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Many researchers have actively studied Reinforcement learning, which acquires a
policy maximizing long-term rewards. Unfortunately, this learning type needs to be
faster and easier to use in practical situations because the state-action space becomes
enormous in the real world. Many studies have incorporated human knowledge into
reinforcement Learning. Human knowledge of trajectories is common, but it could ask
a human to control an Al agent. Controlling the Al agent could be too hard in specific
tasks like robotics. Knowledge of subgoals may lessen this requirement because humans
only need to consider a few representative states on an optimal trajectory. The essential
factor for learning efficiency is rewards. Potential-based reward shaping is a primary
method for enriching rewards and realizes a policy-invariant reward transformation
which remains the optimal policy for an original reward function. A potential function
is a real-valued function given a state, and the difference between its output in the
current state and one in the previous state becomes a shaping reward. However,
incorporating subgoals for accelerating learning over potential-based reward shaping is
often challenging because the appropriate potentials are not intuitive for humans. We
propose subgoal-based reward shaping based on potential-based reward shaping.
Subgoal-based reward shaping includes a potential function given state history and time.
We prove that subgoal-based reward shaping is policy-invariant.

Subgoal-based reward shaping makes it easier for human trainers to share their
knowledge of subgoals. Since the potential function is essential to make learning
efficient, we proposed two types of the potential function, static goal-oriented
potential and learned potential in subgoal-based reward shaping. Static goal-oriented
potential approximates an optimal value function because the current study indicated
that potential-based reward shaping made policy learning efficient when the potential
function was the optimal value function. We define a hyperparameter of static goal-
oriented potential, which controls the shape of the potential. The evaluation result
indicates that the hyperparameter deteriorates learning efficiency when inappropriate.
To solve this challenge, learned potential acquires its potential simultaneously with
policy learning to remove the hyperparameter. We adopt a value function over abstract
states, which updates with n-step temporal difference~(TD) learning during policy
learning, as a potential function in learned potential. The abstract state is a subgoal
achievement and begins from underachievement, and the transition of the abstract state

follows the order of subgoals.



We conducted a user study to collect subgoal sequences from participants. The

subgoals acquired from participants are more biased than the random-generated
subgoals, and many participants provide the same or similar subgoals.
We conducted simulation experiments in three domains covering discrete and
continuous states and actions. The experimental results indicate the effectiveness that
subgoal-based reward shaping makes several baseline reinforcement learning
algorithms, including a deep reinforcement learning algorithm, efficient. Learned
potential achieves similar performance to static goal-oriented potential. The results also
indicate that the participants' subgoal sequences are superior to the random-generated
subgoal sequences for subgoal-based reward shaping.

The performance analysis between participants' and random subgoal sequences shows
that the performances in the domains where the subgoals are on optimal trajectories are
similar. The best subgoal sequence of the participants is a part of more optimal
trajectories than others. We found that an appropriate number of subgoals and a subgoal
on an optimal trajectory can improve the baseline algorithm. Subgoal-based reward
shaping performs well with a partially ordered subgoal sequence. Static goal-oriented
potential is sensitive to the change of the hyperparameter, and initializing the potential
improves the performance of learned potential. Subgoal-based reward shaping cannot
improve the baseline algorithm in negative step rewards. Learned potential is better
than static goal-oriented potential in mixed positive and negative rewards.

This dissertation does not propose an easy way to collect subgoal sequences from
humans, but subgoal-based reward shaping can be applied to many domains as long as
the user has subgoals. Though negative step rewards disable the effectiveness of
subgoal-based reward shaping, they can convert to a positive goal reward which
subgoal-based reward shaping works well. Subgoal-based reward shaping can improve
baseline reinforcement learning algorithms when a subgoal sequence is on an optimal
trajectory. A detailed methodology might be optional, and it is enough for a subgoal
teacher to have an optimal trajectory and subgoal sequence. This dissertation might
encourage people to use subgoals yet to be used and help accelerate reinforcement

learning.
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