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Machine learning recognizes patterns from data, and its applications have achieved
great success in a wide range of fields. These successes are supported by a huge amount
of data. For example, to train models for natural language processing, datasets
consisting of more than one billion words are used. For image classification tasks, it is
standard to use more than ten million images. In order to obtain a well-performing
machine learning model, collecting a huge amount of training data is crucial.

In many real-world problems, however, it is hard to collect a sufficient amount of data.
For example, in scientific fields such as materials science, one can obtain extremely
limited amounts of data due to several obstacles, e.g., the cost of data collection, the
diversity of researchers' needs, and the high level of information confidentiality. For
further progress in machine learning, it is necessary to overcome such a bottleneck of
a limited supply of data.

Transfer learning, which refers to the problem of applying the knowledge learned in
one or more tasks to develop an effective model for a new task efficiently, has received
a lot of attention as a methodology for solving the small data problem. In order to
obtain a well-performing model in a new target domain, we reuse knowledge such as
parameters of models, encoded features, hyperparameters, and samples from related
source domains. So far, various methodologies and theories of transfer learning have
been studied. Through practical applications, transfer learning has shown to be an
effective technique for tasks with small amounts of data, not only in computer vision
and natural language processing but also in various scientific fields, such as materials
science and biology.

For the success of transfer learning, which knowledge to be transferred is a
fundamental issue. Typically, the parameters or intermediate representations of pre-
trained source models are reused. The parameter transfer uses the parameters of the
pre-trained model as initial values in training in a target domain. In Bayesian
statistics, this approach corresponds to using the source parameters as a prior. On the
other hand, transfer learning based on the intermediate representations is called
feature extraction. When the source model is a neural network, the features encoded
in its intermediate layer are used as input for the target prediction task. As a special
case of feature extraction, using the output of the source model to predict a shift to the
target is called hypothesis transfer learning.

In this thesis, we focus on supervised transfer learning in regression problems, in



particular, the problem of reusing features obtained from the training in the source
domain. There are several benefits of focusing on the reuse of source features. One of
the most notable is applicability. In general, source models are not always obtained as
statistical models, such as neural networks, but may be physical models or may not be
explicitly represented as a function of the input. In such cases, approaches relying on
a particular statistical model, such as parameter transfer, cannot be used, but
approaches based on source features can. Another benefit is computational feasibility.
In the case of parameter transfer, all parameters of the source model must be stored,
and the entire model must be retrained. When transferring from extremely large
models, such as state-of-the-art neural network models with more than a billion
parameters, the computational cost becomes enormous. On the other hand, in the case
of feature extraction, the computational cost is relatively low because the feature
representation is computed only once in advance. For the widespread application of
transfer learning, it is essential to develop methods that rely only on the source
features.

After reviewing the several methodologies and theories of transfer learning in Chapter
2, this thesis proceeds as follows.

In Chapter 3, we aim to establish a new transfer learning class that is applicable to
any regression model. The proposed class unifies different classes of existing transfer
learning methods for regression. To model the transition from a pre-trained model to a
new model, we introduce a density-ratio reweighting function. The density-ratio
function i1s estimated by conducting a Bayesian inference with a specific prior
distribution while keeping the given source model unchanged. Two hyperparameters
and the choice of the density-ratio model characterize the proposed class. It can
integrate and extend three popular transfer learning methods within a unified
framework, including transfer learning based on cross-domain similarity
regularization, probabilistic transfer learning using density-ratio estimation, and fine-
tuning of pre-trained neural networks.

In general, the model transfer operates through a regularization scheme to leverage
the transferred knowledge between different tasks. Conventional regularization aims
to retain similarity between the pretrained and transferred models. This natural idea
is what we refer to as cross-domain similarity regularization. On the other hand, the
density-ratio method operates with an opposite learning objective that we call the
cross-domain dissimilarity regularization; the discrepancy between two tasks is
modeled and inferred, and the transferred model is a weighted sum of the pre-trained
source model and the newly trained model on the discrepancy. These totally different
methods can be unified within the proposed framework.

In Chapter 4, we develop a transfer learning methodology to estimate cross-domain
shifts and domain-specific factors simultaneously and separately using given target

samples. The framework we employ considers two different transformation functions:



one to represent and estimate domain-specific factors and the other to adapt them to
the target domain in combination with the source features. For these transformation
functions, we derive a theoretically optimal class based on the assumptions of
invertibility and differentiability as well as consistency, i.e., that the optimal predictor
does not change through the two transformations. The resulting function class takes
the form of an affine coupling of three functions. These functions can be estimated
simultaneously using conventional supervised learning algorithms such as kernel
methods or deep neural networks. We refer to this framework as the affine model
transfer.

The affine model transfer can also be interpreted as generalizing the feature extractor
by adding a product term. This additional term allows for the inclusion of unknown
factors in the transferred model that are unexplainable by source features alone.
Furthermore, this encourages the avoidance of a negative transfer. The usual transfer
learning based on feature extraction attempts to explain and predict the data
generation process in the target domain using only features from the source domain.
However, in the presence of domain-specific factors, a negative transfer can occur owing
to a lack of descriptive power. The additional term compensates for this shortcoming.
Several synthetic and real data analyses were performed for each proposed method to
highlight practical advantages and features. Through a wide range of prediction tasks,
we investigated the applicability of the proposed methods and their behavior according
to the cross-domain relationships. Furthermore, we applied the affine model transfer
to calibrate the simulated values, and found that, in the estimated model, the domain-
common and domain-specific factors were captured consistently with the

physicochemical formula.
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