
Fibrational Theory of Behaviors and 

Observations: Bisimulation, Logic, and 

Games from Modalities 

by 

Yuichi KOMORIDA 

 

Dissertation 

 

submitted to the Department of Informatics 

in partial fulfillment of the requirements for the degree of  

 

 

Doctor of Philosophy 

 

 

 

 

 

 

The Graduate University for Advanced Studies, SOKENDAI 

March 2023  

 





Fibrational Theory of Behaviors and
Observations

Bisimulation, Logic, and Games from Modalities

Yuichi Komorida

March 5, 2023





Acknowledgements

First and foremost, I would like to thank my supervisor Ichiro Hasuo and my subadvisor
Shin-ya Katsumata. Since the first contact through Twitter in June 2017, Ichiro has
always been encouraging. Both by showing his own actions and by words, he taught
me that a researcher should not only think but also convey and share ideas by mature
means. Shin-ya has also been helpful in providing vast knowledge in category theory,
but the thing that encouraged me was that such a researcher found my technical ideas
interesting.
I would like to thank the evaluation committee members, Taro Sekiyama, Makoto Tat-

suta, Masahito Hasegawa, and Bartek Klin, for giving helpful and encouraging feedback
for my several evaluation sessions.
This thesis includes some results of joint work with Shin-ya Katsumata, Nick Hu,

Bartek Klin, Samuel Humeau, Clovis Eberhart, Ichiro Hasuo, Clemens Kupke, and Ju-
rriaan Rot. I appreciate the fruitful collaborations so much. Discussions with other re-
searchers have also influenced me and this thesis. An (incomplete) list of such researchers
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Abstract

Mathematical modeling of computer systems is of fundamental importance in software
verification. Some of such mathematical models focus on the possible states and tran-
sitions of the target system. Such “state-and-transition” models are unified, using the
language of category theory, into the concept called coalgebra. It generalizes models in
automata theory and process theory. One way to view coalgebra theory is that it is “a
theory of observable behaviors”: Notions like bisimulation relation and simulation pre-
order are defined in such a way that they are invariant under coalgebra morphisms, which
morally means that they depend only on “observable” information. These are general-
ized to fibrational coinduction, which is parametrized in fibrations and functor liftings.
It gives rise to a wide range of examples, including quantitative ones like behavioral
metrics. However, it lacks explicit modeling of “observation.” Bisimulation relation and
behavioral distance are known to be tightly connected to games and modal logic through
“observations” on the system, but in this fibrational framework, such connections are
not understood well.

This thesis proposes a new framework in which observations are modeled as certain
morphisms. The main point is to adopt codensity lifting, a known method to define func-
tor lifting to use in fibrational coinduction. The resulting object generalizes bisimulation
relation and simulation preorder, and we call it codensity bisimilarity. The definition of
codensity lifting involves a set of morphisms, which represents the set of “observations.”
This feature makes it possible to connect codensity bisimilarity to games and modal
logic.

After introducing our framework, we show two main results. The first is a game
characterizing codensity bisimilarity, which we call the codensity bisimilarity game or
just the codensity game. Just like the conventional bisimilarity game, the codensity
game is played by two players named Duplicator and Spoiler, and it may last indefinitely
long, in which case Duplicator wins. The difference between the conventional game and
our game is the players’ moves. Spoiler’s moves are “observations,” i.e., arrows from
the state space object. Duplicator’s moves are predicates themselves: for example, in
the codensity game for bisimilarity relation, Duplicator chooses an equivalence relation
as a move each time. We show that the codensity game characterizes the codensity
bisimilarity in general: both the statement and the proof are independent of the specific
property of the behavior functor and the fibration. For some better-behaved fibrations,
we construct another game called the trimmed codensity bisimilarity game. In this game,
the set of Duplicator’s moves is smaller: for example, in the game for bisimilarity relation,
Duplicator’s moves are restricted to pairs of states instead of equivalence relations on
the state space. We instantiate the underlying fibrations of codensity games so that
they can characterize bisimilarity relation and behavioral distance. We also consider
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the fibration of topologies and devise a new concept called bisimulation topology with a
game characterization.

The second main result concerns the adequacy and expressivity of modal logic for co-
density bisimilarity. We define fibrational logical equivalence, a generalization of logical
equivalence and logical distance, and show some adequacy and expressivity results. We
adopt coalgebraic modal logic and fix a predicate on the “truth value” object, which
we call an expressivity situation. We define two concepts from this: the fibrational log-
ical equivalence and the codensity bisimilarity. The fibrational logical equivalence is a
generalization of logical equivalence and is defined through modal logic. The codensity
bisimilarity is defined through the codensity lifting, using part of the expressivity sit-
uation as the parameter of codensity lifting. We define adequacy and expressivity as
the comparison between the fibrational logical equivalence and the codensity bisimilar-
ity. Here adequacy turns out to be implied automatically. On the other hand, to prove
expressivity, we need to investigate “observation” arrows in more depth. By abstracting
from existing approximation arguments, we introduce approximating families and use
the notion to formulate our expressivity result. We instantiate this to recover a few
known expressivity results for bisimulation relations and behavioral distances. We also
define a new kind of codensity bisimilarity called bisimulation uniformity. We use a
known Stone-Weierstrass-type theorem for uniform spaces to derive an expressive modal
logic for bisimulation uniformity.
Along with these main results, we show another technical result about codensity lift-

ing itself. It concerns a technical condition called fiberedness, and we prove a sufficient
condition for a codensity lifting to be fibered. To formulate and prove the result, we
define the notion of a c-injective object. The result has a consequence also for codensity
bisimilarities: it implies the reflection of the codensity bisimilarity by coalgebra mor-
phisms. We identify c-injective objects in some cases, for example, complete lattices
in the fibration of preorders and continuous lattices in the fibration of topologies. We
also prove the fiberedness of several codensity lifting and, thus, the reflection of the
corresponding codensity bisimilarities.
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1. Introduction

1.1. Coalgebra: a Theory of Observable Behaviors

Computer programs work as we write them, not necessarily as we expect. One approach
to overcome this gap is to verify the systems so that we can make sure that they meet
our requirements. Abstract mathematical methods are often useful for the purpose, but
before that, we have to model the target system by some mathematical structure.

Coalgebra [60] is one of such mathematical structure with a broad scope of applica-
tion. It is defined in terms of the theory of categories and functors. Given a category
C and an endofunctor B : C → C, a B-coalgebra is defined as an arrow c : X → BX
(Definition 2.1.1). This simple definition includes many kinds of state-transition sys-
tems as special cases, e.g., Kripke frame (and model), Markov chain (and process), and
(deterministic and non-deterministic) automata.

A salient feature shared by all kinds of systems is the contrast between observable
transitions and hidden states. In order to extract meaningful information from a coalge-
bra, we have to define construct mathematical structures so that they do not depend on
the hidden, internal change of states. Technically, this requirement can be formulated
using coalgebra morphisms. A coalgebra morphism from c : X → BX to d : Y → BY is
an arrow f : X → Y such that d ◦ f = Bf ◦ c (Definition 2.1.5). Since any coalgebra
morphism preserves “observable” transitions, a meaningful behavioral structure should
also be preserved by such a morphism.

As an example, let us focus on a question: which states behave the same? Bisimilar-
ity [55, 57] is one of the notions to define such equivalence. (For an introduction, see,
e.g., [62].) We sketch the idea in the case where C = Set and B = Σ × (−). In this
case, B-coalgebras are deterministic LTSs. Consider a coalgebra c : X → Σ × X and
define l : X → Σ and n : X → X by (l(x), n(x)) = c(x). The point here is the following
observation: if x, y ∈ X behave the same, then l(x) = l(y) must hold, and n(x) and
n(y) must behave the same. This is almost the definition of bisimilarity: the bisimilarity
relation is the greatest binary relation ∼⊆ X ×X that satisfies

x ∼ y =⇒ l(x) = l(y) ∧ n(x) ∼ n(y).

It is preserved by any coalgebra morphism.

For other functors B, the idea is roughly the same: in a coalgebra c : X → BX, for
x, y ∈ X to behave the same, c(x) and c(y) must behave the same. To define bisimilarity
precisely, however, we have to turn a relation R ⊆ X ×X into R′ ⊆ BX ×BX.
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1. Introduction

1.2. Fibrational Coinduction: Obtaining Information from
Transition

An elegant way to formulate this is the following: bundle binary relations on all sets
into one CLat⊓-fibration and use functor lifting as in [32]. We give ideas on them here.
The precise definitions are in Sections 2.3 and 2.4.

First, we gather all pairs (X,R) of a set X and a binary relation R ⊆ X ×X into one
category ERel (Example 2.3.13). It comes with a forgetful functor U : ERel → Set.
(This is a fibration.) Any binary relation R on X is sent to X by U ; placing the things
vertically, R is “above” X. Now let us assume that there exists a functor Ḃ : ERel →
ERel satisfying U ◦ Ḃ = B ◦ U . This means that any binary relation R on X is sent to
one on BX:

ERel
Ḃ

//

U
��

ERel

U
��

R � // ḂR

Set
FB

// Set X � // BX

(This means that the functor Ḃ is a lifting of B along U .) The functor U : ERel → Set
has an important structure: for any f : Y → X and a relation R on X, we can obtain a
relation f∗R on Y in a canonical way:

f∗R = {(y, y′) ∈ Y × Y |(f(y), f(y′)) ∈ R}.

(This is called reindexing or pullback.) By using these, we can define the bisimulation
relation on c : X → BX as the greatest fixed point of f∗ ◦ Ḃ.

This procedure works for any CLat⊓-fibration p : E → C and the resulting object is
preserved by any coalgebra morphism. Thus,

Another advantage of this approach is that we can readily generalize this to other
“bisimilarity-like” notions. For example, by changing the fibration to PMet⊤ → Set
(Example 2.3.12), one can define a behavioral (pseudo)metric [5].

1.3. Codensity Lifting: Explicit Modelling of Observation

Now we know that a functor lifting induces a bisimilarity-like notion. Then, how can
we obtain a functor lifting? Moreover, so far we have no “observation” modelled as a
mathematical object, although we have been talking about “observable” behaviors.

In this thesis, we solve these by codensity lifting, a scheme to obtain a functor lifting.
It is first introduced in [41] for monads using codensity monad construction [52]. It
is later extended to general endofunctors by Sprunger et al. [66]. The construction is
parametrized in a set of data called a lifting parameter. By changing lifting parameters,
a broad class of functor liftings can be represented as codensity liftings.

As mentioned in the last section, we can define a bisimilarity-like notion using coden-
sity lifting. It is called codensity bisimilarity in [44, Sections III and VI]. This is the main
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1.4. Thesis Outline

object in this thesis. Unlike the original framework of fibrational coinduction, our co-
density framework explicitly models “observations” as arrows in the base category. This
enables us to connect codensity bisimilarity to infinite games and modal logic systems.
In this thesis, we will pursue this triality.

1.4. Thesis Outline

The following diagram shows the dependencies between the chapters and sections of this
thesis:

Section 3.3

Chapter 2 // Sections 3.1 and 3.2

55

//

))

Chapter 4

Chapter 5

As can be seen from the diagram, Chapter 2 and Sections 3.1 and 3.2 lay down the
technical ground and Section 3.3 and Chapters 4 and 5 develop on it. After those, we
conclude with Chapter 6. Some brief explanations of Chapters 2 to 5 follow. This thesis
is based on the published papers [44, 45, 47, 46]1. In the following, the original paper of
each part is also mentioned.

Chapter 2 Preliminaries In this chapter we review the technical preliminaries men-
tioned in Sections 1.1 and 1.2. Coalgebra is introduced in Section 2.1. After that, to
lay down the ground for fibrational coinduction, some fixed-point theorems are reviewed
in Section 2.2 and the basics of CLat⊓-fibrations are explained in Section 2.3. Using
these, Section 2.4 shows the framework of fibrational coinduction. In the framework of
fibrational coinduction, the input is summarized as follows:

E
p

��

Ḃ // E
p

��
C B // C X

c // BX

(1.1)

Here, the functor B : C → C is the type of system, the coalgebra c : X → BX is the
model of the target system, the CLat⊓-fibration p : E → C is the “form of information”
we need, and the lifting Ḃ : E → E specifies “how to extract E-information from B-
behaviors”. Using these, we can obtain the greatest fixed point ν(c∗ ◦ Ḃ) of c∗ ◦ Ḃ, which
can be thought of as “what we can know from the B-behaviors of c through Ḃ”. If we

1The paper [46] is the journal version of the conference paper [44].
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1. Introduction

let P = ν(c∗ ◦ Ḃ), the situation is as follows:

E
p

��

Ḃ // E
p

��

P
=ν // c∗ḂP // ḂP

C B // C X
c // BX

(1.2)

Most of the contents of this chapter is taken from [45, 46], but some explanations are
added.

Chapter 3 Codensity Lifting This chapter develops the theory of codensity lifting and
codensity bisimilarity. It is divided into two parts: one is Sections 3.1 and 3.2 and the
other is Section 3.3.
The first part defines codensity lifting (Definitions 3.1.1 and 3.3.9) and codensity

bisimilarity (Definition 5.2.9) and shows some examples of them. Codensity lifting is
a method to obtain a functor lifting. It is introduced in [41] for monads and extended
to general endofunctors in [66]. The input of codensity lifting (one-parameter form, as
defined in Section 3.1) can be summarized as follows:

E
p

��

Ω

CB
&&

BΩ
τ // Ω

(1.3)

Then codensity lifting gives a lifting BΩ,τ : E → E. For each P ∈ EX , the definition of
BΩ,τP depends on the arrows k : P → Ω in E, which can be regarded as “observations”
on P . The situation is depicted by the following:

E
p

��

P
k // Ω

(
τ ◦B

(
p(k)

))∗
Ω // Ω

CB
&&

X
p(k) // Ω BX

B(p(k)) // BΩ
τ // Ω.

Using
(
τ ◦B

(
p(k)

))∗
Ω for each k, the codensity lifting is defined (Definition 3.1.1). This

explicit and “observation-based” construction enables us to seek connections to games
and modal logic, which are the theme of Chapters 4 and 5. Plugging in the codensity
lifting BΩ,τ to fibrational coinduction (1.1) gives the codensity bisimilarity ν(c∗ ◦BΩ,τ ).
Letting P = ν(c∗ ◦BΩ,τ ) yields the following summary, which is an extension of (1.2):

E
p

��

BΩ,τ
// E

p

��

P
=ν// c∗BΩ,τP // BΩ,τP Ω

C B // C X
c // BX BΩ

τ // Ω

(1.4)

Most content of Sections 3.1 and 3.2 is taken from [46], while others are taken from [45]
or newly written. As has been mentioned, the technical developments in this part are
from [41, 66].
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1.4. Thesis Outline

The second part, Section 3.3, introduces the main contribution of [45]. Here, we focus
on a technical condition, fiberedness, of codensity lifting. The condition is about the
following situation, involving the pullback operations and BΩ,τ itself:

E
p

��

BΩ,τ
%%

f∗Q // Q BΩ,τ (f∗Q)
⊑ // (Bf)∗BΩ,τQ // BΩ,τQ

CB
&&

X
f // Y BX

Bf // BY

If the inequality BΩ,τ (f∗Q) ⊑ (Bf)∗BΩ,τQ is upgraded to an equality BΩ,τ (f∗Q) =
(Bf)∗BΩ,τQ for all f and Q, then the lifting is called fibered.

Since codensity lifting is defined by using arrows to Ω, it is natural to think that
its fiberedness can be seen from some condition on Ω. It turns out to be true; if Ω is
c-injective, then BΩ,τ is fibered. The term “c-injective” means “injective with respect
to Cartesian arrows” and it is about the following situation:

E
p

��

f∗Q
f̄
//
g

++Q
∃h
// Ω

C X
f // Y Ω

If, for each g in this diagram, there exists an h making the upper triangle commute,
then Ω is called c-injective. This result is not about coalgebra, so it is not in the main
thread of this thesis, but it does reflect our central strategy in this thesis: investigate
the “observations”, and obtain a result on codensity lifting and codensity bisimilarity.
Summarizing, in Section 3.3,

• We define c-injective objects in CLat⊓-fibrations.

• We identified c-injective objects in several CLat⊓-fibrations and show some con-
nections between known notions and c-injectiveness.

• We show that, if Ω is c-injective, then the codensity lifting BΩ,τ is fibered.

• Using the result on codensity lifting, we show that several functor liftings are
fibered.

The content of Section 3.3 is taken from [45].

Chapter 4 Codensity Games for Bisimilarity In this chapter we seek game character-
izations of codensity bisimilarity. Concretely, we construct a safety game, which is a
certain kind of two-player infinite game, from the parameters of codensity lifting.

Indeed, a safety game characterizing the conventional bisimilarity is well-known. It
has two players which we call Duplicator and Spoiler. Duplicator’s aim is to show that
two states are bisimilar, while Spoiler wants to disprove it. Any infinite play is defined
to won by Duplicator, which reflects the coinductive nature of bisimilarity.
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1. Introduction

Our codensity game follows the same framework, so the problem is to give appro-
priate game arena and moves. The point is that codensity bisimilarity is defined by
using “observations”. Thus, the moves of Spoiler should be “observations”, which are,
mathematically, arrows from the state space X → Ω.
Pursuing this line of idea, we obtain the following game for the situation of (1.4):

Table 4.6.: Untrimmed codensity bisimilarity game (repeated from page 55)

position player possible moves

P ∈ EX Spoiler k ∈ C(X,Ω) s.t. τ ◦ Fk ◦ c : (X,P ) ↛̇ (Ω,Ω)

k ∈ C(X,Ω) Duplicator P ′ ∈ EX s.t. k : (X,P ′) ↛̇ (Ω,Ω)

In the above game, Duplicator needs to choose an object of EX every time. In many
examples it is not very intuitive. For instance, in the game for the conventional bisimi-
larity, Duplicator has to choose one equivalence relation; intuitively it should be enough
to choose a pair of states and claim “these are bisimilar”. To solve this, we introduce a
refinement called trimmed codensity bisimilarity game.
The technical point here is to formulate the following claim in fibrational terms: an

equivalence relation is determined by which pairs of states are related. For this aim,
we defined fibered separator. Using this terminology, the previous claim on equivalence
relation can be rephrased to: the two-point set 2 ∈ Set is a fibered separator of the
CLat⊓-fibration EqRel → Set of equivalence relations. For a CLat⊓-fibration with a
fibered separator, we defined trimmed codensity bisimilarity game.
Summarizing, in Chapter 4,

• Using the parameters of codensity lifting, we define a safety game called the
(untrimmed) codensity bisimilarity game and show that it correctly characterizes
the codensity bisimilarity.

• For CLat⊓-fibrations having a special kind of object called fibered separator, we
define another game called the trimmed codensity bisimilarity game, which has a
smaller game arena.

• We show several examples of codensity bisimilarities and its corresponding coden-
sity bisimilarity games.

The contents of this chapter is taken from the joint work [46] with Shin-ya Katsumata,
Nick Hu, Bartek Klin, Samuel Humeau, Clovis Eberhart, and Ichiro Hasuo.

Chapter 5 Expressivity of Modal Logic for Codensity Bisimilarity In this chapter
we investigate connections between modal logic and codensity bisimilarity. For the
conventional bisimilarity relation, it is known that, for finitely branching LTSs, the
Hennessy–Milner modal logic is adequate; it means that bisimilar states satisfy exactly
the same set of modal formulas. For finitely branching LTSs, it is also expressive; that is,
two states are bisimilar if they agree on the truth values of all modal formulas. A similar
adequacy and expressivity result is known for the behavioral distance on a Markov chain;
in this case, the modal logic is real-valued and the distance of two states turns out to be
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1.4. Thesis Outline

equal to the supremum of the differences of the truth values, where all modal formulas
are considered. Our aim here is to seek a joint generalization of these expressivity results.
To formulate such a generalization, we use the framework of fibrational coinduction

(1.2) and added to it a variation of coalgebraic modal logic. On a fixed “truth values”
object Ω ∈ C, the logic interprets propositional connectives and modal operators by
arrows in the form of f : Ωn → Ω and τ : BΩ → Ω, respectively. To each formula φ,
an arrow JφKc : X → Ω from the state space to the truth values object is assigned as
its interpretation. The behaviors of the target system c : X → BX are reflected in the
interpretation of the modality: if♡ is the (syntactical) unary modality, the interpretation
of ♡φ is given by:

C X c
//

J♡φK

++BX
BJφK

// BΩ τ
// Ω.

Connecting this with the CLat⊓-fibration p : E → C, we can jointly generalize logical
equivalence and logical distance; we fix an object Ω above Ω and consider the following
pullback for each formula φ:

E
p

��

JφK∗cΩ // Ω

C X
JφKc // Ω.

Then we form the meet LE(c) =
d

φJφK∗cΩ and we call it fibrational logical equivalence.
Using this, we can also define adequacy and expressivity by comparing LE(c) and the
coinductive predicate ν(c∗ ◦ Ḃ).

To prove these generalized adequacy and expressivity, we have to investigate both
the modal logic and the functor lifting Ḃ. However, codensity lifting turns out to be a
helpful gadget here: it constructs a functor lifting from the data used to define LE(c),
namely, Ω, Ω, and τ . Thus, the input of our framework here is the following:

E
p

��

Ω

CB
&&

X
c // BX Ωn f // Ω BΩ

τ // Ω

From these the codensity bisimilarity ν(c∗ ◦BΩ,τ ) and the fibrational logical equivalence
LE(c) are defined and compared. In this situation, adequacy is obtained automatically.
Expressivity is much harder to prove and we need to “approximate” the non-logical

observations with the logical observations (i.e. interpretations of modal formulas). We
abstract the essence of the approximation arguments from the literature and devised a
notion of approximating family. Using this notion, we obtained expressivity theorems.
Summarizing, in Chapter 5,

• Adopting coalgebraic modal logic, we formulate general fibrational forms of ade-
quacy and expressivity of modal logic, which are applicable both logical relations
and logical distances.
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1. Introduction

• In that fibrational framework, we prove adequacy with respect to codensity bisim-
ilarity without any restriction on the modal logic system.

• Abstracting from the existing expressivity arguments, we single out a notion that
we call approximating family and we prove expressivity under certain conditions
involving it.

The contents of this chapter is taken from the joint work [47] with Shin-ya Katsumata,
Clemens Kupke, Jurriaan Rot, and Ichiro Hasuo. Helpful comments from Bart Jacobs
are gratefully acknowledged.
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2. Preliminaries

As mentioned in Chapter 1, we build our theory based on two preceding theories: uni-
versal coalgebra and fibrational coinduction. In this chapter, we recall these two to the
extent that we need. For universal coalgebra, the part we need is rather small; we review
it in Section 2.1. For fibrational coinduction, we have to go through a few more topics:
fixed-point theorems (Section 2.2) and CLat⊓-fibrations (Section 2.3). After those, we
proceed to fibrational coinduction in Section 2.4.
We assume some knowledge of category theory, but the full content of the standard

reference [54] is not needed. The basic definitions and theorems, e.g., those in Lein-
ster [53], are enough. Another thing we require is some basic notions of order theory,
like the definitions of meet, join, and complete lattice.

2.1. Coalgebra

In this section we review the theory of universal coalgebra. It is a joint generalization of
process theory and automata theory based on category theory. Here we just review the
basic notions like coalgebra morphisms and behavioral equivalence. For a more thorough
introduction to this topic, see the standard references like [37, 60].
In this theory, systems are modeled as coalgebras:

Definition 2.1.1 (B-coalgebra). Let C be a category and B : C → C be a functor.
A B-coalgebra is a pair (X, c) of an object X ∈ C and a C-arrow c : X → BX; this
coalgebra is often denoted simply by c : X → BX.

Intuitively, X is the space of states and c : X → BX describes the transition of each
state. The role of the functor B here is a bit less obvious; it specifies the kind of
transitions that we allow, but we need a few examples to make it clear.

Example 2.1.2 (Kripke frame). Let Set be the category of sets and maps and P : Set →
Set be the (covariant) powerset functor. Then a P-coalgebra c : X → PX corresponds
to a Kripke frame: indeed, for such a c, defining the accessibility relation by

Rc = {(x, x′) | x′ ∈ c(x)}

yields a Kripke frame (X,Rc) and any Kripke frame can be represented in this form.

Example 2.1.3 (nondeterministic automaton). Let 2 = {⊤,⊥} be the two-point set, Σ
be any set, and NΣ : Set → Set be the functor which sends each X ∈ Set to 2× (PX)Σ.
Then a NΣ-coalgebra c : X → NΣX corresponds to a nondeterministic automaton for
an alphabet Σ (without initial state): for each x ∈ X, if we decompose c(x) as c(x) =
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2. Preliminaries

(c1(x), c2(x)) where c1(x) ∈ 2 and c2(x) ∈ (PX)Σ, we can interpret c1(x) as defining
whether x is accepting and c2(x) as the transitions from x.

Example 2.1.4 (Markov chain). Let D≤1 : Set → Set be a discrete subdistribution
functor defined by, for each X ∈ Set, D≤1(X) = {p : X → [0, 1] |

∑
x∈X p(x) ≤ 1} and,

for each f : X → Y , p ∈ D≤1(X), and y ∈ Y , D≤1(f)(p)(y) =
∑

f(x)=y p(x). Then
a D≤1-coalgebra c : X → D≤1X corresponds to a (time-homogeneous) Markov chain
(with discrete time and discrete space): the transition probability from x to x′ can be
extracted as c(x)(x′) ∈ [0, 1].

In Example 2.1.2 above, taking B = P in Definition 2.1.1 enables a B-coalgebra
to have nondeterministic branching. On the other hand, in Example 2.1.4, we take
B = D≤1 and a B-coalgebra has probabilistic transitions. This is the role that B plays
in Definition 2.1.1: specifying a functor B means specifying possible transition patterns
in B-coalgebras.

Note that, in Example 2.1.3, the information of accepting states and the external
input of elements of Σ are also encoded in the functor NΣ = 2 × (P )Σ. This means
that, in coalgebraic modelling, inputs and outputs of a system is also regarded as a part
of “transition”.
For a fixed functor B, the B-coalgebras form a category and its morphisms are defined

as follows:

Definition 2.1.5 (coalgebra morphism). Assume the setting of Definition 2.1.1. Let
c : X → BX and d : Y → BY be B-coalgebras. A coalgebra morphism from c to d is a
C-arrow f : X → Y such that d ◦ f = Bf ◦ c.

Intuitively, a coalgebra morphism preserves any transition. Now recall that “transi-
tion” here includes all inputs and outputs. From this, we may speculate that a coalgebra
morphism actually preserves any “observable” information. Indeed, in many cases it is
true; an illustrative example is the following:

Fact 2.1.6. Assume the setting of Example 2.1.3. Let c : X → NΣX and d : Y → NΣY
be nondeterministic automata regarded as NΣ-coalgebras. Let f : X → Y be a coalgebra
morphism from c to d. Then for each x ∈ X, the recognized language of c starting from
x and that of d starting from f(x) are equal.

One general equivalence notion, behavioral equivalence, is defined along this line:

Definition 2.1.7 (behavioral equivalence [64, Definition 1]). Let B : Set → Set be
a functor and c : X → BX be a B-coalgebra. The states x, x′ ∈ X are behaviorally
equivalent if there is anotherB-coalgebra d : Y → BY and a coalgebra morphism f : X →
Y such that f(x) = f(x′).

Remark 2.1.8. Another central equivalence notion of coalgebras is bisimilarity. While
behavioral equivalence is based on cospans of coalgebra morphisms, bisimilarity is defined
by spans of such morphisms. For their detailed comparison, see [67] (where behavioral
equivalence is often referred to as kernel-bisimulation).
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2.2. Fixed-Point Theorems

These are among the fundamental notions making universal coalgebra “the theory
of observable behaviors”. One of its central concern is to extract “observable informa-
tion” from a system modeled as a coalgebra. However, what are “information” and
“observation” here? In this thesis, we see corresponding mathematical structures for
“information” (in Sections 2.2 and 2.3) and “observation” (in Chapter 3).

2.2. Fixed-Point Theorems

In this section we briefly recall some fixed-point theorems for complete lattices. We
will use ⊑ for a partial order, and accordingly, meet and join are denoted

d
and

⊔
,

respectively. Each complete lattice has its greatest and least elements; they are denoted
⊤ and ⊥. We use fixed points for modelling the process of collecting information. Let L
be a complete lattice of “pieces of information” and f : L → L be a map chosen so that,
intuitively, “if we know x ∈ L now, then in the next step we will know f(x)”. Then all
the information we can obtain is represented as the greatest fixed point of f .
For a complete lattice, it is guaranteed that we can always do the same:

Fact 2.2.1. Let L be a complete lattice and f : L → L be a monotone map. Then there
exists the greatest fixed point of f .

Remark 2.2.2. A similar viewpoint is also taken in domain theory. In domain theory,
“knowing nothing” is represented by the least element ⊥. In this thesis, however, such
a situation with no available information is modeled by the greatest element ⊤. This is
because of the convention we adopt in Definition 2.3.2. See also Remark 2.3.7.

Just having a greatest fixed point is, actually, not very helpful. We need some more
explicit characterizations of the fixed point: the Knaster–Tarski and Cousot–Cousot
theorems.

Fact 2.2.3 (Knaster–Tarski [68]). Let L be a complete lattice and f : L → L be a
monotone map. Then the greatest fixed point of f exists and it is the greatest pre-
fixpoint of f , i.e., the greatest element x ∈ L such that f(x) ⊑ x.

Fact 2.2.4 (Cousot–Cousot [17]). Let L be a complete lattice and f : L → L be a mono-
tone map. Using transfinite induction, let us define a sequence (fα)α (indexed by an
ordinal α) by the following:

fα =
l

β<α

f(fβ).

Then there is an ordinal α such that fα = fα+1 and, for such α, fα is the greatest
fixed point of f .

Note that, in the above,

1. f0 = ⊤, the greatest element of L,

2. fα+1 = f(fα) for any ordinal α, and

19



2. Preliminaries

3. fα =
d

β<α fβ for any limit ordinal α.

We also use Kleene theorem, a simplification of Fact 2.2.4.

Fact 2.2.5 (Kleene). In the setting of Fact 2.2.4, if f preserves the meet

fω =
l

n∈ω
fn,

then fω is the greatest fixed point of f .

2.3. CLat⊓-Fibrations

Here we introduce CLat⊓-fibrations, as defined in [44]. We use them to model various
“forms of information” like preorder, equivalence relation, and pseudometric. Assuming
full knowledge of the theory of fibrations, we could define them as poset fibrations with
fibered small meets. Instead, we give an explicit definition below. This is mainly because
we need the notion of Cartesian arrow. For a comprehensive account of the theory of
fibrations, the reader can consult, e.g., a book by Jacobs [36] or Hermida’s thesis [31],
but in the following, we do not assume any knowledge of fibrations.
We first define a fiber of a functor over an object. Basically, this is only considered in

the case where the functor is a fibration.

Definition 2.3.1 (fiber). Let p : E → C be a functor and X ∈ C be an object. The fiber
over X is the subcategory of E

• whose objects are P ∈ E such that pP = X and

• whose arrows are f : P → Q such that pf = idX .

We denote it by EX .

Note that, if p is faithful, then each fiber is a thin category, i.e., a preordered class.
The following definition of poset fibration is a special case of that in [36].

Definition 2.3.2 (cartesian arrow and poset fibration). Let p : E → C be a faithful
functor.
An arrow f : P → Q in E is Cartesian if the following condition is satisfied:

• For each R ∈ E and g : R → Q, there exists h : R → P such that g = f ◦ h if and
only if there exists h′ : pR → pP such that pg = pf ◦ h′.

The functor p is called a poset fibration if the following are satisfied:

• For each X ∈ C, the fiber EX is a poset. The order is denoted by ⊑. We define
the direction so that P ⊑ Q holds if and only if there is an arrow P → Q in EX .

• For each Q ∈ E and f : X → pQ, there exists an object f∗Q ∈ EX and a Cartesian
arrow ḟ : f∗Q → Q such that pḟ = f . (Such f∗Q and ḟ are necessarily unique.)

20



2.3. CLat⊓-Fibrations

The map Q 7→ f∗Q turns out to be a monotone map from EY to EX . We call it the
pullback functor and denote it by f∗ : EY → EX .

There are a few different series of intuitions for poset fibrations. One of them is from
mathematical logic. Indeed, several “logical” examples of poset fibrations can be found
in, e.g., [36]. In these examples, an object P ∈ EX represents a “predicate” and pullback
functors model substitutions. We adopt this as a wording convension:

Notation 2.3.3. Let E p−→ C be a poset fibration. An object P ∈ EX in the fiber
category EX is often called a predicate over X.

Another series of intuition is more puremath-oriented: in this perspective, P ∈ EX

is regarded as an additional structure on X. From this perspective, arrows in the total
category E has a good intuition: they are structure-preserving maps. To make it more
visible, we adopt the following notation convension:

Notation 2.3.4. Let E p−→ C be a poset fibration. A predicate P over X (that is,
P ∈ EX) shall also be denoted by (X,P ) ∈ EX .

Our intuition here is a hybrid one: we regard a predicate P ∈ EX as a “piece of infor-
mation”. An arrow (X,P ) → (Y,Q) is intuitively a map that is “consistent” w.r.t. the
information given by P and Q. We call such arrow decent :

Definition 2.3.5 (decent map). Let E p−→ C be a CLat⊓-fibration, f : X → Y be an
arrow in C, (X,P ) ∈ EX and (Y,Q) ∈ EY be objects in the fibers. We say that f
is decent from P to Q, or (P,Q)-decent, if there exists a (necessarily unique) arrow
ḟ : P → Q in E such that pḟ = f . We write f : (X,P ) →̇ (Y,Q) in this case. We write
f : (X,P ) ↛̇ (Y,Q) if f is not decent.

From this “informational” perspective, pullback f∗ models the act of getting informa-
tion from an “observation” f . Decency and pullback are interconnected:

Proposition 2.3.6. Let p : E → C be a poset fibration, f : X → Y be an arrow in C and
P ∈ EX and Q ∈ EY be objects in E. Then f is (P,Q)-decent if and only if P ⊑ f∗Q.
Moreover, such g is Cartesian if and only if P = f∗Q.

Remark 2.3.7. As mentioned in Remark 2.2.2, in our framework, “knowing nothing” is
modelled by ⊤. This can now be explained as follows. If Q corresponds to “knowing
nothing”, any arrow to Q is “consistent”. Thus, any P and f satisfies ḟ : P → Q, and
P ⊑ f∗Q. For this to hold, Q must be the largest element in the fiber.

We mention another basic property of pullback:

Proposition 2.3.8. Let p : E → C be a poset fibration.

• For each X ∈ C, (idX)∗ : EX → EX is the identity functor.

• For each composable pair of arrows X
f−→ Y

g−→ Z in C, (g ◦f)∗ = f∗ ◦g∗ holds.
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2. Preliminaries

The following example is a good illustration of this hybrid perspective. A pseudo-
metric is a mathematical structure on a set, but it can also be regarded as giving some
information: d(x, y) > ε means that x and y are different to the extent of ε.

Example 2.3.9 (pseudometric). Let ⊤ be a positive real number or +∞. Define a
category PMet⊤ as follows:

• Each object is a pair (X, d) of a setX and a [0,⊤]-valued pseudometric d : X×X →
[0,⊤]. (A pseudometric is a metric without the condition d(x, y) = 0 =⇒ x = y.)

• Each arrow from (X, dX) to (Y, dY ) is a nonexpansive map f : X → Y . (f is
nonexpansive if, for all x and x′ ∈ X, dX(x, x′) ≥ dY (f(x), f(x

′)).)

The obvious forgetful functor PMet⊤ → Set is a poset fibration. For each X ∈ Set,
the objects of the fiber (PMet⊤)X are the pseudometrics on X. However, the order is
reversed: in our notation, the order is defined by

(X, d1) ⊑ (X, d2) ⇔ ∀x, x′ ∈ X, d1(x, x
′) ≥ d2(x, x

′).

An arrow f : (X, dX) → (Y, dY ) is Cartesian if and only if it is an isometry, i.e.,
dX(x, x′) = dY (f(x), f(x

′)) holds for all x, x′. For (Y, dY ) ∈ PMet⊤ and f : X → Y ,
the pullback f∗(Y, dY ) is the set X with the pseudometric (x, x′) 7→ dY (f(x), f(x

′)).

In many cases we can gather pieces of information to obtain one larger piece of infor-
mation. We model such situation by a CLat⊓-fibration.

Definition 2.3.10 (CLat⊓-fibration). A poset fibration p : E → C is a CLat⊓-fibration
if the following conditions are satisfied:

• Each fiber EX is small and has small meets, which we denote by
d
.

• Each pullback functor f∗ preserves small meets.

Note that, in the situation above, each fiber EX is a complete lattice: the small joins
can be constructed using small meets.

Proposition 2.3.11. Let E p−→ C be a CLat⊓-fibration.

1. Each arrow f : X → Y has its pushforward f∗ : EX → EY , so that an adjunction
f∗ ⊣ f∗ is formed. This is a consequence of Freyd’s adjoint functor theorem; it
makes p a bifibration [36].

2. The change-of-base [36, Lemma 1.5.1] of p along any functor H : D → C is also a
CLat⊓-fibration.

3. If C is (co)complete, then the total category E is also (co)complete. This follows
from [36, Proposition 9.2.1].

22



2.3. CLat⊓-Fibrations

Example 2.3.12 (pseudometric). The poset fibration PMet⊤ → Set in Example 2.3.9
is a CLat⊓-fibration. Indeed, meets can be defined by sups of pseudometrics: if we let
(X, d) =

d
a∈A(X, da), then

d(x, x′) = sup
a∈A

da(x, x
′)

holds.

Example 2.3.13 (binary relations). Define a category ERel of sets with an endorelation
as follows:

• Each object is a pair (X,R) of a set X and a binary relation R ⊆ X ×X.

• Each arrow from (X,RX) to (Y,RY ) is a map f : X → Y preserving the relations;
that is, we require f to satisfy (x, x′) ∈ RX =⇒ (f(x), f(x′)) ∈ RY .

The obvious forgetful functor ERel → Set is a CLat⊓-fibration. For each X ∈ Set, the
fiber ERelX is the complete lattice of subsets of X ×X.
An arrow f : (X,RX) → (Y,RY ) is Cartesian if and only if it reflects the relations, i.e.,

(x, x′) ∈ RX ⇔ (f(x), f(x′)) ∈ RY holds for all x, x′. For (Y,RY ) ∈ ERel and f : X →
Y , the pullback f∗(Y,RY ) is the set X with the relation {(x, x′) ∈ X×X|(f(x), f(x′)) ∈
RY }.

Define the following full subcategories of ERel:

• The category Pre of preordered sets and monotone maps.

• The category EqRel of sets with an equivalence relation and maps preserving
them.

The forgetful functors Pre → Set and EqRel → Set are also CLat⊓-fibrations.
In the following, we write EqI for the diagonal (equality) relation over a set I. It

follows that EqI is the least element of EqRelI .

CLat⊓-fibrations are not necessarily “relation-like”. There also is an example with a
much more “space-like” flavor.

Example 2.3.14. The forgetful functor Top → Set from the category Top of topolog-
ical spaces and continuous maps is a CLat⊓-fibration.

Example 2.3.15. The forgetful functor Meas → Set from the category Meas of mea-
surable spaces (sets with a σ-algebra) and measurable maps is a CLat⊓-fibration.

We also use a few CLat⊓-fibrations over categories other than Set. One is “the
fibration of binary relations”:

Definition 2.3.16 (BRel → Set2). We define the category BRel as follows:

• An object is a triple (X,Y,R ⊆ X × Y ) of two sets and a relation between them.

• An arrow from (X,Y,R) to (Z,W, S) is a pair (f : X → Z, g : Y → W ) of functions
such that (x, y) ∈ R implies (f(x), g(y)) ∈ S.
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The forgetful functor BRel → Set2 is then a CLat⊓-fibration.

This can be used for modeling bisimulations between two different systems. See Sec-
tion 4.8.2.

The other is “the fibration of equivalence relations on measurable spaces”:

Definition 2.3.17 (EqRelMeas → Meas). We define the category EqRelMeas as
follows:

• An object is a triple (X,ΣX , R ⊆ X×X) of a set, a σ-algebra, and an equivalence
relation.

• An arrow from (X,ΣX , R) to (Y,ΣY , S) is a map f : X → Y that is measurable
with respect to (ΣX ,ΣY ) and preserves the equivalence relations.

The forgetful functor EqRelMeas → Meas is then a CLat⊓-fibration.

Yet another class of examples is given as follows: for any well-powered category B
admitting small limits, the subobject fibration Sub(B) → B of B is a CLat⊓-fibration.
All the algebraic categories over Set and Grothendieck toposes satisfy these conditions
of B. We note, however, that the forgetful functors from algebraic categories over Set
are rarely (CLat⊓-)fibrations.

Remark 2.3.18. A CLat⊓-fibration can equivalently be defined as a topological func-
tor [33] with small fibers. Some papers like [26] use this as an alternative framework.
Topological functors are a well-studied topic, and many examples and results are avail-
able; a good summary is found in [2]. Here we prefer the fibrational presentation,
following works on coinductive predicates [32, 12, 29, 66, 50, 45].

2.4. Lifting and Fibrational Coinduction

Now we proceed to obtain information, modelled on aCLat⊓-fibration, from a coalgebra.
To do so, we need functor lifting. In Section 1.2 we have seen that it is used to define
bisimilarity, or more generally bisimilarity-like notions, as a way to turn a relation (or
pseudometric, etc.) on X into one on BX. Here we review the formal definition in a
restricted form that only considers CLat⊓-fibration. (Note that, usually it is defined
more generally, and there are indeed applications of such general definition.)

Definition 2.4.1 (lifting of endofunctor). Let p : E → C be a CLat⊓-fibration and
B : C → C be a functor. A lifting of B along p is a functor Ḃ : E → E such that
p ◦ Ḃ = B ◦ p holds:

E
Ḃ

//

p

��

E
p

��
C

B
// C.
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2. Preliminaries

Intuitively, using a functor lifting Ḃ of B, we can obtain E-information from B-
behaviors. The formal definition of this procedure is predicate transformer.

Definition 2.4.2 ((fibrational) predicate transformer x∗ ◦ Ḃ). In the setting of Defini-
tion 2.4.1, let Ḃ be a lifting of B, and x : X → BX be a B-coalgebra. We then obtain
an endofunctor

x∗ ◦ Ḃ : EX → EX by the composite EX
Ḃ−→ EBX

x∗
−→ EX .

The functor x∗◦Ḃ is called the predicate transformer induced by Ḃ over the B-coalgebra
x.

Definition 2.4.3 (coinductive predicate ν(x∗ ◦ Ḃ) ∈ EX , and invariant). In the setting
of Definition 2.4.2, the carrier of the final x∗ ◦ Ḃ-coalgebra (if it exists) is called the
Ḃ-coinductive predicate over x. It is denoted by ν(x∗ ◦ Ḃ) ∈ EX .

An x∗ ◦ Ḃ-coalgebra is called a Ḃ-invariant over x.

The names in the above definition reflect the common reasoning principle for gfp spec-
ifications (such as safety), namely that an invariant underapproximates (and thus wit-
nesses) the gfp specification. Each B-invariant indeed witnesses the B-coinductive pred-
icate, in the sense that there is a unique morphism from the former to the latter.

We now define a technical condition on a functor lifting: fiberedness. This means that
the lifting interacts well with the pullback structure of the fibration, but we first give a
definition focusing on Cartesian arrows. Here we define it in a slightly more general way
so that we can use them later (Section 3.3.2).

Definition 2.4.4 (fibered functor [36, Definition 1.7.1]). Let p : E → C and q : F → D
be CLat⊓-fibrations. A fibered functor from p to q is a functor Ḃ : E → F such that
there is another functor B : C → D satisfying q ◦ Ḃ = B ◦ p and Ḃ sends each Cartesian
arrow to a Cartesian arrow.

Note that, in the situation above, such B is uniquely determined by p, q, and Ḃ. Now
we see a characterization of fiberedness by means of pullback.

Proposition 2.4.5. Let p : E → C and q : F → D be CLat⊓-fibrations and Ḃ : E → F
and B : C → D be functors satisfying q ◦ Ḃ = B ◦ p. Ḃ is a fibered functor if and only if,
for any f : X → Y in C and P ∈ EY , Ḃ(f∗P ) = (Bf)∗(ḂP ) holds.

Fiberedness implies a notable feature of the coinductive predicate:

Proposition 2.4.6 (stability of coinductive predicate). Assume the setting of Defini-
tion 2.4.3. Assume that Ḃ is a fibered functor. Then, the coinductive predicate is stable
under coalgebra morphisms: for any morphism of coalgebras f from (X, c) to (Y, d), we

have ν(c∗ ◦ Ḃ) = f∗
(
ν(d∗ ◦ Ḃ)

)
.
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2.4. Lifting and Fibrational Coinduction

Proof. Let Φc = c∗◦Ḃ and Φd = d∗◦Ḃ be the predicate transformers. Define a transfinite
sequence (ναΦc)α is an ordinal of elements of EX by the following:

ναΦc =
l

β<α

Φc (νβΦc) .

Define another transfinite sequence (ναΦd)α is an ordinal by a similar manner. By Fact 2.2.4,
there is an ordinal γ such that νγΦc = νΦc and νγΦd = νΦd.

1 Thus, it suffices to show
the following claim:

Claim. For any ordinal α, we have ναΦc = f∗ (ναΦd).

We show this by transfinite induction on α. Assume the claim holds for all β < α.
Using the assumption that f is a morphism of coalgebras, the fiberedness of Ḃ, and

the functoriality of pullback (Proposition 2.3.8), we have f∗ ◦ Φd = Φc ◦ f∗. It implies
the claim for α

f∗ (ναΦd) = f∗

l

β<α

Φd (νβΦd)

 =
l

β<α

f∗ (Φd (νβΦd))

=
l

β<α

Φc (f
∗νβΦd) =

l

β<α

Φc (νβΦc)

= ναΦc.

1This formulation differs slightly from the conventional one where successor and limit ordinals are
distinguished, but the result also holds under this definition.
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3. Codensity Lifting

In Chapter 2, we reviewed two preceding frameworks: universal coalgebra (Section 2.1)
and fibrational coinduction (Section 2.4). Using these, one can define and manipulate
“behavioral” structures on systems (i.e. bisimilarity relation and behavioral distance) in
a unified manner. However, the latter needs a functor lifting, which is rather a large
data in many cases, and it is hard to give one in general. Moreover, while we are talking
about “behavioral” data, which depends only on “observable behaviors”, these do not
include a mathematical gadget modelling “observations”.

In this chapter we focus on codensity lifting. Technically, it is a method for con-
structing a functor lifting from a small data. This reduces the hard problem of giving a
whole functor lifting. Intuitively, codensity lifting is a generic way to obtain a functor
lifting using “observations”. This enables us to model “observations” in our framework
explicitly and connect the fixed-point-based formulation to games and modal logic.

The chapter consists of two sections: in Section 3.1 we review the definition of coden-
sity lifting and in Section 3.3 we discuss fiberedness of codensity lifting.

3.1. Codensity Lifting and Codensity Bisimilarity

We introduce codensity lifting and codensity bisimilarity based on [66]. These turn
out to subsume many bisimilarity-like notions in the literature. The technical contents
in Sections 3.1.1 and 3.1.2 are largely from [66];

3.1.1. Codensity Lifting

Definition 3.1.1 (codensity lifting (as in [44])). Let

• p : E → C be a CLat⊓-fibration,

• B : C → C be a functor,

• Ω ∈ E be an object above Ω ∈ C, and

• τ : BΩ → Ω be a B-algebra.

Define a functor BΩ,τ : E → E, which is a lifting of B along p, by

BΩ,τP =
l

f∈E(P,Ω)

(B(pf))∗τ∗Ω
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3. Codensity Lifting

for each P ∈ E. The functor BΩ,τ is called a codensity lifting of B. Note that, for each
P ∈ E and f : P → Ω, the situation is as follows:

Ω

BpP
B(pf)

// BΩ τ
// Ω

and we can indeed obtain the pullback (B(pf))∗τ∗Ω.

We have given only the object part of BΩ,τ above, but the arrow part, if it is well-
defined, should be determined uniquely since p is faithful. We give a proof that it is
indeed well-defined. For each f : P → Q, we need another arrow g : BΩ,τP → BΩ,τQ
such that pg = B(pf). By Proposition 2.3.6, it suffices to show the following proposition:

Proposition 3.1.2. For any f : P → Q, BΩ,τP ⊑ (B(pf))∗
(
BΩ,τQ

)
holds.

Proof. By definition, the l.h.s. satisfies

BΩ,τP =
l

g∈E(P,Ω)

(B(pg))∗τ∗Ω.

On the other hand, the r.h.s. satisfies

(B(pf))∗
(
BΩ,τQ

)
= (B(pf))∗

 l

h∈E(Q,Ω)

(B(ph))∗τ∗Ω


=

l

h∈E(Q,Ω)

(B(pf))∗(B(ph))∗τ∗Ω

=
l

h∈E(Q,Ω)

(B(p(h ◦ f)))∗τ∗Ω.

Here, since {g ∈ E(P,Ω)} ⊇ {h ◦ f | h ∈ E(Q,Ω)} holds, we have

l

g∈E(P,Ω)

(B(pg))∗τ∗Ω ⊑
l

h∈E(Q,Ω)

(B(p(h ◦ f)))∗τ∗Ω.

This means BΩ,τP ⊑ (B(pf))∗
(
BΩ,τQ

)
.

Let us elaborate on the above definition. Let P ∈ EX and X = pP . The point is
to regard an arrow X → Ω in C as an “observation” on X and an object P ∈ EX as
“information” on X. Our goal is to obtain “information” on BX from that on X.
We begin with taking some k : P → Ω in E. For such k, p(k) : X → Ω can be seen as an

“observation” on the space X ∈ C. Here, p(k) has to be decent from P to Ω. Intuitively,
this means that the resulting “information” (p(k))∗Ω ∈ EX of the “observation” p(k)
must be consistent with the information P on X we already have. For example, in

30



3.1. Codensity Lifting and Codensity Bisimilarity

Example 3.1.4, the arrow p(k) : X → 2, intuitively an “observation,” corresponds to a
subset of X. The resulting “information” (p(k))∗Eq2 ∈ EqRelX of p(k) is the induced
equivalence relation

(p(k))∗Eq2 = {(x, y) ∈ X2 | p(k)(x) = p(k)(y)},

and it must be “consistent” with the given equivalence relation (X,R) ∈ EqRel, that
is, each equivalence class of (p(k))∗Eq2 must be R-closed.

The “observation” p(k) : X → Ω is simply an arrow, so we can apply the given functor
B : C → C to it. The result is B(p(k)) : BX → BΩ. To obtain an “observation” on BX,
we have to compose it with some modality τ : BΩ → Ω. In Example 3.1.4, this process
gives an “observation” ♢ ◦ P(p(k)) : PX → 2 on PX, and it satisfies the following for
each S ∈ PX:

(♢ ◦ P(p(k)))(S) = ⊤ ⇐⇒ ∃x ∈ S. p(k)(x) = ⊤.

Note the existential quantification ∃ above. It is the part where the modality ♢ comes
up.
Now that we have an “observation” on BX, we obtain “information” on BX by

pullback. The following diagram is the summary of this situation:

E
p

��

(
τ ◦B

(
p(k)

))∗
Ω // Ω

C B(pP )
B(p(k))

// BΩ τ
// Ω.

Finally, gathering all the “information” (τ ◦ B(p(k)))∗Ω leads to the definition (Defini-
tion 5.2.8). In the setting of Example 3.1.4, the result of this process is the equivalence
relation on PX, defined for each S, T ⊆ X by

∀k : X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

=⇒
(
(∃x ∈ S. k(x) = ⊤) ⇐⇒ (∃x ∈ T. k(x) = ⊤)

) )
.

It is equivalent to another more familiar definition, as described in Example 3.1.4.
One might wonder how codensity lifting is related with codensity monad [54, Exercise

X.7.3]. The following proposition exhibits the relationship.

Proposition 3.1.3. Let p : E → C be a CLat⊓-fibration, B : C → C be a functor and
(Ω, τ) be a parameter of codensity lifting of F along p. Moreover we assume that E has
powers [54, Section III.4] and p preserves them. For any P ∈ E, BΩ,τP coincides with
the vertex of the following pullback:

E
p

��

BΩ,τP // ΩE(P,Ω)

C B(pP ) αP

// ΩE(P,Ω)

where αP = ⟨τ ◦ B(p(k))⟩k∈E(P,Ω) is the morphism obtained by the tupling of the power
of Ω in C.
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3. Codensity Lifting

In fact, codensity lifting of monads is first defined in terms of the above pullback [41].
The name “codensity lifting” comes from the fact that the above pullback involves the
codensity monad ΩE(−,Ω).

Table 3.1 lists concrete examples of codensity liftings, with various fibrations p, func-
tors B, and parameters (Ω, τ). Some of them coincide with known notions. For example,
the entry 5 of the table says that the functor (D≤1)

Ω,τ , with the designated Ω and τ ,
carries a metric space (X, d) to the set D≤1X equipped with the well-known Kantorovich
metric K(d) induced by d. See (4.1).

Besides the functors listed in the table, there are some natural ways to systematically
lift polynomial functors, by defining τ : FΩ → Ω in an inductive manner—see, e.g., [11].

Example 3.1.4. Let us take a close look at the entry 4 of Table 3.1. There we codensity-
lift the covariant powerset functor P along the CLat⊓-fibration EqRel −→ Set. We use
the parameter ((2,Eq2),♢), where ♢ : P2 → 2 is the may-modality defined by ♢S = ⊤
if and only if ⊤ ∈ S.

We shall abbreviate (2,Eq2) by Eq2—a notational convention that is used throughout
the paper.

Then PEq2,♢(X,R) relates S, T ∈ PX if and only if

∀k : X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

=⇒
(
(∃x ∈ S. k(x) = ⊤) ⇐⇒ (∃x ∈ T. k(x) = ⊤)

) )
.

Straightforward calculation shows that this is equivalent to

(∀x ∈ S. ∃y ∈ T. (x, y) ∈ R) ∧ (∀y ∈ T. ∃x ∈ S. (x, y) ∈ R).

This lifting is the restriction (to EqRel) of the standard relational lifting of P along
ERel −→ Set, which is used for the usual bisimulation notion for Kripke frames [10].

Example 3.1.5. In the entry 3 of Table 3.1, we codensity-lift P along the CLat⊓-
fibration ERel −→ Set (instead of EqRel −→ Set) with the parameter

(
(2,Eq2),♢

)
.

The characterization of PEq2,♢(X,R) is slightly involved. Its relation part relates
S, T ∈ PX if and only if

(∀x ∈ S. ∃y ∈ T. (x, y) ∈ Req) ∧ (∀y ∈ T. ∃x ∈ S. (x, y) ∈ Req),

where Req denotes the equivalence closure of R.

It is not clear at this stage whether the codensity bisimilarities induced by the above
liftings (Examples 3.1.4 and 3.1.5, i.e. the entries 4 and 3 of Table 3.1) coincide with
the usual bisimilarity notion for Kripke frames. This is because of the involvement of
mandatory equivalence closures—specifically by the use of EqRel in Example 3.1.4, and
by the occurrence of ( )eq in Example 3.1.5. Later, in Example 4.7.4, we prove that
both of the codensity bisimilarities indeed coincide with the usual bisimilarity notion.
The proof relies crucially on transfer of codensity liftings via fibered functors.
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3.1. Codensity Lifting and Codensity Bisimilarity

T
a
b
le

3
.1
.:
C
o
d
en

si
ty

li
ft
in
g
of

fu
n
ct
or
s

fi
b
ra
ti
o
n
E

p −→
C

fu
n
ct
or

B
:
C
→

C
ob

s.
d
om

.
Ω

m
o
d
al
it
y
τ

li
ft
in
g
B

Ω
,τ

of
F

1
P
re

→
S
e
t

p
ow

er
se
t
P

(2
,≤

)
♢
:
P
2
→

2
lo
w
er

p
re
or
d
er

[4
1]

2
P
re

→
S
e
t

p
ow

er
se
t
P

(2
,≥

)
♢
:
P
2
→

2
u
p
p
er

p
re
or
d
er

[4
1]

3
E
R
e
l
→

S
e
t

p
ow

er
se
t
P

(2
,E

q
2
)

♢
:
P
2
→

2
(s
ee

E
x
.
3.
1.
5
&

4.
7.
4)

4
E
q
R
e
l
→

S
e
t

p
ow

er
se
t
P

(2
,E

q
2
)

♢
:
P
2
→

2
(s
ee

E
x
.
3.
1.
4
&

4.
7.
4)

5
P
M

e
t 1

→
S
e
t

su
b
d
is
tr
ib
.
D

≤
1

([
0,
1]
,d

[0
,1
])

e
:
D

≤
1
[0
,1
]
→

[0
,1
]

K
an

to
ro
v
ic
h
m
et
ri
c
[4
1]

6
P
M

e
t 1

→
S
e
t

p
ow

er
se
t
P

([
0,
1]
,d

[0
,1
])

in
f:

P
[0
,1
]
→

[0
,1
]

H
au

sd
or
ff
m
et
ri
c
(A

p
p
x
.
A
.2
)

7
U

∗ (
P
M

e
t 1
)
→

M
e
a
s

su
b
-G

ir
y
G ≤

1
([
0,
1]
,d

[0
,1
])

e
:
G ≤

1
[0
,1
]
→

[0
,1
]

K
an

to
ro
v
ic
h
m
et
ri
c
[4
1]

8
†

P
re

→
S
e
t

p
ow

er
se
t
P

(2
,≤

),
(2
,≥

)
♢
:
P
2
→

2
co
n
ve
x
p
re
or
d
er

[4
1]

9
†

E
q
R
e
l
→

S
e
t

su
b
d
is
tr
ib
.
D

≤
1

(2
,E

q
2
)

(τ
r
:
D

≤
1
2
→

2)
r
∈
[0
,1
]

(f
or

p
ro
b
.
b
is
im

.,
se
e
E
x
.
4.
8.
14

)

1
0†

T
o
p
→

S
e
t

2
×
(

)Σ
S
ie
rp
in
sk
i
sp
.

(s
ee

E
x
.
4.
6.
9)

(f
or

b
is
im

.
to
p
.,
se
e
E
x
.
4.
6.
9)

1
1†

B
R
e
l
→

S
e
t2

an
y
fu
n
ct
or

((
1,
1)
,R

2
)

an
y
fa
m
il
y

(f
or

Λ
-b
is
im

.,
se
e

§4
.8
.2
)

T
h
e
fi
b
ra
ti
o
n
U

∗ (
P
M

e
t 1
)
→

M
e
a
s
is
in
tr
o
d
u
ce
d
in

§4
.8
.5
.
d
[0
,1
]
d
en

ot
es

th
e
E
u
cl
id
ea
n
m
et
ri
c
on

th
e
u
n
it
in
te
rv
al

[0
,1
].
T
h
e

m
o
d
al
it
y
♢

is
in
tr
o
d
u
ce
d
in

E
x
am

p
le

3
.1
.4
.
T
h
e
fu
n
ct
io
n
s
e
:
D

≤
1
[0
,1
]
→

[0
,1
]
an

d
e
:
G ≤

1
[0
,1
]
→

[0
,1
]
b
ot
h
re
tu
rn

ex
p
ec
te
d

va
lu
es
.
T
h
e
lo
w
er
,
u
p
p
er

an
d
co
n
v
ex

p
re
o
rd
er
s
a
re

k
n
ow

n
fo
r
p
ow

er
d
om

ai
n
s;

se
e
e.
g.

[6
9]
.
T
h
e
fu
n
ct
io
n
τ r
:
D

≤
1
2
→

2
is

in
tr
o
d
u
ce
d
in

E
x
a
m
p
le

4.
8.
14

.
T
h
e
ex
a
m
p
le
s
m
a
rk
ed

w
it
h
†
in
vo
lv
e
m
u
lt
ip
le

m
o
d
al
it
ie
s
an

d
ob

se
rv
at
io
n
d
om

ai
n
s
(§
4.
6)
.

33



3. Codensity Lifting

Example 3.1.6. Here we follow [66, Example 5.13] and show that codensity lifting
generalizes a categorical construction introduced in [6], namely the Kantorovich lifting
of functors. Take PMet1 −→ Set as the CLat⊓-fibration p in Definition 5.2.8. As Ω, we
take Ω = [0, 1] with the usual Euclidean metric d[0,1]. There is freedom in the choice of a
modality τ : BΩ → Ω—this corresponds to what is called an evaluation function in [6].
This way we recover the Kantorovich lifting in [6] as BΩ,τ .

3.1.2. Codensity Bisimilarity

In [66], codensity bisimulation and bisimilarity are introduced.

Definition 3.1.7 (codensity bisimulation). Assume the setting of Definition 5.2.8. Let
c : X → FX be an F -coalgebra. An object P ∈ EX is a ((Ω, τ)-)codensity bisimulation
over c if c : (X,P ) →̇ (FX,FΩ,τP ); that is, c is decent with respect to the designated
indistinguishability structures on X and FX.

We move on to the characterization of codensity bisimulations as post-fixpoints of
suitable predicate transformers.

Definition 3.1.8 (predicate transformer ΦΩ,τ ). Assume the setting of Definition 3.1.7.
We define a predicate transformer ΦΩ,τ

c : EX → EX with respect to c and FΩ,τ by

ΦΩ,τ
c P = c∗(FΩ,τP ). (3.1)

Since c∗ is
d
-preserving, expanding the definition of FΩ,τ yields

ΦΩ,τ
c P =

l

k∈E(P,Ω)

(
τ ◦ F (p(k)) ◦ c

)∗
Ω.

Theorem 3.1.9. Assume the setting of Definition 3.1.7. For any P ∈ EX , the following
are equivalent.

1. c : (X,P ) →̇ (FX,FΩ,τP ); that is, P is a codensity bisimulation over c (Defini-
tion 3.1.7).

2. P ⊑ ΦΩ,τ
c P .

3. For each k ∈ C(X,Ω), k : (X,P ) →̇ (Ω,Ω) implies τ ◦ Fk ◦ c : (X,P ) →̇ (Ω,Ω).

Proof. The equivalence between the conditions (1) and (2) can be seen from the defini-
tions of ΦΩ,τ

c (Definition 3.1.8) and decency (Definition 2.3.5). Now we show (2) ⇐⇒
(3).
By using Definition 3.1.8, the condition (2) is equivalent to

P ⊑
l

k∈E(P,Ω)

(
τ ◦ F (p(k)) ◦ c

)∗
Ω.

The definition of meet implies that the above inequality is equivalent to the following:
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3.2. Codensity Lifting with Multiple Parameters

For each k ∈ C(X,Ω), k : (X,P ) →̇ (Ω,Ω) implies P ⊑
(
τ ◦ F (p(k)) ◦ c

)∗
Ω.

This is, in turn, equivalent to the condition (3), as can be seen from the definition of
decency (Definition 2.3.5).

The predicate transformer ΦΩ,τ
c is a monotone map from the complete lattice EX to

itself. Therefore, by the Knaster–Tarski theorem (Fact 2.2.3), the greatest post-fixed
point of ΦΩ,τ

c exists and it is the greatest fixed point of ΦΩ,τ
c .

Definition 3.1.10 (codensity bisimilarity νΦΩ,τ
c ). Assume the setting of Definition 3.1.7.

The greatest codensity bisimulation, whose existence is guaranteed by the above argu-
ments, is called the codensity bisimilarity. It is denoted by νΦΩ,τ

c .

Some bisimilarity notions, including bisimilarity of deterministic automata (Exam-
ple 4.8.10), are accommodated in the generalized framework with multiple observation
domains—see Section 4.6.

Example 3.1.11 (bisimulation metric). Consider the CLat⊓-fibration PMet1 −→ Set
and the subdistribution functor D≤1 : Set → Set. Recall that D≤1(X) = {p : X →
[0, 1] |

∑
x∈X p(x) ≤ 1}.As a parameter of codensity lifting, we take (Ω, τ) =

( (
[0, 1], d[0,1]

)
, e : D≤1[0, 1] →

[0, 1]
)
, where e is the expectation function e(p) =

∑
r∈[0,1] r · p(r) and d[0,1] is the Eu-

clidean metric. Let c : X → D≤1X be a coalgebra, identified with a Markov chain.
The codensity bisimilarity in this setting coincides with the bisimulation metric from [22]

(see also Section 4.1.1). This fact is not hard to check directly; one can also derive the
coincidence via Example 3.1.6 and the observations in [6].

3.2. Codensity Lifting with Multiple Parameters

We extend the theory so far and accommodate multiple observation domains and modal-
ities. This extension is needed for some examples, such as those marked with † in
Table 3.1.
We consider the class Lift(B, p) of liftings of an endofunctor B : C → C along a

CLat⊓-fibration E p−→ C. It comes with a natural pointwise partial order:

G ⊑ H ⇐⇒ ∀X ∈ E. GX ⊑ HX (G,H ∈ Lift(F, p)), (3.2)

and the partially ordered class Lift(F, p) admits meets of arbitrary size. As done in the
original codensity lifting of endofunctors in [66] (and that of monads in [41]), we extend
the codensity lifting so that it takes a family of parameters {(ΩA, τA)}A∈A, and returns
the intersection of the codensity liftings of B with these parameters.

Definition 3.2.1 (codensity lifting of a functor with multiple parameters [66]). Let

B : C → C be a functor, E p−→ C be a CLat⊓-fibration, A be a class, and {(ΩA, τA)}A∈A
be an A-indexed family of parameters (of the codensity lifting of B along p), which is
denoted simply by (Ω, τ). The (multiple-parameter) codensity lifting of B with (Ω, τ)
is the endofunctor BΩ,τ : E → E defined by the intersection of the codensity liftings:

BΩ,τP =
l

A∈A
BΩA,τAP, that is,

l

A∈A,k∈E(P,ΩA)

(
τA ◦B(p(k))

)∗
(ΩA).
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3. Codensity Lifting

Here we briefly list some corresponding definitions for multiple parameter cases. These
play a role in, e.g., Section 4.6 in Chapter 4 and all of Chapter 5.

Definition 3.2.2 (codensity bisimulation and codensity bisimilarity). Assume the set-
ting of Definition 3.2.1. Let c : X → BX be a B-coalgebra. An object P ∈ EX is a
codensity bisimulation over c if c : (X,P ) →̇ (BX,BΩ,τP ); that is, c : X → BX is decent
with respect to the designated indistinguishability structures.
The largest codensity bisimulation is called the codensity bisimilarity and denoted by

νΦΩ,τ
c .

Definition 3.2.3 (predicate transformer ΦΩ,τ ). Assume the setting of Definition 3.2.2.
We define a predicate transformer ΦΩ,τ

c : EX → EX with respect to c and BΩ,τ by

ΦΩ,τ
c P = c∗(BΩ,τP ).

Since c∗ is
d
-preserving, expanding the definition of BΩ,τ yields

ΦΩ,τ
c P =

l

A∈A,k∈E(P,ΩA)

(
τA ◦B(p(k)) ◦ c

)∗
ΩA.

3.3. C-injective Objects and Fiberedness of Codensity Lifting

3.3.1. C-injective Objects and Codensity Lifting

C-injective Object

In the proof of the functoriality of BΩ,τ , ultimately we use the fact that, for any f : P →
Q, any “test” k : Q → Ω can be turned into another “test” k ◦ f : P → Ω. On the
other hand, when we try to prove fiberedness of BΩ,τ , we have to somehow lift a “test”
g : P → Ω along a Cartesian arrow f : P → Q and obtain another “test” h : Q → Ω.
This observation leads us to the following definition of c-injective object. (The letter c
here comes from Cartesian.)

Definition 3.3.1 (c-injective object). Let p : E → C be a fibration. An object Ω ∈ E is
a c-injective object if the functor E(−,Ω) : Eop → Set sends every Cartesian arrow to a
surjective map.
Equivalently, Ω ∈ E is a c-injective object if, for any Cartesian arrow f : P → Q

in E and any (not necessarily Cartesian) arrow g : P → Ω, there is a (not necessarily
Cartesian) arrow h : Q → Ω satisfying g = h ◦ f .

Some basic objects can be shown to be c-injective objects.

Example 3.3.2 (the two-point set). In the fibration EqRel → Set, (2,=) is a c-
injective object. Here, 2 = {⊥,⊤} is the two-point set and = means the equality
relation. Indeed, for any Cartesian f : (X,RX) → (Y,RY ) and any g : (X,RX) → (2,=),
if we define h : (Y,RY ) → (2,=) by

h(y) =

{
g(x) if (y, f(x)) ∈ RY

⊤ otherwise,
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then this turns out to be well-defined and satisfies h ◦ f = g.

Example 3.3.3 (the two-point poset of truth values). In the fibrationPre → Set, (2,≤)
is a c-injective object. Here, ≤ is the unique partial order satisfying ⊥ ≤ ⊤ and ⊤ ≰ ⊥.
Indeed, for any Cartesian arrow f : (X,RX) → (Y,RY ) and any g : (X,RX) → (2,≤), if
we define h : : (Y,RY ) → (2,≤) by

h(y) =

{
⊥ if (y, f(x)) ∈ RY for some x such that g(x) = ⊥
⊤ otherwise,

then this turns out to be well-defined and satisfies h ◦ f = g.

Example 3.3.4 (the unit interval as a pseudometric space [6, Theorem 5.8]). In the fi-
bration PMet⊤ → Set, [0,⊤] is a c-injective object. Indeed, for any arrow g : (X, dX) →
([0,⊤], de) and any Cartesian arrow f : (X, dX) → (Y, dY ), we can show that the map
h : Y → [0,⊤] defined by h(y) = infx∈X (g(x) + dY (f(x), y)) is nonexpansive from
(Y, dY ) to ([0,⊤], de).

The following non-example shows that c-injectivity crucially depends on the fibration
we consider.

Example 3.3.5 (non-example). In contrast to Example 3.3.3, in the fibration ERel →
Set, (2,≤) is not c-injective, where 2 = {⊥,⊤} is the two-point set and ≤ is the unique
partial order satisfying ⊥ ≤ ⊤ and ⊤ ≰ ⊥.

This can be seen as follows. Let X = {a, b}, Y = {x, y, z}, RX = ∅, and RY =
{(x, z), (z, y)}. Then (X,RX) and (Y,RY ) are objects of ERel. Consider the maps
f : (X,RX) → (Y,RY ) and g : (X,RX) → (2,≤) defined by f(a) = x, f(b) = y, g(a) =
⊤, and g(b) = ⊥. Note that f is Cartesian. However, there is no h : (Y,RY ) → (2,≤)
such that h◦f = g: such h would satisfy ⊤ = h(f(a)) = h(x) ≤ h(z) ≤ h(y) = h(f(b)) =
⊥, which contradict ⊤ ≰ ⊥.

The same example can also be used to show that, in contrast to Example 3.3.2, (2,=)
is not c-injective, where = means the equality relation.

Sufficient Condition for Fibered Codensity Lifting

Now we are prepared to state the following main theorem of the current paper. The
strategy of the proof is roughly as mentioned earlier.

Theorem 3.3.6 (fiberedness from injective object). In the setting of Definition 3.1.1,
if Ω is a c-injective object, then BΩ,τ is fibered.

Proof. Let f : P → Q be any Cartesian arrow. By Proposition 2.4.5, it suffices to
show BΩ,τP = (F (pf))∗

(
BΩ,τQ

)
. Here, BΩ,τP ⊑ (F (pf))∗

(
BΩ,τQ

)
has already been

proven. Thus, our goal is the inequality BΩ,τP ⊒ (F (pf))∗
(
BΩ,τQ

)
.

Here, since Ω is c-injective and f is Cartesian, the following inclusion holds:

{g ∈ E(P,Ω)} ⊆ {h ◦ f | h ∈ E(Q,Ω)} .
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3. Codensity Lifting

By the definition of the meet, we have
l

g∈E(P,Ω)

(F (pg))∗τ∗Ω ⊒
l

h∈E(Q,Ω)

(F (p(h ◦ f)))∗τ∗Ω.

By the calculation in the proof of Proposition 3.1.2, this implies

BΩ,τP ⊒ (F (pf))∗
(
BΩ,τQ

)
.

Remark 3.3.7. A refinement of Theorem 3.3.6 to an if-and-only-if result seems hard.
At least there is a simple counterexample to the most naive version of it: Consider a
CLat⊓-fibration Id: C → C, an endofunctor Id: C → C, an object C ∈ C, and an arrow
τ : C → C. The codensity lifting IdC,τ is always equal to Id, which is fibered. However,
since any arrow in C is a Cartesian arrow w.r.t. Id, it is not hard to find an example of
C and C such that C is not c-injective w.r.t. Id.

Example 3.3.8 (Kantorovich lifting). Baldan et al. [6, Theorem 5.8] have shown that
any Kantorovich lifting preserves isometries. In terms of fibrations, this means that such
functor is a fibered endofunctor on the fibration PMet⊤ → Set.
Since Kantorovich lifting is a special case of codensity lifting where Ω = ([0,⊤], dR),

Theorem 3.3.6 and Example 3.3.4 recover the same result. Actually, this has inspired
Theorem 3.3.6 as a prototype.

The argument above also applies to situations with multiple parameters.

Definition 3.3.9 (codensity lifting with multiple parameters (as in [44])). Let E,C, p,
and F be as in Definition 3.1.1. Let A be a set. Assume that, for each a ∈ A, we are
given Ωa ∈ E above Ωa ∈ C and τa : FΩa → Ωa. Define a functor BΩ,τ : E → E by

BΩ,τP =
l

a∈A
BΩa,τaP

for each P ∈ E.

Corollary 3.3.10. In the setting of Definition 3.2.1, if, for each a ∈ A, Ωa is a c-
injective object, then BΩ,τ is fibered.

Proof. For any P ∈ E above X ∈ C and f : Y → X in C, using Theorem 3.3.6, we can
see

(Ff)∗BΩ,τP = (Ff)∗
l

a∈A
BΩa,τaP =

l

a∈A
(Ff)∗BΩa,τaP

=
l

a∈A
BΩa,τaf∗P = BΩ,τf∗P.

Example 3.3.11 (Kantorovich lifting with multiple parameters). In [48], König and
Mika-Michalski introduced a generalized version of Kantorovich lifting.
Since it is a special case of Definition 3.2.1 where p is the fibration PMet⊤ → Set

and Ω = ([0,⊤], dR), Corollary 3.3.10 and Example 3.3.4 imply that such lifting always
preserves isometries.
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3.3.2. Results on C-injective Objects

Here we seek properties of c-injective objects, mainly to obtain more examples of them.
We also see that, in a few fibrations, c-injective objects have been essentially identified
by previous works.

M-injective Objects

To connect c-injectivity with existing works, we consider a more general notion of M-
injective object. The following definition is found e.g. in [40, Section 9.5].

Definition 3.3.12. Let C be a category and M be a class of arrows in C. An object
X ∈ C is an M-injective object if the functor C(−, X) : Cop → Set sends every arrow in
M to a surjective map.

The definition of c-injective objects is a special case of the definition above where M
is the class of all Cartesian arrows.
The following is a folklore result. The dual is found e.g. in [34, Proposition 10.2].

Proposition 3.3.13. Let C,D be categories, MC,MD be classes of arrows, and L ⊣
R : C → D be a pair of adjoint functors. Assume that L sends any arrow in MD to one
in MC. For any MC-injective C ∈ C, RC ∈ D is MD-injective.

Proof. It suffices to show that D(−, RC) : Dop → Set sends each arrow in MD to a
surjective map. By the assumption, the functor above factorizes to L : D → C and
C(−, C) : Dop → Set. The former sends each arrow in MD to one in MC and the latter
sends one in MC to a surjective map. Thus, the composition of these sends each arrow
in MD to a surjective map.

For epireflective subcategories, we have a sharper result:

Proposition 3.3.14. In the setting of Proposition 3.3.13, assume, in addition,

• R is fully faithful,

• R sends each arrow in MC to one in MD, and

• each component of the unit η : Id → RL is an epimorphism in MD.

Then, D ∈ D is MD-injective if and only if it is isomorphic to RC for some MC-injective
C ∈ C.

Proof. The “if” part is Proposition 3.3.13. We show the “only if” part.
Let D ∈ D be any MD-injective object. Since ηD : D → RLD is in MD, we can

use the MD-injectiveness of D to obtain f : RLD → D such that f ◦ ηD = idD. Here,
ηD ◦ f ◦ ηD = ηD and, by epi-ness of ηD, ηD ◦ f = idRLD. Thus, ηD is an isomorphism.
Now we show that LD is MC-injective. Let f : C → LD and g : C → C ′ be any arrow

in C and assume that g is in MC. Send these by R to D and consider Rf and Rg. By
the assumption, Rg is in MD. Since RLD is isomorphic to D, it is also MD-injective.
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3. Codensity Lifting

Using these, we can obtain h′ : RC ′ → RLD such that h′ ◦ Rg = Rf . Since R is full,
there is h : C ′ → LD such that Rh = h′. The faithfulness of R implies h ◦ g = f . Thus
LD is MC-injective.

Using this result, we can identify c-injective objects in a few situations.

Example 3.3.15 (continuous lattices in Top → Set [65]). In the setting of Propo-
sition 3.3.14, consider the case where D = Top, C = Top0. Here Top0 is the full
subcategory of Top of T0 spaces. Let R be the inclusion. It has a left adjoint L, taking
each space to its Kolmogorov quotient. Let MC be the class of topological embeddings
(i.e. homeomorphisms to their images) and MD be the class of Cartesian arrows (w.r.t.
the fibration Top → Set). Then the assumptions in Proposition 3.3.14 are satisfied and
we can conclude that c-injective objects in Top are precisely injective objects in Top0

w.r.t. embeddings.

The latter has been identified by Scott [65]. According to his result, such objects are
precisely continuous lattices with the Scott topology. Thus, we can see that c-injective
objects in Top are precisely such spaces.

Example 3.3.16 (complete lattices in Pre → Set [8]). In the setting of Proposi-
tion 3.3.14, consider the case where D = Pre, C = Pos. Here Pos is the full subcat-
egory of Pre of posets. Let R be the inclusion. It has a left adjoint L, taking each
preordered set to its poset reflection. Let MC be the class of embeddings and MD be
the class of Cartesian arrows (w.r.t. the fibration Pre → Set). Then the assumptions
in Proposition 3.3.14 are satisfied and we can conclude that c-injective objects in Pre
are precisely injective objects in Pos w.r.t. embeddings.

The latter has been identified by Banaschewski and Bruns [8] . According to their
result, such objects are precisely complete lattices. Thus, we can see that c-injective
objects in Pre are precisely complete lattices.

Results Specific to C-injective Objects

To develop the theory of c-injective objects further, we establish some preservation
results for c-injectivity. Based on the two propositions of the last section, we show
two propositions specific to fibrations and c-injective objects.

From Proposition 3.3.13, we can derive the following:

Proposition 3.3.17. Let p : E → C, q : F → D be CLat⊓-fibrations and L ⊣ R : E → F
be a pair of adjoint functors. If L is fibered (from q to p), then RE ∈ F is c-injective (in
q) for each c-injective E ∈ E.

Proof. Let ME be the class of all arrows Cartesian w.r.t. p and MF be the class of all
arrows Cartesian w.r.t. q. Then, use Proposition 3.3.13 to the pair L ⊣ R of adjoint
functors.

From Proposition 3.3.14, we can derive the following:
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Proposition 3.3.18. In the setting of Proposition 3.3.17, assume in addition that both L
and R are fibered and that η : Id → RL is componentwise epi. Then, F ∈ F is c-injective
if and only if it is isomorphic to RE for some c-injective E ∈ E.

Proof. Use Proposition 3.3.14 in the same setting as the proof of Proposition 3.3.17.

3.3.3. Examples

We list several examples of Theorem 3.3.6. Indeed, most of the examples listed in [44,
Table VI] turn out to be fibered by Theorem 3.3.6. Since the conditions in Theorem 3.3.6
only refer to p : E → C and Ω, we sort the examples by these data.
We here recall some basic functors considered:

Definition 3.3.19. Let P : Set → Set be the covariant powerset functor andD≤1 : Set →
Set be the subdistribution functor. Here, a subdistribution p ∈ D≤1X is a measure on
the σ-algebra of all subsets of X with total mass ≤ 1. We abbreviate p({x}) to p(x).

Kantorovich Lifting

In Example 3.3.4 we have seen that, in the fibrationPMet⊤ → Set, the object ([0,⊤], dR)
is c-injective. We gather examples of this case here. As mentioned in Example 3.3.8 and
Example 3.3.11, this class of examples has been already studied and shown to be fibered
in [6, 48].

Example 3.3.20 (Hausdorff pseudometric). Let inf : P[0,⊤] → [0,⊤] be the map tak-
ing any set to its infimum. Then, the codensity lifting P([0,⊤],dR),inf : PMet⊤ → PMet⊤
turns out to induce the Hausdorff distance: for any (X, dX) ∈ PMet⊤, if we let
(PX, dPX) = P([0,⊤],dR),inf(X, dX), then

dPX(S, T ) = max

(
sup
x∈S

inf
y∈T

dX(x, y), sup
y∈T

inf
x∈S

dX(x, y)

)

holds for any S, T ∈ PX. By Theorem 3.3.6, this functor is fibered.

Example 3.3.21 (Kantorovich pseudometric). Let e : D≤1[0,⊤] → [0,⊤] be the map
taking any distribution to its expected value. Then, the codensity lifting

D≤1
([0,⊤],dR),e : PMet⊤ → PMet⊤

turns out to induce the Kantorovich distance: for any (X, dX) ∈ PMet⊤, if we let
(D≤1X, dD≤1X) = D≤1

([0,⊤],dR),e(X, dX), then

dD≤1X(p, q) = sup
f : (X,dX)→([0,⊤],dR) nonexpansive

∣∣∣∣∣∑
x∈X

f(x)p(x)−
∑
x∈X

f(x)q(x)

∣∣∣∣∣
holds for any p, q ∈ D≤1X. By Theorem 3.3.6, this functor is fibered.
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Lower, Upper, and Convex Preorders

In Example 3.3.16, we have identified complete lattices as c-injective objects in the
fibration Pre → Set. In particular, the two-point set (2,≤) is a c-injective object
(Example 3.3.3).
Katsumata and Sato [41, Section 4.1] used codensity lifting to recover the lower, upper,

and convex preorders on powersets. Here we see that our result applies to them: all of
the following liftings are fibered.

Example 3.3.22 (lower preorder). Define ♢ : P2 → 2 so that ♢S = ⊤ if and only if
⊤ ∈ S. Then, the codensity lifting P(2,≤),♢ : Pre → Pre turns out to induce the lower
preorder : if we let (PX,≤♢PX) = P(2,≤),♢(X,≤X), then, for any S, T ∈ PX,

S ≤♢PX T ⇔ ∀x ∈ S, ∃y ∈ T, x ≤X y.

Example 3.3.23 (upper preorder). Define □ : P2 → 2 so that □S = ⊤ if and only if
⊥ /∈ S. Then, the codensity lifting P(2,≤),□ : Pre → Pre turns out to induce the upper
preorder : if we let (PX,≤□PX) = P(2,≤),□(X,≤X), then, for any S, T ∈ PX,

S ≤□PX T ⇔ ∀y ∈ T, ∃x ∈ S, x ≤X y.

Example 3.3.24 (convex preorder). Denote the family of the two lifting parameters
above by ((2,≤), {♢,□}). Then, the codensity lifting (with multiple parameters, Defini-
tion 3.2.1) P(2,≤),{♢,□} : Pre → Pre is simply the meet of P(2,≤),♢ and P(2,≤),□. This is
what is called the convex preorder.

Remark 3.3.25. The original formulation [41, Section 4.1] is based on codensity lifting
of monads, so apparently different to ours. In our terms, they used the multiplication
µ1 : PP1 → P1 and two different preorders on P1. Using two different bijections between
P1 and 2, it can be shown that their formulation is actually equivalent to ours.

Equivalence relations

In Example 3.3.2 we have seen that, in the fibration EqRel → Set, the object (2,=) is
c-injective. We gather examples of this case here. All of the following liftings are fibered.
Details on the following examples can be found in [44].

Example 3.3.26 (lifting for bisimilarity on Kripke frames). Consider the codensity
lifting P(2,=),♢ : EqRel → EqRel, where ♢ is as defined in Example 3.3.22. This turns
out to satisfy the following: if we let (PX,∼PX) = P(2,=),♢(X,∼X), then

S ∼PX T ⇔ (∀x ∈ S,∃y ∈ T, x ∼X y) ∧ (∀y ∈ T, ∃x ∈ S, x ∼X y)

holds for any S, T ∈ PX. This can be used to define (the conventional notion of)
bisimilarity on Kripke frames (P-coalgebras).

Example 3.3.27 (lifting for bisimilarity on Markov chains). For each r ∈ [0, 1], define
a map thrr : D≤12 → 2 so that thrr(p) = ⊤ if and only if p(⊤) ≥ r. These define a [0, 1]-
indexed family of lifting parameters ((2,=), thrr)r∈[0,1]. The codensity lifting D≤1

(2,=),thr

defined by this family can be used to define probabilistic bisimilarity on Markov chains
(D≤1-coalgebras).
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Topologies

In Example 3.3.15, we have identified c-injective objects in the fibration Top → Set. In
particular, the Sierpinski space, defined as follows, is a c-injective object:

Definition 3.3.28 (Sierpinski space). The Sierpinski space is a topological space (2,OO)
where 2 = {⊥,⊤} and the family OO of open sets is {∅, {⊤}, 2}. We denote this space
by O.

The following liftings of P have appeared in [41, Section 4.2]. All of them are fibered:
in other words, they send embeddings to embeddings.

Example 3.3.29 (lower Vietoris lifting). Consider the codensity lifting PO,♢ : Top →
Top, where ♢ is as defined in Example 3.3.22. For each (X,OX) ∈ Top, if we let
(PX,O♢PX) = PO,♢(X,OX), then the topology O♢PX is the coarsest one such that, for
each U ∈ OX , the set {V ⊆ X | V ∩U ̸= ∅} is open. This is called lower Vietoris lifting
in [41].

Example 3.3.30 (upper Vietoris lifting). Consider the codensity lifting PO,□ : Top →
Top, where □ is as defined in Example 3.3.23. For each (X,OX) ∈ Top, if we let
(PX,O□PX) = PO,□(X,OX), then the topology O□PX is the coarsest one such that, for
each U ∈ OX , the set {V ⊆ X | V ⊆ U} is open. This is called upper Vietoris lifting
in [41].

Example 3.3.31 (Vietoris lifting). Define the codensity lifting PO,{♢,□} : Top → Top
like one in Example 3.3.24. We call this Vietoris lifting.

This turns out to be connected to Vietoris topology [49] as follows. For each (X,OX) ∈
Top, let (PX,O♢,□PX) = PO,{♢,□}(X,OX). The setK(X,OX) of closed subsets of (X,OX)

is a subset of PX. Here, the topology on K(X,OX) induced from O♢,□PX is the same as
the Vietoris topology.

This coincidence and the fiberedness of PO,{♢,□} implies that the Vietoris functor
V : Stone → Stone, defined in [49], sends embeddings to embeddings.

In [44], we considered another lifting:

Example 3.3.32 (lifting for bisimulation topology). Fix any set Σ. Let AΣ : Set → Set
be the functor defined by AΣX = 2 × XΣ. Define acc : AΣ2 → 2 by acc(t, ρ) = t. For
each a ∈ Σ, define ⟨a⟩ : AΣ2 → 2 by ⟨a⟩ (t, ρ) = ρ(a). Here, (O, acc) and (O, ⟨a⟩)
for each a ∈ Σ consist of a family of lifting parameters. The codensity lifting (with
multiple parameters, Definition 3.2.1) AΣ

O,{acc}∪{⟨a⟩|a∈Σ} : Top → Top was used to
define bisimulation topology for deterministic automata (AΣ-coalgebras). This is fibered.
This fact is used in Example 3.3.35, where we will look at bisimulation topology again.

3.3.4. Application to Codensity Bisimilarity

Fiberedness of codensity lifting has a consequence for codensity bisimilarity
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Proposition 3.3.33 (stability of codensity bisimilarity). Assume the setting of Defini-
tion 3.2.1 (codensity lifting with multiple parameters). Assume also that each Ωa is a
c-injective object. Then, codensity bisimilarity is stable under coalgebra morphisms: for

any morphism of coalgebras f from (X, c) to (Y, d), we have νΦΩ,τ
c = f∗

(
νΦΩ,τ

d

)
.

Proof. By Corollary 3.3.10, the codensity lifting BΩ,τ is fibered. Thus, we can use
Proposition 2.4.6 to obtain the desired result.

In particular, the codensity bisimilarity is determined by that on the final coalgebra:

Corollary 3.3.34. Assume the setting of Proposition 3.3.33. Assume also that there
exists a final F -coalgebra z : Z → FZ. Then, for any F -coalgebra c : X → FX, the

unique coalgebra morphism !X : X → Z satisfies νΦΩ,τ
c = (!X)∗

(
νΦΩ,τ

z

)
.

Example 3.3.35 (bisimulation topology for deterministic automata). Recall Exam-
ple 3.3.32. For any AΣ-coalgebra c : X → AΣX, we defined the codensity bisimilarity on

X by νΦ
O,{acc}∪{⟨a⟩|a∈Σ}
c ∈ TopX [44].

The functor AΣ has a final coalgebra: the set 2Σ
∗
of all languages on the alphabet Σ can

be given an AΣ-coalgebra structure and it is final. For an AΣ-coalgebra c : X → AΣX,
the unique coalgebra morphism l : X → 2Σ

∗
assigns to each state the recognized language

when started from it.
Corollary 3.3.34 implies that this map l determines the bisimulation topology on X.

We believe that this fact is new, and it supports our use of the term language topology
in [44, §VIII-C].
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4. Codensity Games for Bisimilarity

4.1. Overview

4.1.1. Bisimilarity Notions and Games

Since the seminal works by Park and Milner [57, 55], bisimilarity has played a central role
in theoretical computer science. It is an equivalence notion between branching systems;
it abstracts away internal states and stresses the black-box observation-oriented view on
process semantics. Bisimilarity is usually defined as the largest bisimulation, which is a
binary relation that satisfies a suitable mimicking condition. In fact, a bisimulation R
can be characterized as a post-fixed point R ⊆ Φ(R) using a suitable relation transformer
Φ; from this we obtain that bisimilarity is the greatest fixed point of Φ by the Knaster–
Tarski theorem. This order-theoretic foundation is the basis of a variety of advanced
techniques for reasoning about (or using) bisimilarity, such as bisimulation up-to—see,
e.g., [63].

Bisimilarity is conventionally defined for state-based systems with nondeterministic
branching. However, as the applications of computer systems become increasingly per-
vasive and diverse (such as cyber-physical systems), extension of bisimilarity to systems
with other branching types has been energetically sought in the literature. One no-
table example is the bisimulation notion for probabilistic systems in [51]: it is a relation
that witnesses that two states are indistinguishable in their behaviors henceforth. This
qualitative notion has also been made quantitative, as the notion of bisimulation met-
ric [22]. It replaces a relation with a metric that is induced by the probabilistic transition
structure.

There is a body of literature (including [32, 29, 6, 12, 48, 11, 77]) that aims to identify
the mathematical essences that are shared by this variety of bisimilarity, and to express
the identified essences in a rigorous manner using category theory. Our particular interest
is in the correspondence between bisimilarity notions and (safety) games; three examples
of the latter are given below. This interest in bisimilarity games is shared by the recent
work [48], and the comparison is discussed in Section 4.1.4.

Bisimilarity Games

It is well-known that the following game (summarized in Table 4.1) characterizes the
conventional notion of bisimilarity between Kripke frames. Let (X,→) be a Kripke
frame where → ⊆ X2; the game is played between Duplicator (D) and Spoiler (S). In
a position (x, y), Spoiler challenges Duplicator’s claim that x and y are bisimilar, by
choosing one of the states (say x) and further choosing a transition x → x′. Duplicator
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4. Codensity Games for Bisimilarity

responds by choosing a transition y → y′ from the other state, and the game is continued
from (x′, y′). Duplicator wins if Spoiler gets stuck, or the game continues infinitely long,
and this witnesses that x and y are bisimilar.

Table 4.1.: The game for bisimilarity in a Kripke frame

position player possible moves

(x, y) ∈ X2 Spoiler (1, x′, y) s.t. x → x′ or (2, x, y′) s.t. y → y′

(1, x′, y) ∈ {1} ×X2 Duplicator (x′, y′) s.t. y → y′

(2, x, y′) ∈ {2} ×X2 Duplicator (x′, y′) s.t. x → x′

Games for Probabilistic Bisimilarity

A recent step forward in the topic of bisimilarity and games is the characterization of
probabilistic bisimulation introduced in [16]. For simplicity, here we describe its discrete
version.

Let (X, c) be a Markov chain, where X is a countable set of states, and c : X → D≤1X
is a transition kernel that assigns to each state x ∈ X a probability subdistribution
c(x) ∈ D≤1X. Here D≤1X = {d : X → [0, 1] |

∑
x∈X d(x) ≤ 1} denotes the set of

probability subdistributions over X. For Z ⊆ X, let c(x)(Z) denote the probability
with which a successor of x is chosen from Z; that is, c(x)(Z) =

∑
x′∈Z c(x)(x′). Since

c(x) is only a sub-distribution over X, the probability c(x)(X) is ≤ 1 rather than = 1.
The remaining probability 1− c(x)(X) can be thought of as the probability of x getting
stuck.

Recall from [51] that an equivalence relation R ⊆ X2 is a (probabilistic) bisimulation
if, for any (x, y) ∈ R and each R-closed subset Z ⊆ X, c(x)(Z) = c(y)(Z) holds.

Table 4.2.: The game for probabilistic bisimilarity from [16]

position player possible moves

(x, y) ∈ X2 Spoiler Z ⊆ X s.t. c(x)(Z) ̸= c(y)(Z)

Z ⊆ X Duplicator (x′, y′) ∈ X2 s.t. x′ ∈ Z ∧ y′ ̸∈ Z

The game introduced in [16] is in Table 4.2. It is shown in [16] that Duplicator is
winning in the game at (x, y) if and only if x and y are bisimilar, in the sense of [51]
(recalled above). It is not hard to find an intuitive correspondence between the game
in Table 4.2 and the definition of bisimulation [51]: Spoiler challenges the bisimilarity
claim between x, y by exhibiting Z such that c(x)(Z) = c(y)(Z) is violated; Duplicator
makes a counterargument by claiming that Z is in fact not bisimilarity-closed, exhibiting
a pair of states (x′, y′) that Duplicator claims are bisimilar.

Games for Probabilistic Bisimulation Metric

Our following observation marked the beginning of the current work: the game for
(qualitative) bisimilarity for probabilistic systems (from [16], Table 4.2) can be almost
literally adapted to (quantitative) bisimulation metric for probabilistic systems. This
metric was first introduced in [22].
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For simplicity we focus on the discrete setting; we also restrict to pseudometrics
bounded by 1. Let (X, c) be a Markov chain with a countable state space X. The
bisimulation metric d(X,c) : X

2 → [0, 1] is defined to be the smallest pseudometric (with
respect to the pointwise order) that makes the transition kernel

c : (X, d(X,c)) −→
(
D≤1X, K(d(X,c))

)
non-expansive with respect to the specified pseudometrics. Here K(d(X,c)) is the so-called
Kantorovich metric over D≤1X induced by the pseudometric d(X,c) over X. It is defined
as follows. For µ, ν ∈ D≤1X,

K(d(X,c))(µ, ν) = sup
f

|Eµ[f ]− Eν [f ]| , (4.1)

where in the above sup,

• f ranges over all non-expansive functions from (X, d(X,c)) to
(
[0, 1], d[0,1]

)
,

• d[0,1] denotes the usual Euclidean metric, and

• Eµ[f ] is the expectation
∑

x∈X f(x) · µ(x) of f with respect to µ.

Our observation is that the bisimulation metric d(X,c) is characterized by the game in
Table 4.3: Duplicator is winning at (x, y, ε) if and only if d(X,c)(x, y) ≤ ε. The game

Table 4.3.: The game for (probabilistic) bisimulation metric, adapting [16]

position player possible moves

(x, y, ε) Spoiler f : X → [0, 1]
∈ X2 × [0, 1] such that

∣∣Ec(x)[f ]− Ec(y)[f ]
∣∣ > ε

f : X → [0, 1] Duplicator (x′, y′, ε′) ∈ X2 × [0, 1]
such that

∣∣ f(x′)− f(y′)
∣∣ > ε′

seems to be new, although its intuition is similar to the one for Table 4.2. Note that the
formula (4.1) appears in the condition of Spoiler’s moves. Spoiler challenges by exhibiting
a “predicate” f that suggests violation of the non-expansiveness of c; and Duplicator
makes a counterargument that f is in fact not non-expansive and thus invalid.

Towards a Unifying Framework

The last two games (Table 4.2 from [16] and Table 4.3 that seems new) motivate a general
framework that embraces both. There are some clear analogies: the games are about
indistinguishability of states x, y under a class of observations (Z and f respectively), and
the predicates usable in those observations are subject to certain preservation properties
(bisimilarity-closedness in the former, and non-expansiveness in the latter).
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1○ codensity bisimilarity game 4○ bisimilarity game

2○ codensity bisimilarity
νΦΩ,τ ∈ EX

5○ bisimilarity

3○ codensity lift-
ing (§3.1.1, [41])
FΩ,τ : E → E

categorical concrete

instantiates

instantiates

characterizes
(Cor. 4.4.4, 4.5.16)

induces (§3.1.2, [66])

induces
(§4.4–
4.5)

Figure 4.1.: Our codensity-based framework for bisimilarity and games

4.1.2. A Codensity-Based Framework for Bisimilarity and Games

The main contribution of the current paper is a categorical framework that derives a
variety of bisimilarity notions and corresponding game notions. The correspondence is
proved once and for all on the categorical level of generality. It covers the three examples
introduced earlier in Section 4.1.1, much like the recent categorical framework in [48]
does. However, our fibration-based formalization has another dimension of generality.
For example, besides relations and metrics, our examples include an existing notion
called bisimulation seminorm and a new one that we call bisimulation topology.

The overview of our categorical framework is in the left half of Fig. 4.1. We build on
our previous works [41] and [66]. In [41] a general construction called codensity lifting

is introduced (see 3○): given a fibration E p−→ C and parameters (Ω, τ) that embody
the kind of observations we can make, a functor F : C → C is lifted to FΩ,τ : E → E.
In [66], codensity lifting is used to introduce a generic family of bisimulation notions
called codensity bisimilarity—see 2○. In this paper, we extend these previous results by

• introducing the notion of codensity bisimilarity game ( 1○) that comes in two vari-
ants (untrimmed (Section 4.4) and trimmed (Section 4.5)),

• establishing the correspondence between codensity bisimulations ( 2○) and games
( 1○) on a fibrational level of generality, and

• working out several concrete examples ( 4○, 5○).

In general, devising a game notion ( 4○) directly from a bisimilarity notion ( 5○) is far
from trivial. Indeed, doing so for an individual bisimilarity notion has itself been deemed
a scientific novelty [21, 16]. Our codensity-based framework (in the left half of Fig. 4.1)
can automate part of this process in the following precise sense.

We derive concrete notions of bisimilarity ( 5○) and bisimilarity game ( 4○) as instances;
then the correspondence between the two is guaranteed by the categorical general result
between 1○ and 2○.
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4.1. Overview

We note, however, that this is no panacea. When one starts with a given concrete
notion of bisimilarity ( 5○), their next task would be to identify the right choice of the

parameters E p−→ C,Ω, τ for the codensity lifting ( 3○). This task is not easy in general: we
needed to get our hands dirty working out the examples in this paper, in [41], and in [66].
Nevertheless, we believe that the required passage from 5○ to 3○ is much easier than
the direct derivation from 5○ to 4○, with our categorical framework providing templates
of bisimilarity games (see Tables 4.6, 4.8 and 4.9). After all, our framework identifies
which part of the path from 5○ to 4○ can be automated, and which part remains to be
done individually. This is much like what many other categorical frameworks offer, as
meta-level theories.

As an additional benefit, our categorical framework can be used to discover new
bisimilarity notions ( 5○), starting from (choices of parameters for) 3○. We believe
those derived new bisimilarity notions are useful, since our categorical theory embodies
sound intuitions about observation, predicate transformation, and indistinguishability—
see e.g. Section 2.3.

4.1.3. Contributions

Our main technical contributions are as follows.

• We introduce a categorical framework that uniformly describes various bisimula-
tion notions (including metrics, preorders and topologies) and the corresponding
game notions (Fig. 4.1). The framework is based on coalgebras, fibrations, and co-
density liftings in particular [41]. Our general game notion comes in two variants.

– The first (the untrimmed codensity game in Section 4.4) arises naturally in
a fibration, using its objects and arrows as possible moves. The untrimmed
game is theoretically clean, but it tends to have a huge arena.

– We therefore introduce a method that restricts these arenas, leading to the
(trimmed) codensity bisimilarity game (Section 4.5). The reduction method is
also described in general fibrational terms, specifically using fibered separators
and join-dense subsets.

• From the general framework, we derive several concrete examples of bisimilarity
and its related notions ( 4○ and 5○ in Fig. 4.1). They are listed in Table 3.1
and elaborated in Section 4.8. Among them, a few bisimilarity notions seem new
(especially bisimulation topology in Section 4.8.3), and several game notions also
seem new (especially that for Λ-bisimulation in Section 4.8.2).

• We discuss the transfer of codensity bisimilarity by suitable fibered functors (Sec-
tion 4.7). As an example usage, we give an abstract proof of the fact that (usual)
bisimilarity for Kripke frames is necessarily an equivalence (Example 4.7.4).

Additionally, we give a direct proof of the equivalence between our game for bisimulation
metric (Table 4.3), obtained from our general framework, and another game notion for
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probabilistic bisimilarity, previously introduced in [21]. In the proof, we exhibit a mutual
translation of winning strategies (Appendix A.1).

The current paper is an extended version of our previous paper [44]. The major
additions are the following.

• We show a new transfer result in Section 4.7.2, which has a broader applicability
than the result already presented in [44] (and in Section 4.7.1).

• In Section 4.8.1, we additionally present how to specialize codensity bisimilarity
to recover another known notion of equivalence, namely behavioral equivalence
(see [67] for its relation to bisimilarity). Some examples (already presented in [44])
are reorganized using the result.

• In Section 4.8.2, we show a new connection between our codensity bisimulation
and an existing notion of Λ-bisimulation [4]. We also derive a general game char-
acterization of some special cases of it, where all the modalities are unary.

We included some proofs that were omitted in [44], too.

4.1.4. Related Work

Besides the one in [16], another game characterization of probabilistic bisimulation has
been given in [21]. It is described later in Section 4.2 (Table 4.4). The latter game has
a bigger arena than the one in [16]: in [21] both players have to play a subset Z ⊆ X,
while in [16] only Spoiler does so.

The work that is the closest to ours is the recent work [48] that studies bisimilarity
games in a categorical setting. Their formalization uses (co)algebras (following the
(co)algebraic generalization of the Kantorovich metric introduced in [6]), and therefore
embraces a variety of different branching types. The major differences between the two
works are as follows.

• Our current work is fibration-based (in particular CLat⊓-fibrations), while [48] is
not. As a consequence, ours accommodates an additional dimension of generality
by changing fibrations, which correspond to different indistinguishability notions
(relation, metric, topology, preorder, measurable structures, etc.). In contrast,
the works [48] and [6] deal exclusively with two settings: binary relations and
pseudometrics.

• A relationship to modal logic is beautifully established in [48], while it is not done
in this work. Some results connecting our codensity framework and modal logic
are presented in [47].

• The categorical generalization [48] is based on the game notion in [21], while ours
is based on that in [16]. Therefore, for some bisimulation notions (including the
bisimulation metric), we obtain a game notion with a smaller arena. Compare
Table 4.3 (an instance of ours) and Table 4.5 (an instance of [48]).
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There are a number of categorical studies of bisimilarity notions; notable mentions
include open map-based approaches [38] and coalgebraic ones [60, 37]. The fibrational
approach we adopt also uses coalgebras; it was initiated in [32] and pursued, e.g., in [11,
29, 12], and [66]. For example, in the recent work [11], fibrational generality is exploited
to study up-to techniques for bisimilarity metric. They use the Wasserstein lifting of
functors introduced in [6] instead of the codensity lifting that we use (it generalizes the
Kantorovich lifting in [6], see Example 3.1.6). It is known [6] that the Wasserstein and
Kantorovich liftings can differ in general, while they coincide for some specific functors
such as the distribution functor.
Some of our new examples are topological: we derive what we call bisimulation topology

and a game notion that characterizes it. The relation between these notions and the
existing works on bisimulation and topology (including [70, 19]) is left as future work.
In Section 4.5, we reduce the game arena by focusing on a join-dense subset. A game

notion proposed in [7] uses a similar method. A major difference is that they restrict
themselves to continuous lattices, while we only require each fiber to be a complete
lattice. This condition plays a critical role in their framework, but it is a future work to
seek consequences of the continuity assumption in our setting.

4.1.5. Organization

In Section 4.2, we present preliminaries on a general theory of games (we can restrict
to safety games). We also make use of CLat⊓-fibrations as introduced in Chapter 2,
and argue that they offer an appropriate categorical abstraction of sets equipped with
indistinguishability structures. As mentioned in Chapters 1 and 3, an essential role is
played by codensity lifting and codensity bisimilarity ( 2○, 3○ in Fig. 4.1). In Section 4.3,
we introduce some auxiliary notions needed for the correspondence with games. Our
first game notion (the untrimmed one) is introduced in Section 4.4; in Section 4.5,
we cut down the arenas and obtain trimmed codensity bisimilarity game. The theory
is further extended in Sections 4.6 and 4.7: in Section 4.6 we accommodate multiple
observation domains, and in Section 4.7 we discuss the transfer of codensity bisimilarities
by fibered functors preserving meets. These categorical observations give rise to the
concrete examples in Section 4.8.

4.2. Safety Games

Here we recall some standard game-theoretic notions and results. In capturing bisimilarity-
like notions, we can restrict ourselves to safety games—they have a simple winning con-
dition where every infinite play is won by the same player (namely Duplicator). This
winning condition reflects the characterization of bisimilarity-like notions by suitable
greatest fixed points; the correspondence generalizes, for example, to the one between
parity games and nested alternating fixed points—see [76]. The term “safety game”
occurs, e.g., in [24, 9].
Safety games are played between two players; in this paper, they are called Duplicator

(D) and Spoiler (S). We restrict to those games in which Duplicator and Spoiler alternate
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turns.

Definition 4.2.1 (safety game). A (safety game) arena is a triple G = (QD, QS, E) of a
set QD of Duplicator’s positions, a set QS of Spoiler’s positions, and a transition relation
E ⊆ (QD ×QS)∪ (QS ×QD). Hence G is a bipartite graph. We require that QD and QS

are disjoint, and that QD ∪QS ̸= ∅. We write Q = QD ∪QS.
For a position q ∈ Q, an element of the set {q′ ∈ Q | (q, q′) ∈ E} is called a possible

move at q. Unlike some works, we allow positions that have no possible moves at them.
A play in an arena G = (QD, QS, E) is a (finite or infinite) sequence of positions

q0q1 . . . , such that (qi−1, qi) ∈ E so long as qi belongs to the sequence.
A play in G is won by either player, according to the following conditions: 1) a finite

play q0 . . . qn is won by Spoiler (or by Duplicator) if qn ∈ QD (or qn ∈ QS respectively);
and 2) every infinite play q0q1 . . . is won by Duplicator.

Definition 4.2.2 (strategy, winning position). In an arena G = (QD, QS, E), a strategy
of Duplicator is a partial function σD : Q∗ × QD ⇀ QS; we require that σD(q⃗, q) = q′

implies (q, q′) ∈ E. A strategy of Duplicator σD is positional if σD(q⃗, q) depends only
on q. A strategy of Spoiler is defined similarly, as a partial function σS : Q

∗ ×QS ⇀ QD

that returns a possible move at the last position in the history. It is positional if σS(q⃗, q)
does not depend on q⃗.
Given an initial position q ∈ Q and two strategies σD and σS for Duplicator and Spoiler

respectively, the play from q induced by (σD, σS) is defined in a natural inductive manner.
The induced play is denoted by πσD,σS(q).
A position q ∈ Q is said to be winning for Duplicator if there exists a strategy σD of

Duplicator such that, for any strategy σS of Spoiler, the induced play πσD,σS(q) is won
by Duplicator.
In what follows, for simplicity, we restrict the initial position q of a play πσD,σS(q) to

be in QS. (Note that Spoiler’s position can be winning for Duplicator.)

Any position in a safety game is winning for one of the players. Moreover, the winning
strategy can be taken to be positional one [76, Theorem 6]. Thus, we can focus on the
winning positions of the players.
Winning positions of safety games are witnessed by invariants (Proposition 4.2.4).

This is a well-known fact.

Definition 4.2.3 (invariant). Let G = (QD, QS, E) be an arena. A subset P ⊆ QS is
called an invariant for Duplicator if, for each q ∈ P and any possible move q′ ∈ QD at
q, there exists a possible move q′′ at q′ that is in P . That is,

∀q ∈ P.∀q′ ∈ QD.
(
(q, q′) ∈ E ⇒ ∃q′′ ∈ QS. (q

′, q′′) ∈ E ∧ q′′ ∈ P
)
.

Proposition 4.2.4. 1. Any position q ∈ P in an invariant P for Duplicator is win-
ning for Duplicator.

2. Invariants are closed under arbitrary union. Therefore, there exists the largest
invariant for Duplicator.
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3. The largest invariant for Duplicator coincides with the set of winning positions for
Duplicator in QS.

Proof. 1. Turn P into a positional strategy of Duplicator that forces a play back in
P .

2. Obvious.

3. It suffices to show that every position q ∈ QS winning for Duplicator lies in some
invariant. Let σD : Q∗ × QD ⇀ QS be a strategy of Duplicator ensuring that q is
winning. Define P ⊆ QS as follows:

P = {q′ ∈ QS | ∃σS. q′ is visited in πσD,σS(q)}.

Then P is an invariant because q is winning for Duplicator.

Examples of safety games have been given in Tables 4.2 and 4.3. We present two other
examples (Tables 4.4 and 4.5).

Example 4.2.5 (alternative games for probabilistic bisimilarity and bisimulation met-
ric). In [21], the notion of ε-bisimulation and a game notion characterizing it are intro-
duced. In the case where ε is 0, ε-bisimulation coincides with (qualitative) probabilistic
bisimilarity and thus the game characterizes it. The game in ε = 0 case is in Table 4.4,
presented in a slightly adapted form. This game notion is categorically generalized

Table 4.4.: The game for probabilistic bisimilarity, from [21]

position player possible moves

(1, x, y) ∈ {1} ×X2 Spoiler (2, s, t, Z) ∈ {2} ×X2 × PX s.t. {s, t} = {x, y}
(2, s, t, Z) ∈ Duplicator (Z,Z ′) ∈ (PX)2 s.t. c(s)(Z) ≤ c(t)(Z ′)
{2} ×X2 × PX

(Z,Z ′) ∈ (PX)2 Spoiler (Z, y′) ∈ PX ×X s.t. y′ ∈ Z ′

or (Z ′, y) ∈ PX ×X s.t. y ∈ Z

(Z, y′) ∈ PX ×X Duplicator (x′, y′) ∈ X2 s.t. x′ ∈ Z

in [48]; the generalization has freedom in the choice of coalgebra functors (i.e. branch-
ing types), as well as in the choice between relations and metrics. The instance of this
general game notion for bisimulation metric is shown in Table 4.5.
The two games (Tables 4.4 and 4.5) characterize the same bisimilarity-like notions as

the games in Tables 4.2 and 4.3, respectively; so they are equivalent. We can go further
and give a direct equivalence proof by mutually translating winning strategies. Such
a proof is not totally trivial; we do so for the pair for probabilistic bisimilarity. See
Appendix A.1.
We note that the game in Table 4.3 (an instance of our current framework) is simpler

than Table 4.5 (an instance of [48]). Table 4.3 is not only structurally simpler (it has
fewer rows), but its set of moves are smaller too, asking for functions X → [0, 1] only at
one place.

Our categorical framework based on codensity liftings (presented in later sections)
covers Tables 4.2 and 4.3 but not Tables 4.4 and 4.5.
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Table 4.5.: The game for bisimulation metric, from [48]

position player possible moves

(x, y, ε) ∈ X2 × [0, 1] Spoiler (s, t, f, ε) ∈ X2 × [0, 1]X × [0, 1]
s.t. {s, t} = {x, y}

(s, t, f, ε) ∈ Duplicator (f, g, ε) ∈ ([0, 1]X)2 × [0, 1] such that

X2 × [0, 1]X × [0, 1] max{0, Ec(s)[f ]− Ec(t)[g]} ≤ ε

(f, g, ε) ∈ ([0, 1]X)2 × [0, 1] Spoiler (x′, i, j, ε) ∈ X × ([0, 1]X)2 × [0, 1] such that
{i, j} = {f, g}

(x′, i, j, ε) ∈ Duplicator (x′, y′, ε′) ∈ X2 × [0, 1] such that

X × ([0, 1]X)2 × [0, 1] i(x′) ≤ j(y′), and
ε′ = j(y′)− i(x′)

4.3. Joint Codensity Bisimulation

We introduce the notion of joint codensity bisimulation. This minor variation of coden-
sity bisimulation becomes useful in the proof of soundness and completeness of our game
notion (Section 4.4).

Definition 4.3.1 (joint codensity bisimulation). Assume the setting of Definition 3.1.7.
Let V ⊆ |EX |; joins in EX are denoted by

⊔
. We say that V is a joint codensity

bisimulation over c if
⊔

P∈V P is a codensity bisimulation over c.

For instance, the set of all codensity bisimulations is a joint codensity bisimulation
because the join of all codensity bisimulations is the largest codensity bisimulation νΦΩ,τ

c ,
as discussed just before Definition 3.1.10.

Lemma 4.3.2. In the setting of Definition 3.1.7, the downset ↓(νΦΩ,τ
c ) is the largest

joint codensity bisimulation (with respect to the inclusion order).

Proof. The downset ↓(νΦΩ,τ ) is a joint codensity bisimulation, because the union of all
elements of ↓(νΦΩ,τ ) is equal to a codensity bisimulation νΦΩ,τ .
Let V be a joint codensity bisimulation. Then for any P ∈ V, we have P ⊑ νΦΩ,τ ,

because P ⊑
⊔

Q∈V Q ⊑ νΦΩ,τ .

4.4. Untrimmed Games for Codensity Bisimilarity

As the first main technical contribution, we introduce what we call the untrimmed ver-
sion of codensity bisimilarity game. It is mathematically simple but its game arenas
can become much bigger than necessary. The trimmed version of games—with smaller
arenas—will be introduced later in Section 4.5, after developing necessary categorical
infrastructure.

Definition 4.4.1 (untrimmed codensity bisimilarity game). Assume the setting of Def-
inition 3.1.7. The untrimmed codensity bisimilarity game is the safety game played by
two players Duplicator and Spoiler, shown in Table 4.6.
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Table 4.6.: Untrimmed codensity bisimilarity game

position player possible moves

P ∈ EX Spoiler k ∈ C(X,Ω) s.t. τ ◦ Fk ◦ c : (X,P ) ↛̇ (Ω,Ω)

k ∈ C(X,Ω) Duplicator P ′ ∈ EX s.t. k : (X,P ′) ↛̇ (Ω,Ω)

Lemma 4.4.2. Assume the setting of Definition 3.1.7. Let V ⊆ |EX |. The following
are equivalent.

1. V is an invariant for Duplicator (Definition 4.2.3) in the untrimmed codensity
bisimilarity game (Table 4.6).

2. V is a joint codensity bisimulation over c.

Proof. We use the following logical equivalence:

1) ⇐⇒
(
∀P ∈ V, k : X → Ω.
τ ◦ Fk ◦ c : (X,P ) ↛̇ (Ω,Ω) =⇒ ∃P ′ ∈ V. k : (X,P ′) ↛̇ (Ω,Ω)

)
⇐⇒

(
∀P ∈ V, k : X → Ω.
(∀P ′ ∈ V. k : (X,P ′) →̇ (Ω,Ω)) =⇒ τ ◦ Fk ◦ c : (X,P ) →̇ (Ω,Ω)

)

⇐⇒

∀k : X → Ω.
(∀P ′ ∈ V. k : (X,P ′) →̇ (Ω,Ω))
=⇒ ∀P ∈ V. τ ◦ Fk ◦ c : (X,P ) →̇ (Ω,Ω)

 .

Here, since k : (X,P ′) →̇ (Ω,Ω) means P ′ ⊑ k∗Ω, the condition

∀P ′ ∈ V. k : (X,P ′) →̇ (Ω,Ω)

is equivalent to
k : (X,

⊔
P ′∈V P ′) →̇ (Ω,Ω).

Similarly, the condition

∀P ∈ V. τ ◦ Fk ◦ c : (X,P ) →̇ (Ω,Ω)

is equivalent to
τ ◦ Fk ◦ c : (X,

⊔
P∈V P ) →̇ (Ω,Ω).

These imply the following logical equivalence:

1) ⇐⇒

∀k : X → Ω.(
k :
(
X,
⊔

P ′∈V P ′) →̇ (Ω,Ω)
)

=⇒ τ ◦ Fk ◦ c : (X,
⊔

P∈V P ) →̇ (Ω,Ω)

 .

By Theorem 3.1.9, the condition in the right-hand side is equivalent to⊔
P∈V

P ⊑ ΦΩ,τ
c

(⊔
P∈V

P

)
.
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4. Codensity Games for Bisimilarity

Theorem 4.4.3. Assume the setting of Definition 3.1.7. In the untrimmed codensity
bisimilarity game (Table 4.8), the following coincide.

1. The set of all winning positions for Duplicator.

2. The downset ↓(νΦΩ,τ
c ) of the codensity bisimilarity.

Proof. We use Lemma 4.4.2 to connect the game and the predicate transformer. By
considering the largest set satisfying the condition in Lemma 4.4.2, it implies that the
following two coincide if both exist:

1’ the largest invariant for Duplicator in the game in Table 4.8 and

2’ the largest joint codensity bisimulation over c.

By the general theory of safety games, in particular Proposition 4.2.4, the set (1’) is equal
to (1). On the other hand, by Lemma 4.3.2, the set (2’) coincides with (2). Combining
these proves the claim.

We conclude that our game characterizes the codensity bisimilarity νΦΩ,τ
c (Defini-

tion 3.1.10).

Corollary 4.4.4 (soundness and completeness of untrimmed codensity games). In the
untrimmed codensity bisimilarity game (Table 4.8), P ∈ EX is a winning position for
Duplicator if and only if P ⊑ νΦΩ,τ

c .

Example 4.4.5. Recall Example 3.1.11. Using the untrimmed codensity bisimilarity
game, we can characterize the bisimulation metric from [22]. Our general definition
(Definition 4.4.1) instantiates to the one in Table 4.7, which is however more complicated
than the game we exhibited in the introduction (Table 4.3). For example, in Table 4.7,
Duplicator’s move is a pseudometric d : X2 → [0, 1] rather than a triple (x, y, ε).

Table 4.7.: Untrimmed codensity game for bisimulation metric

position player possible moves

d ∈ (PMet1)X Spoiler k ∈ Set(X, [0, 1]) s.t. e ◦ Fk ◦ c ̸∈ PMet1(d, d[0,1])

k ∈ Set(X, [0, 1]) Duplicator d′ ∈ (PMet1)X s.t. k ̸∈ PMet1(d
′, d[0,1])

4.5. Trimmed Codensity Games for Bisimilarity

Our previous untrimmed game (Table 4.6) is pleasantly simple from a theoretical point
of view. However, as we saw in Example 4.4.5, its instances tend to have a much bigger
arena than some known game notions.

Here we push our theory a step further, and present a fibrational construction that al-
lows us to trim our games. We note that our construction still remains on the fibrational
level of abstraction.
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4.5.1. Join-Dense Subsets of Fibers and Fibered Separators

Our approach to trim down the game arena is to restrict Spoiler’s position to approxi-
mants of elements in the fiber complete lattice. In lattice theory, the collection of such
approximants is specified by a join-dense subset [20], which we recall below.

Definition 4.5.1 (join-dense subset). A subset G of a complete lattice L is join-dense
if for any P ∈ L, there exists A ⊆ G such that P =

⊔
A.

Example 4.5.2. Consider the CLat⊓-fibration EqRel −→ Set and X ∈ Set. For any
x, y ∈ X, we define the equivalence relation Ex,y to be the least one equating x, y, that is,
(z, w) ∈ Ex,y if and only if (z = w∨{z, w} = {x, y}). Then the set G = {Ex,y | x, y ∈ X}
of all such equivalence relations is a join-dense subset of the fiber EqRelX .

Example 4.5.3. Recall Example 3.1.11. For x, y ∈ X (x ̸= y) and r ∈ [0, 1], the
pseudometric dx,y,r over X is defined by

dx,y,r(z, w) =


0 z = w

r {z, w} = {x, y}
1 otherwise.

Then the set of pseudometrics {dx,y,r | x, y ∈ X,x ̸= y, r ∈ [0, 1]} is a join-dense subset
of the fiber (PMet1)X .

We use the following characterization of a join-dense subset.

Lemma 4.5.4. For a subset G of a complete lattice L, the following are equivalent.

• G is join-dense.

• For any P,Q ∈ L,

(∀G ∈ G. G ⊑ P =⇒ G ⊑ Q) =⇒ P ⊑ Q

holds.

Proof. Assume that G is join-dense. For any P,Q ∈ L, we show (∀G ∈ G. G ⊑ P =⇒
G ⊑ Q) =⇒ P ⊑ Q. Since G is join-dense, there exists a subset A ⊆ G such that
P =

⊔
A. If (∀G ∈ G. G ⊑ P =⇒ G ⊑ Q) holds, then, for each A ∈ A, we have A ⊑ P ,

and thus A ⊑ Q. This implies P ⊑ Q.
Conversely, assume that, for any P,Q ∈ L, (∀G ∈ G. G ⊑ P =⇒ G ⊑ Q) =⇒ P ⊑ Q

holds. We show that G is join-dense, that is, for any P ∈ L, there exists A ⊆ G such
that P =

⊔
A. More concretely, we define

AG(P ) = {P ′ ∈ G | P ′ ⊑ P}

for each P ∈ L and we show P =
⊔
AG(P ). It suffices to show the following for each

Q ∈ L:
(∀P ′ ∈ AG(P ). P ′ ⊑ Q) =⇒ P ⊑ Q.
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4. Codensity Games for Bisimilarity

By the definition of AG(P ), it is equivalent to the following:

(∀P ′ ∈ G. P ′ ⊑ P =⇒ P ′ ⊑ Q) =⇒ P ⊑ Q.

This is nothing but our assumption.

We next consider the problem of equipping each fiber of a CLat⊓-fibration with a
join-dense subset. One way to do so is to transfer a join-dense subset of the fiber over a
special object called fibered separator, which we introduce below.

Definition 4.5.5 (fibered separator). Let E p−→ C be a CLat⊓-fibration. We say that
S ∈ C is a fibered separator if, for any X ∈ C and P,Q ∈ EX , we have

(∀f ∈ C(S,X). f∗P = f∗Q) =⇒ P = Q.

Fibered separator can equivalently be defined using fiber order ⊑.

Lemma 4.5.6. In the setting of Definition 4.5.5, the following are equivalent.

• S ∈ C is a fibered separator.

• For any X ∈ C and P,Q ∈ EX ,

(∀f ∈ C(S,X). f∗P ⊑ f∗Q) =⇒ P ⊑ Q

holds.

Proof. Assume that S ∈ C is a fibered separator. For each X ∈ C and P,Q ∈ EX , we
show (∀f ∈ C(S,X). f∗P ⊑ f∗Q) =⇒ P ⊑ Q. Assume (∀f ∈ C(S,X). f∗P ⊑ f∗Q).
Then for each f : S → X we have f∗P = f∗P ⊓ f∗Q = f∗(P ⊓ Q) and, since S is a
fibered separator, P = P ⊓ Q, that is, P ⊑ Q. Thus we have (∀f ∈ C(S,X). f∗P ⊑
f∗Q) =⇒ P ⊑ Q.

Conversely, assume that (∀f ∈ C(S,X). f∗P ⊑ f∗Q) =⇒ P ⊑ Q holds for anyX ∈ C
and P,Q ∈ EX . We show that S ∈ C is a fibered separator, that is, (∀f ∈ C(S,X). f∗P =
f∗Q) =⇒ P = Q for each X ∈ C and P,Q ∈ EX . Assume (∀f ∈ C(S,X). f∗P = f∗Q).
Then both (∀f ∈ C(S,X). f∗P ⊑ f∗Q) and (∀f ∈ C(S,X). f∗P ⊒ f∗Q) hold. By the
assumption, we have both P ⊑ Q and P ⊒ Q. Thus P = Q.

A join-dense subset of the fiber over a fibered separator induces one over any other
fiber by the following theorem.

Theorem 4.5.7. Let S ∈ C be a fibered separator of a CLat⊓-fibration E p−→ C, and G
be a join-dense subset of ES. For any X ∈ C, the following is a join-dense subset of EX

(below f∗ denotes the pushforward along f ; see Proposition 2.3.11):

{f∗G | G ∈ G, f ∈ C(S,X)}.
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4.5. Trimmed Codensity Games for Bisimilarity

Proof. Let P,Q ∈ EX . By Lemma 4.5.4, it suffices to show

(∀G ∈ G, f ∈ C(S,X). f∗G ⊑ P =⇒ f∗G ⊑ Q) =⇒ P ⊑ Q.

Since f∗ is the left adjoint of f∗ (Proposition 2.3.11), it is equivalent to

(∀G ∈ G, f ∈ C(S,X). G ⊑ f∗P =⇒ G ⊑ f∗Q) =⇒ P ⊑ Q.

Assume (∀G ∈ G, f ∈ C(S,X). G ⊑ f∗P =⇒ G ⊑ f∗Q). Since G is join-dense in
ES , Lemma 4.5.4 implies (∀f ∈ C(S,X). f∗P ⊑ f∗Q). It in turn implies P ⊑ Q by
Lemma 4.5.6.

In fact, it is Theorem 4.5.7 that is behind Examples 4.5.2 and 4.5.3: in both cases,
2 ∈ Set turns out to be a fibered separator for the fibrations in question (EqRel −→ Set
and PMet1 −→ Set), and the presented generating sets are obtained via pushforward.
We next relate fibered separators and separators in a category C. Recall that an object

S in a category C is a separator [54, Section V.7] if for any parallel pair of morphisms
f, g : X → Y , if f ◦ x = g ◦ x holds for any x : S → X, then f = g.

Proposition 4.5.8 (fibered separator and separator). Let E p−→ C be a CLat⊓-fibration.
Let V ∈ C be an object such that there is a family of injections ιX : |EX | ↣ C(X,V )
natural in X ∈ C. If S ∈ C is a separator of C, then it is also a fibered separator of p.

Note that here we regard |E( )| as a contravariant functor Cop → Set by the pullback
operation.

Proof. Assume that S ∈ C is a separator of C. Expanding the definition for V ∈ C
yields the following:

∀X ∈ C, p, q ∈ C(X,V ).
(
(∀f ∈ C(S,X). p ◦ f = q ◦ f) =⇒ p = q

)
. (4.2)

Now, let X ∈ C and P,Q ∈ EX . We show the implication in Definition 4.5.5, as
follows.

(∀f ∈ C(S,X). f∗P = f∗Q)

=⇒ (∀f ∈ C(S,X). ιS(f
∗P ) = ιS(f

∗Q))

=⇒ (∀f ∈ C(S,X). ιS(P ) ◦ f = ιS(Q) ◦ f) (by naturality)

=⇒ ιS(P ) = ιS(Q) (by (4.2))

=⇒ P = Q. (since ιX is injective)

Thus S ∈ C is fibered separator.

Any example of this is “unary,” as can be seen in the following one.

Example 4.5.9 (fibered separator of Pred → Set). We define the category Pred as
follows:
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4. Codensity Games for Bisimilarity

• An object is a triple (X,R ⊆ X) of a set and a predicate on it.

• An arrow from (X,R) to (Y, S) is a function f : X → Y such that x ∈ R implies
f(x) ∈ S.

The forgetful functor Pred → Set is then a CLat⊓-fibration.
There exists a natural family of injections ιX : |PredX | ↣ Set(X, 2), which sends

R ⊆ X to ιX(R) : X → 2 defined as follows:

ιX(R)(x) =

{
⊤ if x ∈ R

⊥ otherwise

Since 1 is a separator of Set, we can conclude that it is also a fibered separator of
Pred → Set by Proposition 4.5.8.

The following result is useful in finding fibered separators—see Section 4.8.5.

Proposition 4.5.10 (change-of-base and fibered separators). Let E p−→ C be a CLat⊓-
fibration, R : D → C be a functor with a left adjoint L : C → D, and S ∈ C be a fibered
separator for p. Then LS ∈ D is a fibered separator for the change-of-base fibration R∗p.

R∗E //

R∗p
��

E
p

��
D C

L
oo

⊥ //R

Proof. For any X ∈ D, the mapping f 7→ Rf ◦ ηS is a bijection of type D(LS,X) →
C(S,RX). Thus, naturally identifying (R∗E)X and ERX , we have the following for any
P,Q ∈ (R∗E)X .

∀f ∈ D(LS,X). f∗P = f∗Q =⇒ ∀f ∈ D(LS,X). (Rf)∗P = (Rf)∗Q

=⇒ ∀f ∈ D(LS,X). (Rf ◦ ηS)∗P = (Rf ◦ ηS)∗Q
⇐⇒ ∀g ∈ C(S,RX). g∗P = g∗Q

⇐⇒ P = Q

4.5.2. G-Joint Codensity Bisimulation

We use join-dense subsets to restrict moves in codensity games.

Definition 4.5.11. In the setting of Definition 3.1.7, let G be a join-dense subset of EX .
A G-joint codensity bisimulation over c : X → FX is a joint codensity bisimulation V
over c such that V ⊆ G.

Lemma 4.5.12. Assume the setting of Definition 3.1.7, and let G be a join-dense subset
of EX . The intersection

(
↓(νΦΩ,τ

c )
)
∩G of the downset ↓(νΦΩ,τ

c ) and the join-dense subset
G is the largest G-joint codensity bisimulation.
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Proof. Since G is join-dense, the union of all elements of ↓(νΦΩ,τ
c )∩G is equal to νΦΩ,τ

c .
Thus, ↓(νΦΩ,τ

c ) ∩ G is a G-joint codensity bisimulation.
For any G-joint codensity bisimulation V, it is a joint codensity bisimulation, and we

have already shown V ⊆ ↓(νΦΩ,τ
c ) in the proof of Lemma 4.3.2. We also have V ⊆ G by

definition. These imply V ⊆ ↓(νΦΩ,τ
c ) ∩ G.

4.5.3. Trimmed Codensity Bisimilarity Games

The above structural results lead to our second game notion.

Definition 4.5.13 (trimmed codensity bisimilarity game). Assume the setting of Defini-
tion 3.1.7, and that G ⊆ EX is a join-dense subset. The (trimmed) codensity bisimilarity
game is the safety game played by two players Duplicator and Spoiler, shown in Table 4.8.

Table 4.8.: Trimmed codensity bisimilarity game

position player possible moves

P ∈ G Spoiler k ∈ C(X,Ω) s.t. τ ◦ Fk ◦ c : (X,P ) ↛̇ (Ω,Ω)

k ∈ C(X,Ω) Duplicator P ′ ∈ G s.t. k : (X,P ′) ↛̇ (Ω,Ω)

Lemma 4.5.14. Assume the setting of Definition 4.5.13. Let V ⊆ |EX |. The following
are equivalent.

1. V is an invariant for Duplicator (Definition 4.2.3) in the trimmed codensity bisim-
ilarity game (Table 4.8).

2. V is a G-joint codensity bisimulation over c.

Proof. For a subset V ⊆ |EX |, the condition (1) is equivalent to the condition that the
following both holds:

a For any P ∈ V and k : X → Ω satisfying τ ◦ Fk ◦ c : (X,P ) ↛̇ (Ω,Ω), there exists
P ′ ∈ V such that k : (X,P ′) ↛̇ (Ω,Ω) holds.

b V ⊆ G.

The above condition (a) is equivalent to “V is an invariant for Duplicator in the (untrimmed)
codensity bisimilarity game (Table 4.6).” By Lemma 4.4.2, it is equivalent to “V is a
joint codensity bisimulation over c.”
Thus, the condition (1) is equivalent to “V is a joint codensity bisimulation c and it

is a subset of G.” This is, by definition, equivalent to the condition (2).

Theorem 4.5.15. Assume the setting of Definition 4.5.13. The following sets coincide.

1. The set of winning positions for Duplicator in the trimmed codensity bisimilarity
game (Table 4.8).

2. The intersection
(
↓(νΦΩ,τ

c )
)
∩ G of the downset of the codensity bisimilarity over

c and the join-dense subset G.
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Proof. By Proposition 4.2.4, (1) is the largest invariant for Duplicator in the trimmed
codensity bisimilarity game (Table 4.8). In turn, by Lemma 4.5.14, it is the largest
G-joint codensity bisimulation over c. By Lemma 4.5.12, it coincides with (2).

We conclude that our second game characterizes the codensity bisimilarity νΦΩ,τ
c

(Definition 3.1.10) too.

Corollary 4.5.16 (soundness and completeness of trimmed codensity games). In Defi-
nition 4.5.13, P ∈ G is a winning position for Duplicator if and only if P ⊑ νΦΩ,τ

c .

4.6. Multiple Observation Domains

Now we extend the framework using codensity lifting with multiple parameters (Sec-
tion 3.2).

The theoretical development is completely parallel to the one in Sections 4.4 and 4.5.
The difference is that we have to replace a single-parameter codensity lifting (Defini-
tion 5.2.8) by a multi-parameter one (Definition 3.2.1).

Theorem 4.6.1. Assume the setting of Definition 3.2.2. For any P ∈ EX , the following
are equivalent.

1. c : (X,P ) →̇ (FX,FΩ,τP ); that is, P is a codensity bisimulation over c (Defini-
tion 3.2.2).

2. P ⊑ ΦΩ,τ
c P .

3. For each A ∈ A and k ∈ C(X,ΩA), k : (X,P ) →̇ (ΩA,ΩA) implies τA ◦ Fk ◦ c :
(X,P ) →̇ (ΩA,ΩA).

Proof. The same as Theorem 3.1.9, except that we have multiple parameters here.

Definition 4.6.2 (joint codensity bisimulation). Assume the setting of Definition 3.2.2.
We say that V ⊆ |EX | is a joint codensity bisimulation over c if

⊔
P∈V P is a codensity

bisimulation over c.

Definition 4.6.3. In the setting of Definition 3.2.2, let G be a join-dense subset of EX .
A G-joint codensity bisimulation over c : X → FX is a joint codensity bisimulation V
over c such that V ⊆ G.

Lemma 4.6.4. Assume the setting of Definition 4.6.3. The intersection ↓(νΦΩ,τ
c ) ∩ G

of the join-dense subset G and the downset ↓(νΦΩ,τ
c ) is the largest G-joint codensity

bisimulation.

Proof. The same as Lemma 4.5.12, except that we have multiple parameters here.

Definition 4.6.5 (codensity bisimilarity game). In the setting of Definition 3.2.2, let G
be a join-dense subset of EX . The (trimmed) codensity bisimilarity game (with multiple
observations) is the safety game, played by two players D and S, shown in Table 4.9.
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Table 4.9.: Trimmed codensity bisimilarity game with multiple observations

position player possible moves

P ∈ G Spoiler A ∈ A and k ∈ C(X,ΩA) s.t.
τA ◦ Fk ◦ c : (X,P ) ↛̇ (ΩA,ΩA)

A ∈ A and k ∈ C(X,ΩA) Duplicator P ′ ∈ G s.t. k : (X,P ′) ↛̇ (ΩA,ΩA)

Lemma 4.6.6. Assume the setting of Definition 4.6.3. Let V ⊆ |EX | be a set of objects.

The following are equivalent.

1. V is an invariant for Duplicator in the trimmed codensity bisimilarity game with
multiple observations (Table 4.9).

2. V is a G-joint codensity bisimulation over c.

Proof. We use the following logical equivalence:

1) ⇐⇒


V ⊆ G and
∀P ∈ V, A ∈ A, k : X → ΩA.
τA ◦ Fk ◦ c : (X,P ) ↛̇ (ΩA,ΩA)
=⇒ ∃P ′ ∈ V. k : (X,P ′) ↛̇ (ΩA,ΩA)



⇐⇒


V ⊆ G and
∀P ∈ V, A ∈ A, k : X → ΩA.
(∀P ′ ∈ V. k : (X,P ′) →̇ (ΩA,ΩA))
=⇒ τA ◦ Fk ◦ c : (X,P ) →̇ (ΩA,ΩA)



⇐⇒


V ⊆ G and
∀A ∈ A, k : X → ΩA.
(∀P ′ ∈ V. k : (X,P ′) →̇ (ΩA,ΩA))
=⇒ ∀P ∈ V. τA ◦ Fk ◦ c : (X,P ) →̇ (ΩA,ΩA)

 .

Here, since k : (X,P ′) →̇ (ΩA,ΩA) means P ′ ⊑ k∗ΩA, the condition

∀P ′ ∈ V. k : (X,P ′) →̇ (ΩA,ΩA)

is equivalent to

k : (X,
⊔

P ′∈V P ′) →̇ (ΩA,ΩA).

Similarly, the condition

∀P ∈ V. τA ◦ Fk ◦ c : (X,P ) →̇ (ΩA,ΩA)

is equivalent to

τA ◦ Fk ◦ c : (X,
⊔

P∈V P ) →̇ (ΩA,ΩA).
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These imply the following logical equivalence:

1) ⇐⇒


V ⊆ G and
∀A ∈ A, k : X → ΩA.(

k :
(
X,
⊔

P ′∈V P ′) →̇ (ΩA,ΩA)
)

=⇒ τA ◦ Fk ◦ c : (X,
⊔

P∈V P ) →̇ (ΩA,ΩA)

 .

By Theorem 4.6.1, the condition in the right-hand side is equivalent to the conjunction
of V ⊆ G and ⊔

P∈V
P ⊑ ΦΩ,τ

c

(⊔
P∈V

P

)
.

Theorem 4.6.7. Assume the setting of Definition 4.6.3. Let G ⊆ |EX | be a join-dense
subset. The following sets coincide.

1. The set of winning positions for Duplicator in the game in Table 4.9.

2. The intersection (↓(νΦΩ,τ
c )) ∩ G of the downset ↓(νΦΩ,τ

c ) of the codensity bisimi-
larity over c and the join-dense subset G.

Proof. By Proposition 4.2.4, (1) is the largest invariant for Duplicator in the game in
Table 4.8. In turn, by Lemma 4.6.6, it is the largest G-joint codensity bisimulation over
c. By Lemma 4.6.4, it coincides with (2).

Corollary 4.6.8 (soundness and completeness of codensity games). Assume the setting
of Definition 4.6.5. In particular, let G be a join-dense subset of EX . P ∈ EX is a
winning position for Duplicator if and only if P ⊑ νΦΩ,τ

c .

Example 4.6.9 (bisimulation topology for deterministic automata). Here we describe
the topological example in Table 2.1. Consider the CLat⊓-fibration Top −→ Set and
the functor AΣ = 2 × ( )Σ : Set → Set, where Σ is a fixed alphabet. Coalgebras for
this functor are deterministic automata over Σ; see e.g. [37, 60].
We take the following data as a parameter of codensity lifting (cf. Definition 3.2.1):

A = {ε}∪Σ, Ωα is the Sierpinski space for each α ∈ A, and the modalities τε, τa : AΣ2 →
2 (where a ∈ Σ) are defined by

τε(t, ρ) = t and τa(t, ρ) = ρ(a).

Recall that the Sierpinski space is the set 2 = {⊥,⊤} with the topology {∅, {⊤}, 2}.
Based on the slogan “Open sets are semi-decidable properties,” which is explained in,
e.g., [72], this observation domain models the situation where acceptance of a word is
only semi -decidable, not decidable, in the sense of computability theory.
Let c : X → AΣX be a deterministic automata. The above choice of parameters leads

to the following codensity bisimilarity: the state space X is equipped with the topology
generated by the following family of open sets.

{x ∈ X | w is accepted from x} ⊆ X, for each w ∈ Σ∗
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One can extract various information from this bisimulation topology via standard topo-
logical constructs. For example, the specialization order (see, e.g., [72, Chapter 7]) of
this topology coincides with the language inclusion order.
For illustration by comparison, consider changing the observation domain from the

Sierpinski space to the discrete 2-point set. The bisimulation topology over X is now
generated by

{x ∈ X | w is accepted from x} and
{x ∈ X | w is not accepted from x}, for each w ∈ Σ∗.

We can now observe rejection of a word, too, because {⊥} ⊆ 2 is open. The specialization
order of this topology is the language equivalence, and it satisfies the R0 separation axiom
(while the last Sierpinski example does not).
We take these examples of bisimulation topology as a process-semantical incarnation

of the “observability via topology, computability via continuity” paradigm from domain
theory. The definition of codensity bisimulation (cf. Definition 5.2.8) fits well with this
intuition, too: a continuous map k : (X,P ) →̇ Ω in Definition 5.2.8 is a “computable
observation”; accordingly, an open set of the bisimulation topology is a property that is
decided by finitely many of those computable observations.

4.7. Transfer of Codensity Bisimilarities

In our formulation, for the same endofunctor F : C → C, we can use various CLat⊓-
fibrations p and parameters (Ω, τ) to equip F -coalgebras with different bisimilarity-like
notions. Some relations among those codensity bisimilarity notions can be categorically
captured by general results. In this section we show two such results.

Definition 4.7.1. In this section, we consider the following situation:

E T //

p ""

F
q||

C
Fcc

.

Here, p : E → C and q : F → C are CLat⊓-fibrations. We assume that q ◦T = p holds on
the nose, and that T is “fibered”: for f : X → Y in C and E ∈ EY , f

∗(TE) = T (f∗E)
holds.

4.7.1. Transfer Result for One Shared Family of Parameters

Firstly, we consider the case where the families of parameters are “shared” among two
fibrations.

We use the following lemma.

Lemma 4.7.2 ([66, Proposition 6.2]). In the setting of Definition 4.7.1, assume also
that T preserves fiberwise meets. Let Ḟ : E → E and F̈ : F → F be liftings of F along p
and q, respectively. Let c : X → FX be an F -coalgebra. If T ḞP = F̈ TP holds for each
P ∈ E, then Tν(c∗ ◦ Ḟ ) = ν(c∗ ◦ F̈ ) holds.
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Proof. For each ordinal α, we define να(c
∗ ◦ Ḟ ) by

να(c
∗ ◦ Ḟ ) =

l

β<α

c∗Ḟ (νβ(c
∗ ◦ Ḟ ))

using induction on α. We define να(c
∗◦F̈ ) in the same way. By Fact 2.2.4, these converge

to ν(c∗ ◦ Ḟ ) and ν(c∗ ◦ F̈ ), respectively. It suffices to show Tνα(c
∗ ◦ Ḟ ) = να(c

∗ ◦ F̈ ) by
induction on α.

Assume that the above inequality holds for all ordinals smaller than α. Then we have

Tνα(c
∗ ◦ Ḟ ) = T

l

β<α

c∗Ḟ (νβ(c
∗ ◦ Ḟ ))

=
l

β<α

Tc∗Ḟ (νβ(c
∗ ◦ Ḟ )) (since T preserves meets)

=
l

β<α

c∗T Ḟ (νβ(c
∗ ◦ Ḟ )) (since T is fibered)

=
l

β<α

c∗F̈ T (νβ(c
∗ ◦ Ḟ )) (by the assumption T Ḟ = F̈ T )

=
l

β<α

c∗F̈ (νβ(c
∗ ◦ F̈ )) (by induction hypothesis)

= να(c
∗ ◦ F̈ ).

The following is the main result of Section 4.7.1. Note that the parameters {(TΩA, τA)}A∈A
for q : F → C are “induced” from {(ΩA, τA)}A∈A for p : E → C.

Theorem 4.7.3 (transfer of codensity bisimilarity). In the setting of Definition 4.7.1, let
c : X → FX be an F -coalgebra and {(ΩA, τA)}A∈A be an A-indexed family of parameters
for codensity lifting of F along p (Definition 3.2.1). Assume that T : E → F is full and
faithful, and that it preserves fiberwise meets. In this setting, {(TΩA, τA)}A∈A is an
A-indexed family of parameters for codensity lifting of F along q, and we have νΦTΩ,τ

c =
T (νΦΩ,τ

c ).
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4.7. Transfer of Codensity Bisimilarities

Proof. For any P ∈ EX , we have TFΩ,τP = F TΩ,τTP because the following hold:

TFΩ,τP

= T

l

A∈A

l

k∈E(P,ΩA)

(τA ◦ F (pk))∗ΩA


=

l

A∈A

l

k∈E(P,ΩA)

T (τA ◦ F (pk))∗ΩA (since T preserves meets)

=
l

A∈A

l

k∈E(P,ΩA)

(τA ◦ F (pk))∗TΩA (since T is fibered)

=
l

A∈A

l

k∈E(P,ΩA)

(τA ◦ F (q(Tk)))∗TΩA (since q ◦ T = p)

=
l

A∈A

l

l∈F(TP,TΩA)

(τA ◦ F (ql))∗TΩA (since T is full)

= F TΩ,τTP

Considering this and the fact that T preserves meets, Lemma 4.7.2 implies T (νΦΩ,τ ) =
νΦTΩ,τ .

Example 4.7.4. We show that the codensity bisimilarities in Examples 3.1.4 and 3.1.5
are indeed the usual bisimilarity notions for Kripke frames. Recall that they are built
on the two CLat⊓-fibrations EqRel −→ Set and ERel −→ Set.
We first note that the inclusion functor i : EqRel → ERel is a reflection, having

the equivalence closure ( )eq : ERel → EqRel as the left adjoint. It follows that i is
meet-preserving. Moreover, i is fibered.

EqRel

p %%

ERel
( )eq

oo

⊥ //i

qzz
Set Pcc

We introduce shorthands Ṗ2, Ṗ3 for the liftings in Examples 3.1.4 and 3.1.5:

Ṗ2 = PEq2,♢ : EqRel → EqRel (Example 3.1.4),

Ṗ3 = PEq2,♢ : ERel → ERel (Example 3.1.5).

Now, for the sake of our proof, let us introduce a relational lifting Ṗ1 : ERel → ERel of
P along ERel −→ Set, for which it is obvious that the corresponding bisimilarity notion
is the usual bisimilarity for Kripke frames. We do so in concrete terms, instead of as a
codensity lifting:

(S, T ) ∈ Ṗ1(R) ⇐⇒ (∀x ∈ S. ∃y ∈ T. (x, y) ∈ R) ∧ (∀y ∈ T. ∃x ∈ S. (x, y) ∈ R).

We note that Ṗ2 is the restriction of Ṗ1 from ERel to EqRel along i. This means
i ◦ Ṗ2 = Ṗ1 ◦ i. Note also that Ṗ3 = Ṗ1 ◦ i ◦ ( )eq.
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4. Codensity Games for Bisimilarity

Let c : X → PX be a Kripke frame and Φi = c∗ ◦ Ṗi (i = 1, 2, 3) be the predicate
transformer corresponding to each lifting. Theorem 4.7.3 yields that νΦ3 = i(νΦ2).

Furthermore, by Ṗ1 ⊑ Ṗ3 (where ⊑ is the order in (3.2)), we have νΦ1 ⊑ νΦ3. From
i ◦ Ṗ2 = Ṗ1 ◦ i and fiberedness of c, we can see that i(νΦ2) is a fixed point of Φ1:

Φ1(i(νΦ2)) = c∗(Ṗ1(i(νΦ2))) = c∗(i(Ṗ2(νΦ2)))

= i(c∗(Ṗ2(νΦ2))) = i(Φ2(νΦ2)) = i(νΦ2).

By this fact and the definition of νΦ1, i(νΦ2) ⊑ νΦ1 holds. The three (in)equalities so far
allow us to conclude νΦ3 = i(νΦ2) = νΦ1, stating that the conventional bisimilarity νΦ1

is equal to the codensity bisimilarities in Examples 3.1.4 and 3.1.5. As a consequence,
the conventional bisimilarity νΦ1 is necessarily an equivalence relation.

4.7.2. Transfer Result for Two Different Families of Parameters

Consider the following situation again (Definition 4.7.1):

E T //

p ""

F
q||

C
Fcc

.

Now consider two families of parameters, (Ω, τ) = {(ΩA, τA)}
A∈Å

for lifting F along p

and (Ψ, ρ) = {(ΨB, ρB)}B∈B for lifting F along q. Let c : X → FX be an F -coalgebra.
In Section 4.7.2 we compare TνΦΩ,τ

c and νΦΨ,ρ
c (both in FX).

Firstly, we show an “order-version” of Lemma 4.7.2. It reduces the comparison of
TνΦΩ,τ

c and νΦΨ,ρ
c to that of TFΩ,τ and FΨ,ρT :

Proposition 4.7.5. In the setting of Definition 4.7.1, assume also that T preserves
fiberwise meets. Let Ḟ : E → E and F̈ : F → F be liftings of F along p and q, respectively.
Let c : X → FX be an F -coalgebra. If T ḞP ⊒ F̈ TP holds for each P ∈ E, then
Tν(c∗ ◦ Ḟ ) ⊒ ν(c∗ ◦ F̈ ) holds.

Proof. For each ordinal α, we define να(c
∗ ◦ Ḟ ) by

να(c
∗ ◦ Ḟ ) =

l

β<α

c∗Ḟ (νβ(c
∗ ◦ Ḟ ))

using induction on α. We define να(c
∗◦F̈ ) in the same way. By Fact 2.2.4, these converge

to ν(c∗ ◦ Ḟ ) and ν(c∗ ◦ F̈ ), respectively. It suffices to show Tνα(c
∗ ◦ Ḟ ) ⊒ να(c

∗ ◦ F̈ ) by
induction on α.
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4.7. Transfer of Codensity Bisimilarities

Assume that the above inequality holds for all ordinals smaller than α. Then we have

Tνα(c
∗ ◦ Ḟ ) = T

l

β<α

c∗Ḟ (νβ(c
∗ ◦ Ḟ ))

=
l

β<α

Tc∗Ḟ (νβ(c
∗ ◦ Ḟ )) (since T preserves meets)

=
l

β<α

c∗T Ḟ (νβ(c
∗ ◦ Ḟ )) (since T is fibered)

⊒
l

β<α

c∗F̈ T (νβ(c
∗ ◦ Ḟ )) (by the assumption T Ḟ ⊒ F̈ T )

⊒
l

β<α

c∗F̈ (νβ(c
∗ ◦ F̈ )) (by induction hypothesis)

= να(c
∗ ◦ F̈ ).

The following is the main result of Section 4.7.2. It says that, if we have a certain
data connecting two families of parameters {(ΩA, τA)}

A∈Å
and {(ΨB, ρB)}B∈B, then the

inequality TFΩ,τ ⊒ FΨ,ρT holds:

Proposition 4.7.6. In the setting of Definition 4.7.1, assume also that T preserves fiber-
wise meets. Let (IA,B)

A∈Å,B∈B
be some family of sets and (tA,B,i : TΩA → ΨB)

A∈Å,B∈B,i∈IA,B

be a family of F-arrows such that

τ∗ATΩA ⊒
l

B∈B,i∈IA,B

(F (q(tA,B,i)))
∗ρ∗BΨB

holds for each A ∈ Å. Then TFΩ,τP ⊒ FΨ,ρTP holds for each P ∈ E.

Proof. Let X = pP . Since

TFΩ,τP = T

 l

A∈Å,f :P→ΩA

(F (pf))∗τ∗AΩA


=

l

A∈Å,f :P→ΩA

(F (pf))∗τ∗ATΩA

and
FΨ,ρTP =

l

B∈B,g : TP→ΨB

(F (qg))∗ρ∗BΨB,

it suffices to show that, for each f : P → Ω and A ∈ Å,

(F (pf))∗τ∗ATΩA ⊒
l

B∈B,g : TP→ΨB

(F (qg))∗ρ∗BΨB

holds.
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4. Codensity Games for Bisimilarity

Let A ∈ Å and f : P → ΩA. For each B ∈ B and i ∈ IA,B, consider g = TP
Tf−−→

TΩA
tA,B,i−−−→ ΨB. Then F (qg) = FX

F (pf)−−−→ FΩA
FqtA,B,i−−−−−→ FqΨB. Thus (F (qg))∗ρ∗BΨB =

(F (pf))∗(F (q(tA,B,i)))
∗ρ∗BΨB holds. Restricting the range of g to the class considered

above, it suffices to show

τ∗ATΩA ⊒
l

B∈B,i∈IA,B

(F (q(tA,B,i)))
∗ρ∗BΨB.

This is nothing but our assumption.

Remark 4.7.7. As a special case, if each IA,B is the singleton {•} and the diagram

FΩA

τA
��

F (q(tA,B,•))
// FΨB

ρB
��

ΩA
q(tA,B,•)

// ΨB

commutes, then the condition in Proposition 4.7.6 holds. However, it seems that such
cases are rather special. The condition in Proposition 4.7.6 can be regarded as a weak-
ening of it: we use multiple tA,B,i to obtain as much information as given by one arrow
making the above diagram commute.

Example 4.7.8. Consider the following situation:

PMet1
T //

U ''

EqRel

Uxx
Set D≤1cc

.

Here, T is defined by T (X, d) = (X,Rd) and

(x, y) ∈ Rd ⇐⇒ d(x, y) = 0.

This is a fibered lifting of IdC and preserves fibered meets.

We describe the parameter for E = PMet1: Å = {•} and Ω• = ([0, 1], de), where de is
the Euclidean metric. The modality τ• : D≤1[0, 1] → [0, 1] is given by the expected value
function. In this setting, for each coalgebra c : X → D≤1X, the codensity bisimilarity

νΦΩ,τ
c coincides with the bisimulation metric (Examples 3.1.11, 4.4.5 and 4.5.3).

We move on to the parameter for F = EqRel: B = [0, 1] and Ψr = (2,Eq2) for all
r ∈ [0, 1]. The modality ρr : D≤12 → 2 is the threshold modality defined by

ρr(p) = ⊤ ⇐⇒ p(⊤) ≥ r.

For each coalgebra c : X → D≤1X, the codensity bisimilarity νΦΨ,ρ coincides with the
probabilistic bisimilarity (Example 4.8.14).
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For each r ∈ [0, 1], let I•,r = [0, 1]. For each r, s ∈ [0, 1], we define an EqRel-arrow
t•,r,s : T ([0, 1], de) → (2,Eq2) by

t•,r,s(u) = ⊤ ⇐⇒ u ≥ s.

In this setting the condition in Proposition 4.7.6 is satisfied. Let µ, ν ∈ D≤1[0, 1]; if
µ({x | x ≥ s}) ≥ r ⇐⇒ ν({x | x ≥ s}) ≥ r holds for all r, s ∈ [0, 1], then their expected
values coincide.

Using Propositions 4.7.5 and 4.7.6, we can conclude that, for any D≤1-coalgebra
c : X → D≤1X, T (νΦΩ,τ ) ⊒ νΦΨ,ρ holds. This means that, if two states are bisimi-
lar, then the bisimulation metric between them is 0.

On the other hand, the converse inequality T (νΦΩ,τ ) ⊑ νΦΨ,ρ cannot be derived from
the above general theory. It is known to hold [22, Theorem 5.2], but the proof involves
a real-valued modal logic. Purely fibrational proof of this fact is a future work.

Note that this example does not make the diagram in Remark 4.7.7 commute.

4.8. Examples

In this section we list examples of our framework. We group them by the fibrations they
rely upon: EqRel → Set in Section 4.8.1, BRel → Set2 in Section 4.8.2, Top → Set
in Section 4.8.3, and PMet1 → Set in Section 4.8.4. In Section 4.8.5, we use a fibration
U∗(PMet1) → Meas that is newly defined there.

4.8.1. Set-coalgebras and Behavioral Equivalence

In Section 4.8.1, we show that behavioral equivalence for coalgebras in Set can also be
defined in terms of fibrations (Proposition 4.8.3), and that they can be characterized
by codensity games (Theorem 4.8.7) in the cases where the functor admits a separating
family (Definition 4.8.5).

We start with the standard definition of behavioral equivalence. The intuition here is
that a coalgebra morphism is “behavior preserving.” See [37].

This can be modeled fibrationally by the fibration EqRel → Set. We use a functor
lifting, which is essentially the same as the one defined in [42, Section 4].

Definition 4.8.1 (the lifting FBE : EqRel → EqRel). Let F : Set → Set be a functor.
We define a lifting FBE : EqRel → EqRel by the following: for (X,R) ∈ EqRel, let
q : X ↠ X/R be the canonical surjection. Then FBE(X,R) is defined as the kernel of
Fq : FX → F (X/R), that is,

FBE(X,R) = (FX, {(z, z′) ∈ (FX)2 | (Fq)(z) = (Fq)(z′)}).

Proposition 4.8.2. The assignment FBE above indeed specifies a functor, i.e., for any
decent morphism f : (X,R) → (Y, S), Ff is decent from FBE(X,R) to FBE(Y, S).
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Proof. Let q : X ↠ X/R and r : Y ↠ Y/S be the canonical surjections. Let us fix z, z′ ∈
FX and assume (Fq)(z) = (Fq)(z′). It suffices to show (Fr)((Ff)(z)) = (Fr)((Ff)(z′)).
Since f : (X,R) → (Y, S) is decent, R ⊑ f∗S holds. Therefore there exists a map

g : X/R → Y/S which makes the diagram

X

q
����

f
// Y

r
����

X/R g
// Y/S

commute. Using this we see

(Fr)((Ff)(z)) = (F (r ◦ f))(z) = (F (g ◦ q))(z) = (Fg)((Fq)(z)).

For the same reason (Fr)((Ff)(z′)) = (Fg)((Fq)(z′)) holds, and the assumption (Fq)(z) =
(Fq)(z′) now implies (Fr)((Ff)(z)) = (Fr)((Ff)(z′)).

The lifting FBE indeed captures behavioral equivalence, provided that F preserves
monos.

Proposition 4.8.3. Let F : Set → Set be a functor and c : X → FX be an F -coalgebra.
Assume that F preserves monos. The states x, x′ ∈ X are behaviorally equivalent if and
only if there is an equivalence relation R on X such that (X,R) ⊑ c∗FBE(X,R).

Proof. Let q : X ↠ X/R be the canonical surjection. Then c∗FBE(X,R) can be con-
cretely presented by

c∗FBE(X,R) = (X, {(x, x′) ∈ X2 | (Fq)(c(x)) = (Fq)(c(x′))}).

Let x, x′ ∈ X. Firstly, we show that if x and x′ are behaviorally equivalent, there
exists some R such that (x, x′) ∈ R and (X,R) ⊑ c∗FBE(X,R) hold. Assume x and x′

are behaviorally equivalent. There is another F -coalgebra d : Y → FY and a coalgebra
morphism f : X → Y such that f(x) = f(x′). Let R ⊆ X ×X be

R = {(x1, x2) ∈ X2 | f(x1) = f(x2)}.

Then (X,R) ∈ EqRel and, by the definition, (x, x′) ∈ R. Let q : X ↠ X/R be the
canonical surjection. By the definition of R, there exists a monomorphism m : X/R↣ Y
such that f = m ◦ q. Since f is a coalgebra morphism, the outer square of the following
diagram commutes:

X

c

��

q
// // X/R

e

��

//
m

// Y

d
��

FX
Fq
// F (X/R) //

Fm
// FY.

In this diagram, q is epic and, since m is monic, Fm is also monic. Therefore, there
exists a unique e : X/R → F (X/R) making the two squares in the above diagram
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commute (the diagonalization property of a factorization system—see [2]). Now we
prove (X,R) ⊑ c∗FBE(X,R). Assume (x1, x2) ∈ R. Since (Fq)(c(x1)) = e(q(x1)) =
e(q(x2)) = (Fq)(c(x2)), (x1, x2) ∈ c∗FBE(X,R) holds.

Secondly, for R satisfying (X,R) ⊑ c∗FBE(X,R), we show that any pair (x, x′) ∈
R is behaviorally equivalent. Assume that there exists R such that (x, x′) ∈ R and
(X,R) ⊑ c∗FBE(X,R) hold. The second condition means that, for each (x1, x2) ∈ R,
(Fq ◦ c)(x1) = (Fq ◦ c)(x2) holds. Thus there is a (unique) d : X/R → F (X/R) making
the following diagram commute:

X

c

��

q
// // X/R

d
��

FX
Fq
// F (X/R).

Now q is a coalgebra morphism from c : X → FX to d : X/R → F (X/R). Since q(x) =
q(x′), x and x′ are behaviorally equivalent.

Remark 4.8.4 (on preservation of monomorphisms). In Proposition 4.8.3, F is assumed
to preserve monos. However, this is not very restricting: If X ∈ Set is nonempty, then
any monomorphism f : X ↣ Y splits, and Ff is also a split mono. Therefore, we only
have to check that, for f : 0 → Y , Ff is injective. See [1] for details.

Now we move on to representing FBE as a codensity lifting. The key notion here is
separation. It is mainly used in coalgebraic modal logic literature like [58, 64]. While
it is standard to define it for predicate liftings like in [64, Definition 7], we adapt it for
F -algebras.

Definition 4.8.5 (separating family of F -algebras). Let X ∈ Set and F : Set → Set.
An Å-indexed family (τA : F2 → 2)

A∈Å
of F -algebras is separating for X if each z ∈ FX

is uniquely determined by the values of τA((Ff)(z)) for A ∈ Å and f : X → 2, that is, for
each pair z, z′ ∈ FX, if τA((Ff)(z)) = τA((Ff)(z′)) holds for all A ∈ Å and f : X → 2,
then z = z′.

For an Å-indexed family (τA : F2 → 2)
A∈Å

of F -algebras, note that {(Eq2, τA)}A∈Å
is

an A-indexed family of lifting parameters and we can define the codensity lifting FEq2,τ .
This turns out to coincide with FBE if the family is separating.

Proposition 4.8.6. Let (X,R) be an object in EqRel, F : Set → Set be a functor,
and (τA : F2 → 2)

A∈Å
be an Å-indexed family of F -algebras. If (τA : F2 → 2)

A∈Å
is

separating for X/R, then

FEq2,τ (X,R) = FBE(X,R)

holds.

Proof. Firstly, we show FEq2,τ (X,R) ⊒ FBE(X,R). Let (z, z′) ∈ (FX)2, f : (X,R) →
(2,Eq2) and A ∈ Å. Let q : X ↠ X/R be the canonical surjection and assume that
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4. Codensity Games for Bisimilarity

(Fq)(z) = (Fq)(z′). It suffices to show τA((Ff)(z)) = τA((Ff)(z′)). Since f : (X,R) →
(2,Eq2) is decent, there is a (unique) map g : X/R → 2 making the left one of the
following diagrams commute:

X

q !! !!

f
// 2 FX

Fq $$

Ff
// F2.

X/R

g

==

F (X/R)

Fg

::

By the functoriality of F , the right one also commutes. Thus, we have (Ff)(z) =
(Fg)((Fq)(z)) = (Fg)((Fq)(z′)) = (Ff)(z′). This implies τA((Ff)(z)) = τA((Ff)(z′)).

Secondly, we show FEq2,τ (X,R) ⊑ FBE(X,R). Let (z, z′) ∈ (FX)2 and assume that,
for each A ∈ Å and f : (X,R) → (2,Eq2), τA((Ff)(z)) = τA((Ff)(z′)) holds. Let
q : X ↠ X/R be the canonical surjection. It suffices to show (Fq)(z) = (Fq)(z′). Let
g : X/R → 2 be any arrow. Then g ◦ q is decent from (X,R) to (2,Eq2). By the
assumption, τA((Fg)((Fq)(z))) = τA((Ff)(z)) = τA((Ff)(z′)) = τA((Fg)((Fq)(z′)))
holds for each A ∈ Å. Since g is arbitrary and (τA : F2 → 2)

A∈Å
is separating for X/R,

(Fq)(z) = (Fq)(z′) holds.

In such case the codensity bisimilarity (Definition 3.2.2) coincides with the behavioral
equivalence (Definition 2.1.7).

Theorem 4.8.7. Let F : Set → Set be a functor, (τA : F2 → 2)
A∈Å

be an Å-indexed

family of F -algebras, and c : X → FX be an F -coalgebra. Assume that F preserves
monos. If (τA : F2 → 2)

A∈Å
is separating for every set Y , then the behavioral equivalence

of c coincides with the codensity bisimilarity νΦ
Eq2,τ
c .

Proof. By Proposition 4.8.3, the behavioral equivalence is the greatest fixed point of
c∗ ◦ FBE. Moreover, this coincides with νΦ

Eq2,τ
c by Proposition 4.8.6.

Theorem 4.8.7 characterizes the behavioral equivalence of F -coalgebras by codensity
games, when F preserves monos and has separating family of F -algebras. In the follow-
ing, we use the join-dense subset described in Example 4.5.2 to trim games.

Example 4.8.8 (Kripke frames). Consider the powerset functor P : Set → Set. Since
P0 ≃ 1, for any f : 0 → Y in Set, Pf : P0 → PY is monic. Thus it preserves monos by
Remark 4.8.4. A P-coalgebra c : X → PX is nothing but a Kripke frame.

The one-member family (♢ : P2 → 2) (used in Example 3.1.4) is separating for any
set X. Indeed, if we define fx : X → 2 by fx(x

′) = ⊤ ⇐⇒ x = x′, then for S ∈ PX,
x ∈ S if and only if ♢((Pfx)(S)) = ⊤.

By Theorem 4.8.7, the behavioral equivalence (Definition 2.1.7) for a Kripke frame

c : X → PX coincides with the codensity bisimilarity νΦ
Eq2,♢
c . Thus, by Corollary 4.5.16,

it is characterized by the codensity game (Table 4.8) specialized to this situation. The
game in this case is shown in Table 4.10. It is trimmed by the join-dense subset in
Example 4.5.2.
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Table 4.10.: Codensity bisimilarity game for conventional bisimilarity

position player possible moves

(x, y) ∈ X ×X Spoiler k ∈ Set(X, 2) such that exactly one of
∃x′ ∈ c(x). k(x′) = ⊤ and ∃y′ ∈ c(y). k(y′) = ⊤ holds

k ∈ Set(X, 2) Duplicator (x′′, y′′) s.t. k(x′′) ̸= k(y′′)

Theorem 4.8.9. Let c : X → PX be a Kripke frame. The position (x, y) ∈ X ×X in

the game in Table 4.10 is winning for Duplicator if and only if (x, y) ∈ νΦ
Eq2,♢
c , if and

only if x and y are behaviorally equivalent.

As shown in Example 4.7.4, the codensity bisimilarity νΦ
Eq2,♢
c (which is νΦ2 in Ex-

ample 4.7.4) also coincides with the conventional bisimilarity on the Kripke frame c.
Therefore, we also see that the conventional bisimilarity and the behavioral equivalence
are equal for Kripke frames.

Example 4.8.10 (deterministic automata). Consider the functor AΣ : Set → Set from
Example 4.6.9, for which a coalgebra is a deterministic automaton. Since AΣ0 ≃ 0,
for any f : 0 → Y in Set, AΣf : AΣ0 → AΣY is monic. Thus it preserves monos by
Remark 4.8.4.
The family {τε}∪ {τa | a ∈ Σ} introduced in Example 4.6.9 is separating for every set

X. Indeed, if we define fx : X → 2 by fx(x
′) = ⊤ ⇐⇒ x = x′, then for y = (t, ρ) ∈ AΣX

(where t ∈ 2 and ρ : Σ → X), t = ⊤ if and only if τε((AΣfx)(y)) = ⊤, and ρ(a) = x if
and only if τa((AΣfx)(y)) = ⊤.

By Theorem 4.8.7, the behavioral equivalence (Definition 2.1.7) for a deterministic

automaton c : X → AΣX coincides with the codensity bisimilarity νΦ
Eq2,τ
c . Thus, by

Corollary 4.6.8, it is characterized by the codensity game (Table 4.9) specialized to this
situation. The game in this case is shown in Table 4.11. It is trimmed by the join-dense
subset in Example 4.5.2. It is also simplified in the case where the position (x, y) ∈ X×X
satisfies c1(x) ̸= c1(y): strictly in such case, Spoiler can play any constant map from X
to 2 and any a ∈ Σ, and then Duplicator cannot play any longer.

Table 4.11.: Codensity bisimilarity game for deterministic automata and their language
equivalence. The arrows c1 : X → 2 and c2 : X → XΣ are the first and
second projections of c : X → AΣX = 2×XΣ, respectively.

position player possible moves

(x, y) ∈ X ×X Spoiler If c1(x) ̸= c1(y) then Spoiler wins
If c1(x) = c1(y) then
a ∈ Σ and k ∈ Set(X, 2)
such that k(c2(x)(a)) ̸= k(c2(y)(a))

a ∈ Σ and k ∈ Set(X, 2) Duplicator (x′′, y′′) ∈ X ×X s.t. k(x′′) ̸= k(y′′)

Theorem 4.8.11. Let c : X → AΣX be a deterministic automaton. The position (x, y) ∈
X×X in the game in Table 4.11 is winning for Duplicator if and only if (x, y) ∈ νΦ

Eq2,τ
c ,

if and only if x and y are behaviorally equivalent.
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Since we are considering deterministic automata here, the language equivalence coin-
cides with the behavioral equivalence. Thus the game in Table 4.11 also characterizes
the language equivalence.

Example 4.8.12 (nondeterministic automata). Let us now turn to nondeterministic
automata, that is, NΣ-coalgebras for the functor NΣ = 2× (P )Σ. Since NΣ = AΣ ◦ P
and both AΣ and P preserve monos (Examples 4.8.8 and 4.8.10), NΣ preserves monos.

Consider the family {τε} ∪ {τa | a ∈ Σ} of maps from NΣ2 to 2 defined as follows:

τε(t, ρ) = t, τa(t, ρ) = ♢(ρ(a)).

This family is separating for every set X. Indeed, if we define fx : X → 2 by fx(x
′) =

⊤ ⇐⇒ x = x′, then for y = (t, ρ) ∈ NΣX (where t ∈ 2 and ρ : Σ → PX), t = ⊤ if and
only if τε((NΣfx)(y)) = ⊤, and x ∈ ρ(a) if and only if τa((NΣfx)(y)) = ⊤.

By Theorem 4.8.7, the behavioral equivalence (Definition 2.1.7) for a nondeterministic

automaton c : X → NΣX coincides with the codensity bisimilarity νΦ
Eq2,τ
c . Thus, by

Corollary 4.6.8, it is characterized by the codensity game (Table 4.9) specialized to this
situation. The game in this case is shown in Table 4.12. It is trimmed by the join-dense
subset in Example 4.5.2. It is also simplified in the case where the position (x, y) ∈ X×X
satisfies c1(x) ̸= c1(y): strictly in such case, Spoiler can play any constant map from X
to 2 and any a ∈ Σ, and then Duplicator cannot play any longer.

Table 4.12.: Codensity bisimilarity game for nondeterministic automata and their be-
havioral equivalence. The arrows c1 : X → 2 and c2 : X → (PX)Σ are the
first and second projections of c : X → NΣX = 2× (PX)Σ, respectively.

position player possible moves

(x, y) ∈ X ×X Spoiler If c1(x) ̸= c1(y) then Spoiler wins
If c1(x) = c1(y) then

a ∈ Σ and k ∈ Set(X, 2)
such that ∃x′ ∈ c2(x)(a). k(x

′) = ⊤
⇎ ∃y′ ∈ c2(y)(a). k(y

′) = ⊤
a ∈ Σ and Duplicator (x′′, y′′) ∈ X ×X s.t. k(x′′) ̸= k(y′′)
k ∈ Set(X, 2)

Theorem 4.8.13. Let c : X → NΣX be a nondeterministic automaton. The position
(x, y) ∈ X × X in the game in Table 4.12 is winning for Duplicator if and only if

(x, y) ∈ νΦ
Eq2,τ
c , if and only if x and y are behaviorally equivalent.

Example 4.8.14 (Markov chains). Consider the functorD≤1 : Set → Set (introduced in
Section 4.1.1), for which a coalgebra is a Markov chain. Since D≤10 ≃ 1, for any f : 0 →
Y in Set, D≤1f : D≤10 → D≤1Y is monic. Thus it preserves monos by Remark 4.8.4.
For each real number r ∈ [0, 1], define a threshold modality τr : D≤12 → 2 by τr(p) = ⊤

if and only if p(⊤) ≥ r. Then the family {τr | r ∈ [0, 1]} is separating for every set X.
Indeed, if we define fx : X → 2 by fx(x

′) = ⊤ ⇐⇒ x = x′, then for d ∈ D≤1X,
d(x) = sup{r ∈ [0, 1] | τr((D≤1fx)(d)) = ⊤} holds.
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By Theorem 4.8.7, the behavioral equivalence (Definition 2.1.7) for a Markov chain

c : X → NΣX coincides with the codensity bisimilarity νΦ
Eq2,τ
c . Thus, by Corollary 4.6.8,

it is characterized by the codensity game (Table 4.9) specialized to this situation. The
game in this case is shown in Table 4.13. It is trimmed by the join-dense subset in
Example 4.5.2. It is essentially the same as Table 4.2 (arising from [16]). The difference
is that r is additionally present in Table 4.13; it is easy to realize that r plays no role in
the game.

Table 4.13.: Codensity bisimilarity game for probabilistic bisimilarity

position player possible moves

(x, y) ∈ X ×X Spoiler r ∈ [0, 1] and k ∈ Set(X, 2) s.t.
c(x)(k−1(⊤)) ≥ r > c(y)(k−1(⊤)), or
c(y)(k−1(⊤)) ≥ r > c(x)(k−1(⊤))

r ∈ [0, 1] and k ∈ Set(X, 2) Duplicator (x′′, y′′) s.t. k(x′′) ̸= k(y′′)

Theorem 4.8.15. Let c : X → D≤1X be a Markov chain. The position (x, y) ∈ X ×X

in the game in Table 4.13 is winning for Duplicator if and only if (x, y) ∈ νΦ
Eq2,τ
c , if

and only if x and y are behaviorally equivalent.

Concretely, for any R ∈ EqRelX , the relation part of the codensity lifting DΩ,τ
≤1 (X,R)

relates p, q ∈ D≤1(X) if and only if the following holds:

∀r ∈ [0, 1]. ∀k : X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

=⇒
(∑

x∈k−1(⊤) p(x) ≥ r ⇔
∑

x∈k−1(⊤) q(x) ≥ r
))
.

From this, it is not hard to see that the resulting codensity bisimilarity also coincides
with probabilistic bisimilarity in [51]. Note, for example, that a relation-preserving map
k : (X,R) →̇ (2,Eq2) coincides with an R-closed subset of X.

4.8.2. Set-coalgebras and Λ-bisimulation

In [4], a bisimulation notion called Λ-bisimulation is introduced. Their intention is to
start from a behavior functor and a modal logic, and construct a corresponding notion
of bisimulation. The special cases include precocongruence for neighborhood frames, rel-
∆-bisimulation for Kripke frames, and nbh-∆-bisimulation for neighborhood frames [4,
Examples 14–16], and the latter two examples are related to contingency logic.
In Section 4.8.2 we see how their definition and our codensity bisimilarity overlap.

Specifically, when all of the given modalities are unary, the induced Λ-bisimulation turns
out to be a special case of codensity bisimulation (Proposition 4.8.20). Using this overlap,
we also derive a game characterization of such Λ-bisimulations (Corollary 4.8.23).

Definition 4.8.16 (from [4, Section 2]). A similarity type is a set of modal operators
with finite arities. For a similarity type Λ, a Λ-structure (F, (J♡K)♡∈Λ) is a pair of a
functor F : Set → Set and a family of predicate liftings J♡K : Set( , 2)n ⇒ Set(F , 2),
where n is the arity of the modal operator ♡ ∈ Λ.
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Note that, by the Yoneda lemma, a predicate lifting J♡K : Set( , 2)n ⇒ Set(F , 2)
can be equivalently represented by an arrow τ♡ : F (2n) → 2. Concretely, from J♡K, we
can obtain τ♡ by J♡K2n(π1, . . . , πn); and from τ♡, we can recover J♡K by J♡KX(f1, . . . , fn) =
τ♡ ◦ F (⟨f1, . . . , fn⟩).
Since Λ-bisimulations include not only endorelations but also binary relations between

two different sets, we use the CLat⊓-fibration BRel → Set2 (Definition 2.3.16) here.
One key notion in [4] is R-coherence.

Definition 4.8.17 (R-coherent pairs [4, Definition 8, Lemma 9 (b)]). Let (X,Y,R) ∈
BRel, U ⊆ X, and V ⊆ Y . The pair (U, V ) is R-coherent if both of the following hold:

• (x, y) ∈ R ∧ x ∈ U =⇒ y ∈ V .

• (x, y) ∈ R ∧ y ∈ V =⇒ x ∈ U .

Equivalently, the pair (U, V ) is R-coherent if and only if, for each (x, y) ∈ R, x ∈
U ⇐⇒ y ∈ V holds.

The notion of R-coherence turns out to be expressible in terms of the fibrationBRel →
Set2.

Proposition 4.8.18 (coherence as decency). Let (X,Y,R) ∈ BRel, f : X → 2, and
g : Y → 2. Let Eq2 ⊆ 2 × 2 be the diagonal relation (Example 2.3.13). Then the pair
(f−1(⊤), g−1(⊤)) is R-coherent if and only if the arrow (f, g) in Set2 is decent from
(X,Y,R) to (2, 2,Eq2).

Proof. By Definition 4.8.17, the pair (f−1(⊤), g−1(⊤)) is R-coherent if and only if, for
each (x, y) ∈ R, f(x) = ⊤ ⇐⇒ g(y) = ⊤ holds. Here, the condition f(x) = ⊤ ⇐⇒
g(y) = ⊤ is equivalent to (f(x), g(y)) ∈ Eq2. The claim follows from Definition 2.3.16.

From now on, we consider a similarity type Λ with only unary modal operators.
It turns out that, in such cases, a Λ-bisimulation is the same thing as a codensity
bisimulation with an appropriate family of lifting parameters.

Let us fix a Λ-structure (F, (J♡K)♡∈Λ). For each ♡ ∈ Λ, let τ♡ : F2 → 2 be the arrow
corresponding to J♡K : Set( , 2) ⇒ Set(F , 2).

Definition 4.8.19 (Λ-bisimulation [4, Definition 11]). Let c : X → FX and d : Y → FY
be F -coalgebras. A relation Z ⊆ X × Y is a Λ-bisimulation if, for every pair (x, y) ∈ Z,
modal operator ♡ ∈ Λ, and Z-coherent pair (U, V ),

c(x) ∈ J♡KX(U) ⇐⇒ d(y) ∈ J♡KX(V )

holds.

This definition can be characterized using codensity lifting. We use the lifting of
F 2 : Set2 → Set2 by the family of parameters {((2, 2,Eq2), τ♡)♡∈Λ}.
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Proposition 4.8.20. Let c : X → FX and d : Y → FY be F -coalgebras. A Λ-bisimulation
is nothing but a codensity bisimulation for the family of lifting parameters ((2, 2,Eq2), τ) =
{((2, 2,Eq2), τ♡)♡∈Λ}, that is, Z ⊆ X × Y is a Λ-bisimulation if and only if (X,Y, Z) ⊑
(c, d)∗(F 2)(2,2,Eq2),τ (X,Y, Z) holds.

Proof. Assume (X,Y, Z) ⊑ (c, d)∗(F 2)(2,2,Eq2),τ (X,Y, Z). Expanding the definitions, the
following holds:

If (x, y) ∈ Z, for each (f, g) : (X,Y, Z) → (2, 2,Eq2) and each ♡ ∈ Λ,
τ♡((Ff)(c(x))) = τ♡((Fg)(d(y))) holds.

Let (U, V ) be any Z-coherent pair. We define f : X → 2 and g : Y → 2 by f(x) = ⊤ ⇐⇒
x ∈ U and g(y) = ⊤ ⇐⇒ y ∈ V . By Proposition 4.8.18, (f, g) : (X,Y, Z) → (2, 2,Eq2)
is decent. Thus, for each ♡ ∈ Λ, τ♡((Ff)(c(x))) = τ♡((Fg)(d(y))) holds. By the
definition of τ♡, this means

c(x) ∈ J♡KX(U) ⇐⇒ d(y) ∈ J♡KX(V ).

Since (U, V ) is arbitrary, Z is a Λ-bisimulation.

Conversely, assume Z ⊆ X × Y is a Λ-bisimulation. For every pair (x, y) ∈ Z, modal
operator ♡ ∈ Λ, and Z-coherent pair (U, V ),

c(x) ∈ J♡KX(U) ⇐⇒ d(y) ∈ J♡KX(V )

holds. Now, for each decent arrow (f, g) : (X,Y, Z) → (2, 2,Eq2), (f
−1(⊤), g−1(⊤)) is

Z-coherent by Proposition 4.8.18. Thus for every pair (x, y) ∈ Z and modal operator
♡ ∈ Λ,

c(x) ∈ J♡KX(f−1(⊤)) ⇐⇒ d(y) ∈ J♡KX(g−1(⊤))

holds. By the definition of τ♡, this is equivalent to τ♡((Ff)(c(x))) = τ♡((Ff)(c(y))).
Since this holds for any decent (f, g) : (X,Y, Z) → (2, 2,Eq2), (X,Y, Z) ⊑ (c, d)∗(F 2)(2,2,Eq2),τ (X,Y, Z)
holds.

Corollary 4.8.21. Let c : X → FX and d : Y → FY be F -coalgebras. The codensity
bisimilarity νΦ(2,2,Eq2),τ is the largest Λ-bisimulation.

In the case where the modal operators are all unary, we can derive a game charac-
terization of Λ-bisimulation from our general framework. Let us first note the following
fact:

Proposition 4.8.22. The object (1, 1) ∈ Set2 is a fibered separator (Definition 4.5.5)
of BRel → Set2.

Proof. Let (X,Y ) ∈ Set2 and B1, B2 ∈ BRel(X,Y ). Assume B1 ̸= B2. There exists a
pair (x, y) ∈ X ×Y such that exactly one of (x, y) ∈ B1 and (x, y) ∈ B2 holds. Consider
the arrow (x, y) : (1, 1) → (X,Y ) in Set2. Then (x, y)∗B1 ̸= (x, y)∗B2 holds. This
concludes the proof.
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By Corollary 4.6.8 and suppressing ♡ (which does not affect Duplicator’s moves), we
obtain the following game characterization.

Corollary 4.8.23. Let c : X → FX and d : Y → FY be F -coalgebras. For a pair of
states (x, y) ∈ X × Y , there exists a Λ-bisimulation containing (x, y) if and only if the
position (x, y) ∈ X × Y in the game in Table 4.14 is winning for Duplicator.

Table 4.14.: Codensity bisimilarity game for Λ-bisimulation

position player possible moves

(x, y) ∈ X × Y Spoiler f and g such that, for some ♡ ∈ Λ,
exactly one of τ♡((Ff)(c(x))) = ⊤
and τ♡((Fg)(d(x))) = ⊤ holds

f : X → 2 and g : Y → 2 Duplicator (x′, y′) such that
exactly one of f(x′) = ⊤ and g(y′) = ⊤ holds

This in turn yields game characterizations of many bisimulation notions, e.g., those
listed in [4, Example 13–16].

4.8.3. Deterministic Automata and the Language Topology

We introduced two versions of bisimulation topology for deterministic automata in Ex-
ample 4.6.9. They are in close correspondences with accepted languages; therefore we
call them language topologies.

For the first topology in Example 4.6.9 (where Ω is the Sierpinski space, modeling
the situation where acceptance is only semi-decidable), the corresponding (untrimmed)
codensity game is shown in Table 4.15. It follows from our general results that the game
notion is sound and complete.

Table 4.15.: Codensity bisimilarity game for deterministic automata and the bisimula-
tion topology

position player possible moves

O ∈ TopX Spoiler a ∈ {ε} ∪ Σ and k ∈ Set(X, 2)
such that τa ◦ (AΣk) ◦ c : X → 2
is not continuous from (X,O) to (2,Ωa)

a ∈ {ε} ∪ Σ Duplicator O′ ∈ TopX

and k ∈ Set(X, 2) such that k : X → 2
is not continuous from (X,O′) to (2,Ωa)

We have not yet found a good way (e.g. join-dense subsets) of trimming the game
arena. This is left as future work.

4.8.4. Markov Chains and Bisimulation Metric

Recall Examples 3.1.11, 4.4.5 and 4.5.3. Markov chains are D≤1-coalgebras. We use the
CLat⊓-fibration PMet1 −→ Set (Example 2.3.9), taking pseudometrics as a notion of
indistinguishability. With the lifting parameter we described in Example 3.1.11, we get
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the bisimulation metric as the codensity bisimilarity. We can use the join-dense subset
described in Example 4.5.3 to obtain a trimmed codensity game; the resulting game
coincides with the one in Table 4.3 in the introduction. Therefore, Corollary 4.5.16 gives
an abstract proof for the correctness of the game.

4.8.5. Continuous State Markov Chains and Bisimulation Metric

In order to accommodate continuous state Markov chains (for which measurable struc-
tures are essential), we consider an example that involves Meas. Continuing Sec-
tion 4.8.4, by the change-of-base along the forgetful functor U : Meas → Set, we get
another CLat⊓-fibration U∗(PMet1) −→ Meas. A continuous state Markov chain is
a coalgebra X → G≤1X of the so-called sub-Giry functor G≤1 : Meas → Meas—see,
e.g., [28].
As a parameter of codensity lifting, we take roughly the same thing as used in Exam-

ple 3.1.11. The major difference is that we have to equip [0, 1] with some σ-algebra. We
use the σ-algebra of Borel sets B([0, 1]). Let us abuse the notation [0, 1] to mean the
object ([0, 1],B([0, 1])) ∈ Meas. Then the parameter of codensity lifting we use is

(Ω, τ) =
( (

[0, 1], d[0,1]
)
, e : G≤1[0, 1] → [0, 1]

)
,

where e is the expectation function e(µ) =
∫
rdµ(r), and d[0,1] is the Euclidean metric.

Let us expand the definition of the codensity lifting GΩ,τ
≤1 : U∗(PMet1) → U∗(PMet1).

For X ∈ Meas and (X, d) ∈ U∗(PMet1), GΩ,τ
≤1 (X, d) = (G≤1X,K(d)) holds. Here, K(d)

is a variation of Kantorovich metric. For µ, ν ∈ G≤1X,

K(d)(µ, ν) = sup
f

|e((G≤1f)(µ))− e((G≤1f)(ν))| ,

where f ranges over all non-expansive and measurable functions from (X, d) to ([0, 1], d[0,1]).
Note the similarity with the equation (4.1). The corresponding codensity bisimilarity
νΦΩ,τ

c ∈ U∗(PMet1) (Definition 3.1.10) is a variation of the bisimulation metric from [22]
for continuous state Markov chains.
Since the forgetful functor Meas → Set has a left adjoint, Proposition 4.5.10 gives

us a fibered separator for U∗(PMet1) → Meas: concretely, the two-point set with the
powerset σ-algebra (2,P2) ∈ Meas is a fibered separator for U∗(PMet1) → Meas.

By Corollary 4.5.16, the codensity bisimilarity νΦΩ,τ
c ∈ U∗(PMet1) is characterized

by the codensity game (Table 4.8) specialized in this situation. The game in this case is
shown in Table 4.16.

4.9. Conclusions and Future Work

Motivated by some recent works [16, 48, 11, 6], and especially by the similarity of the
two games in Tables 4.2 and 4.3, we introduced a fibrational framework that uniformly
describes the correspondence between various bisimilarity notions and games. The fi-
brational abstraction allows us to accommodate new games for several known examples
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4. Codensity Games for Bisimilarity

Table 4.16.: Codensity bisimilarity game for (probabilistic) bisimulation metric for a
continuous state Markov chain

position player possible moves

(x, y, ε) Spoiler measurable f : X → [0, 1] such that
∈ X2 × [0, 1] |e((G≤1f)(c(x)))− e((G≤1f)(c(y)))| > ε

measurable f : X → [0, 1] Duplicator (x′, y′, ε′) ∈ X2 × [0, 1]
such that

∣∣ f(x′)− f(y′)
∣∣ > ε′

(such as Λ-bisimulation in Section 4.8.2 and bisimulation metric in Section 4.8.4) and a
new example (bisimulation topology in Section 4.8.3). Moreover, the structural theory
developed in Sections 4.6 and 4.7 provides new insights to the nature of bisimilarity,
identifying the crucial role of observation maps (k : X → Ω in Definition 5.2.8) in bisim-
ulation notions.
As future work, we are interested in using games with more complex winning condi-

tions (e.g. parity); they have been used for (bi)simulation notions for Büchi and parity
automata [25]. In addition, we will pursue the algorithmic use of the current results.
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5. Expressivity of Modal Logic for
Codensity Bisimilarity

5.1. Overview

(Quantitative) Modal Logics and Their Coalgebraic Unification The role of different
kinds of modal logics is pervasive in computer science. Their principal functionality is
to specify and reason about behaviors of state-transition systems. With the growing
diversity of target systems (probabilistic, cyber-physical, etc.), the use of quantitative
modal logics—where truth values and logical connectives can involve real numbers—
is increasingly common. For such logics, however, providing the necessary theoretical
foundations takes a significant effort and is often done individually for each variant.

It is therefore desirable to establish unifying and abstract foundations once and for
all, which readily instantiate to individual modal logics. This is the goal pursued by the
study of coalgebraic modal logic [56, 64, 58, 13, 14, 59, 43], which builds on the general
categorical modeling of state-transition systems as coalgebras [37, 60].

Expressivity of Modal Logics When using a concrete modal logic, there are several
important properties that we expect its metatheory to address, such as soundness and
completeness of its proof system. In this paper, we are interested in the adequacy and
expressivity properties of the logic. These properties are about comparison between
1) the expressive power of the logic, and 2) some notion of indistinguishability that is
inherent in the target state-transition systems.

A prototypical example of such notions of indistinguishability is bisimilarity [55]. Ex-
pressivity with respect to bisimilarity—that modal logic formulas can distinguish non-
bisimilar states—is the classic result by Hennessy and Milner [30]. Adequacy, the op-
posite of expressivity, means that semantics of modal formulas is invariant under bisim-
ilarity, and holds in most modal logics. In contrast, expressivity is a desired property
but not always true. Expressivity, when it holds, relies on a delicate balance between
the choice of modal operators, the underlying propositional connectives, and the “size”
of (branching of) the target state-transition systems.

Quantitative Expressivity The aforementioned interests in quantitative modal logics
have sparked research efforts for quantitative expressivity. In quantitative settings, the
inherent indistinguishability notion in target systems is quantitative, too, typically for-
mulated in terms of a bisimulation pseudometric (“how much apart the two states are”)
that refines the quantitative notion of bisimilarity (“if the two states are indistinguish-
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5. Expressivity of Modal Logic for Codensity Bisimilarity

able or not”) [27, 22]. In the expressivity problem, such an indistinguishability notion
is compared against the quantitative truth values of logical formulas.

Recent works that study quantitative expressivity include [22, 71, 16, 74, 48, 73];
they often involve coalgebraic generalization, too, since quantitative modal logics of-
ten have immediate variations. Their quantitative expressivity proofs are much more
mathematically involved compared to qualitative expressivity proofs. This is because
the aforementioned balance between syntax and semantic equivalences is much more
delicate. Specifically, target systems are quantitative and thus exhibit continuity of be-
haviors, while logical syntax is inherently disconnected, in the sense that each logical
formula is an inductively defined and thus finitary entity. Expressivity needs to bridge
these two seemingly incompatible worlds.

In order to do so, each of the expressivity proofs in [71, 16, 74, 48, 73] uses some kind
of “approximation.” However, each of these arguments has a specialized, tailor-made
flavor: Stone–Weierstrass-like arguments for metric spaces [48], the unique structure
theorem for analytic spaces [16], and so on. It does not seem easy to distill the essence
that is common to different quantitative expressivity proofs. Indeed, there has not been
a coalgebraic framework that unifies them.

Categorical Unification of Quantitative Expressivity via Codensity and Approximation
We present the first categorical framework that uniformly axiomatizes different approx-
imation arguments—it uses a fibrational notion of approximating family—and unifies
different quantitative expressivity results.

Our framework hinges on the construction called the codensity lifting [66, 44]; it is a
general method for modeling a variety of bisimilarity-like notions (bisimilarity, proba-
bilistic bisimilarity, bisimulation metric, etc.). The codensity lifting uses not only coal-
gebras (for unifying different state-transition systems) but also fibrations for different
observation modes; the latter include Boolean predicates, quantitative/fuzzy predicates,
equivalence relations, pseudometrics, topologies, etc. This use of fibrations provides
flexibility to accommodate a variety of quantitative bisimilarity-like notions.

The codensity lifting, while defined in abstract categorical terms, has clear observa-
tional intuition (see Section 5.2.3). It also gives a class of codensity bisimilarity games
that characterize a variety of (qualitative and quantitative) bisimilarity notions [44] (see
also Section 5.2.3).

Our key contribution of a categorical formalization of approximation is enabled by
the formalization of the codensity lifting. It has a similar observational intuition, too:
see Section 5.3.1, where we characterize an approximating family of observations as a
“winnable” set of moves in a suitable sense.

On top of our fibrational notion of approximating family, we establish a general ex-
pressivity framework, which is the first to unify existing quantitative expressivity re-
sults including [16, 74, 48]. In our unified framework, we have two proof principles for
expressivity—Knaster–Tarski (Theorem 5.3.4) and Kleene (Theorem 5.3.6)—that mirror
two classic characterizations of greatest fixed points. Our general framework is presented
in terms of predicate lifting [64, 58]. This is mostly for presentation purposes (showing
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5.1. Overview

concrete syntax is easier this way). A more abstract and fully fibrational recap of our
framework—where a modal logic is formalized with a dual adjunction [13, 14, 59, 43]—is
found in [47].
We demonstrate our general framework with three examples: expressivity for the Kan-

torovich bisimulation metric (from [48], Section 5.4); that for Markov process bisimilarity
(from [16], Section 5.5); and that for the so-called bisimulation uniformity (Section 5.6).
Both the Knaster–Tarski and Kleene principles are used for proofs. See Table 5.1. The
last is a new expressivity result that is not previously found in the literature.
We note that the role of the notion of approximating family is as a useful axioma-

tization: it tells us what key lemma to prove in an expressivity proof, but it does not
tell how to prove the key lemma. The proof of this key lemma is where the technical
hardcore lies in existing expressivity proofs (by a Stone–Weierstrass-like result in [48],
by the unique structure theorem in [16], etc.). For the new instance of bisimulation
uniformity (Section 5.6), the general axiomatization of approximating family allowed us
to discover a result we need in a paper [18] that is seemingly unrelated to modal logic.
The same result guided us in the design of modal logic, too, especially in the choice of
propositional connectives.

Contributions We summarize our contributions.

• The notion of approximating family, whose instances occur in the key steps of
existing quantitative expressivity proofs. It is built on top of the codensity lifting.

• We use it in a unified categorical expressivity framework. It offers two proof
principes (Knaster–Tarski and Kleene) that have different applicability (Table 5.1).

• The framework is instantiated to two known expressivity results [48, 16] and one
new result (Section 5.6).

Related Work Here we list related work considering quantitative expressivity.
Our framework is parameterized both in the kind of coalgebra and in the observation

mode. To our knowledge, the only existing work with this generality is [50] which
combines coalgebras and fibrations to provide a general setting for proving expressivity.
However, that approach does not accommodate approximation arguments, therefore
failing to cover any of the aforementioned quantitative expressivity proofs [71, 16, 74,
48, 73]. Compared to [50], our main novelty is the accommodation of approximation
arguments and thus quantitative expressivity results, as we already discussed.
The idea of behavioral metrics was first proposed in [27]. In the setting of category

theory, the behavioral pseudometric is introduced in [71] in terms of coalgebras in the
category PMet1 of 1-bounded pseudometric spaces, and a corresponding expressivity
result is established. Many other formulations of quantitative bisimilarity are based
on fibrational coinduction [32]. The work [6] discusses general behavioral metrics (but
not modal logics); expressivity w.r.t. these metrics is studied in [48] for general Set-
coalgebras. The line of work on codensity bisimilarity—including [66, 44] and the current
work—follows this fibrational tradition, too.
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5.2. Expressivity Situation

A recent work [73] uses a different formulation of bisimilarity-like notions: it does not
use fibrations or functor liftings, but uses so-called fuzzy lax extensions of functors. This
approach is a descendant of relators [61]; seeking the connection to these works is future
work.

Organization We axiomatize the data under which we study expressivity—it is called
an expressivity situation—in Section 5.2. In Section 5.3 we define our key notion of
approximating family, from which we derive the Knaster–Tarski and Kleene proof prin-
ciples for expressivity. §5.4–5.6 present instances of our framework: two known [48, 16]
and one new (Section 5.6).

Most proofs are deferred to the appendix.

5.2. Expressivity Situation

On top of the above preliminaries, we fix the format of categorical data under which we
study expressivity. It is called an expressivity situation. While it may seem overwhelm-
ing, we show that the data arises naturally, with clear intuition from the viewpoints of
modal logics and observations (§5.2.2–5.2.3).

5.2.1. Definition

Definition 5.2.1. An expressivity situation S = (p,B,Ω,Ω,Σ,Λ, (fσ)σ∈Σ, (τλ)λ∈Λ) is
given by the following.

• A CLat⊓-fibration p : E → C.

• A functor B : C → C (a behavior functor).

• An object Ω ∈ C (a truth-value object) equipped with finite powers (Ωn ∈ C for
n ∈ N), and another object Ω (an observation predicate) above it. It follows that
Ω also has finite powers [36, Prop. 9.2.1].

• A ranked alphabet Σ of propositional connectives and a family of arrows
(
fσ : Ω

rank(σ) → Ω
)
σ∈Σ

(a propositional structure). Moreover, we require that each fσ : Ω
rank(σ) → Ω has

a lifting gσ : Ω
rank(σ) → Ω (in E) such that pgσ = fσ.

• A set Λ of modality indices and a family of algebras (τλ : BΩ → Ω)λ∈Λ (observation
modalities).

Roughly speaking, Σ and Λ are used for modal logic syntax, and C, B, Ω, (fσ)σ∈Σ,
and (τλ)λ∈Λ are used for modal logic semantics. The other constructs (p and Ω) are
there for defining a bisimilarity-like notion.
In what follows, we formulate the expressivity problem on top of Definition 5.2.1,

explaining the role of each piece of data in an expressivity situation S . More specifi-
cally, we let S induce the following constructs: 1) the modal logic LS (Definitions 5.2.2
and 5.2.4); 2) the fibrational logical equivalence LES (x) induced by LS (Definition 5.2.6);
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5. Expressivity of Modal Logic for Codensity Bisimilarity

and 3) the bisimilarity-like notion BisimΩ,τ (x) as a codensity bisimilarity (Definition 5.2.9).
Comparison of the last two is the problem of expressivity. As an illustrating example, we
use an expressivity situation SKMM that arises from the real-valued logic M(Λ) in [48]
(see also Section 5.4).

5.2.2. Syntax and Semantics of Our Logic LS

The syntax of modal logic is specified by the propositional connectives in Σ and the
modality indices in Λ.

Definition 5.2.2 (LS ). Let S be an expressivity situation in Definition 5.2.1. The
modal logic LS has the following syntax.

φ,φ1, . . . , φn ::= σ(φ1, . . . , φrank(σ)) (σ ∈ Σ)

| ♡λφ (λ ∈ Λ)

We also let LS denote the set of all formulas.

Example 5.2.3. Let Λ be a set. To model the modal logic M(Λ) in [48], we let
Σ = {⊤0,min2,¬1} ∪ {(⊖q)1 | q ∈ Q ∩ [0, 1]}. Then the syntax is given by

φ,φ1, . . . , φn ::= ⊤ | ¬(φ) | min(φ1, φ2)

| (⊖q)φ (q ∈ Q ∩ [0, 1]) | ♡λφ (λ ∈ Λ).

Identifying ♡λ with [λ] in the original notation, this recovers the syntax of M(Λ) in [48].

Given a coalgebra x : X → BX of the behavior functor B, the semantics of each
formula is a C-arrow from the state space X to the truth-value object Ω, inductively
defined as follows.

Definition 5.2.4. Let S be an expressivity situation in Definition 5.2.1 and let x : X →
BX be a B-coalgebra. For each φ ∈ LS , the interpretation JφKx : X → Ω of φ with
respect to x is defined inductively as follows:

Jσ(φ1, . . . , φrank(σ))K = fσ ◦ ⟨Jφ1K, . . . , Jφrank(σ)K⟩, (σ ∈ Σ)

J♡λφK = τλ ◦ (BJφK) ◦ x. (λ ∈ Λ)

Example 5.2.5. Recall Example 5.2.3. Let B : Set → Set be an endofunctor, and Ω
be the unit interval [0, 1]. We specify the propositional structure (fσ : [0, 1]

rank(σ) →
[0, 1])σ∈Σ by:

f⊤() = 1, fmin(x, y) = min(x, y),

f¬(x) = 1− x, f⊖q(x) = max(x− q, 0).

Here min plays the role of conjunction. Let (τλ : B[0, 1] → [0, 1]) be a family of observa-
tion modalities, and x : X → BX be a B-coalgebra. Then, the semantics JφKx of each
formula φ in Definition 5.2.4 coincides with the definition in [48, §3.2].
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5.2. Expressivity Situation

The following definition generalizes, in fibrational terms, the conventional definition
that two states are logically equivalent if each formula’s truth values coincide.

Definition 5.2.6 (fibrational logical equivalence LES (x)). Let S be an expressivity
situation in Definition 5.2.1 and let x : X → BX be a B-coalgebra. The fibrational
logical equivalence LES (x) with respect to x is a predicate above X defined by

LES (x) =
d

φ∈LS
JφK∗xΩ, where

E
p��

JφK∗xΩ // Ω

C X
JφKx // Ω.

Example 5.2.7. Recall Example 5.2.5. To define a logical distance, we let p be the
CLat⊓-fibration PMet1 → Set (Example 2.3.9), and Ω be the usual Euclidean metric
de on [0, 1].

Then, for each B-coalgebra x : X → BX , the pseudometric dLx := LESKMM
(x) is

equivalently described by

dLx (s, t) = supφ de
(
JφKx(s), JφKx(t)

)
,

where φ ranges over the modal formulas. Thus Definition 5.2.6 coincides with the notion
of logical distance in [48, Def. 25].

5.2.3. Codensity Bisimilarity for Expressivity Situations

We unify different quantitative bisimilarity notions—such as probabilistic bisimilarity
and bisimulation metric—using codensity bisimilarity introduced in Chapter 3. This is
what is compared with the fibrational logical equivalence (Definition 5.2.6).

Concretely, we adopt the definitions for multiple parameters (Section 3.2). For an
expressivity situation, we define as follows:

Definition 5.2.8 (codensity lifting). Let S be an expressivity situation in Defini-
tion 5.2.1. The codensity lifting of B with respect to Ω and (τλ)λ∈Λ is the functor
BΩ,τ : E → E, defined by

BΩ,τP =
d

λ∈Λ,h∈E(P,Ω)(τλ ◦B(ph))∗Ω. (5.1)

Definition 5.2.9 (codensity bisimilarity BisimΩ,τ (x)). Let S be an expressivity situa-
tion in Definition 5.2.1 and let x : X → BX be a B-coalgebra. The codensity bisimilarity
BisimΩ,τ (x) of x is the BΩ,τ -coinductive predicate (Definition 2.4.3), i.e., the greatest
fixed point of the map x∗ ◦BΩ,τ : EX → EX :

BisimΩ,τ (x) = ν(x∗ ◦BΩ,τ ) ∈ EX .

5.2.4. Adequacy and Expressivity

We are ready to formulate adequacy and expressivity. Recall that P ⊑ Q in a fiber
means that P is more discriminating.
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Definition 5.2.10. Let S be an expressivity situation (Definition 5.2.1) and x : X →
BX be a B-coalgebra.

• S is expressive for x if BisimΩ,τ (x) ⊒ LES (x) holds.

• S is adequate for x if BisimΩ,τ (x) ⊑ LES (x) holds.

S is expressive (or adequate) if it is expressive (or adequate, respectively) for any B-
coalgebra x.

The following result justifies our axiomatization in Definition 5.2.1: adequacy, a prop-
erty that is a prerequisite in most usage scenarios of modal logics, follows easily from
the axiomatization itself.

Proposition 5.2.11. Any expressivity situation S in Definition 5.2.1 is adequate.

Proof. Fix a B-coalgebra x : X → BX. It suffices to show that, for any φ ∈ LS ,
ν(x∗ ◦BΩ,τ ) ⊑ JφK∗xΩ holds. We show this by structural induction on φ.

Assume φ = σ(φ1, . . . , φrank(σ)) where σ ∈ Σ. By IH, for each i = 1, . . . , rank(σ),

ν(x∗ ◦ BΩ,τ ) ⊑ JφiK∗xΩ holds, and thus there exists an arrow hi : ν(x
∗ ◦ BΩ,τ ) → Ω in

E that satisfies phi = JφiKx. Take an arrow gσ : Ω
rank(σ) → Ω satisfying pgσ = fσ (its

existence is required in Definition 5.2.1). Consider the arrow gσ◦⟨h1, . . . , hrank(σ)⟩ : ν(x∗◦
BΩ,τ ) → Ω. Since p sends this arrow to fσ◦⟨Jφ1Kx, . . . , Jφrank(σ)K⟩ = JφKx, ν(x∗◦BΩ,τ ) ⊑
JφK∗xΩ holds.
Assume φ = ♡λφ

′ where λ ∈ Λ. By IH, ν(x∗ ◦BΩ,τ ) ⊑ Jφ′K∗xΩ holds. Applying BΩ,τ

to both sides yields

BΩ,τν(x∗ ◦BΩ,τ ) ⊑ BΩ,τ Jφ′K∗xΩ

=
l

λ′∈Λ,h : Jφ′K∗xΩ→Ω

(B(ph))∗τ∗λ′Ω

⊑ (BJφ′Kx)∗τ∗λΩ.

Then by applying x∗ to both sides we obtain the claim:

ν(x∗ ◦BΩ,τ ) = x∗BΩ,τν(x∗ ◦BΩ,τ ) ⊑ x∗(BJφ′Kx)∗τ∗λΩ = JφK∗xΩ.

This concludes the induction.

Example 5.2.12. Recall Example 5.2.7. In this case we can see that the codensity lifting
coincides with the Kantorovich lifting ; see Section 5.4 for details. Thus the codensity
bisimilarity coincides with the behavioral distance defined in [48, Def. 22].
Expressivity of this expressivity situation, that we call SKMM, means that, for each

x : X → BX and each pair (s, t) ∈ X2 of states, the inequality dx(s, t) ≤ dLx (s, t) holds
between the behavioral and logical distances (“dLx is more discriminating”). Adequacy
means that, for each x and (s, t), dx(s, t) ≥ dLx (s, t) holds.
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5.3. Approximation in Quantitative Expressivity

In this section, based on the axiomatization in Section 5.2, we present a fibrational
notion of approximating family of observations. The notion axiomatizes and unifies the
“approximation” properties that are key steps in many recent quantitative expressivity
proofs, such as in [48, 16, 74, 75].
We then proceed to present two proof principles for expressivity—Knaster–Tarski

and Kleene—that mirror two classic characterizations of greatest fixed points recalled
in Section 2.2. These proof principles make a large part of an expressivity proof routine.
The remaining technical challenges are 1) choosing a suitable propositional signature
and 2) identifying suitable approximating families; our general framework singles out
these technical challenges and thus eases the efforts for addressing them.

5.3.1. Approximating Family of Observations

Our categorical notion of approximating family of observations designates a “good” sub-
set S ⊆ C(X,Ω) of Ω-valued observations in a suitable sense. We will be asking if the
set {JφKx : X → Ω | φ ∈ L′} of “logical observations” is approximating or not, where L′

is some set of modal formulas.

Definition 5.3.1 (approximating family). Let S be an expressivity situation in Defi-
nition 5.2.1 and X be an object of C. A subset S ⊆ C(X,Ω) is an approximating family
of observations, or simply approximating, if, for every morphism

h :
(d

k∈S k∗Ω
)
−→ Ω (5.2)

of E and every λ ∈ Λ, the following inequality holds:

d
k′∈S,λ′∈Λ(τλ′ ◦Bk′)∗Ω ⊑ (τλ ◦B(ph))∗Ω. (5.3)

Note that k : X → Ω is a C-arrow while h is an E-arrow.

Some explanation is in order. Intuitively, in the definition above, the set S is a set of
“logical” observations. Each h as in Eq. (5.2) is a “non-logical” legitimate observation.
For such h, the r.h.s. of Eq. (5.3) is the information obtained from the observation
h. (Note the way h is used: it is not h∗Ω, but (τλ ◦ B(ph))∗Ω. This corresponds
to Eq. (5.1).) On the other hand, the l.h.s. of Eq. (5.3) is the information from “logical”
observations. Thus, an intuitive meaning of the definition above is that no “non-logical”
observation gives any additional information. In many cases, the “logical” observations
in S approximate each “non-logical” ones h. See Remark 5.3.2 for details.

Another intuition is given in terms of the codensity bisimilarity game (see Chapter 4).
Roughly, S being an approximating family says that Spoiler may restrict its moves to
S ⊆ C(X,Ω).

Remark 5.3.2. In many examples, S being an approximating family is proved in the
following two steps: 1) showing that ph can be approximated by observations in S; and
2) this approximation is preserved along the lifting k 7→ τλ ◦Bk of observations over X
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to those over BX. The former step is usually the harder one, and proved via arguments
specific to the current situation (pseudometric spaces, measurable spaces, etc.).

Example 5.3.3. Recall Example 5.2.12. Let X be a set and S ⊆ Set(X, [0, 1]). In this
case,

d
k∈S k∗Ω ∈ (PMet1)X is the pseudometric dS given by dS(x, y) = supk∈S de(k(x), k(y)).

Therefore, in order to show S being an approximating family, we have to recover the
pseudometric induced by h : (X, dS) → ([0, 1], de) from observations in S, for each h.

In Proposition 5.4.6 later, it will turn out that S is approximating if the following
hold (under Assumption 5.4.3):

• S is closed under the four operations ⊤, min, ¬, and ⊖q for every q ∈ Q ∩ [0, 1].

• (X, dS) is totally bounded.

In this case, any h : (X, dS) → ([0, 1], de) can be uniformly approximated by a countable
sequence of arrows in S. Moreover, this approximation is preserved by the lifting k 7→
τλ ◦Bk (this is what we require in Assumption 5.4.3). These two facts establish that S
is approximating (cf. Remark 5.3.2). See Proposition 5.4.6 for details.

5.3.2. The Knaster–Tarski Proof Principle for Expressivity

From the Knaster–Tarski theorem (Fact 2.2.3), we can derive the following simple ex-
pressivity proof principle. Its proof is by showing that the logical equivalence LES (x) is
a suitable invariant and thus underapproximates the codensity bisimilarity.

Theorem 5.3.4 (the Knaster–Tarski proof principle). Let S be an expressivity situation
in Definition 5.2.1 and x : X → BX be a B-coalgebra. If {JφKx | φ ∈ LS } ⊆ C(X,Ω) is
approximating, then S is expressive for x.

Proof. We show ν(x∗◦BΩ,τ ) ⊒
d

φ∈LS
JφK∗xΩ. By the Knaster–Tarski theorem (Fact 2.2.3),

it suffices to show

x∗BΩ,τ

 l

φ∈LS

JφK∗xΩ

 ⊒
l

φ∈LS

JφK∗xΩ.

Since the l.h.s. is equal to

l

λ∈Λ,h :
d

φ∈LS
JφK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ,

it suffices to show

x∗(B(ph))∗τ∗λΩ ⊒
l

φ∈LS

JφK∗xΩ.

for each λ ∈ Λ and h :
d

φ∈LS
JφK∗xΩ → Ω.
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The set {JφKx | φ ∈ LS } ⊆ C(X,Ω) being approximating implies the following lower
bound of the l.h.s.:

x∗(B(ph))∗τ∗λΩ ⊒
l

φ′∈LS ,λ′∈Λ
x∗(τλ′ ◦BJφ′Kx)∗Ω

=
l

φ′∈LS ,λ′∈Λ
J♡λ′φ′K∗xΩ

⊒
l

φ∈LS

JφK∗xΩ.

This concludes the proof.

The theorem’s applicability hinges on whether we can show that the set {JφKx | φ ∈
LS } ⊆ C(X,Ω) is an approximating family (where φ ranges over all formulas). We use
the theorem for the examples in §5.5 & 5.6.

5.3.3. The Kleene Proof Principle for Expressivity

To make use of Kleene theorem, we have to consider

⊤ ⊒ (x∗ ◦BΩ,τ )(⊤) ⊒ (x∗ ◦BΩ,τ )2(⊤) ⊒ · · · (5.4)

where the functor x∗ ◦ BΩ,τ is from Definition 5.2.9. We also have to assume that this
sequence stabilizes after ω steps, i.e.,

d
i<ω(x

∗ ◦BΩ,τ )i(⊤) is a fixed point of x∗ ◦BΩ,τ .

We stratify LS corresponding to the sequence Eq. (5.4).

Definition 5.3.5 (depth). Let S be an expressivity situation in Definition 5.2.1. For
each φ ∈ LS , the depth of φ depth(φ) is a natural number defined inductively as follows:

depth(σ(φ1, . . . , φrank(σ)))

= max(depth(φ1), . . . ,depth(φrank(σ))) (σ ∈ Σ)

depth(♡λφ) = depth(φ) + 1 (λ ∈ Λ)

For σ ∈ Σ with rank(σ) = 0, depth(σ()) is defined to be 0.

We formulate the following proof principle. Unlike Knaster–Tarski (Fact 2.2.3), it uses
an explicit induction on the depth i. Its proof is therefore more involved but not much
more.

Theorem 5.3.6 (the Kleene proof principle). Let S be an expressivity situation as in
Definition 5.2.1 and x : X → BX be a B-coalgebra. Assume that the chain Eq. (5.4)
in EX stabilizes after ω steps. If the set {JφKx | φ ∈ LS ,depth(φ) ≤ i} ⊆ C(X,Ω) is
approximating for each i, then S is expressive for x.
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Proof. By the Kleene theorem (Fact 2.2.5), it suffices to show (x∗◦BΩ,τ )i(⊤) ⊒
d

φ∈LS
JφK∗xΩ

for each i. We show

(x∗ ◦BΩ,τ )i(⊤) ⊒
l

φ∈LS ,depth(φ)≤i

JφK∗xΩ (5.5)

by induction on i.
For i = 0, Eq. (5.5) is trivial.
Assume that Eq. (5.5) holds for i = j and we show it also holds for i = j + 1. Start

with Eq. (5.5) for i = j. Applying x∗ ◦BΩ,τ to both sides of it we obtain

(x∗ ◦BΩ,τ )j+1(⊤) ⊒ (x∗ ◦BΩ,τ )
l

φ∈LS ,depth(φ)≤j

JφK∗xΩ.

Here, expanding the definition of the r.h.s. we get

(x∗ ◦BΩ,τ )
l

φ∈LS ,depth(φ)≤j

JφK∗xΩ =
l

λ∈Λ,h :
d

φ∈LS ,depth(φ)≤jJφK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ.

Now let λ ∈ Λ and h :
d

φ∈LS ,depth(φ)≤jJφK∗xΩ → Ω. That {JφKx | φ ∈ LS ,depth(φ) ≤
j} ⊆ C(X,Ω) is an approximating family yields

x∗(B(ph))∗τ∗λΩ ⊒
l

λ′∈Λ,φ∈LS ,depth(φ)≤j

x∗(BJφKx)∗τ∗λ′Ω

=
l

λ′∈Λ,φ∈LS ,depth(φ)≤j

J♡λ′φK∗xΩ

⊒
l

φ′∈LS ,depth(φ′)≤j+1

Jφ′K∗xΩ.

Thus we have

(x∗ ◦BΩ,τ )j+1(⊤) ⊒ (x∗ ◦BΩ,τ )
l

φ∈LS ,depth(φ)≤j

JφK∗xΩ

=
l

λ∈Λ,h :
d

φ∈LS ,depth(φ)≤jJφK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ

⊒
l

φ′∈LS ,depth(φ′)≤j+1

Jφ′K∗xΩ.

This concludes the induction.

In Theorem 5.3.6, we require that {JφKx | φ ∈ LS , depth(φ) ≤ i} is approximating for
each depth i; this is often easier than the case where φ ranges over all formulas (as in
Theorem 5.3.4). We use the theorem for the example in Section 5.4.

Example 5.3.7. Sufficient conditions for being an approximating family were given
in Example 5.3.3. Combined with Theorem 5.3.6, it yields expressivity (Corollary 5.4.9),
one of the main results of [48].
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Remark 5.3.8. In Theorem 5.3.6, we assumed the stabilization of the chain Eq. (5.4)
at length ω. This assumption turns out to be benign, essentially because our modal
formulas all have a finite depth (Section 5.2.2). Specifically we can show the following:
if the logic LS is expressive for x : X → BX, then the chain Eq. (5.4) stabilizes after ω
steps. See Appendix B.1.

5.4. Expressivity for the Kantorovich Bisimulation Metrics

This section shows how one of the main results in [48], expressivity of a real-valued logic
w.r.t. bisimulation metric, is proved by our Kleene proof principle (Theorem 5.3.6). See
also Examples 5.2.3, 5.2.5 and 5.2.7.

Definition 5.4.1. Define an expressivity situation SKMM by:

• Its fibration is PMet1 → Set (Example 2.3.9).

• Its truth-value object is [0, 1] and its observation predicate is de, the usual Eu-
clidean metric on [0, 1].

• The ranked alphabet of its propositional connectives is Σ = {⊤0,min2,¬1} ∪
{(⊖q)1 | q ∈ Q∩ [0, 1]}. Its propositional structure (fσ : [0, 1]

rank(σ) → [0, 1])σ∈Σ is
specified by:

f⊤() = 1 fmin(x, y) = min(x, y)

f¬(x) = 1− x f⊖q(x) = max(x− q, 0)

• The behavior functor B : Set → Set, the set of its modality indices Λ, and its
observation modalities (τλ : B[0, 1] → [0, 1])λ∈Λ are arbitrary.

The modal logic LSKMM
is the same as the logic M(Λ) in [48, Table 1]. What they

call an evaluation map γ ∈ Γ corresponds to an observation modality τλ(λ ∈ Λ) in
our framework. Thus, the fibrational logical equivalence LESKMM

(α) (Definition 5.2.6)
coincides with the logical distance dLα [48, Def. 25] for a coalgebra α : X → BX.

Moreover, the codensity lifting Bde,τ specializes to the Kantorovich lifting by [6]:

Bde,τ (X, d) = (BX, dB) where

dB(t1, t2) = supλ,h de(τλ((Bh)(t1)), τλ((Bh)(t2))).

In the above sup, λ, h ranges over Λ and PMet1((X, d), ([0, 1], de)), respectively. Thus,
the codensity bisimilarity Bisimde,τ (α) (Definition 5.2.9) recovers the definition of the
behavioral distance dα [48, Def. 22] for a coalgebra α : X → BX.

From Proposition 5.2.11 we obtain:

Corollary 5.4.2. For α : X → BX, dα ≥ dLα holds.
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As mentioned in [48], it is harder to prove expressivity. We use the Kleene proof
principle (Theorem 5.3.6) here. For this argument to work, we have to make further
assumptions.

Assumption 5.4.3. For SKMM, assume the following:

1. Λ is finite.

2. If a sequence ki of functions of type X → [0, 1] uniformly converges into l, then
τλ ◦Bki : BX → [0, 1] uniformly converges into τλ ◦Bl for each λ ∈ Λ.

In particular, condition 2 above is satisfied if each τλ induces a non-expansive predicate
lifting [48, Def. 17].
The notion of total boundedness below is pivotal in [48].

Definition 5.4.4 (from [48, Def. 28]). (X, d) ∈ PMet1 is totally bounded if, for any
ε > 0, there is a finite set Fε ⊆ X satisfying the following: for each x ∈ X, there is
y ∈ Fε such that d(x, y) < ε.

A critical step in their proof used a Stone–Weierstrass-like property of totally bounded
spaces.

Proposition 5.4.5. Let (X, d) be a totally bounded pseudometric space. A subset S ⊆
PMet1((X, d), ([0, 1], de)) is dense in the topology of uniform convergence if the following
are satisfied:

1. S is closed under the four operations ⊤, min, ¬ and ⊖q for every q ∈ Q ∩ [0, 1];

2. for every h ∈ PMet1((X, d), ([0, 1], de)), and every x, y ∈ X, we have

de(h(x), h(y)) ≤ supg∈S de(g(x), g(y)) .

Proof. By [74, Lemma 5.8], it suffices to show that, for each h ∈ PMet1((X, d), ([0, 1], de)),
each δ > 0, and each pair of points x, y ∈ X, there is g ∈ S such that de(h(x), g(x)) ≤ δ
and de(h(y), g(y)) ≤ δ hold.

Without loss of generality, we can assume h(x) ≥ h(y). Let γ = h(x) − h(y). Since
γ ≥ 0, γ = de(h(x), h(y)). By the second assumption, there is f such that γ − δ ≤
de(f(x), f(y)). Since S is closed under ¬, we can assume that f(x) ≥ f(y) without loss
of generality. This implies γ − δ ≤ f(x)− f(y).

Now, we do a case analysis.
Firstly, assume f(y) ≥ h(y). Take r, s ∈ Q ∩ [0, 1] satisfying f(y) − h(y) − δ ≤ r ≤

f(y)− h(y) and h(x) ≤ s ≤ h(x) + δ. Then g = min(f ⊖ r, s) is what we want.
Secondly, assume f(y) < h(y). Take r, s ∈ Q ∩ [0, 1] satisfying h(y)− f(y)− δ ≤ r ≤

h(y)−f(y) and h(x) ≤ s ≤ h(x)+δ. Then g = min(¬((¬f)⊖r), s) is what we want.

In our framework, this can be stated in the following form:

Proposition 5.4.6. Assume the setting of Definition 5.4.1. Let X ∈ Set. Under
Assumption 5.4.3, a subset S ⊆ Set(X, [0, 1]) is approximating if the following hold:
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• S is closed under the four operations ⊤, min, ¬ and ⊖q for every q ∈ Q ∩ [0, 1].

• (X, dS) is totally bounded, where dS(x, y) = supk∈S de(k(x), k(y)).

Proof. Fix h : (X, dS) → ([0, 1], de), λ ∈ Λ, and (z, w) ∈ (BX)2. It suffices to show the
following:

sup
k∈S,λ′∈Λ

de(τλ′((Bk)(z)), τλ′((Bk)(w))) ≥ de(τλ((Bh)(z)), τλ((Bh)(w))). (5.6)

Use Proposition 5.4.5 for d = dS . This ensures the existence of a sequence (kn : X →
[0, 1])n=1,2,... that uniformly converges to ph as n → ∞.

Fix ε > 0. By Assumption 5.4.3, the sequence (τλ◦kn)n=1,2,... also uniformly converges
to τλ ◦ (ph) as n → ∞. Thus, we can fix n so that de(τλ((Bk)(z)), τλ((Bkn)(z))) < ε and
de(τλ((Bh)(w)), τλ((Bkn)(w))) < ε both hold. From the triangle inequality, we obtain
de(τλ((Bkn)(z)), τλ((Bkn)(w))) ≥ de(τλ((Bh)(z)), τλ((Bh)(w))) + 2ε.

Since ε is arbitrary, we have Eq. (5.6).

From now we use some facts on totally bounded space. Using the variation of Arzelà–
Ascoli theorem [74, Lemma 5.6] for totally bounded spaces, we can show the following:

Fact 5.4.7. Under Assumption 5.4.3, if (X, d) ∈ PMet1 is totally bounded, then

• Bde,τ (X, d) is also totally bounded. 1

• If (X, d) ⊑ (X, d′), (X, d′) is also totally bounded.

These enable us to use Theorem 5.3.6:

Proposition 5.4.8. Let x : X → BX be a coalgebra. Under Assumption 5.4.3, for each
i, {JφK | φ ∈ LSKMM

, depth(φ) ≤ i} ⊆ Set(X, [0, 1]) is approximating.

Proof. By induction, for each i, (Bde,τ )i(⊤) ∈ (PMet1)X is totally bounded. By
the stepwise adequacy (Remark 5.3.8 & Appendix B.1) and Fact 5.4.7, for each i,d

φ∈LSKMM
,rank(φ)≤iJφK∗xde is also totally bounded. From this and Proposition 5.4.6,

we can show that the desired set is approximating.

Corollary 5.4.9 (from [48, Thm. 32]). Let α : X → BX be a coalgebra. Assume that
the sequence ⊤ ⊒ (x∗Bde,τ )(⊤) ⊒ (x∗Bde,τ )2(⊤) ⊒ · · · stabilizes after ω steps (as in
Theorem 5.3.6). Then, under Assumption 5.4.3, dα ≤ dLα holds. In particular, dα is
characterized as the greatest pseudometric that makes all JφKα nonexpansive.

Proof. Use Theorem 5.3.6. The premises are satisfied by Proposition 5.4.8.

1Here the finiteness of the number of modalities is crucial. When Λ is infinite, the Kantorovich lifting
does not preserve total boundedness. See Appendix B.2.
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5.5. Expressivity for Markov Process Bisimilarity

This section shows how one of the main results in [16], expressivity of probabilistic modal
logic w.r.t. bisimilarity of labelled Markov process, is proved by our Knaster–Tarski proof
principle (Theorem 5.3.4).

Throughout this section, fix a set A of labels.

Definition 5.5.1. Define an expressivity situation SCFKP by:

• Its fibration is EqRelMeas → Meas (Definition 2.3.17).

• Its behavior functor B : Meas → Meas is BX = (G≤1X)A, where G≤1 is the
variation of Giry functor, which sends each measurable space to its space of sub-
distributions.

• Its truth-value object is 2 = {0, 1} with all subsets measurable and its observation
predicate is the equality relation Eq2 on 2.

• The ranked alphabet of its propositional connectives is Σ = {⊤0,∧2}. Its proposi-
tional structure (f⊤, f∧) is specified as the usual boolean operations.

• The set of its modality indices is A× (Q∩ [0, 1]). For each (a, r) ∈ A× (Q∩ [0, 1]),
the observation modality τa,r : (G≤12)

A → 2 is defined by

τa,r((µa)a∈A) = thrr(µa({1})),

where thrr(s) = 1 if and only if s > r.

Note that a labelled Markov process (LMP) with label set A [16, Definition 5.1] is
the same as B-coalgebra. The modal logic LSCFKP

(Definition 5.2.2) has the following
syntax:

φ1, φ2 ::= ⊤ | ∧(φ1, φ2) | ♡a,rφ1 ((a, r) ∈ A× (Q ∩ [0, 1]))

So if we identify ♡a,r with ⟨a⟩r in the original notation, this recovers the syntax of PML∧
defined in [16, Def. 2.3]. Under this identification, the semantics (Definition 5.2.4) is
also essentially the same as the original logic: JφKx(s) = 1 ⇐⇒ s ⊨ φ holds for any
LMP x : X → (G≤1X)A, any point s ∈ X, and any formula φ. The fibrational logical
equivalence (Definition 5.2.6) can be concretely represented as

LESCFKP
(x) = {(s, t) | ∀φ ∈ LSCFKP

, s ⊨ φ ⇐⇒ t ⊨ φ}.

By expanding the definition of the codensity lifting (Definition 5.2.8) of (G≤1 )A, we
can see that it coincides with the one used to define probabilistic bisimulation:

Proposition 5.5.2. The codensity lifting (G≤1 )A
Eq2,τ satisfies the following: for each

(µa)a∈A, (νa)a∈A ∈ (G≤1X)A, they are equivalent in (G≤1 )A
Eq2,τ (X,R) if and only if,

for each a ∈ A and each R-closed measurable set S ⊆ X, µa(S) = νa(S) holds.
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Thus the codensity bisimilarity BisimEq2,τ (x) (Definition 5.2.9) coincides with the
probabilistic bisimilarity used in [16].
From Proposition 5.2.11, we readily obtain the following:

Corollary 5.5.3. Let x : X → (G≤1X)A be an LMP. If s, t ∈ X are probabilistically
bisimilar, for any φ ∈ LSCFKP

, s ⊨ φ ⇐⇒ t ⊨ φ holds.

To show expressivity, we first have to review some mathematical key facts. In the rest
of this section, we write σ(E ) for the σ-algebra generated by a family of sets E .

Definition 5.5.4. A Polish space is a separable topological space which is metrizable
by a complete metric. For any continuous map f : X → Y between Polish spaces X
and Y , the image of f is called an analytic topological space. For an analytic topological
space (X,OX), the measurable space (X,σ(OX)) is called an analytic measurable space.

Let us review the two key facts they used in [16]. The first one is the following “elegant
Borel space analogue of the Stone–Weierstrass theorem” [3].

Fact 5.5.5 (Unique Structure Theorem [3, Thm. 3.3.5]). Let X ∈ Meas be an analytic
measurable space and E be an (at most) countable family of measurable subsets of X
such that X ∈ E . Define an equivalence relation ≡E by

x ≡E y ⇐⇒ ∀S ∈ E , (x ∈ S ⇐⇒ y ∈ S).

If S ⊆ X is measurable and ≡E -closed, then S ∈ σ(E ).

In the fact above, we use the operations of σ-algebras to construct S. The second key
fact is about “decomposing” those operations into two parts.

Definition 5.5.6. Let X be a set. A family of subsets of X is called a π-system if it
is closed under finite intersections. A family of subsets of X is a λ-system if it is closed
under complement and countable disjoint unions.

Intuitively, π-systems correspond to the propositional connectives of SCFKP and λ-
systems correspond to “approximation.” These two operations are enough to recover all
σ-algebra operations:

Fact 5.5.7 (π-λ Theorem [23]). If Π is a π-system, Λ is a λ-system, and Π ⊆ Λ, then
σ(Π) ⊆ Λ.

Using Facts 5.5.5 and 5.5.7, we obtain a sufficient condition for being an approximating
family. The proof follows the two steps outlined in Remark 5.3.2: 1) we can approximate
a given h : X → 2 by σ-algebra operations (Fact 5.5.5), which can be reduced to λ-system
operations (Fact 5.5.7); and 2) λ-system operations are in some sense “preserved” by
the modalities (since measures are σ-additive).

Proposition 5.5.8. Assume the setting of Definition 5.5.1. Let X ∈ Meas. A subset
S ⊆ Meas(X, 2) is approximating if the following hold:
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• X is an analytic measurable space.

• S is at most countable.

• For k, l ∈ S, ⊤ and k ∧ l are also included in S.

Proof. Fix any h :
d

k∈S k∗Eq2 → Eq2, any a ∈ A, and any r ∈ Q ∩ [0, 1]. By definition,
it suffices to show

l

k∈S,a′∈A,r′∈Q∩[0,1]

(τa′,r′ ◦Bk)∗Eq2 ⊑ (τa,r ◦B(ph))∗Eq2.

First we concretize these formulas. Let R =
d

k∈S,a′∈A,r′∈Q∩[0,1](τa′,r′ ◦Bk)∗Eq2. Using

the definition of the arrow part of the functor B = (G≤1−)A, the relation R on (G≤1X)A

can be rephrased as

((µa)a∈A, (νa)a∈A) ∈ R

⇐⇒ ∀k, a′, r′, (µa′(k
−1({1})) > r′ ⇐⇒ νa′(k

−1({1})) > r′)

⇐⇒ ∀k, a′, r′, (µa′(k
−1({1})) = νa′(k

−1({1}))),

where k ∈ S, a′ ∈ A, and r′ ∈ Q ∩ [0, 1]. In the same way, we can concretely describe
R′ = (τa,r ◦B(ph))∗Eq2 as

((µa)a∈A, (νa)a∈A) ∈ R′

⇐⇒ (µa((ph)
−1({1})) > r ⇐⇒ νa((ph)

−1({1})) > r).

Thus, it suffices to show that the set Y ′ = {(µa)a∈A | µa((ph)
−1({1})) > r} ⊆ (G≤1X)A

is R-closed. Let X ′ = (ph)−1({1}) ⊆ X. Now Y ′ = {(µa)a∈A | µa(X
′) > r}.

The set X ′ corresponds to h, and we will “approximate” this by sets corresponding
to the elements of S. Let E = {k−1({1}) | k ∈ S} and define an equivalence relation ≡E

by

x ≡E y ⇐⇒ ∀E ∈ E , (x ∈ E ⇐⇒ y ∈ E).

Since ≡E coincides with the meet
d

k∈S k∗Eq2 ∈ (EqRelMeas)X , X ′ is ≡E -closed. Since
X is analytic and S is at most countable, we can apply Fact 5.5.5 and show X ′ ∈ σ(E ).

Now we show that Y ′ is R-closed. In this step, intuitively, we use the fact that
the modalities “preserve” the “approximation” by the operation of Λ-system. Assume
((µa)a∈A, (νa)a∈A) ∈ R and (µa)a∈A ∈ Y ′. Define a family Λ of measurable subsets of X
by

E ∈ Λ ⇐⇒ ∀a ∈ A,µa(E) = νa(E).

Since S is closed under ⊤ and ∧, E is a π-system. On the other hand, by the definition
of measure, Λ is a λ-system. Since ((µa)a∈A, (νa)a∈A) ∈ R, E ⊆ Λ. Fact 5.5.7 implies
σ(E ) ⊆ Λ. In particular, X ′ ∈ Λ. This and (µa)a∈A ∈ Y ′ imply (νa)a∈A ∈ Y ′.

From this proposition and Theorem 5.3.4, we obtain the following expressivity result:
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Corollary 5.5.9. Let x : X → (G≤1X)A be an LMP and s, t ∈ X its states. Assume
that the label set A is at most countable and that X is an analytic measurable space.

Then SCFKP is expressive for x (Definition 5.2.10): that is, If s ⊨ φ ⇐⇒ t ⊨ φ holds
for every φ ∈ LSCFKP

, then s and t are probabilistically bisimilar.

Proof. Since A is at most countable, {JφK | φ ∈ LSCFKP
} ⊆ Meas(X, 2) is also at most

countable. Moreover, since the logic has ⊤ and ∧, {JφK | φ ∈ LSCFKP
} ⊆ Meas(X, 2) is

closed under these operations. Thus we can use Proposition 5.5.8 and Theorem 5.3.4.

5.6. Expressivity for the Bisimulation Uniformity

In this section, we introduce bisimulation uniformity as a coinductive predicate in a
fibration and a logic for it. By using our main results and a known mathematical result
analogous to the Stone–Weierstrass theorem, the logic is readily proved to be adequate
and expressive w.r.t. bisimulation uniformity. This example shows how our abstract
framework can help to explore new bisimilarity-like notions.

5.6.1. Uniform Structure as Fibrational Predicate

Topological space can be regarded as an abstraction of (pseudo-)metric spaces w.r.t. con-
tinuous maps. In much the same way, uniform space [15] is an abstraction of (pseudo-
)metric spaces w.r.t. uniformly continuous maps.

Definition 5.6.1 (from [15, Def. 1]). A uniform structure, or uniformity, on a set X is
a nonempty family U ⊆ P(X ×X) of subsets of X ×X satisfying the following:

• If V ∈ U and V ⊆ V ′ ⊆ X ×X, then V ′ ∈ U .

• If V,W ∈ U , then V ∩W ∈ U .

• If V ∈ U , then {(x, x) | x ∈ X} ⊆ V .

• If V ∈ U , then {(y, x) | (x, y) ∈ V } ∈ U .

• If V ∈ U , then there exists W ∈ U such that {(x, z) | ∃y (x, y) ∈ W ∧ (y, z) ∈
W} ⊆ V .

Here each element V ∈ U is called an entourage. A pair (X,U ) of a set and a uniformity
on it is called a uniform space.

A function f : X → Y is a uniformly continuous map from (X,UX) to (Y,UY ) if,
for each entourage V ∈ UY , {(x, x′) | (f(x), f(x′)) ∈ V } ⊆ X × X is an enrourage of
(X,UX). The category of uniform spaces and uniformly continuous maps is denoted
Unif .

Each entourage represents some degree of “closeness.” The following example is an
archetypal one:
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Example 5.6.2. Let (X, d) be a pseudometric space. Define a family U ⊆ P(X ×X)
as the set of all relations of the form {(x, x′) | d(x, x′) < ε} for ε > 0 and their supersets.
Then (X,U ) is a uniform space.

Some of the concepts considered for metric spaces, like completion, total boundedness,
and characterization of compactness, can be lifted to uniform spaces. For us, the most
important fact is that they form a CLat⊓-fibration:

Proposition 5.6.3 (from [15, Propositions 4 and 5]). The forgetful functor Unif → Set
is a CLat⊓-fibration.

Thus we can use uniform structures as a sort of indistinguishability structure. A
uniform structure on a finite set is essentially the same as an equivalence relation. For
infinite sets, however, it can be a helpful way to analyze coalgebras that is more quan-
titative than an equivalence relation and more robust than a pseudometric.

5.6.2. Expressivity Situation for Bisimulation Uniformity

Definition 5.6.4. Define an expressivity situation SBU by:

• Its fibration is Unif → Set (Proposition 5.6.3).

• Its truth-value object is R and its observation predicate is Ue, the uniformity
defined using the usual Euclidean metric as in Example 5.6.2.

• The ranked alphabet of its propositional connectives is Σ = {10,min2}∪{(r+)1, (r×)1 | r ∈
R}. Its propositional structure (fσ : Rrank(σ) → R)σ∈Σ is specified by:

f1() = 1 fmin(x, y) = min(x, y)

fr+(x) = r + x fr×(x) = rx

• The behavior functor B : Set → Set, the set of its modality indices Λ, and its
observation modalities (τλ : BR → R)λ∈Λ are arbitrary.

For a B-coalgebra x : X → BX, the codensity lifting BUe,τ (Definition 5.2.8) yields
the codensity bisimilarity BisimUe,τ (x) ∈ UnifX (Definition 5.2.9), which is a uniformity
on the set X. We call it the bisimulation uniformity of x.
On the other hand, the logic LSBU

induces the fibrational logical equivalence LESBU
(x)

(Definition 5.2.6) for each x : X → BX. We call this the logical uniformity of x.
By Proposition 5.2.11, we obtain the following:

Proposition 5.6.5. Assume the setting of Definition 5.6.4. Let x : X → BX be a B-
coalgebra. Any entourage of the logical uniformity is also an entourage of the bisimulation
uniformity. In particular, for any φ ∈ LSBU

, JφKx : X → R is uniformly continuous
w.r.t. the bisimulation uniformity.

To prove expressivity, we have to make further assumptions.
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Assumption 5.6.6. For SBU, assume the following:

1. If k : X → R is bounded, then τλ ◦Bk : BX → R is also bounded for each λ ∈ Λ.

2. If a sequence ki of functions of type X → R uniformly converges into h, then
τλ ◦Bki : BX → R uniformly converges into τλ ◦Bh for each λ ∈ Λ.

The key in the expressivity proof is the following known Stone–Weierstrass-like result:

Fact 5.6.7 (from [18, Thm. 1]). Let X be a set and Γ ⊆ R a set of real numbers
unbounded both from above and below. Assume a family Φ of bounded real-valued function
satisfies the following:

1. Every constant is in Φ.

2. For f ∈ Φ and r ∈ Γ, rf ∈ Φ holds.

3. For f ∈ Φ and r ∈ R, r + f ∈ Φ holds.

4. For f, g ∈ Φ, min(f, g),max(f, g) ∈ Φ holds.

Let UΦ be the coarsest uniformity on X that makes every function in Φ uniformly con-
tinuous. Then any real-valued function uniformly continuous w.r.t. UΦ is the limit of a
uniformly convergent sequence of elements of Φ.

By using this, we can show that a suitable set is approximating. In its proof, we follow
the two steps discussed in Remark 5.3.2.

Proposition 5.6.8. Assume the setting of Definition 5.6.4. Let X ∈ Set. Under
Assumption 5.6.6, a subset S ⊆ Set(X,R) is approximating if the following hold:

• Every function in S is bounded.

• 1 ∈ S.

• S is closed under the three operations min, (r+), and (r×) for every r ∈ R.

Proof. Define a uniformity US as the coarsest uniformity that every k ∈ S is a uniformly
continuous map (X,US) → (R,Ue). Fix h : (X,US) → (R,Ue) and λ ∈ Λ. We show
that, in the fiber UnifX ,

l

k∈S,λ′∈Λ
(τλ′ ◦Bk)∗Ue ⊑ (τλ ◦B(ph))∗Ue

holds. Since {{(x, y) ∈ R2 | de(x, y) < ε} | ε > 0} is a fundamental system of entourages
of Ue, the family {{(x, y) ∈ X2 | de((τλ ◦ B(ph))(x), (τλ ◦ B(ph))(y)) < ε} | ε > 0} is a
fundamental system of entourages of (τλ ◦ B(ph))∗Ue. So it suffices to show that each
relation in the family is an entourage of

d
k∈S,λ′∈Λ(τλ′ ◦Bk)∗Ue.

We show the following stronger claim:
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Claim. For any ε > 0, there exists k ∈ S such that {(x, y) ∈ X2 | de((τλ ◦Bk)(x), (τλ ◦
Bk)(y)) < ε/3} is a subset of {(x, y) ∈ X2 | de((τλ ◦B(ph))(x), (τλ ◦B(ph))(y)) < ε}.

Use Fact 5.6.7 for Γ = R and Φ = S. The condition (1) is satisfied because ev-
ery constant is a multiple of 1, and the condition (4) is satisfied because max(x, y) =
−min(−x,−y). This ensures the existence of a sequence (kn : X → R)n=1,2,... that
uniformly converges to ph as n → ∞.

Fix ε > 0. By the assumption (2), the sequence (τλ ◦ Bkn)n=1,2,... also uniformly
converges to τλ ◦ B(ph) as n → ∞. Thus, we can fix n so that, for each x ∈ X,
de(τλ((B(ph))(x)), τλ((Bkn)(x))) < ε/3 holds. From the triangle inequality, we can take
k = pkn for the claim above to hold.

From this, we can obtain expressivity:

Corollary 5.6.9. Assume the setting of Definition 5.6.4. Let x : X → BX be a B-
coalgebra. Under Assumption 5.6.6, the bisimulation uniformity coincides with the logical
uniformity, i.e., the former is characterized as the coarsest uniformity making every
JφKx : X → R uniformly continuous.

Proof. Use Theorem 5.3.4. Indeed, by the assumption (1), JφKx is bounded for every
φ ∈ LSBU

.

5.7. Conclusions and Future Work

We introduced a categorical framework to study expressivity of quantitative modal logics,
based on the novel notion of approximating family. This enabled us to cover not only
existing examples (Section 5.4 and Section 5.5) but also a new one (Section 5.6). We
conclude with some future research directions.

Making Use of Size Restrictions on Functors Many existing expressivity results make
use of size restriction condition on the behavior functor B. For example, [30] required
image-finiteness, [64] used κ-accessibility, and [73] was based on a quantitative notion,
finitary separability. Importing these size restrictions is future work. A starting point
can be [29], which successfully connected the finitarity of the behavior functor and the
length of the final chain in a fiber.

Study of Bisimulation Uniformity We defined bisimulation uniformity in Section 5.6,
but there are many topics left to study. One primary subject is the connection to
bisimilarity and bisimulation metric. It is also important to see if it is robust under
parameter changes of the target system.

Seeking Stone–Weierstrass-like Theorems To use our framework to show expressivity,
one has to obtain a sufficient condition for being an approximating family. In many cases,
this is reduced to finding an appropriate “Stone–Weierstrass-like” theorem. Concretely
find ones and apply them to modal logics (other than those we have mentioned) is
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future work. Another research direction is to a seek connection to [35], where “Stone–
Weierstrass-like” theorems are formulated in another way.
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6.1. Conclusions

In the thesis, we developed a “theory of behaviors and observations” using coalgebra,
fibrational coinduction, and codensity lifting. The resulting framework showed both the
generality of coalgebra and fibrational coinduction and the concreteness from codensity
lifting. While coalgebra accommodates various kinds of target systems and fibrational
coinduction covers diverse forms of information, codensity lifting gave us explicit mod-
elling of “observations” as arrows from the state space object. This in turn enabled us
to obtain the following results on codensity bisimilarity:

• A sufficient condition for fiberedness of codensity lifting, as shown in Section 3.3,
which in turn implies the reflection of codensity bisimilarity by coalgebra mor-
phisms. Here, the “observation-based” definition of codensity lifting paved the
way to the notion of c-injectivity, which is an “observation-extension” condition.

• A game characterization of codensity bisimilarity, as shown in Chapter 4. Here,
“observations” became the moves of Spoiler, which suggests regarding codensity
bisimilarity as describing all the possible outcomes of “repeated observations”.

• An adequacy and expressivity results for modal logic with respect to codensity
bisimilarity, as shown in Chapter 5. Here, the interpretations of modal formulas
are also regarded as “observations” and the comparison of logical and non-logical
“observations” led us to the main results.

6.2. Future Topics

In Chapters 4 and 5, some future research topics are listed. Here we focus on the future
research directions applicable to all of the contents of this thesis.

Λ-Kantorovich Functors and their Codensity Counterpart In this thesis we based
ourselves on codensity lifting, which is a generalization of Kantorovich lifting. In a recent
paper on expressivity of modal logic, Forster et al. [26] introduced another generalization
of Kantorovich lifting, Λ-Kantorovich functor. It is not a construction of a lifting, but a
property that an endofunctor on the total category. Indeed, they found some important
functors that are not liftings but Λ-Kantorovich. A Kantorovich lifting is exactly a
functor lifting which is Λ-Kantorovich as a functor.
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They defined Λ-Kantorovich functors by carefully removing the dependence to the base
functor in the definition of Kantorovich lifting. Mimicking them, a joint generalization
of codensity lifting and Λ-Kantorovich functor would be like:

Definition 6.2.1. Let

• p : E → C be a CLat⊓-fibration,

• Ḃ : E → E be a functor,

• Ω ∈ E be an object, and

• τ̇ : ḂΩ → Ω be a Ḃ-algebra.

Then Ḃ is (Ω, τ̇)-codensity functor if, for each P ∈ E, the following hold:

ḂP =
l

f∈E(P,Ω)

(p(Ḃf))∗(pτ̇)∗Ω.

Comparing this with Definition 3.1.1 may be helpful in grasping the idea here. Note
that, for a functor lifting pḂP = BpP holds, while in the above definition pḂP may not
be determined solely by BpP .

The topic we would like to mention here is a possible theory of this kind of “non-lifting”
endofunctors:

Question 6.2.2. Which part of the theory in this thesis can be generalized to codensity
functors as defined in Definition 6.2.1? In particular, can the expressivity results in [26]
be rephrased in the codensity terminology?

General Fibrational Theory of Processes and Memorylessness as Property In this
thesis, we fixed the target system model to be a coalgebra for an endofunctor. Any
coalgebra is “memoryless”, in that the behavior is determined solely by the current
state. How can we deal with memoryful systems with this framework? A simple answer
would be extending the state space to cover the “memory” needed to determine the
behavior.
A probabilistic point of view gives another possible answer. From such a viewpoint,

coalgebra is a generalization of (discrete-time) Markov process. However, in many cases,
a (general) stochastic process is defined first, and then a Markov process is defined as
a stochastic process that is “memoryless” (see, e.g., [39]). If we can generalize this to
other kinds of coalgebras, then we can naturally accommodate memoryful systems.
How could we do that? In defining a stochastic process, the notion of filtration plays a

pivotal role. A filtration on a set X is, in our terminology, a chain in MeasX decreasing
in the fiber order ⊑. It is used to keep track the amount of information one has in each
moment. Thus, generalizing this to any CLat⊓-fibration could result in a general theory
of memoryful systems. This is a possible future research topic:

Question 6.2.3. Can we generalize the theory of stochastic process so that

• A CLat⊓-fibration p : E → C plays the role of Meas → Set, and

• A memoryless process corresponds to a B-coalgebra?
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[2] Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Cate-
gories. Wiley-Interscience, New York, NY, USA, 1990.

[3] W. Arveson. An Invitation to C*-Algebras. Springer-Verlag New York, 1976.

[4] Zeinab Bakhtiari and Helle Hvid Hansen. Bisimulation for Weakly Expressive Coal-
gebraic Modal Logics. In Filippo Bonchi and Barbara König, editors, 7th Conference
on Algebra and Coalgebra in Computer Science (CALCO 2017), volume 72 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 4:1–4:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral
Metrics via Functor Lifting. In Venkatesh Raman and S. P. Suresh, editors, 34th
International Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS 2014), volume 29 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 403–415, Dagstuhl, Germany, 2014. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic
behavioral metrics. Logical Methods in Computer Science, 14(3), 2018.

[7] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Padoan.
Fixpoint games on continuous lattices. Proc. ACM Program. Lang., 3(POPL), jan
2019.

[8] B. Banaschewski and G. Bruns. Categorical characterization of the macneille com-
pletion. Archiv der Mathematik, 18(4):369–377, Sep 1967.

[9] Tewodros A. Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey Ry-
balchenko. A constraint-based approach to solving games on infinite graphs. In
Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 221–234. ACM, 2014.

[10] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

109



Bibliography

[11] Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-to techniques for be-
havioural metrics via fibrations. In Sven Schewe and Lijun Zhang, editors, 29th
International Conference on Concurrency Theory, CONCUR 2018, September 4-7,
2018, Beijing, China, volume 118 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

[12] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general ac-
count of coinduction up-to. Acta Inf., 54(2):127–190, 2017.

[13] Marcello M. Bonsangue and Alexander Kurz. Duality for logics of transition sys-
tems. In Vladimiro Sassone, editor, Foundations of Software Science and Compu-
tational Structures, 8th International Conference, FOSSACS 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3441 of LNCS, pages 455–469.
Springer, 2005.

[14] Marcello M. Bonsangue and Alexander Kurz. Presenting functors by operations
and equations. In Luca Aceto and Anna Ingólfsdóttir, editors, Foundations of Soft-
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[73] Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via
fuzzy lax extensions. In Igor Konnov and Laura Kovács, editors, 31st Interna-
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A. Appendices for Codensity Games

A.1. Direct Proof of Equivalence of the Two Game Notions
Characterizing Probabilistic Bisimilarity (Tables 4.2
and 4.4)

A.1.1. Table 4.4 ⇝ Table 4.2

Assume that Duplicator wins Table 4.4 from (x, y), and let Spoiler play some Z in
Table 4.2 . There are two cases to consider which are essentially identical, but we write
them down separately for reference.

• If τ(x, Z) > τ(y, Z) then we make Spoiler select s = x and play Z in Table 4.4.
To this Duplicator responds with some Z ′ ⊇ Z such that τ(x, Z) ≤ τ(y, Z ′), which
implies that Z ′ ̸= Z. Pick any y′ ∈ Z ′ \Z and play it as Spoiler in Table 4.4; when
Duplicator responds with some x′ ∈ Z, play the pair x′ and y′ as Duplicator in
Table 4.2.

• If τ(x, Z) < τ(y, Z) then we make Spoiler select s = y and play Z in Table 4.4.
To this Duplicator responds with some Z ′ ⊇ Z such that τ(y, Z) ≤ τ(x, Z ′), which
implies that Z ′ ̸= Z. Pick any y′ ∈ Z ′ \Z and play it as Spoiler in Table 4.4; when
Duplicator responds with some x′ ∈ Z, play the pair x′ and y′ as Duplicator in
Table 4.2.

A.1.2. Table 4.2 ⇝ Table 4.4

This is a less straightforward implication. A winning strategy for Duplicator in Table 4.4
is built not from a single strategy in Table 4.2, but rather from an entire collection of
winning positions.

Formally, assume that Duplicator wins Table 4.2 from (x, y), and let Spoiler choose
s ∈ {x, y} and play some Z in Table 4.4. We define

Z̄ = {w ∈ X | ∃v ∈ Z such that Duplicator wins Table 4.2 from (v, w)}.

One basic observation is that Z ⊆ Z̄, since Duplicator wins from all positions of the
form (w,w). As a result, we have

τ(x, Z) ≤ τ(x, Z̄) and τ(y, Z) ≤ τ(y, Z̄). (A.1)

Another observation is that Spoiler wins Table 4.2 from the position Z̄. To see this,
consider any Duplicator’s response x′ ∈ Z̄, y′ ̸∈ Z̄. Then there is some v ∈ Z such that
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Duplicator wins Table 4.2 from (v, x′). If Duplicator could win Table 4.2 from (x′, y′)
then she could win from (v, y′) as well, which contradicts the assumption that y′ ̸∈ Z̄.
Since we assume that Duplicator wins Table 4.2 from (x, y), Z̄ cannot be a legal move

for Spoiler from (x, y), hence

τ(x, Z̄) = τ(y, Z̄).

Together with (A.1) this implies that

τ(x, Z) ≤ τ(y, Z̄) and τ(y, Z) ≤ τ(x, Z̄),

so Z ′ = Z̄ is a legal move for Duplicator in the stage (ii) of Table 4.4, no matter if
Spoiler chose s = x or s = y in the stage (i). To this, in the stage (iii) Spoiler replies
with some y′ ∈ Z̄ \ Z. By the definition of Z̄, there is some v ∈ Z such that Duplicator
wins Table 4.2 from (v, y′), so Duplicator can respond with x′ = v.

A.2. Codensity Characterization of Hausdorff pseudometric

Proposition A.2.1. Let (X, d) be a pseudometric space. For any S, T ⊆ X, we define
two functions

dH(S, T ) = max

(
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

)
and

dc(S, T ) = sup
k∈PMet1((X,d),([0,1],dR))

dR

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
.

The values of two functions coincide.

Proof. First, we show dc(S, T ) ≥ dH(S, T ) by contradiction.
Suppose it does not hold. Then, by definition, at least one of

sup
x∈S

inf
y∈T

d(x, y)

and

sup
y∈T

inf
x∈S

d(x, y)

is greater than dc(S, T ). We can assume the former is greater than dc(S, T ) w.l.o.g.
Therefore, for some x0 ∈ S,

dc(S, T ) < inf
y∈T

d(x0, y)

holds.
Now, since d(x0, ) is a non-expansive function by the triangle inequality, we have

dc(S, T ) ≥ dR

(
inf
x∈S

d(x0, x), inf
y∈T

d(x0, y)

)
.
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However, since infx∈S d(x0, x) = 0, we have dc(S, T ) ≥ infy∈T d(x0, y), which is a con-
tradiction.
Next, we show dc(S, T ) ≤ dH(S, T ) by contradiction.
Suppose dc(S, T ) > dH(S, T ) + ε for some ε > 0. Then, for some non-expansive

k : X → [0, 1],

dR

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
> dH(S, T ) + ε

holds.
W.l.o.g. we can assume infx∈S k(x) ≤ infy∈T k(y).
Thus, for some x0 ∈ S and y0 ∈ T satisfying k(x0) ≤ infx∈S k(x) + ε/5 and k(y0) ≤

infy∈T k(y) + ε/5,
dR(k(x0), k(y0)) > dH(S, T ) + 3ε/5

holds. Since
dH(S, T ) ≥ sup

x∈S
inf
y∈T

d(x, y),

there exists some y1 ∈ T satisfying

dH(S, T ) ≥ d(x0, y1) ≥ dR(k(x0), k(y1)).

However, we have k(x0) ≤ k(y0) + ε/5 ≤ k(y1) + 2ε/5, so

dR(k(x0), k(y1) + ε/5) ≥ dR(k(x0), k(y0) + 2ε/5)

and
dR(k(x0), k(y1)) + 3ε/5 ≥ dR(k(x0), k(y0))

holds.
Then,

dR(k(x0), k(y0))

≤ dR(k(x0), k(y1)) + 3ε/5

≤ dH(S, T ) + 3ε/5

< dR(k(x0), k(y0))

holds, which is a contradiction.
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B.1. Further on Remark 5.3.8

Assume that LS is expressive for x : X → BX. First, in much the same way as Propo-
sition 5.2.11, we can show “stepwise adequacy”:

(x∗ ◦BΩ,τ )n(⊤) ⊑
l

φ∈LS ,depth(φ)≤n

JφK∗xΩ

holds for n ∈ ω. Taking the meets of both sides for n ∈ ω shows
l

n∈ω
(x∗ ◦BΩ,τ )n(⊤) ⊑

l

φ∈LS

JφK∗xΩ = LES (x) ⊑ BisimΩ,τ (x).

B.2. More on Total Boundedness

For the arguments in Section 5.4, finiteness of Λ is crucial, which was not very obvious
in [48]. Here we consider a handy counterexample against Fact 5.4.7 where Λ is infinite.
It turns out that the counterexample also affects our approximation argument.
Define d2 : 2× 2 → [0, 1] by

d2(x, y) =

{
0 if x = y

1 otherwise
.

Note that (2, d2) is totally bounded.
Consider an instance of the situation of Definition 5.4.1 where

• the behavior functor B is defined by BX = Xω,

• the set of modality indices Λ is ω = {0, 1, 2, . . . }, and

• the observation modality τi : [0, 1]
ω → [0, 1] for a modality index i ∈ ω is defined

as the projection τi((xj)j∈ω) = xi.

Then the codensity lifting (−)ωde,τ does not preserve total boundedness. In fact, the
pseudometric space (−)ωde,τ (2, d2) is not totally bounded. First we show a lemma. Let
(2ω, d2ω) = (−)ωde,τ (2, d2).

Lemma B.2.1. The distance function d2ω satisfies

d2ω(x, y) =

{
0 if x = y

1 otherwise
.
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Proof. It suffices to show that, for x ̸= y, d2ω(x, y) = 1. Let x = (xi)i∈ω and y = (yi)i∈ω.
Take i ∈ ω so that xi ̸= yi. Define f : 2 → [0, 1] by f(0) = 0 and f(1) = 1. Then f is a
nonexpansive map from (2, d2) to ([0, 1], de).

Using these data, we can see

d2ω(x, y) = sup
g : (2,d2)→([0,1],de),j∈ω

de(τj(((g)
ω)(x)), τj(((g)

ω)(y)))

≥ de(τi(((f)
ω)(x)), τi(((f)

ω)(y)))

= de(f(xi), f(yi))

= 1.

Proposition B.2.2. The pseudometric space (2ω, d2ω) is not totally bounded.

Proof. For any given 0 < ε < 1, each disc of radius ε covers only one point. This implies
that finitely many such discs cannot cover the space (2ω, d2ω), which means it is not
totally bounded.

This space (2ω, d2ω) also shows that we cannot simply remove total boundedness in
Proposition 5.4.5. Let F = PMet1((2

ω, d2ω), ([0, 1], de)). Define G ⊆ F as the set of all
functions that depend only on finitely many components. Then this G satisfies the two
conditions in Proposition 5.4.5. However, this is not dense in F :

Proposition B.2.3. Under the topology of uniform convergence, G is not dense in F .

Proof. Define h : (2ω, d2ω) → ([0, 1], de) by:

h((xi)i∈ω) =

{
1 if there is infinitely many i’s s.t. xi = 1

0 otherwise
.

By the lemma this is indeed nonexpansive.
Fix any g ∈ G. By the definition of G, we can take n ∈ ω such that g only depends

on the first n components. Let x = (0, 0, . . . ) ∈ 2ω. Define y ∈ 2ω so that the first
n components of y are 0 and all the others are 1. Then h(x) = 0, h(y) = 1 and
g(x) = g(y) holds. This implies that de(h(x), g(x)) ≥ 1/2 or de(h(y), g(y)) ≥ 1/2 holds.
In particular, the uniform distance between h and g is at least 1/2. Since g is arbitrary,
G is not dense in F .
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