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Abstract

In nonconvex optimization, it is difficult to obtain a global or even a local optimal solu-
tion. It is even challenging to obtain a stationary point quickly. In this thesis, we propose
fast algorithms to obtain it for general nonconvex optimization problems. For dealing
with nonconvex optimization problems, difference of convex functions (DC) optimization
is a general effective approach. Exploiting DC structure, we propose the Bregman prox-
imal DC algorithm (BPDCA), the BPDCA with extrapolation (BPDCAe), which is an
acceleration of BPDCA, and the hybrid BPDCA (HBPDCA), which is an alternating min-
imization based on BPDCA and a convex optimization algorithm. These algorithms are
applicable to a wide range of nonconvex optimization problems. In addition, the conver-
gence of our proposed algorithms is theoretically guaranteed under the smooth adaptable
property, which is less restrictive than L-smoothness. We establish convergence analysis
for BPDCA(e) under the Kurdyka– Lojasiewicz (KL) property or the subanalyticity. For
HBPDCA, we establish its global subsequential convergence. We demonstrate the excel-
lent performance of the Bregman proximal algorithms exploiting DC structure through
some applications, which include phase retrieval, blind deconvolution, and self-calibration
in radio interferometric imaging. We first show that these problems are nonconvex and
can be solved with the DC algorithms. Exploiting DC structure, we apply our proposed
algorithms to them. For phase retrieval, we obtain new larger step sizes than the ex-
isting one. By using these step sizes, we succeed in accelerating BPDCA(e). For blind
deconvolution, we obtain an appropriate Bregman distance by exploiting DC structure.
We demonstrate BPDCA(e) through numerical experiments on phase retrieval and blind
deconvolution. The results show that BPDCAe outperformed other existing algorithms.
Especially, in blind deconvolution, our proposed algorithms successfully recovered the
original image through numerical experiments on image deblurring. We also obtain the
closed-form solution of the subproblem of HBPDCA for self-calibration in radio interfer-
ometric imaging.
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Chapter 1

Introduction

Optimization theory is an important technique in the fields of science and engineering. In
optimization theory, the objective function measures the performance of a certain model
on a constraint set. For example, in machine learning and signal processing, the objective
function measures the goodness of fit between observation data, a model or the prior of
a model, and some constraints.

An optimization problem is said to be convex if its objective function and its constraint
set are convex. Otherwise, it is said to be nonconvex. In many interesting applications,
including those of machine learning and signal processing, the objective function often
becomes nonconvex. In this thesis, we propose fast algorithms for general nonconvex
optimization problems.

Convex optimization has been studied for a long time and is known to be a pow-
erful tool, such as least-squares and linear programming problems (see, for more de-
tails, [18, 87, 118]). In a convex optimization problem, any local optimal solution is also
a global optimal solution. On the other hand, in a nonconvex optimization problem,
a local optimal solution is not always a global optimal solution. There are many local
optimal solutions and saddle points, and then optimization algorithms are sometimes
trapped in them. In addition, in a nonconvex optimization problem, the convergence of
algorithms for convex optimization is not theoretically guaranteed. Therefore, it is gen-
erally impossible to obtain even a local optimal solution. From this kind of circumstance,
when the objective function is continuously differentiable, instead of finding a local opti-
mal solution, the goal of nonconvex optimization is to obtain a stationary point. When
the objective function is not continuously differentiable, the goal is to obtain a limiting
stationary point (defined later in Definition 3.5), which is an extension of a stationary
point. In general, any local optimal solution is a (limiting) stationary point (see also [102,
Theorem 10.1]) and not vice versa.

Nonconvex optimization arises in many fields of science and engineering, such as ma-
chine learning [60, 70, 46] and signal processing [39, 47]. For machine learning, noncon-
vex optimization problems arise in a maximum a posteriori probability (MAP) estimate
for image processing [16, 39], ridge regression [46], neural network [120], and support
vector machine [130]. For signal processing, nonconvex optimization problems arise in
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image deblurring with known blurring [10, 98] and without knowing the blurring ker-
nel [54, 69, 95, 114], background/foreground extraction [17, 123], image compression [39],
image separation [40], and communication engineering [109]. Therefore, it is important
to study a fast algorithm with a good convergence property.

We first consider algorithms for the following optimization problem:

min
x∈Rd

f(x), (1.1)

where the function f : Rd → (−∞,+∞] is convex. In mathematical optimization, most
algorithms are iterative. In particular, algorithms that exploit first-order information such
as objective function values, gradients, and subgradients (not Hessian) in optimization
problems are called first-order methods. First-order methods for the convex optimization
problem (1.1) have been studied for a long time. The oldest first-order method is the
gradient descent method (also called the steepest descent method) by Cauchy [25] in 1847.
His motivation was to compute the finite equations that represent the orbit of a heavenly
body. Let an initial point x0 and a sequence of an iterative algorithm {xk}∞k=0. The
gradient descent method requires that f is continuously differentiable, and the updating
step at its iteration is given by

xk+1 = xk − λk∇f(xk),

where λk > 0 is called the step size at the kth iteration. The step size λk is given by, for
example, line search (see also [11, 89]). If f is L-smooth, i.e., there exists L > 0 such
that

∥∇f(x) −∇f(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Rd,

the step size λk can be set to a constant λk = 1/L. When f is nonsmooth, Shor [108]
developed the subgradient method in the 1960s and applied it to network transportation
problems. At each iteration of the subgradient method, the updating step is given by

xk+1 = xk − λkξk,

where ξk ∈ ∂cf(xk) is a (classical) subgradient of f at xk defined by

∂cf(x) := {ξ ∈ Rd | f(y) − f(x) − ⟨ξ,y − x⟩ ≥ 0,∀y ∈ Rd}.

The set ∂cf(x) is called a (classical) subdifferential of f at x ∈ Rd.
The constrained optimization problem is given by the following equation:

min
x∈C

f(x), (1.2)

where the function f : Rd → (−∞,+∞] is convex and possibly nonsmooth and the
constraint set C ⊂ Rd is nonempty, closed, and convex. To solve (1.2), Polyak [97]
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developed the projected subgradient method in 1987. At each iteration of the projected
subgradient method, the subproblem to be solved is given by

xk+1 = PC(xk − λkξk),

where ξk ∈ ∂cf(xk) is a (classical) subgradient, and PC is the orthogonal projection
mapping defined by

PC(x) = argmin
y∈C

∥y − x∥.

To generalize the projected subgradient method, for a function g : Rd → (−∞,+∞], the
proximal mapping is an effective approach that is defined by

proxg(x) = argmin
y∈Rd

{
g(y) +

1

2
∥y − x∥22

}
.

Moreau [82] showed the properties of the proximal mapping. The proximal mapping is
easily computable when g has a simple structure. Let δC be the indicator function of a
constraint set C ⊂ Rd, which is δC(x) = 0 for x ∈ C and δC(x) = +∞ otherwise. By the
definition of the proximal mapping, proxδC

= PC . Thus, the subproblem of the projected
(sub)gradient method is represented by

xk+1 = proxλkδC
(xk − λkpk),

where pk = ξk for ξk ∈ ∂cf(xk), and especially pk = ∇f(xk) when f is continuously
differentiable.

In applications of machine learning and signal processing, the objective function often
includes several terms to avoid over-fitting or impose the structure of the model, called
regularization. We consider the following composite optimization problem:

min
x∈Rd

f(x) + g(x), (1.3)

where the function f : Rd → (−∞,+∞] is convex and continuously differentiable, and
the function g : Rd → (−∞,+∞] is possibly nonsmooth. By setting g = δC , we can write
the constrained optimization problem (1.2) as a special case of (1.3). In machine learning
and signal processing, f is a loss function to measure the performance of the model, and g
is a regularization term, such as ℓ0 regularization, ℓ1 regularization, ℓ2 regularization, and
total variation regularization, to avoid over-fitting. The ℓ0 norm ∥x∥0 is the number of
nonzero elements of x, while it is nonconvex and nonsmooth. Instead of ℓ0 regularization,
convex and nonsmooth ℓ1 regularization is used in many applications. In particular, the
maximum likelihood with regularization can be regarded as a MAP estimate, and the
linear regression with ℓ1 regularization is called the least absolute shrinkage and selection
operator (LASSO) [117]. In image processing, ℓ1 regularization imposes the sparsity of
images, and total variation regularization imposes the sparsity of the difference between
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adjacent pixels of images. The optimization problem (1.3) has many kinds of appli-
cations in signal processing [47] and machine learning [60, 70]. For example, in signal
processing, problem (1.3) arises in image up-sampling [4], background/foreground extrac-
tion [17, 123], MRI in medical image processing [36, 84], image deblurring [54, 69, 95, 114],
image segmentation [67], and communication engineering [109]. In machine learning,
regularization is used to avoid over-fitting and arises in the principal component analy-
sis [38, 105], LASSO [117], and the support vector machine [130]. In these applications,
the function f would be nonconvex (for example, [54, 69, 95, 114, 123, 130]). In addition,
it is also possible to choose a nonconvex regularization g.

For solving the composite optimization problem (1.3), the proximal gradient method
was introduced by Bruck [20], Passty [92], and Lions and Mercier [71]. At its iteration,
the subproblem can be written as

xk+1 = proxλkg(x
k − λk∇f(xk))

= argmin
x∈Rd

{
⟨∇f(xk),x− xk⟩ + g(x) +

1

2λk
∥x− xk∥22

}
, (1.4)

where the step size λk is set to a constant λk = 1/L when f is L-smooth or adaptively
determined with line search. Subproblem (1.4) minimizes a first-order approximation of f
with the regularization term g(x) and the proximal term 1

2λk ∥x−xk∥22. The proximal term
guarantees the accuracy of the first-order approximation. When g = θ∥ · ∥1 for θ > 0, the
proximal gradient method is called the iterative shrinkage thresholding algorithm (ISTA),
and (1.4) becomes

xk+1 = Sλkθ(x
k − λk∇f(xk)),

where Sλkθ is called the soft thresholding operator, given by

Sθ(x) = [x− θ1d]+ ⊙ sgn(x),

where 1d ∈ Rd is the d-dimensional all one vector, ([x]+)i = max{xi, 0}, ⊙ denotes the
Hadamard (elementwise) product, and sgn is defined by

sgn(x)i =

{
1, if xi ≥ 0,
−1, if xi < 0.

In this way, when the iteration of the proximal gradient method is represented in a closed
form, the computational burden is reduced. See, for other examples of such proximal
mappings, [9].

Let {xk}∞k=0 be a sequence generated by the proximal gradient method for solving the
optimization problem (1.3). Furthermore, when f is L-smooth and g is convex, for any
optimal solution x∗ and any k ≥ 1, the rate of convergence is given by

(f(xk) + g(xk)) − (f(x∗) + g(x∗)) ≤ L∥x0 − x∗∥22
2k

, (1.5)
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which is the rate O(1/k) [9, Theorem 10.21]. This rate of convergence is called a sublinear
rate. Beck and Teboulle [10] proposed the fast iterative shrinkage-thresholding algorithm
(FISTA), which is an acceleration of ISTA. At each iteration of FISTA for solving the
optimization problem (1.3), the updating step is defined by

βk =
tk−1 − 1

tk
with tk+1 =

1 +
√

1 + 4t2k
2

,

yk = xk + βk(xk − xk−1),

xk+1 = proxλkg(y
k − λk∇f(yk)),

where x−1 = x0 and λk = 1/L. Introducing such yk, βk, and tk was proposed by
Nesterov [86, 87] when g ≡ 0. Let {xk}∞k=0 be a sequence generated by FISTA. For any
k ≥ 1, the rate of convergence of FISTA is given by

(f(xk) + g(xk)) − (f(x∗) + g(x∗)) ≤ 2L∥x0 − x∗∥22
(k + 1)2

, (1.6)

which is the rate O(1/k2). This means that FISTA is faster than ISTA and the proxi-
mal gradient method. Such acceleration technique is called extrapolation. Because this
technique uses the momentum term xk − xk−1, it is also called Nesterov’s momentum.

While f is sometimes not L-smooth in nonconvex optimization problems, the proximal
gradient method requires that f is L-smooth for its global convergence. Bolte et al. [15]
incorporated the Bregman distance [19], given byDϕ(x,y) := ϕ(x)−ϕ(y)−⟨∇ϕ(y),x−y⟩
for a convex and continuously differentiable function ϕ, into the proximal gradient method
and proposed the Bregman proximal gradient algorithm (BPG). Instead of L-smoothness,
BPG requires that the pair (f, ϕ) is L-smooth adaptable (L-smad), i.e., there exists L > 0
such that Lϕ − f and Lϕ + f are convex, defined later in Definition 2.9. Even when f
is not L-smooth, (f, ϕ) can be L-smad for some ϕ (see also an example in Remark 2.11).
At each iteration of BPG, the subproblem is given by

xk+1 = argmin
x∈Rd

{
⟨∇f(xk),x− xk⟩ + g(x) +

1

λk
Dϕ(x,xk)

}
, (1.7)

where the step size λk satisfies 0 < λkL < 1. When g ≡ 0, BPG is called the mirror
descent method, introduced by Nemirovski and Yudin [85] in 1983. For ϕ = 1

2
∥ · ∥22,

Dϕ(x,y) = 1
2
∥x − y∥22. Thus, for ϕ = 1

2
∥ · ∥22, BPG corresponds to the proximal

gradient method. From this point of view, BPG is a generalization of the proximal
gradient method, since the L-smad property is less restrictive than L-smoothness. Sub-
problem (1.7) minimizes a first-order approximation of f with the regularization term
g(x) and the Bregman proximity 1

λkDϕ(x,xk). The Bregman proximity guarantees the
accuracy of the first-order approximation. Mukkamala et al. [83] proposed a variant of
BPG that iteratively estimates small L by backtracking. To accelerate it, Wu et al. [122]
proposed the inertial BPG, and Zhang et al. [128] proposed the BPG with extrapolation
(BPGe).
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For dealing with nonconvex optimization, difference of convex functions (DC) op-
timization is a general effective approach. Some researchers call DC optimization the
concave-convex procedure [126]. When the objective function is equivalent to a DC func-
tion f1 − f2 with two convex functions f1, f2 : Rd → (−∞,+∞], a DC optimization
problem (1.1) becomes

min
x∈Rd

f1(x) − f2(x). (1.8)

DC functions have been considered for about 70 years, for example, by Hartman [45] and
Landis [61]. A well-known iterative method to solve the DC optimization problem (1.8)
is the DC algorithm (DCA) (see also [65]). DCA was introduced by Pham and Souad [96]
in 1986. At its iteration of DCA, the subproblem is given by

xk+1 = argmin
x∈Rd

{
f1(x) − ⟨ξk,x− xk⟩

}
, (1.9)

where ξk ∈ ∂cf2(x
k) is a (classical) subgradient of f2 at xk ∈ Rd. A sequence generated

by DCA converges to a critical point x̃ such that 0 ∈ ∂cf1(x̃) − ∂cf2(x̃) (or equivalently
∂cf1(x̃)∩∂cf2(x̃) ̸= ∅). In general, a critical point x̃ is not always a local optimal solution.
When f2 is polyhedral convex and differentiable at x̃, then a critical point x̃ is also a
local optimal solution [64, Theorem 1]. DC optimization is a powerful tool to deal with
nonconvex optimization problems. However, the computational burden of DCA depends
mainly on the resolution of subproblem (1.9). Additionally, solving subproblem (1.9) may
be computationally demanding unless f1 has a simple structure or (1.9) is small-scale.

Next, we consider the following DC optimization problem with a regularization term:

min
x∈Rd

f1(x) − f2(x) + g(x), (1.10)

where the function f1 : Rd → (−∞,+∞] is convex and continuously differentiable, the
function f2 : Rd → (−∞,+∞] is convex, and the function g : Rd → (−∞,+∞] is
possibly nonsmooth. Le Thi et al. [66] considered the DC optimization problem (1.10)
with g(x) as a penalty term. When f1 is L-smooth and g is convex, the proximal DC
algorithm (pDCA) (see, for example, [121]) is an alternative algorithm based on the
proximal gradient method. At each iteration of pDCA, the subproblem is given by

xk+1 = argmin
x∈Rd

{
⟨∇f1(xk) − ξk,x− xk⟩ + g(x) +

1

2λk
∥x− xk∥22

}
, (1.11)

where ξk ∈ ∂cf2(x
k) for xk ∈ Rd, and the step size λk > 0 satisfies 0 < λkL < 1. Wen et

al. [121] proposed the proximal DC algorithm with extrapolation (pDCAe) in the same
way as FISTA [10] and as Nesterov’s extrapolation technique [86, 87].

For these first-order methods as above, their convergence behaviors have been studied
in [5, 6, 13, 14, 15, 48, 83, 113, 121, 122, 128]. A sequence of these first-order meth-
ods converges to a limiting stationary point (defined later in Definition 3.5) under the
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Kurdyka– Lojasiewicz (KL) property or subanalyticity, defined later in Section 2.4. The
rate of convergence is also revealed under these properties and depends on the KL expo-
nents. Note that the meaning of this rate is different from that of (1.5) and (1.6). Li et
al. [68] developed calculus rules of the KL exponent, which affects the rate of convergence.
The KL exponents for several problems were calculated in [124, 127].

In this thesis, for general nonconvex optimization problems, we propose fast algo-
rithms exploiting the Bregman distance and DC structure (it is based on [113]). We
proposed the Bregman proximal DC algorithm (BPDCA) [113], which is pDCA based on
the Bregman distance, BPDCA with extrapolation (BPDCAe) [113], which is an acceler-
ation of BPDCA, the hybrid BPDCA (HBPDCA), which minimizes subproblems based
on the Bregman distance and a convex optimization problem (their updating steps are
given in Sections 3.1, 3.2, and 3.3). In addition, we obtain convergence analysis of our
proposed algorithms. The Bregman distance is a generalization of the squared Euclidean
distance. Thus, it generalizes algorithms to apply a wide range of optimization problems,
including optimization problems that lack L-smoothness. Because DC decomposition is
not unique, we have flexibility in the choice of the Bregman distance. Using an appro-
priate Bregman distance, we accelerate and apply Bregman algorithms to a wider range
of applications. Our proposed algorithms have the potential to address a variety of non-
convex optimization problems. BPDCAe adopts the adaptive restart scheme [113] on
extrapolation based on the Bregman distance. He et al. [48] very recently proposed an
alternating minimization algorithm extended from BPDCA. These applications to signal
processing are based on [113, 114].

We demonstrate the performance of our proposed algorithms through some applica-
tions, which are phase retrieval, blind deconvolution, and self-calibration in radio inter-
ferometric imaging. They are known to be ill-posed because their solutions may not be
unique. Adding some regularization, we write these problems as nonconvex optimiza-
tion problems. For phase retrieval, exploiting DC structure, we obtain larger step sizes
than the existing one, and then our proposed algorithms outperformed the existing algo-
rithms [113]. For blind deconvolution and self-calibration in radio interferometric imaging,
deriving Bregman algorithms were not trivial because their objective functions have the
quartic and bilinear terms (see also Remark 4.5). Hence, exploiting DC structure, we
obtain an appropriate Bregman distance for these applications and apply our proposed
algorithms. Especially in blind deconvolution, through numerical experiments on image
deblurring, our proposed algorithms successfully recovered the original image [114]. For
self-calibration in radio interferometric imaging, we obtain a closed-form solution to the
subproblem of HBPDCA.

Firstly, we applied our methods to phase retrieval. Phase retrieval is the problem of
recovering the phase from magnitude measurements. Phase retrieval has a long history.
For example, Patterson studied phase retrieval in X-ray crystallography in 1934 [93] and
in 1944 [94]. Phase retrieval arises in many fields of science and engineering, such as image
processing [22], astronomy [35], X-ray crystallography [78, 93, 94], and optics [104]. Many
algorithms for solving phase retrieval have been proposed. Gerchberg and Saxton [43]
represented phase retrieval as a nonconvex optimization problem and applied the alter-
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nating projection algorithm to it, called the Gerchberg–Saxton algorithm. Fienup [42]
proposed a modification of the Gerchberg–Saxton algorithm as the hybrid input-output
algorithm. For the nonconvex optimization problem of phase retrieval, the semidefinite
programming (SDP) relaxation was proposed as PhaseLift [21, 23] and PhaseCut [119].
Because these SDP approaches require massive memory for high dimensional problems,
Candès et al. [22] proposed the Wirtinger flow algorithm, which is based on the gradient
descent method and the Wirtinger derivatives (see Section 2.5). Sun et al. [111] applied
the modified trust-region algorithm to phase retrieval. Bolte et al. [15] applied BPG
to phase retrieval with ℓ1 and ℓ0 regularization. Some researchers conducted numerical
experiments on phase retrieval with ℓ1 regularization [113, 128].

Secondly, we solved blind deconvolution with our approach. Blind deconvolution is a
technique to recover an original signal without knowing a convolving filter from its convo-
lution. The study of blind deconvolution began in the 1970s, for example, [24, 110]. For
non-blind deconvolution, i.e., when a convolving filter is known, such as the point spread
function, the Richardson–Lucy method was independently proposed by Richardson [101]
and Lucy [73]. Blind deconvolution arises in many fields of science and engineering, such
as sensor networks [7], optics [30], astronomy [41, 53], communication engineering [72],
medical image processing [69, 129], and image processing [3, 52]. For blind deconvolution,
Lane and Bates [62] proposed a classical iterative method. Under the assumption that
the filter and the signal belong to the known subspaces, blind deconvolution is naturally
formulated as a nonconvex optimization problem. Ahmed et al. [3] relaxed it as an SDP.
Li et al. [69] represented blind deconvolution with smooth regularization and applied the
Wirtinger gradient descent method. Because the nonconvex objective function has the
quartic and bilinear terms, finding an appropriate Bregman distance is difficult, and the
application of the Bregman proximal algorithms was challenging (see also Remark 4.5).
Takahashi et al. [114] applied BPDCA(e) [113] to blind deconvolution with nonsmooth
regularization by exploiting DC decomposition. For blind deconvolution with nonsmooth
regularization, alternating minimization [54, 95] was also proposed.

Finally, we show that self-calibration in radio interferometric imaging can be solved
with our approach. A radio interferometer has several antennas to observe radio waves. It
measures the complex visibilities of Fourier-transformed images with noise. The purpose
of calibration is to remove noise in the visibilities arising from measuring instruments and
the atmosphere. Self-calibration is a calibration of complex gains given by each antenna.
For technical aspects of self-calibration in radio interferometric imaging, see [116]. Self-
calibration in radio interferometric imaging is represented as a nonconvex optimization
problem. Its objective function is the chi-square of the difference between the observed
visibilities and the corresponding values for a model. The model is given by the target
image and the gains. Recently, sparse modeling has produced some remarkable results
in astronomy, especially, in radio interferometric imaging [26, 56, 100]. In recent ma-
jor news, the Event Horizon Telescope Collaboration has successfully photographed a
black hole using radio interferometric imaging with sparse modeling [115]. Kuramochi et
al. [56] proposed total squared variation (TSV) regularization for interferometric imaging.
Repetti et al. [100] dealt with the nonconvex optimization problem with ℓ1 regularization
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and proposed the imaging method in radio interferometry.

In these applications of signal processing, the variables of optimization problems some-
times belong to Cd. Complex optimization problems arise in image processing [2, 28],
multiple-input multiple-output radar [44, 125], message passing [75], and sensor array [76].
As a problem with a special structure, complex fractional programming has also been
studied in [58, 59]. Complex fractional programming arises in power control, beamform-
ing [106], and uplink scheduling [107]. For other complex optimization problems, complex
linear programming [32, 33] and complex-valued LASSO [77] have been studied. Sun
et al. [112] summarized majorization-minimization algorithms for complex optimization
problems. Some complex optimization algorithms require the Wirtinger derivatives, in-
stead of complex derivatives. For details about complex analysis including the Wirtinger
derivatives, see also Section 2.5.

1.1 Outline

This thesis is organized as follows. Chapter 2 summarizes the important notions and
their examples, such as subdifferentials, the Bregman distance, the L-smad property, the
KL property, subanalyticity, and complex analysis.

Chapter 3 introduces the Bregman proximal algorithms exploiting DC structure and
establishes their convergence analysis. We first introduce BPDCA [113], which is pDCA
based on the Bregman distance. Second, we introduce BPDCAe [113], which is acceler-
ated by the extrapolation technique adapted to the Bregman distance. This extrapolation
technique requires fewer computational tasks and is easy to implement. We establish
global convergence of BPDCA(e) to a limiting stationary point or a limiting critical
point under the KL property or subanalyticity of the objective function (for BPDCAe,
the auxiliary function), respectively. Furthermore, we evaluate the rates of convergence of
BPDCA(e). Finally, we propose the hybrid Bregman proximal DC algorithm (HBPDCA),
which is different from [48]. It alternately minimizes the two subproblems: One is the
same as BPDCA, while the other is a convex optimization problem. For HBPDCA, we
establish global subsequential convergence.

Chapter 4 shows applications to signal processing, such as phase retrieval, blind de-
convolution, and self-calibration in radio interferometric imaging. These applications are
represented as nonconvex optimization problems. We reformulate each problem as a DC
optimization problem and apply BPDCA, BPDCAe, and HBPDCA. In order to apply
these algorithms, we obtain an appropriate Bregman distance and a parameter L > 0
that ensure the L-smad property. For phase retrieval, we obtain several smaller L than
the existing one. Using these L, we succeed in accelerating BPDCA(e) [113]. For blind
deconvolution, although it is difficult to find an appropriate Bregman distance, we obtain
an appropriate Bregman distance by exploiting DC structure. We demonstrate BPDCA
and BPDCAe through numerical experiments on phase retrieval [113] and blind decon-
volution [114]. Especially in blind deconvolution, we provide the stability analysis of
the equilibrium points, and our proposed algorithms successfully recovered the original
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image through numerical experiments on image deblurring [114]. For self-calibration in
radio interferometric imaging, we obtain an appropriate Bregman distance by using DC
structure and provide the closed-form solution of the subproblem of HBPDCA.

Chapter 5 summarizes our contributions and discusses future work.

1.2 Notations

In what follows, we use the following notations. Let R, R+, and R++ be the set of real
numbers, nonnegative real numbers, and positive real numbers, respectively. Let Rd and
Rd

+ be the real space of d dimension and the positive orthant of the real space, respectively.
C denotes the set of complex numbers and Cd denotes the complex space of d dimension.
Let Rd1×d2 and Cd1×d2 be the set of d1 × d2 real and complex matrices, respectively.
Sd denotes the set of d × d real symmetric matrices. Vectors and matrices are shown in
boldface. The d-dimensional all one vector is 1d ∈ Rd, the d-dimensional all zero vector is
0d ∈ Rd, the d×d identity matrix is Id ∈ Rd×d, and the d×d zero matrix is Od ∈ Rd×d. Let
|z| and z2 be elementwise absolute and squared vectors for z ∈ Cd, respectively. Re(z),
z̄, and zH denote its real part, complex conjugate, and complex conjugate transpose,
respectively. The inner product of z, w ∈ Cd (or Rd) is defined by ⟨z,w⟩ = zHw. The
operator ⊙ denotes The Hadamard (elementwise) product. Given a real number p ≥ 1,
the ℓp norm is defined by ∥z∥p = (

∑d
j=1 |zj|p)1/p. For a matrix M ∈ Cd×d (or Rd×d), the

Frobenius norm is defined by ∥M∥F =
√∑

j,k |Mj,k|2. Let λmin(M ) and λmax(M ) be

the minimum and maximum eigenvalues of a symmetric matrix M ∈ Rd×d, respectively.
Let intC and clC be the interior and the closure of a set C ⊂ Rd, respectively. We

also define the distance from a point x ∈ Rd to C by dist(x, C) := infy∈C ∥x− y∥2. The
function δC(x) is the indicator function δC(x) = 0 for x ∈ C and δC(x) = +∞ otherwise.



Chapter 2

Preliminaries

2.1 Subdifferentials

For an extended-real-valued function f : Rd → [−∞,+∞], we introduce the set

dom f := {x ∈ Rd | f(x) < +∞}

called the effective domain. The function f is said to be proper if f(x) > −∞ for all
x ∈ Rd and dom f ̸= ∅.

Definition 2.1 (Regular and limiting subdifferentials [102, Definition 8.3]). For a proper
and lower semicontinuous function f : Rd → (−∞,+∞], the regular subdifferential of f
at x ∈ dom f is defined by

∂̂f(x) =

{
ξ ∈ Rd

∣∣∣∣ lim inf
y→x,y ̸=x

f(y) − f(x) − ⟨ξ,y − x⟩
∥y − x∥2

≥ 0

}
.

The limiting subdifferential of f at x ∈ dom f is defined by

∂f(x) =
{
ξ ∈ Rd

∣∣∣ ∃xk f−→ x, ξk → ξ such that ξk ∈ ∂̂f(xk) for all k
}
,

where xk f−→ x means xk → x and f(xk) → f(x).

In general, ∂̂f(x) ⊂ ∂f(x) holds for all x ∈ Rd [102, Theorem 8.6].

Example 2.2 ([102, p. 304]). Let a function f : R → R be given by

f(x) =

{
x2 sin 1

x
if x ̸= 0,

0 if x = 0.

Although ∂̂f(0) = {0}, we have ∂f(0) = [−1, 1]. We have ∂̂f(0) ⊂ ∂f(0) with ∂̂f(0) ̸=
∂f(0).

In the following example, it holds that ∂̂f(x) = ∂f(x).
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Example 2.3 ([102, p. 303]). Let a function f : R → R be given by

f(x) =

{
x2 + x if x ≤ 0,
1 − x if x > 0.

We have ∂̂f(0) = ∂f(0) = [1,+∞).

We also define dom ∂f := {x ∈ Rd | ∂f(x) ̸= ∅}. Note that when f is convex,
the limiting subdifferential coincides with the (classical) subdifferential [102, Proposition
8.12], that is, ∂f(x) = ∂cf(x). For a proper and lower semicontinuous function f :
Rd1 ×Rd2 → (−∞,+∞], the partial subdifferential ∂xf(x̃, ỹ) of f at (x̃, ỹ) with respect
to x is defined by the subdifferential of f(·, ỹ) at x̃ for a fixed ỹ. Similarly, we define the
partial subdifferential of f at (x̃, ỹ) with respect to y.

In addition, we can define the limiting subdifferential of the gradient. Let a function
f : Rd → (−∞,+∞] be proper and continuously differentiable and ∇f be locally Lips-
chitz continuous. By using the second-order subdifferential [81, Definition 2.1] and [80,
Proposition 1.120], we obtain

∂(∇f(x))(u) = ∂⟨u,∇f(x)⟩, ∀u ∈ Rd . (2.1)

2.2 Bregman Distances

Definition 2.4 (Kernel generating distance [15, Definition 2.1]). Let C be a nonempty
open convex subset of Rd. A function ϕ : Rd → (−∞,+∞] is called a kernel generating
distance associated with C if it meets the following conditions:

(i) ϕ is proper, lower semicontinuous, and convex, with domϕ ⊂ clC and dom ∂ϕ = C.

(ii) ϕ is C1 on int domϕ = C.

We denote the class of kernel generating distances associated with C by G(C).

Definition 2.5 (Bregman distance [19]). Given ϕ ∈ G(C), the Bregman distance Dϕ :
domϕ× int domϕ→ R+ is defined by

Dϕ(x,y) := ϕ(x) − ϕ(y) − ⟨∇ϕ(y),x− y⟩.

From the gradient inequality, the function ϕ is convex if and only if Dϕ(x,y) ≥ 0 for
any x ∈ domϕ and y ∈ int domϕ. When ϕ is a strictly convex function, the equality
holds if and only if x = y. When ϕ = 1

2
∥ ·∥22, Dϕ(x,y) = 1

2
∥x−y∥22, which is the squared

Euclidean distance. We show other well-known examples of ϕ and Dϕ below (see also [8]
and [37, Table 2.1]).

Example 2.6. We show examples of d = 1:
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• Boltzmann–Shannon entropy: Let ϕ(x) = x log x, domϕ = R+, and 0 log 0 = 0.
Then, we obtain

Dϕ(x, y) = x log x− y log y − (log y + 1)(x− y) = x log
x

y
− x+ y.

This Dϕ leads to the Kullback–Leibler divergence [55] in Example 2.7.

• Burg entropy: Let ϕ(x) = − log x and domϕ = R++. Then, we obtain

Dϕ(x, y) = − log x+ log y +
1

y
(x− y) =

x

y
− log

x

y
− 1.

This Dϕ is called the Itakura–Saito divergence [51].

• Fermi–Dirac entropy: Let ϕ(x) = x log x + (1 − x) log(1 − x) and domϕ = [0, 1].
Then, we obtain

Dϕ(x, y) = x log x+ (1 − x) log(1 − x) − y log y − (1 − y) log(1 − y)

− (log y − log(1 − y))(x− y)

= x log
x

y
+ (1 − x) log

1 − x

1 − y
.

• Hellinger: Let ϕ(x) = −
√

1 − x2 and domϕ = [−1, 1]. Then, we obtain

Dϕ(x, y) = −
√

1 − x2 +
√

1 − y2 − y√
1 − y2

(x− y) =
1 − xy√

1 − y2
−
√

1 − x2.

Example 2.7. We show examples in Rd. Kernel generating distances ϕ and Bregman
distances Dϕ on R1 in Example 2.6 are extended to ϕ̃(x) =

∑d
j=1 ϕ(xj) and Dϕ̃(x,y) =∑d

j=1Dϕ(xj, yj) on Rd.

• Quadratic form: For a positive definite matrix A ∈ Sd, let ϕ(x) = 1
2
xTAx and

domϕ = Rd. Then, we obtain

Dϕ(x,y) =
1

2
xTAx− 1

2
yTAy − ⟨Ay,x− y⟩ =

1

2
(x− y)TA(x− y).

This Dϕ is called the general quadratic distance. In addition, let P be a probability
distribution, Σ be its positive definite covariance matrix, and µ be its mean vector.
When A = Σ−1 and y = µ, Dϕ is called the Mahalanobis distance [74] with respect
to P .

• Quartic function: Let ϕ(x) = 1
4
∥x∥42 + 1

2
∥x∥22 and domϕ = Rd. Then, we obtain

Dϕ(x,y) =
1

4
∥x∥42 +

1

2
∥x∥22 −

1

4
∥y∥42 −

1

2
∥y∥22 − ⟨(∥y∥22 + 1)y,x− y⟩

=
1

4
∥x∥42 −

1

4
∥y∥42 − ⟨∥y∥22y,x− y⟩ +

1

2
∥x− y∥22.
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• Boltzmann–Shannon entropy: Let ϕ(x) =
∑

j=1 xj log xj and domϕ = Rd
+. We

consider Dϕ on the unit simplex {x ∈ Rd
+ |
∑d

j=1 xj = 1}. Then, we obtain

Dϕ(x,y) =
d∑

j=1

(
xj log

xj
yj

− xj + yj

)
=

d∑
j=1

xj log
xj
yj
.

This Dϕ is called the Kullback–Leibler divergence [55].

When the function ϕ is separable, the subproblem of Bregman proximal algorithms
may be reduced to d independent one-dimensional problems (see also Section 3.1). Note
that the first and second ϕ in Example 2.7 are not separable. Even if ϕ is not separable,
depending on the combination of ϕ and g, the subproblem can be solved in a closed form.

Furthermore, the Bregman distance satisfies the three-point identity [29, Lemma 3.1],

Dϕ(x, z) −Dϕ(x,y) −Dϕ(y, z) = ⟨∇ϕ(y) −∇ϕ(z),x− y⟩, (2.2)

for any y, z ∈ int domϕ, and z ∈ domϕ.

Remark 2.8. Bregman distances are nonnegative and satisfy the three-point identity.
However, Bregman distances are neither symmetric nor satisfy the triangle inequality
except, for example, ϕ(x) = 1

2
∥x∥22 and ϕ(x) = 1

2
xTAx. For example, we consider the

Itakura–Saito divergence in Example 2.6 and have

Dϕ(x, y) −Dϕ(y, x) =
x

y
− log

x

y
− y

x
+ log

y

x
=
x2 − y2

xy
− 2 log

x

y
,

which implies Dϕ(x, y) = Dϕ(y, x) if and only if x = y. Because of Dϕ(x, y) = 0 for x = y,
the Itakura–Saito divergence is not symmetric. From (2.2), if ⟨∇ϕ(y)−∇ϕ(z),x−y⟩ ≤ 0,
the triangle inequality holds. Otherwise, it does not hold. Therefore, the Bregman distance
is not a metric.

The symmetrized Bregman distance D̃ϕ is defined by

D̃ϕ(x,y) =
Dϕ(x,y) +Dϕ(y,x)

2
.

It is used in computing entropic centers [88].

2.3 Smooth Adaptable Functions

Now let us define the notions of the L-smooth adaptable property.

Definition 2.9 (L-smooth adaptable [15]). Consider a pair of functions (f, ϕ) satisfying
the following conditions:

(i) ϕ ∈ G(C),
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(ii) f : Rd → (−∞,+∞] is a proper and lower semicontinuous function with domϕ ⊂
dom f , which is C1 on C = int domϕ.

The pair (f, ϕ) is called L-smooth adaptable (L-smad) on C if there exists L > 0 such
that Lϕ− f and Lϕ+ f are convex on C.

When ϕ = 1
2
∥·∥22, the L-smad property corresponds to L-smoothness, i.e., the L-smad

property is a generalization of L-smoothness.
When f and ϕ are C2, then Lϕ − f is convex on C if and only if there exists L > 0

such that L∇2ϕ(x) − ∇2f(x) ⪰ Od for all x ∈ C, given by [8, Proposition 1]. From
this, it is easy to obtain L > 0 such that Lϕ − f is convex. Examples of the L-smad
property are shown in [8, Lemma 7] and [15, Lemma 5.1]. In this thesis, we show the
L-smad property for phase retrieval in Propositions 4.1 and 4.3, for blind deconvolution
in Theorem 4.6, and for self-calibration in Theorem 4.13.

From the L-smooth adaptable property comes the descent lemma [15].

Lemma 2.10 (Full extended descent lemma [15]). A pair of functions (f, ϕ) is L-smad
on C = int domϕ if and only if:

|f(x) − f(y) − ⟨∇f(y),x− y⟩| ≤ LDϕ(x,y), ∀x,y ∈ int domϕ.

For further properties, see also [8].

Remark 2.11. From Lemma 2.10, the L-smad property is an adequate upper approxi-
mation of f by ϕ. No research has focused on finding an appropriate ϕ for the L-smad
property. It is an empirical way to construct ϕ from the basis functions that constitute f .

For example, f(x) = ax4 + bx2 + c for a > 0, b > 0, and c ∈ R. This f(x) is not
L-smooth because |f ′(x) − f ′(y)| = |4ax3 + 2bx − 4ay3 − 2by|. The basis functions that
constitute f are x4, x2, and 1. From these basis functions, let ϕ(x) = x4 + x2 (we can
ignore a constant term). For this choice, we can prove that Lϕ− f is convex if and only
if L = max{a, b}.

How to construct an appropriate ϕ is an important issue for future research.

2.4 Kurdyka– Lojasiewicz Property and Subanalytic-

ity

Given η > 0, let Ξη denote the set of all continuous concave functions ψ : [0, η) → R+

that are C1 on (0, η) with positive derivatives and which satisfy ψ(0) = 0. Here, we
introduce the Kurdyka– Lojasiewicz property [14, 57], which we need when analyzing our
algorithms:

Definition 2.12 (Kurdyka– Lojasiewicz property). Let f : Rd → (−∞,+∞] be a proper
and lower semicontinuous function.
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(i) f is said to have the Kurdyka– Lojasiewicz (KL) property at x̂ ∈ dom ∂f if there
exist η ∈ (0,+∞], a neighborhood U of x̂, and a function ψ ∈ Ξη such that, for all

x ∈ U ∩ {x ∈ Rd | f(x̂) < f(x) < f(x̂) + η},

the following inequality holds:

ψ′(f(x) − f(x̂)) · dist(0d, ∂f(x)) ≥ 1. (2.3)

(ii) If f has the KL property at each point of dom ∂f , then it is called a KL function.

Lemma 2.13 (Uniformized KL property [14]). Suppose that f : Rd → (−∞,+∞] is a
proper and lower semicontinuous function, and let Γ be a compact set. If f is constant
on Γ and has the KL property at each point of Γ, then there exist positive scalars ϵ, η > 0,
and ψ ∈ Ξη such that

ψ′(f(x) − f(x̂)) · dist(0d, ∂f(x)) ≥ 1,

for any x̂ ∈ Γ and any x satisfying dist(x,Γ) < ϵ and f(x̂) < f(x) < f(x̂) + η.

When the function f is continuously differentiable, instead of the KL property, we
consider the  Lojasiewicz gradient inequality.

Remark 2.14. Let f : Rd → (−∞,+∞] be a proper and lower semicontinuous function.
For the sake of simplicity, we also assume that f is C1. Let ψ : [0, η) → R+ be given by
ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. From ψ′(s) = c(1 − θ)s−θ, we obtain (2.3)
given by

c(1 − θ)(f(x) − f(x̂))−θ∥∇f(x)∥2 ≥ 1.

Multiplying (f(x) − f(x̂))θ on both sides of the above inequality, we obtain

(f(x) − f(x̂))θ ≤ c(1 − θ)∥∇f(x)∥2.

This inequality is called the  Lojasiewicz gradient inequality [57]. Therefore, it is a special
case of (2.3).

We consider the  Lojasiewicz gradient inequality for specific functions.

Example 2.15. For the sake of simplicity, let a function f : R1 → R be continuously
differentiable.

• When f(x) = x2 and x̂ = 0, we obtain

x2θ ≤ 2c(1 − θ)|x|.

For θ = 1
2

and c ≥ 1, the  Lojasiewicz gradient inequality holds.
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• When f(x) = x2 + x4 and x̂ = 0, we obtain

(x2 + x4)θ ≤ 2c(1 − θ)|x+ 2x3|.

For θ = 1
2
, it holds that

|x|
√

1 + x2 ≤ c|x|(1 + 2x2). (2.4)

When x = 0, (2.4) holds for any c > 0. When x ̸= 0, from (2.4), we have

√
1 + x2 ≤ c(1 + 2x2).

By simple calculations, this inequality holds when c ≥ 1. Therefore, for θ = 1
2

and
c ≥ 1, the  Lojasiewicz gradient inequality holds.

• When f(x) = (x− a)2n, n ≥ 1
2
, a ∈ R, and x̂ = a, we obtain

(x− a)2nθ ≤ 2nc(1 − θ)|x− a|2n−1.

For θ = 2n−1
2n

and c ≥ 1, the  Lojasiewicz gradient inequality holds. Taking n→ +∞,
θ → 1 and the graph of f is flat around x̂ = a. The closer θ is to 1, the flatter f
is; the closer θ is to 0, the shaper f is.

The parameter θ controls the sharpness of f . However, for general d, the parameter θ is
difficult to obtain.

Next, we describe subanalytic functions.

Definition 2.16 (Subanalyticity [13]).

(i) A subset A of Rd is called semianalytic if each point of Rd admits a neighborhood
V for which A ∩ V assumes the following form:

p⋃
i=1

q⋂
j=1

{x ∈ V | fij(x) = 0, gij(x) > 0} ,

where the functions fij, gij : V → R are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(ii) The set A is called subanalytic if each point of Rd admits a neighborhood V such
that

A ∩ V = {x ∈ Rd | (x,y) ∈ B},

where B is a bounded semianalytic subset of Rd ×Rm for some m ≥ 1.

(iii) A function f : Rd → (−∞,+∞] is called subanalytic if its graph is a subanalytic
subset of Rd ×R.
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Example 2.17. We show some important examples below:

• Given a subanalytic set S, dist(x, S) is subanalytic [13, p. 1208].

• Osgood’s example [90, Theorem 1] : Let f : R2 → R3 be given by

f(x, y) =

 x
xy
xyey

 .
Then, the set A = {f(x, y) | x2 + y2 ≤ 1} is not semianalytic but subanalytic.

• f(x) = |x|1/r for r ∈ N is subanalytic [91].

Note that every subanalytic function is a KL function. See [12, 13, 90, 91] for further
properties of subanalyticity.

2.5 Complex Analysis

We introduce the Wirtinger derivatives for complex functions. In this section, we follow
the outline by [22, Section 6], [49], and [103, Appendix 2]. Applications to complex
analysis are summarized in [1].

A complex function f : C → C is said to be complex differentiable at z0 ∈ C if there
exists f ′(z0) ∈ C given by

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
.

If the complex function f is complex differentiable, then f is called a holomorphic func-
tion. Otherwise, f is called an antiholomorphic function. For a complex number z ∈ C,
Re(z) and Im(z) are called the real and imaginary parts of z, respectively. That is, for
z = x+

√
−1y, x = Re(z) and y = Im(z) hold. For real-valued functions u, v : R×R → R,

the function f can be written as

f(z) = u(x, y) +
√
−1v(x, y). (2.5)

The function f is complex differentiable at z0 ∈ C if and only if u and v are C1 and
Cauchy–Riemann equations, defined by

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

hold at z0.
In optimization problems, we use real-valued functions. However, in general, real-

valued functions with complex variables are not complex differentiable because ∂v
∂y

= 0

and ∂v
∂x

= 0 hold at any points from v ≡ 0, i.e., Cauchy–Riemann equations do not hold.
For antiholomorphic functions, instead of complex derivatives, the Wirtinger derivatives
are used.
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Definition 2.18 (Wirtinger derivatives [49]). Let f : C → C be a complex function, and
let z = x+

√
−1y, where x, y ∈ R, then the Wirtinger derivatives with respect to z and z̄

at z0 ∈ C are defined by

∂f(z0)

∂z
:=

1

2

(
∂f(z0)

∂x
−
√
−1

∂f(z0)

∂y

)
, (2.6)

∂f(z0)

∂z̄
:=

1

2

(
∂f(z0)

∂x
+
√
−1

∂f(z0)

∂y

)
. (2.7)

Note that the right-hand sides of (2.6) and (2.7) correspond to the derivatives of f
when the variables z and z̄ are treated as independent variables. We confirm that this
fact is true in the following example.

Example 2.19. Let a function f : C → R be given by f(z) = |z|2 = x2 + y2, where
z = x +

√
−1y for x, y ∈ R. From Definition 2.18, we obtain the Wirtinger derivatives

of f at z0 ∈ C:

∂f(z0)

∂z
=

1

2

(
∂f(z0)

∂x
−

√
−1

∂f(z0)

∂y

)
=

1

2

(
2x0 − 2

√
−1y0

)
= z̄0,

∂f(z0)

∂z̄
=

1

2

(
∂f(z0)

∂x
+
√
−1

∂f(z0)

∂y

)
=

1

2

(
2x0 + 2

√
−1y0

)
= z0,

where z0 = x0+
√
−1y0 for x0, y0 ∈ R. Next, we treat the variables z and z̄ as independent

variables for f , i.e., let a function g : C2 → R be defined by g(z, z̄) := zz̄ = |z|2 = f(z).
The Wirtinger derivatives of f at z0 ∈ C are given by

∂f(z0)

∂z
=
∂g(z, z̄)

∂z

∣∣∣∣
z=z0

= z̄0,
∂f(z0)

∂z̄
=
∂g(z, z̄)

∂z̄

∣∣∣∣
z=z0

= z.

These results correspond to the first results.

The Wirtinger derivatives are also given for holomorphic functions. We show an
example of the Wirtinger derivatives for holomorphic functions below.

Example 2.20. Let a function f : C → C be given by f(z) = z. f is a holomorphic
function because f is complex differentiable at z0 ∈ C, that is, there exists f ′(z0), given
by

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
= lim

z→z0

z − z0
z − z0

= 1.

On the other hand, the Wirtinger derivatives of f(z) = z = x +
√
−1y at z0 ∈ C are

given by

∂f(z0)

∂z
=

1

2

(
∂f(z0)

∂x
−

√
−1

∂f(z0)

∂y

)
=

1

2

(
1 −

√
−1

√
−1
)

=
1

2
(1 + 1) = 1,

∂f(z0)

∂z̄
=

1

2

(
∂f(z0)

∂x
+
√
−1

∂f(z0)

∂y

)
=

1

2

(
1 +

√
−1

√
−1
)

=
1

2
(1 − 1) = 0.
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All holomorphic functions are analytic and vice versa from Cauchy’s integral expres-
sion. For a holomorphic function f , f ′(z0) = ∂f(z0)

∂z
and ∂f(z0)

∂z̄
= 0.

Next, we consider the Wirtinger derivatives for multivariable functions. For x,y ∈ Rd,
and z = x +

√
−1y, let f : Cd → C be a complex function

f(z) = u(x,y) +
√
−1v(x,y),

where real-valued functions u, v : Rd ×Rd → R. The Wirtinger derivatives of f at z0 ∈ Cd

are defined by

∂f(z0)

∂z
:=

[
∂f(z0)

∂z1
, · · · , ∂f(z0)

∂zd

]
,

∂f(z0)

∂z̄
:=

[
∂f(z0)

∂z̄1
, · · · , ∂f(z0)

∂z̄d

]
.

From these results, the complex gradient at z0 ∈ Cd is given by

∇Cf(z0) =

[
∂f(z0)

∂z

∂f(z0)

∂z̄

]H
,

and the complex Hessian at z0 ∈ Cd is given by

∇2
Cf(z0) :=

[
Hzz Hz̄z

Hzz̄ Hz̄z̄

]
, (2.8)

where Hzz := ∂
∂z

(
∂f(z0)
∂z

)H
, Hz̄z := ∂

∂z̄

(
∂f(z0)
∂z

)H
, Hzz̄ := ∂

∂z

(
∂f(z0)
∂z̄

)H
, and Hz̄z̄ :=

∂
∂z̄

(
∂f(z0)
∂z̄

)H
. When f is a real-valued function, we can easily prove that

∂f(z0)

∂z
=
∂f(z0)

∂z̄
.

For real-valued functions of complex variables, we define

∇f(z0) =

(
∂f(z0)

∂z

)H

.

Therefore, for any w ∈ Cd, we obtain〈
∇Cf(z0),

[
w
w̄

]〉
= 2 Re⟨∇f(z0),w⟩. (2.9)

The following example shows the complex gradient and (2.9).
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Example 2.21. Let a function f : Cd → R be given by f(z) = ∥z∥22 = ∥x∥22 + ∥y∥22 for
z = x +

√
−1y, where x,y ∈ Rd. We obtain the Wirtinger derivatives of f at w ∈ Cd:

∂f(z0)

∂zj
=

1

2

(
∂f(z0)

∂xj
−

√
−1

∂f(z0)

∂yj

)
=

1

2

(
2 Re(z0,j) − 2

√
−1 Im(z0,j)

)
= z̄0,j,

∂f(z0)

∂z̄j
=

1

2

(
∂f(z0)

∂xj
+
√
−1

∂f(z0)

∂yj

)
=

1

2

(
2 Re(z0,j) + 2

√
−1 Im(z0,j)

)
= z0,j,

where z0,j is the jth element of z0. Therefore, we obtain the complex gradient, given by

∇Cf(z0) =

[
z0

z̄0

]
.

In addition, we obtain 〈
∇Cf(z0),

[
w
w̄

]〉
=
[
zH
0 z̄H

0

] [ w
w̄

]
= zH

0 w + zH
0 w

= 2 Re(zH
0 w)

= 2 Re⟨∇f(z0),w⟩,

where the last equation holds because of ∇f(z0) = z0.

Inspired by the Wirtinger derivatives, the complex subdifferential is defined.

Definition 2.22 (Complex subdifferential). For a proper, lower semicontinuous, and
convex function f : Cd → (−∞,+∞], the complex subdifferential of f at x ∈ dom f is
defined by

∂cf(x) =
{
ξ ∈ Cd

∣∣ f(y) − f(x) − 2 Re⟨ξ,y − x⟩ ≥ 0,∀y ∈ Cd
}
.
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Chapter 3

Bregman Proximal Algorithms
Exploiting DC Structure

3.1 Bregman Proximal DC Algorithm

We are interested in solving the following DC optimization problem with a regularization
term:

min
x∈clC

Ψ(x) := f1(x) − f2(x) + g(x), (3.1)

where f1, f2 : Rd → (−∞,+∞] are convex functions on Rd, and C ⊂ Rd is a nonempty
open convex set. Also, the function g : Rd → (−∞,+∞] may be nonsmooth, such as the
ℓ1 norm ∥x∥1 in [15, 83, 128], or alternatively, f2 may be nonsmooth [63]. Some interesting
examples of (3.1) can be found in [121]. Although we will place some assumptions on C,
it can be regarded as Rd for simplicity.

Recall that C = int domϕ.

Assumption 3.1.

(i) ϕ ∈ G(C) with clC = cl domϕ.

(ii) f1 : Rd → (−∞,+∞] is proper and convex with domϕ ⊂ dom(f1 + g), which is C1

on C.

(iii) f2 : Rd → (−∞,+∞] is proper and convex.

(iv) g : Rd → (−∞,+∞] is proper and lower semicontinuous with dom g ∩ C ̸= ∅.

(v) v := infx∈clC Ψ(x) > −∞.

(vi) For any λ > 0, λg + ϕ is supercoercive, that is,

lim
∥u∥2→∞

λg(u) + ϕ(u)

∥u∥2
= ∞.



24 3.1. Bregman Proximal DC Algorithm

Let x ∈ dom(f1 + g), then f2(x) ≤ g(x) + f1(x) − v < +∞ due to Assumption 3.1
(v). Thus, x ∈ dom f2, i.e., dom(f1 + g) ⊂ dom f2. From Assumption 3.1 (ii), we
have C ⊂ dom(f1 + g) ⊂ dom f2. Note that Assumption 3.1 (vi) holds when clC is
compact [15, p. 2136].

To obtain the Bregman proximal DC algorithm (BPDCA) mapping for some λ > 0,
we recast the objective function of (3.1) via a DC decomposition:

Ψ(u) = f1(u) − f2(u) + g(u) =

(
1

λ
ϕ(u) + g(u)

)
−
(

1

λ
ϕ(u) − f1(u) + f2(u)

)
,

and, given x ∈ C = int domϕ and ξ ∈ ∂cf2(x), define the mapping,

Tλ(x) := argmin
u∈clC

{
⟨∇f1(x) − ξ,u− x⟩ + g(u) +

1

λ
Dϕ(u,x)

}
.

Additionally, we put the following assumption on (3.1).

Assumption 3.2. For all x ∈ C and λ > 0, we have

Tλ(x) ⊂ C, ∀x ∈ C.

Note that Assumption 3.2 is not so restrictive because it holds when C ≡ Rd. Under
Assumptions 3.1 and 3.2, we have the following lemma [15, Lemma 3.1].

Lemma 3.3. Suppose that Assumptions 3.1 and 3.2 hold, and let x ∈ C = int domϕ.
Then, the set Tλ(x) is a nonempty and compact subset of C for any λ > 0.

Note that when the function ϕ is strictly convex, Tλ(x) is a singleton. Also, when g
and ϕ are separable, this mapping is easily computable, since Tλ(x) can be decomposed
into a single-valued optimization problem, and often has a closed-form solution. For
example, when ϕ(x) = 1

2
∥x∥22, for g(x) = ∥x∥1, Tλ(x) becomes the soft-thresholding

operator or, for g(x) = ∥x∥0, the hard-thresholding operator.
The Bregman proximal DC algorithm (BPDCA), which we are proposing, is listed as

Algorithm 1.

Algorithm 1 Bregman proximal DC algorithm (BPDCA)

Input: ϕ ∈ G(C) with C = int domϕ such that the L-smad property for the pair
(f1, ϕ) holds on C.

Initialization: x0 ∈ C and 0 < λ < 1/L.
for k = 0, 1, 2, . . . , do

Take any ξk ∈ ∂cf2(x
k) and compute

xk+1 = argmin
x∈clC

{
⟨∇f1(xk) − ξk,x− xk⟩ + g(x) +

1

λ
Dϕ(x,xk)

}
. (3.2)

end for
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The parameter λ (< 1/L) plays the role of a step size, finding a larger upper bound
1/L, i.e., finding a smaller L, is of fundamental importance to achieving fast convergence.

As a recurrent example, Dϕ(x,xk) = 1
2
∥x−xk∥22 when ϕ(x) = 1

2
∥x∥22. In this case, if

L is regarded as the Lipschitz constant for the gradient of f1, subproblem (3.2) reduces to
subproblem (1.11). If f2 is C1 on C and the pair (f1 − f2, ϕ) is L-smad, BPDCA reduces
to BPG [15].

Throughout this section, we assume that the pair of functions (f1, ϕ) is L-smad on C.

3.1.1 Properties of BPDCA

First, we show the sufficiently decreasing property of BPDCA mapping for 0 < λL < 1
(the argument is adapted from [15, Lemma 4.1]). We define the sufficiently decreasing
property below.

Definition 3.4 (Sufficiently decreasing property). Let Ψ : Rd → (−∞,+∞] be a proper
and lower semicontinuous function. A sequence {xk}∞k=0 has the sufficient decrease prop-
erty if there exists a positive scalar κ such that

κDϕ(xk,xk+1) < Ψ(xk) − Ψ(xk+1) ∀k ∈ N.

When ϕ is σ-strongly convex (see also Assumption 3.7 (i)), we obtain κσ
2
∥xk+1−xk∥ ≤

κDϕ(xk,xk+1) < Ψ(xk) − Ψ(xk+1), which implies the sufficiently decreasing property by
the squared Euclidean distance [15, Definition 4.1].

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 hold. For any x ∈ C = int domϕ
and any x+ ∈ C = int domϕ defined by

x+ ∈ argmin
u∈clC

{
⟨∇f1(x) − ξ,u− x⟩ + g(u) +

1

λ
Dϕ(u,x)

}
, (3.3)

where ξ ∈ ∂cf2(x) and λ > 0, it holds that

λΨ(x+) ≤ λΨ(x) − (1 − λL)Dϕ(x+,x). (3.4)

In particular, the sufficiently decreasing property in the objective function value Ψ is
ensured when 0 < λL < 1.

Proof. From the global optimality of x+ by taking u = x ∈ int domϕ and ξ ∈ ∂cf2(x),
we obtain

⟨∇f1(x) − ξ,x+ − x⟩ + g(x+) +
1

λ
Dϕ(x+,x) ≤ g(x).

Invoking the full extended descent lemma (Lemma 2.10) for f1, the definition of the
subgradient for f2, and the above inequality, we have

f1(x
+) − f2(x

+) + g(x+)
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≤ f1(x) − f2(x) + ⟨∇f1(x) − ξ,x+ − x⟩ + LDϕ(x+,x) + g(x+)

≤ f1(x) − f2(x) + LDϕ(x+,x) + g(x) − 1

λ
Dϕ(x+,x)

= f1(x) − f2(x) + g(x) −
(

1

λ
− L

)
Dϕ(x+,x),

for Ψ = f1 − f2 + g. The last statement follows with 0 < λL < 1.

Proposition 3.6 follows immediately from Lemma 3.5, as in [15].

Proposition 3.6. Suppose that Assumptions 3.1 and 3.2 hold. Let {xk}∞k=0 be a sequence
generated by BPDCA with 0 < λL < 1. Then, the following statements hold:

(i) The sequence {Ψ(xk)}∞k=0 is non-increasing.

(ii)
∑∞

k=1Dϕ(xk,xk−1) <∞; hence, the sequence {Dϕ(xk,xk−1)}∞k=0 converges to zero.

(iii) min1≤k≤nDϕ(xk,xk−1) ≤ λ
n

(
Ψ(x0)−Ψ∗

1−λL

)
, where Ψ∗ := v > −∞ (by Assumption 3.1

(v).

3.1.2 Convergence Analysis of BPDCA

Suppose that the following conditions hold.

Assumption 3.7.

(i) domϕ = Rd and ϕ is σ-strongly convex on Rd.

(ii) ∇ϕ and ∇f1 are Lipschitz continuous on any bounded subset of Rd.

(iii) The objective function Ψ is level-bounded; i.e., for any r ∈ R, the lower level sets
{x ∈ Rd | Ψ(x) ≤ r} are bounded.

Since C = int domϕ = Rd under Assumption 3.7 (i), Assumptions 3.2 and 3.18 are
automatically fulfilled. For nonconvex functions, we use the limiting subdifferential [102].
We define the limiting critical points and the limiting stationary points of Ψ.

Definition 3.8. We say that x̃ is a limiting critical point of (3.1) with C ≡ Rd if

0d ∈ ∇f1(x̃) − ∂cf2(x̃) + ∂g(x̃). (3.5)

The set of all limiting critical points of (3.1) is denoted by X . In addition, we say that
x̃ is a limiting stationary point of (3.1) with C ≡ Rd if

0d ∈ ∂Ψ(x̃). (3.6)
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Although the limiting stationary points are sometimes called the limiting critical
points in some papers, for example, [14, Definition 1 (iv)], we distinguish these two
terms. The reasons are the following: When Ψ is convex, we call x̃ a stationary point
if it satisfies 0d ∈ ∂cΨ(x̃). Because (3.6) is its natural extension by replacing ∂cΨ with
∂Ψ, we use the terminology “limiting stationary point” after [34, Definition 6.1.4]. We
similarly name x̃ satisfying (3.5): When g is convex, we call x̃ a critical point if it satisfies
0d ∈ ∇f1(x̃) − ∂cf2(x̃) + ∂cg(x̃). Because (3.5) is its natural extension by replacing ∂cg
with ∂g, we use the terminology “limiting critical point.”

The limiting stationary point is a first-order necessary condition for local optimality.
This relation is known as the generalized Fermat’s rule [102, Theorem 10.1]. We can
deduce ∂(g − f2)(x) ⊆ ∂g(x) − ∂cf2(x) from [80, Corollary 3.4]. Plugging it into [102,
Corollary 10.9], it generally holds that ∂Ψ(x) ⊆ ∇f1(x)−∂cf2(x)+∂g(x) for all x ∈ Rd.
It implies that the limiting critical point is weaker than the limiting stationary point.
When f2 is C1 on Rd, it holds that ∂Ψ(x) ≡ ∇f1(x)−∇f2(x)+∂g(x) from [102, Corollary
10.9] or [79, Proposition 1.107 (ii)] and the definition of the limiting subdifferentials of
f2 and g. Thus, every limiting critical point is a limiting stationary point when f2 is C1.
We show an example of limiting critical points and limiting stationary points.

Example 3.9. Consider functions f1, f2, g : R → R, and Ψ = f1 − f2 + g, given by

f1(x) = x2, f2(x) = max{−2x, x}, g(x) = max{−x, 2x}, and Ψ(x) = x2 + x.

In this case, since the functions f1, f2, g, and Ψ are convex, their limiting subdifferentials
correspond to (classical) subdifferentials. Then, we obtain ∇f1(x) = 2x, ∂cΨ(x) = {2x+
1},

∂cf2(x) =


{−2} if x < 0,
[−2, 1] if x = 0,
{1} if x > 0,

∂cg(x) =


{−1} if x < 0,
[−1, 2] if x = 0,
{2} if x > 0,

and hence

∇f1(x) − ∂cf2(x) + ∂cg(x) =

{
{2x+ 1} if x ̸= 0,
[−2, 4] if x = 0.

Therefore, we have ∂cΨ(x) ⊂ ∇f1(x) − ∂cf2(x) + ∂cg(x) for any x ∈ R. For x̃ = −1
2
,

because of 0 ∈ ∂cΨ(x̃) = {0} and 0 ∈ ∇f1(x̃) − ∂cf2(x̃) + ∂cg(x̃) = {0}, x̃ is a limiting
critical point and also a limiting stationary point. However, for x̃ = 0, because of 0 /∈
∂cΨ(x̃) = {1} and 0 ∈ ∇f1(x̃)− ∂cf2(x̃) + ∂cg(x̃) = [−2, 4], x̃ is not a limiting stationary
point but a limiting critical point.

Next, using Lemma 3.5 and Proposition 3.6, we will show the global subsequential
convergence of the iterates to a limiting critical point of the problem (3.1). We can easily
see that Theorem 3.10 (i) holds from the level-boundedness of Ψ. Theorem 3.10 (iii)
and (vi) will play an essential role in determining global convergence and the rate of
convergence of BPDCA.
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Theorem 3.10 (Global subsequential convergence of BPDCA). Suppose that Assump-
tions 3.1, 3.2, and 3.7 hold. Let {xk}∞k=0 be a sequence generated by BPDCA with
0 < λL < 1 for solving (3.1). Then, the following statements hold:

(i) The sequence {xk}∞k=0 is bounded.

(ii) The sequence {ξk}∞k=0 is bounded.

(iii) limk→∞ ∥xk+1 − xk∥2 = 0.

(iv) Any accumulation point of {xk}∞k=0 is a limiting critical point of (3.1).

Proof. (i) From Proposition 3.6, we obtain Ψ(xk) ≤ Ψ(x0) for all k ∈ N, which shows
that {xk}∞k=0 is bounded from Assumption 3.7 (iii).

(ii) From Assumption 3.1 (ii), 3.7 (i), and the convexity of f2, dom f2 = Rd and
∂cf2(x

k) ̸= ∅. Suppose, for the sake of proof by contradiction, that {ξk}∞k=0 is unbounded,
i.e., ∥ξk∥2 → ∞ as k → ∞. By the definition of the subgradients of convex functions,
we see that for any y ∈ Rd,

f2(y) ≥ f2(x
k) + ⟨ξk,y − xk⟩. (3.7)

Assume for a moment that ∥ξk∥2 ̸= 0. Letting {dk}∞k=0 be the subsequence given by
dk = ξk/∥ξk∥2 and substituting xk + dk = xk + ξk/∥ξk∥2 into y in (3.7), we obtain

f2(x
k + dk) ≥ f2(x

k) +
〈
ξk,dk

〉
= f2(x

k) + ∥ξk∥2,

which is also true when ∥ξk∥2 = 0 by defining dk = 0. By taking k → ∞, we obtain

lim sup
k→∞

∥ξk∥2 ≤ lim sup
k→∞

(
f2(x

k + dk) − f2(x
k)
)
. (3.8)

We can take a compact set S such that {xk +dk}∞k=0 ⊂ S, since {xk +dk}∞k=0 is bounded.
For x̄ ∈ argmaxx∈S f2(x), since f2 is continuous because of its convexity on Rd and
{xk}∞k=0 is bounded, it holds that

lim sup
k→∞

(
f2(x

k + dk) − f2(x
k)
)
≤ f2(x̄) − f̄2 <∞, (3.9)

for some value f̄2 ≤ f2(x
k), k ≥ 0. (3.8) and (3.9) contradict ∥ξk∥2 → ∞.

(iii) From (3.4), we obtain

Ψ(xk−1) − Ψ(xk) ≥
(

1

λ
− L

)
Dϕ(xk,xk−1)

≥
(

1

λ
− L

)
σ

2
∥xk − xk−1∥22, (3.10)

where the last inequality holds since ϕ is a σ-strongly convex function from Assump-
tion 3.7 (i). Summing the above inequality from k = 1 to ∞, we obtain(

1

λ
− L

) ∞∑
k=1

σ

2
∥xk − xk−1∥22 ≤ Ψ(x0) − lim inf

n→∞
Ψ(xn) ≤ Ψ(x0) − v <∞,
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which shows that limk→∞ ∥xk+1 − xk∥2 = 0.
(iv) Let x̃ be an accumulation point of {xk}∞k=0 and let {xkj} be a subsequence such

that limj→∞ xkj = x̃. Then, from the first-order optimality condition of subproblem (3.2)
under Assumption 3.2, we have

0d ∈ ∇f1(xkj) − ξkj + ∂g(xkj+1) +
1

λ

(
∇ϕ(xkj+1) −∇ϕ(xkj)

)
.

Therefore,

ξkj +
1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)
∈ ∂g(xkj+1) + ∇f1(xkj). (3.11)

From the boundedness of {xkj} and the Lipschitz continuity of ∇ϕ on a bounded subset
of Rd, there exists A0 > 0 such that∥∥∥∥1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)∥∥∥∥
2

≤ A0

λ
∥xkj+1 − xkj∥2.

Therefore, using ∥xkj+1 − xkj∥2 → 0, we obtain

1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)
→ 0d. (3.12)

Note that the sequence {ξkj} is bounded due to (ii). Thus, by taking the limit as j →
∞ or, more precisely, its subsequence, we can assume without loss of generality that
limj→∞ ξkj =: ξ̃ exists, which belongs to ∂cf2(x̃) since f2 becomes continuous due to
its convexity on Rd. Using this and (3.12), we can take the limit of (3.11). Setting
∥xkj+1 − xkj∥2 → 0 and invoking the lower semicontinuity of g and ∇f1, we obtain
ξ̃ ∈ ∂g(x̃) + ∇f1(x̃). Therefore, 0d ∈ ∂g(x̃) + ∇f1(x̃) − ∂cf2(x̃), which shows that x̃ is
a limiting critical point of (3.1).

We can estimate the objective value at an accumulation point from lim infj→∞ Ψ(xkj)
and lim supj→∞ Ψ(xkj). Consequently, we can prove that Ψ is constant on the set of
accumulation points of BPDCA.

Proposition 3.11. Suppose that Assumptions 3.1, 3.2, and 3.7 hold. Let {xk}∞k=0 be a
sequence generated by BPDCA with 0 < λL < 1 for solving (3.1). Then, the following
statements hold:

(i) ζ := limk→∞ Ψ(xk) exists.

(ii) Ψ ≡ ζ on Ω, where Ω is the set of accumulation points of {xk}∞k=0.

Proof. (i) From Assumption 3.1 (v) and Proposition 3.6 (i), the sequence {Ψ(xk)}∞k=0 is
bounded from below and non-increasing. Consequently, ζ := limk→∞ Ψ(xk) exists.

(ii) Take any x̂ ∈ Ω, that is limj→∞ xkj = x̂. From (3.2), it follows that

⟨∇f1(xk−1) − ξk−1,xk − xk−1⟩ + g(xk) +
1

λ
Dϕ(xk,xk−1)
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≤ ⟨∇f1(xk−1) − ξk−1, x̂− xk−1⟩ + g(x̂) +
1

λ
Dϕ(x̂,xk−1).

From the above inequality and the fact that f1 is convex at xk, we obtain

f1(x
k) + g(xk) ≤⟨∇f1(xk−1) − ξk−1, x̂− xk⟩ + g(x̂) +

1

λ
Dϕ(x̂,xk−1) − 1

λ
Dϕ(xk,xk−1)

+ f1(x̂) + ⟨∇f1(xk),xk − x̂⟩.

Substituting kj for k and limiting j to ∞, we have, from Proposition 3.6 (ii),

lim sup
j→∞

(
f1(x

kj) + g(xkj)
)
≤ f1(x̂) + g(x̂),

which provides lim supj→∞ Ψ(xkj) ≤ Ψ(x̂) from the continuity of −f2 since f2 is convex.
Combining this and the lower semicontinuity of Ψ yields Ψ(xkj) → Ψ(x̂) =: ζ as j → ∞.
Since x̂ ∈ Ω is arbitrary, we conclude that Ψ ≡ ζ on Ω.

To discuss the global convergence of BPDCA, we will suppose either of the following
two assumptions.

Assumption 3.12. f2 is continuously differentiable on an open set N0 ⊂ Rd that contains
the set of all limiting critical points of Ψ, i.e., X . Furthermore, ∇f2 is locally Lipschitz
continuous on N0.

Assumption 3.13. g is differentiable on Rd and ∇g is locally Lipschitz continuous on
an open set N0 ⊂ Rd that contains the set of all limiting stationary points of −Ψ.

Assumption 3.12 is nonrestrictive because many functions in [121], including the f2
in numerical experiments, satisfy it. Thus, let us discuss the global convergence of Algo-
rithm 1 under Assumption 3.12 by following the argument presented in [121]. Note that
every limiting critical point is a limiting stationary point from the differentiability of f2
under Assumption 3.12.

Theorem 3.14 (Global convergence of BPDCA under the local differentiability of f2).
Suppose that Assumptions 3.1, 3.2, 3.7, and 3.12 hold and that Ψ is a KL function. Let
{xk}∞k=0 be a sequence generated by BPDCA with 0 < λL < 1 for solving (3.1). Then,
the following statements hold:

(i) limk→∞ dist(0d, ∂Ψ(xk)) = 0.

(ii) The sequence {xk}∞k=0 converges to a limiting stationary point of (3.1); moreover,∑∞
k=1 ∥xk − xk−1∥2 <∞.

Proof. (i) Since {xk}∞k=0 is bounded and Ω is the set of accumulation points of {xk}∞k=0,
we have

lim
k→∞

dist(xk,Ω) = 0. (3.13)
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From Theorem 3.10 (iv), we also have Ω ⊆ X . Thus, for any µ > 0, there exists
k0 > 0 such that dist(xk,Ω) < µ and xk ∈ N0 for any k ≥ k0, where N0 is defined in
Assumption 3.12. As for N0, since Ω is compact from the boundedness of {xk}∞k=0, by
decreasing µ, if needed, we can suppose without loss of generality that ∇f2 is globally
Lipschitz continuous on N := {x ∈ N0 | dist(x,Ω) < µ}.

The subdifferential of Ψ at xk for k ≥ k0 is

∂Ψ(xk) = ∇f1(xk) −∇f2(xk) + ∂g(xk). (3.14)

Moreover, considering the first-order optimality condition of subproblem (3.2), we see
that, for any k ≥ k0 + 1,

1

λ

(
∇ϕ(xk−1) −∇ϕ(xk)

)
−∇f1(xk−1) + ∇f2(xk−1) ∈ ∂g(xk),

since f2 is C1 on N and xk−1 ∈ N for any k ≥ k0 + 1. Using the above and (3.14), we
see that

1

λ

(
∇ϕ(xk−1) −∇ϕ(xk)

)
+ ∇f1(xk) −∇f1(xk−1) + ∇f2(xk−1) −∇f2(xk) ∈ ∂Ψ(xk).

From the global Lipschitz continuity of ∇f1,∇f2, and ∇ϕ, there exists A1 > 0 such that

dist(0d, ∂Ψ(xk)) ≤ A1∥xk − xk−1∥2, (3.15)

where k ≥ k0+1. From Theorem 3.10 (iii), we conclude that limk→∞ dist(0d, ∂Ψ(xk)) = 0.
(ii) From Theorem 3.10 (iv), it is sufficient to prove that {xk}∞k=0 is convergent. Here,

consider the case in which there exists a positive integer k > 0 such that Ψ(xk) = ζ. From
Proposition 3.6 (i) and Proposition 3.11 (i), the sequence {Ψ(xk)}∞k=0 is non-increasing

and converges to ζ. Hence, for any k̂ ≥ 0, we have Ψ(xk+k̂) = ζ. Recalling (3.10), we
conclude that there exists a positive scalar A2 such that

Ψ(xk−1) − Ψ(xk) ≥ A2∥xk − xk−1∥22, ∀k ∈ N. (3.16)

From (3.16), we obtain xk = xk+k̂ for any k̂ ≥ 0, which means that {xk}∞k=0 is finitely
convergent.

Next, consider the case where Ψ(xk) > ζ for all k ≥ 0. Since {xk}∞k=0 is bounded,
Ω is a compact subset of dom ∂Ψ and Ψ ≡ ζ on Ω from Proposition 3.11 (ii). From
Lemma 2.13 and since Ψ is a KL function, there exist a positive scalar ϵ > 0 and a
continuous concave function ψ ∈ Ξη with η > 0 such that

ψ′(Ψ(x) − ζ) · dist(0d, ∂Ψ(x)) ≥ 1, (3.17)

for all x ∈ U , where U = {x ∈ Rd | dist(x,Ω) < ϵ} ∩ {x ∈ Rd | ζ < Ψ(x) < ζ + η}.
From (3.13), there exists k1 > 0 such that dist(xk,Ω) < ϵ for any k ≥ k1. Since

{Ψ(xk)}∞k=0 is non-increasing and converges to ζ, there exists k2 > 0 such that ζ <
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Ψ(xk) < ζ + η for all k ≥ k2. Taking k̄ = max{k0 + 1, k1, k2}, then {xk}k≥k̄ belongs to
U . Hence, from (3.17), we obtain

ψ′(Ψ(xk) − ζ) · dist(0d, ∂Ψ(xk)) ≥ 1, ∀k ≥ k̄. (3.18)

Since ψ is a concave function, we see that for any k ≥ k̄,

[ψ(Ψ(xk) − ζ) − ψ(Ψ(xk+1) − ζ)] · dist(0d, ∂Ψ(xk))

≥ ψ′(Ψ(xk) − ζ) · dist(0d, ∂Ψ(xk)) · (Ψ(xk) − Ψ(xk+1))

≥ Ψ(xk) − Ψ(xk+1)

≥ A2∥xk+1 − xk∥22,

where the second inequality holds from (3.18) and the fact that {Ψ(xk)}∞k=0 is non-
increasing, and the last inequality holds from (3.16). From (3.15) and the above inequal-
ity, we obtain

∥xk+1 − xk∥22 ≤
A1

A2

(
ψ(Ψ(xk) − ζ) − ψ(Ψ(xk+1) − ζ)

)
∥xk − xk−1∥2. (3.19)

Taking the square root of (3.19) and using the inequality of arithmetic and geometric
means, we find that

∥xk+1 − xk∥2 ≤
√
A1

A2

(ψ(Ψ(xk) − ζ) − ψ(Ψ(xk+1) − ζ)) ·
√

∥xk − xk−1∥2

≤ A1

2A2

(
ψ(Ψ(xk) − ζ) − ψ(Ψ(xk+1) − ζ)

)
+

1

2
∥xk − xk−1∥2.

This shows that

1

2
∥xk+1 − xk∥2 ≤

A1

2A2

(
ψ(Ψ(xk) − ζ) − ψ(Ψ(xk+1) − ζ)

)
+

1

2
∥xk − xk−1∥2 −

1

2
∥xk+1 − xk∥2. (3.20)

Summing (3.20) from k = k̄ to ∞, we have

∞∑
k=k̄

∥xk+1 − xk∥2 ≤
A1

A2

ψ(Ψ(xk̄) − ζ) + ∥xk̄ − xk̄−1∥2 <∞,

which implies that
∑∞

k=1 ∥xk − xk−1∥2 < ∞, i.e., the sequence {xk}∞k=0 is a Cauchy se-
quence. Thus, {xk}∞k=0 converges to a limiting critical point of (3.1) from Theorem 3.10
(iv). Because every limiting critical point is a limiting stationary point from the differ-
entiability of f2, {xk}∞k=0 converges to a limiting stationary point of (3.1).

Next, suppose that Assumption 3.13 holds instead of Assumption 3.12. Here, we can
show the global convergence of BPDCA by referring to [63, Theorem 3.4]. We will use
subanalyticity instead of the KL property in the proof.
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Theorem 3.15 (Global convergence of BPDCA under the local differentiability of g).
Suppose that Assumptions 3.1, 3.2, 3.7, and 3.13 hold and that Ψ is subanalytic. Let
{xk}∞k=0 be a sequence generated by BPDCA with 0 < λL < 1 for solving (3.1). Then,
the sequence {xk}∞k=0 converges to a limiting critical point of (3.1); moreover,

∑∞
k=1 ∥xk−

xk−1∥2 <∞.

Proof. Since g is differentiable, g is continuous on Rd. Since the convexity of f1 and f2
implies their continuity, Ψ is continuous on Rd.

Let {ξk}∞k=0 on Rd be a sequence of subgradients of f2. From Theorem 3.10 (i) and
(ii), {xk}∞k=0 and {ξk}∞k=0 are bounded. Let x̃ be a limiting stationary point of −Ψ and
B(x̃, ϵ0) be an open ball with center x̃ and radius ϵ0 > 0. Since ∇g is locally Lipschitz
continuous and Assumption 3.7 (ii) holds, for λ > 0, there exist κ0 > 0 and ϵ0 > 0 such
that∥∥∥∥∇(g +

1

λ
ϕ

)
(u) −∇

(
g +

1

λ
ϕ

)
(v)

∥∥∥∥
2

≤ κ0∥u− v∥2, ∀u,v ∈ B(x̃, ϵ0). (3.21)

From Assumption 3.1 (v), −Ψ is finite. Furthermore, recalling the continuity and suban-
alyticity of −Ψ on B(x̃, ϵ0), we can apply [13, Theorem 3.1] to the subanalytic function
−Ψ and obtain ν0 > 0 and θ0 ∈ [0, 1) such that

|Ψ(u) − ζ|θ0 ≤ ν0∥x̂∥2, ∀u ∈ B(x̃, ϵ0), x̂ ∈ ∂(−Ψ)(u), (3.22)

where ζ = Ψ(x̃).
Let Ω be the set of accumulation points of {xk}∞k=0. Since Ω is compact, Ω can be

covered by a finite number of B(x̃j, ϵj) with x̃j ∈ Ω and ϵj > 0, j = 1, . . . , p. From
Theorem 3.10 (iv), x̃j ∈ Ω, j = 1, . . . , p are limiting critical points of (3.1). Hence, (3.21)
with κj > 0 and ϵj > 0 and (3.22) with νj > 0 and θj ∈ [0, 1) hold for j = 1, . . . , p.
Letting ϵ > 0 be a sufficiently small constant, we obtain

{x ∈ Rd | dist(x,Ω) < ϵ} ⊂
p⋃

j=1

B(x̃j, ϵj).

From (3.13), there exists k1 > 0 such that dist(xk,Ω) < ϵ for any k ≥ k1; hence,
xk ∈

⋃p
j=1B(x̃j, ϵj) for any k ≥ k1. From Theorem 3.10 (iii), letting ϵ̄ > 0 be a sufficiently

small constant, there exists k2 > 0 such that ∥xk−xk+1∥2 ≤ ϵ̄
2

for any k ≥ k2. Therefore,
redefining ϵ̄, ϵj, j = 1, . . . , p and relabeling if necessary, we can assume without loss of
generality that

xk ∈
p⋃

j=1

B
(
x̃j,

ϵj
2

)
and ∥xk − xk+1∥2 ≤

ϵ̄

2
, ∀k ≥ k̄,

where ϵ̄ = minj=1,...,p ϵj and k̄ = max{k1, k2}, which implies xk ∈ B(x̃jk , ϵjk/2), jk ∈
{1, . . . , p} and hence xk+1 ∈ B(x̃jk , ϵjk). Thus, from (3.21) and (3.22), we have∥∥∥∥∇(g +

1

λ
ϕ

)
(xk) −∇

(
g +

1

λ
ϕ

)
(xk+1)

∥∥∥∥
2

≤ κ∥xk − xk+1∥2, (3.23)
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|Ψ(xk) − ζ|θ ≤ ν∥x̂k∥2, x̂k ∈ ∂(−Ψ)(xk), ∀k ≥ k̄, (3.24)

where κ = maxj=1,...,p κj, ν = maxj=1,...,p νj, and θ = maxj=1,...,p θj. From (3.2), we find
that

0d = ∇f1(xk) − ξk + ∇g(xk+1) +
1

λ

(
∇ϕ(xk+1) −∇ϕ(xk)

)
,

which implies

∇g(xk+1) −∇g(xk) +
1

λ
(∇ϕ(xk+1) −∇ϕ(xk)) = ξk −∇f1(xk) −∇g(xk) ∈ ∂(−Ψ)(xk),

where we have used ∂(−Ψ)(xk) = ∂cf2(x
k) −∇f1(xk) −∇g(xk), which comes from the

convexity of f2. Using (3.23) and (3.24), we obtain, for all k ≥ k̄,

|Ψ(xk) − ζ|θ ≤ ν

∥∥∥∥∇(g +
1

λ
ϕ

)
(xk) −∇

(
g +

1

λ
ϕ

)
(xk+1)

∥∥∥∥
2

≤ κν∥xk − xk+1∥2. (3.25)

Since the function t1−θ is concave on [0,∞), Ψ(xk) − ζ ≥ 0, (3.10), and (3.25), we find
that, for all k ≥ k̄,

(Ψ(xk) − ζ)1−θ − (Ψ(xk+1) − ζ)1−θ ≥ (1 − θ)(Ψ(xk) − ζ)−θ(Ψ(xk) − Ψ(xk+1))

≥ 1 − θ

κν∥xk − xk+1∥2

(
1

λ
− L

)
σ

2
∥xk − xk+1∥22

=
(1 − θ)σ

2κν

(
1

λ
− L

)
∥xk − xk+1∥2. (3.26)

Summing (3.26) from k = k̄ to ∞ yields

∞∑
k=k̄

∥xk − xk+1∥2 ≤
2κν

(1/λ− L)(1 − θ)σ
(Ψ(xk̄) − ζ)1−θ <∞,

which implies that
∑∞

k=1 ∥xk − xk−1∥2 < ∞, i.e., the sequence {xk}∞k=0 is a Cauchy
sequence. Thus, {xk}∞k=0 converges to a limiting critical point of (3.1) from Theorem 3.10
(iv).

Finally, we show the rate of convergence in the following manner [5, 121].

Theorem 3.16 (Rate of convergence under the local differentiability of f2). Suppose that
Assumptions 3.1, 3.2, 3.7, and 3.12 hold. Let {xk}∞k=0 be a sequence generated by BPDCA
with 0 < λL < 1 for solving (3.1) and suppose that {xk}∞k=0 converges to some x̃ ∈ X .
Suppose further that Ψ is a KL function with ϕ in the KL inequality (2.3) taking the form
ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. Then, the following statements hold:

(i) If θ = 0, then there exists k0 > 0 such that xk is constant for k > k0;
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(ii) If θ ∈ (0, 1
2
], then there exist c1 > 0, k1 > 0, and η ∈ (0, 1) such that ∥xk − x̃∥2 <

c1η
k for k > k1;

(iii) If θ ∈ (1
2
, 1), then there exist c2 > 0 and k2 > 0 such that ∥xk − x̃∥2 < c2k

− 1−θ
2θ−1 for

k > k2.

Proof. (i) For the case of θ = 0, we will prove that there exists an integer k0 > 0 such
that Ψ(xk0) = ζ by assuming to the contrary that Ψ(xk) > ζ for all k > 0 and showing
a contradiction. The sequence {Ψ(xk)}∞k=0 converges to ζ due to Proposition 3.11 (i). In
addition, from the KL inequality (3.18) and ψ′(·) = c, we can see that for all sufficiently
large k,

dist(0d, ∂Ψ(xk)) ≥ 1

c
,

which contradicts Theorem 3.14 (i). Therefore, there exists k0 > 0 such that Ψ(xk0) = ζ.
Since {Ψ(xk)}∞k=0 is non-increasing and converges to ζ, we have Ψ(xk0+k̄) = ζ for all
k̄ ≥ 0. This, together with (3.16), leads us to conclude that there exists k0 > 0 such that
xk is constant for k > k0.

(ii–iii) Next, consider the case θ ∈ (0, 1). If there exists k0 > 0 such that Ψ(xk0) = ζ,
then we can show that the sequence {xk}∞k=0 is finitely convergent in the same way as
in the proof of (i). Therefore, for θ ∈ (0, 1), we only need to consider the case that
Ψ(xk) > ζ for all k > 0.

Define Rk = Ψ(xk) − ζ and Sk =
∑∞

j=k ∥xj+1 − xj∥2, where Sk is well-defined due to

Theorem 3.14 (ii). From (3.20), for any k ≥ k̄, where k̄ is defined in (3.18), we obtain

Sk = 2
∞∑
j=k

1

2
∥xj+1 − xj∥2

≤ 2
∞∑
j=k

[
A1

2A2

(
ψ(Ψ(xj) − ζ) − ψ(Ψ(xj+1) − ζ)

)
+

1

2
∥xj − xj−1∥2 −

1

2
∥xj+1 − xj∥2

]
≤ A1

A2

ψ(Ψ(xk) − ζ) + ∥xk − xk−1∥2

=
A1

A2

ψ(Rk) + Sk−1 − Sk. (3.27)

On the other hand, since limk→∞ xk = x̃ and {Ψ(xk)} is non-increasing and converges
to ζ, the KL inequality (3.18) with ψ(s) = cs1−θ ensures that, for all sufficiently large k,

c(1 − θ)R−θ
k dist(0d, ∂Ψ(xk)) ≥ 1. (3.28)

From the definition of Sk and (3.15), we also have that, for all sufficiently large k,

dist(0d, ∂Ψ(xk)) ≤ A1(Sk−1 − Sk). (3.29)
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Combining (3.28) and (3.29), we have Rθ
k ≤ A1 · c(1 − θ)(Sk−1 − Sk) for all sufficiently

large k. Raising the above inequality to the power of 1−θ
θ

and scaling both sides by c, we

find that cR1−θ
k ≤ c(A1 ·c(1−θ)(Sk−1−Sk))

1−θ
θ . Combining this with (3.27) and recalling

ψ(Rk) = cR1−θ
k , we find that, for all sufficiently large k,

Sk ≤ A3(Sk−1 − Sk)
1−θ
θ + Sk−1 − Sk, (3.30)

where A3 = A1

A2
c(A1 · c(1 − θ))

1−θ
θ .

(ii) When θ ∈ (0, 1
2
], we have 1−θ

θ
≥ 1. Since limk→∞ ∥xk+1−xk∥2 = 0 by Theorem 3.10

(iii), limk→∞ Sk−1 − Sk = 0. From these considerations and (3.30), we conclude that
there exists k1 > 0 such that for all k ≥ k1, Sk ≤ (A3 + 1)(Sk−1 − Sk), which implies
Sk ≤ A3+1

A3+2
Sk−1. Therefore, for all k ≥ k1,

∥xk − x̃∥2 ≤
∞∑
j=k

∥xj+1 − xj∥2 = Sk ≤ Sk1−1

(
A3 + 1

A3 + 2

)k−k1+1

.

(iii) For θ ∈
(
1
2
, 1
)
, 1−θ

θ
< 1. From (3.30) and limk→∞ Sk−1 − Sk = 0, there exists

k2 > 0 such that

Sk ≤ A3(Sk−1 − Sk)
1−θ
θ + Sk−1 − Sk ≤ A3(Sk−1 − Sk)

1−θ
θ + (Sk−1 − Sk)

1−θ
θ

≤ (A3 + 1)(Sk−1 − Sk)
1−θ
θ ,

for all k ≥ k2. Raising the above inequality to the power of θ
1−θ

, for any k ≥ k2 we find

S
θ

1−θ

k ≤ A4(Sk−1 − Sk), where A4 = (A3 + 1)
θ

1−θ . From [5, Theorem 2], we find that, for

all sufficiently large k, there exists A5 > 0 such that Sk ≤ A5k
− 1−θ

2θ−1 .

In Theorem 3.16, the parameter θ is called the KL exponent. Calculation of the KL
exponent for first-order methods has been studied in [68]. Using Theorem 3.15, we can
obtain another rate of convergence in the same way as in the proof of [5, Theorem 2]
or [63, Theorem 3.5].

Theorem 3.17 (Rate of convergence under the local differentiability of g). Suppose that
Assumptions 3.1, 3.2, 3.7, and 3.13 hold. Let {xk}∞k=0 be a sequence generated by BPDCA
with 0 < λL < 1 for solving (3.1) and suppose that {xk}∞k=0 converges to some x̃ ∈ X .
Suppose further that Ψ is subanalytic. Let θ ∈ [0, 1) be a  Lojasiewicz exponent of x̃.
Then, the following statements hold:

(i) If θ = 0, then there exists k0 > 0 such that xk is constant for k > k0;

(ii) If θ ∈ (0, 1
2
], then there exist c1 > 0, k1 > 0, and η ∈ (0, 1) such that ∥xk − x̃∥2 <

c1η
k for k > k1;

(iii) If θ ∈ (1
2
, 1), then there exist c2 > 0 and k2 > 0 such that ∥xk − x̃∥2 < c2k

− 1−θ
2θ−1 for

k > k2.

In this thesis, we call θ the KL exponent under the KL property, while we call θ the
 Lojasiewicz exponent under subanalyticity.
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3.2 Bregman Proximal DC Algorithm with extrapo-

lation

Algorithm 2, which we are proposing, is an acceleration of BPDCA that uses the extrap-
olation technique [10, 86, 87] to solve the DC optimization problem (3.1).

Algorithm 2 Bregman proximal DC algorithm with extrapolation (BPDCAe)

Input: ϕ ∈ G(C) with C = int domϕ such that L-smad for the pair (f1, ϕ) holds on
C.

Initialization: x0 = x−1 ∈ C, t−1 = t0 = 1, ρ ∈ (0, 1], and 0 < λ < 1/L.
for k = 0, 1, 2, . . . , do

Compute

βk =
tk−1 − 1

tk
with tk+1 =

1 +
√

1 + 4t2k
2

, (3.31)

yk = xk + βk(xk − xk−1).

if yk /∈ C or Dϕ(xk,yk) > ρDϕ(xk−1,xk) then
Set βk = 0 with tk−1 = tk = 1 and yk = xk.

end if
Take any ξk ∈ ∂cf2(x

k) and compute

xk+1 = argmin
y∈clC

{
⟨∇f1(yk) − ξk,y − yk⟩ + g(y) +

1

λ
Dϕ(y,yk)

}
. (3.32)

end for

When βk ≡ 0 for all k ≥ 0, BPDCAe reduces to BPDCA. Here, we prefer the popular
choice for the coefficients βk (and tk) given in [121] for acceleration. Accordingly, (3.31)
guarantees that {βk}∞k=0 ⊂ [0, 1) and supk≥0 βk < 1. These properties are needed to prove
the global subsequential convergence of the iterates (see Theorem 3.23 (ii)). Algorithm 2
introduces a new adaptive restart scheme, which resets tk and βk whenever

Dϕ(xk,yk) > ρDϕ(xk−1,xk), (3.33)

is satisfied for a fixed ρ ∈ [0, 1). This adaptive restart scheme guarantees the non-
increasing property for BPDCAe (see Lemma 3.21). In addition, we can enforce this
reset every K iterations for a given positive integer K. In numerical experiments, we set
{βk}∞k=0 as both the fixed and the adaptive restart schemes.

When C = int domϕ = Rd, yk always stays in C. However, when C ̸= Rd and
xk + βk(xk − xk−1) /∈ C, Algorithm 2 enforces βk = 0 and BPDCAe is not accelerated
at the kth iteration. This operation guarantees that yk always stays in C. In practice,
however, the extrapolation technique may be valid and accelerates BPDCAe.
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We define the following BPDCAe mapping for all x,y ∈ C = int domϕ, and λ ∈
(0, 1/L):

Tλ(x,y) := argmin
u∈clC

{
⟨∇f1(y) − ξ,u− y⟩ + g(u) +

1

λ
Dϕ(u,y)

}
,

where ξ ∈ ∂cf2(x). Similarly to the case of BPDCA, we make an Assumption 3.18 and
can prove Lemma 3.19 for Tλ(x,y) ⊂ clC.

Assumption 3.18. For all x,y ∈ C and λ > 0, we have

Tλ(x,y) ⊂ C, ∀x,y ∈ C.

Lemma 3.19. Suppose that Assumptions 3.1 and 3.18 hold, and let x,y ∈ C = int domϕ.
Then, the set Tλ(x,y) is a nonempty and compact subset of C for any λ > 0.

Throughout this section, we assume that the pair of functions (f1, ϕ) is L-smad on C.

3.2.1 Properties of BPDCAe

Inspired by [128], we introduce the auxiliary function,

HM(x,y) = Ψ(x) +MDϕ(y,x), M > 0.

To show the decreasing property of HM , instead of Ψ, with respect to {xk}∞k=0, we further
assume the convexity of g.

Assumption 3.20. The function g is convex.

Under the adaptive restart scheme (3.33), we show the decreasing property of HM .

Lemma 3.21. Suppose that Assumptions 3.1, 3.18, and 3.20 hold. For any xk, yk ∈
C = int domϕ and any xk+1 ∈ C = int domϕ defined by

xk+1 ∈ argmin
y∈clC

{
⟨∇f1(yk) − ξk,y − yk⟩ + g(y) +

1

λ
Dϕ(y,yk)

}
, (3.34)

where ξk ∈ ∂cf2(x
k), yk = xk + βk(xk −xk−1), λ > 0, and {βk}∞k=0 ⊂ [0, 1), it holds that

λΨ(xk+1) ≤ λΨ(xk) +Dϕ(xk,yk) −Dϕ(xk,xk+1) − (1 − λL)Dϕ(xk+1,yk). (3.35)

Furthermore, when 0 < λL < 1 and the sequence {βk}∞k=0 is given by the adaptive restart
scheme (3.33),

HM(xk+1,xk) ≤ HM(xk,xk−1) −
(

1

λ
−M

)
Dϕ(xk,xk+1)

−
(
M − ρ

λ

)
Dϕ(xk−1,xk) −

(
1

λ
− L

)
Dϕ(xk+1,yk). (3.36)

In addition, when ρ
λ
≤ M ≤ 1

λ
for ρ ∈ [0, 1), the auxiliary function HM is ensured to be

non-increasing.
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Proof. From the first-order optimality condition for (3.34), we obtain

0d ∈ ∇f1(yk) − ξk + ∂cg(xk+1) +
1

λ
(∇ϕ(xk+1) −∇ϕ(yk)).

From the convexity of g, we find that

g(xk) − g(xk+1) ≥
〈
−∇f1(yk) + ξk − 1

λ
(∇ϕ(xk+1) −∇ϕ(yk)),xk − xk+1

〉
.

Using the three-point identity (2.2) of the Bregman distances,

1

λ
⟨∇ϕ(xk+1) −∇ϕ(yk),xk − xk+1⟩ =

1

λ
(Dϕ(xk,yk) −Dϕ(xk,xk+1) −Dϕ(xk+1,yk)),

we have

f1(x
k) − f1(x

k+1) + g(xk) − g(xk+1) ≥ f1(x
k) − f1(x

k+1)

+ ⟨−∇f1(yk) + ξk,xk − xk+1⟩ − 1

λ
(Dϕ(xk,yk) −Dϕ(xk,xk+1) −Dϕ(xk+1,yk)).

From the convexity of f1 and Lemma 2.10, we find that

f1(x
k) − f1(x

k+1) − ⟨∇f1(yk),xk − xk+1⟩
= f1(x

k) − f1(y
k) − ⟨∇f1(yk),xk − yk⟩ − f1(x

k+1) + f1(y
k) + ⟨∇f1(yk),xk+1 − yk⟩

≥ − LDϕ(xk+1,yk).

The above inequalities and the definition of the subgradient for f2 lead us to

Ψ(xk+1) ≤ Ψ(xk) +
1

λ
Dϕ(xk,yk) − 1

λ
Dϕ(xk,xk+1) −

(
1

λ
− L

)
Dϕ(xk+1,yk),

which implies inequality (3.35). If βk = 0, then yk = xk and Dϕ(xk,yk) = 0. If
βk ̸= 0, since we chose the adaptive restart scheme, there is a ρ ∈ [0, 1) satisfying
Dϕ(xk,yk) ≤ ρDϕ(xk−1,xk). From the definition of HM(xk,xk−1) and 0 < λL < 1, we
have

HM(xk+1,xk) ≤ HM(xk,xk−1) +
1

λ
Dϕ(xk,yk) −

(
1

λ
−M

)
Dϕ(xk,xk+1)

−MDϕ(xk−1,xk) −
(

1

λ
− L

)
Dϕ(xk+1,yk)

≤ HM(xk,xk−1) −
(

1

λ
−M

)
Dϕ(xk,xk+1)

−
(
M − ρ

λ

)
Dϕ(xk−1,xk) −

(
1

λ
− L

)
Dϕ(xk+1,yk), (3.37)

where the second inequality comes from Dϕ(xk,yk) ≤ ρDϕ(xk−1,xk). When ρ
λ
≤M ≤ 1

λ
,

we have

HM(xk+1,xk) ≤ HM(xk,xk−1), ∀k ≥ 0,

which shows that the sequence {HM}∞k=0 is non-increasing.
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We can use Lemma 3.21 to prove Proposition 3.22.

Proposition 3.22. Suppose that Assumptions 3.1, 3.18, and 3.20 hold. Let {xk}∞k=0 be
a sequence generated by BPDCAe with 0 < λL < 1. Assume that the auxiliary function
HM(xk,xk−1) satisfies ρ

λ
≤M ≤ 1

λ
for ρ ∈ [0, 1). Then, the following statements hold:

(i) The sequence {HM(xk,xk−1)}∞k=0 is non-increasing.

(ii)
∑∞

k=1Dϕ(xk−1,xk) <∞; hence, the sequence {Dϕ(xk−1,xk)}∞k=0 converges to zero.

(iii) min1≤k≤nDϕ(xk−1,xk) ≤ λ
n(1−ρ)

(Ψ(x0) − Ψ∗), where Ψ∗ := v > −∞ (by Assump-

tion 3.1 (v).

Proof. (i) The statement was proved in Lemma 3.21.
(ii) Modify (3.37) into

λ(HM(xk+1,xk) −HM(xk,xk−1)) ≤− (1 − λM)Dϕ(xk,xk+1) − (λM − ρ)Dϕ(xk−1,xk)

− (1 − λL)Dϕ(xk+1,yk)

≤− (1 − λM)Dϕ(xk,xk+1) − (λM − ρ)Dϕ(xk−1,xk),

where the last inequality comes from (1 − λL)Dϕ(xk+1,yk) ≥ 0. Let n be a positive
integer. Summing the above inequality from k = 0 to n and letting Ψ∗ := v > −∞, we
find that

n∑
k=1

Dϕ(xk−1,xk) =
n∑

k=0

Dϕ(xk−1,xk) ≤ λ (HM(x0,x−1) −HM(xn+1,xn))

1 − ρ

≤ λ (Ψ(x0) − Ψ(xn+1))

1 − ρ

≤ λ (Ψ(x0) − Ψ∗)

1 − ρ
, (3.38)

where the second inequality comes from Dϕ(x−1,x0) = 0, x−1 = x0, and Dϕ(xn,xn+1) ≥
0. Note that xn+1 ∈ C by Assumption 3.18. Taking the limit as n → ∞, we arrive at
the former statement (ii). The latter statement follows directly from the former.

(iii) From (3.38), we immediately have

n min
1≤k≤n

Dϕ(xk−1,xk) ≤
n∑

k=1

Dϕ(xk−1,xk) ≤ λ (Ψ(x0) − Ψ∗)

1 − ρ
.

3.2.2 Convergence Analysis of BPDCAe

They follow arguments that are similar to their BPDCA counterparts.
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Theorem 3.23 (Global subsequential convergence of BPDCAe). Suppose that Assump-
tions 3.1, 3.18, 3.7, and 3.20 hold. Let {xk}∞k=0 be a sequence generated by BPDCAe with
0 < λL < 1 for solving (3.1). Assume that the auxiliary function HM(xk,xk−1) satisfies
ρ
λ
≤M ≤ 1

λ
for ρ ∈ [0, 1). Then, the following statements hold:

(i) The sequence {xk}∞k=0 is bounded.

(ii) limk→∞ ∥xk+1 − xk∥2 = 0.

(iii) Any accumulation point of {xk}∞k=0 is a limiting critical point of (3.1).

Proof. (i) Since HM(xk,xk−1) ≤ HM(x0,x−1) for all k ∈ N from Proposition 3.22 (i),
with x0 = x−1, we obtain

Ψ(xk) ≤ Ψ(xk) +MDϕ(xk−1,xk) = HM(xk,xk−1) ≤ HM(x0,x−1) = Ψ(x0),

which shows that {xk}∞k=0 is bounded due to Assumption 3.7 (iii).
(ii) From (3.36), we obtain

HM(xk,xk−1) −HM(xk+1,xk) ≥
(

1

λ
−M

)
Dϕ(xk,xk+1) +

(
M − ρ

λ

)
Dϕ(xk−1,xk)

+

(
1

λ
− L

)
Dϕ(xk+1,yk)

≥ σ(1 − λL)

2λ

(
∥xk+1 − xk∥22 − βk∥xk − xk−1∥22

)
,

where the last inequality holds because ϕ is a σ-strongly convex function and the first
two terms are nonnegative. Summing the above inequality from k = 0 to ∞, we obtain

σ(1 − λL)

2λ

(
∞∑
k=0

(1 − βk+1)∥xk+1 − xk∥22 − β1∥x0 − x1∥22

)
≤ HM(x0,x−1) − lim inf

n→∞
HM(xn+1,xn)

= Ψ(x0) − lim inf
n→∞

(
Ψ(xn+1) +MDϕ(xn,xn+1)

)
≤ Ψ(x0) − v <∞,

which shows that limk→∞ ∥xk+1 − xk∥2 = 0 due to 1
λ
− L > 0 and supk>0 βk < 1.

(iii) Let x̃ be an accumulation point of {xk}∞k=0 and let {xkj} be a subsequence
such that limj→∞ xkj = x̃. Then, from the first-order optimality condition of subprob-
lem (3.32) under Assumption 3.18, we have

0d ∈ ∂cg(xkj+1) + ∇f1(ykj) − ξkj +
1

λ

(
∇ϕ(xkj+1) −∇ϕ(ykj)

)
.

Therefore, we obtain

ξkj + ∇f1(xkj+1) −∇f1(ykj) +
1

λ

(
∇ϕ(ykj) −∇ϕ(xkj+1)

)
∈ ∂cg(xkj+1) + ∇f1(xkj+1).

(3.39)
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From the boundedness of {xkj} and the Lipschitz continuity of ∇ϕ and ∇f1 on a bounded
subset of Rd, there exists A0 > 0 such that∥∥∥∥∇f1(xkj+1) −∇f1(ykj) +

1

λ

(
∇ϕ(ykj) −∇ϕ(xkj+1)

)∥∥∥∥
2

≤ A0∥xkj+1 − ykj∥2.

Therefore, using ∥xkj+1 − xkj∥2 → 0 and ∥xkj − xkj−1∥2 → 0, we obtain

∇f1(xkj+1) −∇f1(ykj) +
1

λ

(
∇ϕ(ykj) −∇ϕ(xkj+1)

)
→ 0d. (3.40)

Note that the sequence {ξkj} is bounded as shown in Theorem 3.10 (ii), and the sequence
{xkj} is bounded and converges to x̃. Thus, by taking the limit as j → ∞ or, more
precisely, its subsequence, we can assume without loss of generality that limj→∞ ξkj =: ξ̃
exists, which belongs to ∂cf2(x̃) since f2 is continuous. Using this and (3.40), we take
the limit of (3.39). Invoking ∥xkj+1 − xkj∥2 → 0 and the continuity of g and ∇f1, we
obtain ξ̃ ∈ ∂cg(x̃) + ∇f1(x̃). Therefore, 0d ∈ ∂cg(x̃) + ∇f1(x̃) − ∂cf2(x̃), which shows
that x̃ is a limiting critical point of (3.1).

Proposition 3.24. Suppose that Assumptions 3.1, 3.18, 3.7, and 3.20 hold. Let {xk}∞k=0

be a sequence generated by BPDCAe with 0 < λL < 1 for solving (3.1) and ρ
λ
≤ M ≤ 1

λ

for ρ ∈ [0, 1). Then, the following statements hold:

(i) ζ := limk→∞ Ψ(xk) exists.

(ii) Ψ ≡ ζ on Ω, where Ω is the set of accumulation points of {xk}∞k=0.

Proof. (i) From Assumption 3.1 (v) and Proposition 3.22 (i), {HM(xk,xk−1)}∞k=0 is
bounded from below and non-increasing. Consequently, using limk→∞Dϕ(xk−1,xk) = 0
from Proposition 3.22 (ii), we obtain limk→∞HM(xk,xk−1) = limk→∞ Ψ(xk) =: ζ.

(ii) Take any x̂ ∈ Ω, that is limj→∞ xkj = x̂. From (3.32), it follows that

g(xk) + ⟨∇f1(yk−1) − ξk−1,xk − yk−1⟩ +
1

λ
Dϕ(xk,yk−1)

≤ g(x̂) + ⟨∇f1(yk−1) − ξk−1, x̂− yk−1⟩ +
1

λ
Dϕ(x̂,yk−1).

From the above inequality and the fact that f1 is convex at xk, we obtain

g(xk) + f1(x
k) ≤ g(x̂) + ⟨∇f1(yk−1) − ξk−1, x̂− xk⟩ +

1

λ
Dϕ(x̂,yk−1) − 1

λ
Dϕ(xk,yk−1)

+ f1(x̂) + ⟨∇f1(xk),xk − x̂⟩

≤ g(x̂) + ⟨∇f1(yk−1) − ξk−1, x̂− xk⟩ +
1

λ
Dϕ(x̂,yk−1) +

1

λ
Dϕ(yk−1, x̂)

+ f1(x̂) + ⟨∇f1(xk),xk − x̂⟩, (3.41)
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where the second inequality comes from − 1
λ
Dϕ(xk,yk−1) ≤ 0 and 1

λ
Dϕ(yk−1, x̂) ≥ 0.

Since ∇ϕ is continuous, we have

lim
j→∞

(
Dϕ(x̂,ykj−1) +Dϕ(ykj−1, x̂)

)
≤ lim

j→∞
∥∇ϕ(ykj−1) −∇ϕ(x̂)∥2∥ykj−1 − x̂∥2 = 0.

Substituting kj for k in (3.41) and limiting j to ∞, we have, from Proposition 3.22 (ii),

lim sup
j→∞

(
g(xkj) + f1(x

kj)
)
≤ g(x̂) + f1(x̂),

which provides lim supj→∞ Ψ(xkj) ≤ Ψ(x̂) from the continuity of −f2. Combining this
and the lower semicontinuity of Ψ yields Ψ(xkj) → Ψ(x̂) =: ζ as j → ∞. Since x̂ ∈ Ω is
arbitrary, we conclude that Ψ ≡ ζ on Ω.

Since HM(x,y) has a Bregman distance term, the subdifferential of HM(x,y) has a
∇ϕ term. To prove Theorem 3.26, we should additionally suppose that there is a bounded
subdifferential of the gradient ∇ϕ [128].

Assumption 3.25. For any bounded subset S ⊂ Rd and any point x ∈ S, there exists
A > 0 such that ∥T (u)∥2 ≤ A∥u∥2 for some T : Rd → Rd such that T (u) ∈ ∂(∇ϕ(x))(u)
for any u ∈ S.

The subdifferential ∂(∇ϕ(x))(u) is given by (2.1) (see also [80, Section 1.3.5]). We
can prove the following theorems by supposing the KL property or the subanalyticity of
the auxiliary function HM(x,y) in relation to x and y.

Theorem 3.26 (Global convergence of BPDCAe under the local differentiability of f2).
Suppose that Assumptions 3.1, 3.18, 3.7, 3.12, 3.20, and 3.25 hold and that the auxiliary
function HM(x,y) is a KL function satisfying ρ

λ
≤M ≤ 1

λ
for ρ ∈ [0, 1). Let {xk}∞k=0 be

a sequence generated by BPDCAe with 0 < λL < 1 for solving (3.1). Then, the following
statements hold:

(i) limk→∞ dist((0d,0d), ∂HM(xk,xk−1)) = 0.

(ii) The set of accumulation points of {(xk,xk−1)}∞k=0 is Υ := {(x,x) | x ∈ Ω} and
HM ≡ ζ on Υ, where Ω is the set of accumulation points of {xk}∞k=0.

(iii) The sequence {xk}∞k=0 converges to a limiting stationary point of (3.1); moreover,∑∞
k=1 ∥xk − xk−1∥2 <∞.

Proof. (i) Let µ > 0, k0 > 0, N0, and N := {x ∈ N0 | dist(x,Ω) < µ} as defined in the
proof of Theorem 3.14 (i).

We begin by considering the subdifferential of HM at xk for k ≥ k0 + 1, and obtain

∂HM(xk,xk−1) = ∇f1(xk) −∇f2(xk) + ∂cg(xk) −M∂(∇ϕ(xk))(xk−1 − xk). (3.42)
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Moreover, considering the first-order optimality condition of subproblem (3.32), for any
k ≥ k0 + 1, we have

1

λ

(
∇ϕ(yk−1) −∇ϕ(xk)

)
−∇f1(yk−1) + ∇f2(xk−1) ∈ ∂cg(xk),

since f2 is C1 on N and xk−1 ∈ N whenever k ≥ k0 + 1. Using the above relation
and (3.42), for Uk(xk − xk−1) ∈ ∂(∇ϕ(xk))(xk − xk−1) with some Uk : Rd → Rd by
Assumption 3.25, we also obtain

1

λ

(
∇ϕ(yk−1) −∇ϕ(xk)

)
+ ∇f1(xk) −∇f1(yk−1)

+ ∇f2(xk−1) −∇f2(xk) +MUk(xk − xk−1) ∈ ∂HM(xk,xk−1).

Due to the global Lipschitz continuity of ∇f1, ∇f2, and ∇ϕ on N0, and Assumption 3.25,
we see that there exist A0 > 0, A1 > 0, and A2 > 0 such that

dist((0d,0d), ∂HM(xk,xk−1)) ≤ A0∥xk − yk−1∥2 + A1∥xk − xk−1∥2
≤ A2

(
∥xk − xk−1∥2 + ∥xk−1 − xk−2∥2

)
,

where k ≥ k0 + 1. Since ∥xk − xk−1∥2 → 0 and ∥xk−1 − xk−2∥2 → 0, we conclude the
claim (i).

(ii) Suppose that x̂ ∈ Ω, xkj → x̂, and xkj−1 → x̂ as in Proposition 3.24 (ii).
Therefore, the set of accumulation points of {(xk,xk−1)}∞k=0 is Υ. From Propositions 3.22
and 3.24,

lim
k→∞

HM(xk,xk−1) = lim
k→∞

Ψ(xk) +M lim
k→∞

Dϕ(xk−1,xk) = ζ.

Additionally, from Proposition 3.24 (ii), for any (x̂, x̂) ∈ Υ, x̂ ∈ Ω, we have HM(x̂, x̂) =
Ψ(x̂) = ζ. Since x̂ is arbitrary, we conclude that HM ≡ ζ on Υ.

(iii) The proof is similar to Theorem 3.14 (ii).

Theorem 3.27 (Global convergence of BPDCAe under the local differentiability of g).
Suppose that Assumptions 3.1, 3.18, 3.7, 3.13, 3.20, and 3.25 hold and that the auxiliary
function HM(x,y) is subanalytic satisfying ρ

λ
≤ M ≤ 1

λ
for ρ ∈ [0, 1). Let {xk}∞k=0 be a

sequence generated by BPDCAe with 0 < λL < 1 for solving (3.1). Then, the sequence
{xk}∞k=0 converges to a limiting critical point of (3.1); moreover,

∑∞
k=1 ∥xk−xk−1∥2 <∞.

Proof. Let k1, κi, νi, and θi be defined similarly to the proof of Theorem 3.15. Using the
differentiability of g and [13, Theorem 3.1], we have∥∥∇g(xk) −∇g(xk+1)

∥∥
2
≤ κ∥xk − xk+1∥2, (3.43)

|HM(xk,xk−1) − ζ|θ ≤ ν∥x̂k∥2, x̂k ∈ ∂(−H)(xk,xk−1), ∀k ≥ k1 + 1, (3.44)

where ζ = HM(x̃, x̃) = Ψ(x̃), x̃ ∈ Ω, κ = maxj=1,...,p κi, ν = maxj=1,...,p νi, and θ =
maxj=1,...,p θi. From (3.32), we obtain

0d = ∇g(xk+1) + ∇f1(yk) − ξk +
1

λ

(
∇ϕ(xk+1) −∇ϕ(yk)

)
,
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which implies, for x̂k ∈ ∂(−HM)(xk,xk−1) = ∂cf2(x
k) + M∂(∇ϕ(xk))(xk−1 − xk) −

∇f1(xk)−∇g(xk) and some Uk(xk−1−xk) ∈ ∂(∇ϕ(xk))(xk−1−xk) with Uk : Rd → Rd,

x̂k = ξk +MUk(xk−1 − xk) −∇f1(xk) −∇g(xk)

= ∇g(xk+1) −∇g(xk) + ∇f1(yk) −∇f1(xk)

+
1

λ

(
∇ϕ(xk+1) −∇ϕ(yk)

)
+MUk(xk−1 − xk).

Using (3.43), (3.44), Assumptions 3.7, and 3.25, we obtain C > 0 such that

|HM(xk,xk−1) − ζ|θ ≤ ν∥x̂k∥2
≤ C(∥xk − xk+1∥2 + ∥xk−1 − xk∥2), ∀k ≥ k1 + 1,

where the second inequality comes from ∇ϕ(xk+1) − ∇ϕ(yk) = ∇ϕ(xk+1) − ∇ϕ(xk) +
∇ϕ(xk) −∇ϕ(yk). The rest of the proof is similar to Theorem 3.15.

Finally, we have theorems regarding the convergence rate of BPDCAe, whose proof
is almost identical to Theorems 3.16 and 3.17. Note that the KL exponent (or the
 Lojasiewicz exponent) of the auxiliary function HM is equal to that of the objective
function Ψ from [124, Lemma 5.1].

Theorem 3.28 (Rate of convergence under the local differentiability of f2). Suppose
that Assumptions 3.1, 3.18, 3.7, 3.12, 3.20, and 3.25 hold. Let {xk}∞k=0 be a sequence
generated by BPDCAe with 0 < λL < 1 for solving (3.1) and suppose that {xk}∞k=0

converges to some x̃ ∈ X . Suppose further that the auxiliary function HM(x,y) satisfying
ρ
λ
≤ M ≤ 1

λ
for ρ ∈ [0, 1) is a KL function with ψ in the KL inequality (2.3) taking the

form ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. Then, the following statements hold:

(i) If θ = 0, then there exists k0 > 0 such that xk is constant for k > k0;

(ii) If θ ∈ (0, 1
2
], then there exist c1 > 0, k1 > 0, and η ∈ (0, 1) such that ∥xk − x̃∥2 <

c1η
k for k > k1;

(iii) If θ ∈ (1
2
, 1), then there exist c2 > 0 and k2 > 0 such that ∥xk − x̃∥2 < c2k

− 1−θ
2θ−1 for

k > k2.

Theorem 3.29 (Rate of convergence under the local differentiability of g). Suppose that
Assumptions 3.1, 3.18, 3.7, 3.13, 3.20, and 3.25 hold. Let {xk}∞k=0 be a sequence generated
by BPDCAe with 0 < λL < 1 for solving (3.1) and suppose that {xk}∞k=0 converges to
some x̃ ∈ X . Suppose further that the auxiliary function HM(x,y) satisfying ρ

λ
≤M ≤ 1

λ

for ρ ∈ [0, 1) is subanalytic. Let θ ∈ [0, 1) be a  Lojasiewicz exponent of x̃. Then, the
following statements hold:

(i) If θ = 0, then there exists k0 > 0 such that xk is constant for k > k0;

(ii) If θ ∈ (0, 1
2
], then there exist c1 > 0, k1 > 0, and η ∈ (0, 1) such that ∥xk − x̃∥2 <

c1η
k for k > k1;

(iii) If θ ∈ (1
2
, 1), then there exist c2 > 0 and k2 > 0 such that ∥xk − x̃∥2 < c2k

− 1−θ
2θ−1 for

k > k2.
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3.3 Hybrid Bregman Proximal DC Algorithm

Instead of (3.1), we consider the following block DC optimization problem:

min
(x,y)∈clC1×clC2

ΨB(x,y) := f1(x,y) − f2(x,y) + g1(x) − g2(x) + h(y), (3.45)

where f1, f2 : Cd1 ×Rd2 → (−∞,+∞] are real-valued functions of complex variables
x ∈ clC1 and real variables y ∈ clC2, g1, g2 : Cd1 → (−∞,+∞] are real-valued convex
functions of complex variables x ∈ clC1, h : Rd2 → (−∞,+∞] is a convex function of
real variables y ∈ clC2, and C1 ⊂ Cd1 and C2 ⊂ Rd2 are nonempty open convex sets. We
assume the following assumption.

Assumption 3.30.

(i) ϕ ∈ G(C1) with clC1 = cl domϕ.

(ii) f1, f2 : Cd1 ×Rd2 → (−∞,+∞] are proper with domϕ ⊂ dom(f1 + g1), which are
C1 on C1 × C2. Additionally, f1(·,y), f2(·,y), and f(x, ·) := f1(x, ·) − f2(x, ·) are
convex.

(iii) g1, g2 : Cd1 → (−∞,+∞] and h : Rd2 → (−∞,+∞] are proper, lower semicontinu-
ous, and convex with dom g1 ∩ C1 ̸= ∅ and domh ∩ C2 ̸= ∅, respectively.

(iv) vB := inf(x,y)∈clC1×clC2 ΨB(x,y) > −∞.

(v) For any λ > 0, λg1 + ϕ is supercoercieve, that is,

lim
∥u∥2→∞

λg1(u) + ϕ(u)

∥u∥2
= ∞.

Under Assumption 3.30 (ii), ∇f = ∇f1−∇f2 for f := f1− f2 and ΨB(x, ·) is convex.
The hybrid Bregman proximal DC algorithm (HBPDA) is listed as Algorithm 3.

Algorithm 3 Hybrid Bregman proximal DC algorithm (HBPDCA)

Input: ϕ ∈ G(C1) with C1 = int domϕ such that the L(y)-smad property for the
pair (f1, ϕ) holds on C1 for y ∈ clC2.

Initialization: (x0,y0) ∈ C1 × C2.
for k = 0, 1, 2, . . . , do

Take any ξk ∈ ∂cg2(x
k) and compute λk = 1/L(yk) and

xk+1 = argmin
x∈clC1

{
2 Re⟨∇xf(xk,yk) − ξk,x− xk⟩ + g1(x) +

1

λk
Dϕ(x,xk)

}
, (3.46)

yk+1 = argmin
y∈clC2

{
f(xk+1,y) + h(y)

}
. (3.47)

end for
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Note that the L(y)-smad property depends on y ∈ clC2. For all fixed yk ∈ clC2,
HBPDCA corresponds to BPDCA. Since ΨB(x, ·) is convex, (3.47) is a convex optimiza-
tion problem. Since HBPDCA has the convex subproblem, it is different from the unified
Bregman alternating minimization algorithm [48].

Remark 3.31. Because we use existing properties and algorithms for convex optimiza-
tion, the variable y belongs to C2 ⊂ Rd2. It would be possible to extend y to complex
variables.

3.3.1 Properties of HBPDCA

We obtain the sufficiently decreasing property of HBPDCA.

Lemma 3.32. Suppose that Assumptions 3.2 and 3.30 hold. For any x ∈ C1 = int domϕ
and y ∈ C2 and any (x+,y+) ∈ C1 × C2 defined by

x+ ∈ argmin
u∈clC1

{
2 Re⟨∇xf(x,y) − ξ,u− x⟩ + g1(u) +

1

λ
Dϕ(u,x)

}
, (3.48)

y+ ∈ argmin
v∈clC2

{
f(x+,v) + h(v)

}
, (3.49)

where ξ ∈ ∂cg2(x) and λ > 0, it holds that

λΨB(x+,y+) ≤ λΨB(x,y) − (1 − λL)Dϕ(x+,x). (3.50)

In particular, the sufficiently decreasing property in the objective function value ΨB is
ensured when 0 < λL < 1.

Proof. From Lemma 3.5, we obtain

λΨB(x+,y) ≤ λΨB(x,y) − (1 − λL)Dϕ(x+,x),

for ΨB(·,y) = f1(·,y) − f2(·,y) + g1(·) − g2(·) + h(y). From the global optimality of y+,
we have

f(x+,y+) + h(y+) ≤ f(x+,y) + h(y), (3.51)

for f = f1 − f2. Using the above inequalities, it holds that

λΨB(x+,y+) ≤ λΨB(x+,y) ≤ λΨB(x,y) − (1 − λL)Dϕ(x+,x).

The last statement follows from 0 < λL < 1.

Remark 3.33. In practice, even if (3.49) is not solved exactly, Lemma 3.32 is guaranteed
by the point y+ satisfying f(x,y+)+h(y+) ≤ f(x,y)+h(y) for any x ∈ C1 and y ∈ C2.
For example, y+ is generated by a certain number of inner iterations of the proximal
gradient method under the L-smoothness of f(x, ·) until y+ satisfies (3.51).
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3.3.2 Convergence Analysis of HBPDCA

In the same way as BPDCA, suppose that the following conditions hold.

Assumption 3.34.

(i) domϕ = Cd1 and ϕ is σ-strongly convex on Cd1.

(ii) ∇ϕ and ∇f1 are Lipschitz continuous on any bounded subset of Cd1.

(iii) The objective function ΨB is level-bounded.

From Definition 3.8, (x̃, ỹ) is a critical point of (3.45) with C1 ≡ Cd1 and C2 ≡ Rd2 if
and only if

0d1+d2 ∈ ∇f(x̃, ỹ) +

[
∂cg1(x̃) − ∂cg2(x̃)

∂ch(ỹ)

]
. (3.52)

From Definition 3.8, (x̃, ỹ) is a limiting stationary point of (3.45) with C1 ≡ Cd1 and
C2 ≡ Rd2 if

0d1+d2 ∈ ∂ΨB(x̃, ỹ). (3.53)

Theorem 3.35 (Global subsequential convergence of HBPDCA). Suppose that Assump-
tions 3.2, 3.30, and 3.34 hold. Let {(xk,yk)}∞k=0 be a sequence generated by HBPDCA
with 0 < λkL(yk) < 1 for solving (3.45). Then, the following statements hold:

(i) The sequence {(xk,yk)}∞k=0 is bounded.

(ii) The sequence {ξk}∞k=0 is bounded.

(iii) limk→∞ ∥xk+1 − xk∥2 = 0.

(iv) Any accumulation point of {(xk,yk)}∞k=0 is a critical point of (3.45).

Proof. (i) From Lemma 3.32, we obtain ΨB(xk,yk) ≤ ΨB(x0,y0) for all k ∈ N, which
shows that {(xk,yk)}∞k=0 is bounded from Assumption 3.34 (iii).

(ii) We can prove (ii) in a manner similar to Theorem 3.10 (ii).
(iii) From 1/λk−L(yk) > 0 for any k, there exists A0 > 0 such that A0 = infk{1/λk−

L(yk)}. From (3.50), we obtain

ΨB(xk−1,yk−1) − ΨB(xk,yk) ≥
(

1

λk
− L(yk)

)
Dϕ(xk,xk−1)

≥
(

1

λk
− L(yk)

)
σ

2
∥xk − xk−1∥22

≥ σA0

2
∥xk − xk−1∥22, (3.54)
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where the second inequality holds since ϕ is a σ-strongly convex function from Assump-
tion 3.34 (i). Summing the above inequality from k = 1 to ∞, we obtain, for vB from
Assumption 3.30 (iv),

∞∑
k=1

σA0

2
∥xk − xk−1∥22 ≤ ΨB(x0,y0) − lim inf

n→∞
ΨB(xn,yn) ≤ ΨB(x0,y0) − vB <∞,

which shows that limk→∞ ∥xk+1 − xk∥2 = 0.
(iv) Let (x̃, ỹ) be an accumulation point of {(xk,yk)}∞k=0 and let {(xkj ,ykj)} be a

subsequence such that limj→∞ xkj = x̃ and limj→∞ ykj = ỹ. Then, from the first-order
optimality condition of subproblem (3.46) under Assumption 3.2, we have

0d1 ∈ ∇xf(xkj ,ykj) − ξkj + ∂cg1(x
kj+1) +

1

λ

(
∇ϕ(xkj+1) −∇ϕ(xkj)

)
.

Therefore,

ξkj +
1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)
∈ ∂g1(x

kj+1) + ∇xf(xkj ,ykj). (3.55)

From the boundedness of {(xkj ,ykj)} and the Lipschitz continuity of ∇ϕ on a bounded
subset of Cd1 , there exists A1 > 0 such that∥∥∥∥1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)∥∥∥∥
2

≤ A1

λ
∥xkj+1 − xkj∥2.

Therefore, using ∥xkj+1 − xkj∥2 → 0, we obtain

1

λ

(
∇ϕ(xkj) −∇ϕ(xkj+1)

)
→ 0d1 . (3.56)

Note that the sequence {ξkj} is bounded due to (ii). Thus, by taking the limit as j →
∞ or, more precisely, its subsequence, we can assume without loss of generality that
limj→∞ ξkj =: ξ̃ exists, which belongs to ∂cg2(x̃) since g2 becomes continuous due to
its convexity on Cd1 . Using this and (3.56), we can take the limit of (3.55). Setting
∥xkj+1 − xkj∥2 → 0 and invoking the lower semicontinuity of g1 and ∇xf , we obtain
ξ̃ ∈ ∇xf(x̃, ỹ) + ∂cg1(x̃). Therefore, 0d1 ∈ ∇xf(x̃, ỹ) + ∂cg1(x̃) − ∂cg2(x̃). Then, from
the first-order optimality condition of subproblem (3.47), we have

0d2 ∈ ∇yf(xkj+1,ykj+1) + ∂ch(ykj+1),

which implies 0d2 ∈ ∇yf(x̃, ỹ) + ∂ch(ỹ) as j → ∞ from the lower semicontinuity of h
and ∇yf . Therefore, we obtain

0d1+d2 ∈ ∇f(x̃, ỹ) +

[
∂cg1(x̃) − ∂cg2(x̃)

∂ch(ỹ)

]
,

which shows that (x̃, ỹ) is a critical point of (3.45).

If the KL property is extended to complex variables, under the KL property on com-
plex variables, we expect that HBPDCA converges to a limiting stationary point. It
remains as future work.
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Chapter 4

Applications

4.1 Application of Bregman Proximal Algorithms Ex-

ploiting DC Structure

In this chapter, we consider applications to signal processing, such as phase retrieval, blind
deconvolution, and self-calibration in radio interferometric imaging. They are known to
be ill-posed because their solutions may not be unique. Adding a regularization term
that may be nonsmooth, we can write these applications as the following nonconvex
optimization problem:

min
x∈clC

f(x) + g(x), (4.1)

where f : Rd → (−∞,+∞] is a nonconvex loss function, g : Rd → (−∞,+∞] is a
regularization term, C ⊂ Rd is a nonempty open convex set. In self-calibration in radio
interferometric imaging, we replace Rd with Cd.

It is non-trivial to apply our proposed algorithms to these problems in signal pro-
cessing. In practice, when we apply Bregman DC proximal algorithms to (4.1), we find
an appropriate DC structure f = f1 − f2 and an appropriate kernel generating distance
ϕ ∈ G(C) that satisfy the following conditions at the same time:

(i) The functions f1, f2 : Rd → (−∞,+∞] are convex, and f1 is C1.

(ii) The pair (f1, ϕ) is L-smad. Because f1 is a convex function, we only need to obtain
ϕ and L such that the function Lϕ− f1 is convex.

(iii) Subproblems (3.2), (3.32), or (3.46) are efficiently solved. For example, they are
solved in closed forms.

The above conditions are followed in corresponding sections and remarks:

(i) Sections 4.2.2, 4.3.2, and 4.4.2.

(ii) Sections 4.2.3, 4.2.4, 4.3.3, and 4.4.3.
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(iii) Remarks 4.2, 4.9, and 4.14.

For other Bregman proximal algorithms without DC decomposition, although they do
not require the condition (i), they have less flexibility on the choice of ϕ. Because DC
decomposition is not unique, we can choose tractable f1 and ϕ. The function ϕ has the
role of approximating f1 (see also Lemma 2.10 and Remark 2.11). When ϕ approximates
f1 well, L is smaller, and then smaller L accelerates Bregman DC proximal algorithms.
It is desirable to choose ϕ that approximates f1 well, while empirically such ϕ makes it
difficult to solve subproblems with a small computational burden. Therefore, there is a
trade-off between the tractability of subproblems and how well ϕ approximates f1. From
this kind of circumstance, we need to choose ϕ that approximates f1 as well as possible,
and we must be able to solve subproblems with Dϕ with a small computational burden.
In the following sections, we find an appropriate DC decomposition f = f1 − f2 and an
appropriate ϕ satisfying these conditions.

In particular, for phase retrieval, exploiting DC structure, we obtain smaller parame-
ters L than the existing one. By using a smaller L, we succeed in accelerating BPDCA(e).
For blind deconvolution, although it is difficult to find an appropriate ϕ without DC struc-
ture (see also Remark 4.5), exploiting DC structure, we obtain an appropriate ϕ.

4.2 Phase Retrieval

4.2.1 Problem Description

We are interested in finding a vector x ∈ Rd that approximately satisfies

⟨ar,x⟩2 ≃ br, r = 1, . . . ,m, (4.2)

where the vectors ar ∈ Rd describe the model and b = (b1, b2, . . . , bm) is a vector of
(usually) noisy measurements. As described in [15, 22], the system (4.2) can be formulated
as a nonconvex optimization problem:

min
x∈Rd

Ψ(x) :=
1

4

m∑
r=1

(
⟨ar,x⟩2 − br

)2
+ g(x), (4.3)

where the function g : Rd → R is a regularizer, in particular g(x) = θ∥x∥1 for a trade-off
parameter θ ≥ 0 between the data fidelity criteria and the regularizer g. In this case, the
underlying space of (3.1) is C ≡ Rd. Define f : Rd → R as f(x) = 1

4

∑m
r=1 (⟨ar,x⟩2 − br)

2
,

which is a nonconvex differentiable function that does not admit a global Lipschitz con-
tinuous gradient.

BPG [15] is one of the methods to solve (4.3). For BPG, assuming L-smad for the pair
(f, ϕ) using ϕ(x) = 1

4
∥x∥42 + 1

2
∥x∥22, the parameter L satisfies the following inequality [15,

Lemma 5.1]:

L ≥
m∑
r=1

(
3∥ara

T
r ∥22 + ∥ara

T
r ∥2|br|

)
. (4.4)
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4.2.2 DC Decomposition

The function f in the optimization problem (4.3) can also be reformulated as a difference
between two convex functions such as in [50]. That is, f(x) = f1(x) − f2(x), where

f1(x) =
1

4

m∑
r=1

⟨ar,x⟩4 +
1

4
∥b∥22, f2(x) =

1

2

m∑
r=1

br⟨ar,x⟩2. (4.5)

Since f = f1 − f2 holds, (4.3) is equivalent to the following DC optimization problem:

min
x∈Rd

Ψ(x) = f1(x) − f2(x) + g(x). (4.6)

4.2.3 L-smooth Adaptable Parameters

For problem (4.6), we define ϕ : Rd → R as

ϕ(x) =
1

4
∥x∥42, (4.7)

which is simpler than the original nonconvex formulation. Since this ϕ(x) is not strongly
convex, it does not satisfy Assumption 3.7 (i).

Proposition 4.1. Let f1 and ϕ be as defined above. Then, for any L satisfying

L ≥ 3

∥∥∥∥∥
m∑
r=1

∥ar∥22ara
T
r

∥∥∥∥∥
F

, (4.8)

the function Lϕ− f1 is convex on Rd. Therefore, the pair (f1, ϕ) is L-smad on Rd.

Proof. Let x ∈ Rd. Suppose that L satisfies (4.8), in order to guarantee the convexity of
Lϕ − f1, it is sufficient to show Lλmin(∇2ϕ(x)) ≥ λmax(∇2f1(x)) since f1 and ϕ are C2

on Rd. Now, we have the Hessian for f1 and ϕ:

∇2f1(x) = 3
m∑
r=1

⟨ar,x⟩2ara
T
r , ∇2ϕ(x) = ∥x∥22Id + 2xxT.

Since ∇2ϕ(x) ⪰ ∥x∥22Id, we obtain λmin (∇2ϕ(x)) ≥ ∥x∥22. From the well-known fact,
λmax(M ) ≤ ∥M∥F , we have the following inequality:

λmax

(
∇2f1(x)

)
≤ 3

∥∥∥∥∥
m∑
r=1

⟨ar,x⟩2ara
T
r

∥∥∥∥∥
F

≤ 3

∥∥∥∥∥
m∑
r=1

∥ar∥22ara
T
r

∥∥∥∥∥
F

∥x∥22

≤ L∥x∥22 ≤ Lλmin(∇2ϕ(x)).

Therefore, we obtain the desired result.
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Comparing the right-hand side of (4.4) and that of (4.8), we can see that

3

∥∥∥∥∥
m∑
r=1

∥ar∥22ara
T
r

∥∥∥∥∥
F

≤
m∑
r=1

(3∥ara
T
r ∥2F + ∥ara

T
r ∥F |br|). (4.9)

The constant L has the important role of defining the step size and thereby affects the
performance of the algorithms. Note that even if

∥∥∑m
r=1 ∥ar∥22ara

T
r

∥∥
F

=
∑m

r=1 ∥ara
T
r ∥2F ,

the left-hand side of (4.9) is always smaller than the right-hand side because ∥ara
T
r ∥F |br|

is nonnegative. When ϕ(x) = 1
4
∥x∥42 + 1

2
∥x∥22, the subproblems of BPG(e) have a closed-

form solution formula [15, Proposition 5.1]. When ϕ(x) = 1
4
∥x∥42, subproblems (3.2)

and (3.32) also have a closed-form solution formula, which is obtained by slight modifi-
cations of those in BPG(e).

Remark 4.2. Let ϕ be defined by ϕ(x) = 1
4
∥x∥42. Let uk = Sλθ(λ∇f(xk)−∇ϕ(xk)). We

can prove from [15, Proposition 5.1] that xk+1 = −t∗uk solves subproblem (3.2), where t∗

is the unique positive real root of the cubic equation t3∥uk∥22 − 1 = 0, i.e., t∗ = 3
√

∥uk∥22.
It is also true for subproblem (3.32).

In this application, the functions f1, f2, g, and ϕ satisfy Assumptions from 3.1 to 3.25
excepting Assumption 3.7 (i) and 3.13. In particular, Assumption 3.7 (i) is not satisfied
for our choice ϕ(x) = 1

4
∥x∥42, but is satisfied if we replace it by ϕ(x) = 1

4
∥x∥42 + 1

2
∥x∥22.

Finally, Ψ and HM are KL functions due to their semi-algebraicity [5]. Therefore, in
this application, Assumption 3.13 is not required for the global convergence of BPDCAe.
Moreover, the KL exponent θ for phase retrieval is known to be at least 1

4
[127]. From

Theorems 3.16 and 3.26, BPDCA(e) for phase retrieval linearly converges to a limiting
stationary point of (4.2).

4.2.4 L-smooth Adaptable Parameters in a Gaussian Model

We dealt with the following Gaussian model. We generated the elements of m vec-
tors ar ∈ Rd and the ground truth x◦ ∈ Rd, which was a sparse vector (sparsity
of 5%), independently from the standard Gaussian distribution. Then, we generated
br = ⟨ar,x

◦⟩2, r = 1, . . . ,m from ar and x◦.
From the linearity of the expectation, we consider the expectation of ∇2f1,

E
[
∇2f1(x)

]
= 3

m∑
r=1

E
[
⟨ar,x⟩2ara

T
r

]
.

Since the elements of ar are independently generated from the standard Gaussian distri-
bution, the jth diagonal element of the above matrix is given by

E
[
⟨ar,x⟩2a2r,j

]
= E

[
a4r,jx

2
j +

d∑
k=1,k ̸=j

a2r,ja
2
r,kx

2
k

]
= 3x2j +

d∑
k=1,k ̸=j

x2k = 2x2j + ∥x∥22.



Chapter 4. Applications 55

The non-diagonal (j, k) elements are

E
[
⟨ar,x⟩2ar,jar,k

]
= E

[
2a2r,ja

2
r,kxjxk

]
= 2xjxk.

Moreover, noting that ϕ(x) = 1
4
∥x∥42, we obtain E

[
⟨ar,x⟩2ara

T
r

]
= ∥x∥22Id + 2xxT =

∇2ϕ(x). Therefore, the Hessian expectation of f1 is given by E[∇2f1(x)] = 3m∇2ϕ(x).
Under a Gaussian model, we can reduce the lower bound of L given in Proposition 4.1

with high probability by applying [22, Lemma 7.4] as shown in the following proposition.

Proposition 4.3. Let the functions f1 and ϕ be given by (4.5) and (4.7), respectively.
Moreover, assume that the vectors ar are independently distributed according to a Gaus-
sian model with a sufficiently large number of measurements. Let γ and δ be a fixed pos-
itive numerical constant and c(·) be a sufficiently large numerical constant that depends
on δ; this means that the number of samples obeys m ≥ c(δ) · d log d in the Gaussian
model. Then, for any L satisfying

L ≥ 9

∥∥∥∥∥
m∑
r=1

ara
T
r

∥∥∥∥∥
F

+ δ, (4.10)

the function Lϕ − f1 is convex on Rd and hence the pair (f1, ϕ) is L-smad on Rd with
probability at least 1 − 5e−γd − 4/d2.

Proof. Consider the expectation of
∑m

r=1 ara
T
r . Since the elements of ar are indepen-

dently generated from the standard Gaussian distribution, for any y ∈ Rd, we have

yTE

[
m∑
r=1

ara
T
r

]
y =

m∑
r=1

E
[
⟨ar,y⟩2

]
=

m∑
r=1

d∑
j=1

y2j =
m∑
r=1

∥y∥22. (4.11)

From (4.11), for any y ∈ Rd, we have

yTE[∇2f1(x)]y = 3
m∑
r=1

(
∥x∥22∥y∥22 + 2⟨x,y⟩2

)
≤ 9∥x∥22

m∑
r=1

∥y∥22

= 9∥x∥22yTE

[
m∑
r=1

ara
T
r

]
y. (4.12)

We can easily find that

9
m∑
r=1

ara
T
r ⪯ 9

∥∥∥∥∥
m∑
r=1

ara
T
r

∥∥∥∥∥
F

Id,
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which implies that

9E

[
m∑
r=1

ara
T
r

]
⪯ 9

∥∥∥∥∥
m∑
r=1

ara
T
r

∥∥∥∥∥
F

Id. (4.13)

From (4.12) and (4.13), we have

E[∇2f1(x)] ⪯ 9∥x∥22

∥∥∥∥∥
m∑
r=1

ara
T
r

∥∥∥∥∥
F

Id. (4.14)

From [22, Lemma 7.4], (4.10), and (4.14), we conclude that

∇2f1(x) ⪯ E[∇2f1(x)] + δ∥x∥22Id ⪯ L∥x∥22Id (4.15)

with probability at least 1 − 5e−γd − 4/d2. From ∇2ϕ(x) ⪰ ∥x∥22Id and (4.15), we have
∇2f1(x) ⪯ L∇2ϕ(x), which proves that Lϕ − f1 is convex with probability at least
1 − 5e−γd − 4/d2. Therefore, the pair (f1, ϕ) is L-smad on Rd.

Remark 4.4. Since each element of ar independently follows the standard Gaussian
distribution, ∥ar∥22 follows the chi-square distribution with d degrees of freedom. Thus,
we can show ∥ar∥22 ≥ 3 with a high probability for sufficiently large d. It implies that the
bound given in Proposition 4.3 is smaller than that given in Proposition 4.1.

4.2.5 Numerical Experiments

Here, we summarize the results of a Gaussian model. All numerical experiments were
performed in Python 3.7 on an iMac with a 3.3 GHz Intel Core i5 Processor and 8 GB
1867 MHz DDR3 memory.

The codes of BPDCA(e) and the datasets generated during and/or analyzed in Sec-
tion 4.2 are available in the GitHub repository, https://github.com/ShotaTakahashi/
bregman-proximal-dc-algorithm.

First, let us examine the results for the Bregman proximal algorithms, i.e., BPG [15],
BPGe [128], BPDCA (Algorithm 1), and BPDCAe (Algorithm 2). We compared the
averages of 100 random instances in terms of the number of iterations, CPU time, and
accuracy (Tables 4.1 and 4.2). Let x̂ be a recovered solution and x◦ be the ground truth
generated according to the method described in Section 4.2.4. In order to compare the
objective function values, we took the difference log10 |Ψ(x̂)−Ψ(x◦)| to be the accuracy.
In numerical experiments, Ψ(x̂) > Ψ(x◦). The termination criterion was defined as
∥xk − xk−1∥2/max{1, ∥xk∥2} ≤ 10−6. The equation numbers under each algorithm in
Tables 4.1 and 4.2 indicate the value of λ; that is, we set λ = 1/L for L satisfying the
equations. For the restart schemes, we used the adaptive restart scheme with ρ = 0.99
and the fixed restart scheme with K = 200. We set θ = 1 for the regularizer g in (4.3).
We forcibly stopped the algorithms when they reached the maximum number of iterations
(50,000). Table 4.2 compares the results of BPGe and BPDCAe under the same settings

https://github.com/ShotaTakahashi/bregman-proximal-dc-algorithm
https://github.com/ShotaTakahashi/bregman-proximal-dc-algorithm
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Table 4.1: Average numbers of iterations, CPU time, and accuracy for BPG [15] and
BPDCA using 100 random instances of phase retrieval (over the Gaussian model) for
different values of L.

Algorithm m d Iteration CPU-Time (s) Accuracy

BPG [15] 10000 10 3757 1.638 2.901
(4.4) 50 50000 37.761 1.977

100 50000 46.920 5.312
200 50000 91.925 7.737

20000 10 3689 2.539 −2.569
50 50000 76.020 2.007

100 50000 121.966 5.523
200 50000 191.780 8.057

30000 10 3764 3.698 −2.387
50 50000 104.947 2.257

100 50000 175.143 5.678
200 50000 287.735 8.227

BPDCA 10000 10 265 0.102 −4.374
(4.8) 50 1415 0.520 −3.212

100 3274 2.129 −2.656
200 8111 10.416 −2.061

20000 10 255 0.157 −4.350
50 1299 1.182 −3.193

100 2833 4.283 −2.642
200 6572 18.198 −2.057

30000 10 256 0.233 −4.335
50 1257 1.790 −3.156

100 2696 6.484 −2.596
200 6012 25.666 −2.010

BPDCA 10000 10 68 0.025 −5.127
(4.10) 50 92 0.034 −4.627

100 115 0.075 −4.380
200 152 0.192 −4.108

20000 10 65 0.040 −5.137
50 84 0.077 −4.691

100 98 0.149 −4.476
200 121 0.335 −4.229

30000 10 65 0.059 −5.166
50 81 0.115 −4.728

100 93 0.223 −4.515
200 110 0.465 −4.285
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Table 4.2: Average numbers of iterations, CPU time, and accuracy for BPGe [128] and
BPDCAe using 100 random instances of phase retrieval (over the Gaussian model) for
different values of L.

Algorithm m d Iteration CPU-Time (s) Accuracy

BPGe [128] 10000 10 297 0.124 −3.904
(4.4) 50 2614 1.209 −0.428

100 6214 5.949 0.974
200 23940 44.218 2.426

20000 10 285 0.198 −3.653
50 1941 2.871 −0.375

100 6054 15.376 1.250
200 21138 82.086 2.734

30000 10 294 0.290 −3.362
50 1880 3.826 −0.199

100 6002 21.271 1.411
200 21434 123.504 2.806

BPDCAe 10000 10 67 0.025 −5.205
(4.8) 50 203 0.075 −3.802

100 332 0.218 −3.451
200 581 0.740 −2.941

20000 10 62 0.038 −5.071
50 179 0.165 −4.152

100 302 0.458 −3.694
200 501 1.394 −3.110

30000 10 59 0.054 −4.852
50 169 0.242 −4.054

100 278 0.670 −3.448
200 446 1.891 −2.987

BPDCAe 10000 10 32 0.013 −5.649
(4.10) 50 42 0.015 −5.371

100 49 0.032 −5.087
200 61 0.078 −5.135

20000 10 29 0.018 −5.550
50 38 0.035 −5.317

100 43 0.065 −4.919
200 52 0.144 −5.051

30000 10 29 0.026 −5.558
50 38 0.056 −5.446

100 41 0.098 −4.908
200 50 0.210 −5.115
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Figure 4.1: The empirical probability of success based on 100 trials for BPDCAe and
the Wirtinger flow [22] using the same initialization step (of the Wirtinger flow). We set
d = 128 and varied the number m of measurements.

Figure 4.2: The average of support distances based on 100 trials for BPDCAe and the
Wirtinger flow [22].
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as the results in Table 4.1. BPDCA with (4.10) was the fastest among the algorithms
without extrapolation (Table 4.1). On the other hand, the extrapolation method makes
each algorithm faster (Table 4.2).

We can conclude that, at least for phase retrieval, BPDCA has a clear advantage over
BPG because of its reformulation as a nonconvex DC optimization problem (4.5), which
permits choosing a smaller L in (4.8) instead of (4.4). In particular, for the Gaussian
model, we can use a smaller L in (4.10) with high probability. The extrapolation technique
can further enhance performance. Also, we can see that the sequences of BPDCA(e)
globally converge to their optimal solutions despite that the kernel generating distance
ϕ (4.7) does not satisfy Assumption 3.7 (i). This suggests that this condition may be
relaxed in some cases.

Next, we compared the empirical probability of success for BPDCAe and the Wirtinger
flow [22], which is a well-known algorithm for phase retrieval. Here we took the initial
point x0 in BPDCAe to be the value calculated in the initialization step of the Wirtinger
flow. The empirical probability of success and the average of support distances in Fig-
ures 4.1 and 4.2 are on 100 trials, respectively. We regard that the algorithms succeeded
if the relative error ∥x̂−x◦∥2/∥x◦∥2 falls below 10−5 after 2,500 iterations. The support
S(x) and the support distance [39, p. 47] are defined by S(x) = {j | xj ̸= 0} and

dist(S(x̂), S(x◦)) =
max{|S(x̂)|, |S(x◦)|} − |S(x̂) ∩ S(x◦)|

max{|S(x̂)|, |S(x◦)|}
,

respectively. When dist(S(x̂), S(x◦)) is 0, the index set of nonzero elements of x̂ cor-
responds to that of x◦. The dimension d was fixed at 128, and we varied the number
of measurements m. We used the adaptive restart scheme with ρ = 0.99 and the fixed
restart scheme with K = 200. We set θ = 0; i.e., we solved (4.3) without its regularizer.
From the figure, we can see that BPDCAe with the initialization step of the Wirtinger
flow achieved almost 100% success rate when m/d ≥ 6 and obtained more stable results
than those of the Wirtinger flow.

4.3 Blind Deconvolution with Nonsmooth Regular-

ization

4.3.1 Problem Description

We consider the convolution of a filter f ∈ Rm and a signal g ∈ Rm, given by

ỹ = f ∗ g. (4.16)

Our goal is to recover g from ỹ without knowing f . This problem is known as blind
deconvolution. Without any assumptions, blind deconvolution is ill-posed because its
solution may not be unique. A common approach is to assume that f and g belong
to known subspaces [3]. Concretely, for known linear operators B̃ : Rd1 → Rm and
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Ã : Rd2 → Rm, we assume that there exist the true vectors h◦ ∈ Rd1 and x◦ ∈ Rd2

such that f = B̃h◦ and g = Ãx◦, where d1, d2 < m. Moreover, we consider blind
deconvolution in the Fourier domain. Applying the discrete Fourier transform (DFT) to
both sides of (4.16) and letting F ∈ Cm×m be the unitary DFT matrix, we obtain

√
mF ỹ =

√
mF (f ∗ g) =

√
mFf ⊙

√
mFg = mFB̃h◦ ⊙ FÃx◦,

where the second equality holds from the convolution theorem [99, Section 4.4.2], and ⊙
denotes the Hadamard (elementwise) product. Thus, (4.16) is rewritten in the Fourier
domain as y = Bh◦ ⊙Ax◦, where y := 1√

m
F ỹ, B := FB̃, and A := FÃ.

Now, the goal of our problem is to estimate h◦ and x◦ from y. To evaluate the
fidelity, we consider the squared error function f(h,x) = 1

2
∥Bh⊙Ax−y∥22. In addition,

in order to incorporate the image characteristics, we also consider a regularization term
g : Rd1 ×Rd2 → (−∞,+∞]. It may not be differentiable. Commonly used regularization
terms include non-differentiable functions, such as the ℓ1 norm and the total variation.
To compute h◦ and x◦, we minimize the sum of these two functions and a constraint set
clC for a nonempty open convex set C ⊂ Rd1 ×Rd2 . That is, we consider the following
optimization problem:

min
(h,x)∈clC

Ψ(h,x) := f(h,x) + g(h,x). (4.17)

Note that f is a quartic function because it has a quartic term hihjxkxl with respect to
(h,x), and thus it does not have a Lipschitz continuous gradient. Hence, we cannot rely
on the convergence analysis of existing first-order methods, such as FISTA [10], because
their convergence analysis depends on the existence of Lipschitz continuous gradients.
Instead, we try to resort to Bregman proximal gradient algorithms [15, 122]. These
algorithms generalize the proximal gradient method by replacing the squared Euclidean
distance with the Bregman distance Dϕ associated with a kernel generating distance ϕ.
The algorithms generate a sequence converging to a limiting stationary point under the
L-smad property of (f, ϕ) defined later. For our problem, however, finding an appropriate
ϕ is difficult because of the bilinear term of f .

Remark 4.5. We obtain the Hessian of f as follows:

∇2f(h,x) = Re

[
G11 G12

GT
12 G22

]
,

where

G11 := BH diag(|Ax|2)B,
G12 := BH diag(Bh⊙Ax)A + BH diag(Bh⊙Ax− y)A,

G22 := AH diag(|Bh|2)A.

To have the L-smad property of (f, ϕ), we consider ∇2f(h,x) ⪯ L∇2ϕ(h,x) for any
h ∈ Rd1 and x ∈ Rd2. Separate w = (u,v) using u ∈ Rd1 and v ∈ Rd2. We obtain

⟨w,∇2f(h,x)w⟩ = Re⟨u,G11u⟩ + Re⟨v,G22v⟩ + 2 Re⟨u,G12v⟩
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= ⟨|Ax|2, |Bu|2⟩ +
〈
|Bh|2, |Av|2

〉
+ 2 Re⟨u,G12v⟩

Then, we have the following inequality:

Re⟨u,G12v⟩ = Re⟨u,BH diag(Bh⊙Ax)Av⟩ + Re⟨u,BH diag(Bh⊙Ax− y)Av⟩
= Re⟨Bu⊙Av,Bh⊙Ax⟩ + Re⟨Bu⊙Av,Bh⊙Ax− y⟩

≤ 2
m∑
j=1

∥bj∥22∥aj∥22∥h∥2∥u∥2∥x∥2∥v∥2 + |Re⟨Bu⊙Av,y⟩|,

where the last inequality holds by the Cauchy–Schwarz inequality. Because of the term
∥h∥2∥u∥2∥x∥2∥v∥2 in the above inequality, it is difficult to find appropriate ϕ and L such
that ⟨w,∇2f(h,x)w⟩ ≤ ⟨w,∇2ϕ(h,x)w⟩. This is because f has a bilinear term.

4.3.2 DC Decomposition

We first reformulate f in (4.17) into a DC function. Let us define convex functions
f1, f2 : Rd1×d2 → (−∞,+∞] as follows:

f1(h,x) =
1

4
∥Bh∥44 +

1

4
∥Ax∥44 +

1

2

(
∥Bh⊙Ax∥22 + ∥y ⊙Bh∥22 + ∥Ax∥22 + ∥y∥22

)
,

f2(h,x) =
1

4
∥Bh∥44 +

1

4
∥Ax∥44 +

1

2
∥ȳ ⊙Bh + Ax∥22.

f2 is convex because a composite function of a linear transform and a convex function
is convex [87, Theorem 3.1.6]. Let bj and aj be the jth column vectors of BH and AH,
respectively, we have

f1(h,x) =
1

4

m∑
j=1

(
|bHj h|2 + |aH

j x|2
)2

+
1

2

(
∥y ⊙Bh∥22 + ∥Ax∥22 + ∥y∥22

)
,

which proves the convexity of f1. Since f = f1 − f2 holds, (4.17) is equivalent to the
following DC optimization problem:

min
(h,x)∈clC

Ψ(h,x) = f1(h,x) − f2(h,x) + g(h,x). (4.18)

4.3.3 L-smooth Adaptable Parameters

The following theorem provides an appropriate kernel generating distance ϕ and an ap-
propriate parameter L for Algorithms 1 and 2.

Theorem 4.6. Let a function ϕ be defined by

ϕ(h,x) =
1

4

(
∥h∥22 + ∥x∥22

)2
+

1

2

(
∥h∥22 + ∥x∥22

)
. (4.19)
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Then, for any L satisfying

L ≥
m∑
j=1

(3∥bj∥42 + 3∥aj∥42 + ∥bj∥22∥aj∥22 + |yj|2∥bj∥22 + ∥aj∥22), (4.20)

the function Lϕ− f1 is convex on Rd1 ×Rd2.

Proof. We obtain the Hessian of ϕ and f1 as follows:

∇2ϕ(z) = (∥z∥22 + 1)Id1+d2 + 2zzT, ∇2f1(h,x) = Re

[
H11 H12

HT
12 H22

]
,

where z = (h,x) ∈ Rd1 ×Rd2 and

H11 := BH diag(2|Bh|2 + |Ax|2 + |y|2)B + BH diag((Bh)2)B,

H12 := BH diag(Bh⊙Ax)A + BH diag(Bh⊙Ax)A,

H22 := AH diag(|Bh|2 + 2|Ax|2 + 1m)A + AH diag((Ax)2)A.

Since the sum of a complex number and its conjugate is real, ∇2f1 is real. To prove the
convexity of Lϕ− f1, it is sufficient to show that ⟨w,∇2f1(h,x)w⟩ ≤ L⟨w,∇2ϕ(h,x)w⟩
for any w ∈ Rd1+d2 . Separate w = (u,v) using u ∈ Rd1 and v ∈ Rd2 . We obtain
⟨w,∇2ϕ(z)w⟩ = (∥z∥22 + 1)∥w∥22 + 2⟨z,w⟩2 and

⟨w,∇2f1(h,x)w⟩ = Re⟨u,H11u⟩ + Re⟨v,H22v⟩ + 2 Re⟨u,H12v⟩.

Each term of ⟨w,∇2f1(h,x)w⟩ is bounded as follows:

Re⟨u,H11u⟩ = ⟨2|Bh|2 + |Ax|2 + |y|2, |Bu|2⟩ + Re⟨(Bu)2, (Bh)2⟩
≤ ⟨|Bh|2 + |Ax|2 + |y|2, |Bu|2⟩ + 2⟨|Bh|2, |Bu|2⟩,

Re⟨v,H22v⟩ =
〈
|Bh|2 + 2|Ax|2 + 1m, |Av|2

〉
+ Re⟨(Av)2, (Ax)2⟩

≤
〈
|Bh|2 + |Ax|2 + 1m, |Av|2

〉
+ 2

〈
|Ax|2, |Av|2

〉
,

Re⟨u,H12v⟩ = Re⟨u,BH diag(Bh⊙Ax)Av⟩ + Re⟨u,BH diag(Bh⊙Ax)Av⟩
= Re⟨Bu⊙Av,Bh⊙Ax⟩ + Re⟨Bu⊙Av,Bh⊙Ax⟩

= Re
m∑
j=1

⟨bj,u⟩⟨aj,v⟩⟨bj,h⟩⟨aj,x⟩ + Re
m∑
j=1

⟨bj,u⟩⟨aj,v⟩⟨bj,h⟩⟨aj,x⟩

≤ 2
m∑
j=1

∥bj∥22∥aj∥22∥h∥2∥u∥2∥x∥2∥v∥2,

where all the inequalities hold by Re(·) ≤ | · |, and the last inequality holds by the
Cauchy–Schwarz inequality. From the above relation, we obtain

⟨|Bh|2, |Bu|2⟩ + ⟨|Ax|2, |Av|2⟩ + Re⟨u,H12v⟩
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≤
m∑
j=1

(
∥bj∥42∥h∥22∥u∥22 + ∥aj∥42∥x∥22∥v∥22 + 2∥bj∥22∥aj∥22∥h∥2∥u∥2∥x∥2∥v∥2

)
=

m∑
j=1

(
∥bj∥22∥h∥2∥u∥2 + ∥aj∥22∥x∥2∥v∥2

)2
≤

m∑
j=1

(
∥bj∥42 + ∥aj∥42

)(
∥h∥22∥u∥22 + ∥x∥22∥v∥22

)
,

where both inequalities hold by the Cauchy–Schwarz inequality. Thus, we obtain

⟨w,∇2f1(h,x)w⟩
≤ ⟨|Bh|2 + |Ax|2 + |y|2, |Bu|2⟩ + ⟨|Bh|2 + |Ax|2 + 1m, |Av|2⟩

+ 2⟨|Bh|2, |Bu|2⟩ + 2⟨|Ax|2, |Av|2⟩ + 2 Re⟨u,H12v⟩

≤
m∑
j=1

(
∥bj∥22∥u∥22(∥bj∥22∥h∥22 + ∥aj∥22∥x∥22 + |yj|2)

+ ∥aj∥22∥v∥22(∥bj∥22∥h∥22 + ∥aj∥22∥x∥22 + 1)

+ 2(∥bj∥42 + ∥aj∥42)(∥h∥22∥u∥22 + ∥x∥22∥v∥22)
)

≤
m∑
j=1

(3∥bj∥42 + 3∥aj∥42 + ∥bj∥22∥aj∥22 + |yj|2∥bj∥22 + ∥aj∥22)(∥z∥22 + 1)∥w∥22

≤ L⟨w,∇2ϕ(h,x)w⟩,

which proves Lϕ− f1 is convex.

From Theorem 4.6, we obtain the following.

Corollary 4.7. Let a function ϕC ∈ G(C) be defined by ϕC(z) = 1
4
∥z∥42 + 1

2
∥z∥22 + δC(z).

For any L satisfying (4.20), the pair (f1, ϕC) is L-smad on C.

Proof. Because C is an open set, ϕC and ∇2ϕC are the same as these of ϕ given by (4.19)
on C. From the convexity of C and Theorem 4.6, the pair (f1, ϕC) is L-smad on C.

From Corollary 4.7, we can immediately prove the following corollary by using Theo-
rems 3.14 and 3.26.

Corollary 4.8. Let {zk}∞k=0 be a sequence generated by BPDCA(e) with 0 < λL <
1 for (4.18). Assume that Assumption 3.1 (iv) and (vi) holds for g. For BPDCAe,
assume that Assumption 3.20 holds. Then, {zk}∞k=0 converges to a limiting stationary
point of (4.18).

Proof. Since Assumption 3.1 (iv) and (vi) hold, for the function f1, f2, g, and ϕ, As-
sumptions 3.1, 3.7, 3.12, and 3.25 hold. Assumptions 3.2 and 3.18 hold for ϕC , instead
of ϕ. Moreover, even if we restrict to the set C, we can assume without loss of generality
that Assumption 3.7 (i) holds. Therefore, from Corollary 4.7, Theorem 3.14 holds. For
BPDCAe, from the convexity of g, Theorem 3.26 holds.
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Figure 4.3: Plots of {log10 |Ψ(hk,xk) − Ψ(hK ,xK)|} at each iteration.

In practice, we can obtain a closed-form solution of (3.2) and (3.32) from [15, Propo-
sition 5.1] for g(h,x) = θ1∥h∥1 + θ2∥x∥1.

Remark 4.9. For instance, we solve subproblem (3.2) to obtain the sparse signal and
filter when g(h,x) = θ1∥h∥1 + θ2∥x∥1 for θ1, θ2 ≥ 0 and ϕ is given by (4.19). Let
uk = Sλθ1(λ∇hf(zk) − ∇hϕ(zk)) and vk = Sλθ2(λ∇xf(zk) − ∇xϕ(zk)). We can prove
from [15, Proposition 5.1] that zk+1 = (−t∗uk,−t∗vk) solves subproblem (3.2), where t∗ is
the unique positive real root of the cubic equation t3(∥uk∥22 +∥vk∥22)+ t−1 = 0. Note that
every cubic equation has a closed-form solution via Cardano’s formula. This fact indicates
the solution of (3.2) is expressed in closed form. It is also true for subproblem (3.32).

The ℓ1 regularization term in numerical experiments satisfies Assumption 3.1 (iv)
and (vi) and Assumption 3.20. In regard to the rate of convergence, from the proof
of Corollary 4.8, Theorems 3.16 and 3.28 hold. However, the KL exponent of blind
deconvolution has not been yet known. The difference between the objective value at each
iteration and that at the convergence point {log10 |Ψ(hk,xk) − Ψ(hK ,xK)|} is plotted
in Figure 4.3 in log-scale, where we recall Ψ = f + g and K = 30000 (see, for other
settings, Section 4.3.5). Here, the first and the last 5000 iterations are trimmed because
the difference in the iterations is too large. Figure 4.3 shows that BPDCA(e) converged
linearly. Hence, we expect the KL exponent of blind deconvolution to belong to (0, 1

2
].

Calculation of the exact value of the KL exponent is left for future work.
Note that a limiting stationary point of (4.18) is a point z ∈ C satisfying 0d1+d2 ∈

∂Ψ(z) = ∇f1(z) −∇f2(z) + ∂g(z) from the smoothness of f2 and Definition 3.8. Note
that under the convexity of g, it is theoretically guaranteed that a sequence generated by
FISTA would converge to the limiting stationary point if f had a Lipschitz continuous
gradient. In our problem, the convergence of FISTA is not theoretically guaranteed
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because f does not have it. Although FISTA is not applicable, the convergent points of
BPDCA(e) and FISTA share the same stationary points in theory.

Remark 4.10. An appropriate value of λ can be evaluated by backtracking, i.e., decrease
λ until f1(z

k+1) − f1(z
k) − ⟨∇f1(zk), zk+1 − zk⟩ ≤ 1

λ
Dϕ(zk+1, zk) is satisfied, because,

if this inequality holds, the theoretical convergence is guaranteed. For nk backtracking
procedures at the kth iteration, we need one calculation of ∇f1(zk) and nk calculations of
f1(z

k+1). These calculations are sometimes expensive. Thus, we did not use backtracking.

4.3.4 Stability Analysis

We show the stability analysis of BPDCA(e), the proximal gradient method, and the
alternating minimization (AM) [27, 54, 95] around the equilibrium points, which are the
fixed points of the update formula of each algorithm.

Definition 4.11. Let T be a mapping of some algorithm. The point x ∈ Rd is called an
equilibrium point if x = T (x).

For example, the mapping T of BPDCA is Tλ, defined by

Tλ(x) := argmin
u∈clC

{
⟨∇f1(x) − ξ,u− x⟩ + g(u) +

1

λ
Dϕ(u,x)

}
.

For the property of Tλ, see also Section 3.1. Because an equilibrium point z = (h,x) of
BPDCA satisfies

0d1+d2 ∈ ∇f(z) + ∂g(z) + ∇ϕ(z) −∇ϕ(z) = ∇f(z) + ∂g(z),

an equilibrium point of BPDCA corresponds to a limiting stationary point of (4.17). Note
that an equilibrium point of AM does not always correspond to a limiting stationary point
of (4.17). See also Remark 4.12.

Here, we define Φ(z) = ⟨∇f(zk), z⟩+ g(z) + 1
λ
Dϕ(z, zk). Then, the first-order condi-

tion 0d1+d2 ∈ ∂Φ(zk+1) = ∇f(zk) + ∂g(zk+1) + 1
λ

(
∇ϕ(zk+1) −∇ϕ(zk)

)
is approximated

as follows:

0d1+d2 ≃ ∇f(zk) + ζk+1 +
1

λ
∇2ϕ(zk)(zk+1 − zk),

where ζk+1 ∈ ∂g(zk+1). Note that ∇2ϕ(zk) is nonsingular. In fact, its inverse is explicitly
written as

∇2ϕ(z)−1 =
1

∥z∥22 + 1

(
Id1+d2 −

2zzT

3∥z∥22 + 1

)
.

By multiplying it, we obtain

zk+1 − zk ≃ −λ∇2ϕ(zk)−1(∇f(zk) + ζk+1), (4.21)



Chapter 4. Applications 67

which indicates that zk+1 − zk is greatly affected by ∇2ϕ(z)−1. Thus, ϕ is important for
the performance of BPDCA. For BPDCAe, this fact is also true by substituting wk for
zk.

To simplify the stability analysis of FISTA, we consider the proximal gradient method.
The proximal gradient method is called FISTA when g = ∥ · ∥1 with extrapolation. Each
iteration of the proximal gradient method computes the following subproblem:

zk+1 = argmin
z∈clC

{
⟨∇f(zk), z − zk⟩ + g(z) +

1

λ
∥z − zk∥22

}
. (4.22)

The right-hand side of (4.22) corresponds with the mapping of the proximal gradient
method. Setting ϕ(z) = 1

2
∥z∥22 =: ϕ1(z), i.e., ∇2ϕ1(z) = Id1+d2 , we obtain

zk+1 − zk ≃ −λ(∇f(zk) + ζk+1).

Since f does not have a Lipschitz continuous gradient, λ is close to 0, i.e., zk ≃ zk+1.
This implies that convergence of the proximal gradient method and FISTA is slow.

When g(x,h) is convex, (4.17) is convex with respect to h for fixed x and vice versa.
AM is a method to update h and x alternately, i.e.,

hk+1 = argmin
h∈clCh

{
f(h,xk) + g(h,xk)

}
,

xk+1 = argmin
x∈clCx

{
f(hk+1,x) + g(hk+1,x)

}
,

where Ch = {h ∈ Rd1 | (h,x) ∈ C} and Cx = {x ∈ Rd2 | (h,x) ∈ C}. The first-order
conditions around the equilibrium points are

0d1 ∈ ∇hf(hk+1,xk) + ∂hg(hk+1,xk)

≃ ∇hf(hk,xk) + ∇2
hhf(hk,xk)(hk+1 − hk) + ∂hg(hk+1,xk),

0d2 ∈ ∇xf(hk+1,xk+1) + ∂xg(hk+1,xk+1)

≃ ∇xf(hk+1,xk) + ∇2
xxf(hk,xk)(xk+1 − xk) + ∂xg(hk+1,xk+1),

where the last approximation holds from hk+1 ≃ hk in ∇2
xxf(hk,xk). Assuming that

the Hessians ∇2
hhf(hk,xk) and ∇2

xxf(hk,xk) are regular, for ζk+1
h ∈ ∂hg(hk+1,xk) and

ζk+1
x ∈ ∂xg(hk+1,xk+1), we obtain

hk+1 − hk ≃ −∇2
hhf(hk,xk)−1(∇hf(hk,xk) + ζk+1

h ),

xk+1 − xk ≃ −∇2
xxf(hk,xk)−1(∇xf(hk+1,xk) + ζk+1

x ).

∇2ϕ(zk) in the approximation of BPDCA is a block matrix that contains the cross deriva-
tive terms ∇2

hxϕ(zk) and ∇2
xhϕ(zk), while the perturbation around the equilibrium points

of AM is approximated only with ∇2
xxf(hk,xk) and ∇2

hhϕ(hk,xk) regardless of the cross
derivatives. Thus, an equilibrium point of AM is not necessarily that of BPDCA. This
implies that BPDCA is not trapped at the points where AM is stuck. On the other
hand, every equilibrium point of BPDCA is an equilibrium point of AM under the Clarke
regularity as we mention below.
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Remark 4.12. Here, we assume that g is Clarke regular at z = (h,x) ∈ Rd1 ×Rd2.
In this case, because g is convex, g is Clarke regular. Then, it holds that ∂cg(h,x) ⊂
∂hg(h,x)×∂xg(h,x) [31, Proposition 2.3.15]. Hence, for an equilibrium point z = (h,x)
of BPDCA, we have

0d1+d2 ∈ ∇f(z) + ∂cg(z) + ∇ϕ(z) −∇ϕ(z) = ∇f(z) + ∂cg(z)

⊂ (∇hf(h,x),∇xf(h,x)) + ∂hg(h,x) × ∂xg(h,x).

Therefore, an equilibrium point of BPDCA is also an equilibrium point of AM. Addi-
tionally, an equilibrium point of BPDCA is always a limiting stationary point, while that
of AM is not always a limiting stationary point. They are demonstrated in numerical
experiments (Figure 4.7).

4.3.5 Numerical Experiments: Setting

We demonstrated the efficiency of our proposed method by image deblurring via solving
problem (4.17). We set d1 = 2304, d2 = 65536, and m = 262144 and appropriately took
a ground truth of (h◦,x◦). Using them, we generated a blurring kernel f = B̃h◦ and
an original image g = Ãx◦, where B̃ : Rd1 → Rm is an operator reshaping h ∈ Rd1 into
a
√
m ×

√
m image and Ã : Rd2 → Rm is an inverse discrete Meyer wavelet transform

operator. Figure 4.4 depicts f and g used in our experiments: f corresponds to a diagonal
blurring and g approximates a natural image. g is generated from a grayscale image of the
original images by ESA/Hubble.1 We also set C = {(h,x) ∈ Rd1 ×Rd2 | h > 0d1 ,x >
0d2} and g(h,x) = θ∥h∥1 with θ = 0.01 (the nonsmooth ℓ1 regularizer) because h is
supposed to be sparse in the practice of image deblurring.

Figure 4.4: The ground truth f and g, the blurred image ỹ, and BhK and AxK recovered
by BPDCAe.

4.3.6 Numerical Experiments: Comparison of ℓ1 and ℓ2 Regu-
larization

We solved problem (4.17) corresponding to the setting above with BPDCA(e), FISTA,
and AM. For all methods, the initial points h0 and x0 are set to be the left and right

1The original images are available in https://hubblesite.org/contents/media/images/2019/51/

4574-Image and https://hubblesite.org/contents/media/images/2009/25/2616-Image.

https://hubblesite.org/contents/media/images/2019/51/4574-Image
https://hubblesite.org/contents/media/images/2019/51/4574-Image
https://hubblesite.org/contents/media/images/2009/25/2616-Image
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Figure 4.5: Plots of {log10 |Ψ(hk,xk) − Ψ◦|} at each iteration.

(a) Plots of {sim(hk,h◦)}. (b) Plots of {sim(xk,x◦)}.

Figure 4.6: Plots of the cosine similarities between the kth point and the ground truth.

singular vectors corresponding to the leading singular value of BH diag(y)A, respectively,
which is proposed in [69]. For BPDCA(e), we adjusted L that satisfies (4.20) and used it
as a fixed step size. Step sizes in all iterations of FISTA were obtained by backtracking.
Note that the subproblems of BPDCA(e) and FISTA (without backtracking procedures)
are solved in closed-form formulae, whose computational cost is almost the same. The
maximum number of iterations for BPDCA(e) and FISTA was 30000, and that for AM
was 3000 because the subproblems of AM were solved approximately by 10 iterations
of FISTA at each iteration. In the following figures, we plot the results of AM every
10 iterations. The difference between the objective value at each iteration and that at
the ground truth {log10 |Ψ(hk,xk) − Ψ◦|} is plotted in Figure 4.5 in log-scale, where
we recall Ψ = f + g and Ψ◦ := Ψ(h◦,x◦). Figure 4.6a shows the cosine similarity
between hk and h◦ defined by {sim(hk,h◦)(:= ⟨hk,h◦⟩/(∥hk∥2∥h◦∥2))}, and Figure 4.6b
shows that sim(xk,x◦). As we can see from Figures 4.5 and 4.6, BPDCAe outperformed
the other algorithms. Its convergence was the fastest, and Ψ(hK ,xK), sim(hK ,h◦),
and sim(xK ,x◦) were also the best, where K := 30000 (for BPDCA(e) and FISTA) or
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(a) h◦ and x◦ (b) h0 and x0 (c) BPDCAe (d) BPDCA (e) FISTA (f) AM

Figure 4.7: The upper row shows hK , and the lower row shows ÃxK .

(a) θ∥h∥1 (b) θ∥h∥22 (c) θ∥h∥1 (d) θ∥h∥22

Figure 4.8: (a–b) BPDCAe and (c–d) BPDCA.

K := 3000 (for AM). Figure 4.7 shows the recovered images. Figure 4.7c shows that there
is almost no difference between Ãx◦ and Ãxk, while hk was not completely recovered.
Figures 4.7c and 4.7f show that the sequences generated by AM converged to a different
stationary point (see also Section 4.3.4). Figures 4.7c and 4.7d imply that BPDCA(e)
might converge to a stronger point, such as a local optimal point or a directional stationary
point (see also [34, Definition 6.1.1 and Proposition 6.1.8]), than a limiting stationary
point.

We also solved the deblurring problem with the ℓ2 regularization term g(h,x) = θ∥h∥22
with θ = 0.01. The comparison between the results from these two regularizers is shown
in Figure 4.8. It shows the superiority of the nonsmooth ℓ1 regularization term over the
ℓ2 one, which did not recover the sparse blurring kernel.
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4.3.7 Numerical Experiments: Comparisons under Several Sit-
uations

We first demonstrate that the efficiency of our proposed methods is independent of the
choice of the initial point. To do so, we generated the initial points h0 and x0 from
the uniform distribution on [0, 0.1]. From these initial points, we generated {hk} and
{xk} by each algorithm. Figures 4.9, 4.10a, and 4.10b show {log10 |Ψ(hk,xk) − Ψ◦|},
{sim(hk,h◦)}, and {sim(xk,x◦)}, respectively. Figure 4.11 shows the recovered images,
and Figure 4.11c shows that there is almost no difference between Ãx◦ and ÃxK at this
case. As we can see from these figures, BPDCAe also outperformed the other algorithms
even when h0 and x0 are generated from the uniform distribution.

We next demonstrate the efficiency of our proposed methods with noisy data. Here,
we consider ỹ containing Poisson noise, i.e., ỹ = f ∗g+n, where n ∈ Rm is Poisson noise
(see Figure 4.13a). By changing the noise level, i.e., the standard deviation, we solved
the image deblurring problem with each algorithm. Figure 4.12 shows the objective value

Figure 4.9: Plots of {log10 |Ψ(hk,xk) − Ψ◦|} when z0 is from the uniform distribution.

(a) Plots of {sim(hk,h◦)}. (b) Plots of {sim(xk,x◦)}.

Figure 4.10: Plots of the cosine similarities when z0 is from the uniform distribution.
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(a) h◦ and x◦ (b) h0 and x0 (c) BPDCAe (d) BPDCA (e) FISTA (f) AM

Figure 4.11: The upper row shows hK , and the lower row shows ÃxK when z0 is generated
from the uniform distribution.

(a) Plots of the objective value Ψ(hK ,xK). (b) Plots of the loss function value f(hK ,xK).

(c) Plots of sim(hK ,h◦). (d) Plots of sim(xK ,x◦).

Figure 4.12: Plots of the objective value, the loss function value, and the cosine similarities
recovered by each algorithm when ỹ contains Poisson noise.

Ψ(hK ,xK), the loss function value f(hK ,xK), and the cosine similarities sim(hK ,h◦) and
sim(xK ,x◦), where hK and xK are recovered by each algorithm after K = 30000 (for
BPDCA(e) and FISTA) or K = 3000 (for AM) iterations for each noise level. Whereas
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(a) ỹ (b) h◦ and x◦ (c) BPDCAe (d) BPDCA (e) FISTA (f) AM

Figure 4.13: (a) the noisy data; (b–f) the upper row shows hK , and the lower row shows
ÃxK when ỹ contains Poisson noise.

Figure 4.14: Plots of {log10 |Ψ(hk,xk)−Ψ◦|} at each iteration when f is a Gaussian blur.

the cosine similarity sim(hK ,h◦) recovered by FISTA was the best among Figure 4.12c,
the cosine similarity sim(xK ,x◦) recovered by BPDCAe was the best among Figure 4.12d.
Figure 4.13 shows the recovered images when the standard deviation of n is 10.6. The
point xK recovered by BPDCAe is the best, and the objective value by BPDCAe is the
smallest in Figure 4.12. Thus, BPDCA(e) outperformed the other algorithms with the
noisy data.

Finally, we demonstrate that BPDCA(e) is effective with another blur kernel. We ex-
ecuted similar experiments using a Gaussian blur f and another image g. Figures 4.14,
4.15a, and 4.15b show {log10 |Ψ(hk,xk)−Ψ◦|}, {sim(hk,h◦)}, and {sim(xk,x◦)}, respec-
tively, and Figure 4.16 shows the recovered images. The performance in the sense of the
objective values and the cosine similarities of BPDCAe is almost the same as that of
FISTA. The images recovered by BPDCAe, FISTA, and AM have almost no difference
from Figures 4.16c, 4.16e, and 4.16f. Thus, depending on the types of the blur kernel f
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(a) Plots of {sim(hk,h◦)}. (b) Plots of {sim(xk,x◦)}.

Figure 4.15: Plots of the cosine similarities between the kth point and the ground truth
when f is a Gaussian blur.

(a) h◦ and x◦ (b) h0 and x0 (c) BPDCAe (d) BPDCA (e) FISTA (f) AM

Figure 4.16: The upper row shows hK , and the lower row shows ÃxK when f is a
Gaussian blur.

and the image g, BPDCA(e) has the same results as the other algorithms. As we saw
here, the performance of BPDCA(e) is almost the same as or superior to that of the other
algorithms.

4.4 Self-calibration in Radio Interferometric Imag-

ing

4.4.1 Problem Description

We want to recover the image x ∈ Rd from the complex visibilities v ∈ Cm. Because the
complex visibilities contain noise from measuring instruments and the atmosphere, the
goal of calibration is to remove noise in the visibilities. Self-calibration is a calibration
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of complex gains g ∈ Cn given by each antenna α. For further information on radio
interferometric imaging, see [116]. Each element vi is associated with the observation
time tli and a pair of two stations αi, βi for i = 1, . . . ,m. In this subsection, we recover
the image x ∈ Rd with self-calibration of a gain vector g ∈ Cn. Therefore, we minimize
the following chi-square error given by

f(g,x) =
m∑
i=1

1

σ2
i

|vigli,αi
ḡli,βi

−Fi(x)|2,

where F is the Fourier transformation and variance σi > 0 for i = 1, . . . ,m. We add a
regularization term r(g) for g given by

r(g) = ρ
∑
α

∣∣∣∣∣
Lα∑
l=1

gl,α − Lα

∣∣∣∣∣
2

+ θ1
∑
α

Lα∑
l=2

1

s2α(tl − tl−1)
|gl,α − gl−1,α|2

+ θ2
∑
α

Lα∑
l=2

1

s2α(tl − tl−1)
(|gl,α| − |gl−1,α|)2,

where the length Lα of the time sequences depends on a station α, ρ > 0, θ1 > 0, θ2 > 0,
sl > 0, and tl > 0. The first term of r(g) imposes the gain having averages of 1, the
second term imposes the sparsity of the difference of the amplitude and the phase, and
the third term imposes that of the amplitude. We also add the regularization term for x
given by h(x) = θ3∥x∥1 + θ4 TSV(x) with θ3 > 0 and θ4 > 0. The total square variation
(TSV) regularization term [56] is defined by TSV(x) =

∑
i,j((Xi+1,j −Xi,j)

2 + (Xi,j+1 −
Xi,j)

2), where the matrix X is reshapen from x. The TSV regularization term brings
the recovered image to be edge-smoothed [56]. Therefore, we consider the following block
optimization problem:

min
(g,x)∈Cn ×Rd

ΨB(g,x) := f(g,x) + r(g) + h(x). (4.23)

We define

A =


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

 , b = (Lα)α,

and then it holds that

ρ
∑
α

∣∣∣∣∣
Lα∑
l=1

gl,α − Lα

∣∣∣∣∣
2

= ρ∥Ag − b∥22.
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4.4.2 DC Decomposition

Let y = F(x). We reformulate f into a DC function f1 − f2. In the same way as blind
deconvolution, we have

|vigli,αi
ḡli,β − yi|2 = |vigli,αi

ḡli,βi
|2 + |yi|2 − vigli,αi

ḡli,βi
ȳi − v̄iḡli,αi

gli,βi
yi

=
1

2

(
|vigli,αi

|2 + |gli,βi
|2
)2

+ |vigli,αi
|2 + |gli,βi

yi|2 + |yi|2

−
(

1

2
|vigli,αi

|4 +
1

2
|gli,βi

|4 + |vigli,αi
+ gli,βi

yi|2
)
.

Let us define convex functions f1 and f2 as follows:

f1(g,x) =
m∑
i=1

1

σ2
i

(
1

2

(
|vigli,αi

|2 + |gli,βi
|2
)2

+ |vigli,αi
|2 + |gli,βi

Fi(x)|2 + |Fi(x)|2
)
,

f2(g,x) =
m∑
i=1

1

σ2
i

(
1

2
|vigli,αi

|4 +
1

2
|gli,βi

|4 + |vigli,αi
+ gli,βi

Fi(x)|2
)
.

Moreover, we reformulate r into a DC function r1 − r2, given by

r1(g) = ρ∥Ag − b∥22

+ θ1
∑
α

Lα∑
l=2

1

s2α(tl − tl−1)
|gl,α − gl−1,α|2

+ θ2
∑
α

Lα∑
l=2

2

s2α(tl − tl−1)
(|gl,α|2 + |gl−1,α|2),

r2(g) = θ2
∑
α

Lα∑
l=2

1

s2α(tl − tl−1)
(|gl,α| + |gl−1,α|)2.

The function r1 is continuously differentiable, whereas the function r2 is nonsmooth.
Therefore, (4.23) is equivalent to the following block DC optimization problem:

min
(g,x)∈Cn ×Rd

ΨB(g,x) = f1(g,x) − f2(g,x) + r1(g) − r2(g) + h(x). (4.24)

4.4.3 L-smooth Adaptable Parameters

The following theorem provides an appropriate kernel generating distance ϕ and an ap-
propriate parameter Lρ in use of Algorithm 3.

Theorem 4.13. Let a function ϕ be defined by

ϕ(g) =
1

2

L̂∑
l=1

(∑
α

|gl,α|2
)2

+
∑
α

Lα∑
l=1

|gl,α|2, (4.25)



Chapter 4. Applications 77

where L̂ = maxα Lα and gl,α = 0 for l > Lα. Let I = {(li, αi), (li, βi) | (li, αi, βi), i =
1, . . . ,m} be the set of the pairs (l, α) associated with i and N (l, α) be a mapping from
(l, α) to the corresponding i. Then, for any Lρ(·) satisfying

Lρ(x) ≥ ρλmax(A
TA) + max

α,l=2,...,Lα

Ll + max
(l,α)∈I

∑
i∈N (l,α)

Li(x), (4.26)

where

Ll =
4(θ1 + θ2)

s2α(tl − tl−1)
, Li(x) =

1

σ2
i

(3|vi|4 + 3 + 2|vi|2 + |Fi(x)|2),

the function Lρ(x)ϕ− f1(·,x) − r1 is convex for x ∈ Rd.

Proof. From ∥g∥22 =
∑

α

∑Lα

l=1 |gl,α|2 and ρ∥Ag − b∥22, the function ρλmax(A
TA)∥g∥22 −

ρ∥Ag−b∥22 is convex. For the fix α and l, we consider the convexity of the function given
by

Ll

2
(|gl−1,α|2 + |gl,α|2) −

θ1
s2α(tl − tl−1)

|gl,α − gl−1,α|2 −
2θ2

s2α(tl − tl−1)
(|gl,α|2 + |gl−1,α|2)

=
θ1

s2α(tl − tl−1)
|gl,α + gl−1,α|2 +

(
Ll

2
− 2θ1
s2α(tl − tl−1)

− 2θ2
s2α(tl − tl−1)

)
(|gl−1,α|2 + |gl,α|2).

Therefore, for any Ll satisfying

Ll ≥
4θ1

s2α(tl − tl−1)
+

4θ2
s2α(tl − tl−1)

,

the function (ρλmax(A
TA) + maxα maxl=2,...,Lα Ll)ϕ− r1 is convex.

Next, for fixed x ∈ Rd, we consider the smooth adaptable property for

f1,i(gli,αi
, gli,βi

) =
1

σ2
i

(
1

2

(
|vigli,αi

|2 + |gli,βi
|2
)2

+ |vigli,αi
|2 + |gli,βi

Fi(x)|2 + |Fi(x)|2
)
.

Using from Theorem 4.6, for any Li(·) satisfying

Li(x) ≥ 1

σ2
i

(3|vi|4 + 3 + 2|vi|2 + |Fi(x)|2), (4.27)

the function Li(x)ϕ− f1,i is convex. Therefore, for any Lρ(·) satisfying

Lρ(x) ≥ ρλmax(A
TA) + max

α,l=2,...,Lα

Ll + max
(l,α)∈I

∑
i∈N (l,α)

Li(x),

the function Lρ(x)ϕ− f1(·,x) − r1 is convex.
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We recall C1 = int domϕ = Cn and C2 = Rd. HBPDCA for self-calibration in radio
interferometric imaging, which we are proposing, is listed as Algorithm 4.

Algorithm 4 HBPDCA for self-calibration

Input: ϕ ∈ G(C1) with C1 = Cn such that the Lρ(·)-smad property for the pair
(f1 + r1, ϕ) holds for x ∈ Rd.

Initialization: (g0,x0) ∈ C1 × C2.
for k = 0, 1, 2, . . . , do

Take any ξk ∈ ∂cr2(g
k) and compute λk = 1/Lρ(x

k) and

gk+1 = argmin
g∈Cn

{
2 Re⟨∇gf(gk,xk) + ∇r1(gk) − ξk, g − gk⟩ +

1

λk
Dϕ(g, gk)

}
,

(4.28)

xk+1 = argmin
x∈Rd

{
f(gk+1,x) + h(x)

}
. (4.29)

end for

Assumptions 3.30 and 3.34 holds. Especially, since (4.25) is strongly convex, Assump-
tion 3.34 (i) holds. Because of C1 = Cn, Assumption 3.2 holds for (4.28).

Subproblem (4.28) is solved in a closed-form expression.

Remark 4.14. Let uk := λk(∇gf(gk,xk) + ∇r1(gk) − ξk − ∇ϕ(gk). By the first-order
optimality condition of (4.28), for each l, α, we obtain

ukl,α +

(∑
α

|gk+1
l,α | + 1

)
gk+1
l,α = 0, (4.30)

which implies gk+1
l,α = −τlukl,α for τl > 0, and(

τ 3l
∑
α

|ukl,α| + τl − 1

)
ukl,α = 0.

This cubic equation is solved by using Cardano’s formula. Therefore, gk+1
l,α = −τlukl,α,

where τl is the unique positive real root of

τ 3l
∑
α

|ukl,α| + τl − 1 = 0, l = 1, . . . , L̂.

Because subproblem (4.29) is a convex optimization problem, it is solved, for example, by
FISTA. Thus, the iteration of HBPDCA is easily computable.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, for general nonconvex optimization problems, we have proposed fast al-
gorithms, called Bregman proximal DC algorithm (BPDCA) [113], the BPDCA with
extrapolation (BPDCAe) [113], and the hybrid BPDCA (HBPDCA). Besides, we have
established convergence analysis of these algorithms. Because our proposed algorithms
exploit the Bregman distance and DC structure, they are applicable to a wide range of
optimization problems, including optimization problems that lack L-smoothness. Ex-
ploiting DC structure, we have flexibility on the choice of the Bregman distance for our
proposed algorithms.

Moreover, we have also applied our proposed algorithms to problems in signal pro-
cessing, such as phase retrieval, blind deconvolution, and self-calibration in radio inter-
ferometric imaging. For phase retrieval, exploiting DC structure, we have obtained larger
step sizes than the existing one. Using these step sizes, we have succeeded in accelerating
BPDCA(e). Then, BPDCAe outperformed the existing algorithms [113]. For blind de-
convolution and self-calibration in radio interferometric imaging, exploiting DC structure,
we have obtained an appropriate Bregman distance. Especially in blind deconvolution,
through numerical experiments on image deblurring, our proposed algorithms successfully
recovered the original image [114].

In Chapter 2, we have summarized the important notions and their examples. The
Bregman distance is a core idea for our proposed algorithms. Subdifferentials, the L-smad
property, the KL property, and subanalyticity have played an important role in conver-
gence analysis. Complex analysis is especially used for HBPDCA and self-calibration.

In Chapter 3, we have proposed the Bregman proximal algorithms exploiting DC struc-
ture and established their convergence analysis. First, we have proposed BPDCA [113],
which is based on pDCA and the Bregman distance. Bregman proximal algorithms
require, instead of L-smoothness, the L-smad property, which is a generalization of L-
smoothness. Second, we have proposed BPDCAe [113], which is accelerated by the ex-
trapolation technique adapted to the Bregman distance. The adaptive restart scheme of
BPDCAe requires fewer computational tasks and is easy to implement. We have also
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established the global convergence of BPDCA(e) to a limiting stationary point or a limit-
ing critical point under the KL property or subanalyticity, respectively. In addition, the
rate of convergence with the KL (or  Lojasiewicz) exponent has been established. Finally,
we have proposed HBPDCA, which minimizes a subproblem based on the Bregman dis-
tance and a convex optimization problem. For HBPDCA, we have established its global
subsequential convergence.

In Chapter 4, we have applied BPDCA, BPDCAe, and HBPDCA to phase retrieval,
blind deconvolution, and self-calibration in radio interferometric imaging. These prob-
lems are reformulated as nonconvex optimization problems and also as DC optimization
problems. For phase retrieval, exploiting DC structure, we have found several smaller L
for the L-smad property than the existing one. Using these L, we have succeeded in ac-
celerating BPDCA(e). Numerical experiments on phase retrieval have demonstrated that
BPDCAe with the parameter is faster than the other Bregman proximal algorithms [113].
For phase retrieval under a Gaussian model, BPDCAe offered more stable results than
the Wirtinger flow [21]. For blind deconvolution, by exploiting DC structure, we have
found an appropriate ϕ. We have conducted numerical experiments on image deblurring.
They demonstrated that BPDCAe outperformed other existing algorithms and success-
fully recovered the original image [114]. The numerical success of image deblurring is also
because the regularization term is represented sparsely in the wavelet domain. For self-
calibration in radio interferometric imaging, by exploiting DC structure, we have found
an appropriate ϕ. Using this ϕ, we obtained a closed-form solution to the subproblem of
HBPDCA for self-calibration in radio interferometric imaging.

We conclude that our proposed algorithms are fast for various nonconvex optimization
problems by exploiting the Bregman distance and DC structure.

5.2 Future Work

From (4.21), we have shown the choice of the kernel generating distance ϕ affects the
performance of BPDCA(e). This fact is also true for algorithms using the Bregman
distance. The choice of the kernel generating distance ϕ affects the convergence speed
and the convergent point. First, the effective way to choose ϕ and the calculation of
the L-smad parameter have not yet been established. Developing a method to compute
the L-smad parameter that accelerates the Bregman proximal algorithms is a topic for
the future. If choosing the Bregman distance and calculation of the L-smad parameter
are established for nonconvex optimization problems, the Bregman proximal algorithms
could deal with a wider range of nonconvex optimization problems in practice. Second,
the relationship between ϕ and convergent points, such as a limiting stationary point and
a limiting critical point. Depending on the choice of ϕ, Bregman proximal algorithms
converge to the stronger points, such as a directional stationary point, a local optimal so-
lution, and a global optimal solution. Finally, we conjecture that most convergent results
can be demonstrated under weaker conditions. As future work, since g in BPDCA does
not need to be convex, we will attempt to prove the monotonicity of the auxiliary function
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of BPDCAe (Lemma 3.21) without Assumption 3.20. Although the kernel generating dis-
tance ϕ (4.7) does not satisfy Assumption 3.7 (i), the sequences generated by BPDCA(e)
converged in numerical experiments. It may be possible to weaken Assumption 3.7 (i).

For HBPDCA, acceleration has not yet been established. Acceleration of HBPDCA is
important in practice. HBPDCA would be accelerated by extrapolation in the same way
as BPDCAe. In addition, convergence analysis of HBPDCA has not yet been established.
If the KL property is extended to complex variables, we expect that HBPDCA converges
to a limiting stationary point and the rate of convergence would also be established.
Further convergence analysis of HBPDCA is left for future work.

The Bregman proximal algorithms have the potential to be applied to a wide variety
of nonconvex optimization problems. For example, they could be applied to a problem
whose objective function includes the Bregman distance such as computing entropic cen-
ters [88]. In this thesis, it is essential for future work to conduct numerical experiments
on self-calibration in radio interferometric imaging. Furthermore, applying HBPDCA to
practical data in radio interferometry is for future work. In practice, calculation of the
KL exponent is often difficult. In particular, the KL exponent of some applications, such
as blind deconvolution and self-calibration, has not been computed and is future work.
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[25] A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simul-
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