In the �rst half of this dissertation, we detect, characterize, then develop a
countermeasure to protect the end-user against the �rst-party cooperation-based
third-party web tracking technique, namely CNAME cloaking-based tracking. This
technique misleads web browsers into believing that a request for a subdomain of the
visited website originates from this particular website, while this subdomain uses a
CNAME to resolve to a tracking-related third-party domain. It thus circumvents the
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third-party targeting privacy protections. Speci�cally, we �rst characterize CNAME
cloaking-based tracking by crawling the top pages of the Alexa Top 300,000 sites and
analyzing the usage of CNAME cloaking with CNAME blocklist. We also point out
that browsers and privacy protection extensions are largely ine�ective to deal with
CNAME cloaking-based tracking except for Firefox with a developer’s version of the
uBlock Origin extension. Secondly, we propose a supervised machine learning-based
approach to detect CNAME cloaking-based tracking without the on-demand DNS
lookup. We show that the proposed approach outperforms well-known tracking
blocklists. Finally, to circumvent the lack of DNS API in Chrome-based browsers, we
design and implement a prototype of the supervised machine learning-based browser
extension to detect and �lter out CNAME cloaking tracking, called CNAMETracking
Uncloaker. Our evaluation shows that CNAMETracking Uncloaker is able to �lter out
CNAME cloaking-based tracking requests without performance degradation when
compared with the vanilla setting on the Chrome browser.

In the second half of this dissertation, we detect, characterize, then develop a
countermeasure to protect the end-user against the �rst-party cooperation-based
third-party web tracking technique, namely PII leakage-based tracking. This technique
uses personally identi�able information (PII) to perform cross-site, cross-browser, and
cross-device tracking. We document a PII-based tracking ecosystem that leverages user
sign-up and sign-in �ows on the popular shopping sites from the Tranco Top 10,000
sites. We perform a �rst in-depth analysis of PII leakage and present a previously
unknown persistent web tracking technique based on this data transfer, which enables
tracking providers to generate and store a unique persistent identi�er for a user on
their servers. By measuring the presence of Online Behavioral Advertising (OBA),
we con�rm that the tracking providers use leaked PII in their advertising strategies
for cross-site, cross-browser, and cross-device targeting and personalization. Also,
to provide a wider picture of current in-browser privacy protection techniques, we
evaluate the e�ect of browsers and well-known blocklists against PII leakage. Finally,
we propose a hybrid approach to detect PII leakage by combining heuristic and
supervised machine learning approaches. We show that the proposed approach
outperforms well-known tracking blocklists.

We conclude by emphasizing the research contributions made by this thesis and
present some open research problems. We �rst highlight the practical implication of
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our work to researchers, browser vendors, and Internet users. We think that this
work will stimulate follow-up works in the research community and lead to web
browser improvements. We also think that this work increases Internet user awareness
regarding privacy. In addition, we identify a number of possible research directions,
including measurements, perspectives, and recommendations to improve transparency
on the World Wide Web.

Keywords: Privacy,CNAME cloaking-based tracking, third-party web tracking,
machine learning techniques, countermeasure, browser extension, PII leakage, PII
leakage-based tracking.
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1
Introduction

1.1 Motivating problems

World Wide Web (more commonly known as WWW, W3, or the Web) was invented
by Tim Berners-Lee, a British scientist in 1989 for automated information-sharing
between scientists in universities and institutes around the world [1]. It has opened
up the internet to everyone, not just scientists. It connects people in the world and
allows people to share their work and thoughts through personal blogs, community
websites, social networking websites, and more. To provide a good user experience,
website owners have used many tracing techniques by the �rst-party domain (a
domain the user is visiting directly), such as �rst-party cookies, to collect analytics
data, remember shopping cart information, retain language settings, and perform other
useful functions.

But user tracking did not stop at the �rst-party level. It provided the means for a
revolution in the history of marketing. Marketing products and services to Internet
users has become a key economic driver in the Internet economy and generates
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revenue for a wide variety of websites and services [2]. To get a fuller understanding
of user interests, tracking users across websites, browsers, and devices would be
very pro�table by providing advertising that focuses on the speci�c traits, interests,
and preferences of a user. Third-party web tracking techniques, which refer to the
practice of an entity other than the domain directly visited by the user, have been
developed for this purpose. It allows them to personalize user content accordingly
across sites, browsers, and devices. The large-scale collection and analysis of personal
information even constitute the core business of many online companies. Since the
world’s �rst online advertising technology company, namely DoubleClick, started to
exploit third-party cookies to track users across the web in 1995, third-party web
tracking has been becoming sophisticated over time. It relies on a wide variety of web
tracking technologies, ranging from stateful tracking mechanisms that recognize
users by retrieving information stored on user’s machines, and stateless tracking
mechanisms that recognize users without storing any information, such as HTTP
cookies, evercookies, and HTML5 �ngerprinting [3].

Despite the much-attended successes in utilizing the Internet marketplace using
third-party web tracking, one of the major impediments against full-scale integration
of the Internet marketplace with modern business is the privacy issue. Internet users
even perceive fear and distrust regarding the loss of personal privacy in the online
environment [4]. In a TRUSTe study, 92% of British Internet users worry about their
online privacy [5]. This concern has resonated with regulators and web browser
vendors. In 2018, the General Data Protection Regulation (GDPR) has set out rules for
explicitly gathering user consent regarding targeted advertising within the European
Union [6]. Similarly, the California Consumer Privacy Act (CCPA) regulations in
California aim to protect the data of users within the state [7]. Browsers and extensions
already block known third-party tracking. For instance, Safari and Firefox browsers
already block the most common tracking technique, third-party cookies [8, 9], and
Chrome also announced that they will block third-party cookies in 2023 [10] (see
Figure 1.1).

As a result, the advertising industry has been testing and deploying alternatives to
known third-party web tracking techniques, presenting new challenges to privacy-
enhancing tools and transparency on the Internet. The main challenge in this context is
that there are potentially many currently unknown techniques used by third parties to
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Figure 1.1: Brief history of third-party cookie.

circumvent existing countermeasures, especially approaches that leverage cooperation
from the �rst-party to extract user data. In other words, the �rst-party has opened
a window for third parties to track user activities. To overcome this problem, this
dissertation aims at detecting, characterizing, then developing a countermeasure to
protect user privacy against the �rst-party cooperation-based third-party web tracking.

1.2 Problem statements and research questions

The importance of online privacy measurement has long been recognized by the
research community. The advertisement/tracking ecosystem has substantially grown in
the last 10 years, building on standard and more advanced web tracking technologies.
They are extremely useful for online advertisers and data brokers, however very
frightful for the privacy of the users. In this dissertation, we intend to make the �rst
attempt to elucidate the �rst-party cooperation-based third-party web tracking and
develop the �rm countermeasures to protect user privacy against these tracking
techniques. In the light of the above discussion, our research questions will be broken
down into four research questions (RQ):

1. RQ1: What are unknown third-party web tracking techniques based on �rst-party
cooperation?

2. RQ2: How do they work and what are their impacts on the online ecosystem?
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3. RQ3: Are current protection techniques e�ective against �rst-party cooperation-
based third-party web tracking?

4. RQ4: How to protect the end-user from these tracking techniques?

1.3 Contributions

Our contribution, based on the four research questions above, follows two research
axis, each one regarding a speci�c �rst-party cooperation-based third-party web
tracking technique. The �rst part is a detection, characterization, and countermeasure
of CNAME cloaking-based tracking. The second part is a detection, characterization,
and countermeasure of PII leakage-based tracking.

1.3.1 CNAME cloaking-based tracking

Due to the increasing use of ad-blocking and third-party tracking protections,
tracking providers introduced a new technique called CNAME cloaking. It misleads
web browsers into believing that a request for a subdomain of the visited website
originates from this particular website, while this subdomain uses a CNAME to
resolve to a tracking-related third-party domain. This technique thus circumvents the
third-party targeting privacy protections. For instance, website example.com embeds a
�rst-party request by subdomain a.example.com, which points to a tracking provider
tracker.com via a CNAME x.tracker.com. Because this request is in the �rst-party context,
countermeasures that aim to block third-party tracking are e�ectively circumvented.

The goals of this part are to detect, characterize, and protect the end-user against
CNAME cloaking-based tracking. Firstly, we characterize CNAME cloaking-based
tracking by crawling the top pages of the Alexa Top 300,000 sites and analyzing the
usage of CNAME cloaking with CNAME blocklist, including websites and tracking
providers using this technique to track user’s activities. We also point out that
browsers and privacy protection extensions are largely ine�ective to deal with CNAME
cloaking-based tracking except for Firefox with a developer’s version of the uBlock
Origin extension. Secondly, we propose a supervised machine learning-based approach
to detect CNAME cloaking-based tracking without the on-demand DNS lookup.
We show that the proposed approach outperforms well-known tracking �lter lists.
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Finally, to circumvent the lack of DNS API in Chrome-based browsers, we design and
implement a prototype of the supervised machine learning-based browser extension to
detect and �lter out CNAME cloaking tracking, called CNAMETracking Uncloaker.
Our evaluation shows that CNAMETracking Uncloaker is able to �lter out CNAME
cloaking-based tracking requests without performance degradation when compared
with the vanilla setting on the Chrome browser.

1.3.2 PII leakage-based tracking

Many popular websites give users the ability to sign up for their services, which
requires personally identi�able information (PII). However, these websites embed
third-party tracking and advertising resources, and as a consequence, the authentication
�ow can intentionally or unintentionally leak PII to these services. Since a user can be
identi�ed with PII, trackers can use it for tracking purposes, leading to further privacy
leaks when cross-site, cross-browser, and cross-device tracking occurs. For instance, a
�rst-party website, site.com, embeds a third-party tracking provider, tracker.net. After a
user completes the sign-in �ow on site.com by inputting his/her PII, a tracking script
reads this PII and sends it to the tracking provider server, tracker.net. Because PII is a
unique identi�er, it allows tracker.net to match the user’s browsing history across sites,
browsers, and devices without using third-party cookies.

In this part, we document a PII-based tracking ecosystem that leverages user
sign-up and sign-in �ows (authentication �ows) on �rst-party sites. To the best of our
knowledge, this is the �rst in-depth analysis of PII leakage during authentication
�ows and the subsequent persistent web tracking mechanism that relies on this PII.
By investigating the authentication �ows for 307 popular shopping sites from the
Tranco top 10,000 sites, we �rst discover that 42.3% of sites leak the PII to third-party
services. Then, we present a previously unknown persistent web tracking technique
based on PII leakage that enables tracking providers to generate and store a unique
persistent identi�er for a user with his/her browsing history on their tracking servers.
We analyze 130 �rst-party senders along with 100 third-party receiver domains and
show that PII leakage is a potentially important vector for online tracking for at least
20 providers. By measuring the presence of Online Behavioral Advertising (OBA), we
con�rm that the tracking providers use leaked PII in their advertising strategies for
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cross-site, cross-browser, and cross-device targeting and personalization. In addition,
we check the privacy policy of the 130 �rst-party senders and observe that they are not
clear about PII exchange with third parties. Also, to provide a wider picture of current
in-browser privacy protection techniques, we evaluate the e�ect of browsers and
well-known blocklists against PII leakage. We point out that browsers are unable to
deal with PII leakage except for Brave with its privacy-improving features, whereas
blocklists reduce the number of leaked PII resources but do not completely �x this
problem. Finally, we propose a hybrid approach to detect PII leakage by combining
heuristic and supervised machine learning approaches. We show that the proposed
approach outperforms well-known tracking �lter lists.

1.4 Dissertation outline

The remaining of this dissertation are organized as follows:

• Chapter 2 provides the research background and related work. This chapter
presents foundations of online privacy, third-party web tracking, privacy
protection techniques, and related work to �rst-party cooperation-based third-
party web tracking.

• Chapter 3 characterizes and defends the �rst-party cooperation-based third-party
web tracking, namely CNAME cloaking-based tracking.

• Chapter 4 characterizes and defends the �rst-party cooperation-based third-party
web tracking, namely PII leakage-based tracking.

• Chapter 5 discusses an in-depth exploration of the results, going into detail about
the meaning of our �ndings about �rst-party cooperation-based third-party web
tracking.

• Chapter 6 concludes this dissertation by summarizing our contributions and
proposing several ideas to improve our research in the future.
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2
Background and related works

In this chapter, we present di�erent concepts and technologies used throughout
this thesis in order to ease the understanding of the following chapters.

2.1 Online advertising ecosystem and online privacy

A major funding mechanism for the web is behavioral advertising - that is,
advertising which is targeted based on a user’s personal information, interests, and
past behaviors, called Online Behavioral Advertising (OBA) [11–13]. It is a practice of
tailoring advertising based on the tracking of user’s online activities [14]. In order to
achieve this target, tracking providers usually track an individual web usage history
across multiple sites, browsers, and even devices. It requires a signi�cant amount of
data collection, ranging from data collected to better target an advertisement to the
collection of purchase data to attribute the sale of a product to an advertiser.

Since the emergence of technology and the growth of the Internet, many studies
have been conducted about user privacy concern [15–17], in which data collection
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Third-party web tracking mechanisms

Stateful tracking 
(2.2.1.1)

HTTP cookies

Evercookies

Cookies respawning and 
syncing

Unknown technique

Stateless tracking
(2.2.1.2)

Network and location 
fingerprinting

Device fingerprinting

HTML5 fingerprinting

Unknown techniques

Figure 2.1: Summary of third-party web tracking mechanisms.

on individuals has become an increasingly common practice used by advertisement
companies. Nearly every website a user visits records, aggregates, and shares informa-
tion about that visit with third-party entities. The ubiquitous presence of the web
in modern life is due in large part to its combination design - any website can pull
in and make use of content from any number of entities. Web developers can take
advantage of this to easily build and monetize web applications that provide a rich user
experience. However, it has signi�cantly reduced the cost of individual data collection
and has greatly complicated e�orts to protect user privacy [18]. Web tracking and
individual data collection on the web are becoming a creepy and invasive idea [19, 20].

2.2 Third-party web tracking

Third-party web tracking refers to the practice of an entity, other than the domain
directly visited by the user, which identi�es and collects information about web users.
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It is useful for a variety of purposes, such as online behavioral advertising that targets
users with ads based on their pro�les or interests. It may be considered as threatening
for user privacy.

2.2.1 Third-party web tracking mechanisms

Many third-party web tracking techniques have been developed to maximize the
bene�ts of tracing user browsing behavior. they are largely divided into two broad
categories: stateful web tracking and stateless web tracking (see Figure 2.1).

2.2.1.1 Stateful web tracking

Stateful web tracking is a mechanism that recognizes users by retrieving information
stored on user’s devices. Speci�cally, third-party trackers can track users across
websites by storing a unique identi�er on the user’s device. Modern web browsers
provide several APIs that can be used to store this information, including HTTP
cookies [21]; the evercookies -�ash local shared objects (LSOs) [22], web storage API
(i.e., localStorage and sessionStorage) [23], and the indexedDB API [24]; and cookies
respawning and syncing [25, 26].

Cookie: It is the most currently known method to identify a user, which is a small
piece of data placed in browser storage by the web server [21]. When a user visits a
website for the �rst time, a cookie �le with a unique user identi�er (which could be
randomly generated) is stored on the user’s device. Then, the website can retrieve
this identi�er each time the user visits it unless the user deletes the cookie from
his/her device. For instance, when a user accesses the website site.com, which loads a
third-party resource beacon.gif from a third-party domain tracker.net. Along with this
resource, the server tracker.net sets cookie header with a cookie, id=123. Such a cookie
originates from tracker.net and is visible to this domain. From there, tracker.net gets the
cookie id=123 along with it, helping it recognize the user and tracing all activities of
this user on site.com. In the case this user visits another site, new.com, which also
embeds a resource from tracker.net, the server at tracker.net will receive this cookie id
and recognize the user, thus tracking this user across sites, site.com and new.com (see
Figure 2.2).
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site.com
<img src=“https://tracker.net/beacon.gif”>

site.com
<img src=“https://tracker.net/beacon.gif”>

new.com
<img src=“https://tracker.net/beacon.gif”>

tracker.net
Get /beacon

set-cookie: id = 123

tracker.net

tracker.net

Get /beacon

Get /beacon

cookie: id = 123

cookie: id = 123

Figure 2.2: Process �ow of third-party cookie.

Evercookie: It is a process to store unique data on a user’s device as an identi�cation
using multiple storage mechanisms, such as �ash local shared objects (LSOs) [22], web
storage API (i.e., localStorage and sessionStorage) [23], and the indexedDB API [24].
For instance, (1) when a user visits a site that includes requests content supported by
Adobe Flash from tracker.net, (2) a text �le �ash cookies xyz that is sent by a web
server tracker.net to a user’s device;(3) From there, this �ash cookie xyz is able to
recognize returning users in this device (see Figure 2.3).

tracker.net
(1) GET https://tracker.net/video.avi

Flash cookies xyz (2)

tracker.net
(3) GET https://tracker.net/video.avi

Flash cookies xyzDevice

Figure 2.3: Process �ow of evercookie - �ash local shared objects.
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(1)GET https://tracker.net/beacon.gif
HTTP cookie id = abc, Flash cookie xyz

(3) GET https://tracker.net/beacon.gif
Flash cookie xyz tracker.net

xyz

tracker.net
abc,
xyz(2) Clears HTTP cookie

set-cookie: id = abc (4)

(a) Cookie respawning.

(1) GET https://tracker1.net/beacon.gif
cookie: id = abc

302 Redirect (2)
https://tracker2.net?partner_id=tracker1.net&id=abc

(3) GET https://tracker2.net?partner_id=tracker1.net&id=abc
cookie: id = xyz

tracker2.net

abc~xyz

tracker1.net
abc

(b) Cookie syncing.

Figure 2.4: Process �ow of cookies respawning and cookies syncing

Cookies respawning: It is the process of recreating browser cookies from infor-
mation that has been deleted. The third parties can take information stored in the
evercookies - �ash local shared objects and use it to recreate a cookie in a browser. For
instance, when a user visits a site site.com that includes tracker.net as an embedded
third-party tracker. (1) The browser makes a request to tracker.net, and included in this
request is the tracking cookie, id=abc, and the �ash cookie xyz set by tracker.net; (2)
After a user clear cookie id=123 from the browser, (3) tracker.net retrieves its �ash
cookie xyz, (4 the server tracker.net uses the �ash cookie to recreate a cookie, id=abc,
stores in in the user browser (see Figure 2.4 (a)).

Cookies syncing: It is a process that enables the ad-tech partners to synchronize
their cookies and share the incorporated user’s data from di�erent websites with each
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other. For instance, when a user visits a site site.com that includes tracker1.net as
an embedded third-party tracker. (1) The browser makes a request to tracker1.net,
and included in this request is the tracking cookie set by tracker1.net; (2) tracker1.net
retrieves its tracking ID from the cookie, and redirects the browser to tracker2.net
, encoding the tracking ID into the URL; (3) The browser then makes a request
to tracker2.net , which includes the full URL tracker1.net redirected to as well as
tracker2.net’s tracking cookie; From there, tracker2.net can then link its ID for the user
to tracker1.net’s ID for this user (see Figure 2.4 (b)).

2.2.1.2 Stateless web tracking

Stateless web tracking is a persistent tracking technique that does not require a
tracker to set any state in the user’s browser. Instead, trackers attempt to identify
users by network and location �ngerprinting, device �ngerprinting, and HTML5
Fingerprinting. For instance, when a user visits a site site.com that includes tracker.net as
an embedded third-party tracker, a piece of javascript, collects all relevant information
about the user’s device xyz. This information xyz is stored server-side tracker.net. When
a user visits a site site.com again, or site new.com, tracker.net gets the �ngerprinting xyz
along with it, helping it recognize the user on server-side (see Figure 2.5).

Network and location �ngerprinting: It is a process used to identify a device by
the global network address and the IP-based geographical location of the user. By
using network tools, the service is able to identify the name of the domain and the
user’s internet service provider as a factor for tracking user activities.

Device �ngerprinting: It is a process used to identify a device by determining
which technology, such as the operating system and browser plugins along with other
active device settings, From there, it is able to recognize returning users by using this
information.

HTML5 Fingerprinting: It is a process used to identify a device by using HTML5
API, such as canvas. Based on the fact that the same canvas image may be rendered
di�erently on di�erent computers, the canvas can be used as additional entropy in the
web browser’s �ngerprinting and used for online tracking purposes.
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site.com
<img src=“https://tracker.net/script.js”>

site.com
<img src=“https://tracker.net/script.js”>

new.com
<img src=“https://tracker.net/script.js”>

tracker.net
xyz

Get /script

tracker.net
xyz

tracker.net
xyz

Get /script

Get /script

Fingerprinting: xyz

Fingerprinting: xyz

Fingerprinting: xyz

Figure 2.5: Process �ow of stateless tracking.

2.2.2 Third-party web tracking measurement

Third-party web tracking techniques have been studied considerably in order to get
a better understanding of the risks involved with these techniques. Many machine
learning-based approaches have been proposed to detect and characterize third-party
web tracking. Yamada et al. [27] analyzed tra�c at the network gateway to monitor all
tracking sites in the administrative network and constructs a graph between sites
and their visited time to detect tracking sites. Metwalley et al. [28] developed an
unsupervised detection method that inspects URL queries in HTTP(S) requests to detect
tracking activities. To cut o� the tracking chain of third-party web tracking, Pan et al.
[29] developed TrackingFree which isolates unique identi�ers into di�erent browser
principles so that the identi�ers still exist but are not unique among di�erent websites.
Wu et al. [30] developed DMTrackerDetector which automatically detects third-party
trackers o�ine to e�ciently generate blocklists using structural hole theory and
supervised machine learning. Ikram et al. [31] proposed one-class machine learning
classi�ers using syntactic and semantic features extracted from JavaScript programs to
classify functional and tracking JavaScript programs. In addition, some approaches
have detected the main mechanisms behind speci�c web tracking techniques.

Stateful web tracking measurement: Krishnamurthy and Wills [32] provide
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much of the early insight into web tracking, showing the growth of the largest
third-party organizations from 10% to 20-60% of top sites between October 2005
and September 2008 on 1200 popular websites. In the following years, studies
show a continual increase in third-party tracking and in the diversity of tracking
techniques [26,33–37]. Mayer et al. [33] surveyed the current policy debate surrounding
third-party web tracking and explains the relevant technology and uses a fourth-party
web measurement platform to collect HTTP requests, responses, and cookies. Roesner
et al. [34] developed a client-side method for detecting and classifying �ve types of
third-party trackers over 500 unique trackers on the 500 most popular and 500 less
popular sites according to the Alexa ranking sites. Libert [35] provides a quantitative
analysis of privacy-compromising mechanisms on one million popular websites. It
shows that Google tracks users on nearly eight of ten sites in the Alexa top million sites.
Schelter and Kunegis [36] performed a large-scale analysis of third-party trackers by
extracting third-party embeddings from more than 41 million domains to study global
online tracking. Papadopoulos et al. [26] design and implement a holistic mechanism
to detect cookie syncing events in real-time using a year-long weblog from 850 real
mobile users. Urban et al. [37] focus on the underlying information-sharing networks
between online advertising companies in terms of client-side cookie syncing using
graph analysis, which has negative e�ects on user privacy.

Stateless web tracking measurement: Several studies measured the prevalence
of di�erent �ngerprinting mechanisms and evaluated existing countermeasures [18,38–
42]. Eckersley [38] investigated the real-world e�ectiveness of browser �ngerprinting
algorithms by collecting these �ngerprints from a sample of 470,161 browsers. Besson
et al. [39] developed a generic framework for modeling hybrid monitors to evaluate the
amount of information a web tracker learns by observing the output of a �ngerprinting
script for a particular browser con�guration. Nikiforakis et al. [40] examine how
web-based device �ngerprinting currently works on the Internet by analyzing the
code of three popular browser-�ngerprinting code providers. Acar et al. [41]
presented FPDetective, a �ngerprinting detection framework that identi�es web-based
�ngerprinters to perform a large-scale crawl of the Internet’s most popular websites.
They found that 404 sites in the top million deployed JavaScript-based �ngerprinting
and 145 sites of the top 10,000 sites leveraged Flash-based �ngerprinting. Nikiforakis
et al. [42] proposed a privacy mode present in modern browsers to combat device
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�ngerprinting by making subsequent visits to the same �ngerprinter di�cult to link
together. Englehardt et al. [18] examine �ngerprinting using several HTML5 APIs for
�ngerprinting on the top websites.

Overall, the privacy hazards of online web tracking have been studied extensively.

2.2.3 Third-party web tracking countermeasures

Several privacy protection techniques have been designed to protect end-users
from third-party web tracking, including network-based blocking, extensions, and
browser itself.

Network-based blocking methods use address-based blacklists in order to block
access to certain domains (DNS blocking) and modify web tra�c (interception proxies),
which work independently of the underlying application or browser [43].

Some anti-tracking extensions work e�ectively to detect third-party web tracking,
such as Ghostery [44], Disconnect [45], and uBlock Origin [46]. Some browsers also
have built-in privacy protection features to protect end-users from third-party web
tracking, such as Firefox [47], Brave [48], and Tor Browser [49]. Firefox introduces
Enhanced Tracking Protection (ETP) feature from Firefox version 69. It blocks user
pro�le from browsing behavior observation across websites [9]. Brave has a feature
called Shields which protects user’s privacy by blocking ads and trackers, cookies,
malicious code, and malicious sites [48]. The Tor Browser is a browser based on the
onion routing tool Tor and Mozilla’s Extended Support Release (ESR) Firefox branch to
enhance privacy and security. It includes both HTTPS-Everywhere and NoScript
extensions which respectively enable HTTPS when possible, and allow users to block
JavaScript [50].

2.3 First-party cooperation-based third-partyweb track-

ing

To bypass the countermeasures to protect user privacy from known third-party web
tracking techniques, the advertisement/tracking ecosystem has built more advanced
web tracking technologies. Here, we focus on �rst-party cooperation-based third-
party web tracking techniques which are become a potential strategy for the online
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advertising technology companies. These techniques can be classi�ed into two fonds:
CNAME cloaking-based tracking and PII leakage-based tracking. We present the state
of the art of these concepts and technologies.

2.3.1 CNAME cloaking measurement and countermeasures

On the uBlock Origin’s GitHub issues page, a user presented a website loading
�rst-party request, which pointed to a tracking provider [51]. This issue was then
addressed in several discussions [52] [53] [54].

example.com
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pl

e.
co

m

(192.168.0.1)

172.16.0.1
tracker.com (tracker)17

2.
16

.0
.1

a.example.com/traker.js

content +  cookie

Name Type Value

example.com A 192.168.0.1

a.example.com CNAME x.tracker.com

x.tracker.com A 172.16.0.1

(1)

(2)

(3)

(4)

 DNS server

Browser

Figure 2.6: The process of the browser connecting to tracking provider by CNAME
cloaking-based tracking

Figure 2.6 shows the process of the browser connecting to a third-party web
tracking server by CNAME cloaking-based tracking to setup third-party cookies in the
�rst-party context:

1. An end-user types the URL of website example.com (192.168.0.1) into his/her
browser and presses return. This website embeds a subdomain a.example.com

2. The browser looks up a.example.com on the DNS server and �nds an IP address
172.16.0.1 of tracking provider tracker.com.

3. Browser connects to the tracking provider web server tracker.com and asks for
request script tracker.js.
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4. Server tracker.com sends over the requested content along with cookies informa-
tion. The browser accepts the content and these persistent cookies, which are
stored under the domain name example.com. From there, the tracking provider
tracker.com thus tracks the activities of this end-user on the website example.com.

CNAME cloaking-based tracking circumvents the third-party targeting privacy
protections but it has a limitation. These persistent �rst-party subdomain-related
cookies make it is more di�cult for third parties to track users across websites by
removing the simple mapping of each user to a single cookie linked to a single
(third-party) domain.

Several countermeasures have been developed to protect end-user from CNAME
cloaking-based tracking, including network-based DNS blocking and in-browser
techniques. Network-based blocking methods are in use before web browsers support
the conception of extensions [43]. NextDNS [52] and AdGuard [55] are applications
at the DNS level, which require the wildcard match (domain and all its multi-level
subdomains) against the domains in the CNAME cloaking blocklist. Nevertheless,
NextDNS is a commercial product and it requires to install and con�gure the NextDNS
client; AdGuard DNS is free in personal use, but end-users must set up their DNS
servers and send their entire DNS tra�c to the AdGuard server. In addition, Pi-hole [56]
is a DNS sinkhole that protects end-user’s devices from unwanted contents. However,
the end-users have to install a supported operating system and Pi-hole on user’s
devices or separate hardware/appliance, then con�gure users router’s DHCP options to
force clients to use Pi-hole as their DNS server.

The in-browser privacy protection techniques not only improve user’s privacy
but can also increase user’s browsing experience [57]. To make sure these potential
advantages, some browser extensions also update themselves to block CNAME
cloaking-based tracking resources. Adguard blocker [58], uBlocker Oringin [46], make
a continuous e�ort to manually update �rst-party subdomains which are fronts for
CNAME cloaking to these blocklists. It makes day-to-day �lter lists updating tedious
and time-consuming. As we evaluated in § 3.4, these extensions show the moderate
detection performance to detect CNAME cloaking, except uBlock Origin with DNS API
only supported by the Firefox browser. To keep up with this tracking technique, Safari
and Brave add a new feature that keeps their users protected. The ITP Safari lowers the
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duration of cookies set in the HTTP response created through JavaScript to defend
with CNAME cloaking [59]. Meanwhile, the Brave embedded DNS resolver to block
any request that has the canonical domain in their blacklist by default [60]. However,
these browsers account for a small percentage of browser share [61].

To overcome these constraints, we propose an in-browser countermeasure that is
based on a supervised machine learning-based method and a subdomain blocklist to
detect CNAME cloaking-based tracking without the on-demand DNS lookup. To the
best of our knowledge, we here propose the �rst in-browser extension that relies on
machine learning techniques to protect the end-user from CNAME cloaking-based
tracking (see Table 2.1).

Table 2.1: Detailed comparison of our countermeasure with other relevant works
available in literature against CNAME cloaking.

Countermeasure subdomain DNS & Machine Cookie in-browser
blocking list blocking list learning con�guration technique

NextDNS [52]
AdGuard DNS [55]
Pi-hole [56]
AdGuard blocker [58]
uBlock Origin (Firefox) [62]
uBlock Origin [46]
Safari [63]
Brave [48]
Our work

2.3.2 PII leakage measurement and countermeasure

PII is a piece of information that can be used to distinguish or trace an individual’s
identity either alone or when combined with other information that is associable to a
speci�c individual [32].

PII leakage occurs when PII information leaks from a �rst party that gives it to
a third-party. Recent work includes the detection of PII leakage to third parties in
smartphone apps [64], data leakage due to browser extensions [65], and data leakage
due to several web forms, including PII leakage from contact forms [66], mailing list
subscription forms [67], registration forms [68], and authentication �ows [69,70]. Here,
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we roughly follow the same methodology as in Refs. [68–70] to detect PII leakage
to third parties, but we consider more detection methods (four and an additional
combination with CNAME cloaking even when that information is obfuscated. We also
present a tracking technique that relies on manipulating PII leakage. When a user’s PII
(i.e., email address, name, address) leaks to third-party domains (di�erent from visited
domains) to track user activities. This technique, called PII leakage-based tracking,
uses PII to perform cross-site, cross-browser, and even cross-device user tracking.

PII - foo@mydom.com

sign up/sign in
site1.com 
(safari – MacOS) 

site2.com 
(Firefox – Ubuntu)

First-party 

Third-party

tracker.net

embed

foo@mydom.com

(2)

Process engine
id:foo@mydom.com

site1.com - site2.com

foo@mydom.com

(4)

(3)
(1)

Figure 2.7: PII leakage-based tracking mechanism

Figure 2.7 shows the process of a third-party web tracking server tracking a user
across sites, browsers, and devices

1. The �rst parties site1.com and site2.com embed the third-party resource tracker.net
in their authentication �ow.

2. An end-user access site1.com, site2.com and signup/signin that send his/her PII
(email address foo@mydom.com) to these website server.

3. The PII (email address foo@mydom.com) is also sent to third-party server
tracker.net during this authentication �ow.

4. Server tracker.net uses the PII (email address foo@mydom.com) to track the
activities of this end-user on the website site1.com and site2.com in di�erent
browsers and devices.
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There are some existing methods to detect PII leakage resources partially. Some
common browsers focus on Referrer-Policy by removing the PII that can be leaked to
third parties via referer header [71, 72]. Starting from version 87, Firefox introduces
a privacy-preserving default Referrer-Policy by trimming path and query string
information from referer headers to prevent sites from accidentally leaking sensitive
user data. Whereas Safari since version 13.0,4 downgrades all cross-site request referer
headers to just the webpage’s origin. Furthermore, Easylist [73], EasyPrivacy [74],
and other �lter lists can reduce the number of PII leakage by blocking requests; they
however were not created for this purpose. Beyond these approaches, the Brave
browser blocks tracking and advertising resources content from being loaded by
default [75]. It also removes known tracking parameters from URLs and reduces the
amount of information in the referer header to protect user privacy. However, this
browser accounts for a small percentage of browser share [61, 76]. To overcome these
limitations, we propose a countermeasure based on a hybrid method by combining
heuristic and machine learning approaches to detect PII leakage that can easily be
integrated into a browser and extension (see Table 2.2).

Table 2.2: Detailed comparison of our countermeasure with other relevant works
available in literature against PII leakage.

Countermeasure Referrer-Policy Request blocking Heuristic Machine learning

Safari [72]
Firefox [71]
Brave [75]
Blocklist [73, 74]
Our work

2.4 Summary

Third-party web tracking is a well-studied topic. However, existing work is
insu�cient to transparency the �rst-party cooperation-based third-party web tracking.
It motivates us to perform this research to ful�ll a better understanding of third-party
web tracking. From there, improving and developing countermeasures to protect
user privacy on the Internet against these tracking techniques, including CNAME
cloaking-based tracking and PII leakage-based tracking.
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3
CNAME cloaking-based tracking

3.1 Introduction

In the DNS hierarchy, a subdomain is any domain, which is underneath a main
domain. Subdomains are used to organize or divide contents of a website into speci�c
sections. For example, a.example.com and b.example.com are subdomains of domain
example.com. The usage of DNS CNAME records coupled with Content Delivery
Network (CDN) is increasingly commonplace to improve website load times, reduce
bandwidth costs, and increase content availability and redundancy.

CNAME has also been used for user tracking. Tracking providers ask their clients
to delegate a subdomain for data collection and tracking and link it to an external
server using a CNAME DNS record [77]. This technique, called CNAME cloaking-based
tracking, uses CNAME to disguise requests to a third-party tracker as �rst-party ones.
We also de�ne an HTTP request by this subdomain is a request linked to CNAME
cloaking-related tracking.

There are some existing methods to detect CNAME cloaking-based tracking. Some
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network-based blocking methods work at the DNS level, such as NextDNS [52],
AdGuard DNS [55], Pi-hole [56] that use to get rid of online tracking. Furthermore,
EasyPrivacy [78], AdGuard tracking protection [79], and other �lter lists manually add
new �rst-party subdomains which are fronts for CNAME cloaking to these blocklists.
However, this approach will dramatically increase the size of the blocklists and these
subdomains need to be updated frequently. Besides that, uBlock Origin since version
1.24.1b0 performs a DNS lookup of the hostname loading a resource to determine if the
underlying subdomain is related to CNAME cloaking or not. Nevertheless, only Firefox
allows uBlock Origin to block CNAME cloaking because the other browsers do not
support DNS resolution API [46].

In this chapter, we provide a �rst in-depth analysis of CNAME cloaking-based
tracking, propose a supervised machine learning-based method for the detection
and implement CNAMETracking Uncloaker browser extension as a countermeasure.
The main contributions of the paper are as follows. (1) We �rst characterize CNAME
cloaking-based tracking in Alexa Top 300K sites. We detect 1,739 websites (0.58%)
containing CNAME cloaking-based tracking in Alexa 300K sites as of January 2020 by
matching with CNAME tracking �lter lists (§ 3.5.1); Those websites are spread across
many countries and categories. They use 24 tracking providers in total, and the most
common one is Adobe (§ 3.3.4); By analyzing longitudinal snapshot crawled data of
Alexa Top 100K sites (§ 3.3.5), we show that the usage of CNAME cloaking-based
tracking steadily increases from 2016 to 2020; We then conduct further experiments to
investigate the impact of giving consent to CNAME cloaking sites and con�rm that
there are no signi�cant di�erences compared to the usage of this phenomenon before
the user consent is obtained (§ 3.3.6). We also evaluate the detection ability of such
tracking for major browsers and extensions (§ 3.4). (2) Next, we propose the supervised
machine learning-based method to detect CNAME cloaking-based tracking without the
on-demand DNS lookup (§ 3.5); Through the comprehensive analysis, we demonstrate
the e�ectiveness of our method. (3) Finally, we design and implement a prototype
browser extension of the supervised machine learning approach to protect the end-user
against CNAME cloaking-based tracking, named CNAMETracking Uncloaker (§ 3.6).
The current best countermeasure strongly depends on real-time name resolution (only
supported by Firefox browser), but our extension intends to distinguish requests using
CNAME cloaking-based tracking in Chrome-based browsers. Our experiment shows
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Table 3.1: Summary of crawled data in Alexa Top 300K sites (Jan 2020).

Metrics Numbers Percentage

3rd party requests 14,640,568 54,27%
1st party requests domain 5,919,965 21.94%

subdomain w/o CNAME 3,245,361 12.03%
w/ CNAME 3,172,304 11.76%

Total requests 26,978,198 100%

that the performance overhead is acceptable when compared with the vanilla setting
on the Chrome browser.

3.2 Data collection and blocklist-based detection

In this section, we describe the data collection and explain our methodology to
detect CNAME cloaking-based tracking with blocklists.

3.2.1 Websites selection and data collection

The �rst step is the selection of websites that would be most appropriate for our
work. We use the popularity index from Alexa [80] in all of our measurements, similar
to past literature [43, 81, 82]. To characterize CNAME cloaking-based tracking, we use
OpenWPM [82] to conduct large-scale automatic crawls on Alexa Top 300K sites.
OpenWPM is based on Firefox version 52 and allows collecting all the HTTP/HTTPS
requests emitted and their responses for each site. We performed the crawls with
default settings in January 2020, with three IP addresses in Japan (Table 3.1).

In addition, to track the longitudinal behavior of CNAME cloaking-based tracking,
we also rely on four other datasets (see Table 3.2). We collected two datasets on
Alexa Top 100K sites with OpenWPM in April 2018 and January 2020. The other
two datasets are publicly available in Princeton Web Census Data [82]. They were
collected in January 2016 and February 2017 and targeted Alexa Top 100K sites. These
datasets were also crawled with OpenWPM, so all the data sources are compatible and
comparable. Note that the contents of Alexa lists are not the same among these four
datasets because Alexa lists themselves are updated daily and change signi�cantly
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Table 3.2: Longitudinal snapshot datasets.

Time Alexa List gen. Requests Firefox version

Jan 2016 100K 01/2016 9,487,367 41
Feb 2017 100K 11/2016 10,964,374 45
Apr 2018 100K 03/2018 9,926,080 52
Jan 2020 100K 12/2019 9,647,506 52

from one day to the next [83]. The list used for each crawl is described in the “List gen.”
column of Table 3.2.

Furthermore, the instability of the Alexa Top list drastically increased in January
2018 [83]. Hence, to make a fair comparison, we also use the intersection (26,162 sites)
of the four Alexa Top 100k sites above.

Note that, we found a publicly available HTTP Archive (HAR) dataset that provides
historical data to quantitatively illustrate how the web is evolving [84]. However,
we recognized two limitations of this dataset. First, The HAR dataset periodically
crawled the top websites that come from the Chrome User Experience Report, but
there is no ranking value in this dataset to assess whether end-users are actually
impacted by CNAME cloaking. Second, there is no way to control its crawling and
publishing schedule to obtain the up-to-date DNS data. Due to these reasons, we
decided to use the dataset as described above for our measurement. We also put the
analysis on this data set on Appendix A. We con�rm the global consistency of our
dataset with a publicly available HTTP Archive (HAR) dataset [84] (the details are
shown in Table A.1).

3.2.2 Blocklist-based CNAME cloaking detection

3.2.2.1 CNAME lookup

First of all, we separate the generic Top-Level Domain (gTLD) and country-code
top-level domain (ccTLD) from the visited website for all HTTP requests using the
Public Su�x List [85]. We only keep subdomain of an HTTP request if it is not null
and its second-level domain is the same as the visited website domain. We look up and
check CNAME records for each subdomain. We then resolve each CNAME answer set
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www.example.com
(192.168.0.1)

a.example.com
(example.com)
(tracker.com)

CNAME u.example.com (1st-1st)
v.cdn.com (cdn)
w.cloud.com (cloud)
x.tracker.com (tracker)
z.other.com (others)

192.168.0.1

10.0.0.1

172.16.0.1

CNAME types

A

a.example.com n.cdn.com 172.16.0.1x.tracker.com
CNAME

CNAME chain (length = 2)
CNAME A/AAAA

(1st node) (final node)

Figure 3.1: Overview of CNAME chain.

by DNS. We save all nodes in CNAME chain1 (see Figure 3.1) to analyze the CNAME
cloaking behind �rst-party requests.

We �nd that 45.73% of the HTTP requests are �rst-party requests in 2020 (Table 3.1).
We then only keep 11.76% of the HTTP requests that contain �rst-party CNAME.

Looking up CNAMEs for the longitudinal data, we additionally check historical
forward DNS (FDNS) datasets provided by Rapid7 [86]. The coverage of the FDNS data
in our CNAME data is not perfect. It missed 10% of CNAMEs in 2018 and 30% in 2016
and 2017. We intend to use DNSDB [87] in future research to improve this coverage.

3.2.2.2 CNAME cloaking-based tracking detection with blocklists

To detect CNAME cloaking-based tracking, we use an approach based on wildcards
matching of tracking blocklists.

First, we discard CNAME-related subdomains that are categorized as �rst-party
types. We classify a CNAME chain as �rst-party if the domain of the �nal node in this

1CNAME chain corresponds to a series of CNAMEs from the initial �rst-party subdomain to all
CNAME nodes before the resolution to an IP address (see Figure 3.1). We consider four CNAME types
for a CNAME chain:

1. First-party type: The domain of the �nal node in a CNAME chain is the same as the domain of
the considered HTTP request, or the IP addresses of both the �nal node and the second-level
domain are the same (u.example.com).

2. CDN type: The domain of nodes in a CNAME chain is used for CDN service (v.cdn.com).

3. Cloud and other types: The domain of nodes in a CNAME chain is used for other activities, such
as cloud storage or �rewall (w.cloud.com, z.other.com).

4. Tracker type: The domain of nodes in a CNAME chain is used for tracking user activities
(x.tracker.com).



26 Chapter 3. CNAME cloaking-based tracking

chain is the same as the domain of the considered HTTP request, or if the IP addresses
of both the �nal node and the second-level domain are the same.

We then intend to detect CNAME cloaking-based tracking inside the remaining
subdomains. We apply wildcard matching based on well-known tracking blocklists:
EasyPrivacy list [74] and AdGuard tracking protection �lter [79]. EasyPrivacy list
consists of nine sublists and the Adguard tracking �lter list consists of eleven sublists.
They contain many rules that remove all forms of tracking, including web bugs, tracking
scripts, and information collectors, thereby protecting user personal data. Focusing
on tracking domains, we select the third-party tracking domains, the international
third-party tracking domains, the third-party domain from third-party tracking services,
and the third-party domain from International third-party tracking services sublists from
EasyPrivacy list and the tracking servers list sublist from AdGuard tracking protection
�lter as of February 5, 2020. These blocklists are partly overlapping. We build the union
of the two blocklists above to make a CNAME tracking �lter list. Then, we build regular
expressions from tracking domains to match with CNAME behind all remaining
subdomains. For example, eulerian.net∧third-party is changed to .eulerian.net.$. This
rule matches any CNAME ending with .eulerian.net.; We can thus detect any CNAME
cloaking-based tracking from tracking provider Eulerian [88]. Finally, we inspect
individual CNAME nodes in all CNAME chains using this customized �lter list. If any
node in a CNAME chain is �agged by this list, we classify this CNAME chain as a
potential tracker that �ag by 62 domains from our CNAME tracking �lter list.

To avoid false positives, we then group these CNAME chains by domain and
inspect them manually one by one. We �rst validate them by observing the activities
which store an uniquely cookie in the browser under the visited domain name. We
also gather information about these domains to identify whether they belong to any
tracking provider. Using this analysis, we �nally consider 28 domains are used for
CNAME cloaking-based tracking and �ag these chains as tracker.

We furthermore use CDN lists [89, 90] to check if remaining CNAME chains are
CDN. If it is not the case, we consider them as Others.
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3.3 Characterizing CNAME cloaking-based tracking

3.3.1 CNAME cloaking-based tracking analysis

Having gathered the CNAME chains using CNAME cloaking-based tracking,
we concentrate on analyzing websites and tracking providers linked to CNAME
cloaking-based tracking.

We consider the ranking, the country, and the category of websites containing
CNAME cloaking-based tracking. For the website ranking, we assess how a real user
would be a�ected in the real world by this type of tracking by examining the Empirical
Cumulative Distribution Function (ECDF) of these websites. For the website country
using CNAME cloaking-based tracking, we analyze them based on the top-level domain
(TLD), Whois information, and IP Geolocation. First of all, if the TLD of a website
corresponds to a country (i.e., ccTLD), we attribute that website to the country. By
doing that, we identify the country of 94,560 websites. Then, for international TLDs,
we use Whois information to determine 171,370 websites’ country. Finally, for 34,070
remaining domains, we use the IP Geolocation to determine the country. We are aware
that, if a website uses cloud-based security, proxy, or DNS-based service, then the
geolocation of returned IP address could be unreliable for our purpose. However, this
error was negligible, especially, there are a small number of such CNAME cloaking
websites as shown in a later section (see § 3.3.3). In addition, IP Geolocation sometimes
returns incorrect results [91]. To overcome this limitation, we make a majority voting
via ip-api.com [92], freegeoip.app [93], and MaxMind [94] to give more robustness to
the Geolocation assignment. In the 1,307 cases of three databases that return di�erent
results or return null, we set these websites to an unknown country. For the website
category, we use FortiGuard Web Filtering [95] dataset from January 2020 for the
website category classi�cation.

Finally, we consider tracking providers behind CNAME cloaking-based tracking
by linking 28 domains are used for CNAME cloaking to 24 tracking providers using
Disconnect’s blocklist [96].
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Table 3.3: CNAME types of �rst-party request by subdomain (Alexa 300K sites in 2020).

Metric 1st-1st Tracker CDN, Cloud and others

HTTP requests 1,839,728/57.99% 3,484/0.11% 1,329,092/41.90%
Subdomains 48,365/39.47% 1,803/1.47% 72,376/59.06%

3.3.2 CNAME chains structure

In this section, we focus on the characteristics of CNAME chains for the �rst-party
subdomain in Alexa Top 300K sites. Firstly, we present the CNAME usage of �rst-party
requests by subdomain in Table 3.3. The most common CNAME type is requests
referring to resources of the �rst party (57.99%). CDN and cloud also represent a large
proportion of CNAME types (41.90%). Overall, we detect 3,484 CNAME cloaking-based
tracking URLs. Furthermore, we �nd that these URLs belong to 1,739 websites (0.58%)
on Alexa Top 300K sites.

Then, we breakdown the number of nodes in CNAME chains for �rst-party
subdomains in our latest dataset (Alexa Top 300K sites in 2020) in Figure 3.2. We
observe that about 80% of CNAME chains are very simple, just consisting of one
CNAME. However, we also observe longer chains whose maximum length is six. These
longest chains are mainly used by Microsoft likely for load balancing. This result
suggests that checking only the �rst CNAME might be not enough for detecting
CNAME cloaking-based tracking, because tracker websites may appear in intermediate
nodes in the chain.

Finally, we show the breakdown of CNAME types regarding their position in
CNAME chains in Figure 3.3. We note that the position represents the location of a
CNAME in a CNAME chain. For example, the �rst position of a CNAME chain with
two nodes x.tracker.com and n.cdn.com is the CNAME x.tracker.com.. In Alexa Top 300K
sites, the tracking-related domain inside a CNAME chain is mainly located at the �rst
position. We however also observe some tracking domains in the second position.

3.3.3 Websites using CNAME cloaking-based tracking

Next, we focus on the characteristics of websites containing CNAME cloaking-based
tracking.
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Figure 3.2: The number of nodes in CNAME chains for �rst-party subdomains (Alexa
Top 300K sites in 2020).

Figure 3.4 presents the Empirical Cumulative Distribution Function (ECDF) of
the Alexa ranking of websites containing CNAME cloaking-based tracking. These
websites are spread across the Alexa ranking. It illustrates that 30% of the CNAME
cloaking-based tracking belongs to the top 20K websites. Popular websites use more
CNAME cloaking-based tracking.

Then, we discuss the website category of websites containing CNAME cloaking-
based tracking that shown in Figure 3.5. For 1,739 websites containing CNAME
cloaking, the percentages of websites in Business, Information Technology, Shopping
and Finance are 22.0%, 17.3%, 11.8%, and 9.7%, respectively. In addition, for the
proportion of website using CNAME cloaking inside each category, the percentages of
these websites account for 0.6%, 0.6%, 1.2%, and 2.4%, respectively. Overall, various
website categories use CNAME cloaking.

Next, we analyze the website country of websites containing CNAME cloaking-
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based tracking2 that shown in Figure 3.6. We observe that 55.1% of websites are
located in the United States, 5.6% are located in Germany, 5.3% are located in the
United Kingdom, 5.0% are located in Japan, 4.9% are located in Canada, and other
countries have signi�cantly lower percentages. In addition, for the proportion of
websites using CNAME cloaking inside each country, the percentage of the United
States, Germany, the United Kingdom, Japan, and Canada are 1.1%, 1.7%, 1.2%, 1.0%,
and 0.7%, respectively. Overall, there is not a big di�erence among websites using
CNAME cloaking regarding country.

In summary, we intended to investigate any biases, but we do not observe signi�cant

2The website country for 1,739 sites containing CNAME cloaking-based tracking is determined by
ccTLD (434 sites; 24.96%), Whois (1,054 sites; 60.61%), and IP Geolocation (251 sites; 14.43%). The
websites detected by the IP Geolocation are identi�ed as the United States and Canada (222 sites),
European countries (22 sites), and others (seven sites). We manually con�rm that most results are not
a�ected by CDN.
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Figure 3.4: ECDF of the Alexa ranking of websites containing CNAME cloaking-based
tracking (Alexa Top 300K sites in 2020).

biases regarding website categories and website countries of sites containing CNAME
cloaking-based tracking. In contrast, websites using this tracking technique are widely
spread in many countries and categories.

3.3.4 Tracking providers usingCNAMEcloaking-based tracking

We provide the breakdown of tracking providers behind CNAME cloaking-based
tracking in Figure 3.7. We con�rm 24 tracking providers using this technique. The
major player in Alexa Top 300K sites is Adobe (52.5%). Besides Adobe, we see some
well-known tracking providers, such as Pardot [97], Act-on [98], Oracle [99], and
Webtrekk [100] (25.7%, 6.3%, 3.0%, and 2.5%, respectively).

Moreover, Table 3.4 shows the breakdown of tracking providers inclusion in
website by website category. We observe that tracking providers were distributed in
di�erent types of websites, except Intent (Travel category with 92%). In addition,
Adobe and Pardot are the most popular tracking providers in almost all categories.
Furthermore, Table 3.5 shows the breakdown of the tracking providers inclusion in
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Figure 3.5: Breakdown of websites containing CNAME cloaking-based tracking by
website category (Alexa Top 300K sites in 2020).

Table 3.4: Breakdown of tracking providers inclusion in website by website category.
The values have the following meaning: raw/percentage for category/percentage for
tracking provider. The signi�cant percentages (>20%) are shown in bold.

Category Adobe Pardot Act-On Oracle Webtrekk Eulerian Segment Intent Posta�liatePro Others Total

Business 141/15.1/36.5 157/34.5/40.7 39/35.1/10.1 13/24.5/3.4 14/31.1/3.6 5/11.9/1.3 7/24.1/1.8 0/0/0 2/16.7/0.5 8/11.6/2.1 386/NA/100
Information Technology 95/10.2/30.4 139/30.5/44.6 25/22.5/8.0 16/30.2/5.1 6/13.3/1.9 7/16.7/2.2 8/27.6/2.6 0/0/0 4/33.3/1.3 12/17.4/3.8 312/NA/100
Shopping 157/16.9/73.0 5/1.1/2.3 1/0.9/0.5 3/5.7/1.4 10/22.2/4.7 10/23.8/4.7 4/13.8/1.9 0/0/0 2/16.7/0.9 23/33.3/10.7 215/NA/100
Finance 117/12.6/68.8 24/5.3/14.1 7/6.3/4.1 6/11.3/3.5 4/8.9/2.4 3/7.1/1.8 1/3.4/0.6 1/4.0/0.6 0/0/0 7/10.1/4.1 170/NA/100
Media 96/10.3/80.0 5/1.1/4.2 2/1.8/1.7 0/0/0 5/11.1/4.2 3/7.1/2.5 1/3.4/0.8 1/4.0/0.8 0/0/0 7/10.1/5.8 120/NA/100
Travel 64/6.9/54.2 10/2.2/8.5 6/5.4/5.1 0/0/0 2/4.4/1.7 8/19.0/6.8 0/0/0 23/92.0/19.5 0/0/0 5/7.2/4.2 118/NA/100
Education 18/1.9/24.0 41/9.0/54.7 8/7.2/10.7 4/7.5/5.3 0/0/0 0/0/0 4/13.8/5.3 0/0/0 0/0/0 0/0/0 75/NA/100
Health 45/4.8/61.6 19/4.2/26 3/2.7/4.1 2/3.8/2.7 1/2.2/1.4 0/0/0 1/3.4/1.4 0/0/0 2/16.7/2.7 0/0/0 73/NA/100
Entertainment 31/3.3/88.6 1/0.2/2.9 2/1.8/5.7 0/0/0 0/0/0 1/2.4/2.9 0/0/0 0/0/0 0/0/0 0/0/0 35/NA/100
Personal Vehicles 24/2.6/80.0 2/0.4/6.7 0/0/0 2/3.8/6.7 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/2.9/6.7 30/NA/100
Sports 20/2.1/69.0 4/0.9/13.8 1/0.9/3.4 1/1.9/3.4 0/0/0 1/2.4/3.4 2/6.9/6.9 0/0/0 0/0/0 0/0/0 29/NA/100
Restaurant 16/1.7/80.0 3/0.7/15.0 0/0/0 0/0/0 0/0/0 1/2.4/5.0 0/0/0 0/0/0 0/0/0 0/0/0 20/NA/100
Job Search 10/1.1/52.6 7/1.5/36.8 2/1.8/10.5 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 19/NA/100
General Organizations 6/0.6/35.3 7/1.5/41.2 2/1.8/11.8 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 2/2.9/11.8 17/NA/100
Others 91/9.8/59.5 31/6.8/20.3 13/11.7/8.5 6/11.3/3.9 3/6.7/2.0 3/7.1/2.0 1/3.4/0.7 0/0/0 2/16.7/1.3 3/4.3/2.0 153/NA/100

Total 931/100/NA 455/100/NA 111/100/NA 53/100/NA 45/100/NA 42/100/NA 29/100/NA 25/100/NA 12/100/NA 69/100/NA 1,772/NA/NA

website by website country. Tracking providers cooperating with websites such as
Act-on, Posta�liatePro, Pardot, Adobe, and Oracle are mainly located in the United
States (80.2%, 66.7%,61.5%, 56.7%, and 52.8%, respectively). We also observe that some
tracking providers are mainly located in speci�c countries, e.g., Eulerian in France
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Figure 3.6: Breakdown of websites containing CNAME cloaking-based tracking website
country (Alexa Top 300K sites in 2020).

Table 3.5: Breakdown of tracking providers inclusion in website by website country.
The values have the following meaning: raw/percentage by country/percentage by
tracking provider. The signi�cant percentages (>20%) are shown in bold.

Country Adobe Pardot Act-On Oracle Webtrekk Eulerian Segment Intent Posta�liatePro Others Total

United States 528/56.7/54.5 280/61.5/28.9 89/80.2/9.2 28/52.8/2.9 1/2.2/0.1 1/2.4/0.1 11/37.9/1.1 5/20.0/0.5 8/66.7/0.8 18/26.1/1.9 969/NA/100
Germany 38/4.1/35.5 8/1.8/7.5 1/0.9/0.9 1/1.9/0.9 31/68.9/29.0 1/2.4/0.9 0/0/0 2/8.0/1.9 0/0/0 25/36.2/23.4 107/NA/100
United Kingdom 58/6.2/62.4 22/4.8/23.7 2/1.8/2.2 2/3.8/2.2 1/2.2/1.1 2/4.8/2.2 1/3.4/1.1 3/12.0/3.2 0/0/0 2/2.9/2.2 93/NA/100
Japan 36/3.9/40.9 51/11.2/58.0 0/0/0 1/1.9/1.1 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 88/NA/100
Canada 50/5.4/58.1 22/4.8/25.6 4/3.6/4.7 3/5.7/3.5 0/0/0 6/14.3/7 0/0/0 1/4.0/1.2 0/0/0 0/0/0 86/NA/100
France 15/1.6/21.4 14/3.1/20.0 1/0.9/1.4 2/3.8/2.9 0/0/0 23/54.8/32.9 0/0/0 3/12.0/4.3 0/0/0 12/17.4/17.1 70/NA/100
Australia 48/5.2/71.6 10/2.2/14.9 2/1.8/3.0 3/5.7/4.5 0/0/0 0/0/0 4/13.8/6.0 0/0/0 0/0/0 0/0/0 67/NA/100
Spain 20/2.1/64.5 0/0/0 0/0/0 0/0/0 1/2.2/3.2 8/19.0/25.8 0/0/0 0/0/0 0/0/0 2/2.9/6.5 31/NA/100
Panama 2/0.2/10.0 10/2.2/50.0 1/0.9/5.0 2/3.8/10.0 0/0/0 0/0/0 4/13.8/20.0 0/0/0 1/8.3/5.0 0/0/0 20/NA/100
Switzerland 11/1.2/57.9 5/1.1/26.3 1/0.9/5.3 1/1.9/5.3 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/1.4/5.3 19/NA/100
Sweden 7/0.8/43.8 6/1.3/37.5 2/1.8/12.5 1/1.9/6.3 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 16/NA/100
Netherlands 9/1.0/60.0 3/0.7/20.0 0/0/0 0/0/0 2/4.4/13.3 0/0/0 0/0/0 0/0/0 0/0/0 1/1.4/6.7 15/NA/100
Italy 8/0.9/61.5 1/0.2/7.7 0/0/0 1/1.9/7.7 2/4.4/15.4 0/0/0 0/0/0 0/0/0 0/0/0 1/1.4/7.7 13/NA/100
Denmark 8/0.9/80.0 0/0/0 0/0/0 2/3.8/20.0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 10/NA/100
Others 93/10.0/55.4 23/5.1/13.7 8/7.2/4.8 6/11.3/3.6 7/15.6/4.2 1/2.4/0.6 9/31.0/5.4 11/44.0/6.5 3/25.0/1.8 7/10.1/4.2 168/NA/100

Total 931/100/NA 455/100/NA 111/100/NA 53/100/NA 45/100/NA 42/100/NA 29/100/NA 25/100/NA 12/100/NA 69/100/NA 1,772/NA/NA

(54.8%) and Webtrekk in Germany (68.9%). Again, Adobe and Pardot are the most
popular tracking providers in almost all countries, except France (Eulerian with 32.9%).

Finally, we further investigate the number of tracking providers on each website.
Most websites (1,707) deploy only one tracking provider, as expected. However, we
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Figure 3.7: Tracking providers providing CNAME cloaking-based tracking (Alexa Top
300K sites in 2020).

also �nd 31 websites using two providers, and one website mytoys.de using three
providers (Webtrekk, Otto Group, and Adclear). Typical pairs of the providers are the
combination between Adobe and other tracking providers, such as (Adobe and Oracle),
(Adobe and Webtrekk), or (Adobe and Pardot). We do not identify any plausible reasons
of deploying multiple providers, but they might be used for di�erent purposes (e.g.,
analytics and advertisement).

We conclude that, besides the biggest player Adobe, CNAME cloaking tracking
providers operate on many website categories and countries.

3.3.5 Longitudinal analysis of CNAME cloaking-based tracking

In this section, we analyze the longitudinal evolution of the number of websites
using CNAME cloaking-based tracking. Figure 3.8 indicates the number of websites
using CNAME cloaking-based tracking in Alexa 100K sites. We combine two crawled
datasets and two DNS lookup datasets: (1) for the crawled data, the number of websites
in each Alexa 100K and those in the overlap among all Alexa 100K datasets (26,126
sites); (2) for two DNS lookup datasets, DNS lookup in 2020 and lookup with the FDNS
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Figure 3.8: Websites containing CNAME cloaking-based tracking along time.

data (collected in February 2017, the oldest available snapshot, and June 2018). We
then plot four combinations: the number of websites in each Alexa 100K sites with
2020 DNS (white rectangles) and with FDNS (black rectangles). Those in the overlap
among all Alexa 100K datasets with DNS in 2020 (white circles) and with FDNS (black
circles). The error bars in the �gure show the number of unsolved CNAMEs due to the
coverage of the FDNS data.

We discuss the growth of websites introducing CNAME cloaking-based tracking
over the years. At a glance, the number of websites containing CNAME cloaking-based
tracking is slightly decreasing in Alexa Top 100K websites with the latest DNS (white
rectangles). However, this decrease is due to biases of DNS lookup. Considering the
historical DNS data (black rectangles), we conjecture the presence of an increasing
trend in the use of CNAME cloaking. However, the large number of unsolved CNAMES
in 2016 and 2017 (represented by the error bars in the �gure) does not allow to con�rm
this. We see an increasing trend in the overlapping websites (white and black circles)
with smaller error bars. Although the unsolved CNAMES in 2016 and 2017 for the
yearly Alexa limit the strength of our conclusion, the evolution between 2018 and 2020
for yearly Alexa, and the overall trend in the overlapping websites, allow us to con�rm
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an increasing trend along the observed years.

3.3.6 Impact of giving consent to CNAME cloaking sites

We also conduct extra experiments to evaluate the impact of providing consent
as legally required by General Data Protection Regulation (GDPR) [6] to websites
with CNAME cloaking. We pick up 1000 sites in Alexa top 300K sites (top 500 sites,
randomly middle 250 sites, and randomly bottom 250 sites). On a clean browser session,
we load the website. If there is no cookie noti�cation or only a text simply informing
the users about the site’s usage of cookies, we stop there. We �nd 917 sites (91.7%) as
no banner (the publishers do not inform the end-user of data collection) and 19 sites
(0.19%) as noti�cation only (the noti�cation simply informing the users about the
site’s usage of cookies) category. For 64 (0.64%) remaining sites, we crawl them twice.
In the �rst time, we save all requests and responses in these sites without human
manipulation and �nd 31 sites (0.31%) as Accepted only (the noti�cation does not o�er
a way to refuse consent) and 33 sites (0.33%) as More options (the user can make their
choice in the cookies noti�cation by clicking accept, reject, or more setting) category. In
the second time, we click to accept consent on the banner, record the requests (if any).
Comparing the di�erence between Accepted only and More options categories in the
two crawls, we con�rm that four websites already embed a subdomain-related request
to hidden CNAME cloaking-based tracking without obtaining user consent. These
results demonstrate that there is no signi�cant e�ect by giving consent to the CNAME
cloaking sites in our measurement.

3.4 Measuring the e�ectiveness of the current in-browser

protection techniques against CNAME cloaking

We analyze and compare browsers and extensions regarding privacy protection
against CNAME cloaking-based tracking.
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Table 3.6: Detection performance: EasyPrivacy list and AdGuard tracking protection
�lter (Alexa Top 300K sites in 2020).

Metric AdGuard Tracking EasyPrivacy All (combined)

HTTP requests 1,433/41.13% 2,707/77.70% 2,713/77.87%
Subdomains 444/24.63% 1,313/72.82% 1,316/72.99%
Sites 422/24.27% 1,262/72.57% 1,265/72.74%

3.4.1 Blocklists

In order to block CNAME cloaking-based tracking, EasyPrivacy [74] and AdGuard
tracking protection [79] require the identi�cation of �rst-party subdomains which are
fronts for CNAME cloaking. They follow the Adblock Plus �lter syntax. For example,
EasyPrivacy has a rule to block tracking provider Eulerian: f7ds.liberation.fr∧. Thus,
when website liberation.fr makes a request to the third-party tracker Eulerian through
f7ds.liberation.fr, the request is blocked.

We assess the e�ciency of these blocklists as countermeasures. We use Adblock-
parser [101] that can parse Adblock Plus �lters to directly match blocking list rules
with all HTTP requests in the Alexa 1,739 sites that contain CNAME cloaking-based
tracking in Table 3.3. Note that, Adblockparser has some limitations [102], but it does
not impact our measurement for request-related to CNAME cloaking.

We inspect individual CNAME cloaking-based tracking URLs using these well-
known blocklists in January 2020. The results of this experiment are shown in Table 3.6.
We �nd that 2,713 CNAME cloaking-based tracking URLs have been �agged by these
blocklists. This represents 77.87% of all CNAME cloaking-based tracking URLs in Alexa
Top 300K sites. Besides that, the EasyPrivacy list detects almost as much CNAME
cloaking-based tracking as combined lists. This means that CNAME cloaking domains
detected by the Adguard tracking �lter list are almost always detected by EasyPrivacy.
Overall, tracker blocking lists thus do not e�ectively deal with CNAME cloaking-based
tracking. Moreover, subdomains being used for CNAME cloaking may change often,
which makes day-to-day blocklists updating tedious and time-consuming, and thus
explain blocklist poor performances.
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3.4.2 Browsers and extensions

Some browsers focus on security and privacy by blocking trackers. Browser
extensions also use several techniques (such as blocklisting, or tra�c monitoring) to
block third-party tracking. We evaluate the ability of common browsers and extensions
to block CNAME cloaking-based tracking.

We investigate �ve major browsers and six popular privacy-protecting extensions
that support these browsers. We choose following popular browsers [61]: Chrome
80.0 [103], Opera 66.0 [104], Brave 1.4.92 [48], Firefox 73.0 [47] and Tor Browser
9.0.2 [49]. Regarding extensions, we use two criteria: blocking trackers and supporting
multiple browsers. The privacy extensions that meet our criteria are Adblock 4.5.0 [105],
Adblock Plus 3.7 [106], Privacy Badger 2020.1.13 [78], Disconnect 5.19.3 [45], Ghostery
8.4.6 [44], uBlock Origin 1.24.4 [46] and 1.24.5rc1 (developer’s version) [107]. Ublock
Origin 1.24.5rc1 has an anti CNAME cloaking-based tracking feature [107]. We
include this version to provide an up-to-date picture of CNAME cloaking-based
tracking countermeasures. We then collect all the HTTP requests and responses
on the 1,739 websites containing CNAME cloaking-based tracking in Table 3.3. We
use Atrica3 [108], a multi-browser crawling library, to gather data on websites with
CNAME cloaking-based tracking. To conduct a general comparison of browsers and
privacy protection techniques, we crawl 1,739 websites using 40 di�erent pro�le
con�gurations (�ve browsers × eight extensions including the vanilla/bare setting). All
the measurements were performed in March 2020 with three IP addresses in Japan.
One crawling took approximately 4 to 6 hours on commodity hardware.

To reduce measurement error, we conducted three crawls and computed the relative
standard error of the mean percentage of websites using CNAME cloaking-based
tracking. We notice that there are also several possible sources of noise in our data.
Some of these are internal and known, such as failure to connect to a website at a
special time, or may also be external factors, such as network unreliability. To make a
fair comparison, we set the website crawl timeout to 60 seconds. After this duration, if
any website does not �nish loading, we remove it and get the overlap among the three
crawls of each pro�le.

Finally, we apply the same method (§ 3.2.2) to detect CNAME cloaking-based

3Atrica currently supports chromium-based and Firefox-based browsers.
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Figure 3.9: Detection performance of browsers and extensions regarding websites
containing CNAME cloaking-based tracking. The mean and standard deviation are
computed on three crawls.

tracking among these pro�les.

Figure 3.9 shows the detection percentage of the CNAME cloaking-based tracking
among browsers and their extensions. Overall, all browsers and extensions have a
di�erent impact on CNAME cloaking-based tracking. The most aggressive browser is
Brave. It has the best performance among �ve browsers without any extension and
blocks around 50% of websites that use CNAME cloaking-based tracking. We speculate
that Shields feature is e�ective at detecting CNAME cloaking-based tracking. We also
manually con�rm that Shields blocks some CNAME cloaking-related subdomains, such
as smetrics.10daily.com.au (Adobe), f7ds.liberation.fr (Eulerian), and 5ijo.01net.com
(Eulerian).

For all browsers, the most e�ective extension is uBlock Origin that reduces around
70% of the websites containing CNAME cloaking. Adblock and Adblock Plus provide
low protection abilities for all browsers. This result is not surprising because these
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extensions target ad-blocking. Another notable point is that uBlock Origin version
1.24.5rc1 with anti-CNAME cloaking-based tracking technique is better than uBlock
Origin version 1.24.4. It however only impacts to Firefox browser because other
browsers do not provide an API that allows an extension to perform DNS lookups [51].

3.5 Amachine learning approach for detectingCNAME

cloaking-based tracking

Next, we describe our supervised machine learning-based approach to detect
CNAME cloaking-based tracking.

3.5.1 Method overview

Block? False

Local storage
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Feature 
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Non-Tracker
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Figure 3.10: Overview of machine learning approach for detecting CNAME cloaking-
based tracking requests and CNAMETracking Uncloaker browser extension manage-
ment work�ow.

Figure 3.10 shows an overview of our method consisting of four steps: data
preparation, feature extraction, model development, and evaluation.
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1. Select and divide the dataset into two sets, which we call the tracker requests
and the non-tracker requests (§ 3.5.2).

2. Extract features for all requests by subdomain (§ 3.5.3).

3. Compare the F1 score of 10 classi�cation algorithms using 10-fold strati�ed nested
cross-validation with oversampled training data. After evaluating performance,
we select the most e�ective classi�cation algorithms with its best parameters to
build a model (§ 3.5.4).

4. Evaluate the model with the testing data (§ 3.5.5.1).

3.5.2 Data preparation

We rely on 1,739 sites from Alexa Top 300K where CNAME cloaking-based tracking
was previously detected § 3.3.3 and another 1,739 sites randomly picked from these
300K sites without CNAME cloaking-based tracking from. We label all requests as
tracker instances and non-tracker instances.

To analyze the concept drift of our model (see § 4.7.3), we also pick up 43,429
subdomain-related requests which belong to 1,009 sites are related to CNAME cloaking-
based tracking and 1,009 additional randomly picked sites without CNAME-cloaking
from April 2018.

The details of the 2020 dataset and the 2018 dataset are listed in Table 3.7.

Table 3.7: Summary of data: 2,018 sites in 2018 and 3,478 sites in 2020.

Class April 2018 January 2020

Tracker requests 2,490 (5.73%) 3,484 (10.01%)
Non-Tracker requests 40,939 (94.27%) 31,328 (89.99%)

Total subdomain-related requests 43,429 (100%) 34,812 (100%)

Total sites 2,018 (100%) 3,478 (100%)
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3.5.3 Feature extraction

We experimentally extract the following features related to request linked to
CNAME cloaking-related tracking.

• method: The desired action to be performed for a given request. We hypothesize
that the GET method is usually used for subdomain-related requests linked to
CNAME cloaking.

• is_xhr: The request uses an API that provides scripted client functionality for
transferring data between a client and a server. We hypothesize that CNAME
cloaking requires making HTTP requests in JavaScript between client and
tracking provider server.

• content_type: The HTML tag that resulted in a request, such as image, javascript,
or document, which are de�ned in this IDL [109]. We hypothesize that a speci�c
resource is fetched in a web request for CNAME cloaking purpose (script).

• len_url, len_sub, and len_pre�x_sub: The length of request URL, subdomain, and
subdomain pre�x. We hypothesize that there is a dissimilarity between the
length of functional resources and CNAME cloaking resources.

• num_pre�x_sub: The number of subdomain pre�xes. We hypothesize that
website’s publishers use only one pre�x to create a subdomain to deploy CNAME
cloaking-based tracking.

• pre�x_sub_blacklist: The subdomain pre�x is among subdomain pre�xes in
tracking blocklists [79] [74]. We hypothesize that website’s publishers use the
same keyword (that is already in the blocklist) to create a subdomain to deploy
CNAME cloaking-based tracking.

• is_sub_dic: The pre�x of subdomain is a word in the English dictionary. We
hypothesize that web publishers use random string as a subdomain to redirect to
the tracking provider via CNAME record instead of meaningful keywords.

• entropy_url, entropy_sub, and entropy_pre�x_sub: The randomness of request
URL by calculating the metric entropy from request URL, subdomain, and
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subdomain pre�x. We hypothesize that there are di�erences in the metric
entropy between functional request URL, subdomain, and subdomain pre�x and
CNAME cloaking resources.

3.5.4 Modeling and preliminary results

Using holdout validation method, we �rst split the 2020 dataset (Table 3.7) into
testing data and training data. The percentage of the data held over for testing is
20%. It is used in § 4.7.3 to evaluate our model. Next, we describe how to build a
classi�cation model to detect CNAME cloaking-based tracking using testing data (80%
of the 2020 dataset).

3.5.4.1 Model nested cross-validation

To perform hyperparameter optimization and model selection, while overcoming
the problem of training dataset over�tting and the unbalanced nature of our dataset,
we perform nested cross-validation using ADASYN algorithm [110]. We �rst use an
outer 10-folds cross-validation loop to randomly split the training dataset into 10
smaller sets (folds) without replacement, where nine folds are used for the model
training and the remaining one fold is for validating. We also use an inner loop to
optimize the hyper-parameters of each model for each training dataset made of nine
outer-folds. Note that, to evaluate the cross-validation with real data, we only conduct
over-sampling on the minority class by applying ADASYN algorithm in the training
folds and not in the validation folds. We perform a grid search optimization for this
classi�cation regarding the F1 score. After obtaining 10 performance estimates by
repeating this procedure ten times, we take their average as the �nal performance
estimate.

To deploy this machine learning model as a browser extension easily and e�ectively
(see § 3.6), we �rst decide to compare 10 popular classi�cation algorithms and evaluate
their F1 score using above strati�ed nested cross-validation procedure on the training
data.

We use the F1 score for evaluating the performance of the classi�ers. Larger values
of the F1 score (≈ 1.0) indicate better performance, and lower values (≈ 0) correspond
to worse performance. Figure 3.11 shows the F1 scores for the 10 selected algorithms
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Figure 3.11: F1 score for the 10 selected classi�cation algorithms using 10-fold strati�ed
nested cross-validation in the dataset regarding the detection of requests linked to
CNAME cloaking-based tracking. The mean and standard deviation are computed on
the 10 folds of the nested cross-validation.

using 10-fold strati�ed cross-validation in the 2020 dataset for detecting requests
linked to CNAME cloaking-related tracking. All classi�cation algorithms have di�erent
detection performances. The most e�ective classi�cation algorithm is Extra Trees,
while Logistic Regression and Linear Discriminant Analysis classi�ers show the worst
performance for this dataset.

3.5.4.2 Selection of best algorithms and best parameters

From the previous performance evaluation, we select Extra Trees classi�er and
its set of best parameters (shown in Table 3.8) to train our model with oversampled
training data.
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Table 3.8: Best parameters of selected algorithm (Extra Trees) from the training phase
regarding F1 score.

Algorithm Parameter Value

Extra Trees max_features 10
min_samples_split 2
min_samples_leaf 1
bootstrap False
n_estimators 100

3.5.5 Classi�cation performance evaluation

3.5.5.1 The performance of model

The results obtained using the test set for requests linked to CNAME cloaking-based
tracking detection on 20% of the 2020 dataset (preserved for this test) are shown
in Table 3.9. We �rst show that our method detects requests related to CNAME
cloaking-based tracking e�ectively. We achieve 0.941 of F1 score for tracker requests,
0.994 for non-tracker requests. We also obtain high precision and recall for both
classes, which reduce the functional resources blocked by false positive, but still detect
CNAME cloaking resources with less false negative.

By manually analyzing some false negatives and some false positives, we �nd that re-
quests linked to CNAME cloaking have the same attributes as requests without CNAME
cloaking-based tracking. For example, a script https://ea.hofmann.es/eahof4645.js that
points to tracking provider Eulerian; its pre�x ea not in the blocklists and it looks
like a functional script. However, we can classify initiated the request by this script
that actually perform tracking behavior as CNAME cloaking-based tracking. On the
contrary, the request by subdomain pf.newegg.com is not used for CNAME cloaking. Its
request URL contains detailed tracking of user actions (including browser, device, and
IP location) that make the length of this URL request is similar to request-related to
CNAME cloaking by tracking provider Adobe. However, this request is also blocked by
the EasyPrivacy list.
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Table 3.9: A comparison of detection performance.

Class Method Precision Recall F1 score

Non-Tracker EasyPrivacy list 0.975 0.987 0.981
Adguard �lter list 0.938 0.996 0.966

Blocklists+ DNS API (uBO) 1.000 0.984 0.992
Our approach 0.991 0.997 0.994

Tracker EasyPrivacy list 0.866 0.777 0.819
Adguard �lter list 0.926 0.410 0.568

Blocklists + DNS API (uBO) 0.877 1.000 0.934
Our approach 0.970 0.914 0.941

3.5.5.2 Comparison with other approaches

To block CNAME cloaking-based tracking without DNS resolution, well-known
tracking blocklists such as the EasyPrivacy list and the AdGuard tracking �lter list
include the �rst-party subdomains which are fronts for CNAME cloaking. We thus
compare the request detection performance between our machine learning approach
and these well-known tracking blocklists in Table 3.9. We con�rm lower F1 scores of
tracker instances due to low recalls because of the lack of CNAME information for the
tracking blocklists.

Furthermore, we simulate the performance of uBlock Origin with DNS API by
applying CNAME resolution to the requests and then matching them with three
tracking blocklists (EasyPrivacy, Peter Lowe’s tracking, and uBlock Origin’s own
blocklists) as uBlock Origin does (blocklists + DNS API in the table). As expected,
blocklists with DNS API achieve the best performance. The reason for this high
performance is due to the absence of false negatives (i.e., recall is 1.0) which is not the
case for other methods, though the number of false positives is small (i.e., precision is
≈ 0.9). The performance of our ML approach without DNS API is here close to the best
performance thanks to the trained model.

3.5.5.3 Feature permutation importance

To discover discriminative features for the detection, we investigate the permutation
importance [111] to calculate the feature importance of selected classi�er for our
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dataset. Note that, larger values indicate higher importance.
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Figure 3.12: Permutation importance of the selected model for CNAME cloaking-related
tracking occurring. The box extends from the lower to upper quartile values of the
data, with a line at the median. The number of times a feature is randomly shu�ed is
n_repeats = 10.

Figure 3.12 shows the feature permutation importance of the model for detecting
the requests. The result reveals that the request URL length (len_url) has the highest
importance. We assume that almost all requests with a subdomain used for CNAME
cloaking-based tracking have a length di�erent than requests used for collecting site
content. Besides, the randomness of URL request (entropy_url) and the subdomain
pre�x length (len_pre�x_sub) are discriminative features for request detection. In
addition to that, the subdomain pre�x blocklist presence (pre�x_sub_blacklist) is not
e�ective to detect request-related to CNAME cloaking. This is due to the fact that
some publishers also use the same subdomain pre�x that is used for both CNAME
cloaking and other non-tracking resources.
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3.5.5.4 Concept drift analysis

Finally, we investigate the ability to detect requests related to CNAME cloaking-
based tracking in the latest dataset (2020) using a model trained on the old dataset
(2018). We use the 2018 dataset to train a model and test it on new sites collected
in 2020 (Table 3.7). We apply the method explained in § 3.5.4 to build a model. Our
result shows that the F1 score for CNAME cloaking-related requests detection is
0.703. Speci�cally, after two years, the F1 score decreases by 0.238. To explain this
degradation, we examine the 2018 and 2020 datasets. In 2018, we do not see many
random subdomain pre�xes (pre�x_sub_dic), while it is the case in 2020. These changes
can be plausible reasons for the degradation of our model. Besides that, with rapid
changes in web technology, tracking providers might also adjust their target site
and change the implementation methods to deploy CNAME cloaking-based tracking
Although the performance degradation is limited between 2018 and 2020, periodic
model retraining can alleviate this problem if more detection accuracy is required.

3.6 CNAMETrackingUncloaker - amachine learning-

based browser extension to protect end-user from

CNAME cloaking-based tracking

Through the comprehensive analysis above, we demonstrate the e�ectiveness of
our model to classify requests linked to CNAME cloaking-based tracking.

In this section, we propose CNAMETracking Uncloaker, a prototype of a Google
Chrome browser extension that combines the blocklisting technique with the supervised
machine learning for the automatic classi�cation and �ltering of CNAME cloaking-
based tracking. As far as we know, only Firefox allows uBlock Origin to block CNAME
cloaking by performing a DNS lookup of the hostname loading a resource. Other
browsers do not support such DNS resolution API [46] (see § 2.3.1). Our prototype
implementation thus circumvents the lack of DNS API in Chrome-based browsers.
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3.6.1 Design and implementation

The objective of our method is to monitor the HTTP requests and block a request
if it is related to CNAME cloaking-based tracking. To this end, we intercept all
subdomain-related requests in-�ight. In our extension, we track the HTTP requests and
apply a machine learning model and a speci�c subdomain blocklist to detect and block
CNAME cloaking-related requests. The novelty of our approach is a combination of
the well-known technique of �ltering with machine learning techniques to automatize
the overall process.

Firstly, we use sklearn-porter [112] to transpile trained ExtraTree estimators (see
§ 3.5.4.2) to JavaScript. To remove all unnecessary characters from JavaScript source
code without altering its functionality, we also minify this �le using UglifyJS [113].
We also build a feature extraction module on the extension, which contains all 12
features described in § 3.5.3. Secondly, we build a CNAME cloaking-based tracking
subdomain �lter list based-on our dataset on § 3.5.2. When this blocklist is updated on
the server-side, CNAMETracking Uncloaker obtains an updated blocklist for CNAME
cloaking-related subdomains. Next, we implement the interface for accessing the
user interface and changing the custom blocklist and allowlist. This interface allows
end-users to construct customized lists according to the user’s browsing habits; each
user can have his/her di�erent con�guration. The end-users can also de�ne an allowlist
to add exceptions to reduce the e�ect of machine learning-related false positives. In
the end, to intercept all HTTP requests by subdomain, we use the onBeforeRequest
event, which is sent before any TCP connection is made and can be used to cancel or
redirect requests. We then apply the feature extraction module and predict CNAME
cloaking using the model. In addition, we match any subdomain-related URL request
by CNAME cloaking-based tracking subdomain �lter list and the custom �lter lists of
the end-user. If any subdomain-related request is not in the allowlist but it predicted
as CNAME cloaking by model or by these blocklists, CNAMETracking Uncloaker
blocks this request and keeps this element from being loaded onto the page by using a
blocking event handler.
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3.6.2 Performance evaluation

In order to measure the performance overhead of our extension, we compare it to
the vanilla setting Chrome browser. We visit the top 50 websites according to Alexa’s
ranking (which do not contain CNAME cloaking-based tracking) and 50 websites linked
to CNAME cloaking-based tracking in two cases: with and without CNAMETracking
Uncloaker. During each visit, we record times of the DOMContentLoaded and Load page
events. Each test is repeated 10 times with clean browsing history to retrieve the
median duration. We use a commodity laptop computer with 8GB of RAM, Intel’s i7
CPU, Ubuntu 18.04 and the latest version of Google Chrome (version 84.0). We present
the performance overhead as the time di�erence between the median page load time
with and without our extension.

Figure 3.13 (a) and (b) compare the overhead for CNAMETracking Uncloaker and
the vanilla setting browser of the load events. We then plot two combinations: websites
with blocked requests (blue circles) and without blocked requests (orange rectangles) by
our extension. Our experiment shows that the overhead of CNAMETracking Uncloaker
is acceptable. For the median gain for these sites, CNAMETracking Uncloaker extension
introduces 0.08 seconds of median delay to the DOM loading. However, it is 0.408
seconds faster to the overall page loading, especially for websites that contain CNAME
cloaking-based tracking. In particular, there are a limited number of websites without
blocked requests (black circle) takes longer than the vanilla setting. Meanwhile, our
extension blocks some resources (white rectangles) that reduce the time load site, this
is why the overhead of CNAMETracking Uncloaker is lower than the other.

Interestingly, we observe that the vanilla setting is slower for three particular
websites than CNAMETracking Uncloaker : sohu.com (12.15 seconds), sina.com.cn (7.54
seconds), and clickavia.ru (7.36 seconds). The reason for this behavior can be explained
by the large number of HTTP requests that were blocked by our extension for these
three sites: sohu.com, sina.com.cn, and clickavia.ru (seven, seven, and one request(s),
respectively). Note that for sohu.com, these requests are not CNAME cloaking-based
tracking. However, when we inspect these individual URLs using EasyPrivacy list as a
reference, we can label these URLs as tracking-related. For sina.com.cn, one request
is linked to tracking, but six requests are unrelated to CNAME cloaking. We also
manually con�rm that this website still works correctly, and that users can use our
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Figure 3.13: Comparison of the performance overhead by CNAMETracking Uncloaker
and vanilla setting based on Alexa Top 50 websites and 50 websites containing CNAME
cloaking-based tracking on median delay to the DOMContentLoaded event and page
load overhead 10 times.
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interface to customize the �lter list (allowlist) to add an exception to our model.
In summary, CNAMETracking Uncloaker is able to �lter out CNAME cloaking-based

tracking from users’ requests without signi�cant performance degradation when
compared with the default setting on Chrome browser. Note that CNAMETracking
Uncloaker was only tested in our laboratory, we intend to do Beta testing of a group of
target users to evaluate product performance in the real world in future work.

3.7 Summary

In this chapter, we characterized, detected, and protected the end-user against
CNAME cloaking-based tracking on the web.

We conducted experiments to assess the occurrence and evolution of CNAME
cloaking-based tracking. The results show that 1,739 websites in the Alexa Top 300K
sites in January 2020 contain CNAME cloaking-based tracking. These websites are
spread across many countries and categories. We also characterized a longitudinal
analysis of CNAME cloaking-based tracking from 2016 to 2020. We found signi�cant
evidence that the top websites have injected more CNAME cloaking-based tracking in
the last four years. The current best countermeasure to defend CNAME cloaking-based
tracking, blocklist approach, is strongly depend on real-time name resolution. To
overcome this limitation, we proposed a machine learning approach to detect HTTP
requests containing CNAME cloaking-based tracking. Through the comprehensive
analysis, we demonstrate the e�ectiveness of our method. Meanwhile, the DNS API
being only available in Firefox browser, we developed a browser Chrome extension
CNAMETracking Uncloaker, exploiting this machine learning-based approach to
classify CNAME cloaking-based tracking. We performed an exhaustive evaluation
of performance and e�ectiveness of our software prototype showing that machine
learning-based techniques can be employed client-side as solutions into the browser to
protect end-users against CNAME cloaking-based tracking.

Dataset availability: We provide a list of CNAMEs and tracking providers using
CNAME cloaking-based tracking in our analysis at https://github.com/fukuda-lab/
cnamecloaking. The extension is publicly available at Chrome Store: [114]. The raw
crawled dataset will be also available from the authors on request.

https://github.com/fukuda-lab/cname_cloaking
https://github.com/fukuda-lab/cname_cloaking
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4
PII leakage-based tracking

4.1 Introduction

PII leakage-based tracking refers to when a user’s PII (i.e., email address, name,
address) leaks to third-party domains (di�erent from visited domains), to track user
activities.

There are some existing methods to detect a part of PII leakage resources. Some
common browsers focus on Referrer-Policy by removing the PII that can be leaked to
third parties via referer header [71, 72]. Furthermore, Easylist [73], EasyPrivacy [74],
and other �lter lists update their blocklists, which can reduce the number of PII leakage
to trackers and advertisers. However, this approach dramatically increases the size of
the blocklists, and these �lter lists need to be updated frequently which is tedious.
Besides that, the Brave browser blocks tracking and advertising resources content from
being loaded by default [75]. This browser however accounts for a small percentage of
the browser market share [61, 76].

This work focuses on PII leakage, presents a persistent web tracking technique
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based on this data transfer, and proposes a hybrid method to detect PII leakage
by combining heuristic and supervised machine learning approaches. The main
contributions of the paper are as follows. We �rst collect data on sign-up and sign-in
�ows completed like a typical user (§ 4.2). We then detect PII leakage to third-party
domains (including CNAME cloaking) through four distinct methods even when
that information is obfuscated (§ 4.3.1). Our results show that 42.3% of popular
shopping-related �rst-party services leak PII to third-party receivers, the most common
being Facebook (§ 4.3.2). We then conduct further experiments to investigate the
impact of location to PII leakage and con�rm that there are no signi�cant di�erences
compared to the usage of this phenomena in di�erent country as a new contribution.
Furthermore, we identify a tracking mechanism based on PII leakage that allows
tracking providers to persistently identify users through cross-site, cross-browser, and
cross-device tracking (§ 4.4.1). We then analyze the presence of PII leakage-based
tracking and demonstrate that 20 tracking providers leverage PII so as to be able to
tenaciously track user activities (§ 4.4.2). We also perform an extra experiment and
con�rm the Online Behavior Advertising occurring across multiple sites, browsers
and devices based-on this tracking technique (§ 4.4.3). In addition, we look at the
privacy policies of those 130 �rst parties to evaluate what disclosures are made to
users about sharing PII to third parties (§ 4.5). Finally, we evaluate browsers and
blocklists against leaked PII resources and con�rm that there is still room for PII
leakage countermeasures to improve (§ 4.6). Finally, we propose a hybrid method
exploiting heuristic and machine learning for the detection of PII leakage (§ 4.7).
Through the comprehensive analysis, we demonstrate the e�ectiveness of our method.

4.2 Data collection

4.2.1 Persona making

In order to build predictable PII-related strings, we �rst create a persona and its
associated information that will be �lled on websites’ sign-up forms. This account
persona contains the following information: username, name, phone, email address,
date of birth, gender, job title, and postal address. We consider any information input
by the user to be PII. We take inspiration from Refs. [65, 67, 115] to detect not only the
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plaintext form but also the encoding/hashing form of leaked PII. We pre-compute a
candidate set of tokens by applying all supported encodings, hashes, and checksums
for each PII. Note that the encoding or hashing can be applied multiple times. Here we
encode/hash each PII at most three times following previous work [67] to obtain a
set of PII strings. We thus consider two di�erent inputs that are used to build the
PII-related strings that are detected in the next steps:

1. Any plaintext PII persona information.

2. A set of encodings, hashes, and their combination based on PII. The full list of
supported hashes and encodings is given in Appendix § B.1.

4.2.2 Data acquisition

We �rst select websites that would be most appropriate for our work. We use the
Tranco popular site list, which improves upon the shortcomings of the existing popular
site lists: being unstable, having unreachable domain presence, and containing domains
that are easily altered by an adversary [116]. From that, we obtain 404 shopping sites
from the Tranco top 10,000 sites1. 95.0% of sites in this category contain authentication
�ows.

Next, to avoid the bias introduced by bots [117–120] and capture data precisely
even when security mechanisms (such as bot detection and multi-factor authentication)
are in place, we decide to collect our dataset by using a manual approach like that
of a natural user as opposed to automated control. To form the basis for further
investigation, we use the website’s default settings to acquire the baseline data. In
detail, we use a vanilla setting for Firefox 88 (Enhanced Tracking Protection was
turned o�) from an IP address located in Japan in May 2021. We always accept the
default cookie settings for pop-ups (if any), but refuse all other types of solicitations,
such as geolocation and noti�cations. We then browse the selected websites, �ll all
input �elds in with the created persona information, press the submit button. After
that, we open another browser and got the email con�rmation link/code to activate
the account successfully (if necessary), sign in with the created account, and reload

1We use the FortiGuard Web Filtering [95] dataset from May 2021 for the website category
classi�cation.
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the site with a logged account. We also click a link (usually to a speci�c product)
from the same domain to observe the event using leakage behavior on subpages
compared with the homepage. During these processes, we collect HTTP requests
(URLs, headers, and payload body - if any), HTTP responses (URLs and headers), and
cookies (both those set/sent and a copy of stored browser cookies). Overall, after
removing sites that were unreachable (22 sites), did not contain authentication �ows
(19 sites), and could not be signed up to due to the website’s policy (56 sites2), we
obtained successful authentication �ows on 307 shopping sites, includes 68 sites that
require email con�rmation and 43 sites that use bot detection. These sites can not be
crawled automatically even when e�ort has been made to match all complicated �elds
with the right information [68].

Regarding the ethical aspects of our research design and process, although we
completed the authentication �ows on target websites with a simulated persona, we
believe that our procedure did not have any impact on their website operations.

4.3 PII Leakage detection and analysis

4.3.1 PII leakage detection methods

First of all, we separate the generic Top-Level Domain (gTLD) and country-code
top-level domain (ccTLD) from the visited websites for all HTTP requests using the
Public Su�x List [85] to separate �rst-party and third-party resources. In addition, to
discover hidden third parties using CNAME cloaking (see chapter 3), we check CNAME
records for each subdomain of the visited sites. We then match these CNAME answer
sets with the CNAME cloaking blocklist by [121–123]. Finally, we combine these
CNAME cloaking and third-party resources into the third parties and identify the
following four methods that allow a �rst-party to send PII to a third-party.

Via referer header: A common method for PII leakage is based on the poorly coded
sign-up and sign-in forms that expose sensitive information in URLs. More precisely,
these forms submit user information to a �rst-party web server using the GET method.
For instance, if site.com has a sign-up form that uses the GET method to submit a user’s

2Forty-seven sites required phone veri�cation, six sites required special pieces of personal information
such as identity documents, and three sites blocked the creation of new accounts for global customers.
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tracker.net

Server of third-party tracker.net

process 
engine

GET tracker.net/script.js
Request Headers:
referer: http://site.com/signup?email=foo@mydom.com
Request Cookies: id=abc

First-party site.com
http://site.com/signup?email=foo@mydom.com

id:
foo@mydom.com

Cookie storage
id=abc

(a) Via referer header (as in [66–70])

tracker.net GET tracker.net/&email=foo@mydom.com
Request Headers:
referer: http://site.com/authenticationpage
Request Cookies: id=abc

http://site.com/authenticationpage

Cookie storage
id=abc

Server of third-party tracker.net

process 
engine

id:
foo@mydom.com

First-party site.com

(b) Via request URI (as in [66–70])

tracker.net
Request Headers:
referer: http://site.com/authenticationpage
Request Cookies: id=foo@mydom.com

http://site.com/authenticationpage

GET tracker.net/script.js

Cookie storage

Server of third-party tracker.net

process 
engine

id:
foo@mydom.comid=foo@mydom.com

First-party site.com

(c) Via cookie (as in [69])

tracker.net
Request Headers:
referer: http://site.com/authenticationpage
Request Cookies: id=abc
Payload Body: [foo@mydom.com]

http://site.com/authenticationpage

POST tracker.net/script.js

Cookie storage
id=abc

Server of third-party tracker.net

process 
engine

id:
foo@mydom.com

First-party site.com

(d) Via payload body (newly detected)

Figure 4.1: Four PII methods of leakage to third parties. This includes additional use of
CNAME cloaking that was not considered before. PII is displayed in red.
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email address, the user’s browser creates a request with the form parameters containing
the email address http://site.com/signup?&email=foo@mydom.com. In the case that
site.com includes an external third-party, tracker.net, in its authentication �ow, a request
is sent to this third party. Because the referer header is sent with any request for a remote
resource, this request will link to http://site.com/signup?&email=foo@mydom.com as
the referer header. The PII provided by the user on the sign-up/sign-in form is thus sent
to third-party domains (see Figure 4.1.a). We consider this method to be a form of
unintentional leakage as in [66].

Via request URI: A request sent to a server can contain together with a set of
parameters attached to the end of a URI, which structures additional information
like PII for a given URI. For instance, the third-party tracker.com requests an email
address and captures foo@mydom.com in the authentication �ow. This URI is sent to
tracker.com along with this information in the request URI (see Figure 4.1.b).

Via cookie: PII also can be leaked when third-party resources use PII to create
cookie values. For instance, when tracker.com creates a cookie id=foo@mydom.com, this
PII containing resource is sent to the third-party domain tracker.com (see Figure 4.1.c).

Via payload body: The last method involves PII being added to the payload body
of an HTTP request and sent to a third-party domain. For instance, tracker.com will
receive a request body from a �rst party with a payload that contains the parameter
email address foo@mydom.com (see Figure 4.1.d).

Finally, we look for speci�c substrings as plaintext, encoded, hashed values and
their combinations (§ 4.2.1), inside all third-party-related requests to detect any leaked
PII. We are aware that the hashed string is a one-way algorithm that is impossible to
convert into the original value. However, if the original email address appears in
available email address lists, we can indirectly identify the individual email from the
hashed string. So we still consider hashed email as PII throughout our study.

4.3.2 PII leakage analysis

We �rst focus on the PII leakage to third parties observed in the authentication
�ow of top shopping sites.

Overall, we detect the 130 �rst parties that leak PII among the 307 original
authentication �ows (through 1,522 requests that contain leaked PII). These �rst

http://site.com/signup?&email
http://site.com/signup?&email
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Figure 4.2: Top 15 third-party receiver domains involved in PII leakage included in 130
�rst-party senders from Tranco top shopping sites.

parties’ PII leaks are sent to 100 third parties. Among these �rst parties, 46.15% send
PII to at least three third-party domains, and the average number of third parties
receiving PII was 2.97 per �rst-party site. We also observe 16 third-party receivers as
the maximum from loccitane.com. We provide a breakdown of the top 15 third-party
domains that received PII from the 130 �rst-party senders in the Tranco top shopping
sites in Figure 4.2. We �nd that the domain facebook.com gets PII from 60.0% of the
�rst-party senders. Regarding domain usage, while Facebook, Criteo, Pinterest, and
Snapchat use a single domain to receive PII, Google and Adobe use multiple domains to
receive PII from �rst-party senders.

4.3.2.1 PII leakage method

We break down the PII leakage to third parties according to the four methods
in Table 4.1a. We observe seven accidental leakage cases in which three sites have
a sign-up form that uses the GET method to submit a user’s information data, and
as a result, they leak PII to third parties via referer header (see Figure 4.1.a). Also,
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Table 4.1: Breakdown of PII leakage to third parties. Percentages are given out of total
of 130 �rst-party senders and 100 third-party leak receivers.

(a) By leaked method.

Method #of Senders # of Receivers

Referer header 3/2.3% 7/7.0%
URI 118/90.8% 78/78.0%
Payload body 43/33.1% 17/17.0%
Cookie 5/3.8% 1/1.0%
Combined 27/20.8% 8/8.0%

(b) By encoding/hashing

Encoding/hashing #of Senders # of Receivers

Plaintext 42/32.3% 56/56.0%
BASE64 19/14.6% 20/20.0%
MD5 35/26.9% 24/24.0%
SHA1 9/6.9% 6/6.0%
SHA256 91/70.0% 30/30.0%
SHA256 of MD5 2/1.5% 1/1.0%
Combined 21/16.2% 14/14.0%

(c) By PII type.

PII type #of Senders # of Receivers

Email 116/89.2% 94/94.0%
Username 1/0.8% 1/1.0%
Email,username 3/2.3% 6/6.0%
Email,name 29/22.3% 12/12.0%

there are �ve cases in which �rst-party senders use PII to create a cookie value
that is automatically sent to the tracking provider Adobe via CNAME cloaking (see
Figure 4.1.d). We discover that 126 �rst-party senders intentionally leak user’s data to
third-party receivers across multiple leaked methods. In addition, we �nd that 17
third-party domains receive PII via the payload body from 43 �rst-party senders that
were not detected by observing the URL strings in previous work [67–70]. Furthermore,
27 �rst-party senders leak PII to 8 third parties by using combined methods (i.e., via
request URI and cookie, via request URI and payload body). We hypothesize that the
goal of this combination is to maximize the possibility of obtaining PII from �rst-party
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sites in the context of third-party cookie restrictions and ad blocker utilization for
privacy.

4.3.2.2 PII leakage by encoding/hashing

Next, we break down PII leakage by encoding/hashing to third parties in Table 4.1b.
We �rst check whether any PII is sent as plaintext directly to the third-party domains.
We �nd that 32.3% of the �rst-party senders directly send PII to 56% third-party
receivers without any encoding or hashing function. In addition, 83.1% of �rst parties
send PII as a hashed string to 49.0% of third-party domains. The most common one was
SHA256 (70.0%). We also �nd two sites that use SHA56 of the MD5 hash string to send
PII to the third-party domain criteo.com. In addition, we observed 21 �rst-party senders
that leaked PII to third-party receivers by combining multiple encoding/hashing forms
(i.e., plaintext and SHA256; BASE64, SHA1, and SHA256). PII leakage is much more
complicated than previously reported [67–70].

4.3.2.3 PII leakage type

Finally, we analyze the nature of the leaked PII in Table 4.1c. The most common
values that leaked were: email address (88.5%); username (0.8%); both email and
username (1.5%); and email and name (22.3%). These PIIs are su�cient for correlating
any user along with his or her browsing activity. Considering that third parties collect
large amounts of data for a user, these types of information are valuable for the tracking
ecosystem.

4.3.2.4 Email noti�cation

When we conducted our experiments, the test email account started to receive
email noti�cations from the visited sites. They mainly o�ered discounts or introduced
new products. In total, we received 2,172 emails in the inbox and 141 emails in the
spam folder. Notably, we have not yet received any emails belonging to any third-party
domains involved in the PII leakage that were included in 130 �rst-party senders. We
see that leaked PII is not used for third-party email marketing, but it could be used as
an identi�er to track user activity on the Internet.
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4.3.3 Impact of geolocation to PII leakage

We also conduct extra experiments to evaluate the impact of geolocation on PII
leakage occurring on websites.

To simulate users from di�erent countries, we used a Virtual Private Network
(VPN) provider with vantage points in di�erent countries, including the United States
and an EU country (Netherlands) where personal data is protected under the General
Data Protection Regulation (GDPR). We then collect data (§ 4.2.2) on the 130 �rst-party
sites that leak PII to third parties when we performed measurements from Japan.
Finally, we apply the same method (§ 4.3.1) to detect PII leakage among these websites
when crawled from di�erent countries.

We �nd that eight �rst-party senders are impacted by the website location when
sending PII to the third-party receiver google.co.jp. More speci�cally, this domain
changes to google.nl in the Netherlands, and it does not appear in the US. We also
observe that there is one site (slickdeals.net) on which we could not perform the sign-up
�ow in the Netherland because it does not support user account of EU/EEU citizens
due to GDPR regulations. These results demonstrate that there is no signi�cant e�ect
of geolocation on PII leakage.

4.4 Persistent web tracking based on PII leakage

Here, we discuss the case where some third parties use PII to generate and store a
unique persistent identi�er of the user along with his/her browsing history for tracking
purposes.

4.4.1 PII leakage-based tracking presumption

We �rst presume that PII can be a potential vector for persistent web tracking. A
typical example of an HTTP request for persistent web tracking based on PII leakage is
shown in Figure 4.3. The tracking provider tracker.net uses a PII identi�er parameter
(trackid) to capture information from �rst-party senders. After a user proceeds the
sign-in �ows on this site by submitting his/her information, a tracking script reads and
pushes the user’s email address foo@mydom.com as a value into the trackid parameter.
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PII as a value of trackid

PII Identifier parameter

https://www.tracker.net/tr/?ev=abc&sw=1440&sh=900&trackid=foo@mydom.com&...&rqm=GET

Figure 4.3: Example of HTTP tra�c for persistent web tracking based on PII leakage.
PII identi�er parameter is di�erent for each tracking provider, and PII value can be in
hashing/encoding form.

This request is sent to the server of the tracking provider tracker.net along with this
information. From there, the assumption is that tracker.net uses the trackid value
foo@mydom.com as an identi�er (ID) for user tracking. In case that a user uses this
ID to complete the authentication �ows in many sites, this method could be more
e�ective than the traditional cookie-based approach because it can be used to identify
user information on multiple sites, multiple browsers, and even multiple devices.

4.4.2 PII leakage-based web tracking cues

To con�rm such a possibility, we �rst group the 130 �rst-party senders involved in
the PII leakage together with the third-party receivers. Next, for each third-party
receiver, we look for a PII identi�er parameter (trackid) by checking the parameter name
that assigns PII information as a parameter value in the URI parameters. We then list
the PII identi�er parameters per tracking provider. Then, to make sure that PII leakage
is used for cross-site tracking, we focus on 34 third-party receivers involved in PII
leakage that get the same ID from more than one �rst-party sender. Finally, to indicate
the storage of a unique persistent identi�er behavior, we consider 20 third-party
receivers as tracking providers using PII leakage-based tracking when the ID appears
not only in the authentication �ows but also on the subpage of the �rst-party senders.
This is an indisputable tracking behavior because these tracking providers appear on
any subpages of the �rst-party senders along with the ID (PII), which can replace
the usage of third-party cookies for tracking. Note that our experimental evaluation
could have missed some tracking providers that appear only one time in the dataset
(58 third-party receivers). We intend to expand our dataset in future work by using
crowdsourced data collection to overcome this drawback.
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Table 4.2: Breakdown of third-party receiver domains for persistent tracking based on
PII leakage on popular shopping sites. All hashes are of full email address.

# Receivers # of Sender Leaked Method Encoding form trackid Parameter

1 facebook.com 72 URI /Payload body SHA256 ud�[em]/ud[em]
2 URI MD5 ud[em]

2 criteo.com 26 URI MD5 p0/p1
4 URI SHA256 p0
5 URI plaintext p0/p1
2 URI SHA256ofMD5 p0/p1

3 pinterest.com 25 URI SHA256 pd
8 URI MD5 pd

4 snapchat.com 18 URI/Payload body SHA256 u_hem
2 Payload body MD5 u_hem

5 cquotient.com 7 URI SHA256 emailId
6 bluecore.com 5 Payload body BASE64 data
7 klaviyo.com 4 URI BASE64 data
8 oraclein�nity.io 4 URI SHA256 email_hash/ora*
9 rlcdn.com 4 URI SHA1 s
10 adobe_cname 3 URI SHA256 v*
11 castle.io 2 URI plaintext up
12 custora.com 2 URI/cookie SHA1 uid/_custrack1_identi�ed*
13 dotomi.com 2 URI SHA256 dtm_email_hash
14 inside-graph.com 2 Payload body plaintext md
15 krxd.net 2 URI SHA256 _kua_email_sha256
16 pxf.io 2 Payload body SHA1 custemail
17 taboola.com 2 URI SHA256 e�p
18 thebrighttag.com 2 URI SHA256 _cb_bt_data
19 yahoo.com 2 URI SHA256 he
20 zendesk.com 2 URI BASE64 data

We show a breakdown of third-party receivers for persistent tracking based on PII
leakage in Table 4.2. First, we notice that all tracking providers consistently use a PII
type (email address) for tracking purposes. Obviously, the email address is an e�ective
identi�er that can reveal a user’s identity. Second, we con�rm that each tracking
provider has at least one speci�c PII identi�er parameter for multiple �rst-party
senders. Third, the leaked PII (email address) is hashed in six encoding/hashing forms,
mainly in SHA256. This raises a signi�cant privacy concern for users when this ID can
be used to share data among many tracking providers. Finally, we observed that some
third parties received leaked PII in di�erent encoding/hashing forms. In summary, PII
can be used by third parties for user tracking not only on a single site but also for
multiple sites, browsers, and devices when the user performs sign-up/sign-in in many
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Figure 4.4: High-level description of the methodology to measure the e�ectiveness of
cross-sites, cross-browser, and cross-device tracking using leaked PII by exploring
Online Behavioral Advertising.

websites by the same PII.

4.4.3 PII leaked-based tracking con�rmation

In this section, we perform experiments to evaluate the e�ectiveness of cross-
sites, cross-browser, and cross-device tracking using leaked PII by exploring Online
Behavioral Advertising (see Figure 4.4). Here, we design a methodology similar
to [11–13] but modify it to take into account PII leakage occurring during manual
signin.

4.4.3.1 Select training pages and control page

We �rst identify the input for our experiment.
Training Pages selection: We �rst select a set of shopping websites that leak PII to

one of 20 third parties from Table 4.2 as training pages for a corresponding persona. In
order to induce advertisers to associate a user with a speci�c interest, we must use
enough distinct training pages. For this reason, we only consider the cases when the
third-party receivers received PII from at least four �rst-party senders. By doing so, we
keep nine groups of shopping websites where each group contain �rst-party senders
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that leak PII to one of the following third-party receivers: facebook.com, criteo.com,
pinterest.com, snapchat.com, cquotient.com, bluecore.com, klaviyo.com, oraclein�nity.io,
and rlcdn.com.

Control Pages selection: We need a popular page that provides advertising space.
Also, it must contain the authentication �ows that leak PII to at least one of the nine
third-party receivers above. We �rst select the popular news and media sites from
Tranco Top 1000 sites and apply the same method (see § 4.3.1) to detect PII leakage to
these third parties. We �nd that newyorker.com meets our requirement; it leaks PII to
rlcdn.com, which belongs to Liveramp corporation.

4.4.3.2 Experiment Setup

Since we focus on the possibility of PII leakage-based tracking, we assume that the
emulated user does not visit control pages and training pages in the same devices,
browsers, and even IP addresses. Thus, there is no common identi�er belonging to
other tracking techniques shared between them [41, 124]. Here, we want to ensure that
OBA is only triggered by PII leakage that occurs in the authentication �ows of both the
single control page and training pages.

We use two hosts with di�erent IP addresses in Japan during our experiment. We
�rst use the vanilla setting Firefox browser on a Ubuntu 20.10 desktop (PC1) to visit the
control page newyorker.com 30 times and record all displayed advertisements without
signing in. We call these ads as random ads or RA and keep them for a comparison
later on. Secondly, we perform the authentication �ows on the control page.

Next, using this email address, we complete authentication �ows on the pool
of training sites that leak PII to rlcdn.com in the vanilla setting Safari browser on a
MacOS 12.0.1 desktop (PC2). We then visit the training pages (both the homepage and
7 articles on each site that are related to fashion) so that we allow the third-party
domain rlcdn.com present in those pages to classify our persona with a very speci�c
interest according to our deliberately narrow browsing behavior. From there, we visit a
control page, newyorker.com, which allow us to collect the advertisements shown to
our persona, which we call potential retargeted ads PA to later study whether they are
driven by OBA. According to Liveramp documentation [125], we also set a waiting time
to one day between the training phase and control phase for injecting a clear signal
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over noise, from the training page to the ad ecosystem. Finally, we get the intersection,
RA∩ PA, to �lter out the same ads between the random ads and the potential retargeted
ads; they are clearly not related to PII leakage-based tracking. We manually analyze the
remaining ads in order to measure the ad topic similarity when ads are collected from
distinct devices/browsers on websites that leak PII to the same third-party receivers.
The created persona exhibits an interest to fashion shopping pages. We thus identify
OBA occurrence as the presence of fashion-related ads that target the created persona.

4.4.3.3 Results

Overall, we collect 78 unique random ads RA and 82 potential retargeted ads PA
on control pages newyorker.com. By comparing the ad landing page URL, which is
the URL of the webpage accessed when one clicks on an ad, we �rst exclude 52.4%
potential retargeted ads that are similar to random ads in our measurement. We then
con�rm that the 74.4% of remaining ads in the control page are related to fashion.
Whereas, only 31.4% of random ads not inside the intersection RA ∩ PA are related to
fashion. Thus, we observed the OBA due to PII leakage cross-site, cross-browser, and
cross-device tracking. These advertisements belong to doubleclick.net and criteo.net.
Obviously, the tracking providers and advertisers are integrated to maximize the
bene�t of user interests for target advertisements.

4.5 Transparency

In this section, we look at the privacy policies of the 130 �rst-party sites to evaluate
their disclosure regarding PII sharing to third parties.

First, the 130 �rst-party sites that leak PII to third parties obtain user consent in
the authentication �ow as a mandatory requirement. However, they all give users a
form to sign in order to indicate agreement without showing them the policy. As a
result, most end-users skip the policy altogether [126]. This is a type of dark pattern that
manipulates the user to agree to a privacy policy without user awareness. On the other
hand, as shown in Table 4.3, we observe that all of the sites disclose that they collect
personal information from users, and 111 sites state that they share or express degrees
of the possibility of sharing personal information to third-party. However, only nine
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Table 4.3: Privacy policy disclosures of 130 �rst-party senders that leak PII to third
parties.

Disclosure Number/percentage

Disclose PII sharing Not speci�c 102/78.5%
Speci�c 9/6.9%

No description of PII sharing 15/11.5%
Explicitly disclose PII NOT shared 4/3.1%

Total 130/100%

sites provide a list of third parties that receive this information. When provided, third
party receiver lists are correct. Finally, some policies are very ambiguous; they do not
mention PII sharing or even state that PII is used. In particular, 15 sites do not even
mention PII sharing, and four sites declare that they do not share users’ personal
information with third parties for their marketing purposes.

4.6 In-browser protection techniques e�ective against

PII leakage?

4.6.1 Evaluating browser countermeasures

Some browsers focus on security and privacy by blocking trackers. Brave provides
a Shields feature that blocks third-party cookies, third-party storage, and blocks or
replaces requests for tracking-related JavaScript. Safari has an Intelligent Tracking
Prevention (ITP) feature that blocks third-party cookies, and partitions third-party
storage by default. Also, Firefox restricts third-party cookies and storage for known
trackers by default by introducing Enhanced Tracking Protection (ETP). We evaluate
the ability of these browsers (vanilla/bare setting) to block PII leakage. We choose the
following popular browsers [61]: Chrome 93 [103], Opera 79.0 [104], Safari 14.03,
Firefox 92.0 [47], and Brave V1.29.81 [48]. Note that, to keep the consistency with
the �rst half of this dissertation about browser countermeasures evaluation against
CNAME cloaking, we can miss some browsers in the browser market share, especially
the Edge browser that has been steadily growing its user base in recent times [61, 76].



4.6 In-browser protection techniques e�ective against PII leakage? 69

We then obtain data (see § 4.2.2) on the 130 �rst-party sites that leak PII to third parties.
Finally, we apply the same method (see § 4.3.1) to detect PII leakage among these
pro�les.

Overall, we con�rm that only the Brave browser has an impact on PII leakage
detection. This browser accounts for a small percentage of the browser market
share [61, 76]. The Safari browsers reduce three �rst-party senders and seven third-
party receivers that receive PII via referer header method [72]. That is due to impact
of the origin policy which cuts o� referer header for all third-party requests in this
browser. The remaining browsers do not solve this problem at all. For the Brave
browser, the number of �rst parties leaking PII is reduced by 93.1%, and the number
of third-party receivers is reduced by 92%. Brave misses eight third-party domains
involved in PII leakage3. Also, we observe that there is one site on which we could
not complete the sign-up �ow by using Brave due to Shields blocking CAPTCHA
veri�cation (nykaa.com). These results show that this feature of Brave is still not able
to completely block PII leakage and that there is thus room to improve protection.

4.6.2 Evaluating Blocklist-based countermeasures

Existing blocklists target advertisement and tracking resources and are utilized by
browser extensions that intend to protect user privacy online. These lists may thus be
able to block PII leakage resources provided by third parties. Here we assess their
e�ciency as countermeasures. We consider Easylist [73] and EasyPrivacy list [74].
EasyList is a blocklist that removes ads from web pages and it is used by popular
browser plugins. EasyPrivacy is an optional supplementary blocklist that removes
trackers from websites. We use Adblockparser [101] to evaluate the e�ectiveness of
these two major blocklists by matching URLs against them. To determine if a request
would have been blocked by an extension utilizing these lists, we directly match the
block list rules quoted above with 1,522 HTTP requests that contained leaked PII and
all requests in their request initiator chains. We inspect individual URLs containing
leaked PII using these blocklists from June 2021.

The results of this experiment are shown in Table 4.4. Firstly, the performance of

3List of eight third-party receivers missed by Brave version V1.29.81: aliyun.com, cartsync.io,
gravatar.com, herokuapp.com, intercom.io, lmcdn.ru okta-emea.com, zendesk.com
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Table 4.4: Detection performance of common browsers and well-known �lters.

Leaked method Browser Extension
Chrome Opera Firefox Safari Brave EasyList EasyPrivacy Combined

Sender Referer header 0/0% 0/0% 0/0% 3/100% 3/100% 0/0% 2/66.7% 2/66.7%
URI 0/0% 0/0% 0/0% 0/0% 110/93.2% 1/0.8% 89/75.4% 97/82.2%

Payload body 0/0% 0/0% 0/0% 0/0% 42/97.7% 0/0% 38/88.4% 38/88.4%
Cookie 0/0% 0/0% 0/0% 0/0% 5/100% 0/0% 5/100.0% 5/100.0%

Combined 0/0% 0/0% 0/0% 0/0% 26/96.3% 0/0% 24/88.9% 24/88.9%
Total 0/0% 0/0% 0/0% 1/0.8% 121/93.1% 1/0.8% 95/73.1% 102/78.5%

Receivers Referer header 0/0% 0/0% 0/0.0% 7/100.0% 7/100% 1/14.3% 6/85.7% 6/85.7%
URI 0/0% 0/0% 0/0% 0/0% 72/92.3% 7/9.0% 51/65.4% 58/74.4%

Payload body 0/0% 0/0% 0/0% 0/0% 16/94.1% 0/0% 12/70.6% 12/70.6%
Cookie 0/0% 0/0% 0/0% 0/0% 1/100.0% 0/0% 1/100.0% 1/100.0%

Combined 0/0% 0/0% 0/0% 0/0% 7/87.5% 0/0% 6/75.0% 6/75.0%
Total 0/0% 0/0% 0/0.0% 4/4.0% 92/92.0% 8/8% 65/65.0% 72/72.0%

the combined blocklist varies widely depending on the PII leakage method. It is the
most e�ective against the leakage via cookie. It blocks all senders and receivers of this
data leak method. Secondly, the EasyList blocks only 8.0% of PII leakage, and it even
seems to almost not impact �rst-party senders. These are not surprising results because
this list is used for ad-blocking protection. Finally, 78.5% (resp. 72.0%) of �rst-party
(resp. third-party) senders (receivers) could be blocked when using both EasyList and
EasyPrivacy. Considering PII leakage-based tracking (see Table 4.2), we observe that
these blocklists block almost all resources belonging to these third-party domains.
However, we also observe that there are still three missed third-party domains that
received leaked PII: custora.com, taboola.com, and zendesk.com. In summary, even
though the blocklist-based countermeasures can only partially deal with PII leakage,
they can help reduce the number of leaked PII resources.

4.7 A hybrid approach for detecting PII leakage

In this section, we describe our hybrid method by combining heuristic and machine
learning approaches to detect PII leakage. We �rst emphasize that we found six
�rst-party senders that unintentionally send PII to third-party services via cookie
by using CNAME cloaking, but many techniques have been developed to protect
end-users from this tracking technique [62, 121, 122, 127], so we do not consider these
six CNAME cloaking resource in our approach. Also, we discard 12 cases that leak PII
via referer header and eight cases that leak PII via cookies because they can be easy
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Figure 4.5: Overview of hybrid method for detecting PII leakage.

to modify and block in a browser extension. Figure 4.5 shows an overview of our
method consisting of two modules and an evaluation step to detect 1500 remaining
requests-related PII leakage. Here are the next three steps and associated sections:

1. Heuristic approach building: Design a practical method to detect PII leakage in
plaintext and base64 form (§ 4.7.1).

2. Machine learning approach building: Propose a supervised machine learning-
based method to detect PII leakage in hashing form. (§ 4.7.2).

3. Evaluation: Evaluate and compare the performance of our method with other
methods (§ 4.7.3).

4.7.1 A heuristic approach for detecting PII leakage in base64
and plaintext form

In this section, we present our heuristic approach for detecting PII leakage. Firstly,
for each request related to PII leakage, we extract all sent parameters and their values,
including parameters from the query string and payload body. We then decode base64
form from this piece of information.

Similar to the signup �ow of web development, we apply email validation to verify
if an email address is valid. Also, to make sure to not miss the URL-encoded format (or
double URL-encoded format), we search the email provider domains from our dataset.
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4.7.2 A machine learning approach for detecting PII leakage in
hashing form

4.7.2.1 Data preparation

We rely on the third-party resources that belong to 304 shopping sites from Tranco
Top 10K sites where PII leakage was previously collected § 4.2.2. The details of the
dataset are listed in Table 4.5.

Table 4.5: Summary of dataset.

Class Number Percentage

PII leakage requests 1,086 1.85%
Non-PII leakage requests 80,481 98.15%

Total requests 81,567 100%

4.7.2.2 Feature extraction

We experimentally extract the features related to request linked to PII leakage. The
features used for the classi�cation are enumerated as below.

• has_data: The feature distinguishes the request URL containing the payload
body.

• method: The desired action to be performed for a given request. We hypothesize
that the GET and POST methods are usually used for requests linked to PII
leakage.

• unum: The number of numbers appearing in an URL/payload data (if have). We
hypothesize that requests linked to PII leakage contain a number of numbers by
the hashing function.

• qnum: Number of the query �eld appearing in an URL/ payload data (if have).
We hypothesize that requests linked to PII leakage contain a number of numbers
by the hashing function.
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• anum: Number of the key-value pairs appearing in an URL and payload data (if
have). We hypothesize that requests linked to PII leakage contain a number of
numbers by the hashing function.

• url_len, data_len: The length of request URL and payload data. We hypothesize
that requests linked to PII leakage contain a number of numbers by the hashing
function.

• url_entropy, data_entropy: The metric entropy of URL/payload data. We hypothe-
size that there is a signi�cant di�erence in metric entropy among requests linked
to PII leakage and others.

• qhash: True if a hash length appears in a key value of an URL/payload data,
including 32 characters (MD5), 40 characters (SHA1), and 64 characters (SHA256).
We hypothesize that requests linked to PII leakage contain a number of numbers
by the hashing function.

4.7.2.3 Modeling and preliminary results

Using holdout validation method, we �rst split the dataset (Table 4.5) into testing
data and training data. The training data is used to build the model, while the percentage
of the data held over for testing is 20%, which is used to evaluate our model and
is combined with the results from § 4.7.1 to evaluate this hybrid approach in the
evaluation phase. Next, we describe how to build a classi�cation model to detect PII
leakage using training data (80% of the dataset).

Model nested cross-validation: To perform hyperparameter optimization and model
selection, while overcoming the problem of training dataset over�tting and the
unbalanced nature of our dataset, we perform nested cross-validation using ADASYN
algorithm [110].

We �rst use an outer 10-folds cross-validation loop to randomly split the training
dataset into 10 smaller sets (folds) without replacement, where nine folds are used for
the model training and the remaining one fold is for validating. We also use an inner
loop to optimize the hyper-parameters of each model for each training dataset made of
nine outer-folds. Note that, to evaluate the cross-validation with the real data, we only
conduct over-sampling on the minority class by applying ADASYN algorithm in the
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Figure 4.6: Precision, recall, and F1 score for the 5 selected classi�cation algorithms
using 10-fold strati�ed nested cross-validation in the dataset regarding the detection of
request linked to CNAME cloaking-based tracking. The mean and standard deviation
are computed on the 10 folds of the nested cross-validation.

training folds and not in the validation folds. We perform a grid search optimization
for this classi�cation regarding the F1 score. After obtaining 10 performance estimates
by repeating this procedure ten times, we take their average as the �nal performance
estimate. We then compare �ve popular classi�cation algorithms: Gradient Boosting,
Decision Tree, AdaBoost, Random forest and Extra Tree; and evaluate their precision,
recall, and F1 score using the above strati�ed nested cross-validation procedure on the
training data4.

Selection of best algorithms and best parameters: We use the precision, recall, and F1
score for evaluating the performance of the classi�ers. Larger values of the score (≈ 1.0)
indicate better performance, and lower values (≈ 0) correspond to worse performance.
Figure 4.6 shows the precision, recall, and F1 scores for the �ve selected algorithms

4A grid of parameter settings for each algorithm is given in Appendix Table B.1
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Table 4.6: Best parameters of selected algorithm (Extra Trees) from the training phase
regarding F1 score.

Algorithm Parameter Value

Extra Trees criterion gini
max_features 10
min_samples_split 2
min_samples_leaf 1
bootstrap False

using nested 10-fold strati�ed cross-validation in the dataset for detecting PII leakage.
In terms of precision and F1 score, the most e�ective classi�cation algorithm is Extra
Trees, while Gradient boosting classi�er show the best overall recall score for this
dataset. While a high recall means that a model’s ability to �nd many PII leaks, a high
precision ensures that detected leaks are indeed leaks to avoid disrupting website
functionality (see § 4.6.1). Considering the fact that we want to minimize unnecessary
website functionality loss, we decide to select the algorithm that obtains the best
precision and acceptable recall to keep the website working properly. Therefore, we
select the Extra Trees classi�er and its set of best parameters (shown in Table 4.6) to
train our model with oversampled training data.

4.7.3 Evaluation

4.7.3.1 The performance of the hybrid approach

The results obtained for requests linked to PII leakage detection are shown in
Table 3.9, which combines the result of heuristic and machine learning approaches5.
We �rst show that our hybrid method detects requests related to PII leakage e�ectively.
We achieve 0.911 of F1 score for PII leakage requests detection. We also obtain high
precision and recall, which reduce the functional resources blocked by false positive,
but still detect PII leakage resources with less false negative.

5We detected all 414 requests link to PII leakage in the base64 and plaintext form. For hashing form,
the performance of machine learning approach is given in Table B.2, Appendix § B.2.
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Table 4.7: A comparison of detection performance.

Method Precision Recall F1 score

EasyPrivacy list 0.051 0.752 0.095
Easy list 0.027 0.142 0.046
All (combined) 0.047 0.821 0.089
Brave 0.055 0.951 0.104
Our approach 0.873 0.953 0.911

4.7.3.2 Comparison with other approaches

To block PII leakage, existing well-known blocking lists, such as Easylist [73]
and EasyPrivacy list [74] include the advertisement and tracking resources into their
�lter lists. We thus compare the request detection performance between our hybrid
approach and these well-known tracking �lter lists in Table 4.7. We con�rm that
lower F1 scores of tracker instances are due to low precision. That is because the
tracking �lter lists are not focusing on PII leakage but actually target advertisements
and tracking resources. We thus argue that one should focus on the recall score to
evaluate these techniques’ ability to �nd PII leakage-related resources. As expected,
our approach still achieves the best performance in terms of detecting PII leakage in
general.

Furthermore, when comparing our hybrid method with the Brave browser, which
achieves the best performance in browsers comparison (see § 4.6.1), we observe that
the performance of our method is slightly better than Brave in terms of recall. Whereas
intercept and monitoring the HTTP requests is not di�cult, our countermeasures can
easily integrate into browsers and extensions (see § 3.6).

4.8 Summary

In this chapter, we quanti�ed the leakage of PII from the authentication �ows in
the Tranco top shopping sites and revealed a tracking technique that relies on this
authentication. We showed that the PII leakage is more intricate than previously
thought. In addition, we conducted experiments to assess the possibility of using leaked
PII for persistent web tracking and evaluated this tracking technique in our dataset.
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We pointed out the usage of leaked PII for cross-site, cross-browser, and cross-device
tracking that has been deployed to personalize and target Online Behavioral Advertising.
We also evaluated the ability of common browsers and well-known �lter lists to detect
PII leakage. Finally, we proposed a hybrid approach for detecting and thus protecting
end-users privacy on the Internet.

Dataset availability: The lists of PII leakage URLs, �rst-party senders, and third-
party receivers for popular shopping sites from the Tranco Top 10,000 sites (May 2021)
are available at https://github.com/fukuda-lab/PIIleakage.

https://github.com/fukuda-lab/PII_leakage
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5
Discussion

This dissertation identi�ed, detected, characterized two �rst-party cooperation-
based third-party web tracking techniques, including CNAME cloaking-based tracking
and PII leakage-based tracking. We observed that third-party web tracking is more
sophisticated and pervasive than ever, and more advanced tracking techniques have
been deployed. Further �ndings showed that the current protection techniques are
ine�ective against these tracking techniques. By applying heuristic and machine
learning, our approach outperformed well-known tracking blocklists to protect
end-user against CNAME cloaking-based tracking and PII leakage-based tracking.

5.1 Practical implications

This study provides several practical implications to researchers, browser vendors,
website owners, and Internet users.

Firstly, we provided several contributions towards the ambitious goal of improving
transparency of the web tracking ecosystem. After our original work, several studies
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provided additional contribution regarding CNAME cloaking [128–130]. Aliyeva
and Egele [128] and Ren et al. [129] focused on the security aspect by analyzing the
impact of CNAME cloaking on browser cookie policies, which may transmit sensitive
cookies to third parties. Furthermore, Dimova et al. [130] performed a large-scale
longitudinal evaluation of CNAME cloaking-based tracking using the HAR dataset,
and detected �ve tracking providers using a three-pronged approach and eight trackers
from the CNAME cloaking blocklist by NextDNS [131]. Besides the security analysis,
they presented results consistent with ours. They also found that the number of sites
containing CNAME cloaking is gradually increasing over time. We thus argue that
our initial contributions already have an impact on the research community. The
research discoveries presented in this dissertation about CNAME cloaking have also
led to a number of privacy improvements in web browsers and web standards, such as
lowering the duration of cookies set in the HTTP response created through JavaScript
to defend with CNAME cloaking by Safari [132].

Secondly, our approach for defending against third-party web tracking techniques
can easily integrate into browsers and extensions, which make them become potential
solutions to improve user privacy in the future.

Finally, we believe that this work helps to shed light on multiple tracking practices
and bring more transparency to the web. Regarding end-users, our work will be
helpful to raise awareness about online privacy and educate individuals on personal
information protection [133]. For the online privacy research community, our work will
open new research directions about privacy measurement and protection in the context
of the generalization of countermeasures against third-party web tracking [134].

5.2 Recommendations

The privacy threats on the web are continuously evolving and presenting new
challenges to privacy-enhancing tools. In this section, we provide recommendations
to regulators, browser vendors, researchers, and end-users on how to improve
transparency on the web.

Recommendation for regulator: As shown in our results, third-party web tracking
is much more complicated and ambiguous than it is often regarded. Therefore, the
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e-privacy regulations, which are a baseline to reinforce trust and security in the digital
world, should be improved and extended. Regarding the processing of personal data, it
will be reasonable when the data subject has given consent, which should be clearly
and freely communicated, to the processing of his/her personal data for one or more
speci�c purposes. Also, data processing must be done in a fair, and transparent manner
by keeping personal data accurate, up-to-date, and secure. Whereas General Data
Protection Regulation (GDPR) is the toughest privacy and security law in the world, it
thus protects user privacy on the Internet for at least the European Union (EU) citizens.
It would be helpful to increase user awareness and government engagement about
processing personal data. Understanding about e-privacy of countries outside the EU,
creating e�ective user surveys and building standard regulations to make a healthier
internet will be necessary and e�ective work for regulators around the world.

Recommendations for browser vendors: Browser vendors are starting to take an
active role in mitigating web tracking, and have been responsive to measurement
results. We have seen sweeping privacy reform through built-in privacy protection
features such as Firefox [47], Brave [48], and Tor Browser [49]. Chrome browser,
which continues to maintain its market dominance, has noti�ed that it will phase out
third-party cookies in 2023. However, Google also introduces Manifest V3 [135] that
will restrict the capabilities of web extensions, especially those that are designed to
monitor, modify, and compute alongside the conversation between user browser and
visiting websites. Obviously, with the substantial economic bene�ts from tracing user
activities, there is a wide variety of viewpoints about user privacy among browser
vendors. Given the current state of privacy concerns, we are hopeful that browser
vendors will choose to stand on the side of protecting users. Besides, according
to the detection performance of our machine learning approach against �rst-party
cooperation-based third-party tracking, we believe that browser vendors can consider
applying this approach to improve their in-browser privacy features in the future.

Recommendation for researchers: Research can reveal privacy risks and their
exploitation of web tracking techniques on the Internet. Whereas web privacy
measurement has played a key role in restricting online privacy incursions [18], the
research e�orts involved in technological and legal protection of user privacy require
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more exploration. Considering that our measurement procedure can be generalized to
detect and characterize third-party tracking techniques, researchers can apply our
procedure to provide a deeper understanding about the web tracking mechanisms. We
believe that we should work together to solve the privacy issues for a healthy internet.

Recommendation for user: There are massive tracking providers that collect user
information on the Internet for various purposes. In this context, one of the most
important initiatives is raising user awareness about the importance of their privacy.
Although there is an ongoing debate about if individuals should be responsible for their
data protection [136], the users should take an active role by educating themselves
in protecting their online privacy. For instance, the users can use the anti-tracking
browsers and extensions to protect their privacy as their bene�ts are widely known in
security-sensitive sectors [137].

5.3 Limitations

Although we have expanded a great deal of e�ort in our study, there are still some
drawbacks.

For CNAME cloaking-based tracking measurement, our CNAME tracking �lter
list in blocklist-based detection approach may be incomplete. We rely on the Easy
Privacy list and Adguard Tracking �lter list that are well-known and widely-used over
the years, both by end-users and as ground-truth in academic works [67, 138, 139].
However, if the tracking providers use new domains that do not belong to these �lter
lists, we might miss some instances. Comparing with the lists of trackers that are often
disguised using CNAME that publish by Adguard [127] and NextDNS [131], we observe
that we dismissed four tracking providers: MO Internet Group, GENIEE, TraceDock,
and Lead Forensics. However, these tracking providers did not appear in our dataset.
Also, we observed some unstable crawling results even in our three crawls per site
for in-browser protection techniques comparison. We omitted un�nished crawling
results due to timeout, but still there is a possibility to miss CNAME cloaking resources
because of the packet loss or the rapid change of web content. Finally,our dataset was
crawled from a single country (Japan or United States), so there is a possibility of
geographical di�erences. For PII leakage-based tracking measurement, our de�nition



82 Chapter 5. Discussion

of a third-party receiver might introduce some false positives because some websites
host content from multiple domains. It however does not have a signi�cant impact on
our measurement. Also, aiming at avoiding the bias introduced by bots [117–120] and
capturing data precisely even when security mechanisms are in place, we collected our
dataset using a manual approach like a natural user as opposed to automated control.
It is a good approach but hardly a scalable one. We intend to use crowdsourcing to
overcome this limitation in the future.

In addition, our machine learning framework that applies for both CNAME cloaking
detection and PII hashing leakage detection requires duplicating the initial training data
processes but with a newer set of crawled data inputs. Although our countermeasures
can easily integrate into browsers and extensions, this data collection process is
time-consuming during deployment phase. At the same time, the proposed method
complements existing techniques for �rst-party cooperation-based third-party web
tracking detection and it can help researchers, browser extensions developers, and
blacklist maintainers to build highly e�ective systems against these tracking techniques.
Once tracking providers know the existence of the proposed detection methodology,
they could attempt to evade it. In future work, we intend to improve our detection
performance.



83

6
Conclusion

This chapter concludes the study by summarizing the key research �ndings in
relation to the research aims and questions and discussing the value and contribution
thereof. It will also propose opportunities for future research.

6.1 Thesis contributions

In this dissertation, we conducted experiments to assess the occurrence of �rst-party
cooperation-based third-party web tracking, which have not yet been investigated.
They include CNAME cloaking-based tracking and PII leakage-based tracking. We
investigated their tracking mechanism and distinguished their characteristics which
brings more transparency to the web. We also evaluated the ability of common
browsers and well-known blocklists to detect these techniques. Finally, we developed
the countermeasures for detecting these tracking mechanisms and thus protecting
end-users privacy on the Internet.
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6.2 Future work

In the following, we identify a number of possible directions for future work to
improve transparency on the web.

1. Discovering unknown third-party web tracking techniques by automated
detection of Online Behavioral Advertising (OBA): There are potentially many
currently unknown techniques that are unable to detect on the HTTP client-side
measurement. Also, this client-side approach is insu�cient to detect server-side
information �ows between Tracking/Advertising networks. Apart from that, the
main functionality of web tracking is to provide targeted advertisements, but
this strategy misses the actual power of web tracking, especially, the di�erent
impact of stateful and stateless tracking mechanisms. OBA is able to reveal
information �ows between ad exchanges by leveraging re-targeted ads [11–13],
which can tackle these problems. However, OBA measurement currently requires
human actions, which is di�cult and time-consuming to perform as a large-
scale measurement. For this purpose, developing an open-source tool for OBA
measurement will greatly improve privacy-related transparency to users.

2. Detecting tracking resources using machine learning: It is necessary to investigate
techniques that can discern the intent of tracking, including stateful and stateless
tracking, allowing countermeasures to be applied without causing website
breakage. Using web measurement and machine learning to automatically detect
and classify web tracking resources, is a potential solution that greatly improves
the e�ectiveness of browser privacy tools to minimize the functional blocking on
a website.

3. Building an auto-login framework for web privacy measurement: Authentications
on a website are becoming more common. The privacy measurements could
result unrealistic, with the crawler observing possibly very di�erent content
than what a user would get after logging into a website. However, to the best of
our knowledge, there exists no practical method for signing up to a website
automatically. To get an in-depth understanding of the privacy landscape, It
would be interesting to develop an auto-login tool for evaluating and measuring
web privacy at a large scale before and after the authentication process.
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CNAME cloaking-based tracking

appendices

As an alternative dataset, we also analyze the HAR (HTTP Archive) dataset [84]
from 2016 Oct to 2020 Jan with the historic DNS data. This dataset was collected by
test servers located in the US. They do not fully cover the Alexa list, so we only check
the crawled sites that appeared in the Alexa list. Thus, one limitation of this data is
that we cannot normalize the results (the number of analyzed sites are di�erent in
datasets). The details are shown in Table A.1.
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Table A.1: Longitudinal HTTP Archive (HAR) datasets.

2016 Oct 2017 Oct 2018 Oct 2019 Oct 2020 Jan

Alexa top sites 100K 100K 100K 100K 300K
Matched HAR sites 95,532 74,993 54,847 74,381 207,892
CNAME cloaking sites 1,005 1,122 1,012 1,025 1,584
Overlap sites 20,241 20,241 20,241 20,241 20,241
CNAME cloaking sites 537 603 681 699 795
Historical DNS coverage 68% 75% 90% 85% 85%

At a glance, the number of websites containing CNAME cloaking-based tracking is
slightly stable in the Alexa top sites. However, we again conjecture that the number
of CNAME cloaking sites increases over time in the overlap sites (20,241 sites). In
summary, although the measurement environments a�ect detailed statistics, we
con�rm that two datasets (our dataset and HAR dataset) consistently demonstrate
CNAME cloaking-based tracking occurrence.
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B.1 Supported hash functions and encodings for leak

detection

Supported hashes, ecodings, and checksum: base16, base32, base32hex, base58,
base64, gz, bzip2, de�ate; and md2, md4, md5, sha1, sha224, sha256, sha384, sha512,
crc16, crc32, sha3_224, sh3_256, sh3_384, sh3_512, ripemd_128, ripemd_169, ripemd_256,
ripemd_320, whirlpool, rot13, snefru128, snefru256, adler32, blake2s, blake2b.

B.2 Performance analysis ofmachine learningmodel

The results obtained using the test set for requests linked to PII leakage on 20% of
the dataset (preserved 13,315 for this test) are shown in Table Table B.2. We �rst
show that our method detects requests related to PII leakage e�ectively. We achieve
0.72 of F1 score for leaked requests and 1.000 for non-leaked requests. By manually
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analyzing some false negatives and some false positives, we �nd that requests linked to
PII leakage have the same attributes as requests without it. For example, a request from
buyma.us that leaks PII to Facebook.com via requests https://www.facebook.com/tr/ by
data payload of HTTP method POST. On the contrary, 140 requests that do not leak
PII are predicted as false positive by the machine learning model. their request URL
contains detailed tracking of user actions (including browser, device, and IP location)
that make the length of this URL request is similar to request-related to PII leakage.
However, they are also blocked by the Easy Privacy lists.

Table B.1: A grid of parameter settings for each algorithm of grid search optimization
procedure.

Algorithm Parameter Value

Gradient Boosting learning_rate [0.1, 0.05, 0.01]
loss ["deviance"]
max_features [0.3, 0.1]
min_samples_leaf [100,150],
max_depth [2,4, 6,8,10],

Decision Tree criterion [’gini’, ’entropy’]
min_samples_leaf [1, 3, 10]
min_samples_split [2, 3, 10]
max_depth = [2,4,6,8,10]

AdaBoost learning_rate [0.1, 0.05, 0.01]
algorithm ["SAMME","SAMME.R"]
base_estimator__criterion ["gini", "entropy"]
base_estimator__splitter ["best", "random"]

Random Forest criterion [’gini’, ’entropy’]
max_features [1, 3, 10]
min_samples_leaf [1, 3, 10]
min_samples_split [2, 3, 10]
bootstrap [True, False]

Extra Trees criterion [’gini’, ’entropy’]
max_features [1, 3, 10]
min_samples_leaf [1, 3, 10]
min_samples_split [2, 3, 10]
bootstrap [True, False]



B.3 Permutation importance 103

Table B.2: Detection performance of machine learning approach

Class Precision Recall F1 score

Non-PII leakage requests 1.000 0.990 1.000
PII leakage requests 0.640 0.840 0.720

0.000 0.005 0.010 0.015 0.020 0.025
data_len
has_data

end_source
qnum

data_entropy
method

url_entropy
url_len
unum
qhash
anum

Figure B.1: Permutation importance of the selected model for PII leakage. The box
extends from the lower to upper quartile values of the data, with a line at the median.
The whiskers indicate variability outside the upper and lower quartiles. The number of
times a feature is randomly shu�ed is n_repeats = 10.

B.3 Permutation importance

To discover discriminative features for the detection, we investigate the permutation
importance [111] to calculate the feature importance of the selected classi�er for our
dataset. Note that, larger values indicate higher importance.

Figure B.1 shows the feature permutation importance of the model for detecting the
requests. The result reveals that the number of key-value pairs (anum) has the highest
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importance. We assume that almost all leaked requests have at least one key-value pair
containing a set of information sent to the third-party servers. Besides, the hash length
appearing(qhash) and the number of number appearing (unum) are discriminative
features for leaked request detection.
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