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aﬁt(;t(T) = —'l:[f{sr('r),ﬁtot(o)] - /T dt[]—:fsr(»,-)’ [ﬁsr(t)’pwt(t)]] (18)
r 0

218D, BISIEICATEIREICH S LENT 2L, RBEEERETF ju(r) BUTOL

Wb

Ptot(T) — ps(T)Prs (19)
e—ﬁHr

Pr = Ty, [ePH] 20

ﬁs(T) = ':n'r [ﬁto’t (T)] (21)
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20— o [ e[, [ﬁsr(t),ﬁs(t)ﬁf%—,—]]]} (22)
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14
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% E,,Ep,-— £T5, TLT. ThOOBEFREL |a>,|8>,--- L L. BEEET
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6Pc;r(7') - T Zz: > Vl{a(ﬂaﬁ — 0 )0 max — ) (6] s (B1) P (T)
B

_O(Qﬂa - w’min)o(wlmax - Qﬁa)(bl)aﬂ(b{)ﬁapﬁﬁ('r)}
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), i) >= T (B0 Gl ]lo> (36)

Lin, 27 22T, 0> BREF-7+/ VROEE, 225 ) -ERET U &,

(U™ = exp [ — nyy/S/w(br — )] (37)

TREIN, EFOEES (u=0,1) T, 74/ YCL2REREEZ5265ELT)
TRVWBEAYERT2, COXECEAREZERTAHER. BV A PTERLZCT
BabZw7x /) Ok, ®FKT

my ~ Sjw
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FNVE—EN § THHILILLD,
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FEREERONMICHAE L. KBIEHTALF—2H2T, 0¥ A MCRELLRET
DEBEIFNVE—REILHD, 22T, REAOHBIMNEBETLETA L Iy 1T n(=0,1)
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[{ry,} >5=T1(BLU,)™s10 > (38)
l

&&6oﬁb\|Om~ﬁﬂmmﬁﬁ?%@ﬁ%%%?o%lﬁxC@ﬁﬁﬁﬁ%ﬁwf
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! l

+ 3 G -U)BIB(B} +Br)+ Y. V(ji - |)Bf B,B} By
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Lif

+ 3 VUl = Yy, + V(- L), Bl By (39)
gl (>ly) Lis

%%, AL, Ll EEhEh, RERBAOY A H EATOY A FERT. ZOXDE
SIHICIX, BIROIMAMI TR THBY, FIEFREZL T LB, ZOHLBLTHLR
e FOBIEIZEHEST 5,
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CH AR S NIRRT 2 E T BEL, BRI, FEERTTRHETOBRRIEN) %
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Z DBERMRRRELEER T 57201213, BEFORESRME (T < S) PLETHS,
-, ZERIB R FRE FECE Oxt D . Mother FHETFASRIERIC 2 [EHEGE (5IKX) T 558 b
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790 T, TOHTHETAHELEGEIIOVTENS, BT 5/57 A — FEIIR 3 ITE
F723 007 —AIDVTThb, 372, HIr—AIBDNT A-FEERLCETI,

% 3: BiEFHEEER

Vi Vo
Case (1) | -1.138w  0.514w
Case (2) | -1.148w  0.524w
Case (3) | -1.152w  0.528w

FF, INLDNT A —FENER BRFUOBVICONT, T TRHHAT L. Bht%E
B2 3835 2—% V OBVIE, BE#ET > v VEIK L TEBERBENLDT, K3 TS
37289 A= S EEFGCHBART ¥ v VEER L B17, 190X 12% 5, B17(a)
i, FAA VD (b) D& D IC—KTCHIHEGE L 2B OWBAET ¥ Ty VRV 0T
BHbo, NLIZFXA YRR T AETFHEZR L. £3 THIF/ Case(1),Case(2),Case(3) i
ZNENRERT VY VEOB/NEE N =2,4,6 ICFED X I ICRDLN TV, 12T,

31



= 4: ENRTA—F

w E S A B2 B3
0.1eV | 70w 6.0w 0.058w 0.064w 8

(Th,T») (G1,G2)
((1.00,0.40)  (0.1w,-0.04w)

I 3
> - = Case(l)
&) \ . Case(2)
qCJ \‘\ —— Case(3) e
Q .
= <
N

g L
©
<L

(@) (b)

[ 17: (a) FA A ¥ HEMREICHIE L2 HEOWBET > Yy VE L (b) 2RSS — o

THRMFE—MICIE, EROICENEN 24,6 BORERTOEENRADEEELRL TV 5,
¥ LT Case(l) & Case(3) DHAIHIH SN LR/ 5 — > OBEHZR 18 IR L7 &
DED LS 12, Case(l) DHERFHETI2MEE CTLAERNICRETERVA, T IR
ET25MEZE 2% 5 2\ A, Case(3) DHAICIT 6 EOBRFICE o THEEINEE
AT B EATANE ISR 2 B, 65 Ty Case(l) & ) b Case(3) DHD &
DREUHEOHISY — VAR ENDL LEZLNS, DF Y, Case(l)—Case(2)—Case(3)
DIET. BHEBER Y — VIR ENR T2 B13F7 A -5 DFRICE> T2, B
L. ZhbD Case(l), Case(2), Case(3) THEFEREDO AN X —HAEFRZ 2 L HBUC
RHBVIEDE, B19(a) IRT & IS, HHHICF A A VAR LHE (F (b)) O
BTV Yy VEN—BETEH LD TR0 D, MHFD Ng i, N4 v 28Ry sheTHe

32



Case (1) Case (3)

18: TRVF-—WICHF SB35 —

#£3,

P L) &t CiEFREEEAOEFEDBIICOVWTREEZIT) . €OMORE
S OVTIE, RO L IO B, HL, HET 232007 —RIZDWTik, 7SIVADA
EHIE % &, A ROFEFMEFREFEHEEER : V 2BREETOEBEEHE—L T2,

(a) ﬁ’rﬁ%ﬁ& BHRSR AR b D 12 x 1294 & T 5,

(b) At Vv AHDOEEHEI8 LT 5,

(c) 7SV A DEEHHFEIX 103 70 &5 5,

(d) 7V RIZ & Y AB & D Mother B2 T Frozen B FOMBIZELEIC L VRO 2,
(e) HRZRDY 4 3 v 73, REpEFHL 2BEMLRERLT 20

(f) REFEIBIL5H A P ET 2,

FT, W20 CHRBETFHOBEERLRT, EMIE Case(3). —mEAMIE Case(2). K
Case(1l) DFMEHRE LR T, WIIBIEER THE SN 5 R 5 —DORIHETHId, Case(1) D
BA1E 5018, Case(3) DAL 54METH Y BWIEDOHF TS KELENII AR VAN ¢ = 1007
DEERTORREERS L., Case(l) DFAIT 62T TLAWIEL 2V DIIX LT, Case(3)

33



>

6 - = - Case(1)

c —-. Case(2)

w —— Case(3) ——

= ' ! n
b :

Qo i

! -

2 Ng = n?

(a) (b)

B 19: (a) FAL Y PEFHERLRHEOHE LIBEOWBET ¥ ¥ v VELE (b) ZR/NF — >,

DB, STIEE CTHIEIEAT, 72, BRBNSNVADAGNES /N7 A —FELH
WTEE LSBT ABORBREBTVE, ZOKEI L, BRFHHEEERDR
VDS ORET AT 5 = L AR SNz |
T, M2 CHEATWABERIROBAICOVWTHERD, BIBLAL )T, EFH Y
FVBRETIE, BER Y — ¥ OBREEOBREICH - 2BEFISER SN D, FIZ, ZO
] ARV B A S VB [T B AE Z B %, BHETHOMMS Bk 2 EBRIC, KEIT
RYEMNY -V OBRERAEIDL ) RENRETHEY, H20ICRLNREER EOW
BRI NMHFRETHE, |
ZOHTIE., FRFOMEREE B EORSOBRICOVWTRLAY, KETE, FX
A v OTEMELE EEWICHN L. EAFMEOMHR L HEHERL ORBREHEICT 2,

6.4 ZefE/v4— > DREEEZEAL

BIEiCRLZ-E D10, DHEAR T L ALESRO NV, BTHHEEARICSE
VT, BHEORRIER SN REFHOPRLZEVE 2o THISE, £I T, IOHT
X, FAA Y O8MEEEERLL T, BETHEEERORIEIC X 55R L HMEICT
o BBEINY — VR BEFNICERIT A HEL LT, FHRETR, 7775039 —~

34



80

60 -

Total Number of Excitons ( N, )
T

)

(=}

1

|

)

!

!
®)
-]
(72}
2
L/
~

T ' 1
L0O0000 200000

Time [ 1, ]

20: REPEFHORMER. ERIT Case(3). WML Case(2). Hi#Rid Case(l) DHFEZRT

35



BATICBOWTHAVLNLUTOEZFAY 5. (30]

{Area}

. 42
{Perimeter }?/0 (42)

ZZT. DRRBENOT5 2 5 VRTETH b, HdkD & I 12, BHMEE KB LAZER/(S —
vk, REHS L OMMESUHEIR Y — v, EHNRHEIE, 70y 7 ROMLOL
BSE =Y e B THL D, oT, BHUDBEVIGERT 2ZEM/ Ny — ik, ECFHE
OMIM R L o THEBMT S NEDT, R (42) D X 9 % Perimeter & Area DHIZL ST, ¢
REOMNL S ¥ BN ERLT 52 LA RS, L, SR 055 —VidERE(L
0T, BRI — Y075y 5 VAT RS 3 EEI R <. KR,
Bkt EBATAERLBEL LTRHAT2D0RED S,

ST, PRORTEICOWTHARD, (21 ([ R 2 BEOEM Y — YRR LT
Mo/ T 0y 713, BRFOFEETSH A F2EL, SHRIRELZERT 5, /2 H(a)
LI (b) A MR T 2 EXOBAK 301H) ThHB, ThHD/8y—Vid, 7Ty 7O
ﬁ(Mm:PamMH)t%ﬂﬂ@iﬂ%70v7®ﬁ(mqu%)Klof%ﬁdﬁgﬂ
%o [ (a) D& BBBARD /Y — Vit 1RTOKICE o THEES DR,

1
Ntot X Nper

LB —F H(b) DL RTTy ZIRONY — ¥ OE, EREREED 2 RICHHT
5D T,

2
Ntot X Nper

L, THUE. MEDL)BSY—VE IR, REE2RTLFEILIT S, KR
DHEEBBIZBVTIE. SO 1XTE 2RTOFHEESTF AL VRSN EFHES
NBDT, FOREEIEORRZUTIIRT,

22 12, BIEITR L7 Case(2) & Case(3) DIERICOWVT, Z? Perimeter & Area D
B 7Oy FLY ST RRT, MAROERE 2 KT, AR 1RTONY — Y ERET 5

36



gy

Y
N
N

(a) (b)

X 21: (a) WEARISH — >0 (b) TUy ZHRNT =2 EBLLD/Y =Y 0EDNTH Y 7 RRE
Lo THEENS, ATHy 7 ORI REEET, (2) D7 TAY - BET 2/hTHy 7 3%
TREHET 225 (b) D7 TAY —KEREMELEZVEWITT Y 7 FHFET %o

BAEET, T2, BESAI Case(2). A Case(3) DREREERT, BRIZOWTIE, <
DA RFIRETFESER MY 50T, AHEICED > TED,

5o Case(2),Case(3) it & b 12 1 RITLECHEI L 7275, 2 RTTIC[ED > TE DL HNE
bd 3 L) BESBEL TR, ZORBRBIT. 628 TRLAL) IO, WEICHEBIR S —
VERBE LS. BTN AVEBRLELTHRBELZEDS L) ICHET 2 B8EeRL
TWwd, FiZ, Case(2) & Case(3) X BT 5 L. MAICRENTRLA 1 RTH 2 RITN
BT AMBIEVHENTVS, 22T, JORFEANLES, B,

Perimeter
Area

LBtk o TEET o HL. n=Nigtn <+ >p RnOFESATEITMSZ L ®
FERY %, 2T, {2312 <Perimeter/Area>, N5 7 %R/ L7, H23»OHOR X
12, BAEAE T CEEEIE Ny DEOKEVEIIEL T2 o Case(l) ~ Case(3)
DEFEICBITD Ny DR, ZHhEN (1) 28, (2) 48, (3) 62 TH b, MAD L) IT, &
BED N BREVENVI 2 LiE, I DRERORV/ Y -V HPERENS I LERLT
Wb, o T, BEFEMEEABORAFEIRVEE I, REOBET TER IO
75 A5 =L HBLT, L WPMEAS VY — VTR END EEXLND,

FIC, DEOBRERM24 LH25 ISRTERMNS -V DORAFy T ay Mk o THED
5, 24 1% Case(3). 251213 Case(1) DA ERT, HFOBHLEIBEFERL. £

>p=0.9

37



60 -
50 | - T )

S0
‘o 5
P‘AA‘“
40 - Ly 'VQ
g
=
o 30 4
)
°
20 -

T Tuarning Point

O  Case(3)
A Case(2)
20 30 40 50 B0 70 80

log,, Neoe

29: Perimeter-Area B/, 3T, SHMIREEYEL, AT L5, ERIT2RT, A
B 1 RTDONY — Y 2 EET 254, B=MA1E Case(2). B Case(3), KENITBEROMEE
£,

38



{Perimeter/Area>

23: Perimeter & Area Dltt, KENIEmMBADMELE T,

39



Sy 64664
soooes 00000
s00000 996060
oo -0 00000
oo —-o o-00-00
00— 000 06660606060

1000000 Q—r 090000000000

o000 00000600
Q~:--Q 0~:0M—0 L &
—o0 000 ~0-0-0-0-0-
: L R —0 000
Pt cret

X 24: Case(3) \23B1F 5Z2M/$% — > OFBBER. Mt =9x 10370, BRIt =10% DAF v
Tyay P EERT, BHEBBHEFEERT,

aeees s33ets!
# i-oa—na ; - ﬁ:ﬁ’:? -0
BIIIaRSuRE: ;*‘::: :
2ias o mp ?".ﬁ ’
3 BEgs
e e

25: Case(1) 1231} 2=/ Y — ¥ OBKBE. ARt =9 x 1037, HAD ¢ = 10579 DAF v
Tvay bERT. BLEIBEFEERT.

BUEEEZ) ¢t =9 x 10379, BRIER ¢t =10079 ICBIFBAF v Ty ay bTH5,

M24 kM2 DEMZRET AL, K24 OFFHLPICREARFREN EHFEDPO LI
720 BEo T, BEFHMHEELERAORFHE., WHMEARICER SN ABEREEE L)1
MOBVIIY — 2L, FORER, BFH ¥ A IVBRICBW T ORI FA T
L) ZEPHENPD LN,

T, SINTTHRRTELFHETE, FEONVARREZRXTE Lo LML, 2OV
ABRBEHEICOWTIIINEITERZ LTI b olz, £2T, KEITIE, NS —
WOIMIED O, B, OV AHIKF IOV THERT %,

40




6.5 [Bhit2/ L ABUKRTENME

ZOETIE, BESVABEBEEINS FX A Y OBMICOWTENS, F1ETHENL
X912, PIPT 252 % 5 WE 0L LT, Bt o3 5 BEFEs & <o Ty
%o [6,9-11] 2Ty SSVABEEAHAICRONDEM Y — Y ORBEZERTHEIC
L0, ZOBRNBELHALDPITT 5,

AEPSVAB(N,) % Ny =4~ 9 FTEXTRHERET L L, /87 2 —FERA
#i Case(2) Db DA FAVTV 5, ZDHR. Ny =6 & N, =7 OB TER S WIHETH
LKA RREFSRON, 22T, N, = 6,7 DHECHNER 1087 CB1T2 A5 v 7
Yay b ER26 LR 27T ICRT . HHRDBIIBETFEERT,

26 121, EHIC2 DD/ FRAF —HEDFE EFHEoTWAHDIIH LT, K27 THET
DI FTAY—DEALTVE, 2T DL %7 FTAY—O—FLid, H26DHELY b,
B 1SV AG AT CHRETSER SN2 LIC & D, EHHIELT SR SNk
ReEibM B,

54HTHERL LI, BRTF F AL L ORERBIL, BERBLEOELRVRFITLI IR
FLENS., FRFIEELT, LOVKRELZFALVERBTSICONTHEEL RS, O
BEPL, {26 BN T RS —ZERMTHRLTLEIS, H27TD L) CER:
FALVEBBRLEACR. RELTRETSEEX0N5, HRELT, H26 LH27
DHBIC L o TR L& S &, MBI FRREE L HED &) BREE T 28U
REN, BEHEL 2o THNEEEZ LN,

B%I1C. 628 L 6.3 M TAS/ VA (N,) 2 ZNEN N, =5,8 EROTZEHIIONT
WD, #1004 P OFHEEBICH LT, B SOVAROEEEL LTEEL2DIR, &1
NRVAZE o TERENINT T =05, BPBICREL T, BHELICRERFAM %
KRS B 0EPEV) HThb, /I TAY —DRIGE. ZOBMIOVTIL, HHETH
MEEROBVIC L AEBRIEREZE 2V, o T, £1/7VAIRK I o TEK SN/
S A Y =%, WML EAEHE T, TOFTFERDLI LDV L) ITRDTZ,

41



2: N, =6 DBAIHBRINBLZEM/ Y — V6 t = 1057,

(?

0-0-@

27: N, =7 DB AR ENLZEH/$Y — Vo t = 10%700

42



7 Conclusion

AT, EHRAEBOTHENBREICB VT, BRTFI%RIHIET 5 545 5
ST B AT, BFWEHEEREICESVWTY I ab—YarifTholz, FIC, BT
BHEIEROERSHICER L, BHFEOBRVEAIC. HERECHEFNEZ 2EZHLPICL
7o B2, ZOERY X VBHBEICT 2510, REMEOECE B L2EH Y — > OB#E
BB L. ZORRFIOBEER L. ZOKE, (1) IHHEERICBNT, 1X
SEHIR Y — Y R BR L2k, BT YA VBRICBLT, REOMMEEDS L)L
Ty 2RTEMENY — U NEBBICERTHBER L. BiC. (2) BETHEEEHOR
FUIROBE, L OENOSAY — Y 2HET 5L 2R L, ThODEPL, B
HABRVEA I, BT AVBRICBIT AMMICENZ, LY RERORV/ Y -
AT LD, BREMEOERTHL I LZHLP L, |

Hio. PR KA O BEIIE 5 B\ SOV T, B OV A BRI L TR S 15 /8
5 — Y DEED EBE T ol TORKE, B OV ABIKE L CESENEIERE 55
AR LTe $70. ZOBBRIKAEEDBIRERE T 2 RENEEOMANER 22 L%
bbb,

SBOBEL LTk, SRTE~DIHEL T2V, ERICPIPT DRI 2PWHEIZOWT, &
D BEARRERET) 2L Th D,

S

KRFERATH b7, KEFHRMS CHEELTTSE L, IEZBEEIC, 0
DR AR LT, MESEREE (ERH) ik, FFRCHET 25 ORBLHBREBY &
Lz &0k DE#VZLET,

43



7 Conclusion

AWETIE. AHEREBODEAERICB VT, BHEFA SR ICHET 55425
ST BB, BTFHEHFEEICESVTYIalb—Ya v ETholk, BIZ, BET
MHAEAEEORAHICER L, BHFEOBVEEIC. IFER(HEMEI2FLHLPICL
F2o B, ZOERY L VBT B 5HI0, BFMUOEE KB LZZM Y - ORfE
BRI L. OBRFIOEME R L. £ORKR. (1) DPREERICBNT, 1K
TR NY — V ETR L, BT YA VABRICBVT, REOMMEEDS L)L
T, 2KTCM 287 — o~ BEICERBT 2EER Lz, B, (2) BIRFEHAEIEHOR
FHUAEVEE, L OMLNOS Y — YRR TEIEER LI, ShOoDENL, &
PABEVE I, BFWF CAVBRICBT AHEICENZ, LY RARORV/SY -
AT A LD, BHEEHROERTHL I LEHLPICL ,

HiC. PEREEREEORENIES BVICOWT, B/ OV ABKEE BRI LB
5 — 2 DR L EBE T o7z, ZORKR. B OV AR L CESEREIENES 55
R LTze oy ZOBERIKEEDS BEEE N 2 ENEEOMRNERE 25 L%
Abhb,

S OBEL LTIE, 3RTDILEREIT 2, ERICPIPT DRI 2WEICOWT, &
D BEAERMLREITEIT) 2L TH 5,

A |

R AT 107D, AEFHS CHIEELTT ST L, IBESEMEEIL. &
DEHLE LT T, FEMEREE (R . BIRICET 25 ORBLEREBY I
Lz bk DB LET,

43



SE Rk

[1] M.Ueta, H.Kanzaki, K.Kobayashi, Y.Toyozawa and E.Hanamura, “Ezcitonic
Processes in Solids”, Springer-Verlag, Berlin, 1984.

[2] P.Huai and K.Nasu, Phase Transitions, Vol.75, 649(2002)

[3] K.Nasu ed., “Relazation of Excited States and Photo-induced Structural Phase
transitions”, Springer-Verlag, Berlin, 1997, pp.3-16.

[4] S.Koshihara, Y.Tokura, T.Mitani, G.Saito and T.Koda ,
Phys.Rev.B42,6853(1990)

[5] S.Koshihara, Y.Takahashi, H.Sakai, Y.Tokura and T.Luty,
J.Phys.Chem.,B103,2592(1999).

[6] T.Suzuki, T.Sakamaki, K.Tanimura, S.Koshihara and Y.Tokura,
Phys.Rev.B60,6191(1999)

[7] K.Tanimura and I.Akimoto, J.Lum.94-95(2001)483

[8] S.Iwai, S.Tanaka, K.Fujimori, H.Kishida, H.Okamoto and Y.Tokura,
Phys.Rev.Lett.88(2002)057402

[9] S.Koshihara, Y.Tokura, K.Takeda, T.Koda, Phys.Rev.Lett.68,1148(1992)

[10] N.Hosaka, H.Tachibana, N.Shiga, M.Matsumoto and Y.Tokura,
Phys.Rev.Lett.82,1672(1999)

[11] Y.Ogawa, S.Koshihara, K.Koshino, T.Ogawa, C.Urano and H.Takagi,
Phys.Rev.Lett.84,3181(2000)

[12] T.Tayagaki and K.Tanaka, Phys.Rev.Lett.86,2886(2001)
[13] O.Sato, T.Iyoda, A.Fujishima and K.Hashimoto, Science, 272, 704(1996)

[14] X.J.Liu, Y.Moritomo, M.Ichida, A.Nakamura and N.Kojima,
Phys.Rev.B61,20(2000)

[15] X.J.Liu, Y.Moritomo, M.Ichida, A.Nakamura and N.Kojima,
J.Phys.Soc.Jpn.69,1267(2000)

[16] P.Huai, H.Zheng and K.Nasu, J.Phys.Soc.Jpn,69,1788(2000)

44



[17] K.Nasu, P.Huai and H.Mizouchi, J.P.CM,13,R693(2001).

(18] H.Mizouchi and K.Nasu, J.Phys.Soc.Jpn.,70,2175(2001).

(19] P.Huai and K.Nasu, J.Phys.Soc.Jpn,71,1182(2002)

[20] T.lizuka-Sakano and Y.Toyozawa, J.Phys.Soc.Jpn.,65,671(1996)
[21] N.Nagaosa and T.Ogawa, Phys.Rev.B39,4472(1989)

[22] K.Koshino and T.Ogawa, Phys.Rev.B61,12101(2000)

[23] Formation Dynamics of Exciton Domain Pattern and Anisotropy of Interactions in
Photoinduced Structural Phase Transitions, R.Yabuki and K.Nasu, “Science of
Superstrong Field Interactions” ed. K.Nakajima and M.Deguchi ,AIP, 2002,
pp.362-371

[24] R.Yabuki and K.Nasu, Synthetic Metals,135-136,705(2003)

[25] M.Suzuki and K.Nasu, Phys.Rev.B45,1605(1992)

[26] R.Ball, R.Brady, G.Rossi and B.Thompson, Phys.Rev.Lett. 55,1406(1985)
[27] K.Cho and Y.Toyozawa, J.Phys.Soc.Jpn.30,1555(1971).

[28] M.Le Cointe, M.H.Lemee-Cailleau, H.Cailleau, B.Toudic, L.Toupet, G.Heger,
F.Moussa, P.Schweiss, K.H.Kraft and N.Karl, Phys.Rev.B51,3374(1995)

[29] M.H.Lemee-Cailleau, M.Le Cointe, H.Caileau, T.Luty, F.Moussa, J.Roos,
D.Brinkmann, B.Toudic, C.Ayache and N.Karl, Phys.Rev.Lett.79,1690(1997)

[30] Jens Feder, “FRACTALS’ Plenum Press, New York and London,1988

[31] William H. Louisell, “Quantum Statistical Properties of Radiation”, John Wiley &
Sons, New York / London / Sydney / Toronto.

45






- Formation Dynamics of Exciton Domain Pattern and Anisotropy of
Interactions in Photoinduced Structural Phase Transitions, R.Yabuki and
K.Nasu, AIP, 2002, pp.362-371

» Theory for photoinduced structural phase transitions and their dynamics
in 2-D insulating crystal, R.Yabuki and K.Nasu, Synthetic Metals, 135-

136, 705-707(2003)

- Theory of diffracted channeling radiation, R.Yabuki, H.Nitta, T.Ikeda

and Y.H.Ohtsuki, Physical Review B, 63 ,174112 (2001) (&%)



Formation Dynamics of Exciton Domain
Pattern and Anisotropy of Interactions in
Photoinduced Structural Phase Transitions
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1-1, Oho, Tsukuba, 305-0801, Japan

Abstract. We theoretically study nonlinear nonequilibrium real-time dynamics of domain
pattern formation by photo-generated excitons in a 2-D insulating crystal, and search for
successful conditions of exciton proliferation, which finally can result in macroscopic
photoinduced structural phase transitions. Our model is a strongly coupled many-exciton
Einstein-phonon system, interacting with a reservoir, which consists of the acoustic phonons
and the radiation field. Using this model, we numerically calculate early-stage time-evolution
dynamics of photo-generated exciton-domains, full-quantum mechanically. It is found that the
spatial anisotropy of inter-exciton interactions is essential for a large size exciton-domain
nucleation of the early stage, and this anisotropy also makes tunneling-type slow exciton
proliferations successful even in the retarded stage, as compared with the isotropic cases.

INTRODUCTION

In recent years, there discovered many new insulating solids, which, being shined
by only a few visible photons, become pregnant with a macroscopic excited domain
that has new structural and electronic orders quite different from the starting ground
state. This phenomenon is called "photoinduced phase transition"(PIPT).[1,2]
According to recent development of laser spectroscopy, quite novel and noticeable
properties of this PIPT are now discovered in various insulating solids.[2,3,4]
Especially, the efficiency of the photoinduced phase transition is proved to depend
quite nonlinearly on frequency and intensity of exciting light.[2,3,4] While, it is also
clearly shown that the resultant photoinduced phase is different from any equilibrium
phases realized in the relevant material, such as a low temperature phase or high
temperature ones of this material.[2,5]

However, as for the real-time dynamics of these nonequilibrium phase transition
phenomena, there are still many theoretical and experimental problems, which are left
unclarified. For this reason, in the present paper, we will be concerned with the real
time dynamics of domain pattern formations, which finally can result in the
macroscopic PIPT in a 2-D crystal. Taking a strongly coupled many-exciton Einstein-
phonon system in a 2-D insulating crystal as our theoretical model system, we
numerically calculate spatio-temporal evolutions of photo-generated excitons, their
proliferations and domain pattern formations, full-quantum-mechanically.

CP634, Science of Superstrong Field Interactions, edited by K. Nakajima and M. Deguchi
© 2002 American Institute of Physics 0-7354-0089-X/02/$19.00
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As for the way of light excitation, we assume the case of pulse excitation
composed of several successive ones with an equal time interval. In order to clarify the
elementary process of exciton proliferation, we, at first, will show the time evolution
of the total exciton number and the total energy, owing to only a single pulse
excitation. After that, we will show how the whole exciton system develops during
and after the several successive pulse excitations. We will show that there are two
stages of exciton proliferation. One is the stage, which we call the early stage, and it is
equal to the time region wherein the successive pulse excitation is going on. Another
is the retarded stage, wherein the sequential pulse excitation is turned off. In the
former stage, the total number of excitons drastically increases by making use of large
excess phonon (or vibronic) energy just given by the light pulse. While, in the retarded
stage, the whole exciton system reaches some local adiabatic potential energy
minimum, and hence the total number of excitons only gradually increases, by the
tunneling effect through various adiabatic potential energy barriers.

We will conclude that the spatial pattern of exciton domain formed in the early
stage, sensitively inherits the spatial anisotropy of inter-exciton interactions. It will be
also shown that this anisotropy makes the aforementioned tunneling quite efficient,
and the proliferation quite successful in the retarded stage, as compared with the cases
wherein the inter-exciton interaction is isotropic.

MANY-EXCITON PHONON COUPLED SYSTEM

Let us now define our relevant system composed of many excitons coupling strongly
with Einstein phonons. The total Hamiltonian (= H,) of our model system is written
as (h=1) :

H=H +H +H,, 1)
where H, denotes the strongly coupled exciton-phonon system, which is given by
H, = EZI: B} B+ IE} T(1-I) BBy
+@3 bl ~ oS T BB (5] +b) 0]
+ SGQI-IBI BB + Br)+ TV (=IO B/ BB By

Here E is the energy of an exciton, B; and b are creation operators of an exciton

and a phonon, respectively, at a lattice site specified by a position vector / ina 2-D
square lattice. 7' is the exciton transfer which operates from site I' to /, @ is the
energy of the Einstein-phonon, and S is an exciton-phonon coupling constant. G and
V are the third- and the fourth-order anharmonic inter-exciton interactions,
respectively, which come from a long range nature of Coulomb interaction among
electrons and holes constituting these excitons.
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H, represents a reservoir composed of the radiation field and the acoustic
phonons, which are linearly coupling with the exciton and the Einstein phonon fields
through H.,,. Consequently, various relaxation channels can occur in our relevant
system, such as vibrational relaxations, radiative and nonradiative decays of excitons,
and they contribute to stabilize resultant photoinduced phases.

There may be various cases which can be described by these parameters T,
¥ and G . However, in order to make our later discussions simple and clear, we focus
only on two typical cases of these parameters, that is, an anisotropic case and an
isotropic one as shown in TABL 2. All the used parameters for these cases are listed in
TABLE.1 and 2, and spatial extensions of T, ¥ and G in the 2-D square lattice are
illustrated in Fig.1, in which the same notation is used as that of TABLE 2.

T2tV2—;(5.2 ,"

H A P Bt

...... ""‘.

H
1
H
3

e z
Tl L v1
G,
FIGURE 1. Spatial extensions of 7 , ¥ and G in the 2-D square lattice. Parameter values are listed

in TABLE.2.

TABLE 1. Common_parameters in eq. (2)

@ 0.10 eV
Elo 7.80
S/® 6.45

TABLE 2. Parameters for inter-exciton interactions used in eq. (2) and in Figure 1,

Anisotropic case Isotropic case
(Vi.Vu)e (-1.45,0.63) (-0.9,0.0)
(T, e (-1.0,0.5) (-1.0,0.0)
(G;,G2, G3 Yo (0.30,-0.03, 0.15) (0.30, 0.0, 0.0)

The isotropic case is the most standard one since it includes the interactions only
between neighboring two sites. In this model, two excitons at neighboring two sites
attract each other, and it tends to make an exciton-cluster. Throughout the present
paper, the occupation of a single site by more than one exciton is excluded from the
beginning. From eq.(2), we can easily see that the photo-excited excitons can
proliferate through the third-order anharmonicity G . In the anisotropic case, on the
other hand, the interactions between neighboring sites and that between next
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neighboring sites are assumed to be opposite in their signs. Such an anisotropy mainly
comes from the nonlocal natures of Wannier functions of the electron and the hole
constituting the exciton. These Wannier functions are usually extending over many
sites from their central sites, and are oscillating from site to site. For this reason, we
can expect various spatial anisotropies for T , ¥ and G . However, in the present
paper, we will not be concerned with their microscopic origins. We will treat them
only phenomenologically, and compare aforementioned two typical cases in
connection with the domain pattern formation and the proliferation. In order to
perform practical calculations, we derive the master equation under Markov
approximation for the reservoir. We also tacitly assume that our system is a three
dimensional one with a layer structure, whose one layer is just this 2-D square lattice
with only a weak inter-layer interaction. The total number of excitons in one layer is
assumed to be restricted within 100 or so, because of this weak inter-layer interaction.

METHOD AND APPROXIMATIONS

At first, we introduce a set of basis states with n, (=1 or 0) excitonand m; ( =0, 1,
2,... ) phonons at each lattice site /, as

+ My _ _p*
T1L(B U () 110>, U=e JS7o G * 10> = exciton-phonon vacuum,
! 1[m,!

&)

where U, denotes the operator of phonon displacement, which appears or disappears,
according to the presence or absence of an exciton at site /.[6] Even if we have used
this basis set, however, we still have serious difficulty, since the total number of
excitons changes from 0 to about 100, while m; also changes from 0 to about S/w,
almost independently at each site. Thus the direct calculation of this time evolution
leads to too large dimensional ones. In order to overcome this numerical difficulty,
we derive a new iterative method for the exciton proliferation. Its basic idea was
developed by Mizouchi [7] only for the 1-D case. However, in the case of the present
2-D system, we have to extend this theory so that we can describe the problem of
spatial pattern formation, which was absent in the 1-D case.

Our new iterative method is as follows. We focus only on the most forwardly
expanding part ( the most front ) of the exciton domain boundary, wherein an exciton
with the excess energy coming from the photo-excitation is always included. This
most front is searched by try and error method, so that it will be the most efficiently
growing part of the domain boundary. The contribution from other excitons not in this
front is approximated by a mean field. As proliferation proceeds by using the excess
energy, the position of this front also moves. For the practical reason mentioned before,
the size of this front can not be so large. As schematically shown in the left part of
Fig.2(B), we take the shaded 4 lattice sites as this front. This front (the 4 sites) is our
relevant system, within which we calculate excitons, Einstein phonons and their
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interactions, full-quantum-mechanically, as well as various damping and decay
channels mentioned before.

Here, we define aliases of our exciton states; (1) "Mother exciton", denoted by
the black circle in Fig.2(B). It is in the front, and has an excess phonon or vibronic
energy inherited from the light. (2) "Frozen exciton", denoted by the shaded circle in
Fig.2(B). It is in the outside of the front, and is always in the zero phonon state
m, = 0 defined by eq.(3)

As the proliferation proceeds, the total number of exciton in the front increases
from 1 to 2, as shown in Fig.2 (B). At this stage, we reconstruct a new front just as
schematically shown in the right hand side of Fig.2(B). The mother exciton is now
frozen, and the new exciton becomes a new mother exciton. This new mother inherits
the excess energy, which has now somewhat decreased from the initial excess energy,
because of the dampings or the relaxations mentioned before. In this reconstruction,
the site with the largest exciton density within the front, is taken as the site wherein the
new mother is. We call this reconstruction procedure the "generation crossover".
While, the new 4 sites (new front) of the new generation is chosen by try and error
method, so that they will be the most efficiently growing part around the new mother.
The total energy in the system is conserved before and after this generation crossover.
We iterate this procedure, until we can get a large domain. Thus, using this method,
we can numerically calculate the temporal evolution of a large system involving many
excitons and phonons. It should be noted that this approximation is valid only when
the excitons are rather localized, S >>|T;|.

FIGURE 2. Iterative procedure in the 2-D lattice. (A) Photo-generated two excitons ( for example ) are
replaced by a mother exciton ( black circle) and a frozen one (shaded circle). (B) The shaded 4 sites in
the left part of (B) denotes the front. The shaded 4 sits in the right part of (B) is the new front of the
next generation.

FORMATION OF DOMAIN PATTERN AND ANISOTROPY

The pattern formation characteristics are well known in the studies for the diffusion-
limited-aggregation phenomena. [8] For example, an anisotropy of surface tension
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forces a resultant cluster pattern to be a rod like one. Generally speaking, an
anisotropy in the elementary process of the growth always brings some characteristic
patterns of the resultant cluster. In the case of our present PIPT, the inter-exciton
interactions are the main origin of exciton proliferation. Thus, we can expect that the
domain pattern will sensitively reflect the anisotropy or the isotropy of those
interactions. In some case, we can expect that even the success or the failure of the
PIPT itself will also be dominated by the absence or the presence of the anisotropy.
For these reasons, we have chosen the two typical cases mentioned in TABLE 2.
Keeping these points in the mind, let us see the results of the numerical calculations,
performed by using the model and the method given in previous sections.

RESULTS AND DISCUSSION

At first, we have shown in Figs.3 (A) and (B), the temporal evolution of the total
exciton number and the total energy, owing to only one photon pulse injection at time
zero. This pulse is assumed to be strong enough to generate two excitons at once, as
shown in Fig.2(A) and Fig.3(A). Our process is the literal nonlinear one, and as
already shown by Mizouchi [7], a single exciton alone can not results in efficient
proliferations. Moreover, even if two excitons are simultaneously created at the
beginning, the resultant proliferation is also shown to sensitively depend on the initial
inter-exciton distance, and this situation is called the initial condition sensitivity.[7]
For this reason, in the present study, the inter-exciton distance is chosen to make the
subsequent proliferation most efficient under the one-pulse excitation condition.
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FIGURE 3. Temporal evolution of total exciton number (A) and total energy (B) after only one photon

pulse injection, at time zero. The parameters of the anisotropic case are used.
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From Fig.3(A), we can clearly see that there are two stages in the exciton
proliferation process. One is the early stage just after the pulse excitation, wherein the
number of excitons increases very drastically from 2 to 6 or so. This rapid increase is
easily seen to occur by making use of the excess vibronic energy just donated from the
photon pulse, since the total energy also rapidly decreases at the same time, as shown
in Fig.3 (B). After this rapid process, the retarded stage starts. In this stage, the exciton
number only gradually increases, and the total energy also decreases gradually. The
whole exciton system has now reached some local adiabatic potential energy
minimum, and hence the total number of excitons only gradually increases, by the
tunneling effect through various adiabatic potential energy barriers.

In the next, let us proceed to the case of multi-pulse excitation by six successive
ones with an equal time interval, which is 100 oscillation periods of the Einstein
phonon, as shown in Fig.4. The center of mass position of the two excitons generated
by each photon pulse is randomly determined within the 2-D (15x 15 ) lattice. We can

e
- Y
E 5 \K:'
€ K
E "
*

]

o 100 00 m.r’me [24:"‘,, 0

FIGURE 4. Temporal evolution of total exciton number by 6 photon pulses injection at random sites.
The wavy arrow represents a photon pulse. The parameters of the anisotropic case are used.

easily see from Fig.4 that the 100 period time interval is long enough for each early
stage associated with each pulse to finish. However, these early stages do not result in
the same proliferation, since they are influenced by the frozen excitons created by the
preceding pulse excitations. This effect due to the frozen excitons in the out side of the
front is taken into account by the mean field approximation mentioned before.

As inferred from Fig.4, the effect of this successive six pulses excitation looks like
saturated after 600 period. Hence, we can call that this time region from zero to 600
period the elongated early stage, since this stage is just after the successive six pulses
excitation. However, after this six-pulse excitation, the domain still gradually grows,
and this slow growth continues up to about 100000 period. This is the literal retarded
* stage relative to the aforementioned elongated early stage, and the slow growth is just
due to the tunneling process, explained before.

Let us now proceed to the effects of the anisotropy of the inter-exciton
interactions, as compared with the isotropic one. Figure.5 shows the characteristic
exciton domain pattern obtained by using the anisotropic interactions in the elongated
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early stage, that is, just after 600 period in Fig.4, and the shaded circle at each lattice
site denotes the exciton in the 2-D ( 15x15) lattice. We can clearly see that the domain
pattern has an “island”, namy “capes” and many “peninsulas” stretched outside, with
a “strait”, “bays” and “gulfs” in between. These characteristics reflect the anisotropy
of the inter-exciton interactions. Here, we should note that the interactions between
neighboring

FIGURE 5. Domain pattern formed in the elongated early stage ( 600 periods) by anisotropic inter-
exciton interactions shown in Fig.1 and TABLE 2. The shaded circle is an exciton in the 2-D (15X 15)
lattice. 6-photon pulses are injected at random.

sites and that between next neighboring sites are opposite in their signs.(TABLE.2)
Therefore, these interactions bring aforementioned structures to the domain pattern.
Next, let us proceed to the tunneling type slow proliferation in the retarded stage,
that is from 600 period to 100000 period in Fig.4. As is shown in Fig.6, the strait, bays
and gulfs are now filled up by newly grown excitons, which are denoted by the black

fostecctaatan

S

FIGURE 6. Domain pattern at 100000 period after the successive 6 photon pulses injections, under the
anisotropic interactions shown in Fig.1and TABLE 2. The 2-D(15 X 15) lattice is used. The black circle
represents the exciton newly grown in the retarded stage. The shaded circles are same as that of Fig.5.
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circles. Thus, the characteristic pattern is lost by the tunneling process. That is, the
pattern peculiar to the anisotropy of interactions, appears only in the early stage.
However, this tunneling process itself is the result of the anisotropy. In the present
case, 30-excitons are generated in the elongated early stage, and 26-excitons are added
in the retarded stage. Thus the PIPT in this case is successful.
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FIGURE 7. Domain pattern at 100000 period after the successive 6 photon pulses injections, under the
isotropic interactions shown in Fig.land TABLE 2. The 2-D(15x 15) lattice is used. The black circle
represents the exciton newly grown in the retarded stage. The shaded circles are excitons generated in
the elongated early stage( just after 600 period in Fig4).

Let us proceed to the isotropic case. Figure.7 shows a domain pattern obtained by
using the isotropic interactions with parameter values shown in TABLE.2. The
calculations are performed by keeping the same conditions except for the inter-exciton
interactions shown in TABLE.1 and 2. The sites and the intervals of photon pulse
injections are also same as that of the above two calculations for anisotropic case. In
this isotropic case, however, only some small block type patterns are formed. Thus the
PIPT in this case is not successful. Comparing these results, we can clearly see that the
anisotropic interactions makes the proliferation successful, and the resultant larger
domain formation possible.

CONCLUSION

In the present work, the early time relaxation process of photoexcited state with an
excess phonon energy has been simulated by full-quantum-mechanical calculations.
We have introduced the iterative method to overcome numerical difficulties, and to
clarify how the exciton proliferation proceeds. Using this method, numerical
calculations involving a large number of excitons and phonons are executed.
Numerical results have indicated that the pattern of the exciton domain grown in the
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early stage sensitively reflects the anisotropy of the inter-exciton interactions, and
that the successful proliferation is also realized by this anisotropic interactions.
To extend the front size to more than 4 sites is our future problem.

Pl o o

PR

REFERENCES

. Nasu, K., “Relaxation of Excited States and Photo-induced Structural Phase transitions”, Springer-

Verlag, Berlin, 1997, pp.3-16.

Nasu, K., Huai, P., and Mizouchi, H., J. P.CM, 13, R693 (2001).

Koshihara, S., Takahashi, Y., Sakai, H., Tokura, Y., and Luty, T., J. Phys. Chem., B103, 2592
(1999).

Ogawa, Y., Koshihara, S., Koshino, K., Ogawa, T., Urano, C., and Takagi, H., Phys. Rev. Lets. 84,
3181 (2000).

Huai, P., and Nasu, K., J.Phys. Soc. Jpn. 71, 1182(2002).

Cho, K., and Toyozawa, Y., J. Phys. Soc. Jpn. 30, 1555 (1971).

Mizouchi, H., and Nasu, K., J. Phys. Soc. Jpn. 70, 2175 (2001).

Ball, R., Brady, R., Rossi, G., and Thompson, B., Phys. Rev. Lett. 55, 1406 (1985).

371




YA d
P TN h

ELSEVIER

Synthetic Metals 135-136 (2003) 705-707

SYMTHETIC
METALS

www.elsevier.com /locate /synmet

Theory for photoinduced structural phase transitions and
their dynamics in a 2-D insulating crystal

Ryotaro Yabuki, Keiichiro Nasu™

Institute of Materials Structure Science, KEK, Graduate University for Advanced Study,
1-1, Oho, Tsukuba 305-0801, Japan

Abstract

We theoretically study non-linear non-equilibrium real-time dynamics of domain formation by photogenerated excitons in a 2-D insulating
crystals, and search for successful conditions under which photoinduced structural phase transition (PSPT) occur. Our model is a many-
exciton system, coupling strongly with Einstein phonons, and also interacting with a reservoir. Using this model, we numerically calculate its
time-evolution dynamics, full-quantum mechanically. It is found that the anisotropy of inter-exciton interactions is essential for a large
domain nucleation, and also to make the PSPT successful, as compared with the isotropic cases.

© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, there discovered many new insulating
solids, which, being shined by only a few visible photons,
become pregnant with a macroscopic excited domain that
has new structural and electronic orders quite different from
the starting ground state. This phenomenon is called “photo-
induced structural phase transition” (PSPT) [1]. According
to recent development of laser spectroscopy, quite novel and
noticeable properties of this PSPT are now discovered in
various insulating solids [1-3].

However, as for the real-time dynamics of these non-
equilibrium PSPTs, there are still many unsolved problems.
For this reason, in the present paper, we will be concerned
with the real-time dynamics of domain formations, which
finally results in the PSPT in a 2-D crystals. Taking a many-
exciton system coupling strongly with Einstein phonons in
this 2-D insulating crystal, we numerically calculate spatio-
temporal evolutions of photogenerated excitons, their pro-
liferations and domain pattern formations, full-quantum
mechanically.

As for the light excitation, we assume the case of pulse
excitation composed of several successive ones with an
equal time interval. We will show that there are two stages
of exciton proliferation. One is the early stage, and is equal

* Corresponding author. Tel.: +81-298-64-5588; fax: +81-298-64-3202.
E-mail address: knasu@post.kek jp (K. Nasu).

to the time region wherein the successive pulse excitation
is going on. Another is the retarded stage, wherein the
successive pulse excitation is turned off. In the former
stage, the total number of excitons drastically increases by
making use of large excess phonon energy just donated
from the light pulse. While, in the retarded stage, the
whole exciton system reaches some local adiabatic poten-
tial minimum. Hence, the total number of excitons only
gradually increases by the tunneling through various adia-
batic potential barriers.

We will conclude that the spatial pattern of the exciton
domain formed in the early stage, sensitively inherits the
anisotropy of inter-exciton interactions. It will be also shown
that this anisotropy makes the aforementioned tunneling
quite efficient, and the proliferation quite successful even in
the retarded stage, as compared with the cases wherein the
inter-exciton interaction is isotropic.

2. Many-exciton system strongly coupling with
phonons

Let us define our relevant system composed of many
excitons coupling strongly with Einstein phonons. The total
Hamiltonian (=H,) of our system is written as (i = 1)

H=Hs+Hr+Hsn (1)

where H, denotes the strongly coupled exciton—phonon

0379-6779/03/$ — see front matter © 2003 Elsevier Science B.V. Al rights reserved.
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system, which is given by:

H,=EY BfBi+Y T(l-U|)B}Br + @y bjbi
I 1

£l
— VS BfBi(b +b)+ Y _G(ll - I')B} Bi(Bf
1 [
+By) + Y V(11— B BiBj Br, @)

»r

where E is the energy of an exciton, Bj and b the creation
operators of an exciton and a phonon, respectively, at a
lattice site specified by a position vector [ in a 2-D square
lattice. T is the exciton transfer from site /' to I, w the energy
of the Einstein phonon and S an exciton-phonon coupling
constant. G and Vare the third- and fourth-order anharmonic
inter-exciton interactions, respectively, which come from a
long range Coulomb interaction among electrons and holes
constituting these excitons.

H_ represents a reservoir composed of the radiation field and
the acoustic phonons, linearly coupling with the exciton and
the Einstein phonon fields through H. Consequently, various
relaxations can occur in our relevant system, such as phonon
relaxations, radiative and non-radiative decays of excitons.

In order to make our later discussions simple and clear, we
focus only on two typical cases of the parameters 7, Vand G,
that is, an anisotropic case and an isotropic one as shown in
Table 1. All these parameters are listed in Tables 1 and 2, and
their spatial extensions are illustrated in Fig. 1.

The isotropic case is the standard one since it includes the
interactions only between neighboring two sites. In this
model, two excitons at neighboring two sites attract each
other, and it tends to make an exciton cluster. Throughout the
present paper, the occupation of a single site by more than

" Table 1

Parameters for inter-exciton interactions used in Eq. (2)

Anisotropic case Isotropic case

vV, Vo (—1.45, 0.63) (-0.9, 0.0)
(T, T)w - (-1.0,0.5) (-1.0, 0.0)
(G4, G, Ga)w (0.30, —0.03, 0.15) (0.30, 0.0, 0.0)
Table 2

Common parameters in Eq. (2)

(%3} 0.10eV

Elw 7.80

Slw 6.45

Fig. 1. Spatial extensions of 7, Vand G in the 2-D square lattice. Parameter
values are listed in Table 1.

one exciton is excluded from the beginning. From Eq. (2),
we can easily see that the photoexcited excitons proliferate
through the third-order anharmonicity G. In the anisotropic
case, on the other hand, the interactions between neighbor-
ing sites and that between next neighboring sites are
assumed to be opposite in their signs.

In the present paper, we will not be concerned with their
microscopic origins. We will treat them only phenomeno-
logically, and compare aforementioned two typical cases in
connection with the domain pattern formation and the
proliferation. In order to perform practical calculations,
we also have to derive the master equation under Markov
approximation for the reservoir.

3. Method and approximations

At first, we introduce a set of basis states with 7, (=1 or 0)
exciton and m; (=0, 1, 2, . . .) Einstein phonons at each lattice
site [, as:

II [(B,* uy" (—ff—)_—] 0), U= e Vel

i my!
|0) = exciton—phonon vacuum, 3)

where U, denotes the operator of phonon displacement,
which appears or disappears, according to the presence or
absence of an exciton at site /. Even if we have used this basis
set, however, we still have serious difficulty, since the total
number of excitons changes from 0 to about 100, while m;
also changes from 0 to about S/, almost independently at
each site. Thus, the direct calculation of this time-evolution
leads to too large dimensional ones. In order to overcome
this numerical difficulty, we derive the following iterative
method for the exciton proliferation.

We focus only on the most forwardly expanding part (the
most front) of the exciton domain boundary, wherein an
exciton with the excess energy coming from the photoexci-
tation is always included. This most front is determined by
try and error method, so that it will be the most efficiently
growing part of the domain boundary. The contributions
from other excitons not in this front are approximated by the
mean field. As proliferation proceeds by using the excess
energy, the position of this front also moves. For the practical
reason mentioned before, the size of this front cannot be so
large. As shown in the left part of Fig. 2B, we take the shaded
four lattice sites as this front. This front (the four sites) is our
relevant system, within which we calculate excitons, Ein-
stein phonons and their interactions, full-quantum mechani-
cally, as well as various dampings mentioned before.

Here, we define aliases of our exciton states. (1) “Mother
exciton”, denoted by the black circle in Fig. 2B. It is always
in the front, and has an excess phonon energy inherited from
the light. (2) “Frozen exciton”, denoted by the shaded circle
in Fig. 2B. Itis in the outside of the front, and is always in the
zero phonon state m; = 0 defined in Eq. (3).
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Fig. 2. Iterative procedure in the 2-D lattice. (A) Photogenerated two
excitons, for example, are replaced by a mother exciton (black circle) and a
frozen one (shaded circle). (B) The shaded four lattice sites in the left part
denotes the front. The shaded four lattice sites in the right part is the new
front of the next generation.

As the proliferation proceeds, the total number of exciton in
the front increases from 1 to 2, as shown in Fig. 2B. At this
stage, we reconstruct a new front as schematically shown in
the right part of Fig. 2B. The mother exciton is now frozen,
and the new exciton becomes a new mother exciton. This new
mother inherits the excess energy, which has now somewhat
decreased from the initial excess energy, because of the
dampings mentioned before. In this reconstruction, the site
with the largest exciton density within the front, is taken as the
site wherein the new mother resides. We call this reconstruc-
tion “generation crossover”’. While, the new four sites (new
front) of the new generation is chosen by try and error method,
so that they will be the most efficiently growing part around
the new mother. The total energy in the system is conserved
before and after this generation crossover. We iterate this
procedure, until we can get a large domain. Thus, using this
method, we can numerically calculate the temporal evolution
of a large system involving many excitons and phonons. It
should be noted that this approximation is valid only when the
excitons are rather localized: S > |T1|.

4. Results and discussion

Fig. 3 shows the exciton domain pattern calculated by
using the anisotropic interactions. The shaded circles in
Fig. 3A denote the exciton generated just after the early
stage, that is, just after the successive excitation by six light
pulses with a time interval 100 period. One period is 27t/w.
We can see that this domain has a fractal pattern, and it has
an “island”, many ‘“capes” and many ‘“‘peninsulas”
stretched outside of the domain, with a “strait”, “bays”
and “gulfs” in between. These characteristics just reflect the
anisotropy of the inter-exciton interactions.

While, the black circles in Fig. 3B denote the exciton
generated in the retarded stage, that is, about 100,000
periods after the pulse excitation, and this domain pattern
is due to the tunneling type slow proliferation. We can see
the aforementioned strait, bays and gulfs are now filled up by
newly grown excitons, which are denoted by the black
circles. Thus, the characteristic pattern is lost by the tunnel-

@A) (B)

Fig. 3. Domain pattern formed by anisotropic interactions. (A) The early
stage. The shaded circles denote the exciton. (B) The retarded stage. The
black circles represent the newly grown exciton. The shaded ones are same
as in (A).

Fig. 4. Domain pattern formed by isotropic interactions. Others are same
as that of Fig. 3.

ing process. The pattern peculiar to the anisotropy appears
only in the early stage. However, this tunneling process itself
is the result of the anisotropy, and the resultant domain has
become large enough to be called the PSPT.

Fig. 4 shows a domain pattern calculated by using the
isotropic interactions. The calculations are performed under
the entirely same conditions as that of previous anisotropic
case except for the inter-exciton interaction. In this isotropic
case, however, only some small block type patterns are
formed, and the PSPT is not successful.

5. Conclusion

We can conclude that the spatial pattern of the exciton
domain formed in the early stage, sensitively inherits the
spatial anisotropy of inter-exciton interactions. It is also
shown that this anisotropy makes the aforementioned tun-
neling quite efficient, and the proliferation quite successful
in the retarded stage, as compared with the case wherein the
inter-exciton interaction is isotropic.
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Monochromatic x-ray emission is predicted for MeV channeled electrons/positrons. The mechanism of this
radiation is intuitively understood as diffraction of virtual channeling radiation into the direction of the Bragg
angles with respect to the electron beam. Our numerical calculations predict that spectral density of the emitted
X rays is about ten times larger than that of parametric x-ray radiation.
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I. INTRODUCTION

There is no doubt that making a monochromatic, intense,
tunable, as well as compact x-ray source will bring further
development to various fields of science, technology, and
medicine. At present, channeling radiation (CR) is one of the
candidates for such an x-ray source. Indeed, CR up to ~0.1
photon per e~ per sr. has been observed,! demonstrating that
CR can be used as a practical x-ray source.

Unfortunately, CR has a large continuous background ra-
diation due to incoherent bremsstrahlung. Therefore, we
need a monochromator for extraction. Furthermore, since CR
is emitted along the electron beam, we need equipment for
sweeping out the electrons. This equipment will cause the
x-ray generating system based on CR to become rather com-
plex and large. v

Recently, a new type of coherent x-ray radiation from
crystals, called ‘‘parametric x-ray radiation’’ (PXR), has be-
come a new candidate for the compact x-ray source of the
future. In PXR, it is not difficult to extract x rays because
they are emitted in the direction satisfying the Bragg condi-
tions. Moreover, the background radiation in PXR is negli-
gibly. small.> However, the intensity of PXR is about
1073-10"* times smaller than that of CR.

Taking into account the advantages in CR and PXR, it is
interesting to consider the possible use of the target crystal
itself as a monochromator for CR. As is well known, a MeV
channeled electron emits CR spontaneously by changing its
transverse energy from E, ; to E, ;. Due to the Doppler
shift, the frequency of CR emitted in the forward direction
becomes wcr=~27y*Q if» Where v is the Lorentz factor and
Q;=(E,;—E, p)/fi. Let wp represent the frequency of
photons satisfying the Bragg condition wg=c|g|/(2 sin 6p),
where g is the reciprocal-lattice vector and @p the Bragg
angle. If the condition

(1.1)

WCR™ Wp

is satisfied, the CR photon will be diffracted in the crystal. In
other words, we have an x-ray emission as a result of dif-
fraction of virtual CR. We call this radiation process ‘‘dif-
fracted channeling radiation’” (DCR).

0163-1829/2001/63(17)/174112(7)/$20.00
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CR taking into account diffraction is discussed in Ref. 3
and calculated using a kinematical theory.“’5 However, nei-
ther the absolute value nor the angular distribution has been
given. This is because the kinematical theory results in a
divergence at the resonance condition of Eq. (1.1)43

In this paper, we use the dynamical theory for x-ray pho-
tons, predicting various properties of DCR. It is shown that,
in comparison with PXR, the spectral density of DCR is very
large and the width of the angular distribution is very nar-
row. The peak intensity of DCR is about 10 times larger than
that of PXR.

II. THEORY
A. Frequency of diffracted channeling radiation

In this section, we derive the expression for the frequency
of DCR from the energy and momentum-conservation equa-
tions. When a photon is emitted from a channeled electron,
the photon energy 7w is given as the difference of the initial
and final energy of the electron as
where E~E(p)+E,;, E~EMP)+E.;, E(p)
= \/(cp||)z+m7cz, and pj is the momentum along the chan-

" nel. The momentum is conserved only in the direction par-

allel to the channel

p—pj =h(k+ g, 2.2)

because the transverse state of the channeled electron is
bound. From Egs. (2.1) and (2.2), under the condition satis-
fying Aw<E;,E;, we obtain

o= 2Ny (2.3)
1—Bjf cos®

where w=c*|k|, k is the wave vector of the photon, c*
=c/ \/_s— , £¢ is the average dielectric constant, B" =v) /c*,
v| the velocity of the electron along the channel, and © the
observation angle.

If Q;=0, Eq. (2.3) reduces to the well-known formula
for the frequency of PXR®

©2001 The American Physical Society
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w= —————g. V“ (2 4)
1—Bjcos®" )
On the other hand, if g=0, then Eq. (2.3) reduces to the
expression of the CR frequency:®'®

Qif

=— 2.5
@ 1-Bffcos® @5)

It should be noted that the approximated expression w
~29*Q i at the forward direction is modified to

20,
= T
¥~ 2+ xo(@)|

if Vlxo(w)|~1/y is satisfied.'® Equation (2.3) may be con-
sidered as a unified expression for the frequencies of CR,
PXR, and DCR.

It is worthwhile to mention that Eq. (2.3) is not only held
for the bound-bound transitions but also for the free-free and
free-bound transitions. For example, let us consider the free-
free transitions. As shown by Andersen’ and in Ref. 8, in this
case we may expect coherent bremsstrahlung for g=0. Cor-
respondingly, for g#0, we may have ‘‘diffracted coherent
bremsstrahlung.”9 We will not discuss further-this possibil-
ity but concentrate on DCR from now on.

(2.6)

B. Radiation processes and their matrix elements

In this section we derive the radiation probability for
DCR. We start with the Fermi golden rule,

2
WIF=TWI(F|HMI|I)|2PF’ 2.7

where I and F represent the initial and final states of the
system as a whole, respectively, and py the density of the
final state.

For simplicity, from now on we consider planar channel-
ing of electrons. In our case, the effect of spin is negligibly
small.® Then the Hamiltonian for the interaction between the
channeled electron and the photon field may be given by

4 ~
Hjp=— ymc A-p, (2.8)

where p is the momentum operator. The photon field A is

given in a form of the Bloch wave (see the appendix)

A(r)=2k > Agexpli(k+g)-r]+cc. (2.9)
g

The wave function for the planar-channeled electron is given

aslG

(s) 1 ipy-ry /A
P ()= H%KW:"’" e, (2.10)

where s=(n,p) and L, and L, are the normalization con-
stants. The factor exp(ip|-ry /h)/\L,L, describes the free
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state along the channel and ¢,(y) the transverse state ob-
tained as a solution of the transverse Schrodinger equation

@u(y)=EL n®n(y)- (2.11)

~2
Py
+
{2 - V(y)
Since the Lindhard continuum potential V(y) is periodic,
©,(y) is written in the form of the Bloch wave

1
¢n(y>=—f % CO(p,)expli(p, hi+G)yl, (2.12)
y

where G is the reciprocal-lattice vector associated with the
channel planes.

Using Eqgs. (2.9) and (2.10), the matrix element may be
decomposed into two parts:

(F‘Him‘[)

(4 ~
=—(¢;.pjl =—[A¥ exp(—ik-1)]-plo;i.py)
ymc

e ~
—_ [ * —i . . .
(s oBil = ggo) {A¥ exp[ —i(k+g)-r1}-plo;.pyp)

M+ S, M. (2.13)
g(#0)

The term M gi ) corresponds to the emission of a photon with-
out changing the transverse state (i.e., the intraband transi-
tion). Only the momentum along the channel changes in this
case because the transverse state is bound. As we have g
=0 and Q;;=0 for this transition, Eq. (2.3) reduces to the
Cerenkov condition 1— B} cos ®=0. Therefore, M D repre-
sents the Cerenkov radiation under the channeling condition.
Of course, as x rays do not satisfy the Cerenkov condition,
M{§? does not contribute in our problem.

For the condition i # f, M gﬁ represents the normal CR. In
a strict sense, a certain effect of diffraction may take place
because in the two-wave approximation (see the appendix),
A has a form of the superposition of two plane waves on the
slightly different energy branches. However, since the differ-
ence of the energies is of the order of | xg] ~107%— 1079 this
dynamical effect on CR may be usually neglected.

The second term in Eq. (2.13), M gf) , represents the emis-
sion of a diffracted photon. The matrix element M (gii) , where
the transition of the channeled electron is intraband, gives
PXR under channeling conditions (PXRC). PXRC is differ-
ent from the normal PXR in that its matrix element includes
the form factor of channeling states. Numerically however,
as we will discuss in Sec. III, the difference between PXRC
and PXR is rather small.

The matrix element M (gif) (i#f), which is of our present
interest, represents the emission of a diffracted photon due to
the interband transition between the transverse states (DCR).
In the next section, we derive the radiation probability of
DCR and PXRC by calculating M gf) in more detail.

174112-2
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C. Analytical expression of PXR and DCR

From Egs. (2.8), (2.10), and (2.13), we obtain the matrix
element for the emission of a diffracted photon

R e i
MPQ=- (E) [(Afg' V) esle™ 7 g;)

1 o
+%(Aﬂ—<g)y<¢f|e ik g)yypy|¢i)

X 8(py—pjlik-g),

where p,= —if(d/dy), (A*,), and (k—g), are the y com-
ponents of A and k— g, respectively, and 5(A|B) the Kro-

necker delta. Usmg the relation (—if/ 7m)py—[Hy ,y1, Eq.
(2.14) is rewritten as

(2.14)

. e :
M=~ ( E) (A%, V(@ 78| p;)

+i(A% ), Qi @yl 0:)18(py—pj |k _g)-
(2.15)

As mentioned in Sec. II B, Eq. (2.15) includes two types
of transitions: the intraband transition (i=jf) and the inter-
band transition (i# f).

First, we consider the intraband transition. From Eq.
(2.15), we obtain

M=~ &) a2, Lk, 6001 Bk
(2.16)

where

Fi(g)=(pile ' ?|¢;) (2.17)

is the form factor for the channeling state that represents the
effect of channeling on PXR. If we substitute ¢; by the plane
wave exp(xpyy/ﬁ)/\/_y, the form factor becomes the Kro-
necker delta 6(p,— pylhq) 101n this case Eq. (2.16) reduces
to the ordinary PXR matrix element® and within the two-
wave approximation, we obtain the dynamical expression of
the radiation probability of PXR per unit length after sum-
ming up the final momentum of the channeled electron'" 12

awpg

( dN ) B
a6,d0ydz| .. 47 sin® O

6’ 6?
X b
(4(1+W ) 4(1+W3_L))
(2.18)

1
2| x,lPo

Xl P
02+ 02+ ekm

24 2
0,+¢6 +0km

0

(o=],L1). (2.19)
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FIG. 1. Geometry of our system. The relativistic electron travels
along the Z axis. The channel planes are parallel to the XZ plane.
The 6,0, coordinates are also introduced to represent the angular
dlstnbuuon of the emitted photons. The Z axis indicates the direc-
tion satisfying the Bragg condition with respect to the beam direc-
tion. The diffraction plane is perpendicular to the channeling plane.

0, and 6, are the angles of emission measured from the
direction satlsfymg the Bragg condition (see Fig. 1), and
0,",,—7 2+ xol- 13 In the above calculation, we have as-
sumed that 6, ,<1 is satisfied.

Next, we consxder the interband transition corresponding
to DCR. Using the dipole approximation e ‘* " ®y~1
—i(k—g),y to Eq. (2. 15), we obtain

) =
M=

X 5(p||— p'"iﬁk_g“). (2.20)

Using Eq. (2.20), the radiation probability of DCR per unit
length is obtained as

( dN ) _ aw%yzf
doxdaydz DCR 47TC3Sin2 03

02——% i
y wp

4(1+wW?)

4(1+ W" )
(2.21)
where « is the fine-structure constant y;;=(¢@/y|¢;),

woo ! [R_nglzl’i]
7 2| xlPs R |

(2.22)

and
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FIG. 2. Angular distribution of the intensity of DCR and PXR

emitted by a 10-MeV electron channeled along the Si(110) plane. "

The diffraction plane is Si(1 11). The resonant condition is satisfied
by the 1—0 transition.

Q.
R=[0x—(z)—;£)cot 0p

W, corresponds to ‘‘the resonance error’” in the theory of
dynamical diffraction'*'* (also, see the appendix). In the
next section, we discuss various properties of DCR in more
detail by performing numerical calculations.

2 2., o2 Qif
+0}’+ Gki"-Z(E). (2.23)

III. NUMERICAL RESULTS AND DISCUSSION

First of all, we note that an experimental condition for
observing DCR is not as simple as that for PXR because the
resonant condition depends on both the observation angle
and the energy of the channeled electron.

As a typical example, we calculate the intensity of DCR
for 8—20-MeV electrons channeled along the Si(110) plane.
The incident angle to the channel plane is tilted 0.02° for
obtaining enough population into the excited state i=1. The
energy of the channeled electron is chosen so that the stron-
gest CR peak appears in the x-ray energy region. From Egs.
(1.1) and (2.3), for the 1 —0 transition of a 10-MeV chan-
neled electron, we obtain Ziwg=7.1 keV for the (111) plane
diffraction satisfying the resonant condition at the observa-
tion angle ® =2 63=32.2°. The channeling states have been
obtained by the many-beam calculations. For V(y), we have
used the thermally averaged Doyle-Tumer potentials’16 at T
=300 K.

In Fig. 2, we show a typical angular distribution of DCR.
For comparison, the angular distribution of PXR is shown.
The peak intensity of DCR is ten times stronger than that of
PXR. In other numerical calculations, we have obtained up
to a 10? enhancement at higher incident energies. The angu-
lar width of DCR is much narrower than that of PXR. This is
because the width of PXR is of the order of 6,;, whereas for
DCR it is of the order of m , and 6;;,> M is satisfied
for MeV electrons.

Figure 3 shows the incident energy dependence of DCR.
Below a certain energy, DCR is suddenly suppressed. This
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FIG. 3. (a) Angular distribution of DCR as a function of the
incident energy. Other parameters are same as in Fig. 2. (b) The
same as (a) but for lower energy. As the energy decreases below the
threshold energy [Eq. (3.4)], DCR is suppressed very rapidly.

behavior is understood in terms of the energy dependence of
the resonance error W,,.. Regarding W/, as a function of 6,,
the solution of the equation W,=0 is given by

Q,
6,=cot eB(—i) +\D, (3.1)
Wpg
where
Q; 1
— ify _ * 2
D_z(w_s) =6 llPo. G2

When the condition D<0 is satisfied, we have W,>0 for all
6, . Under this condition DCR is suppressed because, as one
can see from Eg. (2.21), DCR becomes significant only at a
certain narrow region of 6, where W,~0 is satisfied. On the
other hand, when D=0 is satisfied, two sharp DCR peaks
arise at 6, satisfying Eq. (3.1) for the 1—0 transition. Each
peak actually has a fine structure of the double peak similar
to Fig. 2 because it has two maxima at the angles satisfying
Eq. (3.1) while minima at

Q; Q; 1
6,=cot oB(w_;) + \/;(-aTl:) - —y—z- —lxol— 03, (3.3)

which corresponds to the angles for W,—®. The small
peaks appearing at E>16 MeV are associated with the 2
_»1 transitions. Other transitions, e.g., 3—2, are too small
to be seen.

The above discussion suggests that we may introduce the
threshold energy for observing DCR by
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-1
(3.4)

Q;
m=[2(;;f) = xol +1xl

Neglecting the weaker dependence of {);; on 7, one may
predict that a necessary condition for observing DCR is y
> v,,. It would be worthwhile to mention that if both | x|
and | x,| are neglected, Eq. (3.4) recovers the ‘‘resonant con-
dition”” Eq. (1.1).

Finally, we consider PXRC. As mentioned in the previous
section, the matrix element of PXRC, Eq. (2.16), differs
from that of PXR in that it includes the form factor F;{(k
—g),]. The correction is very small for x rays. To see this,
for simplicity, we assume that the diffraction plane is parallel
to the 6, axis (g,=0). Since the angular distribution of
PXRC has a width of the order of 1/y, it is similar to that of
PXR. Thus we have k,~k@,<k/y. In this case we may
approximate that exp(—ik,y)~1—ik,y—(k,y)* and the form
factor may be expanded as :

2

k
Fii(ky)~Fii(0)— '2_y(¢i|y2|¢’i) (3.5)
for the emission of x rays satisfying k~d ™!, where d is the
lattice constant. From Eq. (3.5), we may conclude that the
difference between PXR and PXRC is small because the
contribution from the second term is less than of the order of
v~ 2<1. Indeed, our numerical calculation for 10-MeV elec-
trons indicates that the second term in Eq. (3.5) is about 10?
times smaller than the first term.

So far, we have neglected the inelastic collisions. In fact,
a channeled electron is scattered by thermally displaced tar-
get atoms, target electrons, impurities, dislocations, etc. Due
to the inelastic scattering the transverse state ¢; becomes
unstable, having a finite lifetime 7;. As is well known, this
causes the linewidth in channeling radiation. DCR will be
also affected by the inelastic scattering. One possible way to
take into account the effect of channeling lifetime is to use
simple exponentially decaying states’

@i(y.1)=@i(y)e” """ (3.6)

It should be noted, however, that this model will overesti-
mate the effect especially for a thick target because rechan-
neling is not negligible at all. For detailed quantitative cal-
culations, therefore, we should consider the population
dynamics by using a master equation,'® which is outside the
scope of our present paper.

IV. CONCLUSIONS

In this paper we have considered the effect of diffraction
on channeling radiation from relativistic electrons. We have
derived the frequency condition of the diffracted channeling
radiation (DCR), which includes that of PXR and CR as
special conditions. We have shown that PXR emitted by
channeled electrons occurs as the intraband transition in the
quantum transverse states whereas DCR occurs as the inter-
band transition.

The numerical calculations for 10-MeV channeled elec-
trons along Si(110) planes have shown that DCR intensity is
about ten times stronger and the angular distribution is much
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narrower than that of PXR. It should be noted that as the
incident energy increases, the peak intensity ratio of DCR to
PXR becomes larger, while the width of the DCR angular
distribution becomes narrower.

It has also been shown that the incident energy depen-
dence of DCR has a certain threshold. These properties of
DCR will be helpful in discriminating between DCR and
PXR experimentally. To observe DCR, the energy of chan-
neled electrons should be in the quantum channeling region,
i.e., typically =20 MeV for planar channeling and <10
MeV for axial channeling so that the principal CR is emitted
at x-ray energies. In this paper we have considered DCR
from planar-channeled electrons only, but it is straightfor-
ward to extend our theory to the case of axially channeled
electrons as well as planar-channeled positrons.
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APPENDIX: DYNAMICAL DIFFRACTION OF X RAYS

The Maxwell equations describing the electromagnetic
wave A(r) inside a crystal are given as

div[e(r)A(r)]=0, (Al)
w\2
rot rot A(r)—(z_-) e(r)A(r)=0. (A2)

Since the crystal has a periodic structure, the local dielectric
function &(r) is also periodic. Therefore, we may expand it
into the Fourier series as

e(r)=go+e'(r), (A3)
e'(N= 2, xge'®" (A4)
g(#0)
477e?
Xg= — _ng’ (AS)
mw

where £¢= 1+ x; is the mean dielectric constant, x, the Fou-
rier component of the local electric susceptibility, and p, the
Fourier component of the electron density. According to the
Bloch theorem, the wave function A(r) as a solution of Eqgs.
(A1) and (A2) becomes the Bloch wave
A(r)=2, Age™et+cc. (A6)
g
Substituting Eqs. (A3)—-(A6) for Eqgs. (Al) and (A2), we ob-
tain the fundamental equation of diffraction

2
g
=" 1-x0
K3

(A7)

Ag= 2 Xg—hAh’
h(#g)

where Ky= w/c.
When the Bragg condition associated with a reciprocal-
lattice vector g is satisfied, we may expect that the condition
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| Ayl <€| Ag|,| Agl holds for h#0,g. In this case we may use the
two-wave approximation

A(r)=Age™ T+ A e, (A8)
Then, from Eq. (A7), we obtain the two coupled equations
K2
[F—I_XO AO_X—gAgzoa (A9)
0
k2
K—‘;— 1-xo|Ag— XgA0=0. (A10)
0

By introducing the polarization vector ey, Ay(h=0,g) is
rewritten as

Ah= 2 ehaAha’ (All)

o=|,L
where ey, is the polarization vector, and || and L indicate the
polarization direction parallel and perpendicular to the dif-
fraction plane (i.e., the plane including both Kk, and k), re-
spectively. For further simplicity, let us define &, and P, as
follows:
2

h
2§h=EZ"1—Xo, (A12)
0
ey ey =1 (for o=1)
= . (A13)
€g)- enj=cos(26p) (for o=|)

Using Eqgs. (A11)-(A13), Eqs.(A9) and (A10) may be re-
written in the form of the matrix equation
( 2§ _X—gPo') (AOO') -0
- XgP o 2§g Ago- .
Equation (A14) has nontrivial solutions only if the determi-
nant of the matrix satisfies
4&oty—|xg*P5=0. (A15)

Under this condition, from Eq. (A14) we obtain the follow-
ing relation between A,, and Ag,:

- 250 =XgP o
8 x_¢Po 2¢,

For describing the dynamical effect, it is convenient to intro-

duce the *‘resonance error’” W, defined by
W,=—t——. (A17)

2K OlX gIP o

(A14)

A

Apo Ajo- (A16)

Using W, & and £, as the solutions of Eq. (A15) are given
by

1

£ =5 xgl Pol = W N1+ WD), (A18)
o1

=5 Xl Po( W2 N1+ WD) (A19)
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FIG. 4. The boundary condition for the x-ray incident on a crys-
tal near the Bragg condition (the Laue case). Inside the crystal, x
rays are excited onto the two branches (+) and (—) due to the
dynamical effect. k{*) and k(gi) represent the primary waves and
the diffracted waves, respectively.

Next, we consider the boundary condition that determines
the amplitude of the internal field excited by the external
field. The external field is written as

AQ () =APey,e™ T+cec., (A20)
while the internal field as
1 _ 4 (- .
A(,(r)=A&;)eot,e"‘oﬂ"+Af,,,)e0,,e"‘{) )"+Ag)egve‘k§+)"
+AG ege™ e, (A21)

where we have approximated the direction of the polariza-
tion vectors as e(gﬁ”)we(—) because the difference is of the
order of | ng . In the above, (+) and (—) imply the wave on
the upper branch and on the lower branch, respectively. The
relation between the external field and the internal field is
schematically shown in Fig. 4. At the surface (z=0). Since
the g wave appears only inside the crystal, the boundary
condition may be given as

AQ=AFD+AS, (A22)

—A(+) (=)
0=A+A). (A23)
Then, from Egs. (A16), (A22), and (A23), each component
of the internal field is expressed by the external field. Using
W, , we obtain

w
AN = | 1+ —=—=14D, A24
(174 2( \/’I:W'z; 0o ( )
1 w
G0 Pl IR (V)
Al 2( W)AO,,, (A25)
a=_L_ 1 0o (A26)
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11
A= 5 —=AG (A27)
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These expressions have been used for the calculations of A,
appearing in Sec. II C. For obtaining the field corresponding
to the emitted photon, the reciprocity theorem has been
applied."”
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