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F-theory is a geometrical framework of non-perturbative compactifications of type IIB
superstring theory with 7-branes. In F-theory, the configuration of the axio-dilaton field
7(B) = Cy(B) +ie ®® in Type IIB superstring theory is described by the complex structure
modulus of the torus in an elliptic fibration over the base space which is the compact space B of
Type IIB superstring theory. In the IIB superstring theory, the axio-dilaton field, and thus the
string coupling constant gs = e?, is then allowed to vary. In addition, the SL(2,Z) S-duality

transformation:
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is identical to the modular transformation of a torus in F-theory. The non-perturbative aspects of
F-theory arise from nontrivial monodromies among 7-branes in Type IIB superstring theory.

In Type IIB superstring theory, there appear 7-branes with not only Ramond-Ramond (R-R)
charges p but also Neveu-Schwarz-Neveu-Schwarz (NS-NS) charges q. Since Type IIB
superstring theory has the self SL(2,Z) duality, all monodromies made by general 7-branes can be
identified under the SL(2,Z) S-duality transformation. Therefore, if a general 7-brane exists alone,
we can consider that the 7-brane is identified with the D7-brane. Similarly, even if multiple 7-
branes overlap each other, each 7-brane is also identified with the D7-brane after deforming each
7-brane to exist alone. This causes the non-perturbative aspects, e.g., the non-locality among the
7-branes and open-string-like trivalent objects: string junctions. It is known that we need the string
junction if we realize the spinor representation or the exceptional gauge symmetries.

An elliptic fibration over the base space with section is described by a Weierstrass equation

2= 2x3+ fx + g, where f and g are sections of certain line bundles over the base space. A

y
cycle of an elliptic curve over the discriminant locus: A:= 4f3 + 27g2 = 0 vanishes and the
fibre becomes singular. The discriminant locus corresponds to the place where multiple 7-branes
are stacked in the Type IIB superstring picture, and we can consider the non-abelian gauge
symmetries arising from there. Such singularities of an elliptic surface are classified by Kodaira,
the Kodaira classification. A type of a non-abelian gauge symmetry corresponds to a singular fibre
type of the elliptic surface in F-theory. In particular, E;, E; and Eg gauge symmetries are
realized as the Kodaira fibre types IV*, III* and II*, respectively.

In six- or lower-dimensional F-theories, we need to consider the cases beyond the Kodaira
classification, in which there are not only “codimension-one” singularities but also “codimension-

two” ones. The “codimension-one” singularity is a codimension-two locus in the total elliptically

fibred Calabi-Yau, where an elliptic fibre becomes singular. If we consider the projection of this



“codimension-one” singularity onto the base space, the codimension-one image is the discriminant
locus. In the Type IIB superstring theory language, a non-abelian gauge symmetry is realized on
this codimension-one image, where some 7-branes overlap on top of each other. The “codimension-
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two” singularity is associated with the codimension-two locus on the base space on which
“codimension-one” singularities intersect each other and then their singularities are enhanced. In
terms of the Type IIB superstring theory, this codimension-two locus corresponds to an intersection
of some 7-branes, where the gauge symmetry is enhanced. Therefore, the “codimension-two”
singularity is related to matter generation.

In six- or lower-dimensional F-theories, if a fibre type has the condition that an exceptional
curve splits into two irreducible ones, then we can distinguish the fibre types into two types,
depending on whether the exceptional curve can split globally or not: “split” and “non-split”. In
split models, each intersection diagram of exceptional curves that arises after the resolution
corresponds to the simply-laced Dynkin diagram. In non-split models, since the two exceptional
curves are identified by monodromy, each expected ADE gauge symmetry implied by Kodaira’s
classification is reduced to the non-simply-laced one by being subject to a projection by a diagram
automorphism. The Kodaira fibre type I, (n = 3,4,..), I, (n = 0,1,...), IV or IV* can involve
such identification of the exceptional curves.

As above, in F-theory, singularities play an essential role in geometrically realizing various
aspects of string theory, e.g., gauge symmetries and matter generation. In this thesis, we focus on
the “codimension-two” singularities in a six-dimensional F-theory. In particular, we consider an
F-theory on an elliptically fibred Calabi-Yau threefold over a Hirzebruch surface.

If a six-dimensional model has the I, I; or III* “codimension-one” singularity whose
expected gauge symmetry is the Ag, Dy or E,, respectively, it may contain half-hypermultiplets
in the spectrum. In addition, the gauge symmetry enhancements in which the half-hypermultiplets
arise are relevant for applications to GUT model building in F-theory. These gauge symmetry
enhancements correspond to particular Wolf spaces and are related to the Freudenthal-Tits magic
square. The C; gauge symmetry is the only non-simply-laced one among them. In the first half of
this thesis, as a non-simply-laced magical example, we investigate an F-theory on an elliptically
fibred Calabi-Yau threefold over a Hirzebruch surface with the non-split I type fibre, in which
the unbroken expected gauge symmetry is C3. We find then a significant qualitative difference
between the split models with half-hypermultiplets and the non-split one. First, we argue that the
half-hypermultiplets of C;: 142 and 6] arise at the “codimension-two” singularities where the
gauge symmetry is enhanced to E;. We then consider the puzzles of non-local matter generation
near the “codimension-two” singularities where the “codimension-one” singularity is enhanced to
Dg. In terms of the anomaly-free constraint and the resolution of the singularities, we state what
the puzzles are as follows: (1) In split models, if the matter fields are localized at all “codimension-
two” singularities, the number of the matter fields is consistent with the anomaly-free constraint.
This is one of the reasons why the massless matter fields are localized at all “codimension-two”
singularities in six-dimensional F-theory models with split-type fibres. On the other hand, in non-

split models, there is a puzzle in which the anomaly-free constraint and the naive counting of the



number of the matter fields do not match. (2) At a Dg “codimension-two” singularity, some
conifold singularities remain in the split I model even after the resolution of the “codimension-
one” singularity, but not in the non-split I model. In the split Iy model, since we can yield new
two-cycles by the small resolutions of the conifold singularities, we can obtain an intersection
diagram of exceptional curves that is different from one on a “codimension-one” singularity;
therefore, this fact explains the gauge symmetry enhancement at the “codimension-two” singularity.
In the dual M-theory, an M2-brane wrapped around these new two-cycle generates local matter
fields. On the other hand, in the non-split Iy model, we do not need additional blow-ups at these
singularities. Then, the intersection diagram remains the same, and then new two-cycles around
which an M2-brane can be wrapped do not exist.

These puzzles are not specific to this non-split I; model but are common to other non-split
models. In the last half of this thesis, toward understanding these puzzles, we investigate separately
the relationship between the split and the non-split models. We then show that the transition from
the smooth split model to the corresponding smooth non-split model, except for a special class of
models, is a conifold transition from the resolved to the deformed side. This is related to the
conifold singularities remaining after the resolution of the “codimension-one” singularity, at the
“codimension-two” singularities where the “codimension-one” singularity is enhanced to Dy,
(k = 1) or E,. This clarifies, in these cases, that the deformations of conifold singularities
correspond to diagram automorphisms of the expected ADE Dynkin diagrams on the split sides.
And this also shows that “local deformed conifolds”, which have been utilized in models of early
cosmology such as inflation models based on superstring theory, appear where matter fields exist
in compact space without any special parameter tuning in non-split models. Then, this explains
that the puzzle in resolution analysis (2) is because of conifold singularities becoming deformed.
These are non-local in the base space and thus suggest non-local matter generation. We also discuss
the correspondence between our analysis of blow-ups and previous proposals for non-local matter

generation due to the adjoint hypermultiplets associated with a genus-g curve.
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