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Convex Manifold Approximation for Tensors
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Dimensionality reduction constructs low-dimensional features of high-
dimensional data and is widely used in machine learning and data mining. Low-rank
approximation is a well-established dimensionality reduction method, which
represents data with a linear combination of a small number of bases. It is originally
designed for matrices, and recently extended for multi-dimensional arrays, or tensors.
However, most of dimensionality reduction methods, including low-rank approximation,
still have a number of issues, including the necessity of non-convex optimization in
their reduction processes, which causes the initial value dependency.

This study formulates dimensionality reduction of non-negative multi-
dimensional arrays as a convex problem. The key idea is to describe model manifolds
containing dimensionality-reduced arrays with a dual-flat coordinate system used in
information geometry. We can define a flat model manifold by mapping a multi-
dimensional array to a discrete probability distribution and formulating
dimensionality reduction as an operation of reducing natural parameters of the
distribution. This flatness guarantees that a convex optimization can find an optimal
point on the model manifold that globally minimizes the Kullback-Leibler divergence
from the data.

In the first part of this dissertation, we analyze the low-rank approximation, a
typical dimensionality reduction method, from an information-geometric viewpoint and
propose a non-gradient-based low-rank approximation for tensors. The set of low-rank
tensors 1s not guaranteed to be flat. Therefore, we formulate the low-rank
approximation as a convex problem by extracting flat subspaces in the space of low-
rank tensors and regarding them as model manifolds. We prove that the projection onto
the model manifold can be realized by performing multiple rank-1 approximations,
where the exact solution is obtained in a closed form. Since this optimization is not
based on the gradient method, the user does not need to carefully tune initial values,
learning rates, or stopping criteria. As we show numerically, the proposed method is
faster than traditional low-rank approximations because it does not involve iterative
operations.

In addition, using the property that projections onto the model manifold do not
change the expected value of the distribution, we derive a solution formula of the best
rank-1 simultaneous approximation for non-negative multiple matrices. Moreover, as

an application of the formula, we develop an efficient method for rank-1 non-negative



matrix factorization with missing values. We use the fact that the objective function of
non-negative matrix factorization with missing values coincides with that of
simultaneous factorization for non-negative multiple matrices under appropriate
permutations on rows and columns. Since this method is not based on the gradient
method, it has the advantage of not requiring appropriate settings for initial values,
learning rate, and stopping criteria, which have been issues in the past.

Our analysis using information geometry not only leads to the above novel
algorithms but also reveals the analogy of rank-1 approximation and mean-field
approximation, which further enables us to show the uniqueness of the balanced rank-
1 tensor.

Furthermore, in the second part of this dissertation, we introduce tensor many-
body approximation as a novel convex dimensionality reduction method. The proposed
method uses interactions between modes in the tensor instead of a low-rank structure.
We model such interactions using an energy function by following the standard strategy
of statistical mechanics, which can be viewed as a natural extension of the rank-1
approximation for tensors. The proposed method has the following three advantages:
it does not require rank tuning, the cost function is guaranteed to be convex, and the
best solution can be efficiently obtained by the natural gradient method. Furthermore,
we propose an interaction representation that can visually describe interactions
between modes in a tensor. This visualization can be transformed into a tensor network,
which shows the nontrivial relationship between our formulation and the existing
tensor low-rank approximation. In particular, tensor many-body approximations with
appropriately chosen active interactions can be regarded as constrained tensor ring
decompositions, which can be solved by convex optimization. This finding of a class
that can be solved by convex optimization in tensor ring decomposition is novel and
interesting as it has been suffered from the difficulty of non-convex optimization to
date.

This research enables efficient dimensionality reduction through discussions
across three fields: linear algebra, which deals with tensors and matrices; information
geometry, the geometry of probability distributions; and energy-based models, a

methodology inspired by statistical mechanics that deals with interactions.
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