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Abstract

Speech is the main media used by humans to communicate in daily life. However,
environmental factors such as noise, reverberation, and device characteristics
inevitably degrade speech signals. In application scenarios such as telephony and
teleconferencing, speakers and listeners are often in different physical places with
different kinds of ambient noises, which further degrades the quality of the voice
communication experience. Speech enhancement techniques, which aim to improve
the quality and intelligibility of speech, therefore play an indispensable role in
real-world speech communication scenarios.

Depending on the usage scenario, this thesis further divides speech enhancement
into two sub-tasks: (1) noise reduction (NR) and (2) intelligibility boosting (IB).
Specifically, NR is designed to work on the speaker side, where the microphone
receives a mixture signal containing the speaker’s voice and environmental noise
(e.g., additive background noise or multiplicative reverberant noise). The goal of
NR is thus to suppress noise and recover clean speech from noisy mixtures. IB is
designed to work on the listener side, where NR techniques cannot be used since
noise sources are physically present. Instead of suppressing noise, the goal of IB is
to modify speech signals only to improve their intelligibility when exposed to noisy
environments.

This thesis focuses on neural network-based speech enhancement. First, this
thesis tackles the limitations of noise reduction systems from three aspects:
(1) incorporating dynamic neural noise embedding to improve the model’s
generalization to unseen noise, (2) using a neural vocoder for waveform generation
to improve the speech quality, and (3) disentangling the channel (i.e., recording
conditions) factor to better enhance the low-quality device recordings. Experiments
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find that the proposed method well suppresses noise and produces high-quality
speech waveforms.

Next, this thesis proposes a novel neural network-based system for intelligibility
boosting, in which a neural surrogate model is introduced to jointly optimize
multiple intelligibility and quality metrics. Experimental results indicate that this
new system can lead to significant intelligibility gains and perform much better
than the state-of-the-art signal processing-based baseline method.

Finally, to address the full-end speech enhancement task where both speaker
and listener environments are noisy, this thesis investigates a joint model integrating
noise reduction with intelligibility boosting. Such a model can fully benefit from
the powerful modeling capabilities of neural networks and get rid of unnecessary
assumptions. Experiments show that the joint model significantly improves speech
quality and intelligibility and clearly outperforms disjoint pipeline methods.
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1
Introduction

Speech, an innate human capability, is the most natural form of communication
for us. However, in real-world speech applications, the quality and intelligibility of
speech is inevitably degraded due to adverse noisy environments.

Noise interference is present everywhere. A comprehensive analysis and
measurement of speech and noise levels in real-world environments were done
in [1]. According to the report, normal speech levels during face-to-face talking
(assumed to be one meter) range between sound pressure levels (SPL) of 60 and
70 dB, and the level is reduced by 6 dB for every doubling of the distance. In
addition, the range in noise levels varies across different places. For instance,
noise levels are relatively low in a hospital, classroom, and inside the home. In
these places, noise levels range between 50 and 55 dB SPL, suggesting that the
effective signal-to-noise ratio (SNR) ranges between 5 and 15 dB; noise levels
are particularly high, averaging about 70∼75 dB SPL, in trains and airplanes,
suggesting that the SNR may approach 0 dB. Obviously, noise degrades speech
quality and intelligibility, thus affecting the listening experience to a large extent.
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(a) Noise reduction

(b) Intelligibility boosting

Figure 1.1: Application scenarios of speech enhancement sub-tasks.

This thesis is about speech enhancement techniques that compensate for
the degradation in quality and intelligibility. Specifically, this thesis treats
speech enhancement as a sequential modeling task, with the goal of outputting
enhanced speech given input signals by using neural-network-based machine
learning techniques.

As an introduction, this chapter briefly explains the background of this thesis
in Section 1.1. An overview of this thesis is then given in Section 1.2, listing the
potential issues with conventional methods and models and the proposed solutions.
An outline of the thesis is given in Section 1.2.3.

1.1 Background

Speech enhancement plays an indispensable role in real-world speech communication
such as telephony and teleconferencing. Depending on the usage scenario, we
further divide speech enhancement into two sub-tasks: (1) noise reduction (NR)
and (2) intelligibility boosting (IB).

Figure 1.1 plots the application scenarios of each sub-task. As we can see, NR
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aims to suppress noise and recover enhanced clean speech from noisy input. It is
most widely deployed as a front-end processing module on the speaker side, and it
can be used in applications such as hearing aids [2], mobile telephony [3], and
robust automatic speech recognition (ASR) [4]. In comparison, the IB system is
designed to work on the listener side, with the goal to pre-process the (far-end
transmitted) speech signals before playback to improve their intelligibility under
background noise. The IB system can be widely used in real-world communications
such as mobile telephony [5] and public-address announcements [6].

1.2 Thesis overview

This thesis focuses on improving speech enhancement with deep neural network
(DNN)-based techniques. Benefiting from DNNs, speech enhancement has made
impressive progress. However, there still remains a number of issues.

1.2.1 Issues to be addressed

We first identify three potential limitations for conventional NR systems:

• Issue 1: As a data-driven model, DNN’s generalization ability to unseen
noise (i.e., noise types not included in training) is not satisfactory.

• Issue 2: Conventional NR systems operate mainly in the spectrogram
magnitude domain. Noisy phases are directly incorporated into waveform
generation via inverse STFT, which degrades the speech quality [7].

• Issue 3: Most systems focus on additive or reverberant noises, but they lack
consideration on device degradation (e.g., the bad frequency characteristics
of common consumer-grade recording devices).

We also point out a challenging issue for the IB task:

• Issue 4: Unlike NR in which clean speech is ground-truth labels, in intelligi-
bility boosting, there is no definition of what perfectly intelligible speech is.
Therefore, DNN techniques cannot be directly used for supervised training.



4 Chapter 1. Introduction

Can we overcome this obstruction and introduce an effective DNN model
into the IB task?

Last, on the basis of the above explorations, we offer an additional problem:

• Issue 5: Can we integrate noise reduction with intelligibility boosting for the
scenario where noise exists in both speaker and listener environments?

1.2.2 Contribution

Regarding the issues above, we propose novel methods and conduct experiments:

• For issue 1:

– Noise tokens, which are a set of trainable neural noise templates, are
proposed to dynamically encode noise information and enable the
DNN-based NR model to better handle various noise environments.

– Experiments show that this method consistently improves the general-
ization ability of NR systems across different DNN architectures. It also
significantly outperforms the conventional noise-aware training method
[8].

• For issue 2:

– A neural vocoder is used to generate speech waveforms instead of using
conventional inverse short-time Fourier transformation (STFT), which
avoids introducing noisy phases.

– Experiments find that the vocoder-based model improves the listening
quality of the generated speech.

• For issue 3:

– Device degradation, including noise, reverberation, microphone charac-
teristics, and audio effects, are jointly considered, which we collectively
refer to as the channel factor.
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– An encoder-decoder neural network is proposed to automatically
transform low-quality device recordings to professional high-quality
ones by disentangling the channel factor via adversarial training.

– Experiments show that the network can transform an input recording
into not only one with professional studio quality but also with other
arbitrary acoustic characteristics on the basis of the target channel
factor designated.

• For issue 4:

– A novel DNN-based intelligibility boosting system is proposed. To
overcome the lack of ground-truth labels, a neural surrogate is introduced
to approximate and mimic the behavior of speech intelligibility metrics.
The system then modifies speech signals in such a way as to optimize
speech metrics under the guidance of learned surrogate.

– The new system can not only work in non-real-time mode for offline
audio playback but also support practical real-time speech applications.

– Experimental results using both objective measurements and subjective
listening tests indicate that the proposed system significantly outper-
forms state-of-the-art baselines under various noisy and reverberant
listening conditions.

• For issue 5:

– A DNN-based joint framework integrating noise reduction with intelligi-
bility boosting is proposed, in which the NR module first suppresses
noise, and the IB module then modifies the denoised speech, i.e., the
output of the NR module, to further improve speech intelligibility.

– A noise token module, which encodes speaker-side noise information, is
further inserted into the framework. The encoded noise embedding is
regarded as additional noise knowledge and fed into both NR and LE
modules.

– As experiments demonstrate, the enhanced speech can be less noisy and
more intelligible. The proposed framework achieves promising results
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and significantly outperforms the disjoint processing methods in terms
of various speech evaluation metrics.

1.2.3 Outline of thesis

The thesis is organized in accordance with the roadmap in Figure 1.2.
Chapter 2 will review the basic speech enhancement techniques, including noise

reduction, intelligibility boosting, and their evaluation metrics. Chapter 3 will look
into noise reduction for speech under additive noise. New models will be proposed
to address issues 1 and 2. Chapter 4 will focus on noise reduction for low-quality
device recordings (issue 3) and propose a model to simultaneously remove noise,
reverberation, and device acoustic characteristics. Chapter 5 will investigate an
intelligibility boosting task. A novel DNN-based model will be introduced to
address issue 4. Chapter 6 will address issue 5 by combining the noise reduction
and intelligibility boosting methods explored above.

Chapter 7 will conclude this thesis and list potential directions for future
improvements.
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Figure 1.2: Thesis outline.
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2
Basic Speech Enhancement Techniques

This chapter reviews the basic speech enhancement techniques. Section 2.1
introduces techniques for noise reduction, including traditional signal processing-
based and recent neural solutions. Section 2.2 then introduces basic techniques for
intelligibility boosting. It also explains the difficulties of applying neural models to
this task. Last, Section 2.3 lists several metrics for evaluating the performance of
speech enhancement.

2.1 Review on noise reduction

Consider the signal model in Equation (2.1), where s(n) is a voice signal, u(n) is
environmental noise, and x(n) is a noisy signal received by a microphone.

x(n) = s(n) + u(n) (2.1)
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The goal of noise reduction is to construct estimated clean speech s̃(n) from noisy
input x(n).

Specifically, noise reduction problems are usually addressed in the time-
frequency domain. By applying short-time Fourier transformation (STFT) to both
sides of Equation (2.1), we have

X(m, k) = S(m, k) + U(m, k), (2.2)

where m denotes a frame index, and k denotes the index of a frequency bin.
Since the human auditory system is insensitive to phase information [9], the core
step of noise reduction is to estimate a clean spectrogram S̃(m, k) from a noisy
observation X(m, k). After that, we can apply inverse STFT (ISTFT) to S̃(m, k)
to reconstruct a time-domain speech signal s̃(n).

2.1.1 Signal processing-based methods

In this section, we briefly review signal processing-based methods. Note that we
will not cover noise estimation methods for estimating noise spectral density,
although they are very essential for implementing signal processing-based noise
reduction. More detailed discussions on this scope can be found in [9].

Spectral subtraction

Spectral subtraction [10] produces a clean spectrogram magnitude |S̃(m, k)| by
subtracting noise magnitudes from the noisy counterparts:

|S̃(m, k)|p = |X(m, k)|p − |Ũ(m, k)|p, (2.3)

where p is an empirically chosen exponent value. The noise magnitude |Ũ(m, k)|
can be actively estimated from non-speech segments or by using noise estimation
methods [11, 12, 13, 14]. Next, ISTFT is used to reconstruct time-domain speech
signals by combining |S̃(m, k)| with noisy phases,

s̃(n) = ISTFT (|S̃(m, k)|eΦx), (2.4)
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where Φx is the phase of X(m, k).

Wiener filter

The Wiener filter [15] is another classic method for noise reduction, in which the
optimal (in terms of mean-square error) complex spectrogram of clean speech
is given as S̃(m, k) = E[S(m, k)|X(m, k)]. To derive the Wiener filter, three
assumptions are required:

• Speech S(m, k) and noise U(m, k) are independent.

• S(m, k) has a complex Gaussian distribution with zero mean value, i.e.,
S(m, k) ∼ NC(0, λS(m, k)).

• U(m, k) has a complex Gaussian distribution with zero mean value, i.e.,
U(m, k) ∼ NC(0, λU(m, k)).

λS(m, k) and λU (m, k) are power spectral densities of speech and noise, respectively.
On the basis of the above assumptions, the Wiener filter can be represented by

Equation (2.5).

E[S(m, k)|X(m, k)] = ξm,k

ξm,k + 1X(m, k), (2.5)

where ξm,k is defined as a priori SNR:

ξm,k = λS(m, k)
λU(m, k) . (2.6)

A posteriori SNR γm,k is also introduced in Equation (2.7)

γm,k = |X(m, k)|2
λU(m, k) ≈ |X(m, k)|2

|Ũ(m, k)|2
, (2.7)

where |Ũ(m, k)| can be also estimated from non-speech segments or by using noise
estimation methods [11, 12, 13]. Then, ξm,k is represented by γm,k. For instance, it
can be updated in a recursive way with Equation (2.8) taking a decision-directed
approach [16].

ξm,k = αξm−1,k + (1 − α) max(γm,k − 1, 0), (2.8)
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where α is a weighting factor and it is commonly set to 0.98.

Statistical spectral magnitude estimator

The Wiener filter is considered to be the optimal complex spectral estimator, but
it is not the optimal in a spectral magnitude sense. Since the spectral magnitude
plays an important role in speech perception, researchers have studied obtaining
the spectral magnitude from noisy observations.

One example is the MMSE estimator [16]. It was proposed to minimize the
mean-square error between the estimated and true spectral magnitudes:

e = E{(|S̃(m, k)| − |S(m, k)|)2}. (2.9)

To address this problem, the authors made two assumptions:

• The Fourier transform coefficients, including both real and imaginary parts,
have a Gaussian probability distribution with zero mean values.

• The Fourier transform coefficients are independent and, hence, uncorrelated.

On the basis of these assumptions, the optimal MMSE estimator is given by:

|S̃(m, k)| =
√

vm,k

γm,k

Γ(1.5)Φ(−0.5, 1; −vm,k)|X(m, k)|, (2.10)

where Γ(·) denotes a gamma function, Φ(a, b; c) denotes a confluent hypergeometric
function, and vm,k is defined as:

vm,k = ξm,k

1 + ξm,k

γm,k, (2.11)

where ξm,k and γm,k are priori and posteriori SNRs given in Equations (2.6) and (2.7),
respectively. Same as Equation (2.4), the noisy phase is then combined with
|S̃(m, k)| to reconstruct the speech waveform s̃(n).

Another example is the log-MMSE estimator [17], which extends the MMSE
estimator by minimizing the mean-square error of the log-magnitude spectra:

e = E{(log(|S̃(m, k)|) − log(|S(m, k)|))2}. (2.12)
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Such a metric based on the squared error of log-magnitude spectra has been
considered to be more suitable for subjective speech perception [17, 18]. The
optimal solution for the log-MMSE estimator is then given as:

|S̃(m, k)| = ξm,k

1 + ξm,k

exp

1
2

∞∫
vm,k

e−t

t
dt

 |X(m, k)|, (2.13)

where ξm,k and vm,k were defined in Equations (2.6) and (2.11), respectively.

Limitations

Signal processing-based methods have been extensively studied over the decades
and widely used in real-time communication systems due to their robustness and
low computational cost. However, their performance is still far from satisfactory.
The above-mentioned methods rely heavily on statistical noise estimation, thereby
the performance severely degrades under non-stationary noise conditions (e.g.,
restaurant babble noise), where the noise property changes fast and constantly.

2.1.2 Neural network-based methods

Recently, neural network-based noise reduction methods have become the main-
stream and outperformed the signal processing-based ones by a large margin
[19, 4, 20, 21]. Neural networks have a strong modeling capability from learning
from large data. Common neural architectures used in the speech processing field
include: (1) the feed-forwarding neural network (FNN) [19, 20], (2) the recurrent
neural network (RNN) [4, 22], (3) the convolutional neural network (CNN) [23, 24],
(4) Transformer [25], and (5) various combinations of basic architecture units, e.g.,
CNN+RNN [26, 27] and CNN+Transformer [28]. It would be impractical to list
all architecture details in such a short section. A general introduction on neural
networks can be found in other literature [29].

On the basis of modeling targets, we categorize neural noise reduction models
into three groups. Figure 2.1 gives the overall diagrams for each modeling target.
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(a) Mapping-based modeling

(b) Masking-based modeling

(c) Waveform modeling

Figure 2.1: Diagrams for different modeling targets.

Mapping-based modeling

This approach operates in the time-frequency (T-F) domain. As shown in
Figure 2.1(a), it directly maps a noisy spectrogram into a clean spectral magnitude.
For instance, Xu et al. [19] proposed using FNNs to predict a clean log power
spectrogram (LPS), which is defined as follows.

LPS(m, k) = log(|S(m, k)|2) (2.14)

The input feature for FNNs is a noisy LPS of speech. As can be seen, it is a
straightforward approach exploiting the modeling capability of neural networks.

Masking-based modeling

The LPS target is an unbounded value; therefore, it is not very stable. Researchers
have proposed predicting a mask instead of LPS [30, 31, 32]. Some widely-used
masks include the ideal binary mask (IBM), ideal ratio mask (IRM), and spectral
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magnitude mask (SMM):

IBM(m, k) =

1, if SNR(m, k) > LC

0, else
(2.15)

IRM(m, k) =
(

|S(m, k)|2
|S(m, k)|2 + |U(m, k)|2

)β

(2.16)

SMM(m, k) = |S(m, k)|
|X(m, k)| (2.17)

where IBM assigns the value 1 to a T-F unit if the SNR within that unit exceeds
the local criterion (LC, commonly set to −5 ∼ 5 dB), and otherwise 0. IRM is a
ratio mask ranging from 0 to 1, and β is a hyper-parameter scaling the mask that
is commonly set to 0.5. When β = 1, the IRM is similar to the Wiener filter.
Unlike IBM and IRM, SMM is not bounded. However, in practice, SMM is usually
clipped by an upper bound, e.g., 10. Compared with the LPS target, it was found
that predicting such a mask target is more stable and easier for neural models [31].
As shown in Figure 2.1(b), an estimated clean spectrogram S̃(m, k) can then be
obtained by multiplying the mask with noisy input:

S̃(m, k) = Mask ⊙ X(m, k) (2.18)

Waveform modeling

Unlike mapping-based and masking-based approaches operating in the T-F domain
with ISTFT reconstruction, this approach directly models waveform samples
(see Figure 2.1(c)). For example, the WaveNet [33] architecture, which has large
receptive fields owing to multiple dilated convolutions, was revised and adapted to
model clean waveform samples in [34, 35, 36]. Another example is TasNet [37, 38].
By replacing STFT and ISTFT with trainable neural modules, TasNet can directly
output estimated clean waveforms.

Compared with T-F operations, waveform modeling avoids introducing noisy
phases. It can model output waveforms in an end-to-end manner.
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Limitations

Although neural noise reduction has shown impressive performance and become
the mainstream approach [32], there remains a lot of room for improvement.

First, since a neural network is a typical data-driven model, it usually fails
to generalize well to unseen noise that is not included in the training. Second,
many noise reduction methods operate on spectrogram magnitude and by default
disregard phases. Although new methods based on complex IRM [39] and waveform
modeling have been proposed to overcome this problem, the quality of the generated
speech is not satisfactory. Third, though the training data (i.e., pairs of clean
speech and noisy counterparts) can be easily generated by artificially adding noise
segments into clean speech, complicated real-world recording conditions (e.g.,
device-recorded speech) have not been fully considered and analyzed. In the latter
chapters, we will propose improved methods to address these limitations.

2.2 Review on intelligibility boosting

Unlike noise reduction, since noise sources are physically present in the near-end
listener environment, intelligibility boosting aims to modify speech signals only to
improve their intelligibility when exposed to noise.

Numerous methods have been studied over the past decade (e.g., [40, 41, 42,
43, 44, 45, 46]). In particular, the 1st and 2nd Hurricane Challenges [47, 48]
featured many effective methods and conducted comprehensive comparisons for
each, providing remarkable reference value for researchers. In this section, we
categorize intelligibility boosting methods into mianly three groups.

2.2.1 Knowledge-based approach

On the basis of an analysis of clear (intelligible) speech, two acoustic cues
contributing to higher intelligibility were reported:

• Speech signals with more spectral flattening [49, 50], i.e., higher energy
distributed in the mid-frequency region, are more intelligible.
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• Enhancing the transient components of speech (e.g., vocalic onsets and
offsets, nasal, fricatives, and stops) [51] improves the intelligibility of speech
in noise conditions.

To increase intelligibility, many speech modification methods were artificially
designed on the basis of expert knowledge. We list two examples.

SSDRC

As a two-step modification, SSDRC (spectral shaping and dynamic range compres-
sion) [40] first sharpens formant information and reduces spectral tilt by using
pre-emphasis filters. This step was designed to redistribute more energy into
the mid-frequency region. Second, it uses dynamic range compression (DRC)
to decrease the loudness of the most sonorant parts of speech (vowels) and
increase the loudness of the less sonorant parts like consonants. Experiments have
demonstrated that SSDRC leads to significant intelligibility boosting under various
noise conditions [40], achieving the top performance in Hurricane Challenge 1 [47].

ASE

Another example is a method called ASE (Automatic Sound Engineer) [41], which
maximizes intelligibility through audio manipulations, including multi-band and
broadband DRC, equalization, and limiting. ASE is designed by professional audio
engineers. Specifically, it consists of four modifications: (1) decomposing the signal
into six bands, (2) applying DRC to each band, (3) scaling bands in accordance
with a power scheme, and (4) reconstructing the signal and using broadband DRC.
Experiments found that ASE increases intelligibility while preserving quality well,
achieving the top performance in Hurricane Challenge 2 [48].

Limitations

Although knowledge-based methods clearly improve speech intelligibility, they are
dependent on domain experts’ subjective experiences, thus still leaving room
for improvement. Such methods also consist only of non-parametric speech
modifications; therefore, they cannot adapt well to changing environments.
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2.2.2 Lombard-style conversion

Speakers tend to increase their vocal effort when speaking in the presence of
loud noise to enhance the intelligibility of their speech. This is known as the
Lombard effect [49]. Inspired by such speech production characteristics, some
methods (e.g., [52, 53, 54]) aim to convert normal speech to Lombard-style
speech. To achieve speaking style conversion, most methods rely on vocoder-based
analysis-and-synthesis techniques, where vocoder features are transformed to fit
in the Lombard style. Depending on whether parallel data is used1, we divide
conversion methods into two categories.

Parallel learning

The straightforward approach is to transform acoustic features from normal to
Lombard style using parallel data-driven mapping models. Specifically, the acoustic
features are first produced by vocoder analysis. The parallel training data, i.e., the
alignment of normal and Lombard speech frames, is obtained using dynamic time
warping (DTW). The model is then trained to learn the mapping relationship
between the normal and Lombard-style speech. Finally, the converted features are
transformed to Lombard speech by vocoder synthesis.

Seshadr et al. [55] comprehensively compared different vocoders [GlottDNN
[56], STRAIGHT [57], and pulse model in log-domain (PML) [58])] and models
[Gaussian mixture model (GMM) and DNN] for parallel normal-to-Lombard
mapping. According to their experiments, GlottDNN and PML stand out as the
best vocoders in terms of quality and Lombardness, respectively, and DNN is the
best mapping method in terms of Lombardness.

Non-parallel learning

Since parallel data is quite limited, non-parallel learning has been studied to better
exploit data resources. CycleGAN is a typical framework for non-parallel speech
conversion problems that uses cycle-consistent generative adversarial networks.
It was used in [59, 54] and showed its effectiveness in experiments in terms of
intelligibility and quality of converted speech.

1The talker makes utterances in both normal and Lombard styles.
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Limitations

For most Lombard-style conversion methods, using parametric vocoders inevitably
degrades the converted speech quality. It was also found that even natural
Lombard speech could produce only very limited intelligibility gains under low
SNR conditions [47]. Consequently, the performance of such Lombard-inspired
methods is still far from satisfactory.

2.2.3 Metric-oriented optimization

The third group of methods was developed through the optimization of certain
objective intelligibility metrics. The basic concept is to modify input speech in
such a way as to maximize a target intelligibility metric. It would be impractical
to list all related target metrics in this section, so we simply give several example
methods with three widely-used metrics.

Optimizing speech intelligibility index

In [44], a linear filter was proposed to maximize the speech intelligibility index
(SII) [60] by redistributing speech energy over time and frequency. Specifically, SII
can be obtained by (1) estimating the long-term average spectra of the speech
and noise within critical bands, (2) calculating the within-band SNR, clipping it
between –15 and 15 dB, and normalizing the range between 0 and 1, and (3)
calculating the SII as the weighted average of the normalized within-band SNRs.

By solving a constrained optimization problem, the optimal linear filter can be
given in a closed-form solution. SII predictions and intelligibility listening test
experiments have shown considerable intelligibility improvements with this linear
filter method.

Optimizing mutual information

Kleijn et al. [61] proposed optimizing the mutual information (MI) rate between
unmodified speech and the received (at the listener side) speech. The signal
power is redistributed by multiplying the power with the gain at each frequency
bands, and the gain value can be obtained by solving an optimization problem
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under certain approximations. The method is simple but effective; it enhances the
intelligibility of speech rendered in a noisy environment.

Optimizing glimpse proportion

Glimpse proportion (GP) [62] has also been used as an optimization target. The
GP score is the percentage of time-frequency (T-F) regions in modeled auditory
bands whose local SNR exceeds a certain threshold LC in dB:

GP = 100
MK

M∑
m=1

K∑
k=1

C(Sm,k − (Vm,k + LC)), (2.19)

where M and K are the numbers of time frames and frequency channels, St,f and
Vt,f denote the T-F excitation in dB of speech and near-end noise at time m and
frequency k and the C(·) operator counts the number of glimpses that exceeds
an audibility criterion. Although this metric is simple, it can well quantify the
audibility of speech in the presence of noise.

Similarly, spectral weighting (in terms of T-F gains) is used to redistribute
speech energy over time and frequency. However, unlike SII and MI, there is
no closed-form solution for GP optimization. Therefore, numerical methods
have been explored. Tang et al. used a genetic algorithm [63] to find the
best spectral weighting, whereas Valentini-Botin et al. used a gradient descent
algorithm. Experiments found that GP-oriented optimization achieved a significant
intelligibility gain in both objective and subjective evaluations.

Limitations

Although metric optimization-based intelligibility boosting shows promising
results and does not rely on expert knowledge, its performance still falls behind
state-of-the-art algorithms such as SSDRC in subjective tests, as previously
reported in [47]. This is because the objective metrics (e.g., SII) optimized within
the above methods are relatively simple and inaccurate, i.e., they are not highly
correlated with subjective intelligibility across different types of noise and other
signal degradations [64]. Besides, optimizing only a single target sometimes causes
sub-optimality in another metrics, therefore limiting performance.
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Very recently, several advanced intelligibility metrics have been proposed and
shown good results [65, 66, 67]. However, it is still difficult to find closed-form
solutions for optimizing these metrics due to mathematical complexities. Though
numerical methods, such as gradient descent and the genetic algorithm, can
simultaneously optimize multiple complex metrics, their optimization schemes are
based on offline iterative updates and are thus not suitable for real-time online
applications.

2.2.4 Toward neural intelligibility boosting

Despite the impressive success of neural noise reduction (NR), DNNs have not been
extensively used in intelligibility boosting (IB). One big challenge for neural IB is
that there is no ground truth label that can be provided for supervised training.

Specifically, given unmodified plain speech, there is no standard that explicitly
defines what perfectly intelligible speech is, and thus, no ground truth label can be
prepared. In contrast, in a NR task, clean speech without mixed noise can be
easily collected and regarded as a training label. In Chapter 5, we will propose a
novel DNN-based solution to overcome this obstruction.

2.3 Speech evaluation metrics

In this section, we briefly introduce the speech metrics used in this thesis. These
metrics are used to properly evaluate processed speech in terms of quality and
intelligibility. Note that we will not explain the mechanism of these metrics and
how they were designed as this is beyond the scope of this thesis.

2.3.1 Speech quality

Speech quality is highly subjective. It assesses the naturalness of a speech signal.
There are too many factors affecting quality. In this thesis, we consider only
environmental degradation, including noise, reverberation, and poor acoustic
characteristics of recording device.
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Objective metrics

We describe the objective quality metrics used in the thesis as follows.

• CSIG: This composite metric was designed in such a way as to correlate well
with listening test results on signal distortion (SIG). The SIG is rated by
listeners on a five-point scale [68]:

– 5 - very natural, no degradation;

– 4 - fairly natural, little degradation;

– 3 - somewhat natural, somewhat degraded;

– 2 - fairly unnatural, fairly degraded;

– 1 - very unnatural, very degraded.

• CBAK : This composite metric was designed in such a way as to correlate
well with listening test results on background intrusiveness (BAK). The
BAK is rated by listeners on a five-point scale [68]:

– 5 - not noticeable;

– 4 - somewhat noticeable;

– 3 - noticeable but not intrusive;

– 2 - fairly conspicuous, somewhat intrusive;

– 1 - very conspicuous, very intrusive.

• COVL: This composite metric was designed in such a way as to correlate
well with listening test results on overall quality (OVL) considering both
SIG and BAK. The OVL is rated by listeners on a five-point scale [68]: 5 -
excellent; 4 - good; 3 - fair; 2 - poor; and 1 - bad.

• PESQ: Perceptual evaluation of speech quality (PESQ) is a metric defined
in ITU-T recommendation P.862 [69] for automated assessment of speech
quality. The PESQ score ranges from -0.5 to 4.5.

• ViSQOL: Virtual speech quality objective listener (ViSQOL) is an objective
metric released by Google [70] for perceived audio quality. The ViSQOL
score ranges from 1 to 5.
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• HASQI : The hearing-aid speech quality index (HASQI) [66, 65] is a measure
of speech quality originally designed for the evaluation of speech quality
for those with hearing impairments. It has also been shown to be able to
evaluate quality for listeners without hearing loss [71]. The HASQI score
ranges from 0 to 1.

All above-mentioned metrics are intrusive (or full-reference) models, which
require a clean speech signal as a reference to predict an intelligibility or quality
score for distorted speech (with or without noise). For these metrics, higher scores
indicate better quality.

Subjective metrics

We can also use subjective metrics. For example, we evaluate enhanced speech
samples through the Mean-Opinion-Score (MOS) test. In this test, participants are
instructed to rate a sample from 1 (bad) to 5 (excellent) in terms of the perceived
quality. Another common test is the preference test, in which the participants
listen to a pair of samples and choose the better one. Details on subjective test
design will be given in the later chapters of the thesis.

2.3.2 Speech intelligibility

Speech intelligibility measures how comprehensible speech is, i.e., the content
of the spoken words, under given conditions. Intelligibility is also affected by
numerous factors, e.g., accent, speaking style, and environmental degradation,
while we focus only on environmental degradation in this thesis. Unlike speech
quality, intelligibility is not subjective and can be quantified by counting the
number of words identified correctly in listening tests.

It is worth noting that speech intelligibility and quality are not synonymous
terms. Speech can sometimes be highly intelligible but poor in quality, and
vice versa. The relationship between intelligibility and quality is still not fully
understood [9].
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Objective metrics

We describe the objective intelligibility metrics used in the later chapters.

• SIIB: Speech intelligibility in bits (SIIB) [67] computes an estimation of the
information shared between clean and distorted speech signals in bits per
second. Since an SIIB score is related to the signal duration, all stimuli are
either repeated or truncated to have a consistent duration of 20 seconds
when using SIIB, producing scores in the range of [0, +∞).

• HASPI : The hearing-aid speech perception index (HASPI) [66] estimates the
intelligibility loss through an analysis of cepstral correlation and auditory
coherence within an auditory model. We use a modified variant proposed for
its recently improved version [65], where the final score, within the range of
[0, +∞), is calculated as a weighted sum of the modulation filter outputs.

• STOI : Short-time objective intelligibility (STOI) [72] measures intelligibility
by computing the correlation between the spectra of clean and distorted
speech. The STOI score ranges from 0 to 1.

• ESTOI : Extended STOI [73] also measures the spectral correlation between
clean and distorted speech signals. Unlike STOI, ESTOI does not assume
mutual independence between frequency bands, making it able to accurately
predict the intelligibility of speech under temporally highly modulated noise
sources. The ESTOI score also ranges from 0 to 1.

• sEPSM : An improved intelligibility prediction metric [74] based on the
speech envelope-power spectrum model [75]. The sEPSM score is in the
range of [0, +∞).

Same with quality metrics, all intelligibility metrics we used in this thesis are
intrusive models.

Subjective metrics

The golden rule for assessing speech intelligibility is subjective listening tests, in
which participants are instructed to listen to a sample and type the words they
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can hear. The word accuracy rate can then be calculated as an intelligibility
measure. Phonetically-balanced speech material, such as Harvard sentences [76], is
commonly used in such listening tests. We can also conduct a preference test, in
which the participants listen to a pair of samples and select the one that sounds
clearer or the one that they can hear with less listening effort. We will give
experimental details in the later chapters of the thesis.
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3
Improved Noise Reduction for Speech

under Additive Noise

In this chapter, we investigate on noise reduction for additive background noise.
As mentioned in Section 2.1.2, the performance of many neural noise reduction
models is limited by noise generalization capability and synthetic waveform
quality. To improve it, we propose a new noise reduction framework as shown in
Figure 3.1. Our framework includes two novel modules: (1) an environment-aware
STFT enhancement module plugged with noise tokens (NT) and (2) a neural
vocoder-based waveform generation module. The NT can dynamically capture the
environment variability and thus enable the DNN to handle various environmental
noises to produce STFT magnitude with higher quality. The subsequent waveform
generation module can further suppress the residual noise through mel-spectrogram
correction and vocoder-based waveform synthesis.

The chapter is structured as follows. Section 3.1 will introduce the details of
NT, and Section 3.2 will introduce waveform generation module. Experimental
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Figure 3.1: System diagram of the proposed improved noise reduction model.

setup and results are given in Section 3.3.

3.1 Noise tokens for improved generalization

This section introduces the environment-aware STFT enhancement module plugged
with noise tokens, which is depicted as the upper part of Figure 3.1.

3.1.1 Background

As a data-driven approach, the DNN model is inevitably limited by its generalization
ability to unseen noises. Real-world environment variability is much more complex,
and it is hard for the DNN to model it sufficiently well. The mismatch between
training and real-world environments leads to serious performance degradation.

To address this problem, we introduce “noise tokens” (NT) into the noise
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reduction system. The NT module is inspired by recent progress [77] in expressive
speech synthesis, where conceptually-similar “style tokens” were proposed to
model acoustic expressiveness to control speaking style. We adapt and revise the
original style tokens module to the noise reduction task. In particular, the NT
module projects the noisy speech onto a noise subspace by assigning weights to
each noise template. Noise embedding is obtained with the weighted sum of these
templates and then jointly trained with the noise reduction system. By factorizing
unseen noises into a linear combination of learned templates, we expect that the
DNN model can handle various environments in a more efficient way.

The similar idea can be also found in [8], where the noise embedding was
performed in advance by using either a conventional noise estimation or IBM-based
estimation [30, 31]. In this context, however, the noise embedding generated with
a separate noise estimation module might be suboptimal and inefficient. In our
work, the noise embedding produced by NT is jointly optimized with the noise
reduction DNN model, which facilitates flexibility and the effectiveness of the
whole system. The comparison results is given in Section 3.3.

3.1.2 Environment-aware STFT enhancement with noise
tokens

As shown in Figure 3.1, environment-aware STFT enhancement module produces
the enhanced STFT magnitude from the noisy speech. The noise reduction part is
a typical masking-based model (see Section 2.1.2). It predicts a real-value soft
mask Mask, which is then element-wise multiplied with the noisy spectrogram
magnitude |X| to obtain the enhanced magnitude |S̃| = Mask ⊙ |X|. As suggested
in [78], we adopt the following mean-squared error (MSE) as the loss function in
the training:

L =
∥∥∥|S̃|0.3 − |S|0.3

∥∥∥2
+ λ

∥∥∥S̃0.3 − S0.3
∥∥∥2

(3.1)

where the MSE of both magnitude and complex spectra are taken into account, with
a weight parameter λ = 0.1. Although our target is the enhanced magnitude, i.e.,
|S̃|, the MSE of the complex spectrogram is integrated into the loss function with
the aim of somewhat reducing the phase distortion. All spectral in Equation (3.1)
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Figure 3.2: A visualization example of template weights for noisy speech where
Babble and Typing noises alternatively appear. There are 16 noise templates for
each of the 8 attention heads. For clear visualization, we only list four templates
(2nd, 7th, 9th, and 13th) on the first attention head branch. This model is trained
with BLSTM architecture on a 50-hour noisy speech data set. The detailed
configurations will be discussed in Section 3.3.

are power-law compressed with a power of 0.3.
Compared to conventional masking-based baseline, noise tokens are further

introduced to extract the noise embedding and inform the DNN model of
environment information. The NT consists of a noise encoder and a noise token
layer (NTL). The noise encoder takes as input the spectrogram magnitude of noisy
speech. It is composed of 6 layers of 2-D CNN each with 3 (along the time axis)×3
(along the frequency axis) kernel, 1×2 stride, batch normalization, and ReLU
activation. The output channels are set to 32, 32, 64, 64, 128, and 128, respectively.
A bi-directional GRU with 128 nodes is followed by the last CNN layer, resulting
in a 256-dimensional (128×2) feature for each time step. The output of the GRU
is regarded as an encoded environment representation, which is then passed to
the NTL. The NTL is composed of 16 trainable noise templates (tokens) and
a multi-head attention module [79]. Each template has 256 dimensions, and
the number of attention heads is set to 8. The representation produced by the
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previous noise encoder is served as the query vector here, and the attention module
calculates the similarity (weight) between the encoded representation and each
template. The noise embedding is then generated as the weighted sum of the noise
templates and fed as an additional input into the enhancement model.

Unlike [77] where only a global embedding was considered, we generate noise
embedding in a dynamic frame-by-frame manner aiming to fully capture the
non-stationary environment information. In addition, since noise templates are
jointly trained with the whole system in an unsupervised way, we expect that the
learned templates can be representative enough to model various environmental
noises. Figure 3.2 gives a visualization example of learned template weights for
noisy speech. We can clearly see that the 7th and 9th noise templates are activated
during Babble segments, while the 2nd and 13th templates are active during Typing
segments. This shows that the proposed noise tokens do capture and adapt well to
varying environments.

3.2 Neural vocoder-based waveform generation

We also propose a neural vocoder-based waveform generation module (the bottom
part of Figure 3.1) to generate waveform instead of using conventional inverse
STFT (ISTFT). To alleviate the phase distortion and further suppress the residual
noise, a mel-spectrogram correction network (MCN) is first used to predict the
clean mel-spectrogram from the enhanced STFT magnitude. WaveRNN [80]
vocoder is then applied to generate the final waveform with significantly better
noise reduction compared to the ISTFT-based counterpart.

3.2.1 Why neural vocoder

Researchers have found that ISTFT conversion with noisy phase degrades speech
quality, especially under low SNR condition [9, 81]. To address this problem, we
choose to use neural vocoder.

Specifically, we choose WaveRNN for its efficiency. As shown in Figure 3.3,
WaveRNN converts compact acoustic feature (e.g., mel-spectrogram) into waveform
samples in an auto-regressive manner. Acoustic feature c is first up-sampled by a
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Figure 3.3: Diagram of WaveRNN vocoder.

CNN-based upsampling layer to produce temporal condition vectors for each time
step. Dual-RNN with softmax layer then estimates the coarse (e.g., high 8-bits) of
the sample and the fine (e.g., low 8-bits) of the sample. Finally, o is sampled from
the generated distribution, and acts as a part of input for the next time step.
Compared to the deterministic ISTFT, WaveRNN vocoder is a neural module that
can be pre-trained with large external speech corpus. Therefore, we expect that
WaveRNN is a robust neural waveform model which has better tolerance to the
prediction error of spectrogram, and thus is able to generate a higher quality
waveform.

3.2.2 Module details

We further elaborate the waveform generation module in this section. The MCN in
Figure (3.1) aims to further suppress the residual noise by predicting the clean
mel-spectrogram. Similar to [82], it is designed as an auto-regressive model that
predicts one frame of target given the data generated in the previous frames.
The input features are first processed by a feed-forwarding layer with 768 nodes
and a BLSTM layer with 400 nodes. A unidirectional LSTM with 256 nodes
then takes as input the mel-spectrogram generated in the previous frame and its
previous state. Four feed-forwarding layers are successively added, each with 80
nodes, to produce the 80-dimensional mel-spectrogram of the current time step.
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All feed-forwarding layers use LeakyReLU activation with slope = 0.3, except
for the output layer, which uses a linear function. For better performance, we
also integrate phone and speaker embeddings (both extracted from the enhanced
magnitude) with the MCN to emphasize the content information and speaker
characteristics of the processed utterance. Both speaker and phone embedding are
extracted from the enhanced magnitude which are obtained by the former STFT
enhancement module. In particular, the 64-dimensional speaker embedding comes
from a pre-trained learnable dictionary encoding (LDE) [83, 84] based speaker
verification system. And a phone embedding with 256 dimensions is obtained from
the last bottleneck layer of a phone recognition model trained with connectionist
temporal classification (CTC) loss [85]. We use the open-sourced implementations
for the above speaker and phone encoders12. These two auxiliary embedding are
concatenated with the enhanced STFT magnitude as the input features and help
the MCN produce the mel-spectrogram with higher quality.

WaveRNN vocoder then directly synthesizes high quality waveform by avoiding
introducing the noisy phase. In addition to the mel-spectrogram, the extracted
speaker embedding is also fed into the vocoder as local conditions for higher
synthesis quality. We use the open-sourced WaveRNN implementation3.

3.3 Experiments

3.3.1 Data preparation

The MS-SNSD dataset [86] was used in our experiments. We selected 7 and 4
noise types to prepare the training and test sets, respectively. For the training set,
we further added another 14 noise types from Nonspeech sounds database [87] to
expand the diversity in noises. For the test set, the 4 selected noise types were:
babble, typing, squeaky chair, airport announcements. As we only study the
DNN’s generalization to unseen noises, none of these 4 types were included in the
training. Finally, a 50-hour training set (around 36,000 audio clips) was generated

1https://github.com/Diamondfan/CTC_pytorch
2https://github.com/jefflai108/pytorch-kaldi-neural-speaker-embeddings
3https://github.com/mkotha/WaveRNN

https://github.com/Diamondfan/CTC_pytorch
https://github.com/jefflai108/pytorch-kaldi-neural-speaker-embeddings
https://github.com/mkotha/WaveRNN
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Table 3.1: Average PESQ and STOI scores with different noise embedding across
three DNN architectures under test unseen noises.

Architectures
w/o embedding with DNAT with NT
PESQ STOI PESQ STOI PESQ STOI

BLSTM 2.686 0.896 2.692 0.898 2.858 0.914
VoiceFilter 2.792 0.904 2.771 0.902 2.907 0.916

T-GSA 2.754 0.906 2.726 0.902 2.808 0.912

with 21 noise types at 5 SNR levels, i.e., -5, 0, 5, 10, 15 dB. The test set consisted
of 2 hours of noisy speech, with 4 unseen noise types at 5 SNR levels, i.e., -2.5,
2.5, 7.5, 12.5, 17.5 dB. In addition, we used the VCTK corpus [88] and TIMIT
database [89] to train WaveRNN vocoder and phone encoder, respectively. All
audios used in our experiments were resampled at 16 kHz.

3.3.2 Pilot test I: performance analysis with noise tokens

We first examined if the performance can be improved by incorporating noise tokens
(NT). We systematically test the effectiveness of NTs with three state-of-the-art
noise reduction DNN architectures as follows.

• BLSTM : A standard model with 2 BLSTM layers and 1 fully-connected
layer.

• VoiceFilter [26]: A CNN-BLSTM model that consists of 8 layers of 2-D
CNN, followed with 1 BLSTM layer and 2 fully-connected layers.

• T-GSA [25]: A Transformer-based model that has 4 Transformer encoder
blocks [79] with Gaussian-weighted self-attention.

Each architecture was used as the noise reduction model and trained with
or without the noise embedding. Moreover, we also compared our proposed
NT method with the dynamic noise aware training (DNAT) method, where the
noise power spectral density (PSD) estimated by a noise tracking algorithm [13]
was regarded as the noise embedding. Since we only focus on the performance
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Table 3.2: Average PESQ score and its relative improvements with different
training noise corpora under test unseen noises.

Noise corpus BLSTM w/o NTs BLSTM with NTs
PESQ Relative imp. PESQ Relative imp.

N7 2.564 0.00% 2.657 0.00%
N12 2.639 2.94% 2.786 4.86%
N16 2.672 4.20% 2.812 5.82%
N21 2.686 4.71% 2.858 7.54%

improvement by NT, but not on the waveform generation (WG) module in this
preliminary test, we simply apply ISTFT to generate the waveform with the
noisy phase instead of using the WG module. The PESQ [69] and STOI [72]
scores were used as objective measures. The experimental results presented in
Table 3.1 showed that the proposed NT is a universal and effective technique that
consistently improved the generalization capability of noise reduction across all
three tested architectures. Using NT also outperformed the DNAT method, which
demonstrated that the neural noise embedding is more efficient than the signal
processing-based noise estimation.

3.3.3 Pilot test II: impact of noise diversity

The generalization of noise reduction systems can be improved by feeding a diverse
noise corpus with more noise types. In this experiment, we analyzed the impact of
noise diversity on performance. The original training noise corpus (with 21 noise
types) was divided into three smaller subsets, each with {7, 12, 16} noise types.
Thus, we had 4 noise corpora (denoted as N7, N12, N16, and N21) in total, and
each was used to generate a 50-hour training set. Note that these four generated
training sub-sets shared the same configurations, i.e., the clean speech data set,
size of noisy speech data (all were 50 hours in duration), and SNR levels, while
they only differed from each other in the number of noise types they were mixed
with. We used the standard BLSTM architecture described in Section 3.3.2 as the
noise reduction DNN model and simply applied ISTFT for waveform synthesis.
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Table 3.3: Average PESQ and STOI scores with different waveform synthesis
methods under test unseen noises.

Methods PESQ STOI
Noisy 2.021 0.833

NT-ISTFT 2.858 0.914
NT-WG 2.509 0.867

Systems with and without NTs were trained with 4 noise corpora, respectively,
and then tested on the same test set. The PESQ results were given in Table 3.2.
We can see that feeding more noise types into training always helped improve
the performances of both systems. Compared to the system without using noise
embedding, NT clearly brought higher relative improvements on PESQ with
increasing noise diversity, which indicated that the proposed NT can effectively
exploit multiple noises thanks to its trainable noise templates.

3.3.4 Pilot test III: initial analysis on waveform generation
module

Next, we checked if the waveform generation module (the bottum part of
Figure 3.1 can synthesize speech with higher quality and less residual noise.
The enhanced STFT magnitude was first obtained from the noise reduction
DNN model implemented with the NT and BLSTM architecture. The enhanced
STFT magnitude was then be converted to the waveform by either ISTFT or the
waveform generation (WG) module. We denote the systems using the above two
methods as NT-ISTFT and NT-WG. Noisy speech without any processing was
also compared. Table 3.3 gives the objective results and shows that the proposed
WG module was much worse than the conventional ISTFT. The probable reason
was that the PESQ and STOI are not designed to evaluate neural vocoder, which
also explained why these measures are not typically used in the field of speech
synthesis. Such unexpected results further encouraged us to conduct the following
subjective listening tests.
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3.3.5 Subjective listening tests

We conducted crowdsourced listening tests to comprehensively evaluate different
systems. Since the WG module can be directly applied to the noisy speech to
generate waveform, it was also included as a tested system. We summarize the
notations for the evaluated systems in the listening tests:

• Baseline: BLSTM model without noise tokens. ISTFT was used to generate
waveform.

• NT-ISTFT: BLSTM model with noise tokens. ISTFT was used to generate
waveform.

• NT-WG: BLSTM model with noise tokens. Waveform generation module
was then used to generate waveform.

• WG: Waveform generation module was directly applied to the input noisy
STFT magnitude to generate waveform.

• Clean: Clean speech without noise.
• Noisy: Noisy speech without any processing.
We chose 96 files from the test set for each system4. Subjects were asked to

rate the speech quality, noise suppression, and the overall performance of the
anonymized file from 1-5 for the mean opinion score (MOS). For reference, the
clean and noisy versions of each file were also provided to subjects before rating.
Each file was rated ten times in order to avoid human bias, and 521 subjects
participated. To reduce the burden on the subjects, the test files that were more
than 12 seconds in duration were manually split into smaller segments of at most 5
seconds.

The subjective results are shown in Figure 3.4. The Mann-Whitney U test
[90] reveals that the NT-ISTFT system outperformed Baseline in all three
scores with p-values all lower than 0.005, which demonstrates the effectiveness of
noise tokens. Compared to NT-ISTFT, NT-WG showed significantly higher
performances, especially on the noise suppression score. This indicated that
the waveform generation module successfully improved the quality and further
suppressed the residual noise. Furthermore, NT-WG outperformed WG, which

4Audio samples of the tested files are available at: https://nii-yamagishilab.github.io/
samples-NTs/

https://nii-yamagishilab.github.io/samples-NTs/
https://nii-yamagishilab.github.io/samples-NTs/
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means our proposed two-step noise reduction framework, where the waveform
generation module was used as a post-processor, was better than the method that
applied only the waveform generation module to the noisy input. Last, examples of
enhanced spectrograms of the evaluated systems are given in Figure 3.5. We can
clearly see that residual noise was more suppressed for the NT-ISTFT system
than for Baseline. Compared to the clean reference, some acoustic artifacts in the
middle frequency part were introduced by the vocoder-based NT-WG and WG
systems. However, these artifacts did not affect human perception. Also, we can
find that the residual noise in NT-ISTFT was further removed after using a
post-processing waveform generation module (NT-WG).

From the listening test results, we can see that the improved method that
incorporates noise tokens and waveform generation module, i.e., NT-WG,
performed best in all three aspects: speech quality, noise suppression and overall
performance. Interestingly, it showed bad results in terms of objective scores:
PESQ and STOI. This indicates that the acoustic artifacts introduced by WaveRNN
vocoder degraded the objective performance but did not affect the human subjective
evaluations. However, we still find that the performance of the WG module was
not perfectly stable. This problem occurred with a limited number of cases, but
some vocoder-generated samples (from NT-WG and WG systems) were seriously
distorted and thus had very bad quality, which also explained the unsatisfactory
lower whisker of the NT-WG system.

To improve the robustness of the vocoder-generated speech is our future work.
In addition, we find that the raw WG system can even outperform NT-ISTFT,
which indicates the waveform generation module itself can be used as a powerful
noise reduction model. We plan to further study the waveform generation module
and integrate it with the noise tokens.

3.4 Summary

This chapter focuses on issue 1: Limited noise generalization capability
of DNN-based noise reduction model and issue 2: Speech quality
degradation caused by ISTFT with noisy phase. The proposed improved
framework includes noise tokens and WaveRNN-based waveform generation
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module.
The neural noise embedding, that is made up of trainable noise templates,

can dynamically capture the environment information and thus enriches the
DNN’s generalization. Experimental results show that the noise token module is
effective across various DNN architectures and has higher performance growth with
increasing noise diversity. Moreover, experiments have found that WaveRNN-based
vocoder synthesizes the waveform with higher quality. Subjective listening tests
also show that the residual noise can be significantly reduced by the proposed
waveform generation module.

Although the improved framework achieved good performance, it was only
evaluated in limited situations, i.e., background additive noise. In the next chapter,
we will extend it to adapt to the more complicated real-world noise scenarios,
which may take into account not only additive noise but also reverberation and
poor acoustic characteristics of recording devices.
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Figure 3.4: Box plots on speech quality, noise suppression and overall performance.
Red dots represent mean score.
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(a) Clean (b) Noisy

(c) Baseline (d) NT-ISTFT

(e) NT-WG (f) WG

Figure 3.5: Examples of spectrograms under airport announcement noise at 2.5
dB for different systems: (a) Clean, (b) Noisy, (c) Baseline, (d) NT-ISTFT, (e)
NT-WG, (f) WG.
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4
Improved Noise Reduction for

Device-degraded Speech

Chapter 3 focuses on noise reduction under additive noise. However, the speech
signal in our real world is degraded by not only additive noise but also many other
factors, e.g., reverberation and bad microphone response.

In this chapter, we consider a common real-world application scenario –
enhancing device-degraded speech that is recorded by consumer-grade device in
uncontrolled environment. Recording condition, including noise, reverberation,
microphone characteristics, and audio effects, will be jointly considered. Our final
goal is to automatically transform such low-quality speech into high-quality speech.

Specifically, we propose an encoder-decoder neural network for this task. To
address the variability of recording condition, we first filter out the acoustic
characteristics from the original input audio using the encoder network with
adversarial training. Next, we extract the recording factor from a reference
audio by using a channel token module, which is conceptually similar to the
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noise token we introduced in Section 3.1. Conditioned on this disentangled
factor, an auto-regressive decoder is then used to predict the target-environment
mel-spectrogram. Finally, following the waveform generation module described in
Section 3.2, we also apply WaveRNN vocoder to synthesize the speech waveform.
Experimental results show that the proposed system can generate a professional
high-quality speech waveform when setting high-quality audio as the reference. It
also improves noise reduction performance compared with several state-of-the-art
baseline systems.

This chapter is organized as follows. Section 4.1 will first introduce the related
research background. Section 4.2 will describe our proposed system and give
details of each network component. Experimental setup and results are presented
in Section 4.3.

4.1 Introduction to device-degraded speech

A large and growing amount of speech content in real-life scenarios is being recorded
on consumer-grade devices (e.g., smartphones and laptops) [91] in uncontrolled
environments (e.g., homes and offices), where environmental noise, reverberation,
and distortion of microphone frequency response degrade the quality of the speech.
We refer to speech that has been collected under such uncontrolled recording
conditions as device-degraded speech. Besides, recording conditions, including
noise, reverberation, microphone characteristics, and audio effects, are jointly
considered, which we collectively refer to as the channel factor.

Figure 4.1 plots the spectrograms of a high-quality recording and its device-
degraded version recorded by iPad in an office. In addition to additive background
noise, we can see that reverberation (i.e., multiplicative noise) also degrades speech
severely, which results in stretched spectrogram and makes speech very muffled and
unclear. Besides, the high-frequency components in device-degraded speech (see
Figure 4.1(b)) are heavily muffled due to the bad frequency response of recording
microphone, making the sound quality worse.

Most existing methods, including both signal processing-based and neural
noise reduction, are typically developed for a single application scenario, such as
denoising (e.g. [17, 19]), de-reverberation (e.g. [92, 93]), or audio effect adaptation
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(a) High-quality recording (b) Device-degraded recording

Figure 4.1: Examples of spectrograms for: (a) a high-quality recording and (b) a
device-degraded recording recorded by iPad in an office.

(e.g. equalization [94, 95]). Although one can combine denoising, de-reverberation,
and equalization methods to sequentially address each sub-problem, Mysore et al.
[91] pointed out that such intuitive combination would degrade speech quality due
to undesired synergy between processes. For example, a sound equalizer might
amplify background noise by wrongly amplifying noisy-frequency components,
which causes conflict with the speech denoising process. The performance of such
pipeline methods is thus still far from satisfactory.

4.2 Encoder-decoder-based noise reduction

We propose an encoder-decoder network to enhance the device-degraded speech.
The framework diagram is illustrated in Figure 4.2. It consists of three main
components: an encoder, a channel modeling (CM) network, and a decoder. In
addition, a WaveRNN vocoder works separately as the waveform synthesis module.

4.2.1 Component details

In this following section, we will explain each component in details.
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Figure 4.2: Overall diagram of proposed framework.

Encoder

The encoder is designed to filter out the channel characteristics from input audio.
More specifically, the input audio is first transformed to the spectrogram magnitude
via STFT, and then passed to the encoder to produce the channel-invariant
features. The encoder consists of a six-layer 2D CNN, each layer with batch
normalization, ReLU activation, and zero paddings, and one BLSTM layer. The
details of the encoder’s parameters are listed in Table 4.1.

To encourage the encoder to produce channel-invariant features, inspired by
[96] and [97], we introduce a channel classifier (#1) as a discriminator for
adversarial training. It consists of one uni-directional LSTM (ULSTM) layer with
400 nodes and one fully-connected layer with a softmax layer, which predicts the
channel type (recording condition) of the input audio. In the training stage, this
classifier is optimized to accurately predict the channel type by minimizing the
cross-entropy classification loss. On the other hand, the encoder is optimized
oppositely to maximize the classification loss to prevent the produced features
from encoding channel information. This adversarial training encourages the
encoder to filter out the channel information from its input.
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Table 4.1: Parameters of encoder. Kernel shape of 2D CNN layers is represented
as [kernel size tuple, stride tuple, output channels]. T and F denote the number of
frames and frequency bins, respectively.

Layer Input shape Kernel shape / Nodes Output shape
CNN 1 (T, F) [(1, 7), (1, 1), 64] (64, T, F)
CNN 2 (64, T, F) [(7, 1), (1, 1), 64] (64, T, F)
CNN 3 (64, T, F) [(5, 5), (1, 1), 64] (64, T, F)
CNN 4 (64, T, F) [(5, 5), (1, 2), 64] (64, T, F // 2)
CNN 5 (64, T, F // 2) [(5, 5), (1, 2), 64] (64, T, F // 4)
CNN 6 (64, T, F // 4) [(1, 1), (1, 1), 8] (8, T, F // 4)
BLSTM (T, F × 2) 256 (T, 512)

Figure 4.3: Detailed structure of CM network.

Channel Modeling

The channel modeling (CM) network explicitly extracts the channel factor from
the reference audio. Its structure is shown in Figure 4.3. As can be seen, CM
network is revised from noise token module described in Section 3.1. While the
difference lies in the modeling target is not the single “noise” but the complicated
“channel”, i.e., a joint factor of noise, reverberation and microphone response.

Instead of using a one-hot code, the channel factor can be automatically
encoded as a neural code from the reference audio, which enables the system to
deal with the unseen channel condition and unlabelled reference audio. Moreover,
the CM network can be jointly optimized with other neural components, which
further provides better results.
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Similar to noise token, the CM network takes as input the spectrogram
magnitude computed from the reference. It consists of a six-layer 2D CNN
each with a 5×5 kernel, 2×2 stride, batch normalization, and ReLU activation.
The output channels are set to 32, 32, 64, 64, 128, and 128, respectively. A
uni-directional gated recurrent unit (GRU) layer with 128 nodes follows the last
CNN layer, producing an intermediate feature. Next, a channel token layer is
added, which consists of 12 trainable channel tokens and a multi-head attention
module [79]. Specifically, each token has 256 dimensions, and the number of
attention heads is set to 8. The intermediate feature output by the GRU layer is
fed to the channel token layer and serves as the query vector, then the attention
module calculates the similarity (weight) between the query and each token.
Finally, the channel factor (vector) is formed as the weighted sum of these channel
tokens.

To better disentangle channel and speaker identities from the reference audio,
we further introduce two additional classifiers, channel classifier (#2) and
speaker classifier. Both are feed-forwarding networks with one 256-node hidden
layer followed by a softmax layer to predict the channel type or speaker identity.
Note that different from channel classifier (#1) used in the encoder, classifier
(#2) here encourages the channel factor to be more informative about channel
information. While speaker classifier still serves as the adversarial discriminator
with the aim of filtering out the speaker information from the extracted channel
factor.

Decoder

The auto-regressive decoder shown in Figure 4.4 is used to produce the target-
environment mel-spectrogram, which is supposed to share similar channel char-
acteristics to those of the reference audio. The extracted channel factor is first
repeatedly concatenated to the encoder output in every time frame. The resulting
concatenated features are processed by a BLSTM layer with 256 nodes, and
then passed to a ULSTM layer with 512 nodes. Four feed-forwarding layers
are sequentially added, each with 80 nodes, to produce the 80-dimensional
mel-spectrogram. Similar to Tacotron2 [98], we add a 2-layer Pre-Net each with
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Figure 4.4: Decoder structure. Concat and FF denote concatenation operation
and feed-forwarding layer, respectively.

256 nodes for the auto-regressive process. The produced mel-spectrogram from the
previous time step is processed through Pre-Net and fed into the ULSTM layer for
the prediction of the current time step. A five-layer convolutional Post-Net module
used in Tacotron2 is also borrowed to predict the mel-spectrogram residual to
improve the overall reconstruction.

WaveRNN vocoder

Last, following the success of vocoder-based waveform generation module used in
Section 3, we also choose a WaveRNN vocoder to generate the waveform from the
mel-spectrogram. Specifically, we use a speaker-independent WaveRNN, which
effectively generalizes to unseen speakers. According to the subjective evaluation
results reported in Section 3.3.5, such a neural waveform model can generate
speech with high quality.

4.2.2 Training objective
To state the training objective of our proposed framework, we review each
component shown in Figure 4.2 and use the following definitions:

z1:Ti
e = Φe(o1:Ti

in ), (4.1)

zc = Φc(o1:Tr
ref ), (4.2)

m̂1:Ti = Φd(z1:Ti
e , zc) (4.3)
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The encoder Φe encodes the input spectrogram of Ti frame length, o1:Ti
in =

{o1
in, · · · , oTi

in}, into a latent sequence z1:Ti
e = {z1

e , · · · , zTi
e }. The CM network Φc

extracts the channel factor (vector) zc from the reference spectrogram of Tr frame
length, o1:Tr

ref = {o1
ref , · · · , oTr

ref}. Decoder Φd takes as inputs z1:Ti
e and zc and

predicts the mel-spectrogram m̂1:Ti = {m̂1, · · · , m̂Ti}. We jointly optimize three
modules, Φe, Φc, and Φd, to minimize the mean-square error (MSE) between
the predicted mel-spectrogram m̂1:Ti and ground truth m1:Ti, as formulated in
Equation (4.4):

LMSE(Φe, Φc, Φd) = 1
Ti

Ti∑
j=1

∥m̂j − mj∥2
2. (4.4)

In addition to the main MSE objective, we add the following three objectives:

Lenc_ch(Φe, Dc1) = CE(Dc1(z1:Ti
e ), cin), (4.5)

Lcm_ch(Φc, Dc2) = CE(Dc2(zc), cref ), (4.6)

Lcm_spk(Φc, Ds) = CE(Ds(zc), sref ) (4.7)

where CE denotes the cross-entropy loss, and Dc1, Dc2, and Ds denote channel
classifier #1, #2, and the speaker classifier, respectively. The channel types of the
input and the reference are represented as one-hot labels, i.e., cin and cref , and the
speaker label of the reference is denoted as sref . As explained in previous sections,
Lenc_ch is used as the adversarial training objective to filter out the channel
information from the encoder output z1:Ti

e . We also use Lcm_ch as an auxiliary
objective and Lcm_spk as an adversarial objective, to encourage the channel factor
zc to encode more channel information but less speaker information. In the
training stage, the neural components (i.e. Φe, Φc, and Φd) and classifiers (i.e.
Dc1, Dc2, and Ds) are optimized alternatively. At one training step, we optimize
three classifiers individually by minimizing their corresponding cross-entropy
objectives, which are Lenc_ch, Lcm_ch, and Lcm_spk. At the next training step,
we fix the classifiers and jointly optimize all three neural components with the
following training objective:

L = LMSE + α ∗ Lcm_ch − β ∗ Lenc_ch − γ ∗ Lcm_spk, (4.8)
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where α, β, and γ are hyper-parameters controlling the weights of different
sub-objectives.

4.3 Experiments

4.3.1 Data preparation

The DAPS (device and produced speech) dataset [91] was used in our experiments.
It provides aligned recordings of high-quality speech1 and a number of versions of
low-quality speech2, which are affected by noise, reverberation, and microphone
response. Specifically, it consists of 20 speakers (10 female and 10 male) reading 5
excerpts each from public domain stories.

To prepare the training set, we selected 4 of the 5 excerpts narrated by 18 of
the 20 speakers under 7 of the 10 recording conditions then split the corresponding
recordings into shorter segments, which resulted in 23,555 audio clips. The
remaining 1 excerpt, 2 speakers (1 female and 1 male), and 3 conditions were used
to form the test set, which resulted in 228 audio clips. Thus, all the content,
speakers, and recording conditions of the tested speech were unseen to the training
set. The three tested real-world recording conditions were: (1) ipad_livingroom,
recording was done by an iPad Air in a living room; (2) ipadflat_office, recording
was done by an iPad Air placed flat in an office; and (3) iphone_bedroom, recording
was done by an iPhone 5S in a bedroom.

4.3.2 Implementation details

All audios were resampled at 16kHz. We used STFT to compute the spectrogram
with a Hanning window size of 50 ms and a hop size of 12.5 ms, and the spectrogram
was power-law compressed [78] with a power of 0.3. For WaveRNN vocoder, we

1High-quality speech recordings were collected in a studio environment. Several audio effects
were further applied to these recordings by professional sound engineers to make them sound
more aesthetically pleasing.

2Low-quality speech recordings were produced by replaying high-quality audio through a
professional loudspeaker and re-recording them with different consumer devices in different
real-world acoustic environments.
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used a public speaker-independent model3, which was pretrained sufficiently with
more than 900 speakers selected from the LibriTTS corpus [99]. We slightly
fine-tuned the model, with the high-quality studio recordings in the training set, to
make the model adapt to the studio audio effect. Note that the speakers and
content of the tested recordings were still unseen to the fine-tuned WaveRNN
vocoder.

Although the primary target of this work is to enhance low-quality recordings,
we implemented audio effect transfer, e.g., transferring the iPhone recording in
the bedroom to the iPad recording in the office, within one unified system. As
shown in Figure 4.2, the decoder can predict not only the mel-spectrogram in
studio quality but also that under other recording conditions, depending on the
reference audio4. This architecture enables us to augment training data with
diverse combinations of input and reference pairs. Since the system learns to
disentangle the channel factor and adapt to various recording conditions, we
expect that it can reduce overfitting and improve overall performance. Therefore,
each audio clip under 7 training recording conditions was combined with 3 different
types of references: one high-quality recording (as primary training target) and
two recordings that were randomly selected from the other 6 conditions. This
extended the original training set and resulted in a total of 70,665 (23,555 × 3)
training examples. For the test set, we set the high-quality recording only as the
reference since our ultimate target is to examine if the low-quality input can be
enhanced. The Adam optimizer [100] was used for training, with learning rates of
0.0001 and 0.0002 for the model and its classifiers, respectively. Hyper-parameters
α, β, and γ in Equation (4.8) were set to 1.0, 0.2, and 0.05, respectively.

4.3.3 Evaluated systems

We conducted an ablation study on the proposed system. Several noise reduction
baselines were also re-implemented, making a total of seven systems compared in
the experiments. We describe and notate each system as follows:

3https://github.com/erogol/WaveRNN
4The reference audio was randomly selected, which did not correlate with the input recording

in terms of both speaker and content.

https://github.com/erogol/WaveRNN


50 Chapter 4. Improved Noise Reduction for Device-degraded Speech

• ED: A simplified version of our proposed system that is composed only of
encoder and decoder modules. The decoder only predicts the high-quality
mel-spectrogram as its prediction target.

• ED+CM: Another simplified version that is composed of encoder, decoder,
and CM modules. No classifiers and corresponding training objectives were
used for training. Following the work of [101], we improved this system by
conditioning the encoder with the input’s channel factor5.

• FULL (ED+CM+Classifiers): Our complete proposed system shown in
Figure 4.2, which consists of an encoder, decoder, CM network, and three
classifiers. Auxiliary (in Equation (4.6)) and adversarial (in Equations (4.5)
and (4.7)) training objectives were integrated through these three classifiers.

• Linear-ISTFT: This system shares the same settings as FULL, except the
decoder output was changed to linear spectrogram. Instead of WaveRNN, we
synthesized the waveform using ISTFT with the noisy phase.

• Wavenet: A waveform-to-waveform mapping system based on Wavenet
[36]. We reimplemented it with the same model architecture and training
objective (i.e., L1 loss on log spectrogram).

• WPE: A state-of-the-art speech de-reverberation baseline, which estimates a
linear filter to minimize the weighted linear prediction error [92].

• WPE+L: An integrated system that sequentially combines WPE for
de-reverberation and a standard log-MMSE magnitude estimator [17] for
denoising.

4.3.4 Objective evaluations

We first evaluated each system with objective measures. We used the short-time
objective intelligibility (STOI) score [72] to measure speech intelligibility and
three composite scores (CSIG, CBAK, and COVL) [68] to measure enhancement

5As an alternative to adversarial training, this additional conditioning was used to encourage
the encoder to produce channel-invariant features.
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Table 4.2: Objective evaluation results of different systems on test set. For all four
measures, higher scores indicate better performance.

System CSIG CBAK COVL STOI

Raw audio 3.05 2.23 2.60 0.869

WPE 3.16 2.41 2.75 0.888
WPE+L 2.81 2.33 2.52 0.811

Wavenet 3.67 2.42 3.08 0.904

Linear-ISTFT 3.94 2.61 3.37 0.905

ED 3.89 2.48 3.28 0.906
ED+CM 3.73 2.49 3.16 0.886
FULL 3.94 2.52 3.34 0.906

quality. As described in Section 2.3.1, CSIG, CBAK, and COVL are mean opinion
score (MOS) predictions of speech distortion, noise distortion, and overall quality,
respectively. The evaluation results are listed in Table 4.2.

As shown, the FULL system consistently improved its two simplified versions
(ED and ED+CM) for all measures, which indicates both the CM network and
classifiers played important roles in our proposed system. It also significantly
outperformed time-domain Wavenet and the two signal processing-based baselines
(WPE and WPE+L). WPE+L system performed much worse than WPE. This
is mostly because the log-MMSE estimator suppressed noise too aggressively even
though the noise level of the DAPS dataset was not high, therefore it degraded
speech quality. We found that FULL system was worse than Linear-ISTFT in
terms of CBAK and COVL. The probable reason is that the vocoder-generated
speech had more artifacts than the ISTFT-generated one. However, most of these
artifacts introduced by the neural vocoder did not affect human perception, as has
been observed in the previous experiments (see Section 3.3.5). To comprehensively
evaluate each system, we further conducted the following subjective listening tests.
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Figure 4.5: Box plot on MOS scores for audio quality. Red dots represent mean
score.

4.3.5 Subjective evaluations

We conducted crowdsourced listening tests for the subjective evaluations. Specif-
ically, we chose 120 (20 audios × 3 conditions × 2 genders) of the 228 tested
audio clips for each system6. Participants (165 individuals) were asked to rate the
quality of each anonymized audio from 1–5 (five-point Likert scale) for the mean
opinion score (MOS). For reference, the raw (with low quality) and studio versions
of each audio were also provided to the participants before rating. Each audio was
rated ten times to avoid human bias.

The listening results are given in Figure 4.5. The Mann-Whitney U test reveals
that the proposed FULL system significantly outperformed the other systems
with p-values all lower than 1e-7. It is noteworthy that unlike the objective results,
FULL system showed a higher score than Linear-ISTFT, which means the
vocoder-based waveform synthesis (i.e., WaveRNN) module successfully improves
the quality of the synthetic waveform. This also indicates that although the
artifacts introduced by WaveRNN degraded the objective results, they did not

6Audio samples are available at: https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021

https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021
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Figure 4.6: Visualization of learned channel factors using t-SNE transformation;
color coded by channel condition labels.

affect human subjective evaluations. More interestingly, we can see that the FULL
system outperforms ED in both subjective and objective tests, even though the
task of FULL system was more challenging: the extra channel factor should be
disentangled, and the output mel-spectrogram could be not only in studio quality
but also in other acoustic characteristics based on the provided reference. Such
additional learned knowledge related to channel information did benefit the FULL
system and improved its performance.

4.3.6 Beyond noise reduction: audio effect transfer

In addition to noise reduction, the proposed system can also realize audio effect
transfer: transferring the input recordings to sound as if they were recorded in
another environment. To achieve this, we only need a few or even one reference
audio recorded under the corresponding desired channel (or recording) condition.

Instead of using one-hot code, the CM network automatically encodes the
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channel factor from the arbitrary reference, then the decoder can predict the
target-environment mel-spectrogram conditioned on this factor. Figure 4.6 gives a
visualization of learned channel factors for different reference recordings under three
tested unseen conditions and one studio condition. We used t-SNE transformation
[102] to project the 256-dimensional channel factor into 2 dimensions. We can see
that the learned factors are clearly clustered based on their channel conditions7,
which indicates that the CM network can effectively discriminate unseen reference
audios and produce representative factors. Therefore, it enables the system to deal
with the unlabelled references under unseen channel conditions. With this system,
we can further control the transferred effect (e.g. reverberation level) by flexibly
scaling the channel factor. Examples of transferred mel-spectrograms are given in
Figure 4.7, where we aimed to transfer a studio recording to sound as if it were
recorded in the (unseen) iphone_bedroom condition. Instead of feeding a reference
audio, the applied channel factor ẑc was pre-computed through linear interpolation
of two factors using Equation (4.9):

ẑc = (1 − α) ∗ zpro
c + α ∗ ziph

c , (4.9)

where zpro
c and ziph

c denote the channel factors extracted from a professional
studio recording and iphone_bedroom recording, respectively, and α is the scale
value that ranges from 0 to 1. We successfully controlled the transferred effect
from less reverberant (Figure 4.7 (c) ) to more reverberant (Figure 4.7 (d)) by
increasing the scale value α. We can also see that the transferred mel-spectrogram
in Figure 4.7 (d) shares a similar audio effect (or channel characteristics) with the
ground-truth transfer target in Figure 4.7 (b).

4.4 Summary

This chapter focuses on issue 3: Improving noise reduction for device-
degraded speech. Compared to additive noise, device degradation, which

7There is a little overlap between the conditions of ipad_livingroom and ipadflat_office.
This is because recording device used under both conditions was same (iPad Air), resulting in
relatively similar channel characteristics.
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(a) Studio (b) Transfer target

(c) Transferred at α = 0.6 (d) Transferred at α = 1.0

Figure 4.7: Examples of transferred mel-spectrograms: (a) Studio recording, (b)
Target recording recorded in iphone_bedroom condition, (c) Transferred recording
with α = 0.6, and (d) Transferred recording with α = 1.0.

includes not only additive noise but also reverberation and poor microphone
response, is more likely to happen in the real-world speech application scenarios.
The proposed system can transform low-quality speech recordings into high-quality
ones. Specifically, by extending the noise token to channel token, we manage to
disentangle the channel factor from a high-quality reference recording, which is
then used to guide the system to predict the target high-quality mel-spectrogram.
We also use WaveRNN vocoder to synthesize the final waveform.

Experimental results show that our system works well and outperforms several
state-of-the-art baselines. Moreover, we show that it can be flexibly extended to
transform the input recording into not only professional studio quality (as our
primary target) but also with other acoustic (or channel) characteristics based on
the reference we designate. Our future work will include improving the naturalness
of the predicted mel-spectrogram. The possible approach is to incorporate a
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generative adversarial network-based spectrogram discriminator [35, 36]. Also, we
find DAPS dataset used in this chapter is relatively smaller with limited recording
conditions. This inspires us to collect a new large-scale dataset consisting of
various realistic device recordings to facilitate the future research. The details of
this new dataset can be found in Appendix A.
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Neural Intelligibility Boosting using

Generative Adversarial Networks

Chapters 3 and 4 focus on the improved noise reduction models. This chapter
looks into the another speech enhancement task – intelligibility boosting.

Instead of suppressing noise from noisy speech, intelligibility boosting is
supposed to modify the speech signal only in such a way as to increase its
intelligibility under the noisy environments. As explained in Section 2.2.4, deep
learning techniques have not yet been widely applied in this task due to the lack
of ground truth label, i.e., the “perfectly” intelligible speech. In this chapter,
we explore and propose a novel neural approach for intelligibility boosting. To
achieve this, we introduce generative adversarial networks (GANs) model [103]
to simultaneously optimize multiple advanced speech metrics, including both
intelligibility- and quality-related ones, which results in notable improvements in
performance and robustness. Our system can not only work in non-real-time mode
for offline audio playback but also support practical real-time speech applications.
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Experimental results using both objective measurements and subjective listening
tests indicate that the proposed system significantly outperforms state-of-the-art
baseline systems under various noisy and reverberant listening conditions.

This chapter is structured as follows. Section 5.1 describes the application
scenario and mathematically formulates the problem of intelligibility boosting.
Section 5.2 gives details on our proposed neural system. Section 5.3 presents the
experimental setup and results.

5.1 Scenario description and problem formula-
tion

Real-life speech communication, such as mobile telephony and public-address
announcement, usually occurs in noisy environments. These challenging environ-
ments severely degrade speech intelligibility, resulting in stressful listening or even
non-understanding for listeners. Since noise sources are physically present in the
near-end listener side, typical noise reduction methods which recover the clean
speech from the noisy input, however, cannot be applied in such scenarios. As
an alternative, intelligibility boosting aims to modify the speech signal only to
improve its intelligibility when exposed to noise and reverberation.

Figure 5.1 depicts an application scenario of intelligibility boosting. Let s(n) be
the input speech signal with sampling index n. An algorithm is applied to modify
s(n), and then the intelligibility-enhanced signal y(n) is output and played via a
loudspeaker in a noisy environment. The signal o(n) observed by the near-end
listener can thus be represented as

o(n) = y(n) ∗ h(n) + v(n), (5.1)

where ∗ denotes the convolution operation, h(n) is the room impulse response
(RIR)1, and v(n) is the near-end noise disturbance. We further consider a common
scenario in which the noise properties of v(n) can be measured using a noise
tracking algorithm via a reference microphone, such as the phone microphone for

1Loudspeaker response is integrated into the RIR for simplicity.
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Figure 5.1: Real-life scenario of intelligibility boosting task.

mobile telephony. On the other hand, we disregard the effect of reverberation2, i.e.,
h(n), since in practice it is difficult to estimate reverberation parameters in the
presence of additive noise. With these assumptions, our target is thus to develop a
system that transforms s(n) into y(n) to improve the intelligibility of o(n) under a
known noise condition.

More specifically, speech modification is carried out to redistribute the speech
energy over time and frequency. Let S(m, k) be the short-time Fourier transform
(STFT) spectrogram of the raw input signal s(n), with the frame index m and
frequency index k. We divide and group the frequency bins into the ERB-scaled
bands [104] using triangular filter banks with the peak response being at the
boundary between bands. Therefore, the input speech energy within one ERB
band (indexed by band i at frame m) is given by

Es(m, i) =
∑

k

gi(k)|S(m, k)|2, (5.2)

where i ∈ {1, 2, · · · , I} with I the total number of ERB-scaled bands, and gi(k) is
the amplitude of the i-th triangular band at the k-th frequency bin. Similarly,
we denote the spectrogram and energy band of noise as V (m, k) and Ev(m, i),
respectively. The modified speech energy within one ERB band can be represented
as α2(m, i)Es(m, i), where α(m, i) are the amplification factors that redistribute

2We tried to model reverberation in the preliminary experiment but got unsatisfactory results.
Details can be found in Appendix B
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the speech energy across time and frequency bands. Also, we do not change
the speech energy level, i.e., signal power before and after modification must be
the same; thereby, we have the following equal-power constraint with respect to
α(m, i): ∑

m,i

α2(m, i)Es(m, i) =
∑
m,i

Es(m, i). (5.3)

Next, the interpolated amplification factors applied to each frame m and frequency
bin k are obtained by

α̂2(m, k) =
∑

i

gi(k)α2(m, i). (5.4)

They are then multiplied with the input spectrogram S(m, k) to produce the
enhanced spectrogram α̂(m, k)S(m, k), which is subsequently converted to the
enhanced signal y(n) through the inverse STFT.

Instead of relying on expert knowledge to design an algorithm, we select several
objective intelligibility and quality metrics as our optimization targets. We will
further introduce the selected metrics in Section 5.2.1. On the basis of the above
discussion, we now reformulate the problem as follows. Given the noise estimation
(in the form of Es(m, i)) and the constraint of Equation (5.3), our target is to find
the amplification factors α(m, i) per time frame and ERB band to optimize the
objective metrics of interest.

5.2 GAN-based intelligibility boosting

In this section, we introduce our proposed GAN-based system to jointly optimize
multiple speech metrics for improved intelligibility.

5.2.1 Target speech metrics

Objective metrics are used to measure the intelligibility of speech distorted by
noise and reverberation. Very recently, Van Kuyk et al. [64] extensively tested the
accuracy of many of these metrics by comparing their correlation coefficients with
listening test scores. We accordingly selected the top three reliable intelligibility
metrics to build up and evaluate our proposed system. The target metrics are SIIB
[67], HASPI [65], and ESTOI [73]. In addition to intelligibility metrics, we also
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(a) Training process of discriminators (b) Training process of generator

Figure 5.2: Diagram of the GAN model of the proposed system for intelligibility
boosting.

selected the following two state-of-the-art quality metrics: PESQ [69] and ViSQOL
[70]. These two quality metrics are incorporated as the optimization targets to
compensate for the quality loss caused by intelligibility-enhancing modifications.
The details of above-mentioned metrics have been mentioned in Section 2.3.

Although these metrics can achieve high correlations with human subjective
perception, they are too complex and mathematically intractable to handle.
Particularly for a DNN model, we cannot directly use such metrics as the training
criteria since most of them are non-differentiable3. To overcome this obstruction,
we then introduce the GAN model into our system.
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5.2.2 System overview

Figure 5.2 shows the diagram of the GAN model of our proposed system. It is
composed of a generator (G), an intelligibility discriminator (Dint), and a quality
discriminator (Dqua). The G receives the input speech s and the near-end noise
v and then outputs the enhanced speech y = G(s, v), where we omit sampling
index n from this point forward. Next, Dint and Dqua predict the intelligibility and
quality scores of the enhanced speech, respectively. The predicted scores of the
discriminators are expected to be close to the true scores calculated from the target
objective metrics. Compared with the original complex metrics, the gradients of
DNN-based discriminators can be easily computed and back-propagated to G.
Therefore, with the guidance of Dint and Dqua, G can be effectively trained to
optimize the learned metrics of interest.

More specifically, we now explain the training process of Dint in detail. As
shown in Figure 5.2(a), to predict the intelligibility scores, Dint takes three inputs:
(1) the enhanced speech G(s, v); (2) undistorted input speech s; and (3) background
noise v. We introduce the so-called Q functions to represent the target metrics to
be modelled, with Qint(.) the functions for intelligibility metrics and Qqua(.) for
quality metrics. Moreover, the signal example ŷ, which is pre-enhanced using other
reference algorithms (e.g., SSDRC [40] or OptSII [44]), is also fed into Dint in the
training. As demonstrated in our earlier study [107], learning such additional
examples can stabilize the training process and improve performance. Given all
the above notations, the loss function of Dint is represented as follows:

Lint
D = Es,v{[Dint(G(s, v), s, v) − Qint(G(s, v), s, v)]2

+ [Dint(ŷ, s, v) − Qint(ŷ, s, v)]2}.
(5.5)

By minimizing Lint
D , Dint is encouraged to accurately predict the intelligibility

scores. Similarly, we can represent the loss function of Dqua as Equation (5.6).

Lqua
D = Es,v{[Dqua(G(s, v), s) − Qqua(G(s, v), s)]2

+ [Dqua(ŷ, s) − Qqua(ŷ, s)]2}
(5.6)

3ESTOI and PESQ metrics are technically differentiable under certain approximations, which
have been studied in [105] and [106], respectively.



5.2 GAN-based intelligibility boosting 63

Note that different from Dint, Dqua takes only two inputs: the enhanced speech
G(s, v) and reference input speech s. This is because we have Dqua focus on
measuring the quality of enhanced speech rather than the noisy observed speech.

Figure 5.2(b) illustrates the training process of G. We first fix the parameters
of Dint and Dqua, and then apply the back-propagated gradients to update G to
maximize the predicted intelligibility and quality scores. In order to increase the
predicted scores as much as possible, we use the following loss function:

LG = Es,v{[Dint(G(s, v), s, v) − tint]2 + λ[Dqua(G(s, v), s) − tqua]2}, (5.7)

where tint and tqua denote the maximum scores of the selected intelligibility
and quality metrics, respectively, and λ is a hyper-parameter controlling the
weight of speech quality to compensate for the quality degradation caused by
intelligibility-enhancing modifications.

The generator (G) and discriminators (Dint and Dqua) are trained alternatively.
At one training step, Dint and Dqua are trained individually with their corresponding
loss functions, i.e., Lint

D and Lqua
D . At the next training step, we fix the discriminators

and only train G by minimizing loss LG. By this means, G can be effectively
trained to optimize multiple advanced speech metrics, and the intelligibility of the
enhanced speech (output by G) can be greatly improved and without too much
quality degradation.

5.2.3 Network architectures

The details of the network architectures are given in Figure 5.3.

Generator

The input features for G are extracted from input speech and background noise.
Specifically, the speech signal is transformed into the features containing 64
ERB-derived bands per time frame using Equation (5.2). There are two advantages
for choosing features in the form of ERB-scaled bands rather than the raw frequency
bins: (1) ERB-filterbank groups several perceptually-similar frequency bins into
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(a) G architecture

(b) Dqua architecture

Figure 5.3: Network architectures of the proposed GAN model. Concat denotes
concatenation operation. We set slope = 0.3 for all LReLU activations.

one band, producing a more robust feature4; and (2) The number of ERB bands is
less than that of frequency bins, which can reduce the dimensions of the input and
output features, resulting in a smaller model size. For background noise, we use
the improved minima controlled recursive averaging algorithm (IMCRA) [12] to
estimate noise power spectral density (PSD) V 2(m, k), and then similarly extract
64 ERB bands as the noise features. These two features are then concatenated,
resulting in a 128-channel feature vector and passed on to the following networks.

For network design, we choose the 1-D convolutional neural network (CNN) as
the backbone for G due to the following reasons: (1) temporal convolution (1-D
CNN with filter across time axis) has shown powerful modeling ability and been
widely used in speech enhancement [38, 108, 109]; and (2) the 1-D CNN is suited
for real-time applications due to its low computational complexity.

As shown in Figure 5.3(a), G consists of six blocks of causal 1-D CNN each with
cumulative layer normalization (cLN) [38] and LeakyReLU activation (LReLU).
The kernel size and output channels are set to (5, 256), (7, 256), (7, 256), (7,

4Filterbank-based grouping operations are also implemented as front-end processing in many
intelligibility metrics such as SIIB[67] and ESTOI [73].
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256), (7, 256), and (5, 64), respectively. Two 64-node fully connected (FC) layers
are subsequently followed by the last CNN block. The element-wise exponential
activation function is then applied as follows:

output = exp (3 ∗ tanh (u)), (5.8)

where u is the result of the last FC layer, and the scale range of Equation (5.8)
is approximately 0.05 to 20. The 64-dimensional output vector serves as the
raw (non-normalized) amplification factors α(m, i), which redistribute the speech
energy across time and frequency bands: the speech energy Es(m, i) (at frame m

within band i) is boosted when α(m, i) > 1; otherwise, suppressed. Furthermore,
we add an energy normalization layer where the raw amplification factors are
multiplied by a global scale factor γ in order to satisfy the equal-power constraint
of Equation (5.3). Finally, the normalized α(m, i) are applied to reconstruct the
enhanced speech signal, as described in Section 5.1.

Except the last energy normalization operation, all layers in G are designed
with causal configurations, which can run without dependencies of the future
values of the signal. Moreover, G is a light-weight model containing only around
2.1M parameters. It performs intelligibility boosting very fast at the frame level,
allowing for practical real-time speech applications. We will further discuss the
extensions to real-time execution in Section 5.3.8.

Discriminators

Figure 5.3(b) gives the detailed architecture of Dqua. It takes two types of ERB
bands as input features: the unmodified input speech bands and enhanced bands.
The Dqua is composed of five layers of 2-D CNN with the following kernel size and
number of channels: [(1, 1), 8], [(3, 3), 16], [(5, 5), 32], [(7, 7), 48], and [(9, 9), 64],
each with LReLU activation. A 2-D global average pooling (GAPool) [110] is
added to the last CNN block to produce a fixed 64-dimensional output vector,
which is then followed by an FC layer with 64 LReLU nodes. The last FC layer
with sigmoid activation predicts the scores of modelled quality metrics, i.e., PESQ
and ViSQOL. Thus, the number of nodes are accordingly set to 2. Similar to our
previous study [107], we apply spectral normalization with 1-Lipschitz continuity
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[111] to all the layers used in Dqua to stabilize the training process.
For Dint, it shares the same network architecture with Dqua, except the inputs

are changed to 3-channel features, i.e., (input, enhanced, noise), which requires an
additional input of the estimated noise bands. Besides, the output nodes of Dint

are set to 3, corresponding to the three intelligibility metrics to be modelled: SIIB,
HASPI, and ESTOI.

5.3 Experiments

5.3.1 Data preparation

Speech materials consisted of Harvard sentences [76] spoken by two (one male
[112] and one female [113]) native English speakers. The Harvard sentences are
organized as 72 sets of 10 sentences each, and each set is designed to be phonetically
balanced. Sentences were selected from sets 1–60, 61–66, and 67–72 for training,
validation, and test data, respectively.

Six types of background noise were used: babble, restaurant, station, cafeteria,
airport announcement, and speech-shaped noise (SSN), with the first five from the
MS-SNSD dataset [86] and SSN artificially generated. For training and validation
data, we selected four types of noise (babble, station, restaurant, and SSN) to
generate noisy speech at three SNR levels, i.e., –11, –7, and –3 dB. The remaining
two types of noise were used for test data. For cafeteria noise, the SNRs were set
to –9, –5, and –1 dB; for airport announcements noise, they were set to –13, –9,
and –5 dB.

Although reverberation was disregarded in the training, we extensively examined
if the proposed system can work well in reverberant environments. Besides the
original room condition (recorded in professional studios with reverberation time
T60 ≈ 0.30 s), another two RIRs were selected from a large room (T60 = 0.61 s)
in the MIRD database [114] and stairway (T60 = 0.92 s) in the AIR database
[115]. Thus, there were a total of three (1 original + 2 selected RIRs) reverberant
environments considered in the test set. When generating noisy-reverberant speech,
we first convolved the raw speech with the RIR, and then added the masker noise
to the obtained reverberant speech at a desired SNR level.
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To summarize, there were 14,400 (600 sentences × 2 genders × 3 SNRs ×
4 noises) utterances in the training set; 1,440 (60 sentences × 2 genders × 3
SNRs × 4 noises) utterances in the validation set; and 2,160 (60 sentences × 2
genders × 3 SNRs × 2 noises × 3 reverberations) utterances in the test set. For
the test set, a total of 18 listening conditions (comprising of 3 SNRs, 2 noises,
and 3 reverberations) were extensively evaluated. It is worth noting that all the
sentences, noises, reverberations (except the original condition), and SNR levels of
the test set were unseen during model training.

5.3.2 Implementation details

All signals were down-sampled to 16 kHz in our experiments. For feature extraction,
we first used a Hanning window with a window size of 32 ms and hop size of 16
ms to compute the spectrogram. Next, 64 ERB-scaled triangular bands were
applied to the spectrogram to produce the 64-dimensional input features for neural
networks. All the input features were power-law compressed with a power of 1/6.
We chose SSDRC [40] as the reference algorithm to generate the signal example ŷ

that was used in Equations (5.5) and (5.6). During training, we normalized all
metric scores to the range of [0, 1], i.e., the same range with sigmoid activation, and
set the target maximum scores (tint and tqua in Equation (5.7)) to 1. Specifically,
we used the following parametric logistic function for score normalization:

f(v) = 1
1 + exp(a ∗ (v − b)) , (5.9)

where v denotes the raw metric score. Parameters (a, b) were accordingly set as
(−0.06, 32) for SIIB; (−0.95, 2.8) for HASPI; (−8.0, 0.25) for ESTOI; (−1.5, 2.5)
for PESQ; and (−2.5, 2.2) for ViSQOL. These parameters were empirically chosen
to make the normalized scores uniformly distributed between 0 and 1, which helps
reduce bias and stabilize GAN training.

For GAN model configurations, the Adam optimizer was used in the training,
with initial learning rates of 0.0004 and 0.0002 for the generator (G) and the
discriminators (Dint and Dqua), respectively. The batch size was 1, and the
hyper-parameter λ in Equation (5.7) was set to 0.5. The training process was
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(a) SIIB, r = 0.94 (b) HASPI , r = 0.93 (c) ESTOI, r = 0.97

Figure 5.4: Correlations between the predicted intelligibility metrics and cor-
responding normalized ground-truth metrics. r denotes Pearson’s correlation
coefficient. Samples were selected from the test set with weak reverberation
(T60 ≈ 0.30 s).

terminated when all three intelligibility scores (SIIB, HASPI, and ESTOI) on the
validation set stopped improving for five consecutive epochs5.

5.3.3 Preliminary correlation test

First, we conducted a simple preliminary test to verify if the discriminator can
well approximate the ground-truth metric. The proposed system can work only if
this assumption holds.

Figure 5.4 plots the correlations between the predicted intelligibility metric
scores, i.e., outputs of a trained Dint, and the corresponding normalized ground-truth
metric scores. As can be seen, intelligibility metrics were highly correlated with
the Dint predictions with all correlation coefficients r > 0.9, which demonstrates
that the Dint managed to mimic the behavior of target modelled metrics.

5.3.4 Objective evaluations

In this section, we evaluated our neural intelligibility boosting system through
objective measurements. We first re-implemented several baseline systems, and

5Source codes and the pre-trained model are available at https://github.com/nii-yamagishilab/
NELE-GAN

https://github.com/nii-yamagishilab/NELE-GAN
https://github.com/nii-yamagishilab/NELE-GAN
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then conducted an ablation test, yielding a total of eight systems evaluated in the
experiments. We explain and notate each system as follows:

• Unmodified: Plain speech without any modification.

• SSDRC: A baseline system using the state-of-the-art SSDRC [40] algorithm,
which achieved the highest and second highest intelligibility gains in the
1st [47] and 2nd [48] Hurricane challenges, respectively. It consists of two
cascading non-parametric modifications: spectral shaping (SS) in frequency
and dynamic range compression (DRC) in time.

• iMetricGAN: Our previously proposed system [107], in which we used
BLSTM networks to optimize SIIB and ESTOI. Its model size was 7.8M
parameters, which is much larger than the proposed system (2.1M parameters
for G).

• S-GAN: A system optimizing only SIIB, in which Dint was simplified to
predict only a single SIIB score, and no Dqua was used for optimizing quality
metrics.

• H-GAN: A system optimizing only HASPI.

• E-GAN: A system optimizing only ESTOI.

• Proposed (S+H+E): A partial version of our proposed system jointly
optimizing three intelligibility metrics, i.e., SIIB, HASPI, and ESTOI. No
Dqua was used for optimizing quality metrics.

• Proposed (All): Our full proposed system jointly optimizing three intelligi-
bility metrics (SIIB, HASPI, and ESTOI) and two quality metrics (PESQ
and ViSQOL).

We used the same target metrics (SIIB, HASPI, and ESTOI) as the evaluation
measurements due to their high correlations with human perception [64]. Moreover,
we incorporated an additional advanced metric sEPSM [74]. Note that sEPSM was
completely unseen to the model, it was thus regarded as a third-party evaluation
measurement in the experiments. As discussed in Section 5.3.1, the objective
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Table 5.1: Average objective scores of the compared systems across different
reverberant conditions under cafeteria noise.

System
Intelligibility in T60 ≈ 0.30 s Intelligibility in T60 = 0.61 s Intelligibility in T60 = 0.92 s Quality
SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM PESQ ViSQOL

Unmodified 15.90 1.92 0.228 6.70 15.76 1.77 0.220 6.61 9.26 1.42 0.134 5.89 4.50 5.00
SSDRC 30.98 2.74 0.314 7.03 24.72 2.27 0.273 6.77 15.24 1.83 0.199 6.04 3.52 2.71

iMetricGAN 35.61 2.85 0.302 7.16 26.90 2.34 0.256 6.88 16.44 1.89 0.193 6.14 3.20 2.56
S-GAN 37.89 2.77 0.239 7.31 30.57 2.35 0.208 7.04 17.91 1.79 0.154 6.20 2.08 2.02
H-GAN 35.12 3.12 0.242 7.55 27.58 2.61 0.205 7.13 16.57 1.99 0.149 6.28 2.07 2.08
E-GAN 34.20 2.71 0.331 7.21 28.17 2.36 0.285 6.94 16.03 1.81 0.207 6.15 3.07 2.38

Proposed (S+H+E) 41.33 3.11 0.313 7.53 32.99 2.62 0.268 7.17 18.90 2.00 0.194 6.28 2.63 2.17
Proposed (All) 37.97 2.95 0.324 7.44 31.05 2.52 0.277 7.11 18.48 1.96 0.209 6.26 3.54 2.69

Table 5.2: Average objective scores of the compared systems across different
reverberant conditions under airport announcement noise.

System
Intelligibility in T60 ≈ 0.30 s Intelligibility in T60 = 0.61 s Intelligibility in T60 = 0.92 s Quality
SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM PESQ ViSQOL

Unmodified 16.25 2.20 0.191 6.63 16.12 2.07 0.190 6.61 9.43 1.58 0.115 5.79 4.50 5.00
SSDRC 32.49 3.38 0.286 7.24 25.80 2.71 0.261 6.85 16.37 2.17 0.203 6.06 3.52 2.71

iMetricGAN 35.68 3.44 0.280 7.37 27.72 2.73 0.250 6.95 17.98 2.23 0.204 6.18 3.22 2.58
S-GAN 42.34 3.54 0.214 7.82 34.21 2.85 0.195 7.26 21.75 2.25 0.160 6.30 2.12 2.04
H-GAN 39.19 3.80 0.226 7.89 31.50 3.03 0.201 7.34 20.25 2.41 0.165 6.37 2.08 2.10
E-GAN 35.04 3.36 0.283 7.39 28.88 2.82 0.263 7.03 18.09 2.23 0.205 6.17 3.07 2.40

Proposed (S+H+E) 43.45 3.75 0.279 7.94 35.31 3.04 0.250 7.36 22.36 2.40 0.206 6.37 2.71 2.19
Proposed (All) 42.54 3.72 0.288 7.87 34.30 3.00 0.257 7.30 22.03 2.38 0.209 6.36 3.56 2.67

intelligibility scores were extensively tested under two types of unseen noise
under three room conditions: weak, medium, and severe reverberations6. The
quality scores (PESQ and ViSQOL) were computed by comparing the enhanced
speech (without noise and reverberation) with input unmodified speech. For the
above-mentioned six measurements, higher scores indicate better performance.

Tables 5.1 and 5.2 list the average objective scores of each system under
cafeteria and airport announcement noise, respectively. In both tables, Proposed
(All) clearly outperformed the state-of-the-art baseline SSDRC in all room

6When computing the intelligibility scores under these reverberant conditions, the clean and
distorted signals were time-aligned in advance.
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conditions with much higher intelligibility scores and comparable quality scores. It
also consistently improved upon iMetricGAN for all six measurements with a
far smaller model size. Compared with Proposed (S+H+E), Proposed (All)
achieved much higher scores for speech quality with only a slight decrease in
objective intelligibility scores7. S-GAN, H-GAN, and E-GAN performed
well on their corresponding optimization targets. For example, we can see
that H-GAN achieved the best HASPI scores in some cases. However, there
still remains quite a bit of room for improvement in terms of other non-target
metrics. This indicates that optimizing only a single metric might cause sub-
optimality in those unconsidered metrics. By jointly optimizing multiple metrics,
both Proposed (S+H+E) and Proposed (All) showed much more robust
performance on all intelligibility measurements. Specifically, Proposed (S+H+E)
produced the best results in terms of unseen sEPSM scores, and this further
demonstrates that the multi-metric optimization strategy can lead to effective
and generalized intelligibility improvement. More interestingly, we found that
Proposed (S+H+E) and Proposed (All) can achieve extra SIIB gains even
compared with the pure SIIB-oriented S-GAN system.

5.3.5 Subjective evaluations

In this section, we evaluated the proposed system through subjective evaluations.

Intelligibility listening test

We conducted an intelligibility listening test to further evaluate the following
five systems: Unmodified, SSDRC, iMetricGAN, Proposed (S+H+E), and
Proposed (All).

60 Harvard sentences (sets 67, 69, and 71 of the female speaker; and sets
68, 70, and 72 of the male speaker) were extracted and presented in each of the
18 listening conditions (3 SNRs × 2 noises × 3 reverberations), producing a
total of 5,400 tested utterances (60 sentences × 18 conditions × 5 systems). We
then divided these tested utterances into 90 blocks: each block consisted of 60

7We also found that the quality scores can be further improved using a larger weight λ in
Equation (5.7) at the cost of lower intelligibility scores.
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individual Harvard sentences, and each Harvard sentence was processed by a
random system and under a random listening condition. A total of 90 native
English speakers with no reported hearing impairments were recruited for the
online test, and all were paid. Each participant was assigned to one block. They
were instructed to listen to each tested utterance only once then type in as many
words they heard as possible. We also implemented a cheater-detection mechanism
by assigning five additional validation utterances (with very slight noise) to each
block of the main listening test. Participants who did not reach 60% average word
accuracy on these utterances were considered unqualified listeners, which led to
three participants being excluded from the analysis. Following the evaluation rules
of the 1st Hurricane challenge [47], we only accounted for the correct content
words in each transcription by excluding the short common words: ‘a’, ‘the’, ‘in’,
‘to’, ‘on’, ‘is’, ‘and’, ‘of’, and ‘for’. The keyword accuracy rate (KAR) was then
computed as the performance measure of intelligibility.

The results are plotted in Figures 5.5 and 5.6. Fisher’s least significant difference
(LSD) was also separately computed for each listening condition using ANOVAs
to enable statistical comparisons of different systems. As shown, modification
algorithms can generally lead to substantial intelligibility gains to the unmodified
speech, except for four extremely challenging conditions where all systems
failed to reach 10% KAR. The best system in all but two of the 18 conditions
was Proposed (All). For all conditions, it consistently outperformed not only
iMetricGAN, but also the state-of-the-art SSDRC. Interestingly, although its
objective intelligibility scores were lower than those of Proposed (S+H+E) (see
in Tables 5.1 and 5.2), it showed much higher increases in KAR. This reveals that
incorporating quality metrics into training can largely contribute to subjective
intelligibility, which is likely due to the effective suppression of audible artefacts8.

8Audio samples of the tested systems are available at https://nii-yamagishilab.github.io/
hyli666-demos/intelligibility/index.html

https://nii-yamagishilab.github.io/hyli666-demos/intelligibility/index.html
https://nii-yamagishilab.github.io/hyli666-demos/intelligibility/index.html
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Figure 5.5: Mean keyword accuracy rates (KARs) in percentage points for each
compared system across different listening conditions under cafeteria noise.
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Figure 5.6: Mean keyword accuracy rates (KARs) in percentage points for each
compared system across different listening conditions under airport announce-
ment noise.

Quality preference test

We also conducted AB preference tests to evaluate the perceptual quality of the
enhanced speech. We conducted pairwise comparisons between Proposed (All)
and the following three systems: (1) SSDRC; (2) iMetricGAN; and (3)
Proposed (S+H+E). 90 enhanced samples were randomly selected from the
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Figure 5.7: Preference scores (%) with 95% confidence intervals on speech quality
compared between Proposed (All) and three reference systems.

test set for each system, and a total of 15 listeners participated. Each participant
was instructed to listen to 18 randomized sample pairs, and for each pair they
had to select the one that sounded better in terms of speech quality. As we can
see from Figure 5.7, Proposed (All) achieved significantly higher preference
scores than iMetricGAN and Proposed (S+H+E) and performed comparably
with SSDRC. Such results clearly indicate that speech quality can be effectively
improved through incorporating objective quality metrics into model training.

5.3.6 Acoustic analysis on enhanced speech

We analyzed the acoustic properties of the intelligibility-enhanced speech. For
deeper insight, we used SSDRC as the reference system to conduct a comparative
study. Figure 5.8 gives examples of waveforms and spectrograms for different
signals. From the spectrograms, we found that both SSDRC and Proposed
(All) modified the speech signal through redistributing its energy from low
frequencies to the middle and high frequencies. By comparing Figure 5.8(c) with
(b), Proposed (All) tended to allocate more energy on the middle-frequency
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(a) Unmodified (b) SSDRC

(c) Proposed (All)

Figure 5.8: Waveforms and their spectrograms on one utterance under cafeteria
noise at SNR=–5 dB for different signals: (a) Unmodified input speech, (b)
enhanced speech from SSDRC, and (c) enhanced speech from Proposed (All).
Utterance used is notated as “f_70_8”, i.e., the 8-th utterance in 70-th list of
female speaker.

regions (2∼4 kHz) of the voiced segments (see black dashed box), while SSDRC
emphasized the high-frequency regions (4∼8 kHz) of the unvoiced segments (see
blue dashed box). We can also see that the waveform envelope of the enhanced
speech from Proposed (All) is similar to that of the original unmodified speech.
In contrast, the modified waveform of SSDRC drastically changed, resulting in
more acoustic artefacts.

We also investigated the gain (in dB) of the long-term average spectrum (LTAS)
calculated over one unmodified utterance. The gain values indicate the energy
level of a signal in a certain frequency region: the signal energy is higher than the
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unmodified utterance with gain > 0 dB; otherwise, lower. As shown in Figure 5.9,
frequency regions from 1 kHz to 8 kHz were effectively boosted in both SSDRC
and Proposed (All), which accords with our observations in Figure 5.8. Different
from noise-independent SSDRC, Proposed (All) can adapt well to the changing
environments. For example, the noise in Figure 5.9(b) was extremely strong
(up to 40 dB gain) in the low-frequency regions (∼125 Hz). Thus, the system
automatically gave up much more speech components in these regions, compared
with how it performed under weaker noise in Figure 5.9(a). We also found that the
speech components between 65 Hz to 150 Hz were particularly boosted under
cafeteria noise, as shown in Figure 5.9(a). Interestingly, this coincides with the
properties of the cafeteria noise where a peak gain was also exhibited near the
same regions (see blue and black lines). We hypothesize that by increasing the
speech components in such narrow but noise-dominant regions, the target speech
can be differentiated from the surrounding noise in an easier manner through
achieving a certain perception threshold. On the other hand, SSDRC performed
merely the same processing of the speech with two different noises (see red lines);
therefore, it cannot make full use of additional noise information. This is one of
the points explaining why our proposed system performed better in both objective
and subjective evaluations.
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(a) LTAS gain under cafeteria noise at SNR=–5 dB

(b) LTAS gain under airport announcement noise at SNR=–13 dB

Figure 5.9: Long-term average spectrum (LTAS) gain (dB) over LTAS of unmodified
utterance (f_70_8) for: (1) masker noise, (2) enhanced speech from SSDRC, and
(3) enhanced speech from Proposed (All).

5.3.7 Analysis of system robustness

We further analyzed the system’s robustness in two particular situations, where
(1) speaker and language are unseen to the model; and (2) background noise
estimation is not accurate.
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Table 5.3: Average objective scores on new German speaker test set.

System
Intelligibility Quality

SIIB HASPI ESTOI sEPSM PESQ ViSQOL
Unmodified 12.64 1.63 0.167 6.65 4.50 5.00

SSDRC 25.27 2.40 0.252 7.00 3.40 2.58
Proposed (All) 28.94 2.66 0.254 7.44 3.46 2.81

Speaker and language generalization

We tested the proposed system on a separately-created German speaker test set to
examine if it can work under the mismatched speaker and language conditions.
Specifically, we extracted 100 clean utterances from an unseen male German
speaker [48] and set the same 18 listening conditions (i.e., 2 noise types, 3 SNRs
and 3 room conditions) as used in the original test set (see Section 5.3.1), resulting
in a total of 1,800 tested utterances. Table 5.3 lists the objective evaluation results
on this new German speaker test set, where the scores were averaged over all
listening conditions. We can see that even though Proposed (All) was built only
upon English training data, it still achieved significant intelligibility gains and
outperformed SSDRC by a large margin. This further demonstrates that the
proposed system is robust, which can generalize well to mismatched speaker and
language.

Tolerance to noise estimation error

Next, we measured the tolerance of the proposed system to inaccuracy of background
noise estimation. As described in Section 5.1, in order to exploit noise information,
the proposed system requires a reference microphone and runs IMCRA [12]
algorithm to estimate noise PSD, i.e., V 2(m, k). However, such noise estimation
might be inaccurate, for example, when the noise is highly non-stationary or the
reference microphone is distant from the listener’s position. To simulate estimation
error in this process, we randomly marked certain noise PSD bins as error bins
with an error rate of ϵ%; thus, the corrupted noise PSD V 2

e (m, k) is given as
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follows:

V 2
e (m, k) =

exp(NG), if error

V 2(m, k), else
(5.10)

where NG is the random noise generated from Gaussian distribution with the
same mean and variance as those of logV 2(m, k), and error rate controls the
corruption level: a higher ϵ% indicates that each estimated bin is more likely
filled with random noise, making noise estimation more inaccurate. Figure 5.10
shows the objective metric scores under different error rates. For the intelligibility
metrics (i.e., SIIB, HASPI, ESTOI, and sEPSM), the corrupted noise PSD did not
affect performance much when the error rate ϵ was less than 40% but decreased
intelligibility scores incrementally when ϵ > 40%. However, even when noise
estimation completely failed (i.e., ϵ = 100%), Proposed (All) could still surpass
the performance of SSDRC in intelligibility metrics (except ESTOI), which
demonstrates that the proposed system is very robust against noise estimation
error. From another point of view, by simply substituting random values for noise
PSD, Proposed (All) degenerates into a noise-independent system. This also
indicates that our system is flexible and can adapt to scenarios in which the
implementation of a reference microphone is not available. More interestingly, we
found that the quality metrics (PESQ and ViSQOL) increased with increasing
noise estimation error. We hypothesize that the system tends to modify the speech
in a relatively aggressive manner to fully make use of noise information, e.g., giving
up much more speech components in low-frequency regions when low-frequency
noise is strong (see blue line in Figure 5.9(b)). For larger ϵ%, the system cannot
exploit useful information as the given noise PSD becomes random; therefore, it
tends to perform moderate modification, resulting in higher quality scores.

5.3.8 Extensions to real-time execution

Real-time execution is crucial for many speech applications such as mobile
telephony. In this section, we discuss the causality of the proposed system in
detail. As discussed in Section 5.2.3, the G used in Proposed (All) can inherently
perform intelligibility boosting at the frame level in a causal manner. However,
due to the equal-power constraint of Equation (5.3), we still need to collect the
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Figure 5.10: Average objective scores as noise estimation error is artificially added
to noise PSD.

entire signal to calculate the global energy of an utterance. Thus, we consider two
extended methods to overcome this limitation.

First, we revised the original utterance-level normalization (Equation (5.3)) to
the following frame-level normalization:

∑
i

α2(m, i)Es(m, i) =
∑

i

Es(m, i), ∀m. (5.11)

As shown in Equation (5.11), the energy is normalized at each frame m instead of
the whole utterance, which enables the system to perform real-time execution under
the equal-power constraint. We denote this modified frame-level normalization
method for our proposed system as P-All-FL. Compared with the original
utterance-level normalization method (denoted as P-All-UL), P-All-FL can only
redistribute the speech energy across the frequency bands within one frame but
not perform inter-frame redistribution.

Second, we consider another normalization method for application scenarios in
which the equal-power constraint is not rigorous. As mentioned in Section 5.2.3,
the global scale factor γ originally used in P-All-UL is calculated dynamically for
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(a) Histogram. (b) Box plot.

Figure 5.11: Statistical results (γ used in P-All-Soft was set to 5.62) of RMS ratios
between enhanced and unmodified raw speech: (a) frequency density histogram of
RMS ratios, and (b) box plot on RMS ratios, with red dot representing mean score.

each utterance to achieve perfect energy normalization. With this new method,
however, we prepare such a γ in advance by statically calculating the average
energy ratio between the unmodified and enhanced speech over the whole training
set. The γ can be then applied to the raw amplification factors to compensate for
the energy loss, achieving a soft energy normalization where the enhanced speech
has approximately the same energy with the unmodified one. We denote this
method as P-All-Soft, and γ was determined as 5.62 by calculating over the
training set.

Figure 5.11 presents the statistical results of the root-mean-square (RMS)
ratios between the enhanced and unmodified speech on the test set. As shown in
Figure 5.11, the distribution of RMS ratios was concentrated close to one with a
very small deviation. This indicates that the energy of enhanced speech can be
well maintained within the approximately same level as the unmodified one by
using P-All-Soft method.

Table 5.4 lists the objective evaluation results on the three normalization
methods. The scores were averaged over the whole test set across three SNR
levels, three room conditions, and two unseen noises. We can see that P-All-FL
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Table 5.4: Average objective scores for systems with different normalization
methods on test set.

Normalization
method Causal Equal-power

constrained
Intelligibility Quality

SIIB HASPI ESTOI sEPSM PESQ ViSQOL
Unmodified – – 13.79 1.82 0.180 6.37 4.50 5.00
P-All-UL # ! 31.06 2.75 0.260 7.06 3.55 2.68
P-All-FL ! ! 20.15 2.26 0.193 6.73 3.29 2.53
P-All-Soft ! # 29.79 2.68 0.249 7.06 3.55 2.67

did provide intelligibility gains to the unmodified speech. However, it performed
much worse than the other two methods due to the lack of inter-frame energy
distribution, which further reveals that energy reallocation in time is crucial for
intelligibility boosting. Although P-All-Soft cannot perfectly fulfill the equal-
power constraint, it satisfies the causality requirement and showed a comparable
performance to P-All-UL. Note that all three methods differed only in the energy
normalization strategy, while the core model of G used in the experiments was
identical. By choosing a suitable normalization method in accordance with actual
needs, the proposed system can satisfy different requirements of causality and
energy constraint.

Finally, we give a brief analysis on the system complexity. The intelligibility
boosting module, i.e., G, is composed of 2.1M weight parameters. Since each
weight is used once for one multiply-add operation per frame (16 ms), G thus
takes 262.5 million floating-point operations per second (MFLOPS) for real-time
execution9. For other main modules, including two FFTs (for input speech and
background noise analyses, respectively), one inverse FFT (for enhanced speech
reconstruction), and IMCRA noise estimation, they take around 4.0 MFLOPS. The
total complexity of the proposed system is around 270 MFLOPS. Considering both
model size and the computational complexity, our proposed system is light-weight
and can be easily implemented in practice.

9One multiply-add operation is counted as two operations.
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5.4 Summary

This chapter focuses on issue 4: Incorporating deep learning into intelligi-
bility boosting task. To generate the intelligible and high-quality speech, we
introduce a GAN model into our system to jointly optimize multiple intelligibility
and quality metrics.

Three modules are used in the GAN model to carry out such multi-metric
optimization: an intelligibility discriminator that learns to predict the objective
intelligibility scores of speech as accurately as possible, quality discriminator
that similarly learns to predict the objective quality scores, and a generator that
enhances the input speech signal to maximize both intelligibility and quality scores,
which are computed with the above two discriminators, respectively.

Experimental results from both objective measurements and large-scale listening
tests indicated that the proposed system can lead to significant intelligibility
gains and perform much better than compared baselines. It also generalizes well
to various listening environments including unseen noises and reverberations.
Moreover, the system is light-weight with only 2.1M parameters and can be easily
extended to enable real-time execution.

For modified enhanced speech, there is a trade-off between the intelligibility
gain and quality loss. In the future, we plan to investigate on this point and
further propose a flexible system in which the intelligibility and/or quality can be
adjusted by user demand.
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6
Joint Framework for Full-End Speech

Enhancement

In previous chapters, we have presented the improved methods for noise reduction
(NR) and intelligibility boosting (IB), respectively. In real-world speech communi-
cation, however, noises often exist in both speaker and listener environments. For
this complicated but common scenario, speech processing should be accordingly
carried out as two sub-tasks: (1) NR: to suppress noise and recover clean speech in
the far-end speaker side; and (2) IB: to pre-process speech signals (the output of
the NR module) before playback to improve its intelligibility in the near-end
listener side. In this paper, we refer to this two-stage task as full-end speech
enhancement and propose to address it by a joint framework integrating NR with
IB. Experimental results show that our proposed framework achieves promising
results and significantly outperforms the disjoint processing methods in terms of
various speech evaluation metrics.

This chapter is structured as follows. Section 6.1 formulates the problem



86 Chapter 6. Joint Framework for Full-End Speech Enhancement

of full-end speech enhancement task. Section 6.2 introduces the proposed joint
framework. Experimental setup and results are given in Section 6.3.

6.1 Introduction to full-end speech enhancement

In real-world application scenarios, as depicted in Figure 6.1, noises may exist in
not only speaker but also listener environments, resulting in severe degradation of
speech quality and intelligibility. To improve the listener’s listening experience,
we have to carry out NR and IB for simultaneously suppressing noise in far-end
speaker side and boosting intelligibility in near-end listener side. The signal model
follows1:

x = s + u, s̃ = NR(x), y = IB(s̃|v), o = y + v, (6.1)

where s is the clean speech, u is the far-end environmental noise2, v is the near-end
environmental noise, and x is the signal received by the far-end microphone. The
NR module receives x and outputs the estimated clean speech s̃, i.e., the denoised
speech. By conditioning on the near-end noise estimation, the IB module further
modifies s̃ before it is played by loudspeaker. The output enhanced speech is
denoted as y. Finally, the signal o is observed by the near-end listener. Our goal is
to improve the listening experience for listeners, i.e., the quality of y (without the
near-end noise v) and intelligibility of o under v, by designing effective NR and IB
modules. Also, to limit loudspeaker overload and unpleasant playback volume, we
follow the equal-power constraint that requires that signal power before and after
intelligibility boosting (i.e., s̃ and y) to be the same. Note that the input signal for
IB module in Chapter 5 is assumed to be perfectly clean speech s, while in this
chapter it is estimated clean speech s̃ which contains residual noise.

To address the full-end speech enhancement, researchers have explored joint
processing of noise reduction and intelligibility boosting [116, 117, 118, 119]. Most
existing works jointly control the NR filter along with near-end IB filter gain to
optimize a certain target intelligibility metric, e.g., SII in [116] or mutual information
in [117]. However, to make the optimization problem mathematically tractable,

1We disregard all related room transfer functions for simplicity.
2We only take into account the additive noise, but it can be generalized to other degradation

such as reverberation and audio clipping.
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Figure 6.1: A scenario of real-world speech communication where noises exist
in both speaker and listener environments. A reference microphone is used to
measure the near-end noise properties.

the NR filter is considered to be relatively simple (e.g., Niermann et al. [116]
used Wiener filter). Besides, most of them introduce additional assumptions and
approximations to some extent, including target metric approximation [116, 118]
and Gaussian signal model assumption [117], therefore limiting performance.

In this chapter, we propose a novel joint model for full-end speech enhancement.
On the basis of previous explorations, we intuitively extend our proposed IB
method (in Chapter 5) by integrating it with a mainstream neural NR method,
leading to a fully DNN-based solution. This model can fully benefit from the
powerful modeling capabilities of neural networks. Moreover, it can be jointly
optimized using a unified loss function and without being dependent on unnecessary
assumptions and approximations. Our experiments in Section 6.3 indicate that the
proposed model significantly improves speech quality and intelligibility and clearly
outperforms the disjoint pipeline methods.

6.2 Integrating noise reduction with intelligibility
boosting

In this section, we introduce the proposed joint model. Figure 6.2 shows its
overall diagram. It consists of three main modules: (1) a far-end NR module that
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Figure 6.2: Overall diagram of the proposed method for full-end speech enhance-
ment.

suppresses noise; (2) a near-end IB module that increases the intelligibility of
denoised speech by redistributing its energy over time and frequency; and (3) the
noise token module that extracts noise embedding and informs other modules of
far-end environmental information. We use causal configurations for these three
modules, which enables the model to perform real-time speech processing. Next,
we will describe details of each module.

6.2.1 Far-end noise reduction

Far-end NR aims to suppress noise. The input is the noisy speech recorded by the
far-end microphone, and the ideal output is a clean speech signal without noise
disturbance. To achieve this, we use a convolutional recurrent network (CRN) [27]
as the main neural architecture. As shown in Figure 6.3(a), the noisy speech is first
converted into real and imaginary spectrograms by using STFT. We use a Hanning
window with window size of 32 ms and hop size of 8 ms. The encoder consists
of five 2D convolutional layers each with 1 (along the time axis)×3 (along the
frequency axis) kernel, 1×2 stride, layer normalization [120], and parametric ReLU
(PReLU). The output channels are set to 16, 32, 48, 64, 96, and 128, respectively.
Between the encoder and the decoder, we insert a two-layer unidirectional LSTM
with 512 nodes to model the temporal dependencies. The decoder comprises five
transposed 2D convolutional layers with the same kernel and stride size as the
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(a) Noise reduction module (b) Intelligibility boosting module

(c) Noise token module

Figure 6.3: Illustration of the three major modules. CONV and FC denote
convolutional and fully-connected layers, respectively.

encoder. Since skip connections are used to feed the output of each encoder layer
as the additional input of the decoder layer, the output channels of the decoder
are accordingly set to 256, 192, 128, 96, 64, and 32, respectively. The following two
decoders respectively predict the real and imaginary parts of a complex ratio mask
[39, 121], which are then multiplied with the original complex spectrogram to
obtain the denoised one. The denoised speech is then generated with inverse STFT
and passed on to the following IB module.

6.2.2 Near-end intelligibility boosting

The IB module modifies the denoised speech to make it sound more intelligible
under the near-end environmental noise. We use the same IB system proposed in
Chapter 5. The architecture of IB module is given in Figure 6.3(b). The detailed
parameters are same as those described in Section 5.2.3, except the original input
filterbank is replaced to the spectrogram magnitude. This is because we need to
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make the data format of IB input consistent with that of NR output. Besides, we
feed the far-end noise information into the IB module. As shown in Figure 6.2,
the input features for the IB module includes: (1) spectrogram magnitude of
denoised speech, (2) the near-end noise estimation (i.e., noise power spectral
density estimated by reference microphone), and (3) neural noise embedding
extracted from noisy input speech (we will explain this in Section 6.2.3). The
optimization targets we selected are: SIIB [67], HASPI [65], ESTOI [73], PESQ
[69], ViSQOL [70], and HASQI [65]. The former five metrics have been used in
Chapter 5, and the last HASQI is a newly added quality metric.

6.2.3 Noise knowledge encoding

We also insert the noise token module into the joint model. As introduced in
Chapter 3, noise tokens are a set of neural noise templates used to encode the
far-end environment information and generate the corresponding noise embedding.
Such embedding is regarded as additional noise knowledge and fed into both NR
and IB modules. Figure 6.3(c) shows the detailed structure of the noise token
module. It is exactly same with that used in Chapter 3.

We previously demonstrated in Section 3.3 that noise token embedding can
improve the performance of the NR module. We expect that they can also benefit
the IB module. For example, by exploiting far-end noise knowledge, the IB module
may learn to avoid amplifying speech regions (in T-F bins) containing much
residual noise.

6.2.4 Training objective

The training objective is composed of three terms:

L = Lint + α ∗ Lqua + β ∗ Lsisnr, (6.2)

where Lint is intelligibility loss calculated by the intelligibility discriminator (similar
to that in Section 5.2.3), Lqua is quality loss calculated by the quality discriminator,
and Lsisnr is speech denoising loss. α and β denote the weight parameters,
respectively. To be more specific, Lsisnr is the scale-invariant signal-to-noise ratio
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(SI-SNR) [38] calculated by comparing the denoised speech with the clean reference
speech: 

starget := (< s̃, s > ·s)/||s||22
enoise := s̃ − starget

SI-SNR := 10 log 10( ||starget||22
||enoise||22

)

(6.3)

where < ·, · > denotes the dot product between two vectors and || · ||22 is Euclidean
norm (L2 norm). Intelligibility loss Lint is defined as the mean square error
between the predicted intelligibility scores and the maximum scores of target
metrics:

Lint = ||Dint(y|v) − tint||2 (6.4)

where y is the final enhanced speech output by the IB module, Dint(y|v) is the
predicted scores (under noise v) output by the intelligibility discriminator, and
tint is the maximum scores of the selected intelligibility metrics, respectively.
By means of this loss, the IB module has to reach intelligibility scores as high
as possible. Similarly we can define the quality loss Lqua. We jointly optimize
the whole model (including noise token, NR, and IB modules) by using the loss
function of Equation (6.2).

6.3 Experiments

6.3.1 Data preparation

We used two public corpora of Harvard sentences [76] (one spoken by male [112]
and one by female [113]) in the experiments. We split the whole 720 Harvard
sentences into 600, 60, and 60 for training, validation, and test data, respectively.

For training and validation, eight noise types were used in both far-end (speaker)
and near-end (listener) environments. Far-end SNR levels were set to 4, 8, and 12
dB; near-end SNR levels were set to -11, -7, and -3 dB. By randomly combining
these settings, we generated 28,800 and 2,880 utterances for training and validation,
respectively.

For test set, the far-end noise type is cafeteria at three SNRs, i.e., 6, 10, and 14
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dB; near-end noise type is airport announcement at three SNRs, i.e., -9, -5, and -1
dB. To summarize, the test set contained 1,080 utterances (60 sentences × 2
genders × 3 far-end SNRs × 3 near-end SNRs). Note that all the sentences, SNR
levels, and noise types of the test set were unseen during model training.

6.3.2 Implementation details

All signals used in the experiments were resampled at 16 kHz. Improved minima
controlled recursive averaging algorithm (IMCRA) [12] was used to estimate power
spectral density of the near-end noise. During training, we applied parametric
logistic function to normalize all metric scores into the range of [0, 1], i.e., the
same range with sigmoid activation, and set the corresponding target maximum
scores (e.g., tint in Equation (6.4)) to 1. We used Adam optimizer for training,
with initial learning rates of 0.0002 for the three neural module components (noise
token, NR, and IB) and 0.0001 for the discriminators (Dint and Dqua). In the
training phase, we first trained NR and IB modules separately. We then combined
and jointly trained them together with the noise token module. The batch size was
1, and the hyper-parameters α and β in Equation (6.2) were set to 0.6 and 0.005,
respectively.

6.3.3 Objective evaluations

We evaluated the proposed joint model using six objective metrics. As mentioned
in Section 6.2.2, the intelligibility metrics are SIIB, HASPI, and ESTOI; the
quality metrics are PESQ, ViSQOL, and HASQI. For all these metrics, higher
scores indicate better performance. The far-end noisy speech is processed by a
certain system and then played under the near-end noise. We evaluated seven
systems3 and notate them as follows.

• Noisy: The far-end input noisy speech is played under the near-end noise
without any modification.

• Noisy+NR: The far-end input noisy speech is processed only by the NR
module.

• Noisy+IB: Processed only by the IB module.
3Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/full-end-se

https://nii-yamagishilab.github.io/hyli666-demos/full-end-se
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Table 6.1: Objective intelligibility scores averaged over three near-end SNRs for
each far-end SNR condition.

System
Far-end SNR = 6 dB Far-end SNR = 10 dB Far-end SNR = 14 dB
SIIB HASPI ESTOI SIIB HASPI ESTOI SIIB HASPI ESTOI

Noisy 17.98 2.20 0.221 19.72 2.31 0.237 21.07 2.41 0.249
Noisy+NR 19.52 2.24 0.250 20.73 2.32 0.259 21.65 2.39 0.266
Noisy+IB 15.79 2.09 0.180 18.76 2.28 0.206 21.91 2.47 0.232

DSPPipeline 15.58 1.96 0.208 18.22 2.10 0.229 21.06 2.24 0.251
NeuralPipeline 24.47 2.67 0.302 27.34 2.85 0.319 30.09 3.00 0.333

Joint 26.16 2.70 0.305 28.65 2.84 0.319 30.77 2.96 0.330
Joint+NT 28.48 2.73 0.320 31.45 2.87 0.334 33.79 2.99 0.344

• DSPPipeline: Processed by the signal processing-based disjoint pipeline,
which consists of Wiener filter (for NR) and SSDRC algorithm [40] (for IB).

• NeuralPipeline: Processed by neural network-based disjoint pipeline, which
consists of the pretrained CRN-based NR [27] and GAN-based IB modules.

• Joint: Processed by the partial joint model (without the noise token module),
in which the NR and IB models are jointly optimized.

• Joint+NT: Processed by the full proposed joint model (with the noise
token module).

Intelligibility evaluation results are listed in Table 6.1, where the scores were
averaged over the three near-end SNR levels. As we can see, applying only NR
(Noisy+NR) or IB (Noisy+IB) does not increase the intelligibility. Noisy+IB
has even lower scores than Noisy. This is mostly because the IB module wrongly
amplifies the noise contained in the noisy input. To address the full-end speech
enhancement problem, NeuralPipeline, Joint, and Joint+NT integrate both
NR and IB modules, resulting in significant intelligibility gains compared with
Noisy. In contrast, DSPPipeline has extremely low scores. This is because the
SSDRC processor amplifies the residual noise that is produced by the former
Wiener filter. Besides, we can clearly see that joint trained models improve upon
the disjoint processing methods (DSPPipeline and NeuralPipeline). Moreover,
benefiting from the noise token module that exploits the far-end environment
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Table 6.2: Objective quality scores averaged over three near-end SNRs for each
far-end SNR condition.

System
Far-end SNR = 6 dB Far-end SNR = 10 dB Far-end SNR = 14 dB
PESQ HASQI ViSQOL PESQ HASQI ViSQOL PESQ HASQI ViSQOL

Noisy 1.41 0.15 1.83 1.55 0.18 1.94 1.69 0.21 2.09
Noisy+NR 2.33 0.28 2.48 2.52 0.32 2.69 2.70 0.36 2.91
Noisy+IB 1.24 0.10 1.66 1.32 0.12 1.71 1.41 0.14 1.78

DSPPipeline 1.32 0.10 1.68 1.43 0.12 1.74 1.54 0.14 1.81
NeuralPipeline 2.01 0.23 2.14 2.19 0.26 2.25 2.35 0.28 2.35

Joint 2.14 0.28 2.20 2.30 0.30 2.32 2.43 0.33 2.43
Joint+NT 2.26 0.30 2.32 2.45 0.32 2.43 2.58 0.35 2.52

information, Joint+NT consistently outperforms Joint and achieves the overall
best performance.

Table 6.2 lists the objective quality scores of enhanced speech y (without the
near-end noise v). Since intelligibility-boosting modification inevitably degrades the
speech quality at the cost of increasing intelligibility, Noisy+NR performs slightly
better than the proposed joint models. However, we can see that joint models
preserve speech quality much better than DSPPipeline and NeuralPipeline,
which indicates the effectiveness of our proposed method.

6.3.4 Subjective listening tests

We conducted subjective preference tests to further evaluate the speech intelligibility
and perceptual quality. Specifically, we conducted pairwise comparisons between
Joint+NT and the three systems: (1) DSPPipeline, (2) NeuralPipeline, and
(3) Joint. 300 enhanced samples were randomly selected from the test set for each
system, resulting in 900 tested sample pairs (300 samples × 3 system pairs). A
total of 20 native English speakers were recruited to participate in intelligibility
and quality preference tests, respectively, and all were paid. For intelligibility test,
each participant was instructed to listen to 45 randomized sample pairs played
back under the near-end noise (i.e., the signal o in Equation (6.1)), and for each
pair, they had to select the one that sounded clearer or that they could hear with
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(a) Intelligibility preference test

(b) Quality preference test

Figure 6.4: Preference scores (%) with 95% confidence intervals.

less listening efforts. For quality test, each participant had to listen to 45 sample
pairs (without the near-end noise, i.e., the signal y in Equation (6.1)) and select
the one that sounded better in terms of listening quality.

As we can see from Figure 6.4, the proposed Joint+NT achieved significantly
higher preference scores than all three compared systems in terms of both speech
intelligibility and quality. We can see that Joint+NT outperformed Joint by
a large margin in listening test results, which further indicates that exploiting
far-end noise knowledge is useful for not only far-end noise reduction but also
near-end intelligibility boosting.

Last, spectrogram examples (without near-end noise) of the evaluated systems
are shown in Figure 6.5. We can see that Noisy+IB amplifies noise, making the
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processed speech even noisy. The residual noise is wrongly amplified in DSP-
Pipeline, resulting in severe distorted spectrogram. Compared with Noisy+NR,
the middle-frequency regions of speech are emphasized in NeuralPipeline, Joint,
and Joint+NT. Benefiting from joint optimization and far-end noise knowledge,
the spectrogram of Joint+NT shows less residual noise and more clear fine
structure (see black dashed boxes).

6.4 Summary

This chapter looks into issue 5: Can we integrate noise reduction with
intelligibility boosting for the scenario where noises exist in both speaker
and listener environments? The answer is yes, and we demonstrate such a
joint framework is more efficient than disjoint pipeline methods.

Under the proposed framework, noise reduction and intelligibility boosting
modules can be jointly optimized, where the NR module suppresses the noise of
the input noisy speech, and the IB module further improves its intelligibility.
Experimental results using both objective evaluations and subjective listening
tests indicate that the joint framework can achieve significant intelligibility gain
while preserving speech quality well. It also consistently outperforms the disjoint
processing pipelines by a large margin.

The far-end SNR in this study were set to a moderate level, i.e., 6, 10, and 14
dB. This is because we assume the close-talk microphone is placed close to the
speaker. The full-end speech enhancement task becomes much challenging for the
far-talk situation where speaker-side SNR is lower (e.g., –5 or 0 dB). We will
further investigate on this corner case and try to improve our framework.
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(a) Noisy (b) Noisy+NR

(c) Noisy+IB (d) DSPPipeline

(e) NeuralPipeline (f) Joint

(g) Joint+NT

Figure 6.5: Examples of processed spectrograms (without near-end noise) for
different systems: (a) Noisy, (b) Noisy+NR, (c) Noisy+IB, (d) DSPPipeline, (e)
NeuralPipeline, (f) Joint, and (g) Joint+NT.
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7
Conclusion

In the previous chapters, we presented improved neural network-based speech
enhancement techniques for noise reduction and intelligibility boosting. As a result
of exploring the five issues listed in Chapter 1, we summarize the main conclusions
of this thesis as follows.

Issue 1: For neural noise reduction models, how to improve their
generalization ability to unseen noise?

We proposed a noise token module that is composed of a set of trainable neural
noise templates to dynamically encode the noise information and thus enrich a
DNN’s generalization. Experimental results show that the noise token module was
effective across various neural architectures and contributed to higher performance
growth with increasing noise diversity.
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Issue 2: When reconstructing speech signals, how to alleviate the phase
distortion introduced by inverse STFT?

Instead of using inverse STFT, we proposed a neural vocoder-based waveform
generation module to directly generate speech signals from a mel-spectrogram, which
avoids the use of noisy phases. Experiments found that the neural vocoder-based
model improved the listening quality of the generated speech.

Issue 3: How to improve the noise reduction performance for device-
degraded speech?

We directly modeled the joint degradation effect of device-degraded speech, which
included not only additive noise but also reverberation and the bad frequency
response of a microphone. We proposed an encoder-decoder neural network
to automatically transform device-degraded speech into high-quality speech.
Specifically, we first filtered out the channel characteristics of input speech and
then predicted a target high-quality mel-spectrogram by assigning a high-quality
recording as a reference. We used neural vocoder to synthesize the final waveform.
Experimental results show that the proposed method worked well and outperformed
several state-of-the-art baselines in terms of listening quality.

Issue 4: How to improve the performance of intelligibility boosting by
leveraging deep learning?

We proposed a novel neural intelligibility boosting method by using generative
adversarial networks. To overcome the lack of ground-truth labels, the network
was trained to approximate and mimic the behavior of speech intelligibility metrics.
The intelligibility-boosting module then modified speech signals in such a way
as to maximize speech metric scores under the guidance of a learned surrogate.
Experimental results from both objective measurements and large-scale listening
tests indicate that the proposed method achieved significant intelligibility gains
and performed much better than the compared baselines with a small model size.
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Issue 5: How to integrate noise reduction with intelligibility boosting
for a full-end speech communication scenario where noise exists in both
speaker and listener environments?

We proposed a DNN-based joint framework. Under this framework, noise reduction
(NR) and intelligibility boosting (IB) modules can be jointly optimized, where the
NR module suppresses the noise of the input noisy speech, and the IB module
further improves its intelligibility. Experiments found that the enhanced speech
could be less noisy and more intelligible. They also showed that the joint framework
achieved a significant intelligibility gain while preserving speech quality well, and
it consistently outperformed the disjoint processing pipelines by a large margin.

Future directions

This thesis investigated improving neural network-based speech enhancement. In
addition to the methods discussed in each chapter, there are a number of future
directions that could continue to improve the performance of speech enhancement.

• In Chapter 3, we used the WaveRNN vocoder to generate speech waveforms.
However, some generated samples were seriously distorted, resulting in
muffled voice. This was probably caused by the autoregressive mechanism
of the WaveRNN vocoder, where the previous bad samples have negative
effects on future predictions. The inference speed was also slow since the
speech waveforms are generated sample by sample. One future direction is to
try a non-autoregressive neural vocoder, such as HiFi-GAN [122]. Since a
conditioned mel-spectrogram may contain noise, it is also worth studying how
to adapt the vocoder to make it more robust to mel-spectrogram distortion.

• In Chapter 4, we filtered out the channel characteristics of input signals
by using an adversarial network classifier. However, there may still exist
residual channel information on the encoder representations. Recently,
mutual information (MI) minimization [123, 124] has been shown to have a
powerful ability for extracting disentangled features. It would be interesting
to investigate the use of MI minimization technique.
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• In Chapter 5, we proposed a noise-aware neural intelligibility boosting
system while disregarding reverberation. We attempted to incorporate a
reverberation effect into the system in Appendix B but failed. Therefore,
reverberation modeling is still a challenging problem. Besides, we modified
the spectrogram magnitude and simply used the phase of the input clean
signal to reconstruct enhanced speech. To incorporate phase estimation, in
the future, we will consider estimating real and imaginary spectrograms
of enhanced speech simultaneously. Speaking style (e.g., prosody and/or
duration) modification via voice conversion approaches [125, 126] is also a
possible direction for intelligibility boosting.

• In Chapter 6, we proposed a joint framework integrating noise reduction with
intelligibility boosting to address full-end speech enhancement. However, as
the far-end SNR levels (on the speaker side) become lower, the task becomes
much more challenging. Very recently, Shifas et al. [119] proposed directly
mapping noisy speech to an intelligibility-boosted target with only a single
network. In the future, we will look into this end-to-end method and further
update our model.

• All speech enhancement models proposed in this thesis require using only
a single-channel microphone. They can be further extended to the use of
multi-channel microphone arrays to benefit from spatial information.
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A
Device-degraded Speech Dataset

A.1 Motivation

Training a data-driven speech enhancement model requires large amount of data
(i.e., pairs of clean speech and noisy counterpart), but the existing datasets
are relatively smaller compared to those used in other domains such as image
classification [127]. Also, most datasets consist of only synthetic noisy speech
rather than real noisy recordings. Although noisy speech can be obtained easily
enough by adding clean speech with random noise segments [86, 128] or convolving
with room impulse responses [129], Reddy et al. [130] pointed out that models
trained on synthetic datasets often degrade significantly on real recordings. This is
mostly because the realistic device degradation cannot be perfectly simulated by
synthetic datasets. For example, the measured transfer functions cannot capture
the nonlinear reverberation and nonlinear distortion of microphone occurred
real-world recording.

Given this background, to better facilitate the research on speech enhancement,
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especially the noise reduction for device-degraded speech (discussed in Chapter 4),
we collected and released a new dataset consisting of realistic device-degraded
speech, named DDS.

DDS contains real recordings that are collected in diverse realistic environments
using various microphone devices. Specifically, DDS is built on top of two existing
datasets: DAPS [91] and VCTK [88]. We play clean speech recordings (four
hours from DAPS and eight hours from VCTK) and re-record waveforms in nine
environments (two offices, two conference rooms, three working studios1, one living
room, and one waiting room) on three different devices (one MEMS and two
condenser microphones), producing 27 different recording conditions. For each
condition, recordings are conducted with six microphone positions to simulate
different noise and reverberation levels. In total, DDS contains 1,944 hours (3
devices × 9 environments × 6 positions × 12 hours) of real recordings.

As far as we are concerned, this is the largest public dataset comprehensively
covering various recording factors (i.e., environment, device, and position). In
addition to the study of speech enhancement, it can be used in research domains
such as domain adaptation in automatic speech recognition (ASR) [131], text-
to-speech (TTS) from found voice data [132], and replay spoof detection in
automatic speaker verification (ASV) [133]. The dataset is publicly available
online: https://doi.org/10.5281/zenodo.5464104.

A.2 Dataset overview

In this section, we explain how we collected the DDS dataset and conduct an
initial analysis. Table A.1 gives an overview of the dataset settings.

Speech materials

Clean speech materials are selected from the DAPS [91] and VCTK [88] datasets,
which both contain professional voice recordings. Specifically, the DAPS portion
has four hours of speech data consisting of 20 speakers (ten female and ten male),

1Specifically: a photo studio, a capture studio, and a voice studio.

https://doi.org/10.5281/zenodo.5464104
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Table A.1: Overview of dataset settings. MEMS and condenser are microphone
types. For device position, parameter (distance, angle) denotes the distance and
angle between device and sound source, respectively.

Setting Count Description

Speech materials 2 DAPS, VCTK clean sets

Environments 9

conference rooms (2),
offices (2), studios (3),

living room (1),
waiting room (1)

Devices 3
iPad Air (MEMS),

Uber Mic (condenser),
MPM-1000 (condenser)

Device positions 6
A(50 cm, 0°), B(100 cm, 15°)

C(125 cm, 30°), D(150 cm, 45°)
E(175 cm, 60°), F(200 cm, 75°)

and the VCTK portion has eight hours2 of speech data consisting of 28 speakers
(14 female and 14 male). As shown in Fig. A.1, we played and recorded speech
using devices at a sampling rate of 48 kHz. To avoid the probable bias caused by
the loudspeaker characteristics, we used a high-quality coaxial monitor speaker
(Presonus Sceptre S63) with very nice flat frequency response. For the DAPS
portion, we re-sampled speech files into 44.1 kHz to match the original sampling
rate of the DAPS clean set. Finally, we applied a cross-correlation algorithm to
align the recorded speech with the original clean speech.

Environments

All recordings were conducted in realistic rooms4. We selected a total of nine
rooms with different layouts and sizes: two conference rooms, two offices, three
studios, one living room, and one waiting room. Each room had a certain level
of environmental noise and reverberation. It is worth noting that there is no

2We only selected part of VCTK speech instead of using the entire set.
3https://www.presonus.com/products/sceptre-s6
4Details of room information (e.g., room size) and text scripts are included in the released

DDS dataset.
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(a) Schematic diagram of recording setup (b) Example of device recording in the livin-
groom1

Figure A.1: Recording setup. Under each environment, studio-quality speech is
played through a monitor loudspeaker and re-recorded on three devices (iPad Air,
Uber Mic, and MPM-1000) at six (A–E) positions.

constraint on the room noise. For example, the noise collected during recording
may contain the sound of air conditioner, computer fans, or outdoor noise. We
expect such background noise is close to that occurred in real-world recording, e.g.,
in home and office.

Devices and recording positions

Table A.1 lists the three microphone devices used during recording. These were a
micro-electromechanical system (MEMS)-processed microphone, which is of small
size and commonly embedded in smart devices, and two condenser microphones,
which can offer a better sound quality than the MEMS microphones.

In addition to recording device, we conducted multiple recordings at six different
positions for each device in each environment. The closest position was set to 50
cm directly in front of the speaker, while the farthest was set to 200 cm and at
75°angle from the speaker. In this manner, we collected replayed speech with
various noise and reverberation levels for each recording condition.

Summary of DDS dataset

In total, the DDS dataset consists of 9 environment settings and 3 device settings,
resulting in a total of 27 recording conditions. Each condition consists of 83,058
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Table A.2: Average PESQ and ESTOI scores in different environments.

Environment
DAPS portion VCTK portion
PESQ ESTOI PESQ ESTOI

confroom1 2.34 0.715 2.58 0.630
confroom2 1.98 0.617 2.27 0.527

office1 2.60 0.758 2.80 0.660
office2 2.31 0.724 2.54 0.627
studio1 2.37 0.725 2.59 0.602
studio2 3.01 0.815 3.10 0.735
studio3 3.10 0.811 3.16 0.735

waitingroom1 3.02 0.796 3.13 0.722
livingroom1 2.34 0.723 2.61 0.647

speech files (13,843 files × 6 positions) at sampling rates of 44.1 kHz (for the
DAPS portion) and 48 kHz (for the VCTK portion).

A.3 Initial analysis of DDS

Last, we conducted an initial analysis to investigate the effects of the various
environments and devices on recording quality. We used PESQ [69] and ESTOI
[73] measures to evaluate objective speech quality and intelligibility, respectively.
Tables A.2, A.3, and A.4 list the average scores under different conditions of
environment, device, and position, respectively.

We can clearly see that all recording factors dramatically affect speech quality
and intelligibility. For example, as shown in Table A.2, recording quality is directly
related to room environment. Table A.3 shows that the condenser microphones
(Uber Mic and MPM-1000) can offer a better sound quality than the MEMS one
(iPad). Table A.4 shows that speech recorded at a closer position has a better
quality. In summary, these results indicate that DDS provides a sufficiently large
variation of speech data to comprehensively cover common recording factors.
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Table A.3: Average PESQ and ESTOI scores for different devices.

Device
DAPS portion VCTK portion
PESQ ESTOI PESQ ESTOI

iPad 2.35 0.688 2.56 0.585
Uber Mic 2.66 0.767 2.85 0.684

MPM-1000 2.68 0.773 2.86 0.693

Table A.4: Average PESQ and ESTOI scores with different device positions.

Device position
DAPS portion VCTK portion
PESQ ESTOI PESQ ESTOI

A (50cm, 0°) 3.22 0.901 3.32 0.840
B (100cm, 15°) 2.77 0.810 2.94 0.728
C (125cm, 30°) 2.57 0.770 2.78 0.680
D (150cm, 45°) 2.44 0.720 2.65 0.624
E (175cm, 60°) 2.27 0.656 2.50 0.557
F (200cm, 75°) 2.11 0.597 2.35 0.495
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B
Reverberation Modeling for Intelligibility

Boosting

B.1 Reverberation modeling

We attempted to incorporate the reverberation effect into the intelligibility boosting
task (the topic of Chapter 5).

For intelligibility boosting, our goal is to modify a clean speech signal to make
it sound clearer under noise and reverberation. However, unlike additive noise that
is independent of clean speech, the modification to speech affects the reverberation
effect. Following the derivation in [43], early reverberation is disregarded, and late
reverberation can be modeled as:

σ2
L(m, i) = ρ2(1 − a2N) ×

B−1∑
b=0

a2bRα2(m − n0 − bR, i)σ2
S(m − n0 − bR, i), (B.1)
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where σ2
L(m, i) is late reverberation variance at the m-th frame and i-th band, σ2

S

is input speech variance, R is hop size, N is window size, n0 denotes the sample
index from which the late reverberation of the impulse response starts (typically
50 ms after the impulse response peak), B acts as a frame index to which the
late reverberation effect ends, and α(m, i) denotes the amplification factor (see
Section 5.1) used to redistribute the speech energy across time and frequency
bands. The remaining a and ρ2 are two reverberation-related parameters. a is a
damping factor defined by the Polack model [134] in Equation (B.2), and ρ2 is the
diffuse response energy given in Equation (B.3).

a = 10− 3
T60fs , (B.2)

ρ2 =
+∞∑
l=n0

E[h2(l)] 1
fs

, (B.3)

where T60 denotes reverberation time, fs denotes sampling rate, and h(l) denotes
the room impulse response. By using Equation (B.1), late reverberation can be
represented by a convolution between room-related parameters, i.e., ρ2(1−a2N )a2bR,
and the modified speech variance, i.e., α2(m − n0 − bR, i)σ2

S(m − n0 − bR, i). The
same as [43], we assume T60 and ∑+∞

l=n0 E[h2(l)] to be known, such that a and ρ2

can be computed.
To enable the neural intelligibility boosting system to be reverberation-aware,

we alter both the generator (G) and intelligibility discriminator (Dint). Specifically,
we concatenate a and ρ2 and repeat this 32 times to produce a 64-dimensional
reverberation-related vector, which is then fed into G as an additional input
feature. G outputs the amplification factor α, and then the modified speech
variance α2σ2

S can be obtained. Next, we compute the late reverberation variance
σ2

L using Equation (B.1). Finally, σ2
L is fed into Dint as additional input, such that

Dint can predict the intelligibility score under reverberant conditions.

B.2 Experiments

We conducted experiments to verify if reverberation modeling works for the
intelligibility boosting task. We used Proposed (S+H+E) (see Section 5.3.4)
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Table B.1: Average intelligibility scores for different systems.

System
Intelligibility

SIIB HASPI ESTOI
Base w/o reverb 31.89 2.69 0.265
Base with reverb 25.29 2.34 0.238

as the Base system, in which quality metrics were neglected for simplicity. We
extended the original training set (see in Section 5.3.1) by adding reverberation.
Specifically, we selected four room impulse responses from an external dataset
[115], with reverberation time T60 ranging from 500 to 950 ms. The test set
remained the same, which contained three unseen reverberation types from weak
to severe reverberation. We followed the same implementation recipe (as described
in Section 5.3.2) to train the system.

We compared the systems with and without reverberation modeling. Table B.1
reports the objective intelligibility scores, where the scores were averaged over
the whole test set including the three tested reverberation levels. As can be
seen, the reverberation modeling used in this Appendix did not help improve the
intelligibility boosting performance for reverberant conditions. Therefore, how
to model reverberation for the intelligibility boosting task is still an unsolved
problem.
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C
Online Resources

This appendix lists the attached resources of the thesis.

Chapter 3

• Audio samples: https://nii-yamagishilab.github.io/samples-NTs

Chapter 4

• Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021

Chapter 5

• Source codes: https://github.com/nii-yamagishilab/NELE-GAN
• Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/intelligibility

Chapter 6

• Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/full-end-se

Appendix A

• DDS dataset: https://zenodo.org/record/5464104

https://nii-yamagishilab.github.io/samples-NTs
https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021
https://github.com/nii-yamagishilab/NELE-GAN
https://nii-yamagishilab.github.io/hyli666-demos/intelligibility
https://nii-yamagishilab.github.io/hyli666-demos/full-end-se
https://zenodo.org/record/5464104
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