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Chapter 1

Introduction

In recent years, data collection and use have become increasingly popular. Since
data records are often tied to real individuals, it is necessary to consider the
privacy of the data providers when using the data. One promising approach to
balance privacy protection and data utilization is to publish perturbed data or
statistics instead of raw data. Differential privacy [Dwork et al., 2006, Dwork
and Roth, 2014] is a quantitative definition of privacy for such a perturbation
strategy. The definition requires a data curator to perturb the publication such
that an adversary cannot distinguish two neighboring datasets using the per-
turbed publication. Moreover, the definition regards a perturbation mechanism
as safer if the adversary is less likely to distinguish two neighborhood databases.
There are many differentially private algorithms, ranging from basic ones [Dwork
and Roth, 2014] to complex ones such as deep learning [Abadi et al., 2016]. Dif-
ferential privacy has been deployed in the real world. For example, the U.S.
Census Bureau adopts differentially private perturbation mechanisms when it
publishes statistics of the census [Abowd, 2018].

However, differentially private publications of statistics cannot control pri-
vacy risks when a curator publishes a large number of statistics. In the real
world, many researchers access and analyze some popular datasets, and eventu-
ally publish their findings in research papers. Official microdata are an example
of such popular data, which consist of highly sensitive records. As the curator
publishes statistics, the privacy risk accumulates. The accumulation of privacy
risk is called privacy composition and has been studied in [McSherry, 2009,
Kairouz et al., 2015, Abadi et al., 2016]. Even if each publication strictly controls
the privacy risk, the accumulated privacy risk caused by multiple publications
can be unboundedly large. This issue also occurs on federated learning [Kairouz
et al., 2021] which is a distributed machine learning framework. In the frame-
work, clients who possess a local dataset repeatedly communicate with a central
server to update a statistical estimation. Even if clients perturb their submis-
sions to prevent direct disclosure of their local dataset, privacy risk accumulates
communication by communication. Can we avoid the accumulation of privacy
risk by multiple publications while maintaining the utility of data?

One possible solution to avoid privacy composition is to use local pertur-
bation methods such that data providers perturb their data before supplying
it to a data curator. Local differential privacy (LDP) [Kasiviswanathan et al.,
2011, Duchi et al., 2013] is a quantitative definition of privacy achieved by such
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6 CHAPTER 1. INTRODUCTION

a local perturbation method. Originally, local perturbation strategies and LDP
are studied to ensure that user privacy is protected even if data curators are
adversarial. Notably, Google and Apple have conducted statistical surveys that
guarantee user privacy based on this definition [Erlingsson et al., 2014, Apple
Differential Privacy Team, 2017]. Data collected while satisfying LDP auto-
matically satisfies DP. The perturbed data can be further used without privacy
composition.

Although a data collection method satisfying LDP promises strict privacy
protection, the requirement by LDP raises issues concerning privacy and data
utility. The LDP definition requires a data provider to perturb her record so
as to be indistinguishable from the other candidate records in the domain. To
satisfy the requirement, perturbation mechanisms often assume a known data
domain that is finite or bounded. However, since the LDP system model allows
no participant to have a complete picture of the raw data, the assumption that
the data domain is known in advance is unrealistic.

When a perturbation mechanism receives an undesirable value, the mech-
anism can output an invalid value or nothing. Undesirable values include ex-
tremely large values, non-responses, and unintended error messages. By ob-
serving the abnormal behavior, the curator can infer that the user supplied
an abnormal value. The lack of knowledge of data decreases data utility. For
example, the data curator tends to fit the data to a misspecified model.

To handle the issue, we propose an LDP protocol for Quasi-MLE using
truncation. Truncation is a technique that projects real values into a bounded
interval. Quasi-MLE is an estimator for a model parameter and works even if
we misspecified the model. We analyze the QMLE’s asymptotic behavior. The
analysis helps a curator to understand the data without directly observing the
data. The contribution corresponding to this paragraph has been published in
a conference proceeding [Ono et al., 2022].

Although truncation is helpful for handling extremely large values, it cannot
cope with other undesirable values. Since it is necessary to implement a secure
exception-handling mechanism to handle various unexpected inputs, we have
proposed a modified LDP that includes this exception-handling mechanism.
We also analyzed the benefits of including the exception-handling mechanism.

Another possible way to avoid privacy composition is the use of synthetic
data that mimics the statistical properties of the original data. Synthetic data
are not necessarily discussed in relation to DP, but, in recent years, a framework
has been established to quantitatively discuss the degree of protection in relation
to DP [Neunhoeffer et al., 2021].

However, it is not obvious that estimators evaluated using synthetic data are
always useful as those of population statistics. We identify sufficient conditions
under which estimators evaluated using synthetic do not match the population
statistics that we truly wish to estimate. We also show that there may be
problems that satisfy sufficient conditions.

This thesis is organized as follows. In Chapter 2, we introduce some knowl-
edge that is necessary to read this thesis. In Chapter 3, we study a locally
private quasi-MLE that is feasible in the real world. In Chapter 4, we study the
privacy risk in the presence of unexpected values. In Chapter 5, we study the
inconsistency of estimators caused by the use of synthetic data. In Chapter 6,
we offer the conclusion of this thesis.



Chapter 2

Preliminaries

In this chapter, we introduce some basic concepts regarding multiple chapters.
We will describe some basic concepts regarding a single chapter in the chapter.
We denote the expectation of f(X) as P (f(X)) to clarify the distribution P
that the random variable X follows. We refer to the j-th element of a vector v
by [v]j .

2.1 Convergences

We use several different concepts of convergence of probabilistic measures, con-
vergence in total variation, and convergence in distribution.

We first introduce weak convergence. We say that a sequence {Xn}∞n=1 of
random variables weakly converges or converges in distribution to a random
variable X if

Pn(Xn ≤ x) → P (X ≤ x)

where Pn and P are the distributions that Xn and X follow, respectively. The
definition of weak convergence does not require that the density functions agree
with each other. There are several equivalent definitions of weak convergence.

Lemma 1 (Portmanteau, Lemma 2.2 of [Vaart, 2000]). For any random vectors
Xn and X, the following statements are equivalent.

1. P (Xn ≤ x) → P (X ≤ x) for all continuity points of x 7→ P (X ≤ x);

2. E[f(Xn)] → E[f(X)] for any bounded, continuous function f ;

3. E[f(Xn)] → E[f(X)] for any bounded, Lipschitz function f ;

4. lim inf E[f(Xn)] ≥ E[f(X)] for any non-negative, continuous function f ;

5. lim inf P (Xn ∈ G) ≥ P (X ∈ G) for every open set G;

6. lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for every closed set F ;

7. P (Xn ∈ B) → P (X ∈ B) for any Borel set B with P (X ∈ δB) = 0, where
δB is the boundary of B.

7



8 CHAPTER 2. PRELIMINARIES

Statement (2) implies that weak convergence does not guarantee that E[f(Xn)] →
E[f(X)] for an unbounded or discontinuous function f .

Second, we introduce convergence in probability. We say that a sequence
{Xn}∞n=1 of random variables converges to X in probability if, for any ϵ > 0,

Pr(d(Xn, X) > ϵ) → 0.

We say that sequence {Xn}∞n=1 converges to X almost surely when

Pr(lim(d(Xn, X)) = 0) = 1.

Finally, we will use convergence in total variation, which is denoted

∥Pn − P∥TV → 0.

2.2 Estimation Problem

An estimation problem is a problem of estimating an unknown population pa-
rameter using data samples from the population. Here, we describe the standard
estimation problem in which analysts can access the raw data directly.

We first describe data generation and estimation. Let P ≡ {Pθ : θ ∈ Θ} be
a family of probability distributions, indexed by Θ ⊂ Rk where k is a natural
number, on a measurable space (X ,A). An unknown distribution Pθ ∈ P
generates n records independently, and we denote the records by X1, ..., Xn. We
treat X1, ..., Xn as random variables and denote their realizations by x1, ..., xn.
Let Dn = {X1, ..., Xn}, where we say that data Dn has size n. An analyst
observes Dn and estimates θ or Pθ. For the estimation, the analyst uses an
estimator θ̂n : Xn → Θ;Dn 7→ θ̂n(Dn).

Next, we define maximum risk, a performance measure of estimators. To
define risk, we use a semi-distance ρ on Θ and a weighting function w. ρ :
Θ×Θ → [0,+∞) is a function satisfying symmetry ρ(θ, θ′) = ρ(θ′, θ), triangle
inequality ρ(θ, θ′′) ≤ ρ(θ, θ′) + ρ(θ′, θ′′), and ρ(θ, θ) = 0 for any θ, θ′, θ′′ ∈ Θ. ρ
is a measure of how far apart the two elements of Θ are. The weighting function
w, representing how much we penalize the semi-distance, is a function satisfying
that

w : [0,∞) → [0,∞) is monotone increasing, w(0) = 0, and w ̸= 0, (2.1)

where w ̸= 0 means that the function w is not a constant function outputting
0. For example, w : t 7→ t and w : t 7→ t2. Given ρ and w, the performance of
an estimator θ̂n of θ is measured by the maximum risk of this estimator on Θ:

sup
θ∈Θ

Pθ(w(ρ(θ̂n(Dn), θ))).

Due to the monotonicity of w, ρ(θ′, θ) ≤ ρ(θ′′, θ) always implies w(ρ(θ′, θ)) ≤
w(ρ(θ′′, θ)).

We here explain why we defined semi-distance ρ and weighting function w
separately. Semi-distance ρ is useful in a mathematical proof. Especially, the
triangle inequality plays an important role in analyzing minimax risk. However,
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some important objective functions used in machine learning or statistics are not
semi-distances. An example of a popular objective function not satisfying the
triangle inequality is the squared loss function. We use weighting functions for
both the convenience of quasi-distance and the generality of the theory. With
ρ(θ, θ′) = |θ − θ| and w(t) = t2, we can handle the squared loss function.

Minimax risk, which is a measure of the difficulty of the estimation problem,
is defined by taking the infimum of the maximum risk over estimators:

R∗
n ≡ inf

θ̂n

sup
θ∈Θ

Pθ(w(ρ(θ̂n(Dn), θ))).

The definition does not depend on any specific estimator, distribution, and data.
Roughly speaking, the minimax risk is the risk of the best estimator in its worst
case.

We finally define the consistency of an estimator. We say that an estimator
θ̂n is consistent if the estimation θ̂n(Dn) converges to θ in probability for any Pθ.
We also say that an estimator is inconsistent if the estimator is not consistent.

2.3 Minimax risk analysis

In this section, we describe a strategy for analyzing lower bounds of minimax
risk. The standard strategy is to reduce the estimation problem to a hypothesis
testing problem [Tsybakov, 2009].

We first derive a lower bound, which is characterized by the probability
of estimation θ̂n(Dn) being far from true parameter θ, of the risk. For any
weighting function w and any δ > 0 such that w(δ) > 0, we have, by the
Markov inequality,

Pθ(w(ρ(θ̂n(Dn), θ))) ≥ w(δ)Pθ(ρ(θ̂n(Dn), θ) ≥ δ).

Thus, we focus on the probability Pθ(ρ(θ̂n(Dn), θ) ≥ δ).

Next, we lower bound Pθ(ρ(θ̂n(Dn), θ) ≥ δ) by the error probability of a
finite hypotheses test. It is clear that

inf
θ̂n

sup
θ∈Θ

Pθ(ρ(θ̂n(Dn), θ) ≥ δ) ≥ inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(ρ(θ̂n(Dn), θ) ≥ δ) (2.2)

for any finite subset {θ0, ..., θM} of Θ. We will call hypotheses theM+1 elements
θ0, ..., θM of Θ chosen to obtain lower bounds on the minimax risk and call a test
any A-measurable function ψ : X → {0, ...,M}. We denote the distributions
corresponding to θj for j = 0, ...,M by Pj . Next, we restrict the hypotheses to
make the analysis simple. We choose the hypotheses such that

ρ(θj , θj′) ≥ 2δ, ∀j′, j : j′ ̸= j.

Then, for any estimator θ̂n,

Pj(ρ(θ̂n(Dn), θj) ≥ δ) ≥ Pj(ψ
∗(Dn; θ̂n) ̸= j), j = 0, ...,M, (2.3)

where ψ∗ : Xn → {0, ...,M} is the minimum distance test defined by

ψ∗(Dn; θ̂n) = arg min
0≤j≤M

ρ(θ̂n(Dn), θj).
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Equation (2.3) is obtained by the triangle inequality and the property of ψ∗.
Since a similar proof will appear in Section 5.3, we omit the proof here. Com-
bining (2.2) and (2.3), we have

inf
θ̂n

sup
θ∈Θ

Pθ(ρ(θ̂n(Dn), θ) ≥ δ) ≥ inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(ρ(θ̂n(Dn), θ) ≥ δ) ≥ pe,M ,

where pe,M is the error probability of the best test:

pe,M ≡ inf
ψ

max
0≤j≤M

Pj(ψ ̸= j).

The infimum is taken over all tests {ψ : Xn → {0, ...,M}}.
Our next interest is the error probability pe,M . For the discussion in this

thesis, M = 1 is sufficient. Thus, in the remainder of this thesis, we consider
the two-hypotheses case. To lower bound the error probability, we introduce
the following useful lemma.

Lemma 2 (Theorem 2.2 of [Tsybakov, 2009]). Let P0 and P1 be two probability
measures on (X ,A). Suppose that there exists a real value α such that

∥P1 − P0∥TV ≡ sup
S∈A

|P1(S)− P0(S)| ≤ α < 1.

Then the following relation holds:

pe,1 ≥ 1− α

2
.

This lemma implies that we obtain a lower bound of the error probability if we
obtain an upper bound of the total variation between the hypotheses.

Summarizing this section, we obtain the following theorem, which shows a
minimax lower bound.

Theorem 1. Let ρ : Θ×Θ → [0,+∞) be a semi-distance, and let w : [0,∞) →
[0,∞) be a monotone increasing function such that w(0) = 0 and w ̸= 0. Sup-
pose that there exist P0, P1 ∈ P such that ∥Pn1 − Pn0 ∥TV ≤ α and ρ(θ0, θ1) ≥ 2δ
with positive values δ and α such that w(δ) > 0 and α < 1. Then we have

R∗
n ≥ w(δ)

1− α

2
. (2.4)

By choosing P0, P1 concretely, we can find a minimax lower bound. In Sec-
tion 5.3, we analyze the optimal convergence rate in our problem by modifying
this theorem.

Finally, we introduce Pinsker’s inequality, which is a classical and helpful
inequality. For any distributions P and Q, we have

∥P −Q∥2TV ≤ 1

2
Dkl(P∥Q).

This inequality allows us to use an upper bound of KL divergence instead of
that of total variation in Theorem 1.
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2.4 QMLE and its asymptotic normality

So far, we have described the evaluation of θ̂n and the lower bound for the
minimax risk. In this section, we introduce concrete implementations and the
properties of an estimator θ̂n, a quasi-maximum likelihood estimator (QMLE),
which is a standard method for parametric model fitting.

Given data Dn and the model family PΘ = {Pθ : θ ∈ Θ}, the QMLE is given
as the maximizer of the log-likelihood function defined as

Ln(θ;Dn) ≡
1

n

n∑
i=1

log pθ(xi), (2.5)

where pθ is the Radon–Nikodym density [Athreya and Lahiri, 2006] of Pθ with
an appropriate measure. Strictly speaking, (2.5) is not always defined and
maximized. To ensure that (2.5) can be defined and maximized, we make the
following assumptions.

Assumption 1. The independent random vectors Xi, i = 1, ..., n, have iden-
tical joint distribution function P on (X ,A), a measurable Euclidean space,
with measurable Radon–Nikodym density p = dP/dν, where ν is an appropriate
measure on (X ,A).

Assumption 2. The family of distribution functions Pθ has Radon–Nikodym
densities pθ = dPθ/dν which are measurable in (X ,A) for every θ ∈ Θ and
continuous in θ for every x ∈ X .

Assumption 3. (a) P log p exists and | log pθ(x)| ≤ m(x) for all θ ∈ Θ and
x ∈ X , where m is integrable with respect to P ; (b) P log pθ has a unique
maximum at θ = θ∗ ∈ Θ.

Assumptions 1 and 2 require that both P and Pθ be regular distributions. As-
sumption 3 is used to ensure that the sequence of estimators converges to a
point θ∗ consistently.

We next describe the matrices which characterize the convergence of the
estimator in distribution. When the partial derivatives exist and a realization
(x1, ...., xn) of data is given, we define matrices An(θ) and Bn(θ) as those whose
elements are

[An(θ)]j,j′ =
1

n

n∑
i=1

∂2 log pθ(xi)

∂[θ]j∂[θ]j′

and [Bn(θ)]j,j′ =
1

n

n∑
i=1

∂ log pθ(xi)

∂[θ]j

∂ log pθ(xi)

∂[θ]j′
for j, j′ = 1, ..., k.

If expectations also exist, we define k×k matrices A(θ;P ) and B(θ;P ) as those
whose elements are

[A(θ;P )]j,j′ = P

(
∂2 log pθ
∂[θ]j∂[θ]j′

)
and [B(θ;P )]j,j′ = P

(
∂ log pθ
∂[θ]j

∂ log pθ
∂[θ]j′

)
for j, j′ = 1, ..., k. For simplicity of notation, A(θ;P ) and B(θ;P ) are simply
denoted as A(θ) and B(θ) when there is no room for misunderstanding. When
their inverses exist, we define

Cn(θ) = An(θ)
−1Bn(θ)An(θ)

−1 and C(θ;P ) = A(θ)−1B(θ)A(θ)−1.
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We assume the existence of the expectations and make some additional technical
assumptions.

Assumption 4. ∂ log pθ(x)/∂[θ]j , j = 1, ..., k, are measurable of x for each
θ ∈ Θ and continuously differentiable functions of θ at all x ∈ X .

Assumption 5. |∂2 log pθ/∂[θ]j∂[θ]j′ | and |∂ log pθ/∂[θ]j ·∂ log pθ/∂[θ]j′ |, j, j′ =
1, ..., k are dominated by functions integrable with respect to P for all x ∈ X and
θ ∈ Θ.

Assumption 6. (a) θ∗ is interior of Θ; (b) B(θ∗) is nonsingular; (c) θ∗ is a
regular point of A(θ).

Under these assumptions, we have asymptotic normality.

Theorem 2 (Asymptotic Normality, Theorem 3.2 of [White, 1982]). Given
Assumptions 1 to 6,

√
n(θ̂n(Dn)− θ∗) → N (0, C(θ∗)).

Moreover, Cn(θ̂n) converges to C(θ∗) almost surely, element by element.

We make some remarks on this theorem. First, this theorem says that the
distribution of θ̂n(Dn) weakly converges to a certain normal distribution. A
stronger convergence is not guaranteed. Second, though this theorem implies
that, for some fixed P , the normal distribution that θ̂n weakly converges to is
uniquely determined, it does not imply that such P is unique. Multiple QMLE
sequences of {θ̂n(Dn)} for different data distributions can weakly converge to the
same normal random variable. Roughly speaking, QMLE works as a function
from the data distributions to the normal distributions, and the function is not
injective.



Chapter 3

A Practical LDP
Quasi-MLE

3.1 Introduction

Locally perturbations by each data provider satisfying local differential privacy
ensure strong privacy protection and give a data curator an alternate database,
in which privacy composition does not occur when we utilize it multiple times.
In exchange for that strong protection, it becomes extremely difficult for the
data curator to learn the properties of the data. If the curator wants to know
its properties with confidence, the curator must use some LDP statistical tools.

LDP versions of many statistical tools have been developed, including t-
tests [Ding et al., 2018] and chi-squared tests [Gaboardi and Rogers, 2018].
An LDP quasi-maximum likelihood estimator (QMLE) can also be included
among these tools. QMLE is an estimator of a parameter likely approximating
a distribution F generating a set of observations Dn = {x1, . . . ,xn}, from model
family {Fθ : θ ∈ Θ}. The likelihood of parameter θ is evaluated using the log-

likelihood function ℓ(θ;Dn) =
∑n
i=1 log fθ(xi)/n, and QMLE θ̂n is defined as

the maximizer of ℓ(θ;Dn). MLE is a special case in which there is a correct
model: F ∈ {Fθ : θ ∈ Θ}. Since no one observes the raw data under the
LDP constraint, it is too optimistic to assume that we can specify a family
including the true distribution. In this thesis, we mainly consider QMLE rather
than MLE. Under regularity conditions, QMLE has asymptotic normality. By
understanding its normality, the curator is able to determine how likely and by
how much the estimator is to deviate from the optimal point. Moreover, with
the asymptotic normality, we can perform the Wald test, which is an important
application [Vaart, 2000].

Bhowmick et al. [2018] provided a framework for LDP M-estimators, which
is a superclass of LDP QMLEs. It approximates the maximizer of an objective
function with stochastic gradient descent. They showed that the covariance
matrix of the normal distribution on which the estimator converges agrees with
minimax optimal ones up to a constant.

However, the existing protocol may be difficult to deploy for a large-scale sys-
tem in the real world due to the following three problems: (i) it requires a long
waiting time for users, (ii) it is communication inefficient, and (iii) it requires

13
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finiteness of the derivative of the objective function. The existing protocol is in-
teractive wherein the communication of the ith user depends on those of the pre-
vious i−1 users. Though this interactivity gives more accurate statistics [Smith
et al., 2017], it causes a long waiting time for users when millions of users are
involved in the protocol. Communication efficiency is a non-ignorable problem
for large-scale implementation, especially on Edge or IoT devices. When the
parameter is d-dimensional and each component of the parameter uses float as
a data type, each user submits 32d bits. It is also of great practical importance
to be able to apply to unbounded domain data. The LDP constraints require a
user to perturb her record so as to be indistinguishable from the other candidate
records in the domain. An unbounded domain makes it difficult to satisfy this
requirement since no one knows how many candidate values exist in the domain.

We provide low-user-side-cost protocols that involve no waiting time, require
no boundedness assumption, and avoid high communication costs for QMLEs
of regression. In this thesis, we focus on regression which is a wide and impor-
tant class. To eliminate waiting time, we abandon interactivity. Although less
accurate than interactive methods, our protocol has a significant advantage in
that the execution time on the user side is constant regardless of the number
of users. To remove the boundedness assumption, we incorporate truncation
into the protocol. This simple technique makes it possible for the protocol to
perform safely even when the record domain is unbounded. For communication
efficiency, we adopt the one-bit submission strategy whereby a record is stochas-
tically quantized into a binary value [McGregor et al., 2010, Seide et al., 2014,
Bassily and Smith, 2015, Ding et al., 2018, Wang et al., 2018]. This strategy sig-
nificantly reduces the communication cost. See Table 3.1 for a quick comparison
of the communication costs and waiting time.

As the main contributions of this chapter, (i) we give consistency and asymp-
totic normality theorem with their sufficient conditions for our QMLEs, and (ii)
we make explicit the limitations of the scope of our theoretical analysis. The
asymptotic normality is useful for curators to adequately decide sample size n
and privacy parameter ϵ. The sufficient conditions for our consistent and nor-
mality theorems are conditions on the model family and the true distribution.
The curator should check the conditions for the model family when selecting
the family. On the other hand, no one can evaluate the conditions on the true
distribution. We recommend that the curator should carefully consider these
conditions with the help of experts.

To discuss the sufficient conditions for our theorems on a concrete problem,

Table 3.1: Comparison of communication costs in number of submitting bits and
waiting time of the protocols of the existing protocol [Bhowmick et al., 2018]
and our protocol in two scenarios where explanatory variables X are public and
private, d is the dimension of parameter, k is number of explanatory variables,
and n is the number of users.

Id Scenario Server User Wait

Bhowmick2018
X pub 32(k + d) 32d

O(n)
X pri 32d 32d

Ours
X pub 32k 1

O(1)
X pri 0 k + 1
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we consider α-quantile linear regression [Davino et al., 2013]. With this example,
we can see that it is not so difficult to make a model family satisfying the
conditions. Given α ∈ (0, 1), coefficients estimation for α-quantile regression is
one of the standard statistical data analyses and QMLE is one of the solutions.
For explanatory variables X on Rd and objective variable Y on R, the goal of
the α-quantile regression is to find coefficient β ∈ B ⊂ Rd such that the inner
product β⊤X well approximates the α-quantile of the distribution of Y , i.e.,
inf{y|Pr(Y ≤ y|X) > α}. If we consider asymmetric Laplace distributions as
the model family, this problem is a likelihood-maximizing problem. With this
example, we are able to confirm that the conditions regarding the model family
are easily satisfied. In addition, using real data, we observe the asymptotic
behavior of our QMLE. The observations imply that the Frobenius norm of
empirical covariance matrix shrinks in proportion to 1/n as expected in the
asymptotic normality theorem.

We mention some related works. LDP regression by non-interactive algo-
rithms has been studied in the context of LDP empirical risk minimization e.g.,
[Smith et al., 2017, Zheng et al., 2017, Wang et al., 2018, 2019, 2021]. Their
targets are not analyses of asymptotic normality but seeking smaller risk. The
studies for non-local differentially privately M-estimators took different ways
from us [Smith, 2011, Chaudhuri and Hsu, 2012, Avella-Medina, 2020]. Due to
the difference in the privacy models, we do not compare our results with theirs.
Bhowmick et al. [2018] showed asymptotic normality of their estimator relying
on Polyak and Juditsky [1992] ’s asymptotic-normality proof for the estimators
obtained by stochastic gradient descent. Since we do not use stochastic gradient
descent, we prove our theorem by a different method.

The remainder of the chapter is organized as follows: In Section 3.2, we
introduce the notation used in this chapter and some of the basic concepts.
In Section 3.3, we describe our protocols for building QMLEs. In Section 3.4,
we discuss QMLE for α-quantile regression as an illustrative application of the
protocol. In Section 3.5, we report the results of a numerical experiment with
real data. In Section 3.6, we offer concluding remarks.

3.2 Preliminaries

We begin by defining some of the notation used in the chapter. We denote by
0d the d-length zero vector. When we take expectation while emphasizing the
distribution F , we use Fg = EX∼F [g(X)] where g is a function.

3.2.1 Local Differential Privacy

Local differential privacy is a rigorous privacy definition for distributed statis-
tical analyses. The definition requires each user to protect her sensitive record
individually by stochastic perturbation. In particular, we consider the case in
which users receive no feedback from the curator. LDP in such a situation
is called non-interactive LDP; in this thesis, we refer to non-interactive LDP
simply as LDP.

We can now formally define LDP. Assume there are n users, each of whom
possesses a sensitive record Ri for i = 1, · · · , n. Let R be the domain of the
records. Assume that there is also a curator who will perform a statistical anal-
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ysis on the users’ records and that each user will submit her perturbed record
to the curator. We can define the perturbation as a conditional distribution
Q(·|R = r) and LDP as a property of Q. Perturbation Q(·|R = r) is a distribu-
tion on set Z.

Definition 1 (ϵ-LDP). Given ϵ > 0, distribution Q is ϵ-locally differentially
private if, for any r, r′ ∈ R,

sup
S∈σ(Z)

Q(S|R = r) ≤ eϵQ(S|R = r′),

where σ(Z) is a σ-algebra on Z.

This definition requires that the conditional distributions Q(·|r) and Q(·|r′)
are not so different from each other for any pair r, r′ of records in R. The ϵ
represents the similarity of the conditional distributions. A smaller ϵ implies
stricter privacy protection but less information of the outputs. ϵ thus controls
the trade-off between privacy protection and utility.

We use the bit flip [Ding et al., 2018] for the concrete implementation of
conditional distribution Q satisfying ϵ-LDP. The bit flip stochastically maps a
finite continuous interval [cl, cu], where cl and cu are some real constants such
that cl < cu, into discrete binary values {z−, z+}. Then, for any input v ∈ [cl, cu]
and with Cϵ =

eϵ+1
eϵ−1 , the bit flip is defined as

Qbf(Z = z|v) =

 1
2 − v− cu+cl

2

(cu−cl)Cϵ
if z = z−,

1
2 +

v− cu+cl
2

(cu−cl)Cϵ
if z = z+.

When the input is close to cu, the output is likely to be z+; conversely, when
the input is close to cl, the output is likely to be z−.

3.2.2 Quasi-Maximum Likelihood Estimator

Given observations Dn = {x1, . . . ,xn} generated by distribution F , the likeli-
hood of parameter θ of a model Fθ is evaluated by the log-likelihood function

ℓ(θ;Dn) =
1

n

n∑
i=1

log fθ(xi),

where fθ is the density function of Fθ. Roughly speaking, the log-likelihood
is the log of the probability that the observations are obtained assuming they
are sampled from Fθ. For the likelihood function, QMLE θ̂n is defined as θ̂n =
argmaxθ∈Θℓ(θ;Dn). Not only Dn but also θ̂n itself is a random variable.

In this subsection, we review the consistency and asymptotic normality the-
orems of QMLEs by White [1982]. To define the log-likelihood function well,
we first need to make some assumptions. The first is that the observations
are independently generated from a distribution F and that F has a regular
Radon–Nikodym density function f . The second condition requires that the
model family also has regular density functions.

Assumption 7. Let ν be an appropriate measure on X . For a constant k,
the independent 1 × k random vectors Xi, i = 1, · · · , n, have common joint
distribution function F on X , a measurable Euclidean space, with measurable
Radon–Nikodym density f = dF/dν.
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Assumption 8. The family of distribution functions Fθ(x) has Radon–Nikodym
densities fθ(x) = dFθ(x)/dν which are measurable in x for every θ ∈ Θ, a
compact subset of a d-dimensional Euclidean space, and continuous in θ for
every x ∈ X .

To guarantee consistency, we introduce an additional technical assumption.

Assumption 9. (a) F log f exists, and | log fθ(x)| ≤ h(x) for all θ ∈ Θ, where
h is integrable with respect to F ; (b) F log fθ has a unique maximum at θ∗ ∈ Θ.

Under these regularity conditions, the QMLE converges to θ∗ = argmaxθ∈ΘF log fθ.

Theorem 3 (Theorem 2.2 in [White, 1982]). Given Assumptions 7 to 9, θ̂n →
θ∗ as n→ ∞ for almost every sequence {Xi}ni=1.

We also have asymptotic normality under some additional assumptions re-
garding the existence of scores ∂ log fθ(x)/∂θ and related quantities.

Assumption 10. ∂ log fθ(x)/∂θj , j = 1, ..., d, are measurable of x for each
θ ∈ Θ and continuously differentiable functions of θ for each x ∈ X .

Assumption 11. |∂ log fθ(x)/∂θj1 ·∂ log fθ(x)/∂θj2 | and |∂2 log fθ(x)/∂θj1∂θj2 |,
for j1, j2 = 1, . . . , d are dominated by functions integrable with respect to F for
all x in X and θ in Θ.

Assumption 12. (a) θ∗ is interior to Θ; (b) B(θ) = (F (∂ log fθ/∂θ)(∂ log fθ/∂θ)
⊤

is nonsingular at θ = θ∗; (c) θ∗ is a regular point of A(θ) = F∂2 log fθ/∂θ
2.

The following shows the asymptotic normality.

Theorem 4 (Theorem 3.2 in [White, 1982]). Given Assumptions 7 to 12,

√
n(θ̂n − θ∗) → N (0, C(θ∗))

where C(θ) = A(θ)−1B(θ)A(θ)−1.

When Fθ∗ = F , C(θ∗) is called the Fisher information matrix.

3.2.3 Quantile Regression

Linear quantile regression deals with the statistical problem of finding coeffi-
cients β ∈ B ⊂ Rd such that, given x, the inner product β⊤x well approximates
the α-quantile inf{y|F (Y ≤ y|x) > α} of Y |x. The problem is often formulated
as an optimization problem finding β ∈ B that minimizes the following objective
function: Given observations {xi, yi}ni=1,

n∑
i=1

ρα(yi − β⊤xi) where ρα(τ) =

{
(α− 1)τ if τ ≤ 0,

ατ if τ > 0.
(3.1)

ρα is a convex function, which is called the check loss.
If we assume that objective variable Y is sampled from the asymmetric

Laplace distribution defined below, the minimization of (3.1) is equivalent to
the likelihood maximization for the parameter of the distributions: With σ > 0,

fY (y;α, µ, σ) =
α(1− α)

σ
exp

(
−ρα

(
y − µ

σ

))
. (3.2)
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Hence the log-likelihood function is written as

1

n

n∑
i=1

log fY (yi;α, β
⊤xi, σ) = log

α(1− α)

σ
− 1

nσ

n∑
i=1

ρα
(
yi − β⊤xi

)
. (3.3)

Finally, we revisit the classical result of the asymptotic normality of the
MLE. Let β̂n ∈ B be the MLE that minimizes (3.3), and let β∗ be the coefficient
such that F (Y ≤ y|X = x) = FY (y;α, β

∗⊤x, σ) for almost every x and y with

appropriate α and σ. Then, the sequence of MLEs {β̂n}n converges as

√
n(β̂n − β∗) → N (0d, I

−1), (3.4)

where N (0d, I
−1) is the normal distribution whose mean and covariance are 0d

and I−1, respectively [Davino et al., 2013]. Assuming that E
[
XX⊤] is non-

singular, I is the Fisher information matrix defined as

I =
α(1− α)

σ2
E
[
XX⊤] . (3.5)

3.3 Proposed Protocol

We provide two protocols for building QMLEs of regression in two different pri-
vacy scenarios and give their asymptotic normality theorem. Then, we remark
on their advantages, limitations, and possible future works.

3.3.1 Regression with Public X

In this subsection, we consider regression with sensitive objective variable Y and
public explanatory variables X. This situation may seem strange, but we will
give a practical use case. Consider a situation in which a company is planning
to conduct a customer opinion survey on a new product. The company can
control its features set X and gives a new product with certain features X = x
to each customer. The customer gives an evaluation Y for X = x. The target of
the company is to understand the conditional distribution of Y . In the survey,
the company knows the Xs and their distribution, and they are public.

The system model is as follows: There are a single curator and n users.
The curator selects distribution FX on X ⊂ Rk, a measurable Euclidean space,
generates Xi for each user i = 1, · · · , n following FX, and passes them to each
user. Given Xi = xi, user i independently generates Yi following unknown
conditional distribution F (·|xi) on Y ⊂ R, a measurable space, and truncates it
into interval [cl, cu]. Let Ȳi be the truncated version of Yi:

Ȳi = t(Yi) ≡


cl if Yi ≤ cl,

Yi if cl < Yi < cu,

cu if Yi ≥ cu.

(3.6)

We let ȳi be a realization of Ȳi. Then, the user perturbs ȳi by the bit flip. Zi
that is perturbed Ȳi distributes as

p(Zi = z|Xi = x) =

∫
Qbf(z|t(y))dF (y|x). (3.7)
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User i submits zi which is a realization of Zi to the curator. The user submission
is always only one bit.

The curator considers model family {Fβ(·|x) : β ∈ B,x ∈ X} that con-
sists of conditional distributions parameterized by B, a compact subset of a
d-dimensional Euclidean space. For each β ∈ B, we define conditional density
function pβ(z|x) by replacing F by Fβ in (3.7). The target of the curator is to
find β such that Pβ well approximates P . In this subsection, we write P and
Pβ to designate joint distributions P (x, z) and Pβ(x, z) rather than conditional
distributions P (z|x) and Pβ(z|x).

Given observations Dn = {(zi,xi)}ni=1, the log-likelihood function is defined
as

ℓ(β;Dn) ≡
1

n

n∑
i=1

log pβ(xi, zi)

=
1

n

n∑
i=1

(zi log Λϵ(β,xi) + (1− zi) log(1− Λϵ(β,xi)) + logFX(xi))

where Λϵ(β,x) = pβ(z = 1|x). We define β̂n = arg maxβ∈Bℓ(β;Dn) and
β∗ = arg maxβ∈BP log pβ . The model selection and optimization are performed
by the curator, and the users do not have to care about them. The curator
can change hyperparameters excepting cu, cl and ϵ and can try multiple model
families without any additional cost for the users. The pseudo-code is included
in Section 3.7.

Now, we analyze the behavior of β̂n. To derive the consistency of our QMLE,
we replace F and Fθ in Theorem 3 with P and Pβ , respectively. We find the
conditions under which Assumptions 7 to 9 are satisfied while replacing F and
Fθ with P and Pβ . To satisfy Assumptions 7 and 8, we introduce the following
assumptions.

Assumption 13. Conditional distribution F (·|x) has a Radon–Nikodym den-
sity function f(y|x) = dF (y|x)/dν which is measurable in y for every x ∈ X .

Assumption 14. FX has a measurable Radon-Nikodym density fX = dFX/dµ
with some appropriate measure µ.

Assumption 15. The family of distribution functions Fβ(y|x) has Radon–
Nikodym densities fβ(y|x) = dFβ(y|x)/dν which are measurable in y for every
x ∈ X and β ∈ B, and continuous in β for every x ∈ X and y ∈ Y.

These assumptions are satisfied with many distributions e.g., Gaussian and
Bernoulli distributions. From these assumptions, it is obvious that P (x, z), Pβ(x, z)
are measurable and that the density functions p(x, z) = p(z|x)f(x) and pβ(x, z) =
pβ(z|x)f(x) exist.

In order for the QMLE for regression parameter to satisfy Assumption 9, we
consider the following two conditions. The first one is the existence of P log p
and integrable function h(x, z) such that | log pβ(x, z)| ≤ h(x, z) for all β ∈ B.
P log p can be extended as

P log p = FX(P·|X log p(·|X) + log fX(X)).

Since log p(·|X) is always bounded away from −∞ and +∞ by the following
lemma, log p(·|X) is always integrable with respect to P .
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Lemma 3. The value of Λϵ(β,x) is bounded away from 0 and 1, for all β ∈ B
and x ∈ X .

See Section 3.8.1 for the proof. Thus, if FX log fX exists, P log p also exists.
Similarly, the existence of P log pβ depends on the existence of FX log fX.

Assumption 16. FX log fX exists.

The second condition relates to the uniqueness of the maximum of the log-
likelihood function. Because the maxima are not always unique, we adopt the
following assumption.

Assumption 17. P log pβ has a unique maximum.

We now have consistency.

Theorem 5. Suppose Assumptions 13 to 17 hold. Then, β̂n → β∗ as n → ∞
surely.

Next, we derive the asymptotic normality. We find the conditions under
which Assumptions 10 to 12 are satisfied. Assumption 10 specifies the continu-
ous differentiability of ∂ log pβ/∂β. The partial derivative is extended as

∂

∂β
log(pβ(x, z)) =

(2z − 1)Λ′
ϵ(β,x)

Λϵ(β,x)z(1− Λϵ(β,x))1−z

where Λ′
ϵ(β,x) = ∂Λϵ(β,x)/∂β. By Lemma 3, the following is sufficient to

satisfy the requirement.

Assumption 18. Each element of Λ′
ϵ(β,x) is measurable of x for each β ∈ B

and continuously differentiable functions of β for each x ∈ X .

Assumption 11 states that |∂2 log pβ/∂βj1∂βj2 | and |∂ log pβ/∂βj1 ·∂ log pβ/∂βj2 |
for j1, j2 = 1, · · · , d are bounded by functions integrable with respect to P . To
verify this, we extend these values.

∂2 log pβ(x, z)

∂β2
=(2z − 1)

Λ′′
ϵ (β,x)

Λϵ(β,x)z(1− Λϵ(β,x))1−z

− Λ′
ϵ(β,x)Λ

′
ϵ(β,x)

⊤

Λϵ(β,x)2z(1− Λϵ(β,x))2(1−z)

where Λ′′
ϵ (β,x) = ∂2Λϵ(β,x)/∂β

2, and(
∂

∂β
log pβ(x, z)

)(
∂

∂β
log pβ(x, z)

)⊤

=
Λ′
ϵ(β,x)Λ

′
ϵ(β,x)

⊤

Λϵ(β,x)2z(1− Λϵ(β,x))2(1−z)
.

The denominators are always non-zero by Lemma 3. Thus, the following as-
sumption is sufficient to satisfy the requirement.

Assumption 19. The absolute values of each element of Λ′
ϵ(β,x) and Λ′′

ϵ (β,x)
are bounded by integrable functions with respect to P .

Assumption 12 consists of three parts. The first part is that β∗ is interior
to B. We assume this.
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Assumption 20. β∗ is interior to B.

The second part is the non-singularity of P ((∂ log pβ/∂β)(∂ log pβ/∂β)
⊤) at

β = β∗.

P

(
∂

∂β
log pβ

)(
∂

∂β
log pβ

)⊤

=

FX

(
p(Z = 1|X)

Λϵ(β,X)2
+

p(Z = 0|X)

(1− Λϵ(β,X))2

)
Λ′
ϵ(β,X)Λ′

ϵ(β,X)⊤.

Thus, the following assumption is a sufficient condition of the requirement.

Assumption 21. FXΛ′
ϵ(β

∗,X)Λ′
ϵ(β

∗,X)⊤ is non-singular.

The third part is non-singularity of P∂2 log pβ/∂β
2 at β = β∗. We obtain

this from Assumption 17. If P log pβ has a second partial derivative along β
and β∗ is interior to B, then ∂2P log pβ/∂β

2 must be negative-definite. If not,
there exists β′ such that P log pβ′ = P log pβ∗ and β′ ̸= β∗. Finally, we obtain
asymptotic normality.

Theorem 6. Suppose Assumptions 13 to 21 hold. Then,
√
n(β̂n − β∗) →

N (0d, C(β
∗)) where C(β) = A−1(β)B(β)A−1(β) with A(β) = P∂2 log pβ/∂β

2

and B(β) = P (∂ log pβ/∂β)(∂ log pβ/∂β)
⊤.

3.3.2 Regression with Private X

Next, we consider regression when both objective variables and explanatory
variables are sensitive and are submitted with perturbation. The system model
is that each user i generates Xi following unknown distribution FX and then
generates Yi following unknown conditional distribution F (·|Xi).

The communication protocol is as follows. User i stochastically perturbs
Xi and Yi by LDP mechanism Q. We denote the perturbed ones by Z(X) and
Z(Y ), respectively. Q consists of QZ(Y ) and QZ(X) perturbing Yi and Xi, respec-
tively. The privatized objective variable Z(Y ) is the same as Z in the previous
subsection without the privacy budget consumed by the LDP mechanisms. On
the other hand, since Z(X) was not defined in the previous section, we need to
define QZ(X) . We use the bit flip as QZ(X) in an element-wise manner. Each
element is randomized with privacy budget ϵ/(k + 1). The total consumption
of the privacy budget per user does not exceed ϵ by the sequential composition
theorem [McSherry, 2009]. We set the domain of QZ(X) to {−1,+1}k. For each
z(X) ∈ {−1,+1}k,

QZ(X)(z(X)|x) =
k∏
j=1

(
1

2
+
t(xj)z

(X)
j

2Cϵ/(k+1)

)
, (3.8)

where t(·) is defined in (3.6). The generated privatized variables (z
(X)
i , z

(Y )
i ) are

submitted to the curator.
In the communication protocol, each user submits (k+1) bits to the curator,

and the curator sends no information to the users. This privacy scenario is nearly
the same as the Bhowmich’s one [Bhowmick et al., 2018], and our communication
protocol is more efficient than theirs. In their protocol, each user receives and
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submits d float or double values, either 64d bits or 144d bits. Thus, our protocol
results in communication costs that are roughly 64 or 144 times smaller than
their protocol when k ≤ d.

The curator defines model family {Fβ(y|x) : β ∈ B,x ∈ X} and provisional

distribution F̂X. Though the true FX is unknown, the curator must assume
some distribution of X to compute the log-likelihood function, as we will see
later. F̂X is a kind of prior distribution.

Since the discussion of consistency and asymptotic normality has much in
common with the previous subsection, here we describe only the differences.

See Section 3.8.2 for details. Given observations Dn = {(z(X)
i , z

(Y )
i )}ni=1, the

likelihood function is

ℓ(β;Dn) =
1

n

n∑
i=1

(
log p̂

(X)
Z (z

(X)
i ) + z

(Y )
i log Φ(β, z

(X)
i )

+ (1− z
(Y )
i ) log(1− Φ(β, z

(X)
i ))

)
where p̂

(X)
Z (z(X)) ≡

∫
QZ(X)(z(X)|x)dF̂X(x),

Φ(β, z(X)) ≡
F̂X(Λϵ/(d+1)(β,X)QZ(X)(Z(X)|X)

p̂
(X)
Z (z(X))

.

QMLE β̂n is defined as β̂n ≡ argminβ∈Bℓ(β;Dn).
We can show consistency based on Theorem 3 under the assumption that

the curator chooses a regular distribution as F̂X.

Assumption 22. F̂X has a measurable Radon-Nikodym density f̂X = dF̂X/dµ.

Theorem 7. Suppose Assumptions 13 to 15, 17 and 22 hold. Then, β̂n → β∗

as n→ ∞ for almost every sequence {(Z(X)
i , Z

(Y )
i )}i.

For details, see Section 3.8.2. This consistent theorem does not require the
existence of FX log fX unlike Theorem 5. We can obtain the existence from
Assumption 22 and the properties of p̂Z(X) . The discretization by the bit flip
relaxes the integrable condition.

To show asymptotic normality, we adopt several additional assumptions.

Assumption 23. Φ′(β, z(X)) is continuous differentiable function of β.

Assumption 24. Each component of Φ′′(β, z(X)) and (Φ′(β, z(X)))(Φ′(β, z(X)))⊤

is bounded by integrable functions with respect to P .

Assumption 25. EZ(X)

[
(Φ′(β,Z(X))(Φ′(β,Z(X)))⊤

]
is non-singular at β =

β∗.

Assumption 23 is used to prove the requiment corresponding to Assump-
tion 10. The requirement corresponding to Assumption 11 is satisfied with
Assumption 24, which requires that the curator should design Φ such that its
first and second derivatives almost surely take finite values. The requirement
corresponding to Assumption 12 is satisfied with Assumptions 17, 20 and 25.
We now have asymptotic normality.

Theorem 8. Suppose Assumptions 13 to 15, 17, 20 and 22 to 25 hold. Then,√
n(β̂n − β∗) → N (0d, C(β

∗)) where C(β) = A−1(β)B(β)A−1(β) with A(β) =
P∂2 log pβ/∂β

2 and B(β) = P (∂ log pβ/∂β)(∂ log pβ/∂β)
⊤.
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3.3.3 Remark and Limitation

The assumptions for proving consistency and asymptotic normality in Theo-
rems 5 to 8 are not relevant to privacy preservation. Even if those assumptions
do not hold, users’ privacy is still protected as long as the ϵ-LDP mechanisms
correctly work. The users who supply data do not need to worry about these
assumptions at all.

The requirements of our theorems clarify the properties of the model that
the curator should check. The curator is free to choose any linear or non-linear
model as long as it satisfies these properties. In addition, those requirements
place few restrictions on model selection since the curator can modify the model
after data collection.

As we see in Section 3.4, it is not so difficult to craft a model satisfying
the requirements. We thus expect that most standard regression models satisfy
them.

The first limitation relates to the problem of choosing F̂ . Although any F̂
satisfying Assumptions 16 and 22 can be acceptable, a poor choice of F̂ may
make it difficult to satisfy the other assumptions. The theorem provides no
method for choosing a better F̂ , which remains an open problem.

The second limitation relates to the true distribution, which is a common
problem in most statistical theories. We have no method to evaluate Assump-
tions 13, 17 and 20. The curator never know the exact value of β∗ and C(β∗).
The curator should carefully consider these assumptions with the help of ex-
perts.

The exploration of better mechanisms is our future work. There may exist
QZ(X) giving us a more sharp covariance matrix. In the context of LDP, vector
submission is studied by many researchers e.g., [Duchi et al., 2013, Erlingsson
et al., 2014, Bassily and Smith, 2015, Wang et al., 2019].

Better selection of cl and cu is another future work. Whether certain cl and
cu are good or bad strongly depends on F , and we have no general strategy to
select better cl and cu.

One of the potential applications of our algorithms is bootstrapping. In the
above subsections, we described that our algorithms output only one estimator
in each protocol. However, without additional privacy loss, the curator can
compute many estimators using the subsets of the submitted data. The post-
processing invariant enables us to perform such an operation. This is one of the
advantages of a non-interactive algorithm.

Another potential application is a misspecification test to determin whether
the model family contains the true distribution [White, 1982]. In the LDP
setting, since the raw data are distributed, no single entity has knowledge on
the statistical properties of the raw data. It is difficult to evaluate whether
a model family is appropriate. A curator performs the test as a preliminary
experiment. The results of the test would help the curator to quantitatively
assess the confidence level of the main survey.

3.4 Example: Quantile Regression

In this section, we show the QMLEs for quantile regression as a concrete example
of our QMLEs. One of the main goals of this section is to show that it is possible
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to replace some of the assumptions noted in the previous section with a concrete
implementation of the model. We note that the notation used in Section 3.4.1
and Section 3.4.2 is the same as that used in Section 3.3.1 and Section 3.3.2.
Here, k = d.

3.4.1 With Public X

As described in Section 3.2.3, we can formulate the α-quantile regression as a
quasi-maximum likelihood estimation problem. For some σ > 0, we set fβ as

fβ(y|x) =
α(1− α)

σ
exp

(
−ρα

(
y − β⊤x

σ

))
for each y and x, where ρα is defined in (3.1). This construction satisfies As-
sumption 15: measurable and continuous.

When we choose the product of independent d uniform distributions on
interval [−1,+1] as FX, Assumption 16 is satisfied.

Let Ψϵ be the function such that Λϵ(β,x) = Ψϵ(β
⊤x). Then, Λ′

ϵ(β,x) =
Ψ′
ϵ(β

⊤x)x and Λ′′
ϵ (β,x) = Ψ′′

ϵ (β
⊤x)xx⊤ where Ψ′

ϵ(θ) = ∂Ψϵ(θ)/∂θ and Ψ′′
ϵ (θ) =

∂2Ψϵ(θ)/∂θ
2. It has the following property.

Lemma 4. Ψϵ(θ) is a strictly monotonically increasing function and is bounded
away from 0 and 1. Ψ′

ϵ(θ) and Ψ′′
ϵ (θ) exist and for any θ ∈ R, and their absolute

values are bounded.

See Section 3.8.3 for the proof. From the second part of Lemma 4, As-
sumptions 18 and 19 are satisfied. Mover, FX(XX⊤) is a non-singular matrix
since

FXXj1Xj2 =

{
0 if j1 ̸= j2,
1
3 if j1 = j2.

Thus, Assumption 21 is satisfied.
As a consequence of Theorems 5 and 8, we have the following corollaries.

Corollary 1. Suppose Assumptions 13, 17 and 20 hold. Then, β̂n → β∗ almost
surely and

√
n(β̂n − β∗) → N (0d, C(β

∗)).

To prove this corollary, we need only three assumptions. The concrete con-
structions of the model remove some of the assumptions used in Theorems 5
and 8.

Although the accuracy of our QMLEs is not a focus of this chapter, we did
conduct a rough comparison of accuracy with existing works. As a result, we
found with ϵ ↓ 0, the Fisher information of our MLEs is σ2/α(1 − α) times
smaller than the upper bound shown in [Barnes et al., 2020]. For details, see
Section 3.9.

3.4.2 With Private X

In this setting, the curator does not know FX. Instead of FX, we adopt the
product distribution of d symmetric binary distributions on {−1,+1}. Then,
Assumption 22 is satisfied.
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With ϵ′ = ϵ/(d+ 1), Φ is extended as

Φ(β, z(X)) =

∑
x∈{±1}d Ψϵ′(β

⊤x) exp
(
ϵ′1
[
z
(X)
j = xj

])
pZ(X)(z(X))(eϵ′ + 1)d2d

,

where Ψϵ′ is defined in the previous subsection. Due to the properties of Ψϵ′ ,
which we evaluated in the previous subsection, Assumptions 23 and 24 are
obviously satisfied. By the monotonicity of Ψϵ′ , Assumption 25 is also satisfied.
Now, as a corollary of Theorems 7 and 8, we obtain the following result.

Corollary 2. Suppose Assumptions 13, 17 and 20 hold. Then,
√
n(β̂n−β∗) →

N (0d, C(β
∗)) where C(β) = A−1(β)B(β)A−1(β).

3.5 Numerical Evaluation

In this section, we observe the behavior of our QMLE for real data. We consider
the QMLE for quantile regression in the public X case. Since we do not know
the true distribution generating the real data, we cannot perform exact com-
parisons with the theoretical result, Corollary 3. Here, we observe the empirical
covariance of the QMLEs to evaluate the convergence of the distribution of the
QMLE. For additional numerical evaluations, see Section 3.10.

We numerically compare the covariance matrices with varying n and ϵ. We
use CO and NOx emission data set [Kaya et al., 2019], which consists of 36, 733
records of 11 sensors attached to a turbine of a power plant. Although this data
is not sensitive, we chose this data because of its large number of records and
its format. We treat the 11th column as y and treat the columns from the first
to 9th as x. We set cu = 110, cl = 40, σ = 1.0 and α = 0.3. These specific values
of hyperparameters do not have a particular meaning. We vary n from 5, 000 to
35, 000 in increments of 5, 000 for ϵ ∈ {1, 2.5, 5, 10}. For each combination of n
and ϵ, we sub-sample n records 1, 000 times without replacement from the 36, 733
records. For each sub-data, we perturb ys and compute a QMLE as descrived
in Section 3.4.1. With the 1, 000 QMLEs, we obtain the empirical covariance
matrix and its Frobenius norm. We implemented the simulations with Python
3.9.2, NumPy 1.19.2, and SciPy 1.6.1. The Python code is contained in the
supplementary material.

Figure 3.1 shows the result. The horizontal and vertical axes show n and
the value of each Frobenius norm in log-scale, respectively. For each ϵ, with
large n, the norm of the covariance matrix is smaller. The decreasing speed is
O(1/n), and this result is compatible with the theoretical result. Greater ϵ also
gives smaller covariance. In this case, the QMLE is concentrated in one point,
and, as n increases, the distribution becomes more concentrated at that point.

3.6 Conclusion

We developed the simple protocols for building QMLEs from distributed data
while guaranteeing ϵ-LDP for the users. They address the two different privacy
scenarios. In the protocols, users submit only one or a few bits to the curator and
do not need to wait for one another. Moreover, the users do not need to perform
complex computations such as integration or derivation. Thus, the protocols
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Figure 3.1: Frobenius norm of covariance matrices. The norms decrease in
proportion to 1/n for each ϵ.

Algorithm 1: Protocol with Public X

Input: Unknown distribution F , privacy parameter ϵ and B
Curator set FX ;
for i = 1 to n do

Curator generates xi ∼ FX ;
Send xi to user i;
User i generates yi ∼ F (·|xi);
User i computes ȳi as (3.6);
User i generates zi ∼ Qbf(·|ȳi);
Send zi to curator;

end
Let Dn = {(xi, zi)}ni=1;
Curator computes ℓ(β;D);

Computes β̂n = arg max
β∈B

ℓ(β;D);

Output: β̂n

are highly user-friendly and suitable for low-priced devices. We clarified the
sufficient conditions for the QMLEs to be consistent and asymptotically normal,
and showed their limitations. We showed that the sufficient conditions are
relaxed with a concrete implementation.

3.7 Pseudo-code

Algorithm 1 and Algorithm 2 are the pseudo-codes of the protocols described
in Section 3.3.1 and Section 3.3.2, respectively. In the for loops, the processing
of each user does not need to be synchronized.
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Algorithm 2: Protocol with Private X

Input: Unknown distribution F, FX , privacy parameter ϵ and B
Curator set F̂X ;
for i = 1 to n do

User i generates xi ∼ FX ;
User i generates yi ∼ F (·|xi);
User i computes ȳi as (3.6);

User i generates z
(Y )
i ∼ Qbf(·|ȳi);

for j = 1 to d do
User i compute x̄ij as (3.6);

Generate z
(X)
ij ∼ Qbf(·|x̄ij);

end

Let z
(X)
i = (z

(X)
ij )i;

Send (z
(X)
i , z

(Y )
i ) to curator;

end

Let Dn = {(z(X)
i , z

(Y )
i )}ni=1;

Curator computes ℓ(β;D);

Computes β̂n = arg max
β∈B

ℓ(β;D);

Output: β̂n

3.8 Mathematical Notes

3.8.1 for Section 3.3.1

Proof of Lemma 3

By the definition of Λϵ(β,x), it is written as

Λϵ(β,x) = pβ(Z = 1|X = x) =

∫
Qbf(1|t(y))dFβ(y|x).

From the definition of Qbf, we have

1

eϵ + 1
≤ Qbf(1|t(y)) ≤

eϵ

eϵ + 1

for any y ∈ Y. Thus, the following relation holds.

Λϵ(β,x) ≤
∫

eϵ

eϵ + 1
dFβ(y|x) =

eϵ

eϵ + 1
.

The last equation is by the fact that Fβ is a probability distribution. Similarly,
we have

Λϵ(β,x) ≥
1

eϵ + 1
.
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3.8.2 for Section 3.3.2

For each z(X) ∈ {−1,+1}d, the curator considers the probability distribution of
Z(X) at z(X) as

p̂
(X)
Z (z(X)) =

∫
QZ(X)(z(X)|x)dF̂ (x).

The joint density is

pβ(z
(X), z(Y )) =

∫
QZ(X)(z(X)|x)QZ(Y )(z(Y )|t(y))dFβ(y|x)dF̂X(x).

The conditional distribution of Z(Y ) is written as

pβ(z
(Y )|z(X)) =

F̂X(pβ(z
(Y )|X)QZ(X)(z(X)|X))

p̂
(X)
Z (z(X))

=Φ(β, z(X))z
(Y )

(1− Φ(β, z(X)))1−z
(Y )

.

With Φ, the joint density is written as

pβ(z
(X), z(Y )) = Φ(β, z(X))z

(Y )

(1− Φ(β, z(X)))1−z
(Y )

p̂
(X)
Z (z(X)).

We analyze the sufficient conditions under which Assumptions 2, 3 and 7
are satisfied while replacing F and Fθ in Theorem 3 with P and Pβ . We
adopt Assumptions 13 to 15 and 22. From these assumptions, it is obvious
that P (z(X), z(Y )) and Pβ(z

(X), z(Y )) are measurable, and that density func-
tions p(z(X), z(Y )) and pβ(z

(X), z(Y )) exist.
The condition corresponding to Assumption 9 consists of two parts. The

first part is the existence of P log p integrable function h(z(X), z(Y )) such that
| log pβ(z(X), z(Y ))| ≤ h(z(X), z(Y )) for all β. P log p is expanded as follows:

P log p = P
(X)
Z (P·|Z(X) log p(·|Z(X)) + log p

(X)
Z ).

To evaluate the bound condition, it is necessary to analyze pZ(X) and p(·|Z(X)).

Lemma 5. For any z(X) ∈ {−1,+1}d,(
1

eϵ/(d+1) + 1

)d
≤ p̂

(X)
Z (z(X)) ≤

(
eϵ/(d+1)

eϵ/(d+1) + 1

)d
.

p
(X)
Z (z(X)) has the same bounds.

Lemma 6. For any β ∈ B and z(X) ∈ {−1,+1}d,

1

eϵ/(d+1) + 1
≤ Φ(β, z(X)) ≤ eϵ/(d+1)

eϵ/(d+1) + 1
.

With 0 < ϵ < +∞ and 1 ≤ d < +∞, Φ(β, z(X)) are always bounded away from
0 and 1. Also,

1

eϵ/(d+1) + 1
≤ 1− Φ(β, z(X)) ≤ eϵ/(d+1)

eϵ/(d+1) + 1
.
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By the above lemmas, log p(·|z(X)) and log p
(X)
Z are always bounded away

from ±∞, and log p(·|z(X)) and log p
(X)
Z are always integrable with respect to

P . The existence of integral function h is also obtained.
The second part is the uniqueness of the log-likelihood function. To guar-

antee that this property holds, we again adopt Assumption 17. Then, we have
Theorem 7.

We next analyze the conditions under which Assumptions 10 to 12 are sat-
isfied. The condition corresponding to Assumption 10 is the continuous differ-
entiability of ∂ log pβ/∂β. The partial derivative is expanded as

∂

∂β
log pβ(z

(X), z(Y )) =z(Y )Φ
′(β, z(X))

Φ(β, z(X))
− (1− z(Y ))

Φ′(β, z(X))

1− Φ(β, z(X))

=
Φ′(β, z(X))(z(Y ) − Φ(β, z(X)))

Φ(β, z(X))(1− Φ(β, z(X)))

where

Φ′(β, z(X)) ≡ ∂

∂β
Φ(β, z(X)).

By Lemma 6, Φ(β, z(X)) always takes values greater than 0 and less than 1. So,
if Assumption 23 holds, Assumption 10 is satisfied.

The condition corresponding to Assumption 11 is that there exist integrable
functions with respect to P that upper bound the absolute values of each compo-
nent of ∂2 log pβ(z

(X), z(Y ))/∂β2 and (∂ log pβ(z
(X), z(Y ))/∂β)(∂ log pβ(z

(X), z(Y ))/∂β)⊤.
The second-order derivative is

∂2

∂β2
log pβ(z

(X), z(Y )) = (2z(Y ) − 1)
Φ′′(β, z(X))

Ψϵ(β⊤x)z(1−Ψϵ(β⊤x))1−z(Y )

− Φ′(β, z(X)))(Φ′(β, z(X)))⊤

Φ(β, z(X))2z(Y )(1− Φ(β, z(X)))2(1−z(Y ))

where we define Φ′′(β, z(X)) ≡ ∂2

∂β2Φ(β, z
(X)).

(∂ log pβ(z
(X), z(Y ))/∂β)(∂ log pβ(z

(X), z(Y ))/∂β)⊤ is(
∂

∂β
log pβ(z

(X), z(Y ))

)(
∂

∂β
log pβ(z

(X), z(Y ))

)⊤

=

(
z − Φ(β, z(X))

Φ(β, z(X))(1− Φ(β, z(X)))

)2

Φ′(β, z(X))Φ′(β, z(X))⊤

By Lemma 6, Assumption 24 is sufficient to make the requirement hold.
The requirement corresponding Assumption 12 consists of three parts. The

first part is that β is interior of B. We assume this as Assumption 20. For
enough large B, this assumption is not particularly strong. Letting

A(β) =P
∂2

∂β2
log pβ and B(β) = P

(
∂

∂β
log pβ

)(
∂

∂β
log pβ

)⊤

,

the second and third parts are the regularity of A(β∗) and B(β∗). We have
already assumed that A(β∗) is regular in Assumption 17. We consider the
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regularity of B(β∗) here. B(β) is

B(β) = EZ(X)

[(
p(1|Z(X))

Φ(β,Z(X))2
+

p(0|Z(X))

(1− Φ(β,Z(X)))2

)
(Φ′(β,Z(X))(Φ′(β,Z(X)))⊤

]

Since the scalar part is always finite and positive, Assumption 25 is a sufficient
condition of the regularity of B(β∗).

Summarizing the above discussions, we obtain Theorem 8.

Proof of Lemma 5

Proof. By definition, for any z(X) ∈ {−1,+1}d, we have

p̂X(z(X)) =

∫
QZ(X)(z(X)|x)dF̂ (x) ≤

∫ (
eϵ/(d+1)

eϵ/(d+1) + 1

)d
dF̂ (x)

=

(
eϵ/(d+1)

eϵ/(d+1) + 1

)d
.

Similarly, we have

p̂X(z(X)) ≥
(

1

eϵ/(d+1) + 1

)d
.

Proof of Lemma 6

Proof. By Lemma 3 and (3.8), we have

Φ(β, z(X)) =
F̂XΛ(β,X)QZ(X)(z(X)|X)

p
(X)
Z (z(X))

≤
F̂X

eϵ/(d+1)

eϵ/(d+1)+1
QZ(X)(z(X)|X)

p
(X)
Z (z(X))

=
eϵ/(d+1)

eϵ/(d+1) + 1
.

Similarly, we have

Φ(β, z(X)) ≥ 1

eϵ/(d+1) + 1
.

Replacing F̂X by FX , we obtain the arguments with regard to p(z(Y )|z(X)).

3.8.3 for Section 3.4

In this section, we derive Ψϵ(θ) used in Section 3.4. As a consequence of the
analysis, we obtain Lemma 4. We analyze the function in different three cases.
The first case is the case where cl < θ < cu. For the sake of simplicity of
notation, we let G = exp

(
−α−1

σ (cl − θ)
)
and H = exp

(
−α
σ (cu − θ)

)
. These

values appear many times throughout the remainder of this section. First, we
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extend the probability Fθ(Yi ≤ cl).

Fθ(Yi ≤ cl) =

∫ cl

−∞

α(1− α)

σ
exp

(
−ρ
(
yi − θ

σ

))
dyi

=

∫ cl

−∞

α(1− α)

σ
exp

(
−α− 1

σ
(yi − θ)

)
dyi

=

[
α(1− α)

σ

(
− σ

α− 1

)
exp

(
−α− 1

σ
(yi − θ)

)]cl
−∞

=α exp

(
−α− 1

σ
(cl − θ)

)
− α× 0

=α exp

(
−α− 1

σ
(cl − θ)

)
= αG.

Similarly, the probability Fθ(Yi ≥ cu) is expanded as:

Fθ(Yi ≥ cu) =

∫ +∞

cu

α(1− α)

σ
exp

(
−ρ
(
yi − θ

σ

))
dyi

=

∫ +∞

cu

α(1− α)

σ
exp

(
−α
σ
(yi − θ)

)
dyi

=

[
α(1− α)

σ

(
−α
σ

)
exp

(
−α
σ
(yi − θ)

)]+∞

cu

=− (1− α)× 0 + (1− α) exp
(
−α
σ
(cu − θ)

)
=(1− α) exp

(
−α
σ
(cu − θ)

)
= (1− α)H.

The probability Pθ(Zi = 1) is written as follows:

Pθ(Zi = 1) =αG

(
1

2
− 1

2Cϵ

)
+
α(1− α)

σ

∫ θ

cl

(
1

2
+

yi − cu+cl
2

Cϵ(cu − cl)

)
exp

(
−(α− 1)

yi − θ

σ

)
dyi

+
α(1− α)

σ

∫ cu

θ

(
1

2
+

yi − cu+cl
2

Cϵ(cu − cl)

)
exp

(
−αyi − θ

σ

)
dyi

+ (1− α)H

(
1

2
+

1

2Cϵ

)
(3.9)
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Now, we extend each term.

α(1− α)

σ

∫ θ

cl

(
1

2
+

yi − cu+cl
2

Cϵ(cu − cl)

)
exp

(
−(α− 1)

yi − θ

σ

)
dyi

=
α(1− α)

σ

(
1

2
− cu + cl

2Cϵ(cu − cl)
+

θ

Cϵ(cu − cl)

)∫ θ

cl

exp

(
−(α− 1)

yi − θ

σ

)
dyi

+
α(1− α)

σ

1

Cϵ(cu − cl)

∫ θ

cl

(yi − θ) exp

(
−(α− 1)

yi − θ

σ

)
dyi

=
α(1− α)

σ

(
1

2
− cu + cl

2Cϵ(cu − cl)
+

θ

Cϵ(cu − cl)

)
σ

1− α
(1−G)

+
α(1− α)

σ

1

Cϵ(cu − cl)

(
− σ2

(1− α)2
− σ

1− α
(cl − θ)G+

σ2

(1− α)2
G

)
=α

(
1

2
− cu + cl

2Cϵ(cu − cl)
+

θ

Cϵ(cu − cl)

)
(1−G)

+
α

Cϵ(cu − cl)

(
− σ

1− α
− (cl − θ)G+

σ

1− α
G

)
. (3.10)

Similarly,

α(1− α)

σ

∫ cu

θ

(
1

2
+

yi − cu+cl
2

Cϵ(cu − cl)

)
exp

(
−αyi − θ

σ

)
dyi

=− (1− α)

(
1

2
− cu + cl

2Cϵ(cu − cl)
+

θ

Cϵ(cu − cl)

)
(H − 1)

+
α(1− α)

σCϵ(cu − cl)

(
− σ

α
(cu − θ)H − σ2

α2
H +

σ2

α2

)
=− (1− α)

(
1

2
− cu + cl

2Cϵ(cu − cl)
+

θ

Cϵ(cu − cl)

)
(H − 1)

+
1− α

Cϵ(cu − cl)

(
− (cu − θ)H − σ

α
H +

σ

α

)
. (3.11)

Substituting (3.10) and (3.11) into (3.9), we have

Ψϵ(θ) =Pθ(Zi = 1)

=
θ

Cϵ(cu − cl)
+

α

1− α

σ

Cϵ(cu − cl)
exp

(
−α− 1

σ
(cl − θ)

)
− 1− α

α

σ

Cϵ(cu − cl)
exp

(
−α
σ
(cu − θ)

)
+

1

2
+

(
− α

1− α
+

1− α

α

)
σ
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.
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The first and second derivatives are

Ψ′
ϵ(θ) =

1

Cϵ(cu − cl)
− α

Cϵ(cu − cl)
exp

(
1− α

σ
(cl − θ)

)
− 1− α
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exp

(
−α
σ
(cu − θ)

)
,

Ψ′′
ϵ (θ) =

α(1− α)

σCϵ(cu − cl)

(
e

1−α
σ (cl−θ) − e−

α
σ (cu−θ)

)
.

By cl < θ < cu,
1−α
σ (cl − β⊤x) and −α

σ (cu − β⊤x) are always negative.

|Ψ′
ϵ(θ)| <

1

Cϵ(cu − cl)
and |Ψ′′

ϵ (θ)| <
α(1− α)

σCϵ(cu − cl)
.

The second case is the case where θ ≤ cl. Ψϵ(θ) is computed as

Ψϵ(θ)

=

(
−(1− α) exp

(
−αcl − θ

σ

)
+ 1

)(
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+ (1− α) exp
(
−α
σ
(cu − θ)

)(1

2
+

1

2Cϵ

)
=
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Its first and second derivatives are

Ψ′
ϵ(θ) =

1− α

Cϵ(cu − cl)

(
exp

(
−α
σ
(cl − θ)

)
− exp

(
−α
σ
(cu − θ)
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,

Ψ′′
ϵ (θ) =

α(1− α)

σCϵ(cu − cl)

(
exp

(
−α
σ
(cl − θ)

)
− exp

(
−α
σ
(cu − θ)

))
Since θ ≤ cl and cu > cl, Ψ

′
ϵ(θ) is positive, and Ψ′′

ϵ (θ) is positive. Moreover, we
have

|Ψ′
ϵ(θ)| <

1− α

Cϵ(cu − cl)
and |Ψ′′

ϵ (θ)| <
α(1− α)

σCϵ(cu − cl)
.

The last case is the case where θ ≥ cu.
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Its first and second derivatives are

Ψ′
ϵ(θ) =

α

Cϵ(cu − cl)

(
− exp

(
1− α

σ
(cl − θ)

)
+ exp

(
1− α

σ
(cu − θ)

))
,

Ψ′′
ϵ (θ) =

α(1− α)

σCϵ(cu − cl)

(
exp

(
1− α

σ
(cl − θ)

)
− exp

(
1− α

σ
(cu − θ)

))
.

Since θ ≥ cu and cu > cl, Ψ
′
ϵ(θ) is positive, and Ψ′′

ϵ (θ) is negative. Moreover,
since (1− α)(cl − θ)/σ < (1− α)(cu − θ)/σ ≤ 0, we have

|Ψ′
ϵ(θ)| <

α

Cϵ(cu − cl)
and |Ψ′′

ϵ (θ)| <
α(1− α)

σCϵ(cu − cl)
.

We also analyze their behavior on the boundaries. Ψϵ(θ) is continuous at
θ = cl and cu if and only if limθ↓cu Ψϵ(θ) = limθ↑cu Ψϵ(θ) and limθ↓cl Ψϵ(θ) =
limθ↑cl Ψϵ(θ). As we see below, these equations hold.

lim
θ↓cu

Ψϵ(θ) = lim
θ↑cu

Ψϵ(θ)

=
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2
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2Cϵ
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)
.

We next evaluate the existence of first and second derivatives at θ = cl and cu.

lim
θ↓cu

Ψ′
ϵ(θ) = lim

θ↑cu
Ψ′
ϵ(θ) =

α

Cϵ(cu − cl)

(
− exp

(
1− α

σ
(cl − cu)

)
+ 1

)
,

lim
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Ψ′
ϵ(θ) = lim

θ↑cl
Ψ′
ϵ(θ) =

1− α

Cϵ(cu − cl)
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1− exp

(
−α
σ
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.

lim
θ↓cu

Ψ′′
ϵ (θ) = lim

θ↑cu
Ψ′′
ϵ (θ) =

α(1− α)

Cϵ(cu − cl)

(
exp

(
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σ
(cl − cu)

)
− 1

)
,

lim
θ↓cl

Ψ′′
ϵ (θ) = lim
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Ψ′′
ϵ (θ) =

α(1− α)

σCϵ(cu − cl)

(
1− exp

(
−α
σ
(cu − cl)

))
.

3.9 Comparison with Non-private Estimator

For comparison with existing work, we also consider the correct model case.

Assumption 26. Given x ∈ Rd, Y is a random variable sampled from the
asymmetric Laplace distribution f(·;α, β⊤x, σ), which is defined in (3.2). For
each i ∈ [n], yi is a realization of random variable Yi that is a copy of Y .

Under this condition, Corollary 1 is more specified.

Corollary 3. Suppose Assumptions 13, 16, 17 and 26 hold. The MLE β̂n is
distributed asymptotically normally as

√
n(β̂n − β∗) → N (0d, I

−1
β∗ ) where Iβ∗ =

FX
Ψ′

ϵ(β
⊤X)2

Ψϵ(β⊤X)(1−Ψϵ(β⊤X))
XX⊤.
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To obtain an intuitive understanding of the result, we roughly compare the
Fisher information matrix derived in Corollary 3 and the non-private Fisher ma-
trix (3.5), and analyze some extreme cases. First, we consider the concentrated
case in which the scale parameter σ is extremely small. For a σ sufficiently small
that σ ≪ |(1− α)(cl − β∗⊤x)| and σ ≪ |α(cu − β∗⊤x)| for most x,

Ψ(β∗⊤x) ≈ 1

2
+

(
− α

1− α
+

1− α

α

)
σ

2Cϵ
+
β∗⊤x

2Cϵ
and Ψ′(β∗⊤x) ≈ 1

2Cϵ
.

Thus,

Ψ′(β∗⊤x)2

Ψ(β∗⊤x)(1−Ψ(β∗⊤x))
≈ 1

C2
ϵ −

(
1−2α
α(1−α)σ + β∗⊤x

)2 ≥ 1

C2
ϵ −

(
1−2α
α(1−α)σ + cl

)2 .
In comparing this with (3.4), we can see that the Fisher information matrix of

our LDP estimator is Ω
(
ϵ2 σ2

α(1−α)

)
times smaller than that of the non-private

estimator as ϵ ↓ 0. This lower bound agrees with the complexity of ϵ but is
σ2/α(1 − α) times lower. Since we assumed that σ is small, this gap can be
large. Although our MLE tends to lose more information regarding the structure
of fβ∗ than an optimal MLE, it experiences minimum information loss due to
perturbation for privacy.

We omit the comparison of the MLE of the regression coefficient with the
private X. The Fisher information matrix strongly depends on the structure of
the distribution of X. We have no informative comparison in this case.

3.10 Additional Numerical Evaluation

In this section, we perform some additional numerical evaluations with the real
data, which is the same data used in Section 3.5.

We implemented our simulation in Python and used the data in ”https://
archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+
Set”.

3.10.1 Evaluation of Private X

Here, we observe the behavior of our QMLE for the private X scenario, which
is described in Section 3.4.2.

Due to implementation needs, we have made some modifications to the de-
scription in the main part. First, we made some changes to Φ(β, z(X)). The-
oretically, Φ and 1 − Φ never take negative values. However, we found that
the value of Φ can exceed 1 by a small amount due to rounding error. Then,
1 − Φ is negative, and the computation corrupts since the log function is in-
putted a negative value. To avoid this undesirable situation, we multiplied Φ
by e−0.000001.

Second, we changed the domain of F̂X because no element of each xi is in the
interval [−1, 1]. In the simulation, each user truncates the components ofXi into
the intervals [5, 10], [1000, 1030], [70, 100], [4, 6], [20, 30], [1000, 1100], [530, 570], [130, 170],
and [10, 15]. We recommend that the curators should set the intervals with the
help of experts when they use our algorithm in reality.

https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
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Figure 3.2: Frobenius norm of covariance matrices in private X scenario. The
norm decrease in proportion to 1/n for each ϵ.

We observe the covariance matrices for n ∈ {100, 1000, 10000} and ϵ ∈
{5.0, 10, 25} with α = 0.3 and σ = 1.0. For each combination of n and ϵ, we
sub-sample n records 1, 000 times without replacement from the 36, 733 records.
For each sub-data, we simulate the protocol described in Section 3.4.2 and ob-
tain a QMLE. Then, we compute the Frobenius norm of covariance matrices of
the 1, 000 QMLEs,

Figure 3.2 shows the result. The horizontal and vertical axes show n and
the value of each Frobenius norm in log-scale, respectively. For each ϵ, with
large n, the norm of the covariance matrix is smaller. The decreasing speed is
O(1/n), These properties are similar to those in the public X scenario, which
is described in Section 3.5.

3.10.2 Evaluation of Effect of Truncation

In this subsection, we evaluate the effect of the truncation in the public X
scenario.

With ϵ = 2.5 and n = 10, 000, we try intervals [50, 100], [40, 110], [30, 120]
and [20, 130] for the truncation. The other setting is the same as Section 3.5.

Figure 3.3 shows the result. A shorter interval makes the estimators more
concentrated. We remark that the concentration does not necessarily imply a
good approximation of the true distribution. In general, there is a trade-off
between bias and variance.

3.10.3 Comparison with Non-private Estimator

In this subsection, we evaluate the difference between the centers of the dis-
tributions of our QMLEs and the non-private QMLEs which is described in
Section 3.2.3. Our theoretical result does not say that those QMLEs converge
to the same point. Thus, we consider it with numerical simulations.

First, we observe the behavior of the non-private QMLE. Figure 3.4 shows
the Frobenius norm of covariance matrices. It is seen that the non-private
QMLEs converge to one point. We treat the average vector of the non-private
QMLEs with n = 30, 000 as the grand truth in the main observation as described
below. We remark that the ”grand truth” can be biased.
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Figure 3.3: Frobenius norm of covariance matrices with various [cl, cu]s. A
smaller interval makes the norm smaller.
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Figure 3.4: Frobenius norm of covariance matrices of non-private QMLE. It
seems that the non-private QMLEs converge to one point.

We use the same simulation result used in Section 3.5. We compute the
difference of the average vector of our QMLE and the grand truth and observe
the norm for each n and ϵ.

Figure 3.5 shows the main result. The horizontal and vertical axes show n
and the value of the norm of the covariance matrices, respectively. The bias is
not zero for all ϵ. Smaller ϵ tends to give smaller bias. It is seen that n does not
affect the bias. This result implies that the non-private QMLE and our QMLE
can converge to different points.
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our QMLEs with various n and ϵ. The difference does not depend on n.
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Chapter 4

Local Privacy in the
Presence of Unexpected
Values

4.1 Introduction

In Chapter 3, we use the technique of truncation to handle extremely large or
small values. In this chapter, we discuss the issue of out-of-bounds values more
generally.

The privacy guarantee associated with LDP can fail when a system faces an
unexpected value such as an out-of-domain entry or a non-response since the
definition of LDP is based on a privacy mechanism with a known domain. A
system is deployed as a set of computer programs; when a program encounters
an unexpected value, it behaves in an unexpected way, raises an exception or
fails to produce any output. Observing such abnormal system behavior, the
curator can conclude that the user supplied an unexpected value or did not input
anything. Since a non-response can be correlated with a sensitive attribute, this
is a clear privacy violation in the sense of LDP.

Although the curator can prevent some types of unexpected values from
being input into an LDP mechanism by forcing users to provide input values
through a particular user interface, it is extremely difficult to exclude all unde-
sirable inputs. If, for example, the response form is a list of choices, the user
would be unable to enter values that are not included in the list. However, al-
though such a simple arrangement would seem to solve all the issues associated
with unexpected values, it is not wholly satisfactory, as a user may not finish
answering a question within the allotted time, or the user interface may raise
an exception before passing an answer to the LDP mechanism, in which case
the LDP mechanism receives an error report rather than the original values.
Recent computer programs are complex, highly modular, and created by many
programmers. No one programmer is able to predict every possible error in
advance. Thus, we should assume that there always exists the possibility of an
input that is unanticipated by the programmers of an LDP mechanism. This
issue is also raised in the context of anonymization, which leads to a serious vul-

41
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nerability in privacy protection [Ciglic et al., 2016]. In this chapter, we discard
the assumption that users input only valid values to an LDP mechanism and
consider a more-realistic system model.

We propose a new system model that involves unexpected inputs from users.
Figure 4.1 shows a comparison of an ordinary LDP model and our proposed
model. In our model, we introduce an agent that models a device such as a
smartphone or PC used by each user. In terms of privacy protection, each
user trusts her agent but does not trust the curator. The agent acts as an
intermediary between each user and the curator. The most important task of
the agent is to perturb the user input for privacy. We call the channel between
a user and the agent a pre-agent mechanism and call the channel between the
agent and the curator a post-agent mechanism. A pre-agent mechanism is a
simplified model of the complex process involving user decision-making and a
user interface for surveys; a post-agent mechanism is a model of the physical
communication channel. The pre-agent mechanism maps user inputs to the
expected domain or a special character ⊥, whereas the post-agent mechanism
maps an output of the LDP mechanism to the identical domain or ⊥.1 To fit
the new system model, we modify the definition of LDP.

We show that a perturbation mechanism satisfying the standard LDP can
violate privacy in our system model and then derive a sufficient condition for
a perturbation mechanism to guarantee local privacy for users. We strongly
recommend that curators attach to the perturbation mechanism an exception
handler such that the curator cannot determine whether the system has encoun-
tered an exception.

The extended system model raises issues not only with regard to privacy
analysis but also with respect to utility analysis. When we include unexpected
values in the system model, the existing analyses [Duchi et al., 2013, Duchi et al.,
2018, Duchi and Rogers, 2019a, Kairouz et al., 2014, Ye and Barg, 2018] for LDP
estimation problems under the known-domain assumption are not applicable to
our problem. Although there exist studies on algorithms for estimating standard
statistics in the presence of missing values [Sun et al., 2018, Sun et al., 2020],
we analyze the degree to which unexpected values decrease utility independent
of any specific algorithm.

We provide a framework to analyze a lower bound for minimax risk (a pop-
ular measure of the difficulty of an estimation problem) of a locally private
estimation problem in the presence of unexpected values. In the proposed
framework, we separately analyze the three mechanisms. The framework re-
quires us to evaluate the amount by which total variation or KL divergence
between two distributions decreases for each mechanism. Since the decrease for
an LDP mechanism has already been derived [Duchi et al., 2013], we addition-
ally analyze the decrease attributable to pre- and post-agent mechanisms. In
particular, we consider some concrete mechanisms and derive upper bounds of
the decrease in total variation produced by these mechanisms.

We confirm that the lower bounds derived using our framework are achiev-
able in two concrete examples. To show achievability, we design perturbation
mechanisms with safe exception handlers and evaluate their risks. In the first
example, we find that unexpected values do not necessarily harm the estima-

1Although Murakami and Kawamoto [2019] proposed a pre-processor mapping of high sen-
sitive values to some semantic tags ⊥1,⊥2, · · · , their objective is to introduce intermediately
sensitive data, which is different from ours.
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(a) Ordinary system model. (b) Our system model.

Figure 4.1: Comparison of system models related to user i. The random vari-
ables X̃i and Z̃i can take a special value ⊥ which represents exceptions. In (a),
a record is perturbed only once. In (b), a record is perturbed three times.

tion. The degree of difficulty of an estimation problem is highly dependent on
the definition of the evaluation measure. Differences in the evaluation measure
alone can lead to either negligible or catastrophic errors due to unexpected val-
ues. In the second example, we find that a pre-agent mechanism is more critical
than a post-agent mechanism even when they are essentially the same erasure
mechanism, which replaces an inputted value by ⊥ in probability. The results
suggest that the curator should devote more effort to reducing the erasure rate
of the pre-agent mechanism than that of the post-agent mechanism. In the case
in which the pre- or post-agent mechanism uniformly erases its input at some
rate γ, the minimax risk is proportional to (1− γ)−2 or (1− γ)−1, respectively.

The remainder of this chapter is organized as follows. In Section 4.2, we
introduce the background knowledge necessary for a proper understanding of the
chapter. In Section 4.3, we define our system model involving unexpected value
for a curator and point out that a perturbation mechanism without an exception
handler does not protect user privacy. In Section 4.4, we derive an abstract lower
bound of risk of a locally private estimation problem with unexpected values
and some information bounds with regard to some ρpre and ρpos. In Section 4.5,
we consider two estimation problems and derive lower and upper bounds for the
problems. In Section 4.6, we offer our conclusion.

4.2 Background

To clarify the distribution P of the random variable X, we denote the expec-
tation of f(X) as P (f(X)). We will refer to the j-th element of a vector v as
[v]j .

4.2.1 Local Differential Privacy

In this chapter, we conduct privacy analyses based on local differential pri-
vacy with a non-interactive model, which is the simplest of the local differential
privacy models. Although the non-interactive model does not cover several im-
portant algorithms, it is sufficient for addressing the issue that we discuss in
this chapter.

We begin by describing the system model. There exist n users and a single
curator. Each user possesses a record xi and submits it with perturbation by a
mechanism Q to the curator. The Q stochastically maps record domain X to
some set Z. We denote the perturbed xi by zi. The local differential privacy is
a property of each Q.
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Definition 2 (Standard local differential privacy). Given ϵ > 0, we say that a
perturbation mechanism Q is ϵ-locally differentially private or ϵ-LDP if

∀x, x′ ∈ X , S ∈ σ(Z),
Q(S|x)
Q(S|x′)

≤ eϵ,

where σ(Z) is a sigma algebra on Z.

This definition says that if it is difficult to learn the input from output of
Q, the perturbation mechanism Q protects privacy and that a smaller ϵ means
a safer perturbation mechanism.

One of the most important properties of LDP mechanisms is the post-
processing invariance that any operation for an output of an LDP mechanism
cannot undermine protection.

Proposition 1 (Post-processing invariance [Dwork and Roth, 2014]). For any
deterministic or stochastic function f whose domain is Z, if Q is ϵ-LDP, the
composition f ◦Q is ϵ-LDP.

Since the proposition does not care about the codomain of f , even when the
codomain includes ⊥, the proposition holds. This plays an important role in
our privacy analysis.

Minimax risk analyses for locally differentially private estimation problems
have been studied. We introduce one of them. The minimax risk of a ϵ-LDP
estimation problem is defined as follows:

Rn(θ(P ), w ◦ d, ϵ) ≡ inf
θ̂n,Q

sup
θ∈Θ

Q(Pθ(w(d(θ̂n(Z1, · · · , Zn), θ))))

where infQ is taken over the set of all ϵ-LDP mechanisms. Duchi et al. modified
Theorem 1 for local privacy estimations and obtained the following proposition.

Proposition 2 (Proposition 1 of [Duchi et al., 2018]). Suppose we are given
n i.i.d. observations from an ϵ-locally differential private channel for some
ϵ ∈ [0, 23/35]. Then for any pair of distributions (P0, P1) that is 2δ-separated
with respect to θ, the ϵ-LDP minimax risk has a lower bound

Rn(θ(P ), w ◦ d, ϵ) ≥ w(δ)

2

(
1−

√
4ϵ2n ∥P0 − P1∥2TV

)
. (4.1)

Comparing the lower bound (4.1) with the classical lower bound (2.4), ∥Pn0 − Pn1 ∥TV

is replaced by
√

4ϵ2n ∥P0 − P1∥2TV. The main part of the proof of this proposi-

tion is the following inequality:

∥Mn
0 −Mn

1 ∥
2
TV ≤ 1

2
Dkl(M

n
1 ∥Mn

2 ) ≤ 4ϵ2n ∥P0 − P1∥2TV (4.2)

where M0 and M1 are the marginal distributions of each Zi when P = P0 and
P = P1, respectively. The left inequality is Pinsker’s inequality Tsybakov [2008],
and the right inequality is their contribution. Roughly speaking, this inequality
represents how much smaller the total variation between M0 and M1 is than
the total variation between P0 and P1.
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4.3 Local Privacy with Unexpected Values

We redefine local differential privacy in the presence of unexpected values. We
consider a different system model in this section and give some interpretations
of the new system model below. There are n users with sensitive records and a
single curator who seeks to determine certain statistics pertaining to the records.
We denote Xi as the record possessed by the i-th user. Each Xi is independently
generated from an unknown distribution P on an unknown domain X . We
denote a realization of Xi by xi. Moreover, there is an agent that mediates
communication between each user and the curator. User i passes her record to
her agent through a channel ρpre which stochastically or deterministically maps
X to X̃ . The codomain X̃ is the union of set {⊥} and set X that is the expected

domain; X̃ = {⊥} ∪X . The ⊥ is a special character that represents an error or
missing, and the curator knows X . The agent perturbs the received record by Q
and submits it to the curator through a channel ρpos. We denote the outputs of
Q and ρpos by Zi and Z̃i, respectively. They are random variables on Z and Z̃,
where Z̃ = Z ∪ {⊥}. Using Z̃1, · · · , Z̃n, the curator estimates certain statistics.
In the system model, we redefine LDP.

Definition 3 (Extended LDP). Given some positive value ϵ and channels ρpos

and ρpre, we say that perturbation mechanism Q is (ϵ, ρpre, ρpos)-LDP if we have

∀x, x′ ∈ X , z̃ ∈ Z̃,
∑
x̃,z ρ

pos(z̃|z)Q(z|x̃)ρpre(x̃|x)∑
x̃,z ρ

pos(z̃|z)Q(z|x̃)ρpre(x̃|x′)
≤ eϵ.

The system model includes that of the standard LDP. In fact, when ρpre and
ρpos are the identity functions, the two models are identical. In this chapter,
since we mainly consider the case in which the random variables are discrete, we
do not strictly distinguish between probability mass functions and probability
density functions for simplicity of notation.

We next describe the reason that we consider the two domains X and X . X
is the set of the values that the curator expects as inputs and is known to the
curator. X is the set of the values that the users can input and is unknown to
the curator. In general, the two sets do not agree. We assume that X ⊂ X . The
relative complement X\X consists of the elements representing the user inputs
that the programmer of the perturbation mechanism cannot expect in advance.
Suppose, for example, a curator creates the question, what is your blood type?
The curator would expect the answer to be among the options A, B, AB, and O
in X . However, in reality, some people have rare blood types. In this example,
the set of the rare blood types would be X\X .

We present a more detailed description for ρpre, ρpos, and the agents since
they do not appear in the standard system model for LDP. An agent is a model
of a device such as a smartphone or PC. The agent translates the user’s thoughts
into an electronic record and passes it to the curator. The curator receive only
z̃i and cannot see zi, x̃i, or xi. Unexpected values can appear when the data
provider passes a value to her agent or when the agent passes a value to the
curator.

To model the mechanisms that produce unexpected values, we use the notion
of pre-agent and post-agent mechanisms, ρpre and ρpos. A ρpre is a model of the
user interface and the decision-making of the user. In this chapter, we treat ρpre

as a conditional probability function. The probability is conditioned by the true



46CHAPTER 4. LOCAL PRIVACY IN THE PRESENCE OF UNEXPECTEDVALUES

user input xi and determines the probability of x̃i. Its support should be X̃ .
One example of a phenomenon that would be modeled by a ρpre is the projection
of X to X by a user interface. When a curator designs an input form as a choice,
the user selects a response from among the available choices. Another example
is an error or exception of the interface. A modern computer program is highly
modular, and some of those modules differ from device to device. It would be
unrealistic for a curator to verify all of these behaviors. To the curator, these
errors may seem random. A third example is a non-response by users, where the
user either refuses to answer the question or mistypes her answer. Non-responses
are often discussed in the context of missing-data analysis and are modeled by
probabilistic models [Little and Rubin, 2019]. We can interpret non-response as
a stochastic replacement of a user’s input x with a special symbol ⊥ as we do
in Section 4.4.

A ρpos is a model of the communication channel between user devices and the
curator. We define ρpos as a conditional probability function whose condition
is one of Z and whose support is Z̃. Examples of phenomena that are modeled
by a ρpos would included physical noise and packet loss. Regarding the channel,
some bits of a submission may be inverted by physical noise, or they may be lost
in part due to packet loss which is a common phenomenon that occurs when
communications are concentrated on a single server or router.

It should be noted that a naive application of a mechanism of the standard
ϵ-LDP is not necessary to protect privacy in the presence of unexpected values.
We here consider the simple pre-agent channel ρpre that replaces x ∈ X\X by
⊥:

ρpre(x|x) = 1 for x ∈ X , and ρpre(⊥|x) = 1 for x ∈ X\X .

Let Q be a ϵ-LDP mechanism, which is a probability distribution on Z condi-
tioned by X . We assume that Q outputs ⊥ when and only when Q receives ⊥.
In such cases, there is no finite ϵ such that

Q(⊥|⊥)

Q(⊥|x)
≤ eϵ for x ∈ X . (4.3)

This implies that the naive approach fails to protect privacy in the sense of
(ϵ, ρpre, ρpos)-LDP. Clearly, the developer of a perturbation mechanism must
implement a safe exception handler Q(·|⊥).

This phenomenon is in contrast to a planned partial record deletion, which
promotes protection. For example, Bassily et al. provided a minimax optimal
algorithm discarding k − 1 elements of k-ary vector [Bassily and Smith, 2015].
As another example, in the context of the design of (non-locally) differentially
private algorithms, planned partial record deletions are called sub-sampling and
are used widely [Balle et al., 2018, Dwork and Roth, 2014, Wang et al., 2019].
These techniques are helpful for achieving a better trade-off between privacy
and utility. On the other hand, an unexpected data deletion can break privacy
preservation completely as we illustrated in the previous paragraph.

Unlike pre-agent channels, any post-agent channel does not harm privacy at
all. We formally state this property in the following proposition:

Proposition 3. Given positive value ϵ and pre-agent channel ρpre, if a stochas-
tic function Q is (ϵ, ρpre, 1)-LDP, where the 1 is the identity function, the Q is
(ϵ, ρpre, ρpos)-LDP for any ρpos.
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This property is immediately obtained from the post-processing invariant,
which is described in Section 4.2.1. Moreover, as long as zi is fixed, no matter
how many times zi is transmitted, no problem with privacy arises. We need not
seriously care about the post-agent channels.

Since we do not know the ρpos and ρpre, we are unable to precisely evaluate
the integration appearing in Definition 3. We now offer a proposition that gives
a sufficient condition for Q satisfying Definition 3.

Proposition 4. Q is (ϵ, ρpre, ρpos)-LDP for any ρpre and ρpos if Q satisfies

sup
S⊂Z

sup
x̃,x̃′∈X̃

Q(S|x̃)
Q(S|x̃′)

≤ eϵ. (4.4)

Proof. First, we show that Q is (ϵ, ρpre, 1)-LDP if Q satisfies (4.4). For any
S ⊂ Z, we have∑

x̃Q(S|x̃)ρpre(x̃|x)∑
x̃Q(S|x̃)ρpre(x̃|x′)

≤
∑
x̃ supx̃′ Q(S|x̃′)ρpre(x̃|x)∑
x̃ inf x̃′ Q(S|x̃′)ρpre(x̃|x′)

=
supx̃′ Q(S|x̃′)
inf x̃′ Q(S|x̃′)

= sup
x̃,x̃′

Q(S|x̃)
Q(S|x̃′)

≤ eϵ.

Then, using Proposition 3, we have finished the proof.

This proposition shows the condition under which a perturbation mechanism is
an LDP regardless pre- and post-agent channels.

We offer a few remarks to help you achieve more reliable privacy protection
in reality. First, the single special character ⊥ may not be sufficient to represent
all exceptions. In the real world, there are many types of exceptions, including,
for example, overflow, type mismatch, and time out. If a curator wants to use
our system model directly in privacy analysis for a survey, a function must be
deployed mapping any value in X\X to ⊥ as a part of a pre-agent mechanism.
Although it is generally difficult to implement an algorithm for determining
whether an input belongs to the expected domain, careful selection of the do-
main in which such a determination is feasible is important to enabling a real
deployment of a locally private survey based on the proposed model.

Second, since our system model does not include interactivity, it is non-
trivial whether Proposition 4 holds for interactive algorithms such as SGD. An
analysis that include interactivity remains an open problem.

Third, in practice, it is not easy for users to check whether the exception
handlers are deployed correctly. It is unrealistic to believe that we can eliminate
the possibility that a curator is an adversary and embed a backdoor in the
exception handler and the perturbation mechanism. Technologies of formal
verification can be helpful in handling this issue [Tschantz et al., 2011, Zhang
and Kifer, 2017]. Strictly speaking, we need an official third party to verify the
exception handler and perturbation mechanism.

4.4 Lower Bound of Estimation Problem

In the previous section, we discussed privacy analysis. We now analyze the min-
imax risk of a locally private estimation problem in the presence of unexpected
values.
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First, we redefine minimax risk for our problem. We additionally consider
ρpre and ρpos. We embed the new building block into the definition of minimax
risk.

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≡ inf
θ̂n,Q

sup
θ∈Θ

M̃θ,Q(w(d(θ̂n(Z̃1, ..., Z̃n), θ))).

where M̃θ,Q is the marginal distributions of Z1, · · · , Zn given Q and Pθ.

4.4.1 Abstract Framework

As an analog of Theorem 1, we have an abstract lower bound. To derive the
lower bound, we focus on the marginal distributions of Z̃i. We denote the
marginal distributions of Z̃i by M̃0 and M̃1 when each Xi follows P0 and P1,
respectively. We also denote the marginal distributions of X̃i and Zi by P̃j and
Mj for j = 0, 1.

Theorem 9. Let Dkl(·∥·) be KL divergence. For a pair of P0 and P1, if we
have ∥∥∥P̃0 − P̃1

∥∥∥
TV

≤ β1 ∥P0 − P1∥TV , Dkl(M0∥M1) ≤ β2

∥∥∥P̃0 − P̃1

∥∥∥2
TV

,

and Dkl(M̃0∥M̃1) ≤ β3Dkl(M0∥M1),

then we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ w(δ)

2

(
1−

√
nβ2

1β2β3 ∥P0 − P1∥2TV

)
. (4.5)

Proof. Using the same procedure that yielded inequality (2.4), we obtain

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ w(δ)

2

(
1−

∥∥∥M̃n
0 − M̃n

1

∥∥∥
TV

)
.

This relation implies that we have a lower bound of Rn if we have an upper
bound of ∥M̃n

0 − M̃n
1 ∥TV. By Pinsker’s inequality, we have ∥M̃n

0 − M̃n
1 ∥2TV ≤

1
2Dkl(M̃

n
0 ∥M̃n

1 ). Since M̃
n
0 and M̃n

1 are products distributions, we have

Dkl(M̃
n
0 ∥M̃n

1 ) = nDkl(M̃0∥M̃1). From the assumption that Dkl(M̃0∥M̃1) ≤
β3Dkl(M0∥M1), we have ∥M̃n

0 − M̃n
1 ∥2TV ≤ nβ3Dkl(M0∥M1). Moreover, from

the assumptions that Dkl(M0∥M1) ≤ β2∥P̃0 − P̃1∥2TV and that ∥P̃0 − P̃1∥TV ≤
β1 ∥P0 − P1∥TV, we have∥∥∥M̃n

0 − M̃n
1

∥∥∥2
TV

≤ nβ2
1β2β3 ∥P0 − P1∥2TV .

We have finished the proof.

Theorem 9 implies that we obtain a minimax lower bound when we have the
three coefficients β1, β2, and β3 and that we can analyze the three mechanisms
separately. Given this property, we can consider a number of specific examples
of mechanisms independently and then combine them freely. Since we have
already obtained β2 by (4.2), our interest is on the β1 and β3. In the following
subsections, we analyze coefficients β1 and β3 with concrete situations.
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4.4.2 Simple erasure of out-of-domain values

Simple erasure models a user interface that raises an exception for an unexpected
value. In a realistic problem, ⊥ may correspond to the ”other” option.

Formally, this is defined as follows:

ρpre(x|x) = 1 for x ∈ X , and ρpre(⊥|x) = 1 for x ∈ X\X . (4.6)

With the ρpos, total variation ∥P̃0 − P̃1∥TV is evaluated as

min

{
sup
S⊂X

|P0(S)− P1(S)|, |P0(X̃ \X )− P1(X̃ \X )|
}

≤
∥∥∥P̃0 − P̃1

∥∥∥
TV

≤ sup
S⊂X

|P0(S)− P1(S)|+ |P0(X̃ \X )− P1(X̃ \X )|.

This equation implies that the total variation ∥P̃0 − P̃1∥TV is highly dependent

on the selection of P0 and P1. Even if ∥P0 − P1∥TV is not small, ∥P̃0 − P̃1∥TV

can be small. An adversarial example can be used to clarify. Let X = {1, 2},
and let X = {1, 2, · · · , k} where k is a natural number greater than 3. We
consider the following P0 and P1.

P0(x) =

{
0 if x ̸= k − 1,

1 if x = k − 1,
and P1(x) =

{
0 if x ̸= k,

1 if x = k.
(4.7)

For the P0 and P1, we have ∥P0 − P1∥TV = 1 and ∥P̃0 − P̃1∥TV = 0. This is
not necessary to imply that the minimax risk does not converge to 0. The total
variation is not the only factor deciding the RHS of (4.5), which is a minimax
lower bound. Semi-distance d also affects the lower bound. To see the effect of
semi-distance on the lower bound, we examine two extreme cases below.

Optimistic case.

We first consider the optimistic case in which the curator loses no utility. Let
Θ = {θ ∈ Rk :

∑k
j=1[θ]j = 1}. In this case, we define semi-distance d as

d(θ, θ′) ≡ |[θ]1 − [θ′]1| = |Pθ(1)− Pθ′(1)|. (4.8)

The curator can use this semi-distance when he assumes that the support set
is binary. The semi-distance always takes a positive value for two different
Bernoulli distributions. Regarding the semi-distance (4.8), we have the following
proposition.

Proposition 5. On semi-distance d defined in (4.8), for each 0 ≤ δ ≤ 1, there
are P0, P1 ∈ P such that

d(θ(P0), θ(P1)) = δ and
∥∥∥P̃0 − P̃1

∥∥∥
TV

≥ δ

where θ(P ) is the parameter of distribution P . Moreover, when the equation
holds, there exists a pair (P0, P1) such that∥∥∥P̃0 − P̃1

∥∥∥
TV

= ∥P0 − P1∥TV = δ. (4.9)

This proposition asserts that we can set β1 = 1 in this case and that we
can always select a pair (P0, P1) such that the lower bound converges to 0 with
n→ ∞.
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Pessimistic case.

We next consider the pessimistic case. Unlike the optimistic case, we can select
a pair such that the lower bound does not converge to 0 even with n→ ∞. We
define semi-distance d as

d(θ, θ′) =

∣∣∣∣∣∣1k
k∑
j=1

j[θ]j −
1

k

k∑
j=1

j[θ′]j

∣∣∣∣∣∣ . (4.10)

This semi-distance corresponds to the comparison of the expectations.

Proposition 6. With semi-distance d defined in (4.10), for each 0 < δ ≤ 1,
there exist P0, P1 ∈ P such that

d(θ(P0), θ(P1)) = δ and
∥∥∥P̃0 − P̃1

∥∥∥
TV

= 0.

Moreover, we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ w(δ)

2
> 0

for any w such that w(δ) ̸= 0.

Since the δ is independent of n, this proposition implies that there is no
estimator that makes the risk 0 in its worst case.

From these examples, we can see that careful selection of the statistics or
semi-distance to be studied may ignore the information loss due to simple dele-
tion, and that improper selection may make estimation completely impossible.

4.4.3 Stochastic erasure as ρpre and ρpos

A stochastic-erasure channel replaces its input with ⊥ with probability. It is
a model of missingness due to physical noise and due to the non-response of a
user who refuses to respond to a statistical survey. Especially, we consider the
case in that the replacement occurs independently of the inputs.

Here, we consider the case in which X = X . Let γ and λ be the erasure
rates, where 0 < γ < 1 and 0 < λ < 1. Channels ρpre and ρpos are defined as
follows:

ρpre(x̃|x) =


1− γ if x̃ = x,

γ if x̃ = ⊥,
0 otherwise,

and ρpos(z̃|z) =


1− λ if z̃ = z,

λ if z̃ = ⊥,
0 otherwise.

(4.11)

From Remark 3.2 of [Raginsky, 2016], we see that the coefficients β1 and β3
appearing Theorem 9 are 1− γ and 1− λ, respectively:∥∥∥P̃0 − P̃1

∥∥∥
TV

≤(1− γ) ∥P0 − P1∥TV , (4.12)

and Dkl(M̃0∥M̃1) ≤(1− λ)Dkl(M0∥M1). (4.13)
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4.5 Examples

In this section, we derive lower and upper bounds for two concrete estimation
problems. The objective is to offer a practical algorithm to estimate θ and to
evaluate the tightness of the lower bound derived using Theorem 9.

4.5.1 First Example

We use discrete random variable on X = {1, 2, · · · , k}, where k is natural
number greater than 2, and distribution family P = {Pθ : θ ∈ Θ} where

Θ = {θ ∈ [0, 1]k :
∑k
j=1[θ]j = 1}. Each distribution Pθ is defined as Pθ(j) = [θ]j

for each j = 1, · · · , k. Let d be the semi-distance defined in (4.8), and let
w(t) = t2. The curator assumes X = {1, 2}. Consider the case in which pre-
agent channel ρpre and post-agent channel ρpos are simple deletion and the
identical function, respectively.

As an instantiation of Theorem 9, we obtain the following lower bound.

Proposition 7. In the estimation problem described in the previous paragraph,
we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ 1

64ϵ2n
.

Proof. From (4.9) and (4.2), we can set β1 = 1, β2 = 4ϵ2, β3 = 1, and
∥P0 − P1∥TV = δ for any δ > 0. Substituting these values for the βs in Theo-
rem 9, we immediately obtain the following inequality:

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ δ2

2

(
1− 2ϵ

√
nδ
)
.

With δ = 1/(4ϵ
√
n), we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ 1

2

(
1

4ϵ
√
n

)2(
1− 1

2

)
=

1

64ϵ2n
.

Next, we derive an upper bound by providing and analyzing a concrete
algorithm. Consider the perturbation mechanism

Q(z|⊥) =

{
1

eϵ+1 if z = 1
eϵ

eϵ+1 if z = 2
, Q(z|x̃) =

{
eϵ

eϵ+1 if z = x,
1

eϵ+1 if z ̸= x,
for x̃, z = 1, 2.

(4.14)

From Proposition 4, we can immediately establish that this perturbation mech-
anism is (ρpre, ρpos, ϵ)-LDP. The definition of Q(z|x̃ = ⊥) is a safe exception
handling. The perturbation mechanism here is an extension of the random-
ized response, which is a standard ϵ-LDP method [Warner, 1965]. Notably, the
curator can design this mechanism even if he does not know the domain X .

Let C1 be a random variable representing the count of 1 that the curator

observes. That is, C1 ≡
∑n
i=1 1

(
Z̃i = 1

)
. We refer to the realization as c1.

Given c1, the curator constructs an estimate of [θ]1 as follows:

[θ̂(z1, ..., zn)]1 =
1

eϵ − 1

(
(eϵ + 1)

c1
n

− 1
)
. (4.15)



52CHAPTER 4. LOCAL PRIVACY IN THE PRESENCE OF UNEXPECTEDVALUES

Proposition 8. In the problem discussed in this section, for perturbation mech-
anism Q defined in (4.14) and estimator θ̂ defined in (4.15), we have the fol-
lowing inequality:

E
[
([θ̂(Z1, ..., Zn)]1 − [θ]1)

2
]
≤ eϵ(eϵ + 1)

(eϵ − 1)2n
.

Moreover, for ϵ ↓ 0, we have E
[
([θ̂(Z1, ..., Zn)]1 − [θ]1)

2
]
∈ O

(
1
ϵ2n

)
.

The proof appears in Section 4.7. This proposition implies that the lower
bound shown in Proposition 7 is achievable at most constant factor and that the
algorithm to build the estimator is reasonable. Since the upper and lower bounds
do not contain k, we can say that the deletion does not make the problem more
difficult. When no agent perturbs the record, this conclusion is trivial; however,
since the agent must perturb a record to hide even ⊥ in this case, this conclusion
is not trivial.

4.5.2 Second Example

We consider the case in which ρpre and ρpos are the stochastic erasure channels
(4.11). Let X = X = {1, 2}, P = {Pθ : θ ∈ [0, 1], Pθ(1) = θ}, and d is (4.8).

As an instantiation of Theorem 9, we obtain the following lower bound since
we know that β1 = (1− γ)2, β2 = 4ϵ2, and β3 = (1− λ) in this case.

Proposition 9. In the proposition described in the previous paragraph, we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≥ 1

64(1− γ)2ϵ2(1− λ)n
.

Next, we find an upper bound of the minimax risk by constructing a concrete
perturbation mechanism and estimator. Consider the following perturbation
mechanism Q:

Q(z|⊥) =

{
1

eϵ+1 if z = 1
eϵ

eϵ+1 if z = 2,
Q(z|x̃) =

{
eϵ

eϵ+1 if z = x̃
1

eϵ+1 if z ̸= x̃
for x̃, z = 1, 2.

(4.16)

We use the following estimator:

θ̂(z1, · · · , zn) ≡
1

(eϵ − 1)(1− γ)

(
eϵ + 1

(1− λ)n
c1 − 1

)
. (4.17)

Proposition 10. In the problem described in this subsection, with perturbation
mechanism (4.16) and estimator (4.17), we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ≤ (eϵ + 1)eϵ

(eϵ − 1)2(1− γ)2(1− λ)n
.

Moreover, for ϵ ↓ 0, we have

Rn(θ(P ), w ◦ d, ϵ, ρpre, ρpos) ∈ O

(
1

ϵ2(1− γ)2(1− λ)n

)
.
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The proof appears in Section 4.8. Two comments regarding Propositions 9
and 10 would seem in order. First, the lower bound derived in Proposition 9
is achievable at most constant factor. This can be seen in the comparison of
Propositions 9 and 10. Second, ρpre would make the accuracy of the estimation
problem worse than ρpos even if ρpre and ρpos were essentially the same. In
this problem, both ρpre and ρpos the identical conditional distribution essen-
tially; however, their impacts on the lower bound differ: the lower bound is
proportional to (1− λ)−1 and is proportional to (1− γ)−2.

4.6 Conclusion

In this chapter, we asserted that the standard LDP definition is not sufficient
to evaluate privacy in the real world, and proposed the modified LDP that can
evaluate privacy in the presence of unexpected values. Our privacy analysis
implies that we can design a locally private mechanism if the expected domain
X is clearly defined and we can decide that each value x ∈ X is x ∈ X or
x /∈ X ; otherwise, no statistical survey should not proceed. Moreover, we
established the framework to analyze the minimax risk for the problem and
confirmed that lower bounds are achievable at most constant factor in the two
concrete examples. It is our belief that the issues raised and the approach
proposed in this chapter will significantly enhance the ability to conduct locally
private surveys.

4.7 Proof of Proposition 8

Proof. For each i = 1, · · · , n, we define new random variableWi: We define new
random variable Wi for each i = 1, ..., n:

Wi ≡
1

(eϵ − 1)n

(
(eϵ + 1)1

(
Z̃i = 1

)
− 1
)
.

Then, θ̂n(Z1, ..., Zn) =
∑n
i=1Wi. Since

E [Wi]

=
1

(eϵ − 1)n

(
(eϵ + 1)Pr(Z̃i = 1)− 1

)
=

1

(eϵ − 1)n

(
(eϵ + 1)

(
eϵ

eϵ + 1
[θ]1 +

1

eϵ + 1
[θ]2 +

1

eϵ + 1
([θ]3 + · · ·+ [θ]k)

)
− 1

)
=

1

(eϵ − 1)n

(
(eϵ + 1)

(
eϵ

eϵ + 1
[θ]1 +

1

eϵ + 1
[θ]2 +

1

eϵ + 1
(1− [θ]1 − [θ]2)

)
− 1

)
=
1

n
[θ]1,

The expectation E
[
[θ̂(Z1, ..., Zn)]1

]
is [θ]1, that is, the estimator is unbiased.

We used the fact that [θ]3 + · · · [θ]k = 1 − [θ]1 − [θ]2. From the unbiasedness,
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we have E
[
([θ̂(Z1, ..., Zn)]1 − [θ]1)

2
]
= E

[
[θ̂(Z1, ..., Zn)]

2
1

]
− [θ]21. Since

E
[
W 2
i

]
=

1

(eϵ − 1)2
(eϵ + 1)2

(1− λ)2n2
1− λ

eϵ + 1
((eϵ − 1)[θ]1 + 1)

(
1− 1− λ

eϵ + 1
((eϵ − 1)[θ]1 + 1)

)
+

1

n2
[θ]21

=
1

(eϵ − 1)2n2
((eϵ − 1)[θ]1 + 1)

(
eϵ + 1

1− λ
− ((eϵ − 1)[θ]1 + 1)

)
+

1

n2
[θ]21

≤ eϵ(eϵ + 1)

(eϵ − 1)2(1− λ)n2
+

1

n2
[θ]21

and E [WiWi′ ] =
1
n2 [θ]

2
1 for i ̸= i′, we have

E
[
([θ̂(Z1, ..., Zn)]1 − [θ]1)

2
]
=E

[
([θ̂(Z1, ..., Zn)]1)

2
]
− [θ]21

=E

( n∑
i=1

Wi

)2
− [θ]21

=E

[
n∑
i=1

W 2
i

]
+ E

 n∑
i ̸=i′

WiWi′

− [θ]21

≤ eϵ(eϵ + 1)

(eϵ − 1)2(1− λ)n
+ [θ]21 − [θ]21

=
eϵ(eϵ + 1)

(eϵ − 1)2(1− λ)n
.

This inequality is the first half of the proposition.
Next, we show the second half. Since, by Taylor expansion, eϵ ≈ 1 + ϵ for

enough small ϵ, we immediately obtain the second half.

4.8 Proof of Proposition 10

Proof. For each i = 1, · · · , n, we define new random variable Wi:

Wi ≡
1

(eϵ − 1)(1− γ)n

(
eϵ + 1

(1− λ)
1

(
Z̃i = 1

)
− 1

)
.

We denote a realization ofWi by wi. These random variables satisfies θ̂(z1, · · · , zn) =∑n
i=1 wi. Since

E [Wi] =
1

(eϵ − 1)(1− γ)n

(
eϵ + 1

1− λ
Pr(Z̃i = 1)− 1

)
=

1

(eϵ − 1)(1− γ)n

(
eϵ + 1

1− λ
(1− λ)

(
eϵ − 1

eϵ + 1
θ(1− γ) +

1

eϵ + 1

)
− 1

)
=

1

n
θ,

we have

E
[
θ̂(Z1, · · · , Zn)

]
= θ.
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Thus,

E
[
(θ̂(Z1, · · · , Zn)− θ)2

]
=E

( n∑
i=1

Wi

)2
− θ2

=

n∑
i=1

E
[
W 2
i

]
+
∑
i′ ̸=i

E [WiWi′ ]− θ2.

For each i = 1, · · · , n,

E
[
W 2
i

]
=

1

(eϵ − 1)2(1− γ)2n2

(
eϵ + 1

1− λ

)2

(1− λ)

(
eϵ − 1

eϵ + 1
θ(1− γ) +

1

eϵ + 1

)
×
(
1− (1− λ)

(
eϵ − 1

eϵ + 1
θ(1− γ) +

1

eϵ + 1

))
+

1

n2
θ2

≤ 1

(eϵ − 1)2(1− γ)2n2
(eϵ + 1)2

1− λ

(
eϵ − 1

eϵ + 1
+

1

eϵ + 1

)
× 1 +

1

n2
θ2

=
(eϵ + 1)eϵ

(eϵ − 1)2(1− γ)2(1− λ)n2
+

1

n2
θ2

and, for each i′ ̸= i, E [WiWi′ ] =
1
n2 θ

2. Thus, we have

E
[
(θ̂(Z1, · · · , Zn)− θ)2

]
≤ (eϵ + 1)eϵ

(eϵ − 1)2(1− γ)2(1− λ)n
.
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Chapter 5

Inconsistency Due to
Synthetic-data Use

5.1 Introduction

Publishing synthetic data instead of raw microdata is one way to balance pri-
vacy protection and data use [Rubin, 1993, Elliot and Domingo Ferrer, 2018].
Microdata consisting of individuals’ records can be used in a variety of ways be-
cause such data provide users with much more flexibility for data analysis than
summary statistics. On the other hand, because microdata may contain sensi-
tive information about real individuals, there are strict restrictions on the usage
of microdata for surveys and research. A practical way to make microdata avail-
able to a large number of people while protecting the privacy of the provider is to
release synthetic data that retain the statistical properties of the original data.
For example, the US [Kinney et al., 2011, 2014] and Germany [Drechsler et al.,
2007, 2008] have been publishing synthetic data of official microdata. With the
development of research on generative models [Neunhoeffer et al., 2021] and the
availability of R packages, such as synthpop [Nowok, 2016, Nowok et al., 2016],
for creating synthetic data, the creation of synthetic data has been easier every
year, gaining importance in society.

Privacy can be protected by releasing synthetic data instead of raw data, but
how about the utility of synthetic data in statistical analysis? When synthetic
data have high similarity to the raw data based on some similarity metric, do
we always obtain similar results for a specific task with the synthetic and raw
data? This issue has been studied with respect to both general and specific
utilities [Snoke et al., 2018]. The general utility is a measure of similarity be-
tween the distribution of raw data and that of synthetic data. Examples include
propensity score, KL divergence, and Wasserstein distance. When a data owner
selects a parameter of the generative model for synthetic data, the general util-
ity may be related to the objective function for the parameter selection. It is
reasonable to rely on such an indicator when a specific application is not known
in advance. The general utility is controversial and has been studied in various
ways [Woo et al., 2009]. As an alternative, a specific utility is a score assigned
to the solution of a specific task using synthetic data. This type of utility is of
more interest to data users and external analysts with specific goals than the

57
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(a) Ordinary estimation problem
(b) Estimation problem with synthetic
data

Figure 5.1: Comparison of Bayesian networks of two estimation problems. In
both problems, λ(P ) is the target statistic that an analyst wants to know. (A)

Network of an ordinary estimation problem. Estimation λ̂(Dn) is directly ob-
tained from raw data Dn. (B) Network of an estimation problem with synthetic

data (problem discussed in this chapter). Estimation λ̂(D̃n′) is obtained from

synthetic data D̃n′ , and the analyst cannot access the raw data Dn.

general utility. Specific utilities have been evaluated in some situations, mainly
through experimental evaluations [Reiter, 2005a, Raghunathan et al., 2003].

However, it is difficult to establish a general principle for predicting various
specific utilities by extracting the results of numerical and empirical evaluations.
We aim to establish a general theory for analyzing the relationship between
specific accuracy and synthetic data. In this chapter, we answer the following
key question: When does a serious failure of a statistical estimation occur for
synthetic data users who cannot access the raw data or the population?

To analyze this problem quantitatively, we formulate the estimation problem
with synthetic data as follows. Nature chooses a distribution P from a family of
distributions P. From that distribution, a data owner independently generates
data Dn of size n. In particular, the data owner selects a distribution Pθ from
the distribution family {Pθ : θ ∈ Θ} that approximates Dn well, and generates
and publishes synthetic data D̃n′ using Pθ. An external analyst uses D̃n′ to
obtain an estimate λ̂(D̃n′) for the target statistic λ(P ). The external analyst
does not know the true data distribution P . Figure 5.1 shows a comparison
between the Bayesian networks of the problem in this chapter and an ordinary
estimation problem. In our model shown in Figure 5.1, the general utility is the
similarity between P and Pθ, and the specific utility is a measure of how close
the statistic λ(P ) is to the estimator λ̂(D̃n′).

We show that there exists an estimation problem in which an external ana-
lyst cannot construct any consistent estimator of the target statistic λ(P ). To
identify such a problem, we take an information-theoretic approach, minimax
risk analysis. Minimax risk is a measurement of the difficulty of an estimation
problem and is defined as the estimation error of the optimal estimator in its
worst case. If the minimax risk does not converge to 0, no estimator can be
consistent in its worst case. To obtain a lower bound, we reduce the estimation
problem to a binary testing problem in which an analyst determines which of P0

and P1 is selected to generate synthetic data D̃n′ . In the analysis, we consider
two kinds of distances simultaneously. The first distance is ρ(λ(P0), λ(P1)). If
this (sub-)distance is positive, then λ(P0) and λ(P1) have significantly different
values. The second one is the distance between the distributions of D̃n′ when
P = P0 and P = P1. If this distance is positive, then the analyst can distin-
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guish P0 and P1 from the observation of the synthetic data. As a consequence
of the analysis, we find a problem in which the first distance is positive and the
second distance is zero. We show that there is no consistent estimator in such
a problem.

To concretely illustrate the problem, we provide a concrete pair of a model
family and a target statistic. Exponential families constitute a broad class of
stochastic models and include the Gaussian and Poisson distributions. We con-
sider the case in which the data owner chooses θ̂n as a maximum likelihood
estimator (MLE). When an exponential family satisfies some regularity condi-
tions, the MLE converges in distribution to a Gaussian random variable. Using
this property, we determine a condition such that an external analyst cannot
build a consistent estimator. To visualize the inconsistency, we perform numer-
ical experiments with artificial data. Since exponential families are widely used,
this example is a warning for many data owners and analysts.

The remainder of this chapter is organized as follows. In Section 5.2, we
formulate the focal problem. In Section 5.3, we show a sufficient condition
such that there exists no consistent estimator. In Section 5.4, we provide a
concrete example satisfying the sufficient condition. In Section 5.5, we perform
a visualization for the inconsistency. In Section 5.6, we discuss some open
problems and our future work. We introduce related work in Section 5.7 and
draw conclusions in Section 5.8.

5.2 Analytic Target

In this section, we quantitatively define our problem, which is an estimation
problem with synthetic data, and the goal of our analysis, the minimax risk of
the problem.

First, we define the flow of data generation and estimator construction with
stakeholders. From a family P of distributions, nature chooses a distribution
P . The data Dn of size n consist of independent samples from the identical
distribution P . The data holder selects a model Pθ from the model family
PΘ = {Pθ : θ ∈ Θ} that is most likely to be the distribution generating Dn

and generates and publishes synthetic data D̃n′ , whose size is n′, from Pθ. The
generated synthetic data D̃n′ are published. An external analyst uses D̃n′ to
compute an estimation λ̂(D̃n′) of the target statistic λ(P ). The objective of

the analyst is to obtain estimation λ̂(D̃n′) minimizing ρ(λ̂(D̃n′), λ(P )), where
ρ is a semi-distance. The difference from the traditional estimation problem
introduced in Section 2.2 of this problem is that the estimation is performed
using the synthetic data D̃n′ instead of using the raw data Dn directly.

Next, we define the risk and minimax risk for this problem. The maximum
risk of an estimator λ̂ is defined as

sup
P∈P

P (w(ρ(λ̂(D̃n′), λ(P ))))),

where w and ρ are the same ones defined in Section 2.2. The minimax risk of
this problem is defined as

R∗
n,n′(P, λ,PΘ, w ◦ ρ) ≡ inf

λ̂
sup
P∈P

P (w(ρ(λ̂(D̃n′), λ(P ))))).
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The infimum is taken over the set of all estimators.
We here emphasize some difference between this problem and the classical

estimation problem described in Section 2.2. In this problem, the analyst uses
synthetic data instead of raw data. The distributions of the synthetic and raw
data are not identical. We consider the situation that the synthetic data come
from a misspecified model. Moreover, the objective is different. In this problem,
the analyst wants to estimate the target statistic λ(P ) instead of θ(P ) which is
the model parameter for the synthetic data generation.

On the problem formulation, we can restate our research question as follows:
Does there exist a combination of λ and PΘ such that the minimax risk does
not converge to 0?

5.3 Minimax lower bound analysis

In this section, we provide a framework for analyzing the minimax lower bound
of this problem. Then, on the basis of the framework, we show when serious
estimation errors occur. As in the standard minimax risk analysis described in
Section 2.3, we analyze the minimax lower bound by reducing the estimation
problem to a hypothesis testing problem.

We first derive a lower bound, which is characterized by the probability of
estimation λ̂(D̃n′) being far from the true value of the target statistic λ(P ), of
the risk. For any positive real value δ such that w(δ) > 0, we have

P (w(ρ(λ̂(D̃n′), λ(P )))) ≥ w(δ)P (ρ(λ̂(D̃n′), λ(P )) ≥ δ).

Next, we focus on the probability P (ρ(λ̂(D̃n′), λ(P )) ≥ δ), which appears in
the right-hand side of the above inequality. It is clear that

inf
λ̂

sup
P∈P

P (ρ(λ̂(D̃n′), λ(P ))) ≥ δ) ≥ inf
λ̂

max
j∈{0,1}

Pj(ρ(λ̂(D̃n′), λ(Pj)) ≥ δ). (5.1)

We call the hypotheses P0, P1 and call a test any measurable function ψ : Xn′ →
{0, 1}. We select the hypotheses P0 and P1 such that

ρ(λ(P0), λ(P1)) ≥ 2δ.

Lemma 7. For any estimator λ̂, we have

Pj(ρ(λ̂(D̃n′), λ(Pj)) ≥ δ) ≥ Pj(ψ
∗(D̃n′ ; λ̂) ̸= j), j = 0, 1, (5.2)

where ψ∗ : Xn′ → {0, 1} is the minimum distance test defined by

ψ∗(d̃n′ ; λ̂) = arg min
j∈{0,1}

ρ(λ̂(d̃n′), λ(Pj)) for each D̃n′ = d̃n′ ∈ Xn′
.

Proof. For notational simplicity, we write ψ∗(d̃n′ ; λ̂) as just ψ∗ in this proof. It
is sufficient to show

ψ∗ ̸= j =⇒ ρ(λ̂(D̃n′), λ(Pj)) ≥ δ for each j = 0, 1.

From the triangle inequality, we have

ρ(λ(Pj), λ(P1−j)) ≤ ρ(λ(Pj), λ̂(D̃n′)) + ρ(λ̂(D̃n′), λ(P1−j)).
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By the definition of ψ∗, we have ρ(λ̂(D̃n′), λ(Pj)) ≥ ρ(λ̂(D̃n′), λ(P1−j)) with
ψ∗ ̸= j. Thus,

ρ(λ(Pj), λ(P1−j)) ≤ 2ρ(λ(Pj), λ̂(D̃n′)).

Finally,

ψ∗ ̸= j =⇒ 2ρ(λ̂(D̃n′), λ(Pj)) ≥ 2δ for each j = 0, 1.

Equation (2.3) is shown in a similar manner. Combining (5.1) and (5.2), we
obtain

inf
λ̂n

sup
P∈P

P (ρ(λ̂(D̃n′), λ(P )) ≥ δ) ≥ p̃e where p̃e ≡ inf
ψ

max
j=0,1

Pj(ψ(D̃n′) ̸= j).

This inequality implies that the minimax risk in this problem is lower bounded
using the error probability of the testing problem as in the standard estimation
problem described in Chapter 2.

We next lower bound the error probability p̃e by modifying Lemma 2. The
key tool is the marginal distribution of D̃n′ . Let A′ be a σ-algebra on Xn′

. We

define P̃
(n,n′)
0 and P̃

(n,n′)
1 that are the marginal distributions of D̃n′ conditioned

on j = 0, 1 as follows.

P̃
(n,n′)
j (S) =

∫
1(λ̂(d̃n′) ∈ S)dPθ̂n(dn)(d̃n′)dPj(dn) for S ∈ A′, j = 0, 1

where dn and d̃n′ are realizations of the raw and synthetic data, respectively.

The A must be a σ-algebra such that P̃
(n,n′)
j is measurable. We obtain the

following lemma replacing Pn0 and Pn1 in Lemma 2 with P̃
(n,n′)
0 and P̃

(n,n′)
1 .

Lemma 8. If
∥∥∥P̃ (n,n′)

0 − P̃
(n,n′)
1

∥∥∥
TV

≤ α < 1, then

p̃e ≥
1− α

2
.

Proof. We first confirm P0(ψ(D̃n) ̸= 0) = P̃n,n
′

0 (ψ(D̃n) ̸= 0) and P1(ψ(D̃n′) ̸=
1) = P̃1(ψ(D̃n′) ̸= 1). Thus, we have the following inequality:

p̃e = inf
ψ

max
j=0,1

Pj(ψ(D̃n′) ̸= j) ≥1

2
inf
ψ
(P0(ψ(D̃n′) ̸= 0) + P1(ψ(D̃n′) ̸= 1))

=
1

2
(P0(ψ

∗(D̃n′) ̸= 0) + P1(ψ
∗(D̃n′) ̸= 1))

=
1

2
(P̃0(ψ

∗(D̃n′) ̸= 0) + P̃1(ψ
∗(D̃n′) ̸= 1)),

where ψ∗ is the maximum likelihood test

ψ∗(d̃n′) =

{
0, if p̃0(d̃n′) ≥ p̃1(d̃n′),

1, otherwise for each D̃n′ = d̃n′ ∈ Xn′
,
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in which p̃0 and p̃1 are the densities of P̃
(n,n′)
0 and P̃

(n,n′)
1 with respect to ν, a

measure dominating both of P̃
(n,n′)
0 and P̃

(n,n′)
1 . From Lemma 2.1 of [Tsybakov,

2009], we have

1

2
(P̃0(ψ

∗(D̃n) ̸= 0) + P̃1(ψ
∗(D̃n) ̸= 1)) =

1

2

∫
min(dP̃

(n,n′)
0 , dP̃

(n,n′)
1 )

=
1

2

(
1−

∥∥∥P̃ (n,n′)
0 − P̃

(n,n′)
1

∥∥∥
TV

)
≥1− α

2
.

Moreover, by data processing inequality, we can obtain a lower bound using
the distributions of the model parameters instead of the distribution of the
synthetic data. Letting J be the random variable selecting j, we have Markov
chain J → Dn → θ̂n(Dn) → D̃n′ . From the Markov chain, we have the data
processing inequality∥∥∥P̃ (n,n′)

0 − P̃
(n,n′)
1

∥∥∥
TV

≤
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

for any n, n′ ∈ N, (5.3)

where P̂
(n)
j (S) =

∫
1(θ̂n(dn) ∈ S)dPj(dn) for S ∈ A′′, j = 0, 1.

Here A′′ is an appropriate σ-algebra on Θ. P̂
(n)
0 , P̂

(n)
1 are the marginal distribu-

tions of θ̂n(Dn) conditioned on j = 0, 1, respectively. Equation (5.3) is immedi-
ately obtained from the fact that the total variation is an f -divergence and a ba-
sic property of f -divergences. If we select the α which appears in Lemma 8 such

that
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

< α, then α automatically satisfies
∥∥∥P̃ (n,n′)

0 − P̃
(n,n′)
1

∥∥∥
TV

<

α. This gives us the following lemma.

Lemma 9. Let P̂
(n)
0 and P̂

(n)
1 be the marginal distributions of θ̂n(Dn) condi-

tioned on j = 0, 1, respectively. If
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

≤ α < 1, then we have

p̃e ≥ (1− α)/2.

This lemma implies that, if
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

= 0, then p̃e ≥ 1/2. When a direct

analysis of the distributions of D̃n′ is difficult, this lemma allows us to analyze
the distributions of θ̂n(Dn).

Combining the results so far, we have obtained a lower bound of our problem
as follows.

Lemma 10. Let P̂
(n)
0 (Dn) and P̂

(n)
1 be the marginal distributions of θ̂n condi-

tioned on j = 0, 1, respectively. If
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

≤ α < 1, then we have

R∗
n,n′(P, λ,PΘ, w ◦ ρ) ≥ w(δ)

1− α

2
.

Using Lemma 10, we immediately obtain the following theorem.
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Theorem 10. Suppose that the weighting function w is strictly increasing. If
there exist P0 and P1 ∈ P such that(∥∥∥P̃ (n,n′)

0 − P̃
(n,n′)
1

∥∥∥
TV

≤ c′ < 1 or
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

≤ c′ < 1
)

and ρ(λ(P0), λ(P1)) = c > 0 (5.4)

for any natural numbers n, n′ and some universal constants c′, c, minimax risk
R∗
n,n′(P, λ,PΘ, w ◦ ρ) does not converge to 0 as n, n′ ↑ ∞.

We can make some remarks about this theorem. First, if there exist only P0, P1

such that
∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

≤ c′ =⇒ ρ(λ(P0), λ(P1)) = 0, then c is always 0.

In this case, we only have the trivial lower bound, R∗
n,n′ ≥ 0. We can also note

that this theorem directly answers the question posed in Section 5.1. Under
condition (5.4), any estimator will be inconsistent in its worst case. Thus, (5.4)
is the condition causing a serious failure of estimation, which is what we were
looking for.

Corollary 4. Suppose that there exists a constant C > 0 such that ρ(λ(P ), λ(P ′)) <
C for any P, P ′ ∈ P. If there exist P0 and P1 satisfying (5.4), then, for any

estimator λ̂, there exists P such that λ̂(D̃n′) does not converge to λ(P ) in prob-
ability as n, n′ → +∞.

Proof. We here show the contraposition of the corollary.
We assume that there exists a consistent estimator λ̂. For any ϵ > 0, we

have

P (w(ρ(λ̂(D̃n′), λ(P ))))

=P (1(ρ(λ̂(D̃n′), λ(P )) > ϵ)w(ρ(λ̂(D̃n′), λ(P ))))

+ P (1(ρ(λ̂(D̃n′), λ(P )) ≤ ϵ)w(ρ(λ̂(D̃n′), λ(P ))))

≤w(C) · P (ρ(λ̂(D̃n′), λ(P )) > ϵ) + ϵ · P (ρ(λ̂(D̃n′), λ(P )) ≤ ϵ).

By the definition of convergence in probability, we can take an arbitrary small
ϵ and can make P (ρ > ϵ) arbitrarily small by choosing n sufficiently large.
Thus, if there exists a consistent estimator, the minimax risk converges to 0 as
n→ ∞.

Our next interest is whether a pair P0, P1 satisfying condition (5.4) can exist
for some practical problems, and if so, which ones? If no problem satisfying the
condition existed, then the condition would be completely meaningless.

5.4 An Example of Inconsistency

We find that one situation in which P0, P1 satisfy (5.4) with c′ = 0 in Theorem 10

is when θ̂n is the QMLE for the parameter of a certain subfamily of some
exponential family and λ is a function satisfying certain conditions.

First, we define PΘ. A probabilistic model which is a member of an expo-
nential family of interest has a density function of the following form:

pθ(x) = h(x) exp
(
b(θ)⊤T(x)− S(b(θ))

)
, (5.5)
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where b : Θ → Rk′ ,T : X → Rk′ , S : Θ → R for a natural number k′. b(θ)
and T are called the natural parameter and the sufficient statistic, respectively.
Setting these functions concretely, we can represent many distributions. For the
sake of discussion, we consider certain subfamilies of exponential families that
satisfy some assumptions. The first assumption is that the matrix

∂b(θ)

∂θ
≡


∂[b(θ)]1
∂[θ]1

. . . ∂[b(θ)]k′
∂[θ]1

...
. . .

...
∂[b(θ)]1
∂[θ]k

. . . ∂[b(θ)]k′
∂[θ]k


is full rank for any θ ∈ Θ. That is, there is a one-to-one correspondence between
b(θ) and θ. For this assumption, we take k′ = k. The second assumption is
that S(b(θ)) is injective. That is, θ ̸= θ′ =⇒ S(b(θ)) ̸= S(b(θ′)).

Given realization dn = (x1, ...,xn) of data and the PΘ defined immediately
above, we consider QMLE to select a good pθ from PΘ. The log-likelihood
function is written as follows:

Ln(θ|dn) =
1

n

n∑
i=1

ℓ(θ|xi) where ℓ(θ|x) = log pθ(x).

As we saw in Section 2.4, a QMLE sequence {θ̂n}n has asymptotic normality
under some regularity conditions. The following lemma gives a sufficient condi-
tion on data distributions P0 and P1 for the two QMLE sequences for P0 and
P1 converging in distribution to the same normal random variable .

Lemma 11. Suppose that Assumptions 1 to 6 hold. If P0 and P1 satisfy

P0[T(X)] = P1[T(X)] and P0[T(X)T(X)⊤] = P1[T(X)T(X)⊤], (5.6)

then the sequences of θ̂n for P0 and P1 converge in distribution to the same
normal random variable.

Proof. For a data distribution P , the QMLE sequence n → ∞ converges to θP
that satisfies the following equation under the regularity conditions:

∂P [ℓ(θ|X)]

∂θ

∣∣∣∣
θ=θP

= P

[
∂ℓ(θ|X)

∂θ

] ∣∣∣∣
θ=θP

= 0. (5.7)

Since the partial derivative with respect to θ of the log-likelihood function is

∂ℓ(θ|x)
∂θ

=
∂b

∂θ
T(x)− ∂b

∂θ
S′(b(θ)) where S′(b(θ)) ≡ ∂S(b(θ))

∂b(θ)
, (5.8)

(5.7) is evaluated as follows:

∂b

∂θ
P [T(X)]− ∂b

∂θ
S′(b(θP )) = 0.

By the full-rank assumption of ∂b/∂θ, the above equality is equivalent to

P [T(X)] = S′(b(θP )).



5.4. AN EXAMPLE OF INCONSISTENCY 65

In this form, the true data distribution P appears only on the left-hand side,
and the parameter θ appears only on the right-hand side. From this property,
we have that if data distributions P0, P1 satisfy

P0[T(X)] = P1[T(X)], (5.9)

then the QMLEs for these distributions converge in probability to the same
point for n → ∞: θP0

= θP1
. This condition is for the distributions of two

QMLE sequences for two data distributions converging to normal distributions
having identical centers. We still do not know the condition for the covariance
matrices of the normal distributions being identical.

Next, we discuss the covariance matrix of the normal random variable that
the QMLE sequence converges to. As we saw in Section 2.4, we need to analyze
the following two matrices in order to evaluate the covariance matrix:

A(θP ) = P
∂2ℓ(θ|X)

∂θ2

∣∣∣∣
θ=θP

and B(θP ) = P

(
∂ℓ(θ|X)

∂θ

)(
∂ℓ(θ|X)

∂θ

)⊤ ∣∣∣∣
θ=θP

.

(5.10)

To analyze A(θ), we consider the second derivative of the log-likelihood function.
By the definition of the log-likelihood function ℓ, its second partial derivative
with respect to θ is evaluated as follows:

∂2ℓ(θ|x)
∂θ2

=

(
∂

∂θ

∂b

∂θ

⊤
)
T(x)−

(
∂

∂θ

∂b

∂θ

⊤
)
S′(b(θ))− ∂b

∂θ
S′′(b(θ))

∂b

∂θ

⊤

=

(
∂

∂θ

∂b

∂θ

⊤
)
(T(x)− S′(b(θ)))− ∂b

∂θ
S′′(b(θ))

∂b

∂θ

⊤

where S′′(b(θ)) ≡ ∂2S(b(θ))

∂θ2
.

Thus, since P [T(x)]− S′(b(θP )) = 0,

A(θP ) = −∂b
∂θ
S′′(b(θ))

∂b

∂θ

⊤
.

The right-hand side does not contain x. This implies that θP0
= θP1

=⇒
A(θP0

) = A(θP1
).

We proceed to the analysis ofB(θP ). From the definition of the log-likelihood
function ℓ and (5.8), we have

P

(
∂ℓ(θ|X)

∂θ

)(
∂ℓ(θ|X)

∂θ

)⊤

=P
∂b

∂θ
(T(X)− S′(b(θ))) (T(X)− S′(b(θ)))

⊤ ∂b

∂θ

⊤

=
∂b

∂θ

(
P [T(X)T(X)⊤]− P [T (X)]S′(b(θ))⊤

− S′(b(θ))P [T(X)]⊤ − S′(b(θ))S′(b(θ))⊤
)∂b
∂θ

⊤
.
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From this equation, we can see that, if a pair of data distributions P0, P1 and a
parameter θ satisfy P0[T(X)] = P1[T(X)] = S′(b(θ)), then we have

P0[T(X)T(X)⊤] = P1[T(X)T(X)⊤] =⇒ B(θP0) = B(θP1).

Lemma 11 does not always imply convergence in total variation. Conver-
gence in distribution is weaker than convergence in total variation. Lemma 11
is not sufficient to obtain (5.4). If the CDFs of two random variables converge
to the same function at all points, we say that the two random variables con-
verge in distribution. This argument does not require that the density functions
agree. Even if the density functions of two random variables do not agree at
some finite number of points, their CDFs can agree. In such a case, the total
variation between the random variables is not necessarily zero.

To deal with the issue of convergence, we consider a discretizing operation
that maps the estimator to a finite set. This operation models the fact that
modern computers cannot handle real numbers and instead approximate them
with finite numbers of digits as type float or double. This assumption eliminates
the need for us to consider pathological exceptions. For a positive real number
∆, a natural number L, and a point θ0 ∈ Θ,

Θ′ ≡ {θ0 + 2∆v : v = (l1, l2, ..., lj) for l1, ..., lk = 0, ..., L− 1,∞} .

After optimization, estimation θ̂ is projected to Θ′ by function π defined by

[π(θ̂)]j =


[θ0]j if [θ̂]j ≤ [θ0]j +∆,

[θ0]j + 2∆
⌈
[θ̂]j−([θ0]j+∆)

2∆

⌉
if [θ0]j +∆ < [θ̂]j ≤ [θ0]j + (2L− 1)∆,

+∞ if [θ̂]j > [θ0]j + (2L− 1)∆,

where ⌈·⌉ is the ceiling function defined as ⌈·⌉ : R → N;x 7→ min{n ∈ N : x ≤ n}.
In the remainder of this section, let P̂ (n) be the distribution of the discretized
θ̂n for P .

Though the discretization can result in an error in the estimation of λ(P ),
we can ignore this error since we can take ∆ as small as we want. In fact, the
last digit of the double type is extremely small.

With the discretization and Lemma 11, we obtain convergence in total vari-
ation.

Lemma 12. For any P0, P1 ∈ P satisfying Assumptions 1 to 6 and condition
(5.6) and any positive real number δ > 0, there exists a natural number N such
that, for any n > N , ∥∥∥P̂ (n)

0 − P̂
(n)
1

∥∥∥
TV

≤ δ.

Proof. Given CDF F of θ̂n(Dn), the probability function of π(θ̂n(Dn)) is recur-
sively evaluated as

P (π(θ̂n(Dn)) = θ′)

=F ([θ̂n(Dn)]j ≤ [θ′]j +∆ for j = 1, ..., d)− P (π(θ̂n(Dn) ∈ pre(θ′))
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where pre : Θ′ → (subsets of Θ′) is defined as

pre(θ′) = {θ′′ ∈ Θ′ : [θ′′]j ≤ [θ′]j for all j = 1, ..., k ∧ θ′′ ̸= θ′}.

Since Θ′ is a finite set and

P (π(θ̂n(Dn)) ∈ pre(θ′)) =
∑

θ′′∈pre(θ′)

P (π(θ̂n(Dn)) = θ′′),

the probability function is evaluated in a finite number of computations of the
CDF values. Thus, if two sequences of θ̂n(Dn) converge to each other in distri-

bution, the two sequences of π(θ̂n(Dn)) converge in total variation.

We will also give an example of target statistic λ such that ρ(λ(P̂0), λ(P̂1)) >
0 for some P0, P1 satisfying (5.4). λ using higher than second moments of T(X)
satisfy the condition. The skewness of T(X) is a good example of a statistic
using such a higher moment. We conclude that there exists a situation satisfying
(5.4).

Modifying Corollary 4 using Lemma 12, we obtain the following theorem.

Theorem 11. Let w : [0,∞) → [0,∞) be a strictly monotone function satisfying
(2.1). Let λ : P → R be the skewness of T(X). Suppose that there exist data
generating mechanisms P0, P1 ∈ P satisfying Assumptions 1 to 6 and condition
(5.6). Moreover, the skewnesses of T(X) for P0 and P1 take different value.

Then, there exists P such that λ̂(D̃n′) does not converge to λ(P ) in probability
as n, n′ → +∞.

In this theorem, the abstract condition (5.4) is replaced with the regularity
conditions and concrete conditions (5.6). We can find a P as mentioned in the
theorem. At least one of P0 and P1 is such a P . The mixture distributions of
P0 and P1 can also be the P .

Finally, we offer a few remarks on Theorem 11. Roughly speaking, Theorem
11 says that we can construct no consistent estimator of some statistics which
depend on the third or higher moments of T(X) from the synthetic data. Al-
though this result might not seem surprising, we emphasize the following three
points. The first is that we have proven theoretically our intuition. Even if
the conclusion is not surprising, the method of proof is nontrivial. The second
point is that we do not deny the possibility of estimating second-order statistics.
Although the fitting result is given as a solution for the first-order equivalence,
we might be able to estimate second-order statistics. The third point is that,
Theorem 11 does not make any prediction about when the regularity conditions
do not hold. Thus, the general results Theorem 10 and Corollary 4 can poten-
tially lead to a surprising result. We discuss the third point in Section 5.6 as an
open problem.

5.5 Numerical Experiments

To illustrate that we cannot distinguish two distributions visually, we perform
numerical experiments with artificial data sets consisting of scalar records that
are generated from P0 and P1. We use two model families satisfying (5.4), fit the
data sets to models in model families whose parameters are scalars, and observe
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empirical P̂
(n)
0 and P̂

(n)
1 , which are the distributions of the obtained parameter

for each data set. Then, we can see that P̂
(n)
0 and P̂

(n)
1 converge toward each

other with increasing n. We implemented the experiment with Python code.

5.5.1 Fitting to a Gaussian Model

We first describe the artificial data generation. We utilize the half-normal dis-
tribution, whose density function is defined as

p(x;σ) =

√
2

σ
√
π
exp

(
− x2

2σ2

)
for x > 0,

where σ > 0 is the parameter and π is the mathematical constant. The mean
of the distribution is µ = σ

√
2/π. Then, we define two data-generating distri-

butions Pr and Pl whose densities are pr and pl defined as

pr(x;σ) = p(x+ µ;σ) x > −µ and pl(x;σ) = p(−x+ µ;σ) x < µ.
(5.11)

The r and l subscripts indicate right and left. Pr and Pl have long tails on the
right and left, respectively. Both have mean 0 and variance σ2(1−2/π). Despite
having identical means and variances, their skewnesses differ. The skewnesses
of random variables following Pr and Pl are

√
2(4− π)/(π − 2)3/2 and −

√
2(4−

π)/(π − 2)3/2, respectively.
We consider a Gaussian family PΘ with fixed variance τ > 0. The density

of a Gaussian distribution is

1

τ
√
2π

exp

(
− (y − θ)2

2τ2

)
=

exp(−y2/(2τ2))
τ
√
2π

exp

(
2yθ − θ2

2τ2

)
.

The family is an instance of an exponential family with

h(y) =
exp(−x2/(2τ2))

σ
√
2π

, b(θ) =
2θ

2τ2
, T (x) = x, S(b(θ)) =

(
θ

τ2

)2
τ2

2
.

We can see that Pr[T (x)] = Pl[T (x)] and Pr[T (x)
2] = Pl[T (x)

2]. Thus, since the
random variables following Pr and Pl have different skewnesses from each other,
the sufficient condition (5.4) for serious failure is satisfied with P0 := Pr, P1 :=
Pl, λ := skewness, and ρ = | · |.

We describe the generation of θ̂n as follows. Given data dn = (x1, ..., xn),

QMLE θ̂n is the θ ∈ Θ that minimizes the log-likelihood function defined as

Ln(θ|dn) =
1

n

n∑
i=1

(xi − θ)2.

With n = 10, 100, 1 000, we generate Dn using Pr and Pl and compute θ̂n for
each data set. For each n and distribution, we repeat observation 1 000 times
and plot the empirical densities of θ̂n(Dn). Figure 5.2 shows the fitting results.
Each bar shows the number calculated by dividing the number of points in an
interval by the width of the interval. Blue and orange bars correspond to the

empirical densities of P̂
(n)
r and P̂

(n)
l , respectively. With greater n, the area of

blue and orange is less, and the area of brown is greater. This means that it is
more difficult to distinguish those empirical distributions with greater n.
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(a) n = 10 (b) n = 100 (c) n = 1000

Figure 5.2: Empirical densities of θ̂n for fitting to a Gaussian model.

(a) n = 10 (b) n = 100 (c) n = 1000

Figure 5.3: Empirical densities of θ̂n for fitting to a Laplace model.

5.5.2 Fitting to a Laplace Model

In this subsection, we continue to use Pr and Pl as the data generators.

We employ a Laplace-model family PΘ with a fixed mean µ > 0, where
Θ = (0,+∞) is the parameter set. The density of a Laplace model Pθ with
mean 0 is

fθ(x) =
1

2θ
exp

(
−|x|
θ

)
= exp

(
−|x|
θ

− log(2θ)

)
.

The density family is an instance of an exponential family with

h(x) = 1, b(θ) = −1/θ, T (x) = |x|, S(b(θ)) = log(2θ).

We can see that Pr[T (x)] = Pl[T (x)] and Pr[T (x)
2] = Pl[T (x)

2]. Thus, since the
random variables following Pr and Pl have different skewnesses from each other,
the sufficient condition (5.4) for serious failure is satisfied with P0 := Pr, P1 :=
Pl, λ := skewness, and ρ = | · |.

We describe the generation of θ̂n as follows. Given data dn = (x1, ..., xn),

QMLE θ̂n is the θ ∈ Θ that minimizes the log-likelihood function defined as

Ln(θ|dn) =
1

n

n∑
i=1

(
−|xi|

θ
− log(2θ)

)
.

With n = 10, 100, 1 000, we generate Dn using Pr and Pl and compute θ̂n for
each data set. For each n and distribution, we repeat observation 1 000 times
and plot the empirical densities of θ̂n. In Figure 5.3, we can see a similar trend
to Figure 5.2.
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5.6 Discussion and Future Work

In this study, we show a sufficient condition for analysts being unable to build a
consistent estimator and provide a realistic example of the sufficient condition
holding. However, we do not recommend how the data holder and analysts
should avoid such an unfavorable situation. For the purpose of avoiding such
situations, it is important to investigate not only sufficient conditions but also
necessary conditions, which remain an open problem.

A general strategy for finding P0 and P1 satisfying (5.4) is also an open
problem. In Section 5.4, we provided the strategy to find such P0 and P1

in a certain fitting problem. The strategy relies on the asymptotic normality
theorem and the likelihood equations, which are the equations to find QMLEs.
Since these tools are not always available, this strategy is not always useable.

In this chapter, we focused on the case where all estimators are inconsistent
and have not yet investigated the case of all estimators being inefficient. We
expect that the key technique to analyze the inefficient case is strong data pro-
cessing inequalities, which evaluate how data processing decreases information.
The idea is used for the analysis of minimax risk in the context of machine
learning, e.g., [Zhang et al., 2013, Braverman et al., 2016, Duchi and Rogers,
2019b]. Equation (5.3) is simply a data processing inequality, but it may be
possible to evaluate it more precisely with a strong data processing inequality.

Our theory does not support data syntheses by non-parametric methods.
Non-parametric methods are popular for synthetic data generation, for example,
bagging [Drechsler and Reiter, 2011], classification and regression trees [Reiter,
2005b], random forest [Caiola and Reiter, 2010], support vector machine [Drech-
sler, 2010], and genetic algorithm [Chen et al., 2016]. Supporting these non-
parametric methods is our future work.

A generative adversarial network (GAN) [Goodfellow et al., 2014] is a popu-
lar method to generate synthetic data. Table data can be generated by GAN [Zhao
et al., 2021], and GAN can be used for microdata synthesis. An objective func-
tion used for GAN can have multiple minima, and its estimated parameter is
often not the global minimum but a local minimum due to the difficulty of
finding the global minimum. The GAN does not satisfy Assumption 3, which
corresponds to the assumption of a unique minimum of the objective function.
Thus, our theory in Section 5.4 does not support GAN use. Development of a
theory also covering GAN is our future work.

Techniques for differential privacy [Dwork et al., 2006] can enhance privacy
preservation in the publication of synthetic data, and our theory is potentially
applicable to the case where differentially private synthetic data are used. Es-
pecially, we can immediately provide a sufficient condition for the nonexistence
of a consistent estimator when QMLE θ̂n or D̃n′ is stochastically perturbed
for differential privacy. Such a privacy-preserving strategy is called output per-
turbation and is popular [Dwork and Roth, 2014]. However, analyzing other
preserving strategies, such as objective perturbation and gradient perturbation,
is nontrivial.

Inconsistency in statistical estimation is one thing, and privacy protection
is another. The inability to estimate a statistic does not necessarily mean that
information about the raw data cannot be obtained by reverse-engineering the
published statistic. The inability to estimate a statistic does not in itself help
to protect privacy, and data holders should keep this in mind.
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5.7 Related Work

We describe differences between the present study and studies on the issue of
misspecified models, which is a classical topic in the statistics community [White,
1981, 1982]. Such studies have some overlap with ours. Essentially, inconsis-
tency, which we study in this chapter, comes from misspecification of the model
family. Thus, misspecification is a necessary condition for inconsistency, but
misspecification alone is not sufficient to cause inconsistency.

Our study can be regarded as an exploration of a kind of insufficient statis-
tics. In the sense of classical statistics and information theory, a sufficient statis-
ticT(X) relative to distribution family {fθ} is a function such that I(θ;T(X)) =
I(θ;X), where I is mutual information [Cover and Thomas, 2006]. From the
perspective of sufficient statistics, we can say that condition (5.4) is a sufficient
condition for D̃n′ not to be a sufficient statistic of λ(P ). In this chapter, we
explored a more complicated situation than the classical situation and provided
a concrete analysis of the problem of practical estimation.

5.8 Conclusion

In this chapter, we found that synthetic data use must result in inconsistent
estimators for some statistics and clarified the sufficient condition for such in-
consistency. We showed the sufficient condition in a practical problem concretely
and visualized the inconsistency with artificial data.
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Chapter 6

Conclusion

In this thesis, we considered methods to avoid privacy composition in differential
privacy and analyzed their performance. As a possible solution to avoid privacy
composition, we consider LDP data. Although LDP helps a data curator avoid
privacy composition, LDP raises difficulty in that the curator does not know
the domain of the raw data. Due to this difficulty, data providers can input
undesirable values, which the curator does not expect. Those undesirable values
lead to security holes of privacy protection based on LDP, decreasing the data
utility.

First, we developed the simple protocols for building QMLEs from dis-
tributed data while guaranteeing ϵ-LDP for the users. The protocols generate
perturbed data that satisfies LDP even when the original data contain extremely
large values. Moreover, the protocols are provider-friendly; in the protocols,
providers submit only one or a few bits to a curator and do not need to wait for
one another, and they do not need to perform complex computations such as
integration or derivation. We clarified the sufficient conditions for the QMLEs
to be consistent and asymptotically normal and showed their limitations. We
showed that the sufficient conditions are relaxed with a concrete implementa-
tion. Our analysis helps curators understand data without direct observation of
the raw data.

Second, we analyzed the utility of LDP data in the presence of general unde-
sirable values. The undesirable values are risks to privacy protection. Curators
and users should always prepare some exception handler against undesirable
values even when they think that there are no undesirable values in a survey.
Moreover, curators should keep in mind that existing performance analysis may
be too optimistic since undesirable values can decrease the performance of an
estimator.

As another possible solution to avoid privacy composition, we considered
the utilization of synthetic data and found some negative results. We found
that synthetic data utilization must result in inconsistent estimators for some
statistics and clarified the sufficient condition for such inconsistency. This result
suggests that a data curator should make effort to avoid the sufficient condition.

Although it is not so difficult to avoid privacy composition, the solutions
can easily degrade the utility of perturbed data. Most components of this thesis
focused on pointing out the degeneration. We provided only a limited number
of concrete algorithms to balance privacy and data utility. To provide concrete

73
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methods to better trade-off between privacy and data utility is our future work.
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