
Entity Alignment and Attribute
Enhancement between Knowledge

Graphs
by

Rumana Ferdous Munne

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

March 2023

A dissertation submitted to Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies, SOKENDAI,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Advisory Committee

1. Prof. Seiji Yamada National Institute of Informatics
SOKENDAI

2. Prof. Ken Satoh National Institute of Informatics
SOKENDAI

3. Prof. Hideaki Takeda National Institute of Informatics
SOKENDAI

4. Prof. Akiko Aizawa National Institute of Informatics
SOKENDAI

5. Prof. Ryutaro Ichise Tokyo Institute of Technology
National Institute of Informatics

iii

Acknowledgments

The completion of this study could not have been possible without tremendous support
from many. All of them contributed in their own way and proved to be essential to my
academic and professional growth, my personal development, and my mental health.
Here, I want to thank them all.
My sincere and deep gratitude goes first and foremost to my supervisor, Professor
Ryutaro Ichise, for his kind support, invaluable patience, and feedback. The path to
obtaining a Ph.D. is long and difficult, and his insightful guidance has helped to get
through this journey.
I am grateful to my advisory committee, Prof. Seiji Yamada, Prof. Ken Satoh, Prof.
Hideaki Takeda, Prof. Akiko Aizawa and Prof. Atsuhiro Takasu. I highly appreciate
their insightful and helpful comments.
I would like to thank all the members and internship students in our laboratory. I am
thankful that I had the chance to work with them, and I am proud of the work we have
done together.
Finally, I owe eternal gratitude to my son Ayan for being a patient companion
throughout this process, my parents, Md Shariful Islam and Rowshan Ara, my brother
Mohammad Saiful Islam for supporting me unconditionally, and my husband, Rabbi,
without his constant encouragement this journey would not have been possible. They
inspired and helped me become who I am.

v

Abstract

A Knowledge Graph (KG) is a knowledge model containing facts about real world
entities represented as a graph. It is a collection of interlinked descriptions of entities,
relationships, concepts, and events. We have witnessed rapid growth in knowledge
graph creation and application in last few years. Several efforts have been made to
develop knowledge graphs in general and specific domains such as DBpedia, YAGO,
LinkedGeoData, and Wikidata and they have been served several fields of real world
applications from semantic parsing and named entity disambiguation to information
extraction and question answering. These knowledge graphs contain millions of
facts about entities. However, these knowledge graphs are far from complete and
mandate continuous enrichment and enhancement. One possible approach to enhance
KG is integrating knowledge from various knowledge graphs based on their aligned
information. In this thesis, we develop new effective methods to find aligned entities
from different KGs first and later enrich the KGs by enhancing their attributes.

We start this thesis by presenting techniques for entity alignment. The task of entity
alignment is to find entities in two heterogeneous knowledge graphs that represent
the same real-world entity. Many knowledge graphs have been created separately
for certain purposes with overlapping entity coverage. These knowledge graphs are
complementary to each other in terms of completeness. Unfortunately, only a fraction
of the entities stored in different KGs are aligned. We present an embedding-based
entity alignment method that finds entity alignment by estimating the similarities
between entity embeddings. Existing methods mainly focus on relational structures
and attribute information for the alignment process. Such methods fail when the
entities have a limited number of attributes or when the relational structure couldn’t
capture the meaningful representation of the entities. To overcome this problem,

vi

we propose EASAE, an Entity Alignment method using Summary and Attribute
Embeddings. We utilize the entity summary information available in KGs for entities’
summary embedding by employing BERT. Our model learns the representations of
entities by using relational triples, attribute triples, and summary as well. Extensive
experiments show that entity summary exhibit useful semantic information in entity
alignment task. Our proposed approach outperforms the concurrent state-of-the-art
alignment models.

To enrich KG by enhancing their attributes, we propose an Attribute Enhancement
Framework (AEF) that integrates multiple KGs based on their aligned information.
Typically, similar entities from different KG contain a different set of attributes. AEF
exploits a representation learning based ranking model to discover the significant
attributes from reference KG. Later it employs a similarity mapping technique to
integrate new attributes into the target KG. AEF also determines the attribute value
inconsistency between two KGs. With this study, we aim to include all the essential
attributes of the existing KGs towards a more robust and complete knowledge graph.
The results of the attribute enhancement work indicate important directions for future
work.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 6
1.3 Thesis Contributions . 8
1.4 Thesis Outline . 9

2 Fundamentals and Related Works 11
2.1 Knowledge Graph . 11

2.1.1 Knowledge Graph Concept . 12
2.1.2 Knowledge Graph Representation 13
2.1.3 Popular Knowledge Graph . 15

2.2 Knowledge Graph Embedding . 19
2.2.1 Translation-Distanced based Models 20
2.2.2 Bilinear Models . 23
2.2.3 Neural Network based Models 23

2.3 Natural Language Processing . 25
2.3.1 Word2vec . 25
2.3.2 Recurrent Neural Networks . 27
2.3.3 Gated Recurrent Unit . 28
2.3.4 BERT . 29

viii Contents

2.4 Entity Alignment . 32
2.4.1 String Similarity based Entity Alignment. 34
2.4.2 Embedding-based Entity Alignment 35
2.4.3 GNN Based Alignment Models 39

2.5 Knowledge Graph Enhancement . 43
2.5.1 Knowledge Graph Accuracy Enhancement 43
2.5.2 Knowledge Graph Completeness Enhancement 45
2.5.3 Knowledge Graph Timeliness Enhancement 48

2.6 Summery . 48

3 Entity Alignment via Summary and Attribute Embeddings 49
3.1 Introduction . 50
3.2 Preliminary . 52
3.3 Proposed Methodology . 52

3.3.1 Predicate Alignment . 53
3.3.2 Summary Embedding . 54
3.3.3 Relational Embedding (RE) . 57
3.3.4 Attribute Embedding (AE) . 58
3.3.5 Entity Alignment Process . 59

3.4 Experiments . 60
3.4.1 Datasets . 60
3.4.2 Experimental Settings . 63
3.4.3 Experiment 1 . 63
3.4.4 Experiment 2 . 64
3.4.5 Experiment 3 . 67

3.5 Conclusion . 68

4 Attribute Enhancement using Aligned Entities between Knowledge
Graphs 69
4.1 Introduction . 70
4.2 Preliminary . 73
4.3 Proposed Methodology . 74

4.3.1 Attribute Ranking . 74

Contents ix

4.3.2 Similar Attribute Mapping . 78
4.4 Experiments . 82

4.4.1 Datasets . 82
4.4.2 Implementation . 82
4.4.3 Attribute Enhancement . 83
4.4.4 Inconsistency Detection of Attributes 85

4.5 Conclusion . 86

5 Discussion 89
5.1 Entity Alignment . 89
5.2 Attribute Enhancement . 94

6 Conclusion 95
6.1 Summary . 95
6.2 Future Work . 96
6.3 Outlook . 97

Bibliography 99

xi

List of Figures

1.1 Knowledge Graph . 2
1.2 Knowledge Graph . 6

2.1 Knowledge Graph Concept . 12
2.2 Knowledge Graph Enhancement . 14
2.3 Knowledge Graphs in the Linked Open Data Cloud on November 3rd,

2022 . 16
2.4 A simple CBOW model with only one word in the context [1] 26
2.5 Continuous bag-of-word model and Skip-gram Model [1] 27
2.6 GRU (image collected from Wikipedia) 28
2.7 Overall pre-training and fine-tuning procedures for BERT [2] 30
2.9 NSP [2] . 32
2.10 Entity Alignment Example [3] . 33
2.11 JAPE Framework . 37
2.12 BootEA Framework . 38
2.13 Knowledge Graph Enhancement . 43

3.1 𝐾𝐺1 and 𝐾𝐺2 denote two different knowledge graphs. Triples are
represented by the oval shape. Blue, red and yellow circles stand for the
entities, relations and attributes respectively. Solid lines are connecting
aligned entities, while dashed lines demonstrate equivalent relationship
to be discovered. 51

3.2 EASAE model architecture. The figure of BERT embedding is taken
from their original paper [2] . 54

xii List of Figures

3.3 Predicate Alignment of 𝐾𝐺1 and 𝐾𝐺2 55
3.4 BERT Input Embedding Representation. The input sentence we use

here is copied from Dbpedia abstract of Tom Hanks. 58

4.1 Different set of attributes from different KGs. 71
4.2 Missing attributes scenario in YAGO. 72
4.3 Model architecture of Attribute Enhancement Framework(AEF) 73
4.4 Attribute Ranking . 75
4.5 TransE based Attribute Property Embedding 77
4.6 Attribute Similarity Mapping . 79

xiii

List of Tables

1.1 Entity Alignment Principle . 4
1.2 Research Problems and Proposed Models 8

2.1 Knowledge Graph Embedding . 20

3.1 Dataset Statistics. 61
3.2 Summary from Dbpedia and Wikidata for the entity ’Achilles’ 62
3.3 Results of entity alignment using different embeddings combination . . 64
3.4 Comparisonwith the state-of-the-art embedding-based entity alignment

models. The results of MtransE, IPTransE, JAPE and BootEA were
directly copied from BootEA [4]. We reproduced the others results
using their source code. 65

3.5 Result Analysis using AttrE-Dataset 66

4.1 Dataset Statistics. 81
4.2 Recommended Attribute From DBpedia 82
4.3 Type wise distribution of recommended attributes 85
4.4 Type wise example of new attributes recommended for YAGO 86
4.5 Statistics of similar attribute group . 87

5.1 Latest Entity Alignment Models and their generic variations. 90
5.2 Comparative Analysis with Latest Entity Alignment Models 91
5.3 Key statistics for popular KGs. (2016) [5] 93

1

1
Introduction

Knowledge is the core power in the age of data and information and incorporating
the knowledge in a graphical representation is known as Knowledge Graph (KG). It
facilitates the complex process of searching and exploration as a lot of information is in
the form of data and context about an entity or object. We intend to enrich and enhance
KG, which in turn helps to represent human knowledge into structured models that
plays a vital role in the machine learning domain. We discuss the motivation, problem
statement, and contributions of the thesis, in this chapter.

1.1 Motivation

The knowledge graph is a structured representation of real-world knowledge consisting
of entities, relationships, attributes, and textual descriptions. An entity or instance
is an object in the real world; a relationship describes the interaction and relation
between two entities; an attribute describes the property of an entity; and a textual
description includes the entity abstract, short summary, string information, etc.

2 Chapter 1. Introduction

Figure 1.1: Knowledge Graph

Knowledge graph is modeled by a graph structure and facts are mainly represented
in triple format. A triple consists of a subject, a predicate/relation, and an object where
the predicate/relation indicates the relationship between an entity as the subject and
the other entity (or literal) as the object. A relational triple can be denoted as (ℎ, 𝑟, 𝑡)
where ℎ and 𝑡 are the head entity and the tail entity, respectively, and 𝑟 is the relation
between the ℎ and 𝑡 . If the object is literal, then we call it attribute triple. Figure 1.1
shows the example of relation and attribute in a typical KG scenario.

There has been a surge of research and development on KGs for several decades
due to their effective role in storing and representing knowledge and facts. Several
well-known KGs can be found on the web, including open-source ones such as DBpedia
[6], Freebase [7], YAGO [8], as well as commercial ones such as those developed by
Google [9] and Microsoft [10]. In the last few years, there has been an explosive
growth of interest in KGs in both the research community and the industry due to their
indispensable role in AI applications such as natural language processing (including

1.1 Motivation 3

dialogue systems/chatbots, question answering, sentence generation, etc.), search
engines [11], recommendation systems, and information extraction.[3, 9]

KGs are mostly constructed based on crowd-sourced content and automatic
extraction methods; therefore, they are not always complete and error-free. Also,
different KGs are initially constructed independently to serve various purposes, and
they are heterogeneous by their structure. Integrating multiple KGs can complement
each other toward a more complete and robust knowledge representation which
requires KG alignment process. As a result, KG alignment and knowledge enhancement
task become very prominent research area.

Over the last decade, several knowledge graphs have been created though most
of them have significant overlapping entity coverage. These knowledge graphs e.g.
DBpedia, YAGO, Wikidata are complementary to each other in terms of completeness.
This study aims to integrate facts that belong to different knowledge graphs to form
more robust knowledge graphs. Before we can incorporate multiple KGs, it is required
to align them first. Aligning multiple KGs means we have to align the overlapping
entities. Entity alignment task refers to finding the same real-world entities in multiple
KGs.

The existing entity alignment models mostly depend on relational and attribute
triples. This is because the neighbors of two equivalent entities in KGs usually contain
equivalent entities and two equivalent entities often share similar attributes and values
in KGs. However, these neighboring assumptions become inadequate when we have
to deal with 1-N or N-N relations. Also, entity pairs from two KG will not always
share equivalent attributes. It is very common for different KGs entities to contain a
different set of attributes. Figure 1.1 demonstrates the phenomenon more clearly. In
the first scenario, the ‘Capital’ relation is a 1-1 relation, and it is synced with both
KGs. Therefore relation assumption is enough for the alignment task. Similarly when
both KG contains a similar set of attributes with consistent attribute values attribute
assumption is also adequate. However, in the third scenario, we see 1-N relation
‘Part_of’ and a different set of attributes in both KGs. So neither relational nor attribute
property is enough for alignment. To deal with such issues, we propose a method that
includes the textual description of entities assuming two equivalent entities should
share a similar description.

Recently embedding-based approaches are popular for entity alignment task. Such

4 Chapter 1. Introduction

Table 1.1: Entity Alignment Principle

Relation Assumption
the neighbors of two equiv-
alent entities in KGs usu-
ally contain equivalent en-
tities

Attribute Assumption
Two equivalent entities of-
ten share similar attributes
and values in KGs.

Summary Assumption
Two equivalent entities
should share similar de-
scription.

1.1 Motivation 5

models are built on top of a graph embedding model, which learns entity embeddings
that capture the similarity between entities in a knowledge graph based on the
relationship triples in a KG. To adapt the KG embedding for entity alignment between
two KGs, the embedding-based models require both predicate and entity embeddings of
two KGs to fall in the same vector space. Exiting models mostly rely on large numbers
of seed alignments for this. However, the seed alignments between two KGs are rarely
available, and hence are difficult to obtain due to the expensive human efforts required.
We have exploited predicate alignment to ease the situation. We propose a novel model
for embedding-based entity alignment which utilizes entity summary extracted from
the KGs along with the relational and the attribute triples. Summary, relation, and
attribute embeddings are jointly optimized to improve the alignment performance.

The goal of this research work is to integrate multiple KG towards a more complete
and robust KG. Technically, when the KGs are aligned, they can complement each other
both in terms of relations and attributes. However, traditional KG completion techniques
are quite popular for solving relation completeness problem. Several probabilistic,
embedding, and deep learning models are generally used for the completion of relations.
Completion of attributes, on the other hand, is a more complex task. It is often
challenging to detect the existence of missing attributes. Even if we can discover
the missing attributes, the classification method may be challenging to apply widely
due to the different hierarchical structures of different entities. Exiting models on
attribute completion focuses on extracting attributes from the text description or
source associated with specific entities mostly. This process works well when missing
or incomplete attributes occurs due to inadequate data extraction method. But the
issue still remains if the data source is not complete or the overall structure of KG lacks
many important properties. In such cases, incorporating multiple KGs for attribute
completion can be very useful. So we have proposed an attribute-enhancing framework
that attempts to enrich the attributes of entities by integrating multiple KGs based on
their aligned information. The task is done by detecting significant attributes from the
reference KG and exporting them to corresponding entities from the target KG if the
target KG is missing that information.

In this dissertation, we aim to incorporate multiple heterogeneous knowledge
graphs, which in terms, lead us toward more complete KGs. We address the problem
of entity alignment which is a vital process for KG integration and propose some

6 Chapter 1. Introduction

Figure 1.2: Knowledge Graph

techniques to tackle that task. We also discuss the knowledge integration processes
and how we can solve them with a simple solution.

1.2 Problem Statement

Enhancing Knowledge graphs can be done either from natural text sources during
or after construction, or they can be enhanced by integrating knowledge (relation,
attribute, or type) from other Knowledge graphs (see figure 1.2). Our research mainly
focuses on integrating knowledge from various KGs which can help overall knowledge
graph completion and enhancement. In this paper, we try to solve the following two
problems:

Knowledge graph alignment problem

In knowledge graph alignment, the main problem to integrate KGs is identifying the
entities in different KGs that denote the same real-world entity. Entity alignment
between KGs is a very challenging task in many aspects. Models should characterize
the heterogeneous structures of different knowledge graphs and then capture the
equivalent correspondence of entities them. Embedding-based alignment models rely

1.2 Problem Statement 7

on large numbers of seed sets of aligned triples from two KGs to create unified vector
space to compute the transition matrix. However, the seed alignments between two
KGs are rarely available, and hence are difficult to obtain due to the expensive human
efforts required.

The diversity between independently-created KGs makes the alignment task very
challenging. Synonymous entity pairs in different KG usually contains a different set of
relations and attributes. For entity alignment task this is one of the biggest challenges
that we face.

Zero-shot case indicates the scenario where at least one of the entities in test
triples is not present in the training sample. Embedding and GNN-based methods
always suffer when they have to handle zero-shot scenarios. Popular entity alignment
method based on these models usually ignores zero-shot scenario and highly depend
on structure-based representations, so those models cannot deal with this situation
because they have no representations for entities that are not present in training data.
Another challenge is dealing with entities with no match alignment across them,
where we have to rely on attributes or descriptions for entity alignment. For the
above-mentioned reasons, proposing an ideal entity alignment method considering the
challenges might be more complicated than the theoretical aspects.

Knowledge Enhancement Problem

knowledge integration or enhancement between KGs is crucial while handling the
heterogeneous nature of KGs. Aligned entities often contain different sets of relations
and attributes. However, traditional KG completion methods work quite well for
relation enhancement tasks but there is no defined method for attributes. Attribute
enhancement is a very complicated task. First, it is often difficult to detect whether an
entity is missing any attributes or values. Suppose, for a person type entity we can
assume that it should contain an attribute similar to birthdate. However, we cannot
claim that it may have marriage date or death date information. A living person will
not have the property deathdate or likewise for an unmarried person entity. But at the
same time, it is possible that the entity is actually referring to a death person who was
married as well and that information is missing from the KG. Second, after discovering
the missing attributes, the classification method may be challenging to apply widely

8 Chapter 1. Introduction

Table 1.2: Research Problems and Proposed Models

Research Problems Proposed Models
Knowledge Graph Alignment Problem EASAE
Knowledge Enhancement Problem AEF

due to the heterogeneous hierarchical structures of different entities. Finally, the
completion of numerical attributes may require the adaptation of regression methods
under some accuracy requirements. By using aligned entities from multiple KGs we
can get an idea of the attribute which might be missing. Also, we can get a tentative
idea for numerical values or inconsistency in attribute values if exists. We want to
leverage this idea in this study.

1.3 Thesis Contributions

In this dissertation, we tackled several tasks connected to knowledge graph alignment
and attribute enhancement. We proposed an effective model to address these research
problems. The problem and its corresponding framework are listed in Table 1.2.
In the following, we give a succinct overview of the models we proposed, and the
contributions we made. We also mention peer-reviewed articles published along with
our research work.

Entity Alignment - EASAE

Leveraging the KG embedding techniques for addressing the entity alignment problem
has drawn increased attention recently. we propose a novel embedding-based model
EASAE [12] for entity alignment. EASAE exploits entity summary extracted from the
KGs along with the relational and attribute triples. We propose EASAE model that
consists of three components: entity summary embedding, relational embedding, and
attribute embedding. We also introduce a weighted average technique to combine
them. We exploit BERT [2] to learn the summary embeddings in EASAE and the
translation-based model for relational and attribute embeddings. All three components
are jointly optimized to improve the alignment performance. EASAE is an ensemble

1.4 Thesis Outline 9

method that incorporated entity summary as part of a symbolic system and embeddings
as a sub-symbolic system. We apply EASAE framework with benchmark datasets and
find very impressive performance. EASAE also shows effectiveness where attribute
triples are limited and zero-shot scenarios.

Attribute Enhancement - AEF

Attribute property in a knowledge graph plays an important role to describe the
properties of an entity and attribute completion is a very crucial task for KG completion
and quality control. However, only a handful of work has been done in this field
because of its complexity. We propose an Attribute Enhacement Framework (AEF)
for entity attribute property enrichment based on significant attribute ranking and
missing value inclusion using multiple KGs. KG is created by extracting data from
multi-sourced unstructured or semi-structured information. So accuracy in knowledge
cannot be guaranteed all the time. This is the reason we always experience missing
values or inconsistency in data. Combining the information in different KGs can
enrich the quality of the knowledge graph though it is a very challenging task. In this
paper, we propose a method to rank entity attributes based on their importance of
a reference KG, and based on that we can include new or missing attributes to the
targeted KG. Our ranking method sorts the attributes based on importance and then
adds the top-ranked attributes to the specific entity if they are missing in the target KG.

We propose embedding and probabilistic approaches to tackle the ranking problem
and later prepare an ensemble method to rank the important attributes. AEF address
two downstream tasks: 1) New or missing attribute proposing from reference KG to
targeted KG; 2) Inconsistency detection of attributes. The first task utilizes both the
ranking method and similarity match function together to recommend new or missing
attributes. While the second task only leverages the similarity match function to detect
the value inconsistency between two KGs.

1.4 Thesis Outline

We conclude this first chapter by outlining the structure of this dissertation. This thesis
is structured into six chapters. The outline of the following chapters:

10 Chapter 1. Introduction

• Chapter 2

This chapter presents the fundamentals of knowledge graph and its concept
and knowledge representation. Then, the related work on KG embedding, KG
alignment, and attribute enhancement are reviewed and discussed respectively.
Later, we further discussed the natural language models that frequently uses in
the KG alignment and enhancement task. Finally, we discussed and identified the
remaining issue before concluding the chapter.

• Chapter 3

This chapter proposes, a joint entity summary and attribute embedding model
along with relational structural embedding technique for entity alignment in
between KG. Our proposed model uses the BERT embedding model for entity
summary embeddings, and it is very effective in zero-shot scenarios. . Extensive
experiments demonstrated that our approach achieved superior results than the
baseline embedding approaches.

• Chapter 4

In this chapter, we describe the attribute enhancement model using multiple
knowledge graphs toward attribute completion. We discuss several approaches
for attribute ranking for reference KG. We show how to incorporate these ranked
attributes to target KG. We also discuss similar attribute mapping methods to
avoid importing already existing attributes. We discuss about the number of new
and missing attributes for the target KG in the process of attribute enhancement.

• Chapter 5

This chapter discusses the achievement we accomplished by the proposed entity
alignment framework EASAE and attribute enhancement framework AEF. Then,
the scope, the limitation and the discussion of each framework is presented
respectively.

• Chapter 6

This chapter summarizes the thesis’s contributions and outlines future work
directions.

11

2
Fundamentals and Related Works

In this Chapter, we presented fundamentals of KG and KG embedding models in
section 2.1 and 2.2 . Then we discuss some NLP methods that are widely used an for
KG alignment and enhancement field in section 2.3. After that, the KG alignment and
their related works are discussed in Section 2.4. Next, the survey on KG enhancement
was reviewed and discussed in Section 2.5. In the following sub-section (Section 2.4.2).
Finally, We discussed the summary of this chapter in Section 2.6.

2.1 Knowledge Graph

A knowledge graph is a network of real-world objects, events, situations, or concepts—
and illustrates which are commonly referred as entities and the relationship between
them.This information is usually stored in a graph database and visualized as a graph
structure, prompting the term knowledge“graph.”

A knowledge graph is made up of three main components: nodes, edges, and labels.
Any object, place, or person can be a node. An edge defines the relationship between

12 Chapter 2. Fundamentals and Related Works

Figure 2.1: Knowledge Graph Concept

the nodes. Its definition can be formalized in the following definition.

Definition 1 Knowledge Graph (KG): A knowledge graph KG = (E, R, T) , where E, R, T
are the set of entities, relations and triples respectively.

• Entity is a vertex or a node in KG, which represents a unique real-world object.
Note that, a description of the entity, referred as literal, can also be a node in KG.

• Relation is an edge with the label in KG, which expresses the relationship between
entities or between an entity and its description.

• Triples is an RDF format consists of a subject, a predicate/relation and an object.

2.1.1 Knowledge Graph Concept

Knowledgegraphs are usually built from various data sources, which normally vary in
structure. These diverse data get structured using schemas (provide the framework

2.1 Knowledge Graph 13

for the knowledge graph), identities (classify the underlying nodes appropriately),
and context (define the setting for the knowledge). These components help separate
words with multiple meanings, like distinguishing the difference between Apple, the
brand, and apple, the fruit. knowledge graphs can also support the creation of new
knowledge, establishing connections between data points that may not have been
realized previously.

Figure 2.1 represent classic difference between graph and knowledge graph and the
power of inference using knowledge graph. In recent years, knowledge graphs have
been applied in various ways. For example, the most direct application is Question
Answering [10–14]. This is a method of searching desired information in a knowledge
graph by converting a question into a machine readable query. In the medical domain,
knowledge graphs can help doctors to gather health data and diagnose disease [15–17].
In addition, knowledge graph is applied for content tagging, fact checking, and so on
[3–5, 18–22].

2.1.2 Knowledge Graph Representation

Knowledge Graph is represented by the Linked Data concept [13]. In the Linked
Data concept, the Resource Description Framework (RDF) is a standard model for
publishing Linked Data [5]. It uses to describe the information and their relations and
also make data become interchangeable [5]. The specification of RDF is introduced by
W3C Recommendation (RDF 1.1 Concepts and Abstract Syntax) [27]. In the RDF
specification, the key concept is a RDF graph, which is a collection of RDF triples. A
RDF triple consists of a subject, a predicate and an object. A subject and an object are
treat as a vertex, while a predicate is considered as a relation. The direction of the edge
is used to identify which vertex is the subject and which vertex is the object. The edge
of a RDF triple points out from the subject and points into the object. An RDF triple
therefore can be viewed as a directed graph, which composes of two vertices and one
directed edge, as shown fig2.2.

Furthermore, the RDF specification [27] defines three kinds of resource representa-
tions: Internationalized Resource Identifier, literal and blank node. Such representations
are used to describe an element of a RDF triple. Note that, based upon our observation
on many KGs, a blank node is usually ignored because the blank node does not provide

14 Chapter 2. Fundamentals and Related Works

Figure 2.2: Knowledge Graph Enhancement

any meaning and makes representation of a KG become more complicated.

Unique Resource Identifier (URI) is a unicode string that comply the RFC
standard and it uses to identify a resource as a unique identifier so that the resource
could be referred [27]. wider range of the encoding characters [27].

Literal is a string used to identify a value. There are two types of literal: untyped
and typed. Untyped literal is a string without identify type of the literal; it can be any
string, e.g.“Tom”,“November 2022”,“3.23”. Typed literal is a string with the
datatype can be identified. The datatype are string types such as language number,
digit, date, etc. In order to identify the datatype of typed literal, the extension of the
markup are used. As Example, "Tom Hanks"@en represents Tom Hanks as in English,
"2022-11-01"^^xsd:date represents the date on 1st November 2022.

Due to the characteristic of a RDF triple as shown in Figure fig2.2 , a resource
representation that can be used to describe each element of a RDF triple, is therefore

2.1 Knowledge Graph 15

depended upon the position, which is a subject or a predicate or an object, of the
element.

• Subject : The subject can be represented only by a URI. Since the subject is the
entity. it need to be identified as a unique resource, which is only represented by
URI.

• Predicate : The predicate is also expressed by a URI. As shown in Figure 2.1, a
predicate is a edge with its label. Different relations therefore can be expressed
by different types of labelled edges.

• Object : The object can be a URI or literal. In contrast with the subject, an object
is a information that fulfills the relation with its subject. Therefore, object allows
the representation as URI or Literal. If it is URI, it express the relation between
entities, subject and object. In case of literal, it describes the detail for subject,
known as its description

Based on the characteristic of object described by the RDF definition Knowledge graph
triples can be categorized by two types.

• Relational Triples depict relationship between two entities

• Attribute Triples link entities with data values - string, number, or date

Throughout this thesis paper, we have shown the significance of these category of
triples.

2.1.3 Popular Knowledge Graph

The knowledge graphs also refer as Linked Open Data (LOD) [13] because anyone can
access those knowledge graphs online and freely. Numerous KGs can be found over
the web on various domains. (Fig. 2.3). In the following sections, we will briefly discuss
about some of the most popular KGs.

16 Chapter 2. Fundamentals and Related Works

Figure 2.3: Knowledge Graphs in the Linked Open Data Cloud on November 3rd, 2022

Wikidata

Wikidata1, operated by the Wikimedia Foundation is a community-created knowledge
base to manage factual information of Wikipedia and its sister projects operated by the
Wikimedia Foundation [14]. Wikidata is a collection of entity pages. Entity pages are
of two types: items and properties. Every item page contains labels, short description,
aliases, statements, and site links. Each statement consists of a claim and one or more
optional references. Each claim consists of a property-value pair and optional qualifiers.
Values are also divided into three types: no value, unknown value, and custom value.
The no value marker means that there is certainly no value for the property, the
unknown value marker means that the property has some value, but it is unknown to
us, and the "custom value " which provides a known value for the property1.

1https://wikidata.org

2.1 Knowledge Graph 17

DBpedia

In recent years Wikipedia2 has become an essential source of information to build
knowledge graphs. The DBpedia3 project extracts the structured information that is
incorporated in Wikipedia articles by using wiki markup. The DBpedia project was
officially launched in 2007 and on those days the Linked Open Data Cloud was only a
tiny collection of bubbles coalescing around DBpedia. Wikipedia’s "infoboxes", are
very rich and the most valuable source of information for DBpedia, which are tables
summarizing the most important properties of the entity described by a Wikipedia
page [15]. This extraction process generates one of the most popular knowledge
graphs publicly available that, at the time of writing, contains more than 17M entities
and as of June 2021, it contains over 850 million triples. DBpedia [6] also features
manually curated ontologies defining, in particular, a hierarchy of types and domain
and range constraints for many properties. Being derived from Wikipedia, DBpedia
features encyclopedic knowledge mostly focused on people, locations, organizations,
and creative works such as books, pieces of art, movies, and music.

YAGO

YAGO [8] also launched in the year of 2007 which shares with DBpedia [6] some core
ideas but strives at integrating Wikipedia and WordNet4, a very popular lexicon for the
English language [16].

YAGO2 enhances the knowledge graph by adding spatial and temporal information
to its data. Spatial information is attached to entities of type Event, Group (or
Organization), and Artifact by means of special properties. Such properties connect the
entity to geographical entities extracted either from Wikipedia or GeoNames, an
extensive knowledge graph about locations containing more than 7M entries. Temporal
information is mostly extracted from Wikipedia infoboxes and is attached to people,
groups, artifacts, and events.

YAGO3 is a huge semantic knowledge base, derived from Wikipedia WordNet and
GeoNames. Currently, YAGO3 has knowledge of more than 10 million entities (like

2http://wikipedia.org
3http://dbpedia.org
4https://wordnet.princeton.edu/

18 Chapter 2. Fundamentals and Related Works

persons, organizations, cities, etc.) and contains more than 120 million facts about
these entities.

One of the key differences between YAGO and DBpedia is the fact that the two
knowledge graphs have different type hierarchies: DBpedia features about 300 types
while YAGO features more than 300,000 entity types [8]. This is due to the fact that
DBpedia’s type hierarchy was created manually, while YAGO’s was automatically
derived starting from Wikipedia categories and WordNet. The main consequence of
this fact is that YAGO has very specific entity types which can have very few instances
and, therefore, are not always interesting for the users of the knowledge graph.

Freebase

Freebase was a large collaborative knowledge base launched in 2007 as well. Google
took it over in 2010 [7]. It was used as the open core of the Google Knowledge Graph
project, and has been attracted by many use cases outside the Google. Due to the
success of Wikidata, Google had decided to close Freebase in 2014 and help with the
migration of the content to Wikidata [14]. Freebase is built on the notions of objects,
facts, types, and properties. Each Freebase object has a stable identifier called a "mid"
(for Machine ID), one or more types, and uses properties from these types in order
to provide facts. Freebase uses Compound Value Types to represent n-ary relations
with 𝑛 > 2, e.g., values like geographic coordinates, political positions held with a
start and an end date, or actors playing a character in a movie. Compound Value
Types values are just objects, i.e., they have a mid and can have types [17]. Most
non- Compound Value Types objects are called topics in order to discern them from
Compound Value Types. Google has stopped all the Freebase services from 2016 and
its data was "donated" to Wikipedia, though only 9.5% of its entities have actually been
included in Wikidata, partly because of the notability criteria mentioned previously.
The last dump of Freebase is still available for download5.

Google’s Knowledge Graph and Knowledge Vault

Nowadays in Google Search we can find info boxes with information about people,
places, and things. Infoboxes are designed to help end users quickly understand more

5https://developers.google.com/freebase/

2.2 Knowledge Graph Embedding 19

about a particular subject by surfacing relevant facts and to make it easier to explore a
topic in more depth. Information within info boxes comes from a Knowledge Graph,
which is like a giant virtual encyclopedia of facts. In 2012 the Google’s Knowledge
Graph was invented and brought to the public. Google is rather secretive about how
their Knowledge Graph is constructed; there are only a few external sources that
discuss some of the mechanisms of information flow into the Knowledge Graph based
on experience. From those, it can be assumed that major semi-structured web sources,
such as Wikipedia, contribute to the knowledge graph, as well as structured markup
(like schema.org Microdata on web pages and contents from Google’s online social
network Google+. According to the Google’s Knowledge Graph contains 18 billion
statements about 570 million entities, with a schema of 1,500 entity types and 35,000
relation types [18].

The Knowledge Vault is another project by Google. It extracts knowledge from
different sources, such as text documents, HTML tables, and structured annotations on
the Web with Microdata or MicroFormats. Extracted facts are combined using both
the extractor’s confidence values, as well as prior probabilities for the statements,
which are computed using the Freebase knowledge graph (see above). From those
components, a confidence value for each fact is computed, and only the confident facts
are taken into Knowledge Vault. According to, the Knowledge Vault contains roughly
45 million entities and 271 million fact statements, using 1,100 entity types and 4,500
relation types [19, 18].

2.2 Knowledge Graph Embedding

In its present state, KG technology is far from fully matured, although link prediction
is an effective approach to completing a KG. Various models have been proposed to
address the link-prediction issue. The models proposed to date differ in terms of their
scoring function.

First, we describe the notation used in this paper. A knowledge graph 𝐺 =

{(ℎ, 𝑟, 𝑡)} ⊆ 𝐸 × 𝑅 × 𝐸 can be formalized as a set of triples, where 𝐸 is the set of all
entities and 𝑅 is the set of all relations. A triple is denoted by (ℎ, 𝑟, 𝑡), where ℎ is
the head entity, 𝑟 is the relation, and 𝑡 is the tail entity. The bold letters 𝒉, 𝒓 , and 𝒕

denote embeddings of ℎ, 𝑟 , and 𝑡 , respectively, in an embedding space R𝑛 . 𝑓𝑟 (𝒉, 𝒕) is the

20 Chapter 2. Fundamentals and Related Works

Table 2.1: Knowledge Graph Embedding

Embedding Models Methods

Translation-based
TransE, TransH, and TransR,

CTransR, TransD, TorusE, RotatE
RotatE, HyperKG

Bilinear RESCAL, DistMult, ComplEx ,
TuckER

Neural Network-based NTM, NAM, ConvE,
ConvR, InteractE

scoring function of the model under consideration. We can divide KG embedding
models typically into three groups as shown in Table2.1. In the following sections we
will present some discussion on these methods.

2.2.1 Translation-Distanced based Models

In translation-based model, a link between two entities is represented by a certain
translation operation on the embedding space. This is formally described by the
principle as follows:

𝒉 + 𝒓 = 𝒕 (2.1)

where h, r, and t are the embeddings of h, r, and t of a triple (h, r, t), respectively. The
principle is to obtain distributed representations of words from a text and in which the
differences between word representations often represent their relation.

TransE

TransE[20] is the first translation-based model, which embeds entities and relations in
a real vector space. TransE employs the following score function:

| | 𝒉 + 𝒓 − 𝒕 | | (2.2)

where 𝒉 and 𝒕 are the embeddings of head and tail, respectively. Here, the intuition is
learning distributed word representations to capture linguistic regularities such as
𝑇𝑜𝑘𝑦𝑜 +𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑂 𝑓 ≈ 𝐽𝑎𝑝𝑎𝑛. TransE is the most popular translation-distance-based
embedding model and is both very simple and fast.

2.2 Knowledge Graph Embedding 21

TransH

Many researchers [21, 22] have claimed that TransE has problems in representing
one-to-many, many-to-one, and many-to-many relations, with a number of models
being proposed to address these issues. The first such effort was TransH [22], which
represents relations by hyperplanes. TransH projects entities on the hyperplane
corresponding to a relation. A single entity can have different representations on
different hyperplanes. It models the relation 𝑟 as 𝒓 on a hyperplane with the normal
vector𝒘𝒓 . Given a triple (ℎ, 𝑟, 𝑡), the entity representations 𝒉 and 𝒕 are projected on the
hyperplane of𝒘𝒓 with the restriction that | | 𝒘𝒓 | |= 1. The calculation is expressed as:

𝒉⊥ = 𝒉 −𝒘⊤
𝑟 𝒉𝒘𝑟 ,

𝒕⊥ = 𝒕 −𝒘⊤
𝑟 𝒕𝒘𝑟 .

(2.3)

The scoring function is very similar to TransE:

𝑓𝑟 (𝒉, 𝒕) = | | 𝒉⊥ + 𝒓 − 𝒕⊥ | |𝑙1/2 . (2.4)

TransR/CTransR

TransR [21] also handled the shortcomings of TransE, but in a slightly different way in
comparison to TransH. It considers separate spaces for entities and relations, but the
main principle is that entities and relations are completely different types of objects,
implying that they should not occupy the same vector space. Given a triple (ℎ, 𝑟, 𝑡),
TransR projects the entity representations 𝒉 and 𝒕 into the space specific to a relation 𝑟 .
That is:

𝒉𝑟 = 𝑴𝑟𝒉, 𝒕𝑟 = 𝑴𝑟 𝒕, (2.5)

where 𝒉, 𝒕 ∈ R𝑛, 𝒓 ∈ R𝑚, and 𝑴𝑟 ∈ R𝑛×𝑚 represents the projection matrix from the
entity space to the relation space for relation 𝑟 . The scoring function is:

𝑓𝑟 (𝒉, 𝒕) = | | 𝒉𝑟 + 𝒓 − 𝒕𝑟 | |𝑙1/2 . (2.6)

CTransR is an extension of TransR proposed by the same authors. In this model,
entity pairs for a relation are clustered into different groups, and the pairs in the same
group share the same unique relation vector.

22 Chapter 2. Fundamentals and Related Works

TransD

TransD [23] can be considered as a special case of TransR. It replaces transfer matrix
by the product of two projection vectors of an entity and relation pair. Specifically,
for each triple (ℎ, 𝑟, 𝑡), TransD introduces additional mapping vectors 𝒉𝒅, 𝒕𝒅 ∈ R𝑛

and 𝒓𝒅 ∈ R𝑚, along with the entity or relation representations 𝒉, 𝒕 ∈ R𝑛 and 𝒓 ∈ R𝑚 .
Projection matrices for head/tail are accordingly defined as:

𝑴𝑟ℎ = 𝒓𝑑𝒉𝑑
⊤ + 𝑰 ,

𝑴𝑟𝑡 = 𝒓𝑑 𝒕𝑑
⊤ + 𝑰 .

(2.7)

These two projection matrices are then applied on the head entity 𝒉 and the tail entity
𝒕 respectively to get their projections, i.e.,

𝒉̂ = 𝑴𝑟ℎ𝒉, 𝒕 = 𝑴𝑟𝑡 𝒕, (2.8)

TorusE

TorusE [24] addressed regularization problem of TransE. Regularization conflicts
with the principle and makes the accuracy of the link prediction task lower. It
introduced a torus, which is a compact Lie group that can be easily realized and
achieved state-of-the-art performance.

RotatE

RotatE [25], which is able to model and infer various relation patterns including:
symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model
defines each relation as a rotation from the source entity to the target entity in the
complex vector space. It showed that such a simple operation can effectively model all
the three relation patterns: symmetric/antisymmetric, inversion, and composition. It
achieved very impressive results in link prediction task.

2.2 Knowledge Graph Embedding 23

2.2.2 Bilinear Models

RESCAL

For the link-prediction and triple-classification tasks, bilinear and neural-network-based
models are also popular. RESCAL[26, 27] is a bilinear model, with each relation being
represented by an 𝑛-𝑏𝑦-𝑛 matrix in an embedding space R𝑛 and the scores for the
triples being calculated by a bilinear mapping.

DistMult

DistMult [28] simplifies RESCAL by restricting the matrices to diagonal matrices but it
has problem with the score of (ℎ, 𝑟, 𝑡) and (𝑡, 𝑟, ℎ) are the same.

ComplEx

ComplEx [29] addressed this issue of DistMult. It uses complex numbers instead of real
numbers and takes the conjugate of the embedding of the tail entity before calculating
the bilinear mapping.

TuckER

TuckER [30], is a relatively straightforward but powerful linear model based on Tucker
decomposition of the binary tensor representation of knowledge graph triples. TuckER
gained popularity for its fully expressive feature. In this model, for any given triple, it
assumes that there exists an assignment of values to the entity and relation embeddings
that accurately separates the true triples from false ones. TuckER is a generalization of
many state-of-the-art linear models, e.g., RESCAL [26], DistMult [28], and ComplEx
[29], are special cases of TuckER.

2.2.3 Neural Network based Models

NTN

Neural Tensor Network (NTN) [31] has a standard linear neural network structure and
a bilinear tensor structure. It concatenates head and tail entities as an input layer to the

24 Chapter 2. Fundamentals and Related Works

nonlinear hidden neural layer and has the scoring function: This can be considered as
a generalization of RESCAL. The weight of the network is trained for each relation.

NAM

Neural Association Model (NAM) [32] conducts semantic matching with a Deep Neural
Network (DNN) architecture different from other neural network-based models. A
deep neural network is used to compose embeddings of the head entity and the relation
for a triple (h, r, t). Then, the output vector is used to take the inner product with the
embedding of the tail entity to score the triple.

ConvE and ConvR

In recent times, several convolutional models have been proposed for solving link
prediction task. Dettmers et al. [33] proposed a multi-layer convolutional network
model ConvE which is very efficient in terms of time and space complexity compare to
other NN based models proposed earlier. Another convolutional model called ConvR
[34] which enabled rich interactions between entities and relation representations and
achieved the state-of-the-art performance in link prediction task. In this paper, we
proposed a model based on translation distance based model but extending our model
with convolutional models can be an interesting future work.

InteractE

InteractE [35] targets the limitations of convE. This model analyzes how increasing
the number of these interactions affects link prediction performance, and utilize the
observations. InteractE is based on three key ideas – feature permutation, a novel
feature reshaping, and circular convolution. InteractE authors claimed that increasing
the number of such interactions is beneficial to link prediction performance, and show
that the number of interactions that ConvE can capture is limited. InteractE is a novel
CNN based KG embedding approach which aims to further increase the interaction
between relation and entity embeddings.

Bilinear models add more redundancy than translation-distance-based models.
therefore, they are prone to have an overfitting problem. Although neural-network-
based models also tend to encounter overfitting, the standard advantage of such models

2.3 Natural Language Processing 25

is that they can capture many kinds of relations. However, they add more time and
space complexity.

2.3 Natural Language Processing

2.3.1 Word2vec

Word embedding actually refers to numerical representation of words. We commonly
use similar for colors in form of RGB. Word2Vec basically means expressing each word
in your text corpus in an N-dimensional space often refereed as embedding space.
The simplest word embedding can be done by using one-hot vectors. If the word
corpus contains 10,000 words as vocabulary, then one-hot encoding can represent
each word as a 1x10,000 vector. The reason of choosing one-hot encoding is due to
simplicity, robustness and observation that simple models trained on huge amounts of
data outperform complex systems trained on less data [36]. The Word2vec model
captures both syntactic and semantic similarities between the words6. One of the well
known examples of the vector algebraic on the trained word2vec vectors is Vector(
“France”)-Vector(“Pais”)= Vector(“Tokyo”)-Vector(“Japan").

Word2Vec is a predictive embedding model. Predictive models learn their vectors
in order to improve their predictive ability of a loss such as the loss of predicting the
vector for a target word from the vectors of the surrounding context words. There are
two main Word2Vec architectures that are used to produce a distributed representation
of words: 1) Continuous Bag of Words (CBOW) and Skip gram. We will discuss about
them in detail in following sections.

Continous Bag of Words (CBOW)

In the continuous bag of word (CBOW) model, the distributed representations of
context (or surrounding words) are combined to predict the word in the middle. When
there is only one word per context, the model will predict one target word given one
context word. Figure 2.4 shows the network model with only one word in the context.
Here, the vocabulary size is V, and the hidden layer size is N. The units on adjacent

6 https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

26 Chapter 2. Fundamentals and Related Works

Figure 2.4: A simple CBOW model with only one word in the context [1]

layers are fully connected. The input is a one-hot encoded vector, which means for a
given input context word, only one out of V units, x1, , 𝑥𝑉 , will be 1, and all other
units are 0. Figure 2.5 shows the CBOWmodel with a multi-word context setting.
When computing the hidden layer output, instead of directly copying the input vector
of the input context word, the CBOW model takes the average of the vectors of the
input context words, and use the product of the input→hidden weight matrix and the
average vector as the output [1]. Total weights involved in training CBOW model are
N×D+D×log(2)V.

Skip-gram

Skip-gram model, the distributed representation of the input word is used to predict
the context. Figure 2.5 shows the Skip-gram model. It is the opposite of the CBOW
model. The target word is now at the input layer, and the context words are on the
output layer. Skip-gram works well with a small amount of the training data and
represents well even rare words or phrases. CBOW is several times faster to train
than the skip-gram, with slightly better accuracy for the frequent words. The total
complexity of the model is N×D+N×D×log2(V). Noticeably, N also gets multiplied to

2.3 Natural Language Processing 27

Figure 2.5: Continuous bag-of-word model and Skip-gram Model [1]

D×log2(V) term as its not a single class classification problem compared to CBOW,
rather N class classification problem. Hence overall complexity of skip gram model is
greater than the CBOW model6.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) has shown promising results in processing arbitrary
sequences of input. For a given sequence of input 𝑥1, 𝑥2, ..., 𝑥𝑛 , RNN model learns the
current latent state with the input data at time 𝑡 and the previous latent state at time
𝑡 − 1. Then the current latent state is used to predict the output. The RNN is derived as

28 Chapter 2. Fundamentals and Related Works

Figure 2.6: GRU (image collected from Wikipedia)

follows:

ℎ𝑡 = 𝑓 (𝑊𝑖,ℎ𝑥𝑡 +𝑊ℎ,ℎℎ𝑡−1 + 𝑏ℎ)
𝑦𝑡 = 𝑔(𝑊ℎ,𝑦ℎ𝑡 + 𝑏𝑦)

where 𝑥𝑡 is the input vector at time 𝑡 , ℎ𝑡 is the vector of hidden layer at time 𝑡 , 𝑦𝑡 is the
prediction vector at time 𝑡 ,𝑊𝑖,ℎ ,𝑊ℎ,ℎ,𝑊ℎ,𝑦 are parameter matrices, 𝑏ℎ, 𝑏𝑦 are the bias
parameters for the network and 𝑓 , 𝑔 are the activation functions, e.g., sigmoids.

Although RNN is able to handle a variable-length sequence input, long-term
dependencies are difficult to be captured due to the gradients that tend to either vanish
or explode. The long short-term memory (LSTM) unit and gated recurrent unit (GRU)
are able to handle long-term dependencies and perform better than using traditional
𝑡𝑎𝑛ℎ unit [37].

2.3.3 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. to make each recurrent unit
to adaptively capture dependencies of different time scales [37]. Similar to the LSTM
unit, the GRU has gating units that modulate the flow of information inside the unit,
however, without having a separate memory cells. The GRU is like a long short-term

2.3 Natural Language Processing 29

memory (LSTM) [38] with a forget gate [39], GRU has fewer parameters than LSTM, as
it doesn’t have an output gate. GRU’s performance on specific tasks of polyphonic
music modeling, speech signal modeling and natural language processing is similar
to LSTM models, but it has shown better performance on certain smaller and less
frequent datasets.

There are several variations on the full gated unit, with gating done using the
previous hidden state and the bias in various combinations, and a simplified form
called minimal gated unit.

Fully gated unit is defined as follows:

𝑧𝑡 = 𝑓 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
𝑟𝑡 = 𝑓 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
ℎ𝑡 = 𝑔(𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 ◦ 𝑠𝑡−1) + 𝑏ℎ)
𝑠𝑡 = 𝑧𝑡 ◦ 𝑠𝑡−1 + (1 − 𝑧𝑡) ◦ ℎ𝑡

where 𝑥𝑡 is the input vector at time 𝑡 , 𝑧𝑡 is the update gate vector at time 𝑡 , 𝑟𝑡 is
the reset gate vector at time 𝑡 , ℎ𝑡 is the hidden layer vector at time 𝑡 , 𝑠𝑡 is the output
vector at time 𝑡 ,𝑊 and 𝑈 are parameter matrices, 𝑏 is bias parameter, 𝑓 and 𝑔 are
activation functions, and ◦ is the Hadamard product operation. 𝜎𝑔 is the sigmoid and
𝜙ℎ s a hyperbolic tangent activation function.

2.3.4 BERT

BERT (Bidirectional Encoder Representations from Transformers) [2] is a transformer-
based machine learning technique for natural language processing pre-training
developed by researchers at Google AI Language. When BERT was published, it
achieved state-of-the-art performance on a wide variety of NLP tasks, including GLUE
(General Language Understanding Evaluation) task, and Question Answering (SQuAD
v1.1). BERT achieved remarkable performance in Natural Language Inference (MNLI),
SWAG (Situations With Adversarial Generations), Sentiment Analysis, and others.

BERT’s key innovation is applying the bidirectional training of the Transformer.
For language modeling, Transformer is a popular attention model. But previously, text
sequences were looked at either from left to right or combined with left-to-right and

30 Chapter 2. Fundamentals and Related Works

Figure 2.7: Overall pre-training and fine-tuning procedures for BERT [2]

right-to-left training. BERT shows that if the language model is bidirectionally trained,
it can have a more profound sense of language context and flow, which is not possible
in single-direction language models. BERT framework consists of two basic steps:
pre-training and fine-tuning.

BERT Pre-training

During pre-training (see, Fig 2.7), the model is trained on unlabelled data over different
pre-training tasks. BERT uses two unsupervised tasks for pre-training named as:
Masked LM and Next Sentence Prediction (NSP).
Masked LM (MLM) For training, 15% of the words in each sequence is replaced with a
[MASK] token before feeding into BERT. The model then tries to predict the original
value of the masked words based on the context provided by the other words in the
sequence.

Technically, the prediction of the output words requires 7 :

• Adding a classification layer on top of the encoder output.

• Multiplying the output vectors by the embedding matrix, transforming them into
the vocabulary dimension.

7https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-
f8b21a9b6270

2.3 Natural Language Processing 31

Figure 2.8: MaskLM 7

• Calculating the probability of each word in the vocabulary with softmax.

Next Sentence Prediction (NSP)

Many important downstream NLP tasks are based on understanding the relationship
between two sentences. This is not directly captured by previous language modeling.
In understanding sentence relationships, BERT pre-trains for a binarized next sentence
prediction (NSP) task that can be trivially generated from any monolingual corpus.
Specifically, when choosing the sentences A and B for each pretraining example, 50% of
the time B is the actual next sentence that follows A (labeled as IsNext), and 50% of the
time it is a random sentence from the corpus (labeled as NotNext) [2]. A [CLS] token is
inserted at the beginning of the first sentence and a [SEP] token is inserted at the end
of each sentence. A sentence embedding indicating Sentence A or Sentence B is added
to each token. Sentence embeddings are similar in concept to token embeddings with a
vocabulary of 2. A positional embedding is added to each token to indicate its position
in the sequence7.

32 Chapter 2. Fundamentals and Related Works

Figure 2.9: NSP [2]

BERT Fine-training

Fine-tuning is straightforward since the self attention mechanism in the Transformer
allows BERT to model many downstream tasks. Classification tasks such as sentiment
analysis are done similarly to Next Sentence classification, by adding a classification
layer on top of the Transformer output for the [CLS] token. In Question Answering
tasks, the software receives a question regarding a text sequence and is required to
mark the answer in the sequence. Using BERT, a Q&A model can be trained by learning
two extra vectors that mark the beginning and the end of the answer7. Compared to
pre-training, fine-tuning is relatively inexpensive.

2.4 Entity Alignment

Knowledge graphs are heterogeneous and complementary as they are often constructed
for serving different purpose from multiple sources. So, merging heterogeneous
knowledge from different data sources and languages into a unified and consistent
knowledge graph is a feasible and necessary process. In order to marge different
knowledge graphs that may complement each other more efficiently, Entity Alignment
has become an important research field. The task of entity alignment refers to find
equivalent entities in different knowledge graphs (KGs) that refer to the same real-world
object. Given two knowledge graphs, i.e., a source KG and a target KG, the alignment
is done by first identifying the similar entity in the source and target KGs and then
expands to detect the synonymous pair between their neighbouring entities. Recently,

2.4 Entity Alignment 33

Figure 2.10: Entity Alignment Example [3]

various kind of model has been proposed for entity alignment. Although they are
different in terms of procedure, typically they follow two major assumptions. One is
relational assumption which means the neighbors of two equivalent entities in KGs
usually contain equivalent entities. The second assumption is two aligned entities share
similar attributes and values in KGs. These two assumptions are the basic principle for
alignment task. However sometimes they are not enough to solve the problem. As
shown in figure 1.1, it can be ambiguous if we have to deal with 1-N, N-N relations.
Also similar entity pair can have different set of attributes which can be challenging for
alignment task. To handle such problem in this thesis we propose a method which
includes summary assumption. It includes textual description for entity alignment.

Recent approaches of entity alignment can be categorized in to three groups. The
first is string-similarity-based approaches detailed in Section 2.3.1. The second is
embedding-based approaches detailed in Section 2.3.2. and the third is GNN Based
Alignment Models.

34 Chapter 2. Fundamentals and Related Works

2.4.1 String Similarity based Entity Alignment.

Earlier entity alignment approaches basically use string similarity for alignment.
Some techniques have focused on improving the effectiveness of the matching of
entities via different entity similarity measures while others focus on the efficiency
of entity matching. For example, models like RDF-AI [40], SILK [41], LD-Mapper
[42], PARIS [43] fall into the first category while LIMES [44], HolisticEM [45] follows
the second strategy. RDF-AI [40] implements an alignment framework that consists
of pre-processing, matching, fusion, interlink, and post-processing modules. The
pre-processing module inspects the ontology consistency and transforms properties
into a standard form. For the matching module, RDF-AI exploits fuzzy string matching
based on sequence alignment [46], word relation [16], and taxonomic similarity
algorithms to compute a similarity score between entities in the source and target KBs.
Based on this score, the interlinking module creates a temporary graph that contains
entities and their properties from the source KG that correspond to entities in the
target KG. The fusion module combines the target KG and the temporary graph from.
Finally, the post-processor module verifies the resulting ontology consistency. SILK
provides the Link Specification Language (LSL), which allows users to specify the
similarity measures for comparing certain attributes [3]. In LSL, users can define
the properties and the metrics to be used for entity similarity computation. SILK
provides various similarity metrics, including string similarity, numeric similarity, date
similarity, and URI equality. To reduce the number of comparisons between entities
from two different KBs, SILK provides rough index pre-matching. All target resources
are indexed based on the values of their properties. This index is used to look up
potential matches for a given entity. LD-Mapper combines string similarity and entity
nearest neighbors. PARIS includes schema matching (e.g., classes and sub-classes of
entities) to compute the entity similarity.

On the other hand, LIMES utilizes triangle inequality to calculate similarities
between entity pairs from the source and target KBs. First, it constructs clusters
to group entities on the target KB. Then, the similarities between entities in the
source KB and the generated clusters are calculated as an approximation. Using these
approximations, LIMES avoids comparing every entity pair from the source and target
KG, and thus speed-up the alignment process. Finally, the actual similarity between

2.4 Entity Alignment 35

entities from the source KB and entities in the corresponding cluster on the target KB
is computed, and the entity pair with the highest actual string similarity is returned.
HolisticEM [110] constructs a graph of potential entity pairs based on the overlapping
attributes and the neighboring entities. From the constructed graph, the local and
global properties are propagated using Personalized Page Rank to compute the actual
similarity of entity pairs.

The string similarity approaches work well when the properties/relations to be
compared between the entities are known. However, different knowledge graphs may
use different property/relation names to store similar property values. It depends on
the KG structure. Hence, these approaches rely on user defined rules to determine the
comparable properties. The manually defined rules are not 100% correct because
different entity types may contain a different set of properties. For example, properties
such as birthdate and deathdate may exist in the set of properties of person type
entities but not in the set of properties of location type entities.

2.4.2 Embedding-based Entity Alignment .

The embedding models for KG completion inspired several entity alignments based
models. The KG embedding based entity alignment models represent different KGs
as embeddings and find entity alignment by calculating the similarity between the
embeddings. In this section we discuss the state-of-the-art KG embedding based entity
alignment models.

MTransE

This model proposed by chen et al. [47] is the first multi-linguaal KG embedding based
entity alignment model. It follows the principle of TransE. MTransE is a multilingual
alignment model which consists of two components: the first component is the
knowledge model that encodes the entities and relations from each language-specific
graph structure, and the second component is the alignment model that learns the
cross-lingual transitions from the existing seeds. This model aligned the entities of two
different languages L1,L2 ∈ L, where L is the set of all languages by considering two
components: (1) knowledge model, which is actually TransE model and (2) alignment
model consists of distance-based axis calibration model, translation vectors model,

36 Chapter 2. Fundamentals and Related Works

and linear transformation model. In distance-based axis calibration they defined two
different type of scoring functions. For (ℎ, 𝑟, 𝑡) ∈ L1 and (ℎ‘, 𝑟 ‘, 𝑡 ‘) ∈ L2 the scoring
functions are as follows:

𝑍1 =| | h − h‘ | | + | | t − t‘ | |
𝑍2 =| | h − h‘ | | + | | r − r‘ | | + | | t − t‘ | |

(2.9)

where 𝑍1 denotes the correctly aligned multilingual expressions of the same entity tend
to have close embedding vectors and 𝑍2 overlays the penalty of relation alignment to
𝑍1 to explicitly converge scores of the same relation.

Translation vectors model determines the cross-lingual transitions into vectors and
the scoring function is defined as:

𝑍3 =| | h + v𝑒 − h‘ | | + | | r + v𝑟 − r‘ | | + | | t + v𝑒 − t‘ | | (2.10)

where 𝑣𝑒 and 𝑣𝑟 are the entity and relation specific translation vectors between L1 and
L2.

Linear transformations model introduced a 𝑛 × 𝑛 matrix M1 to transform the entity
vectors from L1 to L2 (without considering the relation) as follows:

𝑍4 =| | M1h − h‘ | | + | | M1t − t‘ | | (2.11)

Linear transformation model can be extended to transform the relational vectors by
introducing another 𝑛 × 𝑛 matrixM2 as follows:

𝑍5 =| | M1h − h‘ | | +M2r − r‘ | | + | | M1t − t‘ | | (2.12)

Later the MTransE model optimized the components described above and aligned
the entities based on similarity.

IPTransE

This model [48] aligns the entities according to their semantic distance in the joint
embedding space and iteratively label new entity alignment by utilizing the existing

2.4 Entity Alignment 37

Figure 2.11: JAPE Framework

seeds. The main contributions are: they proposed parameter sharing model and
iterative alignment model to learn joint embeddings and perform entity alignment
simultaneously. The intuition behind the parameter sharing model was the aligned
entities should have identical meanings in KGs, so aligned entities should share the
same embeddings. Iterative alignment model exploited two strategies: hard and soft
alignment for iterative learning of joint embeddings and entity alignment. In hard
alignment model, newly aligned entities are directly stored in the aligned seeds set
S𝑎. Soft alignment model introduces a reliability score for newly aligned entity pair
(ℎ1, ℎ2) and based on that score the newly aligned entities are directly stored in the
aligned seeds set S𝑎 .

JAPE

JAPE [49] proposed embeddings for entities and relations of different KGs in a common
embedding space and it showed the effectiveness of attribute triples to learn the entity
alignment in between different KGs. JAPE is the first model which models the attribute
triples to address the entity alignment task between cross-lingual KGs. In between real
world KGs there exist some aligned entities and properties but the number of aligned
entities are very limited. On the other hand, the numbers of attribute triples are much
larger than the relational triples. JAPE showed that attribute triples can serve as a
bridge between the KGs to align entities.

38 Chapter 2. Fundamentals and Related Works

Figure 2.12: BootEA Framework

BootEA

Sun et al. [4] proposed a bootstrapping approach which also embeds the entities
and relations of different KGs in a unified embedding space. The main advantage of
BootEA is: it can iteratively train a classifier by using bootstrapping approach from
both labeled and unlabeled data. The authors argued that traditional methods unitize
negative samples by randomly replacing the head/tail entity which may mislead the
results. So they exploited 𝜖-truncated uniform negative sampling in their model. Like
IPTransE, BootEA updates newly aligned entities to the exiting seeds set and enriches
the training data iteratively.

AttributeE

AttributeE [50] exploited large numbers of attribute triples existing in the KGs.
AttributeE utilized character-level literal embeddings and exploited the attribute triples
like the JAPE model to learn the alignment. The main difference between JAPE and
AttributeE is: AttributeE proposed attribute character embeddings method which
contributed to their experimental results. JAPE and AttributeE showed satisfactory
performance but quickly fails when the number of attributes triples are very limited.

2.4 Entity Alignment 39

MultiKE

MultiKE [51] learns the representations of the entities in the three views: name,
attribute and structure. The combination strategies are proposed to integrate three
view-specific embeddings to get the latest performance of the entity alignment. For
each view, they employed an appropriate model to learn embeddings from it. For entity
alignment, they designed two cross-KG identity inference methods at the entity level
as well as the relation and attribute level, respectively, to preserve and enhance the
alignment between different KGs.

COTSAE

COTSAE [52] alternatively trains structural and attribute embeddings and then
combines the alignment results obtained from them[3].

Other Models

There are several other models addressed the entity alignment problem. JE [53] utilized
structured embedding model (TransE) to embed different KGs into a unified space with
the aim that each seed alignment has similar embeddings and showed how to use them
in the cross-lingual scenario. KDCoE [54] proposed a multilingual KG embedding
model and a multilingual literal description embedding model for cross-lingual entity
alignment which is a semi-supervised learning approach. BERT-INT [55] proposed a
method that incorporates entity description using BERT. However, in their experiment
they have only used the description of multilingual dataset and zero-shot cases were
ignored. Zero-shot case indicates the scenario where at least one of entities in test
triples is not present in the training sample. Another embedding based model proposed
by Gentile et al. [56] for aligning entities in the web tables.

2.4.3 GNN Based Alignment Models

GCN-Align

GCN-Align [57] is the first study on GNN-based EA. Like many GNN-based EA
techniques, GCNAlign employs standard Graph Convolutional Networks (GCN) [58] to
compute the entity embeddings from two different knowledge graphs separately. The

40 Chapter 2. Fundamentals and Related Works

alignment is computed based on the distances between entities in the embedding space
in the final layer of GCN using the seed alignments. They combine entity embeddings
and attribute type embeddings in the convolutional computation of GCN to improve
the performance of entity alignment.

GMNN

GMNN [59] formulates the EA problem as graph matching between two topic entity
graphs. Every entity in a KG corresponds to a topic entity graph, which is formed by
the one-hop neighbors of the entity and the corresponding relation predicates (i.e.,
edges). Such a graph represents the local context information of the entity. GMNN
uses a graph matching model to model the similarity of two topic entity graphs, which
indicates the probability of the two corresponding entities being aligned[3].

The graph matching model consists of four layers, an input representation layer, a
node-level matching layer, a graph-level matching layer, and a prediction layer. The
input representation layer uses a GCN to encode two topic entity graphs and obtain
entity embeddings. The graph-level matching layer runs a GCN on each topic entity
graph to further propagate the local information throughout the topic entity graph.
Finally the prediction layer takes the graph matching representation as input and uses
a softmax regression function to predict entity alignment.

MuGNN

MuGNN [60] addresses two challenges in the GNN based alignment models. The
first is the heterogeneity of knowledge base structure problem, i.e., the neighbors of
the same real-world entity in two knowledge bases are typically different, and may
mislead the embedding learning and the alignment process. The second is the limited
seed alignments problem. To tackle these problems, they use a two-step method that
includes rule-based KB completion and multi-channel Graph Neural Networks entity
alignment. The first step, the rule-based KB completion, aims to resolve the structural
differences by completing the missing relations using a rule mining system AMIE [61].
The second step is the alignment step that uses a multi-channel Graph Neural Network,
which is a combination of GCN and GAT (Graph Attention Network) [62]. In MuGNN,
GAT is used to compute a connectivity matrix based on the self entity attention in each

2.4 Entity Alignment 41

KB and the cross-KB attention from the seed alignments, while GCN is used to capture
the graph structure based on the connectivity matrix.

AliNet

AliNet [63] handles the heterogeneity of knowledge base structure problems. Specifi-
cally, they consider the multi-hop structure similarity. AliNet consists of two main
components, including the Gated Multi-hop Neighborhood aggregation module and
the noise reduction module. The aggregator consists of two GCN layers. The first layer
is a standard GCN layer to capture the structure of a node’s immediate neighbors.
The second layer is an attentive GCN layer that uses attention scores to compute the
weight of the two-hop neighbors. The noise reduction module is a graph attention
network to compute the aggregation of the one-hop and two-hop neighbors[3].

RDGCN

RDGCN [64] exploits dual relation graphs to improve GCN. The dual relation graph
is a graph constructed by combining two KBs and creating additional edges if any
relation that shares the same head or tail entities is found. To compute the interaction
between the original knowledge base and the dual relation graph, RDGCN uses GAT.
The attention scores computed on the dual relation graph are used as weights for the
edges in the original knowledge bases to encode the graphs using GCN. Similar to the
existing GNN based alignment models, the final layer of the GCN is used to compute
the alignments based on the distances between entities in the seed alignments.

CEA

CEA [65] considers the dependency of alignment decisions among entities, e.g., an
entity is less likely to be an alignment target if it has already been aligned to some
entity [3]. The model proposes a collective EA framework. It uses structural, semantic,
and string signals to capture different aspects of the similarity between entities in
the source and the target KGs, which are represented by three separate similarity
matrices. Specifically, the structural similarity matrix is computed based on the
embedding matrices via GCNs with cosine similarity, the semantic similarity matrix is
computed from the word embeddings, and the string similarity matrix is computed by

42 Chapter 2. Fundamentals and Related Works

the Levenshtein distance between the entity names. The three matrices are further
combined into a fused matrix. CEA then formulates EA as a classical stable matching
problem on the fused matrix to capture interdependent EA decisions, which is solved
by the deferred acceptance algorithm [66].

AVR-GCN

AVR-GCN [67] is based on the vectorized relational GCN (VR-GCN), which is the
enhanced version of Relational GCN (R-GCN) [124]. Existing GCN-based models do
not compute relation/predicate embeddings, VR-GCN explicitly computes predicate
embeddings to be incorporated with the entity embeddings to learn the alignment.
Before computing the embeddings using GCN, the entity representation is updated
using translation based operations, i.e., if the entity is the head entity, the entity
embedding is 𝑡`𝑟 , if the entity is the tail entity, the entity embedding is ℎ + 𝑟 . To
enhance the alignment performance, they use the seed alignments in two ways. The
first is they use the seed alignments to compute the objective function similar to the
existing GCN-based methods. The second is they create a pseudo graph from the
seed alignments then inject them into the original knowledge bases. The expanded
graphs are expected to have more shared edges, and hence the embeddings of the same
entities from two knowledge bases would be closer to each other.

AttrGNN

AttrGNN [68] learns embeddings from both relation triples and attribute triples in
a unified network. It partitions each KG into four subgraphs containing attribute
triples of entity names, attribute triples of literal values, attribute triples of digital
values, and the remaining triples (i.e., relation triples), respectively. For each subgraph,
entity embedding is computed based on attributes as well as the KG structure using
GAT; then a similarity matrix between G1 and G2 is computed based on the entity
embedding. Finally, the four similarity matrices are averaged to yield a final similarity
matrix for the inference module. [3]

2.5 Knowledge Graph Enhancement 43

Figure 2.13: Knowledge Graph Enhancement

2.5 Knowledge Graph Enhancement

Although quality control methods are employed in each process of KG construction to
ensure KG quality to an extent, there still exist some quality problems once the KG has
been constructed, including the following: (1) Some errors inevitably occur during
KG construction, such as missing entity or relation and wrong types of entities or
relations. (2) The timeliness of some KGs gradually decreases over time, especially
for KGs regarding quickly changing domains, such as user interest prediction and
dynamic social networks. (3) New requirements for KG quality may arise in their
application, leading to the need for KG expansion [69]. Therefore, it is necessary to
correct, update, and complete KGs to enhance their quality. This section discusses KG
quality enhancement methods from the above perspectives. As Figure 2.13 indicates,
KG quality enhancement can be further divided into three major fields - 1) Accuracy
2)Completeness and 3) Timeliness. In the following sections, we will discuss about
these sections.

2.5.1 Knowledge Graph Accuracy Enhancement

KG accuracy reflects the degree to which knowledge follows facts and it is our utmost
goal to achieve ensure KG quality. However, KG accuracy is hampered by erroneous

44 Chapter 2. Fundamentals and Related Works

relations, wrong entities, and inconsistent attributes in the KG. They happens due to
several reasons like erroneous text source, incomplete automatic extraction method, and
so on. To handle this, error detection should be performed for accuracy enhancement.
Error detection is the task of finding and correcting knowledge in a KG that is not
consistent with objective facts. KG error detection methods are divided into error
detection of relations, entity type, and attributes (see Figure 2.13).

Error detection of Relation

Error detection of relation aims to find relation assertions in the KG that do not match
facts, including detection with internal and external knowledge.

Internal knowledge-based detection methods utilize the knowledge from the KG
itself and judge the relations by exploring the association features or distribution
of the entities in the graph. Path information and the types of entities are used for
error detection of relations in the methods proposed by Lao et al. [70] and Melo and
Paulheim [71] respectively.

Statistical distribution-based methods are another representative method that
exploits internal knowledge. Paulheim and Bizer [72] proposed an algorithm that
calculates the distribution of the head and tail entities of a relation in a triplet to infer
the probability that the triplet is correct.

Distant supervision is widely used in error relation detection based on external
data. Dong et al. [9] used the path information of other KGs as prior knowledge to
obtain entity-related information for error detection. Paulheim and Gangemi [73]
mapped the relation and entity types of a triple instance to the corresponding types of
an external ontology library.

Error detection of Types

The error detection of entity type could be considered as an extension of error detection
of relations, aiming to detect erroneous entity types. Paulheim and Bizer [158] pointed
that relations have more tendency to be wrong in KGs compared to entity type. Thus,
detecting the wrong triple first using a method of detecting wrong relations may be a
feasible method for error detection of entity type, and the corresponding part can
be corrected according to different assumptions after the target triple is detected.

2.5 Knowledge Graph Enhancement 45

Therefore, most methods used in error detection of relations can be used in the task of
finding erroneous type assertions.

Error detection of Attributes

The error detection of attributes is used to find erroneous attributes values of an
entity. Outlier detection is mainly used in this field to identify the instances in the
numerical data that are very different from the majority. Wienand and Paulheim studied
the application of unsupervised numerical outlier detection methods in Knowledge
Graphs and used the interquartile range (IQR) and semantic grouping to reduce the
detection rate of natural outliers [74]. Fleischhacker et al. proposed an extension by
merging the outcomes of multiple independent outlier detection [75]. They proposed a
multi-attribute consistency method which detects erroneous attributes by combining
the information of entities and discovering inconsistencies. Rahoman et al. proposed
a nearest-neighbor based error detection technique for error detection over type
annotated linked data [76]. Golab et al. used sequential dependencies to express
relationships between ordered attributes and discover the erroneous attributes [77].
Koudas et al. studied metric functional dependencies, which is used for comparison of
different attribute formats [78]. Besides sequential and metric functional dependencies,
arithmetic operations between numerical attributes can be used for the error detection
of attributes. Fan et al. proposed such a numerical function dependency relationship
[79]. It allows users to specify arithmetic relationships between numerical attributes as
data quality rules and detects incorrect attributes in a unified logic framework. Zhao et
al. proposed a method that incorporate multiple KGs for link prediction and attribute
error detection [80]. Li et al.proposed a probabilistic framework for detecting errors in
the numerical attributes of an entity [81].

2.5.2 Knowledge Graph Completeness Enhancement

Similar to accuracy enhancement, the task of completeness enhancement has three
aspects- (1) Completeness of Relation (2)Completeness of type and (3) Completeness of
Attribute. In the following subsections, we will discuss each aspect respectively.

46 Chapter 2. Fundamentals and Related Works

Completeness of Relation

The goal of the relation completion task is to predict missing relations between entities.
Missing relation prediction methods are primarily classified into probabilistic, deep
learning, and tensor factorization methods [82].

(1) Probabilistic models are generally used for completion of relations in the early
search. For example, the probabilistic graphical model MLN[83], ProbKB[84] assigns
the proper probability for each knowledge triple to reckon the rationality of knowledge.
Moreover, the probabilistic graphical model predicts missing relations using the correct
probabilities of knowledge triples in a KG.

(2) Deep learning approaches learn the latent factor representation of entities
and relations for relation prediction. These approaches target the proximity of the
embedding of the tail entity to that of the head entity, which is transformed by relation
to decide whether the triplet is true. TransE [20] is a typical deep learning model
used for relation prediction. Some methods adjust the framework and structure to
incorporate prior knowledge of the KG into the model and have achieved even more
promising results for this task. TransH [22], TransR [21], TransD [23], TranSparse [?]
are some examples of such models.

(3) The tensor factorization approach depicts the semantic features of KGs through
tensors, providing better interpretability than deep learning approaches. The main idea
of tensor factorization is to represent a KG as a 3-D tensor and describe the relation
prediction as a 3-D tensor completion problem [69]. Some notable studies include
RESCAL[26], ComplEx [29], TuckER [30]. However, the expressiveness of the model is
a bottleneck that must be improved. Moreover, they tend to increase the complexity of
the model. Proper balance of expressiveness and complexity among these models is yet
to be found.

Although significant work has been conducted in the relation completion domain,
there exist some challenges. For instance, most studies are highly dependent datasets,
and they may not be applicable to all KGs, especially those in industrial domains. The
results obtained in this method cannot guarantee KG accuracy, and the predicted
results cannot be used directly. Additionally, most studies have simply predicted
the relationship between existing entities in a KG. These studies failed to predict
entities and their corresponding relations that do not appear in the KG (zero-shot). The

2.5 Knowledge Graph Enhancement 47

open-world KGC task [85], aims to address this issue. This task relaxes the assumption
of the closed-world hypothesis, enabling the KG to adapt to an environment in which
entities are rapidly developing [69]. However, this new direction is relatively less
explored and requires further research.

Completeness of Types

The task of completion of entity types is generally called entity typing, which aims to
infer the missing type of an entity. (1) Entity typing through a heuristic probability
model is a traditional statistical method. For example, Paulheim and Bizer [180]
proposed SDtype, which uses a type inference mechanism based on heuristic links. The
model infers the type of an entity by counting the types of possible entities that have a
higher connection frequency with all relationships connected to the entity. Because the
probabilistic method used by SDtype ignores the specificity of knowledge expression,
SDtype encounters difficulties in fine-grained classes. There are bottlenecks in SDtype’
s effectiveness, although it is good at predicting classes with a higher frequency and
can make large-scale corrections.

(2) Learning-based methods for entity typing train a classifier to predict the type for
entities. Earlier prediction methods made predictions by manually mining the entity
representation patterns of a KG. In recent years, the use of DNNs for representation
learning has gradually become a common choice because of the increasing requirements
for model performance capabilities [197]. These entity typing methods map entities
and relationships to a low-dimensional feature space through a DNN [198].

Completeness of Attributes

Attribute completion research is limited because it is much more complicated task
than entity type predication or link prediction task. There is no defined standard to
detect whether entities have missing attributes or not. Moreover, due to the different
hierarchical structures of different entities, we cannot simply add the discovered
missing attributes. Another very big challenge is to measure the accuracy of the overall
Attribute completion method. Razniewski et al. proposed that the lack of attributes
of an entity can be estimated by referring to similar entities and according to the
amount of access of the entity and growth patterns of an entity’s attributes, Pattern

48 Chapter 2. Fundamentals and Related Works

matching methods can be useful the task [86]. Probase+[87] proposed by Liang et al.,
uses collaborative filtering framework which assumes that similar entities have similar
upper and lower levels . Hypernyms and hyponyms relationship in a KG helps this
method to find missing attributes for entities.

2.5.3 Knowledge Graph Timeliness Enhancement

The timeliness enhancement of KGs is mainly achieved through global and local
update methods. Global updates maximize the timeliness of KGs. However, as KG scale
increases, this method becomes extremely resource-consuming. Compared with global
updates, local updates save computing resource consumption but must obtain the
required entity information to update. Recently, the local update method has received
more attention [69].

2.6 Summery

In this chapter, we reviewed the literature related to the problems of knowledge graph
alignment and KG enhancement. Previous work tackles the problem of KG alignment
using various approaches and combinations of embeddings and attributes. However,
the accuracy and applicability of existing approaches still need improvements. On
the other hand, KG enhancement using attribute completion or enhancement is a
relatively new area of research, and integrating multiple KGs for this task is a somewhat
unexplored approach. Hence there is significant scope for improvement. In this thesis,
we aim to address the issues from the respective fields and proposed methods for
improvements. We detail our algorithms to tackle the problem of knowledge graph
alignment and attribute enrichment in the following chapters

49

3
Entity Alignment via Summary and

Attribute Embeddings

Entity alignment is the task of integrating heterogeneous knowledge among different
knowledge graphs (KGs). Knowledge Graph (KG) is a popular way of storing facts
about real-world entities. Unfortunately, very limited number of the entities stored in
different KGs are aligned. This paper presents an embedding-based entity alignment
method that finds entity alignment by measuring the similarities between entity
embeddings. Existing methods mainly focus on relational structures and attribute
information for the alignment process. Such methods fail when the entities have
a fewer number of attributes or when the relational structure couldn’t capture the
meaningful representation of the entities. To address this problem, we propose EASAE,
an Entity Alignment method using Summary and Attribute Embeddings. We exploit
the entity summary information available in KGs for entities’ summary embedding.
To learn the semantics of the entity summary, we employ Bidirectional Encoder
Representations from Transformers (BERT). Our model learns the representations

50 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

of entities by using relational triples, attribute triples, and summary as well. We
perform experiments on real-world datasets, and the results indicate that the proposed
approach outperformed the state-of-the-art models for entity alignment.

3.1 Introduction

In recent years, knowledge graphs (KGs) are drawing massive attention and are being
extensively used in AI applications, such as question answering, semantic search,
information retrieval, and web mining. KGs contain a large amount of structured
knowledge/facts. KGs are multi-relational directed graphs consist of entities as graph
nodes and relations as edges, which is an efficient way to store real-world facts as
structured data in triple format. A relational triple can be denoted as (ℎ, 𝑟, 𝑡) where ℎ
and 𝑡 are the head entity and the tail entity respectively and 𝑟 is the relation between
the ℎ and 𝑡 . If the object is literal then we call it attribute triple.

Entity alignment task refers to finding the same real-world entities in multiple
KGs. Recently, increasing attention has been paid to leveraging the KG embedding
techniques for addressing the entity alignment problem. KG embedding models
represent entities and relations in a low-dimensional vector space while preserving the
KG semantics.

There are several existing models which discussed the entity alignment task
by means of KG embedding [88, 53, 48, 4, 49, 50]. MTransE [88] is a multilingual
knowledge graph embedding model that learns the multilingual knowledge graph
structure. JE [53] embeds different KGs into a unified space using TransE [20] with the
aim that each seed alignment has similar embeddings. Like JE, IPTransE [48] also
represents different KGs into a unified embedding space, which is an iterative and
parameter sharing method. Another popular entity alignment model BootEA [4] also
embeds two KGs in a unified space and iteratively labels new entity alignment as
supervision. It achieved very impressive performance in entity alignment task. JAPE
[49] learns entity alignment by jointly exploiting attribute and relational embeddings.
AttributeE [50] is an extension of JAPE, they exploit large numbers of attribute triples
existing in the knowledge graphs and generates attribute character embeddings to align
the entities in two KGs. The existing models mostly depend on relational and attribute
triples. They require seed alignments (i.e., seed is the set of aligned triples from two

3.1 Introduction 51

Figure 3.1: 𝐾𝐺1 and𝐾𝐺2 denote two different knowledge graphs. Triples are represented
by the oval shape. Blue, red and yellow circles stand for the entities, relations and
attributes respectively. Solid lines are connecting aligned entities, while dashed lines
demonstrate equivalent relationship to be discovered.

KGs), which is very limited. It is true that attribute is very helpful in entity alignment
task but existing models will fail to align entities in two KGs, where entities have small
number of attributes attached to them. To tackle the above challenges, we propose a
novel model EASAE for entity alignment which exploits entity summary extracted
from the KGs along with the relational and the attribute triples. We exploit BERT [2] to
learn the summary embeddings in EASAE. In our model, all the components discussed
above are jointly optimized to improve the alignment performance. Our proposed
approach is an ensemble method of symbolic system and sub-symbolic system. We
have incorporated entity summary as part of symbolic system with embeddings as
sub-symbolic system. We summarize the main contributions of this paper as follows:

• We propose a model consists of three components: entity summary embedding,
relational embedding and attribute embedding. We also introduce a weighted
average technique to combine them.

• We show the effectiveness of entity summary embedding to align entities while
very small number of attribute triples exist. Our method can perform well in
zero shot scenario.

• We perform experiment in three real world datasets. Our experiments on

52 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

those three datasets show that our model largely outperforms the existing
state-of-the-art embedding-based entity alignment models.

3.2 Preliminary

In this section we formally define the terms used in this paper and the problem as well.

Definition 3.1 Knowledge Graph (KG): A knowledge graph KG = (E, R, T) , where E, R,
T are the set of entities, relations and triples respectively.

Definition 3.2 Relational Triples: 𝑇 ⊂ 𝐸 ×𝑅 × 𝐸 is a set of relational triples representing
the relations between entities, where E and R is the set of all entities and relations
respectively.

Definition 3.3 Attribute Triples: 𝐴𝑇 ⊂ 𝐸 ×𝐴 × 𝐿 is a set of attribute triples representing
the attributes of entities, where A is a set of all attributes, and each attribute 𝐴𝑖 ∈ 𝐴 has a
corresponding literal attribute value set 𝐿𝑖 ∈ 𝐿 .

Definition 3.4 Entity Alignment : Given two KGs, 𝐾𝐺1 and 𝐾𝐺2, the entity alignment
problem aims to find every pair (𝑒1, 𝑒2) where 𝑒1 ∈ 𝐾𝐺1, 𝑒2 ∈ 𝐾𝐺2, and 𝑒1, and 𝑒2,
represent the same real-world entity.

Given two knowledge graphs, the objective of our model is to jointly learn the
relational structure, attribute embedding and summary embedding to find all the pairs
of entities between KGs which represent the same real word entities. In our paper, we
use bold lowercase letters to represent embedding vectors and bold uppercase letters to
denote matrices.

3.3 Proposed Methodology

In this section, we describe our model architecture. We exploit embedding-based
techniques in our proposed EASAE model. Figure 3.2 illustrates the EASAE model
overview. EASAE can be typically divided into three major components: (1) Predicate
alignment between𝐾𝐺1 and𝐾𝐺2; (2) Representation learning for entities, relations, and

3.3 Proposed Methodology 53

attributes ; (3) Entity alignment process. For the relational embeddings, we need to have
a unified vector space. Therefore, we merge two KGs based on the predicate similarity.
We have adopted the same predicate aligning method described in AttributeE [50]. Then
we calculate the summary, relational, and attribute embeddings and finally proceed to
the entity alignment process. Suppose we have the entity“Washington” in two
knowledge graphs𝐾𝐺1 and𝐾𝐺2 (we refer them as𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺1 and𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺2).
We retrieve the summary of the entity𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺1 and𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺2 and calculate
the summary embedding using BERT. Similarly we calculate relational and attribute
embedding for𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺1 and𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺2 . After that we ensemble them
by employing a weighted averaging technique to calculate the overall score for
𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺1 and𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺2 . Finally using confine similarity we try to predict
whether𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺1 and𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛𝐾𝐺2 are aligned or not.

In our model, we use the TransE model to embed the entities and relations. There
are two reasons for using TransE: first, entity alignment is 1-to-1 mapping, and TransE
shows satisfactory performance in 1-to-1 relations; second, TransE is a very simple but
powerful tool, and it is very easy to interpret the model architecture. TransE uses the
same embedding space for both relationship and entity embeddings. To learn the
embeddings, we merge the similar predicates of the two KGs. For the representation
learning part, we have defined three different sub-components: Summary Embedding
(SE), Relational Embedding (RE), and Attribute Embedding (AE). We use BERT to learn
the SE of the entities [2]. In RE, we exploit the translational embedding model, TransE
to embed the structured triples. This part is similar to KG embeddings. Finally, AE
uses character level embeddings for attribute triples. For the entity alignment part,
we marge all the three major components and predict the alignment using cosine
similarity. Here we have extended our previous paper [89] by introducing a weighted
average technique for combining three major components and we have conducted
extensive experiment to prove EASAE model’s performance. We also exploited one
more dataset (AttrE-Dataset) in this paper.

3.3.1 Predicate Alignment

For the embedding-based entity alignment, we need to have a unified vector space;
therefore, we merge two KGs based on the predicate similarity. We have adopted the

54 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

Figure 3.2: EASAE model architecture. The figure of BERT embedding is taken from
their original paper [2] .

same predicate aligning method described in AttributeE [50] and also used list of
aligned predicates proposed by Zhao, et al [80]. In Figure. 3.3, we show the intuition
behind predicate alignment. The predicate alignment module finds partially similar
predicates, e.g., dbp:spouse vs. yago:isMarriedTo and renames them with a unified
naming scheme (e.g., MARGED:spouse). Based on this unified naming scheme, we
merge 𝐾𝐺1 and 𝐾𝐺2 into Merged KG.

3.3.2 Summary Embedding

For summary embedding, we consider the textual description associated with each
entity as summary. As example, in DBpedia [90] most of the entities have a short
abstract; similarly Wikidata [14] provides a summarize textual description of entities
which contain the basic information about those entities. We employ BERT to generate
a set of word vectors from the summary of each specific entity which is usually capable
of capturing the main ideas of entities. Recently, BERT achieved the state-of-the-art
performance in the embedding tasks in comparison with the other well established

3.3 Proposed Methodology 55

Figure 3.3: Predicate Alignment of 𝐾𝐺1 and 𝐾𝐺2

techniques e.g., CNN, GRU based models. We discuss the process of obtaining the
summary embeddings using BERT in the following section.

With summary or short description of an enitity, a set of keywords can be generated
which are usually capable of capturing the main ideas of entities. We assume that
similar entities might have slightly different descriptions, but they should have similar
keywords.

Bidirectional Encoder Representations from Transformers

Word embeddings are dense vector representations of words in lower dimensional
space. For word embeddings pre-trained language representation models are used and
they can be divided into two categories: feature-based and fine tuning approaches.
Traditional word embedding methods such as Word2Vec [91, 36] and Glove [92] aimed
at adopting feature-based approaches to learn context-independent words vectors. In
contrary fine tuning approaches like BERT works well in capturing the contextual

56 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

representation of the texts. Bidirectional Encoder Representations from Transformers
(BERT) model [2] has built on a multilayer bidirectional transformer encoder as the
name suggest. It is designed to pre-train deep bidirectional representations from
unlabelled text by jointly conditioning on both left and right context. It is a state-of-
the-art model for a wide range of tasks, such as word embedding, question answering
and language inference, without substantial task specific architecture modifications.
BERT framework consists of two basic steps: pre-training and fine-tuning. During
pre-training, the model is trained on unlabelled data over different pre-training tasks.
BERT is using two unsupervised tasks for pre-training named as: Masked LM and Next
Sentence Prediction (NSP) . In the first task, BERT predicts randomly masked input
tokens. In the second task, BERT predicts whether two input sentences are consecutive
or not during pre-training. It can be seen as a special case of Question Answering
and Natural Language Inference. For fine tuning, we first initialize BERT with the
pre-trained parameters, and all of the parameters are fine-tuned using labeled data
from the downstream tasks. Each downstream task has separate fine-tuned models,
even though they are initialized with the same pre-trained parameters [2].

e𝑠𝑢𝑚 = w1 +w2 +w3 + · · · +w𝑛 (3.1)

For each entity we feed the summary to the BERT model and we get the embeddings of
each word. Then we sum up the embeddings of each word to get the entity embedding
based on the summary of that specific entity.

BERT base model uses 12 layers of transformer encoders, each output from each
layer of these (12 layers) can be used as a word embedding. As per the suggestion of
the BERT authors, one of the best performance can be found by summing the last 4
layers. We follow their suggestion in our implementation.

Embedding Learning

In our model, we leverage the entity summary to align the entities between two KGs.
Xie et. al. already showed that entity summary/description can be a powerful tool for
KG completion task [93] and KDCoE [54] followed them in their paper. Summary
Embedding is effective while the aligning entities have less number of attributes
in the KG. There are many entities in KGs with no attribute values at all, in such

3.3 Proposed Methodology 57

cases summary embeddings might be an efficient tool to bridge the gap. We use three
different scoring functions to learn the entity summary embeddings. They are as
follows:

𝑓𝑠 = | | h𝑠𝑢𝑚 + r − t𝑠𝑢𝑚 | |𝑙1/𝑙2
𝑓𝑠𝑡 = | | h𝑠𝑢𝑚 + r − t | |𝑙1/𝑙2
𝑓ℎ𝑠 = | | h + r − t𝑠𝑢𝑚 | |𝑙1/𝑙2

(3.2)

In Eq. (1), for the scoring function 𝑓𝑠 : the h𝑠𝑢𝑚 and the t𝑠𝑢𝑚 are the representations
of head and tail entity considering the summary as described in previous section; 𝑓𝑠𝑡
captures the representations of head entity based on summary and tail entity uses
relational embedding based representation and 𝑓ℎ𝑠 is the exact opposite of 𝑓𝑠𝑡 for head
and tail entities. Here, 𝑙1/𝑙2 denotes the 𝐿1/𝐿2 norm. The scoring functions: 𝑓𝑠 , 𝑓𝑠𝑡 and
𝑓𝑡𝑠 also help our method to perform in the zero-shot scenario. Zero-shot scenario
focuses on the situation when at least one of entities in test triples is out of the training
sample. Structure-based representations cannot deal with this situation because they
have no representations for entities which are out of training set. We have used
these three scoring functions to deal with such situation. Therefore we can clearly
understand, when we face zero shot scenario, where we don’t have structure-based
representations on those cases we consider the summary based representations using
summary vector generated by BERT. The summary embedding model learns the entity
embeddings as follows:

𝐿𝑆𝑈𝑀 = 𝑓𝑠 + 𝑓𝑠𝑡 + 𝑓ℎ𝑠 (3.3)

where 𝐿𝑆𝑈𝑀 is the loss function for summary based representations of entities and the
objective is to minimize 𝐿𝑆𝑈𝑀 .

3.3.3 Relational Embedding (RE)

The entities are linked by relations which characterize the structure of KGs. In RE
model we analyze the relation structures of the triples. To preserve relational structures,
we adopt TransE [20] to interpret a relation as a translation vector from its head
entity to tail entity. For Relational Embedding (RE), we have used the similar method
described in JSAE [89].

58 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

Figure 3.4: BERT Input Embedding Representation. The input sentence we use here is
copied from Dbpedia abstract of Tom Hanks.

Similar to AttributeE [50], we have also exploited the weight 𝛼 to control the
embedding learning over the triples with aligned predicates. To learn the structure
embedding, in our model, we minimize the following objective function 𝐿𝑅𝐸 :

𝐿𝑅𝐸 =
∑︁

(ℎ,𝑟,𝑡)∈𝑇𝑟

∑︁
(ℎ′,𝑟 ,𝑡 ′)∈𝑇 ′

𝑟

𝑚𝑎𝑥 (0, 𝛾 + 𝛼 (𝑓𝑟 (ℎ, 𝑡) − 𝑓𝑟 (ℎ′, 𝑡 ′))) (3.4)

where 𝛼 =
𝑐𝑜𝑢𝑛𝑡 (𝑟)

|𝑇 | , 𝛾 is the margin, 𝑓𝑟 (ℎ, 𝑡) and 𝑓𝑟 (ℎ′, 𝑡 ′) denote the scoring function
for valid triples and negative triples respectively, 𝑇𝑟 is the set of valid relationship
triples, 𝑇 ′

𝑟 is the set of corrupted relationship triples, 𝑓𝑟 is the plausibility function for
relational triples, count(r) is the number of occurrences of relationship 𝑟 , and |𝑇 | is the
total number of triples in the merged KGs.

3.3.4 Attribute Embedding (AE)

We have employed the basic of TransE for attributes and literals embedding, but unlike
relational embedding we interpret predicate 𝑟 as a translation from the head entity ℎ to
the attribute 𝑎. For structural differences in various KGs, the same attribute can have
multiple representations, as an example one KG might stores the decimal points up to 4
digits where others might keep more (e.g. 23.7000 vs. 23.70000001 as the latitude value
of an entity). Therefore to encode the attribute value, we use a compositional function
𝜙 (𝑎) where 𝑎 is a sequence of the characters of the attribute value 𝑎 = 𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑙

3.3 Proposed Methodology 59

and define the relationship of each element in an attribute triple as ℎ + 𝑟 ≈ 𝜙 (𝑎). The
compositional function encodes the attribute value into a single vector and maps
the similar attribute values to a similar vector representation. We have applied an
N-gram-based compositional function in our proposed model. We use the summation
of n-gram combination of the attribute value. The equation is given below:

𝜙 (𝑎) =
𝑁∑︁
𝑛=1

(∑𝑙
𝑖=1

∑𝑛
𝑗=𝑖 𝑐 𝑗

𝑙 − 𝑖 − 1

)
(3.5)

To learn the attribute embedding, we minimize the following objective function
𝐿𝐴𝐸 :

𝐿𝐴𝐸 =
∑︁

(ℎ,𝑟,𝑎)∈𝑇𝑎

∑︁
(ℎ′,𝑟 ,𝑎′)∈𝑇 ′

𝑎

𝑚𝑎𝑥 (0, 𝛾 + 𝛼 (𝑓𝑎 (ℎ, 𝑎) − 𝑓𝑎 (ℎ′, 𝑎′))) (3.6)

Here, 𝑓𝑎 (ℎ, 𝑎) and 𝑓𝑎 (ℎ′, 𝑎′) denote the scoring function for valid attribute triples
and negative attribute triples respectively. 𝑇𝑎 is the set of valid attribute triples from
the training dataset, while 𝑇 ′

𝑎 is the set of negative attribute triples (A is the set of
attributes in G). The negative samples are constructed by replacing the head entity
with a random entity or the attribute with a random attribute value. Here, 𝑓𝑎 (ℎ, 𝑎) is
the plausibility score that based on the embedding of the head entity ℎ, the embedding
of the relationship 𝑟 , and the vector representation of the attribute value that computed
using the compositional function 𝜙 (𝑎). We adopted the idea of Attribute Embedding
(AE) from our previous model JSAE [89].

3.3.5 Entity Alignment Process

We combine the score from three embeddings models into an ensemble method
to achieve better predictive performance. Here, we employ a weighted averaging
technique to get the overall score of our model. We denote, 𝒆𝑐𝑚𝑏 as the combined
embedding for 𝑒 . 𝑀 is the number of embeddings which is three in our case and 𝒆 (𝑖) be
the embedding from each component.

𝒆𝑐𝑚𝑏 =
𝑀∑︁
𝑖=1

𝜔𝑖𝒆
(𝑖) (3.7)

Instead of straightforward linear combination of the three embeddings of EASAE

60 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

model we have assigned weights 𝜔𝑖 to each entity embeddings to emphasize on
important component. To calculate 𝜔𝑖 we took the average embedding from the three
embeddings (Summery, Relational and Attribute) and compute the deviation of each
embedding from the average. Let, 𝒆 is the average of the embeddings.

𝒆 =
1
𝑀

𝑀∑︁
𝑖=1

𝒆 (𝑖) (3.8)

After that we have applied the following equation to find 𝜔𝑖 .

𝜔𝑖 =
𝑐𝑜𝑠 (𝒆 (𝑖), 𝒆)∑𝑀
𝑗=1 𝑐𝑜𝑠 (𝒆 (𝑗), 𝒆)

(3.9)

This would ensure if one embedding is far away from its average embedding, it would
have a lower weight because the impact this embedding is not significant. This is a
kind of late combination, because it aggregates embeddings after they have been
learned independently.

Finally, we compute the following equation for entity alignment as described in
AttributeE [50].

𝑒𝑎𝑙𝑖𝑔𝑛 = argmax
𝑒2∈𝐾𝐺2

𝑐𝑜𝑠 (𝑒1, 𝑒2) (3.10)

Given an entity 𝑒1 ∈ 𝐾𝐺1, we compute the similarity between 𝑒1 and all entities
𝑒2 ∈ 𝐾𝐺2 to find the aligned entity pair. For each query entity, we expect the rank of
its’ truly-aligned target entity to be at the top of the rank list.

3.4 Experiments

3.4.1 Datasets

To evaluate our model, we have used total three datasets, which are shown in Table 1.
Two of them are considered to be the primary datasets for our method evaluation
namely DBP-WD and DBP-YG. They are recently introduced by BootEA [4]. These two
datasets were sampled from DBpedia [90], Wikidata [14] and YAGO [8], each of which
contains 100,000 aligned entity pairs. The statistics of the datasets is given on Table 1.

In our model we exploit the aligned predicates to align the entities between KGs.

3.4 Experiments 61

Table 3.1: Dataset Statistics.

Datasets Entity Relation Triples Attribute Triples

DBP-WD DBpedia 100,000 463294 381166
Wikidata 100,000 448774 789815

DBP-YG DBpedia 100,000 428952 451646
YAGO 100,000 502563 118376

AttrE-
Dataset

DBpedia 33627 36,906 184672
YAGO 30628 38451 173309

DBP-WD and DBP-YG datasets contain 52 and 30 aligned predicates respectively. Each
dataset provides 30% reference of entity alignment data as seeds and left the remaining
as testing data.

For Summary embedding model, we have extracted the entities’ summaries as
follows: (1) For DBpedia we have considered the abstract (en) as the summary; (2)
similarly for Wikidata we have considered the Wikipedia (en) abstracts (for the entities
in our dataset) as the summary; (3) YAGO does not provide the summary/description
on their data dump but it provides Wikilinks to the corresponding entities , so we
have extracted the Wiki pages associated with the YAGO entities (for the entities in
our dataset) and then copied the abstracts from the Wikipedia links as summaries.
Although, DBpedia, Wikidata and YAGO are mostly inspired by Wikipedia, but due to
the heterogeneity of KG ontology the summaries are not the same in these KGs. Here
we present the example of the entity‘Achilles’ (Greek mythological character,
Achilles or Achilleus was a hero of the Trojan War) .

In the following table, we have added the DBpedia short abstract of‘Achilles’
and Wikidata entity summary of‘Achilles’. You can see the clear difference in
their representations and it motivates us to use summary embedding to utilize these
information to enhance the performance of entity alignment task.

We have also used another dataset AttrE-Dataset which was introduced by
AttributeE [50]. This dataset is used for conducting a comparison analysis in terms of
the dependency on the number of attribute triples. The dataset contains 15,000 aligned
entities and 72 aligned predicates from DBpedia and YAGO.

62 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

Table 3.2: Summary from Dbpedia and Wikidata for the entity ’Achilles’

Dbpedia Short Abstract Wikidata Summary
Achilles In Greek mythology, Achilles
was a Greek hero of the Trojan War, the
central character and the greatest warrior
of Homer’s Iliad. Achilles also has the
attributes of being the most handsome
of the heroes assembled against Troy.
Later legends (beginning with a poem
by Statius in the first century AD) state
that Achilles was invulnerable in all of
his body except for his heel. Since he died
due to an arrow shot into his heel, the
Ächilles’ heelḧas come to mean a person’s
principal weakness.

In Greek mythology, Achilles was a hero
of the Trojan War, the greatest of all the
Greek warriors, and is the central char-
acter of Homer’s Iliad. He was the son
of the Nereid Thetis and Peleus, king of
Phthia. Achilles’ most notable feat during
the Trojan War was the slaying of the
Trojan prince Hector outside the gates of
Troy. Although the death of Achilles is
not presented in the Iliad, other sources
concur that he was killed near the end of
the Trojan War by Paris, who shot him
in the heel with an arrow. Later legends
(beginning with Statius’ unfinished epic
Achilleid, written in the 1st century AD)
state that Achilles was invulnerable in all
of his body except for his heel, because
when his mother Thetis dipped him in
the river Styx as an infant, she held him
by one of his heels. Alluding to these leg-
ends, the term "Achilles’ heel" has come
to mean a point of weakness, especially
in someone or something with an other-
wise strong constitution. The Achilles
tendon is also named after him due to
these legends.

3.4 Experiments 63

3.4.2 Experimental Settings

To analyze the performance of our model we have conducted three experiments.
We have executed Experiment 1 and 2 using DBP-WD and DBP-YG datasets. The
Experiment 1 is performed to compare the individual performances of the embedding
models of EASAE to identify the contribution of each embedding model.

In Experiment 2, we have compared our model with the state-of-the-art models to
evaluate the contribution of EASAE. We compared our proposed method with the
following models: MTransE [88], IPTransE [48], JAPE [49], BootEA [4], KDCoE [54],
AttributeE [50] and MultiKE[51]. For getting best model performance we tune the
hyperparameters by grid search. We select the margin 𝛾 from {1, 5, 10}, the embedding
dimension 𝑑 of vectors among {50, 75, 100, 150, 200}, the learning rate 𝛼 from {0.001,
0.01, 0.1}, the batch size 𝐵 from {20, 50, 100, 200}. For scoring function 𝐿1 norm was
selected. EASAE takes maximum 500 epochs to converse in the experimental datasets.

Experiment 3 is conducted to identify the contribution of our summary embedding
in such cases where the number of attribute triples are limited. For this experiment we
have used AttrE- Dataset. Because the number of attributes is very high in AttrE-
Dataset.

To evaluate the performance of the models in all three experimental settings, we
employ Hits@1 and Hits@10 (Hits@k indicates the proportion of correctly aligned
entities ranked in the top k predictions), and the mean rank (MR) which denotes the
mean the rank of the correct entities for alignment. Higher Hits@k and lower MR
indicate better performance.

3.4.3 Experiment 1

In our first experiment, we have examined the effectiveness of summary embeddings
for entity alignment problem. We have compared the individual performances of the
embedding models of EASAE to identify the contribution of our summary embedding
model. So, we performed experiments for aligning the entities by the summary
embedding, attribute embedding and relational embedding models independently
on the datasets. The results are shown in the Table 2. As each embedding model
focuses on different features so individually they cannot utilize the other feature hence
the result is not so promising. We have also performed experiment using two more

64 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

Table 3.3: Results of entity alignment using different embeddings combination

Model DBP-WD DBP-YG
MR Hits@1 Hits@10 MR Hits@1 Hits@10

Summary Embedding (BERT) 927 70.40 80.34 1108 64.89 78.49
Relation Embedding 152 54.24 65.08 58 33.49 59.89
Attribute Embedding 6,774 61.13 72.08 1,001 62.52 73.89
Attribute + Relation Embedding 145 67.83 77.98 138 56.34 69.63
Summary + Relation Embedding 207 74.40 85.34 110 74.39 83.18
Summary +Attribute + Relation Em-
bedding

43 92.04 97.83 29 90.86 96.64

combinations: (1) using summary embedding and relational embedding (2) using
attribute embedding and relational embedding. Relational embedding plays a vital
role in translation based entity alignment models, therefore we didn’t compare with
summary embedding and attribute embedding combination. The combinations perform
better than the individual models (SE, AE and RE). However, when we combine all
three embeddings in proposed EASAE, we have observed that it can capture the
meaningful representation of the entities and therefore give us the best outcome.

3.4.4 Experiment 2

In Experiment 2, the experimental results show that proposed EASAEmodel consistently
outperforms the baseline models (see Table 3). MTransE, IPTransE, and JAPE rely on
the number of the seed alignments, therefore their experiment mainly focused on the
cross-lingual datasets of same knowledge graph (e.g. DB-en, DB-fr). BootEA [4]
efficiently used their method for aligning two different KGs, but they used 100,000
aligned entities for defining the unified space which is a large number of pre-aligned
data. Though DBpedia and Wikidata contain large numbers of already aligned entities
but other KGs usually do not provide such a large number of aligned entities. KDCoE
[54] used entity description for their alignment method. But their focus on the paper
was to align cross-lingual entities in the same KG, so their method can not show good
performance for aligning entities between different knowledge graphs. AttributeE [50]
tactfully handled this issue by using predicate alignment instead of relying on seed

3.4 Experiments 65

Table 3.4: Comparison with the state-of-the-art embedding-based entity alignment
models. The results of MtransE, IPTransE, JAPE and BootEA were directly copied from
BootEA [4]. We reproduced the others results using their source code.

Model DBP-WD DBP-YG
MR Hits@1 Hits@10 MR Hits@1 Hits@10

MTransE [88] 656 28.12 51.95 512 25.15 49.29
IPTransE [48] 265 34.85 63.84 158 29.74 55.76
JAPE [49] 266 31.84 58.88 189 23.57 48.41
BootEA [4] 109 74.79 89.84 34 76.10 89.44
KDCoE [54] 182 57.19 69.53 137 42.71 48.30

AttributeE [50] 142 68.77 80.78 108 57.05 70.64
MultiKE [51] 114 91.45 95.19 35 88.03 96.63
JSAE [89] 112 81.48 92.34 84 79.56 91.45
EASAE 43 92.04 97.83 29 90.86 96.64

alignment. However, for their experiment they have used the benefits of huge attribute
triples. Their dataset contains attribute triples, which is three times larger than the
relational triples and in our observation, it is not happened in the all real cases. In
this experiment, we have used the predicate alignment so EASAE does not require
pre-aligned seeds in the training phase. MultiKE uses three kinds of information such
as name, attribute, and entity structure. Entity name information can certainly add
leverage for alignment and they achieved latest results. However, entity name can be
sometimes ambiguous as for different KGs might have different naming convention
and two different entities can also have same name. This problem only can be solved
by entity summary.

In our dataset the number of attribute triples is almost equal to relational triples,
so attribute embedding alone can not achieve reasonable performance, but EASAE
leverages summary embedding to utilize the textual information of the entities and
outperform the results of the existing state-of-the-art models. Moreover, predicate
alignment module overcomes the dependency of pre-aligned seeds. Among the
state-of-the-art models BootEA and MultiKE achieved the better results in DBP-WD
and DBP-YG datasets respectively. We can see from the results, EASAE succeed to
achieve significant improvement in the performance with the respect to JASE as well.

Hits@k is the most significant metric to evaluate KG embedding models. In the

66 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

Table 3.5: Result Analysis using AttrE-Dataset

Dataset Model MR Hits@1 Hits@10

AttrE-Dataset

TransE 24809 1.22 3.54
MTransE 7105 33.46 34.32
JAPE 5296 33.35 33.37

AttributeE 26 91.02 92.17
EASAE 24 93.35 97.89

AttrE-Dataset (30% reduced attribute
Triple)

AttributeE 1655 49.11 32.91
EASAE 57 87.22 92.75

DBP-WD dataset, EASAE achieved the Hits@1 score of 92.04% and Hits@10 score of
97.83% . For DBP-YG dataset our model achieved the Hits@1 score of 90.86% and
Hits@10 score of 96.64%. The results clearly outperform the latest state-of-the-art
models.

Here we also discuss some very recent studies based on the key differences between
those models and EASAE. COTSAE [52] showed high accuracy on DWY100K datasets
but for DBP-WD dataset EASE achieved competitive performance compare to COTSAE
while for DBP-YG their performance is much more satisfactory. Although we haven’t
conducted the experiment but we can surely claim that our method is simple enough to
extend it to an iterative manner and if we add iterative method of using newly predicted
aligned entities as training set for next iteration our result will certainly improve. Our
results are already quite close so we strongly believe our model will work well in the
iterative setting. CEAFF [94] showed very high accuracy on all datasets of DWY100K
because entity names in DBpedia, YAGO and Wikidata are nearly identical, where
string-level feature is extremely effective. In contrast, although semantic information is
also useful, not all words in entity names can find corresponding entries in external
word embeddings, which hence limits its effectiveness. They presented the result
of CEAFF, where string-level feature is removed and our result is still comparable
with that. BERT-INT [55] used the name as the basic representation of an entity for
monolingual dataset experiment and CEAFF [94] also used a string based similarity for
entity names. However, they both admit the names for most of the aligned entities are
exactly the same in the datasets, therefore the accuracy is very high in both cases. We
also managed to achieved 100% at Hits@10 while adding entity name matching feature

3.4 Experiments 67

with our proposed EASAE model. For this particular dataset incorporating name
information is very useful but in real world scenario it is not always practical to rely
on the name only. For instance, in the field of Bio-informatics it is quite common for
different knowledge bases to have the same things with different names. Another
example can be, the entity“Washington” can refer to a person/state/capital. In such
cases summary or textual description can lead to better performance as name matching
could not add any significance. Our idea is not only useful for the above case but
also efficient for sparse dataset according to the experimental results. Moreover, the
structural characteristics of KGs and zero-shot cases are totally ignored in their model.

3.4.5 Experiment 3

EASAE model introduces summary embedding which overcomes the dependency of
having large amount of attribute triples in the dataset. We were very interested to
further investigate this impact. For that reason, we have designed another experiment
using a different dataset (AttrE-Dataset) provided by AttributeE. We analyzed that
dataset and observed each entity on AttrE-Dataset is associated with satisfactory
number of attributes. In AttributeE, the authors showed a very efficient way to utilize
attribute information to model entity alignment problems and they achieved state-of-art
performance compare to recent models like MTransE and JAPE. EASAE model also
utilizes the attribute information so having large number of attribute data is also helpful
for our model as well. EASAE achieved better performance on AttrE-Dataset than all
the baselines. However, we cannot guarantee large amount of attribute information for
every datasets. In such cases, AttributeE may not meet the expected performance. We
have seen this trail in our previous experiment (Experiment 2) as well. To further
investigate the impact of summary embedding we randomly reduce 30% attribute
triples from AttrE-Dataset and run the experiment again on EASAE and AttributeE
model. As AttributeE already superseded the results of other mentioned models
(TransE, MTransE and JAPE), so we think it is reasonable to compare our model with
AttributeE only. In the new dataset (30% reduced attribute triples), the performance of
AttributeE sharply falls down by almost 46% and 65% in terms of Hits@1 and Hits@10
respectively. We can see the impact on EASAE models’ performance as well but in
terms of Hits@1 and Hits@10 the performance is decreased by only around 6% and

68 Chapter 3. Entity Alignment via Summary and Attribute Embeddings

5% respectively. Summary embedding is contributing to neutralize the effect of this
attribute triples reduction. Furthermore, EASAE model uses a weighted averaging
technique when merging three embedding models. It also helps to alleviate the model
performance. When we could not get enough information from attribute embedding ,
EASAE emphasizes summary and relational embeddings. This results indicate that
summary embedding can help to alleviate the model performance. The detailed results
of the experiment is shown on Table 3.5.

3.5 Conclusion

In this paper, we introduced a joint entity summary and attribute embedding model
along with relational structural embedding technique for entity alignment in between
KGs. Our proposed model uses the BERT embedding model for entity summary
embeddings and it is very effective in zero-shot scenario. We also discussed how our
approach can overcome the flaws of the recently proposed entity alignment methods.
We compared the performance of EASAE with the most recent state-of-the-art models.
Our experimental results demonstrated that our approach achieved superior results
than the baseline embedding approaches. For the future work, we intend to include
more datasets to determine the effectiveness of our proposed model. Moreover, we
plan to study the cross-lingual entity alignment in the same KG and between the
different KGs e.g., DBpedia to Wikidata corss-lingual entity alignment as well. Recently,
convolutional network based KG embedding achieved promising performance in KG
embedding. We want to leverage the neural network based models for modelling the
complex semantics of KGs and want to apply them in entity alignment task.

69

4
Attribute Enhancement using Aligned
Entities between Knowledge Graphs

Knowledge graph (KG) is a structural form of semantic network that integrates triplets
into a graph to support knowledge processing and reasoning. Popular KGs like
DBpedia, YAGO, Freebase are mostly constructed based on crowd-sourced content and
automatic extraction methods, therefore they are not always complete and error-free.
In this study, we propose an Attribute Enhancement Framework (AEF) to enrich the
attributes of entities by integrating multiple KGs based on their aligned information.
Usually, similar entities from different KG contain different set of attributes. AEF
exploits representation learning based ranking model to determine the significant
attributes. Later it employs a similarity mapping method to integrate new attributes to
the target KG. AEF also determines the attribute value inconsistency between two KGs.
In our experimental dataset, 46% new attribute properties and 29% new values from
DBpedia are proposed for the YAGO entities. With this study, we aim to include all the
important attributes to the existing KGs towards more robust and complete knowledge

70
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

graph.

4.1 Introduction

The last decade has witnessed a surge of research, discussions and applications on
knowledge graphs (KGs). Unlike traditional knowledge representation methods, a
KG effectively and intuitively expresses the relation between entities and infers new
knowledge about them. Therefore, KGs are very popular in various fields, such as
semantic search, question and answering systems, personalized recommendation
systems and decision support systems [69]. In knowledge graph, real world entities are
represented in the form of a triple and triples either indicates relationship between
other entities or the property of that entity which is called attribute. Entity’s attribute
property plays an important role in knowledge bases and attribute completion is a very
important task for KG completion and quality control. However, only a handful work
has been done in this field because of its complexity. This paper discusses about entity
attribute property enrichment based on important attribute ranking and missing value
inclusion using multiple KGs. Perhaps, this might be the first attempt to incorporate
multiple Knowledge Graphs for attribute completion task.

Knowledge Graphs are constantly growing, providing more andmore information as
structured data. Most data sources have their roots in unstructured or semi-structured
information available throughout the web. So it is very understandable that extracting
data from unstructured or semi-structured information is error-prone. This is the
reason we always experience missing values or inconsistency in data. Combining the
information in different KGs can enrich the quality of knowledge graph though it is
very challenging task.

Entity attributes carry meaningful information about that particular entity. As an
example, in Figure 4.1, we can see the entity ‘Hollywood’ has been searched in three
different search platforms (Google, Yahoo, Bing). In the search results, we get three
different set of attributes. We can clearly understand, if the ’Area’ or ‘Population’
property can be be added to all of the KG then it would be beneficial. However adding
‘Incorporated’ or ‘Merged with Los Angeles’ properties from Bing can make the entity
information more complete but they are not as significant in compare to previous two
properties. To deal with this challenge, our proposed method ranks the impactful

4.1 Introduction 71

Figure 4.1: Different set of attributes from different KGs.

attributes and induced a way to find out missing attributes to enrich the KGs.
Attribute enhancement is a complicated task compared to entity type and relation

prediction. One of the biggest challenges is to detect the missing attributes and values.
Suppose, for a person type entity we can assume that it should contain an attribute
similar to birthdate. However, we cannot claim that it may have marriage date or death
date information. A living person will not have the property deathdate or likewise
for an unmarried person entity. But at the same time it is possible that, the entity
actually referring to an death person who was married as well and that information is
missing to the KG. By using aligned entities from multiple KGs we can get an idea of
the attribute which might be missing. Figure 4.2. describes a missing attribute scenario
from YAGO. The deathPlace of ’Leonardo da Vinci’ is present in YAGO but birthdate
and deathdate are missing but his connecting entities like ’Albert Einstein’ have these
attributes.

72
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

Figure 4.2: Missing attributes scenario in YAGO.

In this paper, we propose a method to rank entity attributes of a reference KG
and based on that we can include new or missing attributes to the targeted KG. Our
ranking method sorts the attributes based on importance and then adds the top-ranked
attributes to the specific entity if they are missing.

We propose embedding and probabilistic approaches to tackle the ranking problem
and later prepare an ensemble method to rank the important attributes. In this study,
we address two downstream tasks. 1) New or Missing attribute proposing from
reference KG to targeted KG. 2) Inconsistency detection of attributes. The first task
utilizes both the ranking method and similarity match function together to recommend
new or missing attributes. While our second task only leverages the similarity match
function to detect the value inconsistency between two KGs.

The main contributions of this paper are:

4.2 Preliminary 73

Figure 4.3: Model architecture of Attribute Enhancement Framework(AEF)

• We propose a framework (AEF) for attribute completeness using multiple KGs.

• Our method recommends attributes for target entities based on their aligned
information from other KG. These recommended attributes might be new
attributes that are not present in the target KG or missing attribute properties
that are present in the KG structure but not present in the targeted entity.

• Our method can also detect the attribute value inconsistency between two KGs
based on their aligned attributes.

4.2 Preliminary

In this section, we formally define the terms used in this paper and the problem as well.

Definition 4.1 Knowledge Graph (KG): A knowledge graph KG = (E, R, T) , where E, R,
T are the set of entities, relations and triples respectively.

Definition 4.2 Relational Triples: 𝑇 ⊂ 𝐸 ×𝑅 × 𝐸 is a set of relational triples representing
the relations between entities, where E and R is the set of all entities and relations
respectively.

74
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

Definition 4.3 Attribute Triples: 𝐴𝑇 ⊂ 𝐸 ×𝐴 × 𝐿 is a set of attribute triples representing
the attributes of entities, where A is a set of all attributes, and each attribute 𝐴𝑖 ∈ 𝐴 has a
corresponding literal attribute value set 𝐿𝑖 ∈ 𝐿 .

Definition 4.4 Attribute Ranking: Given the pair composed by an entity and an attribute,
we use the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 relation to generate a set of triples (e, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 , a).
The task is to identify a ranking function 𝑓 (𝑒, 𝑎) that assigns a score to each entity-entity
attribute pair and then sorts the attributes based on the scores computed for a specific
entity.

In our paper, we use bold lowercase letters to represent embedding vectors and
bold uppercase letters to denote matrices.

4.3 Proposed Methodology

We propose an attribute recommendation framework for enhancing the attribute
properties of an entity using multiple KGs. The overall methodology we propose is
depicted in Figure 4.3. AEF proposes two major steps - (1) Attribute Ranking and (2)
Similar Attribute Mapping. To recommend attribute property for an entity of 𝐾𝐺2 we
take the aligned entity from 𝐾𝐺1 as the reference. We first rank the attribute properties
of the entity from 𝐾𝐺1. Then we group the similar attribute property for 𝐾𝐺1 and 𝐾𝐺2.
The purpose of this group is to avoid recommending duplicated properties that are
already present in 𝐾𝐺2. Finally, the model would recommend 𝑡𝑜𝑝@𝑘 attributes as the
potential candidate which 𝐾𝐺2 can add to enhance its entity.

Our model can also contribute for detecting erroneous or missing attribute values
between the Similar Attribute property group.

4.3.1 Attribute Ranking

Attribute ranking method would rank the attribute properties of the entity from the
reference KG. Entity attribute carry information about the different properties of an
entity. As an example, in DBpedia entity ‘Barack Obama’ has 51 different attributes.
Using those attribute we can understand the characteristic of the entity ‘Barack Obama’.
Out of all possible attributes attached to an entity in reference KG, we want to sample

4.3 Proposed Methodology 75

out the most significant attributes for recommending them to it’s similar entity from
target KG. Thus, the task of ranking entity attributes by their importance becomes
essential.

Here we have applied two different ranking methods - (1) Embedding Based Ranking
Method (EBR); (2) Popularity Based Ranking Method (PBR).

Figure 4.4: Attribute Ranking

Embedding Based Ranking (EBR)

To characterize the structure information in KG, we interpret a relationship as the
translation from the head entity to the tail entity [20].

Knowledge graph embedding models map entities and relations in a KG to a
vector space and predict unknown triples by scoring candidate triples. The translation
distance-based models have gathered attention because of their efficiency and simplicity
among other KG embedding models [95]. In our embedding-based ranking model, we
employ the most basic translation distance based models for simplicity. This model
ranks the entity attributes as follows:

76
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

TransE learns embedding as 𝒉 + 𝒓 ≈ 𝒕 where (ℎ, 𝑟, 𝑡) holds. Hence, (𝒉 + 𝒓) is very
close to 𝒕 [20]. The score function of TransE is:

𝑓 (𝒉, 𝒕) = −|| 𝒉 + 𝒓 − 𝒕 | |𝑙1/2 (4.1)

which is high if (ℎ, 𝑟, 𝑡) holds, and low otherwise.
For the entity attribute ranking problem, we define the score function as:

𝑓𝑟𝑒𝑙 (𝒆, 𝒂) = −|| 𝒆 + 𝒂𝒕𝒕𝒓 𝒊𝒃𝒖𝒕𝒆𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 − 𝒂 | |
𝑙1/2

(4.2)

In this paper, we leverage knowledge graph embeddings to model the entity
attribute ranking task. As for training purposes negative triples are also required, we
prepare negative triples for the model training as follows. We define a margin-based
loss function as objective similar to knowledge graph embedding models for training
[20]. We show how the loss function based on the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is the same for all
the relations in the set of 𝑅.

𝐿𝐸𝐵𝑅 =
∑︁

(𝑒,𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝑎)∈𝑆

∑︁
(𝑒′ ,𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝑎′)∈𝑆 ′

𝑚𝑎𝑥
(
0, 𝑓𝑟𝑒𝑙 (𝒆, 𝒂) + 𝛾 − 𝑓𝑟𝑒𝑙 (𝒆

′

, 𝒂
′)
)

(4.3)

𝑓𝑟𝑒𝑙 (𝑒, 𝑎) is the energy function score of the positive triple and 𝑓𝑟𝑒𝑙 (𝑒 ‘, 𝑎‘) is that of
the negative triple. 𝛾 is the margin, 𝑆 is the set of positive triples and 𝑆 ‘ is the set of
negative triples. Existing knowledge graphs only contain correct triples.

𝑆
′
= {(𝑒 ′, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎) |𝑒

′ ∈ 𝐸 ∧ 𝑒 ′ ≠ 𝑒∧
(𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎) ∈ 𝑆}∪

{(𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎
′) |𝑎′ ∈ 𝐴 ∧ 𝑎′

≠ 𝑎∧
(𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎) ∈ 𝑆}

As the equation suggests, we randomly replace the heads and tails of positive triples
with other entities in 𝐸 and attribute in 𝐴, respectively. Moreover, the new triples
generated after such replacement will not be considered as negative triples if they
already exist in 𝑆 . In the training phase, the ratio of the positive and the negative
triples is same.

4.3 Proposed Methodology 77

Figure 4.5: TransE based Attribute Property Embedding

Popularity Based Ranking (PBR)

In PBR model, we take the advantage of the probabilistic modeling [96, 97] of KGs but
we keep the score function 𝑓 simple. From the EBR models we learn that the simplest
way to measure the plausibility of a triple (𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎), by defining the score
function, 𝑓 (𝒆, 𝒂) = −|| 𝒆 + 𝒂𝒕𝒕𝒓 𝒊𝒃𝒖𝒕𝒆𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 − 𝒂 | |

𝑙1/2
.

Our PBR model defines the conditional probability on triples as follows:

𝑃𝑟 (𝑎 |𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) =
𝑒𝑥𝑝{𝑓 (𝒆, 𝒂)}∑
𝑎∈𝑇 𝑒𝑥𝑝{𝑓 (𝒆, 𝒂)}

(4.4)

Eq. (4) states the conditional probability of an entity attribute 𝑎 where the
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 relation and an entity are given over a fact/triple. In the same way, we
can define 𝑃𝑟 (𝑒 |𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑡𝑝) and 𝑃𝑟 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 |𝑒, 𝑎).

So the objective function is given as:

78
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

𝐿𝑃𝐵𝑅 =−
∑︁

(𝑒,𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝑎)∈𝑆

(
log 𝑃𝑟 (𝑒 |𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑎) (4.5)

+ log 𝑃𝑟 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 |𝑒, 𝑎)
+ log 𝑃𝑟 (𝑎 |𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

)
The summation is over 𝑆 which is the set of all positive facts.
Overall Ranking Considering the above two component models together, the final
loss is:

𝐿 = 𝐿𝐸𝐵𝑅 + 𝐿𝑃𝐵𝑅 (4.6)

𝐿𝐸𝐵𝑅 and 𝐿𝑃𝐵𝑅 are loss functions for the embedding based ranking and the prob-
abilistic ranking respectively. They are independent of each other and hence are
optimized separately. We adopt stochastic gradient descent (SGD) to optimize the
above loss functions.

We defined the entity attribute ranking problem formally in Definition 4. The task
is to rank a set of 𝑛 entity attributes according to a specific entity. The core idea is to
build a knowledge graph with existing relations in the knowledge graph and add entity
and entity attribute pairs with a “ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦" property to the knowledge graph
together with other existing relations.

Once this is achieved, the model learns the knowledge graph embedding, which
includes all the triples as well as the “ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦” property triples. This model
is evaluated over queries of the form (𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ?) as a task of ranking 𝑎
based on the rank of gold entity type 𝑎∗. Here, we learn the vector representations of
(𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒, 𝑡𝑝) triples along with other triples (ℎ, 𝑟, 𝑡) and capture richer semantics
for entities and their attributes.

4.3.2 Similar Attribute Mapping

The purpose of our model is to enhance attribute property on an entity with the help
of its corresponding entity from the other KG. In the above section we have ranked the
candidate attribute. However we do not intend to recommend the attributes which are
already present for the targeted entity. As we are dealing with two different KGs and
they have ontological differences, so we cannot match similar attributes by simple
string matching or such method.

4.3 Proposed Methodology 79

Figure 4.6: Attribute Similarity Mapping

Well designed ontologies are used to construct Knowledge Graphs and the terms of
ontology properties are mostly meaningful individual words [80]. Word embedding is
better to deal with such words rather than simple string matching.

Continuous Bag-of-Words (CBOW)

Continuous Bag-of-Words (CBOW) model is one of the most popular neural network
models for learning distributed representations of words, in other words, embedding
words in a vector space (word2vec) [91]. In this paper we use CBOW to learn the
representation of words. Given a sequence of training words𝑤1,𝑤2, ... ,𝑤𝑛, and a
context window 𝑐 , the learning function of CBOW model is to maximize the following
average log probability:

1
𝑛

𝑛∑︁
𝑡=1

𝑙𝑜𝑔 𝑝 (𝑤𝑡 |𝑤𝑡−𝑐, ..,𝑤𝑡−1,𝑤𝑡+1, ...,𝑤𝑡+𝑐)

80
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

where 𝑝 (𝑤𝑡 |𝑤𝑡−𝑐, ..,𝑤𝑡−1,𝑤𝑡+1, ...,𝑤𝑡+𝑐) =
𝑒𝑥𝑝 (𝑣 ·𝑣𝑤𝑡)∑ |𝑉 |
𝑤=1 𝑒𝑥𝑝 (𝑣 ·𝑣𝑤)

Here, 𝑣𝑤 is the distributed vector representation of word 𝑤 , 𝑣 is an average of
the distributed representation of words in the context 𝑐 , and𝑉 is the set of vocabularies.

Based on our observation, we found that the terms of the ontology properties
are mostly compound words, e.g., birthDate or dateOfBirth. The estimation of the
representation of compound words using representations of individual words is
required. Since distributed representation of a compound word cannot be directly
represented as a sum of individual vectors, we apply Recurrent Neural Networks
(RNN) based approach, specifically, GRU-based [98] approach to represent compound
words as introduced in the study.

Gated Recurrent Unit (GRU)

Recurrent Neural Networks (RNN) has shown promising results in processing arbitrary
sequences of input. For a given sequence of input RNN model learns the current latent
state with the input data at time 𝑡 and the previous latent state at time 𝑡 − 1. Then the
current latent state is used to predict the output.

Although RNN is able to handle a variable-length sequence input, long-term
dependencies are difficult to be captured due to the gradients tend to either vanish or
explode. The long short-term memory (LSTM) unit and gated recurrent unit (GRU) are
able to handle long-term dependencies and perform better than using traditional 𝑡𝑎𝑛ℎ
unit [37]. We choose the GRU instead of LSTMs for training compound words from
Wikipedia articles because GRU use fewer parameters and they are almost similar in
terms of performance.

Given a compound word𝑤𝑐 , which is a sequence of individual words𝑤𝑐1 ,𝑤𝑐2 , ...,
𝑤𝑐𝑛 , the GRU-based model predicts the distributional representation of the compound
word 𝑤𝑐 , which is the output of the last state. In the learning process, we need to
minimize the following error function 𝐿(𝑤𝑐, 𝑤̂𝑐) :

𝐿(𝑤𝑐,𝑤𝑐) = | |v𝑤𝑐
− v̂𝑤𝑐

| |2

where v𝑤𝑐
is the distributed representation of the input compound word𝑤𝑐 , and v̂𝑤𝑐

is
the predicted representation of the compound word using GRU-based approach.

4.4 Experiments 81

Table 4.1: Dataset Statistics.

Datasets Entity Relation Triples Attribute Triples Relational Property Attribute Property

DBP-WD DBpedia 100,000 463294 381166 330 351
Wikidata 100,000 448774 789815 220 729

DBP-YG DBpedia 100,000 428952 451646 301 334
YAGO 100,000 502563 118376 29 23

The GRU unit we adopted is defined as follows:

𝑧𝑡 = 𝑓 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
𝑟𝑡 = 𝑓 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
ℎ𝑡 = 𝑔(𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 ◦ 𝑠𝑡−1) + 𝑏ℎ)
𝑠𝑡 = 𝑧𝑡 ◦ 𝑠𝑡−1 + (1 − 𝑧𝑡) ◦ ℎ𝑡

where 𝑥𝑡 is the input vector at time 𝑡 , 𝑧𝑡 is the update gate vector at time 𝑡 , 𝑟𝑡 is the
reset gate vector at time 𝑡 , ℎ𝑡 is the hidden layer vector at time 𝑡 , 𝑠𝑡 is the output vector
at time 𝑡 ,𝑊 and𝑈 are parameter matrices, 𝑏 is bias parameter, 𝑓 and 𝑔 are activation
functions, and ◦ is the Hadamard product operation.

Since we use the output of last state v̂𝑤𝑐
as the predicted distributed representation

of compound word𝑤𝑐 , v̂𝑤𝑐
is calculated as follows:

v̂𝑤𝑐
= 𝑠𝐿𝑎𝑠𝑡 = 𝑧𝐿𝑎𝑠𝑡 ◦ 𝑠𝐿𝑎𝑠𝑡−1 + (1 − 𝑧𝐿𝑎𝑠𝑡) ◦ ℎ𝐿𝑎𝑠𝑡

In most of the cases, GRU-based approach assigns higher cosine similarity to
the semantically similar attribute pairs than CBOW. For example, for the pair of
dbo:birthDate and wiki:Date of birth, GRU-based similarity is 0.8542 while the CBOW-
based similarity is 0.5178. Therefore, we have used GRU-based for our final evaluation.

82
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

Table 4.2: Recommended Attribute From DBpedia

New Attributes
Top@1 Top@2

DBpedia -> YG 19% 28%
DBpedia -> Wikidata 8% 12%

Missing Attributes
Top@1 Top@2

DBpedia -> YG 21.85% 31.74%
DBpedia -> Wikidata 17.43% 23.65%

4.4 Experiments

4.4.1 Datasets

To evaluate our model, we have used total two datasets, which are shown in Table 1.
They are recently introduced by BootEA [4].These two datasets were sampled from
DBpedia [6], Wikidata [99] and YAGO [8], each of which contains 100,000 aligned
entity pairs. The statistics of the datasets is given on Table 1.

Although the datasets were introduced for entity alignment task. But they were
perfect fit for our experiment as well. For our experiment we have considered DBpedia
as the reference KG and predict the attributes for the entities from other KG.

4.4.2 Implementation

SPARQL Protocol and RDF Query Language (SPARQL) [100] is used to access the KGs
to retrieve the existing attributes of the entities. We also use SPARQL queries to get
attribute values for inconsistency checking.

Wikipedia articles are used to train the distributed representation of individual
words and compound words using GRU-based word embedding. The average length
of compound words is 3.06 tokens and 16,369,076 compound words were used for

4.4 Experiments 83

the GRU-based approach. We used word2vec provided by gensim [101] to learn the
distributed representation of words and used tensorflow [102] to implement RNN
model using GRU unit. We used CBOW with dimension size as 200 and window size as
5. We discarded words that appear less than 25 times and used the token “UNK" to
replace out of vocabulary words.

4.4.3 Attribute Enhancement

We have considered DBpedia as the reference Knowledge graph for the experiment.
AEF runs on the whole DBpedia dataset and generate the ranked lists of attributes for
each entities with the help of our ranking module. Then each aligned entity pair
(𝑒𝐾𝐺1, 𝑒𝐾𝐺2) goes through the similar attribute matching module to generate the list
of aligned attributes between two entities. Please note that the datasets exploited
in this paper consist of aligned entities between multiple KGs (refer to Sect. A).
Finally attributes other than the aligned set are considered as candidates for attribute
recommendation for the targeted entity. This way our method avoid recommending
the attributes which are already present in the targeted entity. From the candidate
list top K attributes are recommended. In this experiment we present the number
of new attributes proposed by the model with 𝐾 = 1 and 𝐾 = 2 in Table 4.2. From
the Table 4.2 we can observe for YAGO our model was able to enrich 19% and 28%
new attributes for Top@1 and Top@2 recommendations respectively. On the other
hand, for Wikidata we achieved 8% and 12% new attributes enrichment for Top@1
and Top@2 recommendations. Wikidata has more rubost attributes than DBpedia,
therefore YAGO got more number of attribute recommendations than Wikidata.

Data extraction and KG enrichment are very completed tasks to build an effective
KG. All the KGs itertively etract and collect information which separate to each
other (KGs). Entity attribute information can help the KG towards completeness
interms of entity related critical facts. Our study inspires gathering important attribute
values from multiple knowledge graphs which may lead to attribute completeness in
traditional KGs without reinventing the wheel over and over again.

Apart from the new attributes we have found the entities where recommended
attributes that are present in KG but not present for that particular entity. As shown in
Figure ??, the entity ’Leonardo da Vinci’ from YAGO does not have deathDate as its

84
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

attribute. But YAGO contains property ’schema:deathDate’. In such cases our model
get deathDate property as recommended property from DBpedia for the ’Leonardo da
Vinci’ entity. Table 4.5 present a sample of attributes properties that falls into this
criteria. Using our model we found 21.85% and 31.74% missing attributes for Yago for
Top@1 and Top@2 recommendations respectively. In the same way we have observed
17.83% and 23.65% missing attributes for Wikidata entities respectively. Our proposed
model can address new attributes recommendation and missing attributes filling at the
same time.

One of the major challenges in this field is to evaluate the result due to lack of
gold standard datasets. In order to evaluate our system we have selected ’birthDate’
attributes based on its importance and tried to evaluate the performance of our system
based on those attribute property. We have found that for person type entities, the most
frequent attribute is birthDate. Among 2,230,135 dbo:person type entities in DBPedia,
2,131,931 entities contains birthDate. To test the quality of the recommendation for
missing attribute, we remove YAGO:Birthdate from person type entities from our
𝐷𝐵𝑝𝑒𝑑𝑖𝑎 → 𝑌𝐺 dataset and using proposed method we could predict 98% correctly.
Evaluating new recommended attributes are even more difficult as we don’t have any
reference for that. So we have tried to show the statistical importance of the new
attribute. As instance for Location type entities one of highest ranked recommended
attribute is “area" which is intuitively very important feature to describe the property
of a particular location. So undoubtedly the recommending this attribute can help to
enrich the target KG by a lot.

We have further analyze the new recommended attributes based on different entity
types. In Table III, we have showed entity type wise distributions of the recommended
new attributes. For the experiment dataset, we observed that location type entities
were required more attributes recommendations than the other types. The proper
explanation of it might be: In our experimental dataset, location type entities from
YAGO lacks many important attributes which DBpedia uses to describe the property
of location type entities. We have gathered some examples of the newly suggested
attributes for better understanding.

4.4 Experiments 85

Table 4.3: Type wise distribution of recommended attributes

Entity Types Recommended New Attributes (%)
Top@1 Top@2

Place / Location 24% 37%
Person 11% 18%

Film /Drama 15% 23%
Sport 5% 11%

Organization 5% 13%

4.4.4 Inconsistency Detection of Attributes

We have introduced a similarity mapping function for the attributes mapping between
reference KG and target KG. This way we avoid recommending duplicated attributes
for target entity. We also found a similar group of attributes between two KG. In theory,
for aligned entity pairs, similar attribute properties should have exact similar values.
But due to the ontological differences between two Knowledge Graphs attributes values
are not always aligned mostly due to the format differences. However, even if both KG
kept the attribute values in the same format, we still can find some inconsistency
in values between two KGs. In Table 4.5. we have sampled few aligned attributes
from DBpedia and YAGO. They all have similar format for the attribute value but
there is some inconsistencies in their values. This phenomenon occurs when the
information is extracted from different sources and one of those source are erroneous.
For example, the entity "Willem Schellinks" (former Dutch painter) appears in DBpedia
and YAGO. In DBpedia his birthDate is reported as 1623 − 02 − 07 while in YAGO it
says his birthDate is 1627− 02− 02. Evidently, two values are very different. Using our
proposed model we can detect such attribute value inconsistency as well. Although this
is not our primary goal but still this is very useful discovery for overall KG completion
and quality enhancement. In our sampled dataset, we have found such phenomenon
as well and table V showed the percentage of value inconsistencies for some of the
attributes.

86
Chapter 4. Attribute Enhancement using Aligned Entities between Knowledge

Graphs

Table 4.4: Type wise example of new attributes recommended for YAGO

Type Example of New Attributes

Place/Location

area
populationTotal
postalCode
utcOffset

...

Person
title

activeYearsStartYear
...

Film runtime
releaseDate

Sport squadNumber

Organization office

4.5 Conclusion

Attribute enhancement is an important problem in knowledge graph community,
and solving it would improve the quality and the usefulness of the KGs to a great
extent. In this paper, we presented an Attribute Enhancement Framework (AEF) to
enrich entity attribute information using aligned entities between multiple knowledge
graphs. We also designed two kinds of strategies to rank the important attributes
before recommending new attributes to the target KG. Proposed AEF can also detect
the attribute value inconsistency between two KGs based on their aligned attributes.
Our experiments on two real-world datasets demonstrated the effectiveness of our

4.5 Conclusion 87

Table 4.5: Statistics of similar attribute group

Similar Attribute Group Value Inconsistency(%)

birthDate 5.02%
deathDate 9.45%
synonym 7.32%

foundingDate 6.7%
elevation 3.43%

framework. In future work, we plan to investigate more larger dataset and propose
graph neural network based attribute ranking method to improve the quality of
proposed AEF.

89

5
Discussion

In this Chapter, the achievements, discussion, and some limitations of the entity
alignment task and attribute enhancement task are discussed, respectively. Firstly,
EASAE, which tackles aligning entities’ tasks between multiple KGs resources, is
discussed in Section 5.1. Then, the discussion of AEF for the attribute enhancement
task is presented in Section 5.2.

5.1 Entity Alignment

We introduced EASAE, a joint entity summary and attribute embedding model along
with relational structural embedding technique for entity alignment in between KGs.
The generic approach of embedding-based entity alignment typically consists of three
components, a merging module, an embedding module, and an alignment module. The
embedding module and the alignment module can be trained separately or jointly, and
these two together compose the training modules for entity alignment. To run the
embedding module, it is necessary to bring the entities and relations from both KGs

90 Chapter 5. Discussion

Table 5.1: Latest Entity Alignment Models and their generic variations.

Technique KG KG structure Attributes as input Merging feature for embedding
embedding structure features module

MTransE (2017) TransE Triple - Seed entity alignments;Seed
relation predicate alignments

IPTransE (2017) PTransE Path - Seed entity alignments;Seed
relation predicate alignments

JAPE (2017) TransE Path Data type of Seed entity alignments;Seed
attribute value relation predicate alignments

BootEA (2018) TransE Triple - Seed entity alignments
KDCoE (2018) TransE Triple Entity description Seed entity alignments

TransEdge (2019) TransEdge Triple - Seed entity alignments

AttributeE (2019) TransE Triple

Attribute triple as

Predicate alignmentsrelation triple;
String of attribute
predicate/value;

MultiKE (2019) TransE Triple

Attribute triple as
relation triple; Seed entity alignments;

String of attribute Relation/attribute predicate
predicate/value; alignments
Entity name

COTSAE (2020) TransE Triple

Character sequence
Seed entity alignmentsof attribute

value/predicate

EASAE (2021) TransE Triple

Attribute triple as
relation triple;

String of attribute Predicate alignments
predicate/value;
Entity description

GCN-Align (2018) GCN Neighborhood Attribute triple as Seed entity alignmentsrelation triple
RDGCN (2019) DPGGNN Neighborhood Entity name Seed entity alignments
GMNN (2019) GCN Neighborhood Entity name Seed entity alignments

MuGNN (2019) GCN Neighborhood - Seed entity alignments;Seed
relation predicate alignments

CEA (2020) GCN Neighborhood Entity name Seed entity alignments
AliNet (2020) GAT Path

AttrGNN (2020) GAT Neighborhood String of attribute Seed entity alignmentsvalue; Entity name

5.1 Entity Alignment 91

Table 5.2: Comparative Analysis with Latest Entity Alignment Models

Technique Prior alignment Zero-shot handling Robustness
Translation Based Models

JAPE Seed and Predicate No Dataset dependent
BootEA Seed No Dataset dependent

TransEdge Seed No Dataset dependent
AttributeE Predicate No Dataset dependent

MultiKE Seed Partial1 Robust when entity names
are synonymous

COTSAE (2020) Seed No Dataset dependent

EASAE Predicate Yes Robust when entity textual
information is available

Neural Network Based Models

GCN-Align Seed No Robust when entity names
are synonymous

RDGCN Seed No Mostly relies on entity
name similarity

GMNN Seed No Mostly relies on entity
name similarity

MuGNN Seed and Predicate Partial1 Robust when entity names
are synonymous

CEA Seed Partial1 Robust when entity names
are synonymous

AttrGNN Seed No Dataset dependent

92 Chapter 5. Discussion

into a unified vector space. Recent studies rely on either pre-aligned seed between KGs
or predicate alignment. Some papers proposed customized combination of both seed
and predicate alignment. However, previously aligned seeds between KGs is very
limited. Predicate alignment is a good substitute for entity alignment task and we
applied it in EASAE. For the embedding module mostly translation based embedding
or GNN based embedding are used. However, TransE is the most common translation
based model which is widely used for entity alignment due to its simplicity and
efficiency. There is another important variation exist, in the way the attributes are used
in embedding module. Many studies have been conducted on how to exploit attribute
information efficiently for entity alignment task. But, the heterogeneity between
KGs makes it challenging. Because for similar entity pair from different KGs usually
contains different attribute sets and which makes the alignment task very challenging.
Recent paper are proposed using additional properties like entity name or textual
description to deal with this problem. For some particular datasets incorporating name
information is very useful but in real world scenario it is not always practical to rely
on the name only. For instance, in the field of Bio-informatics it is quite common for
different knowledge bases to have the same things with different names. Another
problem is, name can be very ambiguous, many people or place or object can share the
same name. Textual description is a safer choice but relying only description is not
enough, that’s why we include relation, attribute and description together to get the
best outcome. For alignment model there are few variations exist. Some models use
bootstrapping while other choose not to because it adds more complexity. Another
problem with embedding based module is the zero shot scenario. When the entity is
missing from the training set any embedding module suffers from its performance.
Table 5.1 presents an elaborated comparison between recent studies and Table 5.2
presents a comparative analysis based on their performance w.r.t to exiting challenges.1

The entity alignment task mostly relies on entities’ relational structure and attribute
property. However, considering only relations and attributes fail when the entities
have a fewer number of attributes or when the relational structure can’t capture
the meaningful representation of the entities. Also, synonymous entity pairs in
different KG usually contain a different set of relations and attributes. Adding summary
information can be very helpful in tackling these problems. Our method shows where

1 When entity names are synonymous

5.1 Entity Alignment 93

Table 5.3: Key statistics for popular KGs. (2016) [5]

DBpedia Freebase Wikidata YAGO
Number of triples 411885960 3124791156 748530833 1001461792
Number of relations 58776 70902 1874 106
Number of entities 4298433 49947799 18697897 5130031

Unique non-literals as attribute 83284634 189466866 101745685 17438196
Unique literals as attribute 161398382 1782723759 308144682 682313508

a summary is available, it can help in completing the drawbacks of relations and
attributes. Also based on the dataset, our proposed method can dynamically adapt
to perform accordingly and thus making it more robust. We considered the textual
description of entities as the summary and applied BERT embedding model to these
summaries for entity summary embedding. We adapt TransE-based translation model
for attribute embedding and relational structural embedding. EASAE is very effective
in zero-shot scenarios by utilizing the description. EASAE shows the effectiveness of
entity summary embedding to align entities while a very small number of attribute
triples exist. Additionally, our method can dynamically adapt based on the dataset
features to perform accordingly and thus making it more robust. We have performed
experiments with two different datasets which are different in nature. One dataset
is very dense in relation, and the other is rich with attributes. In both cases, our
model performs well. Moreover, in our observation, textual descriptions are fairly
common properties that KG contains for its entities. For example, financial domain
datasets are quite different from benchmark datasets, but usually, they contain textual
descriptions with them. So our model can easily be extended for these kinds of datasets
as well. If both or either relation and attribute properties are not so well defined in
those datasets, still our summary feature would complement such scenarios. So it
is understandable that our idea is not limited to certain datasets or scenarios. We
compared the performance of EASAE with the most recent state-of-the-art models.
Our experimental results demonstrated that our approach achieved superior results
than the baseline embedding approaches.

94 Chapter 5. Discussion

5.2 Attribute Enhancement

Attribute enhancement is an important problem in knowledge graph community, and
solving it would improve the quality and the usefulness of the KGs to a great extent.
We have listed some key statistics of popular KGs in Table 5.3. We can clearly see
the difference in various aspects of different KGs. Thus integrating existing KG can
complement each other significantly. However, transferring knowledge from one
KG to another is very challenging due to the heterogeneity of KGs. Only a handful
of work has been done for attribute enhancement because of its complexity. In this
paper, we presented an Attribute Enhancement Framework (AEF) to enrich entity
attribute information using aligned entities between multiple knowledge graphs. We
also designed two strategies to rank the important attributes before recommending
new attributes to the target KG. Proposed AEF can also detect the attribute value
inconsistency between two KGs based on their aligned attributes. Our experiments on
two real-world datasets demonstrated the effectiveness of our framework. In future
work, we plan to investigate larger datasets and propose a graph neural network based
attribute ranking method to improve the quality of the proposed AEF.

We believe that our work will foster ongoing research works on entity alignment
and attribute enhancement. A complete KG can improve the search engine along with
other downstream applications of KG e.g., recommender system, customer profiling,
etc., which is the ultimate goal of the research around KG.

95

6
Conclusion

In this thesis, we investigated, designed, and evaluated a number of methods and
algorithms to exploit multiple knowledge graphs and increase the quality of their data.
Our work contributed to advancing the state-of-the-art in several tasks related to
knowledge graph alignment and knowledge graph enhancement. We also studied how
multiple KGs can benefit the overall quality control of knowledge graphs.

6.1 Summary

The vision of our research is to integrate knowledge from various knowledge graphs
that can improve interoperability among different data sources. However, due to
the lack of aligned information between KGs and their heterogeneous properties,
we cannot readily integrate multiple knowledge graphs. The goal of our research is
to solve the two proposed problems This research aims to address two well-known
problems to construct a more complete and robust KG by utilizing already existing KGs
from various domains. In this thesis, we introduced an entity alignment framework

96 Chapter 6. Conclusion

that can deal with the problem of limited existing aligned information and propose a
more efficient framework for aligning entities from different KGs by applying an
embedding-based method. Moreover, we propose an attribute enhancement framework
for adding new and missing attributes between the aligned entities. Because, even
though the entities are aligned, their relation, type, and structure are different. It is due
to their respective KG architecture. Therefore, we need an impactful system that can
deal with this heterogeneity problem between aligned entities and enhance the entities’
attributes.

6.2 Future Work

In a broader context, we view our work as one of many contributions in NLP and
Semantic Web that study the combination of structured and unstructured information
(for different tasks). In the following sections, we present some compelling ideas that
could be pursued as an extension of this work and that can help in advancing the
current state of knowledge graph technologies and semantic web applications.

• Future Work for Entity Alignment

– Our proposed model is built on top of translation-based KG embedding
models. Recently, convolutional network-based KG embedding achieved
promising performance in KG embedding. We want to leverage the neural
network-based models for modeling the complex semantics of KGs and
want to apply them in entity alignment task.

– For future work, we intend to include more versatile datasets to determine
the effectiveness of our proposed model. Moreover, we plan to study the
cross-lingual entity alignment in the same KG and between the different
KGs e.g., DBpedia to Wikidata cross-lingual entity alignment as well.

– Another intriguing future work is to adopt a bootstrapping training
procedure. For instance, the resulting alignments may be used as additional
data for an iterative training method to improve overall performance.

• Future Work for Attribute Enhancement

6.3 Outlook 97

– In our proposed framework, we have exploited very simple ranking
approaches. In the future, we would like to expand the ranking models
using neural network-based models. Current method focuses more on
embeddings and limited features. Other important features like "type"
information might be helpful here. Entity type plays an important role on
entity attributes. We intend to incorporate type-embodied attribute ranking
models in your proposed framework.

– AEF exploited word2vec and GRU-based techniques for aligning attributes
between KGs which is the simple way to tackle this problem. In many
cases, word2vec or GRU-based system might fail to identify the similarity.
We have an improvement opportunity here to work on. In near future, we
want to do more study in this module and propose an efficient model for it.

– Similar kinds of ideas that we proposed for attributes also can be applied
for type ranking and entity type completion. Entity type expresses an
entity more meaningfully. Ranking entity types and including various
types in the KG can benefit many downstream tasks, e.g., entity profiling,
recommendations, etc.

6.3 Outlook

Knowledge graphs are becoming an increasingly popular way of thinking about and
organizing data within significant business firms. As with all data management and
governance projects, we can define the use of KG and achieve the expected growth in
managing the data. The way KG is growing, it may become the new data management
system.

The modern businesses increasingly adopting machine learning approaches for
decision-making, it seems likely that knowledge graph technology will also evolve
hand-in-hand. Knowledge Graph plays an important role in many modern applications,
e.g. question answering, browsing knowledge, structured search, and data visualization.
Integrating knowledge from Multiple knowledge graphs is helpful to supplement the
knowledge that is missing in the knowledge source. This will improve both the quality
of the KG and the performance of the application it’s using. In this dissertation, we

98 Chapter 6. Conclusion

aimed to achieve a model that can align two heterogeneous KGs and then integrate
knowledge based on the aligned information to complement each other.

99

Bibliography

[1] Xin Rong. word2vec parameter learning explained. In Computing Research
Repository (CoRR) abs/1411.2738, 2014.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
4171–4186. Association for Computational Linguistics, 2019.

[3] Rui Zhang, Bayu Distiawan Trisedya, Miao Li, Yong Jiang, and Jianzhong Qi. A
benchmark and comprehensive survey on knowledge graph entity alignment via
representation learning. The Very Large Data Bases Journal, 31(5):1143–1168,
2022.

[4] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. Bootstrapping entity
alignment with knowledge graph embedding. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, pages 4396–4402. ijcai.org,
2018.

[5] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic
Web, 9(1):77–129, 2018.

[6] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. DBpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195, 2015.

[7] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human

100 Bibliography

knowledge. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 1247–1250. ACM, 2008.

[8] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th International Conference on World
Wide Web, pages 697–706. ACM, 2007.

[9] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A
web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.,
pages 601–610. ACM, 2014.

[10] M. Färber. The microsoft academic knowledge graph: A linked data source
with 8 billion triples of scholarly data. In Proceedings of the 18th International
semantic web conference, pages 13–129. Springer, 2019.

[11] Kathuria M, Nagpal C, and Duhan N. Journey of web search engines: Milestones,
challenges and innovations. International Journal of Information Technology and
Computer Science, 12:47–58, 2016.

[12] Rumana Ferdous Munne and Ryutaro Ichise. Entity alignment via summary and
attribute embeddings. Logic Journal of the IGPL, 2022.

[13] John P. McCrae Paul Buitelaar Anja Jentzsch Andrejs Abele and Richard Cyganiak.
Linking open data cloud diagram. https://lod-cloud.net/, November 3 2022.

[14] Denny Vrandečić andMarkus Krötzsch. Wikidata: a free collaborative knowledge
base. Communications of the ACM, 57(10):78–85, 2014.

[15] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia-a crystallization point for
the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

[16] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[17] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher. From freebase to wikidata: The great migration. In
Proceedings of the 25th International Conference on World Wide Web, pages
1419–1428. ACM, 2016.

[18] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A

https://lod-cloud.net/

Bibliography 101

web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data-mining,
pages 601–610, 2014.

[19] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017.

[20] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In Proceedings of 27th Annual Conference on Neural Information Processing
Systems, pages 2787–2795, 2013.

[21] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In Proceedings
of The 29th Association for the Advancement of Artificial Intelligence Conference
on Artificial Intelligence, volume 15, pages 2181–2187. AAAI Press, 2015.

[22] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In Proceedings of the 28th Association
for the Advancement of Artificial Intelligence Conference on Artificial Intelligence,
volume 14, pages 1112–1119. AAAI Press, 2014.

[23] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph
embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, volume 1, pages 687–696, 2015.

[24] Takuma Ebisu and Ryutaro Ichise. Toruse: Knowledge graph embedding on a lie
group. In Proceedings of The 32nd Association for the Advancement of Artificial
Intelligence Conference on Artificial Intelligence,, pages 1819–1826. AAAI Press,
2018.

[25] Zhiqing Sun, Zhi-Hong Deng1, Jian-Yun Nie3, and Tang Jian. Rotate: Knowledge
graph embedding by relational rotation in complex space. In Proceedings of the
7th International Conference on Learning Representations. OpenReview.net, 2019.

[26] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model
for collective learning on multi-relational data. In Proceedings of the 28th
International Conference on Machine Learning, pages 809–816, 2011.

[27] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago:
scalable machine learning for linked data. In Proceedings of the 21st International

102 Bibliography

Conference on World Wide Web, pages 271–280. ACM, 2012.
[28] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575, 2014.

[29] Théo Trouillon, Christopher R Dance, Éric Gaussier, Johannes Welbl, Sebastian
Riedel, and Guillaume Bouchard. Knowledge graph completion via complex
tensor factorization. Journal of Machine Learning Research, 18(1):4735–4772,
2017.

[30] Ivana Balazevic, Carl Allen, and Timothy" Hospedales. TuckER: Tensor factor-
ization for knowledge graph completion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, pages 5185–5194. Association
for Computational Linguistics, 2019.

[31] Richard Socher, Danqi Chen, Christopher DManning, and AndrewNg. Reasoning
with neural tensor networks for knowledge base completion. In Proceedings of
the 27th Annual Conference of Advances in neural information processing systems,
pages 926–934, 2013.

[32] Quan Liu, Hui Jiang, Andrew Evdokimov, Zhen-Hua Ling, Xiaodan Zhu, Si Wei,
and Yu Hu. Probabilistic reasoning via deep learning: Neural association models.
arXiv preprint arXiv:1603.07704, 2016.

[33] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2d knowledge graph embeddings. In Proceedings of the 32nd
Association for the Advancement of Artificial Intelligence conference on artificial
intelligence. AAAI Press, 2018.

[34] Xiaotian Jiang, Quan Wang, and Bin Wang. Adaptive convolution for multi-
relational learning. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics : Human Language
Technologies, pages 978–987, 2019.

[35] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha P
Talukdar. Interacte: Improving convolution-based knowledge graph embeddings
by increasing feature interactions. In Proceedings of the 34th Association for the
Advancement of Artificial Intelligence Conference on Artificial Intelligence, pages
3009–3016. AAAI Press, 2020.

Bibliography 103

[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Proceedings of the 1st International
Conference on Learning Representations,, 2013.

[37] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In Computing Research Repository (CoRR) abs/1412.3555, 2014.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[39] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. volume 12, pages 2451–2471, 2000.

[40] S. Francois, L. Y. Francois, and Z. Chuguang. Rdf-ai: an architecture for rdf
datasets matching, fusion and interlink. In Proceedings of the International Joint
Conference on Artificial Intelligence Workshop, 2009.

[41] Volz Julius, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk-a link
discovery framework for the web of data. In Proceedings of Linking Data on the
Web Workshop, page 538, 2009.

[42] Y. Raimond, C. Sutton, and M. B. Sandler. Automatic interlinking of music
datasets on the semantic web. In Proceedings of Linking Data on the Web
Workshop, 2008.

[43] Suchanek FM, Abiteboul S, and Senellart P. Paris: Probabilistic alignment of
relations, instances, and schema. In Proceedings of International Conference on
Very Large Data Bases, 2011.

[44] Ngomo ACN and Auer S. Limes: a time-efficient approach for large-scale link
discovery on the web of data. In Proceedings of the International Joint Conference
on Artificial Intelligence Workshop, 2011.

[45] M. Pershina, M. Yakout, and K. Chakrabarti. Holistic entity matching across
knowledge graphs. In Proceedings of International Conference on Big Data, page
1585–1590, 2015.

[46] E. Rivas and S. R. Eddy. A dynamic programming algorithm for rna structure
prediction including pseudoknots. Journal of Molecular Biology, 285(5):2053–2068,
1999.

[47] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. Multilingual
knowledge graph embeddings for cross-lingual knowledge alignment. In

104 Bibliography

Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pages 1511–1517. ijcai.org, 2017.

[48] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Iterative entity alignment
via joint knowledge embeddings. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 4258–4264. ijcai.org, 2017.

[49] Zequn Sun, Wei Hu, and Chengkai Li. Cross-lingual entity alignment via
joint attribute-preserving embedding. In Proceedings of Proceedings of the 17th
International semantic web conference, pages 628–644. Springer, 2017.

[50] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. Entity alignment
between knowledge graphs using attribute embeddings. In Proceedings of the
33rd Association for the Advancement of Artificial Intelligence conference on
artificial intelligence, pages 297–304. AAAI Press, 2019.

[51] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. Multi-view knowledge graph embedding for entity alignment. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence, pages 5429–5435.
ijcai.org, 2019.

[52] Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, and Bing Xie. Cotsae:co-
training of structure and attribute embeddings for entity alignment. In Proceedings
of the 34th Association for the Advancement of Artificial Intelligence Conference on
Artificial Intelligence, pages 3025–3032. AAAI Press, 2020.

[53] Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, and Jun Zhao. A joint
embedding method for entity alignment of knowledge bases. In Proceedings of
the 1st China Conference on Knowledge Graph and Semantic Computing, pages
3–14, 2016.

[54] Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo.
Co-training embeddings of knowledge graphs and entity descriptions for cross-
lingual entity alignment. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 3998–4004. ijcai.org, 2018.

[55] Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, and Cuiping Li.
Bert-int: A bert-based interaction model for knowledge graph alignment. In
Proceedings of the 29th International Joint Conference on Artificial Intelligence,
pages 3174–3180. ijcai.org, 2020.

[56] Anna Lisa Gentile, Petar Ristoski, Steffen Eckel, Dominique Ritze, and Heiko

Bibliography 105

Paulheim. Entity matching on web tables: a table embeddings approach for
blocking. In Proceedings of the 20th International Conference on Extending
Database Technology, pages 510–513. OpenProceedings.org, 2017.

[57] Z. Wang, Q. Lv, X. Lan, and Y. Zhang. Cross-lingual knowledge graph alignment
via graph convolutional networks. In Proceedings of the International Conference
on Empirical Methods in Natural Language Processing, page 349–357. ACL, 2018.

[58] T. N. Kipf and M. Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations,
2017.

[59] K. Xu, liwei wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu. Cross-lingual
knowledge graph alignment via graph matching neural network. In Proceedings
of Association for Computational Linguistics, page 3156–3161, 2019.

[60] Y. Cao, Z. Liu, C. Li, J. Li, and T.-S. Chua. Multi-channel graph neural network
for entity alignment. In Proceedings of Association for Computational Linguistics,
page 1452–1461, 2019.

[61] L. Galarraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Exploring and evaluating
attributes, values, and structures for entity alignment. In Proceedings of the Very
Large Data Bases, page 707–730, 2015.

[62] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. In Proceddings of International Conference on Learning
Representations, page 707–730, 2018.

[63] Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, and Y. Qu. Knowledge
graph alignment network with gated multi-hop neighborhood aggregation. In
Proceedings of the 34th Association for the Advancement of Artificial Intelligence
Conference on Artificial Intelligence, page 222–229. AAAI Press, 2020.

[64] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-aware entity
alignment for heterogeneous knowledge graphs. In Proceedings of International
Joint Conference on Artificial Intelligence, page 5278–5284, 2019.

[65] Weixin Zeng, Xiang Zhao, Jiuyang Tang, and Xuemin Lin. Collective entity
alignment via adaptive features. In Proceedings of International Conference on
Data Engineering, pages 1870–1873, 2020.

[66] A.E Roth. Deferred acceptance algorithms: history, theory, practice, and open
questions. International Journal of Game Theory, 36(3):537–569, 2008.

106 Bibliography

[67] Y.Wu, X. Liu, Y. Feng, Z.Wang, R. Yan, and D. Zhao. A vectorized relational graph
convolutional network for multi-relational network alignment. In Proceedings of
International Joint Conference on Artificial Intelligence, page 4135–4141, 2019.

[68] Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, and Tat-Seng
Chua. Exploring and evaluating attributes, values, and structures for entity
alignment. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, pages 6355–6364, 2020.

[69] Xiangyu Wang, Lyuzhou Chen, Taiyu Ban, Muhammad Usman, Yifeng Guan,
Shikang Liu, Tianhao Wu, and Huanhuan Chen. Knowledge graph quality
control: a survey. Fundamental Research, 1(5):607–626, 2021.

[70] Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning
in a large scale knowledge base. In Proceedings of the 2011 conference on empirical
methods in natural language processing, pages 529–539, 2011.

[71] André Melo and Heiko Paulheim. Detection of relation assertion errors in
knowledge graphs. In Proceedings of the Knowledge Capture Conference, pages
1–8, 2017.

[72] Heiko Paulheim and Christian Bizer. Improving the quality of linked data using
statistical distributions. In Proceedings of the International Journal on Semantic
Web and Information Systems, pages 63–86, 2014.

[73] Heiko Paulheim and Aldo Gangemi. Serving dbpedia with dolce–more than just
adding a cherry on top. In Proceedings of the 14th International semantic web
conference, pages 180–196, 2015.

[74] Dominik Wienand and Heiko Paulheim. Detecting incorrect numerical data in
DBpedia. In Proceedings of the 11th European Semantic Web Conference, pages
504–518, 2014.

[75] Fleischhacker Daniel, Heiko Paulheim, Volha Bryl, Johanna Völker, and Christian
Bizer. Detecting errors in numerical linked data using cross-checked outlier
detection. In Proceedings of the 13th International semantic web conference, pages
357–372, 2014.

[76] Md-Mizanur Rahoman and Ryutaro Ichise. Automatic erroneous data detection
over type-annotated linked data. IEICE TRANSACTIONS on Information and
Systems, 99(4):969–978, 2016.

[77] Lukasz Golab, Flip Korn Howard Karloff, Avishek Saha, and Divesh Srivastava.

Bibliography 107

Sequential dependencies. In Proceedings of the 35th International Conference on
Very Large Data Bases Endowment 2.1, pages 574–585, 2009.

[78] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.
Metric functional dependencies. In the IEEE 25th International Conference on
Data Engineering, pages 1275–1278, 2009.

[79] Grace Fan, Wenfei Fan, and Floris Geerts. Detecting errors in numeric attributes.
In Proceedings of the 15th International Conference on Web-Age Information
Management, pages 125–137, 2014.

[80] Lihua Zhao, Natthawut Kertkeidkachorn Rumana Ferdous Munne, and Ryutaro
Ichise. Missing rdf triples detection and correction in knowledge graphs. In
Proceedings of the 7th Joint International Semantic Technology Conference, pages
164–180. Springer, 2017.

[81] Huiying Li, Feifei Xu Yuanyuan Li, and Xinyu Zhong. Probabilistic error
detecting in numerical linked data. In Proceedings of the 26th International
Conference on Database and Expert Systems Applications, pages 61–75, 2015.

[82] Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li, and
Zhifang Sui. Towards time-aware knowledge graph completion. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pages 1715–1724, 2016.

[83] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
learning, 62(1):107–136, 2006.

[84] Yang Chen and Daisy Zhe Wang. Towards time-aware knowledge graph
completion. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 649–660, 2014.

[85] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. In
Proceedings of the 32nd Association for the Advancement of Artificial Intelligence
conference on artificial intelligence. AAAI Press, 2018.

[86] Razniewski Simon, Fabian Suchanek, and Werner Nutt. But what do we actually
know?. In the 5th Workshop on Automated Knowledge Base Construction, pages
40–44, 2016.

[87] Jiaqing Liang, Yanghua Xiao, Haixun Wang, Yi Zhang, and Wei Wang. Probase+:
Inferring missing links in conceptual taxonomies. IEEE Transactions on Knowledge
and Data Engineering, 29(6):1281–1295, 2017.

108 Bibliography

[88] Muhao Chen and Carlo Zaniolo. Learning multi-faceted knowledge graph em-
beddings for natural language processing. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pages 5169–5170. ijcai.org, 2017.

[89] Rumana Ferdous Munne and Ryutaro Ichise. Joint entity summary and attribute
embeddings for entity alignment between knowledge graphs. In Proceedings of
the 15th Hybrid Artificial Intelligent Systems Conference, pages 107–119. Springer,
2020.

[90] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. DBpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195, 2015.

[91] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 27th Annual Conference on Advances in neural information
processing systems, pages 3111–3119, 2013.

[92] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 19th conference on Empirical
Methods in Natural Language Processing, pages 1532–1543. ACL, 2014.

[93] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representa-
tion learning of knowledge graphs with entity descriptions. In Proceedings of
the 30th Association for the Advancement of Artificial Intelligence conference on
artificial intelligence, page 2659–2665. AAAI Press, 2016.

[94] Weixin Zeng, Xiang Zhao, Jiuyang Tang, and Xuemin Lin. Ceaff:collective
entity alignment via adaptive features. In Proceedings of IEEE 36th International
Conference on Data Engineering, pages 1870–1873, 2020.

[95] Md Mostafizur Rahman and Atsuhiro Takasu. Exploiting knowledge graph
and text for ranking entity types. ACM SIGAPP Applied Computing Review,
20(3):35–46, 2020.

[96] Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen, and Ming Li. Entity
disambiguation by knowledge and text jointly embedding. In Proceedings of
the 20th SIGNLL conference on computational natural language learning, pages
260–269, 2016.

[97] Zhen Wang, Jianwen Zhang, Jianlin Feng, , and Zheng Chen. Knowledge graph

Bibliography 109

and text jointly embedding. In Proceedings of the conference on empirical methods
in natural language processing, pages 1591–1601, 2014.

[98] Natthawut Kertkeidkachorn and Ryutaro Ichise. Estimating distributed represen-
tations of compound words using recurrent neural networks. In Proceedings
of the 22nd International Conference on Applications of Natural Language to
Information Systems, pages 235–246. Springer, 2017.

[99] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78–85, 2014.

[100] Eric Prud’hommeaux and Alexandre Bertails. A mapping of sparql onto
conventional sql. InWorld Wide Web Consortium, pages 697–706, 2007.

[101] Radim Řehůřek and Petr Sojka. Gensim—statistical semantics in python. In
Retrieved from genism. org, 2011.

[102] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis
A, Dean J, Devin M, and Ghemawat S. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. In Computing Research Repository (CoRR)
abs/1603.04467, 2016.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Fundamentals and Related Works
	2.1 Knowledge Graph
	2.1.1 Knowledge Graph Concept
	2.1.2 Knowledge Graph Representation
	2.1.3 Popular Knowledge Graph

	2.2 Knowledge Graph Embedding
	2.2.1 Translation-Distanced based Models
	2.2.2 Bilinear Models
	2.2.3 Neural Network based Models

	2.3 Natural Language Processing
	2.3.1 Word2vec
	2.3.2 Recurrent Neural Networks
	2.3.3 Gated Recurrent Unit
	2.3.4 BERT

	2.4 Entity Alignment
	2.4.1 String Similarity based Entity Alignment.
	2.4.2 Embedding-based Entity Alignment .
	2.4.3 GNN Based Alignment Models

	2.5 Knowledge Graph Enhancement
	2.5.1 Knowledge Graph Accuracy Enhancement
	2.5.2 Knowledge Graph Completeness Enhancement
	2.5.3 Knowledge Graph Timeliness Enhancement

	2.6 Summery

	3 Entity Alignment via Summary and Attribute Embeddings
	3.1 Introduction
	3.2 Preliminary
	3.3 Proposed Methodology
	3.3.1 Predicate Alignment
	3.3.2 Summary Embedding
	3.3.3 Relational Embedding (RE)
	3.3.4 Attribute Embedding (AE)
	3.3.5 Entity Alignment Process

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Experimental Settings
	3.4.3 Experiment 1
	3.4.4 Experiment 2
	3.4.5 Experiment 3

	3.5 Conclusion

	4 Attribute Enhancement using Aligned Entities between Knowledge Graphs
	4.1 Introduction
	4.2 Preliminary
	4.3 Proposed Methodology
	4.3.1 Attribute Ranking
	4.3.2 Similar Attribute Mapping

	4.4 Experiments
	4.4.1 Datasets
	4.4.2 Implementation
	4.4.3 Attribute Enhancement
	4.4.4 Inconsistency Detection of Attributes

	4.5 Conclusion

	5 Discussion
	5.1 Entity Alignment
	5.2 Attribute Enhancement

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.3 Outlook

	Bibliography

