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Optimization theory is an important technique in the fields of science and engineer-
ing. In optimization theory, the objective function measures the performance of a cer-
tain model on a constraint set. For example, in machine learning and signal processing,
the objective function measures the goodness of fit between observation data, a model
or the prior of a model, and some constrains.

An optimization problem is said to be convex if its objective function and its con-
straint set are convex. Otherwise, it is said to be nonconvex. In many interesting ap-
plications, including those of machine learning and signal processing, the objective
function often becomes nonconvex. In this thesis, we propose a general class of algo-
rithms for nonconvex optimization problems.

Convex optimization has been studied for a long time and is known to be a powerful
tool, such as least-squares and linear programming problems. In convex optimization,
any local optimal solution is also a global optimal solution. On the other hand, in non-
convex optimization, a local optimal solution is not always a global optimal solution.
Therefore, it is generally impossible to obtain a global optimal solution, and we discuss
local optimality. The goal of nonconvex optimization is to obtain a stationary point if
the objective function is continuously differentiable, or a limiting stationary point, oth-
erwise. In general, any local optimal solution is a (limiting) stationary point and not
vice versa.

Difference of convex functions (DC) optimization is a general and effective approach
to nonconvex optimization. In this thesis, exploiting DC structure for nonconvex opti-
mization problems, we propose algorithms based on the Bregman distance. The Breg-
man distance is a generalization of the squared Euclidean distance. Thus, it general-
izes algorithms applicable to a wide range of optimization problems. Firstly, we propose
the Bregman proximal DC algorithm (BPDCA), which is the proximal DC algorithm
based on the Bregman distance. Because DC decomposition is not unique, we have flex-
ibility in the choice of the Bregman distance. The sufficiently decreasing property of
the objective function is guaranteed by the L-smooth adaptable (L-smad) property,
which is less restrictive than L-smoothness. We establish global convergence of BPDCA
to a limiting stationary point or a limiting critical point under the Kurdyka-—
Lojasiewicz (KL) property or subanalyticity of the objective function, respectively. Fur-

thermore, we evaluate the rates of convergence of BPDCA. Secondly, we propose the



Bregman proximal DC algorithm with extrapolation, which is accelerated by the ex-
trapolation technique adapted to the Bregman distance. This extrapolation technique
requires fewer computational tasks and is easy to implement. We also establish global
convergence and the rate of convergence of BPDCAe under the L-smad property and
the KL property or subanalyticity. Finally, we propose the hybrid Bregman proximal
DC algorithm (HBPDCA). It alternately minimizes the two subproblems: One is the
same as BPDCA, while the other is a convex optimization problem. For HBPDCA, we
establish global subsequential convergence.

In this thesis, we demonstrate the performance of our proposed algorithms through
some applications, which are phase retrieval, blind deconvolution, and self-calibration
in radio interferometric imaging. They are known to be ill-posed because their solution
may not be unique. Adding some regularization, we write these problems as nonconvex
optimization problems.

Firstly, we applied our methods to phase retrieval. Phase retrieval is the problem of
recovering the phase from magnitude measurements. We reformulate the nonconvex
optimization problem of phase retrieval as a DC optimization problem. Exploiting DC
structure, we obtain larger step sizes than the existing one. By using these step sizes,
we succeed in accelerating BPDCA(e) in phase retrieval. Numerical experiments on
phase retrieval showed that BPDCAe outperformed existing Bregman proximal algo-
rithms.

Secondly, we solved blind deconvolution with our approach. Blind deconvolution is a
technique to recover an original signal without knowing a convolving filter from its
convolution. Existing Bregman algorithms were not obvious to apply to blind deconvo-
lution because the objective function has the quartic and bilinear term. On the other
hand, exploiting DC structure, we obtain an appropriate Bregman distance and apply
our proposed algorithms. Through numerical experiments on image deblurring,
BPDCAe successfully recovered the original image and outperformed other existing
algorithms.

Finally, we show that self-calibration in radio interferometric imaging can be solved
with our approach. A radio interferometer has several antennas to observe radio waves.
It measures the complex visibilities of Fourier-transformed images with noise. The
purpose of calibration is to remove noise in the visibilities arising from measuring in-
struments and the atmosphere. Self-calibration is a calibration of complex gains given
by each antenna. For this application, exploiting DC structure, we obtain an appropri-
ate Bregman distance and the Z-smad parameter. Besides, we provided the closed-form
solution of the subproblem of HBPDCA.



Fur\mS Separat(e Sheet
(B8 - Bk 1)
Results of the doctoral thesis defense
2A Y
MR CEEER
Name in Full N
K 4 B AR
T it 1 e . X .
i 3L H Bregman Proximal Algorithms Exploiting DC Structure for Nonconvex

Optimization and Their Applications

20234 1 H 26 H 1468 90 3i1cb=0, BfEHRKOE Ei#H CEAEZ B S % B
L7z, HEEICLD 1EMOABRBEICLOIMETHLEERLE, SLICEALBIZLD
30 DBEEEATR - T-fER, BEZESIIARG XN FMNOFEITMT D L HE Lz,

(3 =C D A % ]

HH R R ST e A IS B 0 D I e b B 2 9 . IE M b8 & 13 B B3
FAR RN M2 Rl e W E 2 5 9. — MR RIS i il 7 13 35 A 0> JJ) T 9 e 0 A % 2R D
HZESZHLL, BEREEHEWNIZTMAERD D Z ENBENLBELE RS, HFER X
H AR5 23 FE v T H 2 BEHIH e L [ B 12 %k L € Difference of Convex (DC, ME§%t o
7)) BEAEZMA L REETIEORBES X OEFLBEOBHE~DOEHIC W TELED S
NTWa., BXTRBIN, BEELBELMRI A IZ2EDLETIOLI -V THD.

FB1EIFmTOHD. ~y 1782 E 2R EOBMEHZFIH L 72w 86155 &k T
O ABB L, YEMEOEREZRL TS, £F, MREER2ETHWLRD
T AEE E, £ OYEE TH % Bregman HEEZ H W 72 s AR EZTH L TV
L. WIS, HiiEbREICK LT DCHELFIH LEE DC T VAU XL &L,
AWFIETIXZEDILER TH S Bregman HHEEZ H W /2irH: DC 743U XA EZOMEE
REBRETLHILEZBRRTVWD., 61T, BETLH7 TV XL EAG 505 B o E
WHEH LR Z s T 2N TS,

F2ECHHRETEZHEMT 2-DICLERHFNMEELEAL TS, BEMIZIE,
FREENZRBRT DO ERBBLEW Y, REFIEZLET D720 L% Bregman
FEEE, EFEONEKMEDORIED 2D ITIRE & D LI i 7l g M, Kurdyka-
Lojasiewicz (KL)ME, T, £ L TS5 0L EE 5 B o [T 35 W\ TR 38 28 2 FE 4 i B 4%
DAL E L THWD Wirtinger I8 IC O W TERSCHEE NG 25 TW5S.

% 3% TlL Bregman FEEA 723548 DC 72 ) XA (BPDCA) & 7 ok ik
(BPDCAe), EbliZ7my s ZHE/MNMEEMAEDEZT LY XA (HBPDCA) 2%
SN, ENENOFEOEGRIEN G X 5 TWS. BPDCA |14 DC 732U X AT
Blihd 2 % L2 IEBEi% Bregman B CE XX DL TH Y, BPDCAe IXZHICIEM:
HEeBMLTMElLEZHLZ5DOTHD. 20 DIRETIEIC OV T LI5S vl et &
BURED S & TORBHIENELE KLEO S & TORFTHIERERRENL TS, iz,
BPDCA @ 1 K18 & ik # 22 B IZ1T72 9 HBPDCA H g% S 4v, #4541 O KB B I K
PR RS TV,



BABETE, MECREINTCREFEZESLESHOMEICHEHAL WD, 20
AIIHM 2 FEEZEMAICERIT LRI Lo TiEd7e<, BEE® DC 7z,
8] 72 Bregman BREHAE, L- i Al A @%&DﬁtﬁéﬁﬁL@ﬁﬁ,%%% %t %
D LWL, EVo T EEOBAERAMICHRER T ILERS L. BEMICIE, 32
O E % 5 2 T\ (a) AARBEIE L ST 2 Rk [ E xTLT]H@CA@)% i FH 9
5ﬁﬁ%ﬁi/ﬁ %%%_iof%ﬁmﬁﬁm$&$@%%mfwé_&%mbfwé.
(b) B H 3B A A B kI3 5 Feam AL B I % L C BPDCA(e)Z 3 % iik&E L, H
e EROBME D OBEFTECHTIEMMEEZTRL TS, (o BB THHOHCEKRE &
] A A8 ik % [RIREICAT 72 0 BRICAE S LD & 2 Ied b T EIC % L ¢ HBPDCA # @M 4 % F
IEZ R L CTW5b.

BHSE CIIHBEMm L TCRRONTE/MEOERNEASZOBMER RN TWND.

[ 3 o §EAM]

A SO BEAF O e b FIE T, M 2 e L WIEMNRE(LHEICK L, DC #»fiF &
)72 Bregman EE%E%?HU‘T@J$@EU‘E‘ 15?%%%53‘27;"5%%75:? ELTWS., &
LITEZUHESHEO I SOMBEICEMN L TEOAMEZRL TWD. Kb 3'(03777‘:’“7‘
%i#lﬁﬁ%ﬁﬂﬁﬁﬁ%ﬁﬂj"éﬁ?ﬁfcfiﬁﬁﬂ@%%‘z6?E)O)“GZ?)@, e AL B AR~ O B BRI
W, JSHEZBEC CEBOAIMEEZRL TS Z L ELFIMMicE s, FAEZESIT, Zliurﬂa
RPN DR G T D &l LT

KX O FH 3.1, 3.2, 4.1 H O WK T 7 i Computational Optimization and
Applications ([ZH#H SN 7-EFHMM i LISV TWD. £, F 4.2 HiONEITFIMTHE
76 Signal Processing ([Z## S 7o EFfT Eim it ST 5.



