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Abstract

The effective training of statistical models with a limited sample size is critical for
the success of statistics and machine learning in practical applications. A methodology
called transfer learning has been actively studied to address this challenge. Transfer
learning imitates the learning process of human intelligence, where predictions are
made with little experience by reusing the knowledge gained in the past. While
end-to-end model development with insufficient data is challenging, models from
related domains, which are trained with sufficient data, can be adapted to compensate
for the data inadequacy. Transfer learning has been applied in various fields, such as
image recognition, natural language processing, and materials science, as an effective
solution to the small data problem.

This thesis focuses on supervised transfer learning in regression tasks and proposes
frameworks to estimate the shift from the source domain to the target domain. Based
on statistical approaches, general frameworks are developed that encompass some
existing procedures such as transfer learning based on Bayesian inference, density-ratio
estimation, neural networks, and variable transformation. Furthermore, theoretical
analyses are conducted to clarify some characteristic features, including the preference
of the hyperparameters and learning efficiency of the developed framework. We
demonstrate the practical benefits of the generalized frameworks through several case
studies.
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Chapter 1

Introduction

Machine learning is used to recognize patterns in data. Although it has achieved
great success in a wide range of fields, its effectiveness depends on the availability of
a huge amount of data. For example, BERT (Devlin et al., 2019), which recorded
the highest accuracy for various natural language processing tasks at the time of its
development, used data sets containing more than three billion words for training.
An image classification model is generally trained on more than ten million images
(Deng et al., 2009; Thomee et al., 2016). Thus, it is essential to collect a huge amount
of training data to obtain a well-performing machine learning model.

However, in many real-world problems, it is challenging to collect a sufficient
amount of data. For example, in scientific fields such as materials science, we can
obtain extremely limited amounts of data owing to several obstacles, e.g., cost of data
collection, diverse demands of researchers, and constraints related to strict information
confidentiality. For further progress of machine learning, it is necessary to overcome
the bottleneck of limited data supply.

Transfer learning (TL) (Pan & Yang, 2009; Yang et al., 2020) has received consid-
erable attention as a methodology for solving the small data problem. TL refers to the
problem of applying the knowledge learned in one or more tasks to efficiently develop
an effective model for a new task (Silver et al., 2005), To obtain a well-performing
model in a new domain, called the target domain, we reuse the knowledge such as
parameters of the models, encoded features, hyperparameters, and samples from the
related domains, called the source domains.

Although concepts such as TL have been extensively studied, the potential of TL
began to be noticed after the success of deep learning. By training a deep neural net-
work model using large amounts of data, we can obtain a high-performing model that
can occasionally outperform human capability. Such models are trained specifically
for a particular prediction task, which begets a discussion of their performance on
other similar prediction tasks (Donahue et al., 2014; Agrawal et al., 2014). Various
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frameworks and theories of TL have been studied. In practical applications, TL has
been shown to be an effective technique for overcoming the small data problem, not
only in computer vision (Krizhevsky et al., 2012; Csurka, 2017) and natural language
processing (Ruder et al., 2019; Devlin et al., 2019) but also in various other scientific
fields, such as materials science (Yamada et al., 2019; Wu et al., 2019; Ju et al., 2021)
and biology (Sevakula et al., 2019).

The success of TL depends on the specific knowledge to be transferred. Typically,
the parameters or intermediate representations of pre-trained source models are reused
(Yosinski et al., 2014). These procedures are called parameter transfer and feature
extraction, respectively. Parameter transfer uses the parameters of the pre-trained
model as the initial values for training for a target task. In Bayesian statistics, this
approach corresponds to adopting the source parameters into a prior distribution.
Feature extraction uses the features encoded in the intermediate layers of the source
model as inputs for a target task. Hypothesis transfer learning (HTL) is a special
case of feature extraction, wherein the output of the source model is used to predict
the domain shift (Kuzborskij & Orabona, 2013; 2017; Du et al., 2017).

Problem settings and our contributions

This thesis focuses on supervised TL in regression problems, in particular, the problem
of reusing features obtained from the training in the source domain. We assume that
the output of the target domain y ∈ Y ⊂ R follows y = ft(x)+ ϵ, where ft : X → R is
the true model on the target domain, and the observation noise ϵ has mean zero and
variance σ2. We are given n labeled samples {(xi, yi)}ni=1 ∈ (X × Y)n from the target
domain and the feature representation fs(x) ∈ Fs from one or more source domains.
For example, TL based on feature extraction uses the intermediate representation of
a neural network as fs, whereas HTL uses the output of the source model.

There are several benefits of focusing on the reuse of source features, among
which the most notable is applicability. In general, source knowledge is not always
available as statistical models, such as neural networks, but may be as physical models,
Moreover, source knowledge may not be explicitly represented as a function of the
input x. In such cases, approaches relying on a particular statistical model, such as
parameter transfer, cannot be used, although feature-based approaches can be used.
Another benefit is computational feasibility. In parameter transfer, all parameters
of the source model must be stored and the entire model must be retrained. When
transferring from extremely large models, such as state-of-the-art neural network
models with more than a billion parameters, the computational cost becomes enormous.
In contrast, in the case of feature extraction, the computational cost is relatively
low because the feature representation is computed only once in advance. For the
widespread application of TL, it is essential to develop tractable TL methods such as
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feature extraction.
After reviewing several approaches and theoretical results of TL in Chapter 2, this

thesis proceeds as follows.

Chapter 3 In Chapter 3, we present a new class of TL that is applicable to any
regression model. The proposed class unifies different classes of existing TL methods
for regression. To model the shift from a pre-trained source model to a target model,
we introduce a density-ratio reweighting function. The density-ratio function is
estimated by applying Bayesian inference with a specific prior distribution using a
fixed source model. Two hyperparameters and the model for the density-ratio function
characterize the proposed class. It can integrate and extend three popular methods
of TL within a unified framework, including TL based on cross-domain similarity
regularization (Marx et al., 2005; Raina et al., 2006; Kuzborskij & Orabona, 2013; 2017;
Jalem et al., 2018), probabilistic TL using density-ratio estimation (Sugiyama et al.,
2012; Liu & Fukumizu, 2016), and fine-tuning of pre-trained neural networks (Yosinski
et al., 2014; Hinton et al., 2015; Kirkpatrick et al., 2017).

In general, the model transfer operates through a regularization scheme to leverage
the transferred knowledge between different tasks. Conventional regularization aims
to retain the similarity between the pre-trained and transferred models. This natural
idea is referred to as cross-domain similarity regularization. The density-ratio method
operates with an opposite learning objective, which we call cross-domain dissimilarity
regularization; the discrepancy between two tasks is modeled and inferred, and the
transferred model is given as a weighted sum of the pre-trained source model and the
newly trained model. These entirely different approaches can be unified within the
proposed framework.

To summarize, the features and contributions of Chapter 3 are as follows:

• We propose a novel framework for TL by introducing a density-ratio reweighting
function, which is estimated using a Bayesian framework with a specific prior
distribution.

• This framework can be applied to any regression model.

• The proposed class, which has two hyperparameters, can unify and hybridize
three existing methods of TL, including regularization based on cross-domain
similarity and dissimilarity.

• The two hyperparameters and a model for the density-ratio function are se-
lected through cross-validation. With this unified workflow, ordinary supervised
learning without transfer can also be selected if the previous learning experience
interferes with the learning of the new task.
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• The proposed framework can be implemented at no extra cost. With a simple
transformation of the output variable, the model can be trained using off-the-shelf
libraries for regression, which can implement the squared loss minimization with
any regularization scheme. In addition, the method is applicable to scenarios
where only the source model is accessible but not the source data, for example,
owing to privacy reasons.

The practical benefits of bridging entirely different methods in the unified workflow
are demonstrated for a wide range of prediction tasks in science and engineering
applications.

Chapter 4 Chapter 4 develops a TL methodology to estimate the cross-domain
shifts and domain-specific factors simultaneously and separately by using the given
target samples. Based on the HTL procedure, we consider two different transformation
functions: one to represent and estimate the domain-specific factors and the other
to adapt them to the target domain in combination with the source features. For
these transformation functions, we derive the theoretically optimal transformation
function class based on the assumptions of invertibility and differentiability as well as
consistency, i.e., the optimal predictor does not change during the two transformations.
The resulting function class takes the form of an affine coupling g1 + g2 · g3 of three
functions g1, g2, and g3, where the cross-domain shift is represented by the functions
g1 and g2, and the domain-specific factors are represented by g3. These functions
can be estimated simultaneously using conventional supervised learning algorithms
such as kernel methods or deep neural networks. We refer to this framework as affine
model transfer.

The affine coupling used in the affine model transfer is the basic model architecture
of invertible neural networks and is widely used in several fields, including generative
modeling (Dinh et al., 2014; 2017; Kingma & Dhariwal, 2018; Papamakarios et al.,
2021). Neural networks based on affine coupling layers have been proven to have
universal approximation ability (Teshima et al., 2020), which means that the proposed
model class has the potential to represent a broad class of transformation functions.

Furthermore, when we use the intermediate layers of a source neural network as
feature representations in the target domain, the affine model transfer is identical
to ordinary TL based on feature extraction. We can formulate a wide variety of TL
algorithms within the affine model transfer, including neural transfer as a special case.

To summarize, the contributions of Chapter 4 are as follows:

• The affine model transfer is proposed to adapt the source features to the target
domain by separately estimating the cross-domain shifts and domain-specific
factors.
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• Several existing methods of HTL are encompassed in the affine model transfer,
including neural network-based TL.

• The affine model transfer is compatible with any type of source model. For
example, non-machine learning models, such as physical models, can be used. It
can also handle multiple source models without loss of generality.

• For each of the three functions g1, g2, and g3, we provide an efficient and stable
estimation algorithm through modeling using the kernel method.

• Two theoretical properties of the affine model transfer are shown: generalization
bound and excess risk bound.

Based on several applications, we compare the affine model transfer with other TL
algorithms, discuss its strengths and weaknesses, and demonstrate the advantage of
the ability to estimate the cross-domain shifts and domain-specific factors separately.

Chapter 3 is based on the following conference paper (Minami et al., 2021):

• Shunya Minami, Song Liu, Stephen Wu, Kenji Fukumizu, and Ryo Yoshida.
A general class of transfer learning regression without implementation cost.
Proceedings of AAAI Conference on Artificial Intelligence, 35:8992–8999, 2021.

Chapter 4 is based on the following paper (Minami et al., 2022):

• Shunya Minami, Kenji Fukumizu, Yoshihiro Hayashi, and Ryo Yoshida. Transfer
learning with affine model transformation. arXiv, abs/2210.09745, 2022.
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Chapter 2

Transfer learning

In this chapter, we review several approaches and theoretical results of TL.
TL has been traditionally classified into two broad categories—supervised TL and

unsupervised TL— depending on the availability of the labels of the target samples
(Pan & Yang, 2009).

Definition 1 (Supervised transfer learning). Given some source knowledge, supervised
transfer learning aims to improve the performance of the predictive model in the
target domain by using the source knowledge and labeled data {(xi, yi)}ni=1 in the
target domain.

Definition 2 (Unsupervised transfer learning). Given some source knowledge, unsu-
pervised transfer learning aims to improve the performance of the predictive model in
the target domain by using the source knowledge and unlabeled data {xi}ni=1 in the
target domain.

Examples of source knowledge in these definitions are samples in the source
domain (instance transfer), parameters of pre-trained models (parameter transfer),
and features obtained from training in the source domain (feature representation
transfer). In Pan & Yang (2009), supervised instance transfer is further classified
into two categories. The case where the labels of the source samples are available is
referred to as multi-task learning (Caruana, 1997; Zhang & Yang, 2021), and the case
where they are not available is referred to as self-taught learning (Raina et al., 2007).

This thesis mainly focuses on supervised TL, and this chapter provides a focused
review of its methods and theoretical results. In addition, a few key concepts related
to unsupervised TL are introduced.
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2.1. METHODS

Source distribution

Target data

Target distribution

(a) TL based on Bayesian inference

Source distribution

Target distribution

Density-ratio

(b) TL based on density-ratio estimation

Figure 2.1: Schematics of two probabilistic transfer learning approaches. (a) In
transfer learning based on Bayesian inference, the source knowledge is used in the
prior distribution and transferred according to Bayes’ theorem with the likelihood
using the target samples. (b) Based on density-ratio estimation, the shift from the
source distribution is adjusted by estimating the ratio of the densities and weighting
the source distribution.

2.1 Methods

We begin with a review of some supervised TL frameworks. The typical approaches
in this context are introduced from two perspectives: probabilistic modeling and
non-probabilistic modeling.

2.1.1 Probabilistic supervised transfer learning

From the probabilistic viewpoint, the goal of TL is to predict the conditional distribu-
tion pt(y|x) of the target domain by using the conditional distribution ps(y|x) of the
source domain. Therefore, the TL problem reduces to the problem of estimating the
shift of the distribution from ps to pt.

Bayesian inference

Bayesian inference is one of the most common approaches to adjust the shift of the two
distributions. By focusing on the similarity between the source and target domains,
the probability distribution is updated using the collected sample set Dt of the target
domain as follows:

p(θt|Dt) ∝ p(Dt|θt)p(θt),

where θt is the parameter of the target model.
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2.1. METHODS

To obtain a point estimate of the parameter θt, a maximum a posteriori probability
(MAP) estimation is conducted.

θ̂t = argmax
θt

p(θt|Dt). (2.1)

Given the specific form of the likelihood function and prior distribution, the objective
function to be minimized is derived. Typically, for regression problems, the Gaussian
distribution is imposed on the likelihood as

p(Dt|θt) ∝
n∏
i=1

exp

{
− (yi − ft(xi; θt))2

σ1

}
, (2.2)

where ft is the target model with a parameter θt and σ1 > 0 is a variance parameter
for the Gaussian distribution.

For the prior, the Gaussian distribution, which is the conjugate prior of the
Gaussian distribution, is commonly used, and various methods have been proposed
depending on the place of application of the source knowledge in the prior distribution—
in the mean parameter (Daumé & Marcu, 2006; Daumé, 2007; Finkel & Manning,
2009), covariance matrix (Raina et al., 2006), or both (Gönen & Margolin, 2014;
Shwartz-Ziv et al., 2022). Here, we refer to the use of a Gaussian distribution with
the source parameter θs as its mean.

p(θt) ∝ exp

{
− ∥θt − θs∥

2
2

σ2

}
, (2.3)

where σ2 > 0 is a variance parameter. By substituting Eq. (2.2) and Eq. (2.3) into
Eq. (2.1), the optimization problem can be expressed as

θ̂t = argmin
θt

n∑
i=1

{yi − ft(xi; θt)}2 + λ1∥θt − θs∥22, (2.4)

where λ1 := σ1/σ2. This objective function is regarded as an ordinary least squares
with ℓ2-regularization. This regularization aims to facilitate the estimation of the
target parameter θt in the neighborhood of the source parameter θs. Because the
Gaussian distribution is used for the prior distribution, a variant of ridge regression is
derived. When the Laplace distribution is used, a lasso-like regularization is derived
by the same procedure (Takada & Fujisawa, 2020).

Eq. (2.4) imposes the same weight on each element of the parameters as the
regularization penalty. This assumes that each coefficient changes by the same amount
through a domain shift, which is very severe. Elastic weight consolidation (Kirkpatrick
et al., 2017) uses the Fisher information matrix to weigh each dimension to capture
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2.1. METHODS

the parameter changes correctly. This is expected to prevent the excessive loss of
knowledge in the source domain, called catastrophic forgetting (McCloskey & Cohen,
1989; French, 1999).

Another example of the prior distribution is a Gaussian distribution using the
output of the source model fs(x; θs) as its mean.

p(θt) ∝
n∏
i=1

exp

{
− (ft(xi; θt)− fs(xi; θs))2

σ3

}
, (2.5)

where σ3 > 0 is a variance parameter. Eq. (2.3) focuses on the similarity between
the parameters, whereas Eq. (2.5) focuses on the similarity between the outputs. By
using Eq. (2.2) and Eq. (2.5), we obtain another optimization problem as follows:

θ̂t = argmin
θt

n∑
i=1

{yi − ft(xi; θt)}2 + λ2

n∑
i=1

{fs(xi; θs)− ft(xi; θt)}2, (2.6)

where λ2 := σ1/σ3.
By completing the square, the optimization problem Eq. (2.6) is reduced to

θ̂t = argmax
θt

n∑
i=1

{
yi + λ2fs(xi; θs)

1 + λ2
− ft(xi; θt)

}2

. (2.7)

This means that we only need to solve the ordinary least squares for the transformed
variable zi = (yi + λ2fs(xi; θs))/(1 + λ2).

Density-ratio estimation

Another probabilistic approach of TL is based on density-ratio estimation (Sugiyama
et al., 2012). This approach is often used in conjunction with the covariate shift
assumption (Shimodaira, 2000), i.e., the conditional distribution p(y|x) does not
change in the source and target domains but only the marginal distribution p(x) shifts.
The importance weighting of the log-likelihood is performed by estimating the ratio of
the marginal distributions pt(x)/ps(x) (Sugiyama et al., 2007b; 2008; Yamada et al.,
2013; Lu et al., 2021). These methods are often used in unsupervised TL settings.
The details are presented in Section 2.1.3.

Further, some other approaches related to supervised TL settings consider the
ratio of the conditional distributions (Liu & Fukumizu, 2016). By using the source
conditional distribution ps(y|x), the target conditional distribution pt(y|x) can be
decomposed as

pt(y|x) =
pt(y|x)
ps(y|x)

· ps(y|x) = w(y, x)ps(y|x),
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2.1. METHODS

where w(y, x) := pt(y|x)/ps(y|x). The pre-trained model ps(y|x; θs) is adopted for
the source distribution, and the density-ratio is modeled as w(y, x; θw) and estimated
using the target samples. Note that because the product w(y, x; θw)ps(y|x; θs) is a
probability density function, the integral over the entire space should be equal to 1.∫

w(u, x; θw)ps(u|x; θs)du = 1.

The density-ratio TL of Liu & Fukumizu (2016) is designed to minimize the
conditional Kullback–Leibler divergence between the true density pt(y|x) and density-
ratio model w(y, x; θw)ps(y|x; θs), as follows:

Ept(x)
[
KL(pt(y|x)||w(y, x; θw)ps(y|x; θs))

]
= Ept(x)

[
KL

(
pt(y|x)

∣∣∣∣∣∣∣∣ w(y, x; θw)ps(y|x; θs)∫
w(u, x; θw)ps(u|x; θs)du

)]
= −

∫
pt(x)

∫
pt(y|x) logw(y, x; θw)dydx

+

∫
pt(x) log

∫
w(u, x; θw)ps(u|x; θs)dudx+ const.

(2.8)

The right-hand side represents the cross-entropy with respect to pt(y|x) and w(y, x; θw)
in which the source density ps(y|x; θs) is omitted as a constant. The second term
corresponds to the normalizing constant of the unnormalized target model in the
right-hand side of pt(y|x; θw) ∝ w(y, x; θw)ps(y|x; θs).

Liu & Fukumizu (2016) focused on classification tasks, but this thesis focuses
on regression tasks. As an example of modeling for regression tasks, the following
Gaussian distributions are adopted:

w(y, x; θw) ∝ exp

{
− (y − fw(x; θw))2

σ

}
, (2.9)

ps(y|x; θs) ∝ exp

{
− (y − fs(x; θs))2

η

}
. (2.10)

10
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Using Eq. (2.9) and Eq. (2.10), we obtain the normalizing constant as∫
w(u, x; θw)ps(u|x; θs)du

∝
∫

exp

{
− (u− fw(x; θw))2

σ
− (u− fs(x; θs))2

η

}
du

=

∫
exp

{
−
(
1

σ
+

1

η

)(
u− ηfw(x; θw) + σfs(x; θs)

σ + η

)2

− (fw(x; θw)− fs(x; θs))2

σ + η

}
du

∝ exp

{
− (fw(x; θw)− fs(x; θs))2

σ + η

}
. (2.11)

With this expression, the empirical Kullback–Leibler divergence for the training set
Dt can be written as

Ep̂t(x)[KL(p̂t(y|x)||pt(y|x; θw))]

= − 1

n

n∑
i=1

[
logw(yi, xi; θw)− log

∫
w(u, xi; θw)ps(u|xi; θs)du

]
∝ 1

n

n∑
i=1

[
(yi − fw(xi; θw))2 − ρ(fs(xi; θs)− fw(xi; θw))2

]
+ const., (2.12)

where ρ = σ/(σ + η) ∈ (0, 1), and p̂(x) and p̂t(y|x) are the empirical distributions.
All terms irrelevant to θw are omitted.

The parameter θw in the density-ratio model should be estimated by minimizing
Eq. (2.12). For the prediction function, we use the plug-in estimator argmaxy pt(y|x, θ̂w),
which results in

ŷ(x) = (1− ρ)fw(x; θ̂w) + ρfs(x; θs). (2.13)

Eq. (2.7) and (2.12) are similar, but the signs of the regularization parameters are
different. The regularization parameter λ2 in Eq. (2.7) takes the value λ > 0, i.e., a
positive value. Hence, ft is estimated to be close to fs, as described above. Conversely,
the regularization parameter ρ in Eq. (2.12) occurs in the interval (0, 1); hence, the
second term in Eq. (2.12) serves to move fw farther from fs. This is because Bayesian
inference focuses on the similarity between the source and target domains, whereas
density-ratio estimation focuses on the difference between the two domains.

11
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(a) Source neural network (b) Fine-tuning

Target model

(c) Feature extraction

Figure 2.2: Schematics of neural network-based transfer learning approaches. (a)
From the pre-trained source neural network, (b) fine-tuning retrains the parameters of
the source network using the target samples (represented by the gray nodes). (c) In
feature extraction, the intermediate representation is extracted and the target model
is trained using the extracted representation.

2.1.2 Non-probabilistic supervised transfer learning

Rather than addressing the domain shifts probabilistically, other approaches to transfer
knowledge by assuming specific functional forms or functional relationships in the
machine learning models of each domain can be adopted.

Neural network-based approach

To date, the most outstanding successes of TL have been achieved by reusing the
layers or weights of deep neural networks (Yosinski et al., 2014). Typically, one or
more layers in the pre-trained neural network are reused or refined using a limited
target dataset by following two standard methods.

Fine-tuning Fine-tuning uses the parameters of the pre-trained neural network as
the initial values for training in the target domain. Similar to Bayesian inference, this
method is based on the assumption that the optimal parameters of the target model
lie in the neighborhood of the parameters of the source model. By tuning the source
parameters using samples from the target domain for a few steps, the target model
can be obtained more efficiently than by training from scratch.

Feature extraction Given an L-layer neural network model fs(x) = fL ◦ fL−1 ◦
· · · ◦ f1(x) trained in the source domain, TL based on feature extraction uses the
sub-model ϕ(x) = fK ◦ fK−1 ◦ · · · ◦ f1(x) made up of the Kth (K < L) layer of the

12
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Pixel space Latent space

Diffusion processEncoder

Denoising processDecoder

Fixed Tuned

Figure 2.3: Architecture of Stable Diffusion (Rombach et al., 2022). Stable Diffusion
maps the input image to the latent space. In the latent space, noises are added and
removed using the diffusion model (Ho et al., 2020). For customization, the encoder
and decoder are frozen, and only the diffusion model in the latent space is tuned.

pre-trained model as a calculator of the descriptors for the target task. The target
model is trained using samples from the target domain and the computed descriptor
ϕ(x). Because it is operationally intuitive and tractable, feature extraction has been
successfully applied in several fields (Wu et al., 2019; Yamada et al., 2019; Ju et al.,
2021), and its effectiveness has been established theoretically (Tripuraneni et al., 2020;
2021; Du et al., 2021). Feature extraction is based on the assumption that the source
model would internally acquire features in common with the related domains.

Often, these two approaches are used in combination, where some parameters are
fixed and the remaining are retrained. For example, Stable Diffusion (Rombach et al.,
2022), a powerful image-to-text deep learning model, encourages the combination of
feature extraction and fine-tuning for effective customization for various types of image
generative models. Stable Diffusion maps images from the pixel space to the latent
space, which is the space for the underlying feature representations in the image, and
generates data in the latent space corresponding to a given text. Because the mapping
from the pixel space to the latent space is trained from a large amount of data, it is
assumed that Stable Diffusion ensures a universal mapping to the underlying feature
representation of the images. Therefore, during customization, this mapping is frozen
and reused, and only the generative networks in the latent space are fine-tuned using
the images of the desired domain, thus allowing efficient model training using only a
small amount of image data.
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Original data

Transformed data Intermediate model

Target model

Training

Figure 2.4: Learning procedure of hypothesis transfer learning. The data are trans-
formed from the original data space into another space by using a transformation
function ϕ. We train the intermediate model ĝ on that space and then use the inverse
transformation function ϕ−1 to convert the model back to the original space.

Hypothesis transfer learning

If there is a functional relationship between the source and target domains, only the
domain-specific factors are additionally learned using the target samples to shift the
source models to the target.

Du et al. (2017) provided a TL framework using a transformation function called
HTL as follows:

1. With the source features, perform a variable transformation of the observed
outputs as zi = ϕ(yi, fs(xi)), using the transformation function ϕ : Y ×Fs → R.

2. Train an intermediate model ĝ(x) to predict the transformed output z for any
given x using the transformed sample set {(xi, zi)}ni=1.

3. Obtain a target model f̂t(x) = ϕ−1(ĝ(x), fs(x)) using the inverse of the transfor-
mation function.

This class of TL includes several approaches proposed in previous studies. For
example, Kuzborskij & Orabona (2013; 2017) proposed a learning algorithm consisting
of a linear transformation ϕ = y − ⟨θ, fs(x)⟩ with a pre-defined coefficient θ. In this
case, the factors unexplained by the linear combination of the source features are
learned with g, and the target output is predicted additively with the common factor
⟨θ, fs(x)⟩ and the additionally learned g.

Learning the target domain itself is often complex and difficult, especially with a
small sample size. The features obtained in the source domain are thought considered
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to capture the domain-common patterns, and using these features to transform
the objective variables would make the task easier to handle. In other words, the
transformations make it possible to solve the task efficiently, even with a small sample
size.

2.1.3 Unsupervised transfer learning

Although this thesis focuses on supervised TL, we briefly discuss unsupervised TL,
in which no target labels are available; this topic has also been actively studied. To
provide an overview of TL methodologies, we mention here some key approaches for
unsupervised TL problems.

Covariate shift adaptation

The situation where the conditional distribution of the outputs y for a given input
x remains the same for the source and target but the distributions of the inputs
(covariates) x are different is called covariate shift (Shimodaira, 2000). Denote
the source and target input distributions as ps(x) and pt(x), respectively, and the
conditional distributions of the output as ps(y|x) and pt(y|x), respectively. In the
covariate shift adaptation, it is assumed that ps(x) ̸= pt(x) and ps(y|x) = pt(y|x)
hold for all x ∈ X and y ∈ Y. This assumption is closely related to the fields of
experimental design (Fedorov et al., 1972; Pukelsheim, 2006), active learning (Settles,
2012), and sample selection bias (Heckman, 1979).

By adopting the covariate shift assumption, Shimodaira (2000) proposed the
maximum weighted log-likelihood estimation (or importance-weighted empirical risk
minimization) as a parameter estimation method, which is expressed as follows:

max
θ

n∑
i=1

pt(x
(s)
i )

ps(x
(s)
i )

log ps(y
(s)
i |x

(s)
i ; θ), (2.14)

where {(x(s)i , y
(s)
i )}ni=1 is a set of the observed samples in the source domain. In

this maximization problem, the source samples that are not important to the target
task are considered to be down-weighted using the density-ratio, and vice versa.
This approach is theoretically shown to have some asymptotic properties such as
consistency.

In real applications, the density-ratio pt(x)/ps(x) in Eq. (2.14) and some hyperpa-
rameters need to be determined appropriately. Hence, several model selection criteria
such as the information criterion (Shimodaira, 2000; Sugiyama & Klaus-Robert, 2005)
and importance-weighted cross validation method (Sugiyama et al., 2007a) have been
proposed.
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Feature extractor

Domain classifier

Predictor

Source
and

Target

Output

Source
or

Target

Figure 2.5: Architecture of domain-adversarial neural network (Ganin et al., 2016).
Motivated by the theoretical result of Ben-David et al. (2009), the domain-adversarial
neural network (DANN) has a GAN-like architecture. DANN maps the inputs to
the domain-common representations, which make the domains indistinguishable, and
predicts the outputs using these representations.

Domain-adversarial neural networks

In Section 2.1.2, we have introduced two standard neural network-based TL procedures:
fine-tuning and feature extraction. Besides these standard procedures, a theoretically
motivated methodology for unsupervised TL settings has also been proposed. To
obtain a source model that also shows high performance in the target domain, the
domain-adversarial neural network (DANN) (Ganin et al., 2016) builds an encoder
so that the source and target inputs are indistinguishable. Its model architecture
is inspired by the generative adversarial networks (GANs) (Goodfellow et al., 2014)
described in Figure 2.5.

The training strategy of DANN is motivated by the theoretical analysis in Ben-
David et al. (2009). In Ben-David et al. (2009), it is shown that the error of a given
source model in the target domain can be evaluated using the distance between the
data-generating distributions of the two domains, called the H∆H-divergence. Intu-
itively, H∆H-divergence refers to the difficulty in discriminating the data-generating
distributions of the two domains. As the two distributions are more difficult to
discriminate, the difference in the model error becomes smaller. The details of the
theoretical analysis of Ben-David et al. (2009) are presented in Section 2.2.3. DANN
is considered an implementation of this theoretical result in combination with the
GAN architecture.
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Private encoder

Shared encoder

Private encoder

Shared decoder

Classifier

Source

Target

Figure 2.6: Architecture of domain separation networks (Bousmalis et al., 2016).
Inputs from the source and target domains are mapped to the domain-invariant
feature representations using the shared encoder, with separation of domain-specific
factors using the private encoder. Orthogonality constraints are used to ensure that
the shared and private encoders capture different aspects of the input. Furthermore,
by training the shared decoder to decode the encoded features to the original input,
two encoded representations can be guaranteed to contain nearly complete information
about the original input. The classifier is trained from the domain-invariant features
by using the labeled source samples.

DANN trains encoders such that the domain discriminator would fail. Other
strategies for obtaining domain-invariant features have been proposed, such as measur-
ing the distance between distributions using the maximum mean discrepancy (MMD)
(Baktashmotlagh et al., 2013; Ghifary et al., 2014; Long et al., 2015) or correlation
distance (Sun & Saenko, 2016).

Domain separation networks

Some unsupervised TL approaches, including DANN, aim to train an encoder that
maps the inputs from each domain to a domain-invariant feature representation, and
then uses it to train a predictor that can generalize it to the target domain by using
the source samples. To obtain this domain-invariant feature representation more
efficiently, Bousmalis et al. (2016) proposed a domain separation network (DSN),
which is a neural network architecture to separate the domain-specific components
explicitly from the inputs of both domains. Figure 2.6 shows the network architecture
of DSN. In DSN, the domain-common and domain-specific factors are explicitly and
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jointly modeled. The mapping to the domain-common representation obtained in this
manner is expected to eliminate bias for individual domains and aid the training of
domain-invariant predictors. In relation to this approach, we provide a method to
model the domain shifts and domain-specific components separately and estimate
them simultaneously in Chapter 4.

Gradual domain adaptation

These domain adaptation methods described above can be used only for sufficiently
small domain shifts. For example, DANN and DSN train encoders to map inputs to
domain-common feature representations. However, it is difficult to obtain the desirable
representations when the domains are completely different. To adapt to large domain
shifts, another approach called gradual domain adaptation (Kumar et al., 2020) is
proposed, which gradually adapts a given source model with unlabeled data whose
distribution gradually shifts toward the target domain. By using a technique called
self-training or pseudo-labeling (Chapelle et al., 2006; Lee et al., 2013), the gradually
shifting inputs are pseudo-labeled and the model is trained on these pseudo-labeled
data. Kumar et al. (2020) theoretically shows that such gradual domain adaptation
is superior to the conventional unsupervised TL methods that adapt directly to the
target domain.

2.2 Theoretical analyses

The goal of TL is to obtain high-performing models by using relevant knowledge.
As with developing TL algorithms, it is important to theoretically guarantee that
these algorithms have the capability to improve the generalization performance. This
section introduces some important mathematical tools for theoretical analysis and
presents several theoretical results of TL.

Let (Z, P ) be an arbitrary probability space, and set {zi}ni=1 to be independent
random variables distributed according to P . For a function f : Z → R, define the
expectation of f with respect to P and its empirical counterpart as

Pf = EPf(z), Pnf =
1

n

n∑
i=1

f(zi).

2.2.1 Generalization error and excess risk

We need a criterion to evaluate the performance of the trained model. By using a loss
function ℓ, the expected error of the trained model h is defined as the generalization
error as follows:
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R(h∗)

R(ĥ)

R̂S(ĥ)

E(ĥ)

True error

Epirical error

Figure 2.7: Relationship between the empirical error, generalization error, and smallest
possible error. The model ĥ is trained to minimize the empirical error R̂S(ĥ) (on the
dashed surface). The generalization error R(ĥ) is the value of the true error (on the
solid surface) of the model. The function that achieves the smallest possible error
is denoted as h∗. The difference between the smallest possible error R(h∗) and the
generalization error R(ĥ) is called the excess risk E(ĥ).

Definition 3 (Generalization error). The generalization error of the function h is
defined as

R(h) := Pℓ(y, h) = E(x,y)[ℓ(y, h(x))].

Because the sample-generating distribution is unknown, the generalization error
cannot be accessed directly. Instead, the expectation on the empirical distribution
can be measured.

Definition 4 (Empirical error). The empirical error of the function h is defined as:

R̂S(h) := Pnℓ(y, h) =
1

n

n∑
i=1

ℓ(yi, h(xi)).

One of the principal challenges in statistical learning theory is to evaluate the
difference between these two values, i.e., R(h)− R̂S(h), as a function of the number
of samples n.

In addition, it is important to evaluate how close the generalization error is to the
smallest possible error. The difference between the generalization error of a given
function and the smallest possible error is called the excess risk, which is defined as
follows.

Definition 5 (Excess risk). The excess risk of the function h is defined as:

E(h) := R(h)− inf
h
R(h)

(
= P (h− h∗)

)
,
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where h∗ = arg infhR(h).

The excess risk refers to how close the trained model h is to the optimal element
in the function space. By evaluating this as a function of the number of samples, the
efficiency of the model estimation can be assessed.

2.2.2 Complexity of function space

In machine learning models, the learning guarantee derivation strongly relies on the
notion of complexity of a function space. Here, we introduce the standard complexity
measure: the Rademacher complexity.
H denotes a function space and let S = {zi}ni=1 be a fixed set of samples drawn

from the distribution P . Let {σi}ni=1 be a set of independent uniform random variables
taking values in {−1,+1}.

Global complexity

The following statement is a formal definition of the empirical Rademacher complexity
(Mohri et al., 2018).

Definition 6 (Empirical Rademacher complexity). The empirical Rademacher com-
plexity of H with respect to the sample S is defined as:

R̂S(H) := Eσ
[
sup
h∈H

1

n

n∑
i=1

σih(zi)

]
.

The Rademacher complexity expresses the richness of a family of functions by
measuring the degree to which the output of a function in H can be correlated on
average with random noise.

Taking the expectation with respect to the sample realization, the (global)
Rademacher complexity is defined as follows.

Definition 7 (Rademacher complexity). The (global) Rademacher complexity of H
is defined as:

R(H) := ES∼Pn [R̂S(H)],

For regression tasks, the generalization error can be evaluated using the empirical
error and Rademacher complexity. The following statement is based on Theorem 11.3
of (Mohri et al., 2018).
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Rademacher complexity generalization bounds Assume that a loss function ℓ
is upper-bounded by M > 0, i.e., ℓ(y, y′) < M for all y, y′ ∈ Y, and for any y ∈ Y,
ℓ(y, ·) is µℓ-Lipschitz for some µℓ > 0. Then, with probability at least 1− δ,

R(h) ≤ R̂S(h) + 2µℓR(H) +M

√
log 1

δ

n
, (2.15)

R(h) ≤ R̂S(h) + 2µℓR̂S(H) + 3M

√
log 2

δ

2n
. (2.16)

In addition, Koltchinskii (2001) and Bartlett et al. (2004) have shown the excess
risk bound of the following form:

Rademacher complexity excess risk bounds Let ĥ = argminh∈H R̂S(h) and
h∗ = argminh∈HR(h). Then, there exists a constant C > 0 such that, for any δ > 0,
with probability at least 1− δ,

E(ĥ) = R(ĥ)−R(h∗) < C

(
R(H) +

√
log 1

δ

n

)
. (2.17)

Computing the (empirical) Rademacher complexity is generally an NP-hard prob-
lem (Mohri et al., 2018). Therefore, when evaluating the generalization error of
machine learning models, we do not calculate the Rademacher complexity directly
but rather bound it. One example is the learning guarantee for kernel methods. The
following statement is based on Theorem 6.12 of Mohri et al. (2018).

Rademacher complexity bound for kernel methods Let k be a positive definite
kernel, and let Φ be the feature mapping associated with k. Assume that there exists
r > 0 such that k(x, x) ≤ r2. Let H = {x 7→ ⟨w,Φ(x)⟩ : ∥w∥H ≤ Λ} for some Λ ≥ 0.
Then,

R̂S(H) ≤
√
r2Λ2

n
,

which results in

R(H) ≤
√
r2Λ2

n
.

By combining these bounds with Eq. (2.15)-(2.17), we can see that the convergence
rates of the generalization error bounds and excess risk bounds are at most O(1/

√
n).
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(a) Global bound (b) Local bound

Figure 2.8: (a) Bounding the true error R(h) uniformly throughout the entire function
space would result in unnecessarily loose bounds (gray area). The blue dashed line is
the empirical error function for one sample realization. (b) By restricting the existence
area of the function around the optimal function h∗, it is expected that its risk can
be evaluated more efficiently and tighter bounds can be derived.

Local complexity

The Rademacher complexity in Definitions 6 and 7 considers the supremum over the
entire function space. However, when training the machine learning models in practice,
we do not consider the entire space but rather focus on the subspace of functions that
are not too complex, such as functions with small norms. In other words, the global
Rademacher complexity may overestimate the representational power of the function
class. To represent the restricted function class, the local Rademacher complexity is
defined as follows (Bartlett et al., 2005):

Definition 8 (Local Rademacher complexity). For any r > 0, the empirical local
Rademacher complexity of H is defined as

R̂S(H : Ph2 < r) = Eσ
[

sup
h∈H:Ph2<r

1

n

n∑
i=1

σih(zi)

]
.

The local Rademacher complexity is defined as the expectation of the empirical
complexity, as follows:

R(H : Ph2 < r) = ES∼Pn [R̂S(H : Ph2 < r)].

The difference between the global and local Rademacher complexities is the
restriction on the function space. Ph2 = E[h(x)2] represents the variance in the
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output of the function, and r controls the complexity of the function space. The
global Rademacher complexity corresponds to a special case for r =∞.

The following results are from Corollary 5.1 and Corollary 5.3 of Bartlett et al.
(2005), and are considered as the localized versions of the generalization bound and
excess risk bound described above.

Local Rademacher complexity generalization bounds For a loss function
ℓ : Y × Y → [0, 1], define the loss class LH as

LH = {(x, y) 7→ ℓ(y, h(x)) : h ∈ H}.

Define

ψ̂n(r) = 20R̂S{h ∈ star(LH, 0) : Pnh
2 ≤ 2r}+

13 log 1
δ

n
,

where star(LH, 0) is the star-hull of LH around 0, i.e.,

star(LH, 0) = {αℓh : ℓh ∈ LH, α ∈ [0, 1]}.

Let r̂∗ be a solution of the equation r = ψ̂n(r). Then, for any K > 1 and all h ∈ H,
with probability at least 1− 3δ,

R(h) ≤ K

K − 1
R̂n(h) + 6Kr̂∗ +

(11 + 5K) log 1
δ

n
. (2.18)

Local Rademacher complexity excess risk bounds To evaluate the excess risk
using the local Rademacher complexity, we make the following assumptions.

• There exists h∗ ∈ H satisfying Pℓ(y, h) = infh∈H Pℓ(y, h), and ĥ ∈ H satisfying
Pnℓ(y, ĥ) = infh∈H Pnℓ(y, h).

• The loss function ℓ is µℓ-Lipschitz with respect to the first argument.

• There exists a constant B ≥ 1 such that P (h− h∗)2 ≤ BP (ℓ(y, h)− ℓ(y, h∗)).
Assume ψ is a sub-root function1 for which

ψ(r) ≥ µℓBR{h ∈ H : µ2
ℓP (h− h∗)2 ≤ r}.

Then, for any x > 0 and any r ≥ ψ(r), with probability at least 1− δ,

R(ĥ)−R(h∗) ≤ 705
r

B
+

(11L+ 27B) log 1
δ

n
. (2.19)

Both Eq. (2.18) and Eq. (2.19) use the fixed points of the local Rademacher
complexity. For the kernel method, these values can be evaluated as follows.

1A function ψ : [0,∞)→ [0,∞) is sub-root if it is nonnegative, non-decreasing and if r 7→ ψ(r)/
√
r

is non-increasing for r > 0. See Bartlett et al. (2005) for the properties of sub-root functions.
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Local Rademacher complexity bound and its fixed point for kernel methods
Let H be a reproducing kernel Hilbert space (RKHS) with a positive definite kernel k.
Define an integral operator T associated with k and an arbitrary distribution P , i.e.,
Tf =

∫
k(·, y)f(y)dP (y). Let {λi}∞i=1 be its eigenvalues arranged in a non-increasing

order. Moreover, consider the normalized Gram matrix T̂ = 1
n
(k(xi, xj))i,j=1,...,n, and

let {λ̂i}ni=1 be its eigenvalues arranged in a non-increasing order. The following results
are from Mendelson (2002) and Bartlett et al. (2005). For every r > 0,

R̂S{h ∈ H : Pnh
2 ≤ r} ≤

(
2

n

n∑
i=1

min{r, λ̂i}
) 1

2

, (2.20)

and

R{h ∈ H : Ph2 ≤ r} ≤
(
2

n

∞∑
i=1

min{r, λi}
) 1

2

.

Bartlett et al. (2005) evaluated the fixed point of the upper-bound of Eq. (2.20) as

r̂∗ ≤ min
0≤h≤n

(
h

n
+

√
1

n

∑
i>h

λ̂i

)
. (2.21)

Eq. (2.21) implies that the order of the fixed point is at most O(1/
√
n), which

corresponds to the basic convergence rate with the global complexity. Furthermore,
the order and therefore the convergence rate of the generalization error and excess
risk improve in comparison with the above basic rate depending on the decay rate of
the eigenvalues of the integral operator T or Gram matrix T̂ .

2.2.3 Theoretical results for transfer learning

Finally, we provide a brief review of some theoretical results of TL. For more detailed
reviews, see Redko et al. (2020); Yang et al. (2020); Zhang & Yang (2021).

Divergence-based analyses

Ben-David et al. (2009) presented the principal investigation for domain adaptation,
which pioneered the learning theory of TL. In the unsupervised TL setting, Ben-David
et al. (2009) evaluated the performance of the source model on the target domain as
follows:
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Target error bound of source model (Theorem 2 of Ben-David et al. (2009))
Let fs(x), ft(x) be the true functions of the source and target domains, respectively.
Define

λ := min
h∈H

[
Ex∼Ds [|h(x)− fs(x)|] + Ex∼Dt [|h(x)− ft(x)|]

]
.

Let H be a hypothesis space of Vapnik–Chervonenkis (VC) dimension2 d. If Us,Ut are
unlabeled sample sets of size m each, drawn from the source and target distributions
Ds,Dt, respectively, then for any δ ∈ (0, 1), with probability at least 1− δ, for every
h ∈ H,

Ex∼Dt [|h(x)− ft(x)|]

≤ Ex∼Ds [|h(x)− fs(x)|] +
1

2
d̂H∆H(Us,Ut)

+ 4

√
2d log(2m) + log(2/δ)

m
+ λ.

(2.22)

dH∆H(·, ·) is called H∆H-divergence and defined as

dH∆H(Ds,Dt) := 2 sup
h,h′∈H

∣∣∣Px∼Ds [h(x) ̸= h′(x)]− Px∼Dt [h(x) ̸= h′(x)]
∣∣∣,

for any distribution Ds,Dt. d̂H∆H(·, ·) is its empirical counterpart. H∆H-divergence
intuitively represents the difficulty in discriminating the source and target distributions.
It takes a minimum value of 0 when the source and target distributions cannot be
discriminated using the functions in the hypothesis space H. Further, it takes a
maximum value of 2 when they can be completely discriminated. Eq. (2.22) indicates
that as the two input distributions Ds,Dt are indistinguishable, the performance of
the source model in the target domain improves. DANN, introduced in Section 2.1.2,
implements this implication using a neural network architecture.

Eq. (2.22) is for the unsupervised TL settings, but it can be extended to include
the supervised setting, i.e., the setting for which labeled samples of the target domain
are obtained.

Supervised TL bound (Theorem 3 of Ben-David et al. (2009)) In addition
to the setting in Eq. (2.22), assume that for a fixed β ∈ [0, 1], we have n labeled
samples generated by drawing βn samples from Dt and (1− β)n samples from Ds and

2The VC dimension is a measure of the complexity of the set of functions for learning a binary
classification problem. It is defined as the maximum number of points that the model can scatter.
For a more detailed description, see Mohri et al. (2018).
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labeling them according to the true functions fs and ft, respectively. Consider the
following combined error:

ϵ̂α(h) :=
α

βn

∑
(x,y):target

|yi − h(xi)|+
1− α

(1− β)n
∑

(x,y):source

|yi − h(xi)| (2.23)

for some α ∈ [0, 1]. If ĥ ∈ H is the empirical minimizer of the combined loss ϵ̂α(h) and
h∗ = minh∈H Ex∼Dt [|h(x)− ft(x)|] is the target error minimizer, the for any δ ∈ (0, 1),
with probability at least 1− δ,

Ex∼Dt [|ĥ(x)− ft(x)|]
≤ Ex∼Dt [|h∗(x)− ft(x)|]

+ 4

√
α2

β
+

(1− α)2
1− β

√
2d log(2(n+ 1)) + 2 log(8/δ)

n

+ 2(1− α)
(
1

2
d̂H∆H(Us,Ut) + 4

√
2d log(2m) + log(8/δ)

m
+ λ

)
.

(2.24)

α is a parameter that controls the degree of contribution of the source samples to
the training of the target model; at α = 0, Eq. (2.24) is identical to Eq. (2.22), and
at α = 1, Eq. (2.24) corresponds to the standard learning bounds. By selecting the
optimal α, Eq. (2.24) becomes a tighter bound than these two settings.

The results of Ben-David et al. (2009) have pioneered the theoretical analysis of
TL and domain adaptation, resulting in various theoretical results. Many of them
differ in the quantification of the differences in the input distributions of the target
and source domains, for example, based on the discrepancy distance (Mansour et al.,
2009), integral probability metrics (Zhang et al., 2012), based on Wasserstein distance
(Courty et al., 2014) and MMD (Redko et al., 2017).

Complexity-based analyses

Rather than evaluating the generalization performance of the target model based on
the divergence of the probability distribution, some theoretical analyses are based
on the belief that using the source knowledge would efficiently constrict the function
space to be explored.
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Kuzborskij & Orabona (2017) derived the generalization error bounds and excess
risk bound in the linear supervised HTL setting of the following forms:

R(h)− R̂S(h) = O
(
Rs +

√
Rs√

n
+
Rs + 1

n

)
,

R(h)− inf
h∈H

R(h) = O
(√

Rs +
4
√
Rs

4
√
n

+
4
√
Rs +

8
√
Rs

4
√
n1.5

+

√
Rs

n
+

1

n

)
,

where Rs is the generalization error in the target domain of the source models.
These bounds indicate that when knowledge from the source domain is valuable for
the training in the target domain, the convergence rate of the generalization error
and excess risk bound improves up to O(1/n). The magnitude of the metric Rs is
considered to represent the transferability between the source and target domains.

Tripuraneni et al. (2020) considered the supervised feature extraction setting,
where the domain-common representation is trained through the source tasks and
the obtained representation is reused for the training in the target domain. The
transferability is measured through the task diversity ν, and it is shown that the
convergence rate of the excess risk has the following order:

Õ
(
1

ν

(√
C(H) + tC(F)

nst

)
+

√
C(F)
nt

)
,

where Õ denotes the order ignoring the logarithmic factors, t is the number of source
domains, and ns and nt are the number of the training samples of the source and target
domains, respectively. C(·) captures the complexity of the space. H is the function
space of the task-shared model, and F is the function space of the task-specific maps.
The task diversity ν measures how well the source domain covers the space required
for training in the target domain3. As the source domains cover a sufficiently large
space, ν becomes larger and the learning rate improves.

3For a precise definition, see Tripuraneni et al. (2020).
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Chapter 3

Bayesian transfer learning with
density-ratio modeling

In this chapter, we propose a novel framework that unifies and extends the existing
methods of TL for regression. To bridge a pre-trained source model to the model for a
target task, we introduce a density-ratio reweighting function, which is estimated using
the Bayesian framework with a specific prior distribution. By changing two intrinsic
hyperparameters and the choice of the density-ratio model, the proposed method
can integrate three popular methods of TL: TL based on cross-domain similarity
regularization, a probabilistic TL using density-ratio estimation, and fine-tuning of
pre-trained neural networks. Moreover, the proposed method can benefit from its
simple implementation without any additional cost; the regression model can be
fully trained using off-the-shelf libraries for supervised learning in which the original
output variable is simply transformed into a new output variable. We demonstrate its
simplicity, generality and applicability using various real-data applications.

3.1 Method

We are given a pre-trained model fs(x) on the source task, which defines the mapping
between any input x to a real-valued output y ∈ R. Note that fs is fixed, and we do
not consider the error of its training or uncertainty of its prediction. The objective
is to transform the given fs(x) into a target model ft(x) using n instances from the
target domain Dt = {(xi, yi)}ni=1.

Inspired by Liu & Fukumizu (2016), we apply probabilistic modeling to the
transition from fs(x) to ft(x). As mentioned in Section 2.1.1, with the conditional
distribution ps(y|x) of the source task, the conditional distribution on the target can
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3.1. METHOD

be decomposed as
pt(y|x) = w(y, x)ps(y|x),

where w(y, x) := pt(y|x)/ps(y|x). Consider that the source distribution is modeled
using ps(y|x, fs), which involves the pre-trained fs(x). In addition, the density-ratio
function w(y, x) is separately modeled as w(y, x; θw) with an unknown parameter
θw, which will be associated with a regression model fw(x; θw). The target model
pt(y|x; θw) is then described as

pt(y|x; θw) = w(y, x; θw)ps(y|x, fs)

such that ∀x :

∫
w(y, x; θw)ps(y|x, fs)dy = 1,

(3.1)

where the normalization constraint is due to the fact that the conditional probability
needs to be normalized to 1 over its domain.

We employ Bayesian inference to estimate the unknown θw in the density-ratio
model w(y, x; θw). The target model pt(y|x; θw) is used as the likelihood for Bayesian
inference, and a prior distribution p(θw|fs) is placed on θw, which depends on the
given fs. The posterior distribution is then expressed as

p(θw|Dt) ∝
n∏
i=1

pt(yi|xi; θw)p(θw|fs). (3.2)

As in Eq. (2.9) and Eq. (2.10), the following Gaussian models are used for the
likelihood function:

w(y, x; θw) ∝ exp

{
− (y − fw(x; θw))2

σ

}
, (3.3)

ps(y|x, fs) ∝ exp

{
− (y − fs(x))2

η

}
, (3.4)

where σ > 0 and η > 0. Thus, as well as Eq. (2.11), the normalization constant in
Eq. (3.1) is given as∫

w(y, x; θw)ps(y|x, fs)dy ∝ exp

{
− (fs(x)− fw(x; θw))2

σ + η

}
,

which depends on the proximity of fw(x; θw) to fs(x). Further, we regularize the
training based on the discrepancy of the two models fw(x; θw) and fs(x), which
can belong to different classes of regression models. For this, we introduce a prior
distribution that implements a function-based regularization as

p(θw|fs) ∝ exp

{
−

m∑
i=1

(fs(ui)− fw(ui; θw))2

λ

}
, (3.5)
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3.2. IMPLEMENTATION COST

where λ ∈ R\{0}. The discrepancy is measured by the sum of their squared distances
over m input values U = {ui}mi=1. Hereinafter, we use the n observed inputs in Dt for
U . The posterior distribution involves three hyperparameters (σ, η, λ). Note that λ
can be either positive or negative and controls the degree of discrepancy positively
or negatively. As described below, this Gaussian-type modeling leads to an analytic
workflow that can benefit from less effort for the implementation.

We consider the maximum a posteriori (MAP) estimation of θw and a class of
prediction functions ŷ(x) that is characterized by two hyperparameters τ and ρ:

θ̂w = argmin
θw

n∑
i=1

{
(yi−fw(xi; θw))2−τ(fs(xi)−fw(xi; θw))2

}
, (3.6)

ŷ(x) = argmax
y

pt(y|x; θ̂w)=(1− ρ)fw(x; θ̂w) + ρfs(x), (3.7)

τ :=
σ

σ + η
− σ

λ
∈ (−∞, 1), ρ :=

σ

σ + η
∈ (0, 1).

In the training objective Eq. (3.6), the first term measures the goodness-of-fit with
respect to Dt. The second term is derived from the normalization term in Eq. (3.1) and
the prior distribution Eq. (3.5). It regularizes the training through the discrepancy
between fw(x; θw) and the pre-trained fs(x). The prediction function Eq. (3.7)
corresponds to the mode of the plug-in predictive distribution Eq. (3.1). Note that
the original three hyperparameters are reduced to τ ∈ (−∞, 1) and ρ ∈ (0, 1). By
varying (τ, ρ) and different models on fw(x; θw) coupled with the learning algorithms,
the resulting method can bridge various methods of TL as described later.

3.2 Implementation cost

By completing the square of Eq. (3.6) with respect to fw(x; θw), the objective function
can be rewritten as a residual sum of squares on a transformed output variable z as

θ̂w = argmin
θw

n∑
i=1

(zi − fw(xi; θw))2, zi =
yi − τfs(xi)

1− τ
.

Once the original output yi is simply converted to zi with a given fs(x) and τ ,
the model can be trained by using a common squared loss minimization library for
regression. Any regularization term, such as ℓ1- or ℓ2-regularization, can also be added.
Therefore, the proposed method can be implemented at essentially no cost. In the
applications described later, we utilized ridge regression, random forest regression, and
neural networks as fw(x; θw). We simply used the standard libraries of R language
(glmnet (Friedman et al., 2010), ranger (Wright & Ziegler, 2017), and MXNet (Chen
et al., 2015)) without any customization or additional coding.

30



3.3. RELATIONS TO EXISTING METHODS

Furthermore, as no source data appear in the objective function, the model is
learnable by using only the training instances in the target domain as long as the
source model is callable. This separately learnable property will be a great advantage
in certain cases, for example, where training the source model from scratch is time-
consuming or the source data can not be disclosed.

3.3 Relations to existing methods

By adjusting (τ, ρ) and selecting the appropriate choice of fw(x; θw), our method
can represent different types of TL as described below. Figure 3.1 presents a visual
overview of the relationship between the different methods.

Regularization based on cross-domain similarity

One of the most natural ideas for model refinement is to use the similarity with the
pretrained fs(x) as a constraint condition. Several existing studies have incorporated
such cross-domain similarity regularization in TL or other related machine learning
tasks such as avoiding catastrophic forgetting in continual learning (Kirkpatrick et al.,
2017) and knowledge distillation to compress complex neural networks to simpler
models (Hinton et al., 2015).

In Section 2.1.1, we have introduced regularization based on Bayesian inference.
Similarly, we consider a posterior distribution in Eq. (3.2) and impose the Gaussian
distribution on the likelihood pt(y|x; θw) = N (y|fw(x; θw), σ). The same prior to
Eq. (3.5) is imposed to p(θw|fs). Then, as described in Section 2.1.1, the MAP
estimator for θw and the mode of the plug-in predictive distribution are of the
following form:

θ̂w = argmin
θw

n∑
i=1

{
(yi − fw(xi; θw))2 +

σ

λ
(fs(xi)− fw(xi; θw))2

}
, (3.8)

ŷ(x) = fw(x; θ̂w). (3.9)

The objective function of our method, Eq. (3.6), can represent the MAP estimation
using the objective function in Eq. (3.8) by restricting the hyperparameter τ (or λ) to
a negative value, i.e., τ = −σ/λ < 0. The prediction function in Eq. (3.9) corresponds
to ρ = 0 in our method. With a negative τ , the model fw(x; θw) is estimated to
be closer to the pre-trained source model. Such a newly trained model fw(x; θ̂w) is
directly used as the prediction function without using the source model.
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𝜌𝜌

𝜏𝜏
Figure 3.1: Existing methods are mapped onto the hyperparameter space (τ, ρ). The
cross-domain similarity regularization corresponds to τ < 0 and ρ = 0 (black line).
If neural networks are applied to both fw(x; θw) and fs(x), this region corresponds
to the fine-tuning of neural networks. If τ = ρ (blue line), the class represents the
density-ratio TL. The region with τ = ρ = 0 (black dot) or ρ = 1 (red line) represents
an ordinal regression without transfer or the case where a source model is directly
used as the target, respectively.

Transfer Learning Based on Neural Networks

To our best knowledge, the most powerful and widely used method of TL relies on
deep neural networks (Yosinski et al., 2014). When neural networks are used in
both fw(x; θw) and fs(x) in the objective function Eq. (3.8), the pretrained fs(x) is
fine-tuned to fw(x; θw) by retaining the cross-domain similarity between their output
layers.

Transfer learning based on density-ratio estimation

As mentioned in Section 2.1.1, the density-ratio TL of Liu & Fukumizu (2016) was
designed to minimize the conditional Kullback–Leibler divergence

Eq(x)[KL(q(y|x)||pt(y|x; θw))]

between the true density q(y|x) and the transferred model pt(y|x; θw) based on the
density-ratio reweighting as in Eq. (3.1). If the transfer model is parameterized in the
same way as Eq. (3.3), the minimization problem of the empirical Kullback–Leibler
divergence and the prediction function are given as follows:

θ̂w = argmin
θw

n∑
i=1

{
(yi − fw(xi; θw))2 − ρ(fs(xi)− fw(xi; θw))2

}
, (3.10)

ŷ(x) = (1− ρ)fw(x) + ρfs(x), (3.11)
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where ρ := σ/(σ + η) ∈ (0, 1).
In terms of the proposed class of TL, the method in Liu & Fukumizu (2016) can

be considered as a specific choice of τ = ρ ∈ (0, 1) (the blue line in Figure 3.1).
This corresponds to the case where λ in Eq. (3.5) is sufficiently large, i.e., the prior
distribution for the parameters of the density-ratio function is uniformly distributed
and non-informative. It is noted that the objective function in Eq. (3.10) resembles
Eq. (3.8) in cross-domain similarity regularization. These two methods are regularized
based on the discrepancy between fw(x; θw) and fs(x), but their regularization mecha-
nisms work in the opposite directions: the regularization parameter τ takes a positive
value for the method in Liu & Fukumizu (2016), which we call cross-domain dissim-
ilarity regularization, whereas a negative value is used for cross-domain similarity
regularization.

Learning without transfer

The proposed family of methods contains two learning schemes without transfer. If
the hyperparameters are selected as τ = 0 and ρ = 0 (the black dot in Figure 3.1), the
density-ratio model fw(x; θ̂w) is estimated without using the source model, and the
resulting prediction model becomes ŷ(x) = fw(x; θ̂w). This corresponds to an ordinary
regression procedure. When negative transfer occurs, i.e., the previous learning
experience interferes with learning in the new task, the desirable hyperparameters are
approximately τ = 0 and ρ = 0. In addition, by setting ρ = 1 (the red line in Figure
3.1), the source model alone gives the prediction model as ŷ(x) = fs(x), regardless
of fw(x; θw). By cross-validating the hyperparameters, the proposed framework will
automatically determine when not to transfer without using a separate pipeline.

3.4 Selection of hyperparameters

As described above, the proposed method can hybridize various mechanisms of TL
by adjusting τ and ρ. The values of the hyperparameters are adjusted through
cross-validation. Clearly, the optimal combination of the hyperparameters will differ
depending on the cross-domain relationships and choice of the density-ratio model.

Here, we present an expression for the mean squared error (MSE) based on bias-
variance decomposition. For simplicity, we restrict fw(x; θ̂w) to occur in the set of all
linear predictions taking the form of fw(x; θ̂w) = x⊤Sz. The n×n smoothing matrix S
depends on n samples of p input features ϕ(xi) ∈ Rp (i = 1, . . . , n) with a predefined
basis set ϕ, and z is a vector of n transformed outputs zi (i = 1, . . . , n). An example
of this class of prediction is kernel ridge regression.

We assume that y follows y = ft(x) + ϵ, where ft(x) denotes the true model and
the observation noise ϵ has mean zero and variance σ2. For the prediction function
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ŷ(x) = (1− ρ)fw(x; θ̂w) + ρfs(x), MSE(ŷ(x)) = Ey|x[y − ŷ(x)]2 can be expressed as

MSE(ŷ(x)) =

[
ρ− τ
1− τ

D(x) +
1− ρ
1− τ

B1(x)−
τ(1− ρ)
1− τ

B2(x)

]2
+

(
1− ρ
1− τ

)2

V(x) + σ2,

(3.12)

where

D(x) = ft(x)− fs(x),
B1(x) = ft(x)− x⊤Sft,
B2(x) = fs(x)− x⊤Sfs,
V(x) = σ2x⊤SS⊤x.

(3.13)

The derivation is described in detail later. The first term is the squared bias, which
consists of three building blocks. D(x) represents the discrepancy between ft(x) and
fs(x). B1(x) is a bias of the linear estimator x⊤Sft with respect to the true model ft(x),
assuming that n observations ft = [ft(x1), . . . , ft(xn)]

⊤ are given for the unknown
ft(x). Likewise, B2(x) is the bias of x⊤Sfs with respect to fs(x). The second term
corresponds to the variance of ŷ(x). This is proportional to V(x) = σ2x⊤SS⊤x. The
third term is the variance of the observation noise.

The relative magnitudes of Ex[D(x)2], Ex[B1(x)
2], Ex[B2(x)

2], and Ex[V(x)] de-
termine the optimal hyperparameters for the cross-domain similarity regulariza-
tion, density-ratio TL, and learning without transfer. Let D = D(x), B1 = B1(x),
B2 = B2(x), and V = V(x). Consider the expectation of the MSE in Eq. (3.12) with
respect to the marginal distribution of x: Eq(x)[MSE(ŷ(x))]. Because the expected
MSE is quadratic with respect to ρ for any τ , the minimum under the inequality
constraint 0 ≤ ρ ≤ 1 is achieved by

ρ(τ) =


0 ρ∗(τ) ≤ 0
ρ∗(τ) 0 < ρ∗(τ) < 1
1 ρ∗(τ) ≥ 1

,

where ρ∗(τ) denotes the solution for the unconstrained minimization. Taking the
derivative of the expected MSE with respect to ρ, we have the following:

1

(1− τ)2
E[((ρ− τ)D + (1− ρ)B1 − τ(1− ρ)B2))(D− B1 + τB2)]−

1− ρ
(1− τ)2

E[V]

= 0.

(3.14)
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Assuming that τ ̸= 1, this leads to an expression for the unconstrained solution as

ρ∗(τ) =
E[(τD− B1 + τB2)(D− B1 + τB2)] + E[V]

E[D− B1 + τB2]2 + E[V]
. (3.15)

Likewise, taking the derivative of the expected MSE with respect to τ , we have

1− ρ
(1− τ)3

E[((ρ− τ)D + (1− ρ)B1 − τ(1− ρ)B2))(D− B1 + B2)]−
(1− ρ)2

(1− τ)2
E[V]

= 0.

(3.16)

Combining Eq. (3.14) and Eq. (3.16), where τ ̸= 1 and ρ ̸= 1, we obtain

(1− τ)E[τ(D + (1− ρ)B2)B2 − (1− ρ)B1B2 + ρDB2] = 0. (3.17)

Thus, the solution is expressed as

τ(ρ) =
(1− ρ)E[B1B2] + ρE[DB2]

(1− ρ)E[B2
2] + E[DB2]

. (3.18)

According to the two expressions in Eq. (3.15) and Eq. (3.18), we can investigate
the preference in the hyperparameter selection in regard to the bias and variance
components in the data generation process.

Consider a case where the source and target models are significantly different by
taking the limit E[D2] → ∞. For the expectation of E[DX] for the product of D
and any X ∈ {B1,B2}, it holds that E[DX]/E[D2]→ 0 as E[D2]→∞. This can be
explained by considering the Cauchy–Schwarz inequality, as follows:

−E[D2]
1
2E[X2]

1
2 ≤ E[DX] ≤ E[D2]

1
2E[X2]

1
2 ⇔ −E[X2]

1
2

E[D2]
1
2

≤ E[DX]
E[D2]

≤ E[X2]
1
2

E[D2]
1
2

.

In the right-hand side, the upper- and lower-bounds go to zero as E[D2]→∞. Thus,
in Eq. (3.15), all terms except those having E[D2], which appear in its numerator and
denominator, approach asymptotically to zero, which results in

ρ∗(τ)→
τE[D2]

E[D2]
= τ as E[D2]→∞.

Furthermore, noting that E[DX] = O(E[D2]
1
2 ), it can be seen that τ(ρ) in Eq. (3.18)

approaches ρ asymptotically.

τ(ρ)→ ρE[DB2]

E[DB2]
= ρ as E[D2]→∞.
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Therefore, when E[D2] dominates the other three quantities, the density-ratio TL
(τ = ρ) is preferred. This fact accounts for the experimental observations discussed
later.

In contrast, if the source and target models are entirely the same (E[D2] = 0), it
holds that ρ∗(τ) = 1. Alternatively, if E[V] → ∞, ρ∗(τ) = 1. The direct use of the
source model as a prediction function tends to be optimal as the similarity between the
source and target tasks increases or the variance E[V] becomes larger. The conditions
under which cross-domain similarity regularization is preferred have not been clarified
theoretically or experimentally.

Derivation details of Eq. (3.12)

Here, we explain the derivation of the mean squared error decomposition of the
proposed TL procedure, as shown in Eq. (3.12). It is well-known that the mean
squared error MSE(ŷ(x)) = E[y − ŷ(x)]2 can be decomposed as

E[y − ŷ(x)]2 =
(
Bias[ŷ(x)]

)2
+Var[ŷ(x)] + σ2, (3.19)

where Bias[ŷ(x)] = ft(x)−E[ŷ(x)] and Var[ŷ(x)] = E[ŷ(x)−E[ŷ(x)]]2. For the proposed
framework, these terms are written as follows:

Bias[ŷ(x)] = ft(x)− E[ŷ(x)]
= ft(x)− (1− ρ)E[f̂w(x)]− ρfs(x)

= ft(x)− (1− ρ)
{
ft(x)− τfs(x)

1− τ
− ft(x)− τfs(x)

1− τ
+ E[f̂w(x)]

}
− ρfs(x)

= ft(x)− (1− ρ)
{
ft(x)− τfs(x)

1− τ
− Bias[f̂w(x)]

}
− ρfs(x)

=

{
1− 1− ρ

1− τ

}
ft(x)−

{
− τ(1− ρ)

1− τ
+ ρ

}
fs(x) + (1− ρ)Bias[f̂w(x)]

=
ρ− τ
1− τ

(ft(x)− fs(x)) + (1− ρ)Bias[f̂w(x)], (3.20)

Var[ŷ(x)] = E
[
ŷ(x)− E[ŷ(x)]

]2
= E

[
(1− ρ)f̂w(x) + ρfs(x)− E[(1− ρ)f̂w(x) + ρfs(x)]}

]2
= E

[
(1− ρ)(f̂w(x)− E[f̂w(x)])

]2
= (1− ρ)2Var[f̂w(x)], (3.21)
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where Bias[f̂w(x)] =
ft(x)−τfs(x)

1−τ − E[f̂w(x)], and E[f̂w(x)− E[f̂w(x)]]2. For the linear

predictor fw(x; θ̂w) = x⊤Sz, we can proceed as

Bias[f̂w(x)] =
ft(x)− τfs(x)

1− τ
− E

[
x⊤S

y − τ fs
1− τ

]
=

1

1− τ
[
ft(x)− E[x⊤Sy]

]
− τ

1− τ
[
fs(x)− E[x⊤Sfs]

]
=

1

1− τ
B1(x)−

τ

1− τ
B2(x), (3.22)

and

Var[f̂w(x)] = E
[
f̂w(x)− E[f̂w(x)]

]2
= E

[
x⊤S

y − τ fs
1− τ

− E
[
x⊤S

y − τ fs
1− τ

]]2
= E

[
x⊤Sy

1− τ
− E[x⊤Sy]

1− τ

]2
=

(
1

1− τ

)2

x⊤SE[y − E[y]]2S⊤x

=

(
1

1− τ

)2

V(x), (3.23)

where B1,B2 and V are as defined in Eq. (3.13). Substituting Eq. (3.20)-(3.23) into
Eq. (3.19) yields Eq. (3.12).

3.5 Experimental results

3.5.1 Illustrative example

Some intrinsic properties of the proposed method are illustrated by presenting numer-
ical examples using artificial data. According to our analysis, the magnitudes of the
bias and variance and the hyperparameters that minimize the MSE are interrelated.
This link will be demonstrated in this section.

We assumed the true functions on the source and target tasks to be linear as
ft(x) = x⊤θt and fs(x) = x⊤θs, where x ∈ R300. The true parameters were generated
as θt = αθs + (1− α)θw, where θs ∼ N (0, I) and θw ∼ N (0, I). The output variable
was assumed to follow y = ft(x) + ϵ, where x ∼ N (0, I) and ϵ ∼ N (0, σ2). With the
given θw and θs, we generated {(xi, yi)}ni=1 with the sample size set to n = 50 by
randomly sampling x and ϵ. With given θw and θs, we generated {(xi, yi)}ni=1 with the
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Figure 3.2: Heatmap display of the MSE landscape on the hyperparameter space (τ ,
ρ), which changes as a function of the bias (α) and variance (σ). With the given τ
and ρ, linear ridge regression was used to train fw(x; θw) on the artificial data. The
black dot denotes the lowest MSE.

sample size set to n = 50 by randomly sampling x and ϵ. The discrepancy between
the source and target models is controlled by the mixing rate α ∈ [0, 1] for any given
θw. In particular, if α is set to zero, the source and target models are the same, i.e.,
∀x: D(x) = 0 in Eq. (3.12). The variance σ2 of the observational noises affects the
magnitude of the variance E[V] in the model estimation.

Linear case

For the simplest case, we used linear ridge regression to estimate fw with the hyperpa-
rameter on the ℓ2-regularization that was fixed at λ = 0.0001. This case is consistent
with the case in Section 3.4. The true source model was used as fs(x). We then
investigated the change in the MSE landscape as a function of the bias α and variance
σ, which are summarized in Figure 3.2. For any given values of τ and ρ, the MSE was
approximately evaluated by averaging the squared loss over additionally generated
1,000 samples on (x, y) and rescaled to the range in [0, 1]. For α = 0 at which the
source and target models are the same, the MSE became small in the region along
ρ = 1, which corresponds to the use of the pre-trained source model as the target
model with no modification. As α increased while restricting σ to smaller values, the
region where the MSE became small was concentrated around τ = ρ, indicating the
dominant performance of the density-ratio TL. In contrast, as both α and σ became
larger, the region with τ < 0 and ρ = 0 tended to be more dominant. This region
corresponds to TL with cross-domain similarity regularization. It was confirmed that
the pattern of the MSE landscape varies continuously with respect to the bias and
variance components.
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Nonlinear case

We conduct the same analysis as above for the cases where nonlinear models are
assumed for fw(x; θw), ft(x), and fs(x). The analysis in Section 3.4 is not applicable
to this case, but it exhibits the same trends as in the linear case. To be specific, we
considered three different cases as follows: (a) a random forest is assigned to fw(x; θw),
where the true models of ft(x) and fs(x) are assumed to be linear, (b) a linear model
is assigned to fw(x; θw), where the true models are assumed to be nonlinear, and (c)
a random forest is assigned to fw(x; θw), where the true models are assumed to be
nonlinear.

To generate artificial data with nonlinearity, we assumed single hidden layer neural
networks for the source and target models as

fs(x) = Bsφ(Asx),

ft(x) = Btφ(Atx),

φ(x) = max{0, x}.

The weight parameters were generated as At = αAw+(1−α)As, Bt = αBw+(1−α)Bs,
where As,Aw ∈ R50×300, and Bs,Bw ∈ R1×50, and each element of As,Aw,Bs,Bw was
drawn from N (0, 0.5) independently. The output variable was assumed to follow
y = ft(x) + ϵ, where x ∼ N (0, I) and ϵ ∼ N (0, σ2). We generated 50 samples for the
training of fw(x; θw) and 1,000 samples for the evaluation of the MSE.

We used linear ridge regression and random forest regression to train fw(x; θw)
with the fixed hyperparameters λ = 0.0001, ntree = 200 (number of trees), and
nvariable = 100 (number of randomly selected variables at each split). Figure 3.3 shows
the changes in the MSE landscape for various α and σ for each case.

(a) ft and fs are linear, fw is nonlinear When assuming the nonlinear model for
fw(x; θw), a similar trend of the relationship between the hyperparameter preference
and magnitudes of the bias and variance components (α and σ) was observed as in
the linear case. As α (i.e., Ex[D(x)2]) was increased while keeping σ (i.e., Ex[V(x)])
small, the regions with smaller MSEs were concentrated near τ = ρ. In contrast, as
both α and σ were increased, the regions with τ < 0 and ρ = 0 became preferable.

(b) ft and fs are nonlinear, fw is linear In this case, the same argument as
Section 3.4 holds because the analysis shown in Section 3.4 does not place any specific
assumption on the mathematical forms of ft(x) and fs(x). However, in the lower left
panel of Figure 3.3 (the case where α is large and σ is small), the best hyperparameters
are located slightly off the diagonal. This is because the linear model fw(x; θw) cannot
capture the nonlinearity of ft(x) and fs(x); thus, Ex[B1(x)

2] and Ex[B2(x)
2] do not

become smaller.
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(c) ft(x), fs(x): neural networks; fθw (x): random forest regression

Figure S1: Heatmap display of the MSE landscape on the hyperparameter space (τ , ρ) in the three
different settings where the different models were assumed for ft(x), fs(x), and fθw(x), respectively.
The black dot denotes the lowest MSE.

3

Figure 3.3: Heatmap display of the MSE landscape on the hyperparameter space (τ ,
ρ) in under three different settings, where different models were assumed for ft(x),
fs(x), and fw(x; θw). The black dot denotes the lowest MSE.
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(c) ft, fs, and fw are nonlinear As in (a), the pattern of change in the MSE with
respect to α and σ was similar to that in the linear case. Assuming the nonlinear
model for fw(x; θw), we can reduce Ex[B1(x)

2] and Ex[B2(x)
2] to a greater extent than

in the case where the linear model is assumed for fw(x; θw). Hence, the region near
the density-ratio TL becomes more favorable when α is larger and σ is smaller.

3.5.2 Real data applications

Task and data

The proposed method was applied to five real data analyses in materials science and
robotics applications: (i) the prediction of multiple properties of organic polymers and
inorganic compounds (Yamada et al., 2019), (ii) the prediction of multiple properties
of polymers (Kim et al., 2018) and low-molecular-weight compounds (monomers,
unpublished data), (iii) the prediction of properties of donor molecules in organic solar
cells (Paul et al., 2019), obtained from experiments (Lopez et al., 2016) and quantum
chemical calculations (Pyzer-Knapp et al., 2015), (iv) the prediction of formation
energies of various inorganic compounds and crystal polymorphisms of SiO2 and
CdI2 (Jain et al., 2013), and (v) the prediction of the feed-forward torques required
to follow the desired trajectory at seven joints of a SARCOS anthropomorphic robot
arm (Williams & Rasmussen, 2006). The model transfers were conducted exhaustively
between all task pairs within each application, which resulted in a total of 185 pairs
of the source and target tasks with 9 different combinations of fs(x) and fw(x; θw) (a
total of 1,665 cases).

Polymers and inorganic compounds The task was to predict five properties
(band gap, dielectric constant, refractive index, density, and volume) of inorganic
compounds and six properties (band gap, dielectric constant, refractive index, density,
volume, and atomization energy) of polymers. The number of pairs for the source and
target tasks to be transferred was 110 = 11× 10. The overall datasets represent the
structure–property relationships for 1,056 inorganic compounds and 1,070 polymers.
See Yamada et al. (2019) for more details on the datasets. The structural information
for all the materials was ignored. Only the compositional features were encoded into
the 290-dimensional input descriptors by using XenonPy, an open-source platform of
materials informatics for Python (Liu et al., 2021)1.

Polymers and small molecules The task was to predict three properties (band gap,
dielectric constant, and refractive index) of polymers and three properties (HOMO-
LUMO gap, dielectric constant, and refractive index) of small organic molecules. The

1https://github.com/yoshida-lab/XenonPy
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number of paired tasks was 30 = 6× 5. The polymeric data consisted of 854 polymers.
By performing quantum chemistry calculations based on density functional theory
using the Gaussian 09 suite of program codes (Frisch et al., 2016), we produced a
dataset on the three properties of 854 small organic molecules that corresponded to the
constitutional repeating units of the 854 polymers. In the density functional theory
(DFT) calculation, the molecular geometries were optimized at the B3LYP/6-31+G(d)
theoretical level of theory. The chemical structure of each monomer was encoded
into a descriptor vector of 1,905 binary digits by using two molecular fingerprinting
algorithms that refer to PubChem and circular fingerprints implemented in the rcdk
package on R (Guha, 2007).

CEP and HOPV The task was to predict the highest occupied molecular orbital
(HOMO) energy for donor molecules in an organic solar cell devise. We used two
datasets for the HOMO energy levels of 2,322,649, and 351 molecules. The former
dataset was obtained from the high-throughput quantum chemistry calculations
conducted by the Harvard clean energy project (CEP) (Pyzer-Knapp et al., 2015) and
the latter was a collation of the experimental photovoltaic data from the literature,
referred to as the Harvard Organic Photovoltaic Dataset (HOPV15) (Lopez et al.,
2016). We used the fingerprints of the second task to represent the input chemical
structures.

Formation energy of SiO2 and other compounds We used a dataset of the
Materials Project (Jain et al., 2013), which contains the DFT formation energies of
69,641 inorganic compounds. The input crystal structures were translated by the 441-
dimensional descriptors obtained by concatenating the 290-dimensional compositional
descriptors and 151-dimensional radial distribution function descriptors in XenonPy.
We first derived a pre-trained source model by using 80% of the 69,358 training
instances after removing 283 instances corresponding to SiO2. Such a global model
originating from the large dataset was transferred to a localized target model on SiO2

by using the remaining small dataset.

SARCOS robot arm The task was to predict the feed-forward torques required
to follow the desired trajectory at seven joints of a SARCOS anthropomorphic robot
arm (Williams & Rasmussen, 2006). The number of paired tasks was 42. The dataset
contained a total of 44,484 and 4,449 instances for training and testing. The 21 input
features described the position, velocity, and acceleration at the seven joints.
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Figure 3.4: Distribution of (τ, ρ) that delivered the lowest MSE in 1,665 cases (185
task pairs and 32 combinations of models for fs(x) and fw(x; θw)). The number in
each pixel denotes the count of cases.

Analytical procedure

For each task pair, we used three machine learning algorithms—ridge regression using
a linear model (LN), random forest (RF), and neural network (NN)—to estimate fs(x)
and fw(x; θw). In the source task, the entire dataset was used to train fs(x) under
the default settings of the software packages without adjusting the hyperparameters.
In all cases, 50 randomly selected samples were used to train fw(x; θw). We selected
the best model based on five-fold cross-validation. The resulting model was used to
predict the remaining data, and the MSE was evaluated.

Results

For each of the 1,665 cases, we investigated the distribution of the hyperparameters
selected by the cross-validation (Figure 3.4). In many cases, the distribution of the
selected hyperparameters was concentrated in the neighboring areas of density-ratio
TL (τ = ρ) and cross-domain similarity regularization (τ < 0, ρ = 0). Density-ratio
TL was selected for 609 cases (36.6%) and cross-domain similarity regularization was
selected for 176 cases (10.6%). In particular, there was a significant bias toward the
neighbors of τ = ρ.

The selected hyperparameters and MSEs for the 1,665 cases are presented in Tables
3.2–3.6. As an illustrative example, Table 3.1 shows the results of the TL from one
source task (prediction of dielectric property of small molecules) to five target tasks
(prediction of two properties of small molecules and three properties of polymers).
This result also indicates the presence of bias toward τ and ρ. It was also observed
that in some cases, the choice of the density-ratio model significantly affected the
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Source task Target task fs(x)
fw(x; θw) Selected hyperparameters

LN RF NN LN RF NN

Monomer
- Dielectric constant

Monomer
- HOMO-LUMO gap

LN 0.8292 0.7435 0.8823 (-0.1, 0.1) ( 0.6, 0.4) ( 0.1, 0.3)
RF 0.8302 0.7139 0.7421 (-0.1, 0.2) ( 0.5, 0.3) ( 0.8, 0.8)
NN 0.8250 0.7372 0.7644 (-0.2, 0.2) ( 0.2, 0.3) ( 0.4, 0.4)

Monomer
- Refractive index

LN 0.0436 0.0424 0.0439 ( 0.8, 0.9) ( 0.8, 0.9) ( 0.8, 0.9)
RF 0.0463 0.0415 0.0415 ( 0.9, 0.9) ( - , 1.0) ( - , 1.0)
NN 0.0365 0.0355 0.0505 ( 0.8, 0.9) ( 0.8, 0.9) ( 0.4, 0.7)

Polymer
- Band gap

LN 1.0881 0.7862 0.8936 ( 0.3, 0.1) ( 0.0, 0.1) ( 0.6, 0.6)
RF 0.8594 0.7477 0.7130 (-0.2, 0.4) ( 0.4, 0.3) ( 0.8, 0.8)
NN 0.8654 0.8598 0.8908 (-0.5, 0.1) ( 0.3, 0.5) ( 0.6, 0.5)

Polymer
- Dielectric constant

LN 0.6031 0.5358 0.6376 (-0.4, 0.2) ( 0.3, 0.2) (-0.5, 0.0)
RF 0.5988 0.5786 0.6678 (-0.2, 0.2) ( 0.3, 0.2) ( 0.0, 0.4)
NN 0.6143 0.5478 0.7563 (-0.1, 0.2) ( 0.2, 0.3) (-0.2, 0.1)

Polymer
- Refractive index

LN 0.3269 0.3906 0.3442 ( 0.0, 0.0) (-0.4, 0.0) ( 0.2, 0.4)
RF 0.3269 0.3574 0.3312 ( 0.0, 0.0) ( 0.1, 0.1) ( 0.1, 0.2)
NN 0.3269 0.3845 0.4254 ( 0.0, 0.0) (-0.1, 0.1) (-1.7, 0.0)

Table 3.1: Selected hyperparameters (the last three columns representing the hyper-
parameters τ and ρ) and their corresponding MSEs (columns 4–6) for TL from one
source task to five target tasks. Three different models (LN: linear, RF: random forest,
and NN: neural network) were applied to fs(x) and fw(x; θw). Tables 3.2-3.6 provide
the full results for all the 1,665 cases.

prediction performance.
We speculate that the four quantities Ex[D2], Ex[B2

1], Ex[B2
2], and Ex[V] or their

counterparts in general regression, determine the preference of τ and ρ. Figure 3.5
shows the MSE mapped on the hyperparameter space and the four quantities for
the four task pairs. They were selected as the typical cases where the four different
learning schemes are preferred. The proposed method exhibited a preference to
directly use the source models when the difference between the source and target
domains (Ex[D2]) was small. When Ex[D2] was large, the relative magnitude of Ex[D2]
and the other three quantities Ex[B1

2], Ex[B2
2], and Ex[V] determined the selection

of the source model; if Ex[V] was small, density-ratio TL was preferred, and if Ex[V]
was large, cross-domain similarity regularization was preferred. Furthermore, when
both Ex[B1

2] and Ex[V] were small, training without transfer was preferred. Such
relationships were often observed in other cases as well. However, these inferences
were derived from partial observations, and there would be more complex factors to
work in the learning mechanism.

Remarks: preference of hyperparameters

In the real data applications, we investigated the relationship between the selected
hyperparameters and the bias and variance inherent in the data for the 555 (= 3×185)
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(a) Best transferability: direct use of source model (b) Best transferability: density-ratio TL

(c) Best transferability: cross-domain similarity regularization (d) Best transferability: regression without transfer

Figure 3.5: MSE landscapes of the hyperparameter space for four different cases that
exhibited the best transferability in different hyperparameter sets. Sample estimates
on three bias-related quantities (Ex[D2], Ex[B1

2], and Ex[B2
2]), and the mean variance

(Ex[V]) are shown on each plot.

cases out of a total of 1,665 cases, where the linear model was assumed for the
density-ratio model. If we assume linearity, as described in Section 3.4, the MSE can
be expressed as Eq.(3.12). Here, we focused on the relative magnitudes of Ex[D(x)2]
and Ex[V(x)]. The expected value of Ex[D(x)]2 was approximated by the mean of 500
samples randomly selected from the test data. For Ex[V(x)], the variance in the linear
predictor function was calculated using 100 bootstrap sets extracted from the training
data. We divided the 555 cases into 16 (= 4× 4) groups according to the quartiles
of Ex[D(x)2] and Ex[V(x)2]. The thresholds for each interval and distribution of the
selected τ and ρ for each group are shown in Figure 3.6. A striking trend was observed,
in which the hyperparameters were significantly concentrated in the domain of density-
ratio TL as Ex[D(x)2] increased relative to Ex[V(x)] (Ex[D(x)2]/Ex[V(x)]→∞). In
contrast, as Ex[V(x)] increased, some of the selected hyperparameters appeared in
the domain of cross-domain similarity regularization. Nevertheless, many several
hyperparameters were still distributed in the region of density-ratio TL. The trend
remained unclear when compared with the case of Ex[D(x)2]/Ex[V(x)]→∞.
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Figure 3.6: Distribution of the selected hyperparameters in 555 cases where the linear
model was assumed for fw(x; θw). The cases were grouped according to the four
intervals of E[D2] or E[V], which was approximately evaluated by calculating the
sample average on the test data. The intervals were determined based on the quantile
values of the two quantities. The resulting 16 panels are separately shown. The colors
refer to the relative frequency of each cell.

3.6 Summary and future perspectives

In this chapter, we proposed a new class of TL characterized by two hyperparameters,
which in turn control the training and prediction procedure. This new class of TL
unifies two different types of existing methods that are based on cross-domain similarity
regularization and density-ratio estimation. If we use neural networks on the source
and target models, the class represents the fine-tuning of the neural networks. In
addition, some specific selection of hyperparameters offers the choice of ordinary
regression without transfer or direct use of a pre-trained source model as the target.
According to the selection of hyperparameters and models, we can derive various
learning methods in which these two methods are hybridized.

Cross-domain similarity regularization and density-ratio TL follow opposite learn-
ing objectives. In the former case, the target model is regularized to be closer to the
source model. In the latter case, the target model is estimated to differ significantly
from the source model. Most of the widely used techniques have adopted the former
approach that leverages the proximity of the target model to the source model. Inter-
estingly, in many cases, cross-domain similarity regularization rarely exhibited the best
transferability according to our empirical study; moreover, density-ratio estimation or
its neighboring areas in the hyperparameter space often showed better performance.
Although the idea of cross-domain similarity regularization is more widely adopted,
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our results indicate that we should further explore the direction based on a different
concept, such as density-ratio estimation.

This chapter focused on regression setting. In addition, in the Bayesian framework,
we assumed a specific type of likelihood and prior distribution. The empirical risk
derived from this assumption takes the sum of the squared loss. With this formulation,
we could perform the model training simply by using an existing library for regression.
This allows us to keep the implementation cost to practically zero. However, there
are also limitations to using the squared loss. We should consider a wide range of
loss functions and learning tasks. The treatment of more generic loss functions and
discriminant problems will be considered in future research.
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Chapter 4

Affine model transfer

In conventional supervised TL, cross-domain differences are modeled and estimated
by using a given set of source models and samples of a target domain. For example, if
there is a functional relationship between the source and target domains, only domain-
specific factors are additionally learned using the target samples to shift the source
models to the target. However, the general methodology for modeling and estimating
such cross-domain shifts has been less studied. This chapter presents a TL framework
that simultaneously and separately estimates the domain shifts and domain-specific
factors using the given target samples. Assuming consistency and invertibility of
the domain transformation functions, we derive an optimal family of functions to
represent the cross-domain shift. The newly derived class of transformation functions
takes the same form as that of invertible neural networks by using affine coupling
layers, which are widely used in generative deep learning. We show that the proposed
method encompasses a wide range of existing methods, including the most common
TL procedure based on feature extraction using neural networks. We also clarify the
theoretical properties of the proposed method, such as the convergence rate of the
generalization error, and demonstrate the practical benefits of separately modeling
and estimating the domain-specific factors through several case studies.

4.1 Transfer learning via transformation function

4.1.1 Affine model transfer

This chapter considers regression problems with squared loss. Recall that we assume
that the output of the target domain y ∈ Y ⊂ R follows y = ft(x) + ϵ, where
ft : X → R is the true model on the target domain, and the observation noise ϵ has
mean zero and variance σ2. We are given n samples {(xi, yi)}ni=1 ∈ (X × Y)n from
the target domain and the feature representation fs(x) ∈ Fs from one or more source
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4.1. TRANSFER LEARNING VIA TRANSFORMATION FUNCTION

domains. Typically, fs is given as a vector fs(x) = [f1(x), f2(x), . . . , fM(x)]⊤, which
includes the output of the source models, observed data in the source domains, or
learned features in a pre-trained source neural network, etc., but it can also be a
non-vector feature such as a tensor, graph, or text. Hereinafter, fs is referred to as
the source features.

As described in Section 2.1.2, Du et al. (2017) provided a TL framework using the
transformation function. The following is a slight generalization of its procedure:

1. With the source features, perform a variable transformation of the observed
outputs as zi = ϕ(yi, fs(xi)) using the data transformation function ϕ : Y×Fs →
R.

2. Train an intermediate model ĝ(x) using the transformed sample set {(xi, zi)}ni=1

to predict the transformed output z for any given x.

3. Obtain a target model f̂t(x) = ψ(ĝ(x), fs(x)) using the model transformation
function ψ : R×Fs → Y that combines ĝ and fs to define a predictor.

The difference from Du et al. (2017) is that we use two transformation functions:
data transformation function and model transformation function. Du et al. (2017)
considers the case where the model transformation function ψ is equal to the inverse
of the data transformation function ϕ−1, but we consider a more generical case that
eliminates this constraint.

This class of TL includes several approaches proposed in previous studies. For
example, Kuzborskij & Orabona (2013; 2017) proposed a learning algorithm consisting
of linear data transformation and linear model transformation, ϕ = y − ⟨θ, fs(x)⟩
and ψ = g(x) + ⟨θ, fs(x)⟩, with a pre-defined coefficient θ. In this case, the factors
unexplained by the linear combination of source features are learned with g, and
the target output is predicted additively with the common factor ⟨θ, fs(x)⟩ and
the additionally learned g. Recall that, in Section 3, we developed a Bayesian
TL with density-ratio modeling (Minami et al., 2021), which is equivalent to the
following transformation functions: for Fs ⊂ R, ϕ = (y − τfs(x))/(1 − τ) and
ψ = ρg(x) + (1 − ρ)fs(x) with two varying hyperparameters τ < 1 and 0 ≤ ρ ≤ 1.
This includes TL using density-ratio estimation (Liu & Fukumizu, 2016) and neural
network-based fine-tuning as special cases when the two hyperparameters belong to
specific regions.

The performance of this TL procedure strongly depends on the design of the two
transformation functions ϕ and ψ. In other words, if unfavorable transformation func-
tions are used, the TL will fail. For example, multiplicative transformation functions
do not accurately capture linear domain shifts. In this section, we mathematically
derive the properties that the transformation functions must satisfy.
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4.1. TRANSFER LEARNING VIA TRANSFORMATION FUNCTION

For simplicity, we denote the transformation functions as ϕfs(·) = ϕ(·, fs(x)) and
ψfs(·) = ψ(·, fs(x)). To derive the optimal class of ϕ and ψ, we make the following
assumptions:

Assumption 4.1 (Differentiability). The data transformation function ϕ is differen-
tiable with respect to the first argument.

Assumption 4.2 (Invertibility). The model transformation function ψ is invertible
with respect to the first argument, i.e., its inverse ψ−1

fs
exists.

Assumption 4.3 (Consistency). For any distribution on the target domain pt(x, y),
and for all x ∈ X ,

ψfs(g
∗(x)) = Ept [Y |X = x],

where g∗(x) = Ept [ϕfs(Y )|X = x].

The regression function that minimizes the mean squared error is given by the
conditional mean. In Assumption 4.3, g∗ is defined to be the best predictor function for
the transformed variable z = ϕfs(y) in terms of the mean squared error. Assumption
4.3 states that composing the optimal g∗ with the model transformation function ψfs
leads to the best predictor Ept [Y |X = x] for the target domain. This assumption
corresponds to the unbiased condition of Du et al. (2017).

Under these assumptions, we derive the optimal class of the transformation
functions, which minimizes the mean squared error.

Theorem 4.1. Let g1, g2 : Fs → R denote arbitrary functions. If Assumptions 4.1–4.3
hold, then the transformation functions ϕ and ψ satisfy the following two properties:

(i) ψ−1
fs

= ϕfs.

(ii) ψfs(g) = g1(fs) + g2(fs) · g.

Proof. According to Assumption 4.3, it holds that for any pt(y|x),

ψfs

(∫
ϕfs(y)pt(y|x)dy

)
=

∫
ypt(y|x)dy. (4.1)

(i) Let δy0 be the Dirac delta function supported on y0. By substituting pt(y|x) = δy0
into Eq. (4.1), we have

ψfs(ϕfs(y0)) = y0 (∀y0 ∈ Y).
Under Assumption 4.2, this implies the property (i).

(ii) For simplicity, we assume the input x is fixed and pt(y|x) > 0. Applying the
property (i) to Eq. (4.1) yields∫

ϕfs(y)pt(y|x)dy = ϕfs

(∫
ypt(y|x)dy

)
.
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We consider a two-component mixture pt(y|x) = (1− ϵ)q(y|x)+ ϵh(y|x) with a mixing
rate ϵ ∈ [0, 1], where q and h denote arbitrary probability density functions. Then,
we have∫

ϕfs(y)
{
(1− ϵ)q(y|x) + ϵh(y|x)

}
dy = ϕfs

(∫
y
{
(1− ϵ)q(y|x) + ϵh(y|x)

}
dy

)
.

Taking the derivative at ϵ = 0, we have∫
ϕfs(y)

{
h(y|x)− q(y|x)

}
dy = ϕ′

fs

(∫
yq(y|x)dy

)(∫
y
{
h(y|x)− q(y|x)

}
dy

)
,

which yields ∫ {
h(y|x)− q(y|x)

}{
ϕfs(y)− ϕ′

fs

(
Eq[Y |X = x]

)
y
}
dy = 0. (4.2)

For Eq. (4.2) to hold for any q and h, ϕfs(y) − ϕ′
fs

(
Eq[Y |X = x]

)
y must be inde-

pendent of y. Thus, the function ϕfs and its inverse ψfs = ϕ−1
fs

are limited to affine
transformations.

Theorem 4.1 implies that the mean squared error is minimized when the data and
model transformation functions are given by an affine transformation and its inverse,
respectively. In summary, the optimal class for HTL is expressed as follows:

H =
{
x 7→ g1(fs(x)) + g2(fs(x)) · g3(x) | g1 ∈ G1, g2 ∈ G2, g3 ∈ G3

}
,

where G1,G2, and G3 are arbitrarily function classes. Here, g1 and g2 are modeled
as functions of fs that represent the common factors between the source and target
domains. g3 is modeled as a function of x to capture the domain-specific factors
unexplainable by the source features.

We have derived the optimal form of the transformation functions when the
squared loss is employed. Even for general convex loss functions, (i) of Theorem
4.1 still holds. However, (ii) of Theorem 4.1 does not generally hold because the
optimal transformation function depends on the employed loss. The optimal models
for various convex loss functions are discussed in Section 4.1.3.

Here, the affine transformation is found to be optimal in terms of minimizing the
mean squared error. We can also derive the same function class by minimizing the
upper bound of the estimation error in the HTL procedure. The details are discussed
in Section 4.1.3.
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(a) Direct learning (b) Feature extraction

(c) HTL–offset (d) Affine model transfer

Figure 4.1: Model architectures for the affine model transfer and related procedures.
(a) Direct learning predicts the output using only the original input x, whereas (b)
feature extraction-based neural transfer predicts the output using only the source
features fs. (c) The HTL procedure proposed in Kuzborskij & Orabona (2013) (HTL-
offset) constructs the predictor as the sum of g1(fs) and g3(x). (d) The affine model
transfer encompasses the above procedures, computing g1 and g2 as functions of the
source features and constructing the predictor as an affine combination with g3.
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4.1.2 Relation to existing methods

The affine model transfer encompasses some existing TL procedures, for example, a
learning scheme without transfer. By setting g1(fs) = 0 and g2(fs) = 1, the prediction
model is estimated without using the source features, which corresponds to an ordinary
direct learning procedure.

In a prior study, Kuzborskij & Orabona (2013) employed a two-step procedure,
where the source features were combined with pre-defined weights, and an auxiliary
model was additionally learned for the residuals unexplainable by the source features.
The affine model transfer can represent this HTL as a special case by setting g2(fs) = 1,
but differs in the following two aspects. First, the existing method models only the
difference (residuals) from the source domains, whereas our model also considers the
cross-domain ratio relationship, i.e., we also consider the function g2(fs). Another
distinctive feature of affine model transfer is the learning procedure, which can estimate
the data and model transformation functions simultaneously, as described in Section
4.2.

The affine model transfer can be naturally expressed as an architecture of neural
networks. This architecture, called affine coupling layers, is widely used for invertible
neural networks in flow-based generative modeling (Dinh et al., 2014; 2017). Neural
networks based on affine coupling layers have been proven to have universal approx-
imation ability (Teshima et al., 2020). This implies that the affine transfer model
has the potential to represent a wide range of function classes, despite its simple
architecture based on the affine coupling of three functions.

As mentioned in Section 2.1.2, when a pre-trained source model is provided as a
neural network, TL is usually performed with the intermediate layer as an input to the
model in the target domain. This is called a feature extractor or frozen featurizer, and
has been experimentally and theoretically proven to have strong transfer capability,
making it the de facto standard for TL (Yosinski et al., 2014; Tripuraneni et al.,
2020). The affine model transfer encompasses the neural feature extractor as a special
subclass, which is equivalent to setting g2(fs)g3(x) = 0. A performance comparison
of the affine model transfer with the neural feature extractor is presented in Section
4.4.2.

The affine model transfer can also be interpreted as generalizing the feature
extractor by adding a product term g2(fs)g3(x). This additional term allows for the
inclusion of unknown factors in the transferred model that are unexplainable by source
features alone. Furthermore, this assists in avoiding negative transfer. The usual
TL based only on g1(fs) attempts to explain and predict the data generation process
in the target domain by using features from only the source domain. However, in
the presence of domain-specific factors, a negative transfer can occur owing to a lack
of descriptive power. The additional term compensates for this shortcoming. The

72
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comparison with the behavior in the case with non-relative source features is described
in Section 4.4.1.

4.1.3 Other perspectives on affine model transfer

In Section 4.1.1, we derived the optimal form of the transformation functions when
the squared loss is employed. This section discusses other perspectives on the trans-
formation functions.

Transformation functions for general loss functions

Here, we discuss the optimal transformation function for general loss functions.
Let ℓ(y, y′) ≥ 0 be a convex loss function that returns zero if and only if y = y′,

and let g∗(x) be the optimal predictor that minimizes the expectation of ℓ with respect
to the distribution pt, followed by x and y transformed by ϕ:

g∗(x) = argmin
g

Ept
[
ℓ(g(x), ϕfs(y))

]
.

The function g that minimizes the expected loss

Ept
[
ℓ(g(x), ϕfs(y))

]
=

∫∫
ℓ(g(x), ϕfs(y))pt(x, y)dxdy

should be a solution to the Euler–Lagrange equation

∂

∂g(x)

∫
ℓ(g(x), ϕfs(y))pt(x, y)dy =

∫
∂

∂g(x)
ℓ(g(x), ϕfs(y))pt(y|x)dy pt(x) = 0.

(4.3)
Denote the solution of Eq. (4.3) by G(x;ϕfs). Although G depends on the loss ℓ
and distribution pt, we omit these considerations from the argument for notational
simplicity. Using this notation, the minimizer of the expected loss Ex,y[ℓ(g(x), y)] can
be expressed as G(x; id), where id denotes an identity function.

Here, we consider the following assumption that generalizes Assumption 4.3:

Assumption 4.4. For any distribution on the target domain pt(x, y) and all x ∈ X ,
the following holds:

ψfs(g
∗(x)) = argmin

g
Ex,y[ℓ(g(x), y)].

Equivalently, the transformation functions ϕfs and ψfs satisfy

ψfs
(
G(x;ϕfs)

)
= G(x; id). (4.4)
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Assumption 4.4 states that if the best predictor G(x;ϕfs) for the data transformed
by ϕ is provided to the model transformation function ψ, it is consistent with the
overall best predictor G(x; id) in the target region in terms of the loss function ℓ. We
consider all pairs of ψ and ϕ that satisfy this consistency condition.

Here, let us prove the following proposition:

Proposition 4.2. Under Assumption 4.1, 4.2, and 4.4, it holds that ψ−1
fs

= ϕfs.

Proof. The proof is analogous to that of Theorem 4.1. For any y0 ∈ Y , let pt(y|x) = δy0 .
Combining this with Eq. (4.3) leads to

∂

∂g(x)
ℓ(g(x), ϕfs(y0)) = 0 (∀y0 ∈ Y).

Because ℓ(y, y′) returns the minimum value zero if and only if y = y′, we obtain
G(x;ϕfs) = ϕfs(y0). Similarly, we have G(x; id) = y0. From these two facts and
Assumption 4.4, we have ψfs(ϕfs(y0)) = y0, proving that the proposition is true.

Proposition 4.2 indicates that the first statement of Theorem 4.1 holds for general
loss functions. However, the second assertion of Theorem 4.1 generally depends on
the type of loss function. Through the following examples, we describe the optimal
class of transformation functions for several loss functions.

Example 1 (Squared loss). Let ℓ(y, y′) = |y − y′|2. As a solution of Eq. (4.3), we
can see that the optimal predictor is the conditional expectation Ept [ϕfs(Y )|X = x].
As discussed in Section 4.1, the transformation functions ϕfs and ψfs should be affine
transformations.

Example 2 (Absolute loss). Let ℓ(y, y′) = |y − y′|. Substituting this into Eq. (4.3),
we have

0 =

∫
∂

∂g(x)

∣∣g(x)− ϕfs(y)∣∣pt(y|x)dy
=

∫
sign

(
g(x)− ϕfs(y)

)
pt(y|x)dy

=

∫
ϕfs (y)≥g(x)

pt(y|x)dy −
∫
ϕfs (y)<g(x)

pt(y|x)dy.

Assuming that ϕfs is monotonically increasing, we have

0 =

∫
y≥ϕ−1

fs
(g(x))

pt(y|x)dy −
∫
y<ϕ−1

fs
(g(x))

pt(y|x)dy.
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This yields ∫ ∞

ϕ−1
fs

(g(x))

pt(y|x)dy =

∫ ϕ−1
fs

(g(x))

−∞
pt(y|x)dy.

The same result is obtained even if ϕfs is monotonically decreasing. Consequently,

ϕ−1
fs
(g(x)) = Median[Y |X = x],

which results in
G(x;ϕfs) = ϕfs

(
Median[Y |X = x]

)
.

This implies that Eq. (4.4) holds for any ϕfs including an affine transformation, and
the function form cannot be identified from this analysis.

Example 3 (Exponential-squared loss). As an example of a case where the affine trans-
formation is not optimal, consider the loss function ℓ(y, y′) = |ey − ey′ |2. Substituting
this into Eq. (4.3), we have

0 =

∫
∂

∂g(x)

∣∣exp(g(x))− exp(ϕfs(y))
∣∣2pt(y|x)dy

= 2 exp(g(x))

∫ (
exp(g(x))− exp(ϕfs(y))

)
pt(y|x)dy.

Therefore,
G(x;ϕfs) = logE

[
exp(ϕfs(Y ))|X = x

]
.

Consequently, Eq. (4.4) becomes

logE
[
exp(ϕfs(Y ))

]
= ϕfs

(
logE

[
exp(Y )

])
.

Even when ϕfs is an affine transformation, this equation does not generally hold.

Example 4 (0-1 loss). For the classification settings, the 0-1 loss ℓ(y, y′) = 1y ̸=y′ is
commonly used, where y, y′ ∈ {−1, 1} and 1 is an indicator function, i.e., 1y ̸=y′ = 1 if
y ̸= y′, and 1y ̸=y′ = 0 otherwise. In this case, the optimal predictor g∗ is the solution
of the following minimization problem:

argmin
g

∫
1g(x)̸=ϕfs (y)

pt(y|x)dy =

∫
1ϕ−1

fs
(g)̸=ypt(y|x)dy. (4.5)

Because the indicator function takes the value 0 if and only if ϕ−1
fs
(g) = y, to minimize

the objective function of Eq.(4.5), we should set ϕ−1
fs
(g) on the maximizer of pt(y|x).

Consequently, we have
g∗(x) = ϕfs

(
argmax pt(y|x)

)
.

As in Example 2, the function form cannot be identified from this analysis.
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Example 5 (logistic loss). Another choice for the loss function in classification
problems is the logistic loss ℓ(y, y′) = log(1 + exp(−yy′)) for y, y′ ∈ R. This loss
function does not return zero even if y = y′. Therefore, Proposition 4.2 does not hold,
and the transformation functions need not be inverse functions of each other.

Analysis of the optimal function class based on the upper bound of the
estimation error

Here, we discuss the optimal class for the transformation function based on the upper
bound of the estimation error.

In addition to Assumptions 4.1 and 4.2, we assume the following in place of
Assumption 4.3:

Assumption 4.5. The transformation functions ϕ and ψ are Lipschitz continuous
with respect to the first argument, i.e., there exist constants µϕ and µψ such that

ϕ(a, c)− ϕ(a′, c) ≤ µϕ∥a− a′∥2, ψ(b, c)− ψ(b′, c) ≤ µψ∥b− b′∥2

for any a, a′ ∈ Y and b, b′ ∈ R, and for any given c ∈ Fs.

Note that each Lipschitz constant is a function of the second argument fs, i.e.,
µϕ = µϕ(fs) and µψ = µψ(fs).

Under Assumptions 4.1, 4.2, and 4.5, the estimation error is upper bounded as
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follows:

E
x,y

[
|ft(x)− f̂t(x)|2

]
= E

x,y

[∣∣ψ(g(x), fs(x))− ψ(ĝ(x), fs(x))∣∣2]
≤ E

x,y

[
µψ(fs(x))

2
∣∣g(x)− ĝ(x)∣∣2]

≤ 3E
x,y

[
µψ(fs(x))

2
(∣∣g(x)− ϕ(ft(x), fs(x))∣∣2

+
∣∣ϕ(ft(x), fs(x))− ϕ(y, fs(x))∣∣2

+
∣∣ϕ(y, fs(x))− ĝ(x)∣∣2)]

≤ 3E
x,y

[
µψ(fs(x))

2
∣∣ψ−1(ft(x), fs(x))− ϕ(ft(x), fs(x))

∣∣2]
+ 3E

x,y

[
µψ(fs(x))

2µϕ(fs(x))
2
∣∣ft(x)− y∣∣2]

+ 3E
x,y

[
µψ(fs(x))

2
∣∣z − ĝ(x)∣∣2]

= 3E
x,y

[
µψ(fs(x))

2
∣∣ψ−1(ft(x), fs(x))− ϕ(ft(x), fs(x))

∣∣2]
+ 3σ2E

x,y

[
µψ(fs(x))

2µϕ(fs(x))
2
]

+ 3E
x,y

[
µψ(fs(x))

2
∣∣z − ĝ(x)∣∣2].

(4.6)

The derivation of this inequality is based on Du et al. (2017). We use the Lipschitz
property of ψ and ϕ for the first and third inequalities, and the second inequality
comes from the numeric inequality (a − d)2 ≤ 3(a − b)2 + 3(b − c)2 + 3(c − d)2 for
a, b, c, d ∈ R.

According to this inequality, the upper bound of the estimation error is decomposed
into three terms: discrepancy between the two transformation functions, variance of
the noise, and estimation error for the transformed data. Although it is intractable
to find an optimal solution of ϕ, ψ, and ĝ that minimizes all these terms together,
it is possible to find a solution that minimizes the first and second terms expressed
as the functions of only ϕ and ψ. Obviously, the first term, which represents the
discrepancy between the two transformation functions, reaches its minimum (zero)
when ϕfs = ψ−1

fs
. The second term, which is related to the variance of the noise, is

minimized when the differential coefficient ∂
∂u
ψfs(u) is a constant, i.e., when ψfs is a

linear function. This is verified as follows. From ϕfs = ψ−1
fs

and the continuity of ψfs ,
it follows that

µψ = max
∣∣∣ ∂
∂u
ψfs(u)

∣∣∣, µϕ = max
∣∣∣ ∂
∂u
ψ−1
fs
(u)
∣∣∣ = 1

min | ∂
∂u
ψfs(u)|

.
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Thus, the product µϕµψ takes the minimum value (one) when the maximum and
minimum of the differential coefficient are the same. Therefore, we can write

ϕ(y, fs(x)) =
y − g1(fs(x))
g2(fs(x))

, ψ(g(x), fs(x)) = g1(fs(x)) + g2(fs(x))g(x),

where g1, g2 : Fs → R are arbitrary functions. Thus, the minimization of the third
term in the upper bound of the estimation error can be expressed as

min
g1,g2,g

E
x,y
|y − g1(fs(x)) + g2(fs(x))g(x)|2.

As a result, the suboptimal function class for the upper bound of the estimated
function is given as

H =
{
x 7→ g1(fs(x)) + g2(fs(x)) · g3(x) | g1 ∈ G1, g2 ∈ G2, g3 ∈ G3

}
.

This is the same function class derived in Section 4.1.
It is notable that the same result can be derived for the loss function ℓ(y, y′) =

|y − y′|p, 0 < p ≤ 1. Let mp = E|ϵ|p. As in the case of Eq. (4.6), we have

Ex,y
[
|ft(x)− f̂t(x)|p

]
≤ E

x,y

[
µψ(fs(x))

p
∣∣ψ−1(ft(x), fs(x))− ϕ(ft(x), fs(x))

∣∣p]
+mpE

x,y

[
µψ(fs(x))

pµϕ(fs(x))
p
]

+ E
x,y

[
µψ(fs(x))

p
∣∣z − ĝ(x)∣∣p].

(4.7)

because for 0 < p ≤ 1, the inequality |a− d|p ≤ |a− b|p + |b− c|p + |c− d|p holds for
a, b, c, d ∈ R.

Transformation functions for classification problems Here, we discuss the
case of classification settings, i.e., when we use the 0-1 loss or logistic loss instead of
the squared loss.

For y, y′ ∈ {−1, 1}, we have 1y ̸=y′ =
1
2
|y − y′|. Eq. (4.6) with p = 1 suggests that

we obtain the same conclusion as in the case of the squared loss when the 0-1 loss
is adopted. However, for the case of the logistic loss ℓ(y, y′) = log(1 + exp(−yy′)),
y, y′ ∈ R, the derivation used in Eq. (4.6) or Eq. (4.7) cannot be applied and it is
impossible to conclude that ϕ and ψ are linear, or even that they are in an inverse
function relationship.

78



4.2. MODELING AND ESTIMATION

Algorithm 4.1 Block relaxation algorithm (Zhou et al., 2013).

Initialize
a0, b0 ̸= 0, c0 ̸= 0

repeat
at+1 = arg mina F (a, bt, ct)
bt+1 = arg minb F (at+1, b, ct)
ct+1 = arg minc F (at+1, bt+1, c)

until convergence

4.2 Modeling and estimation

In this section, we focus on using kernel methods for the affine transfer model. Let
H1,H2, and H3 be reproducing kernel Hilbert spaces (RKHSs) with positive-definite
kernels k1, k2, and k3, which define the feature mappings Φ1 : Fs → H1,Φ2 : Fs → H2,
and Φ3 : X → H3, respectively. For the proposed model class, the ℓ2-regularized
empirical risk with the squared loss is given as follows:

Fα,β,γ =
1

n

n∑
i=1

{
yi − ⟨α,Φ1(fs(xi))⟩H1 − ⟨β,Φ2(fs(xi))⟩H2⟨γ,Φ3(xi)⟩H3

}2
+ λ1∥α∥2H1

+ λ2∥β∥2H2
+ λ3∥γ∥2H3

,

(4.8)

where λ1, λ2, λ3 > 0 are hyperparameters for the regularization. According to the
representer theorem, the minimizer of Fα,β,γ with respect to the parameters α ∈ H1,
β ∈ H2, and γ ∈ H3 reduces to

α =
n∑
i=1

aiΦ1(fs(xi)), β =
n∑
i=1

biΦ2(fs(xi)), γ =
n∑
i=1

ciΦ3(xi)

with the n-dimensional unknown parameter vectors a, b, c ∈ Rn. Substituting this
expression into Eq. (4.8), we can obtain the objective function as

Fα,β,γ =
1

n
∥y −K1a− (K2b) ◦ (K3c)∥22 + λ1a

⊤K1a+ λ2b
⊤K2b+ λ3c

⊤K3c

=
1

n

n∑
i=1

(
yi − k(i)⊤1 a− b⊤M (i)c

)2
+ λ1a

⊤K1a+ λ2b
⊤K2b+ λ3c

⊤K3c

:= F (a, b, c).

(4.9)
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Here, the symbol ◦ denotes the Hadamard product. KI is the Gram matrix associated
with the kernel kI for I ∈ {1, 2, 3}. k(i)I = [kI(xi, x1) · · · kI(xi, xn)]⊤ denotes the i-th
column of the Gram matrix. The n× n matrix M (i) is given by the tensor product
M (i) = k

(i)
2 ⊗ k

(i)
3 of k

(i)
2 and k

(i)
3 .

Because the model is linear with respect to the parameter a and bilinear for b
and c, the optimization of Eq. (4.9) can be solved using well-established techniques
for low-rank tensor regression, such as CP-decomposition (Harshman, 1970), Tucker
decomposition (Tucker, 1966), and Tensor-Train decomposition (Oseledets, 2011). In
this chapter, we use the block relaxation algorithm (Zhou et al., 2013) described in
Algorithm 4.1. It updates a, b, and c by repeatedly fixing two of the three parameters
and minimizing the objective function for the remaining parameter. By fixing two
parameters, the resulting subproblem can be solved analytically, because the objective
function is expressed in a quadratic form for the remaining parameter. Starting from
arbitrary initial values, the algorithm iteratively updates the parameters (at, bt, ct) at
iteration t to (at+1, bt+1, ct+1) as follows:

at+1 = (K1 + nλ1In)
−1(y − (K2bt) ◦ (K3ct)),

bt+1 = (diag(K3ct)
2K2 + nλ2In)

−1diag(K3ct)(y −K1at+1),

ct+1 = (diag(K2bt+1)
2K3 + nλ3In)

−1diag(K2bt+1)(y −K1at+1),

where y is a vector of n observed outputs, In denotes the identity matrix of size n,
and diag(v) is a diagonal matrix whose diagonal element is given by the vector v.

Algorithm 4.1 alternately estimates the parameters (a, b) of the transformation
function and the parameter c in the predictive model of the transformed output with
the given transformed dataset {(xi, zi)}ni=1. The consistency and asymptotic normality
of this estimator have been proven in Zhou et al. (2013).

4.3 Theoretical results

In this section, we present two theoretical properties—generalization bound and excess
risk bound.

To begin with, recall the notations introduced in Section 2.2. Let (Z, P ) be
an arbitrary probability space, and set {zi}ni=1 to be independent random variables
distributed according to P . For a function f : Z → R, define the expectation of f
with respect to P and its empirical counterpart as

Pf = EPf(z), Pnf =
1

n

n∑
i=1

f(zi).

Let ℓ(y, y′) be a non-negative loss bounded from above by L > 0 such that for any
fixed y′ ∈ Y , y 7→ ℓ(y, y′) is µℓ-Lipschitz for some µℓ > 0.
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Recall that the function class proposed in this chapter is

H =
{
x 7→ g1(fs(x)) + g2(fs(x)) · g3(x) | g1 ∈ G1, g2 ∈ G2, g3 ∈ G3

}
.

In particular, the following discussion in this section assumes that g1, g2, and g3 are
represented by linear functions on the RKHSs.

4.3.1 Generalization bound

The optimization problem is expressed as follows:

min
α,β,γ

Pnℓ
(
y, ⟨α,Φ1⟩H1 + ⟨β,Φ2⟩H2⟨γ,Φ3⟩H3

)
+ λα∥α∥2H1

+ λβ∥β∥2H2
+ λγ∥γ∥2H3

, (4.10)

where Φ1 = Φ1(fs(x)),Φ2 = Φ2(fs(x)), and Φ3 = Φ3(x) denote the feature maps,
and λα, λβ, λγ > 0 are the regularization parameters. Without loss of generality, it is
assumed that ∥Φ1∥2H1

≤ 1, ∥Φ2∥2H2
≤ 1, and ∥Φ3∥2H3

≤ 1. Hereinafter, we will omit
the suffixes H1,H2 and H3 in the norms if there is no ambiguity.

Let (α̂, β̂, γ̂) be a solution of Eq. (4.10). For any α, we have

λα∥α̂∥2 ≤ Pnℓ(y, ⟨α̂,Φ1⟩+ ⟨β̂,Φ2⟩⟨γ̂,Φ3⟩) + λα∥α̂∥2 + λβ∥β̂∥2 + λγ∥γ̂∥2

≤ Pnℓ(y, ⟨α,Φ1⟩) + λα∥α∥2.
(4.11)

The first inequality holds because ℓ(·, ·) and ∥ · ∥ are non-negative. For the second
inequality, we use the fact that the parameter set (α̂, β̂, γ̂) is the minimizer of Eq. (4.10).
Denoting R̂s = infα{Pnℓ(y, ⟨α,Φ1⟩) + λα∥α∥2}, we obtain ∥α̂∥2 ≤ λ−1

α R̂s. Because
the same inequality as Eq. (4.11) holds for λβ∥β̂∥2, λγ∥γ̂∥2 and Pnℓ(y, ĥ), we have

∥β̂∥2 ≤ λ−1
β R̂s, ∥γ̂∥2 ≤ λ−1

γ R̂s, and Pnℓ(y, ĥ) ≤ R̂s. Moreover, we obtain Pℓ(y, ĥ) =

E[Pnℓ(y, ĥ)] ≤ E[R̂s]. Therefore, it is sufficient to consider the following hypothesis
class H and loss class L:

H =
{
x 7→ ⟨α,Φ1⟩+ ⟨β,Φ2⟩⟨γ,Φ3⟩

| ∥α∥2 ≤ λ−1
α R̂s, ∥β∥2 ≤ λ−1

β R̂s, ∥γ∥2 ≤ λ−1
γ R̂s, P ℓ(y, h) ≤ E[R̂s]

}
,

L =
{
(x, y) 7→ ℓ(y, h) | h ∈ H

}
.

Here, we show the generalization bound of the proposed model class. The following
theorem is based on Kuzborskij & Orabona (2017), showing that the difference between
the generalization error and empirical error of this hypothesis class can be bounded
using the magnitude of the relevance of the source and target domains.
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Theorem 4.3 (Generalization bound). There exists a constant C depending only on
λα, λβ, λγ, and L such that for any η > 0 and h ∈ H, with probability at least 1− e−η,

Pℓ(y, h)− Pnℓ(y, h) = Õ

((√
Rs

n
+
µ2
ℓC

2 +
√
η

n

)(√
LC +

√
Lη

)
+
C2L+ Lη

n

)
,

where Rs = infα{Pℓ(y, ⟨α,Φ1⟩) + λα∥α∥2}.

The proof is given in Section 4.5.1.
Because Φ1 is the feature map from the source feature space Fs onto the RKHS

H1, Rs corresponds to the true risk of training in the target domain using only the
source features fs. If Rs is sufficiently small, e.g., Rs = Õ(n−1/2), the convergence
rate indicated by Theorem 4.3 becomes n−1, which is an improvement over the naive
convergence rate n−1/2. This means that if training in the source domain yields feature
representations strongly related to the target domain, the convergence of training in
the target domain is accelerated. Theorem 4.3 measures this cross-domain relation
using the metric Rs.

Theorem 4.3 is based on Theorem 11 of Kuzborskij & Orabona (2017) in which
the function class g1 + g3 is considered. Our work differs in the following two aspects:
the source features are modeled not only additively but also multiplicatively, i.e., we
consider the function class g1 + g2 · g3 as well as the estimation of the parameters for
the source feature combination, i.e., the parameters of the functions g1 and g2. In
particular, the latter affects the resulting rate in Theorem 4.3. Without estimating
the source combination parameters, the rate indicated by Theorem 4.3 improves only
up to n−3/4. The details are discussed in Section 4.5.1.

4.3.2 Excess risk bound

In this section, we analyze the excess risk, which is the difference between the risk of
the estimated function and the smallest possible risk within the function class.

Recall that we consider the functions g1, g2, and g3 to be the elements of the
RKHSs H1,H2, and H3 with kernels k1, k2, and k3, respectively. Define the kernel
k(1) = k1, k

(2) = k2 · k3, and k = k(1) + k(2). Let H(1),H(2), and H be the RKHSs
with k(1), k(2), and k, respectively. For m = 1, 2, consider the normalized Gram
matrix K(m) = 1

n
(k(m)(xi, xj))i,j=1,...,n and its eigenvalues (λ̂

(m)
i )ni=1, arranged in a

non-increasing order.
We prepare the following additional assumptions:

Assumption 4.6. There exists an h∗ ∈ H satisfying P (y − h∗(x))2 = infh∈H P (y −
h(x))2. Similarly, there exists an h(m)∗ ∈ H(m) satisfying P (y − h(m)∗(x))2 =
infh∈H(m) P (y − h(x))2 for m = 1, 2.
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Assumption 4.7. For m = 1, 2, there exist positive real numbers am > 0 and
sm ∈ (0, 1) such that λ̂

(m)
j ≤ amj

−1/sm.

Assumption 4.6 is used in Bartlett et al. (2005) and is not overly restrictive, as it
holds for many regularization algorithms and convex, uniformly bounded function
classes.

In the analysis of kernel methods, Assumption 4.7 is standard (Steinwart &
Christmann, 2008), and is known to be equivalent to the classical covering or entropy
number assumption (Steinwart et al., 2009). sm measures the complexity of the RKHS,
with larger values corresponding to more complex function spaces.

Under Assumption 4.6, we obtain the following excess risk bound for the proposed
model class. The proof is based on Bartlett et al. (2005) and is presented in Section
4.5.2.

Theorem 4.4. Let ĥ be any element ofH satisfying Pnℓ(y, ĥ(x)) = infh∈H Pnℓ(y, h(x)).
Suppose that Assumption 4.6 is satisfied. Then, there exists a constant c depending
only on µℓ such that for any η > 0, with probability at least 1− 5e−η,

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ c

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

(
1

n

n∑
j=κ1+1

λ̂
(1)
j +

n∑
j=κ2+1

λ̂
(2)
j

) 1
2

+
η

n

 .

Theorem 4.4 is a multiple-kernel version of Corollary 6.7 of Bartlett et al. (2005)
and a data-dependent version of Theorem 2 of Kloft & Blanchard (2011), which
considers the eigenvalues of the Hilbert-Schmidt operators on H and H(m). Theorem
4.4 concerns the eigenvalues of the Gram matrices K(m) computed from the data.

The following corollary follows from Theorem 4.4 and Assumption 4.7.

Corollary 4.5. Let ĥ be any element of H satisfying Pn(y − ĥ(x))2 = infh∈H Pn(y −
h(x))2. Suppose that Assumption 4.6 and 4.7 are satisfied. Then, for any η > 0 with
probability at least 1− 5e−η,

P (y − ĥ(x))2 − P (y − h∗(x))2 = O
(
n
− 1

1+max {s1,s2}
)
.

Corollary 4.5 suggests that the convergence rate of the excess risk depends on the
decay rates of the eigenvalues of two Gram matrices K(1) and K(2). 1/s1 is the decay
rate of the eigenvalues of K(1) = 1

n
(k1(fs(xi), fs(xj)))i,j=1,...,n, representing the learning

efficiency using only the source features. s2 is the decay rate of the eigenvalues of
the Hadamard product of the Gram matrices K2 =

1
n
(k2(fs(xi), fs(xj))i,j=1,...,n and

K3 =
1
n
(k3(xi, xj))i,j=1,...,n. The effect of combining the source features and the original
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inputs appears here. In general, it is difficult to discuss the relationship between
the spectra of two Gram matrices K2, K3 and their Hadamard product K2 ◦ K3.
Intuitively, the smaller the overlap between the space spanned by the source features
fs and by the original input x, the smaller the overlap between H2 and H3, because
H2 is defined by the kernel k2(fs(x), fs(x

′)) and H3 is defined by the kernel k3(x, x
′).

In other words, with increasing difference between the information contained in the
source features fs and the original input x, the tensor product H2 ⊗H3 will become
more complex, and the inverse of the decay rate s2 is expected to be larger.

We experimentally investigated how the inverse decay rate s2 in Corollary 4.5 is
related to the degree of overlap in the spaces spanned by the original input x and
source features fs.

For the original input x ∈ R100, we randomly constructed a set of 10 orthonormal
bases, and then generated 100 samples from their spanning space. For the source
features fs ∈ R100, we selected d bases randomly from the 10 orthonormal bases
selected for x and the remaining 10 − d bases from their orthogonal complement
space. We then generated 100 samples of fs from the space spanned by these 10 bases.
The overlap number d can be regarded as the degree of overlap between two spaces
spanned by the samples of x and fs. We generated 100 different sample sets of x and
fs.

We calculated the Hadamard product of the Gram matrices K2 and K3 using the
samples of x and fs, respectively. For the computation of K2 and K3, all combinations
of the following five kernels were tested:

Linear kernel k(x, x′) =
x⊤x

2γ2
+ 1,

Matérn kernel k(x, x′) =
21−ν

Γ(ν)

(√
2ν∥x− x′∥2

γ

)ν
Kν

(√
2ν∥x− x′∥2

γ

)
for ν =

1

2
,
3

2
,
5

2
,∞,

where Kν(·) is a modified Bessel function and Γ(·) is a gamma function. Note that for
ν =∞, the Matérn kernel is equivalent to the Gaussian radial basis function (RBF)
kernel. The scale parameter γ of both kernels was set to γ =

√
dim(x) =

√
10. For a

given matrix K, the decay rate of the eigenvalues was estimated as the smallest value
of s that satisfies λi ≤ ∥K∥2F · i−

1
s , where ∥ · ∥F denotes the Frobenius norm. Note

that this inequality holds for any matrix K with s = 1 (Vershynin, 2018).
Figure 4.2 shows the change in the inverse decay rates with variation in d for

various combinations of the kernels. In all cases, the decay rate of K2 ◦K3 showed a
clear trend of monotonically decreasing as the degree of overlap d increased. In other
words, the greater the overlap between the spaces spanned by x and fs, the smaller
the decay rate and the complexity of the RKHS H2 ⊗H3.
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Figure 4.2: Decay rates of eigenvalues of K2 (blue lines), K3 (green lines), and K2 ◦K3

(red lines) for all combinations of five different kernels. The vertical axis represents
the decay rate, and the horizontal axis represents the overlap dimension d in the space
where x and fs are distributed.
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4.4 Experimental results

We demonstrate the potential of the affine model transfer through three different
case studies: (i) prediction of feed-forward torque at seven joints of the SARCOS
anthropomorphic robot arm (Williams & Rasmussen, 2006), (ii) prediction of lattice
thermal conductivity of inorganic crystalline materials (Yamada et al., 2019), (iii)
TL for bridging the gap between experimental and theoretical values of specific heat
capacity for organic polymers (Hayashi et al., 2022). The Python code is available at
https://github.com/mshunya/AffineTL.

4.4.1 Kinematics of robot arms

We experimentally investigated the learning performance of the affine model transfer
and compared it with those of several naive methods. The objective was to predict
the feed-forward torques required to follow the desired trajectory at seven different
joints of the SARCOS anthropomorphic robot arm (Williams & Rasmussen, 2006).
Twenty-one features representing the joint position, velocity, and acceleration were
used as the input variable x ∈ Rd(d = 21). The target task was to predict the torque
value at one joint, and the source task was defined as the prediction of torque at
the other six joints. The experiments were conducted with seven different tasks
(denoted as Torques 1–7) corresponding to the seven different joints. We first trained
neural networks to predict the six source torques. The source knowledge obtained
was reused to build a prediction model for the target torque. The dataset included
44,484 training samples and 4,449 test samples. We selected {5, 10, 15, 20, 30, 40, 50}
samples randomly from the training set. The prediction performances of the trained
models were evaluated using the 4,449 test samples. Experiments were repeated 20
times with independently sampled different datasets. The experiment was designed
for TL with a fairly small sample size.

Model definition and hyperparameter search

Source model For each target task, a multi-task neural network was trained to
predict the torque values of the remaining six source tasks. Figure 4.3 shows the
details of the network structure. The source model shares four layers up to the final
layer, and only the output layer is task-specific. We denote the output of the trained
source neural network as fs and the output from the shared layer preceding the output
layer as fext.

Target model For comparison, the following ten procedures were tested, including
two existing HTLs (Kuzborskij & Orabona, 2013; Du et al., 2017) and three standard
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Figure 4.3: Architecture of source models. We used a multi-task neural network with
four shared layers with widths of 256-64-32-16, and one task-specific layer. For TL,
we used the 6-dimensional output as the source features fs and the final shared layer
with 16 dimensions as fext.

neural network-based TLs (Yosinski et al., 2014; Finn et al., 2017):

No transfer
Train a model with input x with no transfer.

Only source
Train a model g1(fs) using only the source features fs as input.

Input augmentation
Perform an ordinary regression with the augmented input vector concate-
nating x and fs.

HTL-offset (Kuzborskij & Orabona, 2013)
Calculate the transformed output zi = yi− g1(fs), where g1(fs) is the model
pre-trained in Only source, and train an additional model with input xi
to predict zi.

HTL-scale (Du et al., 2017)
Calculate the transformed output zi = yi/g1(fs), where g1(fs) is the model
pre-trained in Only source, and train an additional model with input xi
to predict zi.

Affine transfer (full)
Train the model g1(fs) + g2(fs) · g3(x).

Affine transfer (constrained)
Train the model g1(fs) + g3(x).

Feature extraction
Train a model using the extracted feature fext as input.
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Algorithm 4.2 Block relaxation algorithm for Affine transfer (full).

Initialize
a0 ← (K1 + λ1In)

−1y, b0 ∼ N (0, In), c0 ∼ N (0, In), d0 ← 0.5
repeat

a← (K1 + λ1In)
−1(y − (K2b+ 1) ◦ (K3c)− d)

b← (Diag(K3c)
2K2 + λ2In)

−1((K3c) ◦ (y −K1a−K3c− d))
c← (Diag(K2b+ 1)2K3 + λ3In)

−1((K2b+ 1) ◦ (y −K1a− d))
d← ⟨y −K1a− (K2b+ 1) ◦ (K3c),1⟩/n

until convergence

Fine-tuning
Tuning the weights of the shared layers in the source model by using the
target samples.

MAML (Finn et al., 2017)
Initializing the target neural network using the model-agnostic meta-learning
algorithm (MAML), and updating its weights using the target samples.

Note that the first seven procedures use the output vector fs of the source model as the
source features, whereas Feature extraction uses the output from the intermediate
layer of the source model. In addition, Fine-tuning and MAML differ from the
other methods in that they reuse the parameters (not features) from the source model.

We used kernel ridge regression with the RBF kernel exp(−∥x − x′∥2/2ℓ2) to
train the model for each procedure. For No transfer, Only source, Augmented,
HTL-offset, HTL-scale, and Feature extraction, the scale parameter ℓ was
set to the square root of the input dimension: ℓ =

√
21 for No transfer, HTL-

offset, and HTL-scale, ℓ =
√
6 for Only source, ℓ =

√
27 for With source, and

ℓ =
√
16 for Feature extraction. For Affine transfer (full) and Affine transfer

(constrained), we considered the following kernels:

k1(fs(x), fs(x
′)) = exp

(
− 1

2ℓ2
∥fs(x)− fs(x′)∥22

)
(ℓ =

√
6),

k2(fs(x), fs(x
′)) = exp

(
− 1

2ℓ2
∥fs(x)− fs(x′)∥22

)
(ℓ =

√
6),

k3(x, x
′) = exp

(
− 1

2ℓ2
∥x− x′∥22

)
(ℓ =

√
27)

for g1, g2, and g3 in the affine transfer model, respectively.
For No transfer, Only source, Augmented, HTL–offset, HTL–scale, and

Feature extraction, the regularization parameter λ was selected in five-fold cross-
validation in which grid search was performed over 50 grid points in the interval
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[10−4, 102]. For Affine transfer (full) and Affine transfer (constrained), the
hyperparameters to be optimized were the three regularization parameters λ1, λ2, and
λ3. We performed five-fold cross-validation to identify the best hyperparameter set
from the candidate points; {10−3, 10−2, 10−1, 1} for λ1 and {10−2, 10−1, 1, 10} for λ2
and λ3.

To learn Affine transfer (full) and Affine transfer (constrained), we used
the following objective functions:

Affine transfer (full)
∥y − (K1a+ (K2b+ 1) ◦ (K3c) + d)∥22 + λ1a

⊤K1a+ λ2b
⊤K2b+ λ3c

⊤K3c,

Affine transfer (constrained)
1

n
∥y − (K1a+K3c+ d)∥22 + λ1a

⊤K1a+ λ3c
⊤K3c.

Algorithm 4.2 summarizes the block relaxation algorithm for Affine transfer (full).
For Affine transfer (constrained), we found the optimal parameters as follows:[ â

ĉ

d̂

]
=

([ K1

K3

1⊤

]
[ K1 K3 1 ] +

[ λ1K1

λ3K3

0

])−1[ K1

K3

1⊤

]
y

The stopping criterion of the algorithm was set as

max
θ∈{a,b,c}

maxi
∣∣θ(new)
i − θ(old)i

∣∣
maxi

∣∣θ(old)i

∣∣ < 10−4, (4.12)

where θi denotes the i-th element of the parameter θ. This convergence criterion is
employed in several existing machine learning libraries, e.g., scikit-learn (Pedregosa
et al., 2011)1.

As a reference, we also performed the TL method using the source parameters.
In Fine-tuning, the target network was constructed by adding a one-dimensional

output layer to the shared layers of the source network. As initial values for the
training, we used the weights of the source neural network for the shared layer
and the average of the multidimensional output layer of the source network for the
output layer. Adam (Kingma & Ba, 2015) was used for the optimization. The
learning rate was fixed at 0.01 and the number of training epochs was selected from
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100} through five-fold cross-validation.

MAML (Finn et al., 2017) is one of the commonly used algorithms for meta-
learning (Li et al., 2017; Hospedales et al., 2020) or learning-to-learn (Thrun & Pratt,

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.

html
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5 10 15 20 30 40 50

Number of samples

0

1

2

3

4

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r (

N
m

) No transfer
Only source
Argumented
HTL-offset
HTL-scale
AffineTL-full
AffineTL-const

(b) Target domain: Torque 7

Figure 4.4: Box plots showing the distribution of RMSE for the seven analysis
procedures at (a) Torque 1 and (b) Torque 7. Each boxplot shows the median and
the first and third quartiles.

2012), which explores the initial values through training on the source domains so that
the subsequent training would be accelerated. In this experiment, a fully connected
neural network with 256-64-32-16-1 layer width was built, and the initial values were
searched through MAML using the six source tasks. The obtained base model was
tuned with the target samples. As in Fine-tuining, Adam with a fixed learning rate
of 0.01 was used for the optimization. The number of training epochs was selected
from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100} through five-fold cross-validation.

For more details on the experimental conditions and procedure, refer to the Python
code that we provided.

Results

Table 4.1 summarizes the prediction performance of the ten different procedures for
various numbers of training samples in the seven tasks. In most cases, the affine
transfer model achieved the best prediction performance in terms of the root mean
squared error (RMSE). In several other cases, direct learning without transfer produced
the best results; in almost all cases, ordinary TL using only the source features and
the two existing HTL models showed no advantage over the affine transfer model. In
this experiment, the performance was evaluated for the cases where the number of
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training samples was extremely small. The affine transfer model tended to be more
advantageous in these cases, such as with a sample size of n = 5 or 10.

Figure 4.4 highlights the RMSE values for Torque 1 and Torque 7. The joint of
Torque 1 is located closest to the root of the arm. Therefore, the learning task for
Torque 1 is less relevant to those for the other joints, and the transfer from Torques
2–6 to Torque 1 would not be effective. In fact, as shown in Figure 4.4a and Table
4.1, relying only on the source features (Only source) failed to acquire predictive
ability. In addition, HTL-offset and HTL-scale likewise showed poor prediction
performance owing to the negative effect of failure in the variable transformation
using the values of the other torques. In particular, the two HTL models achieved
lower predictive performance than direct learning (No transfer), resulting in the
occurrence of negative transfer.

Torque 7 was measured at the joint closest to the end of the arm. Therefore,
Torque 7 strongly depended on the torques at the other six joint positions, and the
procedures based on the source features, including Only source, were more effective
than in the other tasks. In particular, the affine model transfer achieved the best
performance among the other methods. This is consistent with the theoretical result
that the transfer capability of the affine model transfer can be further improved when
the risk of learning using only the source features is sufficiently small.

As mentioned above, the standard neural TL procedures Feature extraction,
Fine-tuning, and MAML were also conducted for reference. It may be noted that
these procedures differ from the affine model transfer in that they use the intermediate
layers or parameters of the source neural network. Nevertheless, the affine transfer
model showed the best performance for the four settings (Torques 1, 2, 5, 6). However,
for Torques 3, 4, and 7, Fine-tuning and MAML showed the best performance.
Even in this case, the affine transfer model showed comparable performance, especially
for very small sample settings (n = 5 or 10). Considering that the affine model transfer
uses only the output of the source model as the source knowledge and does not have
access to the parameters and internal representations, the above results indicate the
immense potential of the affine model transfer.
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Table 4.1: Performance on predicting the torque values at seven different joints of
the SARCOS anthropomorphic robot arm. The mean and standard deviation of the
root mean square error with respect to 20 test sets are reported for varying numbers
of training samples and the seven different tasks. Ten different methods were tested:
No transfer (Direct), Only source (Only), Input augmentation (Augmented),
HTL-offset (Offset), HTL-scale (Scale), Affine transfer (full) (AffineTL-full),
Affine transfer (constrained) (AffineTL-const), Feature extraction (FE), Fine-
tuning (FT) and MAML. Bold means the best score among No transfer and the
six TL methods based on fs; wavy line means the best score among all ten methods.

Target Model

Number of training samples

n < d n ≈ d n > d

5 10 15 20 30 40 50

Torque 1

Direct
:::
21.2

::
±

:::
2.05 19.0 ± 2.04 17.3 ± 1.66 15.8 ± 1.57 13.7 ± 1.42 12.2 ± 1.56 10.8 ± 1.11

Only 24.9 ± 11.4 20.3 ± 1.77 19.5 ± 1.43 19.3 ± 1.35 18.3 ± 1.92 18.0 ± 1.76 17.5 ± 1.63

Augmented 21.3 ± 2.35 18.9 ± 1.71
:::
16.8

::
±

:::
1.27

:::
15.3

::
±

:::
1.97

:::
12.7

::
±

:::
1.56

:::
11.0

::
±

:::
1.58

:::
9.93

:
±
::::
1.08

Offset 24.6 ± 11.5 19.1 ± 2.02 17.7 ± 1.58 17.1 ± 2.15 15.2 ± 3.37 14.3 ± 3.82 12.8 ± 2.97

Scale 24.9 ± 8.53 20.3 ± 3.32 20.0 ± 7.54 19.1 ± 3.19 17.8 ± 2.83 18.5 ± 3.25 18.1 ± 4.44

AffineTL-Full 21.3 ± 2.10 18.9 ± 2.09 17.4 ± 1.93 15.6 ± 1.68 13.4 ± 1.95 11.6 ± 1.48 10.4 ± 0.925

AffineTL-Const 21.4 ± 1.91
:::
18.7

::
±

:::
1.91 17.2 ± 1.38 15.7 ± 1.85 13.0 ± 1.43 11.5 ± 1.47 10.3 ± 0.994

FE 25.2 ± 11.6 21.3 ± 3.85 20.3 ± 1.89 20.1 ± 2.38 18.8 ± 1.66 18.0 ± 1.60 17.7 ± 1.90

FT 24.5 ± 5.35 21.0 ± 2.81 19.6 ± 1.37 19.3 ± 2.30 16.1 ± 1.87 14.4 ± 1.42 13.1 ± 1.10

MAML 28.6 ± 8.85 22.4 ± 3.17 20.8 ± 2.09 20.4 ± 3.11 16.7 ± 2.97 14.4 ± 1.83 13.6 ± 1.10

Torque 2

Direct 15.8 ± 2.38 13.0 ± 1.42 11.5 ± 0.966 10.4 ± 0.821 9.39 ± 0.978 8.38 ± 0.767 7.72 ± 0.753

Only 15.3 ± 2.31 13.0 ± 1.51 12.4 ± 2.22 11.9 ± 3.02 12.1 ± 7.43 10.2 ± 1.82 9.45 ± 1.99

Augmented 15.7 ± 2.48 12.7 ± 1.47
:::
11.1

::
±

:::
1.33

:::
9.96

::
±

:::
1.41

:::
8.65

::
±

:::
1.05

:::
7.65

::
±

::::
0.929

:::
6.99

::
±

::::
0.615

Offset 15.2 ± 2.28 12.8 ± 1.62 12 ± 2.45 11.8 ± 3.11 11.9 ± 7.51 9.89 ± 1.87 9.12 ± 2.08

Scale 15.2 ± 2.29
:::
12.6

::
±

:::
1.59 12.1 ± 2.32 11.7 ± 3.12 11.9 ± 7.52 9.95 ± 1.86 9.15 ± 2.05

AffineTL-Full
:::
14.4

::
±

:::
1.60 12.7 ± 1.82 11.5 ± 1.93 10.8 ± 1.68 9.58 ± 1.97 7.96 ± 1.04 7.52 ± 0.674

AffineTL-Const 14.6 ± 1.86 12.8 ± 1.45 11.4 ± 1.48 10.5 ± 1.64 9.39 ± 1.79 8.17 ± 1.06 7.58 ± 0.87

FE 15.6 ± 2.09 15.1 ± 7.63 12.5 ± 1.90 11.4 ± 1.16 11.1 ± 1.75 10.1 ± 1.19 9.45 ± 1.46

FT 26.2 ± 5.24 20.3 ± 3.05 17.3 ± 2.92 15.5 ± 2.95 12.6 ± 2.26 10.9 ± 1.52 9.36 ± 1.19

MAML 22.2 ± 7.22 14.8 ± 4.51 13.0 ± 2.51 11.5 ± 2.19 9.86 ± 1.27 8.90 ± 1.12 7.89 ± 0.729

Torque 3

Direct 9.93 ± 1.65 8.17 ± 0.996 7.84 ± 2.60 6.97 ± 1.10 5.97 ± 0.917 5.33 ± 0.942 4.56 ± 0.401

Only 8.99 ± 2.98 7.62 ± 2.35 6.91 ± 1.65 6.45 ± 1.20 5.66 ± 0.908 5.31 ± 0.968 4.95 ± 0.964

Augmented 9.66 ± 1.72 7.78 ± 0.978 6.74 ± 1.01 6.25 ± 1.15 5.29 ± 1.27 4.68 ± 1.24
:::
4.03

::
±

::::
0.652

Offset 8.96 ± 2.98 7.48 ± 2.31 6.87 ± 1.65 6.42 ± 1.21 5.60 ± 0.844 5.23 ± 0.993 4.85 ± 1.01

Scale 9.06 ± 2.94 7.59 ± 2.29 6.91 ± 1.42 6.69 ± 1.41 5.65 ± 0.964 5.41 ± 1.22 4.98 ± 0.888

AffineTL-Full
:::
8.64

::
±

:::
1.33 7.22 ± 1.41 6.67 ± 1.27 6.07 ± 1.00 5.25 ± 1.17 4.89 ± 1.15 4.28 ± 0.829

AffineTL-Const 8.94 ± 1.40 7.33 ± 1.20 6.50 ± 1.14 5.97 ± 0.918 5.18 ± 1.00 4.76 ± 0.958 4.22 ± 0.745

FE 8.67 ± 1.36 8.10 ± 2.20 6.69 ± 1.06 6.49 ± 0.804 5.70 ± 0.966 5.31 ± 0.836 5.08 ± 0.797

FT 9.08 ± 2.08 7.50 ± 1.13 6.72 ± 1.04
:::
5.91

:
±
::::
0.893

:::
5.06

:
±
::::
0.610

:::
4.65

:
±
::::
0.513 4.27 ± 0.364

MAML 9.51 ± 4.96
:::
7.10

:
±
::::
0.976

::
6.45

::
±
:::
1.05 5.91 ± 0.794 5.16 ± 0.504 4.87 ± 0.533 4.79 ± 0.525

Torque 4

Direct 14.2 ± 2.30 11.1 ± 2.39 9.49 ± 2.18 7.80 ± 0.978 6.91 ± 0.778 6.06 ± 0.630 5.47 ± 0.653

Only 12.3 ± 3.60 9.23 ± 2.43 7.81 ± 1.74 6.83 ± 1.45 6.21 ± 1.02 6.19 ± 1.37 5.22 ± 0.629

Augmented 13.8 ± 2.83 9.69 ± 1.64 8.52 ± 1.80 7.06 ± 1.03 5.97 ± 0.905 5.16 ± 0.740 4.69 ± 0.698

Offset 12.3 ± 3.62 9.08 ± 2.35 7.67 ± 1.68 6.73 ± 1.40 6.14 ± 1.01 6.16 ± 1.38 5.12 ± 0.582

Scale 12.3 ± 3.62 9.10 ± 2.36 7.72 ± 1.62 6.74 ± 1.37 6.12 ± 1.04 6.16 ± 1.38 5.14 ± 0.524

AffineTL-Full
:::
12.0

::
±

:::
3.11 8.95 ± 2.05 7.89 ± 1.92 6.83 ± 1.75 5.66 ± 1.07 5.27 ± 1.12 4.87 ± 1.02

AffineTL-Const 12.2 ± 3.40
:::
8.64

::
±

:::
1.95 7.87 ± 1.87 6.44 ± 1.09 5.67 ± 1.12 5.25 ± 1.06 4.78 ± 0.665

FE 13.2 ± 5.01 9.40 ± 3.15 8.05 ± 2.10 6.69 ± 1.36 5.85 ± 1.10 5.71 ± 1.08 5.53 ± 1.11

FT 12.1 ± 3.71 8.71 ± 1.69
::
6.86

::
±
:::
1.24

::
5.90

::
±
:::
1.06

:::
5.02

:
±
::::
0.736

:::
4.43

:
±
::::
0.518

::
4.04

::
±
::::
0.392

MAML 14.0 ± 7.08 10.8 ± 3.48 9.57 ± 1.98 9.37 ± 2.37 7.99 ± 2.35 6.68 ± 1.24 6.08 ± 1.33
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Target Model

Number of training samples

n < d n ≈ d n > d

5 10 15 20 30 40 50

Torque 5

Direct 1.08 ± 0.169 0.986 ± 0.0901 0.932 ± 0.165 0.860 ± 0.127 0.737 ± 0.123 0.686 ± 0.0937
::::
0.608

::
±

:::::
0.0705

Only 1.11 ± 0.155 1.01 ± 0.0894 1.02 ± 0.146 0.964 ± 0.148 0.846 ± 0.125 0.797 ± 0.111 0.739 ± 0.103

Augmented 1.08 ± 0.160 0.985 ± 0.0898 0.895 ± 0.125
::::
0.849

::
±

::::
0.135

::::
0.737

::
±

::::
0.129

::::
0.679

::
±

::::
0.102 0.623 ± 0.110

Offset 1.11 ± 0.173 0.998 ± 0.0949 0.982 ± 0.163 0.944 ± 0.152 0.806 ± 0.113 0.738 ± 0.11 0.693 ± 0.0987

Scale 1.15 ± 0.248 0.993 ± 0.0933 0.970 ± 0.151 0.939 ± 0.124 0.806 ± 0.0966 0.754 ± 0.0842 0.776 ± 0.211

AffineTL-Full
:::
1.03

::
±

::::
0.121

::::
0.935

::
±

::::
0.126

::::
0.878

::
±

::::
0.129 0.862 ± 0.129 0.762 ± 0.144 0.726 ± 0.117 0.635 ± 0.068

AffineTL-Const 1.04 ± 0.114 0.971 ± 0.0999 0.897 ± 0.113 0.888 ± 0.129 0.739 ± 0.122 0.702 ± 0.0920 0.629 ± 0.0672

FE 1.08 ± 0.0931 1.01 ± 0.0819 0.990 ± 0.0782 0.946 ± 0.123 0.857 ± 0.120 0.825 ± 0.0977 0.767 ± 0.0924

FT 1.22 ± 0.342 1.08 ± 0.0945 1.03 ± 0.0698 0.976 ± 0.118 0.858 ± 0.113 0.765 ± 0.119 0.714 ± 0.139

MAML 1.45 ± 0.478 1.18 ± 0.184 1.07 ± 0.207 0.999 ± 0.194 0.801 ± 0.193 0.703 ± 0.125 0.612 ± 0.0615

Torque 6

Direct 1.86 ± 0.246 1.67 ± 0.194 1.50 ± 0.167 1.36 ± 0.156 1.21 ± 0.143 1.11 ± 0.088 1.07 ± 0.0969

Only 1.95 ± 0.25 1.88 ± 0.407 1.79 ± 0.206 1.80 ± 0.378 1.61 ± 0.216 1.58 ± 0.173 1.55 ± 0.200

Augmented 1.84 ± 0.171 1.65 ± 0.200
:::
1.48

::
±

::::
0.183

:::
1.33

::
±

::::
0.207

:::
1.17

::
±

::::
0.200

:::
1.03

::
±

::::
0.117

::::
0.964

::
±

::::
0.115

Offset 1.92 ± 0.257 1.84 ± 0.426 1.72 ± 0.262 1.71 ± 0.421 1.44 ± 0.271 1.39 ± 0.245 1.39 ± 0.289

Scale 1.91 ± 0.256 1.89 ± 0.425 1.81 ± 0.326 1.84 ± 0.398 1.68 ± 0.300 1.59 ± 0.248 1.59 ± 0.242

AffineTL-Full
:::
1.82

::
±

::::
0.229

:::
1.64

::
±

::::
0.191 1.58 ± 0.224 1.41 ± 0.248 1.24 ± 0.212 1.13 ± 0.307 0.996 ± 0.0963

AffineTL-Const 1.86 ± 0.202 1.70 ± 0.179 1.55 ± 0.275 1.45 ± 0.276 1.23 ± 0.209 1.09 ± 0.141 1.02 ± 0.0923

FE 1.88 ± 0.231 1.70 ± 0.138 1.81 ± 0.479 1.64 ± 0.215 1.61 ± 0.261 1.48 ± 0.149 1.45 ± 0.193

FT 2.48 ± 0.446 2.14 ± 0.315 2.08 ± 0.359 1.80 ± 0.280 1.47 ± 0.299 1.29 ± 0.185 1.17 ± 0.125

MAML 2.69 ± 0.675 2.20 ± 0.529 1.96 ± 0.524 1.69 ± 0.371 1.42 ± 0.373 1.22 ± 0.114 1.15 ± 0.0839

Torque 7

Direct 2.67 ± 0.321 2.12 ± 0.42 1.84 ± 0.421 1.53 ± 0.305 1.34 ± 0.203 1.17 ± 0.126 1.05 ± 0.096

Only 2.29 ± 0.583 1.76 ± 0.441 1.55 ± 0.407 1.42 ± 0.585 1.16 ± 0.243 0.999 ± 0.231 0.942 ± 0.164

Augmented 2.55 ± 0.408 1.90 ± 0.433 1.68 ± 0.417 1.39 ± 0.366 1.20 ± 0.236 1.01 ± 0.142 0.901 ± 0.112

Offset 2.29 ± 0.588 1.71 ± 0.405 1.55 ± 0.408 1.41 ± 0.586 1.15 ± 0.249 0.995 ± 0.233 0.935 ± 0.167

Scale 2.32 ± 0.580 1.75 ± 0.428 1.59 ± 0.395 1.42 ± 0.569 1.21 ± 0.249 1.06 ± 0.249 0.967 ± 0.161

AffineTL-Full
:::
2.29

::
±

::::
0.533 1.75 ± 0.447 1.49 ± 0.380 1.30 ± 0.327 1.07 ± 0.250 0.975 ± 0.180 0.889 ± 0.145

AffineTL-Const 2.32 ± 0.552 1.71 ± 0.419 1.49 ± 0.373 1.26 ± 0.257 1.06 ± 0.220 0.950 ± 0.163 0.885 ± 0.156

FE 2.30 ± 0.471 1.73 ± 0.392 1.57 ± 0.445 1.31 ± 0.236 1.35 ± 0.507 1.10 ± 0.180 1.06 ± 0.166

FT 2.34 ± 0.740
:::
1.62

:
±
::::
0.380

:::
1.32

:
±
::::
0.301

:::
1.08

:
±
::::
0.198

::::
0.934

:
±
::::
0.108

::::
0.816

:
±
:::::
0.0718

::::
0.777

:
±
:::::
0.0574

MAML 2.60 ± 1.41 1.89 ± 0.459 1.66 ± 0.311 1.59 ± 0.311 1.28 ± 0.288 1.19 ± 0.210 1.07 ± 0.105
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4.4.2 Lattice thermal conductivity of inorganic crystals

Here, we describe the relationship between the qualitative differences in the source
features and learning behavior of the affine model transfer, in comparison with those
of ordinary feature extractors using neural networks. The target task was to predict
the lattice thermal conductivity (LTC) of inorganic crystalline materials, where the
LTC is the amount of vibrational energy propagated by phonons in a crystal. In
general, LTC can be calculated ab initio by performing many-body electronic structure
calculations based on quantum mechanics. However, it is very time-consuming to
perform the first-principles calculations for thousands of crystals, which will be used
as a training sample set for a surrogate statistical model. Therefore, we performed TL
for the source task of predicting an alternative, computationally tractable physical
property called scattering phase space (SPS), which is known to be physically related
to the LTC.

Data

We used the dataset from Ju et al. (2021), which contains SPS and LTC data for 320
and 45 inorganic compounds, respectively. The input compounds were translated to
290-dimensional compositional descriptors using XenonPy2 (Liu et al., 2021).

Model definition and hyperparameter search

Fully connected neural networks with a LeakyReLu activation function with α = 0.01
were used for both the source and target models. The model training was conducted
using the Adam optimizer. Hyperparameters such as the width of the hidden layer,
learning rate, number of epochs, and regularization parameters were adjusted using five-
fold cross-validation. For more details on the experimental conditions and procedure,
refer to the Python code that we provided.

Source model In the preliminary step, neural networks with three hidden layers
for predicting the SPS were trained using 80% of the 320 samples. The hidden layer
width L was randomly selected from the range [50, 100], and we trained a neural
network with a structure of (input)-L-L-L-1. 100 models with different numbers of
neurons were randomly generated and the top 10 source models that showed the
highest generalization performance in the source domain were selected. Then, in the
target task, an intermediate layer of a source model was used as the feature extractor.

2https://github.com/yoshida-lab/XenonPy
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Figure 4.5: Change in RMSEs between the affine transfer model and ordinary feature
extraction when using different levels of intermediate layers as the source features. The
line plot shows the mean and 95% confidence interval. As the baselines, the RMSEs
for direct learning without transfer and fine-tuned neural networks are depicted as
dotted and dashed lines, respectively.

Target model The functions g1, g2, and g3 in the affine transfer model were modeled
using neural networks. We used a neural network with one hidden layer for g1, g2,
and g3. A model was trained using 40 randomly selected samples of the LTC, and
its performance was evaluated with the remaining 5 samples. For each of the 10
source models, we performed the training and testing 10 times with different sample
partitions and compared the mean values of the RMSE among four different methods:
(i) the affine model transfer using neural networks to model the three functions g1, g2
and g3, (ii) a neural network that uses the XenonPy compositional descriptors as
input without transfer, (iii) a neural network that uses the source features as input,
and (iv) fine-tuning of the pre-trained neural networks. The width of the layers of
each neural network, number of training epochs, and dropout rate were optimized
during five-fold cross-validation looped within each training set.

Results

Figure 4.5 shows the change in prediction performance of the TL models using the
source features obtained from different intermediate layers selected from the first to
the third layers. The affine transfer model and ordinary feature extraction showed
opposite patterns. The performance of feature extraction improved when the first
intermediate layer closest to the input layer was used as the source feature and it
gradually degraded when the layers closer to the output were used. When the third
intermediate layer was used, a negative transfer occurred in feature extraction, as
its performance became poorer than that of direct learning. In contrast, the affine
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Figure 4.6: MD-calculated (vertical axis) and experimental values (horizontal axis) of
the specific heat capacity at a constant pressure for various amorphous polymers.

transfer model performed better when the second and third intermediate layers closer
to the output were used. The affine transfer model using the third intermediate layer
reached a level of accuracy slightly better than that of fine-tuning, which intuitively
uses more information to transfer than the extracted features.

In general, the features encoded in an intermediate layer of a neural network are
increasingly task-independent for layers closer to the input, and the features become
more task-specific for layers closer to the output (Yosinski et al., 2014). Because the
first layer does not differ much from the original input, using both x and fs in the
affine model transfer does not contribute much to performance improvement. However,
when using each of the second and third layers as the feature extractor, the use of
both x and fs contributes to improving the expressive power of the model, because
the feature extractor acquires different representational capabilities from the original
input. In contrast, a model based only on fs from a source task-specific feature
extractor cannot account for the data in the target domain; hence its performance
would be poorer than that of direct learning without transfer, i.e., a negative transfer
would occur.

4.4.3 Heat capacity of organic polymers

We highlight the benefits of separately modeling and estimating the domain-specific
factors through a case study in polymer chemistry. The objective was to predict
the specific heat capacity at a constant pressure CP for any given organic polymer
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Table 4.2: Force-field parameters that form the General AMBER force field (Wang
et al., 2004) version 2 (GAFF2), and their detailed descriptions.

Pparameter Description
mass Atomic mass
σ Equilibrium radius of van der Waals (vdW) interactions
ϵ Depth of the potential well of vdW interactions
charge Atomic charge of Gasteiger model
r0 Equilibrium length of chemical bonds
Kbond Force constant of bond stretching
polar Bond polarization defined by the absolute value of charge difference between atoms in a bond
θ0 Equilibrium angle of bond angles
Kangle Force constant of bond bending
Kdih Rotation barrier height of dihedral angles

with its chemical structure in the repeating unit. Specifically, we conducted TL to
bridge the gap between the experimental values and physical properties calculated
from molecular dynamics (MD) simulations.

As shown in Figure 4.6, there was a large systematic bias between the experimen-
tal and calculated values; the MD-calculated properties CMD

P exhibited an evident
overestimation with respect to their experimental values. As discussed in Hayashi
et al. (2022), this observation is inevitable because classical MD calculations do not
reflect the presence of quantum effects in the real system: the vibrational energy of the
classical harmonic oscillator is significantly larger than that of the quantum harmonic
oscillator at the same frequency. Hence, the upward bias was observed in CMD

P , which
mainly originated from the lack of quantum effects. According to Einstein’s theory
for specific heat in physical chemistry, the logarithmic ratio between Cexp

P and CMD
P

can be calibrated using the following equation (Hayashi et al., 2022):

logCexp
P = logCMD

P + 2 log

(
ℏω
kBT

)
+ log

exp
( ℏω
kBT

)[
exp
( ℏω
kBT

)
− 1
]2 , (4.13)

where kB is the Boltzmann constant, ℏ is the Planck constant, ω is the frequency of
molecular vibrations, and T is the temperature. The bias is a monotonically decreasing
function of frequency ω, which is described as a black-box function of polymers with
their molecular features. Hereinafter, we consider the calibration of this systematic
bias using the affine transfer model.

Data

The experimental values of the specific heat capacity of the 70 polymers were collected
from PoLyInfo (Otsuka et al., 2011). The MD simulation was also applied to calculate
their heat capacities. To enable the models to predict the log-transformed heat capacity,
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Table 4.3: Comparison of three prediction models for experimental values of specific
heat capacity with and without using the MD-calculated properties as source features
(mean and standard deviation of RMSE).

Model RMSE (log J/kg ·K)
y = α0 + α1fs + ϵ 0.1403 ± 0.04610
y = fs + x⊤γ + ϵ 0.1368 ± 0.04265
y = α0 + α1fs − (βfs + 1)x⊤γ + ϵ 0.1357 ± 0.04173

a given polymer with its chemical structure was translated into the 190-dimensional
force-field descriptors using RadonPy3 (Hayashi et al., 2022). We randomly sampled
60 training polymers and tested the prediction performance of a trained model on
the remaining 10 polymers 20 times. The PoLyInfo sample identifiers for the selected
polymers are listed in the code.

The descriptor x represents the distribution of the ten different force-field parame-
ters ( t ∈ T = {mass, σ, ϵ, charge, r0, Kbond, polar, θ0, Kangle, Kdih} that constitute the
empirical potential (i.e., the General AMBER force field (Wang et al., 2004) version 2
(GAFF2)) of the classical MD simulation. The detailed descriptions of the parameters
are listed in Table 4.2. For each t, pre-defined values are assigned to the constituent
elements in a polymer, such as individual atoms (mass, charge, σ, and ϵ), bonds (r0,
Kbond, and polar), angles (θ0 and Kangle), or dihedral angles (Kdih). The probability
density function of the assigned values of t is then estimated and discretized into 10
points corresponding to 10 different element species such as hydrogen and carbon
for mass, and 20 equally spaced grid points for the other parameters. Thus, the
190-dimensional descriptor vector x consists of nine blocks with 10 or 20 elements
corresponding to the different types of force-field parameters.

The source feature fs was given by the log-transformed value of CMD
P . Therefore,

fs was no longer a function of x; this experiment was intended for calibrating the
MD-calculated properties rather than for conventional TL.

Model definition and hyperparameter search

In addition to the affine model transfer, ordinary linear regression and the log-difference
model were used for comparison in this experiment. The details of each model are as
follows:

Ordinary linear regression Simply, the experimental heat capacity y = logCexp
P

was regressed on the MD-calculated property, without regularization as ŷ = α0+α1fs,

3https://github.com/RadonPy/RadonPy
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Algorithm 4.3 Block relaxation algorithm for the model in Eq. (4.15).

Initialize
α0 ← α̂0,olr, α1 ← α̂1,olr, β ← 0, γ ← γ̂diff

repeat
α← argminα Fα,β,γ
β ← argminβ Fα,β,γ
γ ← argminγ Fα,β,γ

until convegence

where ŷ denotes the conditional expectation and fs = logCMD
P .

Learning the log-difference We calculated the log-difference logCexp
P − logCMD

P

and trained the linear model, i.e., we trained the model ŷ = fs + x⊤γ. Note that this
model corresponds to the theoretical model of Eq. (4.13).

As mentioned above, the input x was divided into 10 blocks describing the dis-
cretized density function of a force-field parameter. For each block, the corresponding
parameters in γ should be estimated smoothly. To this end, fused regularization was
introduced in the objective function to be minimized:

λ1∥γ∥22 + λ2
∑
t∈T

Jt∑
j=2

(
γt,j − γt,j−1

)2
, (4.14)

where Jt = 10 for t = mass and Jt = 20 otherwise. γt,j denotes the coefficient for the
j-th grid point of the force-field parameter t.

The hyperparameters λ1 and λ2 for the scale- and smoothness-regularizers were
determined based on five-fold cross-validation across 25 equally spaced grids in the
interval [10−2, 102] for λ1 and in the candidate set {50, 100, 150} for λ2.

Affine transfer The log-transformed value of Cexp
p was modeled as

y := logCexp
P = α0 + α1fs︸ ︷︷ ︸

g1

− (βfs + 1)︸ ︷︷ ︸
g2

· x⊤γ︸︷︷︸
g3

+ϵ, (4.15)

where ϵ denotes an observation noise, and α0, α1, β, and γ are the unknown parameters
to be estimated. For α1 = 1 and β = 0, Eq. (4.15) is consistent with the theoretical
equation in Eq. (4.13) in which the quantum effect is linearly modeled as α0 + x⊤γ.
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The fused regularization expressed as Eq. (4.14) was also introduced for the affine
model transfer. Consequently, in the model training, the objective function was given
as follows:

Fα,β,γ =
1

n

n∑
i=1

{
yi − (α0 + α1fs(xi)− (βfs(xi) + 1)x⊤γ)

}2
+ λββ

2 + λγ,1∥γ∥22 + λγ,2
∑
t∈T

Jt∑
j=2

(
γt,j − γt,j−1

)2
,

where α = [α0 α1]
⊤. With a fixed λβ = 1, the remaining hyperparameters λγ,1 and

λγ,2 were optimized through five-fold cross-validation over 25 equally spaced grids in
the interval [10−2, 102] for λγ,1 and the candidate set {50, 100, 150} for λγ,2.

The algorithm to estimate the parameters α, β, and γ is described in Algorithm 4.3,
where α0,olr and α1,olr are the estimated parameters of the ordinary linear regression
model, and γ̂diff is the estimated parameter of the log-difference model. For each step,
the full conditional minimization of Fα,β,γ with respect to each parameter can be
made analytically as

argmin
α
Fα,β,γ

= (F⊤
s Fs)

−1y⊤s (y + (βfs(X) + 1) ◦ (Xγ)),
argmin

β
Fα,β,γ

= −(fs(X)⊤diag(Xγ)2fs(X) + nλ2)
−1fs(X)⊤diag(Xγ)(y − Fsα +Xγ),

argmin
γ
Fα,β,γ

= −(X⊤diag(fs(X)β + 1)2X + Λ)−1X⊤diag(fs(X)β + 1)(y − Fsα),

where X denotes the matrix in which the i-th row is xi, y = [y1 · · · yn]⊤, fs(X) =
[fs(x1) · · · fs(xn)]⊤, Fs = [fs(X) 1], and d = 190. Λ is a matrix containing the two
regularization parameters λγ,1 and λγ,2 as

Λ = D⊤D,

where

D =

[
λγ,1Id
λγ,2M

]
, M =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

 ← m-th rows
,

100



4.4. EXPERIMENTAL RESULTS
Va

lu
e

Figure 4.7: Bar plot of the regression coefficients γ of the linear calibrator for addressing
the discrepancy between the experimental and MD-calculated specific heat capacities
of amorphous polymers.

where m ∈ {10, 30, 50, 70, 90, 110, 130, 150, 170}. Note that the matrix M is the same
as the matrix [0 I189]− [I189 0] except that the m-th row is all zeros. Note also that
M ∈ R189×190, and therefore D ∈ R279×190 and Λ ∈ R190×190.

The stopping criterion for the algorithm was the same as Eq. (4.12).

Results

Table 4.3 summarizes the prediction performance (RMSE) of the three models. The
ordinary linear model y = α0 + α1fs + ϵ, which ignored the force-field descriptors,
exhibited the lowest prediction performance. The other two calibration models,
y = fs + x⊤γ + ϵ and the full model in Eq. (4.15), reached almost the same accuracy,
but the latter achieved slightly better prediction accuracy. The estimated parameters
of the full model were α1 ≈ 0.889 and β ≈ −0.004. The model form is highly
consistent with the theoretical equation in Eq. (4.13) as well as the restricted model
(α1 = 1, β = 0). This supports the validity of the theoretical model in Hayashi et al.
(2022), which explains the discrepancy between the experimental and calculated values
owing to the presence or absence of quantum effects.

It is expected that physicochemical insights can be obtained by examining the
estimated coefficient parameter γ in the term of x⊤γ, which would capture the
contribution of the force-field parameters to the quantum effects yielding the systematic
bias in the MD calculations. Figure 4.7 shows the mean values of the estimated
parameter γ for the full calibration model. The magnitude of the quantum effect is a
monotonically increasing function of the frequency of the harmonic oscillator ω, and
is known to be highly related to the depth of the potential well in van der Waals
interaction (ϵ) and in bond rotation (Kdih), the force constants of bond-stretching
(Kbond) and -bending (Kangle), and the mass of the atoms (mass). According to
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physicochemical intuition, it is considered that as ϵ, Kbond, Kangle, and Kdih decrease,
their potential energy surfaces become shallow. This decreases the frequency ω,
resulting in decreased quantum effects for CP. Further, theoretically, because the
molecular vibration of light-weight atoms is faster than that of heavy atoms, ω
and quantum effects for CP should increase with decreasing mass. These physical
relationships could be captured consistently with the estimated coefficients. The
coefficients in the lower regions of ϵ, Kbond, Kangle, and Kdih showed large negative
values, indicating that the polymers containing a greater number of atoms, bonds,
angles, and dihedral angles with lower values of these force-field parameters will have
smaller quantum effects. Conversely, the coefficients in the lower regions of mass
showed positive large values, meaning that the polymers containing a greater number
of atoms with smaller masses had larger quantum effects. By separately including the
domain-common and domain-specific factors in the transfer model, we could infer the
features relevant to the cross-domain differences.

4.5 Proofs

In this section, we provide the proofs for Theorem 4.3, Theorem 4.4, and Corollary
4.5.

4.5.1 Proof of Theorem 4.3

To bound the generalization error, we use the empirical and population Rademacher
complexities R̂S(F) and R(F) of the hypothesis class F , defined as:

R̂S(F) = Eσ sup
f∈F

1

n

n∑
i=1

σif(xi), R(F) = ESR̂S(F),

where {σi}ni=1 is a set of Rademacher variables that are independently distributed and
each takes one of the values in {−1,+1} with equal probability, and S denotes a set
of samples. The following proof is based on the proof of Theorem 11 in Kuzborskij &
Orabona (2017).

Proof of Theorem 4.3. For any hypothesis class F with feature map Φ, where ∥Φ∥2 ≤
1, the following inequality holds as mentioned in Section 2.2:

Eσ sup
∥θ∥2≤Λ

1

n

n∑
i=1

σi⟨θ,Φ(xi)⟩ ≤
√

Λ

n
.
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The proof is given, for example, in Theorem 6.12 of Mohri et al. (2018). Thus, the
empirical Rademacher complexity of H is bounded as

R̂S(H) = Eσ sup
∥α∥2H1

≤ λ−1
α R̂s,

∥β∥2H2
≤ λ−1

β
R̂s,

∥γ∥2H3
≤ λ−1

γ R̂s

1

n

n∑
i=1

σi

{
⟨α,Φ1(fs(xi))⟩H1 (4.16)

+ ⟨β,Φ2(fs(xi))⟩H2⟨γ,Φ(xi)⟩H3

}
≤ Eσ sup

∥α∥2H1
≤λ−1

α R̂s

1

n

n∑
i=1

σi⟨α,Φ1(fs(xi))⟩H1

+ sup
∥β∥2H2

≤ λ−1
β

R̂s,

∥γ∥2H3
≤ λ−1

γ R̂s

1

n

n∑
i=1

σi⟨β ⊗ γ,Φ2(fs(xi))⊗ Φ(xi)⟩H2⊗H3

≤ Eσ sup
∥α∥2H1

≤λ−1
α R̂s

1

n

n∑
i=1

σi⟨α,Φ1(fs(xi))⟩H1

+ sup
∥β⊗γ∥2H2⊗H3

≤λ−1
β λ−1

γ R̂2
s

1

n

n∑
i=1

σi⟨β ⊗ γ,Φ2(fs(xi))⊗ Φ(xi)⟩H2⊗H3

≤

√
R̂s

λαn
+

√
R̂2
s

λβλγn
(4.17)

≤

√
R̂s

n

{√
1

λα
+

√
L

λβλγ

}
.

The first inequality follows from the subadditivity of the supremum. The last inequality
follows from the fact that R̂s ≤ Pnℓ(y, ⟨0,Φ1⟩) + λα∥0∥2 ≤ L.

Let C =
√

1
λα

+
√

L
λβλγ

. By applying Talagrand’s lemma (Mohri et al., 2018) and

Jensen’s inequality, we can obtain

R(L) = ER̂S(L) ≤ µℓER̂S(H) ≤ CµℓE

√
R̂s

n
≤ Cµℓ

√
ER̂s

n
.

To apply Corollary 3.5 of Bartlett et al. (2005), we should solve the equation

r = Cµℓ

√
r

n
, (4.18)
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and obtain r∗ =
µ2ℓC

2

n
. Thus, for any η > 0 with probability at least 1 − e−η, there

exists a constant C ′ > 0 that satisfies

Pnℓ(y, h) ≤ C ′
(
ER̂s +

µ2
ℓC

2

n
+
η

n

)
≤ C ′

(
Rs +

µ2
ℓC

2

n
+
η

n

)
. (4.19)

Note that, for the last inequality, because R̂s ≤ Pnℓ(y, ⟨α,Φ1⟩) + λα∥α∥2 for any
α, taking the expectation of both sides yields ER̂s ≤ Pℓ(y, ⟨α,Φ1⟩) + λα∥α∥2 , and
which gives ER̂s ≤ infα{Pℓ(y, ⟨α,Φ1⟩) + λα∥α∥2} = Rs. Consequently, by applying
Theorem 1 of Srebro et al. (2010), we have

Pℓ(y, h(x)) ≤ Pnℓ(y, h(x))

+ Õ

((√
Rs

n
+
µℓC +

√
η

n

)(√
LC +

√
Lη

)
+
C2L+ Lη

n

)
.

Here, we use R̂S(H) ≤ C
√

R̂s

n
≤ C

√
L
n
.

Remark 1. As in Kuzborskij & Orabona (2013), without the estimation of the param-

eters α and β, the right-hand side of Eq. (4.16) becomes 1√
n

(
c1 + c2

√
R̂s

)
with the

constants c1 > 0 and c2 > 0, and Eq. (4.18) becomes

r =
1√
n
(c1 + c2

√
r).

This yields the solution

r∗ =

(
c2

2
√
n
+

√(
c2

2
√
n

)2

+
c1√
n

)2

≤ c22
n

+
c1√
n
,

where we use the inequality
√
x+
√
x+ y ≤

√
4x+ 2y. Thus, Eq. (4.19) becomes

Pnℓ(y, h) ≤ C ′
(
Rs +

c22
n

+
c1√
n
+
η

n

)
.

Consequently, we have the following result:

Pℓ(y, h(x)) ≤ Pnℓ(y, h(x))

+ Õ

((√
Rs

n
+

√
c1

n3/4
+
c2 +

√
η

n

)(
c1 + c2

√
L+

√
Lη

)
+

(c1 + c2
√
L)2 + Lη

n

)
.

This means that even if Rs = Õ(n−1/2), the resulting rate only improves to Õ(n−3/4).
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4.5.2 Proof of Theorem 4.4

Recall that the loss function ℓ(·, ·) is assumed to be µℓ-Lipschitz for the first argument.
In addition, we impose the following assumption.

Assumption 4.8. There exists a constant B ≥ 1 such that for every h ∈ H, P (h−
h∗) ≤ BP (ℓ(y, h)− ℓ(y, h∗)).

Because we consider ℓ(y, y′) = (y − y′)2 in Theorem 4.4, Assumption 4.8 holds, as
stated in Bartlett et al. (2005).

First, we show the following corollary, which is a slight modification of Theorem
5.4 of Bartlett et al. (2005).

Corollary 4.6. Let ĥ be any element of H satisfying Pnℓ(y, ĥ) = infh∈H Pnℓ(y, h), and
let ĥ(m) be any element of H(m) satisfying Pnℓ(y, ĥ

(m)) = infh∈H(m) Pnℓ(y, h). Define

ψ̂(r) = c1R̂{h ∈ H : max
m∈{1,2}

Pn(h
(m) − ĥ(m))2 ≤ c3r}+

c2η

n
,

where c1, c2, and c3 are some constants depending only on B and µℓ. Then, for any
η > 0 with probability at least 1− 5e−η,

Pℓ(y, ĥ)− Pℓ(y, h∗) ≤ 705

B
r̂∗ +

(11µℓ + 27B)η

n
,

where r̂∗ is the fixed point of ψ̂.

Proof. Define the function ψ as

ψ(r) =
c1
2
R{h ∈ H : µ2

ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η
n

.

Notice that because H,H(1), and H(2) are all convex and thus star-shaped around
each of its points, Lemma 3.4 of Bartlett et al. (2005) implies that ψ is a sub-root. In
addition, define the sub-root function ψm as

ψm(r) =
c
(m)
1

2
R{h(m) ∈ H(m) : µ2

ℓP (h
(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η

n
.

Let r∗m be the fixed point of ψm(rm). Now, for rm ≥ ψm(rm), Corollary 5.3 of Bartlett
et al. (2005) and the condition of the loss function imply that with probability at
least 1− e−η,

µ2
ℓP (ĥ

(m) − h(m)∗)2 ≤ Bµ2
ℓP (ℓ(y, ĥ

(m))− ℓ(y, ĥ(m)∗))

≤ 705µ2
ℓrm +

(11µℓ + 27B)Bµ2
ℓη

n
.

105



4.5. PROOFS

Denote the right-hand side by sm, and define r = max rm and s = max sm. Because
s ≥ sm ≥ rm ≥ r∗m, we obtain s ≥ ψm(s) according to Lemma 3.2 of Bartlett et al.
(2005). Thus,

s ≥ 10µ2
ℓER̂{h(m) ∈ H(m) : µ2

ℓP (h
(m) − h(m)∗)2 ≤ s}+ 11µ2

ℓη

n
.

Therefore, by applying Corollary 2.2 of Bartlett et al. (2005) to the class µℓH(m), it
follows that with probability at least 1− e−η,

{h(m) ∈ H(m) : µ2
ℓP (h

(m) − h(m)∗)2 ≤ s} ⊆ {h(m) ∈ H(m) : µ2
ℓPn(h

(m) − h(m)∗)2 ≤ 2s}.

This implies that with probability at least 1− 2e−η,

Pn(ĥ
(m) − h(m)∗)2 ≤ 2

(
705r +

(11µℓ + 27B)Bη

n

)
≤ 2

(
705 +

(11µℓ + 27B)B

n

)
r,

where the second inequality follows from r ≥ ψ(r) ≥ c2η
n
. Define 2

(
705 + (11µℓ+27B)B

n

)
=

c′. According to the triangle inequality in L2(Pn), it holds that

Pn(h
(m) − ĥ(m))2 ≤

(√
Pn(h(m) − h(m)∗)2 +

√
Pn(h(m)∗ − ĥ(m))2

)2
≤
(√

Pn(h(m) − h(m)∗)2 +
√
c′r
)2
.

By applying Corollary 2.2 of Bartlett et al. (2005) to µℓH(m) for r ≥ ψm(r), it follows
that with probability at least 1− 4e−η,

{h ∈ H : µ2
ℓ maxP (h(m) − h(m)∗)2 ≤ r}

=
2⋂

m=1

{h(m) ∈ H(m) : µ2
ℓP (h

(m) − h(m)∗)2 ≤ r}

⊆
2⋂

m=1

{h(m) ∈ H(m) : µ2
ℓPn(h

(m) − h(m)∗)2 ≤ 2r}

⊆
2⋂

m=1

{h(m) ∈ H(m) : µ2
ℓPn(h

(m) − ĥ(m))2 ≤ (
√
2r +

√
c′r)2}

= {h ∈ H : µ2
ℓ maxPn(h

(m) − ĥ(m))2 ≤ c3r},
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where c3 = (
√
2 +
√
c′)2. Combining this with Lemma A.4 of Bartlett et al. (2005)

leads to the following inequality: with probability at least 1− 5e−x,

ψ(r) =
c1
2
R{h ∈ H : µ2

ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η
n

≤ c1R̂S{h ∈ H : µ2
ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ c2η

n

≤ c1R̂S{h ∈ H : µ2
ℓ maxPn(h

(m) − ĥ(m))2 ≤ c3r}+
c2η

n

= ψ̂(r).

Letting r = r∗ and using Lemma 4.3 of Bartlett et al. (2005), we obtain r∗ ≤ r̂∗, thus
proving the statement.

Proof of Theorem 4.4. Define R = maxm suph∈H(m) Pn(y − h(x))2. For any h ∈ H(m),
we obtain

Pn(h
(m)(x)− ĥ(m)(x))2 ≤ 2Pn(y − h(m)(x))2 + 2Pn(y − ĥ(m)(x))2

≤ 4 sup
h∈H(m)

Pn(y − h(x))2

≤ 4R.

From the symmetry of σi and the fact that H(m) is convex and symmetric, we obtain
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the following:

R̂{h ∈ H : maxPn(h
(m) − ĥ(m))2 ≤ 4R}

= Eσ sup
h(m)∈H(m)

Pn(h(m)−ĥ(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

h(m)(xi)

= Eσ sup
h(m)∈H(m)

Pn(h(m)−ĥ(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

(h(m)(xi)− ĥ(m)(xi))

≤ Eσ sup
h(m),g(m)∈H(m)

Pn(h(m)−g(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

(h(m)(xi)− g(m)(xi))

= 2Eσ sup
h(m)∈H(m)

Pnh(m)2≤R

1

n

n∑
i=1

σi

2∑
m=1

h(m)(xi)

≤ 2
2∑

m=1

Eσ sup
h(m)∈H(m)

Pnh(m)2≤R

1

n

n∑
i=1

σih
(m)(xi)

≤ 2
2∑

m=1

{
2

n

n∑
j=1

min{R, λ̂(m)
j }

} 1
2

≤

{
16

n

2∑
m=1

n∑
j=1

min{R, λ̂(m)
j }

} 1
2

.

The second inequality arises from the sub-additivity of the supremum and the third
inequality follows from Theorem 6.6 of Bartlett et al. (2005). To obtain the last
inequality, we use

√
x+
√
y ≤

√
2(x+ y). Thus, we have

2c1R̂{h ∈ H : maxPn(h
(m) − ĥ(m))2 ≤ 4R}+ (c2 + 2)η

n

≤ 4c1

{
16

n

2∑
m=1

n∑
j=1

min
{
R, λ̂

(m)
j

}} 1
2

+
(c2 + 2)η

n

for the constants c1 and c2. To apply Corollary 4.6, we should solve the following
inequality for r

r ≤ 4c1

{
16

n

2∑
m=1

n∑
j=1

min
{
r, λ̂

(m)
j

}} 1
2

.
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For any integer κm ∈ [0, n], the right-hand side is bounded as

4c1

{
16

n

2∑
m=1

n∑
j=1

min
{
r, λ̂

(m)
j

}} 1
2

≤ 4c1

{
16

n

2∑
m=1

(
κm∑
j=1

r +
n∑

j=κm+1

λ̂
(m)
j

)} 1
2

=

{(
256c21
n

2∑
m=1

κm

)
r +

256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

} 1
2

,

and we obtain the solution r∗ as

r∗ ≤ 128c21
n

2∑
m=1

κm +

{128c21
n

2∑
m=1

κm

}2

+
256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

 1
2

≤ 256c21
n

2∑
m=1

κm +

(
256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

) 1
2

.

By optimizing the right-hand side with respect to κ1 and κ2, we obtain the solution as

r∗ ≤ min
0≤κ1,κ2≤n

256c21
n

2∑
m=1

κm +

(
256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

) 1
2

 .

Furthermore, according to Corollary 4.6, there exists a constant c such that with
probability at least 1− 5e−η,

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ c

 min
0≤κ1,κ2≤n

 1

n

2∑
m=1

κm +

(
1

n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

) 1
2

+
η

n

 .

Proof of Corollary 4.5. By using the inequality
√
x+ y ≤

√
x+
√
y for x ≥ 0, y ≥ 0,
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we have

P (y − ĥ(x))2 − P (y − h∗(x))2

= O

(
min

0≤κ1,κ2≤n

{
κ1 + κ2
n

+

(
1

n

n∑
j=κ1+1

λ̂
(1)
j +

1

n

n∑
j=κ2+1

λ̂
(2)
j

) 1
2
}

+
η

n

)

≤ O

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

(
1

n

n∑
j=κ1+1

j
− 1

s1 +
1

n

n∑
j=κ2+1

j
− 1

s2

) 1
2

+
η

n


≤ O

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

(
1

n

n∑
j=κ1+1

j
− 1

s1

) 1
2

+

(
1

n

n∑
j=κ2+1

j
− 1

s2

) 1
2

+
η

n

 .

Because it holds that

n∑
j=κm+1

j−
1

sm <

∫ ∞

κm

x−
1

sm dx <

[
1

1− 1
sm

x1−
1

sm

]∞
κm

=
sm

1− sm
κ
1− 1

sm
m ,

for m = 1, 2, we should solve the following minimization problem:

min
0≤κ1,κ2≤n

{
κ1 + κ2
n

+

(
1

n

s1
1− s1

κ
1− 1

s1
1

) 1
2

+

(
1

n

s1
1− s1

κ
1− 1

s1
2

) 1
2

}
≡ g(κ).

By taking the derivative, we have

∂g(κ)

∂κ1
=

1

n
+

1

2

(
1

n

s1
1− s1

κ
1− 1

s1
1

)− 1
2
(
− κ

− 1
s1

1

n

)
.

By setting this to zero, we find the optimal κ1 as

κ1 =

(
s1

1− s1
4

n

) s1
1+s1

.

Similarly, we have

κ2 =

(
s2

1− s2
4

n

) s2
1+s2

,
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and

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ O

(
1

n

(
s1

1− s1
4

n

) s1
1+s1

+
1

n

(
s2

1− s2
4

n

) s2
1+s2

+ 2
1−s1
1+s1

(
s1

1− s1
1

n

) 1
1+s1

+ 2
1−s2
1+s2

(
s2

1− s2
1

n

) 1
1+s2

+
η

n

)
= O

(
n
− 1

1+s1 + n
− 1

1+s2

)
= O

(
n
− 1

1+max{s1,s2}
)
.

4.6 Summary and future perspectives

In this chapter, we defined a general class of TL based on affine model transformations
and clarified their learning capability and applicability. We considered a procedure
consisting of two stages: first, the source features and target samples were transformed,
and then the domain transfer model was estimated using the transformed data. The
affine model transformation was shown to minimize the expected squared loss in the
class of two-stage TL. The affine transfer model is structurally common to a low-rank
tensor regression model and an invertible neural network model with affine coupling
layers. In the context of TL, the model can be used to represent and estimate the
cross-domain shift and domain-specific factors simultaneously and separately.

Currently, the most widely applied methods of TL reuse features acquired by pre-
trained neural networks in the source domain. Although such procedural approaches,
including feature extraction and fine-tuning, appear plausible, they lack a theoretical
foundation. In addition, the existing methods are designed to describe the target
domain using only the features acquired in the source domain, and thus cannot
adequately deal with the cases where domain-specific factors are present. Our affine
model transfer is a principled methodology based on the minimum expected square
loss. It also has the ability to simultaneously and separately handle common and
unique factors of the domains.

The present methodology provides a general framework that can handle any
model including neural networks and pre-defined features. As described, we can
represent an ordinary TL based on feature extraction by using the intermediate layers
of a pre-trained neural network as the source features in the affine transfer model.
Furthermore, as shown in the case study, the affine transfer model can be used as
a calibrator between computational models and real-world systems by defining the

111



4.6. SUMMARY AND FUTURE PERSPECTIVES

predicted values from the physics simulators as the source features. Lastly, we expect
to be able to formulate various kinds of TL by designing the source features and the
three coupling functions that make up the optimal form of the transfer models.
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Chapter 5

Conclusions and future works

5.1 Concluding remarks

In this thesis, we developed the general frameworks for supervised TL in regression
settings. From a probabilistic perspective, Chapter 3 proposed a new class of TL that
combines cross-domain similarity regularization and density-ratio estimation. This
class is characterized by two hyperparameters that control the training and prediction.
From a functional perspective, in Chapter 4, we derived the optimal function class of
TL, which minimizes the expected squared loss. These methods are widely applicable
because they can be handled with any machine learning model, including neural
networks, and because the estimation algorithms can be easily implemented without
the need to store the source samples. Furthermore, theoretical analyses were performed
for each method to clarify some characteristic properties. These methods are expected
to play an important role in many real-world applications.

The relationship between these two proposed methods is shown in Figure 5.1. The
Bayesian TL with density-ratio modeling (Bayesian density-ratio transfer), proposed
in Chapter 3, bridges similarity regularization and dissimilarity regularization, i.e., it
bridges TL based on Bayesian inference and TL based on density-ratio estimation.
Because the Bayesian density-ratio transfer is a framework that uses the model outputs,
it is notable that only a limited of methods can be described. For example, it does not
include regularization using the source parameters introduced in Section 2.1.1, or the
sample importance weighting methods based on density-ratio estimation introduced
in Section 2.1.3. In contrast, as described in Chapter 3, Bayesian TL based on the
model outputs and TL based on density-ratio estimation of the conditional probability
distributions are encompassed.

The affine model transfer proposed in Chapter 4 includes the offset and scale HTL
and feature extraction of neural networks as well as the dissimilarity regularization
approach. Among the approaches bridged by the Bayesian density-ratio transfer, only
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Similarity regularization

Feature
extraction

Bayesian TL

Fine-tuning

Dissimilarity 
regularization

Density-ratio
TL

Bayesian TL with density-ratio modeling
(Ch. 3)

Without
transfer

Affine model transfer (Ch. 4)

Offset HTL Scale HTL

Figure 5.1: Relationship diagram of the proposed methods and related approaches. We
proposed two methods: Bayesian transfer learning (TL) with density-ratio modeling
in Chapter 3 and the affine model transfer in Chapter 4. These are strongly related
to several existing TL approaches, including cross-domain similarity regularization,
which is the most natural approach, and feature extraction, which is a widely used
procedure. In addition, TL based on density-ratio estimation and hypothesis transfer
learning (HTL) are bridged.

the case τ = ρ satisfies the consistency assumption (Assumption 4.3) used in Chapter
4. In other words, the affine model transfer can represent TL based on density-ratio
estimation.

It is worth mentioning that both of these methods encompass direct learning
without transfer, which cannot be represented by many standard TL procedures, e.g.,
fine-tuning and feature extraction. This is owing to the differences in the assumptions
related to the cross-domain relationship. In neural transfer, the source models are
trained with a large amount of data covering a wide range of domains. Thus, it is
supposed that the acquired knowledge is useful for training in the target domain.
However, in practical applications, it is difficult to obtain source models that are rich
enough to describe the entire target domain. With inappropriate source domains, the
features or weights obtained through pre-training do not have much information for
the training in the target domain, resulting in failure of TL.

In contrast, both the methods proposed in this thesis do not assume the domain
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inclusion relationship and focus on the cross-domain discrepancy. In other words,
they allow for the existence of both the domain-common and domain-specific factors.
In particular, in the affine model transfer, these two factors are modeled separately,
and the contribution of the source knowledge is determined through the selection
of the hyperparameters and models. Even when the source knowledge is completely
unnecessary for the training in the target domain, direct learning without transfer
is selected, and no negative transfer occurs. This procedure of explicitly modeling
the domain-specific factors has not received much attention to date but will be an
important approach in real-world applications.

5.2 Future perspectives

The following are important challenges to be addressed in the future.

Extension to other loss functions and learning problems This thesis focused
mainly on regression problems with the squared loss. For practical applications, we
also need to consider various learning tasks, for example, classification problems,
unsupervised learning, and reinforcement learning. For other loss functions, different
function classes or learning approaches are needed, as discussed in Chapter 4. A more
rigorous examination of the general loss function and learning tasks is one of the
topics for future research.

Theories for small sample regime In Chapter 4, the convergence rates of
the generalization error and excess risk were derived. These results were evaluated
according to the order by ignoring the constant terms, and showed asymptotic behavior
when the number of samples was sufficiently large. However, as discussed in Chapter
1, TL is typically applied to the case where the number of samples is extremely small.
In such cases, the constant term in the theoretical equation cannot be ignored, and
evaluation in terms of the order does not make sense. A new theoretical approach for
TL is needed, which can be used in real-world data analysis with limited samples.

Source feature selection As mentioned in Chapter 1, the selection of the source
domain is important for the effective use of TL. In Chapter 4, the theoretical analysis
led to the conclusion that we need to use source features with which learning in the
target domain can be performed efficiently. However, as noted above, this theoretical
analysis may be effective for a small number of samples. A method to accurately
calculate the transferability with a limited number of samples is needed.
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Extrapolative prediction Statistics has been traditionally formulated on the
concept of interpretation. Methods such as TL aim to develop high-performing models
from extremely limited datasets. This resembles extrapolation, in which predictions
are made for regions with no data. For example, in Section 4.4.3, the affine transfer
model was used to calibrate the observed values from the simulated values of heat
capacity, and we successfully constructed a model that is consistent with the theoretical
equation. The theoretical formula is the ultimately extrapolative model. This implies
that TL has the potential for extrapolative prediction. In other words, it is expected
that methodologies that adaptively select and use knowledge from other domains to
predict the extrapolated domains can be realized through TL.
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Hal Daumé. Frustratingly easy domain adaptation. arXiv, abs/0907.1815, 2007.
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