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Abstract 
Viruses are the most numerous biological entity, existing in all environments and infecting all 

cellular organisms. Compared with cellular life, the evolution and origin of viruses are poorly 

understood; viruses are enormously diverse, and most lack sequence similarity to cellular genes. 

To uncover viral sequences without relying on either reference viral sequences from databases or 

marker genes that characterize specific viral taxa, we developed an analysis pipeline for virus 

inference based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR 

is a prokaryotic nucleic acid restriction system that stores the memory of previous exposure. Our 

protocol can infer CRISPR-targeted sequences, including viruses, plasmids, and previously 

uncharacterized elements, and predict their hosts using unassembled short-read metagenomic 

sequencing data. By analyzing human gut metagenomic data, we extracted 11,391 terminally 

redundant CRISPR-targeted sequences, which are likely complete circular genomes. The 

sequences included 2,154 tailed-phage genomes, together with 257 complete crAssphage genomes, 

11 genomes larger than 200 kilobases, 766 genomes of Microviridae species, 56 genomes of 

Inoviridae species, and 95 previously uncharacterized circular small genomes that have no reliably 

predicted protein-coding gene. We predicted the host(s) of approximately 70% of the discovered 

genomes at the taxonomic level of phylum by linking protospacers to taxonomically assigned 

CRISPR direct repeats. We also investigated CRISPR-targeted RNA sequences. Notably, we 

found that the Picobirnaviridae species are targeted by CRISPR. The phylogenetic analysis 

indicated that this viral lineage is evolving rapidly, suggesting that this virus might be escaping 

from the CRISPR targeting.  
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Chapter 1 

Development of herv-tfbs.com; a 

database for human endogenous 

retroviruses. 

1.1 Introduction 
My first scientific work was the development of a human endogenous retrovirus database [1]. 

Under the guidance of former Ph.D. student Ito, we developed a web service that provides 

information and statistics about the endogenous retroviral elements found in the human genome. 

This database was named "herv-tfbs.com" and was designed to be interactive and responsive 

(Figure 1-1). 
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Figure 1-1. The screenshot of herv-tfbs.com. The web page can be accessed from regular 

browsers with the URL herv-tfbs.com. 

The server side of this service was implemented with a MySQL relational database 

server and a Twisted web server running on Amazon Web Service (AWS). The browser side was 

implemented with jQuery and Plotly written with JavaScript language. The relational tables in the 

MySQL server were implemented by Jumpei, while web-server scripts and browser scripts were 

implemented by the author. The service was designed to minimize loading waits by using 

JavaScript dynamic query and HTML update mechanisms; users are allowed to interact with data 

and charts without changing or reloading a page. This database has been accessed from numerous 

countries around the world, suggesting our database implementation was highly successful. 
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1.2 Results 

The access count of herv-tfbs.com is increasing 

The database was published in December 2016. Unfortunately, we lost most of the log files before 

February 2020. After March 2020, herv-tfbs.com has been accessed from 34,825 unique IP 

addresses. The total access count from unique IP addresses was 77,678. The access count per 

month is still growing (Figure 1-1). The bulk dataset was downloaded 192 times from 141unique 

IP addresses. 

 

Figure 1-2. Monthly unique access counts of herv-tfbs.com. We counted the number of unique 

accesses based on IP address each day and summed them per month. Access from the AWS 
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maintenance bot was removed from the count. Unfortunately, the access logs between February 

2017 and February 2020 were lost. 

 The median visit count was one, and the mean visit count was 2.23. 27,166 unique IP 

addresses visited the database only once. 942 unique IP addresses visited the database more than 

10 times, and 481 unique IP addresses visited more than 20 times, suggesting there are several 

hundred “core” users who frequently visit the database. 

Herv-tfbs.com is globally accessed 

The herv-tfbs.com was accessed from 164 countries. The most frequent access was from the 

United States followed by China and Russia (Figure 1-2). 
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Figure 1-3. Access counts from each country. Again, we counted the number of unique accesses 

based on IP address each day. The countries were derived from IP addresses using the web service 

ip-api.com. 

1.2 Conclusion 
The herv-tfbs.com has been accessed globally and still increasing its access frequency. While the 

total access count is still increasing, the majority of users visited the database only once. Based on 

the visit count and the count of bulk downloads, there seem to be around two to five hundred core 

users exist. These users likely work in the field of virology and human genetics and found our 

database could be useful for their research. Overall, we conclude that the database attracted the 

attention of scientists and provides information valuable to them. We continue listening to the 

feedback to improve the database in the future.  
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Chapter 2 

Comprehensive Discovery of CRISPR-

targeted Terminally Redundant DNA 

Sequences in the Human Gut 

Metagenomes 

2.1 Introduction 
Viruses are the most abundant and diverse genetic entities on Earth [2]. Uncovering such enormous 

diversity is the key to understanding the origins and evolution of viruses and is now considered an 

important milestone in the virology [3, 4]. To collect diverse viral genomes, metagenomics has 

been utilized in numerous studies. From a given environmental sample, nucleic acids are extracted 

and sequenced. These sequences presumably include all genetic information of cellular and non-

cellular entities existing in the sample. Such collections of genetic information are called 

metagenomes [5]. From them, one can computationally filter and extract genetic information of 

viruses that could not be sequenced otherwise, unless there is an established cultivation system 

which is very difficult or impossible in most cases. Such approaches often referred to as “viral 

mining”, have been applied to diverse environmental samples such as soil, seawater, and human 

feces, and led to extract tens of thousands of novel viral genomes. These notable works include 
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major discoveries such as the identification of crAssphages; a most abundant and prevalent 

bacteriophage lineage found in human feces [6].  

Viral mining is a computational method to extract viral genomic sequences from 

metagenomes. A commonly used criterion to filter viral genomes from the metagenomic sequences 

is the presence of the viral signature genes. These genes include various types of capsids, RNA-

dependent RNA polymerase, and DNA packaging genes [7–9]. From a given metagenomic contig, 

predicted amino acid sequences are searched to reference viral protein databases and if a contig is 

enriched with the viral signatures genes and without cellular genes such as ribosomal RNAs, one 

could argue that the contig is positively viral. This implementation has proven highly successful 

by increasing the known viral genome diversity by orders of magnitudes throughout the multiple 

studies [9, 10]. However, such a protein homology-based method highly relies on the availability 

of well-annotated viral protein sequences in the database, and arguably reference viral genomes 

recorded in the database are highly biased. For example, there are currently 14,073 Caudovirales 

species, also known as tailed-phages, genomes are recorded in the NCBI database. In contrast, 

only 90 Tubularvirales, also known as filamentous phages, species genomes are recorded in the 

NCBI database. This discrepancy is even notable for RNA bacteriophages. Currently, there are 

only two RNA bacteriophage families; Cystoviridae and Leviviridae, which comprise 21 species 

genomes, are recorded in the NCBI database. Several surveys indicated that these recorded viral 

genomes are only a portion of the entire viral diversity on Earth. Therefore, the viral mining 

methods that relied on reference genomes might fail to capture entire viral diversity, especially 

least characterized viral lineages such as filamentous or RNA phages. Furthermore, even for the 

well-characterized viral clade such as Caudovirales, it was proven that the detection of viral 

signature genes such as capsid can be challenging due to their extreme sequence diversity. For 
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example, the identification of the capsid gene of crAssphage has taken 4 years from the first 

publication until its experimental confirmation [11, 12]. 

Thus, we sought to develop a nonreference-based analytical pipeline to detect viral 

sequences from metagenomes; however, we were tasked with the question “What information 

could be used for this purpose?” The underlying biology of the clustered regularly interspaced 

short palindromic repeats (CRISPR) system, a prokaryotic form of adaptive immunological 

memory [13], provides a potential resource in this context. After viral infection or horizontal 

plasmid transfer, some archaeal and bacterial cells incorporate fragments of “nonself” genetic 

materials in specialized genomic loci between CRISPR direct repeats (DRs). The incorporated 

sequences, called “spacers,” are identical to part of the previously infecting mobile genetic element. 

Thus, the genetic information encoded in CRISPR spacers can be inferred as likely viral and 

distinguishable from the genetic material of the organism encoding CRISPR, which is most often 

cellular, but potentially also viral [8, 14]. 

CRISPR spacers have been used to detect viral genomes [15–19] and predict viral hosts 

[20, 21]. They have previously been extracted from assembled bacterial genomes to assess 

CRISPR “dark matter”, revealing that 80%–90% of identifiable material matches known viral 

genomes [18, 19]. In the current study, we extended this conceptual approach to the enormous 

amount of unassembled short-read metagenomic data. CRISPR repeats are relatively easily 

identifiable, particularly compared with unknown viral sequences. This trait allows the search of 

massive metagenomic datasets for reads comprised in part as CRISPR DR sequences; in turn, 

unknown sequences inferred as CRISPR spacers can be extracted directly from the raw reads [22, 

23]. 
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By analyzing human gut metagenome reads and the contigs assembled from them, we 

successfully extracted 11,391 terminally redundant (TR) CRISPR-targeted sequences ranging 

from 894 to 292,414 bases. These sequences are expected to be complete or near-complete circular 

genomes that can be linked to their CRISPR-targeting hosts. The discovered sequences include 

2,154 tailed-phage genomes, together with 257 complete crAssphage genomes [6, 11], 11 genomes 

larger than 200 kilobases (kb), 766 Microviridae genomes, 56 Inoviridae genomes, 5,658 plasmid-

like genomes, and 2,757 uncharacterized genomes. Although the majority of the discovered 

sequences that were larger than 20 kb were mostly characterized by viral or plasmid genomes, a 

substantial portion of sequences smaller than 20 kb was not recorded in either plasmid or viral 

databases. Furthermore, some previously uncharacterized small genomes had notably low coding 

ratios, which indicates that these elements might have unknown non-coding genetic features. 

These results demonstrate that our pipeline can discover CRISPR-targeted mobile genetic elements 

(MGEs) either previously characterized or uncharacterized. 

2.2 Results 

Extraction of CRISPR-targeted sequences 
We analyzed human gut metagenomes, as they serve as an “ecosystem” with the most abundant 

metagenomic data available. We downloaded 11,817 human gut metagenome datasets equivalent 

to 50.7 Tb from the European Nucleotide Archive FTP server. FASTQ files were preprocessed 

and assembled to 180,068,349 contigs comprising 767.7 Gb of data (Supplementary Table 2-1). 

We discovered 11,223 unique CRISPR DRs from the assembled contigs that were used to extract 

CRISPR spacers from raw reads, resulting in 1,969,721 unique CRISPR spacers (Supplementary 



 10 

Figure 2-1 and Supplementary Data 2-1). These spacers were then used as queries to identify 

candidate protospacers (i.e., contigs containing the spacer sequence, not within a CRISPR locus). 

Spacers were mapped to CRISPR masked contigs using a minimum sequence identity threshold 

of 93%. We chose this identity threshold to capture the escaped mutants, i.e., viruses that escaped 

CRISPR targeting by introducing mutations to the protospacer loci. To increase specificity, we 

verified that the 5′- and 3′-adjacent sequences of spacer-mapped positions were not similar to each 

other or the spacer-associated DR. A total of 164,590,387 candidate protospacer loci, attributed to 

1,114,947 unique spacers (56.6% of all unique spacers), were identified (Supplementary Data 2-

1). This is a substantially higher discovery rate than that reported previously (~7% [18]) in a study 

that used National Center for Biotechnology Information (NCBI) nucleotide sequences for 

protospacer discovery. Although the genuine protospacers from a viral genome are expected to be 

colocalized in a relatively small region, the false-positive protospacers are expected to be scattered 

across the metagenome contigs randomly. To further reduce the false-positive hits, spacers were 

clustered based on protospacer co-occurrence and used to extract contigs targeted by more than 

30% of members of a spacer cluster (Supplementary Figure 2-2). This process effectively removes 

false-positive protospacers that are randomly distributed across the assembled contigs. Finally, 

764,883 gapless CRISPR-targeted sequences (15.9 Gb) were extracted. Among them, 11,391 

unique sequences were identified as TR [24]; we expected that they were initially complete or 

near-complete circular MGEs. The size of the CRISPR-targeted TR sequences ranged from 894 to 

292,414 bases (Supplementary Table 2-2 and Supplementary Data 2-1). 

We then investigated protein-coding genes encoded in CRISPR-targeted sequences 

and identified 240,369 protein-coding genes among all unique TR sequences. Protein sequences 

were clustered based on a 30% sequence identity threshold, resulting in 31,204 clusters. Each 
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representative sequence was used as a query for three jackhmmer iterations, to build Hidden 

Markov models (HMM), which were then used to search the Protein Data Bank (PDB) [25]. 

Finally, 10,641 representative sequences, including 110,386 predicted protein sequences, were 

annotated (HHsearch probability > 80 and E-value < 1e–3) (S1 Data). 

Classification of TR sequences 

The evaluation of TR sequence length revealed a multimodal distribution with a distinct trough at 

20 kb (Figure 2-1A). For reference, we termed the 8837 TR sequences that were shorter than 20 

kb as “small” and the 2554 TR sequences that were longer than 20 kb as “large.” This simple 

classification was previously used to infer capsid morphology [26, 27]. Among the large TR 

sequences, 2047 (80.1%) encoded HK97 fold capsid proteins, a definitive gene of Duplodnaviria 

[28]. Phage portal proteins were encoded by 2163 large TR sequences (84.7%), indicating that 

most large TR sequences are from Caudovirales, also known as tailed phages (Figure 2-1B). 

Among the small TR sequences, 766 (8.7%) encoded Microviridae major capsid proteins (MCPs) 

[29], and 56 (0.6%) encoded Inoviridae major coat proteins. We propose that this portion of small 

TR sequences are likely viruses with a non-tailed morphology (Figure 2-1B) [30, 31]. Finally, 107 

(1.2%) small TR sequences encoded HK97 fold capsid proteins. We also sought to identify any 

TR sequences encoding vertical jelly roll fold (vJR) capsids, a definitive gene of Varidnaviria 

[32]; however, we failed to find a significant hit using our search criteria. 

We considered that a fraction of the TR sequences that lacked detectable capsid genes 

included plasmids. Therefore, we examined whether these TR sequences encode proteins that are 

characteristic of plasmids. We identified 386 large TR sequences (15.1%) and 957 small TR 

sequences (10.8%) encoding plasmid partitioning proteins A, B, or M. Furthermore, 187 large 
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(7.3%) and 4554 small (51.5%) TR sequences encoded MoBM relaxase, a protein that is required 

for initiating conjugation. Thus, 391 large (15.3%) and 5267 small (59.6%) TR sequences are 

likely plasmids or have life cycles similar to that of plasmids. 

To scrutinize other genomic features, such as repeats and noncoding regions, the kmer singleton 

coverage and coding ratio for each classified and unclassified TR sequence were investigated 

(Figure 2-1C). Singleton coverage is the number of k-mer singletons from a given contig divided 

by its length; the value approaches 1 if the sequence does not contain repeats. For the large TR 

sequences, both classified and unclassified sequences had singleton coverages and coding ratios 

close to 1, indicating that these sequences are densely occupied by protein-coding genes and have 

few repeats. Conversely, plasmid-like and unclassified small TR sequences had a wider 

distribution of singleton coverages and coding ratios, indicating that some of these sequences may 

have a large proportion of noncoding regions and repeats. 

 

Figure 2-1. Classification and genetic features of CRISPR-targeted TR sequences. (A) 

Length distribution of TR sequences. We used the HK97 capsid and portal proteins as tailed-
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phage signature genes. The dotted line at 20 kb represents an arbitrary cut-off between small and 

large sequences. Sequences longer than 100 kb are shown in the inset. (B) Results of the 

classification of TR sequences. Sequences encoding a detectable capsid gene were classified as a 

viral taxon according to capsid type, as follows. Caudovirales: HK97 fold capsid; Inoviridae: 

Inoviridae MCP; and Microviridae: Microviridae MCP. The capsid-less TR sequences with ParA, 

ParB, ParM, and/or MoBM were classified as Plasmid-like. The remaining sequences were labeled 

as “Unclassified.” (C) Distribution of singleton coverage and coding ratio. Selected k-values were 

higher in large TR sequences, to avoid doubletons by chance. 

Predicted CRISPR-targeting hosts of TR sequences 

As our approach uses CRISPR spacers to extract CRISPR-targeted sequences, we hypothesized 

that the relationship between a virus and the targeted host could be resolved for the majority of TR 

sequences. CRISPR DR sequences were searched on RefSeq genomes and taxonomically assigned. 

CRISPR DRs are shared between distant species through horizontal gene transfer (HGT) [33]. To 

prevent misassignment of targeting host because of shared DRs, we did not taxonomically assign 

DRs that were shared between different lineages in a given taxonomic level, and those DRs did 

not contribute to the targeting host prediction. Based on counts of protospacers associated with 

taxonomically assigned DRs, 7937 TR sequences (69.7%) were resolved to a targeting host at the 

phylum level (Figure 2-2A, Supplementary Table 2-2, and Supplementary Figure 2-3), and 6083 

TR sequences (53.4%) were resolved to a targeting host at the order level (Supplementary Figure 

2-4 and Supplementary Table 2-2). The most frequent host was Firmicutes, followed by 

Bacteroidetes and Actinobacteria. Notably, these are the most common bacteria in the human 

intestine [34]. In addition, 1418 TR sequences (12.5%) had putative host ambiguity between 

multiple phyla. Although some of these TR sequences were associated exclusively with monoderm 
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or diderm phyla, there was exceptional targeting host ambiguity between Firmicutes and 

Verrucomicrobia, which crosses the monoderm–diderm boundary (Supplementary Figure 2-5). 
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Figure 2-2. Predicted targeting hosts of CRISPR-targeted TR sequences. (A) The targeting 

host composition of TR sequences. Hosts were predicted by mapping CRISPR DR sequences to 

the RefSeq database. Sequences containing ≥10 protospacer loci but less than 90% associated DR 

taxa exclusiveness were classified as ambiguous targeting hosts. When ≥10 protospacers could not 

be assigned to a taxon, the predicted targeting host was denoted as not available (NA). (B) 

Predicted targeting host distribution according to GC content. The dotted line indicates the low- 

and high-GC content boundary, at 55%. (C) Bayesian phylogeny of Microviridae major capsid 

proteins. A total of 159 representative major capsid protein sequences from this study and 43 

RefSeq sequences were used for analysis. Taxa without a name denote the Microviridae species 

from this study, and taxa with text denote Microviridae species from RefSeq. Taxa were annotated 

based on predicted targeting hosts. The phi X174 clade was selected as the outgroup. 

Firmicutes–Verrucomicrobia multiple infecting viruses are 

suspicious 

These curious results prompted us to verify whether these sequences are indeed targeted to both 

Firmicutes and Verrucomicrobia. We focused on one of these sequences, dubbed amb-1 (note in 

S2 Table), which is 54,793 bases long and encodes an HK97 fold capsid and portal protein genes, 

suggesting it is likely a tailed phage. We discovered 676 protospacers in amb-1, 194 of which were 

associated with the DR sequence “CGTCGCACTCCGCAAGGAGTGCGTGGATTGAAAC” 

(DR1), whereas the remaining 422 were associated with the DR sequence 

“GTCGCTCTCCGCAAGGAGAGCGTGGATAGAAATG” (DR2). DR1 and DR2 pairwise 

alignment yielded only four mismatches (82.9% identity). Our criteria define this level of sequence 

identity as sufficiently low for separate taxonomic assignments. DR1 aligned perfectly to the 

Clostridia genomes NZ_PSQF01000044 and NZ_NFID01000002.1, and DR2 aligned perfectly to 
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Akkermansia muciniphila genomes. The DR sequence similarity could be explained by the HGT 

of the CRISPR–Cas system between these species. We found a phage portal and tail gene from the 

adjacent region of the DR2-aligned positions in CP027011.1, indicating that the CRISPR–Cas 

system associated with DR2 might have been recently introduced to the Akkermansia muciniphila 

genome by phage integration. The possibility of HGT limits the utility of the DR–host connection 

for inferring the actual targeting host of amb-1. We searched for signs of HGT between amb-1 and 

its genuine host, to complement the DR–host connection-based method. We used amb-1 to query 

the nr database and found that it partially aligned with the Oscillibacter genome AP023420.1 

(query coverage of 6%, with 67.41% identity), but no significant hit against Akkermansia 

muciniphila was found. Thus, there is no substantial evidence to suggest that amb-1 is being 

targeted by multiple phyla. Although we focused on one TR sequence in this validation, the signs 

of phage integration and horizontal transfer of CRISPR–Cas between Clostridia and Akkermansia 

muciniphila suggest that the host–DR connection can not be used to infer genuine targeting hosts, 

particularly in between these species. 

Predicted targeting hosts above the taxonomic level of order are 

consistent 

As we showed on an ad hoc basis, the CRISPR–Cas system undergoes frequent HGT between 

species. Because of unrecorded HGTs that could have occurred very recently, the DR-to-RefSeq 

alignment method might cause misinterpretations in the prediction of targeting hosts. Therefore, 

the TR sequences assigned to a single targeting host taxon still require further assessment. To 

complement DR-to-RefSeq–based host prediction, we used the tRNA genes [35] encoded in TR 

sequences. We found that 552 TR sequences encoded a total of 1124 tRNA genes. These tRNA 

gene sequences were searched for RefSeq bacterial genomes (95% minimum query coverage, with 
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95% minimum sequence identity); 288 tRNA gene sequences were aligned to 82 bacterial species 

genomes, connecting 97 TR sequences to potential hosts (S1 Data). The comparison of the tRNA-

based predicted hosts with the DR-to-RefSeq–based predicted targeting hosts revealed a 93% 

agreement at the taxonomic level of order and more at higher taxonomic levels (Supplementary 

Figure 2-6A). The predicted host agreement dropped to 75% at the genus taxonomic level, 

suggesting that the DR-to-RefSeq–based method is less reliable for taxonomic levels lower than 

order. 

During the review of this manuscript, a study of an enormous gut virome was published 

[36]. The authors of that study developed the Metagenomic Gut Virome (MGV) catalog, in which 

the viral genomes were assigned to predicted hosts based on CRISPR spacer alignment. Unlike 

our method, their CRISPR spacers were extracted from the taxonomically assigned metagenomic 

contigs recorded in the Unified Human Gastrointestinal Genome database. Thus, we considered 

that their predicted hosts could be used to assess our results. We found that 2180 TR sequences 

from our study were also recorded in MGV (S1 Data). For this sequence comparison, we used 

stricter criteria (85% query coverage, with 95% minimum sequence identity), to avoid host 

ambiguity between the relatively distant viral species. The predicted hosts were compared for each 

shared sequence between the two studies, and we found 95% agreement at the taxonomic level of 

order, and more at higher taxonomic levels (Supplementary Figure 2-6B). 

Actinobacteria is the corresponding targeting host of high-GC-

content TR sequences 

We calculated the GC content [37] of the TR sequences, to determine whether these correspond to 

the GC content of the targeting host predicted by the DR–host connection-based method (Figure 
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2-2B). Among the 2050 high-GC (GC% >55%) TR sequences, 1109 (54%) and 249 (12.1%) were 

predicted to be targeted by Actinobacteria and Firmicutes, respectively, and the targeting host was 

undetermined for 222 TR sequences (10.8%). The large fraction of high-GC TR sequences that 

were predicted to be targeted by Actinobacteria likely indicates the genomic adaption of parasitic 

genetic elements that infect and routinely become targeted by the CRISPR systems of high-GC 

Gram-positive bacteria (e.g., Actinobacteria). 

Microviridae species encountered a cross-phylum host-switching 

event 

Host range within a viral lineage was further assessed by phylogenetic analysis of the TR 

sequences that were determined to represent Microviridae species. The predicted targeting hosts 

of putative Microviridae species from our study were Bacteroides, Firmicutes, and Proteobacteria 

(S2 Table), indicating a broad host range for Microviridae species. The molecular phylogeny of 

the Microviridae major capsid protein segregated sequences based on their targeting host (Figure 

2-2C). Interestingly, most of the known Escherichia coli-infecting viral species (such as phiX174) 

and other Proteobacteria-infecting species (such as phi MH2K [38]) were used as a reference in 

this phylogeny were split into two clades, and the clade containing the latter was within a clade of 

TR sequences targeted by Firmicutes. The nested phylogenetic structure of capsids encoded by 

TR sequences that were predicted to represent Microviridae species may indicate that host 

switching, a critically important topic in viral evolution [39, 40], occurred within the viral lineage. 

CRISPR-targeted noncoding elements 

Intrigued by the lower coding ratio detected in some unclassified small TR sequences, we selected 

two representative sequences with a notably low coding ratio (<0.3) for further manual inspection. 
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These two sequences had distinguishable sequence similarity and GC content. For simplicity, we 

dubbed them circ-1 and circ-2 (note in S2 Table). Circ-1 represented 84 small TR sequences (S1 

Data) with a GC content of 37.4%, a length of 1356 bases, and 23 unique protospacers 

(Supplementary Figure 2-7A). Circ-2 represented 11 small TR sequences (S1 Data) with a GC 

content of 62.6%, a length of 1872 bases, and nine unique protospacers (Supplementary Figure 2-

8). The genome comparisons indicated that circ-1 and circ-2 were nearly complete sequences of 

circular or tandem genomes (Supplementary Figure 2-9). Next, we searched for a conserved gene 

among similar genomes. From circ-1 and its similar sequences, no consistently shared gene was 

predicted. Circ-2 and its similar sequences shared one coding gene that was 114 codons in length; 

however, the protein sequence showed no significant hit in the PDB database (an ORFan). Thus, 

circ-1 and circ-2 seem to be CRISPR-targeted DNA elements without a reliably detected or 

annotated coding gene. 

The predicted targeting host of circ-1 was Veillonella, a common gut Firmicutes, based on 

the connection between the CRISPR DR and the associated protospacers. The DR sequence was 

aligned to the Veillonella genomes LR778174.1 and AP022321.1 (Supplementary Figure 2-7C). 

The DR-aligned loci encode Cas9, Cas1, and Cas2. Therefore, the spacers aligned to circ-1 are 

likely derived from genuine Class 2 CRISPR–Cas systems [33, 41] encoded in the Veillonella 

genomes. The protospacer adjacent motif (PAM) was TTTN (Supplementary Figure 2-7B), as 

calculated from the adjacent sequences of protospacers on circ-1. Twelve protospacers on circ-1 

were adjacent to this motif (Supplementary Figure 2-7A), indicating that the CRISPR–Cas system 

restricts this DNA element. The GC content of LR778174.1 was 38.8%, which was close to the 

circ-1 GC content. Moreover, circ-1 was not aligned to any bacterial genomes, including 
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Veillonella, indicating that this element is not encoded in a cellular genome. We concluded that 

circ-1 is likely an extrachromosomal element restricted by the Veillonella CRISPR–Cas system. 

We could not identify the circ-2 targeting host because the DR sequence yielded no 

significant hits, and circ-2 itself also had no significant hits. However, the high-GC content of circ-

2 indicates that its possible host is Actinobacteria. 

Comparison of CRISPR-targeted TR sequences with available viral 

and plasmid sequences 

The TR sequences identified in this study were compared with sequences included in virus and 

plasmid genome databases, including RefSeq virus [42], RefSeq plasmid, IMG/VR [43, 44], and 

GVD [9] (Figure 2-3). IMG/VR is the largest database of uncultivated viral genomes. GVD is a 

database of viral genomes that were discovered from human gut metagenome datasets using 

VirSorter and VirFinder, both of which rely on protein homology, which complements our 

approach to the discovery of viral genomes. Therefore, we consider that these databases are 

appropriate to validate our results. 

Among the 2554 large TR sequences identified here, we found that 1726 TR sequences 

(67.6%) were represented in RefSeq virus, IMG/VR, or GVD (Figure 2-3A) using a threshold of 

85% sequence identity with at least a 75% aligned fraction of the query sequence to a unique 

subject sequence. These sequences included 257 crAssphage genomes ranging in size from 92,182 

to 100,327 bases (average, 96,984.8 bases). Members of Bacteroidales were predicted as targeting 

hosts of crAssphages in this study, which is consistent with those hosts reported to propagate 

crAssphage in previous studies [6, 11]. We also found 154 large TR sequences (6%) listed in 

RefSeq plasmid, seven of which were also listed in the IMG/VR database. Thus, we determined 
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that there is an adequate classification between plasmids and viruses for large genomes. Notably, 

we discovered 11 TR sequences larger than 200 kb, two of which corresponded to recently reported 

“huge phage” genomes [8] (note in S2 Table); moreover, five of these very large TR sequences 

encoded HK97 fold capsid proteins. Finally, 681 large TR sequences (26.7%) did not yield 

database hits using our criteria. We concluded that many of the large TR sequences are already 

represented in virus or plasmid databases, except for those greater than 200 kb, which were only 

recently reported. 

In contrast with the large TR sequences, most of the small TR sequences were not 

represented in the databases (Figure 2-3B). Among the 8837 small TR sequences identified here, 

491 (5.6%) were listed in IMG/VR, whereas 2573 (29.1%) were listed in GVD. Only 256 small 

TR sequences (2.9%) were listed in both IMG/VR and GVD. Finally, 5518 small TR sequences 

(62.4%) yielded no database hits, indicating that the majority of small elements targeted by 

CRISPR remain unexplored, even in the intensively studied human gut metagenome. However, 

IMG/VR filters out genomes shorter than 5 kb, to minimize the rate of false-positive predictions 

[44], which likely explains the substantially lower representation of small TR sequences in 

IMG/VR. 

Among the 942 RefSeq plasmid-listed sequences, 444 small TR sequences were listed 

in RefSeq virus, IMG/VR, and/or GVD, suggesting a possible misclassification of viruses and 

plasmids within these databases. We investigated the database representation of the CRISPR-

targeted TR sequences predicted to represent Microviridae and Inoviridae. Among the 766 

putative Microviridae genomes from this study, 639 genomes (83.4%) were represented in at least 

one viral database, and none were listed among RefSeq plasmids. In contrast, among the 56 

putative Inoviridae genomes, none were listed in either viral or plasmid databases. To further 
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assess our putative Inoviridae genomes, we compared these genomes with recently reported 

Inoviridae genomes discovered using a machine-learning approach [45]. We found that 21 

genomes from our study were highly similar to the genomes from the previous study, supporting 

our prediction that these sequences were indeed Inoviridae genomes. Finally, we compared the TR 

sequences against the Integrative and Conjugative Element (ICEberg) database and obtained nine 

hits. None of these sequences encoded a detectable capsid protein. 

 

Figure 2-3. Venn diagrams of database comparisons for (A) large and (B) small TR sequences. 

Each TR sequence was compared to RefSeq virus, RefSeq plasmid, IMG/VR, and GVD using 

BLASTN. The database hit minimum criteria were set to 85% sequence identity with 75% aligned 

fraction of the query sequence to a unique subject sequence. 

Comparison with the prediction results of VirSorter 

We compared our findings with the prediction results of the VirSorter program. The VirSorter 

program adopts a homology-based strategy to detect viral genomes; therefore, we considered that 

this program complemented our strategy. All unique TR sequences were fed into the VirSorter 

program using default parameters. The program predicted 730 Microviridae major capsid-protein-

coding TR sequences (95.3%), 916 HK97 fold capsid-protein-coding TR sequences (42.5%), no 
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Inoviridae major coat-protein-coding TR sequences, and 109 TR sequences without a detectable 

capsid predicted to be positively viral (category £6). The VirSorter program had a good agreement 

with the predicted Microviridae species identified in our analysis. Conversely, the program 

predicted about half of HK97 capsid-protein-coding TR sequences and no Inoviridae MCP-coding 

sequences as being positively viral. Notably, among the 257 TR sequences with hits to the 

crAssphage reference genome, only 10 sequences were predicted to be positively viral (category 

3 and 6). 

Classification of Inoviridae major coat-protein-encoding TR 

sequences 

Among the discovered capsid/coat-protein-encoding TR sequences, the sequences encoding 

Inoviridae major coat proteins were notably unlisted in the databases; thus, we investigated these 

sequences regarding whether they contain a novel clade of the viral lineage. Among the 56 

Inoviridae major coat-protein-encoding TR sequences, 54 encoded the Zonula occludens toxin 

(Zot). From the Zot-encoding sequences, we selected eight representative genomes, dubbed Ino-

01 to Ino-08 (S1 Data and note in S1 Table), by clustering Zot amino acid sequences using a 50% 

sequence similarity threshold; the genus demarcation criteria for the Inoviridae family were as 

proposed by the International Committee on Taxonomy of Viruses (ICTV). The phylogenetic tree 

of the Zot domains formed a distinct clade, dubbed Clade-1, which contained six and only 

discovered genomes (Ino-01 to Ino-06) (Figure 2-4A). Two other representatives, Ino-07 and Ino-

08, were placed in the clades with RefSeq-recorded genomes. The consensus-predicted targeting 

host class of Clade-1, except Ino-03 and Ino-06, was Clostridiales, and the consensus-predicted 

targeting host phylum of Clade-1, except Ino-03, was Firmicutes. Outside Clade-1, the predicted 
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targeting host phylum of Ino-07 was Proteobacteria, and the predicted targeting host class of Ino-

08 was Lactobacillales. 

The phylogeny of Zot domains suggests that Clade-1 is the most diversified Zot protein 

subfamily in the human gut metagenome, and the encoding genomes showed notable diversity as 

well. The genome lengths of Clade-1 ranged from 5,635 to 9,374 bases, and the GC content ranged 

from 27% to 41%. Some of the Clade-1 genomes showed nonconventional gene organizations 

(Figure 2-4B). The Zot genes of Ino-03 and Ino-04 were encoded between the major coat and the 

probable minor coat gene, which typically is the longest gene and is encoded right after the major 

coat gene. Ino-06 encoded the tyrosine recombinase after the replication initiator gene, suggesting 

that this virus uses site-specific recombination for viral genome integration into the host 

chromosome. Accordingly, Ino-06 was partially aligned (43% query coverage with 69.58% 

sequence identity) to a tRNA locus of Lachnospira eligens strain 2789STDY5834875 (accession: 

NZ_CZBU01000012.1). The aligned region was located at the 3¢ end of the tRNA-lys gene; this 

observation demonstrated a previously reported integration mechanism of Inoviridae species [46]. 

Ino-01 encoded an endonuclease in the opposite strand to the essential genes. This endonuclease 

was partially homologous to homing-endonuclease; thus, we speculated that this virus might use 

an intron-like mechanism to integrate its genomes into the host chromosome. However, we failed 

to find a similar sequence to Ino-01 among the RefSeq bacterial genomes. Finally, Ino-04 encoded 

a HUH-endonuclease domain replication initiator that was non-homologous to the other Rep genes 

and uncommon in typical Inoviridae species [47]. 

Another notable feature of this study was that all representatives targeted by 

Firmicutes encoded a stand-alone Zot domain, whereas the Ino-07 Zot gene was fused to an 
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unknown domain (Figure 2-4B); a similar structure could be found in other Proteobacteria-

infecting filamentous phages, such as M13 and If1. 

Recently, ICTV updated the taxonomy and definition of the filamentous phage clades. 

A taxonomy level previously called Inoviridae in ssDNA virus is now a family of the newly defined 

Tubulavirales order. This order currently includes three families: Inoviridae, Paulinoviridae, and 

Plectroviridae. These families were defined based on the analysis of the gene-sharing network of 

filamentous phage genomes, to represent the enormous HGTs between the closely related species 

within this order [45, 48]. To assign the discovered genomes to the known families based on the 

gene-sharing method, we used a classification program provided by ICTV [49]. Unexpectedly, the 

Clade-1 genomes were assigned to two families (Figure 2-4A); four Paulinoviridae, one Inoviridae, 

and one unclassified family. Outside Clade-1, Ino-07 was assigned to the Inoviridae family, which 

was consistent with the other species in the same clade; lastly, Ino-08 was unclassified. 

 

Figure 2-4. Classifications and genome organizations of the discovered Inoviridae species. (A) 

Bayesian phylogeny of Zot domains. Representatives were selected from RefSeq and the 

Inoviridae major coat-protein-encoding TR sequences by clustering Zot amino acid sequences 
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using a 50% identity threshold. Each taxon was colored according to its corresponding family. The 

families of the discovered genomes (Ino-01 to Ino-08) were predicted using the ICTV-provided 

taxonomic classification program. A sequence reported in a previous study (Ino-07) is denoted in 

parenthesis. (B) Genome organizations of the discovered Inoviridae species. All sequences were 

phased to align so that the Rep genes appear first. The predicted ORFs are colored according to 

the annotation results. 

Gene-content-based hierarchical clustering of CRISPR-targeted TR 

sequences 

We hierarchically clustered TR sequences based on gene content to scrutinize CRISPR-targeted 

TR sequences in a genomic context. For this analysis, we selected the top 1000 genes that were 

recurrently observed among large and small TR sequences. The clustering results for large TR 

sequences (Figure 2-5A) showed that the majority of genomes, with a variety of gene contents, 

had already been listed in viral databases. This finding further supports the assertion that these 

databases contain at least representatives that are similar, at broad taxonomic levels, to the large 

viruses present in the human gut. Specific gene contents were observed for crAssphages, which 

Bacteroidetes target exclusively. In addition, RefSeq plasmid hit sequences formed an exclusive 

cluster with conjugation-related genes. As the conjugation proteins included pili formation and 

intercellular DNA transfer, these sequences are likely F plasmids. TR sequences were predicted to 

be targeted by monoderm and diderm hosts clustered separately, indicating little gene flow 

between them. Except for the likely F plasmid sequences, most of these sequences encoded HK97 

fold capsids. Combined with the fact that most of the large TR sequences encoded portal proteins, 

this result further supports the conclusion that the majority of the large TR sequences are 

Caudovirales. 
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In contrast to the large TR sequences, we found that the small TR sequences remained 

largely enigmatic when clustered according to gene content (Figure 2-5B). Few clusters were 

represented in IMG/VR, and although GVD covers a relatively broader range, representatives were 

still missing or sparse for some clusters. Several clusters were also listed in both plasmid and viral 

databases. As many clusters did not encode detectable capsid genes, both clusters representing 

Microviridae evinced capsid genes. Another pattern shown by this analysis was that high-GC-

content TR sequences were frequently observed with Actinobacteria as the predicted targeting host. 

 

Figure 2-5. Hierarchical clustering of (A) large and (B) small TR sequences based on gene 

content. Heatmaps represent the gene content of TR sequences, in which each row is a TR 

sequence and each column is a gene cluster. The gray areas in the heatmap indicate sequences 
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encoding a gene that is homologous to the gene cluster. Note that one gene can be homologous to 

multiple gene clusters. Sequences are annotated by database containing similar sequences, GC 

content, host, and capsid genes. Capsid genes are colored differently according to their types, as 

indicated in the figure; HK97, Microviridae major capsid protein (MicroMCP), and Inoviridae 

major coat protein (InoMCP). Gene clusters were annotated by searching corresponding HMMs 

in the UniRef50 database. Several notable RefSeq-listed clusters are denoted on the right side of 

the heatmaps. 

Remnant CRISPR spacers and contribution of CRISPR-targeted 

sequences to the identified spacers 

Viruses and other MGEs can escape CRISPR targeting by acquiring mutations in protospacer loci 

[50, 51]. Although the corresponding spacers are no longer effective, they can remain in the host 

genome. To investigate these potential “remnant” CRISPR spacers, we mapped all unique CRISPR 

spacers to TR sequences and scrambled sequences using various sequence identity thresholds 

(Figure 2-6). The scrambled sequences were used to monitor false-positive matches arising by 

chance (see Materials and Methods). Based on the observation of incremental false-positive 

matches of spacers to scrambled sequences, we considered that a sequence identity threshold of 

84% is adequate for the mapping of some putative remnant spacers, with very few false-positive 

matches. At an 84% sequence identity threshold, 269,808 and 126,616 spacers were mapped to 

large and small TR sequences, respectively. Altogether, 20.1% of all unique spacers (396,424 

spacers) were mapped to TR sequences. Compared with the identity threshold that was applied 

initially (93%), 91.9% more spacers were mapped to small TR sequences using the relaxed 

threshold, whereas only 42.7% more spacers were mapped to large TR sequences. These results 

suggest that a substantial fraction of CRISPR spacers imperfectly match protospacers within 
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circular MGEs in the human gut, potentially reflecting an “escape mutation” phenomenon. 

According to percentage, small TR sequences can be explained in this manner better than large 

TR sequences. 

Although we focused on TR sequences because of the high confidence of the genomic 

completeness, spacers could be derived from incompletely reconstructed or noncircular genomes. 

To estimate the contribution of the discovered CRISPR-targeted sequences to the identified 

CRISPR spacers, all unique spacers were mapped to all representative CRISPR-targeted sequences 

using an 84% sequence identity threshold. Under these conditions, 971,224 spacers (49.3% of all 

unique spacers) were mapped. 

 

Figure 2-6. Number of mapped spacers according to sequence identity threshold. All unique 

CRISPR spacers were mapped to large TR sequences, small TR sequences, and scrambled 

sequences. The relaxed sequence identity thresholds applied initially are denoted as red- and 

orange-colored dashed lines. The spacer mapping process was identical to the protospacer 

discovery process (see Materials and Methods). 
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2.3 Discussion 
By analyzing the vast size of metagenome sequences, we extracted a large amount of CRISPR-

targeted presumably complete sequences of circular genomes. This analysis intended to discover 

a viral genome that could not be discovered using the conventional homology-based method. 

Although most of the discovered genomes with detectable capsid genes were previously 

recognized viral lineages, substantial portions of particularly small TR sequences remained 

unclassified (Figure 2-1B). The coding ratio of these unclassified sequences exhibited a broad 

distribution, and some were exceptionally low; thus, we speculated that these sequences might 

have unknown genetic features that differ from the conventional protein-coding genes. We selected 

two small genomes, circ-1 and circ-2, and inferred that one of them was likely extrachromosomal 

and targeted by the Veillonella species CRISPR–Cas system (Supplementary Figure 2-7). These 

presumable noncoding extrachromosomal DNA elements resemble satellites, which are 

DNA/RNA elements that replicate with the assistance of the host and/or other MGEs. The one that 

comes to mind first is the viroid, which is a plant pathogenic circular RNA element that lacks 

coding genes. However, we cannot infer or relate the discovered genome to known viroids in any 

biological or evolutionary means based on our current scarce knowledge. Recently reported 

“satellite plasmids” [52], a plasmid state that lacks autonomous replication genes, also share 

similarities with these genomes. However, satellite plasmids are an evolutionarily transient state 

that eventually are lost from the cell population. The genome length and sequence similarity of 

circ-1 and circ-2 were maintained across various samples, implying that these entire genomic 

sequences might have unknown functions. Another similar element is represented by circular 

noncoding RNAs (circRNAs) [53, 54]. However, the samples we analyzed in this study did not 

include RNA sequences, and circRNAs are expressed from cellular genomes, a finding that 
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conflicts with the fact that circ-1 was not aligned to any bacterial genomes, including the presumed 

host. The function, mobility, and potential pathogenicity of circ-1 and circ-2 remain entirely 

unknown at this point. Further experimental research and discovery of reassembling DNA/RNA 

elements are required. 

A substantial number of the discovered sequences encoded the HK97 fold capsid, 

Microviridae major capsid, and Inoviridae major coat proteins, allowing us to validate that these 

portions of the discovered genomes were indeed viral. However, in this analysis, vJR capsids were 

suspiciously absent, even though vJR capsid-coding viruses, or Varidnaviria, are ubiquitous across 

many environments [55–57]. Currently, we cannot explain why they do not propagate in human 

gut common bacteria/archaea populations. To date, only two families and nine species belonging 

to Varidnaviria are known to infect bacteria. It is plausible that the lack of a reliable reference 

genome hampers the detection of vJR capsid genes in the current state. Considering that nearly 

half of the detected genes were not annotated with our pipeline, and about 30% of small TR 

sequences remain unclassified, these remaining sequences may encode vJR capsid genes that 

cannot be detected based on the currently limited known sequence diversity. A recent application 

applied a machine-learning approach to this problem and achieved a notable result [58]. The 

folding-based method could soon complement the sequence-similarity-based method to discover 

extraordinarily distant homologs. 

The targeting host prediction results suggest that approximately 70% of the discovered 

sequences are targeted by specific host phyla (Figure 2-2A). Targeting host phyla was ambiguous 

for 12.5% of the TR sequences; however, most of the targeting host ambiguity observed between 

Firmicutes and Verrucomicrobia was suspicious because of the likely horizontal transfer of the 

CRISPR–Cas system between these species. There is still considerable ambiguity within 
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monoderm phyla. We are uncertain whether these elements infect multiple hosts at present or 

recently host switched, or whether some genomes became CRISPR-targeted because of abortive 

infections [59]. TR sequences assigned to a single host taxon were further assessed using a tRNA-

based method and cross-study comparison, which yielded good agreement levels above the 

taxonomic level of order. The human gut metagenome has been intensively sequenced over the 

past decade, and the database likely captures most of the CRISPR–Cas loci known at present, thus 

allowing us to confidently predict the targeting hosts of the discovered genomes at higher 

taxonomic levels (above order). However, in a different environment, i.e., poorly sequenced, the 

DR-to-RefSeq–based method could lead to significant misinterpretations because of unrecorded 

HGTs of CRISPR–Cas systems. Therefore, multiple methods should be applied to infer the host 

of the discovered genomes from such environments. In addition, we state that the spacer-based 

host prediction method does not directly connect the spacer-aligned sequence to its currently 

infecting host. A spacer aligned to a sequence is a record of the infection history that occurred in 

the past, and viruses and MGEs possibly undergo HGTs and switch hosts. Expanding this approach 

to more diverse samples and observing the evolution of CRISPR loci, in particular, might allow 

the inference of the evolutionary history and genetic factors involved in viral/MGE host-switching 

events. 

The disagreement of VirSorter prediction results for HK97-coding sequences could be 

explained by the high diversity of their gene contents. We found that, among the 257 TR sequences 

that were similar to the crAssphage reference genome, only 10 sequences were predicted to be 

positively viral. crAssphages are known to have a variety of gene sets in addition to the essential 

core gene set, even in a closely related lineage. This might complicate the prediction mechanism 

of the program, leading to the output of less-confident prediction results. This hypothesis also 
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explains the prediction results of Microviridae species. These viruses have small genomes that are 

densely occupied by a few essential genes that are conserved across distant lineages, and such less-

diverse gene sets could yield a good prediction agreement. Finally, none of the Inoviridae major 

coat-protein-coding TR sequences, including previously characterized genomes, were predicted to 

be positively viral. As demonstrated here, none of these Inoviridae MCP-coding TR sequences 

were listed in either viral or plasmid databases. Therefore, this prediction result could be explained 

by the lack of reference sequences, which precludes the building of a sufficiently sensitive viral 

gene database for internal use by the program. 

The Zot domains of the discovered Inoviridae species formed a distinct clade in the 

phylogenetic tree. The genomes in this clade had notable diversity regarding length and gene 

component. The predicted families of these genomes were inconsistent, suggesting that further 

investigation to classify these genomes is required. Filamentous phages, or Tubulavirales, are 

known to undergo intensive HGTs [45, 47]. To uncover the whole picture of the complex network 

of filamentous phage evolution, one might need to build a complete catalog of the molecular 

evolution of phage genes, which requires diverse sets of genes collected from various samples. 

Furthermore, some genes of filamentous phages, including Rep, seem to be acquired from non-

capsid-protein-coding MGEs, such as plasmids [47]. Applying our method to diverse samples 

would expand the diversity of virus-MGE shared genes, which could be used to resolve the 

evolutionary networks of viral genomes. 

The results of spacer mapping using a looser criterion suggested that at least one-fifth 

of the discovered CRISPR spacers originated from TR sequences or their recognizable 

evolutionary predecessors, whereas about half of the CRISPR spacers originated from our 

discovered CRISPR-targeted sequences, including both TR and non-TR. The source of nearly half 
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of the CRISPR spacers encoded by residents of the human gut remains unknown, suggesting that 

additional protospacer reservoirs, whether extinct or simply unsampled, remain uncharacterized. 

2.4 Conclusion 
We demonstrated that CRISPR spacers can be used to detect viral genomes and other MGEs from 

metagenome sequences. Using spacers to infer with confidence the sequences that are targeted by 

CRISPR, we substantially expanded the diversity of MGEs identifiable from the human gut 

metagenome, which has been a topic of intense investigation for virus discovery. Comparing the 

sequences predicted by this approach against viral databases showed that our protocol effectively 

detected viral genomes without requiring similarity to any known viral sequence. Although the 

majority of large (>20 kb) genomes were predicted as Caudovirales with high confidence based 

on sequence homology, we found that the majority of small (<20 kb) genomes remained 

unclassified because of a lack of similar genomes in annotated databases. Applying this conceptual 

advancement to additional metagenomic datasets will increase the breadth of the lens through 

which we can study the diversity of Earth’s virome. 
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Appendix A 

Chapter 2 Supplementary Information 

A.1 Materials and Methods 

Materials 

Sequencing data were selected based on NCBI metadata. The filtering parameters used for the 

query were as follows: layout = PAIRED, platform = ILLUMINA, selection = RANDOM, strategy 

= WGS, source = METAGENOME, NCBI Taxonomy = 408170 (human gut metagenome), and 

minimum library size = 1 Gb. If a sample contained multiple runs, we selected the run with the 

most bases, to simplify the analytical pipeline and avoid possible bias to protospacer counts from 

nearly identical metagenomes. 

Database versions and download dates 

RefSeq Release 98 was downloaded on January 10, 2020, and IMG/VR Release Jan. 2018 was 

downloaded on October 21, 2019. GVD was downloaded on March 11, 2020, and UniRef50 was 

downloaded on December 16, 2019. The PDB database preprocessed by HHsuite was downloaded 

on September 16, 2020. Metaclust [60] was downloaded on November 10, 2020. The VirSorter 

database was downloaded on June 7, 2020. 
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Metagenome assembly 

All downloaded paired FASTQ files were preprocessed based on the guidance provided in 

BBTools [61] (version 38.73). Adapters, phi X, and human sequences were removed using BBDuk 

and BBMap. Sequencing errors were corrected using Tadpole. Each preprocessed pair of FASTQ 

files was assembled using SPAdes [62] (version 3.12) with the -meta option. Contigs smaller than 

1 kb were discarded. 

Detection of CRISPR and spacer extraction 

Assembled contigs were scanned with CRISPRDetect [63] (version 2.2) to extract CRISPR DRs, 

which were deduplicated using CD-HIT-EST [64] (version 4.7) and used to mask the raw reads 

using BBDuk. We extracted CRISPR spacers from the raw reads to maximize spacer capture from 

the library. Sequences located between the masked regions within the raw reads were considered 

CRISPR spacers and were extracted by a simple Python program (available in our source code 

repository), and then deduplicated. 

Detection of protospacer loci 

All DRs were mapped to contigs using BBMap with a 93% minimum sequence identity. The DR 

mapped positions and their flanking 60 bases were masked as CRISPR loci. Next, the identified 

spacers were mapped to all CRISPR masked contigs with a 93% minimum sequence identity. 

Rather than excluding all contigs with CRISPR loci, we exclusively masked CRISPR loci to 

identify viruses that encode CRISPR systems that are themselves targeted by other CRISPR 

systems. To increase specificity, we aligned the 5′ and 3′ adjacent regions of spacer-mapped 

positions. These adjacent sequences were also aligned to the DR sequence associated with the 

mapped spacer. We discarded loci in which any alignment score divided by the length was higher 
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than 0.5, using the following alignment parameters: match = 1, mismatch = −1, gap = −1, and gap 

extension = −1. The remaining positions were considered authentic protospacer loci. 

Co-occurrence-based spacer clustering 

We clustered spacers in two steps (Supplementary Figure 2-2). First, we clustered protospacer loci 

located within 50 kb of another protospacer locus. We then clustered spacers based on the co-

occurrence of protospacers represented as a graph. In this graph, protospacers are nodes, and the 

edges represent the co-occurrence of connected protospacers. The weights of edges were the 

observed counts of co-occurrence of the connected protospacers, as defined in the previous 

clustering. Graph communities were detected using a Markov clustering algorithm [65] (options: 

-I 4 -pi 0.4; version 14-137). Clusters with a size smaller than 10 and a global clustering coefficient 

lower than 0.5 were discarded. Finally, 12,749 clusters comprising 591,189 spacers were derived. 

Extraction of CRISPR-targeted sequences 

Contiguous regions of contigs targeted by more than 30% of the members of a spacer cluster were 

marked as a bed file using BEDTools [66]. To join the fragmented clusters, adjacent regions within 

1 kb were concatenated. Marked regions were extracted, and sequences containing assembly gaps 

were discarded. Finally, both ends of each extracted sequence were compared, to identify TR 

sequences using a Python program utilizing the Biopython [67] package (available in our source 

code repository). 

Deduplication of CRISPR-targeted sequences 

TR sequences were clustered using PSI-CD-HIT (options: -c 0.95 -aS 0.95 -aL 0.95 -G 1 -g 1 -

prog blastn -circle 1). The remaining CRISPR-targeted sequences were clustered twice using 
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linclust [68] (options: --cluster-mode 2 --cov-mode 1 -c 0.9 --min-seq-id 0.95), then clustered 

again using PSI-CD-HIT (options: -c 0.9 -aS 0.95 -G 1 -g 1 -prog blastn -circle 1). 

Gene prediction and annotation of CRISPR-targeted sequences 

Protein-coding genes were predicted from TR sequences using Prodigal (version 2.6.3) with the -

p meta option. Each TR sequence was concatenated in silico, and unique predicted genes were 

selected to recover truncated genes. Predicted protein sequences with partial frags were discarded. 

The remaining protein sequences were clustered based on a 30% sequence identity threshold using 

mmseqs [69] (version e1a1c1226ef22ac3d0da8e8f71adb8fd2388a249). HMMs were constructed 

from each representative sequence using three iterations of jackhmmer [70] (version 3.2.1) against 

the Metaclust database. The constructed HMMs were then used as queries to search PDB 

(probability, >80; E-value, <1e–3) using HHsearch (version 3.1.0). 

Assessment of capsid-protein-detection sensitivity and specificity 

The sensitivity and specificity of capsid protein detection were assessed using TR sequences 

similar to the RefSeq-recorded viral and plasmid genomes. Among the 588 TR sequences recorded 

in the RefSeq virus, we detected capsid genes from 577 TR sequences (271 HK97 capsid genes, 

306 Microviridae MCP genes, and 0 Inoviridae MCP genes) (98.13%). Conversely, among the 

1096 TR sequences recorded in RefSeq plasmid, we detected capsid genes from 6 TR sequences 

(6 HK97 capsid genes) (0.55%). Our pipeline successfully detected capsids from reference 

recorded viral genomes and did not detect them from nonviral genomes with agreeable measures. 

Accordingly, we conclude that our pipeline has acceptable sensitivity and specificity. 
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Targeting host prediction 

DRs were mapped to RefSeq bacterial and archaeal genomes using BBMap. A locus with more 

than three consecutive DR hits within 100 bases was considered an authentic CRISPR locus 

associated with the mapped DR. DRs mapped to multiple taxa at a given taxonomic level were not 

taxonomically assigned to that level. The DRs assigned to taxa were used to predict the targeting 

host. We counted the protospacers linked to taxonomically assigned DRs within a TR sequence. 

If the count of a given taxon was ≥10 and exhibited higher than 90% exclusiveness, we considered 

that the corresponding taxon was a targeting host of a given contig. Host predictions were 

performed for each taxonomic level: species, genus, family, order, class, phylum, and domain. 

tRNA prediction from TR sequences 

TR sequences were fed into the ARAGORN program [71] using the -gcbact option, which 

corresponds to the Bacterial/Plant chloroplast genetic code. 

Gene-content-based hierarchical clustering of TR sequences 

TR sequences were scanned by HMMs derived from the clustering results of the predicted protein 

sequences using both TR and non-TR sequences. The scanned result was represented by a binary 

matrix (score > 60). We selected the top 1000 genes that were recurrently observed within TR 

sequences. The matrix was hierarchically clustered using ComplexHeatmap [72] (version 2.5.3) 

and then annotated according to database hits, host, GC content, capsid types, and predicted gene 

functions. Clustering was performed separately for large and small TR sequences. 
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Phylogenetic analysis of Microviridae MCP 

Representative MicroMCP sequences were selected by clustering all capsid proteins based on an 

85% sequence identity threshold throughout the entire length of the protein. Representative and 

reference protein sequences were aligned using MAFFT [73] (version 7.310) and then trimmed 

using trimAl [74] (version 1.4). Aligned sequences were used for Bayesian phylogenetic analysis 

using MrBayes [75] (version 3.2.7). A mixed substitution model with a uniform prior that 

converged to Blosum62 (posterior probability = 1.000) was selected. All other priors were set to 

the default state. Two Markov chain Monte Carlo chains with identical priors were run over ten 

million generations and sampled every 500 generations. The standard deviation of split frequencies 

approached zero (0.007837) over the run. The phylogenetic tree was visualized using FigTree [76]. 

Phylogenetic analysis of the Zot domain 

Representative Zot protein sequences were selected via clustering based on a 50% sequence 

identity threshold throughout the entire length of the protein. Representative sequences were 

aligned using MAFFT with the –localpair option. Aligned domains were manually inspected and 

extracted, then trimmed using trimAl. Aligned domain sequences were used for Bayesian 

phylogenetic analysis using MrBayes. A mixed substitution model with a uniform prior that 

converged to Blosum62 (posterior probability = 1.000) was selected. All other priors were set to 

the default state. Two Markov chain Monte Carlo chains with identical priors were run over twelve 

million generations and sampled every 500 generations. The standard deviation of split frequencies 

approached zero (0.002185) over the run. The phylogenetic tree was visualized using FigTree. 
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Generation of scrambled sequences 

Scrambled sequences are random sequences that were identical to the TR sequences in length. The 

sequences were generated based on the sampled nucleotide frequencies from the TR sequences 

using Biopython (available in our source code repository). 
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A.2 Supplementally Figures 

 

Supplementary Figure 2-1. Basic workflow used for viral genome detection. Human gut 

metagenome libraries were preprocessed to remove adapters, phi X, and human sequences. After 

correcting sequencing errors, libraries were assembled. Clustered regularly interspaced short 

palindromic repeats (CRISPR) loci were discovered from the assembled contigs. Consensus direct 
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repeats (DRs) from the discovered CRISPR loci were used to extract spacers, mask the CRISPR 

loci, and predict the host. All unique CRISPR spacers were mapped to contigs to discover the 

protospacer loci. Spacers were clustered based on the co-occurrence of the associated protospacers. 

Sequences targeted by more than 30% of the members of a spacer cluster were extracted and used 

for further analysis. 
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Supplementary Figure 2-2. Spacer clustering based on the co-occurrence of protospacers. 

Initially, protospacer loci were clustered based on the distance between them. Within initial 

clusters, co-occurrences of protospacers were counted and used to construct an undirected graph. 

The nodes (spacers) in the undirected graph were further clustered using the Markov clustering 
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algorithm. The mean distances between adjacent protospacer loci within clusters were calculated 

and used to extract CRISPR-targeted sequences. The length and number of protospacers shown 

here are conceptual and not based on observed data. 
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Supplementary Figure 2-3. Number of sequences with a predicted targeting host according 

to each taxonomic level. 
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Supplementary Figure 2-4. Number of sequences with a predicted CRISPR-targeting host at 

the taxonomic level of order. 
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Supplementary Figure 2-5. Heterogeneous distribution of TR sequences targeting host 

ambiguity. Circle size approximately represents the popularity of the respective host. The 

bidirectional arrows connect the top two phyla according to host-assigned protospacer counts (i.e., 

protospacers most often associated with CRISPR DRs are assigned to these two phyla). The 

numbers on the arrows are counts of the number of TR sequences associated with the connected 

phyla. 
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Supplementary Figure 2-6. (A) Host prediction comparison between DR-based and tRNA-

based methods. (B) Host prediction comparison between MGV and this study. 
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Supplementary Figure 2-7. circ-1 protospacers, associated PAM, and Cas genes. (A) Genomic 

map of circ-1. The circle represents the circular genome of circ-1. The positions of protospacers 

are indicated outside the circle. The protospacers with and without PAM were colored magenta 

and dark gray, respectively. (B) PAM of circ-1 protospacers. Both adjacent sequences of 

protospacer positions up to 10 bases were collected and then aligned, to generate a logo using 

WebLogo [77]. (C) DR-aligned locus of LR778174.1. The cyan bars are the DR-aligned positions. 

The genes related to the Class 2 Cas system were annotated using colors. 
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Supplementary Figure 2-8. circ-2 protospacers and ORFan gene. Genomic map of circ-2. The 

positions of protospacers and an ORFan gene are depicted outside and inside the circle, 

respectively. 
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Supplementary Figure 2-9. (A) circ-1 and (B) circ-2 dot plot representations of genome 

comparisons. The representative and similar genomes were aligned using nucmer [78], then 

plotted using mummerplot. For circ-1, the 10 most-similar genomes were selected.  
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A.3 Supplementary Tables 
Supplementary Table 2-1. Samples and assembly summary. This table is available in the 

Zenodo repository: https://doi.org/10.5281/zenodo.6354110 

Supplementary Table 2-2. CRISPR-targeted TR sequence summary. This table is available in 

the Zenodo repository: https://doi.org/10.5281/zenodo.6354110 

A.4 Supplementary Scripts 
All scripts used in this study are available in the Zenodo repository: 

https://doi.org/10.5281/zenodo.6621424 

A.5 Supplementary Data 
Supplementary Data 2-1. Dataset including the discovered CRISPR spacers, direct repeats, 

protospacers, co-occurrence-based spacer clustering results, predicted protein sequences, 

built HMMs, database comparison results, phylogenetic analysis results, predicted targeting 

hosts, and CRISPR-targeted TR sequences. The dataset is available in the Zenodo repository: 

https://doi.org/10.5281/zenodo.6503687 
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Chapter 3 

CRISPR-targeted RNA-dependent 

RNA polymerase coding RNA 

sequences in the human gut 

metatranscriptomes 

3.1 Introduction 
RNA bacteriophages are one of the most poorly studied genetic entities. Currently, only two 

families; Cystoviridae and Fiersviridae, comprising 27 species genomes are recorded in the NCBI 

RefSeq database. Several surveys predicted that the current knowledge of the RNA viral genomes 

is only a portion of the entire diversity [7, 79]. To expand the knowledge of RNA bacteriophage 

diversity, we investigated RNA sequences in the human gut metatranscriptome. We extracted non-

transcribed RNA sequences by comparing them to the DNA sequences from the same sampling 

points. Then we searched for CRISPR targeted sequences from RNA-dependent RNA polymerase 

(RdRP) coding non-transcribed sequences. Interestingly, we found that Picobirnaviridae species, 

which host is currently controversial [80, 81], are being targeted by CRISPR. The substitution rate 

of this virus lineage was nearly 10-2 substitutions per site per year, which might indicate that this 

viral lineage is escaping the CRISPR-targeting by the incredible evolution speed. 
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3.2 Results 

Extraction of non-transcribed RNA sequences 

Firstly, we extracted RNA sequences that were not transcribed from DNA sequences in the human 

gut metagenome. To remove such transcripts from metatranscriptome, we used omics data of the 

human gut microbiome published by the Integrative Human Microbiome Project (IHMP) [82]. 

This dataset includes both human gut metagenome and metatranscriptome sequences periodically 

sampled from the subject individuals, allowing us to extract non-transcribed RNA sequences by 

comparing the DNA and RNA sequences. 

From the IHMP web page, we downloaded paired FASTQ files comprising 1,312 

metagenome sequences and 762 metatranscriptome sequences, sampled from 104 individuals over 

1,289 (average 12.4 per individual) temporal sampling points. For each sampling point of the 

individual, transcriptome sequences were preprocessed and then assembled. If a sampling point 

contains more than one paired FASTQ file, these files were pooled together before assembly. The 

assembled contigs are clustered with 100% sequences similarity thresholds, resulting in 8,299,028 

contigs comprising about 4.3 billion bases. We speculated that most of these assembled 

transcriptome contigs are transcripts of cellular/viral DNA. To remove such transcribed sequences, 

we compared the transcriptome contigs with kmers from the metagenomic sequences. From all 

preprocessed metagenome sequences, 1.38 trillion non-singleton kmers (k = 43) were collected. 

The transcriptome contigs sharing one or more of these kmers were removed, resulting in 140,272 

contigs comprising about 50.6 million bases (98.8% bases are removed). We consider that these 

remaining contigs are sequences not transcribed in the human gut. 
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From the non-transcribed contigs, protein-coding genes were predicted and clustered 

with a 30% sequence similarity threshold, resulting in 60,430 representative protein sequences. 

The representative sequences were used for building HMMs which are then used as queries for 

searching the PDB database. Finally, 4,391 protein sequences were annotated (E-value < 1e-5). 

Taxonomy of RNA-dependent RNA polymerase in the human gut 

RdRP is considered a hallmark gene for RNA viruses [3, 7, 79]. 117 representative protein 

sequences, predicted from 7,321 unique contigs, were homologous to RdRP. These RdRP protein 

sequences were taxonomically assigned by searching to RefSeq viral protein database (E-value < 

10-10) (Figure 3-1). The majority of the sequences were assigned to plant viruses such as 

Virgaviridae, likely derived from viruses infecting vegetable foods. Several sequences were 

assigned to well-known human infecting viruses such as Picornaviridae (Enterovirus). About a 

quarter of the RdRP sequences were unclassified. 
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Figure 3-1. Taxonomic assignments of RdRP in the human gut. Pie charts represent the 

numbers of the representative RdRP protein sequences taxonomically assigned to the 

corresponding viral families. Sequences without a hit within the threshold (E-value < 10-10) or 

aligned to multiple viral families were assigned to Unclassified. 

Picobirnaviruses targeted by the CRISPR-Cas system 

Next, we investigated the RdRP coding sequences targeted by CRISPR. From the IHMP 

metagenome preprocessed reads, we extracted about 27 million reads containing CRISPR direct 

repeats (DRs). From them, we extracted 253,563 unique spacers. These spacers were aligned to 

RdRP coding non-transcribed contigs. Interestingly, we found that nine RdRP encoding contigs 
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taxonomically assigned to Picobirnaviridae were containing a protospacer, suggesting that these 

Picobirnaviridae lineages might be infecting prokaryotic cells (Figure 3-2). 

 

Figure 3-2. A protospacer within the Picobirnaviridae genome. The sequence in the middle is 

a raw read containing the CRISPR DR. The DR is highlighted green and shows the pair-wise 

alignment to the reference DR depicted above. The bottom sequence is a part of a Picobirnaviridae 

RdRP coding contig. The spacer in the read and the protospacer in the contig are highlighted in 

red along with the pair-wise alignment. 

 To predict the CRISPR targeting host, the DR associated with the protospacer found 

from the Picobirnaviridae contigs was searched in the assembled contigs and RefSeq genomes. 

No identical hits to the assembled contigs longer than 100 bases were found. On the other hand,  

hits with one or more mismatched were found from RefSeq recorded Lachnospiraceae family 

genomes (NZ_NFLQ01000008.1). 

CRISPR-targeted RdRP coding sequence is a genuine 

Picobirnaviridae species 

To further confirm that the CRISPR-targeted sequences are a lineage of Picobirnaviridae species, 

we constructed the Bayesian phylogeny from the RdRP protein sequences taxonomically assigned 

to the Picobirnaviridae family and the RefSeq recorded Picobirnaviridae species RdRP protein 

sequences (Figure 3-3). 
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Figure 3-3. Bayesian phylogeny of Picobirnaviridae RdRP. The tips without labels are 

sequences discovered in this study, and the tips labeled with the NCBI accessions are the 

Picobirnaviridae sequences derived from the RefSeq database. The RdRP contigs containing 

protospacers were labeled with a red-colored asterisk. 

In the phylogeny, the CRISPR-targeted sequences were placed within the branches of 

RefSeq recorded Picobirnaviridae sequences suggesting that this sequence is a genuine lineage of 

novel Picobirnaviridae species. 
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Discovered Picobirnaviridae genomes have prokaryotic ribosome 

binding motifs 

Next, we investigated the presence of a ribosome binding site upstream of the Picobirnaviridae 

RdRP genes. We extracted upstream (20 bases) of RdRP genes and start codon from the discovered 

Picobirnaviridae species genomes. 34 unique sequences were aligned and used to build an HMM, 

which was used to plot a logo. We found that a strong signal was present upstream of the RdRP 

genes (Figure 3-4). 

 

Figure 3-4. Motif upstream of the discovered Picobirnaviridae RdRP genes. The logo was 

generated from the 20 bases upstream and the start codon of the RdRP genes. Each column is the 

position within the HMM, and the height of each character represents the information content of 

that position. 

The motif includes an AGGAGG sequence, a prokaryotic ribosomal binding motif 

known as the Shine-Dalgarno (SD) sequence, suggesting that the Picobirnaviridae RdRP genes 

might be translated by prokaryotic ribosomes. This result is consistent with the previous study 
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using the NCBI recorded genomes [80]. We also manually confirmed that the CRISPR-targeted 

genome contained the perfect SD sequence (AGGAGG) nine bases upstream of the RdRP gene. 

Picobirnaviridae genomes are rapidly evolving in the human gut 

While we found nine protospacers by aligning 253,563 spacers extracted in this study to the RdRP 

coding contigs, none of the spacers extracted from our previous study which compose more than 

two million sequences were aligned to the discovered RdRP coding contigs. From these 

observations, we hypothesized that the RNA phages are escaping CRISPR-targeting with an 

incredibly fast evolution. To investigate the evolutionary speed of the discovered Picobirnaviridae 

genomes, we calculated a dated phylogenetic tree using the cDNA sequences of RdRP genes and 

the sampling date provided by the IHMP metadata (Figure 3-5). 
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Figure 3-5. Bayesian phylogeny of Picobirnaviridae RdRP cDNA sequences. The unit of the x-

axis is a day. The tip ages were fixed to the sampling date and labeled with human subject 

identifiers, library names, and sampling time points. The blue rectangles indicate the node heights' 

95% highest posterior density (HPD). The phylogeny was calculated under a strict molecular clock 

model (a uniform clock rate applied all over the tree). 

In the phylogenetic tree, the Picobirnaviridae strains sampled from the same human 

individuals were clustered together, suggesting that those lineages are evolving within the 

individual’s gut environments. The mean of the clock rate posterior distribution was 0.000026 
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substitutions per site per day (0.000021 is the lower bound and 0.000032 is the upper bound of the 

95% HPD interval), which is equivalent to 0.00949 substitutions per site per year. 

3.3 Discussion 
We attempted to discover RNA phages from human gut metatranscriptome sequences using the 

CRISPR targeting and the RdRP coding non-transcribed transcriptome contigs. Interestingly, a 

lineage of Picobirnaviridae species contained protospacers. Furthermore, we showed that these 

viruses have prokaryotic ribosomal binding sites upstream of the RdRP genes. These results 

support that the Picobirnaviridae species infects Prokaryotic cells. We questioned why so few 

protospacers were identified from the discovered RdRP coding non-transcribed sequences and 

hypothesized that RNA phages are escaping from CRISPR-targeting by incredibly rapid evolution, 

leaving the previously acquired spacers not complementary and unable to initiate the restriction of 

the mutated RNA sequences. The estimated clock rate of the discovered Picobirnaviridae species 

was nearly 10-2 substitutions per site per year. However, this estimation might be biased due to the 

time-dependent rate phenomenon [83–86]. This phenomenon could occur by sampling bias and/or 

ignoring the effect of selection over a longer period. To estimate the long-term evolutionary speed, 

samples from mummified tissues, coprolite, and calculus could be used to sequence the ancient 

phage DNA and RNA [87]. To the author’s knowledge, there is no study about the substitution 

rate of RNA phages comparable to this result. A human infecting ssRNA virus SARS-CoV-2 was 

estimated to be around 1~1.5 × 10-3 substitutions per site per year [88–91], suggesting that the 

Picobirnaviridae species are evolving nearly a magnitude faster than the known human infecting 

RNA virus. If the RNA phages are evolving at such a rapid rate and cells are acquiring CRISPR 

spacers directly from the RNA phage genomes, we should be able to observe the rapid evolution 
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of the CRISPR loci on the host cell population as well. However, we failed to find the original 

CRISPR locus of the Picobirnaviridae-associated protospacer due to the fragmentation of the 

assembled metagenome contigs. This issue might be caused by both insufficient depths to capture 

the low-populated cells and the high diversity of the CRISPR locus in the population. With ultra-

deep DNA and RNA sequencing technology, we might be able to directly observe the evolutionary 

arms race between the RNA phage genome and the CRISPR locus. If the CRISPR locus is highly 

diversified in the cell population, the long-read technology might be helpful to capture spacer 

acquisition patterns. With the information on the RNA phage-associated CRISPR locus, we should 

be able to narrow the host range of the subject RNA phage which could be used to construct an 

RNA phage culture system. Finally, nearly a quarter of the discovered RdRP protein sequences 

were taxonomically unassigned indicating that there are still uncovered RNA virus sequences 

presenting in the human gut environment. 
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Appendix B 

Chapter 3 Supplementary Information 

B.1 Materials and Methods 

Materials 

Both metagenomic and metatranscriptomic sequences were downloaded from the IHMP web page. 

These data were selected based on the availability of both RNA and DNA sequences. For example, 

individuals lacking RNA sequences were removed from the analysis. 

Sequence preprocessing 

All downloaded paired FASTQ files were preprocessed based on the guidance provided in 

BBTools [61] (version 38.73). Adapters, phi X, and human sequences were removed using BBDuk 

and BBMap. Sequencing errors were corrected using Tadpole. 

Kmer extraction from metagenome sequences 

From all preprocessed IHMP metagenomic sequences, non-singleton kmers (k = 43) were 

collected using Jellyfish [92]. We started collecting canonical kmer (specified by the -C option) 

from each library, then all built kmer files were merged into a single file which is used for filtering 

the non-transcribed RNA sequences. 
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Metatranscriptome assemblies and extraction of non-transcribed 

contigs 

Each preprocessed pair of metatranscriptome FASTQ files was assembled using SPAdes [62] 

(version 3.15) with the –rnaviral option. From the assembled contigs, we collected kmers (k = 43) 

from both strands and searched these kmers for the metagenomic kmers previously described. 

Contigs containing one or more shared kmers were removed. A custom-made python program was 

used for this kmer comparison. 

Gene annotation of non-transcribed RNA sequences 

Protein-coding genes were predicted from non-transcribed RNA sequences using Prodigal (version 

2.6.3) with the -p meta option. The predicted protein sequences were clustered based on a 30% 

sequence identity threshold using mmseqs [69] (version 

96d452cb432fc4674991a48952deaf24d1787e77). HMMs were constructed from each 

representative sequence using three iterations of jackhmmer [70] (version 3.3.1) search to the 

Metaclust database. The constructed HMMs were then used as queries to search the PDB database 

using HHsearch (version 3.1.0). 

Taxonomic assignment of RdRP protein sequences 

The predicted protein sequences annotated as RdRP were used as queries to search the RefSeq 

viral protein database using the BLASTN program. The sequences were assigned to the taxonomic 

family with hits less than 10-10 E-values. 
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Phylogenetic analysis of RdRP protein sequences 

The RdRP protein sequences from the discovered and the RefSeq database recorded 

Picobirnaviridae genomes were aligned together using MUSCLE [93]. Aligned sequences were 

used for Bayesian phylogenetic analysis using MrBayes [75] (version 3.2.7). A mixed substitution 

model with a uniform prior that converged to the WAG model (posterior probability = 1.000) was 

selected. All other priors were set to the default state. Two Markov chain Monte Carlo chains with 

identical priors were run over ten million generations and sampled every 500 generations. The 

standard deviation of split frequencies approached zero (0.000520) over the run. The phylogenetic 

tree was visualized using FigTree [76]. 

Dated phylogenetic analysis of RdRP coding sequences 

From the multiple sequence alignment result of the RdRP protein sequence, we generated codon 

alignment using PAL2NAL [94]. Aligned codon sequences were used for Bayesian phylogenetic 

analysis using MrBayes. The ages of each sequence were fixed to the corresponding sampling date 

derived from the IHMP metadata. The GTR + I + Γ model was selected for the substitution model. 

Branch lengths were set to conform uniform clock model, and the clock prior distribution was set 

to the Normal distribution with the mean at 0.001 and the standard deviation of 0.1. The prior tree 

height was set to the Gamma distribution with a mean of 1000 and a standard deviation of 50. Four 

Markov chain Monte Carlo chains with identical priors were run over a million generations and 

sampled every 50 generations. The standard deviation of split frequencies approached zero 

(0.005153) over the run. The phylogenetic tree was visualized using FigTree. 
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