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Abstract

In this thesis, we consider F-theory compactifications, especially, we focus on an

F-theory on an elliptically fibred Calabi-Yau threefold over a Hirzebruch surface. In six-

or lower-dimensional F-theories, if a fibre type has the condition that an exceptional

curve splits into two irreducible ones, we can distinguish the singular fibre types into two

types depending on whether the split exceptional curve can split globally or not: “split”

and “non-split”. It is known that split models correspond to the ADE gauge symmetry

implied by Kodaira’s classification. On the other hand, in non-split models, the two split

exceptional curves are identified by monodromy. Since this caused a projection by a

diagram automorphism, the expected gauge symmetry in the non-split models is reduced

to the non-simply-laced one.

In the six-dimensional F-theory, when a model has the A5, D6 or E7 codimension-

one singularity, the model has half-hypermultiplets as massless charged matter fields and

interesting structures of singularities. These gauge symmetries correspond to particu-

lar quaternionic Kähler symmetric spaces and are related to the Freudenthal-Tits magic

square. The C3 gauge symmetry is the only non-simply-laced one among them. In the

first half of this thesis, as a final magical example, we investigate an F-theory on an ellip-

tic fibration over a Hirzebruch surface with the non-split I6 fibre, in which the unbroken

gauge symmetry is C3. We then find a significant qualitative difference between the F-

theory models of the split types with half-hypermultiplets and the non-split one. Next,

we consider the puzzles of non-local matter generation near the codimension-two singu-

larities where the codimension-one singularity is enhanced to D6. In terms of the anomaly

cancellation condition and the resolution of the singularities, we state the puzzles.

These puzzles are not unique to the non-split I6 model; other non-split models also

have them. In the last half of this thesis, toward understanding these puzzles related to

non-local matter generation, for all models where the fibre type is distinguished into the

split and the non-split fibre type, we investigate the relationship between the split and the

non-split models, respectively. We then show that the split/non-split transition, except

for a special class of models, can be regarded as a conifold transition. This is related to

the conifold singularities remaining after the blow-ups of the codimension-one singularity

at the codimension-two singularities where the codimension-one singularity is enhanced

to D2k+2 (k ≥ 1) or E7. This clarifies that “local deformed conifolds” appear where

matter fields exist without any special parameter tuning in non-split models. And this

also shows that the puzzle in resolution analysis is due to conifold singularities becoming

deformed. These are non-local in terms of the base space and thus imply non-local matter

generation. We also examine how previous proposals for non-local matter generation can

be implemented in our resolution analysis.
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Chapter 1

Introduction

Superstring theory is a leading candidate for a unified theory involving quantum

gravity. Thus, there have been many attempts to construct phenomenological models from

superstring theory. For example, Models beyond the Standard Model such as the Grand

Unified Theory (GUT) have been constructed: the intersecting D-brane model, the models

based on the Calabi-Yau compactification of the Heterotic superstring theory, etc. Also,

models of early cosmology such as inflationary models have been constructed: the KKLT

model [2, 3], etc. However, models based on the isotropic Calabi-Yau compactification

of Heterotic superstring theory have a difficulty in that the experimental results cannot

be explained for weak coupling since Newton’s constant and the GUT coupling constant

are related to each other [4]. One way to solve this difficulty is to consider warped

compactification, and a brane picture is useful for this setup. In addition, D-branes are

also useful when considering moduli stabilization and are often used in cosmological model

building. Therefore, it is interesting to construct a model with a brane picture.

It is known that a theory on a D-brane in Type IIB superstring theory has U(1) gauge

symmetry derived from the fundamental string. In addition, if we consider symmetry

enhancement by stacking N D-branes, the (S)U(N) non-abelian gauge theory and its

bifundamental representation appear [5]. However, if we consider only D-branes (and

orientifold planes) and fundamental strings, the spinor representation which includes all

of the matter fields of the Standard Model in one generation does not appear1. In order

to realize the spinor representation, it is necessary to have a mechanism in which the

exceptional gauge symmetry (i.e., E6, E7 and E8) breaks into the SO(n) gauge symmetry.

Such a mechanism with a brane picture can be realized in F-theory and its dual superstring

theory2.

1There is another problem with the intersectingD-brane model. The SU(5) GUT can naturally explain

the assignment of hypercharges to quarks and leptons. However, The SU(5) GUT model based on the

intersecting D-brane model prohibits up-type Yukawa coupling [6]. On the other hand, in F-theory, this

problem does not arise when we consider that the exceptional gauge symmetry breaks into SU(5)GUT [7].
2After the LHC experiments, global F-theory GUTs have attracted great interest (see e.g. [8–40]).
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Before going into the discussion of the F-theory, we describe the properties of a

vacuum for Type IIB superstring theory. We consider that the axio-dilaton field τ , and

thus the string coupling constant gs = eϕ, is allowed to vary. In this case, this means that

there are 7-branes; and then, the configuration of the axio-dilaton field depends only on

the coordinates of a complex n-dimensional compact subspace Bn of the ten-dimensional

space-time:

τ(Bn) = C0(Bn) + ie−ϕ(Bn) (1.0.1)

where C0 is the Ramond-Ramond (R-R) scalar field and ϕ is the dilaton field. More

specifically, in the case of B1 = P1, if we consider the case where there is a D-brane at

z = 0 (z is an affine coordinate of P1), the axio-dilaton field near z = 0 is

τ(z) ∼ 1

2πi
log(z), (1.0.2)

not constant, since a 7-brane is a magnetic charge for τ(Bn) and the BPS condition

requires that τ(Bn) be a holomorphic function. Thus, the configuration of τ varies and

nontrivial monodromy occurs around the point where the value of τ diverges and there is

a D7-brane.

This monodromy and the SL(2,Z) transformation allows 7-branes with not only R-

R charges p but also Neveu-Schwarz-Neveu-Schwarz (NS-NS) charges q to appear. Note

that, since Type IIB superstring theory has the self SL(2,Z) duality [51], all monodromies

made by [p, q]7-branes can be identified under the SL(2,Z) S-duality transformation:

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z). (1.0.3)

Therefore, when a general 7-brane exists alone, we can consider the 7-brane is identified

with the D([1, 0])7-brane. Similarly, even if multiple 7-branes lie on top of each other,

each 7-brane is similar to this case after deforming each 7-brane to exist alone. However,

when stacking 7-branes at a point, of course, it may be possible to stack 7-branes with

different charges (p, q). This causes the non-locality among the 7-branes and gives rise

to open-string-like trivalent objects: string junctions. F-theory is an attempt to give a

geometric interpretation to this vacuum of Type IIB superstring theory.

F-theory is a geometrical framework of non-perturbative compactifications of Type

IIB superstring theory with general 7-branes, proposed by Vafa in 1996 [52]3. There is a

duality between F-theory and Type IIB superstring:

F/elliptically fibred Yn+1 over Bn ≃ IIB/ Bn with 7-branes,

On the other hand, for papers on local F-theory GUTs, which is an analysis based on the quantum field

theory, decoupling the closed string contribution, see e.g. [41–50].
3There are many good reviews for F-theory [53–58].
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where n ∈ N and Yn+1 is a complex n-dimensional total manifold and we denote a duality

as ≃. In F-theory, the configuration of the axio-dilaton field (1.0.1) in Type IIB super-

string theory is described by the complex structure modulus of the torus in an elliptic

fibration over the base space Bn. Then, the SL(2,Z) S-duality transformation (1.0.3)

is identical to the modular transformation of a torus in F-theory. The non-perturbative

aspects of F-theory arise from nontrivial monodromies among 7-branes in Type IIB su-

perstring theory.

F-theory has a duality with M-theory as well [52,59]:

(10− 2n)-dim. F/elliptically fibred Yn+1

≃ (9− 2n)-dim. M/elliptically fibred Yn+1|V→0

where V := Vol(Eτ ) and Eτ is an elliptic curve. V → 0 on the M-theory side corresponds

to the fact that a Kähler modulus does not arise from the extra two dimensions Eτ in

F-theory. This means that the extra two dimensions in F-theory are virtual, in contrast

to M-theory, where all eleven dimensions, including the extra one dimension, are physical

space-time. Since Yn+1 is only composed of physical space on the M-theory side, the first

Chern class c1 of Yn+1 has to vanish in order to preserve supersymmetry. This implies that

Yn+1 is a Calabi-Yau manifold [60, 61]. For example, in the case of flat eight dimensions,

Y2 and the base space B1 are the elliptically fibred K3 and P1, respectively.

Let us discuss F-theory more specifically. An elliptic fibration over the base space

Bn with section is described by the Weierstrass equation

y2 = x3 + f(Bn)x+ g(Bn), (1.0.4)

where f and g are sections of certain line bundles over the base space Bn. A cycle of an

elliptic curve Eτ over the discriminant locus

∆(Bn) := 4f(Bn)
3 + 27g(Bn)

2 = 0 (1.0.5)

vanishes and the fibre becomes a singular fibre. In particular, We consider the case for

an elliptic fibre to be singular and a total space Yn+1 not to be. We can confirm that this

case corresponds to the case that a 7-brane exists alone and that the discriminant locus

gives the position of a 7-brane on the Type IIB superstring theory side. In addition, a

vanishing cycle gives information about the charge (p, q).

We consider the case for not only an elliptic fibre but also an elliptic surface to be

singular. This case corresponds to multiple 7-branes stacked on the dual IIB superstring

theory side; and then, we can consider the non-abelian gauge symmetries arising from

there. Such singularities of an elliptic surface are classified by Kodaira, which is called the

Kodaira classification [62]. Kodaira’s classification is based on the intersection diagrams

of exceptional curves P1 that arise after the blow-ups (Table 3.2). We can confirm that

these intersection diagrams correspond exactly to the Dynkin diagrams of the expected
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gauge symmetries4. Therefore, a type of (non-abelian) gauge symmetry corresponds to a

singular fibre type of the elliptic surface in F-theory. In particular, E6, E7 and E8 gauge

symmetries are realized when the Kodaira fibre types are IV ∗, III∗ and II∗, respectively.

This is one of the virtues of F-theory.

It was shown that the Kodaira singular fibre types are labeled by the conjugate

class of the SL(2,Z) monodromy around the singular fibres [63–65]. Therefore, through

the monodromy, we can see a correspondence between F-theory and Type IIB superstring

theory. As the result, it is known that the exceptional non-abelian gauge symmetries and

the spinor representations have been explained by using string junctions in the dual Type

IIB superstring theory [63–83]5.

In this thesis, we consider matter generation in F-theory. For this purpose, we

focus on six-dimensional F-theories. We introduce the Heterotic/F-theory duality, which

is useful in discussing matter generation. If the properties are particularly good (“stable

degeneration limit”), this duality is [52,87–89]

F/ K3 fibred over Bn−1 ≃ E8 × E8 Het./elliptically fibred over Bn−1.

In particular, in the six-dimensional (n = 2) case, we are to consider a Calabi-Yau three-

fold which is an elliptic fibration over a Hirzebruch surface Fn. In this case, we can

classify their singular fibres by Tate’s algorithm [90,91]. However, unfortunately, a dictio-

nary connecting F-theory and Heterotic superstring theory for the generation of matter

fields has not yet been fully established. In this thesis, we focus on an F-theory on an

elliptic fibration over a Hirzebruch surface Fn.

In order to understand six- or lower-dimensional F-theories, we need to consider the

cases beyond the Kodaira classification. When considering an elliptically fibred Calabi-

Yau threefold, there are not only “codimension-one”6 singularities but also “codimension-

two” ones7. The “codimension-one” singularity is a codimension-two locus in the total

elliptically fibred Calabi-Yau threefold, where an elliptic fibre becomes a singular fibre. In

other words, a “codimension-one” locus, which is the projection of this codimension-two

locus onto the base space, is the discriminant locus (1.0.5). On the Type IIB superstring

theory side, a non-abelian gauge symmetry is realized on this “codimension-one” locus,

4In this thesis, we use “the singularity is G” in F-theory since there is an almost one-to-one corre-

spondence between a Kodaira singular fibre type and a Dynkin diagram of a simply-laced gauge theory

G (except for G = SU(2) and SU(3)). In the following chapters, these scare quotes are omitted.
5It was shown that a string junction is necessary to understand the spectrum of BPS states in the

gauge theory on the brane from the standpoint of superstring theory [79,80,84]. The string junctions are

also useful for describing chiral matter [85] and the non-simply laced gauge symmetries [86].
6We use the scare quotes to emphasize that the codimension is not counted in the total space but in

the base space of the elliptic fibration. In the following chapters, these scare quotes are omitted.
7When considering an elliptically fibred Calabi-Yau threefold, there are also “codimension-three”

singularities. The “codimension-three” singularities are involved in the Yukawa couplings in the four-

dimensional theory [41,42,44,92].
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where stacks of 7-branes reside on top of each other. If this “codimension-one” singularity

is resolved, we can yield a collection of exceptional curves aligned along the “codimension-

one” locus, thus we can discuss the singular fibre type beyond the Kodaira classification

over the “codimension-one” locus.

In six- or lower-dimensional F-theories, if a fibre type has the condition that an

exceptional curve splits into two irreducible ones, then depending on whether the excep-

tional curve can split globally or not, the fibre types can be distinguished into two types:

“split” and “non-split” [90]. In split models, each intersection diagram of exceptional

curves that arises after the resolution corresponds to the ADE Dynkin diagram implied

by Kodaira’s classification at a point on the “codimension-one” locus. On the other hand,

in non-split models, the two split exceptional curves are identified by monodromy that

is different from ones made by 7-branes. Therefore, each ADE gauge symmetry in the

split models is reduced to the non-simply-laced one (i.e., Bn, Cn, F4 and G2) by being

subject to a projection by a diagram automorphism. The fibre type In (n = 3, 4, · · · ), I∗n
(n = 0, 1, · · · ), IV or IV ∗ can involve such identification of exceptional curves (Table 5.1

and 6.1).

The “codimension-two” singularity is associated with the “codimension-two” locus

on the base space, on which “codimension-one” singularities intersect each other and their

singularities are enhanced. On the Type IIB superstring theory side, this “codimension-

two” locus corresponds to the intersection of stacks of 7-branes, where the expected gauge

symmetry is enhanced. Therefore, the “codimension-two” singularity is involved in matter

generation. In particular, in a split model, if a “codimension-two” singularity is resolved,

we can yield an intersection diagram of exceptional curves that is different from one on a

“codimension-one” locus and explains the enhancement of the gauge symmetry8.

In this thesis, we first review the basics and the dualities of F-theory. As we have seen

so far, in F-theory, singularities are essential for geometrically realizing various aspects

of string theory9. Thus, we review the relationship between the information of both the

matter representations and the gauge symmetries and the singularities of geometry.

Next, we consider an F-theory on an elliptic fibration over a Hirzebruch surface Fn.

In the six-dimensional F-theory, the matter fields are the hypermultiplets. However, if a

model has the split I6, I
∗
2 or III∗ “codimension-one” singularity corresponding to the A5,

D6 or E7 gauge symmetry, respectively, half-hypermultiplets and interesting structures of

singularity appear in the model [87, 88, 90, 93, 97]. In addition, the gauge enhancements

in which the half-hypermultiplets arise in these models are associated with the applica-

tions to GUT model building in F-theory. In this thesis, we review this discussion using

8In some split models, we can yield new two-cycles by small resolutions of the conifold singularities

at a “D2k+2 (k ≥ 1)” or “E7” point [93–95]. In the M-theory dual, an M2-brane wrapped around one of

these two-cycles generates the localized matter multiplets [96].
9In particular, it is important that the phenomenological model building based on F-theory by ana-

lyzing geometric singularities can be done without decoupling the closed string contribution.
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the A5 case as an example [93]10. Also, these gauge symmetries correspond to particu-

lar quaternionic Kähler symmetric spaces and are related to the Freudenthal-Tits magic

square. The C3 gauge symmetry is the only non-simply-laced one among them. As a

final magical example, we investigate the non-split I6 “codimension-one” singularity, in

which the unbroken gauge symmetry is C3 [99]. We then find the puzzles of non-local

matter generation in the base space near the “codimension-two” singularities where the

“codimension-one” singularity is enhanced to D6 [99].

These puzzles are not unique to the non-split I6 model but are ones that other non-

split models also have [1, 90, 95, 100–104]. Finally, toward understanding these puzzles,

we investigate the relationship between the split and the non-split models in all models

where there is a distinction between split and non-split fibre types [95]. We also discuss the

correspondence between our resolution analysis and previous proposals [1] for non-local

matter generation [95].

This thesis is organized as follows: In Chapter 2, we introduce the [p, q]7-branes and

their monodromies for the construction of F-theory. We also classify the monodromies

made by 7-branes at a point and the 7-brane configurations. In Chapter 3, we give an

overview of F-theory. We first discuss some mathematical facts for the F-theory construc-

tion and find that a discriminant locus of a Weierstrass equation corresponds to a position

of 7-branes at a point. Next, we consider “codimension-one” singularities. We see what

kind of gauge symmetry is realized for a 7-brane configuration from the standpoint of

the Kodaira classification which is the classification of the singular fibres of the elliptic

surface. Finally, we briefly explain the F-/M-theory duality. In Chapter 4, we summa-

rize the Heterotic/F-theory duality. We also find the anomaly cancellation condition. In

addition, we see that the analysis on the Heterotic superstring theory side satisfies this

condition. In the last section, we discuss whether this condition is also satisfied on the F-

theory side; and then, we find that matter fields arise at “codimension-two” singularities

when we consider ADE (split type) “codimension-one” singularities. In Chapter 5, we

perform the analysis by resolution for the six-dimensional F-theory models, in which half-

hypermultiplets arise. In particular, we consider the case of the gauge symmetries: A5

and C3, in other words, Is6 and Ins6 “codimension-one” singularities in the six-dimensional

F-theory. We also show the non-split models have some puzzles regarding the non-local

matter generation. This chapter is based on our paper [99]. In Chapter 6, we consider

all models which have non-split fibre in six-dimensional F-theory, toward understanding

these puzzles. From the standpoint of resolution analysis, we investigate the relationship

between a split and the corresponding non-split model for all cases in which a non-split

model exists, focusing on a conifold singularity. We also examine the correspondence

between our resolution analysis and the previous proposal [1] for the non-local matter

generation in the non-split models. This chapter is based on our paper [95].

10The case of D6 and E7 is discussed in [98].



Chapter 2

7-brane Solution of Type IIB

Superstring theory

In this chapter, we consider the 7-brane solution of Type IIB superstring theory

for constructing F-theory [52]. We first construct the 7-brane solution and introduce the

monodromy made by a 7-brane. Next, we introduce [p, q]7-branes as general 7-branes

and string junctions due to the SL(2,Z) transformation. This string junction [81] is an

open-string-like trivalent object and is needed to realize an exceptional gauge symmetry

or a spinor representation [63–70, 79, 80, 82, 84]. We then classify the configurations of

7-branes by the classification of the monodromies created by the 7-branes. Finally, we

discuss the configuration of 7-branes and the expected gauge symmetries by analyzing the

monodromies in Type IIB superstring theory [63–65].

2.1 Construction of 7-brane solution

The bosonic content of Type IIB superstring theory consists of Cp (p = 0, 2, 4),

which is the R-R p-form field, gµν , B2 and ϕ, which are the metric, the NS-NS 2-form

field and the dilaton field, respectively. By combining C0 and ϕ, we can define a complex

massless scalar field called the axio-dilaton field

τ = C0 + ie−ϕ. (2.1.1)

Note that the string coupling constant gs = eϕ. In this section, we find the classical

solution for which the axio-dilaton field τ depends only on the coordinates of the complex

projective line P1 : z = x8 + ix9. This is called the 7-brane solution1. A 7-brane is an

object that extends to one dimension in time and seven dimensions in space. When we

consider compactification to (1+ 7)-dimensions, it extends in the flat (1+ 7)-dimensional

direction. It is also a complex codimension-one object in the compact space of Type

1The 7-brane solution is a 1
2 BPS solution and conserves 16 supercharges.

10
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IIB superstring theory. Since the 7-brane carries the magnetic charge of the axio-dilaton

field τ 2, the vacuum expectation value of τ(z) can vary when the 7-brane exists as a

background field.

The action of a ten-dimensional N = (2, 0) supergravity theory, which is the low-

energy effective theory of Type IIB superstring theory, is

1

2π
SIIB,string =

∫
d10xe−2ϕ

√
−g (R + 4gµν∂

µϕ∂νϕ)− 1

2

∫
e−2ϕH3 ∧ ∗H3

−1

4

4∑
p=0

∫
F2p+1 ∧ ∗F2p+1 −

1

2

∫
C4 ∧H3 ∧ F3

+(fermionic term) (2.1.2)

in the string frame, where µ, ν = 0, 1, . . . , 9 and the string length is normalized to

ls = 2π
√
α′ ≡ 1. The field strengths are, respectively,

H3 = dB2,

F1 = dC0,

F3 = dC2 − C0dB2,

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2,

F9 = ∗F1,

F7 = − ∗ F3,

(2.1.3)

where Cp (p = 0, 2, 4) is the R-R p-form field and B2 is the NS-NS 2-form field. However,

it is necessary to impose the duality relation:

F5 = ∗F5 (2.1.4)

at the level equation of motion for this action.

Since the transformation from a string frame, which is convenient for world sheet

theory, to an Einstein frame, which is convenient for gravity theory, can be performed by

gµν → e
ϕ
2 gµν , (2.1.5)

the action in the Einstein frame is by

1

2π
SIIB,Einstein =

∫
d10x
√
−g

(
R− ∂µτ∂

µτ̄

2(Im τ)2
− 1

2

|G3|2

Im τ
− 1

4
|F5|2

)
2In general, the electric charge and the magnetic charge of a (p + 1)-form field in the supergravity

approximation of string theory are interpreted as being carried by a p-brane and a (7 − p)-brane, re-

spectively [105]. For example, it is known that the R-R scalar field C0 is 0-form and is carried by a

D7-brane.



12

+
1

4i

∫
1

Im τ
C4 +G3 ∧ Ḡ3 + (fermionic term), (2.1.6)

where

G3 = dC2 − τdB2, (2.1.7)

|Fp|2 =
1

p!
Fµ1...µpF

µ1...µp . (2.1.8)

This action is invariant under the SL(2,Z) transformation (SL(2,Z) duality):

M =

(
a b

c d

)
∈ SL(2,Z),

τ → aτ + b

cτ + d
,(

C2

B2

)
→M

(
C2

B2

)
,

C4 → C4,

gµν → gµν ,

(2.1.9)

where

τ ∈ H/SL(2,Z)

since the axio-dilaton field τ is Im τ > 0. In particular, considering the S (∈ SL(2,Z))
transformation, the transformation of the axio-dilaton field: τ is

M = S :=

(
0 −1
1 0

)
, τ → −1

τ
(2.1.10)

and thus the S transformation is a transformation that swaps strongly coupled and weakly

coupled regions.

The D7-brane is an object carrying the electric charge of the R-R 8-form field

C8 and the magnetic charge of the R-R scalar field C0. If there is a D7-brane in R1,7

(⊂ R1,9 ≃ R1,7 × C) and at z = zi ∈ C exists, since a D7-brane has R-R charge 1, the

Bianchi identity for F9 holds ∮
zi

∗F9 =

∮
zi

dC0 = 1, (2.1.11)

where
∮
zi
denotes the circumferential integral around zi.

Next, we find the 7-brane solution. Assume that all fields depend only on z =

x8 + ix9:

τ = τ(z, z̄). (2.1.12)
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If we impose the condition

B2 = C2 = C4 = (fermionic term) = 0, (2.1.13)

ds2 = −dt2 + eφ(z,z̄)dzdz̄ +
(
dxi
)2

(i = 1, . . . , 7), (2.1.14)

Eq. (2.1.6) becomes

1

2π
SIIB,Einstein =

∫
d10x
√
−g
(
R− ∂µτ∂

µτ̄

2(Im τ)2

)
. (2.1.15)

From Eq. (2.1.15), the equation of motion for τ̄ is

∂z∂z̄τ =
2

τ − τ̄
∂zτ∂z̄τ. (2.1.16)

Also, the 89 and ii components of the Einstein equation are

0 = ∂zτ∂z τ̄ − ∂z̄τ∂z̄ τ̄ , (2.1.17)

∂z∂z̄φ =
1

(τ − τ̄)2
(∂zτ∂z̄ τ̄ + ∂z̄τ∂z τ̄), (2.1.18)

respectively. The 88 and 99 components of the Einstein equation are identities. We choose

∂z̄τ = 0 (2.1.19)

as the solution for Eq. (2.1.16) and Eq. (2.1.17). Thus, the axio-dilaton field τ is the

holomorphic function of z (∈ C):

τ(z, z̄) = τ(z). (2.1.20)

From the SL(2,Z) symmetry of Type IIB superstring theory (2.1.9), τ(z) is a one-to-one

map from C to the SL(2,Z) fundamental region (H/SL(2,Z)). For example, if the axio-

dilaton field τ is a single-valued function, from Eq. (2.1.20), the value of τ is uniquely

determined at each point in the complex plane: zj ∈ C and there is no monodromy.

We consider the Bianchi identity (2.1.11) and if the axio-dilaton field τ is a multi-valued

function to allow for monodromy which can be identified by SL(2,Z) transformations,

then

τ(z) =
1

2πi
log(z − zi) + (terms regular at zi). (2.1.21)

Thus, τ varies over the compact space of Type IIB superstring theory. In this case, there

is a D7-brane at z = zi and

τ(z → zi) → i∞ (2.1.22)
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is obtained. This corresponds to the limit of the weakly coupled region where the contri-

bution of the dilaton field ϕ is larger. Also, from Eq. (2.1.21), we obtain

τ(z) =
N

2πi
log(z − zi) + (terms regular at zi) (2.1.23)

when N D7-branes exist at z = zi. The z-dependence of τ(z) means that the 7-brane

introduces a branch cut since the log is a multi-valued function.

We explain the monodromy. Considering τ(z) to orbit around the 7-brane, the

operation (z − zi)→ e2πi(z − zi) results in the modification:

τ → τ + 1, (2.1.24)

since τ(z) has a log-like term. This is thought to be because the R-R scalar field C0 picks

up the R-R charge of a D7-brane as it orbits around the D7-brane. And this is called

having a monodromy. This monodromy comes from the fact that τ is a multi-valued

function, as allowed by the SL(2,Z) symmetry. Then, M defined in Eq. (2.1.9) is called

a monodromy matrix. This monodromy (matrix) by a D7-brane is represented by

M =

(
1 1

0 1

)
=: T. (2.1.25)

Moreover, from the SL(2,Z) symmetry of Type IIB superstring theory, we assume that

all monodromies that are SL(2,Z)-conjugate with the T transformation are allowed. This

is discussed in Section 2.3 and 2.6.

In the discussion up to this point, we considered the solution for the case of one

D7-brane. In the next section, we will find the 7-brane solution when there are multiple

7-branes.

2.2 2D metric in P1

In this section, we derive a metric for the compact space of Type IIB superstring

theory P1 for considering the elliptically fibred K3 compactification of F-theory. The

metric is obtained as a solution of the Einstein equation (2.1.18) when the conditions are

imposed [106]. In this section, we obtain this metric by noting that its supersymmetry is

conserved [107]. We obtain the concrete equation for the metric when we make the same

assumptions as in the previous section.

As in the previous section, we assume that the metric is

ds2 = −dt2 +
(
dxi
)2

+ eφ(z,z̄)dzdz̄ (i = 1, . . . , 7). (2.2.1)

Furthermore, we assume that the axio-dilaton field of Type IIB superstring theory: τ is

a holomorphic function:

τ = τ(z) (2.2.2)
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from Eq. (2.1.19) and The values of all other supergravity fields are set to zero. Then,

the supersymmetric transformations of gravitino ψµ and dilatino λ are [108,109]:

δψµ =
1

κ

(
∂µ −

1

4
ωµαβγ

αβ − i

2
Qµ

)
ϵ, (2.2.3)

δλ =
i

κ
Pµγ

µϵ∗, (2.2.4)

where κ is a constant, ωµαβ is the spin connection, and ϵ is the killing spinor. Also, Pµ

and Qµ are SU(1, 1)-invariant connections, given by

Pµ = − ∂µτ

τ − τ̄
, (2.2.5)

Qµ = − i
2

∂µ(τ + τ̄)

τ − τ̄
. (2.2.6)

z and z̄ are

z = x8 + ix9, z̄ = x8 − ix9, (2.2.7)

using the space-time coordinates: x8 and x9. Also, the two-dimensional γ matrices are

γ8 = σ1, γ9 = σ2, (2.2.8)

and then

γz = σ1 + iσ2, γ z̄ = σ1 − iσ2. (2.2.9)

We consider Eq. (2.2.4). Note that the axio-dilaton field τ is a holomorphic function,

Pz̄ = 0. (2.2.10)

Therefore, since

δλ =
i

κ
Pzγ

zϵ∗

∝

(
0 #

0 0

)
ϵ∗ (# ∈ C), (2.2.11)

where ϵ̃ is an arbitrary complex number and

ϵ∗ =

(
ϵ̃∗

0

)
, (2.2.12)

then Eq. (2.2.4) becomes

δλ = 0. (2.2.13)
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Next, we consider Eq. (2.2.3). From the assumption of the metric (2.2.1) the

nontrivial spin connection components are only

ωz89 = i
2
∂zφ = −ωz98, (2.2.14)

ωz̄89 = − i
2
∂z̄φ = −ωz̄98. (2.2.15)

Also, since the axio-dilaton field τ is a holomorphic function,

Qz = −
i

2

∂zτ

τ − τ̄
= − i

2

∂z(τ − τ̄)
τ − τ̄

, (2.2.16)

Qz̄ = −
i

2

∂z̄ τ̄

τ − τ̄
= +

i

2

∂z̄(τ − τ̄)
τ − τ̄

. (2.2.17)

Since

ϵ =

(
ϵ̃

0

)
(2.2.18)

from Eq. (2.2.12), Eq. (2.2.3) is(
∂z −

1

4
ωzαβγ

αβ − i

2
Qz

)
ϵ =

(
∂z ϵ̃+

1
4
∂z(φ− log(τ − τ̄)) · ϵ̃

0

)
, (2.2.19)

(
∂z̄ −

1

4
ωz̄αβγ

αβ − i

2
Qz̄

)
ϵ =

(
∂z̄ ϵ̃− 1

4
∂z̄(φ− log(τ − τ̄)) · ϵ̃

0

)
. (2.2.20)

For supersymmetry (SUSY) to be conserved,

δψµ = 0 (2.2.21)

must hold, and thus φ must be

φ(z, z̄) = log
τ − τ̄
2i

+ F (z) + F̄ (z̄), (2.2.22)

where F (z) is an arbitrary holomorphic function. The component of the killing spinor ϵ̃

is

ϵ̃ = e
1
4
(F−F̄ ) × const. , (2.2.23)

and half of SUSY is conserved.

Since the metric has the SL(2,Z) invariance of Type IIB superstring theory, we

further restrict the holomorphic function F (z) to be

F (z) = 2 log η(τ(z)) + f(z), (2.2.24)
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where η(τ) is Dedekind’s η-function defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) , q = e2πiτ . (2.2.25)

The first term is the term needed to conserve SL(2,Z) invariance and f(z) is the function
needed to keep the metric from going to zero at the location of 7-branes. Since the

axio-dilaton field τ is given by Eq. (2.1.21), then

τ ∼ 1

2πi
log(z − zi) (2.2.26)

when there is a 7-brane at z = zi. Then, since τ → i∞ (Im τ → ∞), it corresponds to

the limit of q → 0. In this limit,

τ(z)− τ̄(z̄)
2i

η2(τ(z))η̄2(τ̄(z̄)) → τ(z)− τ̄(z̄)
2i

(z − zi)
1
12 (z̄ − z̄i)

1
12 , (2.2.27)

and thus,

f(z) ∼ − 1

12
log(z − zi). (2.2.28)

From the above, if there are N 7-branes, the metric of P1 is

ds2P1 = eφ(z,z̄)dzdz̄

=
τ(z)− τ̄(z̄)

2i
η2(τ(z))η̄2(τ̄(z̄))

N∏
i=1

(z − zi)−
1
12 (z̄ − z̄i)−

1
12dzdz̄. (2.2.29)

We obtain the 7-brane solution when there are some 7-branes.

Finally, we investigate the metric structure of the z-plane at infinity. Since τ(z)→
const. when |z| → ∞, we have

eφ → |z−
N
12 |2 × const. (2.2.30)

Thus, if we ignore the constant-doubling contribution, the metric is

ds2P1 → |z−
N
12dz|2. (2.2.31)

If we consider a coordinate transformation that rewrites this into the flat metric

ds2P1 = |dw|2, (2.2.32)

we obtain

w = z1−
N
12 . (2.2.33)

Thus, for the transformation z → e2πiz,

w → e2πi(1−
N
12

)w. (2.2.34)

From the above, there is a missing angle of 2π N
12

at infinity in the z-plane. Therefore,

the condition for the z-plane to be compact (P1) (i.e., smooth at infinity) is when only

N = 24, in other words, when there are only 24 7-branes as background fields. This

corresponds to the fact that we consider F-theory on elliptically fibred K3, which will be

discussed later.
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2.3 (p, q)-string and [p, q]7-brane

In Type IIB superstring theory, there is not only the D7-brane that can be introduced

as a background field. We briefly explain this. There are not only R-R 2-form field C2

but also NS-NS 2-form field B2 in Type IIB supergravity theory. These two types of

fields are converted by(
C2

B2

)
→ M

(
C2

B2

)
, M ∈ SL(2,Z) (2.3.1)

and mixed with each other under the SL(2,Z) transformation of Type IIB superstring

theory. Thus, the open string in Type IIB superstring theory has two charges, NS-NS

charge q and R-R charge p. An open string with NS-NS charge q and R-R charge p

is called a (p, q)-string, which can have an endpoint at [p, q]-brane. For example, the

fundamental string (F-string) of Type IIB string theory is a (1, 0)-string and the D-brane

is a [1, 0]-brane. Also, The D1-brane (D-string) is a (0, 1)-string and the NS-brane is

a [0, 1]-brane. In other words, a (p, q)-string is a bounded state of p F-strings and q D-

strings. From the above, Therefore, not only the D7-brane but also the [p, q]7-brane can

be introduced as a background field in the Type IIB superstring theory.

Next, we consider the monodromy of a [p, q]7-brane. The gauge field on the world

volume of the 7-brane is coupled to the NS-NS 2-form field B2 and the R-R 2-form field

C2 at the endpoints of the (p, q)-string and is the source of each charge. In other words,

there exists a coupling [110] such that∫
dx8(q p)

(
C2

B2

)
∧ ∗F, (2.3.2)

where F is the field strength of the 2-form field and ∗ is the Hodge operator in eight-

dimensional space-time. Since the integrand in Eq. (2.3.2) must be unique in eight

dimensions, it must be SL(2,Z) invariant. Thus, the integrand in Eq. (2.3.2) must be

invariant to the transformation by Eq. (2.3.1). Therefore,

(q p)M

(
C2

B2

)
= (q p)

(
C2

B2

)
, M ∈ SL(2,Z) (2.3.3)

holds. And then,

(q p)Mp,q = (q p) (2.3.4)

should hold when the monodromy matrix of [p,q]7-brane is then denoted by Mp,q. This

equation (2.3.4) is uniquely determined under the equivalence relation (nq np) ∼ (q p) (n ∈
N). Conversely, for open strings whose charge is not (p, q), the integrand in Eq. (2.3.2) is

not invariant under the monodromy Mp,q. Therefore, (p, q)-strings can be only attached

to a [p, q]-brane with monodromy Mp,q.
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We obtain a specific equation for the monodromy Mp,q. Here, the monodromy

M1,0 = T :=

(
1 1

0 1

)
(2.3.5)

discussed in Section 2.1 is the monodromy when there is a D7-brane. In this case, equality

(0 1)M1,0 = (0 1) (2.3.6)

holds. In general, under a suitable SL(2,Z) transformation, one can transform a funda-

mental string into any (p, q)-string, using any integer #, as

(0 1)Kp,q = (0 1)

(
# #

q p

)
= (q p), Kp,q ∈ SL(2,Z). (2.3.7)

Since the only difference between the [p, q]7-brane and the D7-brane is the SL(2,Z)
transformation

Kp,q :=

(
# #

q p

)
, (2.3.8)

we obtain

(0 1)M1,0Kp,q = (q p)K−1
p,qM1,0Kp,q = (q p) (2.3.9)

if Eq. (2.3.6) is multiplied by the K from the right. Thus, since (p, q)-string can only

have endpoints in [p, q]-brane, Eq. (2.3.4) holds and the monodromy Mp,q is

Mp,q = K−1
p,qM1,0Kp,q =

(
1 + pq p2

−q2 1− pq

)
. (2.3.10)

In this chapter, monodromy is considered to arise when a branch cut made by a 7-brane

is crossed. From Eq. (2.3.10) and the SL(2,Z) duality of Type IIB superstring theory,

all 7-branes are equivalent under the SL(2,Z) transformation, so a 7-brane looks like a

D7-brane locally when it exists alone. However, when two or more 7-branes exist, they

cannot all be considered D7-branes simultaneously by SL(2,Z) transformation if their

(p, q)-charges are different:

Kp,qMp,qK
−1
p,q = M1,0, (2.3.11)

Kp,qMp′,q′K
−1
p,q ̸= M1,0, (2.3.12)

where p ̸= p′ and q ̸= q′. Therefore, such an argument becomes important when there are

two or more 7-branes.
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2.4 String junction: Hanany-Witten effect

In this section, we introduce an open string called a string junction that has a branch

and at least three endpoints.

The fundamental string ((1, 0)-string) can have endpoints on a D1-brane ((0, 1)-

string). In terms of preserving the (p, q)-charge at the endpoints, this requires a (1, 1)-

string ((1,−1)-string) if we consider the D1-brane to be a (D-)string. This is the string

junction introduced by Schwartz [81] (see Fig. 2.1 on the right). In general, the string

junction is the charge conservation

3∑
1

(pi, qi) = (0, 0) (2.4.1)

at each intersection of three open strings and is an object with an arbitrary number of

intersections.

In Type IIB superstring theory, the string junction plays the same role as an open

string. This is illustrated in the following. We consider the change in (r, s)-charge when

the (r ̸= p, s ̸= q)-string moves counterclockwise around a [p, q]7-brane and crosses a

branch cut made by the [p, q]7-brane. It is known that the tension of the (r, s)-string [111]

is given by

Tr,s =
1√
Imτ
|r + sτ |. (2.4.2)

Also, from Eq. (2.2.29), the metric of P1 is given by

ds2P1 =
τ(z)− τ̄(z̄)

2i
η2(τ(z))η̄2(τ̄(z̄))

N∏
i=1

(z − zi)−
1
12 (z̄ − z̄i)−

1
12dzdz̄ (2.4.3)

when we consider eight-dimensional Type IIB superstring theory (or F-theory) [106].

From the discussion in Section 2.2, the metric is invariant under the transformation by

monodromy (SL(2,Z) transformation). The local mass of the (r, s)-string is given by

mr,s :=

∫
C

Tr,s dsP1 , (2.4.4)

where C is the path of the open string. Since we consider that monodromy is caused by

crossing a branch cut, for Eq. (2.4.4) to be invariant under the monodromy transformation

of τ :

τ →Mp,qτ, (2.4.5)

it must transform as

(s r)→ (s r)M−1
p,q (2.4.6)



21

!, # 7-brane

[&, '](&, ')

[!, #]

(&, ')

!' − #& (!, #)
+

[&, ']

!' − #& [!, #]
+

#& − !' ×
!, # -string

branch	cut branch	cut

Figure 2.1: Hanany-Witten effect: (r, s)-string and string junction

when crossing the branch cut made of the [p, q]7-brane. Therefore, the change in (r, s)-

charge is

(s r) → (s r)

(
1− pq −p2

q2 1 + pq

)

= (s r) + (qr − ps)(q p) (2.4.7)

when moving counterclockwise around the [p, q]7-brane and crossing the branch cut made

of the [p, q]7-brane. Since the change in (r, s)-charge is proportional to (p, q)-charge, we

can consider (p, q)-strings that can have endpoints at a [p, q]7-brane by matching the path

to and from [p, q]7-brane. Thus, we obtain a picture of a string junction where an (r, s)-

string and (qr− ps) (p, q)-strings join at an inter, (Fig. 2.1). In other words, moving the

(r, s)-string downward across the [p, q]7-brane in Fig. 2.1 draws (qr − ps) (p, q)-strings

from the [p, q]7-brane to conserve the charge (the Hanany-Witten effect [112]). This

means that a string junction is created. In Type IIB superstring theory with a 7-brane

background field, a string junction naturally appears when considering open strings.

This can be explained by exchanging monodromy matrices [63–65]. Note that since

the overall monodromy is invariant for exchanges of matrices, which do not change the

number of 7-branes, they are all considered to be equivalent 7-brane configurations. Also,

the reordering of the 7-brane in a 7-brane configuration corresponds to the replacement

of each branch cut. In this case, we assume that the [r, s]7-brane crosses the branch cut

made by the [p, q]7-brane in a counterclockwise direction. Let Mp,q be the monodromy
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matrix of the [p, q]7-brane and Mr,s be the monodromy matrix of the [r, s]7-brane, then

Mp,qMr,sMr,s = (Mp,qMr,sM
−1
p,q )Mp,qMr,s =Mr+(qr−ps)p,s+(qr−ps)qMp,qMr,s. (2.4.8)

This is consistent with the mechanism for generating string junctions described in the

previous paragraph when the open string connecting the two [r, s]7-branes on the right

crosses the [p, q]7-brane branch cut in a counterclockwise direction. Thus, in the ABC

description, the reordering of the 7-brane in a 7-brane configuration corresponds to the

exchange of monodromy matrices; the change in (r, s)-charge can be explained by the

exchange of monodromy matrices as given by Eq. (2.4.8).

2.5 Classification of monodromy and 7-brane config-

uration

2.5.1 Classification of monodromy

In this section, we classify the monodromy in the case where multiple 7-branes exist

simultaneously and consider what there are configurations of the 7-branes. Here, from

the discussion in the previous section, we consider all SL(2,Z)-conjugate monodromies

to be identical; Thus, the following monodromy M and M ′ are identical:

M ′ = K−1MK ∼M, K ∈ SL(2,Z). (2.5.1)

In Type IIB superstring theory, the value of the axio-dilaton field τ on a 7-brane

does not change depending on the monodromy created by the 7-brane. We will consider

classifying fixed points by monodromy transformations (SL(2,Z) transformations) using

TrM invariant under Eq. (2.5.1). In this section, we denote

M =

(
a b

c d

)
, detM = 1, M ∈ SL(2,Z), (2.5.2)

T =

(
1 1

0 1

)
, S =

(
0 −1
1 0

)
T, S ∈ SL(2,Z). (2.5.3)

Since a fixed point is an equivalence τ under the SL(2,Z) transformation, we obtain

Mτ ′ :=
aτ ′ + b

cτ ′ + d
= τ ′, (2.5.4)

where τ ′ is the fixed point. Solving Eq. (2.5.4) yields

τ ′ =
1

2c
{(a− d)±

√
(TrM)2 − 4}. (2.5.5)
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We divide this into three cases:

|TrM | = 2 : Parabolic ,

|TrM | < 2 : Elliptic ,

|TrM | > 2 : Hyperbolic .

(2.5.6)

Here, we use the Caylay=Hamilton formula

M2 − (TrM)M + 1̂ = 0̂ (2.5.7)

to obtain the specific monodromy equation.

(1) |TrM | = 2 : The case of Parabolic

From Eq. (2.5.5), τ ′ is a rational number. Since rational numbers can always be

transformed by SL(2,Z) transformation to the infinity point i∞ in the fundamental

region, this corresponds correctly when there is a D7-brane. To realize τ ′ → i∞, we

need c = 0; then, a = d = ±1 (double-sign corresponds) from detM = 1. Therefore,

The conjugate class of monodromies that satisfies Eq. (2.5.7) are

T n =

(
1 N

0 1

)
, (2.5.8)

−T n =

(
−1 −N
0 −1

)
(2.5.9)

for TrM = 2 and TrM = −2, respectively. Here, N ∈ Z. Since this monodromy

transforms τ → τ +N , the behavior of τ(z) when z is sufficiently large, is

τ(z) ∼ N

2πi
log(z). (2.5.10)

However, when 7-branes overlap at z = 0, if N < 0, then τ → −i∞. In this case,

in Type IIB superstring theory, the vacuum expectation value of the dilaton field ϕ

is imaginary. Also, in F-theory, there is no corresponding bundle, the elliptic curve.

Therefore, for N < 0, the 7-branes cannot be collected at a point.

(2) |TrM | < 2 : The case of Elliptic

From Eq. (2.5.5), τ ′ is an imaginary number and corresponds to a point on the upper

half-plane H. Such a point can always be transformed by SL(2,Z) transformation

to a point in the fundamental region (except at infinity point i∞). Therefore, in

this case, it cannot be constructed from one D7-brane and multiple 7-branes are

needed. Eq. (2.5.5) is

τ ′ =
1

c
(a± i) (2.5.11)
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Figure 2.2: The “usual” fundamental region of τ .

when TrM = 0. Therefore, when τ ′ is a point in the “usual” fundamental region

(Fig 2.2),

Im τ ′ ≥
√
3

2
, −1

2
≤ Re τ ′ <

1

2
(2.5.12)

must at least be satisfied, and considering also detM = 1, this solution is satisfied

by d = −a = 0 and b = −c = ∓1 (double-sign corresponds). Therefore, The

conjugate class of monodromies that satisfies Eq. (2.5.7) are

S =

(
0 −1
1 0

)
, −S =

(
0 1

−1 0

)
(2.5.13)

and the fixed point is τ ′ = i. Then, Eq. (2.5.5) is

τ ′ =
1

2c
(2a− 1± i

√
3), (2.5.14)

τ ′ =
1

2c
(2a+ 1± i

√
3) (2.5.15)

when TrM = 1 and TrM = −1, respectively. Thus, when τ ′ is a point in the

“usual” fundamental region, this solution is satisfied by c = 1, a = 0 or c = −1,
a = 1 when TrM = 1 and by c = 1, a = −1 or c = −1, a = 0 when TrM = −1.
Furthermore, considering also the value of TrM and detM = 1, when TrM = 1,

the conjugate class of monodromies that satisfies Eq. (2.5.7) are

−T−1S = −U =

(
1 1

−1 0

)
, ST = U2 =

(
0 −1
1 1

)
, (2.5.16)

where U := T−1S. Also, when TrM = −1, we obtain

T−1S = U =

(
−1 −1
1 0

)
, −ST = −U2 =

(
0 1

−1 −1

)
. (2.5.17)
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In these cases, the fixed point is τ ′ = e
2πi
3

3.

(3) |TrM | > 2 : The case of Hyperbolic

From Eq. (2.5.5), τ ′ is an irrational number. Since an irrational number can-

not be transformed to a point in the “usual” fundamental domain by an SL(2,Z)
transformation, In this case, there is no corresponding bundle, the elliptic curve, in

F-theory. Therefore, when the monodromies made by 7-brane configurations satisfy

|TrM | > 2, the 7-branes cannot be collected at a point.

From the above, the condition of monodromy that allows the 7-branes to be collected

at a point is

|TrM | ≤ 2. (2.5.21)

However, when |TrM | = 2, we need N ≥ 0 in Eq. (2.5.8) and Eq. (2.5.9).

2.5.2 Monodromy and 7-brane configuration

In this section, we explain the monodromy when multiple 7-branes can be collected

at a point. First, we consider how many 7-branes are collected at a point to make

these monodromies when Eq. (2.5.21) is satisfied. Note that all SL(2,Z)-conjugate mon-

odromies are considered to be identical since we consider that all configurations obtained

by the SL(2,Z)-conjugate transformation of the overall configuration of the 7-branes are

equivalent:

M ′ = K−1MK ∼M, K ∈ SL(2,Z), (2.5.22)

especially, in the case that there is a 7-brane alone,

Mp,q = K−1M1,0K ∼M1,0 = T. (2.5.23)

3This depends on how the fundamental region is chosen. For example, instead of Eq. (2.5.12), if we

choose

Im τ ′ ≥
√
3

2
, −1

2
< Re τ ′ ≤ 1

2
, (2.5.18)

the fixed point is τ ′ = e
πi
3 . In this case, when TrM = 1, the conjugate class of monodromies that satisfies

Eq. (2.5.7) are

−ST−1 =

(
0 1

−1 1

)
, TS =

(
1 −1
1 0

)
. (2.5.19)

Also, when TrM = −1, we obtain

ST−1 =

(
0 −1
1 −1

)
, −TS =

(
−1 1

−1 0

)
. (2.5.20)
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Also, since the overall monodromy is invariant for exchanges of matrices, which do not

change the number of 7-branes, we consider them all to be equivalent 7-brane configu-

rations. In order to classify the lowest number of 7-branes collected at a point for each

monodromy, we consider the abelianization of the SL(2,Z) group:

The abelianization of SL(2,Z) is the cyclic group Z12. (2.5.24)

Since the SL(2,Z) group is constructed by S and U := T−1S and also U3 = S2 =

−1̂, we find that the representative elements of the Z12 group are

{1̂,−SU2,−U,−S,−U2, US,−1̂, SU2, U, S, U2,−US}, (2.5.25)

where −SU2 is the generator of the Z12 group. Rewriting this using S and T , we obtain

{1̂, T,−T−1S,−S,−ST,−T−1,−1̂,−T, T−1S, S, ST, T−1}. (2.5.26)

For simplicity, we will denote each representative component by

{0,1,2,3,4,5,6,7,8,9,10,11} (2.5.27)

when each component is represented by the N -th power of the generator. We define a

homomorphism:

µ : M ∈ SL(2,Z)→MGc ∈ G/Gc, (2.5.28)

where Gc := [SL(2,Z)]c is the commutator subgroup of the G := SL(2,Z). Also, using

Eq. (2.5.28), we denote

µ(M) = SnUmGc (2.5.29)

when M is generated from n S’s and m U ’s. Since Mp,q is the monodromy of a [p, q]7-

brane,

µ(Mp,q) = 1. (2.5.30)

This can be shown from µ(M1,0) = T = −SU2 = 1 and the fact that Mp,q is SL(2,Z)-
conjugate with M1,0 (Eq. (2.3.10)). Thus, given the monodromy made by N 7-branes,

µ(M1M2 · · ·MN) = N (mod 12), Mi =Mpi,qi . (2.5.31)

From the above, when the monodromy made by a configuration of the 7-branes gives

µ(M) = N , at least N (mod 12) 7-branes are needed. Also, when twelve 7-branes are

collected at a point, the monodromy (matrix) is trivial (unit matrix 1̂).

Next, we consider which [p, q]7-branes are collected at a point to make these mon-

odromies when Eq. (2.5.21) is satisfied. In this thesis, D7(= [1, 0]7)-brane is denoted as
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A-brane, [1, 1]7-brane as B-brane, [1,−1]7-brane as C-brane and NS7(= [0, 1]7)-brane

as N-brane. Then, the notation

A =M1,0 =

(
1 1

0 1

)
= T,

N =M0,1 = −

(
1 0

−1 1

)
= STS,

B =M1,1 = −

(
2 1

−1 0

)
= T−2S,

C =M1,−1 = −

(
0 1

−1 2

)
= ST−2

(2.5.32)

is used for each 7-brane monodromy. We also assume that branch cuts extend upward

from each 7-brane. If l A-branes, m B-branes, and n C-branes are ordered from left to

right, the configuration is denoted as AlBmCn (l,m, n ≥ 0, lmn ̸= 0). If we consider

moving counterclockwise around the [p, q]7-branes, the monodromy is

AlBmCn : M l
1,0M

m
1,1M

n
1,−1 (2.5.33)

when the monodromy (matrix) of each 7-brane is multiplied by the order in which the

branch cuts are crossed. Such an argument using A-brane, B-brane and C-brane is called

ABC description [63–65].

(i) The case of TrM = 2

The independent monodromy is given by

TN =

(
1 N

0 1

)
, N ∈ Z (2.5.34)

from Eq. (2.5.8) for N > 0. Thus, from

µ(TN) = N , (2.5.35)

the configuration of the 7-branes, in this case, is

AN . (2.5.36)

The gauge symmetry of the theory on the brane when N D7-branes are collected

at a point is AN−1 = SU(N) (N ≥ 2). This corresponds to AN−1 (N ≥ 2) in the

Kodaira classification [62,113,114] used in the next chapter.
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For N = 0, since the unit matrix is

µ(1̂) = 0 = 12, (2.5.37)

at least twelve 7-branes are needed. Therefore, since

M8
1,0M1,1M1,−1M1,1M1,−1 = 1̂, (2.5.38)

the configuration of the 7-branes, in this case, is

A8BCBC. (2.5.39)

(ii) The case of TrM = 1

Since the independent monodromy is given by

µ(−T−1S) = 2, (2.5.40)

µ(ST ) = 10, (2.5.41)

from Eq. (2.5.16), at least two and ten 7-branes are needed, respectively. Thus,

from

M1,0M1,1 = −T−1S, (2.5.42)

M6
1,0M1,1M1,−1M1,1M1,0 = ST, (2.5.43)

the configurations of the 7-branes, in these cases, are

AB, (2.5.44)

A6BCBA, (2.5.45)

respectively. To make the degrees of freedom of the group easier to understand, an

SL(2,Z)-conjugate transformation of Eq. (2.5.45) yields

M7
1,0M1,1M1,−1M1,1 = TS, (2.5.46)

A7BCB. (2.5.47)

We consider the gauge symmetry at these configurations of the 7-branes: for AB,

There are no open strings connecting them and the gauge symmetry enhancement

does not occur. And, for A6BCBA, the gauge symmetry is E8. In the Kodaira

classification, these correspond to H0 and E8, respectively.
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(iii) The case of TrM = 0

Since the independent monodromy is given by

µ(−S) = 3, (2.5.48)

µ(S) = 9, (2.5.49)

from Eq. (2.5.13), at least three and nine 7-branes are needed, respectively. Thus,

from

M2
1,0M1,1 = −S, (2.5.50)

M6
1,0M1,1M1,−1M1,1 = S, (2.5.51)

the configurations of the 7-branes, in these cases, are

A2B, (2.5.52)

A6BCB, (2.5.53)

respectively. We consider the gauge symmetry at these configurations of the 7-

branes: for A2B, there are two 7-branes of the same type, so the gauge symmetry is

SU(2). And, for A6BCB, the gauge symmetry is E7. In the Kodaira classification,

these correspond to H1 and E7, respectively.

(iv) The case of TrM = −1

Since the independent monodromy is given by

µ(−ST ) = 4, (2.5.54)

µ(T−1S) = 8, (2.5.55)

from Eq. (2.5.17), at least four and eight 7-branes are needed, respectively. Thus,

from

M2
1,0M1,1M1,0 = −ST, (2.5.56)

M5
1,0M1,1M1,−1M1,1 = T−1S, (2.5.57)

the configurations of the 7-branes, in these cases, are

A2BA, (2.5.58)
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A5BCB, (2.5.59)

respectively. To make the degrees of freedom of the group easier to understand, an

SL(2,Z)-conjugate transformation of Eq. (2.5.45) yields

M3
1,0M1,1M1,0 = −TS, (2.5.60)

A3B. (2.5.61)

We consider the gauge symmetry at these configurations of the 7-branes: for A3B,

there are three 7-branes of the same type, so the gauge symmetry is SU(3). And, for

A5BCB, the gauge symmetry is E6. In the Kodaira classification, these correspond

to H2 and E6, respectively.

(v) The case of TrM = −2

The independent monodromy is given by

−TN =

(
−1 −N
0 −1

)
= −1̂MN

1,0 (2.5.62)

from Eq. (2.5.9) for N > 0. Therefore, we can add additional N A(D)-branes to

the configuration of the 7-branes with the monodromy −1̂ and collect them at a

point. Since

µ(−1̂) = 6, (2.5.63)

at least six 7-branes are needed. Here,

M4
1,0M1,−1M1,1 = −1̂, (2.5.64)

then,

A4BC. (2.5.65)

From the above, by adding N D7-branes to this configuration of the 7-brane at a

point, we obtain a series with N ≥ 0. When N D7-branes can overlap at a point,

this series is

AN+4BC, N ≥ 0. (2.5.66)

The corresponding gauge symmetry is DN+4 = SO(2N+8) (N ≥ 0). In the Kodaira

classification, this corresponds to DN+4 (N ≥ 0).
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Table 2.1: Classification of 7-brane configuration. Note that the configuration of the

7-branes is up to A8BCBC and N ≥ 1. Here, Hi are brane types in the Kodaira

classification discussed in the next chapter.

Gauge symmetry 7-brane configuration Monodromy TrM Foxed point

AN−1 AN TN 2 i∞
(H0) AB −T−1S 1 e

2πi
3

A1 (H1) A2B −S 0 i

A2 (H2) A3B −TS −1 e
πi
3

D4 A4BC −1̂ −2 arb.

DN+4 AN+4BC −TN −2 i∞
E8 A7BCB TS 1 e

πi
3

E7 A6BCB S 0 i

E6 A5BCB T−1S −1 e
2πi
3

− A8BCBC 1̂ 2 −

2.6 Classification of 7-brane configuration

In this section, we summarize the conclusions of this chapter. Summarizing the

configurations of the 7-branes that can collect 7-branes at a point and the monodromy

made by 7-brane configurations, we obtain the following Table 2.1. Table 2.1 shows

the configurations of 7-branes in a form that is easy to understand the group structure

(simple roots). In this chapter, we briefly consider the open strings connecting each 7-

brane and give a conclusion about the gauge symmetry of the theory on the 7-brane at

each configuration.

To briefly illustrate the relationship between gauge symmetries and the configura-

tions of the 7-branes, we consider the D4 = SO(8) case as the most simple example with

string junctions. In this case, the configuration of the 7-branes is

AAAABC. (2.6.1)

Since SU(4) gauge symmetry appears from the four A-branes, we consider dividing

AAAABC into four A-branes and a pair of B- and C-brane. In other words, the SO(8)

gauge symmetry is decomposed into SU(4)× U(1), which gives

28 = 15+ 6+ 6̄+ 1. (2.6.2)

Here, “15” corresponds to the three Cartans of SU(4) and the open string directly con-

necting the four A-branes. Also, “1” corresponds to the one remaining Cartan of SO(8).

The “6 + 6̄” corresponds to string junctions with two intersections and four endpoints

and connecting two A-branes, a B-brane and a C-brane due to the orientation of the

strings and the number of choices of the two A-branes (4C2 = 6). The string junctions
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are generated by the Hanany-Witten effect when considering open strings that lead from

one A-brane to another A-brane after passing counterclockwise around the B-brane and

the C-brane. To specify the corresponding simple roots, labeled

A1A2A3A4B5C6 (2.6.3)

and denoting the 7-brane at its endpoint by the lower-case alphabet corresponding to

each (p, q)-charge, the open strings corresponding to the simple roots of SO(8) are

a1 − a2,

a2 − a3,

a3 − a4,

a3 + a4 − b5 − c6.

(2.6.4)

As the above, string junctions are needed to realize symmetries other than SU(N)

gauge symmetries, e.g., exceptional-type symmetries, as symmetries of theories on branes4.

4There are more detailed analyses in [63–65].



Chapter 3

Overview of F-theory

In this chapter, we consider the basics of F-theory [52, 87, 88]. F-theory describes

geometrically the set-up of Type IIB superstring theory discussed in the previous chapter.

We construct F-theory by identifying the axio-dilaton field in Type IIB superstring theory

with the complex structure modulus of a torus as extra virtual two dimensions. There-

fore, The compact spaces in F-theory need to be the manifolds with elliptic fibres. The

elliptically fibred Calabi-Yau n-fold with section is described by the Weierstrass equation

and its complex structure modulus τ is obtained via the modular J-function. We can

confirm that the positions of 7-branes correspond to the discriminant loci, over which a

fibre becomes the singular fibre, and the charges (p, q) of 7-branes can be read by the

monodromies around the discriminant loci [85, 115, 116]. Next, we consider the classi-

fication of the singular fibre, called Kodaira’s classification [62, 113, 114]. We then see

the correspondence between the set-up of Type IIB superstring theory and F-theory via

monodromies. Finally, we discuss the duality between F-theory and M-theory [52,59,111].

We then show that the F-theory compact space must be the elliptically fibred Calabi-Yau

n-fold for conserving its supersymmetry.

3.1 Elliptic fibration and Weierstrass equation

F-theory is a geometrical framework of nonperturbative compactifications of Type

IIB superstring theory with [p, q]7-branes. In F-theory, the axio-dilaton field τ := C0 +

ie−ϕ, which depends only on the coordinates of the compact space of Type IIB superstring

theory discussed in the previous section, is identified as a complex structure τ := τ1 + iτ2
of an elliptic curve Eτ (a two-dimensional torus T 2). In this case, we consider τ varies over

the compact space of Type IIB superstring theory. The axio-dilaton field τ := C0 + ie−ϕ

is transformed as

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z) (3.1.1)

33
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under the (P )SL(2,Z) duality in Type IIB superstring theory. The (P )SL(2,Z) invariance
is identical to the modular invariance, which is an invariance of the complex structure of

an elliptic curve Eτ with respect to (P )SL(2,Z) transformations. Note that a compact

space of F-theory is described by an elliptic fibration Yn+1. In the previous section, we

showed that the number of 7-branes must be 24. In the n = 1 case, the elliptically fibred

Calabi-Yau twofold with 24 singularities is called an elliptically fibred K3 surface. In this

section, we discuss the eight-dimensional F-theory, which is F-theory on the elliptically

fibred K3 [52].

An elliptic curve Eτ is a nonsingular1 cubic algebraic curve in P2, denoted by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (3.1.2)

where [X : Y : Z] ∈ P2 in homogeneous coordinates and ai ∈ K (K is a coefficient field).

Here, P2 is a projective plane with the identification of the coordinates given by

(X, Y, Z) ∼ λ (X, Y, Z) . (3.1.3)

Topologically, an elliptic curve Eτ is a nonsingular projective algebraic curve of genus-one.

In inhomogeneous coordinates x = X
Z
, y = Y

Z
and Z ̸= 0, Eq. (3.1.2) is

P = −(y2 + a1xy + a3y) + x3 + a2x
2 + a4x+ a6 = 0 (3.1.4)

called “Tate form”. In particular, if the characteristic of K is different from 2 and 3 (or

with section), then the curve can be described as the Weierstrass equation (or Weierstrass

form):

y2 = x3 − g2x− g3 (3.1.5)

or

y2 = x3 + fx+ g, (3.1.6)

where f, g ∈ K2. In this section, we only consider K = C; thus, the characteristic of K

has a section. Since the complex structure modulus τ of the elliptic curve Eτ is given by

τ =

∮
β
ω∮

α
ω
, ω =

dx

y
, (3.1.11)

1Nonsingular means that there are no curves with nodes or cusps.
2An elliptic curve Eτ is described as a hypersurface in the weighted projective space WCP 2(2, 3, 1),

which is a generalized projective space with the identification of the coordinates given by

(X,Y, Z) ∼
(
λ2X,λ3Y, λZ

)
, (3.1.7)

where [X : Y : Z] are homogeneous coordinates of WCP 2(2, 3, 1) and λ ∈ C∗ = C− {0}. We define the

Weierstrass form (or Weierstrass equation) as

PW = Y 2 −X3 − fXZ4 − gZ6 = 0, (3.1.8)

where f , g ∈ K. In particular, when we choose the inhomogeneous coordinates as

x =
X

Z2
, y =

Y

Z3
; (3.1.9)
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where α, β are the one-cycles of the elliptic curve Eτ and ω is the holomorphic one-form on

the elliptic curve Eτ . Thus, we can compute the complex structure modulus of the elliptic

curve Eτ from the Weierstrass equation. The complex structure modulus τ of the elliptic

curve Eτ is known to be determined from the coefficients of the Weierstrass equation: f

and g, due to the relation between the (modular) J-function and the Weierstrass equation

J(τ) =
4f 3

4f 3 + 27g2
. (3.1.12)

Mathematically, the (modular) J-function is defined by

J(τ) :=
(ϑ2(τ)

8 + ϑ3(τ)
8 + ϑ4(τ)

8)3

54ϑ2(τ)8ϑ3(τ)8ϑ4(τ)8
. (3.1.13)

where the definition of the ϑ-constants are

ϑ2(τ) := ϑ2(0; τ) = 2q
1
8

∞∏
m=1

(1− qm)(1 + qm)2,

ϑ3(τ) := ϑ3(0; τ) =
∞∏

m=1

(1− qm)(1 + qm− 1
2 )2,

ϑ4(τ) := ϑ4(0; τ) =
∞∏

m=1

(1− qm)(1− qm− 1
2 )2.

(3.1.14)

The (modular) J-function is a one-to-one map from the fundamental region (H/(P )SL(2,Z)))
of τ to C and is a (P )SL(2,Z) (modular) invariant function. Also, the denominator of

the right-hand side of Eq. (3.1.12) is called the discriminant and is denoted by

∆ := 4f 3 + 27g2. (3.1.15)

In F-theory, we consider the elliptic fibration Yn+1 as the compact spaces since the

complex structure τ of an elliptic curve Eτ depends only on the coordinates of the compact

space of Type IIB superstring theory. The elliptic fibration Yn+1 is defined as

π : Eτ → Yn+1

↓
Bn,

(3.1.16)

then, the Weierstrass equation is expressed as

y2 = x3 + fx+ g. (3.1.10)
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where Bn is a complex n-dimensional base space. From Eq. (3.1.6) and Eq. (3.1.12), the

elliptic fibration Yn+1 is described as

PYn+1 = = y2 + x3 + f(Bn)x+ g(Bn) = 0, (3.1.17)

J(τ(Bn)) =
4f(Bn)

3

4f(Bn)3 + 27g(Bn)2
, (3.1.18)

where we abbreviate the coordinates of Bn as Bn. Note that a fibre, which is elliptic curve

Eτ , can become the singular fibre at the discriminant loci:

∆(Bn) := 4f(Bn)
3 + 27g(Bn)

2 = 0, (3.1.19)

as discussed later. In this section, we focus on the n = 1 case where Y2 is an elliptically

fibred K3 surface and B1 is P1.

We focus on an elliptically fibred K3 (elliptic surface) or a fibre product of two

rational elliptic surfaces with section. From Eq. (3.1.17), It is represented by

Pz = −y2 + x3 + f(z)x+ g(z) = 0, (3.1.20)

where z ∈ C is the coordinate on the affine patch of the base space P1, and f(z) and g(z)

are holomorphic functions of z. The complex structure modulus τ(z) is a holomorphic

function of z, Im τ > 0 and is a one-to-one map from C to the fundamental region

(H/(P )SL(2,Z))) of τ due to the (P )SL(2,Z) transformation. From Eq. (3.1.18) and

Eq. (3.1.19),

J(τ(z)) =
4f(z)3

4f(z)3 + 27g(z)2
, (3.1.21)

∆(z) := 4f(z)3 + 27g(z)2. (3.1.22)

In F-theory, the complex structure modulus τ(z) is given as an inverse function of the

J-function from Eq. (3.1.21):

τ(z) = J−1(z). (3.1.23)

This naturally satisfies the requirement for the axio-dilaton field τ := C0 + ie−ϕ in Type

IIB superstring theory discussed in the previous section. When we consider a compact

space as an elliptically fibred K3, the coefficient functions f(z) and g(z) are 8th- and

12th-degree polynomials in z, respectively; and then the discriminant: ∆(z) is a 24th-

degree polynomial in z. Also, when we consider a compact space as a fibre product of

two rational elliptic surfaces, the coefficient functions f(z) and g(z) are 4th- and 6th-

degree polynomials in z, respectively; and then the discriminant: ∆(z) is a 12th-degree

polynomial in z. These correspond to the fact that a dual IIB superstring theory has 24

7-branes since the degree of ∆(z) is equal to the number of 7-branes as discussed below.

First, we show that a position of a 7-brane is given by a locus of the pole of the J-

function. We consider the condition that an elliptic surface or an elliptic fibre is singular.
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If the elliptic surface is singular, then the elliptic fibre is singular; thus, the x and y

derivative of Pz in Eq. (3.1.20) is zero. Therefore, we obtain

3x2 + f(z) = 0,

y = 0.
(3.1.24)

Substituting Eq. (3.1.24) into Eq. (3.1.20), we obtain the condition that an elliptic surface

or an elliptic fibre becomes singular:

4f(z)3 + 27g(z)2 =: ∆(z) = 0. (3.1.25)

∆(z) = 0 is a divisor. In particular, we consider the condition for an elliptic fibre to be

singular and an elliptic surface not to be, in other words, the z derivative of Pz in Eq.

(3.1.20) is not zero and ord(f) =ord(g) = 0, ord(∆) = 1:

f ′(z)x+ g′(z) ̸= 0. (3.1.26)

The condition corresponds to the condition for the Kodaira I1 singular fibre discussed in

the next section. In this case, if Eq. (3.1.25) is satisfied for z = zi, then the condition is

∆(z) ∼ (z − zi) and J(τ) = 4f3

∆
∼ (z − zi)−1. In the limit z → zi,

J(τ) ∼ (z − zi)−1 ∼ e−2πiτ → ∞, (3.1.27)

since J(τ)→
(

1
12

)3
e−2πiτ in the limit τ → i∞ (q := e2πiτ → 0), mathmatically. Therefore,

we obtain

τ(z ∼ zi) ∼
1

2πi
log(z − zi) → i∞. (3.1.28)

This corresponds to Eq. (2.1.21) and Eq. (2.1.22) discussed for a (D)7-brane. From the

above, the position of a 7-brane corresponds to the point where the discriminant locus, in

other words, the point where the elliptic fibre is the Kodaira I1 singular fibre. Moreover,

from the (P )SL(2,Z) symmetry of the complex structure modulus τ , all (P )SL(2,Z)-
conjugate monodromies are considered to be identical to T ∈ (P )SL(2,Z). Thus, from a

geometric point of view, since a 7-brane is locus: ∆(z) = 0, they do not differ from each

other; and then, a [p, q]7-brane, which is introduced in Section 2.3, is locally a D7-brane.

Also, If the z derivative of Pz in Eq. (3.1.20) is zero:

f ′(z)x+ g′(z) ̸= 0, (3.1.29)

we obtain the two cases: ord(f) ≥ 1, ord(g) ≥ 2, ord(∆) ≥ 3 and ord(f) =ord(g) = 0,

ord(∆) ≥ 2. These cases correspond to the non-abelian gauge symmetries. In particular,

the latter case corresponds to that N D7-branes exist from the discussion in the next

section. This can be explained by the following facts. When N (≥ 2) D7-branes exist at

z = zi,

τ(z) ∼ N

2πi
log(z − zi) (3.1.30)
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from Eq. (2.1.23). In this case, we obtain

∆(z) ∼ (z − zi)N (3.1.31)

in the limit z → zi. These show that the degree of ∆(z) is equal to the number of 7-branes.

A more detailed discussion will follow in the next section.

Next, we show that we can obtain the monodromy that occurs when τ(z) moves

around a singularity, by investigating the value of the J-function [85]. Also, we can

obtain (p, q)-charges of 7-branes from the monodromies as in the previous chapter. The

properties of the J-function are as follows: the J-function is a one-to-one map from the

fundamental region of τ to C and is a (P )SL(2,Z) (modular) invariant function. It is also

a one-to-one map from Re τ < 0 in the fundamental region of τ to the upper half-plane H
and a one-to-many map from the upper half-plane H to C, with boundary correspondence:

J(τ = e
2πi
3 ) = 0,

J(τ = i) = 1,

J(τ → i∞)→∞.
(3.1.32)

We consider the change in the value of the J-function when the complex structure modulus

τ is changed in the upper half-plane H by the (P )SL(2,Z) transformation. Since τ is a

multivalued function, depending on what (P )SL(2,Z) (monodromy) transformations are

performed on τ , the value of the J-function returns to its original value along what path

in the image space C. This is shown concretely in

T : τ → τ + 1 ⇒ Crossing (1,∞) and (∞, 0) in order,

S : τ → −1

τ
⇒ Crossing (1,∞) and (0, 1) in order.

(3.1.33)

Here, (a, b) denote the line segments on the real axis of the image space C of the J-

function. We can measure the monodromies from Eq. (3.1.33). This is summarized

in Table 3.1. Here 1+(−) represents a clockwise (counterclockwise) rotation around 1 in

the image space C of the J-function, and 0+(−) represents a clockwise (counterclockwise)

rotation around 0 in the image space C of the J-function. Also, longer paths can be

described by a combination of these.

There is another way how we can measure the monodromies, using a “dessin d’enfant”

[115, 116]. A “dessin d’enfant” is a topological graph (on the Riemann sphere S2 ∼ P1)

[117–119]. In general, a “dessin d’enfant” is characterized by a complex-valued meromor-

phic function F (z)3, whose values of the branch points are either 0, 1 or∞. These values

are called “critical values”, and the inverse images of these values are called the “critical

points”. Such a complex-valued meromorphic function F (z) To draw a “dessin” on the

z-plane, we first mark the inverse images of 0 and 1, namely F−1(0) and F−1(1), respec-

tively. We then draw lines along the inverse image of the line segment [0, 1]. This graph

3F (z) is referred to as a “Belyi function”.
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Table 3.1: Value of J function & monodromy

Value of J function and monodromy

0+1+ T

1+ S

1− S−1

0+ TS−1

0− ST−1

is a “dessin d’enfant”. Finally, we add inverse images of ∞ and lines along the inverse

image of [−∞, 0] and [1,∞] to the “dessin d’enfant”. Due to these additional lines, we

can draw a triangulation on the z-plane (z ∈ P1).

We introduce how the “dessin” can be drawn on P1 in F-theory. J(τ(z)) of the left-

hand side of Eq. (3.1.21) is the modular J-function. And the complex structure modulus

τ(z) of an elliptic fibre over z ∈ P1 is determined by solving Eq. (3.1.21). Assuming that

f(z) and g(z) are polynomials in z4, the right-hand side of Eq. (3.1.21) is a complex-

valued meromorphic function of z. Thus, using Eq. (3.1.21), we can draw a “dessin

d’enfant” and additional inverse images associated with ∞ on P1. We first mark points

of the zero loci of f(z), g(z) and discriminant ∆(z) on the z-plane. From Eq. (3.1.21)

and (3.1.32), we find that the zero loci of f(z) and g(z) correspond to the critical points

in a “dessin”: 0 and 1, respectively. The discriminant loci ∆(z) = 0 also corresponds

to ∞. They define codimension-one objects on P15. We next draw lines at the inverse

images of −∞ < J(τ(z)) < 0, 0 < J(τ(z)) < 1 and 1 < J(τ(z)) < ∞, which correspond

to the line segment [−∞, 0], [0, 1] and [1,∞], respectively. These are called a T -wall, an

S-wall and a T ′-wall, denoted by a green line G, a blue line B and a dashed green line

dG, respectively [115,116]. In this way, we can triangulate regions of the “dessin” on P1.

By utilizing this “dessin”, it is quite easy to read the monodromies made by 7-brane.

The reasons why this set-up allows for such are as follows. From the right-hand side of Eq.

(3.1.21), we can find that the ramification index of the J = 0 (f = 0) and J = 1 (g = 0)

critical points are always three and two, respectively. On the other hand, a modular

J-function J(τ) behaves J(τ) ∼ O((τ − e 2πi
3 )3) near τ ∼ e

2πi
3 and J(τ) ∼ 1 +O((τ − i)2)

near τ ∼ i. In other words, there are always three and two fundamental regions of τ

around the f = 0 locus and the g = 0 locus on P1, respectively. Therefore, Eq. (3.1.21)

induces a local homeomorphism between the z-plane and the upper-half plane H (which

is associated with the base P1 and τ(z), respectively). In other words, the “dessin” can

4We consider only the case if the elliptic fibration is an elliptically fibred K3 or a rational elliptic

surface in this section.
5The zero loci of f(z) and g(z) are called “elliptic point planes” [115,116].
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Figure 3.1: Example: Kodaira singular fibre of type III

provide a chart on the base P1 that exactly points to the corresponding position on the

upper half-plane H.

We explain how to read the monodromies using the “dessin”. In order to read a

monodromy along a given counterclockwise path around a 7-brane, we first list the walls

that the path crosses in sequence. When the path crosses two walls, we multiply particular

SL(2,Z) matrices according to the following rules from left to right in the order in which

the walls are crossed if the base point of the path is in a cell region with ImJ > 0:

→ dG→ G→ = T,

→ G→ dG→ = T−1,

→ dG→ B→ = → B→ dG→ = S,

→ B → G→ = ST,

→ G → B→ = T−1S.

(3.1.34)

Also, if the base point of the path is in a cell region with ImJ < 06, the rule is

→ dG→ G→ = T−1,

→ G→ dG→ = T,

→ dG→ B→ = → B→ dG→ = S,

→ B → G→ = ST−1,

→ G → B→ = TS.

(3.1.35)

We show the example in Fig. 3.1. For more detail on this method, see [115] and concrete

examples can be found in [116].

We summarize this section. In the eight-dimensional F-theory, there is a duality:

6Whether a given cell region is one with ImJ > 0 or with ImJ < 0 can be easily distinguished as

follows: We consider a small loop path that starts from any point in the given cell region and goes around

a D-brane counterclockwise. If the path crosses as → dG → G →, the cell region is a cell region with

ImJ > 0. On the other hand, if it crosses → G→ dG→, the cell region is one with ImJ < 0.
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Figure 3.2: The duality between F-theory and Type IIB superstring field theory.

F-theory on R1,7 × elliptically fibred K3

≃ Type IIB theory on R1,7 × P1 with 7-brane. (3.1.36)

More generally, there is a duality (Fig. 3.2):

F-theory on R1,9−2n × elliptically fibred Calabi-Yau (n+ 1)-fold Yn+1

≃ Type IIB theory on R1,9−2n ×Bn with 7-brane. (3.1.37)

In these cases, there is the correspondence between the complex structure modulus τ(Bn) :=

τ1(Bn) + iτ2(Bn) of the elliptic curve Eτ in F-theory and the axio-dilaton field τ(Bn) :=

C0(Bn) + ie−ϕ(Bn) in Type IIB superstring theory:

τ(Bn) := τ1(Bn) + iτ2(Bn) ≃ τ(Bn) := C0(Bn) + ie−ϕ(Bn), (3.1.38)

where Bn is the coordinates of the base space Bn.

3.2 Kodaira’s Classification and 7-brane configura-

tions

In this section, we summarize the results of the classification and the correspondence

between the codimension-one singularities and gauge symmetries. The Kodaira’s singular

fibres are classified by Tate’s algorithm. The classification is called Kodaira’s classifi-

cation [62, 113, 114] and is summarized in Table 3.2. The basis for the correspondence

with each Kodaira singular fibre type and each gauge symmetry is that each intersection

diagram of the exceptional curves that appear by the crepant resolution7 (blow-ups) of

7In algebraic geometry, a crepant resolution is a resolution that does not change the canonical class

of the manifold.
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Table 3.2: Kodaira’s classification and 7-brane configurations. The ord(f), ord(g) and

ord(∆) denote the orders of zeros of f , g and the discriminant ∆ of the Weierstrass

equation and n ≥ 1, (n ∈ N). Here, ord(∆) corresponds to the number of 7-branes

collected and the 7-brane configuration can be explained from the analysis of monodromy

in Chapter 2. Note that when ord(f) ≥ 4 and ord(g) ≥ 6, the singularities are so bad

that the triviality of the canonical bundles is broken in general.

Fibre type ord(f) ord(g) ord(∆) Monodromy 7-brane config. Brane type

smooth (I0) ≥ 0 ≥ 0 0 − − −
In 0 0 n T n An An−1

II ≥ 1 1 2 −T−1S AB H0

III 1 ≥ 2 3 −S A2B H1

IV ≥ 2 2 4 −TS A3B H2

I∗0 ≥ 2 3 6 −1̂ A4BC D4

I∗n ≥ 2 3 6 + n −1̂× T n An+4BC Dn+4

I∗n 2 ≥ 3 6 + n −1̂× T n An+4BC Dn+4

II∗ ≥ 4 5 10 TS A7BCB E8

III∗ 3 ≥ 5 9 S A6BCB E7

IV ∗ ≥ 3 4 8 T−1S A5BCB E6

non-minimal 4 6 12 1̂ A8BCBC −

each singularity coincide with each Dynkin diagram. In addition, from the coincidence

of the monodromy made by each 7-brane configuration at a point and the monodromy

around the point where there are Kodaira’s singular fibres, we obtain Table 3.2. Note

that a gauge symmetry on the 7-branes is the same as one in Kodaira’s classification.

This corresponds to the fact that the degrees of freedom of the open strings coincide with

the degrees of freedom of the roots of a gauge symmetry.

To briefly illustrate the fact that a Dynkin diagram coincides with an intersection

diagram of the exceptional curves that appear by the crepant resolution of a codimension-

one singularity, we consider the I3 case as the most simple example. Note that the smooth

manifold obtained after the crepant resolution of a singular one is also a Calabi-Yau

manifold since a crepant resolution does not change the canonical class of the Calabi-

Yau [54]. We start from the Weierstrass equation (3.1.20), where

f(z) = f0 + f1z + · · ·+ f4z
4,

g(z) = g0 + g1z + · · ·+ g6z
6,

(3.2.1)

fi, gi ∈ C and z is the coordinate on the affine patch of the base space P1. Then, the

discriminant ∆ of (3.1.20) is

∆(z) = 4f(z)3 + 27g(z)2

= (4f 3
0 + 27g20) + 6(2f 2

0 f1 + 9g0g1)z
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+3(4f 2
0 f2 + 4f0f

2
1 + 18g0g2 + 9g21)z

2

+2(6f 2
0 f3 + 12f0f1f2 + 2f 3

1 + 27g0g3 + 27g1g2)z
3 +O(z4). (3.2.2)

First, we obtain the local equation with the I3 singular fibre from the Weierstrass

equation (3.1.20). From Table 3.2, we set

f0 = −3a2, g0 = 2a3

g1 = −af1 = 0,

g2 = −af2 = 0,

g3 ̸= −af3,
f4 = g4 = g5 = g6 = 0,

(3.2.3)

where a ∈ C− {0}; and then, if we choose a = f3 = g3 = 1, we obtain the local equation

with the I3 singular fibre at z = 0:

ΨI3(x, y, z) := −y2 + x3 + (−3 + z3)x+ (2 + z3) = 0, (3.2.4)

∆(z)I3 = 216z3 +O(z6). (3.2.5)

In Eq. (3.2.4), there are the singularities at (x, y, z) = (1, 0, 0). For simplicity, a variable

transformation yields

ΦI3(x, y, z) := −y2 + x3 + 3x2 + z3x+ 2z3 = 0. (3.2.6)

In Eq. (3.2.6), there is the singularity at (x, y, z) = (0, 0, 0).

Next, we consider the crepant resolution of a singularity [93, 98, 120] of the local

equation (3.2.6) along (x, y, z) = (0, 0, 0); and then, we obtain the exceptional curves Ci’s
and their intersection diagrams. Here, the exceptional curve Ci is the intersection of P2

in Eq. (3.2.7) and after the blow-up of the singularity of elliptic surface (for example,

ΦzI3(x1, y1, z) in Eq. (3.2.8)); and then, the exceptional curves Ci’s are P1’s. For the

crepant resolution, we replace the point (x, y, z) = (0, 0, 0) with a P2, by replacing C3

with

Ĉ3 = {((x, y, z)× (ξ : η : ζ)) ∈ C3 × P2|(x : y : z) = (ξ : η : ζ)}. (3.2.7)

We are blowing up the singularity in inhomogeneous coordinates defined by the three

different affine patches of P2, for example, (x : y : z) = (ξ : η : ζ) = (x1 : y1 : 1) (1z, z ̸= 0).

Thus, to replace C3 with Ĉ3, we simply replace (x, y, z) with (x1z, y1z, z) in the equation

(3.2.6) in Chart 1z. To not change the canonical class, the equation after the blow-ups is

defined as follows:

z−2ΦI3(x1z, y1z, z) =: ΦzI3(x1, y1, z) = 0. (3.2.8)
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We then obtain

Chart 1z

ΦzI3(x1, y1, z) = −y
2
1 + x31z + 3x21 + z2x+ 2z,

C±p1 in 1z : z = 0, y1 = ±
√
3x1,

Singularities : None.

(3.2.9)

Similarly, we need to check the other patches: 1x (x ̸= 0) and 1y (y ̸= 0), by the same

procedure,

Chart 1x

ΦxI3(x, y1, z1) = −y
2
1 + x+ 3 + z31x

2 + 2z31x,

C±p1 in 1x : x = 0, y1 = ±
√
3,

Singularities : None,

(3.2.10)

and

Chart 1y

ΦyI3
(x1, y, z1) = −1 + x31y + 3x21 + z31x1y

2 + 2z31y,

C±p1 in 1y : y = 0, x1 = ±1/
√
3,

Singularities : None.

(3.2.11)

No singularities remain; thus the blowup is finished. We obtain C±p1 and an intersection

diagram of the exceptional curves after the crepant resolution of the I3 codimension-one

singularity (Fig. 3.3); and then, we can check the fact that a Dynkin diagram coincides

with the intersection diagram of the exceptional curves. In eight-dimensional F-theory,

this result similarly holds for all singular fibre types in Kodaira’s classification; thus the

singularity types in Kodaira’s classification exactly match the conjectured enhanced gauge

symmetries, respectively.

3.3 M-/F-theory Duality

It was shown that there is a duality between F-theory and M-theory [52,59,111]. In

this section, we briefly explain it.

It is known that the bosonic part of the action of the eleven-dimensional N = 1

supergravity theory, which is the low-energy effective theory of M-theory, is given by

S = 2π
ℓ911

(∫
R1,10

√
−gR− 1

2

∫
R1,10 dC3 ∧ ∗dC3 − 1

6

∫
R1,10 C3 ∧G4 ∧G4

)
+ 2π

ℓ311

∫
R1,10 C3 ∧ I8 + (fermionic term), (3.3.1)

where ℓ11 is the Planck length in eleven dimensions, C3 is the 3-form gauge potential,

G4 := dC3 is the field strength and gMN (M,N = 0, 1, · · · , 10) is the eleven-dimensional
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Figure 3.3: Example: intersection diagrams of the exceptional curves of a I3 singular fibre.

metric. Also, I8 is a topological higher curvature [121]:

I8 =
1

(2π)4

(
− 1

768

(
trR2

)2
+

1

192
trR4

)
. (3.3.2)

This action is invariant under the transformation C3 → C3+dΛ2, where Λ2 is an arbitrary

2-form. C3 is electrically coupled to the M2-brane as

SM2 =
2π

ℓ311

∫
M2

√
−g + 2π

ℓ311

∫
M2

C3. (3.3.3)

C6, which is dual to C3, is electrically coupled to the M5-brane. It is known that the

M2-brane solution is

ds2M2 = f
−2/3
M2 (r)ηµνdx

µdxν + f
1/3
M2(r)δijdx

idxj, (3.3.4)

fM2(r) = 1 +
32π2ℓ611NM2

r6
, r2 = δijx

ixj, (3.3.5)

where NM2 is the number ofM2-branes µ, ν = 0, 1, 2 and i, j = 3, · · · , 10. It is also known
that the M5-brane solution is

ds2M5 = f
−1/3
M5 (r)ηµνdx

µdxν + f
2/3
M5(r)δijdx

idxj, (3.3.6)

fM5(r) = 1 +
πℓ311NM5

r3
, r2 = δijx

ixj, (3.3.7)

where NM5 is the number of M5-branes µ, ν = 0, · · · , 5 and i, j = 6, · · · , 10.
We briefly explain a duality between M-theory on R1,8×T 2 and Type IIB superstring

theory on R1,8 × S1 [111]. To distinguish cycles S1
i , we label them as S1

i and denote the

radius of S1
i as Ri. We consider

T 2 := S1
a × S1

b . (3.3.8)
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We denote Ra and Rb as the radii of S1
a and S1

b , respectively. In this case, g10µ (µ =

0, 1, · · · , 9) corresponds to the R-R field Cµ and g1010 to the dilaton field ϕ in Type IIA

superstring theory. First, when Ra → 0, there is a duality between M-theory on S1
a

and the Type IIA superstring theory [122]. Next, there is T-duality between Type IIA

superstring theory on R1,8 × S1
B and Type IIB superstring theory on R1,8 × S̃1

B. There is

a relation between the radii of S1 of each other:

R̃b =
ℓ2s
Rb

, (3.3.9)

where ls is the string length and R̃B is the radius of S̃1
B. In this case, Cµ=9 corresponds to

the R-R scalar field C0 in Type IIB superstring theory. And their dilaton fields correspond

to each other. The limit RB → 0 corresponds to the limit R̃B →∞; thus, It is equivalent

to the fact that we consider Type IIB superstring theory on R1,9. Therefore, if we consider

R1,8 × S̃1
B

∣∣∣
R̃B→∞

→ R1,9, there is a duality:

M-theory on R1,8 × T 2
(
:= S1

A × S1
B

)∣∣
RA,RB→0

≃ Type IIB theory on R1,9. (3.3.10)

In this thesis, we denote a duality as ≃. In this case, there is a correspondence between

the complex structure modulus τ := τ1 + iτ2 of T 2 in M-theory and the axio-dilaton field

τ := C0 + ie−ϕ in Type IIB superstring theory:

τ := τ1 + iτ2 ≃ τ := C0 + ie−ϕ. (3.3.11)

Also, using the volume V of T 2 in the M-theory, the metric of Type IIB superstring theory

in the Einstein frame can be written as

ds2IIB = ds2R1,8 +
ℓ4s
V
dx̃29, x̃9 ∼ x̃9 + 1, (3.3.12)

where x̃9 ∼ x̃9+1 is a periodic boundary condition for S̃1
B. Thus, in the limit V → 0, the

dual Type IIB superstring theory has ten-dimensional Poincare symmetry.

We discuss this duality in general. The elliptic fibration Yn+1 is defined as

π : Eτ → Yn+1

↓
Bn,

(3.3.13)

where Eτ and Bn are an elliptic curve and a complex n-dimensional base space, respec-

tively. And then, we can regard Yn+1 as a holomorphic line bundle L over Bn with a

choice of sections. If we consider R1,8−2n ×Bn × S̃1
B

∣∣∣
R̃B→∞

→ R1,9−2n × Bn, there is a

duality in general:

M-theory on R1,8−2n × Yn+1|V→0 ≃ Type IIB theory on R1,9−2n ×Bn, (3.3.14)
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where V := Vol(Eτ ) and n ≥ 1. Then, using the volume V of the elliptic curve Eτ on the

M-theory side, we can write the metric of Type IIB superstring theory in Einstein frame

as

ds2 = ds2R1,8−2n + ds2Bn
+
ℓ4s
V
dx̃29, x̃9 ∼ x̃9 + 1. (3.3.15)

The first Chern class of Yn+1 is given by

c1 (Yn+1) = c1 (Bn)− c1(L). (3.3.16)

There is a relation

c1 (Bn) = c1(L) (3.3.17)

from the Einstein equation and the discussion about supersymmetry [61]. Therefore, we

obtain

c1 (Yn+1) = 0. (3.3.18)

This means that Yn+1 is a Calabi-Yau (n+ 1)-fold. In particular, in the n = 1 case, Y2 is

the complex two-dimensional elliptically fibred Calabi-Yau, the elliptically fibred K3; and

then, the base space B1 is P1. In this case, half of SUSY is conserved in M-theory. This

corresponds to the fact that we consider the 7-brane solution in Type IIB superstring

theory discussed in the previous chapter.

When considering F-theory on elliptically fibred Calabi-Yau (n+ 1)-fold, there is a

duality in general:

F-theory on R1,9−2n × elliptically fibred Calabi-Yau (n+ 1)-fold Yn+1

≃ Type IIB theory on R1,9−2n ×Bn with 7-brane (3.3.19)

from the discussion in Section 3.1. In particular, if considering F-theory on elliptically

fibred K3, the base B1 = P1 (n = 1). In the eight-dimensional F-theory, there is a duality:

F-theory on R1,7 × elliptically fibred K3

≃ Type IIB theory on R1,7 × P1 with 7-brane. (3.3.20)

On the affine patch of the base space of the elliptically fibred K3: B1 (= P1) with the

coordinate z = x8 + ix9, there is the correspondence between the complex structure

modulus τ(z) := τ1(z) + iτ2(z) of the elliptic curve Eτ in F-theory and the axio-dilaton

field τ(z) := C0(z) + ie−ϕ(z) in Type IIB superstring theory:

τ(z) := τ1(z) + iτ2(z) ≃ τ(z) := C0(z) + ie−ϕ(z). (3.3.21)
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From the above, when considering the eight-dimensional F-theory, there is a duality

between M-theory and F-theory:

M-theory on R1,6 × elliptically fibred K3|V→0

≃ F-theory on R1,7 × elliptically fibred K3. (3.3.22)

In this case, since the coordinate on the affine patch of the base space P1 on the M-theory

side and the F-theory side are z = x7 + ix8 and z = x8 + ix9, respectively, the complex

structure moduli τ(z) := τ1(z) + iτ2(z) of the elliptic curves Eτ correspond to each other.

Therefore, because we consider the limit V := Vol(Eτ ) → 0 on the M-theory side, a

dynamical modulus is not the volume (Kähler) modulus (V := Vol(Eτ )) but the complex

structure modulus τ(z) of the elliptic curve Eτ on the F-theory side. This means that

the extra two dimensions Eτ in F-theory are virtual. More generally, the M-/F-theory

duality is

M-theory on R1,8−2n × elliptically fibred Calabi-Yau (n+ 1)-fold Yn+1|V→0

≃ F-theory on R1,9−2n × elliptically fibred Calabi-Yau (n+ 1)-fold Yn+1; (3.3.23)

and then, the complex structure moduli of the elliptic curves Eτ correspond to each other

too.

Finally, we explain how the (p, q)-string in Type IIB superstring theory can be

interpreted in dual M-theory. Considering the duality between M-theory and F-theory,

if an M2-brane is wrapped around a cycle of an elliptic curve, there are two pieces of

information: a line segment on the base space and a cycle around which it is wrapped.

We explain what the information in this cycle corresponds to. When we consider F-theory

on the elliptically fibred Calabi-Yau (n + 1)-fold, there are some 7-brane at the points

where the elliptic fibrations are singular (where the elliptic curve degenerates). On the

other hand, in Type IIB superstring theory, the 7-brane is an object to which the endpoints

of an open string are attached. Thus, at least a cycle of an elliptic curve (two-torus T 2)

degenerates at the point where a 7-brane exists. This is called a vanishing cycle. The

vanishing cycle is determined by the charge (p, q) of the [p, q]7-brane. Therefore, the line

segment on the base space and the cycle pα+ qβ around which an M2-brane is wrapped

in dual M-theory corresponds to the path and the charge (p, q) of the (p, q)-string in Type

IIB superstring theory, respectively (Fig. 3.4). Here, α and β are two cycles of an elliptic

curve Eτ .
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∆ = 𝟎

𝑩𝒏
∆ = 𝟎∆ ≠ 𝟎

𝒑𝜶 + 𝒒𝜷-cycle

Figure 3.4: The line segment on the base space and the cycle pα + qβ in dual M-theory.



Chapter 4

Heterotic/F-theory Duality

In this chapter, we discuss the duality between F-theory and Heterotic superstring

theory [52,53,87–89,123,124]. In particular, for considering mater generation in F-theory,

we focus on an F-theory on an elliptically fibred Calabi-Yau threefold over Fn in the

stable degeneration limit, which is dual to an E8 × E8 Heterotic superstring theory on

elliptically fibred K3 with instanton numbers (12 + n, 12 − n) in each E8 [87, 88, 90].

We then introduce the anomaly cancellation condition [90, 125] and see that the matter

contents in the dual Heterotic superstring theory satisfy this condition [90]. In addition,

on the F-theory side, from the Weierstrass equation, if the charged matter fields are

localized at all codimension-two singularities, the number of the matter fields in a model

with ADE codimension-one singularity is consistent with this condition [90]. This is one

of the reasons why the massless charged matter fields are localized at all codimension-two

singularities in a model with ADE codimension-one singularity.

4.1 Heterotic/F-theory duality in eight dimensions

The Heterotic/F-theory duality in eight dimensions [52,53,87,123,124] (see [54,126]

for a review) is

Heterotic superstring theory on R1,7 × T 2

≃ F-theory on R1,7 × elliptically fibred K3. (4.1.1)

One of the pieces of evidence suggesting the duality (4.1.1) is that their moduli spaces:

SO(2, 18;Z) \ SO(2, 18) / SO(2)× SO(18) (4.1.2)

coincide with each other1. In particular, in the cases of the perturbative E8×E8 Heterotic

superstring theory, the duality (4.1.1) can be understood concretely in the weakly coupling

1A gauge symmetry can be realized only if the root lattice of its gauge algebra can be embedded into

the unimodular lattice Γ2,18 [127].

50
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limit, which is realized by V → ∞ (V is the volume of T 2). The volume modulus V on

the Heterotic superstring theory side corresponds to a complex structure modulus τ of

the elliptic curve Eτ on the F-theory side. On the F-theory side, we consider the compact

space K3 as a fibre product of two rational elliptic surfaces dP9 in the cases of the E8×E8

limit, which is called the “stable degeneration limit” [87–89]. In the stable degeneration

limit, we can match the non-abelian gauge symmetries arising from the configurations

of the Wilson lines in the perturbative E8 × E8 Heterotic superstring theory to the ones

arising from Kodaira singular fibre over points on the F-theory base space P1, respectively.

In lower dimensions, the dualities are briefly understood by considering compact

spaces with eight-dimensional cases fibred over the common base spaces Bn in both of

these theories, respectively [52,87,88]:

Heterotic theory on R1,7−2n × elliptically fibred over Bn

≃ F-theory on R1,7−2n × elliptically fibred over B̃n+1, (4.1.3)

where n ∈ N and B̃n+1 is constructed as a P1 bundle over Bn. In other words,

Heterotic theory on R1,7−2n × elliptically fibred Calabi-Yau (n+ 1) -fold Yn+1

≃ F-theory on R1,7−2n ×K3-fibred Calabi-Yau (n+ 2) -fold Ỹn+2, (4.1.4)

where both the elliptically fibred Calabi-Yau (n+1)-fold Yn+1 and (n+2)-fold Ỹn+2 have

section. This argument is also true for the eight-dimensional case when regarded as the

common base space B0 is a point and B̃1 = P1 is the unique P1 bundle over the point.

4.2 Heterotic/F-theory duality in six dimensions

In six dimensions, there is a unique common base space B1 = P1 in Eq. (4.1.3).

Thus, the Heterotic/F-theory duality with the smooth dual geometries in six dimensions

is [87, 88]

Heterotic theory on R1,5 × elliptically fibred over P1 (elliptically fibred K3)

≃ F-theory on R1,5 × elliptically fibred over Fn, (4.2.1)

where Fn is a Hirzebruch surface, which will be defined later, and both the elliptically

fibred Calabi-Yau twofold Y2 and threefold Ỹ3 have section. In this thesis, we only con-

sider the Heterotic/F-theory duality with the smooth dual geometries in which no small

instantons arise2. As the case in eight dimensions, on the F-theory side, codimension-one

singularities (corresponding to the positions of 7-branes in Type IIB superstring theory),

2The Heterotic/F-theory duality can be extended by incorporating non-perturbative effects in Het-

erotic superstring theory. In this case, for example, B̃2 = P2
, as the base space in F-theory, can be

realized [88,128]. The base spaces B̃2 in F-theory can be classified in terms of the divisor structure [97].
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which are codimension-one loci in the base space Fn (codimension-two in the total space

Ỹ3) where elliptic fibres become the singular fibres, correspond to the expected ADE

gauge symmetries implied by Kodaira’s classification [90, 91, 93, 98, 120]. In addition, in

six or lower dimensions, this can include non-simply-laced gauge symmetries when mon-

odromies exist. Also, there are intersections of the codimension-one loci in the base space

Fn. These codimension-two loci where the codimension-one singularities and the expected

gauge symmetries are enhanced correspond to intersections of 7-branes in Type IIB su-

perstring theory. Thus, the codimension-two loci are involved in matter generation and

are called codimension-two singularities.

In the stable degeneration limit, especially, the dual Heterotic theory is the E8×E8

Heterotic theory on elliptically fibred K3 with instanton numbers (12+n, 12−n) in each

E8 [87,88]. Here, n in instanton numbers on the Heterotic theory side is equal to n of Fn

on the F-theory side. In this thesis, we focus only on this case henceforth.

The Hirzebruch surface Fn is a P1 bundle over P1, characterized by an integer n. This

n is the number of “twists” of a P1 bundle over a P1 and (0 ≤) n ≤ 12 in the mathematical

framework of minimal surfaces (where there are no curves of self-intersection −1) [129].
We define the elliptic fibred Calabi-Yau threefold over the Hirzebruch surface Fn described

by Weierstrass form (3.1.17) as follows: the Hirzebruch surface Fn is defined as a toric

variety with the following two toric charges:

u′ v′ u v

Q(λ) 1 1 n 0

Q(µ) 0 0 1 1

(4.2.2)

Here, (u′ : v′) and (u : v) are the homogeneous coordinates of the base P1 of the fibre P1,

respectively, This means that the Hirzebruch surface Fn is defined as

Fn =
{
C4 − 0̂

}
/ ∼, (4.2.3)

where “∼” contains the two identifications:

(u′, v′, u, v) ∼ (λu′, λv′, λnu, v) , (4.2.4)

(u′, v′, u, v) ∼ (u′, v′, µu, µv) , (4.2.5)

where λ, µ ∈ C and (12 ≥) n ∈ Z. When n = 0, the P1 fibration is trivial: P1 × P1. We

introduce the affine coordinates as

w =
u′

v′
, z =

u

v
; (4.2.6)

and then, the Weierstrass form is given by

y2 = x3 + f (z, w)x+ g (z, w) , (4.2.7)
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where

f(z, w) :=
I∑

i=0

zif8+n(4−i)(w),

g(z, w) :=
J∑

j=0

zjg12+n(6−j)(w),

(4.2.8)

where I and J are the largest integer that satisfies I ≤ 8, 8 + n(4 − I) ≥ 0 and J ≤ 12,

12 + n(6 − J) ≥ 0, respectively. In this chapter, all subscripts denote the degree of the

polynomial in w. The correlation between the degree of f8+n(4−i) (g12+n(6−j)) and the

power of z in f (g) is determined by the charges Q(λ) and Q(µ) in Eq. (4.2.2) from the

condition for conserving supersymmetry [54]. The charges Q(λ) and Q(µ) of x and y are

assigned as follows:

x y

Q(λ) 2n+ 4 3n+ 6

Q(µ) 4 6

(4.2.9)

In this case, the discriminant locus (3.1.19) is given by

∆ (z, w) = 4f 3 (z, w) + 27g2 (z, w)

=
(
4f 3

4n+8 (w) + 27g26n+12 (w)
)

+6
(
2f 2

4n+8 (w) f3n+8 (w) + 9g6n+12 (w) g5n+12 (w)
)
z

+3
(
4f 2

4n+8 (w) f2n+8 (w) + 4f4n+8 (w) f
2
3n+8 (w)

+18g6n+12 (w) g4n+12 (w) + 9g25n+12 (w)
)
z2

+2
(
6f 2

4n+8 (w) fn+8 (w) + 12f4n+8 (w) f3n+8 (w) f2n+8 (w) + 2f 3
3n+8 (w)

+27g6n+12 (w) g3n+12 (w) + 27g5n+12 (w) g4n+12 (w)) z
3

+ · · · · ·
+
(
4f 3

−4n+8 (w) + 27g2−6n+12

)
z24. (4.2.10)

The coefficients of z4 and z6 in Eq. (4.2.8): f4(w) and g6(w) correspond to the

moduli of the elliptically fibred K3 on the Heterotic theory side [88]. Thus, w can be

regarded as the inhomogeneous coordinates of the common base P1 on the Heterotic

theory side. In the limit where the size of the common basis P1 is sufficiently large, at

w = const., the result is expected to be the same as in the eight-dimensional case. Also,

w is expected to be the parameter describing to gauge symmetry enhancement.

In the stable degeneration limit, on the F-theory side, the gauge symmetries are

localized at two points: z1 = 0, ∞. f8+n(4−i) (i < 4) and g12+n(6−j) (j < 6) control

the moduli of one E8 with the instanton number 12 + n near z = 0; and then, when all

f8+n(4−i) (i > 4) and g12+n(6−j) (j > 6) are set to zero, g12+n corresponds to 12 + n small

instantons. On the other hand, f8+n(4−i) (i > 4) and g12+n(6−j) (j > 6) control the moduli
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of another E8 with the instanton number 12−n near z ∼ ∞; and then, when all f8+n(4−i)

(i < 4) and g12+n(6−j) (j < 6) are set to zero, g12−n corresponds to 12−n small instantons.

On the Heterotic theory side, an E8 with the instanton number 12+n has a (30n+

112)-dimensional hypermultiplet moduli space. On the other hand, on the F-theory side,

we count the degree of freedom of f8+n(4−i) (i < 4) and g12+n(6−j) (j < 6) in Eq. (4.2.8);

and then, we find 31n + 114. Note that there are the n + 2 reparameterizations: z →
az+Pn (w) (a ∈ C). Thus, we obtain the dimension of the moduli space on the F-theory

side:

(31n+ 114)− (n+ 2) = 30n+ 112. (4.2.11)

In this way, we can confirm that the dimensions of the hypermultiplet moduli spaces on

the F-theory and the Heterotic theory sides coincide. The case that E8 is broken: E8 → H

is discussed in the next sections.

4.3 Anomaly cancellation conditions in six-dimensional

F-theory

The gravitational anomaly cancellation condition in six-dimensional supergravity

(as summarized in [130–132]) is given by

ñH − nV = 273− 29nT , (4.3.1)

where ñH , nV and nT are the numbers of hypermultiplets, vector multiplets and ten-

sor multiplets, respectively. Note that ñH contains 20 hypermultiplets from the gravity

multiplet, then,

ñH = nH + 20 := ncharged + n0 + 20, (4.3.2)

where ncharged and n0 are the numbers of the charged and the neutral hypermultiplets.

When we consider the elliptically fibred Calabi-Yau threefold over the Hirzebruch surface

Fn on the F-theory side, the number of tensor multiplet, which comes from the gravity

multiplet, is

nT = h1,1(Fn)− 1 = 1. (4.3.3)

Thus, we obtain nH − nV = 224. For each E8 with instanton numbers (12 + n, 12 − n),
the anomaly cancellation conditions [90,125] are

nH − nV = −30n+ 112 (E8 with 12− n instantons) (4.3.4)

= 30n+ 112 (E8 with 12 + n instantons). (4.3.5)
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In this way, the numbers of the hypermultiplets of E8’s must be preserved, even in the

case that E8 is broken: E8 → H.

In this section, we focus on the Heterotic string theory side, especially, E8 with

the instanton number 12 + n. We introduce the gauge invariant three-form for anomaly

cancellation:

ω3 = dB2 + ω3L − ω3Y , (4.3.6)

where ω3L and ω3Y are Chern-Simons three-forms of the spin connection (L: Lorents)

and the gauge field (Y: Yang-Mills), respectively. Since this three-form (4.3.6) must be

well-defined globally, The integral of the exterior derivative of the three-form dω3 over K3

needs to be zero:

1

16π2

∫
K3

(
Trfund.R

2 − 1

30
Tradj.F

2

)
= 0, (4.3.7)

where we denote traces as Trrep. in the “representation”, for example, fund. and adj. are

the fundamental and adjoint representations, respectively. The term of a gravitational

contribution Trfund.R
2 corresponds to half of the Pontryagin number (or the number of

singularities) and gives 24 for an elliptically fibred K3. On the other hand, the term of a

gauge field contribution Tradj.F
2/c2(E8) gives the instanton number. Here, c2(E8) = 30

is the dual Coxeter number of E8. Therefore, there is the configuration of the gauge fields

in the K3 with 24 instantons.

We consider gauge symmetry enhancement in the case of the following maximal

subgroup G:

E8 ⊂ G×H, (4.3.8)

where G and H are the unbroken and broken gauge symmetries, respectively3. Also,

irreducible representations Ri of G and Si of H come from

Adj(E8) = 248 =
∑
i

(Ri,Si) . (4.3.9)

An enhanced gauge symmetry G corresponds to embedding all 12 + n instantons in H.

In this case, we obtain the charged and neutral hypermultiplets and the number of the

vector multiplets is

nV = dimG. (4.3.10)

First, we consider the numbers of the neutral hypermultiplets n0. The number of

neutral hypermultiplets in G is given by the dimension of the moduli subspace of G:

n0 = dimM(G) = c2(H)(12 + n)− dimH, (4.3.11)

3H is simple and the commutant of G.
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where c2(H) is the dual Coxeter number of H and dimH is equal to the dimension of the

adjoint representation of H.

Next, we consider the numbers of the (massless) charged hypermultiplets ncharged.

From an index theorem, we obtain

Ni =
1

16π2

∫
K3

(
TrSi

(FH)2 − 1

24
dim (Si)Trfund.R

2

)
=

1

16π2

∫
K3

ri Tradj.(F
H)2 − dim (Si)

= index (Si) (12 + n)− dim (Si)

= 30ri(12 + n)− dim (Si) , (4.3.12)

where Ni is the number of Ri and ri is

ri =
TrSi

(FH)2

Tradj.(FH)2
(4.3.13)

listed in Table 4.1 for all the simple groups. Thus, we obtain the numbers of the charged

massless matter fields for G:

ncharged =
∑
i

Ni × dimRi. (4.3.14)

The above calculations are summarized in Table 4.2. Note how the instantons are

assigned, if H consists of the direct product of the two groups: the unbroken D6, A5 and

C3 gauge symmetries. In these cases, we consider the case where 12 + n instantons are

distributed among (8+n− r, 4+ r) in (A1, A1), (A2, A1) and (G2, A1). We can check that

all cases in Table 4.2 satisfy the anomaly cancellation condition (4.3.5). “Relaxing” the

restrictions on embedding instantons in H ′ (⊃ H) corresponds to breaking G to G′ (⊂ G)

by the Higgs mechanism, giving an expectation value to some charged hypermultiplets of

G. In the next section, we will discuss this mechanism on the F-theory side.

4.4 Gauge Enhancement and matter in 6D F-theory

In this section, we only consider i ≤ 4, j ≤ 6 and near z = 0 so that we focus on an

E8 with the instanton number 12 + n in heterotic dual, in line with the previous section.

Toward constructing a dictionary connecting F-theory and Heterotic superstring theory

for matter multiplet, we discuss the “Relaxing” mechanism in F-theory.

We can confirm that the number of neutral hypermultiplets of each G in Heterotic

theory completely matches the dimension of the moduli spaces of compactification with
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Table 4.1: Group theoretic coefficients ri and dimRi. Note that radj. = 1. The second

row of each group without E8 is the adjoint representation, respectively. For the Dynkin

label of Ri, the same notation is used as for [133].

unbroken sym. G Dynkin label of Ri dimRi ri

AN−1 (1, 0, . . . , 0) N 1/2N

(1, 0, . . . , 0, 1) N2 − 1 1

(0, 1, 0 . . . , 0) N(N − 1)/2 (N − 2)/2N

(2, 0, . . . , 0) N(N + 1)/2 (N + 2)/2N

(0, 0, 1, 0, . . . , 0) N(N − 1)(N − 2)/6 (N − 2)(N − 3)/4N

(3, 0, . . . , 0) N(N + 1)(N + 2)/6 (N − 2)(N − 3)/4N

BN (1, 0, . . . , 0) 2N + 1 1/(2N − 1)

(0, 1, 0 . . . , 0) N(2N + 1) 1

(0, . . . , 0, 1) 2N 2N−3/(2N − 1)

CN (1, 0, . . . , 0) 2N 1/2(N + 1)

(2, 0, . . . , 0) N(2N + 1) 1

(0, 1, 0 . . . , 0) (N − 1)(2N + 1) (N − 1)/(N + 1)

(0, 0, 1, 0, . . . , 0) 2N(N − 2)(2N + 1)/3 (N − 1)(2N − 3)/2(N + 1)

DN (1, 0, . . . , 0) 2N 1/2(N − 1)

(0, 1, 0 . . . , 0) N(2N − 1) 1

(0, . . . , 0, 1) 2N−1 2N−4/2(N − 1)

E6 (1, 0, 0, 0, 0, 0) 27 1/4

(0, 0, 0, 0, 0, 1) 78 1

E7 (0, 0, 0, 0, 0, 1, 0) 56 1/3

(1, 0, 0, 0, 0, 0, 0) 133 1

E8 (0, 0, 0, 0, 0, 0, 1, 0) 248 1

F4 (0, 0, 0, 1) 26 1/3

(1, 0, 0, 0) 52 1

G2 (0, 1) 7 1/4

(1, 0) 14 1

each “G”4 singularity in F-theory. In this section, we assume that the matter fields locally

exist at the loci where the polynomials f8+n(4−i) and g12+n(6−j) (4.2.8) are zero. We also

assume that the matter representation is determined by which singularity the Kodaira

singular fibre is enhanced on this locus. In addition, if the singularity enhancement

G→ G′ at this codimension-two singularity is characterized by

G′

G× U(1)
, (4.4.1)

we assume that the hypermultiplet appears as a matter multiplet at this codimension-

4In this and the next chapter, quotation marks are restored as appropriate to avoid confusion.
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Table 4.2: Matter contents on the dual Heterotic side. Note that X1
2
means a half-

hypermultiplet.

unbroken sym. Charged matter contents n0 nV

E7 (n+ 8)561
2

2n+ 21 133

E6 (n+ 6)27 3n+ 28 78

F4 (n+ 5)26 4n+ 34 52

B5 (n+ 4)321
2
+ (n+ 7)11 3n+ 26 55

D5 (n+ 4)16+ (n+ 6)10 4n+ 33 45

B4 (n+ 5)9+ (n+ 4)16 5n+ 39 36

D4 (n+ 4) (8c + 8s + 8v) 6n+ 44 28

B3 (n+ 3)7+ (2n+ 8)8 7n+ 48 21

G2 (3n+ 10)7 9n+ 56 14

A4 (3n+ 16)5+ (2 + n)10 5n+ 36 24

A3 (n+ 2)6+ (4n+ 16)4 8n+ 51 15

C2 = B2 (n+ 1)5+ (4n+ 16)4 9n+ 53 10

A1 × A1 n(2,2) + (4n+ 16)[(1,2) + (2,1)] 10n+ 54 6

A2 (6n+ 18)3 12n+ 66 8

A1 (6n+ 16)2 18n+ 83 3

D6 r321
2
+ (4 + n− r)32′ 1

2
+ (n+ 8)12 2n+ 18 66

A5 r201
2
+ (16 + r + 2n)6+ (2 + n− r)15 3n− r + 21 35

C3 (32 + 4n+ 3r)61
2
+ (n+ 1− r)14+ r14′ 1

2
4n+ 23− 2r 21

two singularity. This is because the representation that appears in this gauge symmetry

enhancement is a real or complex representation. Also, if the singularity enhancement is

characterized by

G′

G× A1(∼= C1)
, (4.4.2)

we assume that the half -hypermultiplet appears as a matter multiplet. This is because

the representation that appears in this gauge symmetry enhancement is a pseudo-real

representation. In the cases of ADE gauge symmetries, if the matter fields locally exist

at all intersection loci of the singularities as intersecting D-branes [134], the anomaly

cancellation condition (4.3.5) is satisfied. On the other hand, in the cases of non-simply-

laced gauge symmetries, it is difficult to assume that the matter fields are localized at all

intersections. This is discussed in the next chapter and leads to the purpose of this thesis.

We can consider the following two different chains of the Higgs mechanism: (1)

The unbroken E7 case corresponds to instantons in H = A1. (2) The unbroken D6 case
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corresponds to instantons in H = A1 × A1. In this case, we obtain the Higgs chain

C3 ← A5 ← D6

↓ ↓ ↓
↓ ↓ B5 ← E7

↓ ↓ ↓ ↓
↓ A4 ← D5 ← E6

↓ ↓ ↓ ↓
↓ ↓ B4 ← F4

↓ ↓ ↓
↓ ↓ D4

↓ ↓ ↓
C2
∼= B2 ← A3

∼= D3 ← B3

↓ ↓ ↓
↓ A2 ← G2

↓ ↓
A1 × A1 → A1 .

(4.4.3)

In this section, we write only non-zero polynomials. Also, we do not write f8 and g12

since these polynomials are not associated with the E8 with the instanton number 12+n.

Each setup is shown in Table 3.2.

(1) E7 chain

(1-1) We obtain an unbroken E7 case (H = A1) when there remain f8+n and g12+n.

Therefore, the dimension of the moduli spaces of compactification n0 with “E7”

singularity in F-theory is

n0 = (9 + n) + (13 + n)− 1

= 2n+ 21. (4.4.4)

We also obtain the “E7” discriminant locus (4.2.10)::

∆(z, w) = (4f 3
8+n(w) +O(z))z9. (4.4.5)

At f8+n = 0 locus, “E7” is enhanced to “E8”; thus, we obtain the half-hypermultiplets

561
2
since E7 × A1 ⊂ E8. Therefore, the E7 case has (8 + n) half-hypermultiplets

561
2
as charged matter fields.

(1-2) We obtain an unbroken E6 case (H = A2) when there remain f8+n, g12+n and

g12+2n. In addition, the “split” condition, discussed in the next chapter, requires

g12+2n = q26+n. (4.4.6)
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Therefore, the dimension of the moduli spaces of compactification with “E6” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (7 + n)− 1

= 3n+ 28. (4.4.7)

We also obtain the “E6” discriminant locus (4.2.10):

∆(z, w) = (27q46+n(w) +O(z))z8. (4.4.8)

At q6+n = 0 locus, “E6” is enhanced to “E7”; thus, we obtain the hypermultiplets

27 since E6 ×U(1) ⊂ E7. Therefore, the E6 case has (6 + n) hypermultiplets 27 as

charged matter fields.

(1-3) We obtain an unbroken F4 case (H = G2) when there remain f8+n, g12+n

and g12+2n. In addition, the “non-split” condition, discussed in the next chapter,

requires

g12+2n ̸= q26+n. (4.4.9)

Therefore, the dimension of the moduli spaces of compactification with “F4” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (13 + 2n)− 1

= 4n+ 34. (4.4.10)

We also obtain the “F4” discriminant locus (4.2.10):

∆(z, w) = (27g212+2n(w) +O(z))z8. (4.4.11)

If we consider the matter representation 27 of E6 is decomposed to 26 of F4 at

g12+2n = 0 locus, (12 + 2n) hypermultiplets 26 arise in the F4 case since 26 is a

real representation. However, since the expected number of 26s from the anomaly

cancellation condition (4.3.5) is n + 5 [87, 88], it is difficult that the matter fields

are localized at all intersections in the F4 case. This puzzle is not solved even if we

consider the adjoint representation 78 of E6 is decomposed to 52+ 26 of F4. Since

this puzzle generally arises in the case of non-simply-laced gauge symmetries, we

are not discussing the matter representation of it in this chapter from now on.

(1-4) We obtain an unbroken B5 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “non-split” condition requires

f8+2n ∼ s24+n,

g12+2n ∼ f8+ns4+n,

g12+3n ∼ s34+n.

(4.4.12)
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Therefore, the dimension of the moduli spaces of compactification with “B5” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (5 + n)− 1

= 3n+ 26. (4.4.13)

(1-5) We obtain an unbroken D5 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “split” condition requires

f8+2n ∼ h24+n,

g12+2n = q26+n − f8+nh4+n,

g12+3n ∼ h34+n.

(4.4.14)

Therefore, the dimension of the moduli spaces of compactification with “D5” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (5 + n) + (7 + n)− 1

= 4n+ 33. (4.4.15)

We also obtain the “D5” discriminant locus (4.2.10):

∆(z, w) = (h34+n(w)q
2
6+n(w) + h24+n(w)P16+2nz +O(z2))z7, (4.4.16)

where P16+2n is a non-factorizable polynomial constructed fs and gs. At h4+n = 0

locus, “D5” is enhanced to “E6”; thus, we obtain the hypermultiplets 16 since

D5×U(1) ⊂ E6. At q6+n = 0 locus, “D5” is also enhanced to “D6”; thus, we obtain

the hypermultiplets 10 since D5 × U(1) ⊂ D6. Therefore, the D5 case has (4 + n)

hypermultiplets 16 and (6 + n) hypermultiplets 10 as charged matter fields.

(1-6) We obtain an unbroken B4 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “non-split” condition requires

f8+2n ∼ h24+n,

g12+2n ̸= q26+n − f8+nh4+n,

g12+3n ∼ h34+n.

(4.4.17)

Therefore, the dimension of the moduli spaces of compactification with “B4” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (5 + n) + (13 + 2n)− 1

= 5n+ 39. (4.4.18)

(1-7) We obtain an unbroken D4 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “split” condition requires

f8+2n ∼ h24+n,

g12+3n ∼ r34+n.
(4.4.19)
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Therefore, the dimension of the moduli spaces of compactification with “D4” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (5 + n) + (13 + 2n) + (5 + n)− 1

= 6n+ 44. (4.4.20)

We also obtain the “D4” discriminant locus (4.2.10):

∆(z, w) = ((h24+n(w) + r24+n(w))(h
2
4+n(w) + ωr24+n(w))

×(h24+n(w) + ω2r24+n(w)) +O(z))z6, (4.4.21)

where ω3 = 1. At h4+n = r4+n locus, “D4” is enhanced to “D5”; thus, we obtain

the hypermultiplets 8 since D4 × U(1) ⊂ D5. In addition, since there is a Z3

symmetry q → ωq exchanging the various factors in the discriminant, we obtain the

hypermultiplets (8v + 8s + 8c). Therefore, the D4 case has (4 + n) hypermultiplets

(8v + 8s + 8c) as charged matter fields.

(1-8) We obtain an unbroken B3 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “semi-split” condition requires

g12+3n = f8+2nr4+n. (4.4.22)

Therefore, the dimension of the moduli spaces of compactification with “B3” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n) + (5 + n)− 1

= 7n+ 48. (4.4.23)

(1-9) We obtain an unbroken G2 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “non-split” condition requires

g12+3n ̸= f8+2nr4+n. (4.4.24)

Therefore, the dimension of the moduli spaces of compactification with “G2” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n) + (13 + 3n)− 1

= 9n+ 56. (4.4.25)

(1-10) We obtain an unbroken A4 case when there remain f8+n, f8+2n, f8+3n, f8+4n,

g12+n, g12+2n, g12+3n, g12+4n, g12+5n and g12+6n. In addition, from the “split” condi-

tion, this singularity is given by the five polynomials as follows:

f8+n, g12+n, H4+n, q6+n, k2+n. (4.4.26)
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Therefore, the dimension of the moduli spaces of compactification with “A4” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (5 + n) + (7 + n) + (3 + n)− 1

= 5n+ 36. (4.4.27)

We also obtain the “A4” discriminant locus (4.2.10):

∆(z, w) = (k42+n(w)P
2
16+3n(w) +O(z))z5, (4.4.28)

where P16+3n is a non-factorizable polynomial constructed fs and gs. At k2+n = 0

locus, “A4” is enhanced to “D5”; thus, we obtain the hypermultiplets 10 since

A4 × U(1) ⊂ D5. At P16+3n = 0 locus, “A4” is also enhanced to “A5”; thus, we

obtain the hypermultiplets 5 since A4×U(1) ⊂ A5. Therefore, the A3 case has (2+n)

hypermultiplets 10 and (16 + 3n) hypermultiplets 5 as charged matter fields.

(1-11) We obtain an unbroken A3
∼= D3 case when there remain f8+n, f8+2n, f8+3n,

f8+4n, g12+n, g12+2n, g12+3n, g12+4n, g12+5n and g12+6n. In addition, the “split” con-

dition requires

f8+3n ∼ k22+nH4+n, f8+4n ∼ k42+n,

g12+3n =
1

216
H3

4+n +
1

6
f8+2nH4+n − f8+nk

2
2+n,

g12+4n = −f8+2nk
2
2+n +

1

12
k22+nH

2
4+n,

g12+5n = −k42+nH4+n, g12+6n = k62+n.

(4.4.29)

Therefore, the dimension of the moduli spaces of compactification with “A3” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n) + (3 + n) + (5 + n)− 1

= 8n+ 51. (4.4.30)

We also obtain the “A3” discriminant locus (4.2.10):

∆(z, w) = (k22+n(w)P
2
16+4n(w) +O(z))z4, (4.4.31)

where P16+4n is a non-factorizable polynomial constructed fs and gs. At k2+n =

0 locus, “A3” is enhanced to “D4”; thus, we obtain the hypermultiplets 6 since

A3 × U(1) ⊂ D4. At P16+4n = 0 locus, “A3” is also enhanced to “A4”; thus, we

obtain the hypermultiplets 4 since A3 × U(1) ⊂ A4. Therefore, the A3 case has

(2+n) hypermultiplets 6 and (16+ 4n) hypermultiplets 4 as charged matter fields.

(1-12) We obtain an unbroken C2
∼= B2 case there remain when f8+n, f8+2n, f8+3n,

f8+4n, g12+n, g12+2n, g12+3n, g12+4n, g12+5n and g12+6n. In addition, the “non-split”

condition requires

K4+2n ̸= k22+n (4.4.32)
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in “A3” condition (4.4.29). Therefore, the dimension of the moduli spaces of com-

pactification with “A3” singularity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n) + (5 + 2n) + (5 + n)− 1

= 9n+ 53. (4.4.33)

(1-13) We obtain an unbroken A1 × A1
∼= D2 case when the discriminant locus has

two irreducible divisorsDu = Dv+nDu′ [87] with each A1 singularity. Therefore, the

dimension of the moduli spaces of compactification with “A1×A1” singularity in F-

theory is n0 = (30n+112)−{2(29+12n)−4n} = 10n+54. Since these two irreducible

divisors intersect at D2
u = n5 points, the A1 × A1 case has n hypermultiplets (2,2)

as charged matter fields.

(1-14) We obtain an unbroken A2 case when there remain f8+n, f8+2n, f8+3n, f8+4n,

g12+n, g12+2n, g12+3n, g12+4n, g12+5n and g12+6n. In addition, the “split” condition

requires

f8+3n = k2+nQ6+2n, f8+4n ∼ k42+n,

g12+4n = −f8+2nk
2
2+n +

1

12
Q2

6+2n,

g12+5n = −k32+nQ6+2n, g12+6n ∼ k62+n.

(4.4.34)

Therefore, the dimension of the moduli spaces of compactification with “A2” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n)

+(3 + n) + (13 + 3n) + (7 + 2n)− 1

= 12n+ 66. (4.4.35)

We also obtain the “A2” discriminant locus (4.2.10):

∆(z, w) = (k42+n(w)P
2
16+5n(w) +O(z))z3, (4.4.36)

where P16+5n is a non-factorizable polynomial constructed fs and gs. At k2+n = 0

or P16+5n = 0 locus, “A2” is enhanced to “A3”; thus, we obtain the hypermultiplets

3 since A2 × U(1) ⊂ A3. Therefore, the A2 case has (18 + 6n) hypermultiplets 3 as

charged matter fields.

(1-15) We obtain an unbroken A1 (∼= C1) case when there remain f8+n, f8+2n, f8+3n,

f8+4n, g12+n, g12+2n, g12+3n, g12+4n, g12+5n and g12+6n. In addition, the (“non-split”)

condition requires

f8+4n ∼ K2
4+2n, g12+6n ∼ K3

4+2n

g12+5n = −f8+3nK4+2n.
(4.4.37)

5There are some relations in the case that the base space of F-theory compactification is the Hirzebruch

surface Fn: Du′ ·Du′ = 0, Du′ ·Dv = 1 and Dv ·Dv = −n.
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Therefore, the dimension of the moduli spaces of compactification with “A1” singu-

larity in F-theory is

n0 = (9 + n) + (13 + n) + (9 + 2n) + (13 + 2n)

+(9 + 3n) + (13 + 3n) + (5 + 2n) + (13 + 4n)− 1

= 18n+ 83. (4.4.38)

We also obtain the “A1” discriminant locus (4.2.10):

∆(z, w) = (K2
4+2n(w)P

2
16+6n(w) +O(z))z2, (4.4.39)

where P16+6n is a non-factorizable polynomial constructed fs and gs. At P16+6n =

0 locus, “A1” is enhanced to “A2”; thus, we obtain the hypermultiplets 2 since

A1 × U(1) ⊂ A2. k2+n = 0 gives (n + 2) singlets (antisymmetric tensors) for A1.

Therefore, the A1 case has (16 + 6n) hypermultiplets 2 as charged matter fields.

(2) D6 Chain

Following the previous section, we assume that 12 + n instantons are distributed

among (8 + n− r, 4 + r) in (A1, A1) in the D6 chain. The range of r is determined

by the fact that the subscripts of the polynomials appearing in the equation are

non-negative.

(2-1) We obtain an unbroken D6 case when there remain f8+n, f8+2n, g12+n, g12+2n

and g12+3n. In addition, the “split” condition from Tate form, discussed in the next

chapter, requires

f8+n ∼ trq8+n−r + p4+n−ru4+r,

f8+2n ∼ t2rp
2
4+n−r, g12+n ∼ q8+n−ru4+r,

g12+2n ∼ −(trq8+n−r + p4+n−ru4+r)trp4+n−r,

g12+3n ∼ t3rp
3
4+n−r.

(4.4.40)

where the condition for (8 + n− r, 4 + r) instanton assignment is characterized by

s4+n ∼ trp4+n−r. (4.4.41)

Therefore, the dimension of the moduli spaces of compactification with “D6” singu-

larity in F-theory is

n0 = (1 + r) + (9 + n− r) + (5 + n− r) + (5 + r)− 2

= 2n+ 20. (4.4.42)

We also obtain the “D6” discriminant locus (4.2.10):

∆(z, w) = (p24+n−r(w)t
2
r(w)P8+nz +O(z2))z8, (4.4.43)
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where P8+n is a non-factorizable polynomial constructed fs and gs. At tr = 0 or

p4+n−r = 0 locus, “D6” is enhanced to “E7”; thus, we obtain the half-hypermultiplets

321
2
or 32′ 1

2
, respectively, since D6 × A1 ⊂ E7. At P8+n = 0 locus, “D6” is also

enhanced to “D7”; thus, we obtain the hypermultiplets 12 since D6 × U(1) ⊂
D7. Therefore, the D5 case has r half-hypermultiplets 321

2
, (4 + n − r) half-

hypermultiplets 32′ 1
2
and (8 + n) hypermultiplets 12 as charged matter fields.

(2-2) An unbroken A5 case is discussed in more detail in the next chapter and is

omitted here.

(2-3) An unbroken C3 case is discussed in more detail in the next chapter and is

omitted here.



Chapter 5

Half-hypermultiplets & Resolution

in F-theory

In this chapter, we consider an F-theory on an elliptically fibred Calabi-Yau three-

fold over Fn, especially, in the case that conifold singularities play an essential role. In

particular, we focus on the I6 model, which has half-hypermultiplets and a distinction be-

tween the split and non-split fibre types [90,91]. We first introduce the split and non-split

fibre types. It is known that the expected gauge symmetry of a split and non-split fibre

type would be a simply-laced and non-simply-laced one, respectively. Next, we demon-

strate an explicit blow-up process [93, 98, 120] and investigated the matter contents [90]

and the intersection diagrams of the exceptional curves [93, 98] in the split I6 model. By

the above, we provide a brief review of matter generation in F-theory in the case that

conifold singularities are involved. We also investigate the non-split I6 model, which has

half-hypermultiplets, by the Heterotic index and the resolution. We then show the differ-

ences between the split models and the non-split models explicitly. Finally, we specifically

discuss the puzzles associated with non-local matter generation in the split model near

the codimension-two singularities where the codimension-one singularity is enhanced to

D6. This chapter is based on our paper [99].

5.1 “Split” and “non-split” singular fibre and reso-

lution in six-dimensional F-theory

5.1.1 “Split” and “non-split” singular fibre in six-dimensional

F-theory

In this chapter, we focus on six- or lower-dimensional F-theories, especially, an F-

theory on an elliptically fibred Calabi-Yau threefold over a Hirzebruch surface Fn. In

other words, we consider the case that an elliptic Calabi-Yau threefold allows a fibration

67
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of an elliptic surface over P1. Also, in this subsection, we introduce two types of singular

fibre: “split” and “non-split” [90].

As shown in Section 3.2, Kodaira’s classification of singular fibres of an elliptic

surface is based on the intersection diagrams of exceptional curves that arise after the

resolutions. In the case of K3 fibration over (n− 2)-fold, the singularities of these fibred

elliptic surfaces are aligned along the (n − 2)-fold, forming a codimension-two locus in

the total elliptic Calabi-Yau n-fold. In other words, a codimension-one locus in the base

(n− 1)-fold of the elliptic fibration, which is the projection of this codimension-two locus

into the base, is the discriminant locus (3.1.19). This codimension-two locus is called

the codimension-one singularity. We can blow up a codimension-one singularity to yield

a collection of exceptional curves aligned along the codimension-one locus in the base.

This is also called the resolution of codimension-one singularity. In the dual Type IIB

superstring theory, a non-abelian gauge symmetry is realized on this codimension-one

locus in the base, where 7-branes stack at a point.

In these six- or lower-dimensional F-theories, if the singular fibre type involves a

condition that requires an exceptional curve to split into two irreducible components over

a generic point on the codimension-one locus in the base, these two split curves generally

meet on top of each other at some points along the codimension-one locus. In the next

chapter, we will investigate the neighborhoods of these points by resolution. If the two

split exceptional curves of each elliptic surface belong to different irreducible exceptional

surfaces the total elliptic Calabi-Yau n-fold, the fibre type is called “split”. In other

words, this condition is that the exceptional curves can split globally. In the “split”

case, their fibre types correspond to the expected ADE gauge symmetries G implied by

Kodaira’s classification like the eight-dimensional F-theory case [90]. On the other hand,

if such exceptional curves constitute part of the same smooth irreducible locus in the

total elliptic Calabi-Yau n-fold, the fibre type is called “non-split” [90]. In other words,

this condition is that the exceptional curves can not split globally. In the “non-split”

case, the two apparently distinct exceptional fibres are swapped with each other at these

points when one goes along the (n − 2)-fold and hence are considered to be identical.

This phenomenon is known as a monodromy. The expected ADE gauge symmetry is

then subject to a projection by a diagram automorphism, reduced to a corresponding

non-simply-laced gauge symmetry G. The In (n = 3, 4, · · · ), I∗n (n = 0, 1, · · · ), IV and

IV ∗ singular fibre types can involve such identification of exceptional curves.

We summarize this discussion in Table 5.1, using the Tate form (3.1.4):

P = −(y2 + a1xy + a3y) + x3 + a2x
2 + a4x+ a6 = 0, (5.1.1)

where ai is a holomorphic function of z ∈ P1
fibre and w ∈ P1

base. Tate form is related to the
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Weierstrass form, which is used in the previous chapter and in this chapter, as follows:

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

b8 =
1

4
(b2b6 − b24)

(5.1.2)

and

f = − 1

48
(b22 − 24b4),

g =
1

864

(
b32 − 36b2b4 + 216b6

)
.

(5.1.3)

More details on the Tate form are given in the next chapter.

Finally, we introduce the codimension-two singularity. The codimension-two singu-

larity is associated with the codimension-two locus in the base (n− 1)-fold of the elliptic

fibration, on which codimension-one singularities intersect each other and their singular-

ity is enhanced. In the dual Type IIB superstring theory, this codimension-two locus

corresponds to the intersection of stacks of 7-branes, where the expected gauge symmetry

G is enhanced to higher. Therefore, the codimension-two singularity is involved in matter

generation. In particular, in the “split” case, after the resolution of a codimension-two

singularity, we can obtain an intersection diagram of exceptional curves that is different

from one on the codimension-one singularity; and then, we can explain the enhancement

of the gauge symmetry by this diagram. In addition, at the points where the two excep-

tional curves meet on top of each other, there typically (but not always) arise conifold

singularities [93,94]; and then, new two-cycles emerge by the small resolution. In the dual

M-theory, a wrapped M2-brane around the new two-cycle accounts for the generation of

the localized matter multiplet [96].

5.1.2 Resolution of codimension-one singularity in six-dimensional

F-theory

In this subsection, we extend the blow-up method of codimension-one singularities

from the eight-dimensional case, which was done in Section 3.2, to the six-dimensional

case. We use inhomogeneous coordinates z and w as P1
fibre and P1

base, respectively.

For simplicity, we start the local equation near a codimension-two singularity (Table

6.1):

Φ = −y2 + x3 +
b2
4
x2 +

b4
2
x+

b6
4

= 0. (5.1.4)

Here, we focus on a codimension-one singularity at (x, y, z) = (0, 0, 0). We also assume

that there is a codimension-two singularity at (x, y, z, w) = (0, 0, 0, 0). Since singularity
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Table 5.1: Tate forms in six or lower dimensions [90,91]. Here, k ∈ Z. Also, s, ns and ss
mean split, non-split and semi-split fibre types, respectively [90]. The ord(ai) and ord(∆)

denote the order of z of (ai) and (∆), where z is a inhomogeneous coordinate of P1
fibre.

Fibre type ord(a1) ord(a2) ord(a3) ord(a4) ord(a6) ord(∆) Expected G

smooth (I0) 0 0 0 0 0 0 −
I1 0 0 1 1 1 1 −
I2 0 0 1 1 2 2 A1

Is2k+1 0 1 k k + 1 2k + 1 2k + 1 A2k

Ins2k+1 0 0 k + 1 k + 1 2k + 1 2k + 1 Ck

Is2k+2 0 1 k + 1 k + 1 2k + 2 2k + 2 A2k+1

Ins2k+2 0 0 k + 1 k + 1 2k + 2 2k + 2 Ck+1

II 1 1 1 1 1 2 −
III 1 1 1 1 2 3 A1

IV s 1 1 1 2 3 4 A2

IV ns 1 1 1 2 2 4 C1

I∗0
s 1 1 2 2 4 6 D4

I∗0
ss 1 1 2 2 4 6 B3

I∗0
ns 1 1 2 2 3 6 G2

I∗2k−1
s 1 1 k + 1 k + 2 2k + 3 2k + 5 D2k+3

I∗2k−1
ns 1 1 k + 1 k + 2 2k + 2 2k + 5 B2k+2

I∗2k
s 1 1 k + 2 k + 2 2k + 3 2k + 6 D2k+4

I∗2k
ns 1 1 k + 2 k + 2 2k + 3 2k + 6 B2k+3

I∗n 0 0 0 0 0 0 Dn+4

I∗n 0 0 0 0 0 0 Dn+4

II∗ 1 2 3 4 5 10 E8

III∗ 1 2 3 3 5 9 E7

IV ∗s 1 2 2 3 5 8 E6

IV ∗ns 1 2 2 3 5 8 E6

non-minimal 1 2 3 4 6 12 −

is enhanced at the codimension-two singularity, conifold singularities

Φ̃ ∼ x2 + y2 + z2 + w2 = 0 (5.1.5)

may appear. In this case, the blow-up of the codimension-one singularity is completed

first, ignoring the existence of these conifold singularities.

Next, we consider the crepant resolution of a codimension-one singularity [93,98,120]

of the local equation (5.1.4) along (x, y, z, w) = (0, 0, 0, w) for arbitrary w. We then

obtain Ci’s at each point on w ̸= 0 and δj’s at w = 0. Here, the exceptional curve

Ci is the intersection of P2 in Eq. (5.1.6) and the hypersurface after the blow-up of the
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codimension-one singularity of fibred elliptic surfaces at each point on w ̸= 0 (for example,

Φz(x1, y1, z, w) in Eq. (5.1.7)). Also, δj’s are the exceptional curves at w = 0 or the P1’s

by small resolution of conifold singularities. Thus, Ci’s and δj’s are P1’s.

For the crepant resolution, we replace the point (x, y, z) = (0, 0, 0) over a generic

point of w with a P2 at each point of w, by replacing C3 with

Ĉ3 = {((x, y, z), (ξ : η : ζ)) ∈ C4 × P2|(x : y : z) = (ξ : η : ζ)}. (5.1.6)

We are blowing up the codimension-one singularity in inhomogeneous coordinates defined

by the three different affine patches of P2, for example, (x : y : z) = (ξ : η : ζ) = (x1 :

y1 : 1) (1z, z ̸= 0). Thus, to replace C3 with Ĉ3, we simply replace (x, y, z, w) with

(x1z, y1z, z, w) in the equation (5.1.4) in Chart 1z. To not change the canonical class, the

equation after the blow-ups is defined as follows:

z−2Φ(x1z, y1z, z, w) =: Φz(x1, y1, z, w) = 0. (5.1.7)

Similarly, we need to check the other patches: 1x (x ̸= 0) and 1y (y ̸= 0), by the same

procedure.

If there remains the codimension-one singularity, which is the singularity along an

arbitrary w, we repeat this process until there are no more codimension-one singularity.

This is the resolution of the codimension-one singularity. We then obtain the exceptional

curves Ci’s and their intersection diagram at each point on w ̸= 0. Finally, if there remain

some conifold singularities after the resolution of the codimension-one singularity, we blow

up the conifold singularities by the small resolution (Appendix A). We then obtain new

two-cycles P1’s by small resolution of conifold singularities and intersection diagram of

δj’s which consists of the exceptional curves P1’s by the resolution of the codimension-one

singularity at w = 0 and the new two-cycles P1’s by the small resolution. In addition, we

can obtain the relations among Ci’s and δj’s, by examining whether each δj is “visible”

from the standpoint of each Ci when each Ci is “lifted up” to the same subsequent blow-up

step as each δj.

5.2 Magic square and half-hypermultiplets in F-theory

5.2.1 The Freudenthal-Tits magic square

A Freudenthal-Tits magic square is a four-by-four table whose entries are Lie alge-

bras. They are determined by specifying a pair of composition algebras (A,B). When

these composition algebras are the ones over the real number field R, they are either one

of the four division algebras R, C, H and O, or they are one of the “split” algebras of
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C, H and O, which are non-compact analogues of the corresponding division algebras. In

this case, each entry of the magic square is some real form of a complex Lie algebra.

If (A,B) are a pair of either of the four division algebras R, C, H and O, the magic

square consists of compact Lie algebras with definite signatures (Table 5.2), while if (A,B)
are chosen from the set of R and the three split algebras, the entries are all split real forms

of the same complexifications as those of the compact Lie algebras in the corresponding

cells. They typically arise (besides a few exceptions) as (Lie algebras of) duality groups or

hidden symmetries of dimensionally reduced maximally symmetric supergravities, bosonic

string or the NS-NS sector effective theory and pure gravities. Finally, if A is a division

algebra and B is a split algebra, the magic square comprises a special set of real forms of

exceptional Lie algebras arising as scalar manifolds of dimensional reductions of D = 5

“magical” supergravities [135–138].

The (A,B) entry of the magic square always has the following structure:

derA ⊕ der JB ⊕ (A0 ⊗ JB
0 ), (5.2.1)

where derA and der JB are the Lie algebras of the automorphism groups of A and JB,

respectively, where JB is the Jordan algebra associated with the composition algebra B.
A0 and JB

0 denote their traceless parts.

For example, for the compact case A,B = R,C,H,O (Table 5.2)1,

derA = 0, 0, su(2), g2, (5.2.2)

der JB = so(3), su(3), sp(3), f4, (5.2.3)

A0 = 0, 0,3,7 of derA, (5.2.4)

JB
0 = 5,8,14,26 of der JB. (5.2.5)

Then, for instance, e7 allows a decomposition

E7 ⊃ SU(2)× F4

133 = (3,1)⊕ (1,52)⊕ (3,26)
(5.2.6)

for A = H,B = O, and also

E7 ⊃ G2 × Sp(3)
133 = (14,1)⊕ (1,21)⊕ (7,14)

(5.2.7)

for A = O,B = H. The other Lie algebras allow similar decompositions.

Remark. In this thesis the word “split” is used in three different meanings:

1. This word is used for a “split” composition algebra, which is a noncompact version

of C, H or O with an indefinite bilinear form.

1In this thesis, we use the notations sp(n) and Sp(n) to denote the Lie algebra and the Lie group of

the Cn type Dynkin diagram.
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Table 5.2: The Freudenthal-Tits magic square for A,B being either of the four division

algebras R,C,H,O. They are all compact Lie algebras with definite signatures. If the

division algebras are replaced by split composition algebras, the entries become different

real forms with the same complexifications.

B\A R C H O
R so(3) su(3) sp(3) f4
C su(3) su(3)⊕ su(3) su(6) e6
H sp(3) su(6) so(12) e7
O f4 e6 e7 e8

2. “Split” is also used for a “split” real form of a complex Lie algebra, which has,

besides the Cartan subalgebra, an equal number of positive and negative generators

with respect to the invariant bilinear form.

3. Finally, the word “split” appears in the classification of singularities or the fibre

types of exceptional curves [90]. Singularities of the “split” type are the ones in

which relevant exceptional curves factor globally so that they yield simply-laced

gauge symmetries.

The first two are closely related in that split real forms of item 2 arise in the magic square

when the composition algebras are taken to be split ones in the sense of item 1. The third

one is, however, a different notion from the two.

5.2.2 Summary of half-hypermultiplets in F-theory

In [90], a detailed analysis was carried out on the matter spectra of six-dimensional

F-theory compactifications on an elliptically fibred Calabi-Yau threefold over a Hirze-

bruch surface [87,88] for various patterns of unbroken gauge groups. In particular, it was

revealed that there were (essentially) four cases of unbroken gauge groups2 in which half-

hypermultiplets (rather than normal hypermultiplets) appeared as massless matter. They

are listed in Table 5.3 and 5.4. These spectra can be confirmed either by the heterotic

index calculation [125]3 or by the generalized Green-Schwarz mechanism using the divisor

data of the Hirzebruch surface [139, 140]4. They satisfy the anomaly-free constraint for

2There is, in fact, one more example in [90] where half-hypermultiplets arise as massless matter: the

32 of SO(11). This is also a non-split model (I∗ns2 ), and this 32 is easily seen to arise at the E7 point,

where the corresponding split model (I∗s2 ) with the SO(12) gauge symmetry also yields 32.
3For Sp(3), the dual heterotic gauge bundle is SU(2) × G2 since the maximal embedding is E8 ⊃

SU(2) × G2 × Sp(3) (see e.g. [133] for the branching rules). The spectrum in Table 5.4 is obtained by

distributing the 12 + n instantons as (4 + r, 8 + n− r) in (SU(2), G2).
4For Sp(3), the relevant indices of a representation R for examining the generalized Green-Schwarz

(GS) mechanism are given by (index(R), xR, yR) = (8, 14, 3), (1, 1, 0), (4,−2, 3) and (5,−7, 6) for R =
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Table 5.3: Three cases in which half-hypermultiplets appear as massless matter in six-

dimensional F-theory on an elliptic Calabi-Yau threefold over Fn / heterotic string theory

on K3 (quoted from Table 3 of [90]).

gauge group

H
fibre type

enhancement

G
matter rep. multiplicity

homogeneous

space

E7 III∗s E8 561
2

n+ 8 E8

E7×SU(2)

1 2n+ 21 −
D6 I∗s2 E7 321

2
n+ 4 E7

SO(12)×SU(2)

D7 12 n+ 8 SO(14)
SO(12)×U(1)

1 2n+ 18 −
A5 Is6 E6 201

2
r E6

SU(6)×SU(2)

D6 15 n+ 2− r SO(12)
SU(6)×U(1)

A6 6 2n+ 16 + r SU(7)
SU(6)×U(1)

1 3n+ 21− r −

Table 5.4: The massless matter spectrum of six-dimensional heterotic string theory on

K3 with an unbroken Sp(3) gauge symmetry. This is anomaly-free, and also contains

half-hypermultiplets.

gauge group representation multiplicity

C3 14′ 1
2
+ 61

2
r

14 n+ 1− r
6 2n+ 16 + r

1 4n+ 23− 2r

one of the E8 factors with the instanton number 12 + n [90]

nH − nV = 30n+ 112. (5.2.8)

As we can see, the representations 56, 32, 20, together with 14′ and 6, to which the

half-hypermultiplets belong, are precisely the ones of quaternionic Kähler manifolds (or

“Wolf spaces” [141,142]). All but the last 6 are obtained by taking the Lie groups of the

extreme bottom and the third rows of the magic square as the groups of the numerator and

denominator of the homogeneous space. The denominator groups also always come with

an SU(2) factor in contrast to the case of ordinary hypermultiplets, where the denominator

group comprises not an SU(2) but a U(1) factor. In the latter case, the symmetric space

Adj, 6, 14 and 14′, respectively, where trRF 2 = index(R)tr6F
2 and trRF 4 = xRtr6F

4 + yR(tr6F
2)2.

By using these data and assuming that the charged matter spectrum only contains 6, 14 and 14′, we

can solve the equations of the generalized GS mechanism on Fn and obtain the unique solution given in

Table 5.4.
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is a homogeneous Kähler manifold [107]. In the M-theory Coulomb branch analysis of

codimension-two or higher singularities [143], the Weyl-group invariant phases of this

SU(2) were shown to correspond to the resolutions yielding half-hypermultiplets.

Let us summarize what is known so far, for the three simply-laced split examples

of Table 5.3, about the resolutions of the codimension-two singularities that yield half-

hypermultiplets. The resolutions of the third example were studied in [93], and those of

the first and second ones were worked out in [98]. The main relevant features are5:

(1) As in [87, 88], let z (w) be the affine coordinate of the P1 fibre (P1 base) of the

Hirzebruch surface Fn, respectively. Suppose that we have a codimension-one sin-

gularity along the line z = 0 with the fibre type specified in the second column of

Table 5.3. The non-singlet matter arises where the singularity is “enhanced” from

“H” to “G”, in the sense that Kodaira’s singular fibres read off at right over that

point have intersections specified by the Dynkin diagram of G. However, where the

half-hypermultiplets appear, the codimension-two singularity is already resolved by

blowing up the nearby codimension-one singularities. No additional blow-up at the

codimension-two point is required, even though the singularity is “enhanced” there

in the sense explained above. Such a type of resolution is called an incomplete

resolution [93].

(2) In an incomplete resolution, the relevant section that vanishes at codimension-two

goes like O(s), where s is a local coordinate holomorphic in w, and s = 0 is the

codimension-two singularity. In this case, although the number of blow-ups required

to resolve it is the same as that to resolve the nearby generic codimension-one

singularities, the intersection matrix of the exceptional curves at s = 0 is not the

same as the generic one determined by the Cartan matrix of H (nor that of G),

but turns out to be a curious non-Dynkin diagram with some nodes having self-

intersections −3
2
.

(3) In the first three examples of Table 5.3 studied in [93] and [98], 3
2
is the length

square of the weight vector of the representations to which the half-hypermultiplets

belong. It was confirmed that although the intersection matrix was not the (minus

of the) Cartan matrix of G, the exceptional curves at s = 0 formed an extremal

ray that could span all the weights of the relevant pseudo-real representation of the

half-hypermultiplets.

(4) In the first two examples, there arise several codimension-one singularities during

the intermediate stages of the blow-up process, and there are several options in

which singularity we blow up first, and which we do afterwards. Depending on the

ordering of the blow-ups, we obtain different intersection diagrams of the exceptional

5The local coordinate s parametrizing the base P1 of Fn will be denoted by w in Section 5.3 and 5.4

when we blow up the singularities.
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curves at the codimension-two point s = 0 [98]. More specifically, the intersection

diagram on every other row found in [143] can be obtained in this way, but not all

of them.

(5) Instead, when the relevant section vanishes like O(s2) at the codimension-two point,

the singularity becomes stronger than the case above so that there arises an addi-

tional conifold singularity. A small resolution generates an extra exceptional fibre

at that point so that it completes the proper Dynkin diagram of group G. This type

of resolution is called a complete resolution [93].

5.3 Six-dimensional A5 global model

In this section, we consider a six-dimensional F-theory compactification on an elliptic

fibration over a Hirzebruch surface Fn in which the unbroken gauge symmetry reduces to

A5 = SU(6) with the half-hypermultiplets [90,93]6. We work in the dP9 fibration so that

we focus on the E8 with 12 + n instantons of the heterotic dual.

5.3.1 The split I6 equation on Fn

As was shown in [90], the equation of this curve is the one that supports a Kodaira I6
singular fibre of the split type at z = 07. Specifically, we consider the equation describing

the elliptic fibration using Tate form (3.1.4):

P = −(y2 + a1xy + a3y) + x3 + a2x
2 + a4x+ a6 = 0. (5.3.1)

z = 0 is the divisor of self-intersection +n. The equation for the theory with the unbroken

symmetry H = SU(6) can be obtained by specializing the sections as

a1 = 2
√
3trhn−r+2,

a2 = −3ztrHn−r+4,

a3 = 2
√
3z2ur+4hn−r+2,

a4 = z3 (trfn−r+8 − 3ur+4Hn−r+4) + f8z
4,

a6 = z5ur+4fn−r+8 + g12z
6,

(5.3.2)

where tr, hn−r+2, Hn−r+4, ur+4 and fn−r+8 (together with f8 and g12) are the sections of

appropriate line bundles over the base P1 specified by their subscripts, which in this case

denote nothing but the degrees of the polynomials in w. It can be verified that Eq. (5.3.1)

with Eq. (5.3.2) correctly reproduces the anomaly-free heterotic massless spectrum for

6The other gauge symmetries with the half-hypermultiplets: E7 and D6 are in [98].
7z and w is the affine coordinate of the P1 fibre and P1 base of the Hirzebruch surface Fn, respectively.
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an unbroken A5 = SU(6) gauge symmetry with A2 × A1 = SU(3) × SU(2) instanton

numbers (r, 12 + n− r) (see e.g. [144]).

Remark. While Eq. (5.3.1) and Eq. (5.3.2) successfully yield a consistent A5 = SU(6)

model, the vanishing orders of (a1, a2, a3, a4, a6) in z are (0, 1, 2, 3, 5), which are the same as

those for the split I5 fibre type I
s
5 and differ from the “standard” Tate’s orders (0, 1, 3, 3, 6)

for the split I6 fibre type I
s
6 classified in [90]. Indeed, it can be easily seen that the sections

(a1, a2, a3, a4, a6) with orders (0, 1, 3, 3, 6) only result in the Weierstrass model Eq. (5.3.3),

Eq. (5.3.4) and Eq. (5.3.5) with constant tr, that is, no instantons are distributed to the

SU(3) factor, and all the 12+n instantons are in the SU(2) factor. In fact, we can redefine

y and x so that the vanishing orders of (a1, a2, a3, a4, a6) may become (0, 1, 3, 3, 6) only

when tr ̸= 0, but cannot when tr = 0 since the redefinitions of y and x contain shifts

proportional to 1
tr
, which diverge at tr = 0. Thus, we use the Weierstrass equation in this

chapter for the discussion about the half-hypermultiplets.

By redefining y and x, we obtain the Weierstrass form:

Pw = −y2 + x3 + fSU(6)(z, w)x+ gSU(6)(z, w) = 0, (5.3.3)

fA5(z, w) := −3t4rh4n−r+2 + 6zt3rh
2
n−r+2Hn−r+4

+z2
(
6trur+4h

2
n−r+2 − 3t2rH

2
n−r+4

)
+z3 (trfn−r+8 − 3ur+4Hn−r+4) + f8z

4, (5.3.4)

gA5(z, w) := 2t6rh
6
n−r+2 − 6z

(
t5rh

4
n−r+2Hn−r+4

)
−6z2

(
t3rur+4h

4
n−r+2 − t4rh2n−r+2H

2
n−r+4

)
+z3

(
−t3rfn−r+8h

2
n−r+2 + 9t2rur+4h

2
n−r+2Hn−r+4 − 2t3rH

3
n−r+4

)
+z4

(
−f8t2rh2n−r+2 + t2rfn−r+8Hn−r+4 + 3u2r+4h

2
n−r+2 − 3trur+4H

2
n−r+4

)
+z5 (f8trHn−r+4 + ur+4fn−r+8) + g12z

6 (5.3.5)

with a discriminant

∆A5(z, w) = 4f 3
A5

+ 27g2A5

= z6t3rh
4
n−r+2P2n+r+16 + z7t2rh

2
n−r+2Q3n+20 + z8R4n+24 +O(z9), (5.3.6)

where P2n+r+16, Q3n+20 and R4n+24 are some non-factorizable polynomials in w of degrees

specified by the subscripts. In generic cases, any two of tr, hn−r+2 and P2n+r+16 do not

share a common zero locus, which we assume in this thesis. From Eq. (5.3.4), Eq. (5.3.5)

and Eq. (5.3.6), we can see that Kodaira’s singular fibre types over the zero loci of

tr, hn−r+2 and P2n+r+16 are respectively the split types of IV ∗, I∗2 and I7, yielding the

singularity enhancements from “H = A5 = SU(6)” to “G = E6”, “D6” and “A6” as

presented in the third column of Table 5.3.
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5.3.2 The massless spectrum

In this subsection, we calculate on the F-theory side the number of charged and

neutral matter fields that the A5 = SU(6) model has, according to Section 4.4. Following

the previous section, we assume that 12 + n instantons are distributed among (8 + n −
r, 4 + r) (0 ≤ r ≤ n + 2) in (A1, A1). We obtained an unbroken A5 case in the previous

subsection. This case consists of the five polynomials: tr, hn−r+2, Hn−r+4, ur+4 and fn−r+8.

In particular, the “split” condition requires [90]

I2n−2r+4 = h2n−r+2, (5.3.7)

and the condition for (8 + n− r, 4 + r) instanton assignment is characterized by

f4+2n = k2n+2 = t2rh
2
n−r+2. (5.3.8)

Therefore, the dimension of the moduli spaces of compactification with “A5” singularity

in F-theory is

n0 = (1 + r) + (3 + n− r) + (5 + n− r) + (5 + r) + (9 + n− r)− 2

= 3n− r + 21. (5.3.9)

We also obtain the “A5” discriminant locus (5.3.6) a discriminant

∆(z, w) = z6t3rh
4
n−r+2P2n+r+16 + z7t2rh

2
n−r+2Q3n+20 + z8R4n+24 +O(z9), (5.3.10)

where P2n+r+16, Q3n+20 and R4n+24 are some non-factorizable polynomials constructed

fs and gs. At tr = 0 locus, “A5” is enhanced to “E6”; thus, we obtain the half-

hypermultiplets 201
2
since A5×A1 ⊂ E6. At hn−r+2 = 0 locus, “A5” is enhanced to “D6”;

thus, we obtain the hypermultiplets 15 since A5×U(1) ⊂ D6. At P2n+r+16 = 0 locus, “A5”

is also enhanced to “A6”; thus, we obtain the hypermultiplets 6 since A5 × U(1) ⊂ A6.

Therefore, the D5 case has r half-hypermultiplets 201
2
, (2 + n − r) half-hypermultiplets

15 and (16 + n+ r) hypermultiplets 12 as charged matter fields (Table 5.3).

5.3.3 The local equation near D6 points and resolution of the

singularities

The local equation near D6 point

In this subsection, we carry out the process of blow-up of the codimension-two

singularity at a zero locus of hn−r+2 = 0. To this aim, we consider a local equation in

which the enhancement of “A5” to “D6” is achieved at the codimension-two singularity8.

8They are quoted because they only imply the Lie algebras whose Dynkin diagrams specify the inter-

sections of Kodaira’s singular fibres right over those points with fixed w.
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To obtain such an equation, we first complete the square with respect to y in Eq. (5.3.1)

and substitute Eq. (5.3.2) into it. Writing y + 1
2
(a1x+ a3) ≡ Y , we have

−Y 2 + x3 + x2
(
3t2rh

2
n−r+2 − 3ztrHn−r+4

)
+x
(
z3trfn−r+8 + f8z

4 + 6z2trur+4h
2
n−r+2 − 3z3ur+4Hn−r+4

)
+3z4u2r+4h

2
n−r+2 + z5ur+4fn−r+8 + g12z

6 = 0. (5.3.11)

By setting9

hn−r+2 = w,

tr = Hn−r+4 = ur+4 =
1√
3
,

fn−r+8 = f8 = g12 = 0,

(5.3.12)

we can obtain the desired equation, but it is more convenient to make a shift in the x

coordinate x+ z2 ≡ X. In terms of X, the final equation is

−Y 2 +X3 +X2
(
w2 − z(3z + 1)

)
+X(3z + 1)z3 − z6 = 0, (5.3.13)

which we blow up in the following.

If we write Eq. (5.3.13) as

−Y 2 +X3 +
b2
4
X2 +

b4
2
X +

b6
4

= 0, (5.3.14)

the vanishing orders of the sections b2, b4 and b6 in z are 0, 3 and 6, respectively, which

satisfy the criteria for the I6 type Kodaira’s singular fibre in Tate’s algorithm. This is

due to the shift x+ z2 ≡ X, as without it we would have instead the vanishing orders 0,

2, 4. Note that such a shift of the variable x to eliminate the order-2 term in z from b4
is not possible globally, since near a zero locus of tr, where a 201

2
of SU(6) appears, the

necessary shift becomes divergent. This is why an equation with ord(b2, b4, b6) = (0, 2, 4)

was used in [93,98].

Blowing up the singularity

Let us now consider the resolution of the singularity of the local equation (5.3.13):

Φ(x, y, z, w) := −y2 + x3 + x2
(
w2 − z(3z + 1)

)
+ x(3z + 1)z3 − z6 = 0, (5.3.15)

where we have replaced X, Y with x, y. Eq. (5.3.15) has a codimension-one singularity10

along (x, y, z) = (0, 0, 0) for arbitrary w. In this case: A5 → D6, we can confirm that

9In this thesis, the local coordinates of the base P1 of Fn (whose affine coordinate is w) will be denoted

by w and not by s, in accordance with [95,99].
10The condition for a singularity in six dimensions is that all of the following equations are satisfied:

Φ(x, y, z, w) = ∂xΦ(x, y, z, w) = ∂yΦ(x, y, z, w) = ∂zΦ(x, y, z, w) = ∂wΦ(x, y, z, w) = 0.
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there are some conifold singularities. In this subsection, only the conifold singularities

that appear for the first time will be denoted. In other words, we do not denote any

previous conifold singularities visible in the next blow-up.

1st blow-up

As Subsection 5.1.2, we replace the complex line (x, y, z) = (0, 0, 0) with P2 × C
in C4 and examine the singularities of the local equations in three different charts corre-

sponding to the affine patches of the P2 for some fixed w. We also give the explicit forms

of the exceptional curves Ci’s at w ̸= 0 and δj’s at w = 0.

Chart 1x

Φ(x, xy1, xz1, w) = x2Φx(x, y1, z1, w),

Φx(x, y1, z1, w) = w2 − x4z61 + 3x3z41 + x2(z1 − 3)z21 − xz1 + x− y21.
C±p1 in 1x : x = 0, y1 = ±w.
δp1 in 1x : x = 0, y1 = 0.

Singularities : (x, y1, z1, w) = (0, 0, 1, 0) (conifold sing. δc1xz).

(5.3.16)

Chart 1y

Φ(x1y, y, yz1, w) = y2Φy(x1, y, z1, w),

Φy(x1, y, z1, w) = w2x21 + x31y − x21yz1(3yz1 + 1) + x1y
2z31(3yz1 + 1)− y4z61 − 1.

C±p1 in 1y : y = 0, x1 = ±1/w.
δp1 in 1y : Invisible.

Singularities : None.

(5.3.17)

Chart 1z

Φ(x1z, y1z, z, w) = z2Φz(x1, y1, z, w),

Φz(x1, y1, z, w) = w2x21 + z
(
x31 − x21(3z + 1) + x1z(3z + 1)− z3

)
− y21.

C±p1 in 1z : z = 0, y1 = ±wx1.
δp1 in 1z : z = 0, y1 = 0.

Singularities : (x1, y1, z) = (0, 0, 0),

(x1, y1, z, w) = (1, 0, 0, 0) (conifold sing. δc1xz).

(5.3.18)

Note that we have used the same “z” in 1x and 1y for different coordinate variables, and

similarly for x1 and y1. There will be no confusion as we do not compare equations in

different charts.
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2nd blow-up

As we can see, the only codimension-one singularity after the first blow-up is (x1, y1, z)

= (0, 0, 0) on chart 1z, which is not visible from the other charts. We also find the conifold

singularity δc1xz on chart 1x and 1z, but here we ignore this conifold singularity until the

resolution of the codimension-one singularity is completed. We blow up this singularity

by similarly inserting a one-parameter (= w) family of P2 along (x1, y1, z, w) = (0, 0, 0, w).

The computation is similar. We find a codimension-one singularity in chart 2zz, while the

blown-up equations are regular for chart 2zy. We can also see two conifold singularities:

δc2xz on chart 2zx and 2zz and δc2x on chart 2zx, but here we ignore it too. Here we show

the result for the relevant charts 2zx and 2zz.

Chart 2zx

Φz(x1, x1y2, x1z2, w) = x21Φzx(x1, y2, z2, w),

Φzx(x1, y2, z2, w) = x1(z2 − 1)z2 − x21(z2 − 1)3 + w2 − y22.
C±p2 in 2zx : x1 = 0, y2 = ±w.
δp2 in 2zx : x1 = 0, y2 = 0.

Singularities : (x1, y2, z2, w) = (0, 0, 1, 0) (conifold sing. δc2xz),

(x1, y2, z2, w) = (0, 0, 0, 0) (conifold sing. δc2x).

(5.3.19)

Chart 2zz

Φz(x2z, y2z, z, w) = z2Φzz(x2, y2, z, w),

Φzz(x2, y2, z, w) = w2x22 + (x2 − 1)z
(
x22z − 2x2z − x2 + z

)
− y22.

C±p2 in 2zz : z = 0, y2 = ±wx2.
δp2 in 2zz : z = 0, y2 = 0.

Singularities : (x2, y2, z) = (0, 0, 0),

(x2, y2, z, w) = (1, 0, 0, 0) (conifold sing. δc2xz).

(5.3.20)

3rd blow-up

We then blow up the codimension-one singularity (x2, y2, z) = (0, 0, 0) in chart 2zz.

It turns out that the resolution process of the codimension-one singularity is finished with

only some conifold singularities. The equations of the exceptional curve (with a definite

w) in the relevant charts are:
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Chart 3zzx

Φzz(x2, x2y3, x2z3, w) = x22Φzzx(x2, y3, z3, w),

Φzzx(x2, y3, z3, w) = w2 + (x2 − 1)z3
(
(x2 − 1)2z3 − 1

)
− y23.

Cp3 in 3zzx : x2 = 0, y23 = w2 − (z3 − 1)z3.

δp3 in 3zzx : x2 = 0, y23 = −(z3 − 1)z3.

Singularities : None.

(5.3.21)

Chart 3zzz

Φzz(x3z, y3z, z, w) = z22Φzzz(x3, y3, z, w),

Φzzz(x3, y3, z, w) = x23(w
2 − z(3z + 1)) + x33z

3 + 3x3z + x3 − y23 − 1 = 0.

Cp3 in 3zzz : z2 = 0, y23 = w2x23 + x3 − 1.

δp3 in 3zzz : z2 = 0, y23 = x3 − 1.

Singularities : None.

(5.3.22)

Finally, we blow up the conifold singularities by small resolution (Appendix A); then

we obtain new two-cycles P1’s. After this, we complete all blowing-up process, and the

total space is now smooth.

Intersections of the exceptional curves

At fixed w ̸= 0, we have five exceptional curves C±p1 ’S, C
±
p2
’s and Cp3 . From the

above explicit forms, we find that their intersection diagram (or matrix) is given by the

A5 Dynkin diagram (the top diagram of Fig. 5.1). In addition, at w = 0, we can obtain

the relations among Ci’s and δj’s by lifting up the exceptional curves from the defining

chart into subsequent charts:

C±p1 = δp1 + δc1xz + δc2x ,

C±p2 = δp2 + δc2xz + δc2x ,

Cp3 = δp3 .

(5.3.23)

Therefore, we can see the intersection diagram at w = 0 corresponding to the D6 Dynkin

diagram (the bottom diagram of Fig. 5.1).

5.3.4 Incomplete/complete resolution of the singularities near

E6 points

In this subsection, we consider the incomplete/complete resolution near the codimension-

two singularity at a zero locus of tr = 0. To this aim, we consider a local equation in

which the enhancement of “A5” to “E6” at the codimension-two singularity.
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Figure 5.1: Intersection diagrams of the exceptional curves of the A5 model at a D6 point:

(Top) w ̸= 0; (Bottom) w = 0.

Incomplete resolutions and Half-hypermultiplets

We start from Eq. (5.3.11) and set

hn−r+2 =
1√
3
,

Hn−r+4 = −ur+4 = −
1

2
,

fn−r+8 = f8 = g12 = 0,

(5.3.24)

and simply,

tr = w. (5.3.25)

In this case, we are led to the incomplete resolution. After performing the appropriate

variable transformations, we can then obtain the local equation:

Φ(x, y, z, w) := −y2 + x3 + x2 (w + 3z)w + x (2w + 3z) z2 + z4 = 0, (5.3.26)

where we have replaced Y with y. Eq. (5.3.26) has a codimension-one singularity along

(x, y, z) = (0, 0, 0) for arbitrary w. In this case, we can confirm that there are no conifold

singularities.

We consider the same blow-up process in Subsection 5.3.3. In this case, there remain

the codimension-one singularities during the blow-up process: (x1, y1, z) = (0, 0, 0) in

Chart 1z and (x1, y2, z2) = (0, 0,−w) in Chart 2zx. Then, at fixed w ̸= 0, we have five

exceptional curves C±p1 ’s, C
±
p2
’s and Cp3 and their intersection diagram which is given by

the A5 Dynkin diagram too (the top diagram of Fig. 5.2). At w = 0, in the first blow-up,

two exceptional curves C±p1 ’s stack on top of each other to become a single curve δp1 . In

the second blow-up, two exceptional curves C±p2 become two curves δ±p2 , respectively. In



84

the third blow-up, one exceptional curve Cp3 splits into two curves δ±p3 . Therefore, we

can obtain the relations among Ci’s and δj’s by lifting up the exceptional curves from the

defining chart into subsequent charts:

C±p1 = δp1 + δ±p3 ,

C±p2 = δ±p2 ,

Cp3 = δ+p3 + δ−p3 .

(5.3.27)

In this case, the intersection diagram at w = 0 does not match the E6 Dynkin dia-

gram. However, although the number of δi is the same as the case of the nearby “A5”

codimension-one singularity, their intersection diagrams are different.

Since Ci’s form an A5 Dynkin diagram, we consider the intersection matrix:
C+p1
C+p2
Cp3
C−p2
C−p1


(
C+p1C

+
p2
Cp3C−p2C

−
p1

)
=


−2 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −2

 . (5.3.28)

This is the same as an A5 Cartan matrix up to overall (−1). From Eq. (5.3.27), since we

obtain the relation between Ci’s and δj’s:
C+p1
C+p2
Cp3
C−p2
C−p1

 =


0 1 1 0 0

1 0 0 0 0

0 1 0 1 0

0 0 0 0 1

0 0 1 1 0




δ+p2
δ+p3
δp1
δ−p3
δ−p2

 , (5.3.29)

the intersection matrix at the “E6” codimension-two singularity is
δ+p2
δ+p3
δp1
δ−p3
δ−p2


(
δ+p2δ

+
p3
δp1δ

−
p3
δ−p2

)
=


−2 1 0 0 0

1 −3
2

1 1 0

0 1 −3
2

1 0

0 1 1 −3
2

1

0 0 0 1 −2

 . (5.3.30)

Therefore, we obtain the diagram of the intersection matrix in this case the bottom

diagram of Fig. 5.2). This is called incomplete resolution. In this incomplete case [93,98],

since 3
2
is the length square of the weight vector of the pseudo-real representations, to

which the half-hypermultiplets belong, we can confirm that δj’s form an extremal ray

that can span all the weights of the relevant pseudo-real representation.

Complete resolutions

Next, we consider the case in which only tr is changed

tr = w → tr = w2, (5.3.31)
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Figure 5.2: Intersection diagrams of the exceptional curves of the A5 model at an E6 point

by the incomplete resolution: (Top) w ̸= 0; (Bottom) w = 0. The triangle in the bottom

figure represents the number of self-intersections is −3
2
, not −2.

among the condition of the incomplete resolution (5.3.24) and (5.3.25). In this case, we are

led to the complete resolution. After performing the appropriate variable transformations,

we can then obtain the local equation:

Φ(x, y, z, w) := −y2 + x3 + x2
(
w2 + 3z

)
w2 + x

(
2w2 + 3z

)
z2 + z4 = 0. (5.3.32)

Eq. (5.3.32) has a codimension-one singularity along (x, y, z) = (0, 0, 0) for arbitrary w.

In this case, we can confirm that there is one conifold singularity in the third blow-up.

The difference between this case and the incomplete one occurs only at w = 0. At

w = 0, there arises a conifold singularity in the third blow-up. Thus, δc3 is added because

of the conifold singularity which is arising new. We can then obtain the relations among

Ci’s and δj’s by lifting up the exceptional curves from the defining chart into subsequent

charts:

C±p1 = δp1 + δ±p3 + δc3,

C±p2 = δ±p2 ,

Cp3 = δ+p3 + δ−p3 + δc3.

(5.3.33)

Therefore, as in the previous results, we can obtain the intersection diagram at w = 0

corresponds to the E6 Dynkin diagram (the bottom diagram of Fig. 5.3). Therefore,

unlike in the incomplete case, we obtain not half-hypermultiplets but full-hypermultiplets

in this case. This is called the complete resolution.

5.3.5 Resolution of the singularities near A6 points

In this subsection, we consider the incomplete/complete resolution near the codimension-

two singularity at a zero locus of P2n+r+16 = 0. To this aim, we consider a local equation
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Figure 5.3: Intersection diagrams of the exceptional curves of the A5 model at an E6 point

by the complete resolution: (Top) w ̸= 0; (Bottom) w = 0.

in which the enhancement of “A5” to “A6” at the codimension-two singularity. In this

case, we consider

P2n+r+16 = w (5.3.34)

in Eq. (5.3.6), and we can confirm that there are no conifold singularities. Only in

the third blow-up, there is a difference between the result of blow-ups at the “A6”

codimension-two singularity and the nearby generic “A5” codimension-one singularity.

As in the past, we consider the same blow-up process in Subsection 5.3.3. at fixed

w ̸= 0, it is the same as in the previous results (the top diagram of Fig. 5.4). At w = 0,

in the first and second blow-ups, four exceptional curves C±p1 ’s and C
±
p2

become four curves

δ±p1 and δ±p2 , respectively. In the third blow-up, one exceptional curve Cp3 splits into two

curves δ±p3 . This is the only difference between Ci’s and δj’s. Therefore, at w = 0, we

can obtain the relations among Ci’s and δj’s by lifting up the exceptional curves from the

defining chart into subsequent charts:

C±p1 = δ±p1 ,

C±p2 = δ±p2 ,

Cp3 = δ+p3 + δ−p3 .

(5.3.35)

Therefore, we can see the intersection diagram at w = 0 corresponding to the A6 Dynkin

diagram (the bottom diagram of Fig. 5.4).

5.4 Six-dimensional C3 global model

In this section, we consider a six-dimensional F-theory compactification on an elliptic

fibration over a Hirzebruch surface Fn in which the unbroken gauge symmetry reduces
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Figure 5.4: Intersection diagrams of the exceptional curves of the A5 model at an A6

point: (Top) w ̸= 0; (Bottom) w = 0.

to C3 = Sp(3) with the half-hypermultiplets [90, 93]11. We work in the dP9 fibration

so that we focus on the E8 with 12 + n instantons of the heterotic dual. In particular,

we consider the anomaly-free heterotic massless spectrum for an unbroken Sp(3) gauge

symmetry with G2 × SU(2) instanton numbers (4 + r, 8 + n− r).

5.4.1 The non-split I6 equation on Fn

As was shown in [90], the equation of this curve is the one that supports a Kodaira

I6 singular fibre of the non-split type at z = 0. A I6 non-split curve may be obtained

by replacing the relevant factorized section of a split I6 curve with a non-factorized one.

The equation for the theory with the unbroken symmetry H = SU(6) can be obtained

by Eq. (5.3.2). Thus, we obtain the Weierstrass form (5.3.3), (5.3.4) and (5.3.5) with a

discriminant

∆A5(z, w) = 4f 3
A5

+ 27g2A5

= z6t3rh
4
n−r+2P2n+r+16 + z7t2rh

2
n−r+2Q3n+20 + z8R4n+24 +O(z9). (5.4.1)

We can also see that the hn−r+2-dependence of fSU(6) (5.3.4) or gSU(6) (5.3.5) is only

through h2n−r+2, which allows us to replace every h2n−r+2 in fSU(6) and gSU(6) with a

generic polynomial I2n−2r+4. The resulting equation is the one for Ins6 [90]. Therefore, we

make a replacement h2n−r+2 → I2n−2r+4, and we obtain

fC3(z, w) := −3t4rI22n−2r+4 + 6zt3rI2n−2r+4Hn−r+4

+z2
(
6trur+4I2n−2r+4 − 3t2rH

2
n−r+4

)
+z3 (trfn−r+8 − 3ur+4Hn−r+4) + f8z

4, (5.4.2)

11The other gauge symmetries with the half-hypermultiplets: E7 and D6 are in [98].
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gC3(z, w) := 2t6rI
3
2n−2r+4 − 6z

(
t5rI

2
2n−2r+4Hn−r+4

)
−6z2

(
t3rur+4I

2
2n−2r+4 − t4rI2n−2r+4H

2
n−r+4

)
+z3

(
−t3rfn−r+8I2n−2r+4 + 9t2rur+4I2n−2r+4Hn−r+4 − 2t3rH

3
n−r+4

)
+z4

(
−f8t2rI2n−2r+4 + t2rfn−r+8Hn−r+4 + 3u2r+4I2n−2r+4 − 3trur+4H

2
n−r+4

)
+z5 (f8trHn−r+4 + ur+4fn−r+8) + g12z

6, (5.4.3)

∆C3(z, w) = z6t3rI
2
2n−2r+4P2n+r+16 + z7t2rI2n−2r+4Q3n+20 + z8R4n+24 +O(z9). (5.4.4)

As in a split I6 case, any two of tr, I2n−2r+4 and P2n+r+16 do not share a common zero

locus, which we assume in this thesis. From Eq. (5.4.2), Eq. (5.4.3) and Eq. (5.4.4), we

can see that Kodaira’s singular fibre types over the zero loci of tr, hn−r+2 and P2n+r+16

are respectively the non-split types of IV ∗, I∗2 and I7. Since the difference from the split

I6 case is only h
2
n−r+2 → I2n−2r+4, we focus on near I2n−2r+4 = 0, at which Ins6 → I∗2

(ns) is

called a “D6” point.

5.4.2 The massless spectrum

As we see explicitly in Section 4.4, the replacement of the section h2n−r+2 → I2n−2r+4

in the split I6 equation results in the global non-factorization of the exceptional curves,

which reduces the gauge symmetry from SU(6) to Sp(3). Let us examine what matter

multiplets are expected to arise in this model.

In the transition Is6 ↔ Ins6 , nothing changes in the local singularity structure near

the zero loci of tr and P2n+r+16, where 201
2
and 6 of SU(6) appear as massless matter in

the split theory; the string junctions or the vanishing cycles there do not “know” whether

the total equation is of the split type or of the non-split type. The only change they feel

is that of the gauge symmetry, so they simply decompose into irreducible representations

of Sp(3), which is the gauge symmetry of the non-split theory. Thus, at a zero locus

of tr, a half-hypermultiplet in 20 of SU(6), of which the quaternionic Kähler manifold

E6/(SU(6)×SU(2)) is comprised, is decomposed into half-hypermultiplets in 14′ and 6 of

Sp(3), while at a zero locus of P2n+r+16, a hypermultiplet in 6 of SU(6) entirely becomes

one in 6 of Sp(3). Note that 6 is also a pseudo-real representation of Sp(3), and the latter

can be regarded as 2n + r + 16 pairs of half-hypermultiplets. The 14′ constitutes the

quaternionic Kähler manifold F4/(Sp(3)×SU(2)), while the 6 does Sp(4)/(Sp(3)×SU(2)).
This will answer the original question of where the matter fields corresponding to the final

magical coset arise; they arise at the E6 points of the non-split I6 model as an irreducible

multiplet in the Sp(3) decomposition of 20 of SU(6).

5.4.3 A puzzle on matter fields near the D6 points

On the other hand, there is a puzzle: With the replacement h2n−r+2 → I2n−2r+4, the

n− r+2 double roots of the equation h2n−r+2 = 0 split into n− r+2 pairs of single roots
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Table 5.5: Massless matter content in the Is6 model of F-theory, if the matter fields

locally exist at all codimension-two singularities. In Ins6 , each representation of Is6 simply

decomposes into the irreducible representation of C3 at each zero locus.

Is6 (A5) Ins6 (C3)

Enhancement in Is6 Matter rep. Multiplicity Matter rep. Multiplicity

IV ∗ (E6) 201
2

r 14′ 1
2
+ 61

2
r

I∗2 (D6) 15 n+ 2− r 14 2n+ 4− 2r

I7 (A6) 6 2n+ 16 + r 6 2n+ 16 + r

1 3n+ 21− r 1 4n+ 23− 2r

of I2n−2r+4 = 0. Thus the number of loci where hypermultiplets in 15 of SU(6) occur is

doubled. A 15 of SU(6) decomposes into 14 ⊕ 1 (and not 14′ ⊕ 1) of Sp(3). Since the

adjoint of SU(6) decomposes as 35 = 21⊕ 14, where 21 is the adjoint of Sp(3), one 14

of n − r + 2 hypermultiplets can be thought of as eaten by the SU(6) vector multiplet.

Thus the anomaly-free massless matter spectrum shown in Table 5.4 can be reproduced

if the n − r + 2 − 1 hypermultiplets in 14 are “distributed” at the 2n − 2r + 4 zero loci

of I2n−2r+4 (Table 5.4.3). This, however, seems impossible, since the 14 of Sp(3) is a real

representation and does not allow half-hypermultiplets in this representation.

Of course, the original SU(6) spectrum is already anomaly-free, so hypermultiplets

in 14 can not be present equally at all the 2n−2r+4 zeros of I2n−2r+4 = 0 as they are too

many to be anomaly-free. If they were 14′ instead of 14, they could be split into pairs

and equally be distributed (up to the eaten ones) at the 2n− 2r + 4 zeros, but both the

heterotic anomaly analysis and Sadov’s generalized anomaly cancellation mechanism tell

us that they must be 14, and not 14′.

This poses a question of how the n − r + 1 matter in 14 of Sp(3) are generated

and where they reside in the non-split I6 model. In the next subsection, in order to

explore what happens near a zero locus of I2n−2r+4, we perform an explicit blow-up of the

singularity.

5.4.4 The local equation near D6 point and resolutions of the

singularities

The local equation

In this subsection, we carry out the process of blow-up of the codimension-two

singularity at a zero locus of I2n−2r+4 = 0. To this aim, we consider a local equation in

which the enhancement of “A5” to “D6” is achieved at the codimension-two singularity.

To obtain such an equation, We start from Eq. (5.4.2) and Eq. (5.4.3). As Subsec-



90

tion 5.3.3, writing y + 1
2
(a1x+ a3) ≡ Y , we obtain

−Y 2 + x3 + x2
(
3t2rI2n−2r+4 − 3ztrHn−r+4

)
+x
(
z3trfn−r+8 + f8z

4 + 6z2trur+4I2n−2r+4 − 3z3ur+4Hn−r+4

)
+3z4u2r+4I2n−2r+4 + z5ur+4fn−r+8 + g12z

6 = 0. (5.4.5)

By setting

h2n−r+2 → I2n−2r+4 = w,

tr = Hn−r+4 = ur+4 =
1√
3
,

fn−r+8 = f8 = g12 = 0,

(5.4.6)

we can obtain the desired equation, but it is more convenient to make a shift in the x

coordinate x+ z2 ≡ X as in Subsection 5.3.3. In terms of X, the final equation is

−Y 2 +X3 +X2 (w − z(3z + 1)) +X(3z + 1)z3 − z6 = 0, (5.4.7)

which we blow up in the following.

Blowing up the singularity

We start considering the resolution of the singularity of the local equation (5.4.7):

Φ(x, y, z, w) ≡ −y2 + x3 + x2 (w − z(3z + 1)) + x(3z + 1)z3 − z6 = 0, (5.4.8)

where we have replaced X, Y with x, y. Eq. (5.4.8) has a codimension-one singularity

along (x, y, z) = (0, 0, 0) for arbitrary w.

1st blow-up

As Subsection 5.1.2, we replace the complex line (x, y, z) = (0, 0, 0) with P2 × C
in C4 and examine the singularities of the local equations in three different charts corre-

sponding to the affine patches of the P2 for some fixed w. We also give the explicit forms

of the exceptional curves Ci’s at w ̸= 0 and δj’s at w = 0.

Chart 1x

Φ(x, xy1, xz1, w) = x2Φx(x, y1, z1, w),

Φx(x, y1, z1, w) = w − x4z61 + 3x3z41 + x2(z1 − 3)z21 − xz1 + x− y21.
C±p1 in 1x : x = 0, y1 = ±

√
w.

δp1 in 1x : x = 0, y1 = 0.

Singularities : None.

(5.4.9)
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Chart 1y

Φ(x1y, y, yz1, w) = y2Φy(x1, y, z1, w),

Φy(x1, y, z1, w) = wx21 + x31y − x21yz1(3yz1 + 1) + x1y
2z31(3yz1 + 1)− y4z61 − 1.

C±p1 in 1y : y = 0, x1 = ±1/
√
w.

δp1 in 1y : Invisible.

Singularities : None.

(5.4.10)

Chart 1z

Φ(x1z, y1z, z, w) = z2Φz(x1, y1, z, w),

Φz(x1, y1, z, w) = wx21 + z
(
x31 − x21(3z + 1) + x1z(3z + 1)− z3

)
− y21.

C±p1 in 1z : z = 0, y1 = ±
√
wx1.

δp1 in 1z : z = 0, y1 = 0.

Singularities : (x1, y1, z) = (0, 0, 0).

(5.4.11)

Here, chart 1x is the affine patch of P2 ∋ (x : y : z) for x ̸= 0 in which (x : y : z) =

(1 : y1 : z1). The other charts are also similar12.

2nd blow-up

As we can see, the only singularity after the first blow-up is (x1, y1, z) = (0, 0, 0)

on chart 1z, which is not visible from the other charts. This is codimension-one, and we

blow up this singularity by similarly inserting a one-parameter (= w) family of P2 along

(x1, y1, z, w) = (0, 0, 0, w). The computation is similar. We find a singularity in chart 2zz,

while the blown-up equations are regular for charts 2zx and 2zy. Here we show the result

for the relevant charts 2zx and 2zz.

Chart 2zx

Φz(x1, x1y2, x1z2, w) = x21Φzx(x1, y2, z2, w),

Φzx(x1, y2, z2, w) = x1(z2 − 1)z2 − x21(z2 − 1)3 + w − y22.
C±p2 in 2zx : x1 = 0, y2 = ±

√
w.

δp2 in 2zx : x1 = 0, y2 = 0.

Singularities : None.

(5.4.12)

12Note that we have used the same “z1” in 1x and 1y for different coordinate variables, and similarly

for x1 and y1. There will be no confusion as we do not compare equations in different charts.
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Chart 2zz

Φz(x2z, y2z, z, w) = z2Φzz(x2, y2, z, w),

Φzz(x2, y2, z, w) = wx22 + (x2 − 1)z
(
x22z − 2x2z − x2 + z

)
− y22.

C±p2 in 2zz : z = 0, y2 = ±
√
wx2.

δp2 in 2zz : z = 0, y2 = 0.

Singularities : (x2, y2, z) = (0, 0, 0).

(5.4.13)

3rd blow-up

We finally blow up the codimension-one singularity (x2, y2, z) = (0, 0, 0) in chart

2zz. It turns out that this completes the resolution process completely without leaving

any singularities. The equations of the exceptional curve (with a definite w) in the rele-

vant charts are:

Chart 3zzx

Φzz(x2, x2y3, x2z3, w) = x22Φzzx(x2, y3, z3, w),

Φzzx(x2, y3, z3, w) = w + (x2 − 1)z3
(
(x2 − 1)2z3 − 1

)
− y23.

Cp3 in 3zzx : x2 = 0, y23 = w − (z3 − 1)z3.

δp3 in 3zzx : x2 = 0, y23 = −(z3 − 1)z3.

Singularities : None.

(5.4.14)

Chart 3zzz

Φzz(x3z, y3z, z, w) = z22Φzzz(x3, y3, z, w),

Φzzz(x3, y3, z, w) = x23(w − z(3z + 1)) + x33z
3 + 3x3z + x3 − y23 − 1 = 0.

Cp3 in 3zzz : z2 = 0, y23 = wx23 + x3 − 1.

δp3 in 3zzz : z2 = 0, y23 = x3 − 1.

Singularities : None.

(5.4.15)

This completes the blowing-up process, and the space is now smooth. We have seen

that conifold singularities do not appear at any stage of the blow-up at the D6 points.

This is similar to the case of the incomplete resolution at the E6 point in the split I6
model. However, unlike that case, the intersection of the exceptional curves does not

change at all at the D6 points.

Intersections of the exceptional curves

At fixed w ̸= 0, we obtain five exceptional curves C±p1 , C
±
p2

and Cp3 . From the above

explicit forms, we can see that their intersection matrix is given by the A5 Dynkin diagram
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(the top diagram of Fig. 5.5). Although C±p1 and C±p2 are respectively factorized into two

lines on this fixed w ̸= 0 plane, they do not factor in the polynomial ring of w. The two

lines at some fixed w ̸= 0 are interchanged with each other at w = 0, meaning that this is

a non-split type of singularity. Thus the two lines for C±p1 or C
±
p2

at fixed w ̸= 0 comprising

the Kodaira fibres of type I6 are identified. Hence we define

Cpi ≡
1

2
(C+pi + C

−
pi
) (i = 1, 2), (5.4.16)

which are the projections onto the components invariant under the diagram automorphism

of the A5 Dynkin diagram. Then we can show that the three exceptional curves Cp1 , Cp2
and Cp3 form a non-simply-laced Dynkin diagram of C3 (the middle diagram of Fig. 5.5).

At w = 0, we again encounter another difference between the present non-split

case and the previous examples of singularities associated with the magic square. In the

incomplete resolutions for the previous examples (G,H) = (E6, SU(6)), (E7, SO(12)) and

(E8, E7), while the number of the exceptional fibres at w = 0 is the same as that at w ̸= 0,

some of the exceptional fibres at w = 0 turn out to be linear combinations of those at

w ̸= 0. Therefore, the intersection diagram of the exceptional fibres at w = 0 becomes

different from that at w ̸= 0 as we summarized in Section 5.2. Here, we see something

different. As in the previous section, by lifting up the exceptional curves from the defining

chart into subsequent charts and seeing their relations, one finds that

C±p1 → δp1 , C±p2 → δp2 , Cp3 → δp3 . (5.4.17)

Substituting them into (5.4.16), we obtain

Cp1 → δp1 , Cp2 → δp2 , Cp3 → δp3 . (5.4.18)

Thus, the intersection matrix remains identical even at the codimension-two point (see

the bottom diagram of Fig. 5.5). This is a sharp contrast to the previous examples, where

the intersection matrices at w = 0 did not coincide with any of (the minus of) the Lie

algebra Cartan matrices.
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<

𝐶!! 𝐶!"𝐶!#

𝛿!! 𝛿!"𝛿!#

𝐶!!
" 𝐶!#

" 𝐶!#
# 𝐶!!

#𝐶!"

𝐶! → 𝛿!

Figure 5.5: Intersection diagrams of the exceptional curves of C3 model at a D6 point:

(Top) w ̸= 0 before the projection (5.4.16); (Middle) w ̸= 0 after the projection (5.4.16);

(Bottom) w = 0.



Chapter 6

Split/Non-split Transitions as

Conifold Transitions

In this chapter, toward understanding the puzzles associated with non-local matter

generation discussed in the previous chapter, we investigate the relationship between the

split models and the non-split models for all cases that we can distinguish between the

split and non-split fibre types: In (n ≥ 3), I∗n (n ≥ 0), IV and IV ∗ [95]. We focus on

the conifold singularities which arise at certain codimension-two singularities and which

characterize the difference between the split models and the non-split models. We then

show that the split/non-split transition is a conifold transition except for a special class

of models. This chapter is based on our paper [95].

6.1 “Deligne form”

In this section, we introduce the “Deligne form” from the Tate form (5.3.1) for the

resolution analysis in this chapter. Let us consider six-dimensional F-theory compactified

on an elliptic Calabi-Yau threefold Y3 with section fibred over a Hirzebruch surface Fn

(n ≥ 0) [87,88]. We define Y3 as a hypersurface

P = −(y2 + a1xy + a3y) + x3 + a2x
2 + a4x+ a6 = 0 (6.1.1)

in a complex four-dimensional ambient space X4, which itself is a P2 fibration over Fn.

(x, y) are the affine coordinates in a coordinate patch of P2 where one of the homogeneous

coordinates does not vanish and hence is set to 1. Let K be the canonical bundle of Fn,

then x and y are sections of K−2 and K−3, whereas aj (j = 1, 2, 3, 4, 6) are ones of K−j,

respectively, so that the hypersurface (6.1.1) defines a Calabi-Yau threefold.

A Hirzebruch surface Fn is a P1 fibration over P1, defined as a toric variety with the

95
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following toric charges (4.2.2)

u′ v′ u v

Q(λ) 1 1 n 0

Q(µ) 0 0 1 1.

(6.1.2)

(u′ : v′) are the homogeneous coordinates of the base P1, while (u : v) are the ones of the

fibre P1. The anti-canonical bundle corresponds to the divisor (n+2)Du′ +2Dv, where we

denote, for a given coordinate X, by DX a divisor defined by the zero locus X = 0. Thus,

if we define affine coordinates z ≡ u
v
, w ≡ u′

v′
in a patch v ̸= 0 and v′ ̸= 0, the section aj

is given as a 2jth degree polynomial in z and a j(n+ 2)th degree polynomial in w.

The hypersurface so defined is also a K3 fibration, the base of which is the base P1

of Fn. We next consider the stable degeneration limit of this K3. Schematically, this is

regarded as a limit of splitting into a pair of rational elliptic surfaces dP9 glued together

along the torus fibre over the “infinite points” of the respective bases. See [88, 145] for a

more rigorous definition.

It is convenient to move on to a dP9 fibration over the same P1 with u′, v′ being its

coordinates. To do this, we have only to change the divisor class of aj from j((n+2)Du′ +

2Dv) (= the divisor of K−j) to

j((n+ 2)Du′ +Dv). (6.1.3)

With this change, aj is still a j(n+ 2)th degree polynomial in w but becomes jth degree

in z. Likewise, the divisor classes of x and y are modified from 2((n + 2)Du′ + 2Dv),

3((n+ 2)Du′ + 2Dv) to

2((n+ 2)Du′ +Dv), 3((n+ 2)Du′ +Dv), (6.1.4)

respectively. This dP9 fibre describes one E8 of the E8 ×E8 gauge symmetry. The terms

of degrees from j + 1 to 2j appearing in aj for the K3 fibration correspond to the other

dP9 residing “beyond the infinity”. For generic dP9 fibrations, aj is expanded as

aj = aj,0 + aj,1z + · · ·+ aj,j−1z
j−1 + aj,jz

j (j = 1, 2, 3, 4, 6), (6.1.5)

then the section aj,k of each coefficient becomes a ((j − k)n+ 2j)th degree polynomial in

w due to the nonzero Q1 charge carried by u.

As an equation of an elliptic fibre, Eq. (6.1.1) is commonly referred to as Tate form.

We can complete the square with respect to y in Eq. (6.1.1) to obtain (with a redefinition

of y)

−y2 + x3 +
b2
4
x2 +

b4
2
x+

b6
4

= 0, (6.1.6)

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

(6.1.7)
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which, though less common, we call the “Deligne form” in this thesis [146]. bj is a section

of the same line bundle as aj and similarly expanded as

bj = bj,0 + bj,1z + · · ·+ bj,j−1z
j−1 + bj,jz

j (j = 2, 4, 6), (6.1.8)

where bj,k is also a ((j − k)n + 2j)th degree polynomial in w. It is also convenient to

define [90]

b8 =
1

4
(b2b6 − b24), (6.1.9)

which is the (minus of the) discriminant of the quadratic equation

b2
4
x2 +

b4
2
x+

b6
4

= 0 (6.1.10)

of x.

Finally, we can “complete the cube” with respect to x in Eq. (6.1.6) and find (with

a redefinition of x)

−y2 + x3 + fx+ g = 0, (6.1.11)

f = − 1

48
(b22 − 24b4),

g =
1

864

(
b32 − 36b2b4 + 216b6

)
,

(6.1.12)

which is called the “Weierstrass form”. f and g are sections of the same line bundle as

a4 and a6, respectively, and in the dP9 fibration they are expanded as

f = f4,0 + f4,1z + · · ·+ f4,4z
4,

g = g6,0 + g6,1z + · · ·+ g6,6z
6,

(6.1.13)

where f4,k, g6,k are written as f(4−k)n+8, g(6−k)n+12 in [87], whose degrees in w are specified

by their subscripts. The discriminant ∆ of Eq. (6.1.11) is

∆ = 4f 3 + 27g2

=
1

16

(
b22b8 − 9b2b4b6 + 8b34 + 27b26

)
. (6.1.14)

Consider the case where the elliptic fibre over z = 0 of the base P1 of this dP9 (i.e.

the fibre P1 of the Fn) has a singularity, and the exceptional fibres after the resolution fall

into one of Kodaira’s fibre types. It is well-known that the fibre type of a given singularity

is determined in terms of the vanishing orders of the sections f , g of the Weierstrass form

as well as the discriminant ∆ (Table 6.1).

Note that, in Kodaira’s classification, there is no upper limit on the vanishing orders

of f , g or ∆ (since any large value of n is allowed for the fibre type In or I∗n as a fibre
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type)1, but there is when we try to realize singular fibres in a dP9 fibration. Since the

relationship between the split/non-split transition and the conifold transition discussed

below is also a local one in the sense that it does not depend on another singularity located

far away, we will also need to consider a high vanishing order that cannot be realized in

a dP9 fibration. So in this thesis, we will first start from a dP9 fibration and consider

the heterotic duality when it makes sense, while discussing the relationship between the

two transitions locally in the same set-up even when the fibre cannot be realized in a dP9

fibration.

As we already described in Subsection 5.1.1, if the type of a singular fibre is either

In (n = 3, 4, . . .), I∗n (n = 0, 1, . . .), IV or IV ∗ at a generic point w on the divisor z = 0

in Fn, it is further classified as a split type or a non-split type, depending on whether or

not the split condition is satisfied globally2. We have listed them in Table 6.1 together

with the required constraints for the fibres to be classified into the respective types3. In

the following, we will study these individual cases.

6.2 Split/non-split transitions as conifold transitions

(I): the I2k models

6.2.1 Generalities of the In models

Let us first summarize the generalities of the In models common to both cases

when n is even and when n is odd4. As displayed in Table 6.1, the vanishing orders of

the sections b2, b4 and b6 of Eq. (6.1.6) are (0, k, 2k) for both I2k and I2k+1. The only

difference is that the order of b8 (6.1.9) is the generic value 2k in the I2k type, while in

the I2k+1 type b2, b4 and b6 take special values so that the order of b8 goes up to 2k + 1.

Explicitly, the equation of these models is given by

1Of course, as is well known, if the orders of f and g increase simultaneously to 4 and 6, the resulting

singularities will have bad properties.
2k = 1 (I∗0 ) is a special case because there are three different types (split, non-split and semi-split) in

this case; see [147] for details.
3Note that the vanishing orders for bi’s (i = 2, 4, 6, 8) presented here are, unlike the conventional

orders in Tate form [1,90,91], the ones which are such that a given fibre type can be described by generic

bi’s with these orders. For example, the orders of the sections ai’s determining Tate form (i = 1, 2, 3, 4, 6)

for the non-split I2k+1 model are known to be (0, 0, k + 1, k + 1, 2k + 1), which imply the orders of b4
and b6 calculated using these data are k+ 1 and 2k+ 1 instead of k and 2k. These Tate’s orders are the

ones that are maximally raised within what a given fibre type can achieve, and only the specially tuned

sections with appropriate redefinitions of x and y can satisfy the condition. Indeed, as we show explicitly

below, the orders of the generic b4 and b6 that can achieve a non-split I2k+1 model are k and 2k.
4The resolutions of the split In and I∗n models for even and odd n were already computed in detail

in [120].
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Table 6.1: Singularities of the split and non-split fibre types. Ios2k+1 denotes the “over-

split” type which is explained in the text [95]. The ord(bi) and ord(∆) denote the order

of z of (bi) and (∆), where z is a inhomogeneous coordinate of P1
fibre.

Kodaira’s
fibre type

ord(b2) ord(b4) ord(b6) ord(b8) ord(∆) Additional
constraint(s)

Split/non-split
fibre type

I2k(k ≥ 2) 0 k 2k 2k 2k b2,0 = c21,0 Is2k
b2,0 generic Ins2k

I2k+1(k ≥ 1) 0 k 2k 2k + 1 2k + 1


b2,0 = c21,0
b4,k = c1,0c3,k
b6,2k = c23,k

Is2k+1
b2,0 generic

b4,k = b2,0c2,k
b6,2k = b2,0c

2
2,k

Ins2k+1
b2,0 = c21,0
b4,k = c21,0c2,k
b6,2k = c21,0c

2
2,k

Ios2k+1

I∗0 1 2 3 4 6


b2,1 = 4(p2,1 + q2,1 + r2,1)

b4,2 = 2(p2,1q2,1 + q2,1r2,1 + r2,1p2,1)

b6,3 = 4p2,1q2,1r2,1

I∗s0
b2,1 = 4(p2,1 + q2,1)

b4,2 = 2(p2,1q2,1 + r4,2)

b6,3 = 4p2,1r4,2

I∗ss0

b2,1, b4,2, b6,3
generic I∗ns0

I∗2k−3 (k ≥ 2) 1 k + 1 2k 2k + 1 2k + 3 b6,2k = c23,k I∗s2k−3

b6,2k generic I∗ns2k−3

I∗2k−2 (k ≥ 2) 1 k + 1 2k + 1 2k + 2 2k + 4 b8,2k+2 = c24,k+1 I∗s2k−2

b8,2k+2 generic I∗ns2k−2

IV 1 2 2 3 4 b6,2 = c23,1 IV s

b6,2 generic IV ns

IV ∗ 2 3 4 6 8 b6,4 = c23,2 IV ∗s

b6,4 generic IV ∗ns

Φ(x, y, z, w) ≡ −y2 + x3 +1
4
(b2,0 + b2,1z + · · · )x2

+1
2
(b4,kz

k + b4,k+1z
k+1 + · · · )x

+1
4
(b6,2kz

2k + b6,2k+1z
2k+1 + · · · ) = 0. (6.2.1)

As mentioned at the end of the previous section, this equation is not well defined as a dP9

fibration when k is large (e.g., k ≥ 4), but even in that case we will use it to analyze the
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local structure near the conifold singularities associated with the split/non-split transition.

Eq. (6.2.1) has a singularity at (x, y, z) = (0, 0, 0) for arbitrary w in both cases. We

will blow up this singularity, as well as the ones we will subsequently encounter, by taking

the usual steps. Let us explain the general procedure of how this is done by taking the

present case as an example. Our notation is similar to the one used in our paper [98].

We first replace the point (x, y, z) = (0, 0, 0) in the complex three-dimensional

(x, y, z) space, which is a local patch of the three-dimensional ambient space defining

the dP9, by a P2 by replacing C3 ∋ (x, y, z) with

Ĉ3 = {((x, y, z), (ξ : η : ζ)) ∈ C3 × P2 | (x : y : z) = (ξ : η : ζ)}. (6.2.2)

We work in inhomogeneous coordinates defined in three different patches of this P2

(x : y : z) = (ξ : η : ζ) = (1 : y1 : z1) (1x, x ̸= 0),

= (x1 : 1 : z1) (1y, y ̸= 0),

= (x1 : y1 : 1) (1z, z ̸= 0),

(6.2.3)

where 1x, 1y and 1z are the names of the coordinate patches5. Then replacing C3 with

Ĉ3 (6.2.2) is simply achieved by replacing (x, y, z) with (x, xy1, xz1) in 1x, (x1y, y, yz1) in

1y and (x1z, y1z, z) in 1z in Eq. (6.2.1), respectively, followed by dividing by the square

of the scale factor

x−2Φ(x, xy1, xz1, w) ≡ Φx(x, y1, z1, w) = 0 (1x),

y−2Φ(x1y, y, yz1, w) ≡ Φy(x1, y, z1, w) = 0 (1y),

z−2Φ(x1z, y1z, z, w) ≡ Φz(x1, y1, z, w) = 0 (1z)

(6.2.4)

so as not to change the canonical class.

Then we see that, unless k = 1 (I2 and I3), another singularity appears in the patch

1z at (x1, y1, z) = (0, 0, 0), then we do a similar replacement and factorization

x−2
1 Φz(x1, x1y2, x1z2, w) ≡ Φzx(x1, y2, z2, w) = 0 (2zx),

y−2
1 Φz(x2y1, y1, y1z2, w) ≡ Φzy(x2, y1, z2, w) = 0 (2zy),

z−2Φz(x2z, y2z, z, w) ≡ Φzz(x2, y2, z, w) = 0 (2zz).

(6.2.5)

for each patch of another P2 put at (x1, y1, z) = (0, 0, 0). Again, if k is larger than two,

we find a singularity in the patch 2zz, which we blow up to obtain Φzzz(x3, y3, z, w).

Repeating these steps k times yields Φz · · · z︸︷︷︸
k

(xk, yk, z, w), the properties of which differ

between the types I2k and I2k+1.

5In Eq. (6.2.3), one and the same symbol represents two different variables in different equations (y1
in 1x and 1z, for instance). There will be no confusion, however, since these two patches will not be

considered at the same time.
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In the following, we will use the following j-times blown-up equations recursively

defined by

z−2Φz · · · z︸︷︷︸
j−1

(xjz, yjz, z, w) ≡ Φz · · · z︸︷︷︸
j

(xj, yj, z, w) = 0 (jz · · · z︸︷︷︸
j

), (6.2.6)

x−2
j−1Φz · · · z︸︷︷︸

j−1

(xj−1, xj−1yj, xj−1zj, w) ≡ Φz · · · z︸︷︷︸
j−1

x(xj−1, yj, zj, w) = 0 (jz · · · z︸︷︷︸
j−1

x)(6.2.7)

from the (j − 1)-times blown-up equation Φz · · · z︸︷︷︸
j−1

(xj−1, yj−1, z, w) = 0 defined in the coor-

dinate patch (j−1)z · · · z︸︷︷︸
j−1

. (Again, yj’s in Eq. (6.2.6) and Eq. (6.2.7) are different.)

6.2.2 Codimension-one singularities of the In models

We have seen in the previous subsection that there appears a singularity in 1z at

(x1, y1, z) = (0, 0, 0) for arbitrary w, and after the blow-up there is, if k ≥ 3, another

at (x2, y2, z) = (0, 0, 0) in 2zz for arbitrary w. These singular “points” in the sense of

Kodaira are aligned along the base P1 of Fn, and hence form complex one-dimensional

curves. If, though not considered in this thesis, our set-up is generalized to a 4D F-theory

compactification where the dP9 is fibred on some complex two-dimensional base, these

singularities are aligned to form complex surfaces. Thus, in this thesis, we will call such

a singularity in the sense of Kodaira, that forms a codimension-one locus when projected

onto the base of the elliptic fibration, a codimension-one singularity.

Using this terminology, we can say that, in the process of blowing up, both the I2k
and I2k+1 models yield a codimension-one singularity pj at (xj, yj, z, w) = (0, 0, 0, w) for

every j = 0, . . . , k − 1 in jz · · · z︸︷︷︸
j

, where we define (x0, y0, z, w) ≡ (x, y, z, w). The explicit

form of Φz · · · z︸︷︷︸
j

(xj, yj, z, w) representing the model in this patch is given by

Φz · · · z︸︷︷︸
j

(xj, yj, z, w) = −y2j + x3jz
j + 1

4
(b2,0 + b2,1z + · · · )x2j

+1
2
(b4,kz

k−j + b4,k+1z
k−j+1 + · · · )xj

+1
4
(b6,2kz

2(k−j) + b6,2k+1z
2(k−j)+1 + · · · )

z→0→ −y2j + 1
4
b2,0x

2
j , (6.2.8)

where the exceptional “curve” (in the P2 blown up over some point of the base with fixed

(generic) w) splits into two lines in the sense of Kodaira. Thus, for each generic w, pj is

located at the intersection point of these exceptional curves that have arisen from blowing

up pj−1 (j = 1, . . . , k−1). Blowing up the final singularity pk−1 yields a single irreducible

exceptional curve for the I2k case, and a pair of split lines for the I2k+1 case (see Fig 6.1

and 6.2). Putting them all together, they constitute the A2k−1 and A2k Dynkin diagrams

as their intersection diagrams, as is well known.



102

6.2.3 Conifold singularities associated with the split/non-split

transition in the I2k models

Now let us explain what “conifold singularities associated with the split/non-split

transition” are, by taking I2k models as an example. Since there is no distinction between

split and non-split fibre types in the fibre type I2, let us consider I2k for k ≥ 2.

The equation of the split I2k model for k ≥ 2 is given by Eq. (6.2.1) with

b2,0 = c21,0 (6.2.9)

for some section c1,0. A split I2k model exhibits, in addition to these codimension-one

singularities, conifold singularities on singular fibres over some special loci on the base of

the elliptic fibration, where the generic An−1 singularity is enhanced to some higher-rank

one.

The discriminant of Eq. (6.2.1) with Eq. (6.2.9) reads

∆ =
1

16
c41,0b8,2kz

2k + · · · . (6.2.10)

f and g (6.1.12) derived from Eq. (6.2.1) are

f = − 1

48
c41,0 + · · · ,

g =
1

864
c61,0 + · · · .

(6.2.11)

Eq. (6.2.10) shows that at the zero loci of c1,0 and b8,2k, the singularity is enhanced from

A2k−1. Since Eq. (6.2.11) implies that the vanishing orders of f and g are unchanged at

the zero loci of b8,2k, they are “A2k points”, which means that they are the places on the

base over which the singularities of the fibres are enhanced to A2k. On the other hand,

at the zero loci of c1,0, it turns out that the vanishing orders of f , g and ∆ go up to

two, three and 2k + 2, so the zero loci of c1,0 are “D2k points”, which similarly means

that the singularities are enhanced to D2k there. In fact, they are singularities of the

type of the “complete resolution” [93], meaning that they develop the necessary amount

of conifold singularities to yield the degrees of freedom of matter hypermultiplets arising

there. Thus, according to the general rule [96], the zero loci of b8,2k are the places (on

the base) where a hypermultiplet transforming in 2k of A2k−1 arises, and those of c1,0 are

where a hypermultiplet in k(2k− 1) appears. In general, a section ci,j or bi,j or whatever

with a subscript (i, j) is expressed as a polynomial of degree (i− j)n+2i in w [148], so we

have (8− 2k)n+ 16 hypermultiplets in the 2k representation, and n+ 2 hypermultiplets

in the k(2k− 1) representation.

We will focus on the singularity enhancement to D2k at the zero loci of c1,0 since it is

this singularity enhancement that its associated conifold singularities and their transitions

are closely related to the split/non-split transitions in F-theory. Indeed, if we do not
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impose the condition (6.2.9) to Eq. (6.2.1), we have an equation of the non-split I2k
model, for which the corresponding f , g and ∆ are the ones obtained by simply replacing

every c21,0 with b2,0 in Eq. (6.2.11) and Eq. (6.2.10). Even then, the vanishing orders of f ,

g and ∆ at the zero loci of b2,0 remain the same as those at the loci of c1,0, which means

that the number of D2k points is doubled (b2,0 is represented as a polynomial of degree

2n+ 4 in w).

Of course, in this process of the transition from the split model to the non-split one,

the D2k points, which have doubled in number, cannot continue to produce k(2k− 1)’s

after the transition to the non-split side; they are too many to satisfy the anomaly cancel-

lation condition. Therefore, the structure of the conifold singularities that existed before

the transition to the non-split model must change after the transition. They are what

we call the conifold singularities associated with the split/non-split transition. In con-

trast, singularity structures of the fibres over the A2k points at which b8,2k vanishes do

not change by the replacement c21,0 ↔ b2,0
6.

6.2.4 Conifold singularities in the split I2k models for k ≥ 3

To show how these conifold singularities arise at the D2k points in the blowing-up

process of the split I2k models, let us consider the j-times blown-up equation Φz · · · z︸︷︷︸
j−1

x(xj−1,

yj, zj, w) = 0 in the patch jz · · · z︸︷︷︸
j−1

x for j = 2, . . . , k − 1 with k ≥ 3 which is recursively

defined in Eq. (6.2.7) in Subsection 6.2.1. k = 2 (I4) is a special case, so we will consider

it separately in the next subsection.

The left-hand side of this equation is explicitly given by

Φz · · · z︸︷︷︸
j−1

x(xj−1, yj, zj, w) = −y2j + xjj−1z
j−1
j

+1
4
(c21,0 + b2,1xj−1zj + · · · )

+1
2
xk−j
j−1z

k−j+1
j (b4,k + b4,k+1xj−1zj + · · · )

+1
4
x
2(k−j)
j−1 z

2(k−j+1)
j (b6,2k + b6,2k+1xj−1zj + · · · )

= −y2j + 1
4
c21,0 + xj−1zj

(
xj−1
j−1z

j−2
j + 1

4
b2,1

+1
2
b4,kx

k−j−1
j−1 zk−j

j + 1
4
b6,2kx

2(k−j)−1
j−1 z

2(k−j)+1
j +O(xj−1zj)

)
.

(6.2.12)

6The six-dimensional F-theory models with an unbroken A5 or A7 gauge symmetry also allow E6 or

E8 points, but it is known [91, 149] that they cannot be realized in Tate or Deligne forms with maximal

Tate’s orders, but require to be formulated in a Weierstrass form or Tate form with lower Tate’s orders.

In any case, however, these singularities also do not change by the replacement c21,0 ↔ b2,0 and hence

have nothing to do with the split/non-split transition.
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In general, a conifold is defined in C4 ∋ (z1, z2, z3, z4) by the equation

z1z4 + z2z3 = 0, (6.2.13)

where (z1, z2, z3, z4) = (0, 0, 0, 0) is the conifold singularity. Thus Eq. (6.2.12) shows that

the geometry near yj = c1,0 = xj−1 = zj = 0 is locally approximated by that of a conifold,

and the point itself is the conifold singularity for each j = 2, . . . , k − 1 (k ≥ 3).

Since these k − 2 conifold singularities arise in the blowing-up process of a split I2k
model at each zero locus of c1,0, the number of which is n + 2 in total in the present

Fn case (because c1,0 is a polynomial of degree n + 2; see Subsection 6.2.3.). Let us pay

attention to a particular zero of this c1,0, and we can take it to w = 0 without loss of

generality. That is,

c1,0 = w +O(w2) (6.2.14)

near w = 0. Then we see from Eq. (6.2.12) that the equation Φz · · · z︸︷︷︸
j−1

x(xj−1, yj, zj, w) = 0

near (xj−1, yj, zj, w) = (0, 0, 0, 0) is

−y2j + 1
4
w2 + (const.×)xj−1zj = 0 (6.2.15)

up to higher-order terms. The first two terms are factorized to yield the standard conifold

equation (6.2.13).

Eq. (6.2.15) tells us that it is precisely the fact that the section b2,0 is in the form of

a square c21,0 that the blown-up equations Φz · · · z︸︷︷︸
j−1

x(xj−1, yj, zj, w) = 0 give rise to conifold

singularities. If b2,0 were not in square form c21,0, which implies that the model is non-split,

Eq. (6.2.12) would be

Φz · · · z︸︷︷︸
j−1

x(xj−1, yj, zj, w) = −y2j + 1
4
b2,0 + xj−1zj (· · · ) , (6.2.16)

in which b2,0 generically vanishes like w near w = 0, and the corresponding local equation

would be

−y2j + 1
4
w + (const.×)xj−1zj = 0 (6.2.17)

up to higher-order terms, which is not a conifold equation.

In the following, we will refer to the k − 2 conifold singularities arising at each zero

locus of c1,0 as7

7At first glance, this way of naming the conifold singularities may seem strange, but as we will see

later, its subscript qj denotes the corresponding codimension-one D2k singularity. We will use “v” to

denote that it is a conifold singularity.
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Figure 6.1: Singularities and exceptional curves arising in the blow-up of a split I2k model

near a D2k point w = 0. codimension-one singularities and conifold singularities are

depicted with red and yellow x’s, respectively. Each bold horizontal arrow indicates a

blow-up at a codimension-one singularity, and the final thick downward arrow means

small resolutions of all the conifold singularities. The thin downward arrows denote the

w → 0 limit. The left-most vertical line in each figure represents the original singular

fibre.

vq2 : (x1, y2, z2, w) = (0, 0, 0, 0) (2zx),

...

vqj : (xj−1, yj, zj, w) = (0, 0, 0, 0) (jz · · · z︸︷︷︸
j−1

x),

...

vqk−1
: (xk−2, yk−1, zk−1, w) = (0, 0, 0, 0) ((k − 1)z · · · z︸︷︷︸

k−2

x).

(6.2.18)

They are depicted with a yellow x in Fig. 6.1.

In addition to the k − 2 conifold singularities vq2 , . . . , vqk−1
, there are two more

conifold singularities. One is the one on the locus of the one-time blown-up equation

Φz(x1, y1, z, w) = 0 given by Eq. (6.2.8) with j = 1, where b2,0 satisfies the split condition

b2,0 = c21,0. If k ≥ 3, Φz(x1, y1, z, w) can be written as

Φz(x1, y1, z, w) = −y21 + 1
4
c21,0x

2
1 + z

(
x31 +

1
4
b2,1x

2
1 +O(z)

)
, (6.2.19)
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so focusing on a particular zero of c1,0 and set c1,0 = w, the equation becomes

−y21 + 1
4
w2x21 + z

(
x31 +

1
4
b2,1x

2
1

)
= 0 (6.2.20)

near z = w = 0. y1 = w = z = x1 = 0 is a special case of p1, so assuming x1 ̸= 0, we find

vq1 : (x1, y1, z, w) = (−1
4
b2,1, 0, 0, 0) (1z) (6.2.21)

is a conifold singularity that arises besides vq2 , . . . , vqk−1
.

The other conifold singularity can be found on the locus of Φz · · · z︸︷︷︸
k−1

(xk−1, yk−1, z, w),

which is given by Eq. (6.2.8) with setting j = k − 1. We have already discussed that it

has a codimension-one singularity pk−1 at (xk−1, yk−1, z, w) = (0, 0, 0, w). We can show

that it also has a conifold singularity if b2,0 = c21,0 for some c1,0 by writing, for k ≥ 3,

Φz · · · z︸︷︷︸
k−1

(xk−1, yk−1, z, w) = −y2k−1 +
1
4
c21,0x

2
k−1

+z
(
x3k−1z

k−2 + 1
4
b2,1x

2
k−1 +

1
2
b4,kxk−1 +O(z)

)
.

(6.2.22)

Thus, by setting c1,0 = w, the blown-up equation is reduced near z = 0 to

−y2k−1 +
1
4
w2x2k−1 + z

(
1
4
b2,1x

2
k−1 +

1
2
b4,kxk−1

)
= 0, (6.2.23)

which shows that

vrk−1
: (xk−1, yk−1, z, w) =

(
−2b4,k
b2,1

, 0, 0, 0

)
((k − 1)z · · · z︸︷︷︸

k−1

). (6.2.24)

is another conifold singularity.

Thus, the split I2k model gives rise to a total of k−2+2 = k conifold singularities at

each zero locus of c1,0. They are resolved by small resolutions to give k exceptional curves,

and comprise, together with the k exceptional curves coming from the codimension-one

singularities, the D2k Dynkin diagram (Fig. 6.1).

6.2.5 Conifold singularities in the split I4 model (the k = 2 case)

Although similar, the split I4 model, which is the lowest k(= 2) case, is slightly

different from the models for k ≥ 3 in the way the conifold singularities appear, so we

will briefly comment on this special case for completeness.

We have seen that in a split I2k model with k ≥ 3, two special conifold singularities

vq1 and vrk−1
appear in the patches 1z and (k − 1)z · · · z︸︷︷︸

k−1

, respectively. If k = 2, they are the

same patches. Therefore, in the k = 2 case, there appear both conifold singularities on the

zero locus of Φz(x1, y1, z, w) defined in (1z), in addition to the codimension-one singularity

p1. After the resolutions, they yield the D4 Dynkin diagram as their intersection diagram.
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6.2.6 Split/non-split transitions as conifold transitions in the I2k

models

Now, we can discuss the relationship between the split/non-split transition and the

conifold transition. To summarize what we have learned so far about the I2k model:

• If b2,0 is a square of some c1,0, the model is split, otherwise non-split.

• In the split models, D2k points are n+2 double roots of the (2n+4)th order equation

b2,0 = c21,0 = 0 of w, while in the non-split models, they are generically 2n+4 single

roots.

• In the split case, there arise k conifold singularities at each zero locus of c1,0, while

in the non-split case, no conifold singularities appear at the loci of b2,0.

So let us consider a deformation of the complex structure (of the total elliptic fibration) in

which a particular double root, say w = 0, “splits” into two single roots w = ±ϵ that are
minutely separated |ϵ| ≪ 1. By deforming just one of the n + 2 double roots into a pair

of single roots, b2,0 can no longer be written in the form of a square of anything, so this

deformation turns the split model into a non-split model. This deformation is achieved

by replacing w2 with w2 − ϵ2, and turns the conifold

−y2 + w2 + xz = 0 (6.2.25)

into

−y2 + w2 + xz = ϵ2, (6.2.26)

which is the deformed conifold !

We can easily verify that all the conifold singularities vq1 , . . . , vqk−1
, vrk−1

are de-

formed into local deformed conifolds8 by the replacement w2 → w2− ϵ2. This means that

the special deformation of the complex structure of the total elliptic fibration that makes

a double zero of w split into a pair is exactly the deformation of the complex structure of

the local conifolds.

Suppose that we start from a singular split I2k model given by Eq. (6.2.1), where

b2,0 = c21,0, and b2k,8 does not vanish. By blowing up all the codimension-one singularities

of it, we end up with a geometry whose only singularities are conifold singularities. There

are two ways to smooth these singularities. One is to resolve them by small resolutions;

this just yields a smooth split I2k model. The other is to deform the conifold singularities;

this is achieved by replacing b2,0 = c21,0 with b2,0 = c21,0 − ϵ21,0 for some section ϵ1,0, then

8By a “local conifold” we mean the geometry near the conifold singularity described by an equation

(z1z4 + z2z3)(1 + O(zi)) = 0. Similarly, by a “local deformed conifold” we mean the one described by

(z1z4 + z2z3 − ϵ2)(1 +O(zi)) = 0.
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the model is a smooth non-split I2k model. In other words, the split/non-split transition

in a I2k model is nothing but a conifold transition.

As we have seen above, there is not just one conifold singularity that appears at each

zero locus of c1,0 and is involved in the transition. There are k such conifold singularities

at each locus, and they are simultaneously deformed to give a non-split model.

6.2.7 The mechanism proposed by [1] for non-local matter gen-

eration

The origin of non-local matter was proposed [1] as due to the adjoint hypermultiplets

associated with a certain genus-g curve in the elliptically fibred Calabi-Yau threefold. In

this subsection, let’s see how their proposal can be actually implemented in the blowing-up

process we have discussed so far.

In general, fibre degeneration occurs at a codimension-one discriminant locus on the

base, which is a curve on the two-dimensional base (Fn in our case) of the Calabi-Yau

threefold. Thus, together with the degenerate P1 fibre, with a possible singularity before

blowing up, it forms a ruled (=P1-fibred) surface in the Calabi-Yau threefold. We are

interested in the gauge divisor, over which there is a distinction between the split or the

non-split fibre type.

Since we take the gauge divisor to be a divisor of the fibre P1 of the Hirzebruch

surface Fn (that is, z = 0), we may naturally take the base of the ruled surface to be the

base P1 of the Fn (parametrized by w), which was called M1 in [1]. Its genus is 0; this

agrees with [139], in which, by an anomaly analysis, the number of the adjoint hypers

was shown to coincide with the genus of the gauge divisor, and the fact that there is no

massless adjoint hypermultiplet in the spectrum [90].

The proposal of [1] was as follows: Taking a non-split I2k model as an example, if

the singularity of the P1 fibre of the ruled surface is blown up, the singular point at each

fixed w is replaced by a collection of P1’s, which form (over the whole base) a smooth

surface consisting of multiple components corresponding to different nodes of the A2k−1

Dynkin diagram. In the non-split case, these P1’s (exceptional fibres) are merged in pairs

smoothly, except for the one corresponding to the middle node. This is precisely why the

gauge algebra is reduced to a non-simply-laced one by the identification under the diagram

automorphism, but in [1] they further note that a component of the surface swept by a

particular pair of such exceptional fibres is also a ruled surface, whose base is a 2-sheeted

Riemann surface of genus g. This genus-g base, called M2 in [1], is a double cover of

M1 and has 2g + 2 branch points over which the pair of exceptional fibres meet and join

smoothly in the non-split model. [1] argued that, according to [150,151], g hypermultiplets

arise from the harmonic 1-forms of the genus-g Riemann surface and are assigned to one

of the short simple roots of the Ck Dynkin diagram.
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Let us consider how this genus-g Riemann surface can be seen in our set-up. We

could consider the general equation for I2k given in Subsection 6.2.4, but to simplify the

notation and clarify the issue, we will instead repeat the blow-up procedure with the

homogeneous coordinates in the I6 model, the simplest case where there are more than

one pair of exceptional curves identified by monodromy.

Again, starting from Eq. (6.2.1), let k = 3. This time, instead of Eq. (6.2.3), we

change the coordinates as

(x, y, z) = (αx1, αy1, αz1), (6.2.27)

where (x1 : y1 : z1) are homogeneous coordinates of P2 and α ∈ C. Plugging Eq. (6.2.27)

into Φ(x, y, z, w), we define

α−2Φ(αx1, αy1, αz1, w) ≡ Φα(x1, y1, z1, α, w)

= −y21 + x31α + 1
4
(b2,0 + b2,1z1α + · · · )x21

+1
2
(b4,3z

3
1α

2 + · · · )x1
+1

4
(b6,6z

6
1α

4 + · · · ), (6.2.28)

similarly to Eq. (6.2.4). Of course, if z1 = 1 and α is renamed z, Φα(x1, y1, z1 =

1, α = z, w) becomes Φz(x1, y1, z, w) (6.2.8) with j = 1, k = 3. As we discussed in

the previous subsection, if the section b2,0 is a deformation of a square c21,0, the equation

Φα(x1, y1, z1, α, w) = 0 describes a three-manifold with n+2 deformed conifold “singular-

ities” near the zero loci of c1,0. The exceptional curves can be found at the intersection

with the divisor α = 0:

Φα(x1, y1, z1, α = 0, w) = −y21 + 1
4
b2,0(w)x

2
1 = 0, (6.2.29)

where we have recovered the argument of b2,0 to remember that it is a polynomial of degree

2n + 4 in w. With fixed w, Eq. (6.2.29) represents a pair of P1’s in P2 ∋ (x1 : y1 : z1) if

b2,0(w) ̸= 0 intersecting at (x1 : y1 : z1) = (0 : 0 : 1), which is a singularity to be blown up

in the next step, thereby it is to be separated into two distinct points on the respective

two P1’s. Thus if the value of w is varied, the two P1’s as a whole yield a surface, which

comprises S2 in [1].

On the other hand, Eq. (6.2.29) can also be viewed as a 2-sheeted Riemann surface,

and, by “forgetting” z1, any point on this (component of the) surface S2 has a unique

projection onto this Riemann surface. Therefore, it is a ruled surface whose base is a

2-sheeted Riemann surface given by Eq. (6.2.29) (provided that (x1 : y1 : z1) = (0 : 0 : 1)

is blown up), which may be called M2 in the notation of [1].

However, another similar Riemann surface arises in the next step of the blow-up.

Since Φα(x1, y1, z1, α, w) = 0 is singular at (x1 : y1 : z1) = (0 : 0 : 1), we blow up there by

defining

(x1, y1, α) = (βx2, βy2, βα2), (6.2.30)
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where (x2 : y2 : α2) are also homogeneous coordinates of P2 and β ∈ C. Plugging Eq.

(6.2.30) into Φα(x1, y1, z1, α, w), we similarly obtain

β−2Φα(βx2, βy2, z1, βα2, w) ≡ Φαβ(x2, y2, z1, α2, β, w)

= −y22 + x32α2β
2 + 1

4
(b2,0 + b2,1z1α2β + · · · )x22

+1
2
(b4,3z

3
1α

2
2β + · · · )x2

+1
4
(b6,6z

6
1α

4
2β

2 + · · · ). (6.2.31)

The exceptional curves are at the intersection with the divisor β = 0:

Φαβ(x2, y2, z1, α2, β = 0, w) = −y22 + 1
4
b2,0(w)x

2
2 = 0. (6.2.32)

This is again a ruled surface (without any further blowing up), whose base is also a

Riemann surface given by the same equation (6.2.32) with α2 forgotten.

Clearly, Eq. (6.2.29) and Eq. (6.2.32) are different components of the ruled surface

S2, residing on different divisors α = 0 and β = 0, respectively. The important point,

however, is that they represent the same Riemann surface as the base space. Indeed, for

a given w, Eq. (6.2.29) and Eq. (6.2.32) respectively determine the ratios x1 : y1 and

x2 : y2, but they are the same by definition and are consistent. Thus we may successfully

say that S2 is a ruled surface over a genus-g (= n + 1 here) Riemann surface M2, as [1]

claimed.

It is also straightforward to check that, for general I2k (k ≥ 3) models defined by Eq.

(6.2.1), all the genus-g bases that appear at each blow-up are the same (except at the final

blow-up where such a genus-g curve does not arise). Similar holds for the I2k+1 non-split

models9. In the non-split I∗n and IV models, since there is only one pair of exceptional

curves identified by monodromy, the problem described above does not arise. Finally, it

can be verified that the two genus-g bases appearing in the non-split IV ∗ model are also

the same.

Thus we have seen that, even when there are multiple pairs of exceptional curves

and S2 consists of multiple components, the genus-g Riemann surface M2 is well-defined

and serves the mechanism proposed by [1].

6.3 Split/non-split transitions as conifold transitions

(II): the I2k+1 models

Although the defining equations of the I2k and I2k+1 models are common (6.2.1),

the relationship between the split/non-split transition and the conifold transition in the

I2k+1 models is quite different from that in the I2k models.

9In this case, the exceptional curve arising at the final blow-up splits into two lines, but still the

genus-g Riemann surfaces arising before the final blow-up are all identical.
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Figure 6.2: Singularities and exceptional curves in a split and an over-split I2k+1 model

for k ≥ 2 near a double root of c21,0 = 0.

The most significant difference is that in the split I2k+1 model, the singularity (in

the sense of Kodaira’s singular fibre) is enhanced from A2k to D2k+1 at the zero loci of

b2,0 (which is in the form of a square c21,0 for some c1,0), whereas in the non-split model,

the singularity at the generic zero loci of b2,0 is enhanced to D2k+2 instead of to D2k+1.

Consequently, a generic split I2k+1 model does not directly transition to a non-split I2k+1

model. Rather, we will show that there is a certain special interface model that connects

the split and non-split I2k+1 models via a conifold transition.

6.3.1 The split, non-split and “over-split” I2k+1 models

The vanishing orders of the sections b2, b4, b6 for a I2k+1 model are 0, k, 2k, respec-

tively, which are the same as those for a I2k model. The difference from the I2k model is

that the vanishing order of b8 is 2k + 1 instead of 2k, which means that

0 = 4b8,2k = b24,k − b2,0b6,2k. (6.3.1)

In the split models, b2,0 is given by a square c21,0 for some c1,0, so we have

b6,2k =

(
b4,k
c1,0

)2

. (6.3.2)
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Thus b4,k must be divisible by c1,0. We can then write

b2,0 = c21,0,

b4,k = c1,0c3,k,

b6,2k = c23,k

(6.3.3)

for some c3,k, which is a section of the line bundle specified by its subscripts. Again, k = 1

is a special case so will be discussed later. For k ≥ 2, we find

f = − 1

48
c41,0 + · · ·

c1,0→0→ − 1

48
b22,1z

2 + · · · , (6.3.4)

g =
1

864
c61,0 + · · ·

c1,0→0→ 1

864
b32,1z

3 + · · · (6.3.5)

and

∆ =
1

16
c41,0b8,2k+1z

2k+1 + · · ·
c1,0→0→ 1

64
b32,1c

2
3,kz

2k+3 + · · · . (6.3.6)

Therefore, the zero loci of c1,0 are where the apparent fibre type changes to I
∗
2k−3, or from

A2k to D2k+1 in terms of the singularity10.

In the non-split I2k+1 models, Eq. (6.3.1) is assumed to be satisfied, but b2,0 is not

assumed to be in the form of a square. So suppose that b2,0 is not a complete square but

takes the product form

b2,0 = c2r,0b̃2−2r,0 (6.3.7)

for some cr,0 and b̃2−2r,0. In this case, b4,k must be divisible by cr,0. Then the same

discussion as we did in the split I2k+1 model can apply to show that at the zero loci of

cr,0 the fibre type changes there to I∗2k−3 and the singularity is enhanced to D2k+1.

Thus let us assume that b2,0 is completely generic and has no square factor, that is,

the equation b2,0 = 0 has no double root. In this case, the constraint (6.3.1) requires that

b4,k is divisible by b2,0:

b2,0 : generic,

b4,k = b2,0c2,k,

b6,2k = b2,0c
2
2,k

(6.3.8)

10Again, as we noted in Subsection 6.2.3, an enhancement to E7 is possible in the F-theory model with

an unbroken A6 gauge symmetry, but it also cannot be realized in our Deligne form [144,149]. It is also

irrelevant for the split/non-split transition.
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for some section c2,k of the line bundle implied by the subscripts. For k ≥ 2, we can

see that the z-expansions of f and g are similar to Eq. (6.3.4) and (6.3.5), but the

discriminant in the present case is

∆ =
1

16
b22,0b8,2k+1z

2k+1 + · · ·
b2,0→0→ 1

64
b22,1(b2,1b6,2k+1 − b24,k+1)z

2k+4 + · · · , (6.3.9)

in which the order of z at the zero loci of b2,0 is one order higher than that in the split

case. This shows that, in a non-split I2k+1 model, the fibre type in the sense of Kodaira

changes to I∗2k−2 instead of I∗2k−3, and the apparent singularity there is enhanced from A2k

to D2k+2 instead of D2k+1.

Therefore, a generic split I2k+1 model cannot directly transition to a non-split I2k+1

model. The interface model that connects the split and non-split models can be obtained

by tuning the complex structure of a split model so that it can yield the D2k+2 points

which are originally absent in generic split I2k+1 models. The existence of such models

was already pointed out in [85]. More specifically, we consider a special class of split I2k+1

models in which the relevant sections b2,0, b4,k and b6,2k are given by

b2,0 = c21,0

b4,k = c21,0c2,k,

b6,2k = c21,0c
2
2,k,

(6.3.10)

which we call an “over-split I2k+1 model”. Eq. (6.3.10) can be obtained by specializing

c3,k to the factorized form c1,0c2,k for some c2,k. This in particular implies that c3,k in Eq.

(6.3.6) vanishes as c1,0 → 0. The next non-vanishing order is 2k + 4, yielding the desired

enhancement to D2k+2. It is also clear that replacing c21,0 with b2,0 in Eq. (6.3.10) yields

the specifications of the sections in the non-split models (6.3.8).

6.3.2 Conifold singularities in the I2k+1 models for k ≥ 2

We will now blow up the codimension-one singularities of the split and over-split

I2k+1 models. Since the only difference between the I2k and the I2k+1 models (in their

definitions) is the vanishing order of b8, the way the singularities are blown up is very

similar between the two. When we blow up the codimension-one singularities of a split

I2k+1 model, the first difference from the I2k models we encounter is the absence of the

conifold singularity vrk−1
in the coordinate patch (k − 1)z · · · z︸︷︷︸

k−1

(6.2.24), which appeared

in the I2k models when w ≡ c1,0 → 0. Instead, if we blow up the codimension-one

singularity pk−1, we get a pair of exceptional curves, at the intersection of which there

is a conifold singularity vqk (Fig. 6.2). If we resolve all the conifold singularities by

small resolutions, we obtain the D2k+1 Dynkin diagram as the intersection diagram of the

resulting exceptional curves.
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On the other hand, if we blow up the singularity pk−1 in the over-split I2k+1 model,

the pair of exceptional lines come on top of each other to form a single irreducible line,

on which three conifold singularities vpk , vqk and vrk appear. Resolving all the conifold

singularities gives the D2k+2 Dynkin diagram in this case.

How these conifold singularities arise in the blowing-up process of the split and

over-split I2k+1 models near a double root of c21,0 = 0 is summarized in Fig. 6.2.

6.3.3 The split/non-split transitions and conifold transitions in

the I2k+1 models for k ≥ 2

Again, let us focus on a particular double root of c21,0 = 0, and let it be w = 0.

Then the local equations yielding the conifold singularities vq1 , . . . , vqk−1
are the same as

those in the split I2k models. To see how the conifold singularities vpk , vqk , vrk arise, let us

consider the k-times blown-up equation Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) = 0 in the patch kz · · · z︸︷︷︸
k−1

x,

where

Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) ≡ x−2
k−1Φz · · · z︸︷︷︸

k−1

(xk−1, xk−1yk, xk−1zk, w)

= −y2k + xkk−1z
k−1
k

+1
4
(c21,0 + b2,1xk−1zk + · · · )

+1
2
(c1,0c3,kzk + b4,k+1xk−1z

2
k + · · · )

+1
4
(c23,kz

2
k + b6,2k+1xk−1z

3
k + · · · )

xk−1→0→ −y2k + 1
4
(c1,0 + c3,kzk)

2 (6.3.11)

in the split case. The last line shows that the exceptional curve splits into two lines, which

intersect at

xk−1 = yk = c1,0 + c3,kzk = 0. (6.3.12)

If c1,0 = 0, zk also vanishes for generic c3,k; this is a conifold singularity. Indeed, we can

write Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) as, setting c1,0 = w,

Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) = −y2k + 1
4
(w + c3,kzk)

2 + xk−1zk
(
xk−1
k−1z

k−2
k

+1
4
b2,1 +

1
2
b4,k+1zk +

1
4
b6,2k+1z

2
k +O(xk−1zk)

)
.(6.3.13)

This shows that

vqk : (xk−1, yk, zk, w) = (0, 0, 0, 0) (kz · · · z︸︷︷︸
k−1

x) (6.3.14)
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is a conifold singularity. This is the only conifold singularity in this patch in the split

case. Note that the w-dependence of Eq. (6.3.13) is not only through w2.

In the over-split case, Eq. (6.3.11) becomes

Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) = −y2k + xkk−1z
k−1
k

+1
4
(c21,0 + b2,1xk−1zk + · · · )

+1
2
(c21,0c2,kzk + b4,k+1xk−1z

2
k + · · · )

+1
4
(c21,0c

2
2,kz

2
k + b6,2k+1xk−1z

3
k + · · · )

xk−1→0→ −y2k + 1
4
c21,0(1 + c2,kzk)

2. (6.3.15)

Thus, the exceptional curves that are split into two lines at c1,0 ̸= 0 overlap into a single

line at c1,0 = 0. In this case, by setting c1,0 ≡ w, Eq. (6.3.15) can be written as

Φz · · · z︸︷︷︸
k−1

x(xk−1, yk, zk, w) = −y2k + 1
4
w2(1 + c2,kzk)

2 + xk−1zk
(
xk−1
k−1z

k−2
k

+1
4
b2,1 +

1
2
b4,k+1zk +

1
4
b6,2k+1z

2
k +O(xk−1zk)

)
,(6.3.16)

which shows that there are three conifold singularities at xk−1 = yk = w = 0 and

zk(
1
4
b2,1 +

1
2
b4,k+1zk +

1
4
b6,2k+1z

2
k) = 0. (6.3.17)

They are shown in Fig. 6.2 as vqk (when zk = 0), vpk and vrk (when zk is one of the

roots of 1
4
b2,1 +

1
2
b4,k+1zk +

1
4
b6,2k+1z

2
k = 0). In the split case, the two points where zk is

a non-zero root of the latter equation are not conifold singularities since the second term

in Eq. (6.3.13) is O(w0) near these points, whereas in the non-split case, the second term

in Eq. (6.3.16) is O(w2) there.

We can see that, unlike the (ordinary) split I2k+1 case, Eq. (6.3.16) is a function of

w2, so we can do the same unfolding w2 → w2− ϵ2 as we did in the I2k models. Again, on

one hand, this replacement amounts to deforming all the conifold singularities occurring

at w = 0, and on the other hand, one of the square factors of b2,0 becomes generic, which

turns the over-split I2k+1 model into a non-split I2k+1 model.

6.3.4 The split/non-split transitions and conifold transitions in

the I3 models

Finally, to make the discussion complete, let us briefly describe the split/non-split

transitions in the I2k+1 models for k = 1, i.e. the I3 model. This lowest k case is rather

special and exhibits slightly different intersection patterns of the exceptional curves.

We have shown in Fig. 6.3 the singularities and exceptional curves in a split and

an over-split I3 model near a double root of c21,0 = 0. In an ordinary split I3 model,
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Figure 6.3: Singularities and exceptional curves in a split and an over-split I3 model.

no conifold singularity appears once the codimension-one singularity is blown up, even

when c1,0 ≡ w is taken to zero, where the fibre type changes from I3 to IV . No matter

hypermultiplet arises at the zero loci of c1,0. In the over-split I3 model, where we take

b2,0 = c21,0

b4,1 = c21,0c2,1,

b6,2 = c21,0c
2
2,1,

(6.3.18)

three conifold singularities appear at each zero locus of c1,0, whose small resolutions yield

exceptional curves of the I∗0 type, and the singularity is enhanced from A2 to D4.

Although the way the conifold singularities appear is slightly different from the

cases for k ≥ 2, the over-split I3 model is also turned into the non-split I3 model by the

replacement w2 → w2 − ϵ2, which is a deformation of a conifold singularity.

6.4 Split/non-split transitions as conifold transitions

(III): IV

Let us next consider the IV model. The IV model is defined in the Deligne form

(6.1.6) for b2, b4, b6 with vanishing orders 1, 2, 2, respectively. The sections f , g charac-

terizing the Weierstrass equation read

f = − 1

48
(b22,1 − 24b4,2)z

2 + · · · ,

g =
1

4
b6,2z

2 + · · · ,
(6.4.1)
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and the discriminant is

∆ =
27

16
b26,2z

4 + · · · , (6.4.2)

so ord(f, g,∆) = (2, 2, 4) and the generic fibre type at z = 0 is IV . At the zero loci of

b6,2, they are enhanced to (2, 3, 6), showing that the Kodaira fibre type there is I∗0 . If

the section b6,2 can be written in the form of a square c23,1 for some c3,1, the model is

said a split IV model, while if b6,2 cannot be written that way, it is said a non-split IV

model [90].

In this case, the only codimension-one singularity at a generic point on z = 0 is

p0 : (x, y, z, w) = (0, 0, 0, w), which can be resolved by just a one-time blow-up. The

resulting exceptional curves split into two, which intersect the original fibre at a single

point; they come on top of each other at b6,2 = 0.

In the split case, they are all double roots, and three new conifold singularities

appear on the overlapping exceptional lines. To see this, consider the equation blown up

once Φz(x1, y1, z, w) = 0 with

Φz(x1, y1, z, w) = −y21 + x31z

+1
4
(b2,1z + · · · )x21 + 1

2
(b4,2z + · · · )x1 + 1

4
(w2 + b6,3z + · · · )

z→0→ −y21 + 1
4
w2, (6.4.3)

in 1z, where we have set b6,2 = w2 to focus on a particular double root of b6,2 = 0. Eq.

(6.4.3) indeed shows that the generic exceptional curve splits into two lines, and they

coincide with each other at w = 0. Conifold singularities can be seen by rewriting Eq.

(6.4.3) as

Φz(x1, y1, z, w) = −y21 + 1
4
w2 + z(x31 +

1
4
b2,1x

2
1 +

1
2
b4,2x1 +

1
4
b6,3 +O(z)). (6.4.4)

For generic b2,1, b4,2, b6,3, the cubic equation of x1 has three distinct roots, giving rise to

three conifold singularities at y1 = w = z = 0. Again, the replacement w2 → w2 − ϵ2

amounts to the transition from the split to non-split IV model, at the same time it unfolds

the conifold singularity to yield a local deformed conifold. Singularities and exceptional

curves in the split IV model near w = 0 are depicted in Fig. 6.4.

6.5 Split/non-split transitions as conifold transitions

(IV): IV ∗

In the IV ∗ model, the vanishing orders of b2, b4, b6 are 2, 3, 4, respectively. f and g

(6.1.12) are

f =
1

2
b4,3z

3 + · · · ,

g =
1

4
b6,4z

4 + · · · .
(6.5.1)
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Figure 6.4: Singularities and exceptional curves in a split IV model.

The discriminant is

∆ =
27

16
b26,4z

8 + · · · . (6.5.2)

These imply that the fibre type is IV ∗ at a generic point of z = 0. The split IV ∗ model

has b6,4 in the form of a square c23,2 for some c3,2. The non-split IV ∗ model has generic

b6,4 [90]. In both the split and non-split models, the vanishing orders of (f, g,∆) at the

zero locus of b6,4 changes from (3, 4, 8) to (3, 5, 9), implying that the apparent fibre type

there is III∗, that is, the zero locus of b6,4 is an E7 point.

We have illustrated in Fig. 6.5 how the singularities appear and exceptional curves

intersect in the split IV ∗ model near w = 0, which is one of the double roots of c23,2 = 0.

At the stage where the three codimension-one singularities are blown up, there remain

three conifold singularities at each double root of b6,4 = c23,2 = 0. We will show that,

if all these conifold singularities are resolved by small resolutions, we obtain a smooth,

fully resolved split IV ∗ model, while if all the conifold singularities are simultaneously

deformed, we are led to a smooth non-split IV ∗ model.

We start with a split IV ∗ model. The defining equation is11

Φ(x, y, z, w) ≡ −y2 + x3 +1
4
b2,2z

2x2

+1
2
(b4,3z

3 + b4,4z
4)x

+1
4
(c23,2z

4 + b6,5z
5 + · · · ) = 0. (6.5.3)

11Although we are interested in the local structure of the singularity, the IV ∗ models are well-defined as

a dP9 fibration to consider the heterotic dual, so we have kept in Eq. (6.5.3) only terms with coefficients

bk,j up to j ≤ k. In any case, it doesn’t really matter whether we do so or not.
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Figure 6.5: Singularities and exceptional curves in the split IV ∗ model near a double root

of c23,2 = 0.

The first codimension-one singularity (next to the original singularity p0) can be found

on Φz(x1, y1, z, w) = 0 defined in Eq. (6.2.4) with Φ(x, y, z, w) given by Eq. (6.5.3). This

is

p1 : (x1, y1, z, w) = (0, 0, 0, 0) (1z). (6.5.4)

Blowing up Φz(x1, y1, z, w) = 0 at p1, we have

Φzx(x1, y2, z2, w) = −y22 + x21z2 +1
4
b2,2x

2
1z

2
2

+1
2
(b4,3x1z

2
2 + b4,4x

2
1z

3
2)

+1
4
(c23,2z

2
2 + b6,5x1z

3
2 + · · · ) = 0, (6.5.5)

where Φzx(x1, y2, z2, w) is defined similarly to Eq. (6.2.5). In the x1 → 0 limit, this

equation reduces to y22 = 0, which is a double line. It has a codimension-one singularity

q2 : (x1, y2, z2, w) = (0, 0, 0, w) (2zx) (6.5.6)

as well as a conifold singularity

vp2 : (x1, y2, z2, w) = (0, 0,−2b4,3
b6,5

, 0) (2zx). (6.5.7)

The latter can be seen by writing Eq. (6.5.5) as

−y22 + 1
4
w2z22 + x1(

1
2
b4,3z

2
2 +

1
4
b6,5z

3
2 +O(x1)) = 0, (6.5.8)
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where we again set c23,2 = w2 to focus on a particular double root of b6,4 = c23,2 = 0.

Blowing up Φzx(x1, y2, z2, w) = 0 at q2, we have

Φzxx(x1, y3, z3, w) = −y23 + x1z3 +1
4
b2,2x

2
1z

2
3

+1
2
(b4,3x1z

2
3 + b4,4x

3
1z

3
3)

+1
4
(c23,2z

2
3 + b6,5x

2
1z

3
3 + · · · ) = 0 (6.5.9)

in the patch 3zxx, where we have defined

Φzxx(x1, y3, z3, w) ≡ x−2
1 Φzx(x1, x1y3, x1z3, w). (6.5.10)

Eq. (6.5.9) still has a codimension-one singularity

q3 : (x1, y3, z3, w) = (0, 0, 0, w) (3zxx). (6.5.11)

Eq. (6.5.9) has also a conifold equation, but in fact, there arise two conifold singularities

after blowing up at q2 as we displayed in Fig. 6.5, and it is only the one of two that can

be seen in the patch 3zxx.

To see both conifold singularities we consider

Φzxz(x3, y3, z2, w) = −y23 + x23z2 +1
4
b2,2x

2
3z

2
2

+1
2
(b4,3x3z2 + b4,4x

2
3z

3
2)

+1
4
(c23,2 + b6,5x3z

2
2 + · · · ) = 0 (6.5.12)

in the patch 3zxz, where

Φzxz(x3, y3, z2, w) ≡ z−2
2 Φzx(x3z2, y3z2, z2, w). (6.5.13)

Eq. (6.5.12) can also be transformed into the form of a conifold equation

−y23 + 1
4
w2 + z2

(
x23 +

1
2
b4,3x3 +O(z2)

)
= 0, (6.5.14)

which indicates the existence of two conifold singularities

vp3 : (x3, y3, z2, w) = (0, 0, 0, 0),

vr3 : (x3, y3, z2, w) = (−1
2
b4,3, 0, 0, 0) (3zxz).

(6.5.15)

By looking at the form of the conifold equations (6.5.8) and (6.5.14) and following

the discussion we have presented in the previous sections, it is now clear that the transition

from the split IV ∗ model to the non-split IV ∗ model is the conifold transition from the

resolved side to the deformed side. Note that this is the only example in which the

transition occurs at an E7 point; as we saw in the previous sections, as well as we will see

in the next section, the transition always occurs at a D2k point in all the other examples.
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Figure 6.6: Singularities and exceptional curves in the split I∗2k−3 model.

6.6 The I∗n models

Finally, we will deal with the I∗n cases. The situation is quite different when n is

even and when n is odd. We will consider the odd case first.

6.6.1 The I∗2k−3 models

The I∗2k−3 models (k ≥ 2) have a D2k+1 singularity. In the split I∗2k−3 models (k ≥ 2),

conifold singularities appear as in the previous examples, and the deformation at theD2k+2

points turns a split I∗2k−3 model into a non-split one and can be regarded as a deformation

of the conifold singularities.

The model is defined by Eq. (6.1.6) with vanishing orders ord(b2, b4, b6) = (1, k +

1, 2k) (k ≥ 2). Whether the model is split or non-split depends on whether or not the

section b6,2k takes the form of a square c23,k for some c3,k [90]. In the split case, the Lie

algebra of the unbroken gauge symmetry is D2k+1 = SO(4k + 2). Whether split or non-

split, the zero loci of b6,2k are D2k+2 = SO(4k+4) points. Besides them, E6 and E8 points

may occur for k = 2 and 3, but they are not important here.

As we have shown in Fig. 6.6, one of the differences in the split I∗n model is that the

conifold singularities appear only at the final step of blowing up. We can see the conifold

singularities in the equation Φz · · · z︸︷︷︸
k

(xk, yk, z, w) = 0, where, setting c23,k ≡ w2,
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Φz · · · z︸︷︷︸
k

(xk, yk, z, w) = −y2k + x3kz
k +1

4
(b2,1z + · · · )x2k

+1
2
(b4,k+1z + · · · )xk

+1
4
(w2 + b6,2k+1z + · · · )

= −y2k + 1
4
w2 +z

(
1
4
b2,1x

2
k +

1
2
b4,k+1xk +

1
4
b6,2k+1 +O(z)

)
.

(6.6.1)

The discriminant of the quadratic equation 1
4
b2,1x

2
k+

1
2
b4,k+1xk+

1
4
b6,2k+1 = 0 is proportional

to b8,2k+2, which does not vanish generically. Therefore it has two distinct roots, yielding

the two conifold singularities. Eq. (6.6.1) again depends on w through w2 near the

singularities, and unfolding the conifold singularity is exactly what turns a split model

into a non-split one.

6.6.2 The I∗2k−2 models

So far we have seen various examples in which the split/non-split transition is pre-

cisely the conifold transition associated with the conifold singularities occurring at the

D2k points, or the E7 points in the IV ∗ case. In fact, in the I∗2k−2 model, the situation is

quite different. The crucial difference is that, in that case, no conifold singularity arises

at the zero locus of the section relevant to the split/non-split transition.

In this class of models, the orders of b2, b4, b6 are 1, k+1, 2k+1, instead of 1, k+1,

2k in the previous I∗2k−3 models. k = 1 is a special case and has already been discussed

in detail in [147]12, so we will consider k ≥ 2. f and g (6.1.12) read

f = − 1

48
b22,1z

2 + · · · ,

g = +
1

864
b32,1z

3 + · · · ,
(6.6.2)

which are the same as those in the I∗2k−3 models. The discriminant is

∆ =
1

16
b22,1b8,2k+2z

2k+4 + · · · , (6.6.3)

so, for a generic b2,1, the singularity is enhanced from D2k+2 to D2k+3 at the zero locus of

b8,2k+2, where

b8,2k+2 =
1

4
(b2,1b6,2k+1 − b24,k+1). (6.6.4)

12For the I∗0 models, we have, again, presented in Table 6.1 the generic orders of b2, b4, b6 (= 1, 2, 3)

that can achieve these fibre types with the additional constraints shown there. For the split and semi-split

I∗0 models, p2,1 can be eliminated by a redefinition of x, so that the orders of b2, b4, b6 become 1, 2, 4,

which are the values derived from the standard Tate’s orders for the split and semi-split I∗0 models.
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Figure 6.7: Singularities and exceptional curves in the split I∗2k−2 model.

If this b8,2k+2 is written as c24,k+1 for some c4,k+1, this I
∗
2k−2 model is called split, otherwise

non-split [90].

The blowing-up procedure proceeds similarly to the I∗2k−3 models. In the split case,

a difference arises when pk−1 is blown up, where the exceptional curves overlap to one line

instead of splitting into two lines, and three codimension-one singularities arise on the

line. This is precisely what was seen in the w → 0 limit after pk−1 was blown up in the

I∗2k−3 models, where the two conifold singularities found there are now replaced by two

codimension-one singularities (Fig. 6.7). Concretely,

Φz · · · z︸︷︷︸
k

(xk, yk, z, w) = −y2k + x3kz
k +1

4
(b2,1z + · · · )x2k

+1
2
(b4,k+1z + · · · )xk

+1
4
(b6,2k+1z + · · · ). (6.6.5)

Since b8,2k+2 is proportional to the discriminant of the quadratic equation of 1
4
b2,1x

2
k +

1
2
b4,k+1xk +

1
4
b6,2k+1 = 0, we can further write, by assuming b8,2k+2 = c24,k+1, as

Φz · · · z︸︷︷︸
k

(xk, yk, z, w) = −y2k + z
(
1
4
b2,1x

2
k +

1
2
b4,k+1xk +

1
4
b6,2k+1 +O(z)

)
= −y2k +

z

b2,1

((
b2,1
2
xk + b4,k+1

)2

+ c24,k+1 +O(z)

)
. (6.6.6)

Thus, the codimension-one singular loci of Φz · · · z︸︷︷︸
k

(xk, yk, z, w) = 0 split into two irreducible

components

yk = 0, z = 0,
b2,1
2
xk + b4,k+1 ± ic4,k+1 = 0. (6.6.7)

Their intersection is where c4,k+1 vanishes, or equivalently, b8,2k+2 = 0 vanishes, so it is a

D2k+3 point. The codimension-one singularities can be blown up along either of the two

irreducible components (6.6.7) first. We can verify that the exceptional curve obtained

in such a way splits into two lines precisely at the intersection D2k+3 point. Blowing up



124

along the remaining irreducible component thus yields the D2k+3 intersection diagram

only there. This is how the higher-rank intersection diagram emerges without conifold

singularities in the I∗2k−2 models.

On the other hand, the equation of the non-split I∗2k−2 model can be obtained by

replacing c24,k+1 with a generic b8,2k+2 in Eq. (6.6.6). In this case, the codimension-one

singular loci consist of only one irreducible component, along which we can blow up the

singularities only once. No conifold singularity is found. Therefore, only the I∗2k−2 models

(including the I∗0 model [147]) cannot interpret the split/non-split transition there as a

conifold transition.



Chapter 7

Conclusion

In this chapter, we conclude this thesis. We have considered F-theory compactifi-

cations. F-theory describes non-perturbative compactifications of Type IIB superstring

theory with general 7-branes geometrically. In F-theory, singularities play a particularly

essential role in geometrically realizing various aspects of string theory: gauge symmetries

and matter generation, and so on. In particular, the codimension-two singularities are

associated with matter generation [87, 88,90, 96]. Thus, for considering mater generation

in F-theory, we have focused on the codimension-two singularities in a six-dimensional

F-theory, especially, an F-theory on an elliptically fibred Calabi-Yau threefold over Fn in

the stable degeneration limit.

In six- or lower-dimensional F-theories, if a fibre type has the condition that an

exceptional curve splits into two irreducible ones, we can distinguish the singular fibre

type into two types. In the case that the exceptional curve can split globally, these fibre

types are called the split fibre types. On the other hand, in the case that it can not

split globally, these fibre types are called call it the non-split fibre types. Models with

the split singular fibre correspond to the ADE gauge symmetries implied by Kodaira’s

classification [62, 113, 114]. On the other hand, in models with the non-split singular

fibre, the two split irreducible exceptional curves are identified by monodromy around

a certain codimension-two singularity. Therefore, the expected gauge symmetries in the

non-split models are reduced to the non-simply-laced ones. However, the non-split models

have puzzles associated with non-local matter generation; thus, we have focused on the

non-split models whose expected gauge symmetries are the non-simply-laced ones.

We have briefly reviewed the basics of F-theory and the dualities between F-theory

and other superstring theories. First, we have introduced the [p, q]7-brane and their mon-

odromies. We have then discussed the classification of the 7-brane configurations and

the expected gauge symmetries by analyzing the monodromies in Type IIB superstring

theory [63–65]. Next, we construct F-theory and see that the singularities of F-theory com-

pact space have the information associated with gauge symmetries implied by Kodaira’s

classification [62, 113, 114]. We then discuss the dualities between F-theory and other

125
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theories: M-theory [52, 59, 111] and Heterotic superstring theory [52, 53, 87–89, 123, 124].

Finally, we introduce the anomaly cancellation condition [90, 125] and see that matter

content in a model with ADE codimension-one singularity matches this condition if the

charged matter fields are localized at all codimension-two singularities [90].

Moreover, we have considered models in which not full-hypermultiplets but half-

hypermultiplets appear as matter multiplets. In these cases, the singularity enhancement

is characterized by G′/(G×A1). We have mentioned these gauge symmetries correspond

to particular Wolf spaces and are related to the Freudenthal-Tits magic square. In the first

half of Chapter 5, we consider the split I6 model in which half-hypermultiplets arise and

whose expected gauge symmetry is A5. We have demonstrated explicit blow-up processes

and investigated the intersection diagrams of the exceptional curves. In particular, we

have shown that the conifold singularities play an essential role in several aspects of this

example.

In the last half of Chapter 5, as a final magical example, we have studied an F-theory

on an elliptic fibration over a Hirzebruch surface Fn with a codimension-one singularity

of the non-split I6 singular fibre type whose expected gauge symmetry is C3. We have

then found significant qualitative differences between the F-theory models of the split

types with half-hypermultiplets and the present model [99]. First, we have shown that

the massless half-hypermultiplets of C3: 14′ 1
2
and 61

2
, which are related to F4/(Sp(3) ×

SU(2)) and Sp(4)/(Sp(3) × SU(2))), arise at the codimension-two singularities where

the gauge symmetry is enhanced to E6 and the half-hypermultiplets 201
2
of A5 appear

in the split I6 model. We have then considered the puzzles associated with non-local

matter generation in the base space near the codimension-two singularities where the

codimension-one singularity is enhanced to D6. Not only the non-split I6 model but also

other non-split models have these puzzles [1, 90, 95, 100–104]. In terms of the anomaly

cancellation condition and the resolution of the singularities, we have stated what the

puzzles are as follows:

(1) In split models, if the charged matter fields are localized at all codimension-two

singularities, the number of the matter fields is consistent with the anomaly cancel-

lation condition. This is one of the reasons why the massless charged matter fields

are localized at all codimension-two singularities, which correspond to intersections

of 7-branes in Type IIB superstring theory, in six-dimensional F-theory models with

ADE gauge symmetries. On the other hand, in non-split models, there is a puzzle

in which the anomaly cancellation condition and the naive counting of the number

of the matter fields under the same condition for split models do not match.

(2) At a D2k+2 (k ≥ 1) or an E7 codimension-two singularity, some conifold singularities

remain in the split models even after blowing up all codimension-one singularities,

but not in the non-split models. In the split models, since we can yield new two-

cycles by small resolutions of the conifold singularities, we can obtain an intersection
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diagram of exceptional curves that is different from one on a codimension-one sin-

gularity; therefore, the enhancement of the gauge symmetry can be explained. In

the M-theory dual, an M2-brane wrapped around the new two-cycle generates local

matter fields. On the other hand, in the non-split models, no additional blow-up

at these singularities is required since they are simultaneously resolved together by

the resolution of codimension-one singularity; then, the intersection diagrams re-

main the same and there is no new two-cycle around which an M2-brane can be

wrapped. Therefore, there is no sign of localized matter fields, although the anomaly

cancellation condition requires charged matter fields to arise.

In the last half of this thesis, toward understanding these puzzles, we have examined

the relationship between the split and the non-split models [95]. We have then shown

that the transition from the split model after the blow-ups to the corresponding non-split

model, except for a special class of models, is a conifold transition from the resolved to

the deformed side. This transition is related to the conifold singularities remaining at

the codimension-two singularities where the codimension-one singularity is enhanced to

D2k+2 (k ≥ 1) or E7 after the blow-ups of the codimension-one singularity.

In Chapter 6, we have investigated this fact separately for all cases in that we can

distinguish between the split and non-split fibre types: In (n ≥ 3), I∗n (n ≥ 0), IV and

IV ∗. The results, respectively, have been as follows:

(1) I2k (k ≥ 2), IV and I∗2k−3 (k ≥ 2) models (A2k−1, H2 and D2k+1 models)

The I2k, IV and I∗2k−3 split models have the D2k, D4 and D2k+2 codimension-two

singularities in general. After the resolution of the codimension-one singularities,

we have found that there have remained some conifold singularities there. If these

conifold singularities have been resolved by small resolutions, we have obtained a

smooth split model for each case. This is the resolved side of the conifold transition.

On the other hand, we can resolve these conifold singularities by the deformation.

We have found that a certain deformation has caused the transition from the split

models to the corresponding non-split model. In this case, since all conifold sin-

gularities have been simultaneously resolved by this deformation, we have obtained

a smooth non-split model for each case. This is the deformed side of the conifold

transition.

(2) IV ∗ model (E6 model)

This model is similar to the models belonging to (1), but only in this case, the

codimension-two singularity where the conifold transition occurs is an E7 codimension-

two singularity instead of a D2k one.

(3) I2k−1 (k ≥ 2) models (A2k−2 models)
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These models do not have the D2k codimension-two singularities but have the D2k−1

and A2k−1 codimension-two singularities in general. However, by adjusting the com-

plex structure as if a D2k−1 and an A2k−1 codimension-two singularity superimpose

each other, we have obtained a D2k codimension-two singularity. We called such a

split I2k−1 model with this special complex structure an “over-split” model [99]. In

“over-split” models, we have found that there have remained some conifold sin-

gularities at the D2k codimension-two singularities after the resolution of their

codimension-one singularities. We have then obtained the non-split I2k−1 model

by the deformation of the conifold singularities in the corresponding “over-split”

models similarly.

(4) I∗2k−2 (k ≥ 1) models (D2k+2 models)

In these models, no conifold singularities appear after the resolution of the codimension-

one singularity. Therefore, these models are a special class in which the split/non-

split transition cannot be regarded as a conifold transition.

These results have clarified, in cases except (4), that the deformations of conifold

singularities that remain after the resolution of the codimension-one singularities corre-

spond to diagram automorphisms of the expected simply-laced Dynkin diagrams in the

corresponding split models. And these also have shown that “local deformed conifolds”,

which are nontrivial three-cycles S3, appear in non-split models where matter fields exist

in compact space without any special parameter tuning and that the puzzle in resolution

analysis [99] is because of conifold singularities becoming deformed. These are non-local

in the base space and thus it implies non-local matter generation.

[1] has proposed a mechanism for non-local matter generation in the non-split model

that requires no additional exceptional curves and due to the adjoint hypermultiplets

associated with a genus-g Riemann surface. We have investigated how this proposal can

be realized in our resolution analysis. We have then shown that the genus-g Riemann

surface can be obtained as an intersection of the blown-up threefold and a certain divisor

by “forgetting” the fibre P1. We have found that even when there are multiple split pairs

of exceptional curves, similar results are obtained.

It would be very interesting to consider this transition from the standpoint of defor-

mation theory [152,153] since the non-split model includes having a deformation condition

in its definition. Moreover, as emphasized above, without any special parameter tuning

of the moduli, the conifold singularities associated with our discussion appear where

the matter fields arise. The conifold transition has been a key concept when discussing

AdS/CFT [154,155], topological string theory [156,157], and string cosmology, for exam-

ple, in [2,158]. Also, the “local deformed conifolds” have been utilized in models of early

cosmology such as the construction of de Sitter Vacua in superstring theory [2,155]. From

these facts, we hope to consider new applications of the facts revealed in this thesis to

string phenomenology and cosmology. In particular, it would be significant to investigate



129

this transition from the standpoint of dual M-theory (e.g., the box graph [143,159–162]),

since on the F-theory side this conifold singularity involves virtual space, while on the

dual M-theory side, it is all physical space.
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Appendix A

Conifold singularity

A.1 Conifold singularity

In this Appendix, we consider the deformation and resolution of a conifold singularity

(see [163]). A (singular) conifold is a cone-like complex Calabi-Yau threefold with a

singularity at the cone’s tip. And this manifold has the base of S2×S3 in the neighborhood

of the singularity (Fig. A.1). This singularity is called a conifold singularity. A conifold

!"

!#

(0,0,0,0)

Figure A.1: The neighborhood of conifold singularity.

is defined as by

Pc = x2 + y2 + z2 + w2 = 0, (A.1.1)

where (x, y, z, w) ∈ C. In this case, there is a conifold singularity at (x, y, z, w) =

(0, 0, 0, 0). There are two ways to resolve the conifold singularity: Deformation and small

resolution.

131
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A.2 Deformed conifold

In this section, we consider the deformation of a conifold singularity. By deforming

the right-hand side of Eq. (A.1.1) from 0 to ϵ2, it can be deformed as in

x2 + y2 + z2 + w2 = ϵ2, (A.2.1)

where ϵ(̸= 0) ∈ R (or C). When a conifold singularity is resolved in this way, we obtain a

manifold called a ”deformed conifold”. In other words, We obtain the deformed conifold

as the singularity at the tip of Fig. A.1 is resolved by blowing up S3 (Fig. A.2). From

Fig. A.2, S2 ×R ≃ R3 ≃ T ∗
xS

3 (x ∈ S3) can be regarded as a fiber at each point x of S3,

so the total manifold is T ∗S3. This can be shown as follows. By variable transformation

𝑆!

𝑆"(𝜖)

𝑆"

Figure A.2: Deformed conifold.

as

x = Y1 + iZ1, y = Y2 + iZ2,

z = Y3 + iZ3, w = Y4 + iZ4,
(A.2.2)

from Eq. (A.2.1), we obtain

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 − Z2
1 − Z2

2 − Z2
3 − Z2

4 = ϵ2, (A.2.3)

Y1Z1 − Y2Z2 − Y3Z3 − Y3Z3 = 0, (A.2.4)

where Yi, Zi ∈ R and Zi are the coordinates of the cotangent space of (x ∈)S3. The base

(Zi = 0) is given by

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = ϵ2 (A.2.5)

and is S3 whose radius is ϵ. If we consider ϵ→ 0, the deformed conifold becomes singular

again.
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A.3 Resolved conifold

In this section, we consider the small resolution of a conifold singularity. We can

resolve a singularity on a hypersurface in the ambient space C4 by inserting P3 in C4

in general. If the singularity is a conifold singularity, this operation is equivalent to

inserting P1× P1. However, it is sufficient to insert only one of the two P1s to resolve the

conifold singularity. Thus, This resolution is called the small resolution. When a conifold

singularity is resolved by the small resolution, we obtain a manifold called a ”resolved

conifold”. In other words, We obtain the resolved conifold as the singularity at the tip

of Fig. A.1 is resolved by blowing up S2 (Fig. A.3). This can be shown as follows. By

𝑆!

𝑆"

𝑆! ⋍ ℙ#

Figure A.3: Resolved conifold.

variable transformation as

X1 = x+ iy, X2 = z + iw,

X3 = −z + iw, X4 = x− iy,
(A.3.1)

from Eq. (A.2.1), we obtain

Pc = X1X4 −X2X3 = 0. (A.3.2)

In this case, there is a conifold singularity at (X1, X2, X3, X4) = (0, 0, 0, 0). Inserting one

P1 at the conifold singularity in C is given by

Ĉ =

{
((x, y, z, w)× (ξ : η)) ∈ C4 × P1|

(
X1 X2

X3 X4

)(
ξ

η

)
=

0

0

}
, (A.3.3)
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where det

(
X1 X2

X3 X4

)
= 0. Since rank

(
X1 X2

X3 X4

)
= 0 at only (X1, X2, X3, X4) =

(0, 0, 0, 0), (ξ : η)(∈ P1) is undetermined. On the other hand, at (X1, X2, X3, X4) ̸=
(0, 0, 0, 0), (ξ : η) is determined at a single point. Therefore, considering Ĉ means that P1

is only inserted at the conifold singularity (X1, X2, X3, X4) = (0, 0, 0, 0). We also confirm

that the conifold singularity is resolved by this operation.

∂X1(X1ξ +X2η) = ξ = 0 (A.3.4)

and

∂X2(X1ξ +X2η) = η = 0 (A.3.5)

give (ξ, η) = (0, 0). However, since (ξ : η) ∈ P1, Ĉ is regular.

From Eq. (A.3.3), we obtain

ξX1 = −ηX2, ξX3 = −ηX4. (A.3.6)

And Ĉ is covered by two local patches: ξ ̸= 0 and η ̸= 0. In the local patch ξ ̸= 0, Eq.

(A.3.6) is

X1 = −λX2, X3 = −λX4, (A.3.7)

where λ := η/ξ. Hence, (X2, X4, λ) are the local coordinates of this patch. In this patch,

inserted P1 is

(X2, X4, λ) = (0, 0, λ). (A.3.8)

On the other hand, in the local patch η ̸= 0, Eq. (A.3.6) is

X2 = −µX1, X4 = −µX3, (A.3.9)

where µ := ξ/η. Hence, (X1, X3, µ) are the local coordinates of this patch. In this patch,

inserted P1 is

(X1, X3, µ) = (0, 0, µ). (A.3.10)

A.4 Conifold transition

Finally, we consider introducing a conifold transition based on the fact in the pre-

vious section. The size of S3 in the deformed conifold is reduced to zero (ϵ → 0) to give

the singular conifold, from which blowing up S2 ≃ P1 gives the resolved conifold. This

transition is called a conifold transition from the deformed to the resolved side (Fig. A.4).
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Figure A.4: Conifold transition.
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[58] M. Cvetič and L. Lin, TASI Lectures on Abelian and Discrete Symmetries in

F-theory, PoS TASI2017 (2018) 020 [arXiv:1809.00012 [hep-th]].

[59] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474

(1996) 343–360 [arXiv:hep-th/9604030].

[60] A. Sen, Orientifold limit of F theory vacua, Phys. Rev. D 55 (1997) R7345–R7349

[arXiv:hep-th/9702165].

[61] M. Bianchi, A. Collinucci, and L. Martucci, Magnetized E3-brane instantons in

F-theory, JHEP 12 (2011) 045 [arXiv:1107.3732 [hep-th]].

[62] K. Kodaira, On Compact Analytic Sureface II, Annals of Math. 77 (1963) 563.

[63] M. R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl.

Phys. B 518 (1998) 151–172 [arXiv:hep-th/9709013].

[64] O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra

representations, Nucl. Phys. B 541 (1999) 509–565 [arXiv:hep-th/9804210].

[65] O. DeWolfe, T. Hauer, A. Iqbal, and B. Zwiebach, Uncovering the symmetries on

[p,q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3

(1999) 1785–1833 [arXiv:hep-th/9812028].

[66] K. Hashimoto, H. Hata, and N. Sasakura, Three - string junction and BPS

saturated solutions in SU(3) supersymmetric Yang-Mills theory, Phys. Lett. B 431

(1998) 303–310 [arXiv:hep-th/9803127].

[67] K. Hashimoto, H. Hata, and N. Sasakura, Multipronged strings and BPS saturated

solutions in SU(N) supersymmetric Yang-Mills theory, Nucl. Phys. B 535 (1998)

83–115 [arXiv:hep-th/9804164].

http://arxiv.org/abs/hep-th/9910207
http://arxiv.org/abs/0803.1194
http://dx.doi.org/10.1088/0264-9381/27/21/214004
http://dx.doi.org/10.1088/0264-9381/27/21/214004
http://arxiv.org/abs/1009.3497
http://arxiv.org/abs/1104.2051
http://arxiv.org/abs/1806.01854
http://dx.doi.org/10.22323/1.305.0020
http://arxiv.org/abs/1809.00012
http://dx.doi.org/10.1016/0550-3213(96)00283-0
http://dx.doi.org/10.1016/0550-3213(96)00283-0
http://arxiv.org/abs/hep-th/9604030
http://dx.doi.org/10.1103/PhysRevD.55.R7345
http://arxiv.org/abs/hep-th/9702165
http://dx.doi.org/10.1007/JHEP12(2011)045
http://arxiv.org/abs/1107.3732
http://dx.doi.org/10.1016/S0550-3213(97)00841-9
http://dx.doi.org/10.1016/S0550-3213(97)00841-9
http://arxiv.org/abs/hep-th/9709013
http://dx.doi.org/10.1016/S0550-3213(98)00743-3
http://arxiv.org/abs/hep-th/9804210
http://dx.doi.org/10.4310/ATMP.1999.v3.n6.a5
http://dx.doi.org/10.4310/ATMP.1999.v3.n6.a5
http://arxiv.org/abs/hep-th/9812028
http://dx.doi.org/10.1016/S0370-2693(98)00588-7
http://dx.doi.org/10.1016/S0370-2693(98)00588-7
http://arxiv.org/abs/hep-th/9803127
http://dx.doi.org/10.1016/S0550-3213(98)00585-9
http://dx.doi.org/10.1016/S0550-3213(98)00585-9
http://arxiv.org/abs/hep-th/9804164


141

[68] K. Hashimoto, String junction from world sheet gauge theory, Prog. Theor. Phys.

101 (1999) 1353–1370 [arXiv:hep-th/9808185].

[69] Y. Imamura, E(8) flavor multiplets, Phys. Rev. D 58 (1998) 106005

[arXiv:hep-th/9802189].

[70] Y. Imamura, String junctions and their duals in heterotic string theory, Prog.

Theor. Phys. 101 (1999) 1155–1164 [arXiv:hep-th/9901001].

[71] K. Dasgupta and S. Mukhi, BPS nature of three string junctions, Phys. Lett. B

423 (1998) 261–264 [arXiv:hep-th/9711094].

[72] M. Krogh and S. Lee, String network from M theory, Nucl. Phys. B 516 (1998)

241–254 [arXiv:hep-th/9712050].

[73] Y. Matsuo and K. Okuyama, BPS condition of string junction from M theory,

Phys. Lett. B 426 (1998) 294–296 [arXiv:hep-th/9712070].

[74] J. J. Heckman, C. Lawrie, T. B. Rochais, H. Y. Zhang, and G. Zoccarato, S-folds,

string junctions, and N = 2 SCFTs, Phys. Rev. D 103 no. 8, (2021) 086013

[arXiv:2009.10090 [hep-th]].

[75] F. Hassler, J. J. Heckman, T. B. Rochais, T. Rudelius, and H. Y. Zhang,

T-Branes, String Junctions, and 6D SCFTs, Phys. Rev. D 101 no. 8, (2020)

086018 [arXiv:1907.11230 [hep-th]].
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