Emerging process of genetic exchange communities in lactic acid bacteria

Takenaka, Shinkuro

Doctor of Philosophy

Department of Genetics School of Life Science The Graduate University for Advanced Studies, SOKENDAI

Contents

Abstract	4	
List of figures	s and tables	7
Acknowledgn	ments	9
Publication no	otes	10
Chapter 1:	General introduction	11
1.1 GECs g	generated in HGT networks promote the evolution of bacterial genomes	11
1.2 Elucida the process	ation of the process of forming GECs in ecological niches provides perspects of bacterial evolution	tive on 12
1.3 How ec	cological niches form GECs: The approach	
1.4 Lactic a	acid bacteria (LAB): the target organisms	
1.5 Content	nts of this study	17
Chapter 2:	Material and Methods	
2.1 Collecti	tion of genome sequences of Lactobacillaceae and their features	
2.1.1 Ger	enome sequences and genomic features	
2.1.2 Sec	quences of 16S rRNA gene	
2.1.3 Phe	enotypic features	19
2.1.4 Iso	plation source	
2.2 Analysi	sis of genomic features	
2.2.1 Ort	tholog analysis	
2.2.2 Co	ore- and accessory-genome computation and COG assignment	
2.2.3 Co	onstruction of Lactobacillaceae phylogenetic tree	
2.2.4 Det	etecting HGTs between distantly related organisms	
2.3 Statistic	cal analysis	
2.3.1 Mu and Lact	ultiple regression analysis between the size of genome or number of HGT g tobacillaceae family features	enes
2.3.2 Rel	elationship of COG ratio between ortholog groups	
2.4 Detection	ing GECs formed by the sugar utilization in Lactobacillaceae	
2.4.1 Cal	lculation of average sugar utilization for the orthologs	
		2

2.4.2 Construct networks of sharing ortholog	
2.5 Analysis of genetic capitalism in Lactobacillaceae	29
2.5.1 Multiple sequence alignment of phyletic patterns	29
2.5.2 Mapping for phylogenetic tree	29
2.5.3 Analysis of the relationship between gain/loss events and genetic diversity	29
Chapter 3: Niche construction and GECs in Lactobacillaceae	32
3.1 Factors affecting HGT in Lactobacillaceae	32
3.1.1 Relationships among the phylogenetic, genomic, and phenotypic features in 17 strains from Lactobacillaceae	'8 33
3.1.2 Influence of phenotypic features on genome size and number of HGT genes	38
3.1.3 A sugar utilization phenotype influence on HGT in Lactobacillaceae	41
3.2 GECs in Lactobacillaceae	43
3.2.1 COG ratios of orthologs in the core and accessory genome	44
3.2.2 Ortholog features shared by generalists or specialists for sugar utilization	48
3.2.3 Network of orthologs shared by strains with high sugar utilization	61
3.2.4 Phenotype to utilize a variety of sugars to construct GECs in the ecological nic Lactobacillaceae	he of 72
3.3 Genetic capitalism in LAB	76
3.3.1 Gene gain and loss in Lactobacillaceae	78
3.3.2 Influence of ortholog number in a genome on gain and loss events	85
Chapter 4: General Discussion	89
4.1 Niche construction and GECs in LAB	89
4.2 Genetic capitalism in LAB	91
4.3 Influence of niche construction in LAB	93
4.4 Complicated bacterial evolution in the ecology	95
4.5 Suggest the hypothetical framework: Niche Construction and GECs model	98
4.6 Validity of the NCG model	101
4.7 Conclusion	103
References	104

Abstract

In prokaryotes, a major contributor to genomic evolution is gene exchange via horizontal gene transfer (HGT). Bacterial populations with a high HGT frequency are defined as genetic exchange communities (GECs) and often arise in shared ecological niches, characterized by symbiotic interactions and/or phylogenetic closeness. Although some phenotypes are associated with specific ecological niches linked to GECs, little is known about the phenotypic influences on GECs in a taxonomic family with concrete genomic evidence.

I investigated the relationship between bacterial evolution and GECs in ecological niches using phenotypic and genomic data from lactic acid bacteria (LAB). I focused on information on phenotypic features because they reflect the ecological niche of bacteria. LAB produce lactic acid by fermenting carbohydrates and inhabit various ecological niches in food industries, such as fermented foods. They inhabit specific ecological niches, such as fermented milk products, meats, cereals, and vegetables. These are suitable properties of a material for the investigation of GECs in ecological niches. Because they are involved in human activity, genomic and phenotypic data of LAB have been accumulated. The phenotypic and genomic features of LAB can elucidate the relationships between bacterial evolution and GECs in ecological niches.

I selected 178 strains of 24 genera from the *Lactobacillaceae* family to clarify factors contributing to the formation of GECs. In this family, the genus *Lactobacillus* has recently been reclassified into 25 genera, and their phenotypes, including sugar utilization, growth temperature, and oxygen tolerance, have been well documented. Moreover, they

exhibit diverse genomic features. *Lactobacillus apis* has a small genome of 1.70 Mbp, whereas *Lactiplantibacillus plantarum* subsp. *plantarum* has a large genome of 3.45 Mbp. Therefore, the group previously identified as the genus *Lactobacillus* provides a good sandbox to study the influence of ecological niches on HGT in relation to phenotypes, ecologies, and genotypes.

The way that LAB construct GECs in an ecological niche was investigated to analyze their phenotypes, habitats, and ortholog networks. I found that phenotypes to utilize various sugars contribute to forming GECs. The statistical analysis revealed that sugar utilization influences frequent HGT in LAB. To confirm the association between sugar utilization and GECs, the concept of the Average number of Sugar Utilization for the ortholog (ASU) was introduced. Using the ASU, two groups of orthologs were compared, i.e., the orthologs shared dominantly by strains that were able to use a variety of sugars (generalist) and those shared by strains that used only a few sugars (specialist). While the networks of orthologs predominantly shared by the specialist groups for sugar utilization were connected only within the same genera, the networks of the generalist groups were connected across genera. In addition, the genes in the generalist group ortholog encoded not only phenotypes involving sugar utilization but also phenotypes to adapt to various environments, including stress responses, bacteriocin production, antibiotic resistance, survival in the intestinal environment, and heavy metal resistance. The strains in the generalist networks were presumed to use these genes for sharing niches, such as vegetables, dairy products, and brewing-related environments. This feature is consistent with the fact that Lactobacillaceae contributes to producing a wide variety of fermented foods. Thus, the results suggested that the phenotype to utilize various sugars,

which makes the bacteria become generalists, contributes to forming GECs in the ecological niche of LAB.

Next, I investigated whether the niche construction and GECs affect the genetic diversity in a LAB genome. The bacteria with genetic diversity tended to have potential for gene gain events. Gained genes that encoded phenotypes for adaptation to environments contributed to the formation of GECs in various ecological niches. Through multiplicative events, a higher frequency of gene gain events in generalists may further broaden their niche breadth compared to specialists.

In conclusion, to reveal the formation process of GECs in the ecological niche, I investigated phenotypic and genomic factors in 178 strains of 24 genera in *Lactobacillaceae*. The results suggested that utilizing various sugars substantially influenced the formation of GECs in ecological niches. In addition, genetic diversity might contribute to further increasing potential for gene gain events in LAB. Thus, metabolic capabilities associated with ecological niches contributed to the formation of GECs, which may further promote genetic diversity, balancing it against the pressure to reduce the genomes.

List of figure and table

Figure

Figure 2.1: Average number of sugar utilization for the ortholog (ASU)
Figure 3.1: Phylogenetic tree based on the 16S rRNA genes of LAB strains with phenotypic and genomic features identified
Figure 3.2: Correlation between the number of proteins and genome size
Figure 3.3: Horizontal gene transfer (HGT) protein number with (a) genome size and (b) total number of proteins for each genome
Figure 3.4: a) GC content; b) number of rRNAs; c) number of tRNAs; and number of CRISPRs in genomes of Lactobacillaceae
Figure 3.5: Values of coefficients of multiple aggression analysis for a) genome size and b) number of CDS judged to be HGTs
Figure 3.6: Clusters of orthologous groups (COG) ratios for each group of orthologs
Figure 3.7: ASU value and number of strains for each ortholog
Figure 3.8: Conflicting phylogenetic trees compared to the original lineage for the generalist group orthologs
Figure 3.9: Networks for the generalist and specialist group orthologs
3.10: Phylogenetic tree mapped with gain (a) and loss (b) expected number
3.11: Scatter plot among gain/loss expected number and each parameter
Figure 4.1: Niche construction and the GECs model (NCG model)

Table Table 3.1: T-test and Benjamini-Hochberg method used to compare the functional ratio	io
of COG for each group	54
Table 3.2: Annotation of genes in generalist and specialist group orthologs	55
Table 3.3: Community extraction of shared generalist group orthologs networks	66
Table 3.5: Pearson correlation values between genomic features	84
Table 3.6: Statistics of simple regression analysis for genetic capitalism.	. 88

Supplementary Table 2.1: Features of the 178 LAB strains.

Supplementary Table 3.4: Gain/loss expected number and other stats for each strain.

Acknowledgments

I would like to express my deepest appreciation to Professor Masanori Arita for his kind support and expert advice as my supervisor. I learned a lot from his attitude and perspective as a researcher.

I would like to express my gratitude to Assistant Professor Takeshi Kawashima. He gave me many time discussions for my study and expert advice, which had been insightful.

I am indebted to Project Associate Professor Nozomu Sakurai and other members of the Biological Networks laboratory. Especially, I would like to thank Dr. Ipputa Tada for teaching me the technical skill set for bioinformatics.

I am grateful to my doctoral examination committee members: Professor Yasukazu Nakamura, Professor Ken Kurokawa, Professor Jun Kitano, Professor Niki Hironori and Dr. Masanori Tohno who is a senior researcher in The National Agriculture and Food Research Organization. They provided my study with a wide perspective from various fields.

Special thanks to Prima Meat Packers, Ltd. which paid the enrollment fee and the tuition for the first semester of freshman year in my doctoral course. Shortly after, I left this company because of my health problems and I changed my study theme from the one for this company to bacterial evolution. The company provided me with the opportunity to challenge doctoral courses, which was helpful for my career.

Finally, I would like to express gratitude to my wife for her moral support and warm encouragement. I would not be the person I am today without you.

Publication notes

This thesis is based on the paper (Takenaka et al. 2021).

Chapter 1: General introduction

1.1 Genomic exchange communities (GECs) generated in horizontal gene transfer (HGT) networks promote the evolution of bacterial genomes

Horizontal gene transfer (HGT) is an evolutionary process that allows genetic innovations to spread between distantly related organisms (Andam and Gogarten 2011). HGT is a major contributor to genome evolution and structure in bacteria (Hall et al. 2017). For instance, transfer of gene clusters containing a set of genes involved in the metabolism of carbon sources or resistance to toxins is known (Wiedenbeck and Cohan 2011). In addition, frequent HGT can result in large changes in the genome size (Zimmer and Emlen 2016). Variability in the genome size is frequently observed among closely related strains (Canard and Cole 1989; Harsono et al. 1993; Daniels 1990; Prevost et al. 1992; Tanskanen et al. 1990), and this can be caused by HGT (Bergthorsson and Ochman 1995; Bobay and Ochman 2017). Thus, HGT plays a major role in the evolution of microorganism genomes. When such transfer is described as networks (Puigbò et al. 2010), the HGT bias in preference for transfer partners results in high-density regions in the networks, defined as genetic exchange communities (GECs) (Skippington and Ragan 2011).

1.2 Elucidation of the process of forming GECs in ecological niches provides perspective on the process of bacterial evolution

GECs often occur in shared ecological niches, characterized by symbiotic interactions and phylogenetic closeness (Andam and Gogarten 2011). GECs in ecological niches obscure the definition of a bacterial population, which makes bacterial evolution difficult. Sharing ecological niches causes frequent HGT among multiple bacterial lineages. Indiscriminate exchange of genes via HGT makes the line of descent challenging to follow (Schleifer et al. 2008; Rocha 2018). In addition to HGT mechanisms generating bias to promote gene transfer among closely related organisms, many reports suggest that HGT also occurs among distantly related organisms in ecological niches. For example, different phylum bacteria share genes for surviving in a high-temperature environment (Andam and Gogarten 2011). Distantly related microorganisms can share their features via HGT, which contribute to their adaptation to the environment. This obscures the bacterial population and makes bacterial evolution difficult to understand using population genetics (Rocha 2018). The GECs greatly influence bacterial evolution and spread genetic innovations between distantly related bacterial lineages. Revealing the process of GECs formation will help to elucidate the evolutional process of bacteria.

1.3 How ecological niches form GECs: The approach

Investigating the relationships between environmental factors and GECs among bacteria is an effective approach to reveal the theory of bacterial evolution. Different bacteria existing in different environments vary in physical, chemical, or biological properties. For example, antibiotic resistance bacteria dominate in the hospital.

While investigating ecological niches, finding the niche to which the bacteria belong is difficult. Bacteria have a huge population and fast generation cycle and are less influenced by geographical isolation (Kirchman 2012; Odling-Smee et al. 2003). In addition, the bias generated by culturable bacteria can cause a misunderstanding regarding the ecological niches. Isolation of bacterial strains from an environment does not mean the bacteria are dominant in that environment. For example, although the genus *Streptomyces* and *Bacillus* are often isolated from soil, the 16S rRNA gene clone library analysis indicated these bacteria are not dominant in the soil (Kirchman 2012). Moreover, although the genus *Pseudomonas* and *Vibrio* are frequently detected by seawater cultivation, their 16S rRNA genes rarely exist in seawater. Therefore, bacteria isolated from particular environments are not representative of the microflora in their niche. The ecological niches made by the non-culturable majority may be wrongly annotated because of the culturable minority. These reasons confuse our understanding of the relationships between ecological niches and bacteria.

Meta genome analysis is one of the ways to solve the culturable bias in the investigation of ecological niches. Although metagenome analysis based on 16S rRNA is frequently used, the resolution is not enough for high-precision analysis. For instance,

although *Bacillus cereus*, *B. anthracis*, and *B. thuringiensis* are classified as different species, the sequence homology of their 16S rRNA gene is over 97%, which agrees with them being the same species (Kirchman 2012). Meta genome analysis based on 16S rRNA is beneficial to elucidate rough tendency. However, another method is required to investigate ecological niches because even closely related species have variant features and habitats.

The approach focusing on the phenotypic features in bacteria helps assess ecological niches more accurately. Bacterial phenotypes reflect the ecological niche. Genes that encode suitable phenotypes for surviving keep their sequence because of purifying selection in the environment. Genomic data allows high-resolution analysis to reveal the characteristics of bacteria. Furthermore, research on the genomic and phenotypic features in bacteria contributes to discovering the new relationships between ecological niches and bacterial evolution. The detailed analysis of genomic and phenotypic features of bacteria is provided in Section 3.1.

1.4 Lactic acid bacteria (LAB): the target organisms

In this study, I focus on LAB because they have properties suitable for the investigation of ecological niches and evolution in bacteria: variant ecological niches and abundant genomic and phenotypic data. LAB have evolved to adapt to a variety of niches, as explained later. In addition, because LAB strains are used in various fermented foods, their genomic and phenotypic information are available. Various habitats and abundant data in LAB will enhance the investigation of bacterial evolution.

The major conditions regulating the distribution of LAB are nutrients, oxygen, and temperature. LAB strains require carbon sources, amino acids, and vitamins. Moreover, the oxygen condition influences LAB growth. LAB prefer oxygen-free environments because they do not possess catalase to break down the hydrogen peroxide generated in the presence of oxygen. Furthermore, temperature restricts their growth: they can grow in the range of 5–45 °C (Caplice and Fitzgerald 1999). LAB strains are usually distributed in the environments that meet these conditions.

Almost all environments where animals and plants inhabit fulfill the conditions for LAB growth (Yamamoto et al. 2010). In habitats associated with animals, LAB grows in milk, animal intestine, vagina, and feces. LAB strains also inhabit plant-related environments: flower nectar, sap, sedimentary soil of a plant, and damaged fruit. Furthermore, humans have constructed artificial environments for LAB habitat to use them in various foods. Some traditional foods, such as yogurt, cheese, and pickled vegetables, have LAB. In addition, LAB play a major role in liqueur fermenting. These environments are ecological niches for LAB. Bacteria improve their survivability to become specialists (i.e., microbes adapted to specific habitats) or generalists (i.e., microbes able to adapt to diverse habitats) (Sriswasdi et al. 2017; Douglas 1988). Without exception, LAB also include specialists and generalists.

Some LAB specialize in the niches and adapt to the surrounding environments. There is a tendency for a specialist genome size to be smaller than a generalist's genome size because specialists lack genes not required for survival in the niches (Sriswasdi et al. 2017). For example, *Lactobacillus apis*, which inhabits the intestine of bees, and *Limosilactobacillus vaginalis*, which occupies the animal vagina, have genomes as small as 1.70 Mbp and 1.79 Mbp, respectively (Zheng et al. 2020). A report investigating nine LAB genomes suggested that deletion of genes and simplifying the metabolism are characteristics of evolution. Furthermore, LAB adapt to nutrient-rich environments (Makarova et al. 2006). For instance, LAB require various rich nutrients to grow in synthetic media: amino acid, vitamins, nucleotide acid, and minerals (Yamamoto et al. 2010).

However, some generalists in LAB have diverse habitats. For instance, *Lactiplantibacillus plantarum* subsp. *plantarum* inhabits various environments; they are isolated from dairy products, silage, sauerkraut, pickled vegetables, sourdough, cow dung, the human mouth, intestinal tract and stools, and sewage. In addition, the microbe has a large genome size (3.45 Mbp) (Zheng et al. 2020) because it requires various genetic materials to adapt to diverse environments. The details of the influence on bacterial evolution of specialists and generalists are provided in Section 3.2.

1.5 Contents of this study

Chapter 1 describes the investigation of the process of forming GECs in ecological niches using phenotypic and genomic data of LAB to reveal bacterial evolution. The material and method for investigating the relationships between ecological niches and GECs of LAB are described in Chapter 2. Furthermore, features of genomic and phenotypic factors of LAB are described in Chapter 3. The influence of LAB's phenotypes on their evolution to contribute to the construction of GECs in ecological niches has also been described. Moreover, the mechanism of LAB evolution in the ecosystem was applied to a model of genetic capitalism. Finally, the relationship between evolution of LAB and their ecology has been described in Chapter 4.

Chapter 2: Material and Methods

2.1 Collection of genome sequences of *Lactobacillaceae* and their features

As discussed in Chapter 1, LAB have properties suitable to investigate the relationships between niches and GECs in bacterial evolution. The group that was previously identified as the genus *Lactobacillus* in the *Lactobacillaceae* family provides an adequate sandbox. The group was selected because of enriched genomic and phenotypic data and presence of various habitats. In addition, the group is suitable for analysis of GECs because members of the group are monophyletic and closely related. These features make members in the group undergo frequent HGT because of the similarity of their genome architecture. Therefore, the data of *Lactobacillaceae* were collected as described below (Supplementary Table 2.1).

2.1.1 Genome sequences and genomic features

The genome sequences and genomic features of 178 strains, previously identified as the genus *Lactobacillus*, were retrieved from the DFAST Archive of Genome Annotation (https://dfast.nig.ac.jp/genomes/) (Tanizawa et al. 2016) database. Except for three strains, I selected type strains in which genomic and phenotypic features correspond to each other. In addition, the genome sequence of *Escherichia coli* ATCC 11775 (accession number: NZ_CP033092) was obtained from NCBI. Six genomic features (genome size, number of coding sequences (CDS), GC content, number of genes encoding rRNAs, number of genes encoding tRNAs, and number of CRISPRs) were used in this study.

2.1.2 Sequences of 16S rRNA gene

The 16S rRNA gene was chosen for this study because this ribosomal gene is traditionally used to investigate the phylogenetic relationship in bacteria. Although the phylogenetic relationship based on the 16S rRNA gene is suspected to not be robust (Sato and Miyazaki 2017), in this investigation, we use the genetic distance as a crude measure for species distance.

The sequences for the 16S rRNA genes were obtained from EZBioCloud (https://www.ezbiocloud.net/resources/16s_download)(Supplementary Table 2.1). In addition, the sequences for the 16S rRNA gene of *Escherichia coli* ATCC 11775 (accession number: NZ_CP033092) were obtained from EZBioCloud.

Because 16S rRNA genes are frequently found as multiple copies in a bacterial genome (Stoddard et al. 2015), they were not extracted from genome data. Because multiple copies make genome assembling in the region difficult, the quality of annotations and sequences for 16S rRNA genes in genome data are not high. Therefore, I selected the EZBioCloud database to obtain 16S rRNA genes.

2.1.3 Phenotypic features

Six phenotypic features of these strains were obtained from the book "Lactic Acid Bacteria: Biodiversity and Taxonomy" (Holzapfel and Wood 2014):

1. Number of sugars the strains can metabolize (sugar utilization value),

2. Growth rate at 15 °C,

3. Growth rate at 45 °C,

- 4. Microaerobic growth,
- 5. Facultatively anaerobic growth, and
- 6. Obligate anaerobic growth.

The sugar utilization value was calculated by counting how many types of sugars the LAB strain can utilize using a Python program. Dummy variables (1 for yes and 0 for no) were used for the other features (Supplementary Table 2.1).

2.1.4 Isolation source

Isolation sources for *Lactobacillaceae* were obtained from the paper by Zheng et al. (2020). Table 2.1 shows the correspondence between old and new species names, genomic features, phenotypic features, and isolation sources. Although genomic and phenotypic features are linked to strains, isolation sources are connected to species. Thus, some LAB have multiple isolation sources.

2.2 Analysis of genomic features

To comprehend the genomic features of *Lactobacillaceae*, I analyzed the genome sequences and 16S rRNA genes. In addition, the result data were subjected to statistical analysis, to detect GECs, and investigation of genetic capitalism in *Lactobacillaceae*.

2.2.1 Ortholog analysis

Orthologs for 178 strains of *Lactobacillaceae* were obtained using SonicParanoid software (Cosentino and Iwasaki 2019) with the default parameters. Given a set of FASTA formatted gene sequences, the software groups similar genes together as orthologs. In the resulting set, singletons were removed as strain-specific genes.

2.2.2 Core- and accessory-genome computation and COG assignment

To understand the characteristics of the LAB genomes, core genomes and accessory genes in *Lactobacillaceae* were determined. Traditionally, the definition of core genome is "the set of genes included in all genomes under investigation" (Satti et al. 2018). However, the definition has problems determining the stable core genome because of its data dependency: when more genomes are used, the number of fully shared genes declines. To avoid this effect, a certain threshold, such as "conserved in *n* percent of the genomes," needs to be used. For the determination of *n*, we need additional information.

For core and accessory-genome analysis, I used clusters of orthologous groups (COG) functional categories to classify the functions of the gene clusters for the 178 genomes of *Lactobacillaceae* (http://www.ncbi.nlm.nih.gov/COG/). Using ortholog analysis data with COG annotation, I determined the core and accessory genomes based on the method described by Satti et al. (2018). The method produces an appropriate *n*-

core, the set of genes conserved in *n* percent of the genomes, based on the COG information for the orthologs. A good parameter *n* needs to provide a robust estimation of the core genome, and the distribution of COG categories should not be susceptible to the small changes in *n*. Therefore, as a necessary condition, slight changes of *n* (e.g., *n*-1 or n+1) need to provide a stable distribution of COG categories.

I created 10 *n*-cores, from 100- to 91-cores, and compared the respective COG distribution of the core genome using a handmade Python program. By assessing the robustness of the core genome, a 97-core was selected, indicating that genes shared among >172 of the 178 genomes (97%) were considered the core. The method was performed using Python programs.

2.2.3 Construction of *Lactobacillaceae* phylogenetic tree

Phylogenetic trees for the 178 strains were constructed based on the 16S rRNA gene, and the genes were clustered by ortholog analysis. To generate the phylogenetic tree, MUSCLE, Multiple Sequence Alignment (Edgar 2004), and the neighbor-joining method (Saitou and Nei 1987) were implemented using the program MEGA (Kumar et al. 2018). The 16S rRNA tree was annotated using iTOL (Letunic and Bork 2007).

2.2.4 Detecting HGTs between distantly related organisms

Genes acquired via HGT were predicted by two methods based on the evolutionary distance and codon bias: the DarkHorse v2.0 (Podell and Gaasterland 2007) and COLOMBO v4.0 analysis with SIGI-HMM (Waack et al. 2006). DarkHorse and COLOMBO were run with default parameters. The CDSs were judged as HGT when their lineage probability index was ≥ 0.5 (DarkHorse), or annotation was PUTAL

(COLOMBO). While DarkHorse is based on the taxonomical group name, COLOMBO is based on codon bias. By using two different methods, the detection sensitivity of HGT increases.

2.3 Statistical analysis

To determine the tendency of the evolutionary process in LAB, statistical analyses were performed as described below.

2.3.1 Multiple regression analysis between the size of genome or number of HGT genes and *Lactobacillaceae* family features

Simple and multiple regression analysis was performed using the Python package Statsmodels (https://www.statsmodels.org/stable/). Dummy variables (1 for yes and 0 for no) were used for the following five features: growth at 15 °C, growth at 45 °C, and growth in microaerobic, facultatively anaerobic, and obligate anaerobic conditions. For the strains with missing phenotypic data, average values from all the other strains were assigned. All explanatory variables were normalized using a Z score transformation.

2.3.2 Relationship of COG ratio between ortholog groups

The COG numbers for the chosen ortholog groups were counted, and the ratio of each group was statistically analyzed using a t-test and Benjamini-Hochberg correction for multiple comparisons using the Python package Statsmodels (https://www.statsmodels.org/stable/).

2.4 Detecting GECs formed by sugar utilization in *Lactobacillaceae*

The GECs formed by the influence of the phenotype to utilize various sugars in *Lactobacillaceae* were detected as follows. To determine the GECs, I measured the average number of sugar utilization for the ortholog (ASU). Using this measure, the orthologs that were shared by generalists for sugar utilization were extracted and subjected to network analysis.

2.4.1 Calculation of ASU for the orthologs

To estimate the characteristics for each ortholog, I calculated the average number of metabolizable sugars of strains for each ortholog cluster as the Average number of Sugar Utilization for the ortholog (ASU) (Figure 2.1). Statistically meaningful orthologs were chosen based on their ASU as standard deviation of more/less than 1 from the average of sugar utilization value in the 178 strains. The COG number for the chosen orthologs was counted, and the ratio of each group was statistically analyzed, as described in Section 2.3.

ASU is a measure to confirm GECs generated by the influence of sugar utilization. The judgment of HGT among closely related species in the ortholog networks is complex. The key to this analysis is optimal ortholog selection for generating the ortholog networks. It is difficult to extract GECs in an ecological niche from ortholog networks including phylogenetic genes because the core genome makes ortholog networks become complete graphs. In this analysis using ASU value, two ortholog groups were extracted: the orthologs shared dominantly by strains that could use a variety of sugars (generalist) and those that use only a few sugars (specialist). The networks generated by these two groups were compared. If closely related species share the orthologs, the orthologs are phylogenetic genes or are shared by GECs based on the bias of phylogenetic closeness. If distantly related species share the orthologs, the orthologs are shared by GEC in ecological niches or by gene deletion in the ortholog groups.

Figure 2.1: Average number of sugar utilization for the ortholog (ASU).

The average number of metabolizable sugars of strains for each ortholog cluster was calculated. This index was used to select the orthologs dominantly shared by strains that could use a variety of sugars (generalist) and those that used only a few sugars (specialist). The colored bars indicate the genes from each strain.

2.4.2 Construction of networks of shared orthologs

A network graph was constructed for the selected orthologs using the ASU value. Each of the 178 nodes represents a genome of *Lactobacillaceae*, and an edge was created between two genomes when the number of shared orthologs was more than five. Community extraction and visualization were performed with the Python package NetworkX (https://networkx.org/) and CytoScape (version 3.8.2) (Smoot et al. 2011), respectively.

2.5 Analysis of genetic capitalism in Lactobacillaceae

Analyses were performed to confirm the tendency of genetic capitalism in *Lactobacillaceae*. The gene gain/loss events were estimated based on phyletic patterns of orthologs and the phylogenetic tree of the 16S rRNA gene. The estimated values of gain/loss events were subjected to statistical analysis to elucidate whether genetic capitalism occurs in LAB.

2.5.1 Multiple sequence alignment of phyletic patterns

Orthologs for 178 strains of *Lactobacillaceae* and *E. coli* were obtained, as described in Section 2.2. Strain-specific genes were included following analysis as orthologs possessed by only one strain. Presence (1) and absence (0) profiles of orthologs (phyletic patterns) were converted to a gap-free multiple sequence alignment (MSA) using a Python program.

2.5.2 Mapping of phylogenetic tree

The estimated value of gene gain/loss events was obtained to apply the MSA of phyletic patterns and phylogenetic tree based on the 16S rRNA gene to GLOOME (Cohen et al. 2010). All parameters were set to the default. The mapped phylogenetic tree of the 16S rRNA gene with the expected value of gain/loss events was obtained from GLOOME analysis.

2.5.3 Analysis of the relationship between gain/loss events and genetic diversity

The normalized expected value of gain/loss events (E_{gl}) for each branch was calculated as follows:

$$E_{gl} = \frac{E_g + E_l}{L_b}$$

 E_{g} indicates the expected value of gain events for each branch. E_{l} indicates the expected value of loss events for each branch. L_{b} indicates the branch length for each species.

The expected value of gain/loss events were the values mapped on the branch after the speciation of each species. The branch length is referred to from the tree of the 16S rRNA gene. The value is normalized by the branch length because the expected value depends on branch length. The expected value of gain/loss events indicates how often the bacteria have opportunities to gain and select genes in the genome.

The number of orthologs in the genome (O_n) was used as the index for genetic diversity in the bacteria after speciation. The genetic diversity in the bacteria before speciation (G_d) was calculated as follows:

$$\mathbf{G}_d = O_n - \left(E_g - E_l\right)$$

The normalized net number of the expected value of gain events (N_g) was calculated as follows:

$$N_g = \frac{E_g - E_l}{L_b}$$

Simple regression analysis was performed using the Python package Statsmodels, as in Section 2.5.1, to investigate the genetic capitalism of LAB. There were three combinations of objective and explanatory variables:

- Normalized expected value of gain/loss events for each branch (Egl) vs. the genetic diversity in bacteria before speciation (Gd),
- 2. Normalized expected value of gain events (N_g) vs. the genetic diversity in bacteria before speciation (G_d) , and
- Genetic diversity in bacteria after speciation (O_n) vs. the expected value of gain/loss events for each branch (E_{gl}).

The objective and explanatory variables were normalized using the Z score transformation.

Chapter 3: Niche construction and GECs in Lactobacillaceae

3.1 Factors affecting HGT in *Lactobacillaceae*

GECs in shared ecological niches influence microbial evolution, providing a selective advantage to microbes and allowing for their expansion into new ecological niches (Soucy et al. 2015; Swithers et al. 2012). However, this complicates the evolution or adaptation within the same GECs (Polz et al. 2013). Ragan and Beiko (2009) suggested that the habitats of donors and recipients are key limitations for HGT. I further investigated the impacts of how environmental range constrains HGT because they may have been previously underestimated.

To better understand the influence of ecological niches on HGT, the relationship of the phenotypes of the microorganism with environmental adaptation should be investigated. Phenotypes such as those for resource utilization enable microbes to survive in various environments and thus help define the range of the habitat of microbes (Chen et al. 2021). Jain et al. (2003) investigated the internal and external environmental factors that regulate HGT in eight bacterial and archaeal genomes. They reported that HGT occurs among organisms with similar characteristics, including host phenotypes, such as carbon utilization and oxygen tolerance. Their analyses provided evidence for the effects of GECs in ecological niches on prokaryote evolution. However, it is unclear if this tendency applies to GECs formed by bacterial groups of the same family in particular ecosystem niches. This is because the HGT among related bacterial groups is affected not only by the bias of the ecological niche they share but also by the bias of their closely related partners with whom they preferentially exchange genes (Andam and Gogarten 2011; Soucy et al. 2015). To clarify this point in more detail, a comparative analysis using a large amount of phenotypic and genomic data for related species is required.

3.1.1 Relationships among the phylogenetic, genomic, and phenotypic features of 178 strains from *Lactobacillaceae*

I first examined the phenotypic and genomic features of each of the 178 strains and mapped them onto a phylogenetic tree (Figure 3.1). Six phenotypes were assessed: two conditions for temperature required for bacterial growth (ability to grow at 15 °C and 45 °C), three levels of oxygen tolerance (microaerobic, facultatively anaerobic, and obligate anaerobic), and sugar utilization value (number of sugars each strain can metabolize). Of the 178 strains, 56.8% grew at 15 °C and 33.3% grew at 45 °C. Furthermore, among these 178 strains, 8.3%, 81.9%, and 9.8% were microaerobic, facultatively anaerobic, and obligate anaerobic, respectively. Sugar utilization values ranged from 0 to 17 (excluding glucose), and the average for all strains was 6.83. For the genomic features, I investigated the total CDS number and estimated the number of CDS gained via HGT for each strain. The total number of CDS for each of the 178 strains ranged from 1191 to 3600. Because the total number of CDS and the genome size were strongly correlated (R = 0.976) (Figure 3.2), they were treated as interchangeable information in this analysis. The number of CDS gained via HGT ranged from 17 to 342 (Supplementary Table 2.1) and indicated a weak correlation between genome size (R =(0.394) and the total number of CDS (R = (0.424)) (Figure 3.3).

Variation was observed in the phenotypic features of the groups clustered by the phylogenetic tree (Figure 3.1). In particular, the sugar utilization values varied even

within the same genus. For example, in the group for the genus *Lactobacillus*, although *Lactobacillus iners* had sugar-type utilization profile of 0, *Lactobacillus hamster* could utilize 14 kinds of sugar. Additionally, sugar utilization values of the *Ligilactobacillus* genus ranged from 1 to 15, and that of the *Limosilactobacillus* genus ranged from 1 to 16.

The correspondence between the numbers of CDS in a genome and the sugar utilization values was observed (Figure 3.1). The tendency was remarkable in the clusters for the genera *Ligilactobacillus*, *Lacticaseibacillus*, *Limosilactobacillus*, *Apilactobacillus*, *Fructilactobacillus*, and *Secundilactobacillus*. For example, *Lacticaseibacillus manihotivorans*, *Lacticaseibacillus* saniviri, *Lacticaseibacillus* casei, and *Lacticaseibacillus* paracasei ssp. paracasei had high numbers of CDS and high sugar utilization values, whereas *Lacticaseibacillus nasuensis*, *Lacticaseibacillus thailandensis*, and *Lacticaseibacillus brantae* had low numbers of CDS and low sugar utilization values.

Figure 3.1: Phylogenetic tree based on the 16S rRNA genes of LAB strains with phenotypic and genomic features identified.

The inner band shows species colored by genus. The next five symbols show phenotypic characteristics for each LAB strain: the inward-facing triangle indicates growth at 15 °C; the outward-facing triangle indicates growth at 45 °C; the star indicates micro aerophilic; the red inward-facing symbol indicates facultatively anaerobic; the circle indicates obligate anaerobic. A filled symbol means a strain has the phenotype, and an open symbol indicates it does not. A blank means that there is no relevant information available. The next red band shows the number of sugar types that could be utilized. The outer bands indicate the number of coding sequences (CDS) for each strain: navy blue is the estimated number of CDS acquired by horizontal gene transfer (HGT), and light blue is the number of native CDS. This figure was adapted from Takenaka et al. (2021).

Figure 3.2: Correlation between the number of proteins and genome size

Figure 3.3: Horizontal gene transfer (HGT) protein number with (a) genome size and (b) total number of proteins for each genome.

3.1.2 Influence of phenotypic features on genome size and number of HGT genes

Multiple regression analyses were performed to confirm the relationship between genomic features and sugar utilization, as shown in Figure 3.1. The six phenotypes (sugar utilization value, growth at 15 °C, growth at 45 °C, and growth in microaerobic, facultatively anaerobic, and obligate anaerobic conditions) and four genomic features (G/C content, number of rRNA genes, number of tRNA genes, and number of CRISPRs) were subjected to multiple regression analysis as explanatory variables (Supplementary Table 2.1, Figure 3.4).

The genome sizes of 178 strains in *Lactobacillaceae* were used as the objective variable. The six phenotypic and four genomic features were used as the explanatory variables. The coefficient of determination (R2) obtained was 0.484, and the correlation coefficient (R) was 0.696. For sugar utilization values, growth at 15 °C, growth at 45 °C, G/C content, and number of CRISPRs, P-value was < 0.05. The coefficient for growth at 45 °C was negative, whereas that for G/C content, growth at 15 °C, and the number of CRISPRs was positive. The sugar utilization value had the largest coefficient among these factors (Figure 3.5(a)).

CDS that were transferred from other taxa (HGT gene) were also set as an objective variable, and the 10 factors used to analyze the genome size were used as explanatory variables. As a result, the coefficient of determination (R2) obtained was 0.298, and the correlation coefficient (R) was 0.546. For both the sugar utilization value and the G/C composition, P-value was < 0.05, and they had a positive correlation (Figure 3.5(b)).

Figure 3.4: a) GC content; b) number of rRNAs; c) number of tRNAs; and number of CRISPRs in genomes of *Lactobacillaceae*.

Figure 3.5: Values of coefficients of multiple aggression analysis for a) genome size and b) number of CDS judged to be HGTs.

The genome size or number of CDS judged to be HGTs was set as the objective variable, and the six phenotypic features (sugar utilization value, growth at 15 °C, growth at 45 °C, microaerobic, facultatively anaerobic, and obligate anaerobic) and four genomic features (G/C content, number of rRNAs, number of tRNAs, and number of CRISPRs) were subjected to multiple regression analysis as explanatory variables. * indicates a P-value ≤ 0.05 . This figure is adapted from Takenaka et al. (2021).

3.1.3 Influence of sugar utilization phenotype on HGT in Lactobacillaceae

Section 3.1 indicates that various sugar utilization and GC content influence HGT frequency in LAB. This result is the first evidence that the phenotype to utilize a variety of sugars influences HGT frequency in LAB strains.

The phenotypes for carbon utilization and oxygen tolerance were previously shown to influence HGT (Jain et al. 2003). However, our results did not support this. Instead, the sugar utilization value, which means the number of sugar types that can be utilized, was found to contribute frequently to HGT. The sugar utilization values in this study differed from the carbon utilization feature defined as heterotroph or autotroph in the previous study. The gaps in optimum conditions for growth in the laboratory and environment may hide possible effects on HGT (Jain et al. 2003). However, as all LAB are heterotrophic organisms, I did not analyze this factor. In addition, no HGT was related to oxygen tolerance, but there was a bias as approximately 80% of the strains in this study were facultatively anaerobic. This may have prevented the detection of a correlation between oxygen tolerance and HGT. The results of Jain et al. may be different because they investigated HGT across domains (empires), whereas I investigated HGT in the same family.

The G/C content in the genome of *Lactobacillaceae* was correlated with the number of HGT (Figure 3.5). HGT occurs among microorganisms with similar genomic G/C contents and it could affect the incorporation of new DNA into microorganisms (Jain et al. 2003). Genomes from the bacterial groups from the phylum Firmicutes, which includes the family *Lactobacillaceae*, have low G/C contents. Foreign genes from outside

the phylum Firmicutes may have a higher G/C content, which was correlated with the number of HGT genes and genome size.

In summary, these results suggest that factors influencing HGT are sugar utilization and G/C content in LAB. In particular, sugar utilization may contribute to constructing an ecological niche and forming GECs because resource utilization enables microbes to help define the range of the microbes' habitat (Chen et al. 2021).

3.2 GECs in Lactobacillaceae

In Section 3.1, the results indicate that sugar utilization influences HGT among LAB. This suggests that sugar utilization contributes to constructing ecological niches and forming GEC. Ability to utilize a variety of sugars expands the range of the habitat of LAB, increasing the potential of HGT and thereby forming GECs.

Sugar utilization in bacteria has a large role in determining survival in a niche. Bacteria that have genes encoding enzymes that utilize particular carbon sources dominate the environment which contains enrich of the carbon source (Kirchman 2012). For example, bacteria that can use fructose are often found in niches enriched with fructose, such as flowers and fruits (Endo et al. 2009).

Bacteria that can utilize a wide range of sugars may be regarded as generalists because resource utilization helps define the range of habitats for the microbes (Chen et al. 2021). Sriswasdi et al. (2017) reported that generalists maintain the diversity of species and drive bacterial evolution to adapt to a wide range of environments while specializing in particular niches. Considering HGT, the effect of generalists on bacterial evolution is larger.

LAB construct ecological niches in an environment with enriched nutrients; they inhabit fermented dairy products, plants, and meat (Caplice and Fitzgerald 1999). Various lineages of LAB including the *Enterococcaceae*, *Leuconostocaceae*, and *Lactobacillaceae* family construct ecological niches in silage (Cai 1999, Cai et al. 1998). LAB share ecological niches across families.

Bacteria may form GECs in ecological niches across distant lineages in *Lactobacillaceae*. However, besides sharing ecological niches, biases that form GECs include symbiotic interactions and phylogenetic closeness. Phylogenetic closeness greatly influences GECs in *Lactobacillaceae* because the GECs formed include closely related species. The results in Section 3.1 suggested correspondence between sugar utilization, a phenotype that is associated with niches, and HGT frequency. To obtain a deeper perspective of GECs in ecological niches, the relationship between phylogenetic closeness and GECs in the ecological niche should be integrated into this analysis.

In Section 3.2, I investigated how sugar utilization forms the GEC in *Lactobacillaceae*, a group of closely related species. Thereafter, I detected HGT among *Lactobacillaceae* strains by combining ortholog and network analyses because the abovementioned methods (DarkHorse and COLOMBO software) are suitable only for detecting HGTs between distantly related organisms. To analyze the relationship between sugar utilization and GECs, I introduced the concept of ASU.

3.2.1 COG ratios of orthologs in the core and accessory genome

To understand the characteristics of HGT genes in *Lactobacillaceae*, I focused on "accessory genomes." The variable portion of the genome between individual strains is often called the "accessory genome" and differs from the core genome (Sim et al. 2008). Here, I compared the functions of accessory genomes, except for strain-specific singletons, to those of core genomes.

To classify all genes into core and accessory genomes, I first conducted an ortholog analysis for the CDS present in the 178 strains; as a result, 384,737 putative

protein sequences were grouped into 12,884 ortholog clusters. The core and accessory genomes were determined using the COG assignment of each ortholog; 532 and 12,352 ortholog clusters corresponded to the core and accessory genes, respectively. The COG ratios of the core and accessory genomes were quite different (Figure 3.6). Metabolism-related genes were enriched in the accessory genomes.

Figure 3.6: Clusters of orthologous groups (COG) ratios for each group of orthologs.

The COG ratios of the core genome, accessory genome, generalist group orthologs, and specialist group orthologs are displayed. Orthologs not assigned COG are indicated in gray. More metabolism-related genes, such as "carbohydrate transport and metabolism" (G), "amino acid transport and metabolism" (E), "transcription" (K), and "defense mechanisms" (V) were enriched in the accessory genome than in the core genome. However, "translation, ribosomal structure, and biogenesis" (J) and "replication, recombination and repair" (L) occurred less in the accessory genome than in the core genome. Figure adapted from Takenaka et al. (2021).

[J] Translation, ribosomal structure, and biogenesis,

[A] RNA processing and modification,

[K] Transcription,

[L] Replication, recombination, and repair,

[B] Chromatin structure and dynamics,

- [D] Cell cycle control, cell division, chromosome partitioning,
- [Y] Nuclear structure,
- [V] Defense mechanisms,
- [T] Signal transduction mechanisms,
- [M] Cell wall/membrane/envelope biogenesis,
- [N] Cell motility,
- [Z] Cytoskeleton,
- [W] Extracellular structures,
- [U] Intracellular trafficking, secretion, and vesicular transport,
- [O] Posttranslational modification, protein turnover, chaperones,

[X] Mobilome: prophages, transposons,

[C] Energy production and conversion,

[G] Carbohydrate transport and metabolism,

[E] Amino acid transport and metabolism,

[F] Nucleotide transport and metabolism,

[H] Coenzyme transport and metabolism,

[I] Lipid transport and metabolism,

[P] Inorganic ion transport and metabolism,

[Q] Secondary metabolites biosynthesis, transport, and catabolism,

[R] General function prediction only,

[S] Function unknown.

3.2.2 Ortholog features shared by generalists or specialists for sugar utilization

To confirm that sugar utilization values influence the HGT bias, two groups of orthologs were compared: the orthologs shared dominantly by strains that were able to use a variety of sugars (generalist) and those that use only a few sugars (specialist). Here, the ASU value was used to extract generalist and specialist group orthologs as follows (see also material and methods).

- The overall average and standard deviation of the sugar utilization values in all 178 strains were calculated.
- 2. The generalist/specialist orthologs were selected when they had ASU values that were more or /less than the mean ± 1 standard deviation (Figure 3.7).

The ratio of the COG functions between the generalist and specialist group orthologs showed no significant differences (Figure 3.6, Table 3.1), but more strains shared the generalist orthologs. This suggests that the genes are neutrally acquired by HGT regardless of the phenotypic differences.

Among the generalist orthologs, some genes were involved in adaptations to various niches (Table 3.2).

• Stress response: Cell division protein FtsK (Diez et al. 2000), xenobiotic response element (XRE) family transcriptional regulator (Hu et al. 2018), and phenolic acid-responsive transcriptional regulator (PadR) family (Gury et al. 2004).

- Antibiotics: bacteriocin precursor peptides PlnE and PlnF (Anderssen et al. 1998) and multiple antibiotic resistance protein (MarR) family transcriptional regulator (Silva et al. 2018).
- Detoxification: peptide methionine sulfoxide reductase (Walter et al. 2005), mercuric resistance operon regulatory protein (MerR) family transcriptional regulator (Brown et al. 2003), and arsenical resistance operon repressor (ArsR) family transcriptional regulators (Wu and Rosen 1991) for heavy metal resistance.
- Sugar utilization: L-fucose isomerase is involved in the carbohydrate metabolism of bacteria (Seemann and Schulz 1997).

Indeed, phylogenetic trees of these orthologs conflicted with the trees of the host lineages, suggesting HGT events (Figure 3.8).

Figure 3.7: ASU value and number of strains for each ortholog.

The vertical axis indicates the number of strains in each ortholog, and the horizontal axis indicates the ASU value for each ortholog. We introduced the concept of ASU (average of sugar utilization for the ortholog) value. For example, two sequences derived from strains A and B were clustered as an ortholog and then their ASU value was calculated as the average sugar utilization value for A and B. We calculated the overall average and standard deviation of the sugar utilization value in 178 strains. Then ortholog clusters were chosen when their ASU values were more/less than the means \pm one standard deviation. The orthologs with high ASU values were designated generalist group orthologs (red dots), and the low-value group was designated specialist group orthologs (blue dots). Core genes from the 178 LAB strains are indicated as green dots. The top and side histograms show the number of orthologs on each axis. Figure adapted from Takenaka et al. (2021).

Figure 3.8(a)

XRE family transcriptional regulator

Figure 3.8(b)

Integral membrane protein PlnU

Figure 3.8(c)

MerR family transcriptional regulator

L-fucose isomerase

Figure 3.8(e)

MarR family transcriptional regulator

Figure 3.8: Conflicting phylogenetic trees compared to the original lineage for the generalist group orthologs.

- a. Xenobiotic response element (XRE) family transcriptional regulator. The clade *Lacticaseibacillus* included genes from *Schleiferilactobacillus*.
- b. Integral membrane protein PlnU. The clade *Lacticaseibacillus* included genes from *Agrilactobacillus composti*.
- c. Mercuric resistance operon regulatory protein (MerR) family transcriptional regulator. The clade *Companilactobacillus* was mixed with *Levilactobacillus*.
- d. L-fucose isomerase. Companilactobacillus genes were far split.
- e. Multiple antibiotic resistance protein (MarR) family transcriptional regulator. *Lacticaseibacillus* genes were split.

Scale bars are amino acid substitutions per position. Figure adapted from Takenaka et al. (2021).

Table 3.1: T-test and Benjamini-Hochberg method used to compare the functional ratio of COG for each group.

The right side of the table indicates the P-value for the t-test comparing COG ratios between all combinations to choose two from three groups (accessory genome, generalist group orthologs, specialist group orthologs). The left side of the table indicates the Boolean values of the Benjamini-Hochberg correction at a 0.05 false discovery rate (FDR) level. Significant differences indicate TRUE. Table adapted from Takenaka et al. (2021).

	-					
	P-value			t-test and Benjar	nini-Hochberg r	nethod
COG	All accessory vs. generalist	All accessory vs. specialist	Generalist vs. specialist	All accessory vs. generalist	All accessory vs. specialist	Generalist vs. specialist
J	0.326101	0.114384	0.32189	FALSE	FALSE	FALSE
А	0.770197	0.86256	ND	FALSE	FALSE	FALSE
Κ	0.660644	0.001324	0.005024	FALSE	TRUE	FALSE
L	0.016087	0.454098	0.458151	FALSE	FALSE	FALSE
В	ND	ND	ND	FALSE	FALSE	FALSE
D	0.233915	0.902782	0.498252	FALSE	FALSE	FALSE
Y	ND	ND	ND	FALSE	FALSE	FALSE
V	0.253986	0.908512	0.590247	FALSE	FALSE	FALSE
Т	0.546536	0.086224	0.073969	FALSE	FALSE	FALSE
М	0.609181	0.285109	0.484595	FALSE	FALSE	FALSE
Ν	0.330625	0.666394	0.873454	FALSE	FALSE	FALSE
Ζ	ND	ND	ND	FALSE	FALSE	FALSE
W	0.795567	0.973348	0.906121	FALSE	FALSE	FALSE
U	0.164648	0.519524	0.133258	FALSE	FALSE	FALSE
0	0.74121	0.073661	0.129009	FALSE	FALSE	FALSE
Х	0.003727	0.155424	0.688248	FALSE	FALSE	FALSE
С	0.115125	0.690668	0.197208	FALSE	FALSE	FALSE
G	0.971753	0.014538	0.025503	FALSE	FALSE	FALSE
Е	0.000799	0.679508	0.012048	TRUE	FALSE	FALSE
F	0.062515	0.913128	0.279673	FALSE	FALSE	FALSE
Н	0.002552	0.136954	0.679383	TRUE	FALSE	FALSE
Ι	0.018139	0.633887	0.046447	FALSE	FALSE	FALSE
Р	0.275201	0.034176	0.140896	FALSE	FALSE	FALSE
Q	0.159491	0.383424	0.094268	FALSE	FALSE	FALSE
R	0.149804	0.147752	0.581598	FALSE	FALSE	FALSE
S	0.145587	0.624075	0.713207	FALSE	FALSE	FALSE
not_assigned	0	0	0.804117	TRUE	TRUE	FALSE

Table 3.2: Annotation of genes in generalist and specialist group orthologs.

The table indicates the genes present in each group of orthologs, and these annotations were based on the genome data from the DFAST Archive of Genome Annotation. Table adapted from Takenaka et al. (2021).

Generalist group ortholog	
16S rRNA methyltransferase	major facilitator superfamily transporter
3',5'-cyclic-nucleotide phosphodiesterase	major head protein Cps
3-dehydroquinate dehydratase	maltodextrose utilization protein malA
4-hydroxyphenylacetate-3-hydroxylase	mannose/fructose/N-acetylgalactosamine-specific PTS system transporter subunit IID
5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase	mannose/fructose/sorbose-specific PTS system IIA component
ABC transporter ATP-binding component	mannose/fructose/sorbose-specific PTS system IID component
ABC transporter ATP-binding protein	mannose-specific adhesin, LPXTG-motif cell wall anchor
ABC transporter permease protein	mannosyl-glycoprotein endo-beta-N- acetylglucosaminidase
ABC transporter substrate-binding protein	MarR family transcriptional regulator
ABC-2 family transporter protein	MATE family efflux transporter
ABC-2 transporter family protein	membrane protein
AbrB family transcriptional regulator	MerR family transcriptional regulator
accessory gene regulator AgrB	methyl-accepting chemotaxis sensory transducer
acetate kinase	Microvirus H protein (pilot protein)
acetylornithine deacetylase/succinyl- diaminopimelate desuccinylase	Microvirus J protein
acetyltransferase	minor capsid protein
acetyltransferase (GNAT) family protein	minor capsid protein from bacteriophage
acyltransferase family protein	Mob
adenylyl transferase	molecular chaperone DnaK
adenylylsulfate kinase	mucus-binding protein
adherence-associated mucus-binding protein, LPXTG-motif cell wall anchor	multidrug ABC transporter ATP-binding and permease protein
alcohol dehydrogenase	muramidase
alpha/beta hydrolase	MutR family transcriptional regulator
alpha-amylase	Na+/xyloside symporter-related transporter
alpha-galactosidase	N-acetyltransferase
alpha-glucosidase	NAD/NADP octopine/nopaline dehydrogenase
alpha-L-fucosidase	NADPH:quinone reductase

amino acid permease	NADPH-dependent FMN reductase family protein
ankyrin repeat family protein	nitroreductase
antimicrobial peptide ABC transporter ATP-binding protein	NUDIX family hydrolase
AraC family transcriptional regulator	oligoendopeptidase F
ArsR family transcriptional regulator	PadR family transcriptional regulator
ascorbate-specific PTS system IIC component	Pectate lyase precursor
aspartate aminotransferase	penicillin-binding protein 2B
Assimilatory nitrite reductase [NAD(P)H] small subunit	peptidase family S41
ATPase component of ABC transporter with duplicated ATPase domains	peptidase S41
ATP-dependent nuclease, subunit B	peptide methionine sulfoxide reductase
bacteriocin immunity protein	peptidoglycan-binding protein
bacteriocin immunity protein PlnL	peptidylprolyl isomerase
bacteriocin precursor peptide PlnE	phage envelope protein
bacteriocin precursor peptide PlnF	phage holin protein (Holin_LLH)
bacteriophage replication gene A protein (GPA)	phage major tail protein
bacteriophage scaffolding protein D	phage portal protein
beta-galactosidase	phage protein
beta-glucosides-specific PTS system IIB component	phage protein C
beta-glucosides-specific PTS system IIC component	phage related protein
beta-lactamase	phage single-strand DNA-binding protein
beta-lactamase family protein	phosphate ABC transporter substrate-binding protein
BetT protein	phosphoglycerate mutase
BglG family transcriptional antiterminator/PTS system mannitol/fructose-specific IIA component	phosphohydrolase
branched-chain amino acid ABC transporter ATP- binding protein	phosphoketolase
butyrate-acetoacetate CoA-transferase, beta subunit	phospholipase/Carboxylesterase
Capsid protein (F protein)	plantaricin A precursor peptide, induction factor
capsular polysaccharide biosynthesis protein	plantaricin biosynthesis protein PlnQ
CDP-diacylglycerolglycerol-3-phosphate 3- phosphatidyltransferase	plantaricin biosynthesis protein PlnR
cell division protein FtsK	poly(glycerol-phosphate) alpha-glucosyltransferase
cell surface hydrolase	polysaccharide biosynthesis protein
cell surface protein	polysaccharide lyase family 8
cell surface protein, CscB family	polysaccharide polymerase
cellobiose-specific PTS system IIB component	potassium transporter Kup

cellobiose-specific PTS system IIC component potassium transporter TrkA cellulase (glycosyl hydrolase family 5) prebacteriocin chitin-binding protein preprotein translocase subunit YajC chromosome partition protein Smc prophage protein chromosome partitioning protein ParA proton glutamate symport protein PTS sugar transporter IIA component competence protein TfoX PTS sugar transporter subunit IIA conjugal transfer protein Cro/Cl family transcriptional regulator putative chromate transport protein cupin putative membrane protein cytochrome d ubiquinol oxidase subunit II putative nucleotidyltransferase cytosolic protein putative recombinase DeoR family transcriptional regulator putative secreted protein putative signal transduction protein with a C-terminal deoxyuridine 5'-triphosphate nucleotidohydrolase HATPase domain protein D-galactose-binding periplasmic protein precursor putative sporulation-specific glycosylase YdhD diacylglyceryl transferase pyruvate kinase dipeptide/tripeptide permease rhomboid family protein ribitolphosphotransferase DNA mismatch repair protein MutS DNA-3-methyladenine glycosylase I ribonuclease HI DNA-binding protein RNA polymerase sigma factor DNA-binding protein with HIRAN domain protein RNA polymerase sigma factor SigV exopolysaccharide biosynthesis protein **RNA-binding** protein extracellular lipoprotein precursor, Asp-rich RNHCP domain protein S-adenosyl-L-homocysteine hydrolase, NAD binding extracellular protein domain protein extracellular zinc metalloproteinase sensory box protein/response regulator Fe-S oxidoreductase serine protease Fe-S-cluster oxidoreductase serine transporter fibrinogen-binding protein serine/threonine-protein kinase PknD FIST N domain protein short-chain dehydrogenase flagellar biosynthetic protein FlhB short-chain dehydrogenase/oxidoreductase flippase sigma-70, region 4 frv operon regulatory protein single-stranded DNA-binding protein glycerol-3-phosphate dehydrogenase SnoaL-like polyketide cyclase glycerophosphoryl diester phosphodiesterase family sodium/sulfate symport protein protein glycoside hydrolase sodium:proton antiporter

glycosyl transferase	sortase
glycosyl transferase family 1	spermidine/putrescine ABC transporter permease protein
glycosyl transferase family 2	SpoVT / AbrB like domain protein
GNAT family acetyltransferase	sugar ABC transporter permease protein
GntR family transcriptional regulator	sugar ABC transporter substrate-binding protein
gp1 protein	sugar O-acetyltransferase
group II intron reverse transcriptase/maturase	sugar O-acyltransferase
haloacid dehalogenase	sulfate adenylyltransferase
helix-turn-helix protein	surface antigen
hemagglutinin	tail fiber
Heparinase II/III-like protein	tail protein
holin	tellurite resistance protein TerB
HTH-type transcriptional regulator MhqR	TetR family transcriptional regulator
hydrolase	thioredoxin domain protein
hypothetical protein	thymidylate kinase
integral membrane protein	transcription regulator
integral membrane protein (putative)	transcriptional antiterminator
integral membrane protein PlnU	transcriptional regulator
iron ABC transporter permease protein	transcriptional regulator/sugar kinase NagC
iron ABC transporter substrate-binding protein	transglutaminase-like superfamily protein
iron-sulfur cluster binding protein/lactate utilization protein LutB	transposase
L-fucose isomerase	tryptophan synthase alpha chain
lipoprotein	two-component system response regulator
lipoprotein LipO precursor	two-component system sensor histidine kinase
L-lactate dehydrogenase	type 1 restriction-modification system specificity protein
LPXTG-motif cell wall anchor domain protein	universal stress protein UspA
L-serine dehydratase beta subunit	UTPglucose-1-phosphate uridylyltransferase
LuxR family transcriptional regulator	WaaG-like sugar transferase
LysR family transcriptional regulator	XRE family transcriptional regulator
major Facilitator Superfamily protein	YhhN-like protein

specialist group ortholog	
2', 3'-cyclic nucleotide 2'-phosphodiesterase	HTH-type transcriptional regulator Hpr

2-dehydropantoate 2-reductase hypothetical protein 5'(3')-deoxyribonucleotidase L-2,4-diaminobutyrate decarboxylase 6-phospho-alpha-glucosidase L-threonine kinase ABC transporter ATP-binding protein LysR family transcriptional regulator ABC transporter permease protein MarR family transcriptional regulator ABC-2 family transporter protein MATE efflux family protein MATE family efflux transporter acetoacetate decarboxylase acetyltransferase membrane protein multidrug ABC transporter ATP-binding and acyltransferase permease protein adherence-associated mucus-binding protein, Na+/H+ antiporter LPXTG-motif cell wall anchor alkaline phosphatase N-acetyltransferase alpha/beta hydrolase family protein NgoFVII restriction endonuclease alpha-amylase Nuclease-related domain protein aluminum resistance protein O-acetylhomoserine aminocarboxypropyltransferase oligopeptide ABC transporter substrate-binding amidohydrolase protein peptidase propeptide and YPEB domain protein amino acid ABC transporter ATP-binding protein aminotransferase peptidoglycan-binding protein amylopullulanase permease antimicrobial peptide ABC transporter ATP-binding permease protein protein arginine/ornithine antiporter phage Mu protein F like protein asparagine synthase phosphoenolpyruvate carboxykinase ATPase involved in chromosome partitioning phosphopentomutase ATP-dependent DNA helicase RecQ phosphotransferase System HPr-Related protein bacterial SH3 domain protein Pnp/Udp family phosphorylase beta-galactosidase processive diacylglycerol beta-glucosyltransferase beta-lactamase class A proline dipeptidase prolyl-tRNA synthetase branched-chain amino acid permease catalase putative deoxyribodipyrimidine photolyase cell division protein putative helicase cobalt ABC transporter permease protein pyridoxamine 5'-phosphate oxidase competence protein ComGF rRNA methyltransferase CsbD-like protein septum formation initiation protein DegV family protein serine hydroxymethyltransferase DeoR family transcriptional regulator short-chain dehydrogenase

dihydroorotate dehydrogenase	signal transduction diguanylate cyclase
dipeptidase	small membrane protein
dipeptidase PepV	sugar O-acetyltransferase
D-lactate dehydrogenase	sulfite exporter TauE/SafE family protein
DNA damage-inducible protein DnaD	surface protein Rib
drug/metabolite transporter permease	tagatose-6-phosphate ketose isomerase
esterase	Thiosulfate sulfurtransferase YnjE precursor
exopolysaccharide biosynthesis protein	TM2 domain protein
extracellular zinc metalloproteinase	transcriptional regulator
fumarate hydratase	transcriptional regulator/sugar kinase NagC
fumarate reductase	transposase
fumarate reductase flavoprotein subunit	tricarballylate dehydrogenase
glycerol kinase	type III restriction enzyme, res subunit
glycerol uptake facilitator protein	uracil DNA glycosylase superfamily protein
glycogen phosphorylase	Xaa-Pro aminopeptidase
glycopeptide antibiotics resistance protein	Xylan alpha-(1->2)-glucuronosidase
GntR family transcriptional regulator	YdfK protein
helix-turn-helix domain protein	zinc ABC transporter substrate-binding protein
homoserine O-succinyltransferase	

3.2.3 Network of orthologs shared by strains with high sugar utilization

I constructed networks for the shared orthologs among the 178 strains in the 24 genera to identify the influence of sugar utilization on the GECs for different ecological niches (Figure 3.9). There were 178 nodes representing each genome, which were color-coded according to the 24 genera. An edge was generated between two genomes when they shared more than five orthologs of the generalist or specialist group for sugar utilization. A dense network indicated that the community formed a GEC or had conserved genes inherited from their ancestors. No edges were identified in the investigation among the following genera: *Bombilactobacillus, Amylolactobacillus, Paralactobacillus, Holzapfelia, Dellaglioa, Furfurilactobacillus, and Lentilactobacillus.*

While the networks of orthologs predominantly shared by the specialist groups for sugar utilization were connected only within the same genera, the networks of the generalist groups were connected across genera. The networks of specialists were made by strains from Lactobacillus, Loigolactobacillus, Apilactobacillus, Fructilactobacillus Secundilactobacillus independently. The generalist networks connected and Lactobacillus. Loigolactobacillus, Lapidilactobacillus, Schleiferilactobacillus, Liquorilactobacillus, Lacticaseibacillus. Lactilactobacillus. Agrilactobacillus, Lactiplantibacillus, Companilactobacillus, Paucilactobacillus, Secundilactobacillus, and Levilactobacillus.

In the generalist networks, the edges were connected between distant strains isolated from similar environments. As a result of community extraction, the number of communities was 51, the maximum number of strains in the community was nine, and the minimum value was two (Table 3.3). Communities were often formed among strains of the following three genera, *Schleiferilactobacillus*, *Lacticaseibacillus*, and Lactiplantibacillus, or four genera when Agrilactobacillus was added. For example, a formed Schleiferilactobacillus community was among harbinensis, Schleiferilactobacillus perolens, Lactiplantibacillus paraplantarum, Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Agrilactobacillus composti, with its members isolated from vegetables and brewing-related environments (Supplementary Table 2.1) (Zheng et al. 2020). In addition, some communities including members of the genus Lactiplantibacillus and Liquorilactobacillus were identified. Members of the community of Liquorilactobacillus nagelii, Lactiplantibacillus paraplantarum, and Lactiplantibacillus plantarum ssp. plantarum were isolated from dairy products (Supplementary Table 2.1) (Zheng et al. 2020).

The analysis method aimed to select high ASU value orthologs, and as a result, strains with low sugar utilization values tended not to be included in the generalist networks. For example, for the genus *Lacticaseibacillus*, *L. nasuensis*, *L. thailandensis*, and *L. pantheris* were not included in the generalist network, nor were *L. nasuensis* and *L. thailandensis*, which had small sugar utilization values. Moreover, for the genus *Latilactobacillus*, all strains, except for *L. skei* ssp. *carnosus* and *L. fuchuensis*, had relatively low sugar utilization values and were not included in the network.

Despite this, the generalist network included strains with low sugar utilization values. In these cases, the strains were connected to closely related strains with high values. For example, although *Lacticaseibacillus brantae* had a low sugar utilization

62

value, it shared generalist group orthologs with *Schleiferilactobacillus harbinensis*, *Schleiferilactobacillus shenzhenensis*, and *Lacticaseibacillus saniviri*. *L. brantae* was closely related to *L. saniviri*, which had a high sugar utilization value. In addition, *Lactobacillus paracasei* and *L. paracasei* ssp. *tolerans* were also included in the generalist network, although they had low sugar utilization values as they were closely related to *L. paracasei* ssp. *paracasei*, which had a high sugar utilization value.

The closely related strains in a network of specialists tended to form communities within the same genera. In the genera *Lactobacillus* and *Loigolactobacillus*, there was a tendency for the edges to be connected between the subspecies of each species.

Figure 3.9: Networks for the generalist and specialist group orthologs.

Each of the 178 nodes represents a LAB genome, colored and numbered by genus. Dotted-red/solid-blue curves indicate edges created between two genomes when the number of sharing generalist/specialist group orthologs is more than five. Figure adapted from Takenaka et al. (2021).

Table 3.3: Community extraction of shared generalist group orthologs networks.

The table indicates the number of strains, genus name, and members in each community for the generalist group ortholog networks. Table adapted from Takenaka et al. (2021).

comm	# of	genus	member
1	7	Lactiplantibacillus	Lactiplantibacillus_fabifermentans_DSM_21115, Lactiplantibacillus_xiangfangensis_LMG_26013, Lactiplantibacillus_paraplantarum_DSM_10667, Lactiplantibacillus_herbarum_TCF032-E4, Lactiplantibacillus_pentosus_DSM_20314, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365
2	3	Lactiplantibacillus, Loigolactobacillus	Loigolactobacillus _bifermentans _DSM_20003, Lactiplantibacillus _pentosus _DSM_20314, Lactiplantibacillus _plantarum _sspargentoratensis _DSM_16365
3	4	Lactiplantibacillus, Levilactobacillus	Levilactobacillus_acidifarinae_DSM_19394, Lactiplantibacillus_paraplantarum_DSM_10667, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365
4	2	Limosilactobacillus	Limosilactobacillus_frumenti_DSM_13145, Limosilactobacillus_vaginalis_DSM_5837
5	2	Limosilactobacillus	Limosilactobacillus_frumenti_DSM_13145, Limosilactobacillus_panis_DSM_6035
6	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_perolens_DSM_12744, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_saniviri_DSM_24301
7	7	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_perolens_DSM_12744, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Agrilactobacillus_composti_DSM_18527
8	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lactiplantibacillus_pentosus_DSM_20314, Lacticaseibacillus_saniviri_DSM_24301
9	7	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lactiplantibacillus_pentosus_DSM_20314, Agrilactobacillus_composti_DSM_18527

10	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_perolens_DSM_12744, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lacticaseibacillus_saniviri_DSM_24301
11	7	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_perolens_DSM_12744, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Agrilactobacillus_composti_DSM_18527
12	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314, Lacticaseibacillus_saniviri_DSM_24301
13	7	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314, Agrilactobacillus_composti_DSM_18527
14	7	Schleiferilactobacillus, Lactiplantibacillus, Latilactobacillus, Lacticaseibacillus, Paucilactobacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Latilactobacillus_sakei_sspcarnosus_DSM_15831 Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_saniviri_DSM_24301, Lactiplantibacillus_pentosus_DSM_20314, Paucilactobacillus_hokkaidonensis_LOOC260
15	4	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_saniviri_DSM_24301, Lacticaseibacillus_brantae_DSM_23927
16	7	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744 Lacticaseibacillus_saniviri_DSM_24301, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393

17	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_saniviri_DSM_24301, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lactiplantibacillus_pentosus_DSM_20314
18	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_saniviri_DSM_24301, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437
19	7	Schleiferilactobacillus, Lacticaseibacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_saniviri_DSM_24301, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314
20	5	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_sharpeae_DSM_20505
21	5	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_sharpeae_DSM_20505, Lacticaseibacillus_manihotivorans_DSM_13343
22	9	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_ATCC_334, Lacticaseibacillus_paracasei_ssptolerans_DSM_20258
23	9	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_ATCC_334, Agrilactobacillus_composti_DSM_18527

24	9	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_ATCC_334, Lacticaseibacillus_camelliae_DSM_22697
25	9	Schleiferilactobacillus, Lacticaseibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_ATCC_334, Lacticaseibacillus_manihotivorans_DSM_13343, Lacticaseibacillus_camelliae_DSM_22697
26	8	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lactiplantibacillus_pentosus_DSM_20314, Agrilactobacillus_composti_DSM_18527
27	8	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Schleiferilactobacillus_perolens_DSM_12744, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Agrilactobacillus_composti_DSM_18527
28	8	Schleiferilactobacillus, Lacticaseibacillus, Agrilactobacillus, Lactiplantibacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_pentosus_DSM_20314, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Agrilactobacillus_composti_DSM_18527,
29	3	Schleiferilactobacillus, Lapidilactobacillus	Schleiferilactobacillus_harbinensis_DSM_16991, Schleiferilactobacillus_shenzhenensis_LY-73, Lapidilactobacillus_concavus_DSM_17758
30	3	Lacticaseibacillus, Lactiplantibacillus, Secundilactobacillus	Secundilactobacillus_kimchicus_JCM_15530, Lacticaseibacillus_casei_DSM_20178, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437
31	2	Schleiferilactobacillus, Lactobacillus	Lactobacillus_melliventris_Hma8, Schleiferilactobacillus_perolens_DSM_12744
32	2	Liquorilactobacillus	Liquorilactobacillus_nagelii_DSM_13675, Liquorilactobacillus_ghanensis_DSM_18630

33	3	Lactiplantibacillus, Liquorilactobacillus	Liquorilactobacillus_nagelii_DSM_13675, Lactiplantibacillus_paraplantarum_DSM_10667, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437
34	6	Lactiplantibacillus, Agrilactobacillus	Lactiplantibacillus_xiangfangensis_LMG_26013, Lactiplantibacillus_paraplantarum_DSM_10667, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314, Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365 Agrilactobacillus_composti_DSM_18527
35	8	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus, Schleiferilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Lacticaseibacillus_paracasei_ATCC_334, Schleiferilactobacillus_perolens_DSM_12744 Agrilactobacillus_composti_DSM_18527
36	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_pentosus_DSM_20314 Lacticaseibacillus_rhamnosus_DSM_20021, Agrilactobacillus_composti_DSM_18527, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130
37	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus, Schleiferilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lacticaseibacillus_rhamnosus_DSM_20021, Agrilactobacillus_composti_DSM_18527, Schleiferilactobacillus_perolens_DSM_12744
38	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus	Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_casei_ATCC_393, Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_paraplantarum_DSM_10667, Lactiplantibacillus_pentosus_DSM_20314, Agrilactobacillus_composti_DSM_18527
39	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus, Schleiferilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Agrilactobacillus_composti_DSM_18527, Schleiferilactobacillus_perolens_DSM_12744
40	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus, Schleiferilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Schleiferilactobacillus_perolens_DSM_12744, Agrilactobacillus_composti_DSM_18527

41	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314, Lacticaseibacillus_casei_DSM_20178, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_paracasei_sspparacasei_JCM_8130, Agrilactobacillus_composti_DSM_18527
42	7	Lactiplantibacillus, Lacticaseibacillus, Agrilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Lactiplantibacillus_pentosus_DSM_20314, Lactiplantibacillus_paraplantarum_DSM_10667, Lacticaseibacillus_rhamnosus_DSM_20021, Lacticaseibacillus_casei_DSM_20178, Agrilactobacillus_composti_DSM_18527
43	2	Lactiplantibacillus, Liquorilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Liquorilactobacillus_sucicola_DSM_21376
44	3	Lactiplantibacillus, Latilactobacillus	Lactiplantibacillus_plantarum_sspargentoratensis_DSM_16365, Lactiplantibacillus_plantarum_sspplantarum_CGMCC_1.2437, Latilactobacillus_fuchuensis_JCM_11249
45	2	Companilactobacillus	Companilactobacillus_kimchiensis_DSM_24716, Companilactobacillus_nantensis_DSM_16982
46	2	Companilactobacillus	Companilactobacillus_ginsenosidimutans_EMML_3141, Companilactobacillus_nantensis_DSM_16982
47	2	Lactiplantibacillus, Secundilactobacillus	Secundilactobacillus_similis_DSM_23365, Lactiplantibacillus_pentosus_DSM_20314
48	2	Lactiplantibacillus, Liquorilactobacillus	Liquorilactobacillus_uvarum_DSM_19971, Lactiplantibacillus_paraplantarum_DSM_10667
49	2	Ligilactobacillus	Ligilactobacillus_agilis_DSM_20509, Ligilactobacillus_ruminis_ATCC_27780
50	2	Lactiplantibacillus, Loigolactobacillus	Loigolactobacillus_rennini_DSM_20253, Lactiplantibacillus_pentosus_DSM_20314
51	2	Lacticaseibacillus, Companilactobacillus	Companilactobacillus_nantensis_DSM_16982, Lacticaseibacillus_casei_DSM_20178

3.2.4 Sugar utilization phenotype contributes to GEC formation in the ecological niche of *Lactobacillaceae*

In Section 3.2, networks of orthologs were analyzed to identify how the phenotypes contributed to the formation of GECs (Figure 3.9). Results in this and Section 3.1 suggested that the ability to utilize a variety of sugars contributed to increased HGT and the formation of GECs in ecological niches among genera. These results will help to improve our understanding of the evolution of related bacteria in ecological niches.

HGT tends to occur among prokaryotes with similar phenotypes, as they live in the same environment (Jain et al. 2003). For example, many bacteria in the order Thermotogales of *Thermotogae*, mainly thermophilic bacteria, and in the class Clostridia included in the phylum Firmicutes, share ecological niches and genes, probably because they share thermophilic features (Andam and Gogarten 2011). These reports suggest that some phenotypes contribute to the sharing of ecological niches and the formation of GECs. My study showed that this tendency can apply to bacterial groups within *Lactobacillaceae* and revealed that the utilization of a variety of sugars highly influenced the construction of GECs across genera to share niches such as vegetables, dairy, and brewing-related environments (Figure 3.9, Supplementary Table 2.1, Table 3.3).

One of the problems in this network analysis is that not only orthologs shared by HGT but also those shared from ancestors constitute the networks. However, I consider that three reasons support the results in Section 3.2 and help overcome this problem. First, phylogenetic trees of generalist group orthologs selected by ASU value contradicted the tree based on the 16S rRNA gene, reflecting phylogenetic relationships (Figure 3.1, Figure 3.8). Conflicting trees suggest HGT events. Secondly, the generalist orthologs
group networks were connected among distant strains compared with the networks of the specialist orthologs group (Figure 3.9). If sugar utilization did not contribute to forming GECs in ecological niches, both networks should have constituted closely related strains because of phylogenetic genes and formation of GECs by phylogenetic closeness. Finally, the strains in generalist networks were isolated from similar environments (Supplementary Table 2.1, Table 3.3). These reasons support that sugar utilization contributes to forming GEC in the ecological niche of LAB.

Interestingly, the network of the generalist ortholog group includes strains with low sugar utilization values. The result suggests that GECs in *Lactobacillaceae* are generated by two HGT biases: sharing of ecological niche and phylogenetic closeness. The bias of phylogenetic closeness is caused by the similarity of genomes and the specificity of phages. The phylogenetic proximity influences the HGT events of partners (Andam and Gogarten 2011).

Pan-genome refers to potentially available genes for individuals in closely related groups as HGT events increase by the bias of phylogenetic closeness (Soucy et al. 2015). This concept can apply to the GECs biased by sharing of ecological niche and phylogenetic closeness in LAB. The generalists in LAB have increased potential to gain HGT genes to share various ecological niches. The genes gained by the generalists are transferred to the specialists via HGT by biased phylogenetic closeness. These flows maintain the diversity in closely related groups, which may improve the fitness of individuals in the group. Generalists may be a kind of "gene installer" for their group; they acquire genes to construct GEC in ecological niches and share the genes between groups to form GEC by phylogenetic closeness. There are both generalists and specialists in closely related groups. Phylogenetic closeness generates HGT bias because of HGT mechanisms (Andam and Gogarten 2011). In Chapter 3, the networks of generalist ortholog groups included not only generalists of sugar utilization but also specialists closely related strains of the generalists. This suggests the possibility that generalists install genes into closely related specialists. Sriswasdi et al. (2017) reported that generalists drive bacterial evolution. The hypothesis of "gene installer" supports the report.

GECs among the strains of *Lactobacillaceae* with high sugar utilization values could help to expand their habitats and promote the exchange of genetic material with various functions. According to my results for the functional classification by COG, there were a variety of gene functions in the generalist group orthologs for sugar utilization, but the function proportions were not significantly different from those of the specialist group orthologs (Figure 3.6). In the generalist group orthologs, there were genes related to sugar metabolism and genes to enable the adaptation of various niches related to stress responses, bacteriocin production, antibiotic resistance, survival in the intestinal environment, and heavy metal resistance. These results are consistent with the idea that most HGT genes in the GECs of different ecological niches may thus help recipients to adapt to new habitats and affects population diversification (Baquero et al. 2021). These results allow us to speculate that the GECs composed of strains in *Lactobacillaceae* with high sugar utilization accelerate their adaptations to new niches.

Overall, my results indicate that the phenotype to utilize a variety of sugars was the key factor for the construction of GECs in the family *Lactobacillaceae*. This feature is consistent with the fact that *Lactobacillaceae* contributes to producing a wide variety of fermented foods by sharing niches such as vegetables, dairy products, and brewingrelated environments. The results of this study will help to improve our understanding of these ecologies.

3.3 Genetic capitalism in LAB

In Section 3.3, I investigate LAB evolutions using the concept of genetic capitalism. Genetic capitalism is considered the phenomenon of rich becoming richer. Baquero et al. (2004) explained that genetic capitalism increases interactions with environments such as HGT by acquired genes encoding particular phenotypes in natural selection. For instance, gaining genes that provide hosts with selective advantage increases the population size of the group. Consequently, the group has more potential to acquire genes via HGT.

To understand the genetic capitalism in bacteria, biases that increase and decrease genome size (i.e., biases that are acquisition and deletion of genes) should be considered. Bacteria have a compact architecture of genomes whose proportion of genes is high and the intergenic region is low. The compact genome may be formed by frequent point mutations that cause gene deletion (Douglas 1988). However, gene acquisition via HGT increases the genome size (Zimmer and Emlen 2016). These genes are introduced to genomes neutrally in function (Soucy et al. 2015). Both biases to decrease/increase genome size are competing in the bacterial genome.

The bias that decreases/increases genome size can cause genetic capitalism that widens the disparity of genome size or diversity of genes in bacteria. Strains incapable of inhabiting various environments have less potential to exchange genes in ecological niches, strengthening the relative influence of decreasing bias. The bias deletes more extra genes, which makes strains do not inhabit other environments. This consequently makes the strains specialize in particular niches. Strains capable of inhabiting various environments frequently gain genes to form GEC in ecological niches, where bias that increases genome size exceeds decreasing bias. The genes may encode suitable phenotypes to expand habitats of the strains, increasing genome size or diversity in the genome.

The results in Section 3.2 implied that phenotype of utilizing various sugars in LAB contributes to forming GECs in the ecological niches. GECs in the ecological niche may provide the members with potential to acquire genes for inhabiting various environments, which helps them to relocate to new niches. The concept of genetic capitalism can be applied to the ecological flow in LAB.

However, there are few reports that genetic capitalism influences evolution in LAB. Simplifying genomes plays a major role in the evolution of LAB (Makarova et al. 2006). Moreover, although the results in Section 3.2 showed that the phenotype in LAB contributes to forming GEC in the ecological niches, the results did not prove the tendency of the rich becoming richer. Based on the above discussion, possessing diverse genes that encode phenotypes for surviving various environments in the bacterial genome can contribute to increasing the potential to gain genes via HGT. As a consequence, the bacteria gains diverse genes.

In this Section 3.3, I investigated whether the genetic diversity in the bacterial genome influences the gain and loss of genes. To estimate gene diversity in the bacterial genome before speciation, the expected value of gain/loss events was calculated based on the ortholog in LAB. I hypothesized that if genetic capitalism applies to LAB evolution, the rich that have diversity in the genome before speciation can become richer to obtain

more potential to acquire other genes.

3.3.1 Gene gain and loss in *Lactobacillaceae*

To investigate gain/loss events in *Lactobacillaceae*, the expected value of these events was mapped on a phylogenetic tree based on 16S rRNA (Figure 3.10). The expected number of gain events in the branch of speciation for the 178 strains ranged from 42.12 for *Lactobacillus taiwanensis* to 1756 for *Loigolactobacillus rennini*. The expected number of loss events in the branch of speciation for each of the 178 strains ranged from 42.62 for *Latilactobacillus sakei* ssp. *carnosus* to 2467 for *Holzapfelia floricola* (Figure 3.10, Supplementary Table 3.4).

There were a few correlations between expected values of gain/loss events and genomic factors. The coefficients for correlation between the expected value of gain events for each branch and genome size, protein number (number of CDS), and the number of orthologs types in a genome were 0.308, 0.316, and 0.319, respectively. The coefficients for correlation between the expected value of loss events for each branch and genome size, protein number of orthologs types in a genome were 0.216, 0.239, and 0.247, respectively (Table 3.5).

Even in the same genus, there were various expected values of gain/loss events in the branch of speciation to each species. For instance, the minimum expected value of gain events was 91.6 for *Lacticaseibacillus rhamnosus*, whereas the maximum was 1389 for *Lacticaseibacillus sharpeae*. In addition, the minimum expected value of loss events was 83.36 for *Lacticaseibacillus paracasei*, whereas the maximum was 1568 for *Lacticaseibacillus sharpeae*.

a)

3.10: Phylogenetic tree mapped with gain (a) and loss (b) expected number.

The phylogenetic tree of the 16S rRNA gene mapped with the expected value of gain/loss events was obtained from GLOOME analysis. The numbers attached to each branch indicate the expected number of gain (a) or loss (b) events.

Table 3.4: Pearson correlation values between genomic features.

Each alphabet represents genomic features as follows a) genome size (total_sequence_length), b) number of proteins (Np), c) protein number minus delta of expected value of gain/loss events (Np-(Eg -El)), d) genetic diversity in the bacteria before speciation (Gd), e) rate of gain/loss events (Eg/El), f) expected value of gain events (Eg), g) expected value of loss events (El), h) expected value of gain events per branch length (Eg/Lb), i) expected value of loss events per branch length (El/Lb), j) normalized expected value of gain/loss events for each branch (Egl), k) normalized expected value of gain events (Ng), l) number of orthologs (On).

	a	b	с	d	e	f	g	h	i	j	k	1
a	1.00	0.98	0.91	0.82	0.43	0.02	0.25	0.31	0.22	0.28	0.27	0.97
b	0.98	1.00	0.91	0.82	0.46	0.06	0.24	0.32	0.24	0.30	0.26	0.99
c	0.91	0.91	1.00	0.98	0.23	0.21	0.06	0.28	0.23	0.27	0.21	0.90
d	0.82	0.82	0.98	1.00	0.13	0.27	0.19	0.26	0.22	0.25	0.17	0.83
e	0.43	0.46	0.23	0.13	1.00	0.00	0.31	0.42	0.17	0.33	0.54	0.46
f	0.02	0.06	0.21	0.27	0.00	1.00	0.88	0.08	0.10	0.09	0.03	0.08
g	0.25	0.24	0.06	0.19	0.31	0.88	1.00	0.16	0.13	0.15	0.12	0.23
h	0.31	0.32	0.28	0.26	0.42	0.08	0.16	1.00	0.84	0.97	0.71	0.32
i	0.22	0.24	0.23	0.22	0.17	0.10	0.13	0.84	1.00	0.94	0.22	0.25
j	0.28	0.30	0.27	0.25	0.33	0.09	0.15	0.97	0.94	1.00	0.53	0.30
k	0.27	0.26	0.21	0.17	0.54	0.03	0.12	0.71	0.22	0.53	1.00	0.25
1	0.97	0.99	0.90	0.83	0.46	0.08	0.23	0.32	0.25	0.30	0.25	1.00

3.3.2 Influence of ortholog number in a genome on gain and loss events

To investigate the influence of genetic diversity in a genome on the number of gain/loss events, simple regression analysis between indexes generated by the number of ortholog types and expected values of gain/loss was performed (Figure 3.11). The number of types classified based on ortholog analysis represents genetic diversity in a genome. As a result, the genetic diversity in a genome before speciation influenced increase in the total expected values of gain/loss in the branch of speciation. The P-value was less than 0.05 (P-value= 0.001). The regression coefficient and the coefficient of determination (R2) obtained were 0.2522 and 0.064, respectively. In addition, the genetic diversity in a genome before speciation influenced increase in the net number of the expected value of gain events. The P-value was less than 0.05 (P-value= 0.022). The regression coefficient and the coefficient of determination (R2) obtained were 0.1718 and 0.030, respectively. Moreover, the total expected values of gain/loss in a branch of speciation influenced the genetic diversity in the current genome. The P-value was less than 0.05 (P-value= 0.001). The regression coefficient of determination (R2) obtained were 0.1718 and 0.030, respectively. Moreover, the total expected values of gain/loss in a branch of speciation influenced the genetic diversity in the current genome. The P-value was less than 0.05 (P-value= 0.001). The regression coefficient and the coefficient of determination (R2) obtained were 0.301 and 0.091, respectively (Table 3.6).

In Section 3.3, the statistical results suggest that the rich (i.e., strains with genetic diversity in a genome) obtain potential for gain/loss events, making the rich richer. This tendency can be interpreted as genetic capitalism in LAB.

$net_of_change_delta_gain_loss_DIV_MM_branchLength$

3.11: Scatter plot among gain/loss expected number and each parameter.

a) Vertical axis indicates the normalized expected value of gain/loss events for each branch (E_{gl}), and horizontal axis indicates the genetic diversity in the bacteria before speciation (G_d). b) Vertical axis indicates the normalized expected value of gain events (N_g) and horizontal axis indicates the genetic diversity in the bacteria before speciation (G_d), and c) vertical axis indicates the expected value of gain/loss events for each branch (E_{gl}) and horizontal axis indicates the genetic diversity in the bacteria before speciation (G_d), and c) vertical axis indicates the genetic diversity in the bacteria after speciation (O_n).

Obj	E _{gl}	Ng	On
Exp	G _d	G _d	E_{gl}
R- squared	0.064	0.03	0.091
coef	0.2522	0.1718	0.301
P-value	0.001	0.022	0
std err	0.073	0.074	0.072

Table 3.5: Statistics of simple regression analysis for genetic capitalism.

Chapter 4: General Discussion

4.1 Niche construction and GECs in LAB

In this study, I elucidated the process of GEC formation in ecological niches, which provided a perspective connected to the process of bacterial evolution. In Chapter 1, I mentioned the influence of GECs in the ecological niche on bacterial evolution. Phenotypic and genomic data in LAB are suitable for this investigation. In Chapter 2, I described the materials and methods used for the investigation of construction of GECs in the ecological niche of LAB. In Chapter 3, I investigated the relationship between phenotypes and HGT in LAB. The results suggested that utilizing various sugars increases potential to acquire multiple genes via HGT. In addition, I indicated the GECs across genera in LAB sharing ecological niches to investigate the ortholog networks. Moreover, genetic diversity in the genome increases the potential of bacteria to undergo gene gain/loss events, which further enriches genetic diversity. These results that phenotypes in LAB contribute to forming GECs suggest that niche construction in LAB forms GECs.

Niche construction is explained as the interaction that organisms change the environment in their habitat and the changing environment affects the evolution of the organisms. To change the environment, organisms have two options: perturbation and relocation. Organisms perturb current habitats or relocate to another habitat, which changes environmental factors that affect organisms (Odling-Smee et al. 2003). In other words, selective pressures from environments to organisms are altered because the organisms affect the environments.

As I mentioned, in this study, the results that phenotype of utilizing various sugars contributes to forming GECs suggest that niche construction in LAB forms GECs. LAB strains can relocate to another habitat using this phenotype, which allows them to form GECs in ecological niches. In addition, the genes obtained via HGT encode phenotypes involving sugar utilization and adaptation to various environments. This suggests that GECs help the members to relocate to new environments. The phenotype to utilize various sugars contributes to sharing ecological niches can paraphrase niche construction in LAB.

4.2 Genetic capitalism in LAB

In Section 3.3, the estimation of gain/loss events and statistical analysis with genomic diversity was performed to investigate the influence of genetic capitalism on LAB evolution. The result suggested that the genetic diversity in a genome before speciation contributes to increasing the potential for gain/loss events, which makes the genome acquire various genetic materials. These results are consistent with the framework of genetic capitalism.

Particular phenotypes cause genetic capitalism, which enriches genetic diversity in the genome. A typical example is antibiotic resistance. Baquero et al. (2003) mentioned that certain genes encode phenotypes that help survival in the local environment, increasing the possibility of gene exchange. As a result, the individuals possessing these genes obtain various genetic materials. In Section 3.3, the result showed that strains containing multiple genes in the genomes had more potential to gain other genes.

In genetic capitalism in LAB, the scenario that the phenotypes allowing adaptation to various environments (phenotype for generalists) increase potential for gene gain/loss events was considered. Genetically rich bacteria have a wide range of habitation because they possess genetic diversity in their genome, including genes to encode phenotype to survive. They acquire genes that help them share ecological niches. Their habitats frequently change because they can inhabit in a wide range of environments. There are many opportunities for gene loss events because purifying selection does not work continuously. Consequently, genetic diversity is increased because of change in genome composition and selective pressure. The results in Sections 3.1 and 3.2 indicate that the phenotype to utilize various sugars increases HGT events to share ecological niches. Applying the concept of genetic capitalism to formation of GEC in the ecological niche, the generalists that possess phenotypes to utilize various sugars and the specialists can be considered rich and poor bacteria, respectively. The rich obtain opportunities to gain various genes to share ecological niches. Some genes help the rich to relocate to new habitats. As a result, the genetic diversity in the genomes of generalists increases.

Although the statistical analysis in Section 3.3 suggested the tendency of genetic capitalism in LAB, the results do not show a robust model of evolution. The coefficients of determination in simple regression analyses were low. To construct robust models, sophisticated indexes are required. For instance, an index based on genes to enable the adaptation of various niches related to stress responses, bacteriocin production, antibiotic resistance, survival in the intestinal environment, and heavy metal resistance is required.

In conclusion, genetic diversity in a genome before speciation increases the potential for gain/loss events, which further enriches the diversity in the current genome. The results suggest a framework of genetic capitalism underlying construction of ecological niche and GEC in LAB.

4.3 Influence of niche construction in LAB

Niche construction in bacterial evolution changes selective pressure on the bacteria and mutation rate in their genomes because of GEC formation. Niche construction is the process where organisms change their environment using their phenotypes, which affects selective pressure exerted on organisms themselves. The less influence of geographical isolation on bacteria promotes this tendency. In addition, bacteria can distribute in a wide range of environments and construct ecological niches because they have a huge population size. Moreover, bacteria can adapt to the changing environment because their generation cycle is extremely fast (Odling-Smee et al. 2003). Furthermore, bacteria can share the genetic material to form GECs in an ecological niche. These characteristics allow niche construction in bacteria, which has a greater influence on their evolution than on large creatures.

In addition, I investigated whether niche construction causes genetic capitalism in LAB. As a result, the tendency that rich bacteria possessing genetic diversity in the genome have potential to gain genes was observed. Genes encode phenotypes to adapt to environments; this in turn helps construct GECs in various ecological niches. However, poor bacteria that possess less genetic diversity in the genome have few opportunities to gain genes. The non-essential genes to survive in a particular niche are deleted from the genome of poor bacteria because they do not relocate and stay in the same niche. These biases widen the gap between generalists that adapt to a wide range of environments and specialists that adapt to particular niches.

In conclusion, the niche construction in LAB increases the mutation rate to

construct GECs in the ecological niche, which may cause genetic capitalism. The niche construction with GEC may play a major role in bacterial evolution.

4.4 Complicated bacterial evolution

The evolution of bacteria is not easy to unravel because they interact with many environmental factors in the ecosystem. The evolution of bacteria, compared to that of eukaryotes, is known to have the following three characteristics: 1. less influence of geographical isolation, 2. Sharing of ecological niche in a suitable environment, 3. exchange of genetic materials between distantly related species. These factors obscure the definition of a population and complicate our understanding of bacterial evolution (VanInsberghe et al. 2020; Rocha 2018; Arevalo et al. 2019). Therefore, for a deep understanding of bacterial evolution, a novel theory is required (Rocha 2018). As described below, these three characteristics have been studied independently. Although the three characteristics interact, few discussions integrate the three characteristics. I build a novel framework of bacterial evolution, including the three characteristics. Through my research, I deduced that introducing concepts such as GECs and niche construction helps to effectively build a novel framework for bacterial evolution.

Bacteria can relocate without the influence of geographic isolation. Environmental factors are fluctuated by relocation in the bacterial evolution (Kirchman 2012). Microorganisms differ from large creatures in relocation behavior. Microorganisms appear in particular habitats and are not influenced by geographic isolation. However, large creatures have habitats according to geographic conditions. For instance, gazelles live in the savannahs of Africa, and pronghorn live in North America, but the reverse is not true. The bacterial relocation is described as "everything is everywhere, but the environment selects" as Becking's hypothesis (Kirchman 2012). As evidence of this hypothesis, he listed the hugeness of the population, the smallness of cell size, and asexual reproduction. These features help bacteria overcome geographic conditions. Although some reports are inconsistent with Becking's hypothesis (Pagaling et al. 2009; Martiny et al. 2006), it is true that bacteria are influenced less than large creatures.

Multiple bacterial lineages coexist in suitable environments; it is easier for bacteria to share the ecological niche because they can relocate without the influence of geographic isolation. Logically, a single cell adapts to a new habitat, and bacteria can grow there. In addition, bacteria are not affected by geographic isolation. Based on these conditions, bacteria can stay together in ecological niches in suitable environments for survival without geographical influence. Multiple bacterial lineages can share the ecological niches unless they do not compete with each other. Evidence consistent with this hypothesis was reported in bacteria and archaea (Martiny et al. 2006). Microflora in soils that have close properties in different latitudes were similar. Moreover, the microflora in water from Antarctica and the Arctic were similar (Fierer and Jackson 2006). This evidence suggests that bacteria share ecological niches until the environments are suitable.

Sharing ecological niches induces HGT among multiple bacterial lineages. Bacteria exchange their genes indiscriminately via HGT, which makes the line of descent difficult (Schleifer et al. 2008; Rocha 2018). Mainly, there are three mechanisms of HGT: conjugation, transformation, and transduction (Soucy et al. 2015). Although these mechanisms generate bias to promote gene transfer among closely related organisms, many reports show that HGT also occurs among distantly related organisms, allowing sharing of ecological niches. For example, different phylum microorganisms share genes for surviving in a high-temperature environment (Andam and Gogarten 2011). Distantly related microorganisms can share their features via HGT, which in turn contributes to their environmental adaptation. This obscures the definition of a bacterial population and makes bacterial evolution difficult to understand using population genetics (Rocha 2018).

4.5 Hypothetical framework: Niche Construction and GECs model

Based on the above discussion, I construct the framework to comprehend bacterial evolution deeply. The relationship between the three characteristics in bacterial evolution should be described correctly. In bacterial evolution, relocation without the influence of geographic isolation allows sharing of ecological niches. Sharing of ecological niches allows frequent HGT among distantly related microorganisms. Thus, in bacterial evolution, the simple flow is suggested as follows: relocation without the influence of geographic isolation makes bacteria share ecological niches, which causes frequent HGT. To understand bacterial evolution better, I need to bring two concepts into this simple flow: niche construction and GECs.

As mentioned in Section 4.1, the results that phenotype of utilizing various sugars contributes to forming GECs suggests that niche construction in LAB forms GECs. LAB can relocate to another habitat using a sugar utilization phenotype, which affects their evolution to form GECs in ecological niches.

Niche construction forms GECs, which have a huge influence on bacterial evolution. Notably, in bacterial evolution, niche construction changes the selective pressure on them, and niche construction influences the mutation rate of their genome to form GECs. A further modified flow of bacterial evolution is as follows: relocation without geographic isolation causes sharing of ecological niches and forming GECs, generating high-density regions in the HGT network. This flow can be paraphrased as niche construction changing mutation rate by frequent HGT (GECs). This phenomenon

is not observed in large creatures. Therefore, niche construction influences bacteria more than large creatures.

In conclusion, I suggested that the evolutional model of bacteria integrates the three characteristics of bacterial evolution using two concepts. The model is named the "Niche Construction and GECs model (NCG model)" (Figure 4.1). This model can be described as a simplified flow: relocation without the influence of geographic isolation allows bacteria to share ecological niches and form GECs. This flow can be paraphrased as niche construction causing GECs. This model indicates that niche construction not only changes the selective pressure on bacteria but also influences their mutation rate by forming GECs. In evolutionary theory, this interpretation indicates a large difference between prokaryotic and eukaryotic organisms.

Figure 4.1: Niche construction and the GECs model (NCG model).

Each frame indicates the environment. Each symbol indicates bacterial strains. Different shapes of symbols refer to different lineages. Red symbols indicate that strains possess genetic material to survive in environment A. Emigration without geographic isolation causes sharing of ecological niches and forming GEC, generating high-density regions in the HGT network. This means that niche construction that contributes to forming GECs changes the selective pressure and mutation rate of bacterial genomes.

4.6 Validity of the NCG model

There are a variety of approaches to reveal bacterial evolution. Bacterial evolution is difficult to understand because of their huge population sizes and diverse genomes. The classification of bacteria started by investigating traditional morphology in the 19th century (Schleifer et al. 2009). The development of methods based on ribosomal RNA provided information on phylogenetic relationships in bacterial evolution. Thereafter, analysis based on ribosomal RNA became the gold standard for deducing the phylogenetic relationships of prokaryotes. The development of ultra-high-throughput next-generation sequencing technologies dramatically improved the availability of whole genome sequences for many bacterial strains (Tettelin et al. 2008). The first pan-genome approach compared whole genomes of numerical strains of *Streptococcus agalactiae* to describe their evolution of virulence mechanisms (Tettelin et al. 2002). The results demonstrated shared genetic features and the diversity of genomes in the population. Furthermore, the method of metagenomic analysis also improved because of development of next-generation sequencing. The framework established in the last decade (Caporaso et al., 2010; Qin et al., 2010) describes microflora composition in various niches (Liu et al. 2021). Although these approaches provide us with huge insights, integrated frameworks are required because these approaches are complicated to understand the theory of bacterial evolution.

The NCG model utilized here successfully suggests a simple and integrated framework of the theory of bacterial evolution: less influence of geographical isolation allows formation of GECs in ecological niches, which causes genetic capitalism. This simple scenario helps us to better understand bacterial evolution. However, to make the model robust, some investigations are required. First, the GECs in ecological niche and genetic capitalism among distantly related lineages should be investigated. In this study, I used *Lactobacillaceae*, a closely related group, because the phenotypic and genomic data of its members have been obtained and provide us with the appropriate sandbox. Furthermore, the research targets should be included. Secondary investigation of more widely phenotypic features is required. Although the basic phenotypic information used for classifying taxon was analyzed in this study, the animal intestine and antibiotic resistance, were not. Finally, sophisticated indexes for classifying bacteria as rich or poor in genetic capitalism are required. For instance, genes encoding a phenotype for environmental adaptation can be an effective index of richness.

4.7 Conclusion

I investigated phenotypic and genomic factors in 178 strains of 24 genera in *Lactobacillaceae* to reveal the process of GECs formation in the ecological niche. The results suggested that the capability of utilizing various sugars contributes to the formation of GECs in ecological niches. Moreover, genetic diversity may further increase potential for gene gain events in LAB. Based on the results, I suggested a hypothesis model of the process of forming GECs in ecological niches: the NCG model. The results in this study provide the first evidence that phenotypes associated with ecological niches contribute to forming GECs in the LAB family. Moreover, the results may help to improve our understanding of role of niche construction in bacterial evolution.

References

Andam CP, Gogarten JP. Biased gene transfer in microbial evolution. Nat Rev Microbiol 2011;9;543-55

Anderssen EL, Diep DB, Nes IF et al. Antagonistic activity of *Lactobacillus plantarum* C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 1998;64;2269-72

Arevalo P, VanInsberghe D, Elsherbini J et al. A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations. Cell 2019;178;820-834.e14

Baquero F, Coque T, Canton R. Antibiotics, Complexity, and Evolution(2003).Volume 69, ASM News 2003

Baquero F, Coque TM, Galán JC et al. The Origin of Niches and Species in the Bacterial World. Front Microbiol 2021;12;657986

Baquero F. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2004;2;510-8

Bergthorsson U, Ochman H. Heterogeneity of genome sizes among natural isolates of Escherichia coli. J Bacteriol 1995;177;5784-9

Bobay LM, Ochman H. The Evolution of Bacterial Genome Architecture. Front Genet 2017, DOI: 10.3389/fgene.2017.00072

Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003;27;145-63

Cai Y, Benno Y, Ogawa M et al. Influence of lactobacillus spp. from An inoculant and of *Weissella* and *Leuconostoc* spp. from forage crops on silage fermentation. Appl Environ Microbiol 1998;64;2982-7

Cai Y. Identification and characterization of *Enterococcus* species isolated from forage crops and their influence on silage fermentation. J Dairy Sci 1999;82;2466-71

Canard B, Cole ST. Genome organization of the anaerobic pathogen *Clostridium perfringens*. Proc Natl Acad Sci USA 1989;86;6676-80

Caplice E, Fitzgerald GF. Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 1999;50;131-49

Caporaso JG, Kuczynski J, Stombaugh J et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7;335-6

Chen YJ, Leung PM, Wood JL et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J 2021, DOI:10.1038/s41396-021-00988-w.

Cohen O, Ashkenazy H, Belinky F et al. GLOOME: gain loss mapping engine. Bioinformatics 2010;26;2914-5

Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 2019;35;149-151

Daniels DL. The complete AvrII restriction map of the *Escherichia coli* genome and comparisons of several laboratory strains. Nucleic Acids Res 1990;18;2649-51

Diez A, Gustavsson N, Nyström T et al. The universal stress protein A of *Escherichia coli* is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway. Mol Microbiol 2000;36;1494-503

Douglas J. Futuyma and Gabriel Moreno. The Evolution of Ecological Specialization. Annu. Rev. Ecol. Syst. 1988

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, doi:10.1186/1471-2105-5-113.

Endo A, Futagawa-Endo Y, Dicks LM et al. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 2009;32;593-600

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 2006;103;626-31

Gury J, Barthelmebs L, Tran NP et al. Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of *Lactobacillus plantarum*. Appl Environ Microbiol 2004;70;2146-53

Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Phil. Trans. R. Soc. 2017; B3722016042420160424, DOI: https://doi.org/10.1098/rstb.2016.0424

Harsono KD, Kaspar CW, Luchansky JB et al. Comparison and genomic sizing of *Escherichia coli* O157:H7 isolates by pulsed-field gel electrophoresis. Appl Environ Microbiol 1993;59;3141-4

Holzapfel WH, Wood BJB. Lactic acid bacteria: biodiversity and taxonomy. Chichester:Wiley Blackwell, 2014.

Hu Y, Hu Q, Wei R et al. The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence. Front Cell Infect Microbiol 2018, DOI:10.3389/fcimb.2018.00452

Jain R, Rivera MC, Moore JE et al. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 2003;20;1598-602

Kirchman D. Processes in Microbial Ecology. Oxford: Oxford University press, 2012.

Kumar S, Stecher G, Li M et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018;35;1547-1549

Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23;127-8

Liu YX, Qin Y, Chen T et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 2021;12;315-330

Makarova K, Slesarev A, Wolf Y et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006;103;15611-6

Martiny JB, Bohannan BJ, Brown JH et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 2006;4;102-12

Odling-Smee FJ, Laland KN, Feldman MW. Niche Construction: The Neglected Process in Evolution. Princeton: Princeton University Press, 2003.

Pagaling E, Wang H, Venables M et al. Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 2009;75;5750-60

Podell S, Gaasterland T. DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 2007, DOI:10.1186/gb-2007-8-2-r16.

Polz MF, Alm EJ, Hanage WP et al. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 2013;29;170-5

Prevost G, Jaulhac B, Piemont Y et al. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant *Staphylococcus aureus* isolates. J Clin Microbiol 1992;30;967-73

Puigbò P, Wolf YI, Koonin EV et al. The tree and net components of prokaryote evolution. Genome Biol Evol 2010;2;745-56

Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59-65.

Ragan MA, Beiko RG. Lateral genetic transfer: open issues. Philos Trans R Soc Lond B Biol Sci 2009;364;2241-51

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4;406-25

Sato M, Miyazaki K. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus *Enterobacter*. Front. Microbiol. 2017;8;2225

Satti M, Tanizawa Y, Endo A et al. Comparative analysis of probiotic bacteria based on a new definition of core genome. J Bioinform Comput Biol 2018, DOI: 10.1142/S0219720018400127.

Schleifer KH. Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol 2009;32;533-42

Seemann JE, Schulz GE. Structure and mechanism of L-fucose isomerase from Escherichia coli. J Mol Biol 1997;273;256-68

Silva CMG, Silva DNDS, Costa SBD et al. Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis. Braz J Microbiol ;49;200-206

Sim SH, Yu Y, Lin CH et al. The core and accessory genomes of *Burkholderia pseudomallei*: implications for human melioidosis. PLoS Pathog 2008, DOI:10.1371/journal.ppat.1000178.

Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011;35;707-35

Smoot ME, Ono K, Ruscheinski J et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27;431-2

Soucy SM, Huang J, Gogarten JP et al. Horizontal gene transfer: building the web of life. Nat Rev Genet 2015;16;472-82

Sriswasdi S, Yang CC, Iwasaki W et al. Generalist species drive microbial dispersion and evolution. Nat Commun 2017;8;1162

Stoddard SF, Smith BJ, Hein R et al. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research 2015; 43; D1; D593–D598

Swithers KS, Soucy SM, Gogarten JP et al. The role of reticulate evolution in creating innovation and complexity. Int J Evol Biol 2012, DOI:10.1155/2012/418964.

Takenaka S, Kawashima T, Arita M. A sugar utilization phenotype contributes to the formation of genetic exchange communities in lactic acid bacteria, FEMS Microbiology Letters, Volume 368, Issue 17, September 2021, fnab117

Tanizawa Y, Fujisawa T, Kaminuma E et al. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 2016;35;173-184

Tanskanen EI, Tulloch DL, Hillier AJ et al. Pulsed-Field Gel Electrophoresis of SmaI Digests of Lactococcal Genomic DNA, a Novel Method of Strain Identification. Appl Environ Microbiol 1990;56;3105-11

Tettelin H, Masignani V, Cieslewicz MJ et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A 2002;99;12391-6

Tettelin H, Riley D, Cattuto C et al. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008;11;472-7

VanInsberghe D, Arevalo P, Chien D et al. How can microbial population genomics inform community ecology? Philos Trans R Soc Lond B Biol Sci 2020;375;20190253

Waack S, Keller O, Asper R et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 2006, DOI:10.1186/1471-2105-7-142.

Walter J, Chagnaud P, Tannock GW et al. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of *Lactobacillus reuteri* in the murine gut. Appl Environ Microbiol 2005;71;979-86

Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews 2011;35;5;957–976, DOI: https://doi.org/10.1111/j.1574-6976.2011.00292.x

Wu J, Rosen BP. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 1991;5;1331-6
Yamamoto K, Nakayama J (Eds.). Nyusankin to bifizusukin no saiensu (Science of lactic acid bacteria and bifidobacteria) [published in Japanese]. Kyoto: Kyoto University Press, 2010

Zheng J, Wittouck S, Salvetti E et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of *Lactobacillaceae* and *Leuconostocaceae*. Int J Syst Evol Microbiol 2020;70;2782-2858

Zimmer C, Emlen D. Evolution : Making Sense of Life. New York:W.H. Freeman, 2016.

Supplementary Table 2.1: Features of the 178 LAB strains. The accession numbers of the genome sequences, the old and new species names, strain names, type status, seven genomic features, six phenotypic characteristics, and the strains' isolation source are presented. The genomic features are genome size (bp), number of CDS, G/C content (%), number of rRNA, number of cRISPRs, number of CDS judged to be HGTs. One of phenotypes is sugar utilization value which indicates the number of sugar types that can be utilized. The other five phenotypes, growth at 15 °C, growth at 45 °C, and growth in microaerobic, facultatively anaerobic, and obligate anaerobic conditions were expressed as a dummy variable: If a strain has the feature, 1 was given as the dummy variable and 0 if not. The isolation source indicates the environment in which the species was isolated.

accession number (id) ERR203996	original name Lactobacillus	strain ATCC	new name Limosilactobacillus	type statu s	genome size (total sequenc e length) 1782450	number of CDS 1742	G/C conten t 52.8	numbe r of rRNA	numbe r of tRNA 49	number of CRISPR S	numbe r of CDS judged HGT 67	sugar utilizatio n value (number of sugar types to be able to utilize) 7	growt h at 15 0	growt h at 45	micro aerophili c	facultativel y anaerobic	anaerobi c 0	isolation source fermented cereals	16S_rRNA_accession AJ575812
EDD007450	Termentum	14931	Termentum	strain	0004047	0107	27.6		41	1	20							dairy products manure sewage the faeces and vagina of humans	
ERR387459	capillatus	19910	capillatus	type strain	2224347	2107	37.6	0	41		39	6	1	0	0		0	production	AZEF01000036
ERR387460	Lactobacillus	DSM	Lacticaseibacillus	type	3081436	3012	47.7	2	50	0	272	12	1	1	0	1	0	sour cassava starch fermentation	BBAH01000233
ERR387461	manihotivorans Lactobacillus hayakitensis	13343 DSM 18933	manihotivorans Ligilactobacillus hayakitensis	strain type strain	1636658	1543	34	3	68	0	69	7	0	1	0	1	0	tomato pomace silage the faeces of a thoroughbred as predominant species in the intestinal microbiota	BAML01000063
ERR387463	Lactobacillus kefiri	DSM 20587	Lentilactobacillus kefiri	type strain	2322665	2208	41.7	1	57	3	61	4	1	0				kefir as part of the core microbiota	AJ621553
ERR387469	Lactobacillus camelliae	DSM 22697	Lacticaseibacillus camelliae	type strain	2553708	2403	55.4	0	51	0	259	9	0	0				fermented tea (Camellia sinensis) leaves fermented tomato pomace	AYZJ01000044
ERR387471	Lactobacillus alimentarius	DSM 20249	Companilactobacillus alimentarius	type strain	2331920	2232	35.4	3	51	0	70	10	1	0	1	0	0	marinated fish products fermented sausages ready-to-eat meats type I sourdough other plant fermentations	AZDQ01000025
ERR387476	Lactobacillus fabifermentans	DSM 21115	Lactiplantibacillus fabifermentans	type strain	3271316	3111	45	2	60	0	156	5	1	0	0	1	0	cocoa bean heap fermentation fermented grapes fermented cereals	AYGX01000583
ERR387480	Lactobacillus diolivorans	DSM 14421	Lentilactobacillus diolivorans	type strain	3202031	2962	40	0	43	2	67							maize silage vegetable (cucumber) fermentations fermented dairy products	AZEY01000081
ERR387482	Lactobacillus hammesii	DSM 16381	Levilactobacillus hammesii	type strain	2807716	2591	49.4	2	52	3	151	7	1	0	0	1	0	wheat and rye sourdoughs ryegrass silages a municipal biogas plant	AJ632219
ERR387483	Lactobacillus acidifarinae	DSM 19394	Levilactobacillus acidifarinae	type strain	2913834	2738	51.6	1	57	7	199	6	1	0	0	1	0	type I wheat sourdough fermented rice bran	AZDV01000008
ERR387486	Lactobacillus amylotrophicus	DSM 20534	Amylolactobacillus amylotrophicus	type strain	1600645	1602	42.6	2	51	0	181	5	1	0	0	1	0	corn silage	AM236149
ERR387489	Lactobacillus floricola	DSM 23037	Holzapfelia floricola	type strain	1287117	1247	34.5	3	44	3	33	0	1	0	0	1	0	flowers	AYZL01000003
ERR387493	Lactobacillus aquaticus	DSM 21051	Liquorilactobacillus aquaticus	type strain	2399635	2210	37.4	1	48	1	35	10	1	1	1	0	0	eutrophic freshwater pond	AYZD01000026
ERR387495	Lactobacillus futsaii	JCM 17355	Companilactobacillus futsaii	type strain	2490561	2449	35.6	2	51	1	88	9	1	0	0	1	0	traditional fermented mustard products fu-tsai and suan-tsai it has been used experimentally for fermentation of shrimp waste	AZDO01000040

ERR387498	Lactobacillus	DSM	Ligilactobacillus	type	2047633	2015	41.7	0	63	3	176	15	0	1	0	1	0	municipal sewage	AYYP01000002
	agilis	20509	agilis	strain														the pigeon crops	
																		the gut and cecum of birds	
																		human gut and vagina	
																		porcine intestinal mucin	
																		Nigerian ogi	
																		cheese	
																		fermented food products such as masau	
																		fruits	
ERR387499	Lactobacillus	DSM	Limosilactobacillus	type	2138634	2086	49.9	0	66	5	252	4	0	0	0	1	0	the crop of a pigeon	AZFK01000041
	ingluviei	15946	ingluviei	strain														birds	
	Ũ		Ŭ															cattle	
																		carnivore faeces	
																		Korean rice wine (makgeolii)	
ERR387501	Lactobacillus	DSM	Paucilactobacillus	type	2553579	2440	43.5	0	52	0	92	5	0	0				cow dung	AYYY01000028
	vaccinostercus	20634	vaccinostercus	strain														fermented tea leaves	
																		fermented cereals	
ERR387504	Lactobacillus	DSM	Ligilactobacillus	type	2159096	2030	40	2	55	0	137	8	0	1	0	1	0	the intestinal tract of mice and rats	BCVI01000104
Liutooroor	murinus	20452	murinus	strain	210/0/0	2000	10	_	00	Ŭ	101	Ŭ	ľ	Î	Ŭ	-	Ŷ	sourdough	201901000101
ERR387505	Lactobacillus	DSM	Liquorilactobacillus	type	2493596	2409	36.7	0	51	1	98	11	0	1	0	1	0	partially fermented wine	AZEV01000015
Liucoroto	nagelii	13675	nagelii	strain	21,000,0	2107	0000	Ň	01	-	10			Î	Ŭ	-	Ŷ	spontaneous cocoa bean fermentations	
	nugem	10010	nugem	Strum														water befirs	
																		fermented cassava food	
																		silage fermentation of fruit residues	
EDD287506	Lastabasillus	DSM	Lasticessibesillus	turno	2521802	2202	52.0	2	52	0	228	0	1	0	0	1	0	the factor of a inguar in Poiiing Zoo	PCVS01000170
EIXIX387300	Lactobacinus	15045	Lacticaseibaciilus	type	2551605	2293	52.9	2	52	0	220	0		0	0	1	0	formented vogetables	BCV301000179
EDD287507	Lastobacillus	15945 DSM	Lastobasillus	strain	1700720	1712	25.1	2	59	2	66	14	0	0	0	0	1	the intesting of a hometer	PALV0100062
EIXIX387307	hamsteri	5661	hamsteri	type	1790730	1712	55.1	5	50	2	00	14	0	0	0	0	1	the intestine of a namster	BAL101000003
FRR387508	Lactobacillus	DSM	Lactobacillus	type	1925768	1912	36.5	3	58	0	9/	10	1	1	0	1	0	chicken intestine	BAL B01000057
EI((307500	galliparum	10532	galliparum	type	1923700	1912	50.5	5	50	0	24	10	1	1	0	1	0	chicken intestine	DALDOTOOOD7
EDD297510	gaimarum Lastabasillus	10332 DSM	J antaka sillus	Strain	1002045	1020	25.2	2	52	5	52	5	0	1	0	1	0	the intertions of note miss and nice	A7C N01000021
EKK387510		DSIVI	Lactobacillus	type	1993045	1838	35.5	3	52	D D	55	5	0		0	1	0	the intestines of rats, mice and pigs	AZGIN01000031
EDD207512		0029 DCM	Intestinalis	strain	100(07(1017	27.5	2	50	0	150		0	1	0	1	0	de intertion of enimals including	DAL 101000027
EKK387512	Lactobacillus	DSM 1(7(1	Lactobacillus	type	1906076	1917	37.5		59	0	155	5	0		0	1	0	the intestine of animals including	BALU01000027
	kitasatonis	16761	kitasatonis	strain														chicken	
DDD005500	T 1 '11	DOM	T 1 111 · · ·		1540511	10.44	05.5		50									swine	
ERR387520	Lactobacillus	DSM	Lactobacillus psittaci	type	1542511	1344	35.7	3	52	1	29	2		1	0	1	0	a hyacinth macaw	AUE101000022
	psittaci	15354		strain	0.1 - 0000 (-									GD000 1
ERR387522	Lactobacillus	DSM	Lactiplantibacillus	type	3172036	2939	45	0	46	3	181	17	1	0	0	1	0	starchy food	CP032751
	plantarum subsp.	16365	plantarum ssp.	strain														fermenting food of plant origin	
	argentoratensis		argentoratensis															timothy	
																		orchardgrass and elephant grass silage	
																		fermented Uttapam batter	
											-		-					fermented idli batter	
ERR387524	Lactobacillus	DSM	Companilactobacillus	type	2326589	2205	38.2	2	53	2	81	5	1	0	1	0	0	type I sourdough	AZEZ01000067
	mindensis	14500	mindensis	strain							-		-						
ERR387525	Lactobacillus	DSM	Liquorilactobacillus	type	2287468	2239	34.8	0	57	2	87	8	0	0	0	1	0	malted barley	EU074850
	hordei	19519	hordei	strain														water kefirs	
																		Turkish tradi tional fermented gilaburu	
																		fruit juice	
ERR387527	Lactobacillus	DSM	Lactobacillus	type	1571585	1518	36.2	3	55	3	65	3	0	0	0	1	0	mash fermenta tions for production of	BBBU01000079
	acetotolerans	20749	acetotolerans	strain														grain liquor and vinegar in China and	
																		Japan	
																		plant fermentations	
																		silage	
																		intestine of swine	
							1	1						1				ducks	

																		cattle	
FRR387528	Lactobacillus	DSM	Latilactobacillus	type	1829440	1739	40.3	2	51	1	95	5	1	0				grass silage	AY7B01000012
LIU(307320	graminis	20719	graminis	strain	1027110	1155	10.5	2	51		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ū				meat products	1112.001000012
	Srammis	20115	Siamini	Stram														sourdough	
																		gut of snail Cornum aspersum	
																		grapes	
EDD297520	Lastabasillus	DSM	Limosilaatabasillus	tuno	1720467	1676	12.6	2	50	0	75	16	0	1	0	1	0	an industrial we been formentation	A7ED0100001
ERR387529	Lactobacillus	12145	Limosilactobacillus	type	1730407	1070	42.0	2	59	0	15	10	0		0	1	0	an industrial rye bran fermentation	AZER01000001
	Trumenti	13145	frumenti	strain														must	
																		wine	
		DOM							10	-	100	-						intestine of poultry and swine	
ERR387530	Lactobacillus	DSM	Lıgılactobacıllus	type	1674521	1585	40.1	0	43	0	109	7	0	0	0	1	0	the intestine and faeces of birds	AYZA01000007
	aviarius subsp.	20655	aviarius	strain															
	aviarius									-							-		
ERR387532	Lactobacillus	ATCC	Paralactobacillus	type	2081509	2064	46.4	1	50	2	125	3	1	0	0	1	0	a Malaysian food ingredient called chili	AF049745
	selangorensis	BAA 66	selangorensis	strain														bo	
ERR387540	Lactobacillus	DSM	Lacticaseibacillus	type	2438466	2344	53.4	3	50	0	342	7	1	0				municipal sewage	M58831
	sharpeae	20505	sharpeae	strain												_		spoiled meat	
ERR387541	Lactobacillus	DSM	Furfurilactobacillus	type	2041760	1980	44.1	1	53	0	118	4	0	0	0	1	0	wheat sourdough	AB681446
	siliginis	22696	siliginis	strain															
ERR387542	Lactobacillus	DSM	Secundilactobacillus	type	3452668	3084	47	0	49	3	219	8	1	0	0	1	0	fermented cane molasses at alcohol	AB282889
	similis	23365	similis	strain														plants in Thailand	
																		rice wine (makgeolii)	
ERR387543	Lactobacillus	DSM	Levilactobacillus	type	2742678	2451	55.9	0	46	4	35	3	1	0	0	1	0	wheat and rice sourdoughs	AJ534844
	spicheri	15429	spicheri	strain														fermented vegetables	
																		a municipal biogas plant	
ERR387546	Lactobacillus	DSM	Lactobacillus	type	1865395	1816	33.9	2	52	0	38	7	0	1	0	1	0	the mouse gastrointestinal tract	AYZG01000031
	taiwanensis	21401	taiwanensis	strain														silage cattle feed	
ERR387549	Lactobacillus	DSM	Companilactobacillus	type	2170671	2102	34.1	3	56	1	56	5	1	0	1	0	0	sausage	AZDG01000033
	tucceti	20183	tucceti	strain															
ERR387550	Lactobacillus	DSM	Liquorilactobacillus	type	2671380	2525	36.9	1	53	1	94	8	0	0	0	1	0	Bobal grape musts	AZEG01000088
	uvarum	19971	uvarum	strain															
ERR387553	Lactobacillus	DSM	Ligilactobacillus	type	1870553	1812	41.1	1	51	2	88	8	0	1	0	1	0	dental plaques	AEOF01000010
	animalis	20602	animalis	strain														intestines of animals	
ERR433462	Lactobacillus	DSM	Ligilactobacillus	type	2082063	2019	38.6	3	52	3	163	9	0	1	0	1	0	the faeces of a wild mouse	BAMM01000051
	apodemi	16634	apodemi	strain															
ERR433476	Lactobacillus	DSM	Levilactobacillus	type	2470988	2227	52	1	58	5	25	7	1	0	0	1	0	wheat sourdough	AZDT01000040
	namurensis	19117	namurensis	strain														vegetable fermentations	
ERR433477	Lactobacillus	DSM	Companilactobacillus	type	2923132	2774	36.2	2	55	1	83	14	0	0	0	1	0	type I sourdough	AZFV01000069
	nantensis	16982	nantensis	strain										-	-				
ERR433478	Lactobacillus	DSM	Secundilactobacillus	type	2747284	2403	44.2	1	61	4	79	8	1	0	0	1	0	fermented brine used for stinky tofu	AZEE01000005
	odoratitofui	19909	odoratitofui	strain				-		-				Ű	Ŭ	-		production in Taipei County. Taiwan	
ERR433479	Lactobacillus	DSM	Apilactobacillus	type	1476372	1439	31.9	3	56	2	42	0	1	0	0	0	1	chrysanthemum flower	AYYO01000014
	ozensis	23829	ozensis	strain						-				Ű	Ŭ	, i i i i i i i i i i i i i i i i i i i			2
FRR433491	Lactobacillus	DSM	Loigolactobacillus	type	2261248	2219	40.7	0	54	5	130	10	1	0	0	1	0	rennet and are associated with cheese	AYYI01000077
LIUCIOOT	rennini	20253	rennini	strain	2201210	2217	10.1				100	10		Ŭ	Ŭ			spoilage	1111101000011
EBB133103	Lactobacillus sakoi	DSM	Latilactobacillus	tupo	1075630	108/	41	0	10	2	137	0	1	0				formented meat products	A7EC01000015
LIU(4354)5	subsp. carposus	15821	sakai sep carposus	strain	1775050	1704	11		17	2	157			0				vacuum-packaged most	121 001000015
	subsp. carnosus	13031	saker ssp. carnosus	Strain														sauerkraut	
																1		other fermented plant material	
EDD422404	Lastabasillus	DSM	Lastissssihasillus	tuno	2420251	2400	47.7	1	56	1	18/	14	1	0	0	1	0	the faces of a healthy man	IOCE01000025
EIXIX433474	capiuiri	2/201	Lacticaseidacilius	type	2429331	2409	41.1		50	1	104	14	1	0	0		0	formented rice	JQCE01000025
	samvifi	24301	Samvin	strain												1		formented fish	
EDD 422 405	Leatek:11	DCM	Linuarii 1. 11		2624000	2441	20.0	1	40	0	00	E	1	1	0	1	0	menhoa of chorthy	A7E001000000
EKK433495	Lactobacillus		Liquorilactobacillus	type	2034920	2441	39.9	1	48	0	00	5	1	1	0		0	masnes of snochu	AZFQ01000022
	satsumensis	10230	satsumensis	strain												1		a traditional japanese distilled spirit	
																1		made from fermented riceother starchy	
																		materials	

ERR433499	Lactobacillus	ATCC	Ligilactobacillus	type	2025861	1903	43.4	1	58	2	133	12	0	0	0	0	1	rumen of cow and from sewage	BCVU01000117
	ruminis	27780	ruminis	strain														horses and pigs and hovine uterus	
	rummis	21100	Tullinis	Stram														the sut of humans	
								-		-			-		-	-	-	the gut of numans	
ERR438946	Lactobacillus	DSM	Ligilactobacillus	type	1470053	1410	38.1	2	46	0	66	4	0	0	0	1	0	the intestine and faeces of birds	AYYZ01000003
	aviarius subsp.	20653	araffinosus	strain															
	araffinosus																		
ERR485115	Lactobacillus	DSM	Liquorilactobacillus	type	2456798	2265	38.5	0	55	2	51	8	1	1	0	1	0	the sap of an oak (Quercus sp)	AB458681
	sucicola	21376	sucicola	strain															
GCA 000010005	Lactobacillus	ICM 1112	Limosilactobacillus	type	2039/17	2020	38.0	18	65	0	56	9	1	0	0	0	1	the intestinal microbiota of rodents	A P007281
1	Lactobacillus	JCIVI 1112	Liniosnactobacinus	type .	2037414	2020	50.7	10	0.5	0	50			U U	0	0	1		11 007201
1	reuteri		reuteri	strain														birds, swine, and in other intestinal	
																		ecosystems	
																		cereal fermentations	
																		particularly type II sour doughs	
																		Food isolates are of intestinal origin	
GCA_000014425.	Lactobacillus	ATCC	Lactobacillus gasseri	type	1894360	1808	35.3	18	78	0	55	7	0	1	0	0	1	human female lower genital tract	CP000413
1	gasseri	33323		strain														the human mouth	
_	0																	intestinal tract	
																		the intestine of enimels	
																		wounds, urine, blood, carious dentine	
																		and pus of patients suffering from septic	
																		infections	
GCA_000014525.	Lactobacillus	ATCC	Lacticaseibacillus		2924325	2835	46.6	15	60	1	180	4	1	0				a variety of courses including the human	KC429784
1	paracasei	334	paracasei															oral cavity	
			^															fermented cereals	
																		vegetables	
																		wegetables	
																		meats	
																		dairy products	
																		invertebrate hosts	
GCA_000056065.	Lactobacillus	ATCC	Lactobacillus	type	1864998	1900	49.7	27	95	1	122	1	0	1				yoghurt	CR954253
1	delbrueckii subsp.	11842	delbrueckii ssp.	strain														cheese	
	bulgaricus		bulgaricus															intestinal microbiota of suckling piglets	
GCA_000159395.	Lactobacillus	ATCC	Ligilactobacillus	type	2017251	1929	32.6	3	37	1	89	9	0	1	0	1	0	the mouth and intestinal tract of	CP024067
1	salivarius	11741	salivarius	strain														humans	
																		cats	
																		hamstors	
																		chickens	
																		dairy products	
																		swine	
GCA_000160855.	Lactobacillus	DSM	Lactobacillus	type	2020582	1944	36.8	3	37	1	177	2	0	1	0	1	0	chicken	ACLM01000202
1	helveticus	20075	helveticus	strain														sour milk	
																		cheese starter cultures and cheese	
																		particularly Emmental and Gruve?re	
																		cheeses	
																		tomata nomena	
																		silage	
GCA_000160875.	Lactobacillus iners	DSM	Lactobacillus iners	type	1277649	1191	32.5	3	45	0	72	0	0	0	0	1	0	the human female lower genital tract	ACLN01000018
1		13335		strain														human skin	
GCA_000192165.	Lactobacillus	DSM	Lactobacillus	type	2071079	1864	49.8	3	72	1	180	0	0	1	0	1	0	milk	AEXU01000148
1	delbrueckii subsp.	20072	delbrueckii ssp. lactis	strain										1				cheese	
	lactis																	compressed yeasts	
																		grain mash	
	Lactobacillus	DSM	Liquorilaatabaaillaa	time	2105704	2106	27.6	3	4.4	3	58	10	0	1	0	1	0	formonting Spanish groups must	AVVX01000140
GCA_000200490.	Lactobacinus vini	D3W		type	2193700	2100	37.0		44	5	50	10	0	1	0	1	0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ATTAU1000149
2		20605	vini	strain										1				bioethanol industrial processes in	
														<u> </u>				different distilleries of Brazil	
GCA_000387565.	Lactobacillus	ZN7a-9	Lactobacillus	type	1730812	1677	50.2	3	45	2	100	2	0	1				dolo wort used in the production of the	ALPY01000052
1	delbrueckii subsp.		delbrueckii ssp.	strain														fermented African beverge dolo in	
	jakobsenii		jakobsenii															Burkina Faso	

GCA_000423245.	Lactobacillus ceti	DSM 22408	Ligilactobacillus ceti	type strain	1385752	1269	33.7	5	37	0	118	1	1	0	0	1	0	the lungs of a beaked whale	JQBZ01000004
GCA_000423265.	Lactobacillus saerimneri	DSM 16049	Ligilactobacillus saerimneri	type strain	1720753	1726	42.5	4	35	0	132	3	0	1	0	1	0	pig faeces the intestines of pigs the human gut and vagina the cecum of chicken	AY255802
GCA_000428925.	Lactobacillus rossiae	DSM 15814	Furfurilactobacillus rossiae	type strain	2862294	2700	43.3	5	58	1	89	4	1	0				wheat sourdough related cereal fermentations beer fruit fecal samples of children and swine it was used experimentally as starter culture for cactus pear fermentation [243]	AKZK01000036
GCA_000469325. 1	Lactobacillus shenzhenensis	LY-73	Schleiferilactobacillu s shenzhenensis	type strain	3271684	2975	56.4	2	43	5	309	16	0	1	0	1	0	fermented dairy beverage	JX523627
GCA_000615805.	Lactobacillus fuchuensis	JCM 11249	Latilactobacillus fuchuensis	type strain	2107444	2205	41.8	3	34	1	78	11	1	0				vacuum-packaged refrigerated beef common carp intestine other seafood products	BAMJ01000063
GCA_000740055. 1	Lactobacillus oryzae	SG293	Secundilactobacillus oryzae	type strain	1860394	1859	42.8	6	40	1	96	3	1	1	0	1	0	fermented rice grains in Tochigi, Japan	BBAZ01000072
GCA_000785105. 1	Lactobacillus curieae	CCTCC M 2011381	Lentilactobacillus curieae	type strain	2185962	2112	39.6	6	56	1	73							stinky tofu brine cocoa bean fermentations cheese curd powder	CP018906
GCA_000786395. 1	Lactobacillus acidophilus	ATCC 4356	Lactobacillus acidophilus	type strain	1956698	1884	34.6	4	55	1	61	9	0	1	1	0	0	intestinal tract of humans and animals human mouth human vagina sourdough wine	CBLQ010000054
GCA_000807975.	Lactobacillus brevis	BSO 464	Levilactobacillus brevis		2723202	2700	45.4	18	48	1	149	6	1	0	0	1	0	milk cheese sauerkraut and rrelated vegetable fermentations sourdough silage cow manure faeces the mouth and intestinal tract of humans and rats	GCA_000807975.1_0007 7
GCA_000829035. 1	Lactobacillus paracasei subsp. paracasei	JCM 8130	Lacticaseibacillus paracasei ssp. paracasei	type strain	3017804	2945	46.6	15	62	0	226	13	1	0				dairy products sewage silage humans and clinical sources	ACGY01000162
GCA_000829055. 1	Lactobacillus casei	ATCC 393	Lacticaseibacillus casei	type strain	2952961	2890	47.9	15	59	0	269	14	1	0				chinese traditional pickle infant faeces corn liquor oat silage commercial dietary supplements sputum nasopharynx	AP012544
GCA_000829395.	Lactobacillus hokkaidonensis	LOOC26	Paucilactobacillus hokkaidonensis	type strain	2400586	2328	38.2	12	56	1	36	4	1	0	0	1	0	grass silage	AP014680
GCA_000831645. 3	Lactobacillus heilongjiangensis	DSM 28069 WDC04	Companilactobacillus heilongjiangensis	type strain	2790548	2485	37.5	12	55	1	98							fermented vegetables type I sourdough	CP012559
1	wasatchensis	WDC04	wasatchensis	strain	1704233	1007	37.0	5	51	4	22							silage	AW 110100004

GCA_000967245.	Lactobacillus	Hon2	Bombilactobacillus	type	1810599	1650	36.2	3	53	0	55							the honey stomach of the honeybee	KQ033880
1	mellis		mellis	strain														Apis mellifera	
GCA_000970735.	Lactobacillus apis	Hma11	Lactobacillus apis		1717379	1564	36.6	3	50	1	19							stomach contents of honeybees	KF386017
GCA_000970755.	Lactobacillus kimbladii	Hma2	Lactobacillus kimbladii	type strain	2186983	1972	35.8	3	50	2	100							the honey stomach of the honeybee A.	JX099549
GCA_000970775.	Lactobacillus	Hma8	Lactobacillus	type	2116151	1994	35.8	3	51	1	106							the homey stomach of honeybees	JX099551
GCA_000970795.	Lactobacillus	Bin4	Bombilactobacillus	type	1815047	1661	39.3	3	50	0	139							the honey stomach of the honeybee	JX099543
1	mellifer		mellifer	strain		1000												Apis mellitera	
GCA_000970855.	Lactobacillus	Bma5	Lactobacillus	type	2020254	1823	36.3	3	51	2	101							the honey stomach of the honeybee A.	JX099553
1	helsingborgensis		helsingborgensis	strain														mellifera mellifera alfalfa silage	
GCA_001039045.	Lactobacillus	TCF032-	Lactiplantibacillus	type	2899876	2805	43.5	4	36	0	184							fermented radish	LFEE01000051
1	herbarum	E4	herbarum	strain															
GCA_001050475.	Lactobacillus ginsenosidimutan	EMML 3141	Companilactobacillus ginsenosidimutans	type strain	2590556	2558	36.7	9	55	0	101	8	1	0	0	1	0	kimchi	CP012034
GCA 001189855	Lactobacillus	ICM	Lactobacillus	type	1877412	1832	49.5	7	64	1	158	2	0	1				a fermented dairy product dahi from	LGAS01000062
1	delbrueckii subsp.	15610	delbrueckii ssp.	strain	1011112	1002	19.0		01		100							India	Editorioood
	indicus		indicus																
GCA_001190005.	Lactobacillus	JCM	Lactobacillus	type	1945263	1823	50.1	9	74	2	128	11	0	0	0	1	0	a traditionally fermented Japanese red	LGHR01000024
1	delbrueckii subsp. sunkii	17838	delbrueckii ssp. sunkii	strain														turnip	
GCA_001263315.	Lactobacillus	KACC	Lactobacillus	type	1766190	1769	50	1	50	0	48	2	0	1				vegetable source	CP018615
1	delbrueckii subsp.	13439	delbrueckii ssp.	strain														sour grain mash	
	delbrueckii		delbrueckii															fermented grains	
GCA 001281265.	Lactobacillus	YH-15	Apilactobacillus	type	1515712	1353	36.4	3	62	0	54	2	1	0	0	1	0	a sluggish grape wine fermentation	IXDB01000004
1	kunkeei		kunkeei	strain														honey bees and flowers	,
GCA 001293735.	Lactobacillus	KZ01	Limosilactobacillus	type	1641621	1568	48.1	3	53	1	97							the faeces of a captive gorillas	AB904716
1	gorillae		gorillae	strain														wild western lowland gorillas	
GCA 001311115.	Lactobacillus	ICM	Fructilactobacillus	type	1436854	1632	34.1	3	55	2	164	1	1	0	1	0	0	spoiled beer	BBAF01000027
1	lindneri	11027	lindneri	strain														wine	
GCA_001313225.	Lactobacillus	JCM	Secundilactobacillus	type	2650200	3600	44.8	3	61	4	243							silage	AB786910
1	silagei	19001	silagei	strain															
GCA_001433745.	Lactobacillus zeae	DSM	Lacticaseibacillus	type	3121340	2961	47.7	5	53	3	54	14	1	0				chinese traditional pickle	D86516
1		20178	casei	strain														infant faeces	
																		corn liquor	
																		oat silage	
																		commercial dietary supplements	
																		sputum	
																		nasopharynx	
GCA_001433765.	Lactobacillus	DSM	Loigolactobacillus	type	2705076	2579	42.9	3	38	1	136	3	1	0				silage	GL544638
1	coryniformis	20001	coryniformis ssp.	strain														cow dung	
	subsp.		coryniformis															dairy barn air and sewage	
	coryniformis																	table olives	
																		wheat	
																		pickled vegetable	
																		cheese and ting	
																		a fermented sorghum porridge	
GCA_001433855.	Lactobacillus	DSM	Levilactobacillus	type	2474438	2423	46	4	42	0	84	6	1	0	0	1	0	milk	KI271266
1	brevis	20054	brevis	strain														cheese	
																		sauerkraut and rrelated vegetable	
																		fermentations	
																		sourdough	
																		silage	
	1	1	1	1	1	1	1	1		1	1	1		1	1	1	1	1	1

GCA_001433985. 1	Lactobacillus amylovorus	DSM 20531	Lactobacillus amylovorus	type strain	2017377	2045	37.8	4	36	0	235	9	0	1	0	1	0	cow manure faeces the mouth and intestinal tract of humans and rats swine intestinal sourdough	AZCM01000082
GCA_001434005.	Lactobacillus crispatus	DSM 20584	Lactobacillus crispatus	type strain	2057071	2017	36.6	3	43	1	79	9	1	1	0	1	0	cattle waste-corn fermentationhuman faecesvagina and buccal cavitiescrops and caeca of chickenpatients with purulent pleurisyleucorrhea and urinary tract infectionstype II sourdoughs	AZCW01000112
GCA_001434145. 1	Lactobacillus otakiensis	DSM 19908	Lentilactobacillus otakiensis	type strain	2346188	2255	42.4	3	28	2	59	7	1	0	0	1	0	sunki, a fermented turnip product kefir	BASH01000017
GCA_001434365. 1	Lactobacillus gastricus	DSM 16045	Limosilactobacillus gastricus	type strain	1848461	1819	41.6	3	37	1	81	12	0	0	0	1	0	biopsy of a human stomach human milk	AZFN01000048
GCA_001434465. 1	Lactobacillus oris	DSM 4864	Limosilactobacillus oris	type strain	2031774	1925	50	2	51	2	150	10	0	0	0	1	0	the human saliva other human body sites including the vagina and mother milk foods such as corn dough and bran	AZGE01000048
GCA_001434475. 1	Lactobacillus suebicus	DSM 5007	Paucilactobacillus suebicus	type strain	2651315	2495	39	3	56	2	40	5	1	0				fermented cherry mashes cider silage	AM113785
GCA_001434695.	Lactobacillus algidus	DSM 15638	Dellaglioa algida	type strain	1590323	1531	36	3	33	0	35	7	1	0	0	1	0	refrigerated beef and pork meat	AZDI01000021
GCA_001434775. 1	Lactobacillus farciminis	DSM 20184	Companilactobacillus farciminis	type strain	2480845	2417	36.4	3	40	2	70	10	1	0	1	0	0	meat products sourdough fermentend fish cold-smoked salmon soy sauce mash dairy products table olives fermented vegetables corn silage	AEOT01000034
GCA_001434815.	Lactobacillus equicursoris	DSM 19284	Lactobacillus equicursoris	type strain	2052598	1873	47.7	3	28	2	143	6	0	1	0	0	1	a thoroughbred racehorse	BBBW01000097
GCA_001435555. 1	Lactobacillus nodensis	DSM 19682	Companilactobacillus nodensis	type strain	2683197	2654	37.6	3	55	2	108	4	1	0	0	0	1	fermented rice bran paste it has been used experimentally as adjunct culture in cheese	BAMN01000046
GCA_001435655.	Lactobacillus paraplantarum	DSM 10667	Lactiplantibacillus paraplantarum	type strain	3395753	3192	43.7	0	26	0	231	15	1	0	0	1	0	beer human faeces grape marmalade dairy products jangajji, Korean fermented food fermented vegetables fermented fruits fermented dates rice bran pickles silage cocoa beans fermented sourdough fermented slurry faecal microbita of healthy dogs traditional fura processing wine sow milk	AJ306297

GCA_001435735.	Lactobacillus equi	DSM	Ligilactobacillus equi	type	2284210	2188	39	2	50	4	211	6	0	1	0	1	0	faeces of horses	BAMI01000114
1		15833		strain															
GCA_001435755.	Lactobacillus	DSM	Ligilactobacillus	type	2326083	2230	39.1	2	32	1	79	4	0	0	1	0	0	fermented fish (pla-ra and pla-chom) in	AB326356
1	acidipiscis	15836	acidipiscis	strain														Thai land but also found in dairy	
																		products	
																		soy sauce mash	
																		table olives	
																		sake starter	
																		tropical grasses	
																		forage crops	
																		bee pollen	
																		Chinese DaQu	
																		a saccharification starter for production	
																		of vinegar	
																		liquor from cereals	
GCA_001435875.	Lactobacillus	DSM	Lentilactobacillus	type	2859511	2749	42	3	40	2	74	8	1	1	0	1	0	a compost of distilled shochu residue	BAKI01000097
1	farraginis	18382	farraginis	strain															
GCA_001435895.	Lactobacillus	DSM	Lentilactobacillus	type	3081674	2921	45.2	3	52	5	78	9	0	0	0	1	0	compost of distilled shochu residue	AZFZ01000113
1	parafarraginis	18390	parafarraginis	strain														silage	
																		fermented vegetables	
																		kefir grains	
GCA_001435975.	Lactobacillus	DSM	Secundilactobacillus	type	3616190	3224	46.1	3	50	3	241	9	1	0	0	1	0	compost	BBEQ01000098
1	collinoides	20515	collinoides	strain														apple cider	
																		table olives	
																		dairy products	
																		fermented durian fruit	
																		wines	
GCA_001436115.	Lactobacillus	DSM	Lacticaseibacillus	type	1929842	1900	47.5	3	27	2	46	4	0	0				the faeces of wild Canada goose (Branta	AYZQ01000010
1	brantae	23927	brantae	strain														canadensis)	
																		experimental sourdoughs	
GCA_001436555.	Lactobacillus	DSM	Lentilactobacillus	type	1566789	1568	39.1	3	44	0	46	4	1	0	0	1	0	the faeces of a 100-year-old female	LC519995
1	senioris	24302	senioris	strain															
GCA_001436675.	Lactobacillus	DSM	Levilactobacillus	type	2222963	2122	48.6	2	61	1	107	5	1	0	0	1	0	senmaizuke	AB682140
1	senmaizukei	21775	senmaizukei	strain	1 (1 (1 4 0	1500	45.5				0.0							a fermented turnip product	T C (00000
GCA_001437055.	Lactobacillus	DSM 17906	Limosilactobacillus	type	1646143	1503	47.7	Z	39	0	99	1	0	0	0	1	0	type II sourdough	LC480808
1	secaliphilus	17896 DSM	secaliphilus	strain	22(2(02	2210	40.1	2	45	0	140	0	1	0	0	0	1		
GCA_001437125.	Lactobacillus	22467	Levilactobacillus	type	2302003	2210	49.1	3	40	2	149	2	1	0	0	0	1	storage tank of a brewery	JQCA01000055
GCA_001/138805	Lactobacillus	DSM	Companilactobacillus	type	2698724	2579	35.5	2	38	2	76	10	1	0				kimchi	IOCE0100055
1	kimchiensis	24716	kimchiensis	strain	20/0124	2517	55.5	2	50		10	10						Kinichi	JQCI 01000033
GCA 001438825.	Lactobacillus	LMG	Companilactobacillus	type	2235695	2165	35	5	48	1	74	4	1	0	0	1	0	sourdough	IOCK01000058
1	crustorum	23699	crustorum	strain									-			-		dairy products) <u>2</u> - 1.0 - 000000
																		forages	
GCA 001438845.	Lactobacillus	LMG	Lactiplantibacillus	type	2989578	2757	45.1	4	50	0	162	12	0	0	0	1	0	pickle	IOCL01000078
1	xiangfangensis	26013	xiangfangensis	strain									-					sourdough	,2
SRR1151124	Lactobacillus	DSM	Loigolactobacillus	type	3134903	3049	44.3	3	60	3	225	6	0	0	0	1	0	spoiled Edam	M58809
	bifermentans	20003	bifermentans	strain														Gouda cheeses	
																		fermented masau fruits	
																		Himalayan fermented milk products	
SRR1151125	Lactobacillus	DSM	Latilactobacillus	type	1807340	1814	42	0	37	2	111	3	1	0	0	1	0	cow dung	BBBQ01000060
	curvatus	20019	curvatus	strain														fermented and vacuum-packaged	
																		refrigerated meat	
																		fermented and vacuum-packaged	
																		refrigerated fish	
																		dairy products such as milk and cheese	
																		fermented plant products like	

																		sauerkraut	
																		sourdough (including prepacked	
																		finished dough and pressed yeast)	
																		radish	
																		pickles	
																		kimchi	
																		other plant derived materials like honey	
																		the environmental formentation	
CDD1151100	T 1 11	DOM	T .: 11 11		0.410710	0.410	46.4	1	16	0	105	0	1					process of corn or grass shage	D1/550
SRR1151129	Lactobacillus	DSM	Lacticaseibacillus	type	2413718	2419	46.4	1	46	0	185	3	1	0				dairy products	D16550
	paracasei subsp.	20258	paracasei ssp.	strain														tomato pomace silage	
	tolerans		tolerans																
SRR1151132	Lactobacillus	DSM	Lapidilactobacillus	type	1903092	1765	43.3	1	49	1	77	5	0	0	0	1	0	the walls of a distilled-spirit-fermenting	AZFX01000066
	concavus	17758	concavus	strain														cellar in China	
SRR1151133	Lactobacillus	DSM	Loigolactobacillus	type	2657964	2541	43	2	38	0	132	3	1	0				cheese	AEOS01000123
	coryniformis	20004	coryniformis ssp.	strain														yaks' milk cheese	
	subsp. torquens		torquens															silage	
																		tomato pomace silage	
SRR1151134	Lactobacillus	DSM	Secundilactobacillus	type	3470681	3214	46.9	2	67	2	288	4	1	0	0	1	0	beer	AZFD01000165
	paracollinoides	15502	paracollinoides	strain														cider	
																		fermented olives	
SRR1151138	Lactobacillus	DSM	Limosilactobacillus	type	1599169	1545	42.7	1	60	0	82	4	0	1	0	1	0	the intestinal tract of a thoroughbred	AZGC01000017
	equigenerosi	18793	equigenerosi	strain														horse	
SRR1151139	Lactobacillus	ATCC	Lactobacillus	type	1770443	1767	34.4	3	52	0	41	8	1	1	0	0	1	humans (gut, vagina)	ACGR01000047
	johnsonii	33200	johnsonii	strain														the faeces of birds	
																		rodents	
																		calves and pigs	
																		type II sourdoughs	
SRR1151144	Lactobacillus	DSM	Companilactobacillus	type	2386851	2344	38.3	3	55	1	104	5	1	0				poultry salami	BACR01000055
	versmoldensis	14857	versmoldensis	strain														1 5	
SRR1151148	Lactobacillus antri	DSM	Limosilactobacillus	type	2249658	2113	51.1	2	61	2	239	7	0	1	0	0	1	biopsy of a healthy human gastric	ACLL01000037
		16041	antri	strain												, i i i i i i i i i i i i i i i i i i i	-	mucosa	
		10011		otrain														the intestine of other vertebrate	
																		animals	
SDD1151152	Lastabasillus	DSM	Limosilaatahaaillua	tring	1965902	1070	41.1	2	62	0	100	1	0	1	0	1	0	the human vacing	A7EW01000220
51((1151152	Lactobaciius	14060	colochominio	type	1003093	1979	41.1	5	02	0	100	1	0	1	0	1	0	in human intestinal microbiota	AZE W01000320
	coleonominis	14000	coleonominis	strain														in numan intestinai microbiota	
0001151155	T 1 11	DOM	T 1 11		100/701	1070	07	0	57	0	(0)	0	0	1		1		swine	CARCO1000050
SRR1151155	Lactobacillus	DSM	Lactobacillus	type	1906781	1870	37	2	56	0	63	8	0		0	1	0	a crop of a chicken	CAKC01000053
	gigeriorum	23908	gigeriorum	strain				-									-		
SRR1151158	Lactobacillus	DSM	Lactobacillus hominis	type	1930068	1882	35.2	2	56	1	66	10	0	1	0	1	0	the human intestine	CAKE01000027
	hominis	23910		strain				-						-					
SRR1151162	Lactobacillus	DSM	Lactobacillus jensenii	type	1615929	1478	34.3	3	39	1	47	10	0	1	0	1	0	the human female lower genital tract.	AYYU01000057
	jensenii	20557		strain															
SRR1151163	Lactobacillus	DSM	Lactobacillus	type	2073352	1935	36.1	3	62	1	81	12	0	1				a biopsy of the healthy human gastric	AZFM01000074
	kalixensis	16043	kalixensis	strain														mucosa	
SRR1151164	Lactobacillus	DSM	Limosilactobacillus	type	2280266	2044	46.4	0	76	2	163	5	0	1	0	0	1	the intestine of a pig	AF126738
	mucosae	13345	mucosae	strain														the intestine of other vertebrates	
																		including humans	
																		type II sourdough	
																		related cereal fermentations	
SRR1151168	Lactobacillus	DSM	Lentilactobacillus	type	2568303	2377	43.4	1	58	4	81	10	1	0	0	1	0	dairy products	BCVT01000078
	parabuchneri	5707	parabuchneri	strain														saliva	
																		silage	
																		spoiled beer	
																		some strains were shown to persist over	
																		month in whiskey mashes in Scottish	
	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		1

																		distilleries	
SRR1151169	Lactobacillus	DSM	Lactobacillus	type	1753652	1684	38.5	1	54	1	66	10	0	1	0	1	0	the human intestine	CAKD01000001
	pasteurii	23907	pasteurii	strain															
SRR1151174	Lactobacillus	DSM	Lactobacillus	type	2169096	2115	36	3	60	0	90	9	0	0	0	1	0	a biopsy of a healthy human gastric	ACGU01000081
	ultunensis	16047	ultunensis	strain														mucosa	
SRR1151175	Lactobacillus	DSM	Limosilactobacillus	type	1781526	1733	40.5	0	58	0	67	7	0	1	0	1	0	microbiota of the human vagina	AF243177
	vaginalis	5837	vaginalis	strain															
SRR1151187	Lactobacillus	DSM	Paucilactobacillus	type	1789353	1722	35.5	2	52	1	17	3	1	0	0	0	1	marinated poultry meat at the end of its	AZFE01000013
	oligofermentans	15707	oligofermentans	strain														shelf life	
SDD1151100	Lestahaaillus	DSM	Emertile at a h a sillera		1070674	1226	28.0	1	EQ	0	210	0	1	0	1	0	0	fermented olives	AEOV01000004
SKK1151190	fructivorans	20203	fructivorans	strain	1372074	1550	30.9		50	0	210	0	1	0	1	0	0	spoiled sake mashes	AEQ101000004
	indenvorans	20203	Indetivorans	Strain														spoiled mayonnaise	
																		salad dressings	
																		sour dough	
																		dessert wines	
																		aperitifs	
SRR1151193	Lactobacillus	CGMCC	Lactiplantibacillus	type	3220167	3019	44.5	4	63	0	208	17	1	0	0	1	0	dairy products and dairy environments	ACGZ01000098
	plantarum subsp.	1.2437	plantarum ssp.	strain														silage	
	plantarum		plantarum															sauerkraut	
																		pickled vegetables	
																		sourdough	
																		cow dung	
																		the human mouth	
																		intestinal tract and stools	
SRR1151196	Lactobacillus	DSM	Lentilactobacillus	type	2451635	2345	44.4	3	61	1	68	6	1	0	0	1	0	nressed vegst	AB205055
514(11511)0	buchneri	20057	buchneri	strain	2101000	2010			01		00	Ŭ	1		Ŭ		0	milk	1111200000
																		cheese	
																		fermenting plant material	
																		the human mouth	
																		used commercially as silage inoculant	
SRR1151197	Lactobacillus	DSM	Liquorilactobacillus	type	1917961	1823	33.9	1	50	1	26	4	1	0	0	1	0	cocoa fermentation	AYZE01000006
	cacaonum	21116	cacaonum	strain															
SRR1151200	Lactobacillus	DSM	Agrilactobacillus	type	3463695	3306	44	2	51	3	80	11	1	0	0	1	0	compost from shochu mash solids	AZGA01000039
	composti	18527	composti	strain														pulque, a Mexican alcoholic beverage	
SRR1151201	Lactobacillus	DSM	Lapidilactobacillus	type	1807580	1725	38	3	49	2	86							silage	AYYK01000012
	dextrinicus	20335	dextrinicus	strain														fermenting vegetables	
																		beer	
SRR1151205	Lactobacillus	DSM	Fructilactobacillus	type	1354760	1313	41.1	3	47	1	153	0	1	0	0	1	0	silced vacuum-packed cooked sausage	AY7I01000021
514(1131203	florum	22689	florum	strain	1551700	1515	11.1		11		100				Ŭ	1	0	bietou flowers	1112101000021
																		grapes	
																		wine	
SRR1151207	Lactobacillus	DSM	Liquorilactobacillus	type	2602751	2416	37.1	2	54	1	71	9	0	1	0	1	0	cocoa fermentations	AZGB01000014
	ghanensis	18630	ghanensis	strain															
SRR1151211	Lactobacillus	DSM	Lactobacillus	type	2258515	2316	37.3	3	58	2	150	7	0	0	0	1	0	kefir grains	BAMG01000091
	kefiranofaciens	5016	kefiranofaciens ssp.	strain														fermented dairy products	
	subsp.		kefiranofaciens																
	ketiranotaciens	Davi									10.6								
SKR1151212	Lactobacillus	DSM 10EE0	Lactobacillus	type	2084861	2099	37.5	2	58	4	136	5	0	0	0		0	ketir grains	AZEM01000027
	subsp	10320	kentranoraciens ssp.	strain															
	kefirgranum		Keingranum																
SRR1151214	Lactobacillus	ICM	Secundilactobacillus	type	2593829	2511	46.6	2	60	4	76	9	1	1	0	1	0	kimchi	EU678893
	kimchicus	15530	kimchicus	strain															

SRR1151216	Lactobacillus	DSM	Lentilactobacillus	type	3017560	2765	41.8	0	58	4	55	6	1	0	0	1	0	pickle brine	BBAU01000086
	kisonensis	19906	kisonensis	strain															
SRR1151217	Lactobacillus	JCM	Levilactobacillus	type	2940897	2666	49.2	1	55	2	171	5	1	0	0	1	0	cabbage kimchi	FJ904277
	koreensis	16448	koreensis	strain														sourdough	
SRR1151218	Lactobacillus mali	DSM	Liquorilactobacillus	type	2611318	2559	36.1	2	40	1	94	6	1	0	0	1	0	wine must	BACP01000083
		20444	mali	strain			0.011	_					-	Ŭ	, in the second		Ŭ	fermenting cider	
		20111	mun	Strum														fermented molasses	
																		water hefer	
																		water kenrs	
																		cocoa bean fermentations	
																		table olives	
SRR1151220	Lactobacillus	JCM	Lacticaseibacillus	type	2278732	2137	57	6	64	0	160	2	0	0	0	1	0	Sudan grass [Sorghum sudanense	AZDJ01000014
	nasuensis	17158	nasuensis	strain														(Piper) Stapf] silage	
SRR1151225	Lactobacillus	ATCC	Levilactobacillus	type	2625389	2379	49	0	51	1	142	5	1	0	0	1	0	farmhouse red Cheshire cheese	JQCI01000059
	parabrevis	53295	parabrevis	strain														wheat sourdough	
																		fermented vegetables	
																		a municipal biogas plant	
SRR1151227	Lactobacillus	DSM	Schleiferilactobacillu	type	3269427	3106	49.2	1	57	2	142	8	0	0				spoiled soft drinks	Y19167
	perolens	12744	s perolens	strain														brewerv environments	
SRR1151229	Lactobacillus	КСТС	Ligilactobacillus	type	2332525	2124	37.7	0	59	0	48	6	0	0	0	1	0	pobuzihi	AZCL01000058
51((115122)	pobuzikii	12174	pobuzibii	strain	2002020	2121	51.1	0	5,	0	10		Ŭ	Ū	0			formented cummincordia	The choice of th
	pobuziiii	13174	pobuziim	Strain														formanted Caliminicordia	
																		fermented fish	
																		traditional vinegar	
SRR1151230	Lactobacillus rapi	DSM	Lentilactobacillus	type	2848015	2645	42.9	0	57	3	40	10	1	0	0	1	0	sunki	AZEI01000033
		19907	rapi	strain														other vegetable fermentations	
SRR1151235	Lactobacillus	DSM	Lentilactobacillus	type	2693190	2545	42.1	1	58	0	71	7	1	0	0	1	0	sunki, a fermented turnip product	AZEA01000056
	sunkii	19904	sunkii	strain														kefir	
SRR1151237	Lactobacillus	DSM	Lacticaseibacillus	type	2064913	1893	53.5	1	52	1	154	4	0	0				fermented fish (pla-ra) in Thailand	AYZK01000017
	thailandensis	22698	thailandensis	strain															
SRR1151242	Lactobacillus	DSM	Lactiplantibacillus	type	3642579	3285	46.3	4	68	5	188	17	1	0	0	1	0	diverse sources including corn silage	AZCU01000047
	pentosus	20314	pentosus	strain														fermenting olives	
																		sewage	
																		fermented mulberry leaf powders	
																		fermented teas	
																		dutinous rise dough	
																		corn noodles	
																		chili sauce	
																		mustard pickles	
																		stinky tofu	
																		dairy products	
																		mustard pickle	
																		fermented idli batter	
																		tempoyak	
																		human vagina	
																		human stools	
																		sourdoughs	
SRR1151250	Lactobacillus	DSM	Limosilactobacillus	type	1986287	1887	48.1	1	59	2	134	12	0	1	0	0	1	type II sourdough	X94230
0101101200	papis	6035	papie	strain	1700201	1001	10.1	1	0,	-	101	12	Ŭ	1	Ŭ		1	formenting plant material	10 1200
	panis	0035	pams	Strain														the intesting of high	
0001151051	T . 1 *11	DOM	0 1 1 11		0500015	0.45.4	05.1		50	2	70		1		0	1			DAMII01000170
SKR1151251	Lactobacillus	DSM	Companilactobacillus	type	2533817	2454	35.1	2	53	3	70	8	1	0	0	1	0	sourdough	BAMH01000179
	paralimentarius	13238	paralimentarius	strain														other cereal fermentations	
																		poultry meat	
SRR1151252	Lactobacillus	DSM	Limosilactobacillus	type	1656883	1614	53.5	1	65	0	55	4	1	1	0	1	0	type I and type II sourdough	AJ422032
	pontis	8475	pontis	strain														the intestinal microbiota of swine	
																		silage	
																		dairy products	
																		mezcal fermentation	
1	1	1	1			1		1	1	1	1	1				1	1	1	

96111241 1041 Portal Prior Pr																			wet wheat distillers' grain	
SMULTION Linktowerse Disk Participation Partitepation Participation	SDD1151954	T 1 11	DCM	Emert 1 and a large 11 and		1050010	1070	24.7	4	F 7	1	102	1	1	0	0	1	0		V7(007
SMR113226 Lambelling DM Lenkenskelling Lenkenskelling <thlenkenskelling< th=""> Lenkenskelling<</thlenkenskelling<>	SKK1151254	sanfranciscensis	20451	sanfranciscensis	strain	1255219	1270	34.7	4	57	1	105	1	1	0	0	1	0	agave mash	A10321
Antilizion syma	SRR1151256	Lactobacillus	DSM	L evilactobacillus	type	2700869	2444	53.6	3	63	5	38	4	1	0	0	1	0	type I wheat sourdough	AZDW01000036
join join <th< td=""><td>5111151250</td><td>ZVmae</td><td>19395</td><td>zymae</td><td>strain</td><td>2100007</td><td>2111</td><td>55.0</td><td></td><td>05</td><td>5</td><td>50</td><td></td><td>1</td><td>Ŭ</td><td>Ū</td><td>1</td><td>Ŭ</td><td>forages</td><td>112D W01000030</td></th<>	5111151250	ZVmae	19395	zymae	strain	2100007	2111	55.0		05	5	50		1	Ŭ	Ū	1	Ŭ	forages	112D W01000030
Self 13:12:7 Landweille harbivision USM bit is bit is bit is Landweille is bit is USM is bit is Landweille is bit is USM is Landweille is <thlandweille is Landweille is Landweille is</thlandweille 		Zymae	17575	Zymae	Stram														formented onions	
MART 12.10 Mart 12	SDD1151257	Lastabasillus	DSM	Lastabasillus	trino	1520208	1574	28.2	2	55	0	81	4	0	1	1	0	0	melt	ADNIV0100006
Minipues	31((1151257	Lactobacinus	11((4	Lactobacinus	type	1559290	1374	30.5	5	55	0	04	4	0	1	1	0	0	man	ADIV101000000
Second Interpretation of the state		amylolyticus	11004	amylolyticus	strain														mash and unnopped wort in breweries	
SR1151260 Lacobasella arelyophilas Conditionation arelyophilas Conditionationation arelyophilas Conditionationationationation arelyophilas Conditionationationationation arelyophilas Conditionate arelyophilas Conditionationationationatio																			sourdough	
Skr1 [1].2.40 Latcheatilies anylophilas DSM anylophilas Anylophilas anylophilas Anylophilas An	CDD1151050	T 1 11	DOM	A 1 1 . 1 . 11		154(00)	1550	40.7		50	1	10/		1		0	1	0	toru wney	DDDD0100000/
anybella 2004 anybella 2004 and	SRR1151258	Lactobacillus	DSM	Amylolactobacillus	type	1546306	1550	43.7	0	52	1	126	3	1	0	0	1	0	swine waste-corn fermentation	BBBR01000026
And <td></td> <td>amylophilus</td> <td>20533</td> <td>amylophilus</td> <td>strain</td> <td></td> <td>corn-starch processing industrial</td> <td></td>		amylophilus	20533	amylophilus	strain														corn-starch processing industrial	
Image: SRI15260 Cardbackulli Ligardi Market Mark Market Market Market Market Market Market Market Market																			wastes	
SRR1152 op Magneting Lactobacility (normalicity) Carcity (normalicity) Constraints) Solution Solution <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>kocho (Ensete ventricosum) bread</td><td></td></th<>																			kocho (Ensete ventricosum) bread	
Inigendie Parto Inigendie Varia	SRR1151260	Lactobacillus	DSM	Lentilactobacillus	type	2605214	2538	39.6	0	59	1	48	4	1	0	0	1	0	spoiled wine	ACGP01000200
Image: Series in the series		hilgardii	20176	hilgardii	strain														kefir grains	
Image: condition of the second condit																			mezcal fermentations	
SRR 1522 Lacobailus DMM Secundational mode Upper lace Solution mode																			silage	
Inderformant Stop Inderformant Strain Str	SRR1151262	Lactobacillus	DSM	Secundilactobacillus	type	2054106	2013	41	3	61	4	70	2	1	0	0	1	0	beer	BACN01000105
SRR1151264 Lacobacillas saie DSM Liquonitacobacilus type 2003 37.0 10 52.0 20 4 10 10 10 0 Debalwine Debalwine AZEH0100040 SRR1151267 Lacobacillus saie Diversional saie Sectoral saie Sect		malefermentans	5705	malefermentans	strain															
Image: condition of the second state of the second stat	SRR1151264	Lactobacillus oeni	DSM	Liquorilactobacillus	type	2105430	1976	37.3	1	52	2	72	4	1	1	1	0	0	Bobal wine	AZEH01000040
SRI151267 Lactookacillus said DSM Latiacobacillus UPA Latiacobacillus Sinter BLAU0100003 BALW0100003 subp. said 2017 sake sp. said Sinter			19972	oeni	strain															
subsp. skei subsp. skei skei sp. skei strain	SRR1151267	Lactobacillus sakei	DSM	Latilactobacillus	type	1907928	1891	41.1	0	51	0	87	7	1	0				sake starter	BALW01000030
Image: series of the series		subsp. sakei	20017	sakei ssp. sakei	strain														fermented meat products	
SRR151270 Actobacilus DM Actobacilus PM Actobacilus PM Actobacilus PM Actobacilus PM Actobacilus PM Actobacilus PM P																			vacuum packaged meat	
Image: series of the series																			sauerkraut	
Image: Section of the secting of the secting of th																			other fermented plant material	
SRR1151270 Lactobacillus DSM Lacticaseibacillus type 295929 2738 46.7 3 56 0 138 15 1 1 1 a broad range of habitats including dairy BALT01000058 SRR1151270 rhannosus 20021 rhannosus 1000000000000000000000000000000000000																			human faeces	
Image: Application of the standing of the stand	SRR1151270	Lactobacillus	DSM	Lacticaseibacillus	type	2945929	2738	46.7	3	56	0	138	15	1	1				a broad range of habitats including dairy	BALT01000058
Image: series of the series		rhamnosus	20021	rhamnosus	strain														products	
Image: series of the series																			fermented meat	
Image: series of the series																			fish	
Image: series of the series																			vegetables and cereals	
Image: series of the series																			sewage	
Image: state stat																			humans (oral, vaginal and intestinal)	
SRR1745849 Lactobacillus Biul2 Lactobacillus Lactobacillus type 2080753 1939 35.5 3 5 1 92 4 4 4 4 4 4 4 5 1 92 4																			invertebrate hosts and clinical sources	
kullabergensis kullabergensis strain	SRR1745849	Lactobacillus	Biut2	Lactobacillus	type	2080753	1939	35.5	3	53	1	92							the honey stomach of the honeybee A.	IX099550
SRR1752129 Lactobacillus Fhon13 Apilactobacillus type 1428890 1317 34.6 1 59 2 43		kullabergensis		kullabergensis	strain														mellifera mellifera	
	SRR1752129	Lactobacillus	Fhon13	Apilactobacillus	type	1428890	1317	34.6	1	59	2	43							honey stomach of the honeybee	IX099541
apinorum strain		apinorum		apinorum	strain															
SRR896433 Lactobacillus DSM Schleiferilactobacillu type 3123257 3031 53.1 1 62 2 228 15 0 0 fermented vegetables 'Suan Cai' AZFW01000057	SRR896433	Lactobacillus	DSM	Schleiferilactobacillu	type	3123257	3031	53.1	1	62	2	228	15	0	0	1		1	fermented vegetables 'Suan Cai'	AZFW01000057
harbinensis 16991 s harbinensis strain the brewery environment		harbinensis	16991	s harbinensis	strain														the brewery environment	
fermented cereals																			fermented cereals	
tomato pomace																			tomato pomace	
spoiled soft drinks																			spoiled soft drinks	

id	protein_id	expected value of	expected	branch	number	curated name	strain	rate of	protein	expect	expect	genetic	normalize	normalize
		gain events (Eg)	value of	Length	of			gain/loss	number	value of	value of	diversity	d amount	d net
			loss	(L_b)	ortholog			events	minus	gain	loss	in the	of	number of
			events		(O_n)			(E_g/E_l)	delta of	events	events	bacteria	expected	expected
			(E_l)						expected	par	par	before	value of	value of
									value of	branch	branch	speciatio	gain/loss	gain
									gain/loss	length	length	n (Gd)	events for	events
									events	(E_g/L_b)	(E_l/L_b)		each	(Ng)
									(N _p -(E _g -				branches	
									E ₁))				(Egl)	
SRR1151200	SRR1151200.protein.faa	1677	1361	0.1285	2710	Agrilactobacillus composti	DSM 18527	1.232182	2990	13050.58	10591.44	2394	23642.02	2459.144
SRR1151258	SRR1151258.protein.faa	184.5	232.3	0.01941	1457	Amylolactobacillus amylophilus	DSM 20533	0.794232	1597.8	9505.41	11968.06	1504.8	21473.47	-2462.65
ERR387486	ERR387486.protein.faa	75.58	83.36	0.006439	1497	Amylolactobacillus amylotrophicus	DSM 20534	0.90667	1609.78	11737.85	12946.11	1504.78	24683.96	-1208.26
SRR1752129	SRR1752129.protein.faa	112.7	196.2	0.0223	1247	Apilactobacillus apinorum	Fhon13	0.574414	1400.5	5053.812	8798.206	1330.5	13852.02	-3744.39
GCA_001281265.	GCA_001281265.1.protein.faa	151.8	213.4	0.02954	1269	Apilactobacillus kunkeei	YH-15	0.71134	1414.6	5138.795	7224.103	1330.6	12362.9	-2085.31
1 EDD 432470	EDD 422470	140.6	700.0	0.0(000	1240		DCM 02020	0.072.07	1700 7	70(2.1(1	11050.40	1(00.7	10201 50	4105.05
ERR433479	ERR433479.protein.faa	440.6	702.3	0.06238	1348	Apilactobacillus ozensis	DSM 23829	0.627367	1700.7	7063.161	11258.42	1609.7	18321.58	-4195.25
GCA_000970795.	GCA_000970795.1.protein.faa	1092	1390	0.128	1519	Bombilactobacillus mellifer	Bin4	0.785612	1959	8531.25	10859.38	1817	19390.63	-2328.13
GCA_000967245.	GCA_000967245.1.protein.faa	769.6	1063	0.09406	1523	Bombilactobacillus mellis	Hon2	0.723989	1943.4	8182.011	11301.3	1816.4	19483.31	-3119.29
ERR387471	ERR387471.protein.faa	157.1	299.4	0.01503	1921	Companilactobacillus alimentarius	DSM 20249	0.524716	2374.3	10452.43	19920.16	2063.3	30372.59	-9467.73
GCA_001438825.	GCA_001438825.1.protein.faa	151.4	381.4	0.01333	1869	Companilactobacillus crustorum	LMG 23699	0.396959	2395	11357.84	28612.15	2099	39969.99	-17254.3
1 GCA 001434775	CCA 001/13/1775 1 protoin faa	107	275.4	0.01667	2095	Companilacto hacillus farciminis	DSM 20184	0 715323	2495.4	11817.64	16520.7	2172 /	28228 22	-4703.06
1	GCA_001454775.1.protent.taa	177	275.4	0.01007	2095	Compannactobacinus farcininis	D3W 20184	0.715525	2495.4	11017.04	10520.7	2175.4	20330.33	-4705.00
ERR387495	ERR387495.protein.faa	259.4	354.8	0.02661	2129	Companilactobacillus futsaii	JCM 17355	0.731116	2544.4	9748.215	13333.33	2224.4	23081.55	-3585.12
GCA_001050475.	GCA_001050475.1.protein.faa	310.8	245.6	0.01674	2215	Companilactobacillus ginsenosidimutans	EMML 3141	1.265472	2492.8	18566.31	14671.45	2149.8	33237.75	3894.863
1														
GCA_000831645.	GCA_000831645.3.protein.faa	199.8	206.1	0.006609	2113	Companilactobacillus heilongjiangensis	DSM 28069	0.969432	2491.3	30231.5	31184.75	2119.3	61416.25	-953.246
3														
GCA_001438805.	GCA_001438805.1.protein.faa	301	351.6	0.02768	2149	Companilactobacillus kimchiensis	DSM 24716	0.856086	2629.6	10874.28	12702.31	2199.6	23576.59	-1828.03
1														
ERR387524	ERR387524.protein.faa	193.6	366.2	0.005058	1932	Companilactobacillus mindensis	DSM 14500	0.528673	2377.6	38276	72400.16	2104.6	110676.2	-34124.2
ERR433477	ERR433477.protein.faa	310.8	88.37	0.003524	2327	Companilactobacillus nantensis	DSM 16982	3.517031	2551.57	88195.23	25076.62	2104.57	113271.9	63118.62

Supplementary Table 3.4: Gain/loss expected number and other stats for each strains.

GCA_001435555.	GCA_001435555.1.protein.faa	620.1	465.2	0.04427	2293	Companilactobacillus nodensis	DSM 19682	1.332975	2499.1	14007.23	10508.24	2138.1	24515.47	3498.984
1														
SRR1151251	SRR1151251.protein.faa	165.8	154.1	0.01079	2075	Companilactobacillus paralimentarius	DSM 13238	1.075925	2442.3	15366.08	14281.74	2063.3	29647.82	1084.337
ERR387549	ERR387549.protein.faa	225.5	477.6	0.02927	1886	Companilactobacillus tucceti	DSM 20183	0.472152	2354.1	7704.134	16317.05	2138.1	24021.18	-8612.91
SRR1151144	SRR1151144.protein.faa	235.5	306.3	0.01775	2079	Companilactobacillus versmoldensis	DSM 14857	0.768854	2414.8	13267.61	17256.34	2149.8	30523.94	-3988.73
GCA_001434695.	GCA_001434695.1.protein.faa	863.9	1766	0.1156	1434	Dellaglioa algida	DSM 15638	0.489185	2433.1	7473.183	15276.82	2336.1	22750	-7803.63
1														
SRR1151205	SRR1151205.protein.faa	455	676.8	0.06512	1243	Fructilactobacillus florum	DSM 22689	0.672281	1534.8	6987.101	10393.12	1464.8	17380.22	-3406.02
SRR1151190	SRR1151190.protein.faa	474.8	859	0.0726	1252	Fructilactobacillus fructivorans	DSM 20203	0.552736	1720.2	6539.945	11831.96	1636.2	18371.9	-5292.01
GCA_001311115.	GCA_001311115.1.protein.faa	347.6	314.4	0.03489	1498	Fructilactobacillus lindneri	JCM 11027	1.105598	1598.8	9962.74	9011.178	1464.8	18973.92	951.5621
1														
SRR1151254	SRR1151254.protein.faa	649.1	964.2	0.09556	1198	Fructilactobacillus sanfranciscensis	DSM 20451	0.673201	1593.1	6792.591	10090	1513.1	16882.59	-3297.4
GCA_000428925.	GCA_000428925.1.protein.faa	413.4	213	0.01938	2315	Furfurilactobacillus rossiae	DSM 15814	1.940845	2499.6	21331.27	10990.71	2114.6	32321.98	10340.56
1														
ERR387541	ERR387541.protein.faa	275.7	611.4	0.02818	1779	Furfurilactobacillus siliginis	DSM 22696	0.450932	2315.7	9783.534	21696.24	2114.7	31479.77	-11912.7
ERR387489	ERR387489.protein.faa	1247	2467	0.1572	1174	Holzapfelia floricola	DSM 23037	0.505472	2467	7932.57	15693.38	2394	23625.95	-7760.81
GCA_001436115.	GCA_001436115.1.protein.faa	228.1	543.1	0.0294	1768	Lacticaseibacillus brantae	DSM 23927	0.419996	2215	7758.503	18472.79	2083	26231.29	-10714.3
1														
ERR387469	ERR387469.protein.faa	663.7	858.9	0.06414	2103	Lacticaseibacillus camelliae	DSM 22697	0.772733	2598.2	10347.68	13391.02	2298.2	23738.7	-3043.34
GCA_000829055.	GCA_000829055.1.protein.faa	227.8	331.7	0.003763	2364	Lacticaseibacillus casei	ATCC 393	0.686765	2993.9	60536.81	88147.75	2467.9	148684.6	-27610.9
1														
GCA_001433745.	GCA_001433745.1.protein.faa	342.3	210.8	5.35E-06	2598	Lacticaseibacillus casei	DSM 20178	1.623814	2829.5	6395739	3938714	2466.5	1.03E+08	24570254
1										9	5			
ERR387460	ERR387460.protein.faa	785.9	527.3	0.04547	2554	Lacticaseibacillus manihotivorans	DSM 13343	1.490423	2753.4	17283.92	11596.66	2295.4	28880.58	5687.266
SRR1151220	SRR1151220.protein.faa	508.6	864.1	0.05458	1940	Lacticaseibacillus nasuensis	JCM 17158	0.588589	2492.5	9318.432	15831.81	2295.5	25150.24	-6513.37
ERR387506	ERR387506.protein.faa	248.6	124	0.004593	2009	Lacticaseibacillus pantheris	DSM 15945	2.004839	2168.4	54125.84	26997.61	1884.4	81123.45	27128.24
GCA_000014525.	GCA_000014525.1.protein.faa	220.3	83.36	5.35E-06	2424	Lacticaseibacillus paracasei	ATCC 334	2.642754	2698.06	4116218	1557548	2287.06	56737668	25586697
1										2	6			
GCA_000829035.	GCA_000829035.1.protein.faa	295.2	276.7	5.35E-06	2485	Lacticaseibacillus paracasei ssp. paracasei	JCM 8130	1.066859	2926.5	5515695	5170029	2466.5	1.07E+08	3456652
1										1	9			
SRR1151129	SRR1151129.protein.faa	203.6	314.7	5.35E-06	2176	Lacticaseibacillus paracasei ssp. tolerans	DSM 20258	0.646965	2530.1	3804185	5880044	2287.1	96842302	-2.1E+07
										4	8			
SRR1151270	SRR1151270.protein.faa	91.6	84.9	0.000995	2390	Lacticaseibacillus rhamnosus	DSM 20021	1.078916	2731.3	92051.05	85318.06	2383.3	177369.1	6732.992
ERR433494	ERR433494.protein.faa	539.9	477	0.04861	2146	Lacticaseibacillus saniviri	DSM 24301	1.131866	2346.1	11106.77	9812.796	2083.1	20919.56	1293.972
ERR387540	ERR387540.protein.faa	1389	1568	0.1321	2083	Lacticaseibacillus sharpeae	DSM 20505	0.885842	2523	10514.76	11869.8	2262	22384.56	-1355.03
SRR1151237	SRR1151237.protein.faa	109.2	286.6	0.003988	1707	Lacticaseibacillus thailandensis	DSM 22698	0.381019	2070.4	27382.15	71865.6	1884.4	99247.74	-44483.5

ERR387476	ERR387476.protein.faa	454.9	374.3	0.02255	2593	Lactiplantibacillus fabifermentans	DSM 21115	1.215335	3030.4	20172.95	16598.67	2512.4	36771.62	3574.279
GCA_001039045. 1	GCA_001039045.1.protein.faa	296.1	432.2	0.0182	2396	Lactiplantibacillus herbarum	TCF032-E4	0.685099	2941.1	16269.23	23747.25	2532.1	40016.48	-7478.02
GCA_001435655.	GCA_001435655.1.protein.faa	189.7	99.38	0.00078	2654	Lactiplantibacillus paraplantarum	DSM 10667	1.908835	3101.68	243361.1	127492	2563.68	370853.1	115869.1
SRR1151242	SRR1151242.protein.faa	362.2	83.04	5.35E-06	2733	Lactiplantibacillus pentosus	DSM 20314	4.361753	3005.84	6767563	1551569	2453.84	83191330	52159940
										5	5			
ERR387522	ERR387522.protein.faa	198	100.4	5.35E-06	2481	Lactiplantibacillus plantarum ssp. argentoratensis	DSM 16365	1.972112	2841.4	3699551	1875934	2383.4	55754858	18236173
										6	2			
SRR1151193	SRR1151193.protein.faa	198.6	72.03	5.35E-06	2510	Lactiplantibacillus plantarum ssp. plantarum	CGMCC 1.2437	2.757185	2892.43	3710762	1345852	2383.43	50566143	23649103
										3	0			
GCA_001438845.	GCA_001438845.1.protein.faa	328.7	469.2	0.02909	2346	Lactiplantibacillus xiangfangensis	LMG 26013	0.700554	2897.5	11299.42	16129.25	2486.5	27428.67	-4829.84
1														
ERR387527	ERR387527.protein.faa	608.4	990.9	0.08151	1402	Lactobacillus acetotolerans	DSM 20749	0.613987	1900.5	7464.115	12156.79	1784.5	19620.91	-4692.68
GCA_000786395.	GCA_000786395.1.protein.faa	275.4	439.9	0.0358	1639	Lactobacillus acidophilus	ATCC 4356	0.626051	2048.5	7692.737	12287.71	1803.5	19980.45	-4594.97
1														
SRR1151257	SRR1151257.protein.faa	338	522.4	0.04404	1439	Lactobacillus amylolyticus	DSM 11664	0.647014	1758.4	7674.841	11861.94	1623.4	19536.78	-4187.1
GCA_001433985.	GCA_001433985.1.protein.faa	247.6	179.6	0.01244	1780	Lactobacillus amylovorus	DSM 20531	1.378619	1977	19903.54	14437.3	1712	34340.84	5466.238
1														
GCA_000970735. 1	GCA_000970735.1.protein.faa	267	475.6	0.04087	1414	Lactobacillus apis	Hma11	0.561396	1772.6	6532.909	11636.9	1622.6	18169.81	-5103.99
GCA_001434005.	GCA_001434005.1.protein.faa	265.6	305.4	0.02398	1752	Lactobacillus crispatus	DSM 20584	0.869679	2056.8	11075.9	12735.61	1791.8	23811.51	-1659.72
1														
GCA_000056065.	GCA_000056065.1.protein.faa	149.3	165.4	0.01131	1659	Lactobacillus delbrueckii ssp. bulgaricus	ATCC 11842	0.90266	1916.1	13200.71	14624.23	1675.1	27824.93	-1423.52
1														
GCA_001263315.	GCA_001263315.1.protein.faa	159	234.6	0.01456	1596	Lactobacillus delbrueckii ssp. delbrueckii	KACC 13439	0.677749	1844.6	10920.33	16112.64	1671.6	27032.97	-5192.31
1														
GCA_001189855.	GCA_001189855.1.protein.faa	101.7	119.5	0.000871	1656	Lactobacillus delbrueckii ssp. indicus	JCM 15610	0.851046	1849.8	116802.6	137245.9	1673.8	254048.5	-20443.3
1														
GCA_000387565.	GCA_000387565.1.protein.faa	82.71	167.6	0.007749	1541	Lactobacillus delbrueckii ssp. jakobsenii	ZN7a-9	0.493496	1761.89	10673.64	21628.6	1625.89	32302.23	-10955
1														
GCA_000192165.	GCA_000192165.1.protein.faa	168	89.92	0.005134	1704	Lactobacillus delbrueckii ssp. lactis	DSM 20072	1.868327	1785.92	32723.02	17514.61	1625.92	50237.63	15208.41
1														
GCA_001190005.	GCA_001190005.1.protein.faa	116.8	136.8	0.004599	1646	Lactobacillus delbrueckii ssp. sunkii	JCM 17838	0.853801	1843	25396.83	29745.6	1666	55142.42	-4348.77
1														
GCA_001434815.	GCA_001434815.1.protein.faa	698.9	767.1	0.08097	1714	Lactobacillus equicursoris	DSM 19284	0.911094	1941.2	8631.592	9473.879	1782.2	18105.47	-842.287

1														
ERR387508	ERR387508.protein.faa	117.3	168.7	0.007222	1660	Lactobacillus gallinarum	DSM 10532	0.695317	1963.4	16242.04	23359.18	1711.4	39601.22	-7117.14
GCA_000014425.	GCA_000014425.1.protein.faa	238.9	305.1	0.00848	1592	Lactobacillus gasseri	ATCC 33323	0.783022	1874.2	28172.17	35978.77	1658.2	64150.94	-7806.6
1														
SRR1151155	SRR1151155.protein.faa	153.1	107.5	0.0063	1657	Lactobacillus gigeriorum	DSM 23908	1.424186	1824.4	24301.59	17063.49	1611.4	41365.08	7238.095
ERR387507	ERR387507.protein.faa	169.4	249.8	0.02081	1543	Lactobacillus hamsteri	DSM 5661	0.678143	1792.4	8140.317	12003.84	1623.4	20144.16	-3863.53
GCA_000970855.	GCA_000970855.1.protein.faa	202.9	293.4	0.0267	1613	Lactobacillus helsingborgensis	Bma5	0.691547	1913.5	7599.251	10988.76	1703.5	18588.01	-3389.51
1														
GCA_000160855.	GCA_000160855.1.protein.faa	357.5	335	0.01858	1734	Lactobacillus helveticus	DSM 20075	1.067164	1921.5	19241.12	18030.14	1711.5	37271.26	1210.98
1														
SRR1151158	SRR1151158.protein.faa	329.7	269.7	0.02137	1703	Lactobacillus hominis	DSM 23910	1.222469	1822	15428.17	12620.5	1643	28048.67	2807.674
GCA_000160875.	GCA_000160875.1.protein.faa	944.3	1519	0.1226	1147	Lactobacillus iners	DSM 13335	0.621659	1765.7	7702.284	12389.89	1721.7	20092.17	-4687.6
1														
ERR387510	ERR387510.protein.faa	383.2	516.1	0.04595	1632	Lactobacillus intestinalis	DSM 6629	0.742492	1970.9	8339.499	11231.77	1764.9	19571.27	-2892.27
SRR1151162	SRR1151162.protein.faa	72.62	54.52	0.003547	1362	Lactobacillus jensenii	DSM 20557	1.331988	1459.9	20473.64	15370.74	1343.9	35844.38	5102.904
SRR1151139	SRR1151139.protein.faa	169.4	165.6	0.007801	1603	Lactobacillus johnsonii	ATCC 33200	1.022947	1763.2	21715.16	21228.05	1599.2	42943.21	487.117
SRR1151163	SRR1151163.protein.faa	632.3	720.4	0.07594	1710	Lactobacillus kalixensis	DSM 16043	0.877707	2023.1	8326.31	9486.437	1798.1	17812.75	-1160.13
SRR1151211	SRR1151211.protein.faa	211.4	77.41	5.35E-06	1991	Lactobacillus kefiranofaciens ssp. kefiranofaciens	DSM 5016	2.730913	2182.01	3949925	1446375	1857.01	53963004	25035501
										3	2			
SRR1151212	SRR1151212.protein.faa	81.59	118.6	5.35E-06	1820	Lactobacillus kefiranofaciens ssp. kefirgranum	DSM 10550	0.687943	2136.01	1524476	2215994	1857.01	37404709	-6915172
										8	0			
GCA_000970755.	GCA_000970755.1.protein.faa	158.6	148.5	0.01833	1653	Lactobacillus kimbladii	Hma2	1.068013	1961.9	8652.482	8101.473	1642.9	16753.96	551.0093
1														
ERR387512	ERR387512.protein.faa	130.4	150.4	0.004751	1692	Lactobacillus kitasatonis	DSM 16761	0.867021	1937	27446.85	31656.49	1712	59103.35	-4209.64
SRR1745849	SRR1745849.protein.faa	137.9	138.9	0.01614	1642	Lactobacillus kullabergensis	Biut2	0.992801	1940	8543.99	8605.948	1643	17149.94	-61.9579
GCA_000970775.	GCA_000970775.1.protein.faa	205.7	189.9	0.02423	1723	Lactobacillus melliventris	Hma8	1.083202	1978.2	8489.476	7837.392	1707.2	16326.87	652.0842
1														
SRR1151169	SRR1151169.protein.faa	197.8	272.2	0.01519	1537	Lactobacillus pasteurii	DSM 23907	0.726672	1758.4	13021.72	17919.68	1611.4	30941.41	-4897.96
ERR387520	ERR387520.protein.faa	94.47	190.4	0.009344	1248	Lactobacillus psittaci	DSM 15354	0.496166	1439.93	10110.23	20376.71	1343.93	30486.94	-10266.5
ERR387546	ERR387546.protein.faa	42.12	59.26	0.000107	1641	Lactobacillus taiwanensis	DSM 21401	0.710766	1833.14	394382	554868.9	1658.14	949250.9	-160487
SRR1151174	SRR1151174.protein.faa	344.3	340.6	0.03281	1812	Lactobacillus ultunensis	DSM 16047	1.010863	2111.3	10493.75	10380.98	1808.3	20874.73	112.7705
SRR1151132	SRR1151132.protein.faa	331.9	448.5	0.03593	1613	Lapidilactobacillus concavus	DSM 17758	0.740022	1881.6	9237.406	12482.61	1729.6	21720.01	-3245.2
SRR1151201	SRR1151201.protein.faa	219.7	337.2	0.02456	1612	Lapidilactobacillus dextrinicus	DSM 20335	0.651542	1842.5	8945.44	13729.64	1729.5	22675.08	-4784.2
SRR1151125	SRR1151125.protein.faa	185.3	124.7	0.005087	1693	Latilactobacillus curvatus	DSM 20019	1.485966	1753.4	36426.18	24513.47	1632.4	60939.65	11912.72
GCA_000615805.	GCA_000615805.1.protein.faa	371.1	367.5	0.03192	1962	Latilactobacillus fuchuensis	JCM 11249	1.009796	2201.4	11625.94	11513.16	1958.4	23139.1	112.782
1														

ERR387528	ERR387528.protein.faa	202.4	212.9	0.003495	1622	Latilactobacillus graminis	DSM 20719	0.950681	1749.5	57911.3	60915.59	1632.5	118826.9	-3004.29
ERR433493	ERR433493.protein.faa	161.1	42.62	0.001767	1826	Latilactobacillus sakei ssp. carnosus	DSM 15831	3.779916	1865.52	91171.48	24119.98	1707.52	115291.5	67051.5
SRR1151267	SRR1151267.protein.faa	104.8	80.32	0.002523	1732	Latilactobacillus sakei ssp. sakei	DSM 20017	1.304781	1866.52	41537.85	31835.12	1707.52	73372.97	9702.735
SRR1151196	SRR1151196.protein.faa	144.7	208.6	0.01118	2062	Lentilactobacillus buchneri	DSM 20057	0.693672	2408.9	12942.75	18658.32	2125.9	31601.07	-5715.56
GCA_000785105.	GCA_000785105.1.protein.faa	443	691	0.05631	1867	Lentilactobacillus curieae	ССТСС М	0.6411	2360	7867.164	12271.35	2115	20138.52	-4404.19
1							2011381							
ERR387480	ERR387480.protein.faa	435.6	387.1	0.02254	2448	Lentilactobacillus diolivorans	DSM 14421	1.125291	2913.5	19325.64	17173.91	2399.5	36499.56	2151.73
GCA_001435875.	GCA_001435875.1.protein.faa	305.5	266.4	0.02181	2330	Lentilactobacillus farraginis	DSM 18382	1.146772	2709.9	14007.34	12214.58	2290.9	26221.92	1792.756
1														
SRR1151260	SRR1151260.protein.faa	212.4	313.3	0.01696	2190	Lentilactobacillus hilgardii	DSM 20176	0.677944	2638.9	12523.58	18472.88	2290.9	30996.46	-5949.29
ERR387463	ERR387463.protein.faa	135.4	207.9	0.01008	1971	Lentilactobacillus kefiri	DSM 20587	0.651275	2280.5	13432.54	20625	2043.5	34057.54	-7192.46
SRR1151216	SRR1151216.protein.faa	245.6	282.5	0.009466	2315	Lentilactobacillus kisonensis	DSM 19906	0.869381	2801.9	25945.49	29843.65	2351.9	55789.14	-3898.16
GCA_001434145.	GCA_001434145.1.protein.faa	83.06	139.5	0.007113	1987	Lentilactobacillus otakiensis	DSM 19908	0.595412	2311.44	11677.21	19611.98	2043.44	31289.19	-7934.77
1														
SRR1151168	SRR1151168.protein.faa	131.8	161.2	0.004001	2077	Lentilactobacillus parabuchneri	DSM 5707	0.817618	2406.4	32941.76	40289.93	2106.4	73231.69	-7348.16
GCA_001435895.	GCA_001435895.1.protein.faa	435.6	429.4	0.03884	2409	Lentilactobacillus parafarraginis	DSM 18390	1.014439	2914.8	11215.24	11055.61	2402.8	22270.85	159.6292
1														
SRR1151230	SRR1151230.protein.faa	183.4	250.9	0.009215	2251	Lentilactobacillus rapi	DSM 19907	0.730969	2712.5	19902.33	27227.35	2318.5	47129.68	-7325.01
GCA_001436555.	GCA_001436555.1.protein.faa	389.2	1038	0.05697	1466	Lentilactobacillus senioris	DSM 24302	0.374952	2216.8	6831.666	18220.12	2114.8	25051.78	-11388.5
1														
SRR1151235	SRR1151235.protein.faa	201	110.5	0.007022	2168	Lentilactobacillus sunkii	DSM 19904	1.819005	2454.5	28624.32	15736.26	2077.5	44360.58	12888.07
ERR387483	ERR387483.protein.faa	166.9	77.14	0.003509	2321	Levilactobacillus acidifarinae	DSM 19394	2.163599	2648.24	47563.41	21983.47	2231.24	69546.88	25579.94
GCA_001433855.	GCA_001433855.1.protein.faa	94.11	142.1	5.35E-06	2099	Levilactobacillus brevis	DSM 20054	0.66228	2470.99	1758408	2655082	2146.99	44134903	-8966741
1										1	2			
GCA_000807975.	GCA_000807975.1.protein.faa	136.9	93.89	5.35E-06	2190	Levilactobacillus brevis	BSO 464	1.458089	2656.99	2557922	1754297	2146.99	43122197	8036248
1										3	5			
ERR387482	ERR387482.protein.faa	286.4	245	0.01593	2172	Levilactobacillus hammesii	DSM 16381	1.16898	2549.6	17978.66	15379.79	2130.6	33358.44	2598.87
SRR1151217	SRR1151217.protein.faa	368.1	271.5	0.02554	2256	Levilactobacillus koreensis	JCM 16448	1.355801	2569.4	14412.69	10630.38	2159.4	25043.07	3782.302
ERR433476	ERR433476.protein.faa	244	534.9	0.03559	1936	Levilactobacillus namurensis	DSM 19117	0.45616	2517.9	6855.858	15029.5	2226.9	21885.36	-8173.64
SRR1151225	SRR1151225.protein.faa	189.7	327.2	0.0219	2022	Levilactobacillus parabrevis	ATCC 53295	0.579768	2516.5	8662.1	14940.64	2159.5	23602.74	-6278.54
GCA_001437125.	GCA_001437125.1.protein.faa	413.7	716.6	0.05527	1916	Levilactobacillus paucivorans	DSM 22467	0.57731	2512.9	7485.073	12965.44	2218.9	20450.52	-5480.37
1														
GCA_001436675.	GCA_001436675.1.protein.faa	172.5	417.1	0.01417	1886	Levilactobacillus senmaizukei	DSM 21775	0.41357	2366.6	12173.61	29435.43	2130.6	41609.03	-17261.8
1														
ERR387543	ERR387543.protein.faa	282.6	459.7	0.03569	2104	Levilactobacillus spicheri	DSM 15429	0.614749	2628.1	7918.184	12880.36	2281.1	20798.54	-4962.17
SRR1151256	SRR1151256.protein.faa	68.03	173.2	0.005075	2126	Levilactobacillus zymae	DSM 19395	0.392783	2549.17	13404.93	34128.08	2231.17	47533	-20723.2

GCA_001435755.	GCA_001435755.1.protein.faa	273.7	216.1	0.01622	1989	Ligilactobacillus acidipiscis	DSM 15836	1.266543	2172.4	16874.23	13323.06	1931.4	30197.29	3551.171
ERR387498	ERR387498.protein.faa	593.7	694.8	0.06249	1855	Ligilactobacillus agilis	DSM 20509	0.854491	2116.1	9500.72	11118.58	1956.1	20619.3	-1617.86
ERR387553	ERR387553.protein.faa	120.6	149.6	0.004226	1674	Ligilactobacillus animalis	DSM 20602	0.80615	1841	28537.62	35399.91	1703	63937.53	-6862.28
ERR433462	ERR433462.protein.faa	361	225.4	0.02354	1865	Ligilactobacillus apodemi	DSM 16634	1.601597	1883.4	15335.6	9575.191	1729.4	24910.79	5760.408
ERR438946	ERR438946.protein.faa	69.78	135.4	0.00485	1320	Ligilactobacillus araffinosus	DSM 20653	0.515362	1475.62	14387.63	27917.53	1385.62	42305.15	-13529.9
ERR387530	ERR387530.protein.faa	120.1	53.64	0.003736	1452	Ligilactobacillus aviarius	DSM 20655	2.239001	1518.54	32146.68	14357.6	1385.54	46504.28	17789.08
GCA_000423245.	GCA_000423245.1.protein.faa	1240	2065	0.1534	1221	Ligilactobacillus ceti	DSM 22408	0.600484	2094	8083.442	13461.54	2046	21544.98	-5378.1
GCA_001435735.	GCA_001435735.1.protein.faa	932.5	906.6	0.07263	1982	Ligilactobacillus equi	DSM 15833	1.028568	2162.1	12839.05	12482.45	1956.1	25321.49	356.602
ERR387461	ERR387461.protein.faa	699.9	1046	0.08396	1447	Ligilactobacillus hayakitensis	DSM 18933	0.66912	1889.1	8336.112	12458.31	1793.1	20794.43	-4122.2
ERR387504	ERR387504.protein.faa	271.2	114.2	0.008657	1860	Ligilactobacillus murinus	DSM 20452	2.374781	1873	31327.25	13191.64	1703	44518.89	18135.61
SRR1151229	SRR1151229.protein.faa	237.2	301.5	0.01826	1867	Ligilactobacillus pobuzihii	KCTC 13174	0.786733	2188.3	12990.14	16511.5	1931.3	29501.64	-3521.36
ERR433499	ERR433499.protein.faa	1072	1322	0.1143	1775	Ligilactobacillus ruminis	ATCC 27780	0.810893	2153	9378.828	11566.05	2025	20944.88	-2187.23
GCA_000423265.	GCA_000423265.1.protein.faa	1235	1686	0.1355	1580	Ligilactobacillus saerimneri	DSM 16049	0.732503	2177	9114.391	12442.8	2031	21557.2	-3328.41
GCA_000159395.	GCA_000159395.1.protein.faa	525.7	544.4	0.05131	1774	Ligilactobacillus salivarius	ATCC 11741	0.96565	1947.7	10245.57	10610.02	1792.7	20855.58	-364.451
SRR1151148	SRR1151148.protein.faa	347.7	204.5	0.0254	1879	Limosilactobacillus antri	DSM 16041	1.700244	1969.8	13688.98	8051.181	1735.8	21740.16	5637.795
SRR1151152	SRR1151152.protein.faa	693.9	612.8	0.06123	1767	Limosilactobacillus coleohominis	DSM 14060	1.132343	1897.9	11332.68	10008.17	1685.9	21340.85	1324.514
SRR1151138	SRR1151138.protein.faa	323.3	530.9	0.03231	1447	Limosilactobacillus equigenerosi	DSM 18793	0.608966	1752.6	10006.19	16431.45	1654.6	26437.64	-6425.26
ERR203996	ERR203996.protein.faa	190.1	237.4	0.02524	1600	Limosilactobacillus fermentum	ATCC 14931	0.800758	1789.3	7531.696	9405.705	1647.3	16937.4	-1874.01
ERR387529	ERR387529.protein.faa	235.8	362.1	0.03637	1543	Limosilactobacillus frumenti	DSM 13145	0.651201	1802.3	6483.365	9956.008	1669.3	16439.37	-3472.64
GCA_001434365.	GCA_001434365.1.protein.faa	292.5	312.1	0.02816	1635	Limosilactobacillus gastricus	DSM 16045	0.9372	1838.6	10387.07	11083.1	1654.6	21470.17	-696.023
GCA_001293735.	GCA_001293735.1.protein.faa	212.9	395.2	0.03529	1465	Limosilactobacillus gorillae	KZ01	0.538715	1750.3	6032.871	11198.64	1647.3	17231.51	-5165.77
ERR387499	ERR387499.protein.faa	793.6	727.2	0.07039	1891	Limosilactobacillus ingluviei	DSM 15946	1.091309	2019.6	11274.33	10331.01	1824.6	21605.34	943.3158
SRR1151164	SRR1151164.protein.faa	767.4	806.9	0.07659	1859	Limosilactobacillus mucosae	DSM 13345	0.951047	2083.5	10019.58	10535.32	1898.5	20554.9	-515.733
GCA_001434465.	GCA_001434465.1.protein.faa	85.49	96.31	0.004733	1725	Limosilactobacillus oris	DSM 4864	0.887654	1935.82	18062.54	20348.62	1735.82	38411.16	-2286.08
SRR1151250	SRR1151250.protein.faa	217.7	298.6	0.02646	1660	Limosilactobacillus panis	DSM 6035	0.729069	1967.9	8227.513	11284.96	1740.9	19512.47	-3057.45
SRR1151252	SRR1151252.protein.faa	222.8	512.5	0.04001	1466	Limosilactobacillus pontis	DSM 8475	0.434732	1903.7	5568.608	12809.3	1755.7	18377.91	-7240.69
GCA_000010005.	GCA_000010005.1.protein.faa	425.6	470.3	0.0466	1745	Limosilactobacillus reuteri	JCM 1112	0.904954	2064.7	9133.047	10092.27	1789.7	19225.32	-959.227

GCA_001437055.	GCA_001437055.1.protein.faa	338.9	651.9	0.05191	1373	Limosilactobacillus secaliphilus	DSM 17896	0.519865	1816	6528.607	12558.27	1686	19086.88	-6029.67
SRR1151175	SRR1151175.protein.faa	304.5	377.8	0.0417	1596	Limosilactobacillus vaginalis	DSM 5837	0.805982	1806.3	7302.158	9059.952	1669.3	16362.11	-1757.79
ERR387493	ERR387493.protein.faa	93.45	125.1	0.001389	1993	Liquorilactobacillus aquaticus	DSM 21051	0.747002	2241.65	67278.62	90064.79	2024.65	157343.4	-22786.2
SRR1151197	SRR1151197.protein.faa	120.9	409.7	0.01697	1719	Liquorilactobacillus cacaonum	DSM 21116	0.295094	2111.8	7124.337	24142.6	2007.8	31266.94	-17018.3
ERR387459	ERR387459.protein.faa	155.9	232.2	0.006388	1923	Liquorilactobacillus capillatus	DSM 19910	0.671404	2183.3	24405.13	36349.41	1999.3	60754.54	-11944.3
SRR1151207	SRR1151207.protein.faa	337.8	392	0.03296	2128	Liquorilactobacillus ghanensis	DSM 18630	0.861735	2470.2	10248.79	11893.2	2182.2	22141.99	-1644.42
ERR387525	ERR387525.protein.faa	190.2	246.6	0.00453	2037	Liquorilactobacillus hordei	DSM 19519	0.77129	2295.4	41986.75	54437.09	2093.4	96423.84	-12450.3
SRR1151218	SRR1151218.protein.faa	315.8	148.2	0.004053	2261	Liquorilactobacillus mali	DSM 20444	2.130904	2391.4	77917.59	36565.51	2093.4	114483.1	41352.08
ERR387505	ERR387505.protein.faa	353.5	390.7	0.03627	2145	Liquorilactobacillus nagelii	DSM 13675	0.904786	2446.2	9746.347	10771.99	2182.2	20518.33	-1025.64
SRR1151264	SRR1151264.protein.faa	133.4	391.8	0.01734	1812	Liquorilactobacillus oeni	DSM 19972	0.34048	2234.4	7693.195	22595.16	2070.4	30288.35	-14902
ERR433495	ERR433495.protein.faa	330.6	260	0.02578	2141	Liquorilactobacillus satsumensis	DSM 16230	1.271538	2370.4	12823.89	10085.34	2070.4	22909.23	2738.557
ERR485115	ERR485115.protein.faa	176.8	133.1	0.006495	2043	Liquorilactobacillus sucicola	DSM 21376	1.328325	2221.3	27220.94	20492.69	1999.3	47713.63	6728.253
ERR387550	ERR387550.protein.faa	303.1	141.8	0.007192	2186	Liquorilactobacillus uvarum	DSM 19971	2.137518	2363.7	42144.05	19716.35	2024.7	61860.4	22427.7
GCA_000255495.	GCA_000255495.2.protein.faa	565.4	901	0.07325	1878	Liquorilactobacillus vini	DSM 20605	0.627525	2441.6	7718.771	12300.34	2213.6	20019.11	-4581.57
2														
SRR1151124	SRR1151124.protein.faa	1531	1347	0.1157	2624	Loigolactobacillus bifermentans	DSM 20003	1.1366	2865	13232.5	11642.18	2440	24874.68	1590.32
GCA_001433765.	GCA_001433765.1.protein.faa	193.2	274.2	0.003227	2269	Loigolactobacillus coryniformis ssp. coryniformis	DSM 20001	0.704595	2660	59869.85	84970.56	2350	144840.4	-25100.7
1														
SRR1151133	SRR1151133.protein.faa	101.7	173.6	0.001064	2278	Loigolactobacillus coryniformis ssp. torquens	DSM 20004	0.585829	2612.9	95582.71	163157.9	2349.9	258740.6	-67575.2
ERR433491	ERR433491.protein.faa	1756	2111	0.1809	2017	Loigolactobacillus rennini	DSM 20253	0.831833	2574	9707.02	11669.43	2372	21376.45	-1962.41
ERR387532	ERR387532.protein.faa	1438	2045	0.1509	1829	Paralactobacillus selangorensis	ATCC BAA 66	0.703178	2671	9529.49	13552.02	2436	23081.51	-4022.53
GCA_000829395.	GCA_000829395.1.protein.faa	341.5	234.4	0.02745	2020	Paucilactobacillus hokkaidonensis	LOOC260	1.456911	2220.9	12440.8	8539.162	1912.9	20979.96	3901.639
1														
SRR1151187	SRR1151187.protein.faa	420.5	910.6	0.06001	1597	Paucilactobacillus oligofermentans	DSM 15707	0.461783	2212.1	7007.165	15174.14	2087.1	22181.3	-8166.97
GCA_001434475.	GCA_001434475.1.protein.faa	211.1	163.5	0.005677	2110	Paucilactobacillus suebicus	DSM 5007	1.291131	2447.4	37185.13	28800.42	2062.4	65985.56	8384.71
1														
ERR387501	ERR387501.protein.faa	292.9	267.3	0.01151	2088	Paucilactobacillus vaccinostercus	DSM 20634	1.095773	2414.4	25447.44	23223.28	2062.4	48670.72	2224.153
GCA_000876205.	GCA_000876205.1.protein.faa	163.9	446.8	0.02433	1630	Paucilactobacillus wasatchensis	WDC04	0.366831	2089.9	6736.539	18364.16	1912.9	25100.7	-11627.6
1														
SRR896433	SRR896433.protein.faa	347.6	303.8	0.02393	2538	Schleiferilactobacillus harbinensis	DSM 16991	1.144174	2987.2	14525.7	12695.36	2494.2	27221.06	1830.338
SRR1151227	SRR1151227.protein.faa	579.9	475.1	0.04373	2592	Schleiferilactobacillus perolens	DSM 12744	1.220585	3001.2	13260.92	10864.4	2487.2	24125.31	2396.524
GCA_000469325.	GCA_000469325.1.protein.faa	696.1	650.3	0.05847	2540	Schleiferilactobacillus shenzhenensis	LY-73	1.070429	2929.2	11905.25	11121.94	2494.2	23027.19	783.3077
1														
GCA_001435975.	GCA_001435975.1.protein.faa	178.1	123.2	0.002381	2591	Secundilactobacillus collinoides	DSM 20515	1.445617	3169.1	74800.5	51742.97	2536.1	126543.5	23057.54
1														

SRR1151214	SRR1151214.protein.faa	502.3	668.1	0.04856	2209	Secundilactobacillus kimchicus	JCM 15530	0.751834	2676.8	10343.9	13758.24	2374.8	24102.14	-3414.33
SRR1151262	SRR1151262.protein.faa	359.3	474.5	0.04662	1762	Secundilactobacillus malefermentans	DSM 5705	0.757218	2128.2	7706.993	10178.04	1877.2	17885.03	-2471.04
ERR433478	ERR433478.protein.faa	44.38	179.8	0.000693	2086	Secundilactobacillus odoratitofui	DSM 19909	0.24683	2538.42	64040.4	259451.7	2221.42	323492.1	-195411
GCA_000740055.	GCA_000740055.1.protein.faa	184.6	358.8	0.02252	1703	Secundilactobacillus oryzae	SG293	0.514493	2033.2	8197.158	15932.5	1877.2	24129.66	-7735.35
1														
SRR1151134	SRR1151134.protein.faa	356.7	289.8	0.006206	2603	Secundilactobacillus paracollinoides	DSM 15502	1.230849	3147.1	57476.64	46696.75	2536.1	104173.4	10779.89
GCA_001313225.	GCA_001313225.1.protein.faa	1146	454.6	0.02671	3016	Secundilactobacillus silagei	JCM 19001	2.520897	2908.6	42905.28	17019.84	2324.6	59925.12	25885.44
1														
ERR387542	ERR387542.protein.faa	592.3	252.7	0.01219	2561	Secundilactobacillus similis	DSM 23365	2.343886	2744.4	48589.01	20730.11	2221.4	69319.11	27858.9