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Abstract

Algebraic characterization of logic programs has received increasing attention in recent

years. Researchers attempt to exploit connections between linear algebraic computa-

tion and symbolic computation to perform logical inference in large-scale knowledge

bases. The merit of logic reasoning in vector space is not only the scalability but also

the capability of integrating with other Artificial Intelligence (AI) techniques such as

Artificial Neural Network (ANN). Bridging Logic Programming (LP) and ANN can

open up the gate to build more robust and explainable AI models. However, current

work is usually based on manipulating the dense matrix format that is not efficient

in both memory and time complexity. In addition, most of the work suffers from the

combinatorial explosion problem that researchers have not yet found an appropriate

approach to deal with in the language of algebra.

Following this direction, we have analyzed the sparsity of matrix representation of

logic programs. Then we propose the use of general-purpose sparse representations

to utilize the efficiency of linear algebraic approaches for deductive reasoning. We

show its great power of computation in reaching the fixed-point of the immediate

consequence operator. In particular, performance for computing the least models of

definite programs is dramatically improved using the sparse matrix representation. We

also apply the method to the computation of stable models of normal programs, in

which the guesses are associated with initial matrices, and verify its effect when there

are small numbers of negations.

In this thesis, we also extend the linear algebraic characterization in abductive

reasoning by exploiting the transpose of the program matrix. Then we propose a novel

algorithm, which combines the flexibility and robustness of numerical computation

with the compactness and efficiency of set operations, in order to compute solutions

of abductive Horn propositional tasks. Experimental results demonstrate that our

method is competitive with conflict-driven techniques and has the potential to speed

up on parallel computing platforms.
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Chapter 1

Introduction

Logic Programming (LP), which provides languages for declarative problem solving

and symbolic reasoning [57], has started gaining more attention in terms of building

explainable learning models [89, 18, 29]. For decades, LP representation has been con-

sidered mainly in the form of symbolic logic [53], which is useful for declarative problem

solving and symbolic reasoning. Since then, researchers have developed various dedi-

cated solvers and efficient tools for Answer Set Programming (ASP) - LP that are based

on the stable model semantics [85]. Recently, LP starts gaining more attention in order

to build explainable learning models [16, 55, 8, 26], whereas it still has some limitations

in terms of computation and efficiency. On the other hand, several researchers attempt

to translate logical inference into numerical computation in the context of mixed in-

teger programming [9, 34, 39, 56]. They exploit connections between logical inference

and mathematical computation that open a new way for efficient implementation.

Lately, several studies have been done on embedding logic programs to numerical

spaces and exploiting algebraic characteristics [75, 80, 7]. There are several reasons

for considering linear algebraic computation of LP. First, linear algebra is at the

heart of many applications of scientific computation, and integrating linear algebraic

computation and symbolic computation is considered a challenging topic in Artificial

Intelligence (AI) [78]. In particular, transforming symbolic representations into vec-

tor spaces and reasoning through matrix computation are considered one of the most

promising approaches in neural-symbolic integration [29]. Second, linear algebraic com-

putation has the potential to cope with Web-scale symbolic data, and several studies

develop scalable techniques to process huge relational knowledge bases [66, 73, 95] in

tensor spaces. Since relational KBs consist of ground atoms, the next challenge is ap-

plying linear algebraic techniques to LP and deductive Knowledge Base (KB)s. Third,

it would enable us to use efficient (parallel) algorithms of numerical linear algebra for

computing LP, and further simplify the core method so that we can exploit great com-
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puting resources ranging from multi-threaded CPU to GPU. The promising efficiency

has been reported in GraphBLAS where various graph algorithms are redefined in the

language of linear algebra [19].

In general, reasoning is the process of using existing knowledge to draw conclusions,

construct explanations, or make predictions. The three methods of reasoning are the

deductive, abductive, and inductive approaches.

1. Deductive reasoning (consequence):

from prior knowledge (premises) to con-

clusions.
P ⇒ Q

P

Q

2. Abductive reasoning (explanation):

from given effects to possible causes.
P ⇒ Q

Q

P

3. Inductive reasoning (generalization):

from observed samples to causal rules.
P

Q

P ⇒ Q

In this thesis, we consider the linear algebraic computation in all three forms of

reasoning. We have developed the methods for deduction and abduction while the

method for induction is remaining as a future research work.

Deductive reasoning

In [14], Cohen described a probabilistic deductive database system in which reasoning

is performed by a differentiable process. With this achievement, they can enable novel

gradient-based learning algorithms. In [79], Sato presented the use of first-order logic

in vector spaces for Tarskian semantics, which demonstrates how tensorization realizes

efficient computation of Datalog. In [80], Sato proposed a linear algebraic approach

to datalog evaluation. In this work, the least Herbrand model of DB is computed via

adjacency matrices. He also provided theoretical proofs for translating a program into

a system of linear matrix equations. This approach achieves O(N3) time complex-

ity where N is the number of variables in a clause. Continuing in this direction, Sato,
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Inoue, and Sakama developed linear algebraic abduction to abductive inference in Dat-

alog [83]. They did empirical experiments on linear and recursive cases and indicated

that the approach can successfully abduce base relations.

In [38], Hitzler et al. theoretically proved that first-order normal logic programs

can be approximated by feedforward connectionist networks based on the well-known

theorem of Funahashi [25] that every feedforward neural network with at least 3 layers

can uniformly approximate any continuous function. Hitzler et al. realized the use

of neural networks to compute the immediate consequence operator TP and further

extended it to first-order logic. However, the main open question is how to find the

appropriate structure of the network (how many layers, how many neurons per layer) for

a given logic program. In this regard, Serafini and Garcez show how Real Logic can be

implemented in deep Artificial Neural Network (ANN) [88] then propose Logic Tensor

Networks (LTN). The framework is built upon a learning task with both knowledge

and data being mapped onto real-valued vectors that the authors follow an inference-

as-learning approach.

Using a linear algebraic method, Sakama, Inoue, and Sato define relations between

LP and multi-dimensional array (tensor) then propose algorithms for computation of

LP models [75, 77]. The representation is done by defining a series of conversions

from logical rules to vectors and then the computation is done by applying matrix

multiplication. Later, elimination techniques are applied to reduce the matrix size [61]

and gain impressive performance. Sakama et al. has also proposed a partial evaluation

method that precomputes the fixpoint based on matrix products of the program matrix

with itself [76].

In [6], a similar idea using 3D-tensor was employed to compute solutions of abduc-

tive Horn propositional tasks. In addition, Aspis built upon previous works on matrix

characterization of Horn propositional logic programs to explore how inference from

logic programs can be done by linear algebraic algorithms [4]. He also proposed a

new algorithm for the non-monotonic deduction, based on linear algebraic reducts and

differentiable deduction.

These works show that the linear algebraic methods are promising for logic infer-

ence on large scales. However, such methods have not yet been proved to be really

efficient, since they have not yet been done adequate experiments, to the best of our

knowledge. In this thesis, we have extended Sakama et al.’s idea of representing logic

programs by tensors [75] to analyze the sparsity of program matrices and employ sparse

representation for further enhancement.

Abductive reasoning

Abduction is a form of explanatory reasoning that has been not only discussed in Philos-
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ophy of Science but used in AI for several tasks [68] including diagnosis and perception

[48], automated planning [24], belief revision [11] and nonmonotonic reasoning [44].

In a nutshell, logic-based abduction is formulated as the search for a set of abducible

propositions that together with a background theory entails the observations while pre-

serving the consistency [23]. Abduction has often been used in the framework of LP,

which is referred to as Abductive Logic Programming [50]. More recently, abductive

reasoning has gained interests in connecting neural and symbolic reasoning [17] as well

as explainable AI [42].

Abductive reasoning has been studied intensively in diagnosis and automated rea-

soning, and several procedures have been proposed in the literature. Inoue and Sakama

has introduced the idea of disjunctive abduction and has presented several properties

of disjunctive explanations in the context of (abductive) logic programming [47]. In

the context of consistency-based diagnosis, the Assumption-based Truth Maintenance

System (ATMS) has been used extensively [20]. Based on the background theory,

ATMS constructs a directed graph in which propositions are represented as nodes, and

in each node, ATMS stores all hypotheses allowing to infer this node. Further in [21],

de Kleer developes an algorithm that ensures soundness, completeness, minimality, and

consistency of every node label. In [70], Reiter has developed an approach via conflicts

arising from the manifestation. Reiter exploits the hitting set relation between conflicts

and consistency-based diagnoses to operate on a tree structure. In [35], Greiner et al.

have extended Reiter’s idea by utilizing a directed acyclic graph instead of a tree, then

they have proposed Hitting Set Directed Acyclic Graph (HS-DAG).

In automated reasoning, Inoue proposed abduction as the search for logical con-

sequences, in which explanations are derived deductively, via Skipping Ordered Lin-

ear (SOL) resolution [43]. SOL resolution has also been applied to compute nonmono-

tonic reasoning [44] and Meta-level abduction [46]. SOLAR (SOL for Advanced Rea-

soning) is the state-of-the-art implementation of SOL resolution based on the tableaux

method [60].

In terms of linear algebraic computation, Sato et al. developed an approximate

computation to abduce relations in Datalog [83], which is a new form of predicate

invention in Inductive Logic Programming [59]. They did empirical experiments on

linear and recursive cases and indicated that the approach can successfully abduce

base relations, but their method cannot compute explanations consisting of possible

abducibles in diagnosis.

In [5], Aspis et al. have proposed a linear algebraic transformation for abduction by

exploiting Sakama et al.’s algebraic transformation. They have defined an explanatory

operator based on third-order tensors for computing abduction in propositional Horn

programs, which simulates deduction through Clark completion for abductive programs
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[15]. Yet, the dimension explosion would arise unfortunately, and Aspis et al. have not

yet reported an empirical evaluation.

With the goal to explore the potentials of linear algebraic computation for the

Propositional Horn Clause Abduction Problem (PHCAP) in vector spaces, we continue

to research the use of matrix representation of logic programs for solving abduction.

We propose the use of the transpose of a program matrix that has been defined for

deduction in [75, 63] to represent an abductive matrix for 1-step abduction in vector

spaces, then solve the Minimal Hitting Sets (MHS) problem to deal with a number of

alternative explanations in an efficient way, and finally we employ the sparse represen-

tation of abductive matrices for efficient computation.

Inductive reasoning

LP can be employed as a uniform representation for examples, background knowledge,

and hypotheses, therefore, in Inductive Logic Programming (ILP) the goal is to derive

a hypothesized logic program that entails all the positive and none of the negative ex-

amples. This problem also can be referred as a rule learning task. The rules extracted

may represent a full scientific model of the data, or merely represent local patterns in

the data. The rule learning process is performed on three levels [27]: Feature construc-

tion (1): In this phase, the object descriptions in the training data are turned into sets

of features. Rule construction (2): Once the feature set is fixed, individual rules can

be constructed, each covering a part of the example space. Hypothesis construction

(3): A hypothesis consists of a set of rules. In propositional rule learning, hypothesis

construction can be simplified by learning individual rules sequentially.

To the best of my knowledge, employing matrix representation requires a lot of

effort in both theory and practice. The merit of learning rules in vector space is not

only the scalability but also the capability of integrating with other AI techniques

e.g. ANN. Bridging LP and ANN can open up the gate to build more robust and

explainable AI models.

Structure of the Dissertation

In this section, we provide the layout of the remaining chapters and a summary of each:

• Chapter 2 provides background information necessary to understand the remain-

der of the dissertation. We go through a quick summary of the basic of LP, stable

model computation and abduction problem.

• Chapter 3 presents in detail the linear algebraic approach for computing the least

model of definite and normal programs. We also provides experimental results
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to demonstrate the efficiency and scalability of the method.

• Chapter 4 discusses about the PHCAP and how to deal with this problem using

the linear algebraic approach. The experimental results in this chapter validates

the method with a competitive performance with traditional approaches while

encourages further improvement in the future.

• Chapter 5 discusses in a broader view of linear algebraic approaches and similar

methods in all three forms of logic reasoning: deduction, abduction and induction.

• Chapter 6 summarizes all the contributions of this thesis and also discusses about

potential future research directions.
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Chapter 2

Background

In this chapter, we will go through the necessary background knowledge and the basic

notations we use in this thesis. The content of this chapter includes first-order logic,

definite and normal logic programs, and abduction.

2.1 First-Order Logic

First-order logic - also known as predicate logic, quantificational logic, and first-order

predicate calculus - is a collection of formal systems used in mathematics, philosophy,

linguistics, and computer science. First-order logic uses quantified variables over non-

logical objects, and allows the use of sentences that contain variables.

2.1.1 Syntax

The syntax of first-order logic defines what constitutes a well-formed formula.

Definition 1. First-Order Alphabet [57]: An alphabet of first-order logic comprises

seven sets of symbols

1. constants

2. variables

3. function symbols

4. predicate symbols

5. connectives: ¬, ∧, ∨, →, ← and ↔

6. quantifiers: ∃ (the existential quantifier) and ∀ (the universal quantifier)
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7. Three punctuation symbols: ’()’, ’)’ and ’,’.

Definition 2. First-Order Term [57]: A term is defined as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-ary function symbol and t1, ..., tn are terms, then f(t1, . . . , tn) is a

term.

A ground term is a term which does not contain any variables.

Definition 3. First-Order Formula [57]: A (well-formed) formula is defined as follows:

1. If p is an n-ary predicate symbol and t1, ..., tn are terms, then p(t1, ..., tn) is a

formula, called an atom. A ground atom is an atom which does not contain any

variables.

2. If ϕ and ψ are formulas, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ← ψ), and

(ϕ↔ ψ) are formulas.

3. If ϕ is a formula, and X is a variable, then ∃X ϕ and ∀X ϕ are formulas.

An infinite number of formulas can be constructed from a first-order alphabet. The

set of such formulas is called a language.

Definition 4. First-Order Language [57]: The set of all formulas which can be

constructed from the symbols of an alphabet is a first-order language.

The effect of a quantifier applies only to those occurrences of a variable in the region

of the formula that is within the scope of the quantifier, as defined below. A variable

that is within the scope of a quantifier is bound and a variable that is not within the

scope of any quantifier is free.

Definition 5. Quantifier Scope [57]: The scope of ∀X in ∀X ϕ is ϕ. An occurrence

of a variable immediately following a quantifier, or within the scope of a quantifier

immediately followed by the same variable, is bound. Any other occurrence of a variable

is free.

Definition 6. Closed Formula [57]: A closed formula contains no free occurrences

of variables.
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2.1.2 Semantics

The semantics of a system of logic determines the meaning of a formula. A formula is

either true or false, depending on the formula and whether the atoms in the formula

have been given the value T (true) or F (false) according to some interpretation.

In first-order logic a term refers to an object in some domain. Thus to assign values

to atoms in a language L , it is first necessary to determine to which object in the

domain each term refers. This is the purpose of a pre-interpretation of L , and a

variable assignment with respect to L .

Definition 7. Pre-Interpretation [57]: Let L be a first-order language. A pre-

interpretation of L consists of:

1. A set D, called the domain of the pre-interpretation.

2. The assignment of an element in D to each constant in the alphabet of L .

3. For each n-ary function in the alphabet of L , the assignment of a mapping from

Dn to D, where Dn is the set of all n-tuples of elements in D.

Definition 8. Variable Assignment [57]: Let L be a first-order language, and let

J be a pre-interpretation of L . A variable assignment of L with respect to J is an

assignment of an element in the domain of J to each variable in the alphabet of L .

The expression V (X/d) is used to denote a variable assignment that maps variable X

to domain element d and maps other variables according to V .

Definition 9. Interpretation [57]: Let L be a first-order language. An interpretation

I of L consists of:

1. (i) A pre-interpretation J , with domain D, of L .

2. (ii) For each n-ary predicate symbol p in the alphabet of L , the assignment of a

mapping Ip from Dn to {T, F}.

If, for all predicates p, the mapping Ip is a total mapping, then I is a total interpretation,

otherwise I is a partial interpretation.

Unless otherwise stated, all interpretations are assumed to be total interpretations.

Definition 10. Truth Value of a Formula [57]: Let L be a first-order language. Let

I be an interpretation of L based on pre-interpretation J with domain D, and let V

be a variable assignment of L with respect to J . The truth value under I and V of a

formula ϕ in L is:
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• If ϕ is the atom p(t1, ..., tn), and the domain elements assigned to t1, ..., tn by I

and V are d1, ..., dn, then the truth value of ϕ is the value assigned to d1, ..., dn

by Ip.

• If ϕ is of the form:

– (a) ¬ψ, then the value of ϕ is T if and only if the value of ψ is F ;

– (b) (ψ ∧ X ), then the value of ϕ is T if and only if the value of ψ is T and

the value of X is T ;

– (c) (ψ ∨ X ), then the value of ϕ is T if and only if either the value of ψ is

T or the value of X is T ;

– (d) (ψ → X ), then the value of ϕ is F if and only if the value of ψ is T and

the value of X is F ;

– (e) (ψ ↔ X ), then the value of ϕ is T if and only if either the value of both

ψ and X is T , or the value of both ψ and X is F

• 3. If ϕ is of the form ∃X ψ, then the truth value of ϕ is T if there exists at

least one element d ∈ D such that ψ has value T with respect to I and V (X/d),

otherwise it is F.

• 4. If ϕ is of the form ∀X ψ, then the truth value of ϕ is T if, for every element

d ∈ D, ψ has value T with respect to I and V (X/d), otherwise it is F.

The truth value of a closed formula is independent of the variable assignment. Since

this thesis is only concerned with closed formulas, then only the interpretation will be

referred to from this point on. Also, from this point the term ’formula’ will be used to

mean ’closed formula.

If the truth value of a formula under an interpretation is true, then that interpreta-

tion is called a model of the formula. The following definitions formalise the notion of

a model, and use it to define the concept of a logical consequence of a set of formulas.

Definition 11. Model of a Formula [57]: If a (closed) formula ϕ has the value T

under an interpretation I, then I is said to satisfy ϕ, or to make ϕ true. If I satisfies

ϕ, then I is a model of ϕ, and ϕ has a model I.

Definition 12. Model of a Set of Formulas [57]: Let Σ be a set of formulas and I

an interpretation. If I satisfies every formula in Σ, then I is a model of Σ.

Definition 13. Logical Consequence [57]: Let Σ be a set of formulas and ϕ be a

formula. If every model of Σ is also a model of ϕ, then ϕ is a logical consequence of

Σ, written Σ |= ϕ. If ϕ is a logical consequence of Σ, then Σ entails ϕ.
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Definition 14. Entailment of a Set [57]: Let Σ and ψ be sets of formulas. If Σ |=
ϕ, for every formula ϕ ∈ ψ, then ψ is a logical consequence of Σ, written Σ |= ψ. If ψ

is a logical consequence of Σ, then Σ entails ψ.

Definition 15. Semantic Terminology [57]: Let ϕ be a formula

• If ψ is a formula, and both ϕ |= ψ and ψ |= ϕ, then ϕ and ψ are logically

equivalent, written ϕ ↔ ψ.

• If there is some interpretation that is a model of ϕ, then ϕ is satisfiable.

• If every interpretation is a model of ϕ, then ϕ is a tautology.

• If there is no model of ϕ, then ϕ is a contradiction. Then ϕ is also called

unsatisfiable, or inconsistent.

2.2 Definite Programs

Definition 16. Definite Clause [57]: A definite clause is a clause containing exactly

one positive literal.

In the logic programming notation as presented above, a definite clause is of the

form:

A← B1, ..., Bk

where A, B1, ..., Bk are atoms. A is the head of the clause, and B1, ..., Bk is the body

of the clause. A definite clause A← is called a fact.

Definition 17. Definite Program [57]: A definite program Π is a finite set of definite

clauses. The set ground(Π) is the set of all possible ground instances of the clauses in

Π.

Definition 18. Definition of a Predicate [57]: Let p be a predicate symbol. The

definition of p in a definite program Π is the set Πp of all clauses in Π with p in the

head.Then p is defined by Πp.

Definition 19. Definite Goal [57]: A definite goal is a clause of the form

← B1, ..., Bk

with an empty consequent. Each atom Bi (1 ≤ i ≤ n) is a subgoal of this goal.

Definition 20. Horn clause [57]: A Horn clause is a clause that is either a definite

clause or a definite goal.
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Proposition 1. Existence of Least Herbrand Model [57]: Let Π be a definite pro-

gram. If {M1, ...Mk, ...} is a (possibly infinite) set of Herbrand models of Π, then their

intersection M = ∩iMi is a Herbrand model of Π.

Proof. Suppose M is not a Herbrand model of Π. Clearly M is a Herbrand interpre-

tation, therefore it is not a model of Π. In this case, there is a clause C ∈ Π such that

some instance of C is not satisfied by M . Let this instance be Cθ = A ← B1, ..., Bn.

Then Bj ∈ M for every j (1 ≤ j ≤ n), and A /∈ M . And since M = ∩iMi, then

Bj ∈ Mi for every j (1 ≤ j ≤ n) and every i ≥ 1. Furthermore, since every Mi,

i ≥ 1, is a model of Π, then A ∈ Mi for all i ≥ 1. But then A ∈ M , which is a

contradiction.

Definition 21. Least Herbrand Model [57]: Let Π be a definite program. The least

Herbrand model of Π, denoted MΠ, is the intersection of all Herbrand models of Π.

By Proposition 1 MΠ is a model of Π. What is more, exactly those atoms that are

logical consequences of Π are true in MΠ. The proof of the following theorem is given

in [67].

Theorem 1. Herbrand Model and Implication of Atoms [57]: Let Π be a definite

program. Then A ∈MΠ if and only if Π |= A.

Proof. Let A be an atom in BΠ.

Π |= A if and only if

Π ∪ {¬A} is unsatisfiable if and only if

Π ∪ {¬A} has no models if and only if

Π ∪ {¬A} has no Herbrand models if and only if

A is true in all Herbrand models of Π if and only if

A ∈M .

2.3 Normal Logic Program

Negative information cannot be inferred from a definite program. In order to add this

feature to the logic program methods described so far it is necessary to introduce the

closed world assumption, which gives rise to the negation as failure rule and normal

logic programs.

Definition 22. Program Clause [57]: A program clause is a formula of the form

A← L1, ..., Ln

where A is an atom and L1, ..., Ln are literals.
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Definition 23. Normal Goal [57]: A normal goal is a formula of the form

← L1, ..., Ln

where L1, ..., Ln are literals.

Definition 24. Level Mapping [57]: A level mapping of a normal program is a

mapping from its set of predicate symbols to the non-negative integers. The value of

a predicate under this mapping is the level of the predicate.

Definition 25. Hierarchical Program [57]: A normal program Π is hierarchical if

there is a level mapping of Π such that, for every clause p(t1, ..., tn)← L1, ..., Lm in Π,

the level of every predicate in L1, ..., Lm is less than the level of p.

Definition 26. Stratified Program [57]: A normal program Π is stratified if there

is a level mapping of Π such that, for every clause p(t1, ..., tn) ← L1, ..., Lm in Π, the

level of the predicate symbol of every positive literal in L1, ..., Lm is less than or equal

to the level of p, and the level of the predicate symbol of every negative literal in L1,

..., Lm is less than the level of p.

Theorem 2. Stratified Program [3]: Let Π be a stratified normal program. Then

comp(Π) has a minimal normal Herbrand model.

Definition 27. Allowed Goal [57]: Let Π be a normal program and G be a normal

goal. A clause A ← L1, ..., Ln in Π is admissible if every variable that occurs in the

clause occurs either in A or in a positive literal in L1, ..., Ln.

A clause A← L1, ..., Ln in Π is allowed if every variable that occurs in the clause occurs

in a positive literal in L1, ..., Ln.

G is allowed if G is← L1, ..., Ln and every variable that occurs in G occurs in a positive

literal in L1, ..., Ln.

Π ∪ {G} is allowed if the following conditions are satisfied:

1. (i) Every clause in Π is admissible.

2. (ii) For every clause C in the definition of a predicate symbol p, where p occurs

in a positive literal in the body of G or in a positive literal in the body of a clause

in Π, C is allowed.

3. (iii) G is allowed.

Several alternative declarative semantics have been proposed for logic programs.

Among them the stable model semantics, introduced by Gelfond and Lifschitz in [33],

is the most well known and successful.
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Definition 28. Reduct of Program [33]: Let Π be a normal program and let M ⊆ UΠ

be a set of atoms. The reduct of Π with respect to M is the ground definite program

ΠM , obtained from the set of all ground instances of clauses in Π by deleting

• (i) each clause containing a negative literal ¬A in its body where A ∈M , and

• (ii) all negative literals in the bodies of the remaining clauses.

Definition 29. Stable Model [33]: Let Π be a normal program and let M ⊆ UΠ be

a set of atoms. Then M is a stable model of Π if and only if M is the least Herbrand

model of ΠM .

In general, a normal program can have zero, one, or many stable models.

2.4 Abduction

This section describes abduction. Abduction is known as one of three forms of logical

reasoning: deduction, abduction and induction. While deduction produces conclusions

which follow from some prior knowledge by logical implication, abduction produces

explanations of observations that are not implied by existing knowledge.

Abduction is implemented in logic programming through an abductive, or open

logic program. The term abductive program is the more common one. However, the

term open program, proposed by Denecker and De Schreye [22], is adopted here since

it generalises the notion to induction as well as abduction. An open program has a

fully defined part, and an incomplete part.

Definition 30. Open Program [22]: An open program is a triple 〈Π, U, I〉, where Π

is a program, U is a set of predicates called undefined or abducible, and I is a set of

first-order axioms. If Π is a definite program and I is a set of definite goals, then P is

a definite open program. A ground literal with predicate p ∈ U is called an abducible

literal.

The axioms I are also known as integrity constraints and serve to constrain which

facts may be abduced. Unless otherwise stated, the language of an open program

P = 〈Π, U, I〉 is assumed to be given by the symbols appearing in Π and U and I.

The semantics of an open program P is given by the consequences of its completion,

comp(P ). Since the predicates in U are not yet fully defined, the closed world assump-

tion does not apply to them. Thus, the completion of an open program is formed by

completing only the definitions of those predicates in U , the complement of U .
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Definition 31. Open Program Completion [22]: Let L be a first-order language,

let Pred be the set of predicates in L and let P = 〈Π, U, I〉 be an open program in

L . The completion, comp(P ), of P is

EQ U{p(t1, ..., tn)← ϕ ∈ Π|p ∈ U}
U{compdef(q,Π)|q ∈ Pred ∧ q ∈ U}.

This is the semantics presented by Denecker and De Schreye [22], which generalises

that of Console et al. [15] by allowing predicates in U to be partially defined. Nev-

ertheless, in practical abductive logic programming it is often simpler if none of the

predicates in U are defined in Π. For this purpose, an open program can be trans-

formed into a disjoint open program by introducing auxiliary predicates in such a way

that the resulting program has no definitions for the abducible predicates [45].

Definition 32. Disjoint Open Program : Let P = 〈Π, U, I〉 be an open program. If Π

does not contain a definition of any predicate in U , then P is a disjoint open program.

The task of abductive logic programming, then, is to answer queries by producing

not only an answer substitution, as a deductive proof procedure does, but also a set of

abduced facts. The set of abduced facts ∆ is called an explanation or hypothesis.

Definition 33. Abductive Hypothesis : Let P = 〈Π, U, I〉 be an open program and

G be a normal goal. An answer for G given P is a substitution θ for the variables in

G, and a set ∆ of abduced ground atoms whose predicates are in U . The set ∆ is an

abductive hypothesis or explanation for Gθ.

In general, G can be any goal but in practice G will often be ground. In this case the

substitution θ will be the identity substitution ε. In order to be correct, a hypothesis

must extend P to produce a program that implies the observations and is consistent

with the integrity constraints.

Definition 34. Abductive Solution : Let P = 〈Π, U, I〉 be an open program, let G be

a normal goal ← L1, ..., Ln, and let 〈θ,∆〉 be an answer for G given P . Then 〈θ,∆〉 is

a correct answer, or abductive solution for G given P if ∀((L1 ∧ ... ∧ Ln)θ) is a logical

consequence of comp(Π ∪∆), and comp(Π ∪∆) ∪ I is consistent.

Definition 35. Minimal Abductive Solution : Let P be an open program, let G be

a normal goal and let 〈θ,∆〉 be an abductive solution for G given P . Then 〈θ,∆〉 is a

minimal abductive solution for G given P if there is no abductive solution 〈θ,∆′〉 for

G given 〈θ,∆〉 such that ∆′ ⊂ ∆.
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Chapter 3

Linear Algebraic Computation in

Deductive Reasoning

The linear algebraic characteristics of Logic Programming (LP) were first analyzed by

Sakama, Inoue, and Sato [75]. Then after many researchers have developed variants

based on the backbone of linear algebraic computation. However, almost all previous

methods have not considered the sparse characteristic of program matrices. Thus, these

algorithms suffer from high complexity of the general matrix multiplication operator

due to using the dense format.

In this chapter, we will first investigate matrix representation of logic programs and

then analyze their sparsity. Then next we discuss about different sparse representation

and their features in terms of representing logic programs. Further, we do complexity

analysis of the methods for definite programs and normal programs and prove a re-

markable improvement in both time and space complexity. Later in the Section 3.4,

we demonstrate our performance in a various experiments.

3.1 Linear Algebraic Computation of Logic Pro-

grams

3.1.1 Definite programs

We consider a language L that contains a finite set of propositional variables.

A Horn logic program is a finite set of rules of the form:

h← b1 ∧ · · · ∧ bm (m ≥ 0) (3.1)

where h and bi are propositional variables in L . In (3.1) the left-hand side of← is called
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the head and the right-hand side is called the body. We call a rule of the form (3.1) is

an And-rule. A Horn logic program P is called singly defined if h1 6= h2 for any two

different rules h1 ← B1 and h2 ← B2 in P where B1 and B2 are conjunctions of atoms.

That is, no two rules have the same head in an SD program. When P contains more

than one rule (h← B1), . . . , (h← Bn) (n > 1), replace them with a set of new rules:

h← b1 ∨ · · · ∨ bn (3.2)

b1 ← B1 · · · bn ← Bn

where b1, . . . , bn are new atoms such that bi 6∈ BP (1 ≤ i ≤ n) and bi 6= bj if i 6= j. Every

Horn logic program P is transformed to Π = Q ∪ D such that Q is an SD program

and D is a set of rules of the form (3.2). The resulting Π is called a standardized

program. Note that the rule (3.2) is a shorthand of n rules: h← b1, . . ., h← bn, so a

standardized program is considered a Horn logic program. In this paper, we refer to

the rule of the form (3.2) as an Or-rule.

Throughout the thesis, a program means a standardized program unless stated

otherwise. Additionally, we refer abduction problem to Propositional Horn Clause

Abduction Problem (PHCAP) that we consider logic program in Horn clauses. For

each rule r of the form (3.1) or (3.2), define head(r) = h and body(r) = {b1, . . . , bm}
(or body(r) = {b1, . . . , bn}). A rule is called a fact if body(r) = ∅. A rule is called a

constraint if head(r) = ∅. A constraint ← b1 ∧ · · · ∧ bm is replaced with

⊥ ← b1 ∧ · · · ∧ bm

where ⊥ is a symbol representing False. When there are multiple constraints, say

(⊥ ← B1), . . . , (⊥ ← Bn), they are transformed to

⊥ ← ⊥1 ∨ · · · ∨ ⊥n and ⊥i ← Bi (i = 1, . . . , n)

where ⊥i 6∈ BP is a new symbol. Given a program P , the set of all propositional

variables appearing in P is the Herbrand base of P (written BP ). An interpretation

I (⊆ BP ) is a model of a program P if {b1, . . . , bm} ⊆ I implies h ∈ I for every rule (3.1)

in P , and {b1, . . . , bn} ∩ I 6= ∅ implies h ∈ I for every rule (3.2) in P . A model I is the

least model of P (written LMP ) if I ⊆ J for any model J of P . We write P |= a when

a ∈ LMp. For a set S = {a1, . . . , an} of atoms, we write P |= S if P |= a1 ∧ · · · ∧ an.

A program P is consistent if P 6|= ⊥.

A set I ⊆ BP is an interpretation of P . An interpretation I is a model of a

standardized program P if {b1, . . . , bm} ⊆ I implies h ∈ I for every rule (3.1) in P ,

and {b1, . . . , bm} ∩ I 6= ∅ implies h ∈ I for every rule (3.2) in P . A model I is the
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least model of P if I ⊆ J for any model J of P . A mapping TP : 2BP → 2BP (called

a TP -operator) is defined as: TP (I) = {h | h ← b1 ∧ · · · ∧ bm ∈ P and {b1, . . . , bm} ⊆
I } ∪ {h | h← b1 ∨ · · · ∨ bn ∈ P and {b1, . . . , bn} ∩ I 6= ∅ }.

The powers of TP are defined as: T k+1
P (I) = TP (T k

P (I)) (k ≥ 0) and T 0
P (I) = I.

Given I ⊆ BP , there is a fixed-point T n+1
P (I) = T n

P (I) (n ≥ 0). For a definite program

P , the fixed-point T n
P (∅) coincides with the least model of P [93].

The idea of deduction computation is based on how do we encode logic programs

into matrices and how do we interpret numerical values into models of logic programs.

At a general level, it is easier to imagine a set of propositional variables as a vector in

which the value of each element in the vector indicates the existence of a corresponding

variable. We can say if the value in the vector is 0 then the corresponding variable is

excluded while if the value is larger than 0, the propositional variable is included. The

more important part is how do we manipulate these variables using matrix operators

to realize logic inferencing in vector spaces.

Let us consider a very simple program with only a single And-rule p← q∧ r. Then

the set of all propositional variables is {p, q, r} can be represented by a vector v of

3 elements that each element 0, 1, 2 indicates the existence of each variable p, q, r

respectively. We can interpret this vector by saying q is included if v[1] > 0 and so on.

Now we also need to represent the logic program which is a set of rules into something

in vector spaces. We can consider to use vector as mentioned for each rule, however

we need a way to identify each rule in the program. Thus, a matrix, which is a set of

multiple row vectors, is an ideal choice for this purpose. We can address each row is

a rule in the program and set a mapping between each row index and each rule in the

program. To simplify this task, we can introduce some conditions such as there is no

two rules having the same head atom, so we can have a direct mapping between the

indices of propositional variables and rules via the propositional variable in the rule

head. Accordingly, we can have a sample matrix of the mentioned program as follows:


p q r

p 0 1/2 1/2

q 0 0 0

r 0 0 0


This program has only a single And-rule with the head atom is p so we only need to use

the first row of the matrix. The reason for choosing the value 1/2 is that each variable

in the rule body q, r contributes the same amound of information to deduce p. Next,
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let us see the behavior of the above matrix if we multiply it with a vector (0, 1, 1).


p q r

p 0 1/2 1/2

q 0 0 0

r 0 0 0

 ·
p 0

q 1

r 1

 =

p 1

q 0

r 0


Interestingly, the behavior is similar to apply inferencing on a set of two variables p

and q. In fact, we can do more with logic in vector spaces that we are going to present

more formally later in this section and the next section.

In order to deal with deductive reasoning, Sakama et al. has formally described the

method in [75]. To extend this idea to work with abduction, we slightly modify the

definition by Sakama et al. to define a matrix program of a logic program P in a vector

space.

Definition 36. Matrix representation of standardized programs [75]: Let P

be a standardized program and BP = {p1, . . ., pn}. Then P is represented by a matrix

MP ∈ Rn×n such that for each element aij (1 ≤ i, j ≤ n) in MP ,

1. aijk = 1
m

(1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ← pj1 ∧ · · · ∧ pjm is in P ;

2. aijk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if pi ← pj1 ∨ · · · ∨ pjl is in P ;

3. aii = 1 if pi ← is in P ;

4. aij = 0, otherwise.

MP is called a program matrix . We write rowi(MP ) = pi and colj(MP ) = pj (1 ≤ i, j ≤
n).

To better understand Definition 36, let’s consider a concrete example.

Example 1. Consider the definite program P = {p ← q ∧ r, p ← s ∧ t, r ← s, q ←
t, s←, t←}.
P is not an Singly-Defined (SD) program because there are two rules p ← q ∧ r and

p ← s ∧ t having the same head, then P is transformed to the standardized program

P ′ by introducing new atoms u and v as follows: P ′ = {u ← q ∧ r, v ← s ∧ t, p ←
u ∨ v, r ← s, q ← t, s←, t←}. Then by applying Definition 36, we obtain:
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

p q r s t u v

p 0 0 0 0 0 1 1

q 0 0 0 0 1 0 0

r 0 0 0 1 0 0 0

s 0 0 0 1 0 0 0

t 0 0 0 0 1 0 0

u 0 1/2 1/2 0 0 0 0

v 0 0 0 1/2 1/2 0 0



Sakama et al. further define representation of interpretation using interpretation

vectors (Definition 37). This vector is used to store the truth value of all propositions in

P . The starting point of interpretation vector is defined as the initial vector (Definition

38).

Definition 37. Interpretation vector [75]: Let P be a program and BP =

{p1, . . . , pn}. Then an interpretation I ⊆ BP is represented by a vector v = (a1, . . . , an)T

where each element ai (1 ≤ i ≤ n) represents the truth value of the proposition pi such

that ai = 1 if pi ∈ I; otherwise, ai = 0. We write rowi(v) = pi.

Definition 38. Initial vector: Let P be a program and BP = {p1, . . . , pn}. Then

the initial vector of P is an interpretation vector v0 = (a1, . . . , an)T such that ai = 1

(1 ≤ i ≤ n) if rowi(v0) = pi and a fact pi ← is in P ; otherwise, ai = 0.

In order to compute the least model in vector space, Sakama et al. proposed an

algorithm that is equivalent to the result of computing least models by the TP -operator.

This algorithm is presented in Algorithm 1.

Definition 39. θ-thresholding: Given a value x, define θ(x) = x′ where x′ = 1 if

x ≥ 1; otherwise, x′ = 0.

Similarly, the θ-thresholding is extended in an element-wise way to vectors and

matrices.

3.1.2 Normal programs

Normal programs can be transformed to definite programs as introduced in [1]. There-

fore, we transform normal programs to definite programs before encoding them in

matrices.
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Algorithm 1 Matrix computation of least model

Input: a definite program P and its Herbrand base BP = {p1, p2, ..., pn}
Output: a vector v representing the least model

1: transform P to a standardized program P s = Q ∪ D with BP s =
{p1, p2, ..., pn, pn+1, ..., pm} where Q is an SD program and D is a set of OR-rules.

2: create matrix MP s ∈ Rm×m representing P s

3: create initial vector v0 = (v1, v2, ..., vm)T of P s

4: v = v0
5: u = θ(MP sv)
6: while u 6= v do
7: v = u
8: u = θ(MP sv)

9: return v

Definition 40. Normal program: A normal program is a finite set of normal rules:

h← b1 ∧ b2 ∧ ... ∧ bl ∧ ¬bl+1 ∧ ... ∧ ¬bm (m ≥ l ≥ 0) (3.3)

where h and bi(1 ≤ i ≤ m) are propositional variables (atoms) in L.

P is transformed to a definite program by rewriting the above rule into the following

form:

h← b1 ∧ b2 ∧ ... ∧ bl ∧ bl+1 ∧ ... ∧ bm (m ≥ l ≥ 0) (3.4)

where bi is a new proposition associated with bi.

In this part, we denote P as a normal program with an interpretation I ⊆ BP .

The positive form P+ of P is obtained by applying the above transformation. Since

a definite program P+ is transformed to its standardized program, then we can apply

Algorithm 1 to compute the least model. [1] proved that if P is a normal program, I

is a stable model of P iff I+ is the least model of P+ ∪ Ī, where Ī = {p̄ | p ∈ BP \ I},
then I+ = I ∪ Ī. We should note that I+ is an interpretation of P+ which is a definite

program. We can obtain I+ by applying Algorithm 1 to the transformed program P+.

Definition 41. Matrix representation of normal programs [61]: Let P be

a normal program with BP = {p1, . . ., pn} and its positive form P+ with BP+ =

{p1, . . . , pn, qn+1, . . . , qm}.
Then P+ is represented by a matrix MP ∈ Rm×m such that for each element aij

(1 ≤ i, j ≤ m):

1. aii = 1 for n+ 1 ≤ i ≤ m;

2. aij = 0 for n+ 1 ≤ i ≤ m and 1 ≤ j ≤ m such that i 6= j;
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3. Otherwise, aij (1 ≤ i ≤ n; 1 ≤ j ≤ m) is encoded as in Definition 36.

MP is called a program matrix . We write rowi(MP ) = pi and colj(MP ) = pj

(1 ≤ i, j ≤ n).

Example 2. Consider a program P = {p← q ∧ s, q ← p ∧ t, s← ¬t, t←, u← v}.
First, transform P to P+ such that P+ = {p← q ∧ s, q ← p∧ t, s← t, t←, u← v}.
Then applying Definition 41, we obtain:



p q s t u v t

p 0 1/2 1/2 0 0 0 0

q 1/2 0 0 1/2 0 0 0

s 0 0 0 0 0 0 1

t 0 0 0 1 0 0 0

u 0 0 0 0 0 1 0

v 0 0 0 0 0 0 0

t 0 0 0 0 0 0 1


Instead of the initial vector in the case of definite programs, the notion of an initial

matrix is introduced to encode multiple interpretations containing positive and negative

facts in a program.

Definition 42. Initial matrix [61]: Let P be a normal program andBP = {p1, . . . , pn}
and its positive form P+ with BP+ = {p1, . . . , pn, qn+1, . . . , qm}. The initial matrix

M0 ∈ Rm×h(1 ≤ h ≤ 2m−n) is defined as follows:

1. each row of M0 corresponds to each element of BP in a way that rowi(M0) = pi

for 1 ≤ i ≤ n and rowi(M0) = qi for n+ 1 ≤ i ≤ m;

2. aij = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ h) iff a fact qi ← is in P ; otherwise aij = 0;

3. aij = 0 (n+ 1 ≤ i ≤ m, 1 ≤ j ≤ h) iff a fact pk ← (with 1 ≤ k ≤ n) is in P and

qi = pk ; otherwise, aij takes the value 0 or 1 in a way that every combination in

2m−n (except the deterministic case of aij = 0) is enumerated.

Each column of M0 is a potential stable model in the first stage. We update M0 by

applying matrix multiplication with the matrix representation obtained by Definition

41 as Mk+1 = θ(MPMk). The resulting matrices are called interpretation matrices that

each of which includes multiple interpretations of the corresponding program. Then,

the algorithm for computing the stable models is presented in Algorithm 2.
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Algorithm 2 Matrix computation of stable models

Input: a normal program P and its Herbrand base BP = {p1, p2, ..., pn}
Output: a set of vectors V representing the stable models of P

1: transform P to a standardized program P+ with BP+ = {p1, . . . , pn, qn+1, . . . , qm}.
2: create the matrix MP ∈ Rm×m representing P+

3: create the initial matrix M0 ∈ Rm×h

4: M = M0, U = θ(MPM) . refer to Definition 49
5: while U 6= M do
6: M = U , U = θ(MPM) . refer to Definition 49

7: V = find stable models of P . refer to Algorithm 3
8: return V

Algorithm 3 Find stable models of P
Input: interpretation matrix M

Output: a set of vectors V representing the stable models of P

1: V = ∅
2: for i from 1 to h do

3: v = (a1, . . . an, an+1, . . . , am)T (ith-column of M)

4: for j from n+ 1 to m do

5: qj = rowj(M)

6: for l from 1 to n do

7: if rowl(M) = qj then

8: if al + aj 6= 1 then break;

9: if l ≤ n then break;

10: if j ≤ m then break;

11: else V = V ∪ {v}
12: return V

This method requires extra steps on transforming and finding stable models of a

program that is represented in Algorithm 3. As we can see, Algorithm 3 loops over

each interpretation vector of the fixed point of M which we obtain by applying matrix

multiplication and thresholding. The main idea behinds this algorithm is to verify the

consistency of each interpretation I+(= I∪ Ī) that does not contain 1s for both positive

and negative forms of an atom. This is done by the condition in line 8 of Algorithm 3

that tests whether the sum of values (corresponding to positive and negative forms of

an atom in P ) is 1 or not.

In addition, the initial matrix size grows exponentially by the number of negations

m − n. Therefore this representation requires a lot of memory and the algorithm

performs considerably slower than the method for definite programs if there are many
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negations appearing in the program. Nevertheless, we will later show that this method

still has the advantage when there are a small number of negations.

3.2 Sparse Representation of Logic Programs

The idea of representing logic programs in vector spaces could minimize the work with

symbolic computation and utilize better computing performance. Besides that, this

method copes with the curse of dimension when a matrix representing logic programs

becomes very large. Previous works on this topic only consider dense matrices for

their implementation and it seems not very impressive in terms of performance even

on small datasets [61]. In order to solve this problem, this thesis focuses on analyzing

the sparsity of logic programs in vector spaces and proposes improvement using sparse

representation for logic programs. Additionally, we analyze and verify different sparse

representations to conclude which format is efficient for logic programs in terms of

memory cost.

3.2.1 Sparsity of logic programs in vector spaces

A sparse matrix is a matrix in which most of the elements are zero. The level of

sparseness is measured by sparsity which equals the number of zero-valued elements

divided by the total number of elements [13]. Because there are a large number of

zero elements in sparse matrices, we can save the computation by ignoring these zero

values [37]. According to the conversion method of linear algebraic approach, we can

calculate the sparsity of a program P 1. This calculation is done by counting the

number of non-zero-valued elements of each rule in P , then let 1 minus the fraction of

the number of non-zero-valued elements and the matrix size.

By definition, the sparsity of a program P is computed by the following equation:

sparsity(P ) = 1−

∑
r∈P

|body(r)|

n2
(3.5)

where n is the number of elements in BP and |body(r)| is the length of body of rule r.

Accordingly, the representation matrix becomes a high level of sparsity if the matrix

size becomes larger while the length of the body rule is insignificant. In fact, a rule

r in a logic program rarely has a body length approx n, therefore, |body(r)| � n. In

short, we can say that the matrix representation of a logic program according to the

linear algebraic approach is sparse in most cases.

1We only consider the programs in Definition 36 and Definition 41.



3.2 Sparse Representation of Logic Programs 25

3.2.2 Converting logic programs to sparse matrices

Sparse matrix computation is very important due to the large number of zero elements

in real-world matrix data, therefore compaction techniques are used to reduce the

amount of storage, memory accesses, and computation [13]. Among several sparse

storage formats, we select the three formats Coordinate (COO), Compressed Sparse

Row (CSR) and Block Compressed Sparse Row (BSR) [10] which are the most general,

efficient, robust, and widely adopted by many programming libraries.

Because the matrix representation of a logic program P is sparse, applying Algo-

rithm 1 and Algorithm 2 on sparse representation is remarkably faster than the dense

matrix. Moreover, sparse representation saves the memory space as well, therefore

enabling the ability to deal with a large scale Knowledge Base (KB)s.

The Coordinate format

The COO format is the most simple idea of sparse matrix format which represents

each non-zero element by a tuple of a row index, a column index, and the value of

the element. That means the COO format uses 2 arrays of coordinates and 1 array of

values. The length of these arrays is equal to the number of non-zero elements. The

first array stores the row index of each value, and the second array stores the row and

column indices of each value, while the third array stores the values in the original

matrix. We can imagine that the ith non-zero element in a matrix is represented by a

3-tuple extracted from these 3 arrays at index i.

Example 3 illustrates sparse representation in the COO format for the program P

in Example 1. We should note that in Example 3, zero-based indexing 2 is used and

we follow row-major order 3.

Example 3. The COO representation for P in Example 1 becomes

Row index 0 0 1 2 3 4 5 5 6 6

Col index 5 6 4 3 3 4 1 2 3 4

Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

This format is the most simple and flexible for general-purpose usings. The storage

requirement for this format is O(3× ηz) where ηz is the number of non-zero elements.

Because of the generality, we often use the COO format as the baseline to evaluate

other sparse representations.

2The initial element of a sequence is assigned the index 0.
3In row-major order, the consecutive elements of a row reside next to each other.
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The Compressed Sparse Row format

The CSR format is an improvement of the COO format. Noticeably, in the row index

array of the COO format, a value can be repeated consecutively because the non-zero

elements may appear in the same row many times. We may reduce the size of the row

index array by considering the CSR format. In this format, while the column index and

the value arrays remain the same, we compress the row index array by storing the index

of the row only where non-zero elements appear. That means we do not need to store

two consecutive 0s and two consecutive 5s as in Example 3. Instead, we store the index

of the next row, then finally point the last index to the end of the row (which equals the

number of non-zero elements). Concretely in the row index array, the first element is

the starting index which is 0. The last element is an extra element to indicate the end of

this array which is equal to the number of non-zero elements. We need two consecutive

values in the row index array to extract the non-zero elements in this row. To be

specific, we need to interpret row start and row end of the ith row from the compressed

value in row index array: row starti = row index[i], row endi = row index[i+ 1].

Example 4. The CSR representation for P in Example 1 becomes

Row index 0 2 3 4 5 6 8 10

Col index 5 6 4 3 3 4 1 2 3 4

Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

Example 4 illustrates this method. For the first row (i = 0), we have row start0 =

0, row endi = 2, then we extract two values 0 and 1 for the non-zero element in the first

row. These start and end will be used to extract column index and value of non-zero

elements. Similarly, the second row (i = 1), we have row start1 = 2, row end1 = 3

then we have only one non-zero element at index 2. Continue this interpretation until

we reach the final row (i = 6), we have row start6 = 8, row end6 = 10 then we extract

last two non-zero elements at index 8 and 9 for the final row.

For a sparse matrix of the size m× n, the CSR format saves on memory compared

to the dense format only when ηz < (m(n− 1)− 1)/2 (where ηz is number of non-zero

elements). Compared to the COO format, the CSR format uses less numbers in the

row index array only when m+1 < ηz. This is because the actual size of the row index

array is m+1. Therefore, the space complexity of the CSR format is O(2×ηz +m+1).

There is another format Compressed Sparse Column (CSC) which is similar to the

CSR. The only difference is that the CSC enumerates non-zero elements following

the column-major order 4 and compress the column index array. Hence, the space

4In the column-major order, the consecutive elements of a column reside next to each other, in
contrast to row-major order.
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complexity of the CSC is O(2× ηz +n+ 1). In the case of logic programs, the matrices

are square so that these two formats are identical.

The Block Compressed Sparse Row format

There is another sparse representation BSR which stores a two-dimensional square

block of primitive data types instead of storing a single value. The dimension of the

square block is db then the matrix is divided into multiple blocks of the size db × db.
In case that the dimension of the matrix is not a multiple of the db, we need to add a

zero column or row to the matrix. For example, the matrix program in Example 1 has

the dimension 7× 7 and the db is 2, we need to pad the matrix to the dimension 8× 8.

Then we divide the padded matrix into 16 blocks of the dimension db×db. In the BSR,

the format only stores non-zero blocks and uses the same way to index each block as

in the CSR. Let’s consider the BSR format for the logic program P in Example 1, we

can identify 8 non-zero blocks in the matrix. The illustration of these steps and the

BSR representation of P are presented in Example 5.

Example 5. Illustration of block representation and the BSR representation for P in

Example 1 are following

p q r s t u v −

p 0 0 0 0 0 1 1 0

q 0 0 0 0 1 0 0 0

r 0 0 0 1 0 0 0 0

s 0 0 0 1 0 0 0 0

t 0 0 0 0 1 0 0 0

u 0 1/2 1/2 0 0 0 0 0

v 0 0 0 1/2 1/2 0 0 0

− 0 0 0 0 0 0 0 0





eliminate zero blocks−−−−−−−−−−−→

p q r s t u v −

p 0 1 1 0

q 1 0 0 0

r 0 1

s 0 1

t 0 0 0 0 1 0

u 0 1/2 1/2 0 0 0

v 0 1/2 1/2 0

− 0 0 0 0





Row index 0 2 3 6 8

Col index 2 3 1 0 1 2 1 2

Block B13 B14 B22 B31 B32 B33 B42 B43

Block value 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1/2 0 0 0 1/2 1 0 0 0 0 1/2 0 0 1/2 0 0 0

Note that in each block, we store all the numbers following an exact order, row-

major order in this example. If we follow the column-major order, the block value

vector may be different, for example, the block B22 in the column-major order is 0 0 1

1.
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Noticeably, this format is not efficient in this example because it stores many blocks

with only 1 or 2 non-zero elements. In fact, this format only shows its advantages in

case the matrix is highly concentrated in a few blocks. In other words, if the matrix has

ηz non-zero elements and ηb non-zero blocks of the size db× db then the BSR performs

the best in case ηz ≈ ηb × db2.
Assume we have a sparse matrix of the size m×n. In the matrix, there are ηz non-

zero elements and ηb non-zero blocks of the size db× db. Note that in the BSR format,

we only need to store the indices of non-zero blocks and all values in those blocks. So

we can consider it as a CSR matrix where each non-zero block (in the BSR format) is

a single non-zero element (in the CSR format) that the matrix size is

⌈
m

db

⌉
×
⌈
n

db

⌉
,

where d e is the ceiling function. Accordingly, the space complexity of the BSR format

is O(

⌈
m

db

⌉
+ 1 + ηb + ηb × db2).

Which format is the best for logic programs?

As we can see in Example 4, the row index array now has only 8 indices rather than

10 in Example 3. We save storing repeatedly indices in the row index array by storing

only the position where it starts and ends. Accordingly, the CSR can be considered

more economical than the COO but it comes with the cost that non-zero elements

must follow row-major order while a strict order is not necessary for the COO format.

Fortunately, in the case of linear algebraic methods for fixed-point computation, we

do not need to update the program matrix frequently. Then the CSR format will be

a better choice over the COO format. In fact, we can save up to 25% of the size of

the row index array using the CSR format as will be illustrated in the experiments.

The BSR format takes advantage over the CSR format when the program matrix is

concentrated in a few non-zero blocks. Unfortunately, it is not very often in the case

of program matrices. The experiments section will reveal which kind of logic programs

will be beneficial from this sparse format. Accordingly, we propose the CSR format is

the ideal sparse representation for linear algebraic computation methods.

3.3 Complexity Analysis

In this section, we analyze the time and space complexity of the linear algebraic meth-

ods for computing fixed-points as defined in Algorithm 1 and Algorithm 2.
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3.3.1 Linear algebraic method for definite programs

Assume that a definite program P has a matrix representation MP ∈ Rn×n and the

matrix has ηz non-zero elements. 5

Proposition 2. The space complexity of linear algebraic method for definite programs

is

1. O(n2 + n) for dense format,

2. O(ηz + n) for sparse format.

Proof: Obviously, we have to store the program matrix and the interpretation

vector. As defined, the program matrix size is n× n and the interpretation vector size

is n× 1. Note that only the program matrix can be stored in the sparse format while

the interpretation vector must be stored in dense format.

Proposition 3. The time complexity of linear algebraic method for definite programs

is

1. O(n3) for dense format,

2. O(ηz × n) for sparse format.

Proof: Similar to the TP -operator the main loop of Algorithm 1 repeats n times

in the worst case. In addition, the complexity of each loop depends on the matrix

multiplication between a matrix of the size n× n and a vector of the size n× 1, so the

multiplication takes O(n2) for dense format and O(ηz) for sparse format.

Theoretically, if the program matrix is sparse, methods using sparse format outper-

form methods using the dense format in both time and space complexity.

3.3.2 Linear algebraic method for normal programs

Let us consider a normal program P which has k negations. Assume that P has a

matrix representation MP ∈ Rn×n and the matrix has ηz non-zero elements. 6

Proposition 4. The space complexity of the linear algebraic method for normal pro-

grams is

1. O(n2 + n× 2k) for dense format,

5The matrix size depends on the number of literals linearly.
6Usually n is larger than the number of literals in P because we have to do several standardized

steps. To simplify, we can assume that n linearly depends on the number of literals in P .
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2. O(ηz + n× 2k) for sparse format.

Proof: Similar to the methods for definite programs, the size of the program

matrices is the same. The cost for storing the interpretation matrix exponentially

depends on the number of negations because we have to consider all the combinations

according to the Algorithm 2. Therefore, it is the limitation of the method that we

can handle programs with a limited number of negations.

Proposition 5. The time complexity of linear algebraic method for normal programs

is

1. O(n3 × 2k + n2 × (2k − 1)) for dense format,

2. O(ηz × n× 2k + n2 × (2k − 1)) for sparse format.

Proof: Similar to previous proof, the main loop of Algorithm 2 repeats n times in

the worst case. Each loop involves the multiplication between a matrix of the size n×n
and a matrix of the size n × 2k. Hence, the complexity of Algorithm 2 is O(n3 × 2k)

if we use dense format and O(ηz × n × 2k) if we use sparse format. Then we have

to apply the Algorithm 3 to find the stable model. This algorithm loops over all 2k

combinations to verify the model in case k > 0. If k = 0 the loop is not executed.

Each verification takes 2 nested loops over n times. Therefore, the complexity of this

algorithm is O(n2 × (2k − 1)).

Obviously, if k is small, then we obtain the same complexity as the method for

definite programs. If k is considerably large, then both the space and time complexity

are infeasible, so that is the limitation of the method. Although both formats are

exponential in terms of time and space complexity, sparse representation improves a

lot in general cases.

3.4 Experiments

In this section, we report the results of two experiments on finding the least models of

definite programs and computing stable models of normal programs. In order to eval-

uate the performance of linear algebraic methods, we compared the implementations

of Algorithm 1 and Algorithm 2 with (i) the TP -operator and (ii) Clasp (Clingo v5.4.1

running with flag −−mode=clasp). Our implementations are done with (iii) dense

matrices and (iv) sparse matrices. Except Clasp, all implementations (i), (iii) and (iv)

are implemented on C++ with CPU x64 as a targeted device. In (i), we implement the

operator using hashset instead of list for better set operations performance. To avoid

ambiguity with the original definition of the TP -operator, we will call (i) as Hashset
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method from now on in this section. (ii) is the solver of Clingo which is a powerful

Answer Set Programming (ASP) solver developed at the University of Potsdam [32]. In

terms of matrix representations and operators for (iii) and (iv), we use Eigen 3 library

[36] with the default backend. The computer running experiments has the following

configurations: CPU: Intel Core i7-4770 (4 cores, 8 threads) @3.4GHz; RAM: 16GB

DDR3 @1333MHz; GPU: NVIDIA GTX 1080; Operating system: Ubuntu 18.04 LTS

64bit.

Focusing on analyzing the performance of sparse representation, we first evaluate

our method by conducting experiments on randomized logic programs. We use the

same method of LP generation conducted in [61] that the size of a logic program is

defined by the size n = |BP | of the Herband base BP and the number of rules m = |P |
in P . The number of facts (rules with the body length is 0) of the logic program is

limited by n/3. The other rules are uniformly generated based on the length of their

rule body (maximum length is 8) according to Table 3.1.

Table 3.1: Proportion of rules in P based on the number of propositional variables in
their bodies.

Body length 0 1 2 3 4 5 6 7 8

Allocated proportion < n/3 4% 4% 10% 40% 35% 4% 2% 1%

According to Algorithm 1 and Algorithm 2, we have to transform logic programs

to standardized programs to encode them as matrices. Hence, in the experiments, we

also track the size of the Herbrand base of a standardized program which is equal to

the actual square matrix size and denote it by n′.

We further generate denser matrices in order to analyze the efficacy of the sparse

method. While keeping the same proportion of facts and rules with the body length

of 1 and 2, we generate the rest 70 ∼ 80% rules such that their body length is around

5% of the number of propositions. This method leads to the lower sparsity level of

generated matrices with approximate 0.95.

Also based on the generation method for definite programs, we generate normal

programs by randomly changing literals to negations and limit the number of negations,

denoted by k, such that 4 ≤ k ≤ 8. The important difference from [61] is that we do

experiments on much larger n and m, because our method, which is implemented

on C++, is dramatically more efficient than Nguyen et al.’s implementation using

Maple. The largest size of the logic program in this experiment reaches thousands of

propositions and hundreds of thousands of rules. Further, we also compare our method

with one of the best ASP solvers - Clasp [32] running in the same environment. All

methods are conducted 30 times on each LP to obtain mean values of execution time.
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In addition, we also conduct a further experiment using non-random problems with

definite programs using the transitive closure problem. The graph we use is selected

from the Koblenz network collection [54]. This dataset contains binary tuples and we

compute the transitive closure of them using the following rules:

path(X, Y )← edge(X, Y )

path(X, Y )← edge(X,Z) ∧ path(Z, Y )

3.4.1 Definite programs

The final results on definite programs are illustrated in Table 3.2 and Figure 3.1.

Table 3.2: Details of experimental results on definite programs of Hashset method,
Clasp and linear algebraic methods (with dense and sparse representation).

n′ is the actual matrix size after transformation. Time unit is second.

n m n′ Sparsity
Hashset

method
Clasp

Dense

matrix

Sparse

matrix

1000 5000 5788 0.99 0.04 0.17 2.06 0.01

1000 10,000 10,799 0.99 0.12 0.29 17.99 0.01

1600 24,000 25,198 0.99 0.39 1.85 73.35 0.04

1600 30,000 31,285 0.99 0.48 2.54 116.12 0.06

2000 36,000 37,596 0.99 0.75 3.17 155.43 0.07

2000 40,000 41,936 0.99 0.98 5.16 187.65 0.07

10,000 120,000 127,119 0.99 18.56 9.07 - 0.38

10,000 160,000 167,504 0.99 25.65 15.77 - 0.48

16,000 200,000 211,039 0.99 57.02 19.97 - 0.86

16,000 220,000 231,439 0.99 60.44 24.78 - 0.94

20,000 280,000 297,293 0.99 104.99 30.57 - 0.90

20,000 320,000 337,056 0.99 108.59 34.40 - 1.06

5.0 10.0 24.0 30.0 36.0 40.0
0
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Figure 3.1: Comparison of execution time between Hashset method, Clasp and linear
algebraic methods (with dense and sparse representation) on definite programs.

http://konect.uni-koblenz.de/networks/
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We can see in the results that the dense matrix method is slowest and being unable

to run with very large programs that is why the data for this method is not displayed if

the number of rules is larger or equal to 120,000. We should mention that the number

of rules m is used as horizontal axis in the Figure 3.1 similar to the experiments in [61].

The reason for choosing n and m is to generate actual matrix size n′ increasing linearly

with two different levels: smaller scale (n < 10000) and larger scale (n > 10000). The

same parameters are used for other experiments using the random generated method.

Overall, the sparse matrix method is very efficient which is 10-15 times faster than

Clasp.

The benchmark results on denser matrix are presented in Table 3.3 and Figure 3.2.

As can be seen in the results, denser matrices require more computation for the sparse

matrix method while they do not affect the same scale on other competitors. Despite

that fact, the sparse matrix method still holds first place in this benchmark. In terms

of analyzing the sparseness level of logic programs, we hardly find a program in which

the sparsity is less than 0.97. This observation strongly encourages the use of sparse

representation for logic programs.

Table 3.3: Details of experimental results on definite programs (with lower sparsity
level) of Hashset method, Clasp and linear algebraic methods (with dense and sparse
representation).

n′ is the actual matrix size after transformation. Time unit is second.

n m n′ Sparsity
Hashset

method
Clasp

Dense

matrix

Sparse

matrix

1000 5000 5876 0.95 0.10 0.39 2.31 0.04

1000 10,000 10,243 0.95 0.36 0.92 17.59 0.05

1600 24,000 25,712 0.95 0.95 2.25 70.09 0.16

1600 30,000 31,430 0.95 1.18 3.01 120.52 0.38

2000 36,000 36,612 0.95 1.73 4.78 152.91 0.55

2000 40,000 41,509 0.95 2.04 6.33 192.36 0.63

10,000 120,000 125,692 0.95 27.80 10.89 - 1.08

10,000 160,000 166,741 0.95 47.24 18.60 - 2.29

16,000 200,000 210,526 0.95 89.55 21.71 - 3.79

16,000 220,000 230,178 0.95 108.13 28.54 - 4.86

20,000 280,000 298,582 0.95 144.80 35.09 - 5.34

20,000 320,000 335,918 0.95 183.53 42.84 - 5.92
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Figure 3.2: Comparison of execution time between Hashset method, Clasp and linear
algebraic methods (with dense and sparse representation) on definite programs with
lower sparsity level.

In the next experiment, we show the comparison for computing transitive closure.

We assume that a dataset contains edges (tuples of nodes), then first perform ground-

ing two rules of defining path. The obtained results are demonstrated in Table 3.4

and Figure 3.3. In this non-randomized problem, we can see that the matrix repre-

sentations are very sparse. Therefore, it is no doubt that the sparse matrix method

outperforms the dense matrix method. Accordingly, we only highlight the efficiency

of sparse representation and omit the dense matrix approach. Surprisingly, the sparse

matrix method surpasses Clasp once again in this experiment by a large margin.

As can be witnessed in the results, the dense matrix method is the slowest, even

slower than the hashset method, in terms of computation time due to wasting compu-

tation on a huge amount of zero elements. This could be explained by the high level

of sparsity of logic programs provided in Tables 3.2–3.4. Moreover, large dense matri-

ces consume a huge amount of memory, therefore the method is unable to run with

a large scale matrix size. Overall, the sparse matrix method is effective in computing

the fixed-points of definite programs. On the other hand, the performance would be

improved if we use GPU accelerated code and exploit parallel computing power. The

results indicate that using sparse representation for logic programs opens the gate to

deal with large-scale logic programs.
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Table 3.4: Details of experimental results on the transitive closure problem of Hashset
method, Clasp and sparse representation approach.

n′ is the actual matrix size after transformation. Time unit is second.
Data name

(|V |, |E|)
n m n′ Sparsity

Hashset

method
Clasp

Sparse

matrix
Club membership

(65, 95)
1200 14,492 15,600 0.99 0.84 0.34 0.02

Cattle

(28, 217)
1512 20,629 21,924 0.99 0.95 0.51 0.04

Windsurfers

(43, 336)
4324 99,788 103,776 0.99 3.65 3.37 0.18

Contiguous USA

(49, 107)
4704 113,003 117,600 0.99 4.29 3.88 0.18

Dolphins

(62, 159)
7564 230,861 238,266 0.99 12.31 9.38 0.40

Train bombing

(64, 243)
8064 254,259 262,080 0.99 15.23 10.63 0.45

Highschool

(70, 366)
9660 333,636 342,930 0.99 19.96 15.80 0.66

Les Miserables

(77, 254)
11,704 445,006 456,456 0.99 27.79 21.96 0.83
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Figure 3.3: Comparison of execution time between Hashset method, Clasp and linear
algebraic methods (with dense and sparse representation) on definite programs with
Transitive closure problem using Koblenz network datasets.

3.4.2 Normal programs

The goal of this experiment is to highlight the enhancement of the sparse representation

in terms of computing the stable models in normal logic programs. To generate normal

programs for this benchmark, we use the same method to generate definite programs

then randomly select some rules and set some atoms in the rule body to negations. In

our current method, since the number of columns in the initial matrix (Definition 42)
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grows exponentially by the number of negations, we limit the number of negations in

this benchmark by 8 7 as specified in the experiment setup. The experiment results

show that the sparse method can be applied to normal logic programs with a small

number of negations. The performance gain from this improvement is potential for

further developing more efficient algorithms.

First, we perform benchmarks on normal programs which has 0.99 sparsity level.

Table 3.5 and Figure 3.4 illustrate the execution time in detail. As can be witnessed in

the results, the sparse matrix method is still faster than Clasp but with a smaller scale

than it did in definite programs. It is needed to mention that the initial matrix size is

remarkably larger due to the occurrence of negations. We have to initialize all possible

combinations of atoms that appear with their negation form in the program. There is

no doubt that with a larger number of negations, the space complexity of the linear

algebraic method is exponential. Accordingly, the performance of the sparse matrix

method is better than Clasp when there are a small number of negations.

In the next experiments, we compare different methods on denser matrices. Table

3.6 and Figure 3.5 present the data for this benchmark. Once again, with a limited

number of negations, the sparse matrix method holds the winner position.

Table 3.5: Details of experimental results on normal programs of Hashset method,
Clasp and linear algebraic methods (with dense and sparse representation).

n′ is the actual matrix size after transformation. k is the number of negations.

Time unit is second.

n m n′ k Sparsity
Hashset

method
Clasp

Dense

matrix

Sparse

matrix

1000 5000 6379 8 0.99 0.07 0.31 3.96 0.01

1000 10,000 12,745 8 0.99 0.18 1.09 28.18 0.02

1600 24,000 30,061 8 0.99 0.55 3.27 105.49 0.05

1600 30,000 36,402 7 0.99 0.68 4.31 168.80 0.08

2000 36,000 42,039 5 0.99 1.24 6.72 203.27 0.09

2000 40,000 48,187 8 0.99 1.54 7.18 256.97 0.10

10,000 120,000 171,967 6 0.99 27.31 7.68 - 0.71

10,000 160,000 207,432 7 0.99 32.55 24.70 - 0.84

16,000 200,000 250,194 5 0.99 70.31 30.72 - 1.56

16,000 220,000 278,190 6 0.99 86.52 35.40 - 1.83

20,000 280,000 357,001 4 0.99 133.79 50.19 - 1.92

20,000 320,000 396,128 4 0.99 150.34 58.61 - 2.11

7The dimension of the initial matrix depends on k and grows exponentially if k increases. At this
moment, we are able to handle k up to 16 and in some specific cases depending on the matrix size
and memory capacity, k could be larger (up to 24).
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Figure 3.4: Comparison of execution time between Hashset method, Clasp and linear
algebraic methods (with dense and sparse representation) on normal programs.

Table 3.6: Details of experimental results on normal programs (with lower sparsity
level) of Hashset method, Clasp and linear algebraic methods (with dense and sparse
representation).

n′ is the actual matrix size after transformation. k is the number of negations.

Time unit is second.

n m n′ k Sparsity
Hashset

method
Clasp

Dense

matrix

Sparse

matrix

1000 5000 6385 7 0.95 0.17 0.37 3.78 0.11

1000 10,000 12,294 8 0.95 0.24 1.49 30.06 0.19

1600 24,000 33,172 7 0.95 0.68 3.78 102.54 0.22

1600 30,000 35,091 8 0.95 0.77 5.91 174.52 0.35

2000 36,000 44,145 8 0.95 2.32 7.10 197.30 0.41

2000 40,000 49,080 7 0.95 3.27 8.67 250.09 0.49

10,000 120,000 181,550 8 0.95 36.95 10.45 - 3.25

10,000 160,000 203,576 6 0.95 54.11 33.19 - 4.02

16,000 200,000 246,159 4 0.95 86.36 48.19 - 7.22

16,000 220,000 282,734 5 0.95 106.03 56.91 - 8.31

20,000 280,000 365,190 4 0.95 163.06 78.18 - 9.02

20,000 320,000 387,094 4 0.95 202.55 84.33 - 11.52

Noticeably, execution time on normal programs is generally greater than that on

definite programs. This is obvious because we have a larger size of initial matrices as

well as the need for extra computation on transforming and finding the least models

as described in Algorithm 2. Then the weakness of the linear algebraic method is

that we have to deal with all combinations of truth assignments to compute the stable

model. Accordingly, the column size of the initial matrix exponentially increases by

the number of negations. Thus, in the benchmark on randomized programs, we limit

the number of negations for all benchmarks so that the matrix can fit in memory. This
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limitation will become clearer in real problems which have many negations. This is a

major problem that we are investigating to do further research.

5.0 10.0 24.0 30.0 36.0 40.0
0

50

100

150

200

250

ti
m

e
(s

)

Hashset method

Clasp

Dense matrix

Sparse matrix

120.0 160.0 200.0 220.0 280.0 320.0

Number of rules (×103)

Figure 3.5: Comparison of execution time between Hashset method, Clasp and linear
algebraic methods (with dense and sparse representation) on normal programs with
lower sparsity level.

3.4.3 Sparse representations comparison

In this experiment, we focus on space complexity of different sparse representations for

logic programs. The benchmark is done on the same datasets in the previous results.

In order to highlight the efficiency of sparse formats, we compare the memory space

in Bytes to store the program matrices using the three mentioned methods in Section

3.2 including: COO, CSR and BSR. The BSR will be analyzed with two different db:

2× 2 and 4× 4. The figures for the COO format will be considered as the baseline to

compare these other spare formats.
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Table 3.7: Comparison of different sparse representations in terms of the memory size
on definite programs in Table 3.2.

ηz is the number of non-zero elements in the program matrix. Memory unit is Bytes.

n m n′ ηz COO CSR/CSC BSR 2× 2 BSR 4× 4

1000 5000 5788 24,848 298,176

(100.00%)

221,940

(74.43%)

459,876

(154.23%)

1,414,952

(474.54%)

1000 10,000 10,799 50,805 609,660

(100.00%)

449,640

(73.75%)

935,720

(153.48%)

2,879,924

(472.38%)

1600 24,000 25,198 122,466 1,469,592

(100.00%)

1,080,524

(73.53%)

2,258,796

(153.70%)

7,023,964

(477.95%)

1600 30,000 31,285 154,395 1,852,740

(100.00%)

1,360,304

(73.42%)

2,850,912

(153.88%)

8,870,200

(478.76%)

2000 36,000 37,596 185,092 2,221,104

(100.00%)

1,631,124

(73.44%)

3,418,412

(153.91%)

10,668,648

(480.33%)

2000 40,000 41,936 208,352 2,500,224

(100.00%)

1,834,564

(73.38%)

3,851,612

(154.05%)

12,019,048

(480.72%)

10,000 120,000 127,119 606,233 7,274,796

(100.00%)

5,358,344

(73.66%)

11,201,120

(153.97%)

35,233,888

(484.33%)

10,000 160,000 167,504 817,728 9,812,736

(100.00%)

7,211,844

(73.49%)

15,130,228

(154.19%)

47,646,464

(485.56%)

16,000 200,000 211,039 1,009,279 12,111,348

(100.00%)

8,918,392

(73.64%)

18,647,660

(153.97%)

58,712,052

(484.77%)

16,000 220,000 231,439 1,116,473 13,397,676

(100.00%)

9,857,544

(73.58%)

20,645,480

(154.10%)

65,034,080

(485.41%)

20,000 280,000 297,293 1,442,651 17,311,812

(100.00%)

12,730,384

(73.54%)

26,730,648

(154.41%)

84,262,608

(486.73%)

20,000 320,000 337,056 1,649,792 19,797,504

(100.00%)

14,546,564

(73.48%)

30,563,432

(154.38%)

96,370,464

(486.78%)
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Figure 3.6: Comparison of execution time between different sparse representations on
definite programs.
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Figure 3.7: Comparison of execution time between different sparse representations on
definite programs for the transitive closure problem.

The experimental results for definite programs, definite programs for the transitive

closure problem and normal programs are illustrated in Table 3.7, Table 3.8 and Table

3.9 respectively. As can be witnessed in the data, the CSR format is better than the

baseline COO 20-30% in terms of storage usage. It is a remarkable saving because we

only need to store fewer numbers in the row index array as explained in Section 3.2.

On the other hand, the data for the BSR format shows an increase in memory usage

by a large margin. This is due to the program matrices are not concentrated and we

have to store many blocks with zero included.
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Table 3.9: Comparison of different sparse representations in terms of the memory size
on normal programs in Table 3.5.

ηz is the number of non-zero elements in the program matrix. Memory unit is Bytes.

n m n′ k ηz COO CSR/CSC BSR

2× 2

BSR

4× 4
1000 5000 6379 8 26,147 313,764

(100.00%)

249,176

(79.42%)

487,336

(155.32%)

1,514,852

(482.80%)

1000 10,000 12,745 8 54,814 657,768

(100.00%)

478,512

(72.75%)

1,019,432

(154.98%)

3,163,488

(480.94%)

1600 24,000 30,061 8 135,661 1,627,932

(100.00%)

1,149,288

(70.60%)

2,528,412

(155.31%)

7,840,124

(481.60%)

1600 30,000 36,402 7 183,703 2,204,436

(100.00%)

1,533,624

(69.57%)

3,402,460

(154.35%)

10,528,348

(477.60%)

2000 36,000 42,039 5 205,800 2,469,600

(100.00%)

1,726,400

(69.91%)

3,824,712

(154.87%)

11,829,348

(479.00%)

2000 40,000 48,187 8 238,597 2,863,164

(100.00%)

1,988,776

(69.46%)

4,437,184

(154.97%)

13,764,920

(480.76%)

10,000 120,000 171,967 6 716,115 8,593,380

(100.00%)

6,128,920

(71.32%)

13,523,496

(157.37%)

42,851,300

(498.65%)

10,000 160,000 207,432 7 917,746 11,012,952

(100.00%)

7,741,968

(70.30%)

17,043,484

(154.76%)

52,633,948

(477.93%)

16,000 200,000 250,194 5 1,129,348 13,552,176

(100.00%)

9,674,784

(71.39%)

21,203,960

(156.46%)

66,035,684

(487.27%)

16,000 220,000 278,190 6 1,547,360 18,568,320

(100.00%)

13,018,880

(70.11%)

29,028,448

(156.33%)

90,012,932

(484.77%)

20,000 280,000 357,001 4 1,841,749 22,100,988

(100.00%)

15,533,992

(70.29%)

34,219,356

(154.83%)

106,039,484

(479.80%)

20,000 320,000 396,128 4 2,092,310 25,107,720

(100.00%)

17,538,480

(69.85%)

39,012,940

(155.38%)

120,359,688

(479.37%)
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Figure 3.8: Comparison of execution time between different sparse representations on
normal programs.

Accordingly, in general cases, the CSR format is the best option in terms of space
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efficiency. We also understand that the BSR format is efficient when the matrix is

highly concentrated in a way that non-zero elements are stored in as small number of

blocks as possible. In this experiment, we also conduct the comparison on special logic

programs. For example, consider the program P and its matrix representation that

contains the following rules:

r1 ← r3 ∧ r4,
r2 ← r3 ∧ r4,
. . . ,

rn−3 ← rn−1 ∧ rn,
rn−2 ← rn−1 ∧ rn



r1 r2 r3 r4 r5 r6 . . .

r1 0 0 1/2 1/2 0 0 . . .

r2 0 0 1/2 1/2 0 0 . . .

r3 0 0 0 0 1/2 1/2 . . .

r4 0 0 0 0 1/2 1/2 . . .

r5 0 0 0 0 0 0 . . .

r6 0 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


We can easily see that in this case, the program matrix contains only 2× 2 blocks

that will be ideal for the BSR 2× 2 format. In this case, the block value matrix does

not need to store zero elements while the indexing arrays for non-zero blocks are much

less than the indexing arrays for non-zero elements. The data for this experiment is

illustrated in Table 3.10. In the perfect case, the BSR can save up to 50% compared

to the baseline COO format and is much more efficient than the CSR format.

Table 3.10: Comparison of different sparse representations in terms of the memory size
on special programs as defined above.

ηz is the number of non-zero elements in the program matrix. Memory unit is Bytes.

n m n′ ηz COO CSR/CSC BSR 2× 2 BSR 4× 4

1000 1000 1000 2000 24,000

(100.00%)

20,004

(83.35%)

12,004

(50.02%)

18,004

(75.02%)

1600 1600 1600 3200 38,400

(100.00%)

32,004

(83.34%)

19,204

(50.01%)

28,804

(75.01%)

2000 2000 2000 4000 48,000

(100.00%)

40,004

(83.34%)

24,004

(50.01%)

36,004

(75.01%)

10,000 10,000 10,000 20,000 240,000

(100.00%)

200,004

(83.34%)

120,004

(50.00%)

180,004

(75.00%)

16,000 16,000 16,000 32,000 384,000

(100.00%)

320,004

(83.33%)

192,004

(50.00%)

288,004

(75.00%)

20,000 20,000 20,000 40,000 480,000

(100.00%)

400,004

(83.33%)

240,004

(50.00%)

360,004

(75.00%)
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Figure 3.9: Comparison of execution time between different sparse representations on
special programs.

3.4.4 Scalability of sparse matrix on GPU

In this experiment, we compare the execution time of the sparse matrix implementation

on CPU and GPU using definite programs. We use the same method for generating

definite programs as presented. Additionally, we increase the body length of gener-

ated rules to obtain large-scale programs. The implementation on GPU is done using

cuSPARSE 8.

As we can see in Figure 4.3, the implementation on GPU is faster than that on

CPU approximately 3 to 4 times. That is because sparse matrix computation usually

does not reach maximum throughput on GPU. Thus, it is less scalable than dense

computation. However, the sparse matrix computation is faster than the dense coun-

terpart. We should note that we generate very large matrices which can not be fit in

GPU memory if we store them in dense format. Accordingly, although sparse matrix

computation is more difficult to scale up, using the sparse matrix is the ideal solution

for large-scale logic programs in terms of both time and space complexity.
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(a) Definite programs with higher sparsity level (0.99)
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Figure 3.10: Comparison of execution time between sparse matrix implementations on
CPU and GPU.

8CUDA version 10.0.130
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Table 3.11: Details of experimental results
of sparse matrix implementations on CPU
and GPU (higher sparsity level).

Time unit is second.

n m Sparsity
CPU

time

GPU

time

100,000 500,000 0.99 5.12 1.26

110,000 600,000 0.99 5.69 1.40

120,000 700,000 0.99 6.63 1.58

130,000 800,000 0.99 7.57 1.75

140,000 900,000 0.99 9.12 2.04

150,000 1,000,000 0.99 11.39 2.29

Table 3.12: Details of experimental results
of sparse matrix implementations on CPU
and GPU (lower sparsity level).

Time unit is second.

n m Sparsity
CPU

time

GPU

time

100,000 500,000 0.95 20.23 4.43

110,000 600,000 0.95 29.12 6.35

120,000 700,000 0.95 37.28 9.39

130,000 800,000 0.95 48.23 11.33

140,000 900,000 0.95 57.24 13.46

150,000 1,000,000 0.95 66.23 15.89

3.5 Conclusion

In this thesis, we analyze The experimental results on computing the least models of

definite programs demonstrate a very significant enhancement in terms of computation

performance even when compared to Clasp. This improvement remarkably reduced

the burden of computation in previous linear algebraic approaches for representing LP.

The TP -operator plays an important role in model construction for computation of

definite and normal logic programs. Thus, improving the efficiency of fixed-point com-

putation is the key to develop algorithms dealing with large-scale datasets. Although

the current method requires a huge amount of memory to store all possible combina-

tions of negated atoms, we witnessed considerable improvement when there are small

numbers of negations. Moreover, matrix computation could be more accelerated using

GPU. We have tested our implementation in this way, and obtained expected results

too.

In addition to the improvement using sparse representation, we conducted exper-

iments on different general-purpose sparse matrix representations and demonstrated

the merits and demerits of each format. Accordingly, we propose to use the CSR in

the linear algebraic methods of logic programs for both efficiency and generality. If we

need a flexible way to access and modify non-zero elements individually, we strongly

recommend using the COO format. On the other hand, if we deal with special types

of logic programs as demonstrated in Section 3.4, we can consider applying the BSR

format or maybe other methods that meet the need.

Sato’s linear algebraic method is based on a completely different idea to represent

logic programs, where each predicate is represented in one matrix and an approximation

method is used to compute the extension of a target predicate of a recursive program

[80]. We should note that this approximation method is limited to a matrix size of
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10,000, while our exact method is comfortable with 320,000. Further comparison is a

future research topic, yet we could expect that Sato’s method can also be enhanced by

sparse representation.

The encouraging results open up room for improvement and optimization. Poten-

tial future work is to apply a sampling method to reduce the number of guesses in

the initial matrix for normal programs. An algorithm would be to prepare some man-

ageable size of the initial matrix, and if all guesses fail then we do some local search

and replace column vectors with new assignments and repeat it until a stable model is

found. Using a gradient-based search algorithm in continuous vector spaces could be

another potential approach [7], this method could also be beneficial from using sparse

representation. In addition, the sparse method also can combine with the partial eval-

uation that has been introduced in [62]. Further research directions on implementing

disjunctive LP and abductive LP should be considered in order to reveal the applica-

bility of tensor-based approaches for LP. In our recent work, we have extended the use

of program matrix transpose to realize abduction in vector spaces [64]. Additionally,

more complex types of the program should be taken into account to be represented

in vector space, for instance, 3-valued logic programs and answer set programs with

aggregates and constraints.
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Chapter 4

Linear Algebraic Computation in

Abductive Reasoning

The linear algebraic approach for abduction was considered by Aspis, Broda, and

Russo [6]. They have defined an explanatory operator based on third-order tensor

for computing abduction in Horn propositional programs that simulates deduction

through Clark completion for the abductive program [15]. Unfortunately, the dimension

explosion would arise in their method if they have not considered a more sophisticated

elimination strategy. Additionally, such methods have not yet been proved to be really

efficient, since they have not yet been done adequate experiments, to the best of our

knowledge. and Aspis et al. have not yet reported an empirical work.

In this chapter, we explore different approaches for linear algebraic abduction in

top-down approach starting from the observation set. First, we investigate on how

to define Propositional Horn Clause Abduction Problem (PHCAP) in the language of

linear algebra. Then, we propose a linear algebraic method for computing all minimal

explanations. We further discuss on other special characteristics of sparse represen-

tation and the difference of computing methods among dense and sparse formats. In

Section 4.4, we demonstrate the efficiency of our computation method with other tra-

ditional approaches.

4.1 Linear Algebraic Encoding of Propositional Horn

Clause Abduction Problem

Before diving deeper into the detail method, let us consider again the very simple

example in the beginning of the previous section that we consider a very simple program



4.1 Linear Algebraic Encoding of Propositional Horn Clause Abduction
Problem 48

with only a single And-rule p← q ∧ r. We already know the program matrix of its is:


p q r

p 0 1/2 1/2

q 0 0 0

r 0 0 0


By simply transposing it, we can obtain a new matrix:


p q r

p 0 0 0

q 1/2 0 0

r 1/2 0 0


Now let us see the behavior if we multiply the new matrix with a vector (1, 0, 0).


p q r

p 0 1/2 1/2

q 0 0 0

r 0 0 0

 ·
p 1

q 0

r 0

 =

p 0

q 1/2

r 1/2


Surprisingly, the behavior is similar to abduce the explanation of p and we can say

that in order to explain p, we have to explain both q and r. Of course this example

here is not well general enough but it gives us an initial idea about how to compute

abduction in vector spaces. Now we move on to the more formal theory of the linear

algebraic method for abduction.

Definition 43. Horn clause abduction: An abduction problem consists of a tu-

ple 〈L ,H,O,P〉, where H ⊆ L (called hypotheses or abducibles), O ⊆ L (called

observations), and P is a consistent Horn logic program.

In this thesis, we assume a program P is acyclic [2] and in its standardized form. A

program P is acyclic if the dependency graph of P is acyclic or it contains no loop. The

dependency graph of a logic program P is a graph (V,E), where the nodes V are the

atoms of P and, for each rule from P, there are edges in E from the atoms appearing

in the body to the atom in the head.

For convenience, P is partitioned into PAnd ∪ POr where PAnd is a set of And-rules

(including facts) of the form (3.1) and POr is a set of Or-rules of the form (3.2).

And-rule h ← b1 ∧ · · · ∧ bm (m ≥ 0)

Or-rule h ← b1 ∨ · · · ∨ bn (n ≥ 2)

Given P, define head(P) = {head(r) | r ∈ P}, head(PAnd) = {head(r) | r ∈ PAnd}, and
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head(POr) = {head(r) | r ∈ POr}.
Without loss of generality, we assume that any abducible atom h ∈ H does not

appear in any head of rule in P. If there exists h ∈ H and a rule r : h← body(r) ∈ P ,

we can replace r with r′ : h ← body(r) ∨ h′ in P and then replace h by h′ in H. If r

is in the form (3.2), then r′ is an Or-rule and no need to further update r′. On the

other hand, if r is in the form (3.1), then we can update r′ to become an Or-rule by

introducing an And-rule br ← body(r) in P and then replace body(r) by br in r′.

Definition 44. Explanation of PHCAP: A set E ⊆ H is a solution of a PHCAP

〈L ,H,O,P〉 if P ∪ E � O and P ∪ E is consistent. E is also called an explanation

of O. An explanation E of O is minimal if there is no explanation E ′ of O such that

E ′ ⊂ E.

According to [87], deciding the set of all minimal solutions of the PHCAP E 6= ∅ is

NP -complete that is proved by a transformation from satisfiability problem [30].

In this thesis, we want to find the set E of minimal explanations E for a PHCAP

〈L ,H,O,P〉.
The key idea of doing logic inference is to incorporate set operations and handle

them by manipulating real values in vector spaces. We will give an overview of how to

create the vector space and how to perform set operations on that vector space.

Definition 45. Vector represetation of subsets in PHCAP: Any subset s ⊆ L

can be represented by a vector v of the length |L | such that the i-th value v[i] = 1

(1 ≤ i ≤ |L |) iff the i-th atom pi of L is in s; otherwise v[i] = 0.

This definition is similar to the definition interpretation vector which is defined in

[75]. Here we need to define for both deductive and abductive reasoning so we use the

term correspondent vector.

In some specific cases, we also use v as a vectorizing method to define a set in

vector spaces: v(O) observation vector, v(H) hypotheses vector, v(⊥) integrity vector

(shorthand of v({⊥}) where {⊥} ⊂ L ), v(head(PAnd)) vector of all atoms that appear

in the head of a conjunctive rule in PAnd, v(head(POr)) vector of all atoms that appear

in the head of a disjunctive rule in POr. We use this notation for better indexing

each element and vector value in the set/vector. If there is no need to indicate each

individual item, we can omit the vectorizing method v.

Some basic notions In this chapter, we use some following notions:

• v: a vector. We refer to the i-th element of v by v[i].
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• M : a matrix. We refer to the i-th row of M by M [i]. Then M [i] is a vector that

we can refer to each element j by M [i][j].

• MT : a matrix which is the transpose of M .

• Inner product of two vectors u and v is denoted by u · v.

• Matrix - vector multiplication between a matrix M and a vector v is denoted by

M · v.

Please note that we follow zero-based indexing that v[0] is the first element of a vector

v while M [0] is the first column of a matrix M .

4.1.1 Program matrix and abductive matrix

We slightly modify the definition by Sakama et al. to define a matrix program of P in

a vector space.

Definition 46. Matrix representation of standardized programs in PHCAP

[75]: Let a PHCAP 〈 L ,H,O,P 〉 with P is a standardized program with L = {p1,
. . ., pn}. Then P is represented by a program matrix MP ∈ Rn×n (n = |L |) such that

for each element aij (1 ≤ i, j ≤ n) in MP :

1. aijk = 1
m

(1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ← pj1 ∧ · · · ∧ pjm is in PAnd and m > 0;

2. aijk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if pi ← pj1 ∨ · · · ∨ pjl is in POr;

3. aii = 1 if pi ← is in PAnd or pi ∈ H.;

4. aij = 0, otherwise.

In Definition 46, we have an update in the condition 3 that we set 1 for all abducible

atoms pi ∈ H. We further extend Definition 46 to define the abductive matrix of a

theory P.

Definition 47. Abductive matrix of PHCAP: Suppose that a PHCAP has P with

its program matrix MP . The abductive matrix of P is the transpose of MP represented

as MP
T .

Let us consider a logic circuit that can be formulated as a PHCAP in Example 6.
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Figure 4.1: An example of logic circuit.

Example 6. Consider a PHCAP such that: L = {p, q, r, s, h1, h2, h3}, O = {p},
H = {h1, h2, h3}, P = {p← q ∧ r, q ← h1 ∨ s, r ← s ∨ h2, s← h3}.
The program matrix and the abductive matrix of P are:

MP =



p q r s h1 h2 h3

p 1/2 1/2

q 1 1

r 1 1

s 1

h1 1

h2 1

h3 1


, MP

T =



p q r s h1 h2 h3

p

q 1/2

r 1/2

s 1 1

h1 1 1

h2 1 1

h3 1 1


In abduction, we also make use of the correspondent vector as defined in Definition

48 to realize an explanation - a set of propositional variables.

4.1.2 How a PHCAP can be represented in a vector space

By defining the program matrix and the abductive matrix, we can define correspondent

vector of PHCAP in vector space.

Definition 48. Correspondent vector of PHCAP: Any subset s ⊆ L can be

represented by a corresponding vector v of the length |L | such that the i-th value

v[i] = 1 (1 ≤ i ≤ |L |) iff the i-th atom pi of L is in s; otherwise v[i] = 0.

Without ambiguity, we will identify the set representation s with the vector repre-

sentation v, so we denote them all as v from now on. Henceforth, vi is the i-th atom

of L that constitutes s, while v[i] is the value of the vector at index i.

In some specific cases, we also use v as a special function that outputs a corre-

sponding vector of a subset in vector spaces: v(O) the observation vector, v(H) the

hypotheses vector, v(⊥) the integrity vector (shorthand of v({⊥}) where {⊥} ⊂ L ),

v(head(PAnd)) the vector of all head atoms of And-rules in PAnd, v(head(POr)) the

vector of all head atoms of Or-rules in POr. We use this notation for better indexing
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each element and a vector value in the set/vector. If there is no need to indicate each

individual item, we can omit the function notation v().

In order to utilize the use of correspondent vectors, we define a thresholding method

to perform needed set operations in vector spaces.

Definition 49. θ-thresholding:

1. Given a value x ∈ R, define θ(x) = x′ such that x′ = 1 if x > 0; otherwise, x′ = 0

2. Given a vector v ∈ Rn, define θ(v) = v′ such that v′[i] = 1 if v[i] > 0; otherwise

v′[i] = 0

3. Given a matrix M ∈ Rn×m, define θ(M) = M ′ such that M ′[i][j] = 1 if M [i][j] >

0; otherwise M ′[i][j] = 0

where 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proposition 6. The following equivalence relations hold :

u ∩ v = ∅ ⇔ u · v = 0 (4.1)

u ∩ v 6= ∅ ⇔ u · v > 0 (4.2)

u ⊆ v ⇔ θ(u+ v) ≤ θ(v) (4.3)

where · is the inner product.

Proof.

• (4.1) u ∩ v = ∅ ⇔ u · v = 0

– If u ∩ v = ∅, then based on Definition 48, {i | u[i] = 1} ∩ {j | v[j] = 1} = ∅.
So u ∩ v = ∅ ⇒ u · v = 0.

– If u · v = 0, then there is no index i such that u[i] = 1 and v[i] = 1. So

{i | u[i] = 1} ∩ {j | v[j] = 1} = ∅ or u ∩ v = ∅ by Definition 48.

• (4.2) u ∩ v 6= ∅ ⇔ u · v > 0

– If u∩ v = ∅, then there is at least an index i such that u[i] = 1 and v[i] = 1.

So u · v > 0.

– If u · v > 0, then we must find at least an index i such that u[i] = 1 and

v[i] = 1. So {i | u[i] = 1} ∩ {j | v[j] = 1} 6= ∅ or u ∩ v 6= ∅ by Definition 48.

• (4.3) u ⊆ v ⇔ θ(u+ v) ≤ θ(v)
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– If u ⊆ v, then {i | u[i] = 1} ⊆ {j | v[j] = 1} by Definition 48. Assigning

z = u + v then we have {k | z[k] = 1} ⊆ {j | v[j] = 1}. By applying

θ, we limit all values in those vectors by 1, so we have θ(z) ≤ θ(v) or

θ(u+ v) ≤ θ(v).

– If θ(u + v) ≤ θ(v), then {k | z[k] = 1} ⊆ {j | v[j] = 1}, where z = u + v.

Accordingly, z ⊆ v by Definition 48. It is obvious that u ⊆ z, so u ⊆ v.

4.2 Linear Algebraic Computation

In this section, we will present the linear algebraic method for abduction in detail with

a single example of PHCAP throughout the whole section. According to the previous

section, we can define the vector space for the PHCAP as well as the program matrix

and the abductive matrix of the theory associated with the PHCAP.

Example 7. Consider a PHCAP such that:

L = {p, q, r, s, h1, h2, h3}, O = {p}, H = {h1, h2, h3},
P = {p← q ∧ r, q ← h1 ∨ s, r ← s ∨ h2, s← h3}.
The program matrix and the abductive matrix of P are 1:

MP =



p q r s h1 h2 h3

p 1/2 1/2

q 1 1

r 1 1

s 1

h1 1

h2 1

h3 1


, MP

T =



p q r s h1 h2 h3

p

q 1/2

r 1/2

s 1 1

h1 1 1

h2 1 1

h3 1 1



4.2.1 Vector representation and explanation vector

The goal of PHCAP is to find the set of minimal explanations E according to Defini-

tion 44. Using Definition 48, we can represent any E ∈ E by a column vector E ∈
R|L |×1. To compute E, we define an explanation vector v ∈ R|L |×1. We use the ex-

planation vector v to demonstrate linear algebraic computation of abduction to reach

an explanation E starting from an initial vector v = v(O) which is the observation

vector (note that we can use the notation O as a vector without the function notation

v() as stated before). At each computation step, we can interpret the meaning of the

explanation vector v as: in order to explain O, we have to explain all atoms vi such

that v[i] > 0.

1We omit all zero elements in matrices for better readability.
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Definition 50. Answer of a PHCAP: The explanation vector v reaches an answer

E if v ⊆ H. This condition can be written in linear algebra as follows:

θ(v + H) ≤ θ(H) (4.4)

where H is the short hand of v(H) which is the hypotheses set/vector mentioned above.

Similar to the minimality characteristic in Definition 44, an answer is called minimal

iff there is no other subset of it is also an answer.

Next, we define the consitency checking of a vector by employing the least fixpoint

of the TP -operator [93]. According to [77], lfp(MP , v) is the vector representation of the

least fixpoint of the TP -operator starting from v. In orther words, from a vector v, by

continuously applying matrix multiplication, we will obtain a fixpoint which represents

all atoms can be reached from v through deductive steps. This is the key to define the

consistency checking as following:

Proposition 7. An explanation vector v is consistent with P if lfp(MP , v)∩{⊥} 6= ∅.
This condition can be written in linear algebra as follows:

v(⊥) · lfp(MP , v) = 0 (4.5)

where MP is the program matrix of P.

Proof. The lfp can be computed in the vector space by applying matrix multiplication

MP · v continuously until the fixpoint is reached. The resulting vector corresponds to

the least model of P∪ v [75]. If this model contains ⊥, P∪ v is inconsistent; otherwise

v is consistent with P. We can perform this test using Definition 6.

An efficient method to compute lfp of a definite program has been developed in

[63, 1].

4.2.2 The two 1-step abduction in PAnd and POr

We now define 1-step abduction in PHCAP step by step. First, let us define the reduct

abductive matrix.

Definition 51. Reduct abductive matrix of PHCAP: We can obtain a reduct

abductive matrix MP (PAnd)
T from the abductive matrix MP

T by:

1. Removing all columns w.r.t. Or-rules in POr.

2. Setting 1 at the diagnal corresponding to all atoms which are at the head of

Or-rules.
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The reduct abductive matrix is a reduced version of the abductive that we define

it to use in the 1-step abduction for PAnd. We use the superscript (t) to denote the

explanation vector v at a step t. The 1-step abduction applies on v at a step t to reach

a new vector v at the next step.

Definition 52. 1-step abduction for PAnd of a vector:

v(t+1) = MP (PAnd)
T · v(t) (4.6)

The 1-step abduction (4.6) is a reverse version of the TP -operator on a single vector.

By transposing the program matrix to an abductive matrix, we represent the abductive

step in a vector space that computes the explanation v(t+1) for v(t). This step corre-

sponds to a deductive step through Clark completion in an SD program [15]. Suppose

that there is an index i such that vi ∈ v(t) ∩ head(PAnd), according to Definition 46

and Definition 47 there is a column w.r.t. vi in MP (PAnd)
T , denoted by col(vi). By

applying (4.6), v(t+1)[j] =
v(t)[i]

|col(vi)|
> 0, for any j such that v

(t+1)
j ∈ col(vi). Then

vector v(t+1) represents the set of atoms required to explain v(t).

Example 8 (cont. Example 7). PAnd = {p← q ∧ r, s← h3}. We can obtain a reduct

abductive matrix MP (PAnd)
T by removing columns w.r.t. rules {q ← h1∨s, r ← s∨h2}

in the original abductive matrix. Consider applying 1-step abduction for PAnd with

v(t) = O:

v(t) = (1, 0, 0, 0, 0, 0, 0)T (= O)

v(t+1) = MP (PAnd)
T · v(t)

=



p q r s h1 h2 h3

p

q 1/2 1

r 1/2 1

s

h1 1

h2 1

h3 1 1


·



p 1

q 0

r 0

s 0

h1 0

h2 0

h3 0


=



p 0

q 1/2

r 1/2

s 0

h1 0

h2 0

h3 0



The vector v(t+1) can be interpreted as: in order to explain p, both q and r are to

be explained.

Definition 52 illustrates that we can apply continuously the 1-step abduction (4.6)

with v(0) = O until it reaches an explanation by the condition in Definition 50 and

satisfies consistency in Proposition 7. In fact, Definition 50 may not hold in case where

there is an atom in the explanation vector that we have no rule in PAnd to apply to

find its explanation.
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Proposition 8. The summation of v(t) is bounded.

sum(v(t+1)) ≤ sum(v(t)) ≤ · · · ≤ sum(v(0)) (4.7)

where sum(v) = Σvi∈vv[i].

This proposition is trivial to prove using Definition 46 and Definition 47. For

simplicity, we can initialize the starting point v(0) that statisfies sum(v(0)) = 1. If there

are multiple observations o1, o2, . . . , ok ∈ O, a new atom o is introduced to replace the

current observation set. Then a new conjunctive rule o← o1∧o2∧· · ·∧ok is introduced

to the theory P. Then we can initialize the starting point O = {o} such that summation

of the corresponding vector is 1. From now on, we assume sum(v(0)) = 1 without loss

of generality.

Proposition 9. If sum(v(t)) < 1, then v(t) ∪ PAnd 2 O .

Proof. According to Proposition 8, for any explanation vector v(t), we have sum(v(t)) ≤
sum(v(t−1)) ≤ · · · ≤ sum(v(0)) = 1. Assume the equality holds until the step t − 1 of

the 1-step abduction (4.6). If there is any index i such that vi ∈ v(t−1) \ head(PAnd),

the column w.r.t. vi in the reduct abductive matrix is encoded as a zero column. Thus,

when applying matrix multiplication in Definition 52, at the index i, v(t)[i] = 0 while

v(t−1)[i] > 0. That is: sum(v(t−1)) − sum(v(t)) ≥ v(t−1)[i] > 0 ⇔ sum(v(t)) < 1. This

behavior is equivalent to considering an explanation of vi but there is no rule in PAnd

that can explain vi.

Combining Definition 52 with Definition 50 and conditions in Proposition 7 and

Proposition 9, we can deal with And-rules in PAnd. This is just an initial step to solve

the PHCAP 〈L ,H,O,P〉. In abductive reasoning, Or-rules are more complicated to

handle because they increase the number of possible explanations. Hence, we need an

efficient method dealing with the growth of possibilities in vector spaces.

According to Definition 48, an explanation vector v can be represented by a column

vector v ∈ R|L |×1. We can stack multiple vectors v to form an explanation matrix M ∈
R|L |×|M | while all definitions and propositions with the 1-step abduction for PAnd of a

vector still work. Therefore, we can rewrite Definition 52 as follows:

Definition 53. 1-step abduction for PAnd:

M (t+1) = MP (PAnd)
T ·M (t) (4.8)

We now introduce a notation M as a matrix that is equivalent to a vector of vectors

or a set of sets. Note that we denote |M | as the number of vectors or sets in M . We
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also use the same notation we mentioned above that Mi is the i-th set of M , while

M [i] is the vector at an index i.

Let v be an explanation vector in 〈L ,H,O,P〉 such that v ∩ head(POr) where

head(POr) = {head(r1), head(r2), . . . , head(rk)} with r1, r2, . . . , rk ∈ POr. In order

to compute explanations of v we have to explore all combinations c extracted from

{body(r1), body(r2), . . . , body(rk)} such that ∀j ∈ {1, 2, . . . , k}, c ∩ body(rj) 6= ∅. It

turns out that this is equivalent to enumerate the Minimal Hitting Sets (MHS) with

the input set is {body(r1), body(r2), . . . , body(rk)} [28].

We denote MHS(S) as all MHS of a family of sets to be hit S. Now we can define

1-step abduction for POr.

Definition 54. 1-step abduction for POr:

M (t+1) =
⋃

∀v∈M(t)

⋃
∀s∈MHS(S(v, POr)

)

((
v \ head(POr)

)
∪ s
)

(4.9)

where: S(v, POr) = {body(r1), body(r2), . . . , body(rk)} is a family of sets to be hit such

that v ∩ head(POr) = {head(r1), head(r2), . . . , head(rk)}.

Note that all new vectors v ∈M (t+1) will be reallocated values such that sum(v) = 1

to maintain the condition in Proposition 9 of the 1-step abduction (4.8) for PAnd.

Example 9 (cont. Example 8). Por = {q ← h1 ∨ s, r ← s ∨ h2}. We use the output

of Example 8 as the input of the 1-step abduction for POr, but now we treat it as a

matrix instead:

M (t)T =
( p q r s h1 h2 h3

0 0 1/2 1/2 0 0 0 0

)
M (t) = {{q, r}}

S
(M

(t)
0 , POr)

= {{h1, s}, {s, h2}}

MHS(S
(M

(t)
0 , POr)

) = {{s}, {h1, h2}}

M (t+1) = {{s}, {h1, h2}}

M (t+1)T =


p q r s h1 h2 h3

0 0 0 0 1 0 0 0

1 0 0 0 0 1/2 1/2 0


To the best of our knowledge, it is not trivial to implement an efficient method in

a vector space that enumerates exactly all MHS as we defined in Definition 54. Hence,

to implement (4.9) at this time, we have no choice but to treat all explanation vectors

as sets instead of vectors. Fortunately, we can perform the vector-set conversion with

minimal cost using the sparse representation we are going to discuss later.
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4.2.3 Computable characteristics

Up to now, we have defined 1-step abduction for PAnd and POr. Although each method

itself is not sufficient to solve the PHCAP 〈L ,H,O,P〉, their characteristics are im-

portant for us to define a general approach. Hereafter we will define the characteristic

of each 1-step abduction in solving a PHCAP.

Definition 55. Or-computable and And-computable:

1. A vector v is Or-computable iff v ∩ head(POr) 6= ∅.

2. A matrix M is Or-computable iff ∃v ∈M , v is Or-computable.

3. A vector v is And-computable iff v is not Or-computable.

4. A matrix M is And-computable iff ∀v ∈M , v is not Or-computable.

Proposition 10. For any matrix M which is Or-computable in 〈L ,H,O,P〉, there

exists a fixpoint t of (4.9), such that M (t+k) = M (t), ∀k > 0, k ∈ N.

Proof. For each Or-computable vector v ∈ M , the 1-step abduction (4.9) replaces all

atoms in the intersection of v and head(POr) by the corresponding MHS. In addition, P

is finite and acyclic so there is a fixpoint such that there is no Or-rule that can be used

to abduce v or we can say that v is And-computable. That means v ∩ head(POr) = ∅,
so the corresponding MHS is an empty set then ∀k > 0, v(t+k) = v(t) (k ∈ N). Extend

this to other explanation vectors in M we have that M is And-computable and ∀k > 0,

M (t+k) = M (t) (k ∈ N).

Corollary 1. For any matrix M which is Or-computable in 〈L ,H,O,P〉, if t is the

fixpoint of (4.9) then M (t) is And-computable in 〈L ,H,O,P〉.

Proposition 11. For any matrixM which isAnd-computable in 〈L ,H,O,P〉, MP (PAnd)
T ·

M = MP
T ·M .

Proof. As in Definition 52, MP (PAnd)
T is a reduct abductive matrix from MP

T by

removing all columns w.r.t. Or-rules in POr. So MP (PAnd)
T · M has no effect on

Or-computable vector v ∈ M . Moreover, M is And-computable in 〈L ,H,O,P〉 by

definition, therefore MP (PAnd)
T ·M = MP

T ·M .

4.2.4 The algorithm

Based on the two 1-step abduction (4.8) and (4.9), we propose an exhaustive search

strategy to solve the PHCAP 〈L ,H,O,P〉 in a vector space as illustrated in Algo-

rithm 4.

Some explanations are in order:
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Algorithm 4 Explanations finding in a vector space

Input: PHCAP consists of a tuple 〈L ,H,O,P〉
Output: Set of explanations E

1: Create an abductive matrix MP
T from P

2: Initialize the observation matrix M from O
3: E = ∅
4: while True do
5: M ′ = MP

T ·M
6: M ′ = consistent(M ′) . Proposition 7
7: v sum = sumcol(M

′) < 1− ε . Proposition 9
8: M ′ = M ′[v sum = False]
9: if M ′ = M or M ′ = ∅ then

10: v ans = θ(M + H) ≤ θ(H) . Definition 50
11: E = E ∪M [v ans = True]
12: return minimal(E) . Minimality check

13: do
14: v ans = θ(M ′ + H) ≤ θ(H) . Definition 50
15: E = E ∪M ′[v ans = True]
16: M ′ = M ′[v ans = False]
17: M = M ∪M ′[not Or-computable]
18: M ′ = M ′[Or-computable]

19: M ′ =
⋃
∀v∈M ′

⋃
∀s∈MHS(S(v, POr)

)

((
v \ head(POr)

)
∪ s
)

20: M ′ = consistent(M ′) . Proposition 7
21: while M ′ 6= ∅
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• Step 5: We can use MP (PAnd)
T and MP

T interchangeably, and there is no differ-

ence in terms of the effect on algorithm behavior as proved in Proposition 11. In

fact, using a reduct abductive matrix may slightly improve the performance.

• Step 6 & 20: Consistency checking accroding to Proposition 7.

• Step 7: sumcol(M
′) means applying summation on each vector v ∈M ′ to return

a vector. Then we compare each element of this vector with 1 − ε following the

Proposition 9 to return a corresponding Boolean vector. Due to the numerical

issue with floating-point numbers in computer e.g. 1
3

+ 1
3

+ 1
3

= 0.999 . . . , a small

fraction ε is introduced to relax the condition in Proposition 9. Choosing the

best ε depends on actual 〈L ,H,O,P〉. If we set ε too small, we may filt out good

explanation vectors and the algorithm might not gives expected output. While

setting ε too large, we may waste of computation in unexplainable paths.

• Step 8: We use the Boolean vector in Step 7 to eliminate unexplainable expla-

nation vectors. We keep only vectors that their Boolean value is False. [] is the

projection method that extracts from M ′ only vectors that satisfy the condition

inside []. Similarly, we also use the projection method in Steps 15-18.

• Step 10-11 & 14-15: Check the condition in Definition 50 and add all found

explanations to E.

• Step 12: Applying the minimality check on the set E to eliminate redundant

explanations according to Definition 43. We implement this method by sorting

all E ∈ E by their cardinality, then applying a simple set iteration loop.

• Step 17: Add vectors which are And-computable to the matrix M for the next

loop.

• Steps 16,18-19: Construct a matrix M ′ which is Or-computable then perform the

1-step abduction (4.9). Here we have to solve the MHS problem many times. We

implement a naive approach in which we enumerate all combinations then apply

the minimality check similar to Step 12. However, this implementation can deal

with up to 500,000 combinations, therefore, we exploit PySAT2 to solve large-size

MHS problems [41].

Theorem 3. The output of Algorithm 4 is the set of all minimal explanations of the

PHCAP 〈L ,H,O,P〉 .

Proof. Definition 48 defines 1-1 correspondence between subsets of L and vectors.

Algorithm 4 employs both the 1-step abduction (4.8) and (4.9) in a vector space,

which are equivalent to abductive steps in PAnd and POr respectively, exploring all

2https://github.com/pysathq/pysat
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possibilities that satisfy both Definition 50 and Proposition 7. Therefore, ∀E ∈ E,

E ⊆ H we have E ∪ P � O and E ∪ P 2 ⊥. Futher, Algorithm 4 employs minimality

check on E, therefore ∀E1, E2 ∈ E, E1 * E2.

Example 10. Let us demonstrate how to solve the PHCAP in Example 7 using Al-

gorithm 4. Actually, we have done the first iteration of Algorithm 4 as illustrated in

Example 8 and Example 9. We continue the next iteration with the explanation matrix

M = M (t+1) obtained in Example 9.

MT =


p q r s h1 h2 h3

0 0 0 0 1 0 0 0

1 0 0 0 0 1/2 1/2 0



M ′T = (MP
T ·M)

T
=


p q r s h1 h2 h3

0 0 0 0 0 0 0 1

1 0 0 0 0 1/2 1/2 0


Here Algorithm 4 stops because all explanation vectors reach answer of Defini-

tion 50, satisfying the condition of Proposition 7, and M ′ = ∅ after that. Finally, the

algorithm applies minimal checking and gives the output set of minimal explanations

E = {{h3}, {h1, h2}}.
The main idea of Algorithm 4 is applying the 1-step abduction (4.8) and (4.9) con-

tinuously in a vector space. Except for the MHS enumerator, almost everything can

be implemented using matrix operations. Therefore, it is possible to gain remarkable

boosting performance by implementing a parallel version of Algorithm 4 using powerful

BLAS library e.g. Intel MKL, NVIDIA cuBLAS. On the other hand, in some circum-

stances, because Algorithm 4 is an exhaustive search, it will take time to explore all

possibilities. To obtain an acceptable set of explanations, we can apply some early stop

conditions in Step 9 e.g. number of columns of M exceeds a fixed value or how many

times the 1-step abdution have been called. To sum up, we have presented a general

framework to solve PHCAP in a vector space that can be modified easily for different

purposes.

4.3 Matrix Representation

In our previous work, we have analyzed the sparsity of logic programs in vector spaces

and have a conclusion that program matrices are sparse in general [63, 1]. The paper

indicates that implementing the TP -operator using a sparse format outperforms that

using the dense format in large-scale logic programs. Similarly, the sparse representa-

tion will be promising in abductive reasoning.



4.3 Matrix Representation 62

The sparsity of a matrix equals the number of zero-valued elements divided by

the total number of elements [13]. By definition, there is no doubt that in a PHCAP

〈L ,H,O,P〉, the sparsity of the abductive matrix and that of the program matrix are

equal and can be computed by the following equation [63, 1]:

sparsity(P) = 1−

∑
r∈P

|body(r)|

|L |2
(4.10)

Extend the definition of sparsity to an explanation matrix M , we have the following

equation:

sparsity(M) = 1−

∑
v∈M

|v|

|L | × |M |
(4.11)

Because M is growing while we explore different possible explanations, there is no war-

ranty thatM always has a high level of sparsity. In caseM is not sparse (sparsity(M) ≤
0.9), although the sparse representation may not help much in terms of performance, it

provides faster vector-set conversion. In Section 4.4, we will analyze more detail about

the sparsity level of explanation matrices.

Example 11.

• Consider the theory P in Example 7:

sparsity(P) = 1− 2 + 2 + 2 + 1 + 1 + 1 + 1

72
= 0.796

• Consider the explanation matrix M (t+1) in Example 9:

sparsity(M (t+1)) = 1− 1 + 2

7× 2
= 0.786

Suppose we have a matrix M of the size Rm×n with ηz non-zero elements. Now

let us quick summarize three most popular general-purpose sparse matrix formats by

considering the explanation matrix V (t+1) in Example 9.

1. Coordinate (COO) format uses 3 arrays of length ηz to store the two co-

ordinates and value of non-zero elements following the row-major order or the

column-major order. In row-major order, the consecutive elements of a row reside

next to each other while in the column-major order, the consecutive elements of

a column reside next to each other. We denote Mrow, Mcol, Mval for the row

indices array, column indices array and values array respectively. We know that
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|Mrow| = |Mcol| = |Mval| = ηz. V (t+1) can be represented in the COO format

following the row-major order:

Row index 3 4 5

Col index 0 1 1

Value 1.0 0.5 0.5

Then each non-zero element can be extracted by a tuple Mrow[i], Mcol[i], Mval[i]

for 0 ≤ i < ηz.

2. Compressed Sparse Row (CSR) format is similar to the COO format except

that we use the compressed format for row indices and strictly follow the row-

major order. We store m + 1 values for row indices rather than ηz values. We

denote Mrow, Mcol, Mval for the compressed row indices array, column indices

array and values array respectively. We know that |Mrow| = m+1 while |Mcol| =
|Mval| = ηz. V

(t+1) can be represented in the CSR format as follows:

Compressed row 0 0 0 0 1 2 3 3

Col index 0 1 1

Value 1.0 0.5 0.5

Then each non-zero element of the i-th row (0 ≤ i ≤ m) can be extracted by a

tuple i, Mcol[j], Mval[j] for Mrow[i] ≤ j < Mrow[i+ 1].

3. Compressed Sparse Column (CSC) format is similar to the CSR format but

we compress the column indices instead and follow the column-major order. We

store n + 1 values for column indices rather than ηz values. We denote Mrow,

Mcol, Mval for the row indices array, compressed column indices array and values

array respectively. We know that |Mcol| = n + 1 while |Mrow| = |Mval| = ηz.

V (t+1) can be represented in the CSC format as folows:

Row index 0 1 3

Compressed col 3 4 5

Value 1.0 0.5 0.5

Then each non-zero element of the i-th column (0 ≤ i ≤ n) can be extracted by

a tuple Mrow[j], i, Mval[j] for Mcol[i] ≤ j < Mcol[i+ 1].

Regarding memory usage among general-purpose sparse representations, the CSR

and the CSC formats are similar in case the matrix is square and they are usually

better than the COO format. The CSR format enables faster lookup by row while

the CSC format provides faster lookup by column. In our previous work, we suggest
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using the CSR for the program matrix then when transpose it to obtain an abductive

matrix, it will become a CSC matrix naturally. Therefore, we suggest using the CSC

format for both the abductive matrix and the explanation matrix.

In the case of an explanation matrix, we initialize it as a column matrix of the

observation matrix then it grows to multiple columns while we exploring. Henceforth,

the CSC format is an ideal format because it is faster in terms of looking up values by

column. As we can see in the CSC representation of V (t+1) in the previous example,

the CSC format stores both the row indices and values that we need to form the

corresponding set of indices. If we use a dense matrix, we have to iterate over the

column and check whether each value is larger than zero or not then extract its row

index to the set of indices. Using the sparse format, which is the CSC concretely, we

store all row indices of non-zero elements in an explanation vector then we can form a

set of row indices at almost no cost. We use this set of row indices as input for solving

the MHS as represented in the Algorithm 4. Moreover, representing the explanation

matrix in the CSC format is compatible with the abductive matrix, which is in the

CSC format as we mentioned before. So when we apply the dot product in Step 5 of

Algorithm 4, we obtain output in the CSC format. Therefore, we suggest using the

CSC format for the explanation matrix.

4.4 Experiments

4.4.1 Benchmark datasets

To demonstrate the linear algebraic computation of abduction, we conduct experi-

ments on the same benchmark datasets used in [51, 52]. The benchmark problems are

built based on Failure Modes and Effects Analysis (FMEA), which is a well-known

critical fault identifying framework in industry, through a direct mapping described by

Wotawa [94]. The benchmark consists of both real-world and artificial samples and

all benchmark problems do not contain constraints. Based on the generation method,

each problem set has different characteristic:

• Artificial samples I: deeper but narrower graph structure.

• Artificial samples II: deeper and wider graph structure, some problem involves

solving a large number of medium-size MHS problems.

• FMEA samples: shallower but wider graph structure, usually involing a few (but)

large-size MHS problems.

Table 4.1 further represents statistics data of the datasets in more detail.

As stated before, we need an extra step to transform the program into equivalent

standardized format. Accordingly, we denote the input PHCAP as 〈P′,H,O,T′〉 while
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the standardized PHCAP is 〈L ,H,O,P〉. The detail statistical information of all

problem sets are represented in the first 4 rows |H|, |P′ \H|, |T′|, and |O| of Table 4.1.

The next 4 rows of Table 4.1 represent the transformed P and L , while |L | is also the

dimension of a corresponding abductive matrix.

Table 4.1 also records the sparsity analysis data on all benchmark datasets. ηz(MP
T )

and ηz(M) are the number of non-zero elements in the abductive matrix and the

explanation matrix respectively. Similarly, sparsity(MP
T ) and sparsity(M) are the

sparsity of the abductive matrix and the explanation matrix, respectively. Because

explanation matrices are not fixed, we record only the maximum number of explana-

tion vectors (max(|M |)), the maximum ηz (max(ηz(M))), and the minimum sparsity

min(sparsity(M)) for each explanation matrix. Finally, max iter is the number of it-

erations of the main loop in the Algorithm 4 and |E| is the number of correct minimal

explanations.

In order to demonstrate the performance of the linear algebraic approach using

sparse representation, we propose a way to upscale the standard benchmark dataset.

In such a problem instance of the dataset, we conjunct the corresponding dependency

graph of the instance by itself multiple times and add an And-node as a new root of

the graph. Additionally, we keep the observations set unchanged from only a single

instance. By doing this way, we can upscale any problem instance in the standard

dataset to a more complicated problem. In this experiment, we generate two more

problem set accrodingly by doubling and quadrupling of each instance in the standard

benchmark. The two new introduced benchmark datasets are called, upscaled 2×
dataset and upscaled 4× dataset respectively. The two new benchmarks have the same

characteristic as the original benchmark but with more nodes and are supposed to be

more challenging for solvers.

4.4.2 Experimental setup

To demonstrate the linear algebraic computation of abduction, we conduct experiments

on the benchmark datasets used in [51, 52]. The purpose of this thesis is to compare

the effectiveness of our method with that of other general-purpose solvers. Thus,

we implement our method as two versions including a dense matrix method (Dense

matrix for short) and a sparse matrix method (Sparse matrix for short). For both the

abductive matrix and the explanation matrix, we use dense format in Dense matrix

while in Sparse matrix, CSC format is used.Our code is implemented in Python 3.7

using Numpy and Scipy for matrices representation and computation. As stated in

Algorithm 4, we implement a naive approach for solving MHS that we only use built-in

Python set operations. For large-size MHS problems, which have more than 50,000
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combinations, we use MHS enumerator provided by PySAT. Importantly, we force

to execute our code in a single core, in order to make a fair comparison with other

methods. The computer we perform this experiment has the following configurations:

CPU: Intel(R) Xeon(R) Bronze 3106 CPU @1.70GHz; RAM: 64GB DDR3 @1333MHz;

Operating system: Ubuntu 18.04 LTS 64bit.

The other competitors are ATMS, ASP , CF , HS-DAG and HS-DAGQX that

we reuse the baseline Java source code in [51, 52]3: ATMS implementation is based

on the assumption-based LTUR in the jdiagengine [69]; ASP implementation exploits

an encoding of propositional abduction by [74] then calls Clingo solver [32], which is

written in C++, for stable computation; CF implementation is based on the SOLAR

[60]; HS-DAG implementation is based on the jdiagengine [69]; HS-DAGQX is an

improved implementation of HS-DAG employing QuickXplain [49].

Similar to the experiment setup in [52], each method is conducted 10 times with

a limited runtime on each PHCAP problem to record execution time and correctness

of the output. The time limit for each run is 20 minutes that is if a solver cannot

output the correct output in this limit, 40 minutes will be penalized to its execution

time. Accordingly, we denote t as the effective solving time and tp as the penalty time,

consequently, t + tp is the total running time. The extra time for transforming to the

standardized format of our methods is included in t.

As stated before, we need an extra step to transform the program into equivalent

standardized format. Accordingly, we denote the input PHCAP as 〈P′,H,O,T′〉 while

the standardized PHCAP is 〈L ,H,O,P〉. The detailed statistical information of all

problem sets are represented in the first 4 rows |H|, |P′ \H|, |T′|, and |O| of Table 4.1.

The next 4 rows of Table 4.1 represent the transformed P and L , while |L | is also the

dimension of a corresponding abductive matrix.

Table 4.1 also records the sparsity analysis data on all benchmark datasets. ηz(MP
T )

and ηz(M) are the number of non-zero elements in the abductive matrix and the

explanation matrix respectively. Similarly, sparsity(MP
T ) and sparsity(M) are the

sparsity of the abductive matrix and the explanation matrix, respectively. Because

explanation matrices are not fixed, we record only the maximum number of explana-

tion vectors (max(|M |)), the maximum ηz (max(ηz(M))), and the minimum sparsity

min(sparsity(M)) for each explanation matrix. Finally, max iter is the number of it-

erations of the main loop in the Algorithm 4 and |E| is the number of correct minimal

explanations.

In order to visualize the results, for each problem set, we illustrate using a line

3Readers should follow the paper for more detail about other algorithms. Among the reported
algorithms, we omit the Explorer and ExplorerQX because they fall behind other algorithms by a
large margin.
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graph for convergence trend comparison, a bar graph displaying t+ tp (full height) and

t (height of solid color), a table for more detail in numbers. For better visualization,

all figures and data are illustrated in a log-scale of runtime in millisecond (ms), and in

all figures for runtime trends, we order successful runs by their execution time before

plotting the data.

4.4.3 Results for The Standard Dataset

Artificial benchmarks

Figure 4.2 and Figure 4.3 illustrate the comparison on the Artificial samples I and II,

while Table 4.2 and Table 4.3 give more detail information. As witnessed in Figure 4.2

and Figure 4.3, runtime trends of all algorithms grow exponentially by the number of

solved samples (#solved).

In the Artificial samples I, together with ATMS and HS-DAGQX , our linear alge-

braic approaches are able to solve all problems. Surprisingly, in terms of total runtime,

Dense matrix is even faster than HS-DAGQX while Sparse matrix is just a few seconds

behind the fastest - ATMS. Other methods fall behind by 3a large margin because

they are penalized on unresolved samples. Table 4.2 further reveals the efficiency of

linear algebraic methods that Dense matrix is the fastest in 110 runs while Sparse

matrix is the fastest in 930 runs. In this dataset, the sparsity of abductive matrices

and explanation matrices maintains at a good level of mean (Table 4.1).
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Figure 4.2: Experimental results for the Artificial samples I.
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1660 110 27,902 335 27,902 1744

Sparse matrix 1660 930 5900 45 5900 95

ATMS 1660 68 5171 154 5171 1089

ASP 1650 0 5,323,586 103,734 7,723,586 317,719

HS-DAG 1630 344 110,640 30,280 7,310,640 33,035

HS-DAG QX 1660 208 50,230 9766 50,230 12,389

CF 1650 0 1,673,516 59,781 4,073,516 91,042

Table 4.2: Detail runtime results on the Artificial samples I.

In the Artificial samples II, only ATMS is able to handle all problems although it

is not the fastest algorithm. ASP , HS-DAGQX and linear algebraic methods are equal

in terms of #solved that is 117/118. Table 4.3 gives a more detailed comparison in

the Artificial samples II that Dense matrix and Sparse matrix are competitive as being

the fastest algorithm in 248 and 120 runs, respectively. From Table 4.1 we also can see

that |E| and max(|M |) surge to very large figures, 58, 520 and 1, 618, 050, respectively.

This happens in the only one problem instance that our methods are failed to solve in

time.

Notably in both the benchmarks, Dense matrix takes the lead over Sparse matrix

in the beginning. This is understandable because the sparsity level of explanation

matrices, for example in the data for Artificial samples II in Table 4.1, drops to min

0.59 and mean 0.94. In this situation, sparse representation cannot take much benefit.

Due to that fact, Sparse matrix still takes over Dense matrix in the end with much

better total execution time as can be seen in Figure 4.2. Further, Sparse matrix is the

most stable algorithm with the best std.
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Figure 4.3: Experimental results for the Artificial samples II.
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1170 248 207,015 3573 2,607,015 6906

Sparse matrix 1170 120 63,251 235 2,463,251 596

ATMS 1180 119 598,145 63,317 598,145 67,146

ASP 1170 0 568,408 2868 2,968,407 12,196

HS-DAG 1130 436 67,567 16,943 12,067,567 18,572

HS-DAG QX 1170 257 18,198 4106 2,418,198 6745

CF 1140 0 508,309 7850 10,108,309 13,188

Table 4.3: Detail runtime results on the Artificial samples II.

Real-world samples

Figure 4.4 illustrates the comparison on FMEA samples benchmark while Table 4.4

gives more detail information about each algorithm. In this benchmark, ATMS, CF

and linear algebraic methods are able to solve all instances without penalty. Surpris-

ingly, Dense matrix outperforms others and takes the lead by a remarkable margin

(Figure 4.4) and ends up even more than 2 times faster than the 3rd place algorithm

- ATMS in terms of total execution time (Figure 4.4). Sparse matrix starts with a

humble beginning but performs very well after that and finishes at the first place with

the lowest execution time in total.

From Table 4.1, we can see that sparsity(MP
T ) and sparsity(M) drop to mean

0.95, min 0.73 and mean 0.79, min 0.46, respectively. That is the reason for the good

performance of Dense matrix in many runs. Despite of that fact, Sparse matrix is

still better in overall because of faster lookup by column as explained in Section 4.1.

Moreover, Sparse matrix still is the best stable algorithm with the lowest std among

those with highest #solved.
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Figure 4.4: Experimental results for the FMEA diagnosis problems.
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 2130 1166 92,985 1548 92,985 3558

Sparse matrix 2130 160 77,685 886 77,685 1424

ATMS 2130 579 250,000 16,202 250,000 23,799

ASP 2020 0 45,051 763 26,445,051 2799

HS-DAG 1775 31 3,883,276 650,599 89,083,276 950,627

HS-DAG QX 2020 184 27,926 350 26,427,926 1492

CF 2130 10 498,885 16,325 498,885 25,601

Table 4.4: Detail runtime results on the FMEA diagnosis problems.

4.4.4 Results for the Upscaled 2× Dataset

Figure 4.5, Figure 4.6 and Figure 4.7 demonstrate comparison between algorithms

while further sparsity analysis is reported in Table 4.5.

Artificial benchmarks

In the Artificial samples I, Sparse matrix is able to solve all instances again and this

time it takes the lead with 1089 #fastest and 22 #std. ATMS now comes at second

place with, despite the fact that it is only being fastest if 54 instances, less than HS-

DAG and HS-DAGQX . The matrix size increasing is really a matter for Dense matrix

that it fails to keep up with HS-DAGQX .
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Figure 4.5: Experimental results for the 2× upscaled Artificial samples I (166 files).
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1660 0 76,121 372 76,121 2593

Sparse matrix 1660 1089 6974 22 6974 91

ATMS 1660 54 8324 171 8324 1476

ASP 1588 0 17,844,157 523,062 35,124,157 1,845,769

HS-DAG 1638 220 913,448 400,588 6,193,448 602,237

HS-DAG QX 1660 297 43,389 8692 43,389 10,967

CF 1650 0 2,468,475 29,531 4,868,475 70,697

Table 4.6: Detail runtime results on the 2× upscaled Artificial samples I.

Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1140 1 279,704 3011 9,879,704 5462

Sparse matrix 1170 8 39,615 157 2,439,615 411

ATMS 1180 65 2,111,843 114,332 2,111,843 120,907

ASP 1160 0 959,808 5894 5,759,808 16,229

HS-DAG 1130 620 151,362 8685 12,151,362 9770

HS-DAG QX 1170 486 20,831 4173 2,420,831 8093

CF 1140 0 648,167 3356 10,248,167 10,840

Table 4.7: Detail runtime results on the 2× upscaled Artificial samples II.

In the Artificial samples II, one more time, only ATMS is able to handle all problem

instances although it takes much more execution time than before. HS-DAGQX still

holds the second place but the gap is shortened by Sparse matrix. Dense matrix this

time is failed to solve 4 instances but is still competitive with other algorithms.
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Figure 4.6: Experimental results for the 2× upscaled Artificial samples II (118 files).
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Figure 4.7: Experimental results for the 2× upscaled FMEA samples (213 files).
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 2130 191 96,193 1108 96,193 2070

Sparse matrix 2130 440 66,277 245 66,277 477

ATMS 2130 20 201,249 3479 201,249 9231

ASP 30 0 1873 10 510,480,187 2,170,317

HS-DAG 1798 618 4,825,902 427,943 84,505,902 986,115

HS-DAG QX 2020 861 27,747 241 26,427,747 903

CF 2120 0 1,043,638 13,228 3,443,638 23,337

Table 4.8: Detail runtime results on the 2× upscaled FMEA diagnosis problems.

In this benchmark, ATMS finishes slightly faster than itself in the standard bench-

mark. However, linear algebraic approaches are successful to defend their places. HS-

DAG and HS-DAGQX are the fastest in many instances with 618 and 861 #fastest

respectively, but they are unable to solve all problems. This time ASP shows a sub-

standard performance with only 3 solvable instances.

4.4.5 Results for the Upscaled 4× Dataset

Figure 4.8, Figure 4.9 and Figure 4.10 demonstrate comparison between algorithms

while further sparsity analysis is reported in Table 4.9.

Artificial benchmarks

In the Artificial samples I, Sparse matrix is able to solve all instances again and this

time it takes the lead with 1089 #fastest and 22 #std. ATMS now comes at second

place with, despite the fact that it is being fastest in only 47 instances, less than HS-

DAG and HS-DAGQX . The increasing size of the set of literals causes a significant

impact on the execution of all algorithms, especially for Dense matrix that it fails to

keep up with HS-DAGQX . Sparse matrix comes again as the fastest and the most

stable solver in this benchmark.

In the Artificial samples II, it is the first time that ATMS is failed to solve the

hardest problem, so there is no solver is able to do that. Accordingly, Sparse matrix,

ATMS and HS-DAGQX are the top three with highest #solved. The ranking has

been updated that HS-DAGQX is the fastest with 526 #solved, ATMS falls to second

place and Sparse matrix remains at the third place. Dense matrix this time is failed

to solve 4 instances but is still competitive with other algorithms.



4.4 Experiments 81

B
e
n
ch

m
a
rk

d
a
ta

se
t

A
rt

ifi
ci

a
l

sa
m

p
le

s
I

(1
66

p
ro

b
le

m
s)

A
rt

ifi
ci

a
l

sa
m

p
le

s
II

(1
18

p
ro

b
le

m
s)

F
M

E
A

sa
m

p
le

s
(2

13
p

ro
b

le
m

s)

P
ar

am
et

er
s

m
e
a
n

st
d

m
in

m
a
x

m
e
a
n

st
d

m
in

m
a
x

m
e
a
n

st
d

m
in

m
a
x

|H
|

11
00
.2

7
66

8.
49

40
20

16
48

1.
69

29
7.

42
48

94
0

10
4.

64
83
.2

5
12

36
0

|L
′
\
H
|

76
15
.9

4
60

19
.5

8
27

25
,8

67
10

13
.9

5
88

1.
99

55
42

23
10

8.
33

77
.2

8
22

33
4

|P
′ |

11
,8

04
.4

1
85

26
.2

7
44

28
,7

48
16

70
.8

1
12

82
.2

4
84

45
88

28
6.

35
30

3.
53

52
11

96

|O
|

1
0

1
1

1
0

1
1

1
0

1
1

|P
|

83
53
.2

8
63

37
.9

1
44

26
,4

04
12

87
.4

2
10

10
.5

6
72

44
40

11
0.

27
77
.2

9
23

33
6

|P
A
n
d
|

47
54
.5

1
53

98
.3

7
32

25
,5

00
80

7.
46

74
6.

57
36

40
28

63
.9

1
37
.0

2
3

17
2

|P
O
r
|

35
98
.7

7
33

58
.3

2
12

13
,3

80
47

9.
97

42
9.

61
16

17
48

46
.3

6
43
.9

9
4

16
4

|L
|

94
89
.4

5
69

23
.6

4
96

28
,5

92
18

03
.5

6
12

73
.3

1
15

2
55

88
21

4.
91

15
8.

38
35

69
6

η z
(M

P
T

)
25
,4

15
.9

19
,6

11
.8

1
20

0
89
,2

26
47

17
.9

8
34

47
.4

3
32

4
16
,4

62
41

1.
52

38
8.

89
72

16
05

sp
a
rs
it
y
(M

P
T

)
1

0
0.

98
1

1
0

0.
98

1
0.

99
0.

01
0.

94
1

m
a
x

(|M
|)

23
0.

66
16

05
.5

4
1

16
,8

66
26

46
.0

9
18
,0

60
1

18
8,

92
1

21
26
.4

9
15
,5

12
.5

4
1

15
4,

44
0

m
a
x

(η
z
(M

))
47

25
.4

9
36
,3

92
.5

5
1

42
8,

75
4

80
,2

56
.0

9
46

4,
10

8.
84

1
4,

63
8,

57
6

43
,7

38
.8

7
33

4,
39

3.
4

1
3,

45
9,

45
6

m
in

(s
pa
rs
it
y
(M

))
0.

99
0.

01
0.

92
1

0.
98

0.
02

0.
88

1
0.

95
0.

03
0.

87
1

m
a
x
it
er

6.
63

5.
36

4
67

8.
81

10
.6

9
4

93
3.

88
0.

41
2

4

|E
|

2.
77

5.
06

1
50

3.
67

9.
58

0
63

71
.8

1
27

3.
06

2
22

95

T
ab

le
4.

9:
S
ta

ti
st

ic
s

an
d

sp
ar

si
ty

an
al

y
si

s
on

b
en

ch
m

ar
k

d
at

as
et

s
4×

u
p
sc

al
ed



4.4 Experiments 82

0 200 400 600 800 1000 1200 1400 1600

Number of samples solved ×10

0

1

2

3

4

5

6

7

8
lo
g 1

0
(r
u
n
ti
m
e

(m
s)

)

Dense matrix

Sparse matrix

ATMS

ASP

HS-DAG

HS-DAG QX

CF

(a) Effective runtime by number of solved samples.

Dense matrix Sparse matrix ATMS ASP HS-DAG HS-DAG QX CF

Algorithms

0

2

4

6

8

10

lo
g 1

0
(r
u
n
ti
m
e

(m
s)

)

2,053 / 2,053
(seconds)

105 / 105
(seconds)

151 / 151
(seconds)

0 / 3,981,600
(seconds)

10,467 / 60,867
(seconds)

454 / 454
(seconds)

51,670 / 75,670
(seconds)

(b) Total runtime (10 runs) on the whole dataset.

Figure 4.8: Experimental results for the 4× upscaled Artificial samples I (166 files).
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1660 0 205,379 521 205,379 4339

Sparse matrix 1660 534 10,535 188 10,535 742

ATMS 1660 47 15,192 295 15,192 2844

ASP 0 0 0 0 398,400,000 0

HS-DAG 1639 519 1,046,773 310,786 6,086,773 447,425

HS-DAG QX 1660 560 45,494 4724 45,494 7863

CF 1650 0 5,167,075 19,810 7,567,075 131,840

Table 4.10: Detail runtime results on the 4× upscaled Artificial samples I.

Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 1140 0 542,489 7954 10,142,489 12,529

Sparse matrix 1170 18 50,081 133 2,450,081 320

ATMS 1170 32 24,671 383 2,424,671 2257

ASP 10 0 270 4 280,800,270 4

HS-DAG 1130 584 109,442 4607 12,109,442 5287

HS-DAG QX 1170 526 22,866 7125 2,422,866 10,960

CF 1140 0 700,890 3966 10,300,890 10,614

Table 4.11: Detail runtime results on the 4× upscaled Artificial samples II.
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Figure 4.9: Experimental results for the 4× upscaled Artificial samples II (118 files).

Real-world samples

In the upscaled 4× real-world benchmark, it is clear that Sparse matrix is an absolute

winner that it can manage all problem instances before timing out with outstanding

execution time. HS-DAG and HS-DAGQX are the fastest in many instances with 480

and 642 #fastest respectively, but they are unable to solve all problems. This time

ASP shows a substandard performance with no solvable instances. Surprisingly, CF

demonstrates a stable performance while other algorithms have dropped significantly.
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Figure 4.10: Experimental results for the 4× upscaled FMEA diagnosis problems (213
files).
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Algorithms #solved #fastest
mean(t)

(ms)

std(t)

(ms)

mean(t+

tp) (ms)

std(t+tp)

(ms)

Dense matrix 2090 3 85,842 1784 9,685,842 2856

Sparse matrix 2130 521 70,327 210 70,327 538

ATMS 2070 484 226,953 4950 14,626,953 15,864

ASP 0 0 0 0 511,200,000 0

HS-DAG 1785 480 4,448,106 570,420 87,248,106 1,367,565

HS-DAG QX 2020 642 33,604 487 26,433,604 1275

CF 2120 0 1,833,364 17,105 4,233,364 35,222

Table 4.12: Detail runtime results on the 4× upscaled FMEA diagnosis problems.

4.4.6 Discussion

Comparing the FMEA-based samples to the artificial samples, our method has to per-

form more iterations within the latter, as illustrated by max iter in Table 4.1 (similar

data in Table 4.9). This happens because the graph structure of FMEA-based samples

is limited by at most three levels with the last level only containing the explanation

node while the artificial samples are generated with deeper structure intendedly [52].

Additionally, the number of sets to be hit in the corresponding MHS problem in each

1-step abduction (4.9) is larger. Therefore, there are 5 problems in the FMEA samples

that are not effectively solved by our naive MHS enumerator. In a comparison with

the MHS enumerator of PySAT [41] on a single instance, Sparse matrix finishes in

about 25 mins without PySAT, while with PySAT it takes just under 4 secs. This

highlights the importance of implementing the 1-step abduction in Definition 54. Due

to that fact, our methods work fine with the naive MHS implementation that we only

call PySAT in some problems of the FMEA samples and in the only problem that we

already failed to solve in the Artificial samples II.

In overall, linear algebraic approaches are competitive with other algorithms. An

important note is that we have conducted experiments with a single-threaded setup to

make a fair comparison. Dense matrix may perform better in a parallel environment,

however, the current implementation is not fully exploit parallel computation that is

because we have not yet focused on this aspect at this moment. Sparse matrix is the

most stable algorithm in terms of std among those having the highest #solved. The

results show the potential for further advancement to the linear algebraic method using

sparse representation.

In fact, our proposed Algorithm 4 is parallelizable because we do not use any com-

plex data structure and the computation on each explanation vector is independent of
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each other. Hence, there are many rooms for further improvement using a more pow-

erful BLAS library which is designed for parallel computing. Further, we can consider

improving the 1-step abduction for POr by employing a simple caching technique that

memorizes the output of the MHS enumerator to save redundant computation.

4.5 Conclusion

We have proposed a linear algebraic approach for solving PHCAP using the abduc-

tive matrix in either dense or sparse formats. Experimental results demonstrate that

Algorithm 4 is competitive with other existing methods especially with sparse repre-

sentation on upscaled benchmarks. The merit of solving PHCAP in vector space is

not only the scalability but also the capability of integrating with other Artificial In-

telligence (AI) techniques e.g. Artificial Neural Network (ANN). In the experiments

using datasets of [52], the goal was the enumeration of minimal explanations but no

constraints are introduced to express incompatible assumptions.

In this thesis, we have proposed how to deal with consistency in the presence of

constraints using Proposition 7. We can consider a more compiled method for handling

consistency by computing the minimal explanations of ⊥ in a matrix M⊥, which corre-

spond to nogoods - a set of assumptions that causes contradiction - of the Assumption-

based Truth Maintenance System (ATMS) [91]. ATMS keeps a number of different sets

of nogoods so that these sets can be avoided in the future while exploring [20]. Using

linear algebraic methods, checking the consistency of an explanation vector v is made

easy by verifying that M⊥ · v = 0. Further improvement can be considered on tabling

method [71] to memorize explored nodes then we can reuse them directly without re-

computing again. This improvement can be very crucial in some problem instances

e.g. the hardest one in the Artificial samples II. To achieve this advancement, we have

to extend current sparse representation to a way that we can associate or embed more

data to each explanation vector in the explanation matrix.

In addition, taking the MHS problem into account in vector space is a potential

research topic. If we can handle the MHS problem efficiently in the vector space, we can

unlock the capability of GPU computing in solving large-size PHCAPs. Future work

also includes developing an efficient method for abduction with normal logic programs

in vector spaces or explore the ability to deal with probabilistic logic.
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Chapter 5

Related Work

In this chapter, we will provide an overview about related work that have been done

recently.

5.1 Deduction

Earlier work in this topic, such as smodels [90] and clasp [31] rely on SAT-solving

techniques to find stable models of a normal program. In particular, clasp applies

a variant of Conflict-Driven Clause Learning [58], where conflicts during search are

analyzed for their underlying causes to facilitate more efficient backtracking.

Recently, several researches have recently demonstrated the ability to apply lin-

ear algebraic methods to compute Logic Programming (LP) in parallel. For example,

Rocktäschel and Riedel employ high-order tensors to support both deductive and in-

ductive inferences for a limited class of logic programs [72].

The matrix representation of logic programs was first coined by Sakama et al. [75]

and then followed up by other researchers in [76, 61, 62]. Later, the non-differentiable

computation of 3-valued models of a program’s completion in vector spaces was con-

sidered as a first step towards computing supported models [84].

With a different perspective, Sato and Kojima propose a differentiable framework

for logic program inference as a step toward realizing flexible and scalable logical in-

ference [81]. The basic idea is to define a cost function, which is made up of matrix

(tensor), in a continuous space. Then they compute the minimizer for the function by

gradient descent or Newton’s method. Using artificial data and real data, they also

demonstrated empirically the potential of this approach by a variety of tasks including

abduction, random SAT, rule refinement and probabilistic modeling based on answer

set (supported model) sampling. They have further extended the idea to develop Mat-

Sat - a matrix-based differentiable SAT solver - and presented this method outperforms
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all the Conflict-Driven Clause Learning (CDCL) type solvers using a random bench-

mark set from SAT 2018 competition [82].

Based on the similar idea of Sakama et al. in representing program matrix, Aspis

et al. have introduced a gradient-based search method for the computation of stable

and supported models of normal logic programs in continuous vector spaces [7]. The

main idea is to define a special function, which is built on top of similar linear algebraic

computation we have presented in Chapter 3, then apply Newton’s method for find-

ing its roots. However, this method is an approximation method, in particular, they

consider a successful case for the algorithm only when a root, which is semantically

equivalent to an interpretation, is found. There are many ways developing this method

further such as employing alternative approximation functions, or establishing good

choices of initial vector.

Extending the idea of [7], Takemura and Inoue have presented another gradient-

based approach to compute supported models approximately [92]. Takemura and Inoue

defined a loss function based on the implementation of the immediate consequence oper-

ator by matrix-vector multiplication and then applied gradient descent [12] to optimize

it. The results of this work on several experiments highlight their improvements over

Aspis et al.’s method in terms of success rates of finding correct supported models of

normal logic programs.

5.2 Abduction

Propositional abduction has been solved using propositional satisfiability (SAT) tech-

niques in [40], in which a quantified MaxSAT is employed and implicit hitting sets are

computed. Another approach to abduction is based on the search for stable models of a

logic program [33]. In [74], Saikko et al. have developed a technique to encode proposi-

tional abduction problem as disjunctive logic programming under answer set semantics.

Answer set programming has also been employed for first-order Horn abduction in [86],

in which all atoms are abduced and weighted abduction is employed.

In terms of linear algebraic computation, Sato et al. developed an approximate

computation to abduce relations in Datalog [83], which is a new form of predicate

invention in Inductive Logic Programming [59]. They did empirical experiments on

linear and recursive cases and indicated that the approach can successfully abduce

base relations, but their method cannot compute explanations consisting of possible

abducibles in diagnosis.

In this regard, Aspis et al. have proposed a linear algebraic transformation for

abduction by exploiting Sakama et al.’s algebraic transformation [5]. They have defined

an explanatory operator based on third-order tensor for computing abduction in Horn
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propositional programs that simulates deduction through Clark completion for the

abductive program [15]. The dimension explosion would arise, unfortunately, Aspis

et al. have not yet reported an empirical work. Aspis et al. propose encoding every

single rule as a slice in a third-order tensor then they achieve the growth naturally.

Then, they only consider removing columns that are duplicated or inconsistent with

the program. According to our analysis, their current method has some points that

can be improved to avoid redundant computation. First, they can consider merging all

slices of And-rules into a single slice to limit the growth of the output matrix. Second,

they have to consider incorporating Minimal Hitting Sets (MHS)-based elimination

strategy, otherwise, their method will waste a lot of computation and resources on

explanations that are not minimal.
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Chapter 6

Conclusion and Future Work

We have continued to explore linear algebraic computation approaches for logic pro-

gramming in the thesis. Let us wrap up all the chapters and discuss future research

directions to tackle our current shortcomings.

6.1 Conclusion

First of all in deductive reasoning, we have analyzed the sparsity of matrix represen-

tation for Logic Programming (LP) and also considered a number of general-purpose

matrix sparse representations for LP. The employment of sparse representation into

linear algebraic computation of LP needs a redesign in the core algorithm for bet-

ter efficiency. We then have proposed an improved implementation of the immediate

consequence operator TP which is proved outperform the previous implementation in

terms of both theory and practice. In particular, the proposed algorithm has better

time and complexity as we have proved, and also outweighs the previous implementa-

tion in all the conducted benchmarks. Additionally, in case the number of negations

is limited, our proposed method with sparse representation is way more robust than

other Conflict-Driven Clause Learning (CDCL)-based solvers.

Continue to explore the light of linear algebraic approaches, we have successfully

applied it to solve the Horn abduction problem. The performance gain is competitive

with other existing methods for abduction. The main contribution of this work is the

exact algorithm to compute all minimal explanations in vector spaces and a theory to

prove its correctness in general. In addition, we have verified all the theory through

a number of variants form the Failure Modes and Effects Analysis (FMEA)-based

benchmark dataset. This exploration sets a trusted foundation before we moving on

to the next step that to realize rule learning in the language of linear algebra.
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6.2 Future work

At this early stage, we currently have focused on exact methods to develop linear

algebraic computation for LP before exploring more use cases of matrices and vectors

in logic representation and reasoning. Thus, one of the future directions could be to

consider approximation approaches in which we have to propose a simple and efficient

way to eliminate combinations that are violated constraints, or being contradicted by

others, or being not sufficient for further reasoning steps.

Another direction is to continue to explore sparse representation in a way that we

can associate or embed more data to each interpretation vector in the interpretation

matrix. We have done some work in this regard to combine both set operations and

matrix operations in a unique sparse representation, however, the experiment results

at this moment are still limited due to the lack of advanced skills for a more efficient

implementation.

Using linear algebraic computation in solving some arisen problems in current re-

search also should be taken into consideration such as solving the Minimal Hitting

Sets (MHS) problem. It is obvious that enumerating MHSs is the core of numerous

combinatorial problems. Hence, if we can handle it efficiently in the vector spaces, we

can extend the ability of linear algebraic approaches in solving a class of combinatorial

problems.

Last but not least, future work should also include exploring the ability to deal with

probabilistic logic and bridging linear algebraic computation and neural computation.

This can be one of the key ideas for the next generation of explainable learning models.
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[54] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the

22nd International Conference on World Wide Web, pages 1343–1350, 2013. doi:

10.1145/2487788.2488173.

[55] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer

set programs. In European Workshop on Logics in Artificial Intelligence, pages

311–325. Springer, 2014.

[56] Guohua Liu, Tomi Janhunen, and Ilkka Niemela. Answer set programming via

mixed integer programming. In Thirteenth International Conference on the Prin-

ciples of Knowledge Representation and Reasoning, 2012.

[57] John W Lloyd. Foundations of logic programming. Springer Science & Business

Media, 2012.

[58] Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning

sat solvers. In Handbook of satisfiability, pages 133–182. IOS press, 2021.

[59] Stephen Muggleton. Inductive logic programming. New Generation Computing, 8

(4):295–318, 1991. doi: 10.1007/BF03037089.

http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1007/BF03037089


98

[60] Hidetomo Nabeshima, Koji Iwanuma, Katsumi Inoue, and Oliver Ray. Solar:

An automated deduction system for consequence finding. AI communications, 23

(2-3):183–203, 2010.

[61] Hien D Nguyen, Chiaki Sakama, Taisuke Sato, and Katsumi Inoue. Computing

logic programming semantics in linear algebra. In International Conference on

Multi-disciplinary Trends in Artificial Intelligence, pages 32–48. Springer, 2018.

[62] Hien D Nguyen, Chiaki Sakama, Taisuke Sato, and Katsumi Inoue. An efficient

reasoning method on logic programming using partial evaluation in vector spaces.

Journal of Logic and Computation, 31(5):1298–1316, 03 2021. ISSN 0955-792X.

doi: 10.1093/logcom/exab010.

[63] Tuan Quoc Nguyen, Katsumi Inoue, and Chiaki Sakama. Enhancing linear

algebraic computation of logic programs using sparse representation. volume

325 of EPTCS Online Proceedings of ICLP (2020), pages 192–205, 2020. doi:

10.4204/EPTCS.325.24.

[64] Tuan Quoc Nguyen, Katsumi Inoue, and Chiaki Sakama. Linear algebraic com-

putation of propositional horn abduction. In 2021 IEEE 33rd International Con-

ference on Tools with Artificial Intelligence (ICTAI), pages 240–247. IEEE, 2021.

doi: 10.1109/ICTAI52525.2021.00040.

[1] Tuan Quoc Nguyen, Katsumi Inoue, and Chiaki Sakama. Enhancing linear alge-

braic computation of logic programs using sparse representation. New Generation

Computing, 40(1):225–254, 2022. doi: 10.1007/s00354-021-00142-2.

[66] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A

review of relational machine learning for knowledge graphs. Proceedings of the

IEEE, 104(1):11–33, 2015.

[67] Shan-Hwei Nienhuys-Cheng, Ronald De Wolf, et al. Foundations of inductive logic

programming, volume 1228. Springer Science & Business Media, 1997.

[68] Gabriele Paul. AI approaches to abduction. In Dov M. Gabbay and Rudolf

Kruse, editors, Handbook of Defeasible Reasoning and Uncertainty Management

Systems, volume 4, pages 35–98. Springer, 2000. ISBN 978-94-017-1733-5. doi:

10.1007/978-94-017-1733-5_2.

[69] Bernhard Peischl and Franz Wotawa. Computing diagnosis efficiently: A fast

theorem prover for propositional horn theories. In Proc. of the 14th Int. Workshop

on Principles of Diagnosis, pages 175–180, 2003.

http://dx.doi.org/10.1093/logcom/exab010
http://dx.doi.org/10.4204/EPTCS.325.24
http://dx.doi.org/10.1109/ICTAI52525.2021.00040
http://dx.doi.org/10.1007/s00354-021-00142-2
http://dx.doi.org/10.1007/978-94-017-1733-5_2


99

[70] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):

57–95, 1987. doi: 10.1016/0004-3702(87)90062-2.

[71] Ricardo Rocha, Fernando Silva, and Vitor Santos Costa. On applying or-

parallelism and tabling to logic programs. Theory and Practice of Logic Pro-

gramming, 5(1-2):161–205, 2005.
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