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abstract

Machine learning models often inherit spurious correlations embedded in training

data and hence may fail to predict desired labels on unseen domains, which have differ-

ent distributions from the domain to provide training data. In response to the problem

of spurious correlations, it is recognized that one of the important issues for the future

of machine learning is generalization to data generated by a distribution outside

training ones, which is often called out-of-distribution (o.o.d.) generalization. Domain

Invariance Learning (DIL) is a rapidly developed approach for o.o.d. generalization;

using training data in many domains, DIL estimates such a predictor that enables

o.o.d. generalization. However, DIL has two drawbacks, which hinder the application

of DIL to real-world problems. Firstly, DIL often involves expensive and exhausting

annotations. In their estimation, DILs demand training data, consisting of the pairs

of input data and its teacher labels, in multiple domains. Against the demands,

teacher labels are not often attached to real-world data; for the estimation of DIL,

labels must be annotated accurately at great financial or human expense. The second

drawback is hyperparameter selection. Most DILs involve some hyperparameters to

balance the classification accuracy and the degree of invariance. It is known that

most DILs give high predictive performance only when a hyperparameter is selected

by using unseen test data; without using them, simple methods of hyperparameter

selection fail to find a preferable hyperparameter. The thesis aims to mitigate the two

problems. Aiming to overcome the first drawback, we propose a novel DIL framework;

assuming the availability of data from multiple domains for a classification task

with coarser labels than those of the target classification, for which the labeling cost

is lower, we estimate an invariant predictor for the target classification task with

training data gathered in a single domain. Moreover, we propose two methods of

cross-validation (CV) for hyperparameter selection in our new DIL framework. Since

we assume training data of a single domain for the target task, it is impossible to

estimate the deviation of the risks over the domains. Our CV methods mitigate the

difficulty by using additional coarser labeled data from multiple domains. Theoretical

analysis reveals that our framework can estimate the desirable invariant predictor

with a hyperparameter fixed correctly, and that such a preferable hyperparameter is

chosen by the proposed CV methods under some conditions. The effectiveness of the



proposed framework, including the cross-validation, is demonstrated empirically with

various datasets.
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“ I heard reiteration of the following claim:

Complex theories do not work, simple algorithms do.

I would like to demonstrate that in the area of science a good old principle is valid:

Nothing is more practical than a good theory.”

———————————————————————————

Vladimir N Vapnik. Statistical Learning Theory. Wiley, 1998.
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Chapter 1

Introduction

1.1 Out-of-Distribution Generalization in Machine

Learning

Machine learning has made remarkable progress. It gives a human-level performance

on image recognition [He et al., 2015], beats humans in various games [Moravč́ık

et al., 2017, Silver et al., 2016], translates texts like a human translator [Devlin et al.,

2019], and generates photographs that look like real ones [Goodfellow et al., 2014,

Sohl-Dickstein et al., 2015]. Thanks to the numerous successes, our lives have become

dramatically richer than ever before.

Despite the rapid progress, machine learning is still having a serious problem; they

often inherit spurious correlations in training. Training data may contain features

that are spuriously correlated to the labels of data, and machine learning models

often learn such spurious correlations embedded in training data. As a result, they

may fail to predict desired labels of test data generated by a different distribution

from one to provide training data. The phenomena is observed in many areas of

machine learning. We show two examples:

Image Recognition In classification of animal images, Deep Neural Networks

(DNNs) tend to misclassify cows on sandy beaches, since most training pictures are

taken in green pastures and DNNs inherit context information in training [Beery et al.,

2018, Shane, 2018]. Another example is detecting cancer from X-ray scans. Systems

trained with X-ray data in one hospital do not generalize well to other hospitals;

systems unintentionally extract factors specific to a particular hospital in training

12



[AlBadawy et al., 2018, Perone et al., 2019, Heaven, 2020].

Fairness Hiring tools for predicting candidates based on resumes, developed by

Amazon, were found to prefer men [Dastin, 2018]. The unfair decision stems from

spurious correlation embedded in previous human decisions: the model’s decision rule

may depend entirely on a spurious correlation “gender”, once it is found by a model

in training.

In response to the problem of spurious correlations, it is recognized that one

of the important issues for the future of machine learning is generalization to data

generated by distributions that have different correlations from ones on the training

distribution. Recently, this kind of generalization is often called out-of-distribution

(o.o.d.) generalization.

1.2 Domain Invariance Learning and Its Limita-

tions

Domain Invariance Learning (DIL) is a rapidly developed approach for the out-of-

distribution generalization [Arjovsky et al., 2020, Ahuja et al., 2020, Rothenhäusler

et al., 2021, Heinze-Deml et al., 2018, Peters et al., 2015, Koyama and Yamaguchi,

2021, Krueger et al., 2021, Liu et al., 2021a,b, Creager et al., 2021, Parascandolo

et al., 2022, Lu et al., 2022]. Their proposed estimator f = w ◦ Φ : X → Y, which
maps an input x ∈ X to its predictive class label y ∈ Y , is composed of two maps: (i)

a feature map Φ : X → H, which is called a domain invariance (defined in Chapter 2),

from the input space X to the feature space H, and (ii) a predictor w : H → Y which

estimates the label of the feature Φ(x) ∈ H. The intuitive reason why f has high

o.o.d. generalization performance is that Φ removes spurious features (e.g., contexts

of images) from x ∈ X , and hence, f can predict labels with ignoring spurious

correlations embedded in training data. Their training is implemented by training

data from multiple domains1.

While the DIL approaches have attracted much attention, they have two short-

comings in practice:

1In this thesis, we use the term domain to specify the distributions or random variables.
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ruffed grouse

reptilebird
bird1 bird100 snake1 snake100 turtle1 turtle100

• • • • • • • • •

Figure 1.1: Example of Coarser Labels.

Problem 1: Expensive annotation Requiring training data from multiple do-

mains may hinder wide applications; preparing training data in many domains often

involves expensive data annotation, especially when the class number of target clas-

sification is large. In real-world data, labels may be missing [Pham et al., 2021,

Zheng et al., 2017, Gu et al., 2020, Lakshminarayan et al., 1999, Tan et al., 2013]

or incomplete; in some cases, data may only specify classes to which the image does

not belong [Cour et al., 2011, Yan and Guo, 2020, Xu et al., 2019]. Such data with

insufficient annotation are not directly applicable to the standard IL methods; they

must be re-annotated accurately, often at great financial or human expense. The high

cost drives a strong need to establish a new DIL framework with lower annotation

costs.

Problem 2: Hyperparameter Selection The other important problem in DIL

is hyperparameter selection. Most DIL methods involve some hyperparameters to

balance the classification accuracy and the degree of invariance. As Krueger et al.

[2021], Gulrajani and Lopez-Paz [2023] point out, in the literature of DIL, the best

performances of invariance had often been achieved by selecting the hyperparameters

using test data from unseen domains. Moreover, Gulrajani and Lopez-Paz [2023]

numerically demonstrated that, without using test data, simple methods of hyperpa-

rameter selection fail to find a preferable hyperparameter. It demonstrates a strong

need for establishing an appropriate method of hyperparameter selection for DILs.

1.3 Contribution

The present thesis tries to mitigate the two problems stated in the last section.

Toward aiming to solve the first problem, we propose a novel DIL framework for

14
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the situation where the training data of target classification are given in only one

domain, while the task with coarser labels than those of the target classification,

which needs lower annotation cost, has data from multiple domains. Figure 1.1

shows an example of coarser labels. Consider the case where a target classification

has 300 labels (colored red) {bird1, ..bird100, snake1, ..., snake100, turtle1, ..., turtle100}
corresponding to 300 species. Then, the binary labels (colored blue) {bird, reptile}
are an example of coarser labels. The annotation cost will be drastically reduced by

changing the labels to much coarser ones. The following two examples are two such

scenarios that can have the advantage of coarser labels in terms of annotation cost

and quality.

Manual annotation In practice, annotation is done by humans through crowd-

sourcing or asking annotation vendors. Then, the changes from original to coarser

labels reduce the annotation cost from the following two viewpoints. At first, the

decrease in the number of classes reduces annotation time per image. Let us consider

the example in Fig 1.1. Then, annotation of coarser labels takes only a few seconds,

since we may judge whether or not the image includes any birds. On the other hand,

annotation of 300 labels will demand more time; it will take some time to correspond

numbers to the 300 labels, judge which classes an image belong to, and attach class

numbers. Secondly, coarser labels demand lower expert knowledge than ones needed

in original labels. In the example in Fig. 1.1, annotating the sub-types of birds,

snakes, and turtles would require expert knowledge. It is highly probable that an

annotation vendor would charge very high fees or decline such a request. On the

other hand, annotation of coarser labels (e.g., at the levels of bird or reptile) is much

easier so that we can rely on non-experts or crowdsourcing at a lower cost to obtain

annotated datasets for many domains.

Machine annotation Annotations of labels may be done by a pre-trained classifier

on the Internet as well as by humans with crowd-sourcing. Recent progress in artificial

intelligence enables us to access a high-quality, pre-trained classifier such as a ResNet

[He et al., 2016] pre-trained with ImageNet. Note that classification ability is much

higher for a task with a smaller number of classes. We can see the fact from Fig. 1.2

and Fig. 1.3; the top classification accuracy for CIFAR-10 (10 classes) attained almost

100% in 2016, while SOTA for CIFAR-100 (100 classes) at that time was about 75%.

The figures show that classifiers can annotate labels more precisely, as the numbers

16



of classes become smaller, and therefore. as classifications become coarser.

From the above discussions, we can see that the new DIL framework significantly

reduces the annotation cost in comparison with previous DIL methods; we need

exhausting annotation of target classification only for one domain and just coarser

labels, which demands lower cost, for other domains.

As for the second problem, we propose two methods of cross-validation (CV) for

hyperparameter selection in our new DIL framework. Since we assume training data

of a single domain for the target task, it is impossible to estimate the deviation of the

risks over the domains. Our CV methods mitigate the difficulty by using additional

coarser labeled data from multiple domains. Theoretical analysis proves that our

methods select a hyperparameter correctly under some conditions.

1.4 Outline

The Ph.D. thesis is organized as follows. In Chapter 2, we review previous DILs

and their shortcomings. Chapter 3 is the main part of the thesis. In Section 3.1, we

establish a novel framework of DIL, which estimates an invariant predictor from single

domain data, assuming additional data from multiple domains for a classification task

with coarser labels. In Section 3.2, we propose two methods of cross-validation for

selecting hyperparameters without accessing any samples from unseen target domains

under the framework. In Section 3.3, we mathematically prove that our framework

can estimate a correct invariant predictor with a hyperparameter fixed correctly and

that such a preferable hyperparameter is selected by the proposed CV methods under

some settings. Proofs of theorems in the thesis are contained in Section 4. In Chapter

5, we review some related works. In Chapter 6, we numerically demonstrate that

the proposed framework extracts an invariant predictor more effectively than other

existing methods. Finally, Chapter 7 is devoted to some concluding remarks.

Chapters 3, 4, and 6 are mostly based on the conference paper [Toyota and

Fukumizu, 2022].
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Chapter 2

Preliminaries

In this chapter, we mathematically formulate out-of-distribution generalization prob-

lem. Moreover, we review conventional Domain Invariance Learnings (DILs) and

their limitations.

2.1 Notations

Throughout this thesis, the spaces of objective and response variables are denoted by

X and Y, respectively. For given predictor f : X → Y and random variable (X, Y )

on X × Y with its probability PX,Y , R(X,Y )(f) denotes the risk of f on (X, Y ); i.e.,

R(X,Y )(f) :=
∫
l(f(x), y)dPX,Y , where l : Y ×Y → R is a loss function. For m ∈ N>0,

[m] denotes the set {1, ...,m}. For a finite set A, |A| ∈ N denotes the number of

elements in A.

2.2 Mathematical Formulation of Out-of-Distribution

Generalization

We mathematically formulate o.o.d. generalization problem following Arjovsky et al.

[2020].

We assume that the joint distribution of data (Xe, Y e) depends on the domain

e ∈ E , and consider the dependence of a predictor f on the domain variable e.

Suppose we are given training datasets De := {(xe
i , y

e
i )}n

e

i=1 ∼ PXe,Y e i.i.d. from

domains Etr ⊂ E . The final goal of the o.o.d. problem is to predict a desired label

Y e ∈ Y from Xe ∈ X for larger target domains E ⊃ Etr. To address the issue

18



caused by spurious correlations mathematically, Arjovsky et al. [2020] introduced the

o.o.d. risk

Ro.o.d.(f) := max
e∈E
Re(f), (2.1)

where Re(f) := R(Xe,Y e)(f). This is the worst-case risk over E , including unseen do-

mains E \Etr. Through the concept o.o.d. risk, o.o.d. generalization is mathematically

formulated as follows:

For a given parametric model {fθ}θ∈Θ,
how can we find a model parameter θ∗ ∈ Θ which minimizes Ro.o.d.(fθ) ?

2.3 Domain Invariance Learning

DIL [Arjovsky et al., 2020, Ahuja et al., 2020, Rothenhäusler et al., 2021, Heinze-Deml

et al., 2018, Koyama and Yamaguchi, 2021, Krueger et al., 2021, Liu et al., 2021a,b,

Creager et al., 2021, Parascandolo et al., 2022, Lu et al., 2022] is a rapidly developed

approach for o.o.d. generalization. The framework train a domain invariance defined

as follows:

Definition 1. We call Φ : X → H a domain invarince or domain invariance

feature when conditional distributions PY e1 |Φ(Xe1 ) and PY e2 |Φ(Xe2 ) satisfy PY e1 |Φ(Xe1 ) =

PY e2 |Φ(Xe2 )
1 for any e1, e2 ∈ E.

Here, this definition is a domain invariance based on conditional independence

[Peters et al., 2015, Koyama and Yamaguchi, 2021, Rojas-Carulla et al., 2018], while

Arjovsky et al. [2020], Ahuja et al. [2020] use a different type of domain invariances

based on argminwRe(w ◦ Φ) instead of PY e|Φ(Xe). Throughout the thesis, we carry

an argument by adopting the definition based on conditional independence.

In the following section, we review when and why the concept domain invariance

was proposed, and how it came to be used for out-of-distribution generalization

problem.

1Throughout the thesis, we write PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) when

PY e1 |Φ(Xe1 )=Φ(x) = PY e2 |Φ(Xe2 )=Φ(x)

holds as an equation between distributions, for any x ∈ X .
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2.3.1 Origin of Domain Invariance

The concept domain invariance is firstly proposed in statistical causal discovery

[Peters et al., 2015]. In the paper, they address the case where X = Rp and Y = R.
Moreover, they assume that (Xe, Y e) satisfies the following condition:

Assumption 2. There exists a vector of coefficients γ∗ = (γ∗
1 , ..., γ

∗
p)

t ∈ Rp with

support S∗ = {k | γ∗
k ̸= 0} ⊂ {1, ..., p} that satisfies

∀e ∈ E, Xe has an arbitrary distribution and

Y e = µ+Xe · γ∗ + εe, εe ∼ Fε and εe⊥⊥Xe
S∗,

where Xe
S∗ ∈ R|S∗| is S∗-components of Xe, µ is an intercept term, εe is a random

noise with mean zero, finite variance and the same distribution Fε across e ∈ E.

Under the assumption, a projection ΦS∗ , which maps x ∈ X to the subset S∗ of

its component, becomes a domain invariance among e ∈ E ; namely, PY e1 |ΦS∗ (Xe1 ) =

PY e2 |ΦS∗ (Xe2 ) holds for any e1, e2 ∈ E . Peters et al. [2015] show that plausible causal

predictors, domain invariances which satisfy the following properties, are useful for

causal discovery:

Definition 3. We call the variables S ⊂ {1, ..., p} plausible causal predictors under

E if there exists ∃γ ∈ Rp such that the following null hypothesis is true:

γk = 0 if γk /∈ S and

{
∃Fε for all e ∈ E
Y e = Xe · γ + εe where εe⊥⊥Xe

S and εe ∼ Fε.

As shown in Peters et al. [2015], under the case where (Xe1 , Y e1) follows a Gaussian

structural equation model and (Xe, Y e) for e ∈ E − {e1} have some conditions,⋂
S:plausible causal predictors

S

coincides with the parents of Y e1 ; in other words, the parents of Y e1 can be specified

if we can identify all plausible causal predictors. In detail, see Theorem 4 and 5

in Peters et al. [2015]. Peters et al. [2015] also proposed a method to estimate⋂
S:plausible causal predictors S with confidence intervals, and demonstrate its effectiveness

by a gene perturbation problem.

20



2.3.2 Domain Invariances for Out-of-Distribution General-

ization

Recently, a domain invariance has become utilized for the o.o.d. generalization

problem [Arjovsky et al., 2020]. Their proposed estimator f = w ◦ Φ is composed

of two maps: a domain invariance Φ : X → H, which realizes a feature of x ∈ X
in the feature space H, and a predictor w : H → Y of labels. Here, note that the

domain invariance Φ is not necessarily a variable selection same as one in the last

section; in an image recognition task, a feature map that removes contexts can not

be necessarily represented by some variable selection. The estimation of an invariant

predictor is implemented by solving the following optimization problem:

minΦ∈Itr,w:H→Y
∑
e∈Etr

Re(w ◦ Φ), (2.2)

where Itr is the set of domain invariances among training domains Etr:

Itr :=
{
Φ : X → H | PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ Etr

}
.

The following theorem ensures that the minimum of the bi-level optimization

problem (2.2) also minimizes o.o.d. risk under some conditions and simplifications:

Theorem 4 (o.o.d. optimality of IRM optimization problem). Let X := X1 × X2

and Y := R where X1 := Rn1 and X2 := Rn2 with n1, n2 ∈ N. Let (XI
1 , Y

I) be a

fixed random variable on X1 × Y. For simplicity of analysis, the domain set E is

defined by all the random variables (X, Y ) which satisfy PY |ΦX1 (X) = PY I |XI
1
, where

ΦX1 : X → X1 is a projection of x ∈ X onto X1; namely,

{(Xe, Y e)}e∈E :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PY |ΦX1 (X) = PY I |XI
1

}
.

Let a loss function l be the least square loss; for given f : X → Y,

Re(f) :=

∫
∥f(x)− y∥2dPXe,Y e .

To avoid discussing the non-trivial effects of nonlinear domain invariance Φ, we focus

on the simplified case of variable selections; namely, for the finite training domains

{(Xe, Y e)}Etr ⊂ {(Xe, Y e)}E , a domain invariance Φ in the optimization problem
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(2.2) only runs among Iv.s.tr defined by

Itr ⊃ Iv.s.tr :=

{
Φ : a variable selection

∣∣∣∣∣ PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any

(Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}Etr .

}
.

For a projection Φ, let Φi denote the Xi-component of Φ (i = 1, 2). If Φ has or has

not an Xi-component, we write ImΦi ≠ ∅ or ImΦi = ∅ respectively. For Φi (i = 1, 2),

Φ⊥
i denotes the projection onto orthogonal complements of ImΦi with respect to Xi;

namely, ImΦi

⊗
ImΦ⊥

i ≃ Xi

Assume that E and Etr satisfy the following conditions:

• Iv.s.tr = Iv.s. holds, where

Iv.s. :=

{
Φ : a variable selection

∣∣∣∣∣ PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any

(Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}E .

}
.

• For any variable selection Φ with ImΦ ⊊ X1, there exist x̄, ¯̄x and ¯̄̄x ∈ X with

Φ⊥
1 (¯̄x) ̸= Φ⊥

1 (
¯̄̄x) such that

PY I |XI=(Φ1(x̄),Φ⊥
1 (¯̄x)) ̸= PY I |XI=(Φ1(x̄),Φ⊥

1 (¯̄̄x))

Then, the inclusion

argminΦ∈Iv.s.
tr ,w:H→Y

∑
e∈Etr

Re(w ◦ Φ) ⊂ argmin
f :X→Y

Ro.o.d.(f)

holds. Here, w and f run among all measurable functions.

Remark 1 In our variable selection setting, the feature map Φ is chosen from the

projections of x to a subset of its components. For example, Φ may be Φ(x1, x2, x3) =

(x1, x3) when x is three-dimensional. This type of IL appears practically in causal

inference [Peters et al., 2015, Heinze-Deml et al., 2018] and regression [Rojas-Carulla

et al., 2018].

Remark 2 We will add some remarks about the first condition Iv.s.tr = Iv.s.. In

general, the inclusion Iv.s.tr ⊂ Iv.s. holds by definitions of Iv.s.tr and Iv.s.. The equality

Iv.s.tr = Iv.s. does not necessarily hold. Arjovsky et al. [2020] investigated necessary

conditions for the equality.
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The theorem is proven in Section 4.1. While the theorem ensures the validness of

(2.2), it is still a challenging optimization problem since each constraint calls an inner

optimization routine. So, Arjovsky et al. [2020] introduce the following objective

function: ∑
e∈Etr

Re(Φ) + λ · ∥∇w=1.0Re(w · Φ)∥2. (2.3)

Arjovsky et al. [2020] model Φ by DNNs and minimize (2.3) by conventional opti-

mization procedure, such as Adam [Kingma and Ba, 2015].

2.3.3 Species of Domain Invariance Learning

The primary work [Arjovsky et al., 2020] inspired various research concerning DILs

[Ahuja et al., 2020, Krueger et al., 2021, Liu et al., 2021a,b, Creager et al., 2021,

Parascandolo et al., 2022, Lu et al., 2022, Rosenfeld et al., 2021, Kamath et al., 2021,

Lin et al., 2022].

The theoretical properties of the optimization problem (2.2) and the objective

function (2.3) were analyzed [Rosenfeld et al., 2021, Kamath et al., 2021]. Rosenfeld

et al. [2021] reveal conditions of {(Xe, Y e)}e∈E under which the optimization problem

(2.2) succeeds or fails to minimize the o.o.d. risk (2.1), assuming that data are

generated from a simple linear structural equation model. Rosenfeld et al. [2021]

also show that the objective function (2.3) fails to minimize the o.o.d. risk (2.1)

under some non-linear structural equation models. Kamath et al. [2021] show that

the objective function (2.3) fails to minimize the bi-leveled optimization problem

(2.2) even when {(Xe, Y e)}e∈E follows a simple linear model. Moreover, Kamath et al.

[2021] find a linear structural equation model where (2.2) fails to minimize the o.o.d.

risk (2.1).

Another important direction is proposing new learning frameworks to improve the

primary work [Arjovsky et al., 2020]. Ahuja et al. [2020] introduced a new objective

function with the help of game theory. Krueger et al. [2021] used domain invariances

based on risk Re(f) instead of conditional independence P (Y e|Φ(Xe)). Parascandolo

et al. [2022] utilized domain invariances based on loss landscape among domains E .
Lin et al. [2022] introduced Bayesian inference into conventional DILs and numerically

shows that their new DIL framework prevents models from overfitting to training

data. Lu et al. [2022] propose new objective function with the helps of variational

autoencoders [Kingma and Ba, 2015, Rezende et al., 2014]. While common DIL

methods assume that the training examples are partitioned into “domains”, Liu et al.
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[2021a,b], Creager et al. [2021] focus on the setting where such partitions are not

provided. Creager et al. [2021] proposed the methods to attach domain labels that can

then be used to apply an invariant learning algorithm. Liu et al. [2021a,b] proposed

a novel domain invariance learning framework without domain labels.

2.4 Limitations of Domain Invariance Learning

Previous DILs have two shortcomings in practice:

Limitation I: Annotation cost problem Conventional DILs often demand

expensive and exhausting annotation. Please consider an image classification task and

let Y be a set of finite class labels. Previous DILs estimate a domain invariance based

on the discrepancy of PY e|Φ(Xe) among domains e ∈ E , and hence, their estimation

demands training data De := {(xe
i , y

e
i )} from multiple domains Etr ⊂ E . In practice,

labels yei are not attached to all images xe
i generated by multiple domains Etr ⊂ E ;

labels yei may be missing [Pham et al., 2021, Zheng et al., 2017, Gu et al., 2020,

Lakshminarayan et al., 1999, Tan et al., 2013] or in some cases, may only specify

classes to which the image does not belong [Cour et al., 2011, Yan and Guo, 2020,

Xu et al., 2019]. For the application of previous DILs, labels must be attached, often

at great financial or human expense.

Limitation II: Hyperparamter selection problem Objective functions in most

DILs have a hyperparameter λ to select, as (2.3) in Arjovsky et al. [2020]. The hyper-

parameter selection in DIL has special difficulty, however; because the o.o.d. problem

needs to predict Y e on unseen domains, λ must be chosen without accessing any data

in such unseen domains. It was reported that the success of DIL methods depends

strongly on the careful choice of hyperparameters, and some of the results even used

data from unseen domains in the choice [Gulrajani and Lopez-Paz, 2023, Krueger

et al., 2021]. Gulrajani and Lopez-Paz [2023] reported also experimental results of

various DIL methods with two CV methods, training-domain validation (Tr-CV) and

leave-one-domain-out validation (LOD-CV), and showed that the CV methods failed

to select preferable hyperparameters. In the Colored MNIST experiment, for example,

the accuracy of Arjovsky et al. [2020] is 52.0% at best, which is about a random guess

level.
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In the following chapter, we propose a new DIL framework to mitigate the

annotation problem, and then propose two methods of cross-validation (CV) for

hyperparameter selection in our new DIL framework.
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Chapter 3

Proposed Method

In the chapter, we propose a novel DIL framework to mitigate the annotation cost

problem of conventional DILs. In the new DIL framework, we consider the situation

where the training data of target classification are given in only one domain e∗,

while the task with coarser labels, which needs lower annotation cost, has data from

multiple domains Ead ⊂ E . Moreover, we propose two CV methods for the new DIL

framework. In the remaining chapters, we consider an image classification task and

let X and Y be spaces of input images and finite class labels.

3.1 Domain Invariance Estimation by Coarser La-

bel Data

Our goal is to make a domain invariant predictor from a single training domain

Etr = {e∗}. In this case, (2.2) is reduced to the empirical risk minimization minf Re∗(f)

on e∗, and therefore the standard DIL framework is not able to extract a domain

invariance.

In this chapter, we introduce an assumption that additional data De
ad for an-

other task (Xe, Ze), which have coarser labels than those of (Xe, Y e), is avail-

able with respect to multiple domains Ead ⊂ E . Formally, Ze is represented as

Ze = g(Y e) with a surjective label mapping g : Y → Z from the original to

coarser labels. The example in Section 1.3 is formalized by a surjevtive func-

tion g as, setting Y := {bird1, .., bird100, turtle1, .., turtle100, snake1, .., snake100} and
Z := {bird, reptile}, g(y) := bird if y = birdi (i ∈ {1, 2, ..., 100}) and g(y) := reptile

else.
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By making use of {De
ad}e∈Ead , our objective for the domain invariance prediction

is given by

minΦ∈Iad,w:H→Y Re∗(w ◦ Φ), (3.1)

where Iad is the set of domain invariances:

Iad :=
{
Φ : X → H | Pg(Y e1 )|Φ(Xe1 ) = Pg(Y e2 )|Φ(Xe2 ) for any e1, e2 ∈ Ead

}
.

Note that (3.1) evaluates the risk with a single training domain while the domain

invariances are given by additional data of multiple domains. The following theorem

ensures that the minimum of (3.1) also minimizes o.o.d. risk under some settings.

Theorem 5. Assume that the settings of X , Y, the loss function l(·, ·) and E and

notations with respect to a variable selection Φ are the same as ones in Theorem 4.

For {(Xe, Y e)}e∈Ead ⊂ {(Xe, Y e)}e∈E , define Iv.s.ad by

Iad ⊃ Iv.s.ad :=

{
Φ : a variable selection

∣∣∣∣∣ Pg(Y e1 )|Φ(Xe1 ) = Pg(Y e2 )|Φ(Xe2 ) for any

(Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}Ead

}
.

Assume that E and Ead satisfy the following conditions:

• Iv.s.ad = Iv.s. holds, where

Iv.s. :=

{
Φ : a variable selection

∣∣∣∣∣ PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any

(Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}E

}
.

• For any variable selection Φ with ImΦ ⊊ X1, there exist x̄, ¯̄x and ¯̄̄x ∈ X with

Φ⊥
1 (¯̄x) ̸= Φ⊥

1 (
¯̄̄x) such that

PY I |XI=(Φ1(x̄),Φ⊥
1 (¯̄x)) ̸= PY I |XI=(Φ1(x̄),Φ⊥

1 (¯̄̄x))

Then, the inclusion

argminΦ∈Iv.s.
ad ,w:H→Y Re∗(w ◦ Φ) ⊂ argmin

f :X→Y
Ro.o.d.(f)

holds. Here, w and f run among all measurable functions.

The theorem is proven in Section 4.2.

27



3.2 Construction of Objective Function

Among several candidates of the loss and model design, we focus a probabilistic

output case and evaluate its error by the cross entropy loss; that is, we model w by

pθ : H → PY , where PY denotes the set of probabilities on Y and θ denotes a model

parameter. The risk is then written by

Re(pθ ◦ Φ) =
∫
− log pθ(Y

e|Φ(Xe))dPXe,Y e .

We aim to solve (3.1) by minimizing the following objective function:

Objective(θ,Φ) := R̂e∗(pθ ◦ Φ)
+ λ · (Dependence measure of Pg(Y e)|Φ(Xe) on e ∈ Ead). (3.2)

Here, R̂e∗(pθ◦Φ) denotes the empirical risk of pθ◦Φ on the training domain Etr = {e∗}
evaluated by De∗ : R̂e∗(pθ ◦ Φ) := − 1

|De∗ |
∑

(xe∗ ,ye∗ )∈De∗ log pθ(y
e∗|Φ(xe∗)). While we

can consider some variations of domain invariance regularization, we adopt the one

used in Arjovsky et al. [2020] and construct an objective function as

Objective(θ, θad,Φ) := R̂e∗(pθ ◦ Φ) + λ ·
∑
e∈Ead

∥∇θ̂ad=θad
R̂(Xe,Ze)(p

Z|H
θ̂ad
◦ Φ)∥2. (3.3)

Here, p
Z|H
θ : H → PZ and pθ are the linear logistic regression model same as Arjovsky

et al. [2020], Φ is a nonlinear neural network, and

R̂(Xe,Ze)(p
Z|H
θad
◦ Φ) := − 1

|De
ad|

∑
(xe,ze)∈De

ad

log p
Z|H
θad

(ze|Φ(xe)).

It is not obvious if the regularization term in (3.3) is valid as a dependence measure

of Pg(Y e)|Φ(Xe) since it was proposed for another type of domain invariance based on

argminwRe(w ◦ Φ). The next lemma shows that these notions of domain invariance

are the same in the current setting.

Lemma 6. When modeling w by conditional probabilities, the following statements

are equivalent:

PZe|Φ(Xe) does not depend on e

⇔ argmin
p
Z|H
θad

R(Xe,Ze)(p
Z|H
θad
◦ Φ) does not depend on e,
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where model p
Z|H
θad

in argmin
p
Z|H
θad

runs over all probability densities.

Proof. Noting that argmin
θad

R(Xe,Ze)(pθad ◦ Φ) coincides with the probability density

function of PZe|Φ(Xe), the above equivalence follows immediately.

While our objective function (3.3) is similar to the ones in Arjovsky et al. [2020],

Krueger et al. [2021] in that they are composed of an empirical risk and a domain

invariance regularization, the correctness has not been fully discussed so far. In

Section 3.4, we will mathematically prove the correctness of (3.3) under some settings.

3.3 Hyperparameter Selection Method

3.3.1 Difficulty in Hyperparameter Selection

The objective function (3.3) has a hyperparameter λ to select, as is often the case

with DIL methods. The hyperparameter selection has difficulty as noted in Section

1.2 and 2.4. Gulrajani and Lopez-Paz [2023] reported that the success of DIL methods

depended strongly on the careful choice of hyperparameters and that the existing

two CV methods, training-domain validation (Tr-CV) and leave-one-domain-out

validation (LOD-CV), failed to select preferable hyperparameters.

The failure of the CV methods is caused by the improper design of the objective

function for CV; they do not simulate the o.o.d. risk, which is the maximum risk over

the domains. Tr-CV splits data in each training domain into training and validation

subsets, and takes the sum of the validated risks over the training domains. Obviously,

this is not an estimate of the o.o.d. risk. LOD-CV holds out one domain among the

training domains in turn and validates models with the average of the validated risks

over the held-out domains. Again, this average does not correspond to the o.o.d. risk.

In summary, the problem we need to solve is answering the following question: how

can we construct an evaluation function of the o.o.d. risk from validation data? In

the sequel, we will propose two methods of CV, which are summarized in Algorithm

1.

3.3.2 Method I: Using Coarser Label Data

We divide each of De∗ ,De1
ad, ...,D

en
ad into K parts where |Ead| = n, and use the k-th

sample {De∗

[k],D
e1
ad,[k], ...,D

en
ad,[k]} and the rest {De∗

[−k],D
e1
ad,[−k], ...,D

en
ad,[−k]} for validation
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and training, respectively. To approximate the o.o.d. risk of the trained predictor

pθλ
[−k]
◦ Φλ

[−k], we wish to estimate Re(pθλ
[−k]
◦ Φλ

[−k]) for e ∈ Ead ∪ {e∗} by the vali-

dation set. For e∗, we use the standard empirical estimate R̂e∗

[k](pθλ[−k]
◦ Φλ

[−k]). For

e ∈ Ead, we substitute unavailable Y e with Ze and use R̂(Xe,Ze)
[k] (pθλ

[−k]
◦ Φλ

[−k]) :=
1

|De
ad,[k]

|
∑

(xe,ze)∈De
ad,[k]
− log pθλ

[−k]
(ze|Φλ

[−k](x
e)).

3.3.3 Method II: Using Correction Term

Method I can be improved by correcting the replacement Re = R(Xe,Y e) with R(Xe,Ze)

for e ∈ Ead. We use the following theorem for the correction:

Theorem 7. Let Z��↪→ := {z ∈ Z ||g−1(z)| > 1}. For any map Φ : X → H, pθ : H →
PY , and random variable (X, Y ) on X × Y, the following equality holds:

R(X,Y )(pθ ◦ Φ) = R(X,g(Y ))(pθ ◦ Φ) +
∑

z��↪→∈Z��↪→

{
P (g(Y ) = z��↪→)×R(X,Y )|z��↪→

(pθ ◦ Φ)
}
.

Here,

R(X,Y )|z��↪→
(pθ ◦ Φ) :=

∫
− log pθ

(
Y |Φ(X), g(Y ) = z��↪→

)
dP(X,Y )|g(Y )=z��↪→

where P(X,Y )|g(Y )=z��↪→ denotes the conditional distribution of (X, Y ) given the event

g(Y ) = z��↪→, and pθ(y|Φ(x), g(Y ) = z��↪→) := pθ(y|Φ(x))∑
y∈g−1(z��↪→) pθ(y|Φ(x))

.

The proof is given in Section 4.3. The theorem shows that, to estimate the

correction term, we need to estimate (i)P (g(Y e) = z��↪→) and (ii)R(Xe,Y e)|z��↪→

(pθλ
[−k]
◦Φλ

[−k])

for every z��↪→ ∈ Z��↪→.

(i) is naturally estimated even on e ∈ Ead: P̂ (Ze = z��↪→) :=
|De

ad,z��↪→ |
|De

ad|
, where De

ad,z��↪→ :=

{(x, z) ∈ De
ad |z = z��↪→}. (ii) is not easily estimable; while a direct simulation of the

integration
∫
dP(Xe,Y e)|g(Y e)=z��↪→ demands data from (Xe, Y e) ∼ PXe,Y e , our available

data De
ad on e ∈ Ead is from PXe,g(Y e), not from PXe,Y e . To solve the non-availability

of data from PXe,Y e , we use the training data De∗ ∼ PXe∗ ,Y e∗ instead. Namely, (ii) is

estimated by

R̂(Xe∗ ,Y e∗ )|z��↪→

[k] (pθλ
[−k]
◦ Φλ

[−k]) :=
1

|De∗
[k],z��↪→ |

∑
(x,y)∈De∗

[k],z��↪→
− log pθλ

[−k]
(y|Φλ

[−k](x), g(Y ) = z��↪→),

where De∗

[k],z��↪→ :=
{
(x, y) ∈ De∗

[k] |g(y) = z��↪→

}
⊂ De∗

[k]. In Algorithm 1, the above risk

estimate is abbreviated by R̂e∗|z��↪→

[k] (λ) for notation simplicity.
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a

Algorithm 1 CV methods. If CORRECTION = True, λ is selected by method II
and if False, I.

Require: : Split De∗ ,De1
ad, ...,D

en
ad into K parts.

Require: : Set the hyperparameter candidates Λ.

Require: :P̂ e(z��↪→)← |De
ad,z��↪→ |
|De

ad|
, where De

ad,z��↪→:= {(x, z) ∈ De
ad |z = z��↪→ } for all e ∈ Ead and

z��↪→ ∈ Z��↪→.

1: for λ ∈ Λ do

2: for k = 1 to K do

3: Learn θλ[−k],Φ
λ
[−k] by using De∗

[−k],D
e1
ad,[−k], ...,D

en
ad,[−k].

4: R̂e∗

k (λ)← 1
|De∗

[k]
|

∑
(xe∗ ,ye∗ )∈De∗

[k]
− log pθλ

[−k]
(ye

∗ |Φλ
[−k](x

e∗))

//Risk estimation on e∗.

5: R̂e∗|z��↪→

k (λ) ← 1
|De∗

[k],z��↪→ |

∑
(x,y)∈De∗

[k],z��↪→
− log pθλ

[−k]
(y|Φλ

[−k](x), g(Y ) = z��↪→) for z��↪→ in

Z��↪→.

6: for e ∈ Ead do

7: R̂e
k(λ)← 1

|De
ad,[k]

|
∑

(xe,ze)∈De
ad,[k]
− log pθλ

[−k]
(ze|Φλ

[−k](x
e)).

// Risk estimation on e.

8: if CORRECTION then

9: R̂e
k(λ) +←

∑
z��↪→∈Z��↪→ P̂

e(z��↪→) · R̂e∗|z��↪→

k (λ) // Correction term addition.

10: end if

11: end for

12: R̂o.o.d.
k (λ)← maxe∈Ead∪{e∗} R̂e

k(λ) // o.o.d. risk estimation.

13: end for

14: R̂o.o.d.(λ)← 1
K

∑K
k=1 R̂o.o.d.

k (λ) // Final o.o.d. risk estimation.

15: end for

16: Select λ∗ := argminλ∈Λ R̂o.o.d.(λ)
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3.4 Theoretical Analysis

Throughout this section, to avoid discussing the non-trivial effects of nonlinear Φ,

we focus on the simplified case of variable selections, as Theorems 4 and 5. Let

X := X1 × X2 where X1 := Rn1 and X2 := Rn2 with n1, n2 ∈ N. For a projection

Φ, let Φi denote the Xi-component of Φ (i = 1, 2). If Φ has a X2-component, we

write ImΦ2 ≠ ∅. Let (XI
1 , Y

I) be a fixed random variable on X1 × Y . For simplicity

of analysis, the domain set E is defined by all the random variables (X, Y ) with

their distributions PΦX1 (X),Y are equal to PXI
1 ,Y

I , where ΦX1 : X → X1 denotes the

projection onto X1; namely,

{(Xe, Y e)}e∈E :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
.

(※)
In this case, for any e ∈ E the variable (Xe, Y e) satisfies (i) PY e|ΦX1 (Xe) equals to

PY I |XI
1
, and (ii) the marginal distribution PΦX1 (X) of the invariant feature ΦX1(X)

equals to PXI
1
. The above setting and definition persist through Section 3.4.

3.4.1 Theoretical Analysis of Objective Function

The following theorem ensures that, neglecting estimations and under some conditions,

a minimum of our objective function (3.3) with careful hyperparameter choice also

minimizes the o.o.d. risk (2.1):

Theorem 8 (o.o.d. optimality of our objective function, Setting I). Under the setting

(※), additionally assume that the following condition holds:

(A) For any variable selection Φ with ImΦ2 ̸= ∅, there exist two domains {e1, e2} ⊂
Ead such that Pg(Y e1 )|Φ(Xe1 ) ̸= Pg(Y e2 )|Φ(Xe2 ).

Then, there exists λ∗ ∈ R such that any minimizer (θ†, θ†ad,Φ
†) of (3.3),

(θ†, θ†ad,Φ
†) ∈ argmin

θ,θad.Φ

{
Re∗(pθ ◦ Φ) + λ∗ ·

∑
e∈Ead

∥∇θ̂ad=θad
R(Xe,Ze)(p

Z|H
θ̂ad
◦ Φ)∥2

}
,

is o.o.d. optimal, i.e.,

pθ† ◦ Φ† ∈ argminpθ:X→PY
Ro.o.d.(pθ),

where models pθ and p
Z|H
θad

in minθ,θad,Φ run all the probability density functions, and

Φ runs all the variable selections. The gradient ∇θad should be understood as the

functional derivative on the space of probability density functions.
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For the proof, see Section 4.4.1. Condition (A) means that Ead has sufficient

variation to capture the desirable domain invariance ΦX1 .

While Theorem 8 assumes p
Z|H
θad

runs all the probability density functions, our

method is implemented with p
Z|H
θad

running all linear logistic functions (see, Subsection

3.2). To see the effectiveness under the linear logistic case, we deduce the following

theorem:

Theorem 9 (o.o.d. optimality of our objective function, Setting II). Under the setting

(※), additionally assume that the following condition holds:

(A)’ For any variable selection Φ with ImΦ2 ̸= ∅, there exist two domains {e1, e2} ⊂
Ead such that Pg(Y e1 )|Φ(Xe1 ) ̸= Pg(Y e2 )|Φ(Xe2 ) and both Pg(Y e1 )|Φ(Xe1 ) and Pg(Y e2 )|Φ(Xe2 )

are in the linear logistic model.

(B) PY I |ΦX1 (X) is in the linear logistic model.

Then, there exists λ∗ ∈ R such that any minimizer (θ†, θ†ad,Φ
†) of (3.3),

(θ†, θ†ad,Φ
†) ∈ argmin

θ,θad.Φ

{
Re∗(pθ ◦ Φ) + λ∗ ·

∑
e∈Ead

∥∇θ̂ad=θad
R(Xe,Ze)(p

Z|H
θ̂ad
◦ Φ)∥2

}
,

is o.o.d. optimal, i.e.,

pθ† ◦ Φ† ∈ argminpθ:X→PY
Ro.o.d.(pθ),

where models pθ runs all the probability density functions, p
Z|H
θad

runs all linear logistic

functions, and Φ runs all the variable selections.

For the proof, see Section 4.4.2.

3.4.2 Theoretical Analysis of Cross Validation Methods

In Sections 3.3.2 and 3.3.3, we approximate R(Xe,Y e) using coarser labels Ze. While

the approximation is not exact, we will prove that the proposed CV methods still

select a correct hyperparameter under some conditions. We will also elucidate the

difference of the two CV methods. Given hyperparameter λ, minimizing (3.3) over

the model yields the feature map (variable selection) denoted by Φλ : X → Rnλ

(nλ ≤ n1+n2). For simplicity of theoretical analysis, we assume that the minimization

of (3.3) achieves perfectly the conditional probability density function of PY e∗ |Φλ(Xe∗ ),

denoted by p∗,λ(y|Φλ(x)). Then, neglecting estimation errors, the approximated
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o.o.d. risk of p∗,λ ◦Φλ used in Methods I and II are represented by the following RI(λ)

and RII(λ), respectively:

RI(λ) := max

{
max
e∈Ead

R(Xe,g(Y e))(p∗,λ ◦ Φλ),R(Xe∗ ,Y e∗ )(p∗,λ ◦ Φλ)

}
, (3.4)

RII(λ) := max
e∈Ead∪{e∗}

{
R(Xe,g(Y e))(p∗,λ ◦ Φλ)

+
∑

z��↪→∈Z��↪→

P (Ze = z��↪→) · R(Xe∗ ,Y e∗ )|z��↪→
(p∗,λ ◦ Φλ)

}
. (3.5)

We have the following theoretical justification of our CV methods: the chosen λ

gives a minimizer of the correct CV criterion. For the proofs, see Sections 4.4.3 and

4.4.4.

Theorem 10 (Correctness of Method I). Under the setting of variable selection (※),
assume further that the following conditions (i) and (ii) hold:

(i) Among a set Λ of hyperparameter candidates, there exists λI ∈ Λ such that

ΦλI
= ΦX1.

(ii) Let pe
∗
be the probability density function of PXe∗ ,g(Y e∗ ). Then, for any λ with

ImΦλ
2 ̸= ∅, there is eλ ∈ Ead such that

(x, z) ∼ PXeλ ,g(Y eλ ) satisfies pe
∗
(z|Φλ(x)) ≤ e−β − ε with probability 1.

Here, ε ∈ R>0 is some sufficient small positive real number (that is, 0 < ε≪ 1) and

β := H(Y e∗|ΦX1(Xe∗)) is the conditional entropy of (ΦX1(Xe∗), Y e∗).

Then, we have

argminλ∈ΛRI(λ) ⊂ argminλ∈ΛRo.o.d.(p∗,λ ◦ Φλ).

Theorem 11 (Correctness of Method II). Under the setting of variable selection (※),
assume that, in addition to (i) in Theorem 10, the following condition (iii) holds:

(ii)’ for any λ with ImΦλ
2 ̸= ∅, there is eλ ∈ Ead such that
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(x, z) ∼ PXeλ ,g(Y eλ ) satisfies pe
∗
(z|Φλ(x)) ≤ e−βλ − ε holds with probability 1.

Here, ε is some sufficiently small positive real number and

βλ := H(Y e∗|ΦX1(Xe∗))

−
∑

z��↪→∈Z��↪→

{
P (g(Y e∗) = z��↪→)×R(Xe∗ ,Y e∗ )|z��↪→

(p∗,λ ◦ Φλ)
}
.

Then, under the setting (※), we have

argminλ∈ΛRII(λ) ⊂ argminλ∈ΛRo.o.d.(p∗,λ ◦ Φλ).

The conditions (ii) and (ii)’ impose that, for at least one eλ ∈ Ead, the two domains

eλ and e∗ are different in the following meaning. If λ fails to remove domain-specific

factors (i.e., ImΦλ
2 ̸= ∅), for some eλ ∈ Ead, (x, z) ∼ PXeλ ,g(Y eλ ) yields low pe

∗
(z|Φλ(x))

with high probability. On the other hand, (x, z) ∼ PXe∗ ,g(Y e∗ ) yields high pe
∗
(z|Φλ(x))

with high probability: that is, e∗ and eλ are different.

The theoretical analysis shows, while Method I is simpler to implement than

Method II, Method II is more applicable. Noting that β ≥ βλ and hence, e−β − ε ≤
e−βλ − ε, the condition (ii)’ is milder than (ii). Recalling that (ii) and (ii)’ impose

the discrepancy between Ead and e∗ as discussed in the last paragraph, relaxation of

conditions from (ii) to (ii)’ implies that method II can be applied even when domains

Ead and e∗ have smaller discrepancy than the condition for Method I. The difference

of these two methods will be demonstrated in Section 6.

We discuss the feasibility of (ii) and (ii)’, and show these conditions are not

necessarily strong. First, we discuss the Condition (ii). Since β = H(Y e|ΦX1(Xe)) is

the conditional entropy, we have

0 ≤ β ≤ log |Y|

and hence
1

|Y|
− ε ≤ e−β − ε ≤ 1− ε

holds. We can see that Condition (ii) is weak if e−β − ε approaches 1, or if β is small.

Recall that ΦX1(Xe) is the bias-removed feature of Xe (digit of CMNIST, or object

of ImageNet, for example). We can then expect that, in many real-world settings,

β = H(Y e|ΦX1(Xe)) is often small, since the bias-removed feature ΦX1(Xe) should
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have a large amount of information on the labels. Condition (ii) is satisfied if the

likelihood pe
∗
(z|Φλ(x)) evaluated at a random point (x, z) ∼ PXe,g(Y e) is bounded by

the large value e−β − ε for at least one e ∈ Ead, so that the inequality in (ii) is likely

to hold. Noting that (ii)’ is weaker than (ii), the feasibility of (ii)’ is concluded from

one of (ii).

3.4.3 Sufficient Conditions of Theorem 10 and 11

In the section, we reveal sufficient conditions of e∗ for there to exist (Xeλ , Y eλ) that

satisfies (ii) and (ii)’ in Theorems 10 and 11, respectively.

Theorem 12. Assume that (Xe∗ , Y e∗) satisfies the following condition:

(A2) For a sufficiently small ε≪ 1, any λ with ImΦλ
2 ̸= ∅, any a ∈ ImΦλ

1 , and any

b ∈ Y, there exists c(λ, a, b)1 such that

P (Y e∗ = b|Φλ
1(X

e∗) = a,Φλ
2(X

e∗) = c) ≥ (1− e−β) + ε.

Then, for any λ with ImΦλ
2 ̸= ∅, there exists (Xeλ , Y eλ) ∈ {(Xe, Y e)}e∈E such that

the inequality in Theorem 10 (ii) holds.

Theorem 13. (Xe∗ , Y e∗) satisfies the following condition:

(A2)’ For a sufficiently small ε≪ 1, the following statement holds:

∀λ with ImΦλ
2 ̸= ∅, ∀α ∈ ImΦλ

1 , ∀b ∈ Y, ∃c(λ, a, b) s.t.

P (Y e∗ = b|Φλ
1(X

e∗) = a,Φλ
2(X

e∗) = c) ≥ (1− e−βλ) + ε.

Then, ∀λ with ImΦλ
2 ̸= ∅, there exists (Xeλ , Y eλ) ∈ {(Xe, Y e)}e∈E such that the

inequality in (ii)’ holds.

For the proofs of Theorems 12 and 13, see Sections 4.4.5 and 4.4.6. The conditions

(A2) and (A2)’ means that, in the domain e = e∗, the affection of domain-specific

factors (= X2) to the response variable Y e∗ is large; indeed, the inequality in (A2)

and (A2)’ means that, if λ fails to remove domain-specific factors (i.e., ImΦλ
2 ̸= ∅),

we can control the probability of Y e∗ = b by selecting c for any b ∈ Y . Note also that

the inequality (A2) and (A2)’ is a lower bound of the likelihood, while the condition

1c(λ, a, b) means c ∈ X2 is determined by given λ ∈ Λ, a ∈ X1, b ∈ Y.
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in (ii) and (ii)’, Theorem 10 and 11, is an upper bound of the likelihood. Although

imposing an upper bound might look reasonable to reflect non-fitting of the projection

Φλ, Theorem 12 shows that we can use a lower bound as a sufficient condition.
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Chapter 4

Proofs

4.1 Proof of Theorem 4

Throughout this section, for given Xe and x ∈ X (= X1×X2), X1- and X2-components

of Xe and x are often abbreviated Xe
1 and Xe

2 , or x1 and x2 respectively. For a variable

selection Φ, let Φi denote the Xi-component of Φ (i = 1, 2). If Φ has or has not

an Xi-component, we write ImΦi ≠ ∅ or ImΦi = ∅ respectively. For Φi (i = 1, 2),

Φ⊥
i denotes the projection onto orthogonal complements of ImΦi with respect to Xi;

namely, ImΦi

⊗
ImΦ⊥

i ≃ Xi.

For the proof of Theorem 4, we prepare two lemmas.

Lemma 14. Iv.str = {ΦX1} holds. Here, recall that ΦX1 is the projecton onto X1.

Lemma 15.

(w∗,Φ∗) ∈ argminΦ∈Iv.s.
tr ,w:H→Y

∑
e∈Etr

Re(w ◦ Φ)

coincides with (wΦX1 ,ΦX1), where wΦX1 is a conditional expectation E[Y e|ΦX1(Xe)]

of Y e given ΦX1(Xe) on PXe,Y e; that is,

wΦX1 (ΦX1(x)) := E[Y e|ΦX1(Xe) = ΦX1(x)].

Since PY e|ΦX1 (Xe) = PY e|Xe
1
does not depend on a choice of ((Xe, Y e)) ∈ {Xe, Y e}e∈E ,

E[Y e|ΦX1(Xe)] = E[Y e|Xe
1 ] also does not depend on a choice of (Xe, Y e) ∈ {(Xe, Y e)}e∈E .

We prove Theorem 4 based on the above lemmas, before proving them.
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Proof of Theorem 4 By Lemma 15, we may prove that

wΦX1 ◦ ΦX1 ∈ argmin
f :X→Y

Ro.o.d(f).

To prove it, it suffices to prove the following statement:

For any f : X → Y and (Xe1 , Y e1) ∈ {(Xe, Y e)}e∈E , there exists

(Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E such that∫
∥wΦX1 ◦ ΦX1(x)− y∥2dPXe1 ,Y e1 (x, y) ≤

∫
∥f(x)− y∥2dPXe2 ,Y e2 (x, y). (4.1)

Take arbitrary f : X → Y and (Xe1 , Y e1) ∈ {(Xe, Y e)}e∈E . Define (Xe2 , Y e2) ∈
{(Xe, Y e)}e∈E such that its distribution is the direct product PX

e1
1 ,Y e1 ⊗ PX2 , where

PX
e1
1 ,Y e1 is the marginal distribution of PX

e1
1 ,Y e1 on X1 × Y and PX2 is an arbitrary

distribution on X2.

Then, the right-hand side of the inequality (4.1) is given by∫
∥f(x)− y∥2dPXe2 ,Y e2 (x, y) =

∫
∥f(x)− y∥2d(PX

e1
1 ,Y e1 ⊗ PX2)(x, y)

=

∫
PX2(x2)

∫
∥f(x1, x2)− y∥2dPX

e1
1 ,Y e1 (x1, y).

We can see that, for any x∗
2 ∈ X2, the inequality∫

∥f(x1, x
∗
2)− y∥2dPX

e1
1 ,Y e1 (x1, y) ≥

∫
∥E[Y |ΦX1(Xe) = x1]− y∥2dPX

e1
1 ,Y e1 (x1, y)

=

∫
∥wΦX ◦ ΦX1(x1)− y∥2dPX

e1
1 ,Y e1 (x1, y)

holds, since the minimum of a risk on the least square loss is attained at the conditional
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expectation E[Y e|ΦX1(Xe)]. Hence, we obtain∫
∥f(x)− y∥2dPXe2 ,Y e2 (x, y) =

∫
PX2(x2)

∫
∥f(x1, x2)− y∥2dPX

e1
1 ,Y e1 (x1, y)

≥
∫

PX2(x2)

∫
∥wΦX ◦ ΦX1(x)− y∥2dPX

e1
1 ,Y e1 (x1, y)

=

∫
∥wΦX ◦ ΦX1(x)− y∥2dPX

e1
1 ,Y e1 (x1, y)

=

∫
PX

e1
2 |Xe1

1 ,Y e1 (x2)

∫
∥wΦX ◦ ΦX1(x)− y∥2dPX

e1
1 ,Y e1 (x1, y)

=

∫
∥wΦX ◦ ΦX1(x)− y∥2d(PX

e1
1 ,Y e1 ⊗ PX

e1
2 |Xe1

1 ,Y e1 )(x, y)

=

∫
∥wΦX ◦ ΦX1(x)− y∥2dPXe1 ,Y e1 (x, y),

which concludes the proof.

Proof of Lemma 14 Since Iv.str = Iv.s, we may prove that Iv.s = {ΦX1}. We prove

Iv.s = {ΦX1} by following three steps:

Step 1

Take any variable selection Φ with ImΦ1 ̸= ∅ and ImΦ2 ̸= ∅. Then Φ /∈ Iv.s..

Step 2

Take any variable selection Φ with ImΦ1 = ∅ and ImΦ2 ̸= ∅. Then Φ /∈ Iv.s..

Step 3

Take any variable selection Φ with ImΦ ⊊ X1. Then Φ /∈ Iv.s..

Poof of Step 1 It suffices to prove the following statement.

For any variable selection Φ with ImΦ1 ̸= ∅ and ImΦ2 ̸= ∅, there exist two

distributions (Xe1 , Y e1) and (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E which satisfy

PY e1 |Φ(Xe1 ) ̸= PY e2 |Φ(Xe2 ).

Take any variable selection Φ with ImΦ1 ̸= ∅ and ImΦ2 ̸= ∅. Fix x∗ ∈ X , y∗, y∗∗ ∈ Y
with y∗ ̸= y∗∗ and pI(y∗|x∗

1) > 0. Here, recall that pI denotes the p.d.f. of PY I |XI
1
.

Define two maps gi : ImΦ1 × Y → ImΦ2 (i = 1, 2) by
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g1(Φ1(x), y) =

{
Φ2(x

∗) (Φ1(x), y) =
(
Φ1(x

∗), y∗
)

Φ2(x
∗)− 1 ( else )

g2(Φ1(x), y) =

{
Φ2(x

∗) (Φ1(x), y) = (Φ1(x
∗), y∗∗)

Φ2(x
∗)− 1 ( else )

Take two distributions (Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E such that their

distributions PXe1 ,Y e1 and PXe2 ,Y e2 coincide with

PXe1 ,Y e1 = PImΦ⊥
2
⊗ P e1

ImΦ2|ImΦ1,Y ⊗ PY I |XI
1
⊗ PImΦ1 ⊗ PImΦ⊥

1

PXe2 ,Y e2 = PImΦ⊥
2
⊗ P e2

ImΦ2|ImΦ1,Y ⊗ PY I |XI
1
⊗ PImΦ1 ⊗ PImΦ⊥

1
.

Here,

• PImΦ⊥
2
denotes an arbitrary distribution on ImΦ⊥

2 ,

• PImΦ1 denotes an arbitrary distributions on ImΦ1 where its p.d.f. pImΦ1(Φ1(x))

satisfies pImΦ1(Φ1(x
∗)) ̸= 0,

• PImΦ⊥
1
is a distribution on ImΦ⊥

1 with its p.d.f. coincides with a delta function

δΦ⊥
1 (x∗)(Φ

⊥
1 (x)) on Φ⊥

1 (x
∗),

• P ei
ImΦ2|ImΦ1,Y (i = 1, 2) denotes a conditional distribution on ImΦ2 given ImΦ1×Y ,

with its p.d.f. peiImΦ2|ImΦ1,Y coincides with a delta function δgi(Φ1(x),y)(Φ2(x)) on

gi(Φ1(x), y).

Let the p.d.f of PImΦ⊥
2
be pImΦ⊥

2
. Then, the p.d.f. of the conditional distribution

PY e1 |Φ(Xe1 )=Φ(x∗) is represented as∫
pImΦ⊥

2
(Φ⊥

2 (x))×δg1(Φ1(x∗),y)(Φ2(x
∗))× pI(y|Φ1(x

∗),Φ⊥
1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
2 (x)dΦ

⊥
1 (x)∫

pImΦ⊥
2
(Φ⊥

2 (x))×δg1(Φ1(x∗),y)(Φ2(x
∗))× pI(y|Φ1(x

∗),Φ⊥
1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
2 (x)dΦ

⊥
1 (x)dy

(4.2)
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Note that, for fixed x∗, δg1(Φ1(x∗),y)(Φ2(x
∗)) coincides with δy∗(y) ; indeed, by the

definitions of g1 ,

δg1(Φ1(x∗),y)(Φ2(x
∗)) =

{
∞ ( if Φ2(x

∗) = g1(Φ1(x
∗), y))

0 ( else )

and noting that Φ2(x
∗) = g1(Φ1(x

∗), y) hold i.f.f. y = y∗ , we can see that

δg1(Φ1(x∗),y)(Φ2(x
∗)) = δy∗(y) holds as functions of y ∈ Y .

Hence, noting the fact, the numerator of (4.2) is rewritten as∫
pImΦ⊥

2
(Φ⊥

2 (x))× δg1(Φ1(x∗),y)(Φ2(x
∗))× pI(y|Φ1(x

∗),Φ⊥
1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
2 (x)dΦ

⊥
1 (x)

=

∫
δg1(Φ1(x∗),y)(Φ2(x

∗))× pI(y|Φ1(x
∗),Φ⊥

1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
1 (x)

= δg1(Φ1(x∗),y)(Φ2(x
∗))× pI(y|Φ1(x

∗),Φ⊥
1 (x

∗))× pImΦ1(Φ1(x
∗))

= δy∗(y)× pI(y|x∗
1)× pImΦ1(Φ1(x

∗)).

On the other hand, the denominator of (4.2) is rewritten as∫
pImΦ⊥

2
(Φ⊥

2 (x))× δg1(Φ1(x∗),y)(Φ2(x
∗))× pI(y|Φ1(x

∗),Φ⊥
1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
2 (x)dΦ

⊥
1 (x)dy

=

∫
δg1(Φ1(x∗),y)(Φ2(x

∗))× pI(y|Φ1(x
∗),Φ⊥

1 (x))

× δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x

∗))dΦ⊥
1 (x)dy

=

∫
δg1(Φ1(x∗),y)(Φ2(x

∗))× pI(y|Φ1(x
∗),Φ⊥

1 (x
∗))× pImΦ1(Φ1(x

∗))dy

=

∫
δy∗(y)× pI(y|x∗

1)× pImΦ1(Φ1(x
∗))dy

42



= pI(y∗|x∗
1)× pImΦ1(Φ1(x

∗)).

Combining the two transformations, (4.3) is represented by

(4.3) =
δy∗(y)× pI(y|x∗

1)× pImΦ1(Φ1(x
∗))

pI(y∗|x∗
1)× pImΦ1(Φ1(x∗))

=
δy∗(y)× pI(y|x∗

1)

pI(y∗|x∗
1)

Noting that

δy∗(y)× pI(y|x∗
1)

pI(y∗|x∗
1)

=

{
∞ (y = y∗)
0×pI(y|x∗

1)

pI(y∗|x∗
1)

= 0 ( else )
,

we can see that

(4.3) = δy∗(y).

By the same procedure, we can also show that the p.d.f. of PY e2 |Φ(Xe2 ) is δy∗∗(y).

Recalling that

y∗∗ ̸= y∗,

we can see that

PY e1 |Φ(Xe1 )=Φ(x∗) ̸= PY e2 |Φ(Xe2 )=Φ(x∗),

which concludes the proof of Step 1.

Poof of Step 2 It suffices to prove the following statement.

For any variable selection Φ with ImΦ1 = ∅ and ImΦ2 ̸= ∅, there exist two

distribution (Xe1 , Y e1) and (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E which satisfy

PY e1 |Φ(Xe1 ) ̸= PY e2 |Φ(Xe2 ).

Take any variable selection Φ with ImΦ1 = ∅ and ImΦ2 ̸= ∅. Fix x∗ ∈ X , y∗, y∗∗ ∈ Y
which satisfy y∗ ̸= y∗∗ and pI(y∗|x∗

1) > 0. Define two maps gi : Y → ImΦ2 (i = 1, 2)

by

g1(y) =

{
Φ2(x

∗) (y = y∗)

Φ2(x
∗)− 1 ( else )

g2(y) =

{
Φ2(x

∗) (y = y∗∗)

Φ2(x
∗)− 1 ( else )
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Take two distributions (Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E such that their

distributions PXe1 ,Y e1 and PXe2 ,Y e2 coincide with

PXe1 ,Y e1 = PImΦ⊥
2
⊗ P e1

ImΦ2|Y ⊗ PY I |XI
1
⊗ PX1

PXe2 ,Y e2 = PImΦ⊥
2
⊗ P e2

ImΦ2|Y ⊗ PY I |XI
1
⊗ PX1 .

Here,

• PImΦ⊥
2
denotes an arbitrary distribution on ImΦ⊥

2 ,

• PX1 is a distribution on X1 with its p.d.f. coincides with a delta function δx∗(x)

on x∗,

• P ei
ImΦ2|Y (i = 1, 2) denotes conditional distributions on ImΦ2 given Y , with their

p.d.f. peiImΦ2|Y coincides with delta function δgi(y)(Φ2(x)) on gi(y).

Let the p.d.f. of PImΦ⊥
2
be pImΦ⊥

2
. Then, the p.d.f. of the conditional distribution

PY e1 |Φ(Xe1 )=Φ(x∗) is represented as∫
pImΦ⊥

2
(Φ⊥

2 (x))×δg1(y)(Φ2(x
∗))× pI(y|x1)

× pI(y|x1)× δx∗
1
(x1)dΦ

⊥
2 (x)dx1∫

pImΦ⊥
2
(Φ⊥

2 (x))×δg1(y)(Φ2(x
∗))× pI(y|x1)

× pI(y|x1)× δx∗
1
(x1)dΦ

⊥
2 (x)dx1dy

(4.3)

Noting that, for fixed x∗, δg1(y)(Φ(x
∗)) coincides with δy∗(y), the numerator of (4.3)

is rewritten as ∫
pImΦ⊥

2
(Φ⊥

2 (x))× δg1(y)(Φ2(x
∗))× pI(y|x1)

× pI(y|x1)× δx∗
1
(x1)dΦ

⊥
2 (x)dx1

=

∫
δg1(y)(Φ2(x

∗))× pI(y|x1)× δx∗
1
(x1)dx1

= δy∗(y)× pI(y|x∗
1)
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On the other hand, the denominator of (4.3) is rewritten as∫
pImΦ⊥

2
(Φ⊥

2 (x))× δg1(y)(Φ2(x
∗))× pI(y|x1)

× pI(y|x1)× δx∗
1
(x1)dΦ

⊥
2 (x)dx1dy

=

∫
δg1(y)(Φ2(x

∗))× pI(y|x1)× δx∗
1
(x1)dx1dy

=

∫
δy∗(y)× pI(y|x∗)dy = pI(y∗|x∗

1)

Combining the two transformations, (4.3) is represented by

(4.3) =
δy∗(y)× pI(y|x∗

1)

pI(y∗|x∗
1)

= δy∗(y).

By the same procedure, we can also show that the p.d.f. of PY e2 |Φ(Xe2 ) is δy∗∗(y).

Recalling that

y∗∗ ̸= y∗,

we can see that

PY e1 |Φ(Xe1 )=Φ(x∗) ̸= PY e2 |Φ(Xe2 )=Φ(x∗),

which concludes the proof of Step 2.

Poof of Step 3 It suffices to prove the following statement.

For any variable selection Φ with ImΦ ⊊ X1, there exist two distribution (Xe1 , Y e1)

and (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E which satisfy PY e1 |Φ(Xe1 ) ̸= PY e2 |Φ(Xe2 ).

Take any variable selection Φ with ImΦ ⊊ X1. Take x̄, ¯̄x and ¯̄̄x ∈ X which satisfy

PY I |XI
1=(Φ1(x̄),Φ⊥

1 (¯̄x)) ̸= PY I |XI
1=(Φ1(x̄),Φ⊥

1 (¯̄̄x))

Here, there exist such x̄, ¯̄x and ¯̄̄x by the assumption of Theorem 4. Take two

distributions (Xe1 , Y e1), (Xe2 , Y e2) ∈ {(Xe, Y e)}e∈E such that their distributions
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PXe1 ,Y e1 and PXe2 ,Y e2 coincide with

PXe1 ,Y e1 = PX2 ⊗ PY I |XI
1
⊗ PImΦ1 ⊗ P e1

ImΦ⊥
1

PXe2 ,Y e2 = PX2 ⊗ PY I |XI
1
⊗ PImΦ1 ⊗ P e2

ImΦ⊥
1
,

where

• PX2 denotes an arbitrary distribution on X2 ,

• PImΦ1 denotes an arbitrary distribution on ImΦ1 where its p.d.f. pImΦ1(Φ1(x))

satisfies pImΦ1(Φ1(x̄)) ̸= 0 ,

• P e1
ImΦ⊥

1
and P e2

ImΦ⊥
1
are distributions on ImΦ⊥

1 with their p.d.f.s coincide with

delta functions δΦ⊥
1 (¯̄x)(Φ

⊥
1 (x)) on Φ⊥

1 (¯̄x) and a delta function δΦ⊥
1 (¯̄̄x)(Φ

⊥
1 (x)) on

Φ⊥
1 (

¯̄̄x) respectively.

Here, the two distributions are included in Iv.s.tr since the equality Iv.s.tr = Iv.s. holds by
the assumption. Let pX2(x2) be the p.d.f. of PX2(x2). Then the p.d.f. of conditional

probability PY e1 |Φ(Xe1 )=Φ(x̄) is represented as∫
pX2(x2)× pI(y|Φ1(x

∗),Φ⊥
1 (x))×

δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x̄))dx2dΦ

⊥
1 (x)∫

pX2(x2))× pI(y|Φ1(x
∗),Φ⊥

1 (x))×

δΦ⊥
1 (x∗)(Φ

⊥
1 (x))× pImΦ1(Φ1(x̄))dx2dΦ

⊥
1 (x)dy

=

∫
pI(y|Φ1(x̄),Φ

⊥
1 (x))× δΦ⊥

1 (¯̄x)(Φ
⊥
1 (x))× pImΦ1(Φ1(x̄))dΦ

⊥
1 (x)∫

pI(y|Φ1(x̄),Φ⊥
1 (x))× δΦ⊥

1 (¯̄x)(Φ
⊥
1 (x))× pImΦ1(Φ1(x̄))dΦ⊥

1 (x)dy

=
pI(y|Φ1(x̄),Φ

⊥
1 (¯̄x))× pImΦ1(Φ1(x̄))∫

pI(y|Φ1(x̄),Φ⊥
1 (¯̄x))× pImΦ1(Φ1(x̄))dy

=
pI(y|Φ1(x̄),Φ

⊥
1 (¯̄x))× pImΦ1(Φ1(x̄))

pImΦ1(Φ1(x̄))

46



= pI(y|Φ1(x̄),Φ
⊥
1 (¯̄x))

Conducting the same procedure, we can see that the p.d.f. of the conditional

probability PY e2 |Φ(Xe2 )=Φ(x̄) is represented as

pI(y|Φ1(x̄),Φ
⊥
1 (

¯̄̄x)).

Recalling that

PY I |XI
1=(Φ1(x̄),Φ⊥

1 (¯̄x)) ̸= PY I |XI
1=(Φ1(x̄),Φ⊥

1 (¯̄̄x)),

we can see that,

PY e1 |Φ(Xe1 )=Φ(x̄) ̸= PY e2 |Φ(Xe2 )=Φ(x̄),

which concludes the proof.

Proof of Lemma 15 Take any

(w,ΦX1) ∈ argminΦ∈Iv.s.
tr ,w:H→Y

∑
e∈Etr

Re(w ◦ Φ).

Note that

Re(w ◦ ΦX1) ≥ Re(wΦX1 ◦ ΦX1)

for any e ∈ Etr and the lower bound is attained i.f.f. w = wΦX1 . Summarizing the

inequality with respect to e ∈ Etr, we obtain∑
w∈Etr

Re(w ◦ ΦX1) ≥
∑
w∈Etr

Re(wΦX1 ◦ ΦX1),

and the lower bound is attained i.f.f. w = wΦX1 . It concludes the proof.

4.2 Proof of Theorem 5

For the proof of Theorem 5, we prepare two lemmas.

Lemma 16. Iv.sad = {ΦX1} holds.

Lemma 17.

(w∗,Φ∗) ∈ argminΦ∈Iv.s.
ad ,w:H→Y Re∗(w ◦ Φ)
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coincides with (wΦX1 ,ΦX1), where wΦX1 is a conditional expectation E[Y e|ΦX1(Xe)]

of Y e given ΦX1(Xe) on PXe,Y e; that is,

wΦX1 (ΦX1(x)) := E[Y e|ΦX1(Xe) = ΦX1(x)].

Proof of Theorem 5 We omit the proof since it is essentially same as the one of

Theorem 4.

Proof of Lemma 16 We omit the proof since it is essentially same as the one of

Lemma 14.

Proof of Lemma 17 Noting that

Re(w ◦ ΦX1) ≥ Re(wΦX1 ◦ ΦX1)

for any e ∈ E and w : X1 → Y and the lower bound is attained i.f.f. w = wΦX1 , the

conclusion follows immediately.

4.3 Proof of Theorem 7

R(X,Y )(pθ ◦ Φ)−R(X,g(Y ))(pθ ◦ Φ) =
∫
− log pθ(Y |Φ(X))dPY,Φ(X)

+

∫
log pθ(g(Y )|Φ(X))dPg(Y ),Φ(X)

= −
∫

log
pθ(Y |Φ(X))

pθ(g(Y )|Φ(X))
dP(Y,Φ(X))

= −
∫

dPg(Y )

∫
log

pθ(Y |Φ(X))

pθ(g(Y )|Φ(X))
dP(Y,Φ(X))|g(Y )

(4.4)

By the definition of pθ(y|Φ(x), g(Y ) = z) in Theorem 7,

pθ(y|Φ(x))
pθ(g(y)|Φ(x))

= pθ(y|Φ(x), g(Y ) = z)

holds, where z = g(y). Therefore, we obtain
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(6) = −
∫

dPg(Y )

∫
log

pθ(Y |Φ(X))

pθ(g(Y )|Φ(X))
dP(Y,Φ(X))|g(Y )

= −
∫

dPg(Y )

∫
log pθ(Y |Φ(X), g(Y ) = z)dP(Y,Φ(X))|g(Y )=z

= −
∑
z∈Z

P (g(Y ) = z)

∫
log pθ(Y |Φ(X), g(Y ) = z)dP(Y,Φ(X))|g(Y )=z

= −
∑

z��↪→∈Z��↪→

P (g(Y ) = z��↪→)

∫
log pθ(Y |Φ(X), g(Y ) = z��↪→)dP(Y,Φ(X))|g(Y )=z��↪→

+
∑

z↪→∈Z−Z��↪→

P (g(Y ) = z↪→)

∫
log pθ(Y |Φ(X), g(Y ) = z↪→)dP(Y,Φ(X))|g(Y )=z↪→ .

(4.5)

Noting that, for any z↪→ ∈ Z − Z��↪→ and y := g−1(z↪→)1, pθ(y|Φ(x), g(Y ) = z↪→) = 1

holds, we can see that

log pθ(y|Φ(x), g(Y ) = z↪→) = 0.

The second term in the last line thus equals to zero, which concludes the proof. 2

1z↪→ ∈ Z − Z��↪→ implies that |g−1(z↪→)| = 1 and therefore, g−1(z↪→) is determined uniquely. Note
that there is no chance that |g−1(z↪→)| = 0 by the surjectivity of g.
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4.4 Proofs of Theorems in Section 3.4

We rephrase the problem simplification (※) in Section 3.4 with some notation ar-

rangements. Let X := X1 ×X2 where X1 := Rn1 and X2 := Rn2 with n1, n2 ∈ N. Let
(XI

1 , Y
I) be a fixed random variable on X1 × Y . Throughout our theoretical analysis,

the domain set E is defined by all the probability distributions with the fixed marginal

distribution PXI
1 ,Y

I of (X1, Y ); namely, all domains Tall := {(Xe, Y e)}e∈E are defined

by

Tall :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
, (※)

where ΦX1 : X → X1 is the projection onto X1. The above setting and definition

persist through Section 4.4.

For a projection Φ, let Φi denote the Xi-component of Φ (i = 1, 2). If Φ has a

Xi-component, we write ImΦi ̸= ∅ (i = 1, 2).

We prepare some additional notations to state Theorem 8 and its proof more

clearly and briefly. Recall that the single training domain e∗ for the target task and

the domains Ead for the additional task play important roles in our problem setting

(see Section 3.1). Throughout the section, the domains are abbreviated as follows. The

single training domain (Xe∗ , Y e∗) ∈ Tall for the target task is abbreviated by (X∗, Y ∗).

For the domains Ead of the additional task with coarser labels, {(Xe, Y e)}e∈Ead is

abbreviated by a subclass Tad ⊂ Tall. For a projection Φ : X → RnΦ with its range

nΦ variables, let p∗,Φ : RnΦ → PY denote the conditional probability density functions

(p.d.f.) of P (Y ∗|Φ(X∗)). With a slight abuse of notation, for any probability Pθ

on X × Y and a projection Φ, the density function of the conditional distribution

Pθ(Y |Φ(X)) is denoted by pθ ◦ Φ.
We add some additional explanations and interpretations about the definition (※).

From the condition of Tall, for the projection ΦX1 , the conditional probability PY |ΦX1 (X)

for any random variable (X, Y ) ∈ Tall is the same; namely, letting pI : X1 → PY

denote the conditional p.d.f. of the invariant predictor PY I |XI
1
, we have

pe ◦ ΦX1 = pI (4.6)

for any (Xe, Y e) ∈ Tall, where pe is the conditional p.d.f. of PY e|ΦX1 (Xe).

4.4.1 Proof of Theorem 8

We restate Theorem 8 as follows.
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Theorem 18 (Theorem 8 in the main body, with some notation arrangements).

Assume that all domains Tall := {(Xe, Y e)}e∈E are fixed as (※); namely,

Tall :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
. (4.7)

Additionally, assume that the following condition holds:

(A) For any projection Φ with ImΦ2 ̸= ∅, there exist (Xe1 , Y e1), (Xe2 , Y e2) ∈ Tad

such that Pg(Y e1 )|Φ(Xe1 ) ̸= Pg(Y e2 )|Φ(Xe2 ).

Then, there exists λ∗ ∈ R such that a minimizer (θ†, θ†ad,Φ
†) of the objective function

min
θ,θad,Φ

R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2

 (4.8)

is o.o.d. optimial, i.e.,

pθ† ◦ Φ† ∈ argmin
pθ:X→PY

Ro.o.d.(pθ),

where pθ and p
Z|H
θad

in minθ,θad,Φ run all the p.d.f.s, and Φ runs all the variable selections.

The gradient ∇θad should be understood as the functional derivative on the space of

p.d.f.

Before proving Theorem 18, we prepare one lemma, which asserts that, if ImΦ2 ̸= ∅,
at least one domain in Tad has non-trivial gradient:

Lemma 19.

min
θad,Φ:ImΦ2 ̸=∅

∑
(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 > 0.

Proof. It suffices to prove that, for any projection Φ with ImΦ2 ̸= ∅ and p
Z|H
θad

, there

is (Xe, Y e) ∈ Tad such that ∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 ̸= 0. We prove this by

contradiction. Suppose that there exist a projection Φ with ImΦ2 ̸= ∅ and p
Z|H
θad

which

satisfy

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 = 0 (∀(Xe, Y e) ∈ Tad).

From Assumption (A), take (Xe1 , Y e1) and (Xe2 , Y e2) in Tad such that P (g(Y e1)|Φ(Xe1)) ̸=
P (g(Y e2)|Φ(Xe2)).
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Note that the risk is defined by the cross-entropy loss:

R(Xe,g(Y e))(p
Z|H
θ̂ad
◦ Φ) = −

∫
log p

Z|H
θ̂ad

(g(Y e)|Φ(Xe))dPXe,Y e .

It is well known that this is minimized in the space of probability distributions if and

only if p
Z|H
θ̂ad

equals to P (Y e|Φ(Xe)). From ∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 = 0 for

(Xe1 , Y e1) and (Xe2 , Y e2), we can conclude that p
Z|H
θad

should equal the p.d.f. both of

Pg(Y e1 )|Φ(Xe1 ) and Pg(Y e2 )|Φ(Xe2 ). This contradicts with the assumption Pg(Y e1 )|Φ(Xe1 ) ̸=
Pg(Y e2 )|Φ(Xe2 ).

Proof of Theorem 18 a

Let Φid denote the identity map of X . Define the constants C1, C2, and C3 by

C1 := R(X∗,Y ∗)(p∗,Φ
id ◦ Φid) = H(Y ∗|X∗),

C2 := R(X∗,Y ∗)(p∗,Φ
I ◦ ΦI) = H(Y ∗|X∗

1 ) = H(Y I |XI
1 ),

C3 :=
C2 − C1

minθad,Φ:ImΦ2 ̸=∅
∑

(Xe,Y e)∈Tad
∥∇θ̂ad=θad

R(Xe,g(Y e))(p
Z|H
θ̂ad
◦ Φ)∥2

,

where H(Y I |XI
1 ) and H(Y ∗|X∗) denote the conditional entropy. Note that C3 is

well-defined because of the positivity result of Lemma 19.

Take λ∗ such that λ∗ > C3. For notational simplicity, the objective function (4.13)

is denoted by O(θ, θad,Φ); namely,

O(θ, θad,Φ) := R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2.

We prove the theorem in three steps.

Step 1

min
p:X→PY

Ro.o.d.(p) = H(Y I |XI
1 )

.

proof of Step 1 a

We will prove pI ∈ argmin
p:X→PY

Ro.o.d.(p). From the definition

Ro.o.d.(p) = max
(Xe,Y e)∈Tall

−
∫

log p(Y e|Xe)dPY e,Xe ,
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pI ∈ argmin
p:X→PY

Ro.o.d.(p) holds if and only if

max
(Xe,Y e)∈Tall

−
∫

log pθ(Y
e|Xe)dPY e,Xe ≥ max

(Xe,Y e)∈Tall

−
∫

log pI(Y e|Xe
1)dPY e,Xe

for any pθ : X → PY . Note that, as discussed before Theorem 18, for any (Xe, Y e) ∈
Tall, we have PY e|Xe

1
= PY I |XI

1
. Then, it suffices to prove that for any pθ there exists

(Xe′ , Y e′) ∈ Tall such that∫
− log pθ(Y

e′|Xe′)dPY e′ ,Xe′ ≥
∫
− log pI(Y I |XI

1 )dPXe,Y e . (4.9)

Define (Xe′ , Y e′) ∈ Tall such that its distribution is the direct product PXI
1 ,Y

I ⊗ PXe′
2
,

where PXe′
2
is an arbitrary distribution on X2. In this case, the left hand side of (4.9)

is given by∫
− log pθ(Y

e′ |Xe′)dPY e′ ,Xe′ =

∫
− log pθ(Y

e′|Xe′

1 , X
e′

2 )dPY e′ ,Xe′

=

∫
dPXe′

2

∫
− log pθ(Y

I |XI
1 , X

e′

2 )dPXI
1 ,Y

I . (4.10)

We can see that, for any x2 ∈ X2, the inequality∫
− log pθ(Y

I |XI
1 , X

e′

2 = x2))dPXI
1 ,Y

I ≥
∫
− log pI(Y I |XI

1 )dPXI
1 ,Y

I

holds, since the minimum of the cross entropy loss is attained at the conditional

p.d.f. pI . Integrating this inequality with PXe′
2
, we have∫

dPXe
2

∫
− log pθ(Y

I |XI
1 , X

e
2)dPXI

1 ,Y
I ≥

∫
− log pI(Y I |XI

1 )dPXI
1 ,Y

I . (4.11)

Eqs. (4.10) and (4.11) show (4.9), from which the assertion is obtained by

−
∫

log pI(Y I |XI
1 )dPXI

1 ,Y
I = H(Y I |XI

1 )

.
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Step 2 Any minimizer of the objective function,

(θ†, θ†ad,Φ
†) ∈ argmin

θ,θad,Φ
O(θ, θad,Φ),

satisfies ImΦ†
2 = ∅.

proof of Step 2 a

It suffices to prove that minΦ:ImΦ2=∅,θ,θad O(θ, θad,Φ) < minΦ:ImΦ2 ̸=∅,θ,θad O(θ, θad,Φ).

First, we have

min
Φ:ImΦ2 ̸=∅,θ,θad

O(θ, θad,Φ)

= min
Φ:ImΦ2 ̸=∅,θ,θad

R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Ze))(p

Z|H
θ̂ad
◦ Φ)∥2

 .

> min
Φ:ImΦ2 ̸=∅,θ,θad

{
R(X∗,Y ∗)(pθ ◦ Φ)

+
C2 − C1

minθad,Φ:ImΦ2 ̸=∅
∑

(Xe,Y e)∈Tad
∥∇θ̂ad=θad

R(Xe,g(Y e))(p
Z|H
θ̂ad
◦ Φ)∥2

×
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2

}

≥ min
Φ:ImΦ2 ̸=∅,θ,θad

{R(X∗,Y ∗)(pθ ◦ Φ) + C2 − C1}

= min
Φ:ImΦ2 ̸=∅,θ,θad

{R(X∗,Y ∗)(pθ ◦ Φ)}+ C2 − C1

≥ R(X∗,Y ∗)(p∗,Φ
id ◦ Φid) + C2 − C1 = C2.

On the other hand, by taking Φ = ΦI , we obtain

min
Φ:ImΦ2=∅,θ,θad

O(θ, , θad,Φ)

≤ R(X∗,Y ∗)(pI) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θ∗ad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ ΦI)∥2.

Since p
Z|H
θ̂ad
◦ ΦI = pI(g(Y I)|XI

1 ) does not depend on θad, the gradient is zero, and
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therefore

min
Φ:ImΦ2=∅,θ,θad

O(θ, , θad,Φ) ≤ R(X∗,Y ∗)(pI) = C2.

We thus obtain

min
Φ:ImΦ2=∅,θ,θad

O(θ, θad,Φ) ≤ C2 < min
Φ:ImΦ2 ̸=∅,θ,θad

O(θ, θad,Φ),

which completes the proof.

Step 3 If (pθ† , p
Z|H
θ†ad

,Φ†) ∈ argmin
θ,θad,Φ

O(θ, θad,Φ), then

Ro.o.d.(pθ† ◦ Φ†) = H(Y I |XI
1 )

.

proof of Step 3 a

From Step 1, we have H(Y I |XI
1 ) ≤ Ro.o.d.(pθ† ◦ Φ†). We will probe the converse

inequality.

From Step 2, we have ImΦ†
2 = ∅. This tells Ro.o.d.(pθ† ◦ Φ†) = Re∗(pθ† ◦ Φ†), since

PX1,Y are the same for all elements in Tall. Therefore,

Ro.o.d.(pθ† ◦ Φ†) = R(X∗,Y ∗)(pθ† ◦ Φ†)

≤ min
θad

R(X∗,Y ∗)(pθ† ◦ Φ†) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θ∗ad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2


= min

Φ,θ,θad

R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2


≤ C2 = H(Y I |XI

1 ).

Final step for the proof of Theorem 18 a

For (θ†, θ†ad,Φ
†) ∈ argmin

θ,θad,Φ
O(θ, θad,Φ), Step 1 and Step 3 show

Ro.o.d.(pθ† ◦ Φ†) = H(Y I |XI
1 ) = min

p:θ→PY
Ro.o.d.(p),

which completes the proof.
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4.4.2 Proof of Theorem 9

Theorem 20 (Theorem 9 in the main body, with some notation arrangements).

Assume that all domains Tall := {(Xe, Y e)}e∈E are fixed as (※); namely,

Tall :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
. (4.12)

Additionally, assume that the following condition holds:

(A) For any projection Φ with ImΦ2 ̸= ∅, there exist (Xe1 , Y e1), (Xe2 , Y e2) ∈ Tad

such that Pg(Y e1 )|Φ(Xe1 ) ̸= Pg(Y e2 )|Φ(Xe2 ) and the p.d.f.s of both Pg(Y e1 )|Φ(Xe1 ) and

Pg(Y e2 )|Φ(Xe2 ) are in the linear logistic model.

(B) The p.d.f. of PY I |ΦX1 (X) is in the linear logistic model.

Then, there exists λ∗ ∈ R such that a minimizer (θ†, θ†ad,Φ
†) of the objective function

min
θ,θad,Φ

R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2

 (4.13)

is o.o.d. optimial, i.e.,

pθ† ◦ Φ† ∈ argmin
pθ:X→PY

Ro.o.d.(pθ),

where pθ runs all the p.d.f.s, p
Z|H
θad

runs all linear logistic functions, and Φ runs all

the variable selections.

Before proving Theorem 20, we prepare one lemma:

Lemma 21.

min
θad,Φ:ImΦ2 ̸=∅

∑
(Xe,Y e)∈Tad

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 > 0.

Proof. It suffices to prove that, for any projection Φ with ImΦ2 ̸= ∅ and p
Z|H
θad

, there

is (Xe, Y e) ∈ Tad such that ∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 ̸= 0. We prove this by

contradiction. Suppose that there exist a projection Φ with ImΦ2 ̸= ∅ and p
Z|H
θad

which

satisfy

∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦ Φ)∥2 = 0 (∀(Xe, Y e) ∈ Tad).
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From Assumption (A), take (Xe1 , Y e1) and (Xe2 , Y e2) in Tad such that Pg(Y e1 )|Φ(Xe1 ) ̸=
Pg(Y e2 )|Φ(Xe2 ) and the p.d.f.s of both Pg(Y e1 )|Φ(Xe1 ) and Pg(Y e2 )|Φ(Xe2 ) are in the logistic

model.

Note that the risk is defined by the cross-entropy loss:

R(Xe,g(Y e))(p
Z|H
θ̂ad
◦ Φ) = −

∫
log p

Z|H
θ̂ad

(g(Y e)|Φ(Xe))dPXe,Y e .

Then this is minimized in the space of linear logistic functions if and only if p
Z|H
θ̂ad

equals

to the p.d.f.s both of PY e|Φ(Xe) on e1 and e2. From ∥∇θ̂ad=θad
R(Xe,g(Y e))(p

Z|H
θ̂ad
◦Φ)∥2 = 0

for (Xe1 , Y e1) and (Xe2 , Y e2), we can conclude that p
Z|H
θad

should equal to the p.d.f.s

both of Pg(Y e1 )|Φ(Xe1 ) and of Pg(Y e2 )|Φ(Xe2 ). This contradicts with the assumption

Pg(Y e1 )|Φ(Xe1 ) ̸= Pg(Y e2 )|Φ(Xe2 ).

The rest of its proof is essentially same as one of Theorem 18, and hence we omit.

4.4.3 Proof of Theorem 10

Before the proof, let us rearrange some notations introduced in Section 3.4.2. Notations

are the same as in Section 4.4.1. Recall that we assume, given hyperparameter λ,

the minimization of (3.3) achieves the global optimum perfectly, which yields the

projection (variable selection) Φλ(x) : X → Rnλ (nλ ≤ n1 + n2) and the conditional

p.d.f. of PY e∗ |Φλ(Xe∗ ), denoted by p∗,λ(y|Φλ(x)). The X1 and X2 components of Φλ(X)

are denoted by Φλ
1(X) and Φλ

2(X), respectively.

We rephrase the o.o.d. risk (2.1) and its evaluation (3.4) by Method I with some

notational rearrangements. For λ ∈ Λ and the training variable (X∗, Y ∗) for the

target task, the conditional p.d.f. of P (Y ∗|Φλ(X∗)) given the selected variables is

denoted by p∗,λ : Rnλ → PY . Then, the the o.o.d. risk Ro.o.d.(λ) of p∗,λ ◦ Φλ and its

evaluation RI(λ) ((3.4) in the main body) are represented as

Ro.o.d.(λ) := max
(X,Y )∈Tall

R(X,Y )(p∗,λ ◦ Φλ),

RI(λ) := max

{
max

(X,Y )∈Tad

R(X,g(Y ))(p∗,λ ◦ Φλ),R(X∗,Y ∗)(p∗,λ ◦ Φλ)

}
,

respectively. We restate Theorem 10 with some notation arrangements:
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Theorem 22 (Theorem 10 in the main body, with some notational arrangements).

Assume that all domains Tall := {(Xe, Y e)}e∈E are fixed as (※) in Section 4.4.1;

namely,

Tall :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
.

Additionally, assume the following two conditions:

(I) there is λI ∈ Λ such that ΦλI
= ΦX1, where ΦX1 is the projection to the

X1-components.

(II) Let p∗ be the p.d.f of PX∗,g(Y ∗). For any λ with ImΦλ
2 ̸= ∅, there is (Xeλ , Y eλ) ∈

Tad such that

(x, z) ∼ PXeλ ,g(Y eλ ) satisfies p∗(z|Φλ(x)) ≤ e−β−ε with probability 1 in PXeλ ,g(Y eλ ).

Here, ε ∈ R>0 is a sufficiently small positive real number (that is, 0 < ε ≪ 1) and

β := H(Y ∗|(X∗
1 )) is the conditional entropy of ((X∗

1 ), Y
∗). Then, we have

argmin
λ∈Λ

RI(λ) ⊂ argmin
λ∈Λ

Ro.o.d.(λ).

To prove Theorem 22, we prepare three lemmas, in which the notations are the

same as in Theorem 22 and conditions (I) and (II) in Theorem 22 are also imposed.

Lemma 23. λI ∈ argmin
λ∈Λ

Ro.o.d.(λ).

Lemma 24. If λ̂ ∈ argmin
λ∈Λ

RI(λ), then ImΦλ̂
2 = ∅.

Lemma 25. If λ̂ ∈ Λ satisfies ImΦλ̂
2 = ∅, then RI(λ̂) = Ro.o.d.(λ̂).

We prove Theorem 22 based on the above lemmas, before proving them.

proof of Theorem 22 a

Take λ̂ ∈ argminRI(λ). Then, ImΦλ̂
2 = ∅ holds by Lemma 24 and therefore, RI(λ̂) =

Ro.o.d.(λ̂) holds by Lemma 25. Moreover, Ro.o.d.(λ̂) ≥ Ro.o.d.(λI) holds by Lemma 23

and Ro.o.d.(λI) = RI(λI) holds by Lemma 25 (since ΦλI
is the projection onto X1,

ImΦλI

2 = ∅). By the assumption λ̂ ∈ argmin
λ∈Λ

RI(λ), RI(λI) ≥ RI(λ̂) holds. Arranging
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these inequalities, we obtain

RI(λ̂) = Ro.o.d.(λ̂) ≥ Ro.o.d.(λI) = RI(λI) ≥ RI(λ̂), (4.14)

in which the inequalities must be equalities. Hence, we obtain Ro.o.d.(λ̂) = Ro.o.d.(λI).

Because λI achieves the minimum of Ro.o.d. (Lemma 23), so does λ̂, which concludes

the proof. 2

Since Lemma 23 is proven in the proof of Theorem 18 (especially, the proof in

Step 1), we may prove the others.

proof of Lemma 24 .

Let us prove the contraposition of Lemma 24. Take λ̂ ∈ Λ with ImΦλ̂
2 ≠ ∅. To

prove that λ̂ /∈ argminRI(λ), we may prove that RI(λ̂) > RI(λI) since λI ∈ Λ

(Assumption (I) in the statement). It then suffices to prove the following:

there exists (X̄, Ȳ ) ∈ Tad such that

∫
− log p∗,λ̂(g(Ȳ )|Φλ̂(X̄))dPX̄,g(Ȳ ) > RI(λI).

(4.15)

From Condition (II), we can take (Xeλ̂ , Y eλ̂) ∈ Tad such that

(x, z) ∼ PX
e
λ̂ ,g(Y

e
λ̂ ) satisfies p

∗(z|Φλ̂(x)) ≤ e−β − ε with probability 1.

To prove (4.15), we prepare one supplementary inequality:

Supplementary Inequality a∫
− log p∗,λ̂

(
g(Y eλ̂)|Φλ̂(Xeλ̂)

)
dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−β − ϵ

}
.

This inequality can be easily seen; from the way of taking eλ̂, we have

− log p∗(z|Φλ̂(x)) ≥ − log{e−β − ε}

with probability 1 with respect to (x, z) ∼ PX
e
λ̂ ,g(Y

e
λ̂ ), and thus the integration proves

the inequality.
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Proof of Inequality (4.15) a

It follows from the above supplementary inequality that∫
− log p∗,λ̂(g(Y eλ̂)|Φλ̂(Xeλ̂))dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−β − ϵ

}
> β = H(Y ∗|X∗

1 ).

(4.16)

Since ΦλI
= ΦX1 by Condition (I), the discussion at (4.6) tells that RI(λI) =

H(Y I |XI
1 ) = H(Y ∗|X∗

1 ), which concludes (4.15) and the proof.

Proof of Lemma 25 a

Take λ̂ ∈ Λ that satisfies ImΦλ̂
2 = ∅. Then, PΦλ̂(X),Y = PΦλ̂(XI),Y I holds for any

(X, Y ) ∈ Tall because of PX1,Y = PXI
1 ,Y

, and therefore, R(X,g(Y ))(p∗,λ̂ ◦ Φλ̂) =

R(XI ,g(Y I))(p∗,λ̂ ◦ Φλ̂) and R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂) = R(XI ,Y I)(p∗,λ̂ ◦ Φλ̂) hold. These

two equalities lead the following equality:

RI(λ̂) = max

{
max

(X,Y )∈Tad

R(X,g(Y ))(p∗,λ̂ ◦ Φλ̂),R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂)

}

= max

{
R(XI ,g(Y I))(p∗,λ̂ ◦ Φλ̂),R(XI ,Y I)(p∗,λ̂ ◦ Φλ̂)

}
(4.17)

It follows from Theorem 7 that

R(XI ,Y I)(p∗,λ̂ ◦ Φλ̂)

= R(XI ,g(Y I))(p∗,λ̂ ◦ Φλ̂)

+
∑

z��↪→∈Z��↪→

P (Y I = g−1(z��↪→))

∫
− log p∗,λ̂(Y I |Φλ̂(XI), g(Y I) = z��↪→)dPXI ,Y I |g(Y I)=z��↪→

≥ R(XI ,g(Y I))(p∗,λ̂ ◦ Φλ̂)

Therefore, from (4.17), we have RI(λ̂) = R(XI ,Y I)(p∗,λ̂ ◦ Φλ̂). Since PΦλ̂(X),Y are the

same for any elements in Tall, we obtain

R(XI ,Y I)(p∗,λ̂ ◦ Φλ̂) = max
(X,Y )∈Tall

R(X,Y )(p∗,λ̂ ◦ Φλ̂) = Ro.o.d.(p∗,λ̂ ◦ Φλ̂),

which concludes the proof.
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4.4.4 Proof of Theorem 11

Before proving Theorem 11, we rephrase the evaluation (3.5) of the o.o.d. risk by

Method II with some notation rearrangements. By using notation simplifications in

Sections 4.4.1 and 4.4.3, the evaluation RII(λ) by method II (corresponding to (3.5)

in the main body) is represented as

RII(λ) := max
(X,Y )∈Tad∪{(X∗,Y ∗)}

{
R(X,g(Y ))(p∗,λ ◦ Φλ) +Dλ(Y )

}
,

where the correction term Dλ(Y ) is defined by

Dλ(Y )

:=
∑

z��↪→∈Z��↪→

{
P (g(Y ) = z��↪→)

∫
− log p∗,λ(Y ∗|Φλ(X∗), g(Y ∗) = z��↪→)dP(X∗,Y ∗)|g(Y ∗)=z��↪→

}
Note that, in Dλ(Y ), although the random variable Y is given by (X, Y ) ∈ Tall, the

marginal distributions of Y s are the same by the assumption of Tall. Thus, hereafter,

we use Dλ for the notation, and

Dλ =
∑

z��↪→∈Z��↪→

{
P (g(Y ∗) = z��↪→)

∫
− log p∗,λ(Y ∗|Φλ(X∗), g(Y ∗) = z��↪→)dP(X∗,Y ∗)|g(Y ∗)=z��↪→

}
.

Note also that βλ = H(Y ∗|X∗
1 ) −Dλ. We restate Theorem 11 with some notation

arrangements:

Theorem 26 (Theorem 11 in the main body, with some notation arrangements).

Assume that all domains Tall := {(Xe, Y e)}e∈E are fixed as (※) in Section 4.4.1;

namely,

Tall :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
.

Notations are the same as in the statement of Theorem 22. In addition to the

condition (I), assume the following condition (II)’:

(II)’ Let p∗ be the p.d.f. of PX∗,g(Y ∗). For any λ with ImΦλ
2 ̸= ∅, there is (Xeλ , Y eλ) ∈
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Tad such that the following statement holds.

(x, z) ∼ PXeλ ,g(Y eλ ) satisfies

p∗(z|Φλ(x)) ≤ e−βλ − ε with probability 1 in PXeλ ,g(Y eλ ).

Here, ε is some positive real number and

βλ := H(Y ∗|X∗
1 )−Dλ(Y

∗).

Then, we have

argmin
λ∈Λ

RII(λ) ⊂ argmin
λ∈Λ

Ro.o.d.(λ).

We first show lemmas before the proof of the theorem.

Lemma 27. If λ̂ ∈ argmin
λ∈Λ

RII(λ), then ImΦλ̂
2 = ∅.

Lemma 28. If λ̂ ∈ Λ satisfies ImΦλ̂
2 = ∅, then RII(λ̂) = Ro.o.d.(λ̂).

proof of Theorem 26 a

Combining the above two lemmas and Lemma 23, we can derive the required assertion

in essentially the same manner as in the proof of Theorem 22.

proof of Lemma 27 a

Let us prove the contraposition of Lemma 27. Take λ̂ ∈ Λ with ImΦλ̂
2 ≠ ∅. To

prove that λ̂ /∈ argminRII(λ), we may prove that RII(λ̂) > RII(λI) since λI ∈ Λ

(Assumption (I) in the statement). To show this, it suffices to prove the following

statement:

there is (X̄, Ȳ ) ∈ Tad such that R(X̄,g(Ȳ ))(λ̂) +Dλ̂ > RII(λI). (4.18)

Take (Xeλ̂ , Y eλ̂) ∈ Tad as in Condition (II)’. Then, in the same way as the proof

of Lemma 24, we have the following inequality:∫
− log p∗,λ̂

(
g(Y eλ̂)|Φλ̂(Xeλ̂)

)
dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−βλ̂ − ϵ

}
,
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which leads us to obtain

R(X
e
λ̂ ,g(Y

e
λ̂ ))(λ̂) +Dλ̂ > βλ̂ +Dλ̂ = H(Y ∗|X∗

1 ) = R(Y ∗,X∗)(p∗,λ
I ◦ ΦλI

). (4.19)

On the other hand, for any (X, Y ) ∈ Tall the marginal distribution of (Y,ΦI(X))

is the same as that of (Y ∗, X∗
1 ). Noting that R(X,g(Y ))(p∗,λ

I ◦ΦλI
)+DλI depends only

on (Y,X1), we have

RII(λI) = R(X∗,g(Y ∗))(p∗,λ
I ◦ ΦλI

) +DλI . (4.20)

Now, Lemma 7 implies

R(Y ∗,X∗)(p∗,λ
I ◦ ΦλI

) = R(X∗,g(Y ∗))(p∗,λ
I ◦ ΦλI

) +DλI . (4.21)

From (4.19), (4.20), and (4.21), we thus have

R(X
e
λ̂ ,g(Y

e
λ̂ ))(p∗,λ

I ◦ ΦλI

) +Dλ̂ > RII(λI),

which shows (4.18) and completes the proof.

proof of Lemma 28 Take λ̂ ∈ Λ such that ImΦλ̂
2 = ∅. It follows from ImΦλ̂

2 = ∅
that PΦλ̂(X),Y = PΦλ̂(X∗),Y ∗ holds for all (X, Y ) ∈ Tall. Therefore,

Ro.o.d.(λ̂) = max
(X,Y )∈Tall

R(X,Y )(p∗,λ̂ ◦ Φλ̂) = R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂).

Likewise, from the condition of λ̂, the definition of RII(λ̂) involves the same distribu-

tion for (Y,Φλ̂(X)), and thus

RII(λ̂) = R(X∗,g(Y ∗))(p∗,λ̂ ◦ Φλ̂) +Dλ̂.

In a similar way to the proof of Lemma 27, Theorem 7 tells

R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂) = R(X∗,g(Y ∗))(p∗,λ̂ ◦ Φλ̂) +Dλ̂.

This completes the proof.
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4.4.5 Proof of Theorem 12

We rephrase Theorem 12 with some notation arrangements.

Theorem 29. Notations are the same as in Theorem 22. Assume that (X∗, Y ∗)

satisfies the following condition:

(A2) For a sufficiently small ε≪ 1, any λ with ImΦλ
2 ̸= ∅, any a ∈ ImΦλ

1 , and any

b ∈ Y, there exists c(λ, a, b)2 such that

P (Y ∗ = b|Φλ
1(X

∗) = a,Φλ
2(X

∗) = c) ≥ (1− e−β) + ε.

Then, for any λ with ImΦλ
2 ̸= ∅, there exists (Xeλ , Y eλ) ∈ Tall such that the inequality

in Theorem 22 (ii) holds.

Proof. Fix λ with ImΦλ
2 ̸= ∅. Take (X̄, Ȳ ) ∈ Tall such that its probability measure

corresponds to P̄X2|Y,X1 × PY I ,XI
1
, where P̄X2|Y,X1 is defined by, setting ĉ(λ̂, a, b) by

ĉ(λ̂, a, b) ∈ argmin
c∈X2

P (g(Y ∗) = g(b)|Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2(c)),

P̄X2|Y=b,X1=a := δX2=ĉ(λ̂,a,b). Here, for c ∈ X2, the probability measure δX2=c on X2

denotes a Dirac measure at c ∈ X2. Before proving Theorem 12, we prepare the

following inequalities:

Supplementary Inequality 1 a

∀a ∈ X1,∀b ∈ Y ,

P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
ĉ(λ̂, a, b)

))
≤ e−β − ϵ.

To see the fact, take b∗ ∈ Y such that g(b∗) ̸= g(b) Note that such b∗ always exists

if |Z| ≥ 2 by the following reason. Take Z ∋ z∗ ̸= g(b). By the surjectivity of g,

g−1(z∗) ̸= ∅. Taking b∗ ∈ g−1(z∗), g(b∗) = z∗ ̸= g(b). Then, by the condition (ii) of

Theorem 11 and ImΦλ̂
2 ̸= ∅, there exists c(λ̂, a, b) ∈ X2 such that

P
(
Y ∗ = b∗

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))
≥ 1− e−β + ϵ.

2c(λ, a, b) means c ∈ X2 is determined by given λ ∈ Λ, a ∈ X1, b ∈ Y.
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Therefore,

P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
ĉ(λ̂, a, b)

))
= min

c∈X2

P
(
g(Y ∗) = g(b)|Φλ̂

1(X
∗) = Φλ̂

1(a),Φ
λ̂
2(X

∗) = Φλ̂
2(c)

)
≤ P

(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))
= 1−

∑
z̄ ̸=g(b)

P
(
g(Y ∗) = z̄

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))
≤ 1− P

(
g(Y ∗) = g(b∗)

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))

≤ 1− P
(
Y ∗ = b∗

∣∣∣Φλ̂
1(X

∗) = Φλ̂
1(a),Φ

λ̂
2(X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))
≤ 1− (1− e−β + ϵ)

≤ e−β − ϵ.

Proof of Theorem 29

We may prove that PX̄,Ȳ (A) = 1 where{
(x, y) ∈ X × Y

∣∣∣∣∣P (
g(Y ∗) = g(b)

∣∣∣Φλ̂(X∗) = Φλ̂(x)
)
≤ e−β − ϵ

}
.

Then,

PX̄,Ȳ (A) =

∫
1AdPX̄,Ȳ =

∫
1Ad(P̄X2|Y,X1 × PY I ,XI

1
)

=

∫
dPY I ,XI

1

∫
1AdP̄X2|Y,X1 =

∫
dPY I ,XI

1
(x1, y)δX2=ĉ(λ̂,x1,y)

(A(x1,y))

holds where A(x1,y) := {x2 ∈ X2|((x1, x2), y) ∈ X × Y}. By the Supplementary In-

equality 1, ĉ(λ̂, x1, y) ∈ A(x1,y) holds and therefore, δX2=ĉ(λ̂,x1,y)
(A(x1,y)) = 1, which

leads us to the equation
∫
dPY I ,XI

1
(x1, y)δX2=ĉ(λ̂,x1,y)

(A(x1,y)) = 1.
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4.4.6 Proof of Theorem 13

The proof of Theorem 13 is essentially same as the one of Theorem 12 and therefore,

we omit.
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Chapter 5

Related Works

5.1 Transfer Learning

The proposed framework uses additional data from multiple domains as well as the

training data for the target domains. The setting is relevant to Transfer Learning

(TL) [Pan and Yang, 2010, Yang et al., 2020, Yosinski et al., 2014]. TLs try to improve

the predictive performance on target domains with limited data supply, with the help

of a large amount of data in additional domains. Its effectiveness is demonstrated

in various real-world problems, including computer vision [Krizhevsky et al., 2012,

Csurka, 2017], natural language processing [Ruder et al., 2019, Devlin et al., 2019],

and reinforcement learning [Taylor and Stone, 2009].

The usual approach of TLs is to train a base network with a large amount of

additional data, and then, copy its first n layers (n ∈ N>0) with the first n layers of

neural networks used in the target domain prediction. The remaining layers of the

target network are then randomly initialized and trained toward the target domain.

The transferred feature layers can be fine-tuned, meaning that they are trained by

samples from the target domains, or can be left frozen, meaning that they do not

change during training on the new domain. Whether or not to fine-tune the first n

layers of the target network depends on the size of the target dataset and the number

of parameters in the first layers [Yosinski et al., 2014].

Although they show advantages in many learning problems, they may not work

effectively in the current setting. When the transferred feature is fine-tuned, the

model tends to learn spurious correlation in De∗ ∼ PXe∗ ,Y e∗ and does not generalize

to unseen domains E − {e∗}. Even when frozen, the transferred feature often fails
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to remove spurious correlation compared to our proposed approach. The fact is

demonstrated empirically in Chapter 6.

5.2 Meta Learning

Meta-learning methods are related to the problem addressed in the thesis [Snell

et al., 2017, Vinyals et al., 2016, Finn et al., 2017, Yoon et al., 2018]. The goal of

mete-learning is training models (which are often called mete-learners) that can solve

new target tasks using only a small number of training samples; it can be said that

mete-learning is learning to learn. Such meta-learners are often trained by easily

accessible samples generated by different tasks from target ones.

Some methods of few-shot and zero-shot learning [Snell et al., 2017, Vinyals et al.,

2016] are successful methods for meta-learning. They try to generalize to new classes

not seen in the training set, given only a small number of examples of each new

class or given no examples of each new class. Snell et al. [2017], Vinyals et al. [2016]

train prototype representations of each class, which enable us to generalize to new

classes not seen in the training set. These approaches have generated some of the

most successful results. Model-agnostic meta-learning (MAML) is a gradient-based

meta-learning framework [Finn et al., 2017, Yoon et al., 2018]. In the frameworks,

the parameters of the base network are explicitly trained by additional data such that

a small number of gradient steps with a small amount of training data from a target

task will produce good generalization performance on that task. MAML is known to

be model-agnostic, in the sense that it is compatible with any model trained with

gradient descent and hence, is applicable to a variety of different learning problems

including classifications, regressions, and reinforce learnings [Finn et al., 2017].

The meta-learning framework is also unsuitable in our problem setting. Meta-

learning framework improves predictive performance only on the target domain where

any samples are available. In our problem settings, we can access samples of the

target task only from e∗, not from E − {e∗}; the meta-learning framework will not

train any models which generalize well on unseen target domains E − {e∗}.

5.3 Domain Adaptation by Deep Feature Learning

Unsupervised domain adaptation methods try to train a classifier that works well

on a target domain on the condition that we are provided labeled source samples
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and unlabeled target samples during training [Ganin et al., 2016, Ben-David et al.,

2006, Louppe et al., 2017, Stojanov et al., 2021, Zhang et al., 2019, Long et al.,

2015, Sun and Saenko, 2016]. Most of the previous deep domain adaptation methods

try to obtain data representation Φ(Xe) that follows the same distribution for the

training and test domains. Their training is done by minimizing the divergence

between domains as well as a training loss on the source domain, such as maximum

mean discrepancy [Long et al., 2015], correlation distance [Sun and Saenko, 2016], or

adversarial discriminator accuracy [Ganin et al., 2016].

While the strategies sometimes lead to high predictive performance on a test

domain similar to a training domain, such Φ does not function by discarding domain-

specific factors from Xe ∈ X as theoretically noted in Arjovsky et al. [2020]. Experi-

mental comparisons will be shown in Chapter 6.

5.4 Distributionally Robust Supervised Learning

Distributionally Robust Supervised Learning (DRSL) frameworks [Hu et al., 2018,

Namkoong and Duchi, 2016, Sinha et al., 2019, Sagawa et al., 2020] introduce the

concept o.o.d. risk in advance of Arjovsky et al. [2020], and proposed methods to

minimize it. For a single training domain {etr}, DRSL tries to generalized on a small

ε-ball centered at the training distribution PXetr ,Y etr ; more formally,

{(Xe, Y e)}e∈E := {(X, Y ) : a random variable on X × Y |D (PXetr ,Y etr ||PX,Y ) < ε} .

Here, D denotes some divergence among distributions, including f-divergence [Hu

et al., 2018, Namkoong and Duchi, 2016] and Wasserstein distance [Sinha et al., 2019].

Recently, Sagawa et al. [2020] considered different DRSL settings, which are often

called group Distributionally Robust Optimizations. They set E as a small probability

simplex which includes the training domain etr, instead of ε-balls.

DRSL methods also can not be applicable to our problem. Probability distributions

that have different spurious correlations from ones in a training distribution are not

necessarily included on a small ε-ball or a probability simplex which includes etr;

for example, the distance between two distributions that generate images of cows

on sandy beaches and green postures may be large. Domain Invariance Learning

framework explicitly or implicitly imposes the following assumption on {(Xe, Y e)}e∈E ,
which is different from the one on DRSL;
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(#) There exist some space H and feature map Φ : X → H which satisfy

“ PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ E . ”

Recall that, in Chapters 2, 3, and 4, the effectiveness of DILs is investigated on

{(Xe, Y e)}e∈E :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PY |ΦX1 (X) = PY I |XI
1

}
,

or

{(Xe, Y e)}e∈E :=
{
(X, Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y

I

}
.

They are examples of the distributions {(Xe, Y e)}e∈E which satisfy (#); H and Φ in

(#) correspond to X1 and the projection ΦX1 onto X1 respectively.

5.5 Other Strategies

Bahng et al. [2020] try to obtain a de-biased feature Φ following the independence

Φ(X)⊥⊥E, seeing E as a random variable E. Recently, Wang et al. [2022] consider

the setting where there exists some f in the model that f ≠ f o.o.d., where f o.o.d. is

an estimator with high prediction performance on both training and test domain,

and that f(x) = f o.o.d.(x) for a sample x from training domains. Under the setting,

they derive an upper bound of the risk on a test domain and propose a method for

decreasing the upper bound. As a de-bias method, Nam et al. [2020] use two NNs;

the first NN learns a biased mapping by the standard ERM, while the second one

is trained with the samples that have large errors by the first NN. This method is

based on the idea that the training with samples with large errors by the first NN

mitigates data bias.
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Chapter 6

Experiments

We study the effectiveness of the proposed framework and CVs through experiments,

comparing them with several existing methods: empirical risk minimization (ERM),

transfer learning (TL) methods, and deep domain adaptation strategies. We imple-

ment two kinds of ERM: its objective functions are evaluated only by De∗ (ERM1),

and by both De∗ and coarser labeled data De (ERM2). For TLs, we employ two

typical methods: fine tune (FT) and frozen feature (FF) [Pan and Yang, 2010, Yang

et al., 2020, Yosinski et al., 2014]. As a deep domain adaptation technique, we adopt

the state-of-the-art method Domain-Specific Adversarial Network (DSAN) [Stojanov

et al., 2021]. We also compare our two CVs (CVI and CVII) with conventional

CVs: training-domain validation (Tr-CV) and leave-one-domain-out cross-validation

(LOD-CV) [Gulrajani and Lopez-Paz, 2023]. We have two hyperparameters to be

selected by CV. In the training with (3.3), we set 1 when the training epoch is less

than a certain threshold t, and λ := λafter if the epoch is larger than t; namely,

λ =

{
1 ( epoch ≤ t)

λafter ( epoch > t)
.

It is known that these two hyperparameters are critical for DIL methods to achieve

good results. From a set of candidates, each of the CV methods selects a pair

(t, λafter). To know the best possible performance among the candidates, we also

apply the test-domain validation (TDV) [Gulrajani and Lopez-Paz, 2023], which

selects the hyperparameters with the unseen test domain, and thus is not applicable

in practical situations. Additional experiments and experimental details can be found

in Appendices A and B, respectively.
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Figure 6.1: Visulization of Synthesized Data.

6.1 Synthesized Data

We compared the proposed method with the other approaches using synthesized data

with X = R2, Y = [3] and Z := [2]. We used distributions

N0 := N (0, 102)×N (e, 102),

N1 := N (30, 102)×N (−4e, 102),
N2 := N (−30, 102)×N (−e, 102),

where N (a, b) denotes a normal distribution with its (mean, variance) = (a, b).

Given x ∼ Ni, the task is to predict Ni among i = 0, 1, 2. The aim of DIL is to

ignore the second component of x, as it works as a domain-specific factor. Given

e∗ ∈ N≥0 ranging from 0 to 50, each experiment draws De∗ ∼ PXe∗ ,Y e∗ with its sample

size ne∗ = 2000, and then predicts Y −e∗ from X−e∗ . Setting g by g(0) = 0 and

g(1) = g(2) = 1, we draw De
ad ∼ PXe,Ze from Ead = {−100,−50, 0, 50, 100} with its

sample size ne = 1000 (∀e ∈ Ead). These data are visualized as Fig. 6.1. Left and

middle figures illustrate training and test data on e∗ = 5 and 50, respectively. As e∗

increases, the test data and train data are more different, and therefore ERM will

yield lower performance. Right figure illustrates De
ad. We model Φ by a 3-layer neural

net. Setting the maximum epoch 500, we select (t, λafter) from 3× 5 candidates with

t ∈ {0, 100, 200} and λafter ∈ {100, 101, ..., 104} by each of the CV methods.

Table 6.1 shows the test accuracy of the estimates for e = −e∗ over 2000 random

samples (x, y) ∼ PX−e∗ ,Y −e∗ . Oracle shows the results of the experiments with the

first component. The best scores are bolded. When e∗ = 0 and 5, the distribution of

training domain (e∗) are similar to the one of test (−e∗), and hence, the TL methods
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e∗ = 0 e∗ = 5 e∗ = 10 e∗ = 15 e∗ = 20 e∗ = 25 e∗ = 30 e∗ = 35 e∗ = 40 e∗ = 45 e∗ = 50
Oracle 906 (.007)

ERM1 .789 (.218) .791 (.174) .637 (.188) .329 (.201) .324 (.328) .311 (.260) .159 (.193) .140 (.171) .132 (.161) .166 (.147) .051 (.101)
ERM2 .868 (.043) .849 (.101) .741 (.159) .690(.141) .591 (.138) .651(.118) .613 (.150) .539 (.096) .565(..017) .600 (.035) .689 (.177)
FT .899 (.000) .863 (.001) .575 (.002) .568 (.001) .673 (.103) .583 (.088) .402 (.004) .350 (.001) .003 (.000) .000 (.000) .000 (.000)
FF .899 (.000) .861 (.002) .540 (.102) .568 (.001) .673 (.102) .628 (.001) .401 (.001) .351 (.002) .066 (.132) .000 (.000) .000 (.000)

DSAN .684 (.008) .367 (.016) .195 (.015) .112 (.008) .045 (.008) .013 (.003) .006 (.001) .001(.001) .000 (.000) 000 (.000) .000 (.000)

Ours + Our CV I .799 (.232) .784 (.231) .884 (.021) .875 (.044) .815 (.098) .738 (.209) .865 (.047) .659 (.233) .666 (.285) .776 (.080) .699 (.255)
Ours + Our CV II .799 (.232) .783 (.231) .884 (.021) .875 (.044) .815 (.098) .738 (.209) .865 (.047) .659 (.233) .563 (.291) .776 (.080) .699 (.255)

Ours + Tr-CV .790 (.230) .776 (.225) .609 (.163) .491 (.095) .366 (.147) .248 (.192) .376 (.033) .215 (.168) .148 (.127) .189 (.108) .031 (.138)
Ours + LOD-CV .662 (.180) .521 (.145) .569 (.204) .538 (.168) .450 (.158) .371 (.213) .641 (.221) .571 (.221) .380 (.196) .423 (.218) .316 (.127)

Ours + TDV .915 (.005) .905 (.006) .896 (.002) .895 (.010) .848 (.059) .849 (.069) .887 (.030) .764 (.152) .796 (.174) .848 (.055) .775 (.179)

Table 6.1: Average Test ACCs and SEs of Synthesized Data (5 runs)

yield high performances. As e∗ increases, the difference between the training (e∗) and

test (−e∗) distributions becomes larger, and the previous methods fail to achieve high

accuracy. The proposed methods (Ours) keep higher performance than the others

even for large e∗. Among the CV methods, our two methods (CVI, CVII) significantly

outperform the others for larger e∗. For this data set, CVI and CVII show almost

the same performance.

6.2 Colored MNIST

Figure 6.2: Colored MNIST Dataset.

We apply our framework to Colored

MNIST [Arjovsky et al., 2020] with

Y = [10] and Z := [2]. We aim

to predict Y e ∈ Y from digit image

data Xe ∈ R2×24×24. The label Y e is

changed randomly to one of the rest

uniformly with a probability of 15%.

All digits in images are colored red or

green. The domain e ∈ [0, 1] controls

the color of digits; the digits Y e > 4

and Y e ≤ 4 are colored in red and green, respectively, with probability e. In training,

De∗ ∼ PX0.1,Y 0.1 is drawn with sample size ne∗ = 5000, and in testing, Y e is predicted

from Xe for e2 := 0.9. Regarding the coarser labels Ze, the task is to predict Ze = 0

for Xe in 0−4 and Ze = 1 for 5−9 (that is, g(Y e) = 1 if Y e > 4 and else, g(Y e) = 0).

The label Ze is swapped randomly with 15%. We set Ead = {0.1, 0.3, 0.5, 0.7, 0.9}
with ne = 5000 for each e ∈ Ead. We model Φ by a 3-layer neural net. Setting the

maximum epoch 500 and λbefore := 1.0, we select (t, λafter) from 4× 7 candidates with

t ∈ {0, 100, 200, 300}, λafter ∈ {100, 101, ..., 106} by each of the CVs.
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Dataset CMNIST
ImageNet ImageNet ImageNet
Y = [3] Y = [7] Y = [17],

Best possible .850

random guess .100 .333 .143 .059
Oracle .822 (.000) .743 (.018) .749 (.008) .708 (.010)
ERM 1 .630 (.006) .417 (.016) .507 (.020) .357 (.020)
ERM 2 .751. (.002) .606 (.014) .535 (.005) .465 (.008)
FT .493 (.038) .463(.030) .409 (.020) .361 (.011)
FF .512 (.019) .482 (.127) .226 (.046) .162 (.011)

DSAN .091 (.005) .278 (.004) .293 (.008) .060 (.007)

Ours + CV I .673 (.006) .652 (.028) .622 (.011) .556 (.004)
Ours + CV II .774 (.006) .666 (.027) .622 (.011) .556 (.004)

Ours + Tr-CV .678 (.008 ) .641 (.033) .612 (.012) .544 (.013)
Ours + LOD CV .774 (.006) .525(.028) .572 (.022) .528 (.019)

Ours + TDV .774 (.006) .673 (.035) .634 (.033) .556 (.004)

Table 6.2: Average Test Accuracies and SEs of Colored MNIST and ImageNet (5
runs)

Dataset CVI CVII Tr-CV LOD-CV

CMNIST .102 (.006) .000 (.000) .102 (.007) .003 (.002)

ImageNet: Y = [3] .027 (.029) .013 (.020) .025 (.021) .170 (.041)

ImageNet: Y = [7] .012 (.001) .012 (.001) .018 (.015) .054 (.024)

ImageNet: Y = [17] .000 (.000) .000 (.000) .001 (.002) .025 (.021)

Table 6.3: Means and SEs of {(Accuracy of TDV on e2) − (Accuracy of Each CV on
e2) } (5runs).
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Figure 6.3: ImageNet Experiment Dataset.

Table 6.2 shows the test accuracies for 2000 random samples in the domain e2.

Oracle show the result of ERM with grayscale MNIST. The best scores are bolded.

The results, together with additional ones in Appendices A.1 and A.2, demonstrate

that the proposed methods outperform the others for e2. Among the two proposed

methods, CV II and LODCV yields higher test accuracies on e2. Table 6.3 shows

the accuracy gain of each CV from TDV with the same data sets for domain e2.

The lowest errors are bolded. These results, together with Appendices A.1 and

A.2, concur with the theory in Section 3.4.2 suggesting that CVII succeeds in wider

situations, resulting in smaller errors.

6.3 ImageNet

To see the performance of the proposed methods for more practical data, they are

applied to the ImageNet [Deng et al., 2009] with its label re-annotated imitating

BREEDS [Santurkar et al., 2022], which proposes a method for re-annotating ImageNet

to create an o.o.d. benchmark. The target task here is to predict labels Y e ∈ Y
of images Xe ∈ R3×224×224. We conduct three experiments with |Y| = 3, 7, 17. For

each experiment, we prepare image datasets in different two manners e1 and e2. The

datasets consist of images belonging to one of the classes Y. 2, 4, and 8 classes out

of 3, 7, and 17 classes, respectively, are composed of different subtypes between e1

and e2; for example, the images of class bird in e1 are composed of ruffed grouse and

indigo bunting, and the bird images on e2 are composed of albatross and water ouzel

75



(Figure 6.3). In detail, show Appendix B.1. In training, De∗ ∼ PXe1 ,Y e1 is drawn, and

in testing, Y e is predicted from Xe on e2. The coarser label Ze is binary (that is,

Z = [2]), and the sample with coarser labels De
ad of (Xe, Ze) is drawn from both e1

and e2. Here, De1
ad is the same as De∗ but with labels re-annotated by g. We model Φ

by ResNet50 [He et al., 2016]. Setting the maximum epoch 32 and λbefore := 0.1, we

select (t, λafter) from 3× 4 candidates with t ∈ {10, 20, 30}, λafter ∈ {0, 1, 10, 100} by
each of the CVs.

Table 6.2 shows the test accuracies on e2. Oracle show the result of training

with both e1 and e2. The best scores are bolded. We can see that the proposed

framework succeeded in predicting on e2, while the other methods failed. Table 6.3

shows the accuracy gain of each CV from TDV with the same data sets for domain

e2. The lowest errors are bolded. This result verifies that CVI and II select λ with

the smallest error.

6.4 Comparison of Two CV Methods

To highlight the difference between the proposed two CVs, we compare them regarding

the discrepancy between the additional domains Ead and the domain for training of

the target task e∗. We used synthesized data with X = R2, Y = [10] and Z := [2],

preparing ten distributions {Ni}10i=1 on R2, which include a domain-specific factor in

the second component depending on e ∈ Z. Explicit representations of {Ni}10i=1 are

as follows:

N1 = N (−180, 202)×N (−5e, 302),
N2 = N (−100, 202)×N (−3e, 302),
N3 = N (−20, 202)×N (−1e, 302),
N4 = N (60, 202)×N (−2e, 302),
N5 = N (140, 202)×N (−4e, 302),
N6 = N (−140, 202)×N (4e, 302),

N7 = N (−60, 202)×N (2e, 302),

N8 = N (20, 202)×N (1e, 302),

N9 = N (100, 202)×N (3e, 302),

N10 = N (180, 202)×N (5e, 302).
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Figure 6.4: Data Visualization of Comparison of Two CV Methods.

ead = −9 ead = −8 ead = −7 ead = −6 ead = −5 ead = −4 ead = −3 ead = −2 ead = −1 ead = 0 ead = 1
TDV .596 (.078) .621 (.046) .630 (.041) .595 (.061) .590 (.087) .621 (.059) .564 (.071) .582 (.056) .535 (.093) .520 (.121) .575 (.107)

CV I .529 (.128) .555 (.111) .562 (.086) .566 (.109) .375 (.145) .346 (.172) .372 (.176) .358 (.167) .300 (.146) .173 (.143) .218 (.087)
CV II .527 (.152) .573 (.089) .565 (.085) .572 (.072) .522 (.110) .523 (.102) .482 (.113) .506 (.153) .430 (.146) .437 (.157) .502 (.149)

Table 6.4: Comparison of Two CVs: Average Test ACCs and SEs of the Estimates
(10runs).

The task is to predict the distribution label i ∈ {1, . . . , 10}. Setting e∗ := 20 with

ne∗ = 60000, the test task is to predict the label for domain e = −20. Regarding

the task with coarser labels, we use g(y) = 0 if y > 4 and g(y) = 0 else. We draw

De
ad ∼ PXe,Ze (ne = 20000) from Ead = {ead, 40}, where ead ranges from −9 to 1. As

ead increases, ead approaches to e∗. Fig. 6.4 visualizes the data generating process.

Left figure illustrates the training and test data of second experiment. Right figure

illustrates D40
ad and Dead

ad with ead = −9.
The model Φ is a 3-layer neural net. We set the maximum epoch 500 and t = 0,

and select λafter from 4 candidates λafter ∈ {0, 0.001, 80, 100} by each CV method.

Table 6.4 shows the test accuracy on e = −e∗ with 2000 random samples

(x, y) ∼ PX−e∗ ,Y −e∗ . From the results, we can see that CVII tends to select bet-

ter hyperparameters than CVI, especially in the case where the variation among the

domains is smaller as ead approaches to e∗. This accords with the theoretical results

in Theorems 10 and 11, which show that CVII finds a correct hyperparameter in

smaller discrepancy between Ead and e∗ than CVI.
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annotation CVI CVII TDV

Y = [7]
complete .622 (.008) .622 (.008) .634 (.033)

automatic .629 (.013) .630 (.011) .631 (.011)

Y = [17]
complete .556 (.004) .556 (.004) .556 (.004)

automatic .552 (.013) .552 (.013) .554 (.009)

Table 6.5: Means and SEs of Pre-trained Classifier Experiment (5runs).

Y = [7] Y = [17]

acc. .995 (.000) .995 (.000)

Table 6.6: Means and SEs of Pre-trained Classifier Experiment (5runs).

6.5 Coarser Label Annotation with Pre-trained

Classifiers

We demonstrate the performance of the proposed methods with coarser labels Ze =

g(Y e) annotated by pre-trained classifiers available on the Internet. In the previous

experiments, we assume that the binary coarser labels Ze are given in advance. In

practice, its annotation may be done by a binary classifier on the Internet as well

as by humans with crowd-sourcing. Recent progress in artificial intelligence enables

us to access a high-quality, pre-trained classifier such as a ResNet pre-trained with

ImageNet. Noting that classification ability is much higher for a task of a smaller

number of classes as noted in Chapter 1, pre-trained classifiers will enable us to

annotate precisely binary labels.

We prepare image datasets in Section 6.3 with |Y| = 7, 17. In training, De∗ =

{(xe1
i , ye1i )} ∼ PXe1 ,Y e1 is drawn on e1, and De2 = {(xe2

i )} ∼ PXe2 , dataset of images

without any labels, is drawn on e2. We prepare ResNet50 [He et al., 2016] with

its hyperparameter fixed following Vryniotis [20121] (the pre-trained parameter is

available on Pytorch). After annotating Ze by the pre-trained classifier, we apply our

proposed method.

Table 6.5 shows the result of test accuracy on e = e2. Here, the row “complete”

shows the results with Ze given in advance (that is, the same results as the ones

in Section 5.2), and the row “automatic” shows the results with Ze annotated by

the pre-trained classifier. The result shows that our framework with automatic

annotations gives the almost same result as one with completely coarser labels. Table

6.6 shows the accuracies of automatic annotation by a pre-trained classifier. The
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result shows that automatic annotation of coarser labels Z achieves good accuracy so

that we can use it reliably as the coarser label to extract invariance in the proposed

methods.
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Chapter 7

Conclusions

Out-of-distribution generalization is an important problem for the future of machine

learning. Domain Invariance Learning framework is a rapidly developed approach for

the out-of-distribution generalization problem. Their proposed estimator is composed

of two maps, (i) a domain invariance Φ defined in Chapter 2 and (ii) a predictor of

labels from a featured image Φ(x).

DIL approaches have two shortcomings in practice. The first shortcoming is

annotation cost. While the conventional estimation of domain invariances demands

training data from multiple domains, it often involves expensive and exhausting

annotation. The second limitation is hyperparameter selection. While most DIL

methods involve some hyperparameters to balance the classification accuracy and

the degree of invariance, its selection from training data is known to have special

difficulty.

The Ph.D. thesis has two contributions. Firstly, we have proposed a new domain

invariance framework to reduce annotation costs: assuming the availability of datasets

for another relevant task with coarser labels, we obtain a domain invariant predictor

for the target classification task using training data in a single domain. Since the

additional task with coarser labels involves lower annotation cost, our novel DIL

demands lower and cheaper costs than ones needed in conventional DIL. Secondly,

we have also proposed two cross-validation methods for hyperparameter selection.

The key idea is to use additional coarser labeled data from multiple domains, in

addition to training data of a single domain for the target task, for the derivation

of o.o.d. risk. Theoretical analysis has revealed the correctness of our methods,

including cross-validation methods, and the experimental results have demonstrated

the effectiveness of the proposed framework and cross-validation methods.
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There may be some limitations of the proposed methods, in that our method

removes important information for a prediction as well as unnecessary ones. There are

fewer domain invariance features among domains as the number of domains becomes

larger; more formally, for given two domains E1 and E2 with E1 ⊂ E2,

{
Φ : X → H

∣∣PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for all e1, e2 ∈ E2
}

⊂
{
Φ : X → H

∣∣PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for all e1, e2 ∈ E1
}

holds. The inclusion shows that, in return for the domain invariance estimation,

domain invariances estimated by our method may remove important factors on some

domains especially when |E| is large.

7.1 Suggestions for Future Research

This section suggests possible extensions and developments of our analysis.

7.1.1 Discrepancy among Training Distributions

In Theorem 8, 9, 10 and 11, the effectiveness of the proposed objective function

and CV methods are ensured only if at least two training domains have enough

discrepancy in distributions. In general, different domains do not necessarily have a

discrepancy in distributions; judging it is a further important problem.

7.1.2 Application to Medical Data

The proposed method should be applied to other problems in addition to the ones

addressed in Chapter 6. Disease detection from X-ray scans is one of the important

examples. The X-ray scan problem struggled with out-of-distribution generalization

as noted in Chapter 1, and hence, it is important to apply DILs to the problem.

Against the importance, its application is often difficult because of annotation costs;

annotating the sub-types of diseases would require expert knowledge. Our new

framework is expected to mitigate the expensive cost; as classification becomes

coarser, its annotation demands less expert knowledge.
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7.1.3 Application to Problems in Fairness

Moreover, our methods may be useful for fairness problems in machine learning

[Dastin, 2018]. Several models trained by conventional methods have been pointed

out as making decisions based on discriminatory factors, for example, gender or

nationality, and estimation without them is known to be important. Our domain

invariance estimation will be available beyond the image recognition task, and hence,

will enable us to train models which predict labels without using any discriminatory

factors.

7.1.4 Scope of Proposed CV Methods

The applicable scope of the proposed CV methods should be investigated. In the

thesis, we only apply the proposed CV methods to hyperparameter selection on our

proposed objective function. As noted in Chapter 2, various objective functions

for DILs are proposed, and they also include hyperparameters to be selected from

training data. It is expected that the two CVs can also select these hyperparameters.

Moreover, our CVs may select other parameters, such as neural network architectures

or running rates. This should be also investigated.

7.1.5 Improvement of the Proposed CVs via Inequalities in

Theorem 7 and 8

The inequalities (ii) and (ii)’ in Theorem 7 and 8 define the notion of how good

our CV methods are; the second method is better than the first one since βλ ≤ β.

Through inequalities (ii) and (ii)’, the notion of improvement can be also considered;

new methods which attain β∗ ≤ βλ are better than the second CV method. the

new concept of improvement is expected to open new doors to the development of

hyperparameter selection for o.o.d. generalization problem.
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M. Moravč́ık, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh,

M. Johanson, and M. Bowling. DeepStack: Expert-level artificial intelligence in

heads-up no-limit poker. Science, 356(6337):508–513, 2017.

J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin. Learning from Failure: De-biasing

Classifier from Biased Classifier. In Advances in Neural Information Processing

Systems, volume 33, pages 20673–20684, 2020.

H. Namkoong and J. C. Duchi. Stochastic Gradient Methods for Distributionally

Robust Optimization with f-divergences. In Advances in Neural Information

Processing Systems, volume 29, 2016.

S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, 2010.

Paperswithcode.com. CIFAR-10 Benchmark (Image Classification) — Papers With

Code. https://paperswithcode.com/sota/image-classification-on-cifar-10, 2023a.

Paperswithcode.com. Papers with Code - CIFAR-100 Benchmark (Image Classifica-

tion). https://paperswithcode.com/sota/image-classification-on-cifar-100, 2023b.

86



G. Parascandolo, A. Neitz, A. Orvieto, L. Gresele, and B. Schölkopf. Learning

explanations that are hard to vary. In International Conference on Learning

Representations, 2022.

C. S. Perone, P. Ballester, R. C. Barros, and J. Cohen-Adad. Unsupervised domain

adaptation for medical imaging segmentation with self-ensembling. NeuroImage,

194:1–11, 2019.
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Appendix A

Additional Experiment

A.1 Additional Experiments: Colored MNIST in

Section 6.2

Although the Colored MNIST experiment in Chapter 6 fixes its flip rate to 15%, we

additionally demonstrate by changing its flip rate among {10%, 15%, 20%, 25%}.

flip rate Test Acc. on Oracle ERM1 ERM2 FT FF DSAN Ours + CV1 Ours + CV2 Ours+TDV

0.25
e = 0.1

.715(.001)
.693(.001) .697(.001) .676(.003) .677(.002) .593(.007) .706(.005) .664 (.013) .690 (.008)

e = 0.9 .433 (.004) .633(.002) .250 (.020) .248 (.015) .073(.003) .753(.011) .618 (.018) .657(.008)

0.20
e = 0.1

.769(.001)
.800(.001) .734(.001) .727(.002) .725(.004) .639(.003) .752(.006) .721 (.015) .745 (.007)

e = 0.9 .525 (.004) .697(.002) .368 (.029) .364(.011) .080(.004) .576(.014) .685 (.019) .719 (.004)

0.15
e = 0.1

.822(.000)
.802(.002) .786(.001) .782(.006) .786(.003) .682(.002) .806(.006) .794 (.008) .794 (.008)

e = 0.9 .630 (.006) .751(.002) .493 (.038) .512(.019) .091(.005) .673(.006) .774 (.006) .774 (.006)

0.10
e = 0.1

.872(.001)
.848(.002) .829(.002) .827(.004) .829(.003) .593(.007) .857(.005) .842 (.008) .834 (.001 )

e = 0.9 .719 (.004) .808 (.002) .611(.016) .623 (.021) .073(.003) .756(.007) .800 (.007) .821 (.006)

Table A.1: Test Acc. of Colored MNIST (5runs)

91



Tr-CV LOD-CV

0.25
.702 (.002) .590 (.004)
.597 (.006) .460 (.197)

0.20
.754 (.004) .716 (.018)
.678 (.008) .692 (.010)

0.15
.801 (.016) .787 (.004)
.678 (.008) .774 (.006)

0.10
.854 (.005) .836 (.004)
.751 (.013) .819 (.008)

Table A.2: Baselines of CV Methods

CV I CV II Tr-CV LOD-CV

0.25 .051 (.053) .040 (.017) .163 (.006) .197 (.205)
0.20 .143 (.012) .034 (.017) .132 (.008) .023 (.018)
0.15 .102 (.006) .000 (.000) .102 (.007) .003 (.002)
0.10 .065 (005) .021 (.010) .075 (.010) .005 (.002)

Table A.3: Means and SEs of {(Accuracy of TDV on e = 0.9) -(Accuracy of Each
CV on e = 0.9) } (5runs).

Table A.1 and A.2 show that, among several CV methods, our method II keeps a

high predictive performance regardless of flipping rates. Table A.3 shows the difference

between accuracies by TDV and each CV for the same data set with e = 0.9. The

result verifies that CVII selects preferable hyperparameters with smaller errors.

A.2 Additional Experiments: Colored MNIST II

We conduct an additional Colored MNIST experiment, changing annotation and

coloring rules from ones in Section 6.2. Setting Y = [3] and Z := [2], we aim to

predict Y e from digit image data Xe, which are in the three categories 0− 2 (Y e = 0),

3 or 4 (Y e = 1) and 5 − 9 (Y e = 2). The label is changed randomly to one of the

rest with a some probability ranging from {10%, 15%, 20%, 25%}. The domain index

e ∈ [0.0, 1.0] controls the color of the digit; for Y e = 0, 1, the digit is colored in

red with probability e and for Y e = 2 colored in green with probability e. In the

experiment, De∗ ∼ PX0.1,Y 0.1 is drawn with sample size ne∗ = 5000, and Y e is predicted

based on Xe for e = 0.1 and 0.9. Regarding Ze, we consider the task where we predict

Ze = 0 for Xe in 0− 2 and Ze = 1 for 3− 9 (that is, g(0) = 0 and g(1) = g(2) = 1).
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We obtain the final label by flipping with some probability. As the domain-specific

factor, we color the digit red for Ze = 0 with probability e and green for Ze = 1 with

probability e. We set Ead = {0.1, 0.3, 0.5, 0.7, 0.9} with ne = 5000 for ∀e ∈ Ead. We

model Φ by a 3-layer neural net. With the maximum epoch 500, we select (t, λafter)

from 3× 10 candidates with t ∈ {0, 100, 200}, λafter ∈ {100, 101, ..., 109} by each CV

method.

flip rate Test Acc. on Oracle ERM1 ERM2 FT FF DSAN Ours + CVI Ours + CVII Ours+ TDV

0.25
e = 0.1

.729 (.004)
.771 (.001) .776(.002) .771 (.001) ..771 (.001) .767 (.004) .727 (.004) .714 (.013) .673 (.006)

e = 0.9 .125 (.003) .277(.002) .128 (.002) .131 (.002) .085 (.003) .622 (.015) .644 (.019) .690 (.009)

0.20
e = 0.1

.780 (.002)
.796 (.000) .801 (.001) .800 (.001) .796 (.001) .789 (.004) .773 (.003) .745 (.008) .738 (.018)

e = 0.9 .177 (.006) .353(.004) .201 (.004) .200(.007) .091 (.005) .644 (.011) .707 (.012) .732 (.008)

0.15
e = 0.1

.828 (.004)
.822 (.000) .830 (.001) .823 (.001) .824 (.002) .815 (.002) .814 (.007) .797 (.011) .822 (.001)

e = 0.9 .277 (.007) .453 (.004) .323 (.006) .312 (.012) .091 (.002) .724 (.037) .743 (.020) .782 (.012)

0.10
e = 0.1

.880 (.004)
.852 (.002) .861 (.001) .855(.001) .856 (.001) .833(.003) .848 (.005) .848 (.005) .857 (.005)

e = 0.9 .468 (.002) .450 (.018) .497 (.005) .500 (.007) .106 (.010) .792 (.005) .792 (.005) .829 (.005)

Table A.4: Test Accuracy for Colored MNIST (5runs)

Tr-CV LOD-CV

0.25
.759 (.008) .362 (.059)

.459 (.012) .372 (.037)

0.20
.794 (.004) .338 (.048)

.541 (.007) .334 (.029)

0.15
.834 (.002) .348 (.031)
.634 (.008) .358 (.024)

0.10
.876 (.003) .502 (.196)
.708 (.006) .497 (.194)

Table A.5: Baselines of CV Methods

CV I CV II Tr-CV LOD-CV

0.25 .068 (.007) .046 (.023) .231 (.013) .319 (.033)
0.20 .088 (.004) .025 (.006) .191 (.014) .398 (.025)
0.15 .059 (.038) .039 (.022) .148 (.019) .430 (.028)
0.10 .037 (.010) .037 (.010) .121 (.008) .332 (.196)

Table A.6: Means and SEs of {(Accuracy of TDV on e = 0.9) -(Accuracy of Each
CV on e = 0.9) } (5runs).

Table A.4 and A.5 show test accuracies for 2000 random samples in the domains

e = 0.1 and e = 0.9. The results demonstrate that the proposed methods significantly

outperform the others for e = 0.9. Among the two proposed methods, CV II yields
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the higher test accuracy. Table A.6 shows the difference between accuracies by TDV

and each CV for the same data set with e = 0.9. The results verify that CVII selects

preferable hyperparameters with smaller errors.
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A.3 Additional Experiment: Bird Recognition

Our method is applied to the Bird recognition problem [Sagawa et al., 2020], which

aims to predict three labels Y e of images Xe: waterbird (Y e= 0), landbird (Y e= 1)

and no bird (Y e= 2). The dataset is made by combining background images from the

Places dataset [Zhou et al., 2018] and bird images from the CUB dataset [Welinder

et al., 2010] in two different ways E := {e1, e2}. In domain e1, we prepare three

types of images: landbird image with land background, waterbird image with water

background, and no bird with land background (Figure A.1, left). In domain e2, we

have landbird images with water background, waterbird images with land background,

and no bird with water background (Figure A.1, right). For the sample of the target

task, we used the domain e∗ = e1 and generated ne∗ = 8649 data De∗ ∼ PXe1 ,Y e1 .

The sample with coarser labels De
ad of (Xe, Ze), whose label is landbird (Ze = 0)

and no landbird (Ze = 1) (i.e., g(1) = 0 and g(0) = g(2) = 1), is drawn from

both e1 and e2 with ne1 = ne2 = 8649. Here, we use De∗ as De1
ad with labels of De∗

re-annotated by g. We made a predictor of Y e based on Xe, and evaluated the

test accuracy in the two domains e = e1, e2. We model Φ by ResNet50 [He et al.,

2016]. Setting the maximum epoch 5, we select (t, λafter) from 5× 5 candidates with

t ∈ [5], λafter ∈ {100, 101, ..., 104} by each CV method.

Data on environment1 Data on environment2

Landbirds + land

Waterbirds + water No birds + water

Landbirds + water

Waterbirds + land No birds + land

Figure A.1: Visualization of Bird Recognition Problem

Table A.7 shows test accuracies with 2162 random samples for e1 and e2. Oracle

shows a result of ERM with samples from both e1 and e2 given. TDV selects λ which

yields the highest performance on e2. Best scores are bolded. We can see that the

proposed framework together with CV methods succeeded in capturing the predictor

invariant to the change of background, while the other methods failed. ERM and FT
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Test Acc. on e1 Test Acc. on e2

Oracle .875 (.018)

ERM1 .902 (.008) .317 (.044)

ERM2 .904(.112) .465(.008)

FT .909 (.012) .364 (.028)

FE .767 (.024) .052 (.013)

Ours +Our CV I .897 (.020) .727 (.062)

Ours +Our CV II .897 (.020) .727 (.062)

Ours +Tr-CV .919 (.006) .651 (.031)

Ours +LOD CV .338 (.048) .334 (.029)

Ours +TDV .886 (.035) .782 (.020)

Table A.7: Average Test Accuracies and SEs of Bird Recognition Problem (5 runs).

show much higher accuracy for e1 than Oracle and worst results for e2, which implies

that these methods learn spurious correlation in De∗ .
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A.4 Additional Experiment: ImageNet

In the main body, only test accuracies on e2 are shown. The result adding test

accuracies on the training domain e1 are as follows:

ImageNet: Y = [3],Z = [2].

Test Acc. on e1 Test Acc. on e2

random guess .333

Oracle .743 (.018)

ERM1 .750 (.016) .417 (.016)

ERM2 .713 (.009) .606 (.014)

FT .793 (.018) .463 (.030)

FF .439 (.002) .482 (.117)

DSAN .288 (.012) .278 (.004)

Ours + CV I .843 (.024) .652 (.028)

Ours + CV II .852 (.009) .666 (.027)

Ours + Tr-CV .873 (.009) .641 (.033)

Ours + LOD CV .857 (.012) .525 (.028)

Ours + TDV .857 (.012) .673 (.035)

ImageNet: Y = [7],Z = [2].

Test Acc. on e1 Test Acc. on e2

random guess .143

Oracle .749 (.008)

ERM1 .740 (.017) .507 (.020)

ERM2 .683(.006) .535(.005)

FT .626 (.028) .409 (.020)

FF .191 (.004) .226 (.046)

DSAN .184 (.012) .293 (.008)

Ours + CV I .853 (.006) .622 (.011)

Ours + CV II .853 (.006) .622 (.011)

Ours + Tr-CV .850 (.004) .612 (.012 )

Ours + LOD CV .825 (.017) .572 (.022)

Ours + TDV .837 (.019) .634 (.003)

ImageNet: Y = [17],Z = [2].
Test Acc. on e1 Test Acc. on e2

random guess .059

Oracle .708 (.010)

ERM1 .577 (.003) .357 (.020)

ERM2 .610(.015) .450(.018)

FT .545 (.009) .361 (.011)

FF .201 (.004) .162 (.008)

DSAN .058 (.008) .060 (.007)

Ours + CV I .776 (.006) .556 (.004)

Ours + CV II .776 (.006) .556 (.004)

Ours + Tr-CV .767 (.005) .544 (.013)

Ours + LOD CV .742 (.027) .527 (.019)

Ours + TDV .776 (.006) .556 (.004)
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Appendix B

Experimental Details

B.1 Detail of ImageNet Experiment Dataset

In the ImageNet experiment in Section 6.3, Y is set as follows:

• Y = [3]:{bird, turtle, snake}

• Y = [7]: {bird, turtle, snake, cat, food, vehicle, building},

• Y = [17]: {bird, turtle, snake, cat, dog, monkey, spider, butterfly, food,

vehicle, building, shoes, hat, instrument, tellephone, bottle, chair}.

Images of bolded labels are composed of different species among e1 and e2. Explicitly,

dataset are composed as follows:

Y = [3]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel

turtle loggerhead, leathback box turtle, mud turtle

snake thunder snake, garther snake, ringneck. snake
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Y = [7]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel

turtle loggerhead, leathback box turtle, mud turtle

snake thunder snake, garther snake, ringneck. snake

cat persian cat, siamese cat, egyptian cat

food cucumber, strawberry, pizza

vechicle submarine, container ship golfcart, jeep

building lighthouse, fountaink castle, water tower

Y = [17]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel

turtle loggerhead, leathback box turtle, mud turtle

snake thunder snake, garther snake, ringneck. snake

cat persian cat, siamese cat, egyptian cat

dog eskimo dog, dalmatian newfoundland, German shepherd

monkey guenon, colobus, titi

spider wolf spider, garden spider, barn spider

butterfly ringlet, monarch, cabbage butterfly

food pizza, strawberry cucumber, broccoli

vechicle submarine, container ship golfcart, jeep

building lighthouse, fountaink castle, water tower

shoes clog, sandal running shoe, loafer

hat pickelhaube, crash helmet, hat with a wide brim

instrument acoustic guitar, electric guitar, violin

tellephone cellular telephone, dial telephone, pay-phone

bottle pill bottle, pop bottle beer bottle, wine bottle

chair barber chair, folding chair, rocking chair
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B.2 Model Architectures and Optimization Proce-

dures

Through the experiment in the present thesis, all models of competitors are composed

of neural networks where its loss function, activation function, and optimizer are

cross entropy, Relu Networks and Adam [Kingma and Ba, 2015]. In the following

explanation, NN with its model architecture a → h1 → · · ·hk → hn → P[m] means

that its input and hidden dimensions are a and (h1, ..., hn) respectively, and its

output is probability density functions on [m]. NN with its model architecture

a→ h1 → · · ·hk → hn → b means that its input, hidden and output dimensions are

a, (h1, ..., hn) and b respectively. All the experiment, we add L2-reguralized term to

our objective function.

We add explanations of previous CV methods. Tr-CV implements cross-validation

with using only D∗. In LOD-CV, a model is learnt with excluding one of the De ⊂ Dad

from Dad, and evaluate its performance by De. Changing the role of e ∈ Ead, and
taking their mean, we evaluate final CV-value.

Synthesized Data

We set model architecture of Φ used in our method 2 → 20 → 20 → 1. We set

model architecture of ERM 2 → 20 → 20 → P[3]. When we use FT and FF, its

model architecture on pre-train phase and retraining phase are 2→ 20→ 20→ P[2]

and 2→ 20→ 20→ P[3] respectively. We set running rate and hyperparameters of

L2-regularized term 0.0115 and 0.01 respectively. When we use DSAN [Stojanov

et al., 2021], we inherit learning condition in the Amazon Review dataset experiment.

When training, we use batch learning. We set K = 10 of each CV method.

Colored MNIST

We set model architecture of Φ used in our method 2→ 440→ 440→ 440. We set

model architecture of and ERM 2→ 440→ 440→ P[|Y|]. When we use FT and FF, its

model architecture on pre-train phase and retraining phase are 2→ 440→ 440→ P[2]

and 2→ 440→ 440→ P[|Y|] respectively. We set running rate and hyperparameter of

L2-regularized term 0.0004 and 0.002 respectively. When we use DSAN , we inherit

learning condition in the Amazon Review dataset experiment. When training, we use

batch learning. We set K = 10 of our CV method.
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ImageNet

We set model architecture of Φ used in our method ResNet50 [He et al., 2016] with

changing its output dimension 256. We set model architecture of and ERM ResNet50

[He et al., 2016] with changing its output P[3]. When we use FT and FF, its model

architecture on pre-train phase and retraining phase are ResNet50 [He et al., 2016]

with changing its output dimension 2 and 3 respectively. We set running rate and

hyperparameter of L2-regularized term 0.00004 and 0.001 respectively. When training,

we use minibatch learning with a minibatch size 56. We set K = 5 of each CV method.

CV comparison experiment

We set model architecture of Φ used in our method 2→ 8→ 8→ 1. We set running

rate and hyperparameters of L2-regularized term 0.05 and 0.001 respectively. When

training, we use minibatch learning with dividing D∗, Dead and D40 into 50 equal

parts respectively. We set K = 10 of each CV method.

Appendix: Birds recognition

We set model architecture of Φ used in our method ResNet50 [He et al., 2016] with

changing its output dimension 256. We set model architecture of ERM ResNet50

[He et al., 2016] with changing its output P[3]. When we use FT and FF, its model

architecture on pre-train phase and retraining phase are ResNet50 [He et al., 2016]

with changing its output dimension 2 and 3 respectively. We set running rate and

hyperparameter of L2-regularized term 0.00004 and 0.001 respectively. When training,

we use minibatch learning with a minibatch size 56. We set K = 5 of each CV method.
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