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Abstract

This study formulates dimensionality reduction of non-negative multi-dimensional ar-
rays as a convex problem. The key idea is to describe model manifolds containing
dimensionality-reduced arrays with a dual-flat coordinate system used in information
geometry. We can define a flat model manifold by mapping a multi-dimensional array
to a discrete probability distribution and formulating dimensionality reduction as an
operation of reducing natural parameters of the distribution. This flatness guarantees
that a convex optimization can find an optimal point on the model manifold that globally
minimizes the Kullback-Leibler divergence from the data.

In the first part of this dissertation, we analyze the low-rank approximation, a typical
dimensionality reduction method, from an information geometric viewpoint, and propose
a non-gradient-based low-rank approximation for tensors. The set of low-rank tensors
is not guaranteed to be flat. Therefore, we formulate the low-rank approximation as
a convex problem by extracting flat subspaces in the space of low-rank tensors and
regarding them as model manifolds. As a result, we can solve the non-negative low-rank
approximation more efficiently and stably than traditional gradient-based methods. In
addition, by focusing on the property that projections onto the model manifold do not
change the expected value of the distribution, we derive a solution formula of the best
rank-1 simultaneous approximation for multiple matrices. We propose a faster method
for rank-1 approximations of matrices with missing values using this formula.

Furthermore, in the second part of this dissertation, we introduce tensor many-body
approximation as a novel convex dimensionality reduction method. The proposed method
assumes the existence of a major interaction between modes in the tensor instead of a
low-rank structure. We describe this interaction with an energy function, following the
standard strategy of statistical mechanics. We can introduce the method as a natural
extension of the rank-1 approximation for multi-dimensional arrays. The proposed
method has the following three advantages: it does not require rank tuning, the cost
function is guaranteed to be convex, and the best solution can be obtained faster by the
natural gradient method. Furthermore, we propose an interaction representation that
visually describes the interaction between modes in the tensor, and transform it into a
tensor network to clarify the nontrivial relationship with the existing tensor low-rank
approximation.

This research enables efficient dimensionality reduction through discussions across three
fields: linear algebra, which deals with tensors and matrices; information geometry, the
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geometry of probability distributions; and energy-based models, a methodology inspired
by statistical mechanics that deals with interactions.
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要約

情報幾何学を用いることで、非負の多次元配列の次元削減を凸問題として定式化す

る．鍵となるアイデアは，情報幾何学で用いられる双対平坦な座標系を用いて，次元

削減後の配列が属する低次元の部分空間（モデル多様体）を記述することである．多

次元配列を離散確率分布と対応付け，分布の自然パラメータの削減で次元削減を定式

化すると，平坦なモデル多様体を定義できる．この平坦性によって，データからのカ

ルバック・ライブラー情報量を大域的に最小化するモデル多様体上の点をユニークに

多項式時間で見つけることができる．

本博士論文の前半では，代表的な次元削減手法である低ランク近似の情報幾何学的な

解析によって，勾配法に基づかない，テンソルの低ランク近似を提案する．低ランク

テンソルの全体空間に平坦性は保証されないが，低ランクテンソルの全体空間内の平

坦な部分空間を抜き出し，これをモデル多様体とすることで，凸問題としての低ラン

ク近似を定式化する．結果として，従来は非凸最適問題として定式化されてきた非負

の低ランク近似をより効率的に安定して解けるようになった．また，モデル多様体へ

の射影の前後で分布の期待値が保存されるという性質に着目することで，複数の行列

を基底を共有して分解する同時低ランク近似の最良ランク１近似公式を閉じた形式で

導いた．この公式を応用して，欠損を含む行列のランク１近似の高速な解法を提案す

る．

さらに本博士論文の後半では，データの低ランク構造に注目しない新たな次元削減の

方法としてテンソル多体近似を導入する．提案手法では，低ランク構造の代わりに，

テンソル内のモード同士の主要な相互作用の存在を仮定する．統計力学の標準的な方

策に則り，この相互作用はエネルギー関数で記述する．この近似は多次元配列のラン

ク１近似の自然な拡張として導入することができる．提案手法はランクフリーなモデ

ルであり，コスト関数が凸であることが保証され，自然勾配法により高速に最良解が

求まる．更に，テンソル内のモード間の相互作用を視覚的に記述する相互作用表示を

提案し，これをテンソルネットワークに変換することで，既存のテンソル低ランク近

似との非自明な関係についても明らかにした．

本研究は，テンソルや行列を扱う線形代数，確率分布の幾何学である情報幾何学，統

計力学にインスパイアされたエネルギーベースモデルという３つの領域にまたがった

議論により，効率的な次元削減を可能にする．
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Introduction 1
The size of data handled by computers continues to increase. In order to analyze
such large-size data and extract knowledge from them, it is useful to obtain a reduced
representation of given data. Dimensionality reduction, reducing the dimensionality of
data without losing information of the original data, can provide a memory-efficient
representation that captures the features of the data [127].

Low-rank approximation is one of the most basic dimensionality reduction methods that
has been studied for a long time [84, 48]. Low-rank approximation assumes low-rank
structure of data, i.e., that data can be described by a linear combination of a small
number of bases, and approximates the data by a linear combination of the dominant
bases in the data. It is memory-efficient to handle data by keeping only the dominant basis
and coefficients, often called factors, that can reconstruct the original data. Low-rank
approximation optimizes the reconstruction error between the input and reconstructed
data, and extract dominant factors from various data formats, such as matrices with
or without missing values, tensors, and multiple matrices (see Figure 1.1). Low-rank
approximation has been used in various areas, including image processing [142, 38],
speech recognition [18], bioinformatics [134], data mining [112], deep learning [104]
and data compression [58, 61].

In low-rank approximation for matrices, there is a seminal result known as the Eckart–
Young–Mirsky theorem [32, 86]. It states that a given matrix’s singular value decom-
position (SVD) provides the best rank-r matrix that minimizes the reconstruction error
defined by the Frobenius norm. SVD can be performed in polynomial time with respect
to the size of an input matrix.

CP decomposition [16, 52] and its general form Tucker decomposition [126] are well-
known as low-rank approximation for data in the form of tensors. CP decomposition
assumes that a tensor can be approximated by the sum of Kronecker products of multiple
vectors, yet the best decomposition is known to be NP-hard. Tucker decomposition
assumes that a tensor can be approximated by the product of a single core tensor
and several matrices. By using high-order singular value decomposition (HOSVD), an
extension of SVD, we can obtain a quasi-optimal solution of Tucker decomposition [50].

For data with missing values in the form of matrices or tensors, it has been proposed to
perform a low-rank approximation while estimating missing values with the em-algorithm
or to optimize the weighted reconstruction error based on SVD [115].
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Figure 1.1 Low-rank approximations for (a) matrix, (b) tensor, (c) matrix with missing values and (d)
multiple matrices with sharing bases. For simplicity, we assume the target rank is 1.

Non-negative constraints make optimization difficult.

In machine learning and data mining in several fields, such as image and audio processing,
non-negative constraints are often imposed on the input and the reconstructed data.
Non-negative matrix factorization (NMF) [73] and non-negative Tucker decomposition
(NTD) [65] are examples of tasks in which non-negative constraints are imposed, while
non-negative constraints make the problem more difficult because negative values may
appear in SVD and HOSVD. Therefore, it is common to use the gradient method with the
derivative of the reconstruction error. However, since the reconstruction error is usually
a nonconvex function, such gradient-based methods have difficulties in setting initial
values, convergence criterion, and learning rate.

Basic strategy of our study for non-negative low-rank approximation.

Therefore, this study formulates low-rank approximations of multidimensional arrays
as a convex problem by using the theory of optimization established in information
geometry [4]. Information geometry is the geometry of probability distributions. Data
are represented as empirical distributions, and models are treated as submanifolds, which
are subspaces of the overall space of probability distributions. Learning is a projection
from the empirical distribution to the submanifold. We can guarantee the uniqueness
and convexity of learning by defining the submanifold so that it is flat.

We regard given normalized data as probability distributions, and the set of rank-reduced
multidimensional arrays as a model manifold. By describing the model manifold using
natural parameters of distributions, we guarantee the flatness of the model manifold
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Table 1.1 Correspondence between low-rank approximation and terms of information geometry

Objects Solution space Learning

Information geometry Distributions Flat manifold Orthogonal projection
Low-rank approximation Multidimensional arrays Rank-reduced arrays Approximation

and formulate the low-rank approximation as a convex problem. We illustrates this
correspondence in Table 1.1.

In addition to matrices and tensors, we also deal with multiple matrices and matrices with
missing values. In order to discuss low-rank approximation for various data structures in
a unified manner, we design a partially ordered set (poset) corresponding to the input
data structure and describe the data with a log-linear model on the poset. We can see
that the subspace in which some of the natural parameters of the model are reduced
to zero is the set of data with reduced rank. Non-negative low-rank approximation is a
projection onto this subspace. The conceptual diagram summarizing the above is shown
in Figure 1.2.

Beyond low-rank approximations.

All of the above discussions have assumed a low-rank structure for data. Therefore, a
hyper-parameter called rank is required, which indicates how many dominant bases exist
in the data. While a larger rank improves the capability of the decomposed representation,
it also increases the computational cost, so the target rank is needed to be appropriately
adjusted by considering the tradeoff.

We can formulate a novel dimensionality reduction method that focuses on the mode-
structure rather than the low-rank structure by capturing the above discussion by energy-
based model, freeing us from rank tuning. The energy-based model, inspired by statistical
physics, takes interactions between particles with terms into account in energy function.
We define energy function to describe interactions between modes.

The proposed method based on convex optimization, named many-body approximation,
assumes which tensor modes interact with each other. The proposed method is not only a
rank-free model but also has the property of being globally optimizable via information
geometry. We can stably obtain the solution in the proposed method because there is no
initial value dependence.

As seen above, we formulate low-rank approximation for non-negative multi-dimensional
arrays with focusing on convexity, and we also propose a novel convex dimensionality
reduction method as an alternative to traditional low-rank approximation.
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low-rank space

Figure 1.2 A sketch of our strategy for low-rank approximation. We design a poset corresponding to a
given data structure (left) and define a discrete probability distribution on that poset (middle).
The dimensionality reduction is performed by projecting some of the natural parameters of the
probability distribution to zero (right).

Novel dimensionality reduction focusing on geometry

There are many variants of non-negative decomposition for tensors with better per-
formance with modified cost functions [22, 35, 36]. It is known that overfitting can
be prevented by optimizing divergence from the input tensor to the reconstructed ten-
sor instead of the Frobenius norm [21]. It is also a popular technique to improve the
robustness and generalization performance of low-rank decompositions by adding a
regularization term to the cost function [98, 105]. Rather than proposing modified cost
functions, we propose a fast and stable decomposition method by focusing on the metric
and flat structure of the tensor space, and moreover, we provide a new decomposition
that does not require a target rank, which has been difficult to tune in traditional low-rank
approximation.

1.1 Main Contributions

In this section, we summarize the contributions of this study. The first major contribution
is the formulation of non-negative low-rank approximation as a convex problem for
matrices, tensors, multiple matrices, and matrices with missing values by utilizing log-
linear models on posets and their information geometry. The specific contributions are
described below.

Chapter 3 NeurIPS 2020WS [39], NeurIPS 2021 [40]

We propose a non-gradient based low-rank approximation method, called Legendre
Tucker rank Reduction (LTR), for tensors.
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• We treated tensors as probability distributions and succeeded in describing the ten-
sor rank by dual flat coordinate system, which is known as the standard coordinate
system in information geometry.

• By analyzing rank-1 approximation of tensors using the coordinate system, we
pointed out that rank-1 approximation can be viewed geometrically as a mean-field
approximation that reduces many-body problems to one-body problems, which
is frequently used in statistical physics. Furthermore, by interpreting the exact
solution of rank-1 approximation from an information geometrical viewpoint, we
constructed an algorithm, called Legendre Tucker rank Reduction (LTR), which
performs low-rank approximation for arbitrary Tucker ranks.

• LTR achieves low-rank approximation of tensors by applying the rank-1 approxi-
mation formula to each mode, making it about five times faster than traditional
gradient-based non-negative low-rank approximations.

Chapter 4 AISTATS 2022 [41]

We find a solution formula of rank-1 approximation for multiple matrices and develop a
faster method of rank-1 NMF for matrices with missing values as an application of the
formula.

• In the same framework based on information geometry, we analyzed non-negative
multiple matrices factorization (NMMF), which simultaneously decomposes multi-
ple non-negative matrices with shared factors, and as a result, derived an analytical
solution of rank-1 approximation of NMMF in a closed form that can find the
globally optimal solution in polynomial time.

• By focusing on the known correspondence between NMMF and the decomposition
of matrices with missing values, we developed an algorithm, called A1GM, which
can rapidly find the approximated largest principal components for matrices with
missing values without using the gradient method.

• We have shown through experiments on real data that A1GM can find the most
dominant factor of a matrix with missing values about 10 times faster than existing
methods, without significant loss of approximation accuracy. As with LTR, A1GM
can obtain a solution independent of initial values and learning rate.

The above discussion focuses on low-rank structure of data. That is, it assumes that input
data can be written as a linear combination of a small number of bases. In the following
chapter, as the second major contribution, we formulate a novel method of dimensionality
reduction that does not focus on low-rank structure, but rather on a relationship between
tensor modes.

Chapter 5 Under review [42]

We develop a novel dimensional reduction method for tensors focusing on relation of
tensor modes instead of low-rank structure.

1.1 Main Contributions 5



Table 1.2 List of proposed methods

Chap. Proposed method Ref. Implementation URL

3 LTR [40, 39, 43] https://github.com/gkazunii/Legendre-tucker-rank-reduction

4 A1GM [41, 43] https://github.com/gkazunii/A1GM

5 Many-body Approximation [42] https://github.com/gkazunii/MBA

• By adopting the standard methodology of statistical mechanics, which describes
interactions using energy functions, for tensor decomposition, we have formulated
a tensor many-body approximation that focuses on the relationships between tensor
modes. Information geometric analysis enables us to comprehend the tensor many-
body approximation as a natural extension of the mean-field approximation.

• While traditional low-rank approximation requires the user to determine the low-
rank structure in advance, e.g., CP or Tucker decomposition, and then perform the
target rank tuning, the proposed method assumes dominant interactions in a tensor
for dimensionality reduction. As a result, the user is free from tuning the ranks.

• We proposed an interaction representation, a diagram that intuitively describes the
interaction between modes in a tensor. By transforming this diagram into a tensor
network, we reveal a nontrivial relationship between the proposed method and
existing low-rank approximation.

• We formulated many-body approximation as a convex optimization problem. There-
fore, the proposed method is more stable than nonnegative low-rank approximation
that minimizes non-convex cost function.

The list of proposed methods is summarized in Table 1.2.

1.2 Remarks on Terminology

In this monograph, a tensor is a multidimensional array. We do not consider tensors as
representations of multilinear maps. Each axis of a tensor is called a mode. The depth
of the tensor, i.e., the number of modes, is called the order. For example, third-order
tensors T ∈ RI×J×K have three modes; each length is I, J and K. Matrices and vectors
are regarded as second-order and first-order tensors, respectively. Small tensors obtained
by decomposing a tensor are called its factors.

6 Chapter 1 Introduction
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Preliminaries 2
In this study, we perform dimensionality reduction of data with various discrete structures.
For this purpose, we need a model that can flexibly handle various discrete structures.
Therefore, in this chapter, we introduce a log-linear model on posets and some related
topics for its optimization based on information geometry as a preparation.

The flexible domain of this model is useful for dealing with various data structures in a
unified manner. In the following chapters 3 and 4, we map tensors and multiple matrices
to probability distributions in this model by properly designing posets. As an example, in
Section 2.1.1, we see that a log-linear model with an ordered power set in its domain can
handle higher-order Boltzmann machine.

In this study, we formulate dimensionality reduction as a projection from the empirical
distribution corresponding to the data onto a low-dimensional subspace. As described
in Section 2.2, a certain flatness is guaranteed in the low-dimensional subspace when
some natural parameters of the distribution are fixed and, as a result, the dimensionality
reduction can be formulated as a convex problem. By controlling parameters that are
imposed to be 0, we can specify the presence or absence of interactions or low-rankness
in the data after dimensionality reduction.

In Section 2.2.1, we explain the property that some parameters are preserved in the
projection onto flat subspaces, which is the key to enable efficient low-rank approximation
in this study. Although the log-linear model on posets is not an invention of the author,
the strategy of using this conservation law to achieve optimization without a gradient
method is a significant new contribution by the author.

2.1 Log-linear Model on Posets

The log-linear model on a poset [117] is a generalization of Boltzmann machines [1],
where we can flexibly design interactions between variables using partial orders. The
domain of the model is a set equipped with a partial order, called a poset.

Definition 2.1 Poset

A poset (Ω,≤) is a set Ω of elements associated with a partial order ≤ on Ω, where
the relation “≤” satisfies the following three properties: For all x, y, z ∈ Ω, (1)
x ≤ x, (2) x ≤ y, y ≤ x⇒ x = y, and (3) x ≤ y, y ≤ z ⇒ x ≤ z.
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We can represent a poset as a directed acyclic graph (DAG). This study equates DAG and
a poset. If there are multiple DAGs representing the same poset, we suppose to choose a
transitive reduced DAG. Transitive reduction is an operation to minimize the number of
edges in a DAG while keeping the same poset [3].

We consider a discrete probability distribution p on a poset (Ω,≤), which is treated as
a mapping p : Ω→ (0, 1) such that

∑
x∈Ω p(x) = 1. Each element p(x) is assumed to be

strictly larger than zero. We assume that the structured domain Ω has the least element
⊥; that is, ⊥≤ x for all x ∈ Ω.

Definition 2.2 Log-linear Model on Poset

The log-linear model for a distribution p on (Ω,≤) is defined as

log p(x) =
∑
s≤x

θ(s) (2.1)

for x ∈ Ω.

In this model, θ(⊥) corresponds to the normalizing factor (partition function). The
convex quantity defined as the sign inverse ψ(θ) = −θ(⊥) is called the Helmholtz free
energy of p.

This model belongs to the exponential family and θ corresponds to natural parameters
except for θ(⊥). The exponential family is a set of probability distributions that can
be represented as logPθ(x) = C(x) +

∑N
i=1 θiFi(x) − ψ(θ) using natural parameters

θ = (θ1, . . . , θN ) ∈ RN and normalizing factor ψ(θ). We write a distribution as pθ to
emphasize that it is determined by the natural parameter θ.

In chapters 3–5, we appropriately define the poset (Ω,≤) for target data format to reduce
their dimensions.

The log-linear model’s natural parameter θ uniquely identifies the distribution p. Using
θ as a coordinate system in the set of distributions, which is a typical approach in
information geometry [4], we can draw the following geometric picture: Each point in
the θ-coordinate system corresponds to a distribution. Moreover, because the log-linear
model belongs to the exponential family, we can also identify a distribution by expectation
parameters defined as follow:

Definition 2.3 Expectation Parameters

Expectation parameters of log-linear model p is given as

η(x) =
∑
x≤s

p(s) (2.2)

for x ∈ Ω.

8 Chapter 2 Preliminaries



In fact, using the Möbius function [103] inductively defined as

µ(x, y) =


1 if x = y,

−
∑

x≤s<y µ(x, s) if x < y,

0 otherwise,

(2.3)

each distribution can be described as

pη(x) =
∑
s∈Ω

µ(x, s)η(s). (2.4)

The above equation is often called Möbius inversion formula [103]. We write pη if p is
determined by the expectation parameter η. We can also identify each point in the set
of distributions using the η-coordinate system. As is clear from the definition, η(⊥) = 1
always holds. Each expectation parameter η(x) is literally consistent with the expected
value E[Fx(s)] =

∑
s∈Ω Fx(s)p(s) for the function Fx(s) such that Fx(s) = 1 if x ≤ s and

0 otherwise [116].

For a fixed poset (Ω,≤), the set of distributions S = { p(x) | x ∈ Ω } is a Riemannian
manifold, and its Riemannian metric is given as follows:

G(x, y)(ξ) =


∑

s∈Ω ζ(x, s)ζ(y, s)p(s)− η(x)η(y) if ξ = θ,∑
s∈Ω µ(s, x)µ(s, y)p(s)−1 if ξ = η,

(2.5)

where x, y ∈ Ω+ = Ω\ {⊥} and zeta function ζ : Ω× Ω→ {0, 1} defined as

ζ(s, x) =

1 if s ≤ x,

0 otherwise.

See the proof for Theorem 3 in [117]. The metric provides us with the definition of
distance in S.

Mixture Coordinate In addition, the θ-coordinate and the η-coordinate are orthogonal
with each other, which guarantees that we can combine these coordinates together as
a mixture coordinate and a point specified by the mixture coordinate also identifies a
distribution uniquely [4]. This property is guaranteed in any exponential family. If N = 2
as an example, we can specify a distribution by not only θ- and η-coordinate but also
mixture coordinate (θ1, η2) or (η1, θ2).

2.1 Log-linear Model on Posets 9



2.1.1 Boltzmann machine as an Example of Log-linear Model

It is pointed out that the log-linear model on a poset is a generalization of the Boltzmann
machine with higher-order interactions [117]. We can represent mth-order Boltzmann
machine as

p(x) = 1
Z

exp

∑
i

θixi +
∑
i<j

θijxixj + · · ·+
∑

i1<···<im

θi1,...,imxi1 . . . xim

 (2.6)

for a binary random variable x = (x1, . . . , xn) ∈ {0, 1}n and the partition function
Z = exp (ψ(θ)). We assume the natural number m is smaller than n.

We consider the log-linear model on (Ωm,≤), where

Ωm = {ω | ω ∈ 2{1,...,n}, | ω| ≤ m } , ω1 ≤ ω2
def⇐=⇒ ω1 ⊆ ω2 (2.7)

for any ω1, ω2 ∈ Ωm. We describe the domain (Ωm,≤) in Figure 2.1(a). Then the model
in Equation (2.1) becomes

log p(ω) = θ(∅) +
∑

i

θ({i}) +
∑
i<j

θ({i, j}) + · · ·+
∑

i1<···<im

θ({i1, . . . , im}). (2.8)

Once we regard θ({i1, . . . , ik}) as θi1,...,ik
for k ≤ m and θ(∅) as logZ, the correspondence

between the m-th order Boltzmann machine in Equation (2.6) and the log-linear model
on (Ωm,≤) in Equation (2.8) is clear.

2.2 Projection Theory in Information Geometry

This section provides the theory of projection in information geometry. Optimizations in
Chapters 3-5 are based on the following topics.

Let S be the set of discrete probability distributions with N random variables. We achieve
dimensionality reduction by projection onto a subspace Q ⊆ S. The entire space S is
a non-Euclidean space with the Fisher information matrix G as the metric. This metric
measures the distance between two points. In Euclidean space, the shortest path between
two points is a straight line. In a non-Euclidean space, such a shortest path is called
a geodesic. In the space S, two kinds of geodesics can be introduced, e-geodesics and
m-geodesics. For two points q1, q2 ∈ S, e- and m-geodesics can be defined as

{ rt | log rt = (1− t) log q1 + t log q2 − ϕ(t) } , { rt | rt = (1− t)q1 + tq2 } ,
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respectively, where 0 ≤ t ≤ 1 and ϕ(t) is a normalization factor to keep rt to be
a distribution. We can also represent these geodesics using θ- and η-coordinate as
follows1:

{ θrt | θrt = (1− t)θq1 + tθq2 } , { ηrt | ηrt = (1− t)ηq1 + tηq2 }

where θr and ηr are θ- and η-coordinate of a distribution r ∈ S. A subspace is called e-flat
when any e-geodesic connecting two points in a subspace is included in the subspace.
The vertical descent of an m-geodesic from a point p ∈ S to q in an e-flat subspace Qe

is called m-projection. Similarly, e-projection is obtained when we replace all e with m
and m with e. The flatness of subspaces guarantees the uniqueness of the projection
destination. The projection destination rm or re obtained by m- or e-projection onto Qe

or Qm minimizes the following Kullback–Leibler (KL) divergence [70],

rm = argmin
q∈Qe

D(p, q), re = argmin
q∈Qm

D(q, p). (2.9)

The KL divergence from discrete distributions p to q is given as

D(p, q) =
∑
ω∈Ω

p(ω) log p(ω)
q(ω) ,

where Ω is the sample space of p and q. The KL divergence represents a similarity between
two probabilities, and it satisfies D(p, q) = 0 ⇐⇒ p = q. When a space is e-flat and
m-flat at the same time, we say that the space is dually-flat. S is dually-flat.

e(m)-flatness guarantees that cost functions to be optimized in Equation (2.9) are convex.
Therefore, m(e)-projection onto an e(m)-flat subspace can be implemented by a gradient
method using a second-order gradient. Second-order differentiation of the KL divergence
with parameters leads to a negative Fisher information metric. We call this gradient
method the natural gradient method. The optimization in Chapter 5 is based on the
natural gradient method.

2.2.1 Parameter Conservation in Projections

We assume that distributions in S are parameterized by N parameters. Let Q be the set
of distributions satisfying the linear condition on θ1:n, a part of the natural parameters
θ1:n = (θ1, . . . , θn), where we assume that this part is from 1 to n (≤ N) without
loss of generality. Since a subspace defined by linear constrains in θ-parameters is e-
flat [4, Chapter 2.4], the m-projection from p onto Q is unique. This m-projection does
not change the rest of the part of expectation parameters ηn+1:N = (ηn+1, . . . , ηN ) [4,

1The following representation for continuous distributions is incorrect. This monograph concerns only
discrete distributions.
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Figure 2.1 (a) The domain of log-linear model for high-order Boltzmann-machine. We described for n =
m = 4 in Equation (2.6). Arrows indicate ordered relationships between elements in Ω. We
omitted braces. For example, “34” means {3, 4}. (b) An example of expectation conservation law
in m-projection for N = 3. To distinguish coordinate axes from coordinate values, coordinate
values are marked with a symbol “′”. The m-projection from a point (θ1, η2, η3) = (θ′

1, η
′
2, η

′
3) to

subspace satisfying θ1 = 0 keeps the value of η2 and η3.

Chapter 11.3]. In this paper, we call this property expectation conservation law in m-
projection, which is a key idea to get analytical solutions of some tasks in Chapters 3
and 4. Here we provide the formal description:

Proposition 2.1 Expectation Conservation Law in m-projection [4, Chapter 11.3]

m-projection onto a subspace satisfying a linear condition on (θ1, . . . , θn) does not
change the value of (ηn+1, . . . , ηN ), where N is the number of parameters of the
distribution.

We provide a sketch of the conservation law in Figure 2.1(b). Similarly, natural-parameter
conservation law in e-projection is obtained when we replace all θ with η and η with θ in
the above discussion, which has important role in the optimization algorithm in tensor
balancing [117].
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Legendre Tucker rank
Reduction

3

We present an efficient low-rank approximation algorithm for non-negative ten-
sors. The algorithm is derived from our two findings: First, we show that rank-1
approximation for tensors can be viewed as a mean-field approximation by treating
each tensor as a probability distribution. Second, we theoretically provide a suffi-
cient condition for distribution parameters to reduce Tucker ranks of tensors and,
interestingly, this sufficient condition can be achieved by iterative application of
the mean-field approximation. Since the mean-field approximation is always given
as a closed formula, our findings lead to a fast low-rank approximation algorithm
without using a gradient method. We empirically demonstrate that our algorithm is
faster than the existing non-negative Tucker rank reduction methods with achieving
competitive or better approximation of given tensors.

A multidimensional array, or tensor, is a fundamental data structure in machine learning
and statistical data analysis, and extraction of the essential information contained in
tensors has been studied extensively [48, 60]. For second-order tensors – that is, matrices
– low-rank approximation by singular value decomposition (SVD) is well established [32].
SVD always provides the best low-rank approximation in the sense of arbitrary unitarily
invariant norms [86]. In contrast, the problem of low-rank approximation becomes
much more challenging for tensors higher than the second order, where the question of
how to define the rank of tensors is even nontrivial. To date, various types of ranks –
the CP-rank [55, 68], the Tucker rank [28, 126], and the tubal rank [81] – have been
proposed, and low-rank approximation of tensors in terms of one of the above two
ranks has been widely studied. Furthermore, non-negative low-rank approximation has
also been developed, not only for matrices such as NMF [73], but also for tensors [75].
In particular, non-negative Tucker decomposition (NTD) [63] and its efficient variant
lraSNTD [141] approximate a given non-negative tensor by a tensor with the lower
Tucker rank.

While these approximations have been widely used in various domains such as im-
age classification [66], recommendation [119], and denoising [31], efficient low-rank
approximation remains fundamentally challenging. Even the simplest case, the rank-1
approximation in terms of minimizing the Least Squares (LS) error between a given tensor
and a low-rank tensor, is known to be NP-hard [53]. Various methods have been devel-
oped to efficiently find approximate solutions in polynomial runtime [26, 27, 29, 71, 139].
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If we use the Kullback–Leibler (KL) divergence instead of the LS error as a cost function,
we can alleviate the problem as the best rank-1 approximation can be obtained in the
closed formula [59]. However, the general case of low-rank approximation in terms of
the KL divergence is also still under development.

In this chapter, we present a fast low-Tucker-rank approximation method for non-negative
tensors. To date, the majority of low-rank approximation methods are based on gradient
decent using the derivative of the cost function, which often requires careful tuning of
initialization and/or a tolerance threshold. In contrast, our method is not based on a
gradient method; the solution is directly obtained based on a closed formula, which
we derive from information geometric treatment of tensors. Through an alternative
parameterization of tensors by treating them as probability distributions in a statistical
manifold, we theoretically provide a sufficient condition for such parameters, called the
bingo rule, to reduce Tucker ranks of tensors. We then show that low-rank approximation
is achieved by m-projection; this is one of the two canonical projections in information
geometry [4], where a distribution (corresponding to a given non-negative tensor) is
projected onto the subspace restricted by the bingo rule (corresponding to the set of
non-negative low-rank tensors).

The key idea is that rank-1 approximation for non-negative tensors can be exactly solved
by a mean-field approximation, a well-established method in physics that approximates
a joint distribution by independent distributions [129], as we can represent any non-
negative rank-1 tensor by a product of independent distributions. Moreover, we show that
the bingo rule, our sufficient condition for tensor Tucker rank reduction, can be achieved
by iterative applications of the mean-field approximation. This, combined with the fact
that mean-field approximation is computed by m-projection in the closed form, enables
us to derive our fast low-Tucker-rank approximation method without using a gradient
method.

Our theoretical analysis has a close relationship to [118], whose proposal, called Legendre
decomposition, also uses information geometric parameterization of tensors and solves
the problem of tensor decomposition by a projection onto a subspace. Although we
use the same information geometric formulation of tensors, they did not provide any
connection to the Tucker ranks, and Tucker rank reduction is not guaranteed by their
approach.

In this chapter, we introduce Legendre Tucker Rank Reduction (LTR), which is a non-
gradient method for non-negative low-Tucker-rank approximation. First, we define the
task in Section 3.1. Then, we overview our fundamental ideas for LTR in Section 3.2,
following the introduction to the algorithm of LTR in Section 3.3 and derive the LTR
algorithm in Section 3.4 – 3.7, pointing out the relationship between the rank-1 approxi-
mation and mean field approximation1. Finally, we mention the relationship between the
proposed LTR and related works in Section 3.9.

1Implementation is available at: https://github.com/gkazunii/Legendre-tucker-rank-reduction.
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3.1 Low-Tucker-rank Approximation for Tensors

First we define the Tucker rank of tensors and formulate the problem of non-negative
low-Tucker-rank approximation. The Tucker rank of a Dth-order tensor P ∈ RI1×···×ID

is defined as a tuple (Rank(P(1)), . . . , Rank(P(D))), where each P(k) ∈ RIk×
∏

m ̸=k
Im is

the mode-k expansion of the tensor P [30, 50, 126]. The mode-k expansion of a tensor

P ∈ RI1×···×ID is an operation to convert P into a matrix P(k) ∈ RIk×
∏D

m=1(m ̸=k) Im . The
relation between tensor P and its mode-k expansion P(k) is given as,

(
P(k)

)
ik,j

= Pi1,...,iD , j = 1 +
D∑

l=1,(l ̸=k)
(il − 1) Jl, Jl =

l−1∏
m=1,(m ̸=k)

Im.

If the Tucker rank of a tensor P is (r1, . . . , rD), it can always be decomposed as

P =
r1∑

i1=1
· · ·

rD∑
iD=1

Gi1,...,iD a
(1)
i1
⊗ a

(2)
i2
⊗ · · · ⊗ a

(D)
iD

(3.1)

with a tensor G ∈ Rr1×···×rd , called the core tensor of P, and vectors a
(k)
ik
∈ RIk , ik ∈ [rk],

for each k ∈ [D] where ⊗ denotes the Kronecker product [68]. The core tensor and these
vectors are often called factors.

Task 3.1 Non-negative Low-Tucker-rank Approximation

Non-negative low-Tucker-rank approximation is approximating a given non-
negative tensor P by a non-negative lower-Tucker-rank tensor T , that optimizing
the cost function D(P, T ).

In this chapter, we use the Kullback–Leibler (KL) divergence D(P, T ) as the cost function
or two non-negative tensors P, T ∈ RI1×···×ID

≥0 as follows: [73]

D(P, T ) =
I1∑

i1=1
· · ·

ID∑
iD=1

{
Pi1,...,iD log Pi1,...,iD

Ti1,...,iD

− Pi1,...,iD + Ti1,...,iD

}
.

In this chapter, we say that a tensor is rank-1 if its Tucker rank is (1, . . . , 1). Note that
the task is not non-negative factorization which imposes nonnegativity on factors but
low-rank approximation that allows negative factors [114, 49].

We denote by [n] = {1, 2, . . . , n} for a positive integer n and denote by Pa(k):b(k) the
subtensor obtained by fixing the range of kth index to only from a to b.
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Figure 3.1 An example of reducing Tucker rank of a tensor P ∈ RI1×I2×I3
>0 to at most (r1, r2, I3) by the

proposed method LTR. F1 is the set of positive tensors with Tucker rank at most (r1, I2, I3) and F2
with Tucker rank at most (I1, r2, I3). The best approximation tensor exists in F1 ∩F2, enclosed by
the dotted lines. For m = 1, 2, there exist e-flat bingo spaces B(m) ⊂ Fm. The projection onto Bm

can be performed by dividing P into subtensors along with mode-m direction and replacing each
subtensor with its rank-1 approximation. The choice of bingo space is not unique.

3.2 Idea of LTR

In this subsection, we overview our core idea for LTR. LTR reduces Tucker rank of an input
tensor P by known closed-formula of the best rank-1 approximation. As an example, here
we reduce the Tucker rank of a positive tensor P ∈ RI1×I2×I3

>0 to at most (r1, r2, I3) as
shown in Figure 3.1. In the space of positive tensors, there exists a subspace F1 consisting
of positive tensors of Tucker rank at most (r1, I2, I3) and a subspace F2 consisting of
positive tensors of Tucker rank at most (I1, r2, I3). We want to find a low-Tucker-rank
tensor in F1 ∩ F2 that approximates P as close as possible.

First, we map a tensor to a probability distribution. Then, using natural parameters of
the distribution, we describe sufficient conditions for reducing the Tucker rank of tensors,
called bingo rule. For m = 1 and 2, we define e-flat subspace B(m) ⊂ Fm, called bingo
space, that satisfies bingo rule. The projection from P onto B(1) can be conducted by
using known rank-1 approximation formula onto the subtensor of P . Also, the projection
from the point on B(1) onto B(1) ∩ B(2) can be conducted by the same way.

Bingo spaces cover only tensors generated by applying rank-1 approximations to subten-
sors along with each mode of a tensor. Therefore, the search space is smaller than the
traditional low-rank approximation, which approximates the tensor with an appropri-
ately chosen basis and its coefficients, and there is no guarantee that LTR finds the best
approximation; however, we can guarantee that LTR finds a tensor in the selected bingo
spaces that minimizes the KL divergence from an input tensor. Such a smaller search
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space derived by bingo rule makes our algorithm efficient without a gradient method.
We discuss this point in more detail in Section 3.7.

3.3 The LTR Algorithm

In LTR, we use the rank-1 approximation method that always finds the rank-1 tensor that
minimizes the KL divergence from an input tensor [59].

Theorem 3.1 Best Rank-1 Tensor Approximation Minimizing KL Divergence [59]

For any given non-negative tensor P ∈ RI1×···×ID
≥0 , its optimal rank-1 tensor P is

given by

P = S (P)1−D s(1) ⊗ s(2) ⊗ · · · ⊗ s(D). (3.2)

where each s(k) = (s(k)
1 , . . . , s

(k)
Ik

) with k ∈ [D] is defined as

s
(k)
ik

=
I1∑

i1=1
· · ·

Ik−1∑
ik−1=1

Ik+1∑
ik+1=1

· · ·
ID∑

iD=1
Pi1,...,iD .

That is, it is hold that

P = argmin
Q;rank(Q)=1

D(P,Q).

For given tensor P, finding the best rank-1 tensor R that minimizes ∥P −R∥F is known
as a NP-hard problem [53].

Now we introduce LTR, which iteratively applies the above rank-1 approximation to
subtensors of a tensor P ∈ RI1×···×ID .

Legendre Tucker rank Reduction

To reduce the Tucker rank of P ∈ RI1×···×ID to (r1, . . . , rD), LTR performs the
following two steps for each k ∈ [D]:
Step 1: We construct C = {c1, . . . , crk

} ⊆ [Ik] by random sampling from [Ik]
without replacement, where we always assume that c1 = 1 and cl < cl+1 for every
l ∈ [rk − 1].
Step 2: For each l ∈ [rk], if cl ̸= cl+1−1 holds, we replace the subtensor P

c
(k)
l

:c(k)
l+1−1

of P by its rank-1 approximation obtained by Equation (3.2).

The choice of C in Step 1 is arbitrary, which means that another strategy can be used. For
example, if we know that some parts of an input tensor are less important than others,
we can directly choose these indices for C instead of random sampling to obtain a more
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Algorithm 1: Legendre Tucker rank Reduction
input :Tensor P, target Tucker rank r = (r1, . . . , rD)
output :Rank reduced tensor Q
LTR(P,r)

(I1, . . . , ID)← the size of the input tensor P
foreach k = 1, . . . , D do

Construct {c1, . . . , crk
} ⊆ [Ik] by random sampling from [Ik] without

replacement, where we always assume that c1 = 1 and ci < ci+1.
foreach l = 1, . . . , rk do

if cl ̸= cl+1 − 1 then
Replace the subtensor P

c
(k)
l

:c(k)
l+1−1 of P by its rank-1 approximation as

P
c

(k)
l

:c(k)
l+1−1 ← BESTRANK1(P

c
(k)
l

:c(k)
l+1−1)

Q ← P
return Q

BESTRANK1(P)
(I1, . . . , ID)← the size of the input tensor P
foreach k = 1, . . . , D do

foreach ik = 1, . . . , Ik do
s

(k)
ik
←
∑I1

i1=1 · · ·
∑Ik−1

ik−1=1
∑Ik+1

ik+1=1 · · ·
∑ID

iD=1 Pi1,...ik−1,ik,ik+1,...,iD

λ← sum of all elements of P
P ← λ1−Ds(1) ⊗ s(2) ⊗ · · · ⊗ s(D)

return P

accurate reconstructed tensor. We provide the algorithm of LTR in algorithmic format in
Algorithm 1.

3.3.1 Computational Complexity of LTR

Step 1 of LTR requires O(r1 + r2 + · · · + rD) since we only need to sample integers
from 1, 2, . . . , Ik for each k ∈ [D] using the Fisher-Yates method [37]. Since the above
procedure repeats the best rank-1 approximation at most r1r2 . . . rD times, the worst
computational complexity of LTR is O(r1r2 . . . rDI1I2 . . . ID).

3.4 Posets and Modeling for LTR

We derive the LTR algorithm by information geometric formulation of low-Tucker-rank
approximation. The discussion is based on the log-linear model on poset. For simplicity,
we normalize input tensor beforehand so that the sum is 1. To regard any positive tensor
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Rank-1 space

Figure 3.2 (a) A poset (Ω3,≤) corresponding to 3 × 3 × 3 tensor. The parameters on the gray nodes are
one-body parameters. (b) The non-negative rank-1 approximation is formulated as a m-projection
from input tensor to rank-1 space, minimizing KL divergence.

P ∈ RI1×···×ID
>0 as a distribution, we introduce the following partial order “≤” between

each elements (i1, . . . , iD) in the index set ΩD = [I1]× · · · × [ID] of the tensor P,

(i1, . . . , iD) ≤ (i′1, . . . , i′D)⇔ id ≤ i′d for all d ∈ [D]. (3.3)

The smallest element in (ΩD,≤) is ⊥= (1, 1, . . . , 1). See Figure 3.2 as an example
for the poset ΩD with I1 = I2 = I3 = 3 and D = 3. We regard P as a discrete
probability distribution whose sample space is the index set of P by log-linear model
on (ΩD,≤). Any positive normalized tensor can be described by natural parameters
(θ)i1,...,iD = (θ2,...,1, . . . , θI1,...,ID

) as

Pi1,...,iD = exp

 ∑
(i′

1,...,i′
D)≤(i1,...,iD)

θi′
1,...,i′

D

 = exp

 i1∑
i′
1=1
· · ·

iD∑
i′
D=1

θi′
1,...,i′

D

 (3.4)

The condition of normalization is exposed on θ⊥ = θ1,...,1 with Ω+
D = ΩD\(1, . . . , 1) as

θ1,...,1 = − log
∑

(i1,...,iD)∈Ω+
D

exp

 i1∑
i′
1=1
· · ·

iD∑
i′
D=1

θi′
1,...,i′

D

. (3.5)

A parameter vector (θ)i1,...,iD = (θ2,...,1, . . . , θI1,...,ID
) uniquely identifies the normalized

positive tensor P. Therefore, (θ)i1,...,iD can be used as an alternative representation of
P.

In our modeling in Equation (3.4), which clearly belongs to the exponential family, each
value of the vector of η-parameters (η)i1,...,iD is written as follows and uniquely identifies
a normalized positive tensor P:

ηi1,...,iD =
I1∑

i′
1=i1

· · ·
ID∑

i′
D=iD

Pi′
1,...,i′

D
. (3.6)
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Figure 3.3 We can represent non-negative tensors whose sum is 1 by θ- and η-parameters. This is a coordinate
transformation that enables us to easily design flat model manifolds.

The normalization condition is realized as η1,...,1 = 1. As shown in [117], by using the
Möbius function [103] inductively defined as

µ
i′
1,...,i′

D
i1,...,iD

=



1 if (i1, . . . , iD) = (i′1, . . . , i′D),

−
∑i′

1−1
j1=i1

· · ·
∑i′

D−1
jD=iD

µj1,...jD
i1,...,iD

, if (i1, . . . , iD) ̸= (i′1, . . . , i′D)
and (i1, . . . , iD) ≤ (i′1, . . . , i′D),

0 otherwise.

each distribution P can be described as

Pi1,...,iD =
∑

(i′
1,...,i′

D)∈ΩD

µ
i′
1,...,i′

D
i1,...,iD

ηi′
1,...,i′

D
(3.7)

using the η-coordinate system. See more general form of Möbius function in Equa-
tion (2.3). See Figure 3.3 as a sketch of these representations.

Note that, to identify the value of Pi1,...,iD , we need only ηi′
1,...,i′

D
with (i′1, . . . , i′D) ∈

{i1, i1 + 1} × {i2, i2 + 1} × · · · × {iD, iD + 1}. For example, if d = 2, 3, it holds that

Pi1,i2 = ηi1,i2 − ηi1+1,i2 − ηi1,i2+1 + ηi1+1,i2+1,

Pi1,i2,i3 = ηi1,i2,i3 − ηi1+1,i2,i3 − ηi1,i2+1,i3 − ηi1,i2,i3+1

+ ηi1+1,i2+1,i3 + ηi1+1,i2,i3+1 + ηi1,i2+1,i3+1 − ηi1+1,i2+1,i3+1,

where we assume ηI1+1,i2 = ηi1,I2+1 = 0 and ηI1+1,i2,i3 = ηi1,I2+1,i3 = ηi1,i2,I3+1 = 0. As
the same way, to identify the value of θi1,...,iD , we need only Pi′

1,...,i′
D

with (i′1, . . . , i′D) ∈
{i1 − 1, i1} × {i2 − 1, i2} × · · · × {iD − 1, iD}. For example, if D = 2, 3, it holds that

θi1,i2 = logPi1,i2 − logPi1−1,i2 − logPi1,i2−1 + logPi1−1,i2−1,

θi1,i2,i3 = logPi1,i2,i3 − logPi1−1,i2,i3 − logPi1,i2−1,i3 − logPi1,i2,i3−1

+ logPi1−1,i2−1,i3 + logPi1,i2−1,i3−1 + logPi1,i2−1,i3−1 − logPi1−1,i2−1,i3−1,

where we assume P0,i2 = Pi1,0 = 1 and Pi1,i2,0 = Pi1,0,i3 = P0,i2,i3 = 1. The sign of each
term is related to inclusion–exclusion principle [7, Chapter 6].
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3.5 Information Geometric View of Rank-1 Approximation

Before we dive into the general case of non-negative low-Tucker-rank approximation,
here we focus on the problem of rank-1 approximation for positive tensors and show the
fundamental relationship with the mean-field theory.

We describe the necessary and sufficient condition for the rank of a tensor to be 1 using
θ- and η-parameters. We formulate tensor rank-1 approximation as a projection onto a
subspace consisting of positive rank-1 tensors, which is called a rank-1 space. We use
the overline for rank-1 tensors; that is, P is a rank-1 tensor, and θ, η are corresponding
parameters of θ- and η-coordinates.

For the sake of clarity, we define the terms one-body and many-body parameter.

Definition 3.1 One-body and Many-body Parameter

Let a one-body parameter be a parameter of which at least D − 1 indices are 1.
Parameters other than one-body parameters are called many-body parameters.

For example, θ1,1,3,1 and η1,5,1,1 are one-body parameters for D = 4. These namings come
from the Boltzmann machine [1], which is a special case of the log-linear model [117],
where a one-body parameter corresponds to a bias and a many-body parameter to a
weight. We also use the following notation for one-body parameters of a Dth-order
tensor,

θ
(d)
j ≡ θ1, . . . , 1︸ ︷︷ ︸

d−1

,j,1, . . . , 1︸ ︷︷ ︸
D−d

, η
(d)
j ≡ η1, . . . , 1︸ ︷︷ ︸

d−1

,j,1, . . . , 1︸ ︷︷ ︸
D−d

for each d ∈ [D].

We will extend the above concept as n-body parameters in Chapter 5 (See Definition 5.1).
The rank-1 condition for positive tensors is described as follows using many-body θ

parameters, and we also have succeeded in describing the rank-1 condition using the
η-parameter.

Proposition 3.1 Rank-1 Condition (θ-representation)

For any positive tensor P , rank(P) = 1 if and only if its all many-body θ-parameters
are 0.
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Proof: First, we show that rank(P) = 1 ⇒ all many-body θ-parameters are 0. From the
assumption of rank(P) = 1, the m-th row of the mode-k expansion of P have to be a constant
multiple of the (m− 1)-th row for all m ∈ [2, Ik] and k ∈ [D]. That is,

P(k)
m,j

P(k)
m−1,j

=
Pi1,...,ik−1,m,ik+1,...,iD

Pi1,...,ik−1,m−1,ik+1,...,iD

= exp

 i1∑
i′

1=1

· · ·
ik−1∑

i′
k−1=1

ik+1∑
i′

k+1=1

· · ·
iD∑

i′
D

=1

θi′
1,...,i′

k−1,m,i′
k+1,...,i′

D


can depend on only m. If a many-body parameter θi′

1,...,m,...i′
D

is not 0, the left side of the above
equation depends on indices other than m. For example, if a many-body parameter θ2,1,...,1,m,1,...1

is not 0, the right side of the equation depends on the value of i1, which implies contradiction
with the assumption that the m-th row is a constant multiple of the (m− 1)-th row. Therefore, all
many-body θ-parameters of rank-1 tensor are 0.

Next, we show that rank(P) = 1 if all many-body θ-parameters are 0. If all many-body θ-
parameters are 0, we have

Pi1,...,iD
= exp (θ1,1,...,1)

D∏
k=1

exp

 ik∑
i′

k
=2

θ
(k)
i′

k

.
Then we can represent the tensor P as the Kronecker products of D vectors s(1) ∈ RI1 , s(2) ∈
RI2 , . . . , and s(D) ∈ RID , whose elements are described as

s
(k)
ik

= exp
(
θ1,...,1

d

)
exp

 ik∑
i′

k
=2

θ
(k)
i′

k


for each k ∈ [D] and ik ∈ [Ik]. Thus, rank(P) = 1 followed by the definition of the tensor
rank.

Proposition 3.2 Rank-1 Condition (η-representation)

For any positive Dth-order tensor P ∈ RI1×···×ID
>0 , rank(P) = 1 if and only if its all

many-body η-parameters are factorizable as

ηi1,...,iD
=

D∏
k=1

η
(k)
ik
. (3.8)
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Proof: First, we show that all many-body η-parameters are factorizable if rank(P) = 1. Since we
can decompose a rank-1 tensor as a product of normalized independent distributions s(k) ∈ RIk

as shown in Equation (3.12), we can decompose many-body η parameters of P as follows:

ηi1,...,iD

(3.6)=
I1∑

i′
1=i1

· · ·
ID∑

i′
D

=iD

Pi′
1,...,i′

D

(3.12)=
I1∑

i′
1=i1

· · ·
ID∑

i′
D

=iD

(
s

(1)
i′

1
s

(2)
i′

2
. . . s

(D)
i′

D

)

=

 I1∑
i′

1=i1

s
(1)
i′

1

 I2∑
i′

2=i2

s
(2)
i′

2

 . . .

 ID∑
i′

D
=iD

s
(D)
i′

D


=

D∏
k=1

 Ik∑
i′

k
=ik

s
(k)
i′

k


=

D∏
k=1

 Ik∑
i′

k
=ik

s
(k)
i′

k

I1∑
i′

1=1

s
(1)
i′

1

I2∑
i′

2=1

s
(2)
i′

2
· · ·

ID∑
i′

D
=1

s
(D)
i′

D


=

D∏
k=1

η(k)
ik

Ik∑
i′

k
=1

s
(k)
i′

k


=

D∏
k=1

η
(k)
ik
,

where we use the normalization condition

Ik∑
i′

k
=1

s
(k)
i′

k
= 1

for each k ∈ [D].

Next, we show the opposite direction. If all many-body η-parameters are factorizable, it follows
that

Pi1,...,iD

(3.7)=
∑

(i′
1,...,i′

D
)∈ΩD

(
µ

i′
1,...,i′

D
i1,...,iD

D∏
k=1

η
(k)
i′

k

)

=
∑

(i′
1...i′

D
)∈ΩD

(
D∏

k=1
µ

i′
k

ik
η

(k)
i′

k

)

=
D∏

k=1

(
η

(k)
ik
− η(k)

ik+1

)
≡

D∏
k=1

s
(k)
jk
.

This formula means that the tensor P can be represented as a Kronecker product of vectors
s(1), . . . , s(D). Thus, rank(P) = 1 holds by the definition of the tensor rank.
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Since the rank-1 space is described by linear constraints in θ parameters, the rank-1 space
is e-flat [4, Chapter 2.4]. Using both Propositions 3.1 and 3.2, we can derive the projected
destination without the gradient method, which reproduces the closed formula of the
best rank-1 approximation minimizing KL divergence [59] from the view of information
geometry. Note that we also use the expectation conservation low in the m-projection
in the following proof. In this case, one-body η-parameters do not change during the
m-projection as follows:

η
(k)
ik

= η
(k)
ik

for any ik ∈ [Ik] and k ∈ [D]. (3.9)

See more general statements in Proposition 2.1.

Proposition 3.3 m-projection onto Factorizable Subspace

For any positive tensor P ∈ RI1×···×ID
>0 , its m-projection onto the rank-1 space is

given as

P i1,...,iD =
D∏

k=1

 I1∑
i′
1=1
· · ·

Ik−1∑
i′
k−1=1

Ik+1∑
i′
k+1=1

· · ·
ID∑

i′
D=1
Pi′

1,...,i′
k−1,ik,i′

k+1,...,iD

 . (3.10)

Proof:

Pi1,...,iD

(3.7)=
∑

(i′
1...i′

D
)∈ΩD

µ
i′

1,...,i′
D

i1...iD
ηi′

1,...,i′
D

(3.8)=
∑

(i′
1,...,i′

D
)∈ΩD

(
µ

i′
1,...,i′

D
i1,...,iD

D∏
k=1

η
(k)
i′

k

)

(3.9)=
∑

(i′
1...i′

D
)∈ΩD

(
µ

i′
1,...,i′

D
i1,...,iD

D∏
k=1

η
(k)
i′

k

)

=
∑

(i′
1,...,i′

D
)∈ΩD

(
D∏

k=1
µ

i′
k

ik
η

(k)
i′

k

)

=
D∏

k=1

(
η

(k)
ik
− η(k)

ik+1

)
(3.6)=

D∏
k=1

 I1∑
i′

1=1

· · ·
Ik−1∑

i′
k−1=1

Ik+1∑
i′

k+1=1

· · ·
ID∑

i′
D

=1

Pi′
1,...,i′

k−1,ik,i′
k+1,...,iD

 .

Since the m-projection minimizes the KL divergence, it is guaranteed that P obtained by
Equation (3.10) minimizes the KL divergence from P within the set of rank-1 tensors. If a
given tensor is not normalized, we need to divide the right-hand side of Equation (3.10)
by the (D − 1)-th power sum of all entries of the tensor in order to match the scales of
the input and the output tensors, which is consistent with Equation (3.2).
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3.6 Rank-1 Approximation as Mean-field Approximation

We consider a rank-1 positive tensor P ∈ RI1×···×ID
>0 and show that it is represented as

a product of independent distributions, which leads to an analogy with the mean-field
theory. In the rank-1 space, the normalization condition for Dth-order tensors imposed
on θ(⊥) = θ1,...,1 is given as

θ1,...,1 = − log
D∏

k=1

1 +
Ik∑

ik=2
exp

 ik∑
i′
k

=2
θ

(k)
i′
k

 (3.11)

with assigning 0 to every many-body θ parameter in Equation (3.11). Note that the empty
sum is treated as zero. Note that the empty sum is treated as zero. Next, by substituting
0 for all many-body parameters in our model in Equation (3.4), we obtain

Pj1,...,jD = exp
(
θ1,...,1

) D∏
k=1

exp

 jk∑
j′

k
=2
θ

(k)
j′

k



=
D∏

k=1

exp
(∑jk

j′
k

=2 θ
(k)
j′

k

)
1 +

∑Ik
ik=2 exp

(∑ik

i′
k

=2 θ
(k)
i′
k

)
≡

D∏
k=1

s
(k)
jk
, (3.12)

where s(k) ∈ RIk is a positive first-order tensor normalized as

Ik∑
jk=1

s
(k)
jk

= 1, (3.13)

then we can regard s(k) as a probability distribution with a single random variable
jk ∈ [Ik]. The above discussion means that any positive a rank-1 tensor can be represented
as a product of normalized independent distributions.

The operation of approximating a joint distribution as a product of independent distribu-
tions is called mean-field approximation. The mean-field approximation was invented in
physics for discussing phase transition in ferromagnets [129]. Nowadays, it appears in a
wide range of domains such as statistics [101], game theory [15, 79], and information
theory [8]. From the viewpoint of information geometry, [123] developed a theory of
mean-field approximation for Boltzmann machines [1], which is defined as

p(x) = exp

 N∑
i=1

bixi +
∑
i<j

wijxixj


for a binary random variable vector x ∈ { 0, 1 }n with a bias parameter b = (b)i ∈ Rn and
an interaction parameter W = (wij) ∈ Rn×n. To illustrate that a rank-1 approximation
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Minimizing KL divergence
m-projection

Minimizing Inverse KL divergence
e-projection

Mean-field approximation of BM
Projection onto e-flat space

Impossible
O(2n)
unique

ηi = σ(θi +
∑

k θkjηk)
not unique

Rank-1 approximation
Projection onto e-flat space

Closed-formula
unique

Table 3.1 A sketch of information geometric relationship between mean-field approximation and rank-1
approximation.

can be regarded as a mean-field approximation, we prepare the mean-field theory of
Boltzmann machines, as follows.

The mean-field approximation of Boltzmann machines is formulated as the projection
from a given distribution onto the e-flat subspace consisting of distributions whose
interaction parameters wij = 0 for all i and j, which is called a factorizable subspace.
Since the distribution with the constraint wij = 0 for all i and j can be decomposed
into a product of independent distributions, we can approximate a given distribution
as a product of independent distribution by the projection onto a factorizable subspace.
The m-projection onto the factorizable subspace requires knowing the expectation value
ηi ≡ E[xi] of an input distributions and requires O(2n) computational cost [6], so we
usually approximate it by replacing the m-projection with e-projection. The e-projection
is usually conducted by a self-consistent equation called mean-field equation. The e-
projection finds the distribution Pe that minimizes D(Pe;P) for a given distribution P
and the projection is conduced by solving the mean-field equations

ηi = σ

bi +
∑

j

wijηj


numerically, where σ(·) is a sigmoid function. Note that there is no theoretical guarantee
that the e-projection destination is uniquely determined since the factorizable subspace is
e-flat but not m-flat. The factorizable subspace has a special property such that we can
calculate the expectation value ηi ≡ E[xi] from a distribution as ηi = tanh−1 bi and also
can compute the distribution from the expectation value as bi = 1

2 log 1−ηi
1−ηi

.

The analogy of rank-1 approximation and mean-field theory is clear. In our modeling, a
joint distribution P is approximated by a product of independent distributions s(k) by
projecting P onto the subspace such that all many-body θ parameters are 0, leading to
the rank-1 tensor P . Since we can compute expectation parameters η by simply summing
the input positive tensor in each axial direction, m-projection can be directly performed
in our formulation with O(I1 . . . ID), which is computationally infeasible in the case of
Boltzmann machines due to O(2n) cost. Moreover, the rank-1 space has the same property
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as the factorizable subspace of Boltzmann machines; that is, parameters can be easily
computed from the dual parameter in a closed form:

Proposition 3.4 (θ, η)-conversion in Rank-1 Space

For any positive Dth-order rank-1 tensor P ∈ RI1×···×ID
>0 , its one-body θ- and

η-parameters satisfy the following equations

θ
(k)
j = log

η(k)
j − η

(k)
j+1

η
(k)
j−1 − η

(k)
j

, η
(k)
j =

∑Ik
ik=j exp

∑ik

i′
k

=2 θ
(k)
i′
k

1 +
∑Ik

ik=2 exp
(∑ik

i′
k

=2 θ
(k)
i′
k

) ,
where we assume η(k)

0 = η
(k)
Ik+1 = 0.

Proof: As shown in Theorem 2 in [117], the relation between θ and η is obtained by the
differentiation of Helmholtz’s free energy ψ(θ), which is defined as the sign inverse normalization
factor. For the rank-1 tensor P, Helmholtz’s free energy ψ(θ) is given as

ψ(θ) = log
D∏

k=1

1 +
Ik∑

ik=2
exp

 ik∑
i′

k
=2

θ
(k)
i′

k

 .

We obtain the expectation parameters η by the differentiation of Helmholtz’s free energy ψ(θ) by
θ, given as

η
(k)
j = ∂

∂θ
(k)
j

ψ(θ) =
∑Ik

ik=j exp
∑ik

i′
k

=2 θ
(k)
i′

k

1 +
∑Ik

ik=2 exp
(∑ik

i′
k

=2 θ
(k)
i′

k

) .
By solving the above equation inverse, we obtain

θ
(k)
j = log

(
η

(k)
j − η(k)

j+1

η
(k)
j−1 − η

(k)
j

)
.

3.7 Bingo Rule for General Low-Tucker-rank Approximation

In this subsection, we extend the above discussion to arbitrary Tucker rank. First, we
relax the θ-representation of the rank-1 condition, which was described in Proposition 3.1.
We introduce the bingo rule as a sufficient condition for the tensor to be rank-reduced.
Next, we formulate the low-Tucker-rank approximation as a projection onto the subspace
that satisfies this bingo rule. Finally, we show the projection can be achieved by rank-1
approximations for subtensors of input tensor without gradient method.
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Figure 3.4 The relationship between matrix ranks and the bingo rule in the case of D = 2 and I1 = I2 = 5.
Bingos on horizontal and vertical direction reduce matrix rank. Bingos on the first column, the
first row, and diagonal direction does not have any effect to the matrix rank. In the case of rank-1,
the bingo selection is unique.

Definition 3.2 Bingo

Let (θ)(k)
ij = (θ(k)

11 , . . . , θ
(k)
IkK) with K =

∏
m̸=k Im be the θ-coordinate representation

of the mode-k expansion of a tensor P ∈ RI1×···×ID
>0 . If there exists an integer

i ∈ [Ik] \ {1} such that θ(k)
ij = 0 for all j ∈ [K] \ {1}, we say that P has a bingo on

mode-k.

Proposition 3.5 Bingo and Tucker rank

If there are bk bingos on mode-k of a tensor P, it holds that

Rank(P(k)) ≤ Ik − bk.

Proof: If there is a bingo on mode-k, the m-th row of the mode-k expansion of P is a constant
multiple of the (m− 1)-th row, where m is a number determined by the bingo position. We can
confirm that

P(k)
m,j

P(k)
m−1,j

=
Pi1,...,ik−1,m,ik+1,...,iD

Pi1,...,ik−1,m−1,ik+1,...,iD

=
exp

(∑i1
i′

1=1 · · ·
∑ik−1

i′
k−1=1

∑m
i′

k
=1
∑ik+1

i′
k+1=1 · · ·

∑iD

i′
D

=1 θi′
1,...,i′

D

)
exp

(∑i1
i′

1=1 · · ·
∑ik−1

i′
k−1=1

∑m−1
i′

k
=1
∑ik+1

i′
k+1=1 · · ·

∑iD

i′
D

=1 θi′
1,...,i′

D

)
= exp

 i1∑
i′

1=1

· · ·
ik−1∑

i′
k−1=1

ik+1∑
i′

k+1=1

· · ·
iD∑

i′
D

=1

θi′
1,...,i′

k−1,m,i′
k+1,...,i′

D


= exp (θ1,...,1,m,1,...,1)

is just a constant that does not depend on j. When a row is a constant multiple of another row,
the rank of the matrix is reduced by a maximum of one, which means Rank(P(k)) ≤ Ik − 1. In
the same way, if there are bk bingos, then bk rows are constant multiple of the other rows, which
means Rank(P(k)) ≤ Ik − bk.

Therefore, for any tensor P ∈ RI1×···×ID
>0 such that it has bk bingos on each mode-k, we

can always guarantee that its Tucker rank is at most (I1 − b1, . . . , ID − bd). We define
bingo space as a subspace consisting of tensors with bingos. We denote a bingo space by
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B. Note that the bingo space is always e-flat since a subspace defined by linear constrains
in θ-parameters is e-flat [4, Chapter 2.4]. For a given bingo space B, the set of indices
(i1, . . . , iD) that imposes bingos θi1,...,iD = 0 is called the bingo-index set and denoted by
ΩB.

In the case of matrix, that is D = 2, the relationship between bingo and matrix rank is
shown in Figure 3.4. Note that since the matrix rank is given by min(Rank(P(1)),Rank(P(2))),
it can be shown immediately from Proposition 3.5 that the matrix rank is less than or
equal to min(I1 − b1, I2 − b2).

Finally, we prove that LTR successfully reduces the Tucker rank by extending the above
discussion. We formulate low-Tucker-rank approximation as an m-projection onto a
specific bingo space. This bingo space is constructed in Step 1 of LTR. Then, in Step 2, we
perform the m-projection using the closed formula of the rank-1 approximation without a
gradient method. We first discuss the case in which the rank of only one mode is reduced,
followed by discussing the case in which the ranks of two modes are reduced.

When the rank of only one mode is reduced Let us assume that the target Tucker rank
is (I1, . . . , Ik−1, rk, Ik+1, . . . , ID) for an input positive tensor P ∈ RI1×···×ID

>0 and rk < Ik.
Let B(k) be the set of tensors having Ik − rk bingos on mode-k and ΩB(k) be the set of the
bingo indices for mode-k constructed in Step 1 of LTR:

B(k) = { P | θi1,...,iD = 0 for (i1, . . . , iD) ∈ ΩB(k) } . (3.14)

Note that P ∈ B(k) implies that the Tucker rank of P is at most (I1, . . . , Ik−1, rk, Ik+1, . . . , ID).
Let P(k) be the destination of the m-projection from P onto B(k) and θ̃, η̃ be its corre-
sponding parameters of θ- and η-coordinates. From the definition of m-projection and
the conservation low of η, the parameters of tensor P(k) satisfy

θ̃i1,...,iD = 0 for (i1, . . . , iD) ∈ ΩB(k) , η̃i1,...,iD = ηi1,...,iD for (i1, . . . , iD) ̸∈ ΩB(k) . (3.15)

As described in Section 3.4, we need η-parameters on only (i′1, . . . , i′D) ∈ {i1, i1 + 1} ×
· · · × {iD, iD + 1} to identify the value of Pi′

1,...,i′
D

. It leads that Pi1,...,iD = P(k)i1,...,iD
for

(i1, . . . , iD) ∈ Ω̂B(k) for

Ω̂B(k) = { (i1, . . . , iD) | {i1, i1 + 1} × · · · × {iD, iD + 1} ∩ ΩB(k) = ∅ } . (3.16)

Therefore, all we have to do to reduce the Tucker rank is to change the elements
Pi1,··· ,iD for only (i1, . . . , iD) ̸∈ Ω̂B(k) . Such adjustable parts of P can be divided into some
contiguous blocks, and we call each of them a subtensor of P on mode-k. In Figure 3.5(a),
for example, we can find two subtensors P3(1):5(1) and P7(1):8(1) . By conducting the
rank-1 approximation introduced in Section 3.3 onto each subtensor, we obtain P(k)
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Figure 3.5 Examples of LTR for (8, 8, 2) tensor. ΩB is bingo-index set. Tensor values and their η-parameters
on Ω̂B do not change, and the η-parameters on Ω̂c

B ∩Ωc
B also do not change, where Ω̂c

B = ΩD\Ω̂B
and Ωc

B = ΩD\ΩB. For the target rank (8, 5, 2), we firstly define three bingos on mode-2 as shown
in (a) since 8− 5 is 3, and approximate two contiguous blocks filled in green and blue in (b) by
rank-1 tensor using formula (3.2). As the same way, (c) shows the case where the target rank is
(7, 5, 2). We additionally define single bingo on mode-1 since 8− 7 is 1. A subtensor approximated
by formula (3.2) is filled in yellow. We assume that we project a tensor onto B(1), followed by
projecting it onto B(2). After the second m-projection, the θ-parameters on red panels seems to be
overwritten. However, these values remain to be zero after the second m-projection. Figures (a),
(b), and (c) correspond to P, P ′, and P in Figure 3.1, respectively.

satisfying Equations (3.15) since Proposition 3.1 and Equation (3.9) hold in these rank-1
approximations.

When the rank of only two modes are reduced Let us assume that the target Tucker rank
of mode-k is rk < Ik and that of mode-l is rl < Il. In this case, we need to consider two
bingo spaces B(k) and B(l) associated with bingo index sets ΩB(k) and ΩB(l) . Let P(k) be
the resulting tensor of m-projection of P onto B(k) and P(k,l) be the resulting tensor of
m-projection of P(k) onto B(l). To get P(k,l), let us consider m-projection from P(k) ∈ B(k)

to the bingo space B(l). In this projection, the part of θ-parameters which are set to
be 0 in the previous m-projection onto B(k) from P seems to be overwritten (see red
panels in Figure 3.5(b)). However, as shown in the following Proposition, after the rank-1
approximation of a tensor where some one-body θ-parameters are already zero, these
parameters remain to be zero.

Proposition 3.6

Let θ denote natural parameters of given tensor P ∈ RI1×···×ID
>0 and θ denote

natural parameters of P which is the best rank-1 approximation that minimizes KL
divergence from P. If a one-body natural parameter θ(j)

ij
= 0, its values after the

best rank-1 approximation θ(j)
ij

remain 0.

Proof: When θ(j)
ij

= 0, it holds that

P1,...,1,ij ,1,...,1

P1,...,1,ij−1,1,...,1
= exp

(
θ

(j)
ij

)
= 1.
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By using the closed formula of the best rank-1 approximation (3.2), we obtain

P1,...,1,ij ,1,...,1 =
D∏

k=1

 I1∑
i′

1=1

· · ·
Ik−1∑

i′
k−1=1

Ik+1∑
i′

k+1=1

· · ·
ID∑

i′
D

=1

Pi′
1,...,i′

k−1,1,i′
k+1,...,ij ,...,i′

D


=

D∏
k=1

 I1∑
i′

1=1

· · ·
Ik−1∑

i′
k−1=1

Ik+1∑
i′

k+1=1

· · ·
ID∑

i′
D

=1

Pi′
1,...,i′

k−1,1,i′
k+1,...,ij−1,...,i′

D


= P1,...,1,ij−1,1,...,1.

It follows that

P1,...,1,ij ,1,...,1

P1,...,1,ij−1,1,...,1
= exp

(
θ

(j)
ij

)
= 1.

Finally, we obtain θ
(j)
ij

= 0.

As a result, the θ- and η-parameters of P(k,l) satisfy

θ̃i1,...,iD = 0 if (i1, . . . , iD) ∈ ΩB(k) ∪ ΩB(l) , (3.17)

η̃i1,...,iD = ηi1,...,iD if (i1, . . . , iD) /∈ ΩB(k) ∪ ΩB(l) , (3.18)

where η is expectation parameter of P. That means P(k,l) is resulting tensor of m-
projection from P onto B = B(k) ∩ B(l) since ΩB = ΩB(k) ∪ ΩB(l) . As a conclusion, we can
obtain the projected tensor onto B by rank-1 approximations on each subtensor of P(k)

on mode-l. We can also immediately confirm P(l,k) = P(k,l); that is, the projection order
does not matter. The projection sketch is shown in Figure 3.6(b).

For general case Based on the above discussion, we can derive Step 2 for the general
case of low-Tucker-rank approximation. We formulate non-negative low-Tucker-rank
approximation as a m-projection onto the intersection of bingo spaces on each mode
B(k), that is B = B(1) ∩ · · · ∩ B(D). The m-projection destination is given as an iterative
application of m-projection D times, starting from P onto subspace B(1), then from there
onto subspace B(2), . . . , and finally onto subspace B(D). Note that each m-projection
needs only rank-1 approximation for subtensors on each mode. The result of LTR does not
depend on the projection order. Since the m-projection minimizes the KL divergence from
the input onto the bingo space, LTR always provides the best low-rank approximation in
the specified bingo space B, that is, for a given non-negative tensor P, the output T ∗ of
LTR satisfies that

T ∗ = argmin
T ∈B

D(P; T ).

The usual low-rank approximation without the bingo-space requirement approximates a
tensor by a linear combination of appropriately chosen bases. In contrast, our method
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with the bingo-space requirement approximates a tensor by scaling of bases. Therefore,
our method has a smaller search space for low-rank tensors. This search space allows us
to derive an efficient algorithm without a gradient method, which always outputs the
globally optimal solution in the space.

3.8 Invariance of the Summation in Each Axial Direction

The definition of η in Equation (3.6) suggests that one-body η-parameters are related to
the summation of elements of a tensor in each axial direction. The ik-th summation in
the k-th axis is given by

I1∑
i1=1
· · ·

Ik−1∑
ik−1=1

Ik+1∑
ik+1=1

· · ·
ID∑

iD=1
Pi1,...,iD = η

(k)
ik
− η(k)

ik+1
.

Since the one-body η-parameters do not change by the m-projection, it can be immedi-
ately proved that the best rank-1 approximation of a positive tensor in the sense of the
KL divergence does not change the sum in each axial direction of the input tensor. Our
information geometric insight leads to the fact that the conservation law of sums essen-
tially comes from constant one-body η-parameters during m-projection. This property is
a natural extension of the property, such that row sums and column sums are preserved
in NMF, which minimizes the KL divergence [56] to tensors. Since the rank-1 reduction
preserves the sum in each axial direction of the input tensor, LTR for general Tucker rank
reduction also preserves it.

3.9 Relationship to Legendre Decomposition

Our theoretical analysis is closely related to Legendre decomposition [118], which also
uses information geometric parameterization of tensors and solves the problem of tensor
decomposition by a projection onto a subspace. However, their concept differs from ours
in the following aspect. In the Legendre decomposition, any single point in a subspace
that has some constraints on the θ-coordinate is taken as the initial state and moves
by gradient descent inside the subspace to minimize the KL divergence from an input
tensor. This operation is an e-projection, where the constrained θ-coordinates do not
change from the initial state. In contrast, we employ the m-projection from the input
tensor onto the low-rank space by fixing some η-coordinates. Using the conservation
law for η-coordinates, we obtain an exact analytical representation of the coordinates
of the projection destination without using a gradient method. Figure 3.6 illustrates the
relationship between our approach and Legendre decomposition. Moreover, the Tucker
rank is not discussed in the Legendre decomposition, so it is not guaranteed that Legendre
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Rank-1Mean field equation

Legendre decomposition

Rank-1 space
-projection

-projection

approximation

Figure 3.6 (a) The relationship among rank-1 approximation, Legendre decomposition [118], and mean-field
equation, where we assume that the same bingo space is used in Legendre decomposition. A solid
line illustrates m-projection with fixing one-body η parameters. P is an input positive tensor and
P is the rank-1 tensor that minimizes the KL divergence from P. O is an initial point of Legendre
decomposition, which is usually a uniform distribution. Pt is a tensor of the t-th step of gradient
descent in Legendre Decomposition. (b) The m-projection of a common space of two different
bingo spaces from P can be achieved by m-projection into one bingo space and then m-projecting
into the other bingo space.

decomposition reduces the Tucker rank, which is in contrast to our method. In addition,
although we derived the algorithm based on the discussion using the dually-flat manifold
on (θ, η)-coordinate, we do not have to know the value of (θ, η) during the algorithm,
which also make a difference from related works in [116, 117].

3.10 Connection between Rank-1 Approximation and
Balancing

So far, we have seen that the rank of tensors can be reduced by describing the low-rank
condition with the many-body θ-parameters. Related to this task, it has been reported
that characterizing tensors by one-body η-parameters enables an operation called tensor
balancing [117], which is often solved by Sinkhorn algorithm [111] and its quantum
information geometry is also studied [85]. Therefore, here we summarize the relationship
between the rank-1 approximation, which constrains many-body θ-parameters, and tensor
balancing, which constrains one-body η-parameters.

First, we introduce tensor balancing for a non-negative tensor P ∈ RI1×···×ID
≥0 . There are

two kinds of balancing, fiber balancing and slice balancing.
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3.10.1 Slice Balancing and Rank-1 Approximation

Given D vectors c(k) ∈ RIk
≥0 for k ∈ [D], the task of c-slice balancing is to rescale a tensor

so that the sum of each slice satisfies

I1∑
i1=1
· · ·

Ik−1∑
ik−1=1

Ik+1∑
ik+1=1

· · ·
ID∑

iD=1
Pi1,...,iD = c

(k)
ik

(3.19)

for all ik ∈ [Ik]. Note that there is no solution when
∑

i c
(k)
i ̸=

∑
i c

(l)
i , hence we always

assume that
∑

i c
(k)
i = 1 for any k ∈ [D] without loss of generality. The information

geometric formulation of tensor balancing has already been performed in [117]. Recall
the definition of expectation parameters, the above condition for c-slice balancing can be
expressed by one-body η-parameters of the input tensor as follows:

Proposition 3.7 c-balancing Condition (η-representation) [117]

A given tensor is c-balanced if and only if its one-body η-parameters satisfy

η
(k)
ik

=
Ik∑

i=ik

c
(k)
i . (3.20)

Let us define c-slice balancing space Qc as the set of c-slice balanced tensor, yielding
Qc = {pη | η satisfies the condition (3.20) }. By considering tensor balancing and rank-1
approximation simultaneously in the framework of information geometry, we can derive
the following property: the c-balanced rank-1 tensor always uniquely exists. As discussed
in Section 2.1, we can identify a distribution using the mixture coordinate system (θ, η)
that combines θ- and η-coordinates. On the intersection Qc ∩B1, all one-body parameters
are identified by c-balancing condition in Equation (3.20) and other parameters are
identified by rank-1 condition in Proposition 3.1. Now, balancing conditions and rank-
1 condition specify all parameters; therefore, the mixture coordinate (θ, η) uniquely
identifies the rank-1 c-balanced tensor.

Theorem 3.2 Qc ∩ B1 is a singleton.

The intersection Qc ∩ B1 is a singleton.

Proof: As we discussed in Section 2.1, we can identify a distribution using the mixture coordinate
system (θ, η) that combines θ- and η-coordinates. Therefore, specifying I1 × · · · × ID parameters
on the mixture coordinate (θ, η) uniquely identifies a tensor P ∈ RI1×···×ID

>0 . There are two kinds
of parameters, one-body parameters and many-body paramters. On the intersection Qc ∩ B1,
the c-balancing condition in Equation (3.20) determines all one-body η-parameters η(k)

ik
for all

ik ∈ [Ik] and k ∈ [D]. On the other hand, the rank-1 condition in Proposition 3.1 determines all
many-body θ-parameters θi1,...,iD

= 0. Now, the c-balancing conditions and the rank-1 condition
specify all I1 × · · · × ID parameters (See Figure 3.7(a)), therefore the mixture coordinate (θ, η)
uniquely identifies the rank-1 c-balanced tensor.
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Figure 3.7 (a) All parameters are uniquely determined when the rank-1 and balancing conditions are imposed
simultaneously. (b) Balancing subspace Qc (blue) and rank-1 subspace (orange) B1 in θ space
(left) and η space (right) with I1 = I2 = 2 and c(1) = c(2) = (0.4, 0.6).

To get the intuition of geometric structure across conditions on rank-1 approximation
and balancing, we see a simple case of I1 = I2 = 2 and d = 2. We illustrate a simple case
of d = 2 as 3D plots in Figure 3.7. Let us consider the c-balanced matrix P ∈ R2×2

≥0 with
n = 2. We obtain the coordinate of P using P22:

θ (P) =

log (1− c
(1)
2 − c

(2)
2 + P22) log c

(2)
2 −P22

(1−c
(1)
2 −c

(2)
2 +P22)

log c
(1)
2 −P22

(1−c
(1)
2 −c

(2)
2 +P22)

log P22(1−c
(1)
2 −c

(2)
2 +P22)

(c(2)
2 −P22)(c(1)

2 −P22)

 ,
η (P) =

 1 c
(2)
2

c
(1)
2 P22

 .
Remember that θ11 corresponds to the normalizing factor and η11 = 1. The subspace
consisting of c-balanced matrices can be drawn as a convex curve in a 3-dimensional
space by regarding P22 as a mediator variable. The curve becomes a straight line in the
θ-coordinate only when c(1) = c(2) = (0.5, 0.5). In contrast, the set of rank-1 matrices is
identified as a plane (θ21, θ12, 0) in the θ-coordinate since θ22 = 0 ensures rank(P) = 1
and on the plane (η21, η12, η21η12) in the η space (See Propositions 3.1 and 3.2). We can
observe that c-slice balancing space Qc and mean-field space B1 cross a point, which is
shown in Figure 3.7(b). It is coherent with Theorem 3.2. The cross point dynamically
changes by c(1) and c(2). In addition, Figure 3.7(b) shows that we obtain the same matrix
by rank-1 approximation of any matrix onQc since rank-1 approximation does not change
values of one-body η-parameters.
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3.10.2 Fiber Balancing and Rank-1 Approximation

Given D tensors C\k ∈ RI1×···×Ik−1×Ik+1×···×ID

≥0 for k ∈ [D], the task of C-fiber balancing is
to rescale a tensor so that the sum of each fiber satisfies

Ik∑
ik=1
Pi1,...,iD = C\k

i1,...,ik−1,ik+1,...,iD
(3.21)

for ik ∈ [Ik]. Recall the definition of η-parameters, the above condition for C-fiber
balancing can be expressed as follows:

Proposition 3.8 C-balancing Condition (η-representation) [117]

A given tensor is C-balanced if and only if its D − 1-body η-parameters satisfy

ηi1,...,ik−1,1,ik+1,...,iD =
I1∑

i′
1=i1

· · ·
Ik−1∑

i′
k−1=ik−1

Ik+1∑
i′
k+1=ik+1

· · ·
ID∑

i′
D=iD

C\k
i′
1,...,i′

k−1,i′
k+1,...,i′

D
.

(3.22)

Let us define C-fiber balancing space QC as the set of C-fiber balanced tensor, yielding
QC = {pη | η satisfies the condition (3.22) }. Note that fiber balancing is equivalent to
slice balancing if D = 2, which is the case called matrix balancing.

If we impose the C-fiber balancing condition and rank-1 condition on a tensor P simulta-
neously, then any parameter that contains only one 1 in its index has been imposed both
the rank-1 and C-balancing conditions. We can prove the following theorem by examining
when these two conditions stand together.

Theorem 3.3 Singleton Condition for Rank-1 Fiber-balanced Tensor

The intersection QC ∩ B1 exists and is a singleton if and only if

C\k
i1,...,ik−1,ik+1,...,iD

=
∏

m∈[D]\k

 ∏
l∈[D]\{k,m}

Il∑
il=1
C\k

i1,...,ik−1,ik+1,...,iD

 .

Proof: A tensor P ∈ RI1×···×ID
>0 on the subspace QC satisfies C-balancing condition that can be

expressed by η-parameters as

ηi1,...,ik−1,1,ik+1,...,iD
=

I1∑
i′

1=i1

· · ·
Ik−1∑

i′
k−1=ik−1

Ik+1∑
i′

k+1=ik+1

· · ·
ID∑

i′
D

=iD

C\k
i′

1,...,i′
k−1,i′

k+1,...,i′
D
. (3.23)

However, in the intersection QC ∩ B1, these parameters ηi1,...,ik−1,1,ik+1,...,iD
have to be satisfied

rank-1 condition. Remind the necessary and sufficient conditions of a tensor to be rank-1 tensor
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in Equation (3.8), if and only if the condition C satisfies the following relation, the tensor P can
be on QC ∩ B1.

C\k
i1,...,ik−1,ik+1,...,iD

(3.21)=
Ik∑

i′
k

=1

Pi1,...,iD

(3.7)=
∑

(i′
1,...,i′

k−1,1,i′
k+1,...,i′

D
)∈ΩD

µ
i′

1,...,i′
k−1,1,i′

k+1,...,i′
D

i1,...,ik−1,1,ik+1,...,iD
ηi′

1,...,i′
k−1,1,i′

k+1,...,i′
D

(3.8)=
∑

(i′
1,...,i′

k−1,1,i′
k+1,...,i′

D
)∈ΩD

µ
i′

1,...,i′
k−1,1,i′

k+1,...,i′
D

i1,...,ik−1,1,ik+1,...,iD

 ∏
m∈[D]\k

η
(m)
i′

m


=

∑
(i′

1,...,i′
k−1,1,i′

k+1,...,i′
D

)∈ΩD

 ∏
m∈[D]\k

µ
i′

m
im
η

(m)
i′

m


=

∏
m∈[D]\k

(
η

(m)
im
− η(m)

im+1

)
(3.6)=

∏
m∈[D]\k

 I1∑
i′

1=1

· · ·
Ik−1∑

i′
k−1=1

Ik+1∑
i′

k+1=1

· · ·
ID∑

i′
D

=1

Pi′
1,...,i′

m−1,im,i′
m+1,...,iD

 .

(3.21)=
∏

m∈[D]\k

 ∏
l∈[D]\{k,m}

Il∑
il=1
C\k

i1,...,ik−1,ik+1,...,iD


Thus, the theorem was proved.

3.11 Experiments for LTR

We compared LTR with two existing non-negative low-Tucker-rank approximation meth-
ods. The first method is non-negative Tucker decomposition, which is the standard
non-negative tensor decomposition method [130] whose cost function is either the Least
Squares (LS) error (NTD_LS) or the KL divergence (NTD_KL). The second method is
sequential non-negative Tucker decomposition (lraSNTD), which is known as the faster
of the two methods [141]. Its cost function is the LS error.

Implementation Details All methods are implemented in Julia 1.6 with TensorToolbox2

library [100], hence runtime comparison is fair. We implement lraSNTD referring to
the the original papers [141]. We used the TensorLy implementation [69] for NTDs.
Experiments were conducted on CentOS 6.10 with a single core of 2.2 GHz Intel Xeon
CPU E7-8880 v4 and 3TB of memory. We use default values of hyper-parameters of
tensorly [69] for NTD. We use default values of hyper-parameters of sklearn [99] for
NMF module in lraSNTD.

2MIT Expat License
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Figure 3.8 Experimental results for synthetic (a, b) and real-world (c, d) datasets. Mean errors ± standard
error for 20 times iterations are plotted. (a) The horizontal axis is r for target Tucker rank
(r, r, r, r, r). (b) The horizontal axis is n3 for input (n, n, n) tensor. (c, d) The horizontal axis is the
number of elements of the core tensor.

3.11.1 Results on Synthetic Data

We created tensors with D = 3 or D = 5, where every Ik = n. We change n to
generate various sizes of tensors. Each element is sampled from the uniform continuous
distribution on from 0 to 1. To evaluate the efficiency, we measured the running time
of each method. To evaluate the accuracy, we measured the LS reconstruction error,
defined as the Frobenius norm between input and output tensors. Figure 3.8(a) shows
the running time and the LS reconstruction error for randomly generated tensors with
D = 3 and n = 30 varying the target Tucker tensor rank. Figure 3.8(b) shows the running
time and the LS reconstruction error for the target Tucker rank (10, 10, 10) with varying
the input tensor size n. These plots clearly show that our method is faster than other
methods while keeping the competitive approximation accuracy.

3.11.2 Results on Real Data

We evaluated running time and the LS reconstruction error for two real-world datasets.
4DLFD is a (9, 9, 512, 512, 3) tensor [57] and AttFace is a (92, 112, 400) tensor [107]. At-
tFace is commonly used in tensor decomposition experiments [63, 65, 141]. For the
4DLFD dataset, we chose the target Tucker rank as (1,1,1,1,1), (2,2,2,2,1), (3,3,4,4,1),
(3,3,5,5,1), (3,3,6,6,1), (3,3,7,7,1), (3,3,8,8,1), (3,3,16,16,1), (3,3,20,20,1), (3,3,40,40,1),
(3,3,60,60,1), and (3,3,80,80,1). For the AttFace dataset, we chose (1,1,1), (3,3,3),
(5,5,5), (10,10,10), (15,15,15), (20,20,20), (30,30,30), (40,40,40), (50,50,50), (60,60,60),
(70,70,70), and (80,80,80). In both datasets, LTR is always faster than the comparison
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Figure 3.9 Experimental results for synthetic (a, b) and real-world (c, d) datasets. The left-hand panels are
KL reconstruction error and the right-hand panels are LS reconstruction error. (a) The horizontal
axis is r for target tensor rank (r, r, r, r, r). (b) The horizontal axis is n3 for input (n, n, n) tensor.

methods, as shown in Figure 3.8(c, d), with competitive or better approximation accuracy
in terms of the LS error.

We also obtained almost the same results as in Figure 3.8 with the KL reconstruction error
in Figure 3.9 and we provided the experimental results as a tabular format in Table 3.2
and 3.3.

As described in Section 3.7, the search space of LTR is smaller than that of NTD and
lraSNTD. Nevertheless, our experiments show that the approximation accuracy of LTR is
competitive with other methods. This means that NTD and lraSNTD do not effectively
treat linear combinations of bases.

Datasets details We describe the details of each dataset in the following. 4DLFD is a
(9, 9, 512, 512, 3) tensor, which is produced by 4D Light Field Dataset described in [57].
Its license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. We use dino images and their depth and disparity map in training scenes. We
concatenate them to produce a tensor. AttFace is a (92, 112, 400) tensor, which is produced
by the entire data in The Database of Faces (AT&T) [107], which includes 400 grey-scale
face photos. The size of each image is (92, 112). AttFace is public on kaggle but the
license is not specified.
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3.12 Conclusion

We have derived a new probabilistic perspective to rank-1 approximation for tensors using
information geometry and shown that is can be viewed as mean-field approximation.
Our new geometric understanding leads to a novel fast non-negative low-Tucker-rank
approximation method, called LTR, which does not use any gradient method. Our research
will not only lead to applications of faster tensor decomposition but also can be a milestone
of the research of tensor decomposition to further development of interdisciplinary field
around information geometry and the mean-field theory.
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Table 3.2 Experimental results of LTR on AttFace dataset.

Relative running time Relative LS error Relative KL error

Rank NTD_KL NTD_LS lraSNTD NTD_KL NTD_LS lraSNTD NTD_KL NTD_LS lraSNTD

(1,1,1) 4.7533 3.8874 0.5510 1.0000 0.9971 0.9971 1.0000 1.0056 1.0059
(3,3,3) 33.4752 26.3030 2.7253 0.9755 0.9743 0.9280 0.9440 0.9549 0.8685
(5,5,5) 38.2118 29.9251 4.0683 0.9777 0.9784 0.8757 0.9508 0.9633 0.7786
(10,10,10) 28.6684 22.7941 4.4291 0.9826 0.9834 0.9915 0.9621 0.9736 0.9795
(15,15,15) 34.6129 27.5794 6.2854 0.9865 0.9867 1.0090 0.9714 0.9819 1.0006
(20,20,20) 32.0121 25.9077 6.6242 0.9916 0.9912 1.0548 0.9817 0.9913 1.0890
(30,30,30) 43.9135 36.6030 13.2826 1.0007 0.9996 1.0710 0.9996 1.0082 1.1222
(40,40,40) 45.2404 38.8275 15.1266 1.0164 1.0149 1.2127 1.0296 1.0378 1.4427
(50,50,50) 62.7553 52.3623 25.9060 1.0385 1.0367 1.3627 1.0707 1.0786 1.8738
(60,60,60) 74.8940 60.5661 32.1785 1.0617 1.0595 1.5309 1.1150 1.1228 2.5023
(70,70,70) 41.5551 35.3710 21.7593 1.0888 1.0863 1.6287 1.1676 1.1755 2.9325
(80,80,80) 58.4794 47.3544 30.3658 1.1186 1.1160 1.5663 1.2278 1.2358 2.6274

Table 3.3 Experimental results of LTR on 4DLFD dataset.

Relative running time Relative LS error Relative KL error

Rank NTD_KL NTD_LS lraSNTD NTD_KL NTD_LS lraSNTD NTD_KL NTD_LS lraSNTD

(1,1,1,1,1) 13.3018 13.3018 1.0019 1.0000 0.9985 0.9985 1.0000 1.0027 1.0027
(2,2,2,2,1) 22.9786 22.9786 2.8540 0.9870 0.9842 3.0129 0.9748 0.9766 14.3603
(3,3,4,4,1) 22.6299 22.6299 8.2270 0.9319 0.9210 1.1570 0.8765 0.8682 1.3131
(3,3,5,5,1) 22.9552 22.9552 4.9963 0.9303 0.9201 3.2399 0.8745 0.8672 28.4056
(3,3,6,6,1) 22.4911 22.4911 7.0107 0.9279 0.9183 2.6687 0.8704 0.8642 19.1505
(3,3,7,7,1) 23.7567 23.7567 6.2986 0.9294 0.9202 1.0066 0.8730 0.8674 1.0927
(3,3,8,8,1) 23.7998 23.7998 9.0809 0.9284 0.9198 1.3867 0.8710 0.8663 1.9389
(3,3,16,16,1) 23.6797 23.6797 7.1864 0.9256 0.9211 1.1852 0.8640 0.8659 1.5274
(3,3,20,20,1) 26.1782 26.1782 6.4697 0.9304 0.9265 1.4345 0.8719 0.8746 2.0486
(3,3,40,40,1) 26.4613 26.4613 4.6566 0.9426 0.9414 1.5224 0.8933 0.8996 2.2700
(3,3,60,60,1) 27.9254 27.9254 10.5136 0.9532 0.9528 1.3116 0.9128 0.9197 1.7012
(3,3,80,80,1) 26.4166 26.4166 8.1281 0.9619 0.9615 1.2247 0.9288 0.9354 1.8635
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Fast Rank-1 NMF for Missing
Data with KL Divergence

4

We propose a fast non-gradient-based method of rank-1 non-negative matrix factor-
ization (NMF) for missing data, called A1GM, that minimizes the KL divergence
from an input matrix to the reconstructed rank-1 matrix. Our method is based on
our new finding of an analytical closed-formula of the best rank-1 non-negative
multiple matrix factorization (NMMF), a variety of NMF. NMMF is known to exactly
solve NMF for missing data if positions of missing values satisfy a certain condition,
and A1GM transforms a given matrix so that the analytical solution to NMMF
can be applied. We empirically show that A1GM is more efficient than a gradient
method with competitive reconstruction errors.

The tabular form is one of the most common data types across different fields, and
includes purchasing data, processed sensor data, and images. Tabular datasets are often
treated as matrices for analysis. To date, many methods have been developed to extract
essential information from matrices [124, 131, 25, 12]. Non-negative matrix factorization
(NMF) is one of the most popular techniques [74]. NMF extracts factors in a dataset by
decomposing a given non-negative matrix X ∈ RI×J

≥0 into a product AB of two matrices
A ∈ RI×r

≥0 and B ∈ Rr×J
≥0 so that the predetermined cost becomes smaller. The matrix

rank of the product AB is less than or equal to the hyper-parameter r ∈ N.

Standard NMF, which uses the least squares error ∥X−AB∥F as the cost function, is
widely used in various applications, including face recognition [102], recommender
systems [120], and text analysis [133]. Although it is an NP-hard problem to find the
best decomposition that minimizes the cost function exactly for any r > 1 [128], in an
exceptional case of r = 1, the best decomposition is obtained in polynomial time [46].
Therefore it is possible to obtain the best decomposition in a reasonable time if r = 1 and
a number of NMF algorithms are developed based on rank-1 NMF [9, 78]. Rank-1 NMF
approximates an input matrix X by the Kronecker product a ⊗ b of two non-negative
vectors a and b, called dominant factors. Since the vectors a and b correspond to the
largest principal components restricted to the first quadrant in eigenvalue decomposition,
they are representative features that roughly describe the input matrix.

However, it is problematic if a matrix includes missing values, which often occurs in
real-world datasets in practice. When the cost function is the least squares error, NMF for
missing data — that is, a matrix with missing values, which we call missing NMF [64] —
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is known to become an NP-hard problem, even for r = 1 [44]. Although this is a crucial
drawback of missing NMF, missing NMF with other cost functions has not been well
studied to date. In this chapter, we show that there are certain cases in which rank-1
missing NMF can be exactly solved in polynomial time when the cost function is defined
as the KL divergence.

Our key idea is that, instead of directly solving missing NMF, we focus on non-negative
multiple matrix factorization (NMMF) [121], a variant of NMF. We derive a closed
formula that globally minimizes the cost function of NMMF when the target rank r =
1, which is our main theoretical contribution. NMMF conducts simultaneous factor-
sharing decomposition of multiple matrices, which has been used in purchase forecast
systems [67] and recommender systems [137]. Interestingly, if the cost function is given
as the KL divergence, NMMF is equivalent to missing NMF when missing values are
clustered in the lower right corner of the input matrix [121]. Using this relationship
between missing NMF and NMMF, we can efficiently compute the exact solution of rank-1
missing NMF with the KL divergence by our solution to NMMF when we can locate
missing values in a rectangular region by permuting rows and columns.

Moreover, to treat matrices in which we cannot locate missing values in a rectangular
region by permutations of rows and columns, we provide a method of finding an approxi-
mate solution of rank-1 missing NMF by adding more missing values so that we can use
the closed formula of the best rank-1 NMMF. We call our novel method A1GM (Analytical
solution for rank-1 NMF with Grid-based Missing values). We empirically show that
A1GM is more efficient than an existing gradient-based method for rank-1 missing NMF
with the competitive reconstruction error.

We summarize our contribution as follows:

• We derive a closed formula of the best rank-1 NMMF, which extracts the most
dominant factors faster than the existing gradient method.

• We develop a novel efficient method to solve rank-1 missing NMF, called A1GM, and
prove that A1GM globally minimizes a cost function under an assumption about
the position of missing values.

• We empirically show that A1GM is more efficient than an existing method for
missing NMF with competitive reconstruction error.

First, we define the rank-1 NMMF in Section 4.1. Then, we provide the best rank-1
approximation formula in Section 4.2. In subsections 4.3 – 4.4, we introduce information
geometric formulation of NMMF using the log-linear model and derive the closed-form
solution. Finally, we introduce A1GM using the closed formula in Section 4.5.
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Figure 4.1 A sketch of Rank-1 NMMF with four inputs matrices for I = J = N = M = L = 3. The task
approximates four input matrices with shared factors.

Notations Matrices are denoted by bold capital letters like X and Y, and vectors are
denoted by lower-case bold alphabets like a and b. The total sum of a matrix or a vector
is represented as S(·). The ith component of a vector a is written in its non-bold letter as
ai. The Kronecker product of two vectors a and b is denoted by (a⊗ b), which is a rank-1
matrix, and each element is defined as (a⊗ b)ij = aibj . The I × J all-one and all-zero
matrices are denoted by 1IJ and 0IJ , respectively. The identity matrix is denoted by I.
The transpose of a matrix X is denoted by X⊤. The element-wise product of two matrices
A and B is denoted by A ◦B. For a pair of natural numbers n and m (≥ n), we denote
by [n,m] = {n, n+ 1, . . . ,m− 1,m}. We abbreviate [1,m] as [m]. The set difference of B
and A is denoted by B \A. When we use the Kullback–Leibler (KL) divergence D(X,Y)
for matrices X and Y, it is defined as follows: [73]

D(X,Y) =
∑
i,j

{
Xij log Xij

Yij
−Xij + Yij

}
.

In this chapter, we treat two tasks, rank-1 NMMF and rank-1 missing NMF. We consistently
assume that these cost functions are defined by the above KL divergence throughout the
chapter.

4.1 Rank-1 Non-negative Multiple Matrix Factorization

We provide the definition of the rank-1 NMMF as follows:
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Task 4.1 Rank-1 Non-negative Multiple Matrix Factorization (Rank-1 NMMF)

Rank-1 NMMF simultaneously decomposes four matrices X ∈ RI×J
≥0 , Y ∈ RN×J

≥0 ,
Z ∈ RI×M

≥0 and U ∈ RL×M
≥0 into four rank-1 matrices w⊗h, a⊗h, w⊗ b and c⊗ b,

respectively, using non-negative vectors w ∈ RI
≥0,h ∈ RJ

≥0,a ∈ RN
≥0, b ∈ RM

≥0 and
c ∈ RL

≥0. The cost function of NMMF is defined as

D(X,w ⊗ h) + αD(Y,a⊗ h) + βD(Z,w ⊗ b) + γD(U, c⊗ b), (4.1)

and the task of rank-1 NMMF is to find vectors w, h, a, b and c that minimize the
above cost.

We assume that the scaling parameters α, β and γ are non-negative real numbers. We
provide a sketch of the task in Figure 4.1.

4.2 A Closed Formula of the Best Rank-1 NMMF

We give the following closed-form of the best rank-1 NMMF that exactly minimizes
the cost function in Equation (4.1), which is one of our main theoretical contributions.
This formula efficiently extracts only the most dominant shared factors from four input
matrices. While the standard NMMF requires only three input matrices, we analyze the
extended-NMMF that requires four input matrices. This enables us to exactly solve the
missing NMF with a rank-2 weighted matrix as shown in Section 4.5.3.

Theorem 4.1 Closed Formula for Best Rank-1 NMMF

For any four positive matrices X ∈ RI×J
>0 , Y ∈ RN×J

>0 , Z ∈ RI×M
>0 , and U ∈ RL×M

>0
and three parameters α, β, γ ≥ 0, five non-negative vectors w ∈ RI

≥0,h ∈ RJ
≥0,a ∈

RN
≥0, b ∈ RM

≥0, and c ∈ RL
≥0 that minimize the cost function in Equation (4.1) is

given as

wi =
√
S(X)

S(X) + βS(Z)

 J∑
j=1

Xij + β
M∑

m=1
Zim

 ,
hj =

√
S(X)

S(X) + αS(Y)

(
I∑

i=1
Xij + α

N∑
n=1

Ynj

)
,

an = 1√
S(X)

 J∑
j=1

Ynj

 , cl =
√
S(X)
S(Z)

(
M∑

m=1
Ulm

)
,

bm = S(Z)
βS(Z) + γS(U)

1√
S(X)

(
β

I∑
i=1

Zim + γ
L∑

l=1
Ulm

)
.

We provide complete proof of Theorem 4.1 on page 52.
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Figure 4.2 (a) A partial order structure for NMMF for three input matrices X ∈ RI×J
>0 ,Y ∈ RN×J

>0 , Z ∈ RI×M
>0

and U ∈ RL×M
>0 . Only θ-parameters on gray-colored nodes can have non-zero values if and only if

(X,Y,Z,U) is simultaneously rank-1 decomposable. (b) Information geometric view of rank-1
NMMF. Rank-1 NMMF is m-projection onto simultaneous rank-1 subspace from a tuple of input
four matrices, where one-body η-parameters do not change.

The time complexity to obtain the best rank-1 NMMF is O(IJ +NJ + IM +LM) because
all we need is to take the summation of each column and row of the matrices X,Y,Z and
U. Note that, if N = M = 0, our result in Theorem 4.1 coincides with the best rank-1
NMF minimizing the KL divergence from an input matrix X shown in [56], which also
coincides with the best rank-1 approximation provided in Equation (3.2) for d = 2.

4.3 Posets for NMMF

The input of NMMF is a tuple (X,Y,Z,U), where X ∈ RI×J
>0 , Y ∈ RN×J

>0 , Z ∈ RI×M
>0 ,

and U ∈ RL×M
>0 . For simplicity, we normalize them beforehand so that their sum is 1; that

is, S(X) + S(Y) + S(Z) + S(U) = 1. It is straightforward to eliminate this assumption
using the property of the KL divergence, λD (X,Y) = D (λX, λY), for any non-negative
number λ. We model these four matrices using a single discrete distribution on a partial
ordered sample space.

4.3 Posets for NMMF 47



To make a one-to-one mapping from (X,Y,Z,U) to a probability mass function p, we
prepare the index set Ω as

Ω = ΩX ∪ ΩY ∪ ΩZ ∪ ΩU, where

ΩX = [N + 1, I +N ]× [J ], ΩY = [N ]× [J ],

ΩZ = [N + 1, I +N ]× [J + 1, J +M ],

ΩU = [N + I + 1, N + I + L]× [J + 1, J +M ],

where the subspace ΩX corresponds to the index of X, ΩY to Y, ΩZ to Z, and ΩU to U.
Then, we define the following partial order “≤” between each element (s, t) in the index
set Ω

(s, t) ≤ (s′, t′)⇔ s ≤ s′ and t ≤ t′. (4.2)

The smallest element in (Ω,≤) is ⊥= (1, 1). We regard the multiple matrices (X,Y,Z,U)
as a distribution on the log-linear model on the poset (Ω,≤).

p(s, t) = exp

 ∑
(s′,t′)≤(s,t)

θs′t′

 , (4.3)

where (s, t) ∈ Ω. The natural parameter θ11, in which (1, 1) is the smallest element in the
poset Ω, corresponds to the normalization factor. The θ-parameters {θ21, . . . , θN+I+L,J+M}
are identified so that they satisfy

Xij = p(N + i, j), Ynj = p(n, j),

Zim = p(N + i, J +m), Ulm = p(N + I + l, J +m),

for i ∈ [I], j ∈ [J ], n ∈ [N ],m ∈ [M ] and l ∈ [L]. Figure 4.2 illustrates the partial order
for the input triple (X,Y,Z,U).

There are other possible ways to model (X,Y,Z,U) as a probability distribution us-
ing different partial order structure. However, the solution formula that we obtain in
Theorem 4.1 does not depend on the modeling.

Using results provided in [117] based on the incidence algebra between θ- and η-
parameters, we can also obtain the η-parameters using the following formula:

ηst =
∑

(s,t)≤(s′,t′)
p(s′, t′).
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To make the following discussion clear, for all i ∈ [I], j ∈ [J ], n ∈ [N ],m ∈ [m] and l ∈ [L],
we define

ηY
nj = ηnj , ηX

ij = ηN+i,j , ηZ
im = ηN+i,J+m, ηU

lm = ηN+I+l,J+m,

θY
nj = θnj , θX

ij = θN+i,j , θZ
im = θN+i,J+m, θU

lm = θN+I+l,J+m.

4.4 Derivation of the Exact Solution of Rank-1 NMMF

For simplicity, we define simultaneous rank 1 decomposability as follows:

Definition 4.1 Simultaneously Rank-1 Decomposable

Let w ∈ RI
≥0,h ∈ RJ

≥0,a ∈ RN
≥0, b ∈ RM

≥0, and c ∈ RL
≥0. If four positive matrices

X ∈ RI×J
>0 , Y ∈ RN×J

>0 , Z ∈ RI×M
>0 , and U ∈ RL×M

>0 can be decomposed into a form
w ⊗ h,a⊗ h, w ⊗ b, and c⊗ b, we say that (X,Y,Z,U) is simultaneously rank-1
decomposable.

To describe the necessary and sufficient conditions for (X,Y,Z,U) to be simultaneously
rank-1 decomposable, we define one-body parameters and many-body parameters as
well as we define in Section 3.5. We call θY

1j , θ
Y
n1, θ

X
i1 , θ

Z
1m, θ

U
l1 as one-body θ-parameters

and ηY
1j , η

Y
n1, η

X
i1 , η

Z
1m, η

U
l1 as one-body η-parameters for any i ∈ [I], j ∈ [2, J ], n ∈ [2, N ],

m ∈ [M ] and l ∈ [L]. Gray-colored nodes in Figure 4.2(a) corresponds to one-body
parameters. Parameters which are not one-body parameters are called many-body
parameters. Using these parameters, we obtain the following proposition.

Proposition 4.1 Simultaneous Rank-1 θ-condition

A tuple (X,Y,Z,U) is simultaneously rank-1 decomposable if and only if its all
many-body θ-parameters are 0.

Proof: First, we show a tuple (X,Y,Z,U) is simultaneously rank-1 decomposable⇒ its all many-
body natural parameters are 0. If a tuple (X,Y,Z,U) is simultaneously rank-1 decomposable, we
can immediately confirm that Rank (X) = Rank (Y) = Rank (Z) = Rank (U) = 1. Then, from
the Proposition 3.1 for d = 2,

θY
nj = 0 if n ̸= 1 and j ̸= 1,

θX
ij = 0 if i ̸= 1 and j ̸= 1,

θZ
im = 0 if i ̸= 1 and m ̸= 1,

θU
lm = 0 if l ̸= 1 and m ̸= 1.
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Then, from the definition of the model in Equation (4.3), it holds that

Ynj = eθY
11 exp

(
n∑

n′=2
θY

n′1

)
exp

 j∑
j′=2

θY
1j′


Xij = eθX

11+θY
11 exp

(
N∑

n′=2
θY

n′1 +
i∑

i′=2
θX

i′1

)
exp

 j∑
j′=2

θY
1j′ +

j∑
j′=2

θX
1j′


Zim = eθX

11+θY
11+θZ

11 exp
(

N∑
n′=2

θY
n′1 +

i∑
i′=2

θX
i′1 +

i∑
i′=2

θZ
i′1

)

× exp

 J∑
j′=2

θY
1j′ +

J∑
j′=2

θX
1j′ +

m∑
m′=2

θZ
1m′


Ulm = eθX

11+θY
11+θZ

11+θU
11 exp

(
N∑

n′=2
θY

n′1 +
I∑

i′=2
θX

i′1 +
I∑

i′=2
θZ

i′1 +
l∑

l′=2
θU

l′1

)

× exp

 J∑
j′=2

θY
1j′ +

J∑
j′=2

θX
1j′ +

m∑
m′=2

θZ
1m′ +

m∑
m′=2

θU
1m′



If it does not hold that

θX
1j = 0 if j ̸= 1,

θZ
i1 = 0 if i ̸= 1,

θU
1m = 0 if m ̸= 1,

matrices (X,Y,Z,U) have never shared factors. Then, the above condition holds if the matrices
(X,Y,Z,U) is simultaneously rank-1 decomposable.

Next, we show that its all many-body natural parameters are 0⇒ a tuple (X,Y,Z,U) is simulta-
neously rank-1 decomposable. We put all many-body θ-parameters as 0 in Equation (4.3) and
obtain

Ynj = eθY
11 exp

(
n∑

n′=2
θY

n′1

)
exp

 j∑
j′=2

θY
1j′

,
Xij = eθX

11+θY
11 exp

(
N∑

n′=2
θY

n′1 +
i∑

i′=2
θX

i′1

)
exp

 j∑
j′=2

θY
1j′

,
Zim = eθX

11+θY
11+θZ

11 exp
(

N∑
n′=2

θY
n′1 +

i∑
i′=2

θX
i′1

)
exp

 J∑
j′=2

θY
1j′ +

m∑
m′=2

θZ
1m′

,
Ulm = eθX

11+θY
11+θZ

11+θU
11 exp

(
N∑

n′=2
θY

n′1 +
I∑

i′=2
θX

i′1 +
l∑

l′=2
θU

l′1

)
exp

 J∑
j′=2

θY
1j′ +

m∑
m′=2

θZ
1m′

.
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Then, we can define the following shared factors on the tuple (X,Y,Z,U),

an = exp
(

n∑
n′=2

θY
n′1

)
,

hj = eθY
11 exp

 j∑
j′=2

θY
1j′

,
wi = eθX

11 exp
(

N∑
n′=2

θY
n′1 +

i∑
i′=2

θX
i′1

)

bm = eθY
11+θZ

11 exp

 J∑
j′=2

θY
1j′ +

m∑
m′=2

θZ
1m′

,
cl = eθX

11+θU
11 exp

(
N∑

n′=2
θY

n′1 +
I∑

i′=2
θX

i′1 +
l∑

l′=2
θU

l′1

)
,

which satisify (X,Y,Z,U) = (w ⊗ h,a⊗ h,w ⊗ b, c⊗ b). Thus, the proposition was proved.

We call a subspace that satisfies simultaneous rank-1 condition simultaneous rank-1
subspace. From the viewpoint of information geometry, we can understand the best
rank-1 NMMF as follows (shown in Figure 4.2(b)). The input of NMMF (X,Y,Z,U)
corresponds to a point in the space described by the θ-coordinate system. The best rank-1
NMMF is an m-projection onto the simultaneous rank-1 subspace from the input point.

Since the m-projection is a convex optimization, we can get the projection destination by
a gradient method. However, it requires appropriate settings for initial values, stopping
criterion, and learning rates.

Our closed analytical formula of the projection destination in Theorem 4.1 solves all the
drawbacks of the gradient-based optimization. According to the expectation conservation
law in this m-projection onto simultaneous rank-1 subspace, one-body η-parameters do
not change in the m-projection (See more general statements in Proposition 2.1). That is,
for any i ∈ [I], j ∈ [J ], n ∈ [N ], m ∈ [M ] and l ∈ [L],

ηY
n1 = ηY

n1, ηY
1j = ηY

1j , ηX
i1 = ηX

i1, ηZ
1m = ηZ

1m, ηU
l1 = ηU

l1 (4.4)

where η is the expectation parameter of input, and η is the expectation parameter after
the m-projection onto simultaneous rank-1 subspace. By the definition of expectation
parameters, we obtain

ηY
n1 − ηY

n+1,1 = anS(h), ηX
i1 − ηX

i+1,1 = wi (S(h) + S(b)) ,

ηU
l1 − ηU

l+1,1 = dlS(b), ηY
1j − ηY

1,j+1 = (S(a) + S(w))hj ,

ηZ
1m − ηZ

1,m+1 = (S(w) + S(d)) bm.
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The expectation conservation law in Equation (4.4) guarantees that the values of the
left-hand sides do not change before the m-projection, and they also do not change after
the m-projection. Since the sum of each matrix X,Y,Z and U is represented by one-body
η-parameters, the sum of each matrix does not change in the m-projection. Using these
facts and multiplying these equations together, we can derive Theorem 4.1. Complete
proof of Theorem 4.1 is as follows.

Proof: First, we show this theorem with α = β = γ = 1, followed by generalizing the result
for any non-negative α, β and γ. Hereinafter, we use overline for quantities on the simultaneous
rank-1 subspace; for example, (X,Y,Z,U) as rank-1 matrices sharing factors, η as expectation
parameters for distributions on simultaneous rank-1 subspace. We decompose input matrices
X,Y,Z and U as X = w ⊗ h,Y = a⊗ h, Z = w ⊗ b, and U = c⊗ b, respectively, so that they
minimize the cost function

D(X,w ⊗ h) + αD(Y,a⊗ h) + βD(Z,w ⊗ b) + γD(U, c⊗ b). (4.5)

To simplify, we define

ηY
nj = ηnj , ηX

ij = ηN+i,j , ηZ
im = ηN+i,J+m, ηU

lm = ηN+I+l,J+m,

for all i ∈ [I], j ∈ [J ], n ∈ [N ],m ∈ [m] and l ∈ [L]. According to the expectation conservation law
in this m-projection, it holds that

ηY
n1 = ηY

n1, ηY
1j = ηY

1j , ηX
i1 = ηX

i1, ηZ
1m = ηZ

1m, ηU
l1 = ηU

l1

where (ηX, ηY, ηZ, ηU) is the expectation parameter of input, and (ηX, ηY, ηZ, ηU) is the expec-
tation parameter after the m-projection. By the definition of expectation parameters and the
conservation law, we obtain 

ηY
n1 − ηY

n+1,1 = anS(h),

ηX
i1 − ηX

i+1,1 = wi (S(h) + S(b)) ,

ηU
l1 − ηU

l+1,1 = dlS(b),

ηY
1j − ηY

1,j+1 = (S(a) + S(w))hj ,

ηZ
1m − ηZ

1,m+1 = (S(w) + S(d)) bm.

We multiply these equations together and simplify them, resulting in

Xij = wihj =
(
ηX

i1 − ηX
i+1,1

) (
ηY

1j − ηY
1,j+1

)
(S(w) + S(a)) (S(h) + S(b)) ,

Ynj = anhj =
(
ηY

n1 − ηY
n+1,1

) (
ηY

1j − ηY
1,j+1

)
(S(w) + S(a))S(h) ,

Zim = wibm =
(
ηX

i1 − ηX
i+1,1

) (
ηZ

1m − ηZ
1,m+1

)
(S(h) + S(b)) (S(w) + S(d)) ,

Ulm = dlbm =

(
ηU

l1 − ηU
l+1,1

) (
ηZ

1m − ηZ
1,m+1

)
S(b) (S(w) + S(d)) .
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Since the sum of each matrix X,Y,Z and U are represented by conserved quantities, S(X) =
ηX

11 − ηZ
11, S(Y) = ηY

11 − ηX
11, S(Z) = ηZ

11 − ηU
11, and S(U) = ηU

11,the sum of each matrix also do
not change in this projection, that is,

S(X) = S(X) = S(w ⊗ h) = S(w)S(h),

S(Y) = S(Y) = S(a⊗ h) = S(a)S(h),

S(Z) = S(Z) = S(w ⊗ b) = S(w)S(b),

S(U) = S(U) = S(c⊗ b) = S(c)S(b),

and we obtain 

Xij =
S(X)

(∑J
j′ Xij′ +

∑M
m Zim

)(∑I
i′ Xi′j +

∑N
n Ynj

)
(S(X) + S(Y)) (S(X) + S(Z)) ,

Ynj =

(∑I
i Xij +

∑N
n Ynj

)(∑J
j′ Yij′

)
S(X) + S(Y) ,

Zim =
S(Z)

(∑J
j Xij +

∑M
m′ Zim′

)(∑I
i′ Zi′m +

∑L
l Ulm

)
(S(Z) + S(U)) (S(X) + S(Z)) .

Ulm =

(∑I
i Zim +

∑L
l′ Ul′j

)(∑J
j′ Uij′

)
S(Z) + S(U) .

Note that we used relations

1
S(X) + S(Y) + S(Z) + S(a)S(b) = S(X)

(S(X) + S(Y)) (S(X) + S(Z)) ,

1
S(X) + S(U) + S(Z) + S(h)S(c) = S(Z)

(S(Z) + S(U)) (S(Z) + S(X)) .

Using the general property of the KL divergence, λD(P,Q) = D(λP, λQ) for any matrices P,Q
and non-negative number λ, the above result with general α, β and γ is obtained by shifting
matrices Y→ αY, Z→ βZ and U→ γU in the both sides of the above equation as

Xij =
S(X)

(∑J
j′ Xij′ + β

∑M
m Zim

)(∑I
i′ Xi′j + α

∑N
n Ynj

)
(S(X) + αS(Y)) (S(X) + βS(Z)) ,

Ynj =

(∑I
i Xij + α

∑N
n Ynj

)(∑J
j′ Yij′

)
S(X) + αS(Y) ,

Zim =
S(Z)

(∑J
j Xij + β

∑M
m′ Zim′

)(
β
∑I

i′ Zi′m + γ
∑L

l Ulm

)
(βS(Z) + γS(U)) (S(X) + βS(Z)) .

Ulm =

(
β
∑I

i Zim + γ
∑L

l′ Ul′j

)(∑J
j′ αUij′

)
βS(Z) + γS(U) .

Thus, the theorem was proved.
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X

Y

Z

U

Figure 4.3 A sketch of relationship between Rank-1 NMMF with four inputs matrices and NMF with missing
values for I = J = N = M = L = 3. The cost functions of these two tasks are equivalent.

4.5 Rank-1 Missing NMF based on Rank-1 NMMF

As an application of the closed-form in Theorem 4.1, we develop an efficient method to
solve rank-1 NMF for missing data. Here we provide the definition of the task.

Task 4.2 Rank-1 NMF with Missing Values (Rank-1 missing NMF)

Rank-1 NMF for a given matrix X ∈ RI×J
≥0 with missing values (rank-1 missing

NMF) is the task of finding two non-negative vectors w ∈ RI
≥0 and h ∈ RJ

≥0 that
minimize a weighted cost function DΦ(X,w ⊗ h) defined as

DΦ(X,w ⊗ h) = D(Φ ◦X,Φ ◦ (w ⊗ h)) (4.6)

for a binary weight matrix Φ ∈ {0, 1}I×J . The weight matrix indicates the position
of missing values; that is, Φij = 0 if the entry Xij is missing, Φij = 1 otherwise.

Note that the above cost function (4.6) is always convex in w and h.

If the binary weight matrix Φ satisfies Rank (Φ) ≤ 2, we can find the exact solution for
rank-1 missing NMF. After we mention the relationship between NMMF and missing NMF
in Section 4.5.1, we demonstrate a way to find the best rank-1 missing NMF when it
holds Rank (Φ) ≤ 2 in Sections 4.5.2 – 4.5.3. In addition, we develop an efficient method
for the general cases to find an approximate solution based on the closed formula. The
proposed method is described in Section 4.5.4 1.
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4.5.1 Connection between NMMF and missing NMF

Our discussion is based on the following fundamental two facts. First, we can regard
NMMF as a special case of missing NMF. We assume that a binary weight matrix Φ ∈
{ 0, 1 }N+I+L,J+M and an input matrix K ∈ RN+I+L,J+M

≥0 are given in the form of

Φ =


1NJ 0NM

1IJ 1IM

0LJ 1LM

 , K =


Y F
X Z
E U

 , (4.7)

where X ∈ RI×J
>0 , Y ∈ RN×J

>0 , Z ∈ RI×M
>0 , U ∈ RL×M

>0 , E ∈ RL×J
>0 , and F ∈ RN×M

>0 . The
all of elements of E and F are missing. We consider the rank-1 approximation of K as

K1 =


a

w

c

 [h⊤ b⊤
]
. (4.8)

In this situation, the cost function of missing NMF is equivalent to that of NMMF [121]:

argmin
K1;rank(K1)=1

DΦ(K,K1)

= argmin
w,h,a,b,c

D(X,w ⊗ h)+D(Y,a⊗ h)+D(Z,w ⊗ b) +D(U, c⊗ b).

The second fundamental fact is the homogeneity of rank-1 missing NMF, which ensures a
factorization after row or column permutations can be reproduced by permutations after
the factorization.

Proposition 4.2 Homogeneity of Rank-1 Missing NMF

Let NMF1(Φ,X) be the best rank-1 matrix w⊗h, which minimizes the cost function
in Equation (4.6). For any permutation matrices G and H, it holds that

NMF1 (GΦH,GKH) = G⊤NMF1 (Φ,K) H⊤.

Proof: We assume K ∈ Rn×m
≥0 and Φ ∈ {0, 1}n×m. Let G ∈ { 0, 1 }n×n and H ∈ { 0, 1 }m×m

be the permutation matrices corresponding to the mappings G : i 7→ g(i) and H : j 7→ h(j),
respectively. This means that, for a given matrix X and its row and column permutation X′ =
GXH, we have X′

g(i),h(j) = Xi,j . We can also apply the permutation matrices G and H to vectors

1Implementation is available at: https://github.com/gkazunii/A1GM
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Figure 4.4 Examples of matrices with non-grid-like missing values (left) and grid-like missing values (right).
Meshed entries are missing values. We can create grid-like missing values by increasing missing
values.

w ∈ Rn
≥0 and h ∈ Rm

≥0. For w′ = Gw and h′ = Hh, it holds that w′
g(i) = wi and h′

h(j) = hj . We
define w∗ and h∗ as

w∗,h∗ ≡ argmin
w,h

DGΦH (GXH,w ⊗ h)

= argmin
w,h

n∑
i=1

m∑
j=1

(
Φg(i)h(j)aibj −Φg(i)h(j)Xg(i)h(j) log aibj

)
.

We replace w with Gw and h with Hh and we get

Gw∗,Hh∗ = argmin
w,h

n∑
i=1

m∑
j=1

(
Φg(i)h(j)ag(i)bh(j) −Φg(i)h(j)Xg(i)h(j) log ag(i)bh(j)

)
= argmin

w,h

n∑
g(i)=1

m∑
h(j)=1

(
Φg(i)h(j)ag(i)bh(j) −Φg(i)h(j)Xg(i)h(j) log ag(i)bh(j)

)
= argmin

w,h

n∑
i=1

m∑
j=1

(Φijaibj −ΦijXij log aibj)

= DΦ (X,w ⊗ h) .

Thus, it holds that w∗ ⊗ h∗ = NMF1 (GΦH,GXH) and G (w∗ ⊗ h∗) H = NMF1 (Φ,X). There-
fore, we have

NMF1 (GΦH,GTH) = G⊤NMF1 (Φ,K) H⊤.

We use the fact that permutation matrix is always orthogonal; that is, G−1 = G⊤ and H−1 =
H⊤.

Therefore, using the closed formula of the best rank-1 NMMF in Theorem 4.1, we can
solve the rank-1 missing NMF when we can relocate the position of missing values to the
form Equation (4.7) by row and column permutations.

4.5.2 Rank-1 Missing NMF for Grid-like Missing

We introduce the term grid-like, defined as follows. As we describe in this section, we can
regard missing NMF as NMMF that requires only three matrices X,Y,Z as input, which
corresponds to the case L = 0 in Theorem 4.1.
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Definition 4.2 Grid-like Binary Weight Matrix

Let Φ ∈ {0, 1}I×J be a binary weight matrix. If there exist two sets S(1) ⊂ [I] and
S(2) ⊂ [J ] such that

Φij =

0 if i ∈ S(1) and j ∈ S(2),

1 otherwise,

Φ is called grid-like.

It holds that rank (Φ) = 2 if Φ is grid-like. But the converse is not true. We discuss the
case rank (Φ) = 2 but not grid-like in Section 4.5.3.

Real-world tabular datasets tend to have missing values on only certain rows or columns.
Therefore, the binary weight matrix Φ often becomes grid-like in practice (we show
example datasets in Section 4.5.7). Figure 4.4 illustrates examples of matrices with
grid-like missing values.

When Φ ∈ {0, 1}I+N,J+M is grid-like, we can transform it in the form given in Equa-
tion (4.7) with L = 0 using row and column permutations. Let S(1) ⊂ [I + N ] and
S(2) ⊂ [J +M ] with | S(1) |= C(1) and | S(2) |= C(2) be the row and column index sets
for zero entries in Φ. For the block at the upper right of Φ whose row and column indices
are specified as

B(1) = [C(1)], B(2) = [J +M − C(2) + 1, J +M ],

we can collect all the zero entries of Φ in the rectangular region B(1) ×B(2) using row
and column permutations. Formally, for a grid-like binary weight matrix Φ, there are row
G : [I +N ]→ [I +N ] and column H : [J +M ]→ [J +M ] permutations satisfying

(GΦH)ij =
{

0 if i ∈ B(1) and j ∈ B(2)

1 otherwise

where G and H are corresponding permutation matrices to G and H, respectively.

We can obtain G and H as follows. First, we focus on row permutation G. We want to
include each row j ∈ S(1)∩B(1)c, where B(1)c = [I+N ]\B(1), in B(1) by row permutation
G, which can be achieved by any one-to-one mapping from S(1) ∩ B(1)c to S(1)c ∩ B(1),
where S(1)c = [I +N ] \ S(1). Note that | S(1) ∩B(1)c |=| S(1)c ∩B(1) | always holds. The
corresponding permutation matrix is given as

G =
∏

k∈S(1)∩B(1)c

Rk↔G(k)
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Input OutputStep 1 Step 2 Step 3

Figure 4.5 Sketch of the algorithm of A1GM. Meshed entries are missing values. In Step 1, we increase
missing values so that they become grid-like. In Step 2, we gather missing values in the block at
the upper right by low and column permutations. In Step 3, we use the closed formula of the
best rank-1 NMMF in Theorem 4.1 with L = 0. In this example, we get w = (1.9, 1.5, 1.3)⊤,a =
(1.9, 1.1)⊤

,h = (1.8, 1.6, 1.3)⊤, b = (0.85, 3.4)⊤. Finally, we get two vectors as the output by the
repermutation. We use two significant digits in this figure.

where Rk↔l is a permutation matrix, which switches the k-th row and the l-th row; that
is,

Rk↔l
ij =


0 if (i, j) = (k, k) or (l, l),

1 if (i, j) = (k, l) or (l, k),

Iij otherwise.

Since S(1) ∩B(1)c
and S(1)c ∩B(1) are disjoint, it holds that G = G⊤.

In the same way, any one-to-one mapping from S(2) ∩ B(2)c to S(2)c ∩ B(2) can be H,
where S(2)c = [J +M ] \S(2) and B(2)c = [J +M ] \B(2). The corresponding permutation
matrix is given as

H =
∏

k∈S(2)∩B(2)c

Rk↔H(k),

which is also a symmetric matrix.

The above discussion leads to the following procedure of the best rank-1 missing NMF for
an input matrix K if a binary weight matrix Φ is grid-like. The first step is to find proper
permutations G and H to collect the missing values in the upper right corner. In the
next step, we obtained NMF1 (GΦH,GKH) using the closed formula of the best rank-1
NMMF. In the final step, we operated the inverse permutations of G and H to the result
of the previous step; that is, G−1NMF1 (GΦH,GKH) H−1. Note that G−1 = G⊤ = G
and H−1 = H⊤ = H always holds since these permeation matrices are orthogonal and
symmetrical.

4.5.3 Rank-1 Missing NMF with Rank (Φ) ≤ 2

In this subsection, we show that we can relocate missing values into the form of Equa-
tion (4.7) by column and row permutations if the binary weight satisfies rank (Φ) = 2
and solve the rank-1 missing NMF as a rank-1 NMMF.
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As we can confirm immediately, there are only two cases when the rank of a binary
matrix Φ is 1. In the first case, all of the elements Φij are 1. This case does not happen
in our case because the number of missing values is assumed to be strictly larger than
0, resulting in Φ ̸= 1. In the second case, if there are rows or columns with all zero
elements in Φ, the matrix rank of Φ can be 1. However, since rows and columns with
all zero elements do not contribute to the cost function (4.6), we ignore such rows and
columns. As a result, we discuss only the case of Rank(Φ) = 2.

We consider a rank-2 weight matrix Φ ∈ {0, 1}N+I+L,J+M . There are two linear inde-
pendent column bases if and only if Rank (Φ) = 2 since row-rank and column-rank
are always the same. We define them as a ∈ {0, 1}N+I+L and b ∈ {0, 1}N+I+L. We
also assume that a ̸= 0 and b ̸= 0 since a zero-vector cannot be a basis. Then, for the
binary matrix Φ = [c(1), . . . , c(J+M)], any column c(i) should be able to be written as
c(i) = αia + βib using two bases a and b. Since c(i) is a binary vector, possible domains
of αi and βi are limited, and we analyze the domains in the following by separating them
into three cases. In all of three cases, we can rearrange Φ into the form of Equation (4.7)
by permutations. To consider the possible values of the pair (αi, βi), we firstly define
disjoint between binary vectors as follows:

Definition 4.3 Disjoint Binary Vectors

We say that two binary vectors a and b are disjoint with each other if ak ̸= bk for
all k.

For example, two vectors a = (0, 0, 1, 0)⊤ and b = (1, 1, 0, 1)⊤ are disjoint and a =
(1, 0, 0, 1)⊤ and b = (1, 1, 0, 1)⊤ are not disjoint. Using this concept, we divide possible
pairs (αi, βi) into three cases for rank-2 Φ as follows:

Case 1: the bases are disjoint If the bases a and b are disjoint, it holds that (αi, βi) ∈
{ (1, 0), (0, 1), (1, 1) }, that is, c(i) can be a, b, or a+b. Since a and b are disjoint, a+b = 1
follows. Then by only column permutations, we can arrange the binary weight matrix
Φ = [c(1), . . . , c(J+M)] in the form of

ΦH = [a, . . . ,a,1, . . . ,1, b, . . . , b],

where H is a permutation matrix corresponding to the column permutation. After
the column permutation, we conduct row permutation as follows. First, we define
S = { i | ai = 0 }, C = | S | and B = [J + M − C + 1, J + M ]. There is a one-to-one
mapping G from S ∩Bc to Sc ∩B. The corresponding permutation matrix is given as

G =
∏

k∈S∩Bc

Rk↔G(k),
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where Bc = [J +M ]\B. By operating the permutation G on bases, we obtain,

ã ≡ Ga =
(
1, . . . , 1, 0, . . . , 0

)⊤
, b̃ ≡ Gb =

(
0, . . . , 0, 1, . . . , 1

)⊤
.

Using the fact G1 = 1, finally, we obtain

GΦH = [ã, . . . , ã,1, . . . ,1, b̃, . . . , b̃],

which means GΦH is in the form of Equation (4.7).

Case 2: the bases are not disjoint, but one of them is one vector If the bases a and b

are not disjoint but a = 1, it holds that (αi, βi) ∈ { (1, 0), (0, 1), (1,−1) }. That is, c(i) can
be 1, b, or 1− b. As we can confirm immediately, b and 1− b are disjoint since the sum
of them is 1. Then, we can rearrange Φ in the form of Equation (4.7) as in the same way
as in Case 1. If the bases a and b are not disjoint but b = 1, it is also the same situation
as Case 1.

Case 3: the bases are not disjoint and not one vector If the vectors a and b are not
disjoint and a ̸= 1 and b ̸= 1, it holds that (αi, βi) ∈ { (1, 0), (0, 1) } since a + b includes
2 and ±(a − b) makes rows such that all the elements are 0, which is contrary to the
assumption. By only column permutations, we can arrange the binary weight matrix
Φ = [c(1), . . . , c(J+M)] in the form of

ΦH = [a, . . . ,a, b, . . . , b].

In the same way with Case 1, we obtain GΦH = [ã, . . . , ã, b̃, . . . , b̃], which corresponds
to the form of Equation (4.7) with I = 0, corresponding to NMMF for only two matrices
Z and U.

The above discussion leads to the following procedure of the best rank-1 missing NMF
for an input matrix K if the rank of the binary weight matrix Φ is 2. The first step is to
find the bases a and b of Φ and find proper permutations G and H as described above to
collect the missing values in the corners. The rest step is the same as described in the
final paragraph in Section 4.5.2.

4.5.4 Rank-1 Missing NMF for the General Case

If the rank of the binary weight matrix Φ is strictly larger than 2, the above procedure
cannot be directly applied. To treat any matrices with missing values, our idea is increase
missing values so that the rank of Φ becomes 2. However, the optimal way to increase
missing values is not obvious to make Φ rank-2. Then, we increase missing values so that
Φ becomes grid-like since the optimal way to increase missing values is clear.
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Figure 4.6 An examples of matrix with missing values where rank(Φ) = 2. We can collect missing vlaues as
a form of Equation (4.7) by column and row permutations if rank(Φ) ≤ 2 holds.

Although this strategy is counter-intuitive because we lose some information, which may
cause a larger reconstruction error, we gain the efficiency instead of using our closed-form
solution in Theorem 4.1 with L = 0, and, as we empirically show in the Section 4.5.7, the
error increase is not significant in many datasets. Examples of this step are demonstrated
in Figure 4.4.

In the worst case, the number of missing values after this step becomes k2 for k missing
values. If every row or column has at least one missing value, all indices are missing after
this step, for which our algorithm does not work. Thus, our method is not suitable if
there are too many missing values in a matrix.

We illustrate an example of the overall procedure of A1GM in Figure 4.5 and show its
algorithm in Algorithm 2. Since the time complexity of each process of A1GM is at most
linear with respect to the number of entries of an input matrix, the time complexity is
O((I +N)(J +M)) for input matrix X ∈ R(I+N)×(J+M).

4.5.5 Relation to em-algorithm

As a method to solve rank-1 NMF with missing values, the em-algorithm repeats the
following e- and m-steps after filling missing values of an input matrix T with arbitrary
values [138].

em-algorithm

m-step : Get the rank-1 approximation of the input matrix T that minimizes the
KL divergence from T.

e-step : Overwrite missing values of T by the obtained matrix in the m-step with
keeping other values.
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Algorithm 2: A1GM

input :A binary weight matrix Φ ∈ { 0, 1 }I×J , a matrix X ∈ RI×J
≥0

output :Dominant factors c ∈ RI
≥0 and d ∈ RJ

≥0
A1GM(Φ, X)

S(1) ← ∅
S(2) ← ∅
for (i, j) ∈ [I]× [J ] do

if Φij = 0 then
S(1) ← S(1) ∪ {i}
S(2) ← S(2) ∪ {j}

B(1) ← {I− | S(1) | +1, I− | S(1) | +2, . . . , I}
B(2) ← {J− | S(2) | +1, J− | S(2) | +2, . . . , J}
perm1← (1, . . . , I)
for k ∈ {1, 2, . . . , | S(1) ∩B(1)c |} do

i← kth smallest element of S(1) ∩B(1)c

j ← kth smallest element of S(1)c ∩B(1)

swap(perm1[i],perm1[j])
perm2← (1, . . . , J)
for k ∈ {1, 2, . . . , | S(2) ∩B(2)c |} do

i← kth smallest element of S(2) ∩B(2)c

j ← kth smallest element of S(2)c ∩B(2)

swap(perm2[i],perm2[j])
X← X[perm1, perm2]
w,h,a, b← the best rank-1 NMMF of X in Theorem 4.1 with L = 0.
c← concate w and a
d← concate h and b
c← c[perm1]
d← d[perm2]
return c,d

This algorithm also minimizes the cost function (4.1) indirectly [4]. For grid-like data,
A1GM directly finds the convergence point of the em-algorithm without performing the
above iterations. We describe a sketch of em-algorithm in Figure 4.7.

4.5.6 Relation between A1GM and LTR

We summarize the relationship between the two proposed algorithms A1GM and LTR,
which are based on the log-linear model on posets and its convex optimization via
information geometry. The difference between A1GM and LTR is the structure of posets
behind algorithms. After designing proper posets, these two algorithms perform m-
projection in common, where some natural parameters become zero. Interestingly, θ-
and η-parameters are not computed explicitly during the procedure of both algorithms.
This is because the trick of describing the low-rank condition in a dual-flat coordinate
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Figure 4.7 A sketch of em-algorithm for missing values estimation for a matrix T ∈ R3×3 and single missing
value x. The algorithm estimates the value of x by repeating e-step and m-step. e-step is e-
projection from model manifold to data manifold. m-step is m-projection from data manifold to
model manifold. In this example, the model manifold is a set of rank-1 matrices. The dimension
of the data manifold is the number of missing values. When the model manifold is e-flat and the
data manifold is m-flat, the convergence of the algorithm and its uniqueness are guaranteed [4,
Chapter 8.1]. Theorem 4.1 finds the convergence point Q∞ without iteration if the rank of the
weight matrix of T is less than or equal to 2.

system and using a conservation law for the parameters allows us to know the projection
destination in a closed form.

It is also known that the constraints of tensor balancing can be described in terms of
expectation parameters, as we see in Section 3.10. In our framework, the task to be
solved, such as low-rank approximation or balancing, is described as a constraint in a
dual-flat coordinate system. We expect that higher-rank approximations for multiple
matrices could also be possible by defining bingos as well as LTR.

In summary, our approach formulates tasks as convex optimizations by taking the input
data structure as proper poset and describing the constraints of the task in a dual-flat
coordinate system.

4.5.7 Experiments for A1GM

We use three types of data to empirically investigate the efficiency and effectiveness of
A1GM: (i) synthetic data with missing values at the upper right corner, (ii) synthetic data
with random grid-like missing values, and (iii) real data with grid-like and non-grid-like
missing values. It is guaranteed that A1GM always finds the best solution for any data of
(i) and (ii). Thus, we only investigate efficiency in our experiments for (i) and (ii). By
contrast, for data (iii), the reconstruction error can be worse than the existing methods
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due to increased missing values in A1GM. Therefore, in the experiment for data (iii), we
investigate both efficiency (running time) and effectiveness (reconstruction error).

We use KL-WNMF as a comparison method [64]. KL-WNMF is a commonly used gradient
method that reduces the KL-based cost in Equation (4.6) by multiplicative updates.
Although faster NMF methods, such as ALS [62] and ADMM [51], have been developed,
they are just as fast as a multiplicative update when the target rank is small [113].
Moreover, as we will show in below, KL-WNMF converges within only 2–4 iterations in
our experiments. In addition, the em-algorithm needs more iterations since it minimizes
the cost function indirectly. Thus, these techniques are considered ineffective for speeding
up rank-1 KL-WNMF. This is why we only compared A1GM with simple KL-WNMF.

We implemented KL-WNMF by referring to the original paper [64]. The stopping crite-
rion of KL-WNMF follows the implementation of the standard NMF in scikit-learn [99].
The initial values of KL-WNMF are determined by sampling from a uniform continu-
ous distribution from 0 to 1. All methods are implemented in Julia 1.6. We used
BenchmarkTools to measure the running time [17]. Experiments were conducted on
Ubuntu 20.04.1 with a single core of 2.1GHz Intel Xeon CPU Gold 5218 and 128GB of
memory.

Synthetic datasets

Missing values in the top right corner We prepared synthetic matrices X ∈ RN×N and
their weights Φ ∈ { 0, 1 }N×N . We assumed that each input weight Φ is in the form of
Equation (4.7) with L = 0. We measured the running time to obtain rank-1 decomposition
of X with varying the matrix size N . Figure 4.8(a) shows that A1GM is an order of
magnitude faster than the existing gradient method. The number of iterations of the
existing method until convergence was between 2 and 4. A1GM just applies the closed
formula in Theorem 4.1 to parts of input matrices.

Random grid-like missing values We also prepared synthetic matrices and its binary
weight matrices Φ ∈ { 0, 1 }N×N . We assumed that every input weight matrix Φ is grid-
like, and we set the ratio of missing values to be 5 percent. We measured the running time
of A1GM to complete the best rank-1 missing NMF compared with KL-WNMF by varying
the matrix size N . Figure 4.8(b) shows that our method is always faster than the gradient
method. The number of iterations of the existing method required for convergence was
between 2 and 4. Note that in these datasets, A1GM does not need to increase missing
values.
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Figure 4.8 Running time comparison of the proposed method A1GM (triangle, dots line) and KL-WNMF
(circle, dashed line) with respect to the matrix size N . (a) Missing values are at the top right
corner. (b) Missing value positions are grid-like. We plot the mean ± S.D. of five trials.

Real datasets

We used 20 real datasets. We downloaded tabular datasets that have missing values from
the Kaggle databank2 or UCI dataset.3 If a dataset contains negative values, we converted
them to their absolute values. Zero values in a matrix were replaced with the average
value of the matrix to make them all positive. We evaluate the relative error as

DΦ(X,A1GM(X))
/
DΦ(X,WNMF(X)),

where WNMF(X) and A1GM(X) are the rank-1 reconstructed matrices by KL-WNMF
and A1GM, respectively, and the binary weight matrix Φ indicates locations of missing
values of X. We also compared the relative running time of A1GM to KL-WNMF.

The results are summarized in Table 4.1. In the table, the column increase rate means
the ratio of the number of missing values after addition in A1GM to the original number
of missing values. If increase rate is 1, it means that the location of missing values of
the dataset is originally grid-like. For such datasets, it is theoretically guaranteed that our
method A1GM always provides the best rank-1 missing NMF, which minimizes the KL
divergence in Equation (4.6). It is reasonable that the reconstructed matrix by KL-WNMF
and that by A1GM are the same since the cost function (4.6) is convex in w and h. The
number of iterations of the existing method required for convergence was between 2 and
4 for real datasets.

We can see that A1GM is much faster than KL-WNMF for all the datasets. Moreover, the
relative error remains low even if missing values of datasets are not grid-like for most of

2https://www.kaggle.com/datasets
3https://archive.ics.uci.edu/ml/
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Table 4.1 Performance of A1GM compared to KL-WNMF on 20 real datasets.

DataSet size # missing increase rate relative error relative runtime

IndianPop (24,13) 1 1 1 0.19784
Autompg (398, 8) 6 1 1 0.12957
DailySunSpot (73718, 9) 3247 1 1 0.12845
CaliforniaHousing (20640, 9) 207 1 1 0.11821
MTSLibrary (1533078, 4) 1247722 1 1 0.18327
BigMartSaleForecas (8522, 5) 1463 1 1 0.12699
BoardGameGeekData (101375, 17) 21 1 1 0.14625
CreditCardApproval (590, 7) 25 1.92 1.0018 0.12212
HumanResourceAnaly (14999, 7) 519 1.96 1.0168 0.11858
concretemiss (1030,9) 99 2 1.0010 0.11108
heartdisease (303, 14) 6 2 1 0.12259
lungcancer (32, 57) 5 2 1.0001 0.13803
PerthHousePrice (33656, 14) 16585 2.61 1.0004 0.15382
SleepData (62, 8) 12 2.75 1.0211 0.18208
HCVData (615,11) 31 4.19 1.0068 0.11246
arrhythmia (452, 280) 408 4.71 1.0148 0.11387
Bostonhousing (506, 14) 120 5.60 1.0030 0.10970
LifeExpectancyData (2938, 19) 2563 7.04 5.7983 0.09577
HCCSurvivalDataSet (165, 50) 826 8.36 3.2898 0.07113
wiki4HE (913, 53) 1995 18.1 1.2363 0.06626

datasets. In some real data, missing values are likely to be biased towards a particular
row or column. As a result, they become grid-like by just adding a small number of
missing values. In these cases, our proposed method can conduct rank-1 missing NMF
rapidly with competitive errors to KL-WNMF. By contrast, a large amount of information
is lost after the increasing missing value step for some datasets (large increase rates).
As a result, our method is not suitable for obtaining an accurately reconstructed rank-1
matrix, even though it is much faster than the existing method.

Datasets for A1GM We provide the list of the source of the real datasets in Table 4.2.

4.6 Conclusion

In this chapter, we have derived the closed analytical formula of the best rank-1 NMMF.
To obtain this formula, we have used the conservation law in m-projection in information
geometry by modeling matrices as a log-linear model on a poset. Using the formula,
we have developed a novel method of rank-1 NMF for missing data, called A1GM. We
have shown that A1GM obtains the best rank-1 NMF when missing values are located
in a grid-like manner. When the location of missing values is not grid-like, we increase
the number of missing values so that they become grid-like, to which again we can use
the closed formula of the best rank-1 NMMF. We empirically show that A1GM, which is
not based on the gradient descent method, is more efficient than the existing gradient
method for rank-1 missing NMF.
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Table 4.2 Real detaset details for A1GM

DataSet # zeros # negatives URL

IndianPop 0 19 https://onl.bz/bcu3qCR

Autompg 0 0 https://www.kaggle.com/uciml/autompg-dataset

DailySunSpot 16994 3247 https://www.kaggle.com/abhinand05/daily-sun-spot-data-1818-to-2019

CaliforniaHousing 0 20640 https://www.kaggle.com/harrywang/housing?select=housing.csv

MTSLibrary 200932 0 https://www.kaggle.com/sharthz23/mts-library?select=interactions.csv

BigMartSaleForecas 526 0 https://www.kaggle.com/arashnic/big-mart-sale-forecast?select=train.csv

BoardGameGeekData 520624 21 https://www.kaggle.com/mandshaw/games-0918

CreditCardApproval 797 0 https://www.kaggle.com/redwuie/credit-card-approval?select=train.csv

HumanResourceAnaly 27510 0 https://www.kaggle.com/cezarschroeder/human-resource-analytics-dataset

concretemiss 1390 0 https://www.kaggle.com/datasets/izemdemirci/concrete-missing

heartdisease 1149 0 https://archive.ics.uci.edu/ml/datasets/Heart+Disease

lungcancer 107 0 https://archive.ics.uci.edu/ml/datasets/Lung+Cancer

PerthHousePrice 0 33656 https://www.kaggle.com/syuzai/perth-house-prices

SleepData 0 0 https://www.kaggle.com/mathurinache/sleep-dataset

HCVData 0 0 https://archive.ics.uci.edu/ml/datasets/HCV+data

arrhythmia 67256 14250 https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Bostonhousing 812 0 https://www.kaggle.com/altavish/boston-housing-dataset

LifeExpectancyData 3385 0 https://www.kaggle.com/kumarajarshi/life-expectancy-who

HCCSurvivalDataSet 2416 0 https://archive.ics.uci.edu/ml/datasets/HCC+Survival

wiki4HE 1801 0 https://archive.ics.uci.edu/ml/datasets/wiki4HE

As noted, our method has two main limitations. First, because our modeling uses a
log-linear model, we cannot handle zero values in a matrix. Second, the performance
of A1GM is not expected to be convincing if there are a huge number of missing values.
NMMF and NMF for missing data have been extended to tensors as NMTF [122] and
WNTF [95], respectively. Generalization of our study to tensors is an interesting area for
future work.
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Many-Body Approximation for
Nonnegative Tensors

5

We present an alternative approach to decompose non-negative tensors, called
many-body approximation. Traditional decomposition methods assume low-
rankness in the representation, resulting in difficulties in global optimization and
target rank selection. We avoid these problems by energy-based modeling of ten-
sors, where a tensor and its mode correspond to a probability distribution and a
random variable, respectively, and many-body approximation is performed on it
by taking the interaction between variables, i.e. modes, into account. Our model
can be globally optimized in polynomial time in terms of the KL divergence mini-
mization, which is empirically faster than low-rank approximations while keeping
comparable reconstruction error. Furthermore, we visualize interactions between
modes as tensor networks and reveal a nontrivial relationship between many-body
approximation and low-rank approximation.

Tensors are generalization of vectors and matrices. Data in various fields such as neu-
roscience [33], bioinformatics [82], signal processing [24], and computer vision [96]
are often stored in the form of tensors, and features are extracted from them. Tensor
decomposition and its non-negative version [108] are popular methods that extract fea-
tures by approximating tensors by the sum of products of smaller tensors. These smaller
tensors are often called factors. It usually tries to minimize the difference between the
tensor reconstructed from obtained smaller tensors and an original tensor, called the
reconstruction error.

In most of tensor decomposition approaches, a low-rank structure is typically assumed,
where a given tensor is approximated by a linear combination of a small number of bases.
Such decomposition requires the following two information. First, it requires the structure,
which specifies the type of decomposition such as CP decomposition [54] and Tucker
decomposition [126]. In recent years, tensor networks [23] have been introduced, which
can intuitively and flexibly design the structure including tensor train decomposition [93],
tensor ring decomposition [140], and tensor tree decomposition [89]. Second, it requires
the number of bases used in the decomposition, often called the rank. Since larger
ranks increase the capability of the model while increasing the computational cost, the
user is required to find the appropriate rank in this tradeoff problem (See figure 5.1).
Since the above tensor decomposition via minimization of the reconstruction error is
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Figure 5.1 In tensor decomposition, larger target ranks increase the capability of the model and reduce
reconstruction errors, while increasing computational cost. We need to face this trade-off problem
to set the appropriate rank.

non-convex, which causes initial value dependence [68, Chapter 3], the problem of
finding an appropriate setting of the low-rank structure is highly nontrivial in practice as
it is hard to locate the cause if the decomposition does not perform well. As a result, to
find proper structure and rank, the user often needs to perform decomposition multiple
times with various settings, which is time and memory consuming.

Instead of the low-rank structure that has been the focus of attention in the past, in
this paper, we propose a novel formulation of tensor decomposition, called many-body
approximation, that focuses on the relationship among modes of tensors. We determine
the structure of decomposition based on the existence of the interactions between modes.
The proposed method requires only the decomposition structure naturally determined by
the interactions between the modes and does not require the rank value, which traditional
decomposition methods also require and often suffer to determine.

To describe interactions between modes, we follow the standard strategy in statistical
mechanics that uses an energy function H(·) to treat interactions and considers the
corresponding distribution exp (−H(·)). This model is known to be an energy-based
model in machine learning [72] and is exploited in tensor decomposition as Legendre
decomposition [118]. Technically, it parameterizes a tensor as a discrete probability
distribution and reduces the number of parameters by enforcing some of them to be
zero in optimization. We explore this energy-based approach further and discover the
family of parameter sets that represent interactions between modes in the energy function
H(·). How to choose non-zero parameters in Legendre decomposition has been an open
problem, and we firstly address this problem and propose many-body approximation as a
special case of Legendre decomposition. Moreover, although Legendre decomposition is
not factorization of tensors in general, our proposal always offers factorization, which can
reveal patterns in tensors. Since the advantage of Legendre decomposition is inherited to
our proposal, many-body approximation can be achieved by convex optimization that
globally minimizes the Kullback–Leibler (KL) divergence [70].
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Figure 5.2 (a) An illustration of optimization of Legendre decomposition. Interaction representations
corresponding to (c) Equation (5.9) and (d) Equation (5.10). In interaction representations,
edges through ■ between modes mean existing interaction. For simplicity, we abbreviate one-body
interactions in the diagrams.

Furthermore, we introduce a way of representing tensor interactions, which visualizes
the presence or absence of interactions between modes. We discuss the correspondence
between our representation and the tensor network and point out that an operation
called coarse-grained transformation [76], in which multiple tensors are viewed as a
new tensor, reveals unexpected relationship between the proposed method and existing
methods such as tensor ring and tensor tree decomposition.

We summarize our contribution as follows:

• By focusing on the interaction between modes of tensors, we introduce an alterna-
tive rank-free tensor decomposition, many-body approximation. This decomposition
is realized by convex optimization.

• We present a way of describing tensor many-body approximation, interaction
representation, a diagram that shows interactions within a tensor. This diagram
can be transformed into tensor networks, which tells us the relationship between
many-body approximation and existing low-rank approximation.

• We empirically show that many-body approximation is faster than low-rank approx-
imation with competitive reconstruction errors.

Our proposal, tensor many-body approximation, is based on the formulation of Legendre
decomposition for tensors. We first review Legendre decomposition and its optimization
in Section 5.1. We introduce interactions between modes and its visual representation to
prepare for many-body approximation in Section 5.2. Using interactions between modes,
we define many-body approximation in Section 5.3. Finally, we transform the interaction
representation into a tensor network and point out the connection between many-body
approximation and existing low-rank decomposition methods in Section 5.4.
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5.1 Legendre Decomposition and Its Optimization

In the following discussion, we consider D-order non-negative tensors whose size is
(I1, . . . , ID). We assume the sum of all elements in P is 1 for simplicity, while this assump-
tion can be eliminated using the general property of Kullback–Leibler (KL) divergence,
λD(P,Q) = D(λP, λQ), for any real number λ.

5.1.1 Reminder to Legendre Decomposition

Legendre decomposition is a method to decompose a non-negative tensor by regarding the
tensor as a discrete distribution and representing it with a limited number of parameters.
We describe a non-negative tensor P using natural parameters θ = (θ2,1,...,1, . . . , θI1,...,ID

)
and its energy function H as

Pi1,...,iD = exp (−Hi1,...,iD ), Hi1,...,iD = −
i1∑

i′
1=1
· · ·

iD∑
i′
D=1

θi′
1,...,i′

D
, (5.1)

where θ1,...,1 has a role of normalization. Here it is clear that a tensor corresponds to
a distribution whose sample space is its index set; that is, the value of each element is
regarded as the probability of realizing the corresponding index [117].

As we can see in Equation (5.1), we can uniquely identify tensors from natural parameters
θ. We can compute the natural parameter θ from a given tensor as

θi1,...,iD =
I1∑

i′
1=1
· · ·

ID∑
i′
D=1

µ
i′
1,...i′

D
i1,...,iD

logPi′
1,...,i′

D
(5.2)

using the Möbius function µ : ΩD × ΩD → {−1, 0,+1}, where ΩD is the set of indices,
defined inductively as follows:

µ
i′
1,...,i′

D
i1,...,iD

=


1 if id = i′d for all d ∈ [D],

−
∏D

d=1
∑i′

d−1
jd=id

µj1,...jD
i1,...,iD

else if id ≤ i′d for all d ∈ [D],

0 otherwise.

Due to space limitations, we represent one of the two arguments by superscripts and
the other by subscripts. We provide the Möbius function as a more general form in
Equation (2.3). The above modeling for non-negative tensors is an instance of the
log-linear model on posets [117].
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Since distribution described by Equation (5.1) belongs to the exponential family, we can
also identify each tensor by expectation parameters η = (η2,1,...,1, . . . , ηI1,...,ID

) using the
Mb̈ius inversion formula as

ηi1,...,iD =
I1∑

i′
1=i1

· · ·
ID∑

i′
D=iD

Pi′
1,...,i′

D
, Pi1,...,iD =

I1∑
i′
1=1
· · ·

ID∑
i′
D=1

µ
i′
1,...,i′

D
i1,...,iD

ηi′
1,...,i′

D
. (5.3)

where η1,...,1 = 1 because of normalization. See more general form of the Mb̈ius inver-
sion formula in Equation (2.4). Since distribution is determined by specifying either
θ-parameters or η-parameters, they form two coordinate systems called the θ-coordinate
system and the η-coordinate system, respectively. By using the dual flatness, and orthogo-
nality of these coordinate systems, Legendre decomposition achieves convex optimization
as shown in the following.

5.1.2 Optimization

Legendre decomposition approximates a tensor by setting some θ values to be zero, which
corresponds to dropping some parameters for regularization. Let B be the set of indices
of θ parameters that are not imposed to be 0. Then Legendre decomposition coincides
with a projection of a given nonnegative tensor P onto the subspace B = {θ | θi1,...,iD =
0 if (i1, . . . , iD) /∈ B}.

Let us consider projection of a given tensor P onto B. The space of probability distri-
butions is not a Euclidean space. Therefore, it is necessary to consider geometry of
probability distributions, which is studied in information geometry. It is known that a
subspace with linear constraints on natural parameters θ is flat, called e-flat [4, Chap-
ter 2]. The subspace B is e-flat, meaning that the logarithmic combination, or called
e-geodesic, R ∈ {(1− t) logQ1 + t logQ2−ϕ(t) | 0 < t < 1} of any two points Q1,Q2 ∈ B
is included in the subspace B, where ϕ(t) is a normalizer. There is always a unique point
P on the e-flat subspace that minimizes the KL divergence from any point P.

P = argmin
Q;Q∈B

D(P,Q) (5.4)

This projection is called the m-projection. The m-projection onto a e-flat subspace is a
convex optimization. We define two vectors θB = (θb)b∈B and ηB = (ηb)b∈B . We write as
|B| the number of elements in these vectors since it is equal to the cardinality of B. The
derivative of the KL divergence and the Hessian matrix G ∈ R|B|×|B| are given as

∂

∂θB
D(P,Q) = ηB − η̂B, Gu,v = ηmax(i1,j1),...,max(iD,jD) − ηi1,...,iDηj1,...,jD (5.5)

where ηB and η̂B are the expectation parameters of Q and P, respectively, and u =
(i1, . . . , iD), v = (j1, . . . , jD) ∈ B. This is a particular case in Equation (2.5). This matrix
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G is also known as the negative Fisher information matrix. Using gradient descent with
second-order derivative, we can update θB in each iteration t as

θB
t+1 = θB

t −G−1(ηB
t − η̂B) (5.6)

The distribution Qt+1 is calculated from the updated natural parameters θt+1. This step
finds a point Qt+1 ∈ B that is closer to the destination P along with the e-geodesic from
Qt to P. We can also calculate the expected value parameters ηt+1 from the distribution.
By repeating this process until convergence, we can always find the globally optimal
solution satisfying Equation (5.4). This procedure is illustrated in Figure. 5.2(a).

5.2 Interaction and Its Representation of Tensors

In this subsection, we introduce interactions between modes and its visual representation
to prepare for many-body approximation. The following discussion enables us to intu-
itively describe relationships between modes and formulate our novel rank-free tensor
decomposition.

First we introduce n-body parameters, which is a generalized concept of one-body and
many-body parameters in Chapter 3 (See Definition 3.1).

Definition 5.1 n-body Parameter

Let n of a n-body parameter be the number of non-one indices.

For example, θ1,2,1,1 is a one-body parameter, θ4,3,1,1 is a two-body parameter and θ1,2,4,3

is a three-body parameter. We regard the normalize factor θ1,...,1 as a 0-body parameter.
We also use the following notation for n-body parameters:

θ
(k)
ik

= θ1,...,1,ik,1,...,1, θ
(k,m)
ik,im

= θ1,...,1,ik,1,...,1,im,1,...,1, θ
(k,m,p)
ik,im,ip

= θ1,...,ik,...,im,...,ip,...,1,

for n = 1, 2, and 3, respectively. Also, we also introduce n-th order energy.

Definition 5.2 n-th Order Energy

The n-th order energy for a tensor and its θ-parameters is given as

H
(l1,...,ln)
il1 ,...,iln

= −
il1∑

i′
l1

=2
· · ·

iln∑
i′
ln

=2
θ

(l1,...,ln)
i′
l1

,...,i′
ln

. (5.7)
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We write the energy function H with n-body parameters as

Hi1,··· ,iD = H0 +
D∑

m=1
H

(m)
im

+
D∑

m=1

m−1∑
k=1

H
(k,m)
ik,im

+
D∑

m=1

m−1∑
k=1

k−1∑
p=1

H
(p,k,m)
ip,ik,im

+ · · ·+H
(1,...,D)
i1,...,iD

(5.8)

For simplicity, we suppose that 1 ≤ l1 < l2 < · · · < ln ≤ D holds. We set H0 = −θ1,...,1.
The number of Σ in l-th term in Equation (5.8) is DCl. We say that an n-body interaction
exists between modes l1, . . . , ln if there are indices il1 , . . . , iln satisfying H(l1,...,ln)

il1 ,...,iln
̸= 0.

The first termH0 in Equation (5.8) is called the normalized factor or the partition function.
The terms H(k) are called bias in machine learning and magnetic field or self-energy in
statistical physics. The terms H(k,m) are called the weight of the Boltzmann machine in
machine learning and two-body interaction or electron-electron interaction in physics.

To visualize the existence of interactions within a tensor, we newly introduce a diagram
called interaction representation, which is inspired by factor graphs in graphical model-
ing [11, Chapter 8]. The graphical representation of the product of tensors is widely
known as tensor networks. However, displaying the relations between the modes of a
tensor as a factor graph is our novel approach. We represent the n-body interaction as a
black square, ■, connected with n modes. We describe examples of the two-body inter-
action between modes (k,m) and the three-body interaction among modes (k,m, p) in
Figure 5.2(b). Combining these interactions, the energy function including all two-body
interactions is shown in Figure 5.2(c), and the energy function including all two-body
and three-body interactions is shown in Figure 5.2(d) for D = 4.

This visualization allows us to intuitively understand the relationship between modes of
tensors. For simplicity, we abbreviate one-body interactions in the diagrams, while we
always assume them. Once interaction representation is given, we can determine the
corresponding decomposition of tensors.

In the following section, we reduce some of n-body interactions, that is, H(l1,...,ln)
il1 ,...,iln

= 0,

by fixing each parameter θ(l1,...,ln)
il1 ,...,iln

= 0 for all indices (il1 , . . . , iln) ∈ {2, . . . , Il1} × · · · ×
{2, . . . , Iln}.

5.3 Many-body Approximation for Non-negative Tensors

Our proposed method, many-body approximation, approximate a given tensor with
assuming the existence of dominant interactions between the modes of the tensor and
ignoring other interactions. Since this operation can be understood as setting some natural
parameters of the distribution to be zero, it can be achieved by convex optimization
through the theory of Legendre decomposition. As we see below, approximated tensors
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are represented without the summation symbol
∑

. This property is different from existing
low-rank approximations except for rank-1 approximation.

As an example, we consider approximations of a nonnegative tensor P by tensors repre-
sented in Figure 5.2(c) and Figure 5.2(d).

If all energies greater than 2nd-order or those greater than 3rd-order in Equation(5.8)
are ignored, that is, H(l1,...,ln)

il1 ,...,iln
= 0 for n > 2 or n > 3, P is approximated as follows:

Pi1,i2,i3,i4 ≃ P
≤2
i1,i2,i3,i4

= X(1,2)
i1,i2

X(1,3)
i1,i3

X(1,4)
i1,i4

X(2,3)
i2,i3

X(2,4)
i2,i4

X(3,4)
i3,i4

, (5.9)

Pi1,i2,i3,i4 ≃ P
≤3
i1,i2,i3,i4

= χ
(1,2,3)
i1,i2,i3

χ
(1,2,4)
i1,i2,i4

χ
(1,3,4)
i1,i3,i4

χ
(2,3,4)
i2,i3,i4

, (5.10)

where each small matrix and tensor on the right-hand side is represented as

X(k,m)
ik,im

= 1
6√Z

exp
(1

3H
(k)
ik

+H
(k,m)
ik,im

+ 1
3H

(m)
im

)
,

χ
(k,m,p)
ik,im,ip

= 1
4√Z

exp

H(k)
ik

+H
(m)
im

+H
(p)
ip

3 + 1
2H

(k,m)
ik,im

+ 1
2H

(m,p)
im,ip

+ 1
2H

(k,p)
ik,ip

+H
(k,m,p)
ik,im,ip

.
The partition function, or the normalization factor, is given as Z = exp (−θ1,1,1,1), which
do not depend on indices (i1, i2, i3, i4). Each X(k,m) (resp. χ(k,m,p)) is a factorized
representation for the relationship between k-th and m-th (resp. k-th, m-th and p-th)
modes. Although our model can be transformed into a linear model by taking the
logarithm, our convex formulation enables us to find the optimal solution more stable
than traditional linear low-rank based nonconvex approaches. Since we do not impose
any low-rankness, factorized representations, e.g., X(k,m) and χ(k,m,p), can be full-rank
matrices or tensors.

We provide the definition of m-body approximation as follows:

Definition 5.3 m-body Approximation for Non-negative Tensors

For a given tensor P ∈ RI1×···×ID
≥0 , its m-body approximation P≤m ∈ RI1×···×ID

≥0 is
the optimal tensor in Equation (5.4) for B = { θ | θi1,...,iD = 0 if (i1, . . . , iD) /∈ B },
where B is the set of indices of n(≤ m)-body parameters.

We show constraints of m-body approximation in Figure 5.3 for D = 4. Interestingly, the
two-body approximation for a non-negative tensor with I1 = · · · = ID = 2 is equivalent to
approximating the empirical distribution with the fully connected Boltzmann machine.

Although we can find the analytical solution for one-body approximation by Theorem 3.1,
we need numerical calculation to conduct n(> 1)-body approximation. See the optimiza-
tion procedure in Section 5.1.2.

In Boltzmann machines, we usually consider binary (two-level) variables and their
second order energy. In our proposal, we consider multi-level D variables, each of
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which can take a natural number from 1 to Id for d ∈ [D]. Moreover, higher-order
interactions among them are allowed. Therefore our proposal is a multi-level extension
of Boltzmann machines with higher-order interaction, where each node of Boltzmann
machines corresponds to the tensor mode.

In the above discussion, we consider many-body approximation with all n-body parame-
ters, while our formulation allows us to use only a part of n-body interactions as shown in
the following. We consider the situation where only one-body interaction and two-body
interaction between modes (d, d+ 1) exist for all d ∈ [D] (D + 1 implies 1 for simplicity).
Figure 5.5(a) shows the interaction representation of the approximated tensor. As we can
confirm by substituting 0 for H(k,l)

ik,il
if l ̸= k + 1, we can describe the approximated tensor

as the element-wise cyclic product of matrices,

Pi1,...,iD ≃ P
cyc
i1,...,iD

= X(1)
i1,i2

X(2)
i2,i3

. . .X(D)
iD,i1

(5.11)

where

X(k)
ik,ik+1

= 1
D
√
Z

exp
(1

2H
(k)
ik

+H
(k,k+1)
ik,ik+1

+ 1
2H

(k+1)
ik+1

)
. (5.12)

The partition function is given as Z = exp (−θ1,...,1), which does not depend on indices
(i1, . . . , iD). When the tensor P is approximated by Pcyc, the set B contains only all one-
body parameters and two-body parameters θ(d,d+1)

id,id+1
for d ∈ [D]. We call this approximation

cyclic two-body approximation since the order of indices in Equation (5.11) is cyclic. Here
we provide the formal description:

Definition 5.4 Cyclic Two-body Approximation for Non-negative Tensors

For a given tensor P ∈ RI1×···×ID
≥0 , its cyclic two-body approximation Pcyc ∈

RI1×···×ID
≥0 is the optimal tensor in Equation (5.4) where the set B contains only all

one-body parameters and two-body parameters θ(d,d+1)
id,id+1

for d ∈ [D].

The constraint of the cyclic two-body approximation is shown in Figure 5.4. We show the
connection between cyclic two-body approximation and existing tensor ring decomposi-
tion in Section 5.4.

Interaction and Conservation Laws Let η be the expectation parameter of the original
tensor and η̂ be the expectation parameter after many-body approximation. From
Proposition 3.8, ηB = η̂B holds. In many-body approximation, defining the existing
interactions determines which natural parameters of the projected tensor become zero
and, at the same time, which expectation parameters are conserved in the approximation.
As described in Section 2.2.1, the conserved expectation parameters lead to the invariance
of the summation in each fiber or slice in the approximation.
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Trivial Examples of Many-body Approximation Note that D-body approximation always
provides the same tensor as input, that is, P≤D = P. Zero-body approximation is also
a trivial example. It always provide a tensor whose all values are the same, that is
P≤0

i1,...,iD
= Z−1 where Z =

∏D
d=1 Id. It corresponds to a uniform discrete distribution.

Since the value of P≤0
i1,...,iD

does not depend on the index (i1, . . . , iD), we cannot define
its interaction representation.
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Figure 5.3 Constraints and interaction representations for n-body approximation of a 4th-order tensor
P3×3×3×3

≥0 for n = 0, 1, . . . , 4. Only θ-parameters on gray-colord nodes can have non-zero values
after each approximation. The four-body approximation for 4th-order tensor will not reduce
θ-parameters. Since one-body approximation is equivalent to rank-1 approximation, n-body
approximation is a generalization of rank-1 approximation. We abbreviate one-body interactions
in the diagrams. The m-projection does not change the values of the expectation parameters on
the gray nodes.
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Figure 5.4 The constraint and interaction representation for cyclic two-body approximation of 4th-order
tensors P3×3×3×3

≥0 . Only θ-parameters on colored nodes can have non-zero values after the
approximation. Interactions, ■, and corresponding two-body parameters are filled in the same
color. One-body parameters are on gray-colored nodes.

5.4 Connection to Tensor Network

Our tensor interaction representation is an undirected graph that focuses on the relation-
ship between modes. In contrast, tensor networks, which are well known as diagrams
that focus on smaller tensors after decomposition, represent a tensor as an undirected
graph, whose nodes correspond to matrices or tensors and edges to summation over a
mode in tensor products [23].

We provide interesting examples in our representation that can be converted to tensor
networks, which implies our representation has a tight connection to tensor networks.
For the conversion, we use a hyper-diagonal tensor Ω defined as Ωijk = δijδjkδki , where
δij = 1 if i = j and 0 otherwise. The tensor Ω is often represented by • in tensor networks.
In the community of tensor networks, the tensor Ω appears in the CNOT gate and a
special case of the Z spider [92]. The tensor network in Figure 5.5(a) represents the
following formula

D∏
d=1

∑
jd

∑
ld

X(d)
ld,jd+1

Ijd+1,id+1,ld+1

 , (5.13)

where jD+1 = j1, iD+1 = i1, lD+1 = l1. Substituting the definition of I in Equation (5.13),
we realize that the tensor network corresponds to Equation (5.11).

A remarkable finding is that the converted tensor network representation of cyclic two-
body approximation and the tensor network of tensor ring decomposition, whose tensor
network is shown in Figure 5.5(b), have the similar structure in common, despite their
different modeling. If we consider the region enclosed by the dotted line in Figure 5.5(a)
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a. b.

Figure 5.5 (a) Interaction representation of an example of cyclic two-body approximation and its transformed
tensor network for D = 4. Each tensor is enclosed by a square and each mode is enclosed by
a circle. A black circle • is a hyper diagonal tensor. Edges through ■ between modes mean
interaction existence. (b) Tensor network of tensor ring decomposition.

as a new tensor, the tensor network of the cyclic two-body approximation coincides
with the tensor network of the tensor ring decomposition shown in Figure 5.5(b). This
operation, in which multiple tensors are regarded as a new tensor in a tensor network, is
called coarse-graining transformation [34].

Formally, cyclic two-body approximation coincides with tensor ring decomposition with
a specific constraint as described below. Non-negative tensor ring decomposition ap-
proximates a given tensor P ∈ RI1×···×ID

≥0 with D core tensors χ(1), χ(2), . . . , χ(D) with
χ(d) ∈ RRd−1×Id×Rd

≥0 for each d ∈ [D] as

Pi1,...,iD ≃ P i1,...,iD =
R1∑

r1=1

R2∑
r2=1
· · ·

RD∑
rD=1

χ
(1)
rD,i1,r1

χ
(2)
r1,i2,r2

. . . χ
(D)
rD−1,iD,rD

(5.14)

where (R1, . . . , RD) is called tensor ring rank. The decomposition is described in Fig-
ure 5.5(b). The cyclic two-body approximation also approximates the tensor P in the
form of Equation (5.14), imposing an additional constraint that each core tensor χ(d) is
decomposed as

χ
(d)
rd−1,id,rd

=
Id∑

md=1
X(d)

rd−1,md
Imd,id,rd

(5.15)

for each d ∈ [D], where Iijk = δijδjkδki. We assume r0 = rD for simplicity. We obtain
Equation (5.11) by substituting Equation (5.15) into Equation (5.14).

This constraint enables us to perform convex optimization. This means that we find
a subclass that can be solved by convex optimization in tensor ring decomposition,
which has suffered from the difficulty of non-convex optimization. In addition, this is
simultaneously a subclass of two-body approximation.

From Kronecker’s delta δ, rd = id holds in Equation (5.15), thus χ(d) is a tensor with the
size (Id−1, Id, Id). Tensor ring rank after the cyclic two-body approximation is (I1, . . . , ID)
since the size of core tensors coincides with tensor ring rank.
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a. b.

Figure 5.6 (a) Interaction representation corresponding to Equation (5.17) and its transformed tensor
network for D = 9. We abbreviate one-body interactions in the diagram. (b) Tensor network of a
variant of tensor tree decomposition. Each mode is enclosed by a circle. Each tensor is enclosed
by a square. A black circle, •, is a hyper diagonal tensor. Edges through ■ between modes mean
existing interaction.

This result firstly reveals the relationship between Legendre decomposition and low-rank
approximation via tensor networks.

Comparing the number of parameters The number of elements of an input tensor is
I1 × I2 × · · · × ID. After the cyclic two-body approximation, the number of parameters is
given as

|B| = 1 +
D∑

d=1
(Id − 1) +

D∑
d=1

(Id − 1)(Id+1 − 1) (5.16)

where we assume ID+1 = I1. The first term is for a normalizer, the second is the number
of one-body parameters, and the final term is the number of two-body parameters. In
contrast, in the tensor ring decomposition with the target rank (R1, . . . , RD), the number
of parameters is given as |R| =

∑D
d=1RdIdRd+1. The ratio of the number of parameters

of these two methods |B|/|R| is proportional to I/R2 if we assume Rd = R and Id = I

for all d ∈ [D] for simplicity. Therefore, when the target rank is small and the size of the
input tensor is large, the proposed method has more parameters than the tensor ring
decomposition.

5.5 Other Example of Many-body Approximation and Its
Tensor Network

In the same way, we can find a correspondence between another example of many-
body approximation and the existing low-rank approximation. For D = 9, we consider
three-body and two-body interactions among (i1, i2, i3), (i4, i5, i6), and (i7, i8, i9) and
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three-body approximation among (i3, i6, i9). We provide the interaction representation
of the target energy function in Figure 5.6(a). In this approximation, the decomposed
tensor can be described as

Pi1,...,i9 = Ai1,i2,i3Bi4,i5,i6Ci7,i8,i9Gi3,i6,i9 . (5.17)

In the same way in the case of the cyclic two-body approximation, we can convert the
interaction representation to a tensor network, as described in Figure 5.6(a). A tensor
network of tensor tree decomposition in Figure 5.6(b) emerges when the region enclosed
by the dotted line is replaced with a new tensor (shown with tilde) in Figure 5.6(a).
Such tensor tree decomposition is used in generative modeling [19], computational
chemistry [90] and quantum many-body physics [109].

As we have seen above, by transforming tensor interaction representation to tensor
networks and applying coarse-graining, we can reveal the relationship between tensor
many-body approximations and low-rank approximations.

5.6 Many-body Approximation as Generalization of
Mean-field Approximation

It has been already pointed out that any tensor P can be represented by vectors x(d) ∈ RId

for d ∈ [D] as

Pi1,...,iD = x
(1)
i1
x

(2)
i2
. . . x

(D)
iD

(5.18)

if and only if all n(≥ 2)-body θ-parameters are 0 [40]. The right-hand side is equal to
the Kronecker product of D vectors x(1), . . . ,x(D), and therefore this approximation is
equivalent to the rank-1 approximation since the rank of the tensor that can be represented
by the Kronecker product is always 1, which is also known to correspond to mean-
field approximation. In this study, we propose many-body approximation by relaxing
the condition for the mean-field approximation that ignores n(≥ 2)-body interactions.
Therefore many-body approximation is generalization of rank-1 approximation and mean-
field approximation. We show the relationship between these approximations in Figure
5.3.

5.7 Computational Complexity

We analyze the computational complexity of many-body approximation. In many-body
approximation, the overall complexity is dominated by the update of θ, which includes
matrix inversion of G.
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Algorithm 3: Many-body Approximation

MANYBODYAPPROXIMATION(T , B)
s← Total sum of T .
Obtain normalized tensor P ← T ./s // “./” denotes element-wise division
Compute η̂ of P using Equation (5.3).
Initialize θB

t=1 // e.g. θb = 0 for all b ∈ B
t← 1
repeat

Compute Qt using the current parameter θB
t with Equation (5.1).

Compute ηB
t from Qt using Equation (5.3).

Compute the Fisher information matrix G using Equation (5.5).
θB

t+1 ← θB
t −G−1(ηB

t − η̂B)
t← t+ 1

until ||ηB
t − η̂B|| < ϵ // We set ϵ = 10−5 in our implementation;

T ← Qt .∗ s // “.∗” denotes element-wise multiplication
return T

The complexity of computing the inverse of an n × n matrix is O(n3). Therefore, the
computational complexity of many-body approximation is O(γ|B|3), where γ is the
number of iterations.

This complexity can be reduced if we reshape tensors so that the size of each mode
becomes small. For example, let us consider a 3rd-order tensor whose size is (J2, J2, J2)
and its cyclic two-body approximation. In this case, the time complexity is O(γJ12) since
it holds that |B| ∝ J4 (See Equation (5.16)). In contrast, if we reshape the input tensor
to a 6-order tensor whose size is (J, J, J, J, J, J), the time complexity becomes O(γJ6)
since it holds that |B| ∝ J2.

This technique of reshaping a tensor into a larger-order tensor is used practically not only
in the proposed method but also in various methods based on tensor networks, such as
tensor ring decomposition [83].

5.8 Experiments for Many-body Approximation

As seen in Section 5.4, many-body approximation has a close connection to low-rank ap-
proximation. For example, in a tensor ring decomposition, if we impose that decomposed
factors can be represented as products with hyper-diagonal tensors I, this decomposition
is equivalent to a cyclic two-body approximation (see Figure 5.5). Therefore, to examine
our conjecture that cyclic two-body approximation is as capable of approximating as
tensor ring decomposition, we empirically examine the efficiency and effectiveness of
cyclic two-body approximation compared with tensor ring decomposition. As baselines,
we use five existing methods of non-negative tensor ring decomposition, NTR-APG, NTR-
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Figure 5.7 (a)(b) Results for low ring rank tensor. (c)(d) Results for tensors sampled from uniform distribu-
tion. The vertical red dotted line is |B| in Equation (5.16).

HALS, NTR-MU, NTR-MM and NTR-lraMM [135, 136]. These methods minimize the
reconstruction error defined with the Frobenius norm by the gradient method.

We evaluate the approximation performance by the relative error

∥T − T ∥F
∥T ∥F

(5.19)

for an input tensor T and a reconstructed tensor T with the Frobenius norms ∥ · ∥F. Since
all the existing methods are based on nonconvex optimization, we plot the best score
(minimum relative error) among 5 restarts with random initialization. In contrast, the
score of our method is obtained by a single run as it is convex optimization and such
restarts are fundamentally unnecessary. We compare the total running time of them.

5.8.1 Results on Synthetic Data

We performed experiments on four synthetic datasets. The first two are synthetic data with
low tensor ring rank. This setting is often used in evaluation of tensor ring decomposition.
We create D core tensors of size R× I ×R by sampling from uniform distribution. Then
a tensor with the size ID and the tensor ring rank (R, . . . , R) is obtained by the product
of these D tensors. Results for R = 15, D = 5, I = 30 are shown in Figure 5.7(a), and
those for R = 10, D = 6, I = 20 in Figure 5.7(b). Relative error and computation time
are plotted with gradually increasing the target rank of the tensor ring decomposition,
which is compared to the score of our method, plotted as the cross point of horizontal and
vertical red dotted lines. Please note that our method does not have the concept of the
rank, thus the score of our method is invariant to changes of the target rank unlike other
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Figure 5.8 Experimental results for real datasets. The vertical red dotted line is |B| in Equation (5.16).

methods. If the cross point of red dotted lines is lower than other lines, the proposed
method is better than other methods.

In addition to the above case in which we assumed the low-rankness, we also generated
synthetic datasets without such an assumption. We created a tensor of size 305 and
a tensor of size 205 by sampling from uniform distribution and performed the same
experiment. Results are shown in Figure 5.7(c) and Figure 5.7(d). In all experiments, the
proposed method is superior to comparison partners in both efficiency and effectiveness.
It should be noted that the relative error of the proposed method is smaller even when
the target rank of the tensor ring decomposition is large and the number of parameters is
several times larger than the proposed method.

For all experiments on synthetic datasets, we change the target ring-rank as (R, . . . , R)
for R = 2, 3, . . . , 9 for baseline methods.

5.8.2 Results on Real Data

Next, we evaluate our method on real data. 4DLFD is a 9-order tensor, which is produced
from 4D Light Field Dataset [57, 47, 77]. TT_ChartRes, TT_Origami and TT_Paint are
7-order tensors, which is produced from TokyoTech Hyperspectral Image Dataset [88, 87].
Each tensor has been reshaped to reduce the computational complexity. See the following
dataset details. The proposed method is always faster than baselines with keeping the
competitive relative errors. In baseline methods, a slight change of the target rank can
induce a significant increase of the reconstruction error due to the nonconvex nature
of them. We eliminate the instability of non-negative tensor ring decomposition by our
convex formulation.
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Dataset detail for real dataset 4DLFD is originally a (9, 9, 512, 512, 3) tensor, which is
produced from 4D Light Field Dataset described in [57]. Its license is Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License. We use dino images
and their depth and disparity map in training scenes. We concatenate them to produce a
tensor. We reshaped the tensor as (6, 8, 6, 8, 6, 8, 6, 8, 12). For baseline methods, we chose
the target ring-rank as (2, 3, 2, 2, 2, 2, 2, 2, 2), (2, 3, 2, 2, 3, 2, 2, 3, 2), (2, 2, 2, 2, 2, 2, 2, 2, 5),
(2, 5, 2, 2, 5, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2, 2, 2, 7), (2, 2, 2, 2, 3, 2, 2, 2, 7), (2, 2, 2, 2, 2, 2, 2, 2, 9).
TT_ChartRes is originally a (736, 736, 31) tensor, which is produced from TokyoTech
31-band Hyperspectral Image Dataset. We use ChartRes.mat. We reshaped the ten-
sor as (23, 8, 4, 23, 8, 4, 31). For baseline methods, we chose the target ring-rank as
(2, 2, 2, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2, 5), (2, 2, 2, 2, 2, 2, 8), (3, 2, 2, 3 , 2, 2, 5), (2, 2, 2, 2, 2, 2, 9),
(3, 2, 2, 3,, 2, 2, 6), (4, 2, 2, 2, 2, 2, 6), (3, 2, 2, 4, 2, 2, 8), (3, 2, 2, 3, 2, 2, 9), (3, 2, 2, 3, 2, 2, 10),
(3, 2, 2, 3, 2, 2, 12), (3, 2, 2, 3, 2, 2, 15), (3, 2, 2, 3, 2, 2, 16).
TT_Origami and TT_Paint are originally (512, 512, 59) tensors, which are produced from
TokyoTech 59-band Hyperspectral Image Dataset. We use Origami.mat and Paint.mat.
In TT_Origami, 0.0016% of elements were negative, hence we preprocessed all elements
of TT_Origami by subtracting −0.000764, the smallest value in TT_Origami, to make
all elements non-negative. We reshaped the tensor as (8, 8, 8, 8, 8, 8, 59). For baseline
methods, we chose the target ring-rank as (2, 2, 2, 2, 2, 2, R) for R = 2, 3, . . . , 15.

5.8.3 Implementation detail

We describe the implementation details of methods in the following.

Proposed method Our method is implemented in Julia 1.8. We use a natural gradient
method for cyclic two-body approximation. The natural gradient method uses the
inverse of the Fisher information matrix to perform second-order optimization in a
non-euclidean space. For non-normalized tensors, we conduct the following procedure.
First, we compute the total sum of elements of an input tensor. Then, we normalize
the tensor. After that, we conduct Legendre decomposition for the normalized tensor.
Finally, we get the product of the result of the previous step and the total sum we
compute initially. The termination criterion is the same as the original implementation
of Legendre Decomposition by [118], that is, it terminates if ||ηB

t − η̂B|| < 10−5, where
ηB

t is the expectation parameters on t-th step and η̂B is the expectation parameters of
an input tensor, which are defined in Section 5.1. The overall procedure is described in
Algorithm 3. Note that this algorithm is based on Legendre decomposition by [118].

Baseline methods We implemented baseline methods by translating MATLAB code
provided by the authors into Julia code for fair comparison. As we can see from their
original papers, NTR-APG, NTR-HALS, NTR-MU, NTR-MM and NTR-lraMM have an inner
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and outer loop to find a local solution. We repeat the inner loop 100 times. We stop the
outer loop when the difference between the relative error of the previous and the current
iteration is less than 10e-4. NTR-MM and NTR-lraMM require diagonal parameters matrix
Ξ. We define Ξ = ωI where I is an identical matrix and ω = 0.1. The NTR-lraMM method
performs low-rank approximation to the matrix obtained by mode expansion of an input
tensor. The target rank is set to be 20. This setting is the default setting in the provided
code. The initial positions of baseline methods were sampled from uniform distribution
on (0, 1).

Environment Experiments were conducted on Ubuntu 20.04.1 with a single core of
2.1GHz Intel Xeon CPU Gold 5218 and 128GB of memory.

5.9 Conclusion

We propose many-body approximation for tensors, which decomposes tensors with fo-
cusing on the relationship between modes represented by an energy-based model. It
approximates tensors by ignoring the energy corresponding to some interactions, which
can be viewed as generalization of mean-field approximation that considers only one-body
interactions. Our novel formulation enables us to achieve convex optimization of the
model, while the existing approaches based on the low-rank structure are non-convex.
Furthermore, we introduce a way of visualize interactions between modes, called interac-
tion representation, to see activated interactions between modes. We have established
transformation between our representation and tensor networks, which reveals the non-
trivial connection between many-body approximation and the classical tensor low-rank
tensor decomposition.
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Conclusion 6
This chapter summarizes this dissertation, focusing on the relationship among proposed
methods. This study proposes three dimensionality reduction methods, LTR, A1GM, and
many-body approximation. LTR reduces the Tucker rank of tensors rapidly, A1GM obtains
an approximate solution of rank-1 NMF with missing values based on the closed formula
of rank-1 NMMF, and many-body approximation decomposes tensors into element-wise
product formats. While LTR and A1GM are faster methods for traditional low-rank
approximation, many-body approximation is a novel convex dimensionality reduction
naturally derived from the information geometric analysis of rank-1 approximation. This
study works across three fields: linear algebra, which deals with tensors and matrices;
information geometry, which is the geometry of probability distributions; and energy-
based models, which is inspired by statistical mechanics.

In Section 6.1, we review the unique characteristics and strengths of our study. Next, in
Section 6.2, we provide some interesting remaining questions that were not clarified in
this study. We also discuss the limitations of this study in Section 6.3. Finally, we describe
future directions of our study in Section 6.4.

6.1 Characteristics and Strengths of This Study

Here we summarize the characteristics and strengths of our study, focusing on the
following three points.

Model flatness guarantees the uniqueness and convexity of learning.

Formulating these dimensionality reduction approaches as projections onto e-flat model
manifolds provided convex reconstruction errors to be optimized. We designed e-flat
model manifolds by mapping the input data to a probability distribution and describing
the set of dimensionality-reduced arrays with a linear condition of natural parameters
of the distribution. For example, in LTR, the subspace of low-Tucker-rank is not e-flat,
but by introducing the bingo rule, the e-flat subspace is extracted from the space of
low-Tucker-rank tensors as described in Chapter 3. In addition, we can perform LTR
and A1GM without gradient-based methods. This is because the trick of describing the
low-rank condition in a dual-flat coordinate system and using a conservation law for the
parameters allows us to know the projection destination in a closed form.
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Figure 6.1 We could construct an equivalent theory by introducing either structure for tensors. Which
ordered structure should we have introduced?

Unified view for dimensionality reductions with various data structure.

To discuss the dimensionality reduction of matrices, tensors, and multiple matrices in a
unified manner, we used a log-linear model on posets that allow for flexible modelling.
We can discuss dimensionality reduction to various data structures by designing posets to
correspond to data structures. After designing proper posets, these algorithms perform
m-projection in common, where some natural parameters become zero. In summary, our
approach formulates tasks as convex optimizations by taking the input data structure as
proper posets and describing the constraints of the task in a dual-flat coordinate system.

Information geometric analysis derives a novel convex dimensionality reduction.

In this study, we regard non-negative tensors as joint probability distributions and analyze
their rank-1 decompositions from an information geometric viewpoint. As a result, we
interpreted rank-1 decompositions of tensors as mean-field approximations as described
in Chapter 3. The mean-field approximation is an approximation that makes all modes
independent. As a natural extension of this approximation, we defined many-body
approximation in which several modes are independent in Chapter 5. Since we can
describe the constraints of tensors after many-body approximation with linear conditions
of natural parameters, we succeeded in proposing a fast convex dimensionality reduction
based on the natural gradient method. As seen above, this study not only analyzed
traditional low-rank approximation by information geometry and developed efficient
algorithms, but also led to a novel dimensionality reduction task that overcomes the
problems of non-convexity and rank tuning that traditional low-rank approximation
faced.

6.2 Questions to Be Answered

Here we describe two challenges that could not be resolved in this study yet can be
interesting research topics in the future.
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Figure 6.2 A sketch of a concept for interactions between tensors. Two tensors, P ∈ RI×J×K×L and
Q ∈ RI×J×K×L, have a two-body interaction through mode-l. It implies that they have the
following structure Pijkl = XijYjkZkiUkl and Qijkl = AijBjkCkiUkl where U is a shared
factor.

How to choose model manifold?

In Chapter 3, the concept of bingo is introduced to solve the low-Tucker-rank approxi-
mation as a convex optimization problem. Determining positions of bingos is a model
selection problem. Therefore, a criterion for selecting a bingo is required. In addition,
it remains to be discussed which interactions should be activated in the many-body
approximation. Both of the above challenges are about how the constraints on the
model manifold should be determined. Note that each model manifold is always e-flat,
regardless of the choice of interactions and bingos.

How should we introduce ordered structures to data?

We use a log-linear model on posets to map data to a discrete probability distribution.
For this purpose, in Section 3.4 and 4.3, we introduced partially ordered structures that
did not originally exist in data. The correspondence between data and partially ordered
structures is not unique. This study did not answer the question, “Why do we map data
to this partially ordered structure?”

Since it does not exist in the original data, the closed solution formulas for the best
rank-1 approximation in Theorems 3.1 and 4.1 and numerical solutions for many-body
approximation should be independent from the choice of partially ordered structures.
For example, with either partially ordered structure shown in Figure 6.1, we could
discuss rank-1 approximations and interactions between the modes. However, we have
not yet answered the interesting question of which structure is more suitable for our
discussions.
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6.3 Limitations of the Proposed Methods

We discuss limitations of our proposed methods in this section.

We assume input data are non-negative and dense.

We developed efficient algorithms by regarding data as joint distributions to apply the
theory of information geometry, which is the key idea throughout our research. Due to the
correspondence between data and joint probabilities, we naturally impose non-negativity
on input data. Therefore, our proposed methods cannot treat tensor data that include
negative values.

It has been pointed out that larger-order tensors often become sparse. Although various
strategies to treat sparse data have been developed [94, 97, 110], we do not consider
them in our research. Our proposed methods can treat only non-negative dense tensors.
We also need more discussion to develop decompositions with popular constraints such
as symmetry [13, 14] and definiteness [2, 80], which could be our future works.

We optimize the KL divergence instead of the least-squares error.

Our proposed methods, LTR, A1GM, and many-body approximation, optimize the recon-
struction error defined with the KL divergence. It is because we use the optimization
theory in information geometry. However, the LS error is the most popular cost function in
tensor and matrix decompositions. Although we empirically evaluated proposed methods
with the LS error in Sections 3.11 and 5.8, we did not provide any theoretical bound
about the LS error.

DAG is not learnable.

We assume that the data structure is static. This means that, once we introduce a
handcrafted poset to map data to probabilities, we suppose that the partial order structure
does not change. This strategy does not accommodate applications where the data
structure is dynamic, such as dynamic analysis of source-code [10]. Although some
applications directly obtain DAGs, e.g., causal inference [45], we cannot directly apply
the proposed framework to these tasks.
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Figure 6.3 Undirected interaction (left) and directed interaction (right) for 3rd-order tensors.

6.4 Future Directions

The flexibility of a log-linear model on posets, our proposed manifold learning with
physics strategies, and interaction representation for tensors lead us to new research
directions. In this section, we show some examples of them.

6.4.1 From Array to More General Data Structure

This dissertation handled matrices, tensors, multiple matrices, and matrices with missing
values. We think we can additionally formulate manifold learning for more general data
structures, i.e., attributed graphs, based on the flexibility of the log-linear model on
posets. Attributed graphs are frequently used in bioinformatics, medical science [132]
and chemoinformatics [125]. By describing graph data with nonnegative attributes at
nodes by the natural parameter θ and then reducing some of them, a convex manifold
learning for these data can be formulated. That is, our proposed low-rank and many-body
approximations for multidimensional arrays defined by natural parameter reduction can
potentially be extended to graph data. Of course, it is not trivial how to define ranks or
interactions naturally for such a general data structure, but we believe discussions based
on information geometry may provide some suggestions.

6.4.2 From Classical to Quantum Many-body Approximation

Many-body approximation for tensors is based on the strategy of statistical mechanics.
The probability of the appearance of a state, i.e., the value of the indices of a tensor, is
defined by an energy function. The model in Equation (5.1) that includes the energy
function in the exponential function is called canonical distribution [106, Chapter 5].
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In quantum mechanics, physical quantities are described by Hermitian matrices whose
eigenvalues are the possible measured values [20, Appendix A2]. In particular, the
Hermitian matrix corresponding to energy is called a Hamiltonian. The many-body
approximation may be extended into the world of quantum mechanics by replacing the
energy function in the canonical distribution with a Hamiltonian. Similar extensions have
already been demonstrated in quantum Boltzmann machines [5].

The quantity obtained by putting a Hamiltonian into an exponential function is not a
distribution but a density matrix. We obtain a probability distribution by computing the
trace of the product of the density matrix and the projection matrix corresponding to the
physical quantity to be observed, e.g., the z-direction of spins. By mapping the obtained
probability distribution to a non-negative tensor and parameterizing the Hamiltonian
with n-body parameters, we can formulate a quantum many-body approximation for
tensors.

Quantum Boltzmann machines are more expressive than classical Boltzmann machines
because they can handle quantum spin states that classical Boltzmann machines cannot
describe. We believe that a similar advantage can be seen in the quantum many-body
approximation for tensors. We are fascinated by this idea of increasing the expressive
power of tensor decompositions through quantum mechanics.

6.4.3 From Intra-tensor to Inter-tensor

Many-body approximation assumes the existence of dominant interactions between modes
in a tensor. Using the tensor interaction diagram introduced in Chapter 5, we intuitively
discuss approximations based on these interaction in a tensor. The natural question arises:
can this diagram be applied to multiple tensors? For example, as shown in Figure 6.2,
we can use the interactive representation to show how multiple tensors are related to
each other through certain modes. In this way, we might be able to introduce interactions
between tensors. Couple tensor analysis [121], which discovers relationships between
tensors, often assumes shared bases between the tensors and performs a decomposition
based on nonconvex optimization. The decomposition based on interactions between
tensors possibly reveals tensors’ relationships that cannot be discovered by traditional
low-rank approximation.

6.4.4 From Undirected to Directed Interactions

We introduced an interaction between the modes of the tensor and visualized it in a
factor graph. A factor graph is a network representation using an undirected graph [11,
Chapter 8]. On the other hand, Bayesian networks, which represent distributions by
directed graphs, are widely used in the field of graphical modeling [91, Chapter 10].
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Bayesian networks represent the product of conditional probabilities. Interestingly, when
we map non-negative tensors to joint probability distributions, the n-body expectation
parameter naturally appears in the computation of the conditional probabilities.

p(i | j) = p(i, j)∑
k p(i, k) = p(i, j)

ηi1 − ηi+1,1
.

In the many-body approximation, we control interactions between modes with the natural
parameter θ. However, we did not discuss the role of the expectation parameter η. Can we
introduce directed interactions between modes by using a many-body η parameter? What
do we mean by directed interactions between modes? We feel that many possibilities lie
in this exploration.

6.5 Final Remarks

This dissertation proposed a novel framework that enables convex and rank-free approx-
imation for various data structures by designing manifold learning with information
geometry, the geometry of probability distributions, and energy-based models inspired by
statistical mechanics. As we have described in this chapter, we expect many landscapes
beyond the dissertation. It is just the beginning of our framework, and we believe that
this dissertation opens a new world that will free us from the dimensionality reduction
difficulties we have suffered from for a long time, e.g., tuning of low-rank structure,
non-convexity of the objective function, initial value dependence, and ill-posed problems
of low-rank tensor reconstruction.
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Symbols

Tensors and Matrices

P,Q,R, . . . Tensors
X,Y,Z, . . . Matrices
a, b, c, . . . Vectors
P The rank-reduced or body-reduced tensor
D The order of tensor
Ik The length of the k-th mode of a tensor
ΩD The index set of the D-th order tensor
I The hyper diagonal tensor
P(k) The mode-k expansion of the tensor P
P≤m The m-body approximation for the non-negative tensor P
Pcyc The cyclic two-body approximation for the non-negative tensor P
Qc The set of slice-balanced tensors
QC The set of fiber-balanced tensors
P(k) The resulting tensor of m-projection of P onto B(k)

Pa(k):b(k) The subtensor obtained by fixing the range of kth index to only from a to b of P
(r1, . . . , rD) The Tucker rank
(R1, . . . , RD) The tensor ring rank
Rk↔l The permutation matrix, which switches the k-th row and the l-th row
I The identity matrix
1IJ The I × J all-one matrix
0IJ The I × J all-zero matrix
Φ The weight matrix
⊗ Kronecker product
◦ The element-wise product
S(·) The total sum of the matrix or the vector
Rank(·) The matrix rank
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Log-linear Model on Posets and Information Geometry

(Ω,≤) The poset (partially ordered set)
⊥ The least element in the poset
θ The natural parameters
η The expectation parameters

θ
(k)
ik
, η

(k)
ik

The one-body θ and η-parameter
G Fisher information matrix
ψ(θ) Helmholtz free energy
µ(·, ·) Möbius function
ζ(·, ·) Zeta function
D(·, ·) Kullback–Leibler (KL) divergence
DΦ(·, ·) Weighted KL divergence
H(l1,...,ln) The n-th order energy
B(k) The bingo space on the mode-k
B1 The rank-1 space

Sets

∅ The empty set
N The set of natural numbers
R The set of real numbers
R≥0 The set of non-negative real numbers
R>0 The set of positive real numbers
B \A The set difference of B and A
[n,m] {n, n+ 1, . . . ,m− 1,m}
[m] {1, 2, . . . ,m}

Others

O Landau’s symbol
Z The partition function
∥ · ∥F Frobenius norm
∥ · ∥ Euclidean norm of a vector
E[ · ] The expected value
δij Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise

98 Chapter 6 Symbols



List of Definitions

Definition 2.1 Poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Definition 2.2 Log-linear Model on Poset . . . . . . . . . . . . . . . . . . . . . 8

Definition 2.3 Expectation Parameters . . . . . . . . . . . . . . . . . . . . . . . 8

Definition 3.1 One-body and Many-body Parameter . . . . . . . . . . . . . . . 21

Definition 3.2 Bingo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Definition 4.1 Simultaneously Rank-1 Decomposable . . . . . . . . . . . . . . 49

Definition 4.2 Grid-like Binary Weight Matrix . . . . . . . . . . . . . . . . . . . 57

Definition 4.3 Disjoint Binary Vectors . . . . . . . . . . . . . . . . . . . . . . . 59

Definition 5.1 n-body Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Definition 5.2 n-th Order Energy . . . . . . . . . . . . . . . . . . . . . . . . . 74

Definition 5.3 m-body Approximation for Non-negative Tensors . . . . . . . . 76

Definition 5.4 Cyclic Two-body Approximation for Non-negative Tensors . . . 77

99





List of Propositions

Proposition 2.1 Expectation Conservation Law in m-projection [4, Chapter 11.3] 12

Proposition 3.1 Rank-1 Condition (θ-representation) . . . . . . . . . . . . . . 21

Proposition 3.2 Rank-1 Condition (η-representation) . . . . . . . . . . . . . . 22

Proposition 3.3 m-projection onto Factorizable Subspace . . . . . . . . . . . . 24

Proposition 3.4 (θ, η)-conversion in Rank-1 Space . . . . . . . . . . . . . . . . 27

Proposition 3.5 Bingo and Tucker rank . . . . . . . . . . . . . . . . . . . . . . 28

Proposition 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Proposition 3.7 c-balancing Condition (η-representation) [117] . . . . . . . . 34

Proposition 3.8 C-balancing Condition (η-representation) [117] . . . . . . . . 36

Proposition 4.1 Simultaneous Rank-1 θ-condition . . . . . . . . . . . . . . . . 49

Proposition 4.2 Homogeneity of Rank-1 Missing NMF . . . . . . . . . . . . . . 55

101





List of Theorems

Theorem 3.1 Best Rank-1 Tensor Approximation Minimizing KL Divergence [59] 17

Theorem 3.2 Qc ∩ B1 is a singleton. . . . . . . . . . . . . . . . . . . . . . . . . 34

Theorem 3.3 Singleton Condition for Rank-1 Fiber-balanced Tensor . . . . . . 36

Theorem 4.1 Closed Formula for Best Rank-1 NMMF . . . . . . . . . . . . . . 46

103





List of Tasks

Task 3.1 Non-negative Low-Tucker-rank Approximation . . . . . . . . . . . . . 15

Task 4.1 Rank-1 Non-negative Multiple Matrix Factorization (Rank-1 NMMF) . 46

Task 4.2 Rank-1 NMF with Missing Values (Rank-1 missing NMF) . . . . . . . 54

105





List of Tables

Table 1.1 Correspondence between low-rank approximation and terms of informa-
tion geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table 1.2 List of proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1 A sketch of information geometric relationship between mean-field ap-
proximation and rank-1 approximation. . . . . . . . . . . . . . . . . . . . 26

Table 3.2 Experimental results of LTR on AttFace dataset. . . . . . . . . . . . . . . 41
Table 3.3 Experimental results of LTR on 4DLFD dataset. . . . . . . . . . . . . . . . 41

Table 4.1 Performance of A1GM compared to KL-WNMF on 20 real datasets. . . . . 66
Table 4.2 Real detaset details for A1GM . . . . . . . . . . . . . . . . . . . . . . . . 67

107





List of Figures

Figure 1.1 Low-rank approximations for (a) matrix, (b) tensor, (c) matrix with
missing values and (d) multiple matrices with sharing bases. For sim-
plicity, we assume the target rank is 1. . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 A sketch of our strategy for low-rank approximation. We design a poset
corresponding to a given data structure (left) and define a discrete
probability distribution on that poset (middle). The dimensionality
reduction is performed by projecting some of the natural parameters of
the probability distribution to zero (right). . . . . . . . . . . . . . . . . 4

Figure 2.1 (a) The domain of log-linear model for high-order Boltzmann-machine.
We described for n = m = 4 in Equation (2.6). Arrows indicate or-
dered relationships between elements in Ω. We omitted braces. For
example, “34” means {3, 4}. (b) An example of expectation conserva-
tion law in m-projection for N = 3. To distinguish coordinate axes
from coordinate values, coordinate values are marked with a symbol
“′”. The m-projection from a point (θ1, η2, η3) = (θ′

1, η
′
2, η

′
3) to subspace

satisfying θ1 = 0 keeps the value of η2 and η3. . . . . . . . . . . . . . . 12

Figure 3.1 An example of reducing Tucker rank of a tensor P ∈ RI1×I2×I3
>0 to at

most (r1, r2, I3) by the proposed method LTR. F1 is the set of positive
tensors with Tucker rank at most (r1, I2, I3) and F2 with Tucker rank
at most (I1, r2, I3). The best approximation tensor exists in F1 ∩ F2,
enclosed by the dotted lines. For m = 1, 2, there exist e-flat bingo spaces
B(m) ⊂ Fm. The projection onto Bm can be performed by dividing
P into subtensors along with mode-m direction and replacing each
subtensor with its rank-1 approximation. The choice of bingo space is
not unique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.2 (a) A poset (Ω3,≤) corresponding to 3×3×3 tensor. The parameters on
the gray nodes are one-body parameters. (b) The non-negative rank-1
approximation is formulated as a m-projection from input tensor to
rank-1 space, minimizing KL divergence. . . . . . . . . . . . . . . . . . 19

Figure 3.3 We can represent non-negative tensors whose sum is 1 by θ- and η-
parameters. This is a coordinate transformation that enables us to easily
design flat model manifolds. . . . . . . . . . . . . . . . . . . . . . . . . 20

109



Figure 3.4 The relationship between matrix ranks and the bingo rule in the case
of D = 2 and I1 = I2 = 5. Bingos on horizontal and vertical direction
reduce matrix rank. Bingos on the first column, the first row, and
diagonal direction does not have any effect to the matrix rank. In the
case of rank-1, the bingo selection is unique. . . . . . . . . . . . . . . . 28

Figure 3.5 Examples of LTR for (8, 8, 2) tensor. ΩB is bingo-index set. Tensor values
and their η-parameters on Ω̂B do not change, and the η-parameters on
Ω̂c

B ∩ Ωc
B also do not change, where Ω̂c

B = ΩD\Ω̂B and Ωc
B = ΩD\ΩB.

For the target rank (8, 5, 2), we firstly define three bingos on mode-2 as
shown in (a) since 8− 5 is 3, and approximate two contiguous blocks
filled in green and blue in (b) by rank-1 tensor using formula (3.2). As
the same way, (c) shows the case where the target rank is (7, 5, 2). We
additionally define single bingo on mode-1 since 8− 7 is 1. A subtensor
approximated by formula (3.2) is filled in yellow. We assume that we
project a tensor onto B(1), followed by projecting it onto B(2). After
the second m-projection, the θ-parameters on red panels seems to be
overwritten. However, these values remain to be zero after the second
m-projection. Figures (a), (b), and (c) correspond to P, P ′, and P in
Figure 3.1, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.6 (a) The relationship among rank-1 approximation, Legendre decompo-
sition [118], and mean-field equation, where we assume that the same
bingo space is used in Legendre decomposition. A solid line illustrates
m-projection with fixing one-body η parameters. P is an input positive
tensor and P is the rank-1 tensor that minimizes the KL divergence from
P. O is an initial point of Legendre decomposition, which is usually a
uniform distribution. Pt is a tensor of the t-th step of gradient descent
in Legendre Decomposition. (b) The m-projection of a common space
of two different bingo spaces from P can be achieved by m-projection
into one bingo space and then m-projecting into the other bingo space. 33

Figure 3.7 (a) All parameters are uniquely determined when the rank-1 and bal-
ancing conditions are imposed simultaneously. (b) Balancing subspace
Qc (blue) and rank-1 subspace (orange) B1 in θ space (left) and η space
(right) with I1 = I2 = 2 and c(1) = c(2) = (0.4, 0.6). . . . . . . . . . . . 35

Figure 3.8 Experimental results for synthetic (a, b) and real-world (c, d) datasets.
Mean errors ± standard error for 20 times iterations are plotted. (a)
The horizontal axis is r for target Tucker rank (r, r, r, r, r). (b) The
horizontal axis is n3 for input (n, n, n) tensor. (c, d) The horizontal axis
is the number of elements of the core tensor. . . . . . . . . . . . . . . . 38

110 List of Figures



Figure 3.9 Experimental results for synthetic (a, b) and real-world (c, d) datasets.
The left-hand panels are KL reconstruction error and the right-hand
panels are LS reconstruction error. (a) The horizontal axis is r for target
tensor rank (r, r, r, r, r). (b) The horizontal axis is n3 for input (n, n, n)
tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.1 A sketch of Rank-1 NMMF with four inputs matrices for I = J = N =
M = L = 3. The task approximates four input matrices with shared
factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 (a) A partial order structure for NMMF for three input matrices X ∈
RI×J

>0 ,Y ∈ RN×J
>0 , Z ∈ RI×M

>0 and U ∈ RL×M
>0 . Only θ-parameters on

gray-colored nodes can have non-zero values if and only if (X,Y,Z,U)
is simultaneously rank-1 decomposable. (b) Information geometric
view of rank-1 NMMF. Rank-1 NMMF is m-projection onto simultaneous
rank-1 subspace from a tuple of input four matrices, where one-body
η-parameters do not change. . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.3 A sketch of relationship between Rank-1 NMMF with four inputs ma-
trices and NMF with missing values for I = J = N = M = L = 3. The
cost functions of these two tasks are equivalent. . . . . . . . . . . . . . 54

Figure 4.4 Examples of matrices with non-grid-like missing values (left) and grid-
like missing values (right). Meshed entries are missing values. We can
create grid-like missing values by increasing missing values. . . . . . . . 56

Figure 4.5 Sketch of the algorithm of A1GM. Meshed entries are missing values. In
Step 1, we increase missing values so that they become grid-like. In Step
2, we gather missing values in the block at the upper right by low and
column permutations. In Step 3, we use the closed formula of the best
rank-1 NMMF in Theorem 4.1 with L = 0. In this example, we get w =
(1.9, 1.5, 1.3)⊤,a = (1.9, 1.1)⊤ ,h = (1.8, 1.6, 1.3)⊤, b = (0.85, 3.4)⊤.
Finally, we get two vectors as the output by the repermutation. We use
two significant digits in this figure. . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.6 An examples of matrix with missing values where rank(Φ) = 2. We can
collect missing vlaues as a form of Equation (4.7) by column and row
permutations if rank(Φ) ≤ 2 holds. . . . . . . . . . . . . . . . . . . . . 61

List of Figures 111



Figure 4.7 A sketch of em-algorithm for missing values estimation for a matrix
T ∈ R3×3 and single missing value x. The algorithm estimates the value
of x by repeating e-step and m-step. e-step is e-projection from model
manifold to data manifold. m-step is m-projection from data manifold
to model manifold. In this example, the model manifold is a set of
rank-1 matrices. The dimension of the data manifold is the number
of missing values. When the model manifold is e-flat and the data
manifold is m-flat, the convergence of the algorithm and its uniqueness
are guaranteed [4, Chapter 8.1]. Theorem 4.1 finds the convergence
point Q∞ without iteration if the rank of the weight matrix of T is less
than or equal to 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.8 Running time comparison of the proposed method A1GM (triangle, dots
line) and KL-WNMF (circle, dashed line) with respect to the matrix size
N . (a) Missing values are at the top right corner. (b) Missing value
positions are grid-like. We plot the mean ± S.D. of five trials. . . . . . . 65

Figure 5.1 In tensor decomposition, larger target ranks increase the capability of
the model and reduce reconstruction errors, while increasing computa-
tional cost. We need to face this trade-off problem to set the appropriate
rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.2 (a) An illustration of optimization of Legendre decomposition. Inter-
action representations corresponding to (c) Equation (5.9) and (d)
Equation (5.10). In interaction representations, edges through ■ be-
tween modes mean existing interaction. For simplicity, we abbreviate
one-body interactions in the diagrams. . . . . . . . . . . . . . . . . . . . 71

Figure 5.3 Constraints and interaction representations for n-body approximation
of a 4th-order tensor P3×3×3×3

≥0 for n = 0, 1, . . . , 4. Only θ-parameters
on gray-colord nodes can have non-zero values after each approxima-
tion. The four-body approximation for 4th-order tensor will not reduce
θ-parameters. Since one-body approximation is equivalent to rank-1
approximation, n-body approximation is a generalization of rank-1 ap-
proximation. We abbreviate one-body interactions in the diagrams. The
m-projection does not change the values of the expectation parameters
on the gray nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.4 The constraint and interaction representation for cyclic two-body ap-
proximation of 4th-order tensors P3×3×3×3

≥0 . Only θ-parameters on
colored nodes can have non-zero values after the approximation. In-
teractions, ■, and corresponding two-body parameters are filled in the
same color. One-body parameters are on gray-colored nodes. . . . . . . 80

112 List of Figures



Figure 5.5 (a) Interaction representation of an example of cyclic two-body approx-
imation and its transformed tensor network for D = 4. Each tensor is
enclosed by a square and each mode is enclosed by a circle. A black cir-
cle • is a hyper diagonal tensor. Edges through ■ between modes mean
interaction existence. (b) Tensor network of tensor ring decomposition. 81

Figure 5.6 (a) Interaction representation corresponding to Equation (5.17) and
its transformed tensor network for D = 9. We abbreviate one-body
interactions in the diagram. (b) Tensor network of a variant of tensor
tree decomposition. Each mode is enclosed by a circle. Each tensor is
enclosed by a square. A black circle, •, is a hyper diagonal tensor. Edges
through ■ between modes mean existing interaction. . . . . . . . . . . 82

Figure 5.7 (a)(b) Results for low ring rank tensor. (c)(d) Results for tensors
sampled from uniform distribution. The vertical red dotted line is |B| in
Equation (5.16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.8 Experimental results for real datasets. The vertical red dotted line is |B|
in Equation (5.16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 6.1 We could construct an equivalent theory by introducing either structure
for tensors. Which ordered structure should we have introduced? . . . . 90

Figure 6.2 A sketch of a concept for interactions between tensors. Two tensors,
P ∈ RI×J×K×L and Q ∈ RI×J×K×L, have a two-body interaction
through mode-l. It implies that they have the following structure Pijkl =
XijYjkZkiUkl and Qijkl = AijBjkCkiUkl where U is a shared factor. . 91

Figure 6.3 Undirected interaction (left) and directed interaction (right) for 3rd-
order tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

List of Figures 113





References

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9(1):147–169, 1985.

[2] Emmanuel Agullo, Eric Darve, Luc Giraud, and Yuval Harness. Low-rank fac-
torizations in data sparse hierarchical algorithms for preconditioning symmetric
positive definite matrices. SIAM Journal on Matrix Analysis and Applications,
39(4):1701–1725, 2018.

[3] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction of
a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[4] S. Amari. Information Geometry and Its Applications. Springer, 2016.

[5] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and
Roger Melko. Quantum boltzmann machine. Physical Review X, 8(2):021050,
2018.

[6] J. R. Anderson and C. Peterson. A mean field theory learning algorithm for neural
networks. Complex Systems, 1:995–1019, 1987.

[7] Titu Andreescu and Zuming Feng. A Path to Combinatorics for Undergraduates:
Counting Strategies. Springer Science & Business Media, 2003.

[8] C. Bhattacharyya and S. S. Keerthi. Information geometry and Plefka’s mean-field
theory. Journal of Physics A: Mathematical and General, 33(7):1307, 2000.

[9] Michael Biggs, Ali Ghodsi, and Stephen Vavasis. Nonnegative matrix factorization
via rank-one downdate. In Proceedings of the 25th International Conference on
Machine Learning, pages 64–71, 2008.

[10] David Binkley. Source code analysis: A road map. Future of Software Engineering
(FOSE’07), pages 104–119, 2007.

[11] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. The
Journal of Machine Learning Research, 3:993–1022, 2003.

[13] Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas. Symmetric
tensor decomposition. Linear Algebra and its Applications, 433(11-12):1851–1872,
2010.

115



[14] James R Bunch, Linda Kaufman, and Beresford N Parlett. Decomposition of a
symmetric matrix. Numerische Mathematik, 27(1):95–109, 1976.

[15] P. E. Caines, M. Huang, and R. Malhamé. Large population stochastic dynamic
games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence
principle. Communications in Information and Systems, 6(3):221–252, 2006.

[16] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[17] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments.
arXiv:1608.04295, Aug 2016.

[18] Xing-Yu Chen, Jie Zhang, and Li-Rong Dai. Reference microphone selection
and low-rank approximation based multichannel wiener filter with application
to speech recognition. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4963–4967. IEEE, 2022.

[19] Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for
generative modeling. Physical Review B, 99(15):155131, 2019.

[20] Mahn-Soo Choi. A Quantum Computation Workbook. Springer, 2022.

[21] Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari. Generalized alpha-beta
divergences and their application to robust nonnegative matrix factorization.
Entropy, 13(1):134–170, 2011.

[22] Andrzej Cichocki, Hyekyoung Lee, Yong-Deok Kim, and Seungjin Choi. Non-
negative matrix factorization with α-divergence. Pattern Recognition Letters,
29(9):1433–1440, 2008.

[23] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P
Mandic, et al. Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions. Foundations and Trends® in
Machine Learning, 9(4-5):249–429, 2016.

[24] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao,
Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis. IEEE signal processing
magazine, 32(2):145–163, 2015.

[25] Pierre Comon. Independent component analysis, a new concept? Signal Processing,
36(3):287–314, 1994.

[26] Alex P da Silva, Pierre Comon, and André LF de Almeida. A finite algorithm to
compute rank-1 tensor approximations. IEEE Signal Processing Letters, 23(7):959–
963, 2016.

116 References



[27] Alex Pereira da Silva, Pierre Comon, and Andre Lima Ferrer de Almeida. Rank-
1 tensor approximation methods and application to deflation. arXiv preprint
arXiv:1508.05273, 2015.

[28] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear sin-
gular value decomposition. SIAM Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[29] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1
and rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM Journal on
Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[30] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-
rank approximation problem. SIAM Journal on Matrix Analysis and Applications,
30(3):1084–1127, 2008.

[31] Weisheng Dong, Guangyu Li, Guangming Shi, Xin Li, and Yi Ma. Low-rank
tensor approximation with laplacian scale mixture modeling for multiframe image
denoising. In Proceedings of the IEEE International Conference on Computer Vision,
pages 442–449, 2015.

[32] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936.

[33] Aybüke Erol and Borbála Hunyadi. Tensors for neuroimaging: A review on
applications of tensors to unravel the mysteries of the brain. Tensors for Data
Processing, pages 427–482, 2022.

[34] Glen Evenbly and Guifre Vidal. Tensor network renormalization. Physical Review
Letters, 115(18):180405, 2015.

[35] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix fac-
torization with the itakura-saito divergence: With application to music analysis.
Neural computation, 21(3):793–830, 2009.

[36] Cédric Févotte and Jérôme Idier. Algorithms for nonnegative matrix factorization
with the β-divergence. Neural Computation, 23(9):2421–2456, 2011.

[37] Ronald Aylmer Fisher and Frank Yates. Statistical Tables for Biological, Agricultural
and Medical Research. Hafner Publishing Company, 1953.

[38] Shmuel Friedland, Volker Mehrmann, Agnieszka Miedlar, and M Nkengla. Fast
low rank approximations of matrices and tensors. The Electronic Journal of Linear
Algebra, 22:1031–1048, 2011.

[39] K. Ghalamkari and M. Sugiyama. Towards geometric understanding of low-rank
approximation. In NeurIPS 2020 Workshop: Differential Geometry meets Deep
Learning, Virtual Event, December 2020.

References 117



[40] K. Ghalamkari and M. Sugiyama. Fast tucker rank reduction for non-negative ten-
sors using mean-field approximation. In Advances in Neural Information Processing
Systems, volume 34, pages 443–454, Virtual Event, December 2021.

[41] K. Ghalamkari and M. Sugiyama. Fast rank-1 NMF for missing data with KL diver-
gence. In Proceedings of the 25th International Conference on Artificial Intelligence
and Statistics, pages 2927–2940, Virtual Event, March 2022.

[42] Kazu Ghalamkari and Mahito Sugiyama. Many-body approximation for tensors.
arXiv preprint arXiv:2209.15338, 2022.

[43] Kazu Ghalamkari and Mahito Sugiyama. Non-negative low-rank approximations
for multi-dimensional arrays on statistical manifold. Information Geometry, pages
1–36, 2023.

[44] Nicolas Gillis and François Glineur. Low-rank matrix approximation with weights
or missing data is NP-hard. SIAM Journal on Matrix Analysis and Applications,
32(4):1149–1165, 2011.

[45] Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. Causal inference in statistics:
A primer. John Wiley & Sons, 2016.

[46] Edward F. Gonzalez. Efficient Alternating Gradient-type Algorithms for the Approx-
imate Non-negative Matrix Factorization Problem. PhD thesis, Rice University, 1
2007.

[47] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. The
lumigraph. In Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, pages 43–54, 1996.

[48] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of
low-rank tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78,
2013.

[49] Christian Grussler and Anders Rantzer. On optimal low-rank approximation of
non-negative matrices. In 2015 54th IEEE Conference on Decision and Control
(CDC), pages 5278–5283. IEEE, 2015.

[50] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42.
Springer, 2012.

[51] Davood Hajinezhad, Tsung-Hui Chang, Xiangfeng Wang, Qingjiang Shi, and Mingyi
Hong. Nonnegative matrix factorization using ADMM: Algorithm and convergence
analysis. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4742–4746. IEEE, 2016.

118 References



[52] Richard A. Harshman. Foundations of the parafac procedure : Models and con-
ditions for an "explanatory" multi-mode factor analysis. UCLA Working Papers in
Phonetics, 16:1–84, 1970.

[53] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal
of the ACM (JACM), 60(6):1–39, 2013.

[54] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[55] Frank L Hitchcock. Multiple invariants and generalized rank of a p-way matrix or
tensor. Journal of Mathematics and Physics, 7(1-4):39–79, 1928.

[56] Ngoc-Diep Ho and Paul Van Dooren. Non-negative matrix factorization with fixed
row and column sums. Linear Algebra and its Applications, 429(5–6):1020–1025,
2008.

[57] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and Bastian Goldluecke. A
dataset and evaluation methodology for depth estimation on 4d light fields. In
Asian Conference on Computer Vision, pages 19–34. Springer, 2016.

[58] Junhui Hou, Lap-Pui Chau, Nadia Magnenat-Thalmann, and Ying He. Sparse
low-rank matrix approximation for data compression. IEEE Transactions on Circuits
and Systems for Video Technology, 27(5):1043–1054, 2015.

[59] Kejun Huang and Nicholas D Sidiropoulos. Kullback-leibler principal component
for tensors is not np-hard. In 2017 51st Asilomar Conference on Signals, Systems,
and Computers, pages 693–697. IEEE, 2017.

[60] Yuwang Ji, Qiang Wang, Xuan Li, and Jie Liu. A survey on tensor techniques and
applications in machine learning. IEEE Access, 7:162950–162990, 2019.

[61] Xiaoran Jiang, Mikaël Le Pendu, Reuben A Farrugia, and Christine Guillemot. Light
field compression with homography-based low-rank approximation. IEEE Journal
of Selected Topics in Signal Processing, 11(7):1132–1145, 2017.

[62] Jingu Kim, Yunlong He, and Haesun Park. Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent framework.
Journal of Global Optimization, 58(2):285–319, 2014.

[63] Yong-Deok Kim and Seungjin Choi. Nonnegative Tucker decomposition. In 2007
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2007.

[64] Yong-Deok Kim and Seungjin Choi. Weighted nonnegative matrix factorization. In
2009 IEEE international conference on acoustics, speech and signal processing, pages
1541–1544. IEEE, 2009.

References 119



[65] Yong-Deok Kim, Andrzej Cichocki, and Seungjin Choi. Nonnegative Tucker decom-
position with alpha-divergence. In 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1829–1832. IEEE, 2008.

[66] Stefan Klus and Patrick Gelß. Tensor-based algorithms for image classification.
Algorithms, 12(11):240, 2019.

[67] Masahiro Kohjima, Tatsushi Matsubayashi, and Hiroshi Sawada. Non-negative mul-
tiple matrix factorization with Euclidean and Kullback-Leibler mixed divergences.
In 2016 23rd International Conference on Pattern Recognition, pages 2515–2520.
IEEE, 2016.

[68] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[69] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly:
Tensor learning in python. Journal of Machine Learning Research, 20(26):1–6,
2019.

[70] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[71] Lieven De Lathauwer. A multilinear singular value decomposition. SIAM Journal
on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[72] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial
on energy-based learning. Predicting structured data, 1(0), 2006.

[73] Daniel Lee and H. Sebastian Seung. Algorithms for non-negative matrix factoriza-
tion. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems, volume 13, pages 556–562. MIT Press, 2001.

[74] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[75] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix fac-
torization. In Advances in Neural Information Processing Systems, pages 556–562,
2001.

[76] Michael Levin and Cody P Nave. Tensor renormalization group approach to
two-dimensional classical lattice models. Physical Review Letters, 99(12):120601,
2007.

[77] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques, pages 31–42,
1996.

120 References



[78] Qing Liao and Qian Zhang. Efficient rank-one residue approximation method for
graph regularized non-negative matrix factorization. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 242–255.
Springer, 2013.

[79] P.-L. Lions and J.-M. Lasry. Large investor trading impacts on volatility. Annales de
l’Institut Henri Poincare (C) Non Linear Analysis, 24(2):311–323, 2007.

[80] Xinyue Liu, Chara Aggarwal, Yu-Feng Li, Xiaugnan Kong, Xinyuan Sun, and Saket
Sathe. Kernelized matrix factorization for collaborative filtering. In Proceedings of
the 2016 SIAM International Conference on Data Mining, pages 378–386. SIAM,
2016.

[81] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan.
Tensor robust principal component analysis with a new tensor nuclear norm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(4):925–938, 2019.

[82] Yuan Luo, Fei Wang, and Peter Szolovits. Tensor factorization toward precision
medicine. Briefings in bioinformatics, 18(3):511–514, 2017.

[83] Osman Asif Malik and Stephen Becker. A sampling-based method for tensor ring
decomposition. In International Conference on Machine Learning, pages 7400–7411.
PMLR, 2021.

[84] Ivan Markovsky. Low rank approximation: algorithms, implementation, applications,
volume 906. Springer, 2012.

[85] Takeru Matsuda and Tasuku Soma. Information geometry of operator scaling.
Linear Algebra and its Applications, 649:240–267, 2022.

[86] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The
Quarterly Journal of Mathematics, 11(1):50–59, 1960.

[87] Yusuke Monno, Daisuke Kiku, Masayuki Tanaka, and Masatoshi Okutomi. Adaptive
residual interpolation for color and multispectral image demosaicking. Sensors,
17(12):2787, 2017.

[88] Yusukex Monno, Sunao Kikuchi, Masayuki Tanaka, and Masatoshi Okutomi. A
practical one-shot multispectral imaging system using a single image sensor. IEEE
Transactions on Image Processing, 24(10):3048–3059, 2015.

[89] Valentin Murg, Frank Verstraete, Örs Legeza, and Reinhard M Noack. Simulating
strongly correlated quantum systems with tree tensor networks. Physical Review B,
82(20):205105, 2010.

References 121



[90] Valentin Murg, Frank Verstraete, Reinhold Schneider, Peter R Nagy, and O Legeza.
Tree tensor network state with variable tensor order: An efficient multirefer-
ence method for strongly correlated systems. Journal of Chemical Theory and
Computation, 11(3):1027–1036, 2015.

[91] Kevin P Murphy. Machine learning: A probabilistic perspective. MIT press, 2012.

[92] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[93] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Comput-
ing, 33(5):2295–2317, 2011.

[94] Ricardo Otazo, Emmanuel Candes, and Daniel K Sodickson. Low-rank plus sparse
matrix decomposition for accelerated dynamic mri with separation of background
and dynamic components. Magnetic resonance in medicine, 73(3):1125–1136,
2015.

[95] Alexey Ozerov, Ngoc Duong, and Louis Chevallier. Weighted nonnegative tensor
factorization: on monotonicity of multiplicative update rules and application to
user-guided audio source separation. Technical Report, 2013.

[96] Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Mihalis A
Nicolaou, Anima Anandkumar, and Stefanos Zafeiriou. Tensor methods in com-
puter vision and deep learning. Proceedings of the IEEE, 109(5):863–890, 2021.

[97] Ankit Parekh and Ivan W Selesnick. Improved sparse low-rank matrix estimation.
Signal Processing, 139:62–69, 2017.

[98] Arkadiusz Paterek. Improving regularized singular value decomposition for col-
laborative filtering. In Proceedings of KDD cup and workshop, volume 2007, pages
5–8, 2007.

[99] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[100] Lana Periša and Alex Arslan. lanaperisa/tensortoolbox.jl v1.0.2. Nov 2019.

[101] C. Peterson. A mean field theory learning algorithm for neural networks. Complex
Systems, pages 995–1019, 1987.

[102] Menaka Rajapakse, Jeffrey Tan, and Jagath Rajapakse. Color channel encod-
ing with NMF for face recognition. In 2004 International Conference on Image
Processing, 2004. ICIP’04., volume 3, pages 2007–2010. IEEE, 2004.

122 References



[103] G.-C. Rota. On the foundations of combinatorial theory I: Theory of Möbius
functions. Z. Wahrseheinlichkeitstheorie, 2:340–368, 1964.

[104] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. Low-rank matrix factorization for deep neural network training
with high-dimensional output targets. In 2013 IEEE International Conference on
Acoustics, speech and signal processing, pages 6655–6659. IEEE, 2013.

[105] Yaser Esmaeili Salehani and Saeed Gazor. Smooth and sparse regularization for
nmf hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 10(8):3677–3692, 2017.

[106] Silvio R.A. Salinas. Introduction to Statistical Physics. Springer, 2001.

[107] Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochastic model
for human face identification. In Proceedings of 1994 IEEE Workshop on Applications
of Computer Vision, pages 138–142. IEEE, 1994.

[108] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with appli-
cations to statistics and computer vision. In Proceedings of the 22nd International
Conference on Machine Learning, pages 792–799, 2005.

[109] Y-Y Shi, L-M Duan, and Guifre Vidal. Classical simulation of quantum many-body
systems with a tree tensor network. Physical Review A, 74(2):022320, 2006.

[110] Nicholas D Sidiropoulos and Anastasios Kyrillidis. Multi-way compressed sensing
for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11):757–760, 2012.

[111] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The Annals of Mathematical Statistics, 35(2):876–879, 1964.

[112] David Skillicorn. Understanding complex datasets: data mining with matrix decom-
positions. Chapman and Hall/CRC, 2007.

[113] Dongjin Song, David A Meyer, and Martin Renqiang Min. Fast nonnegative matrix
factorization with rank-one ADMM. In NIPS 2014 Workshop on Optimization for
Machine Learning (OPT2014), 2014.

[114] Guang-Jing Song and Michael K Ng. Nonnegative low rank matrix approximation
for nonnegative matrices. Applied Mathematics Letters, 105:106300, 2020.

[115] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In
Proceedings of the 20th International Conference on Machine Learning, pages 720–
727, 2003.

[116] M. Sugiyama, H. Nakahara, and K. Tsuda. Information decomposition on struc-
tured space. In 2016 IEEE International Symposium on Information Theory, pages
575–579, 2016.

References 123



[117] M. Sugiyama, H. Nakahara, and K. Tsuda. Tensor balancing on statistical manifold.
In Proceedings of the 34th International Conference on Machine Learning, pages
3270–3279, 2017.

[118] Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Legendre decomposition for
tensors. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124017,
2019.

[119] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos. Tag
recommendations based on tensor dimensionality reduction. In Proceedings of the
2008 ACM Conference on Recommender Systems, pages 43–50, 2008.

[120] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Investigation
of various matrix factorization methods for large recommender systems. In 2008
IEEE International Conference on Data Mining Workshops, pages 553–562. IEEE,
2008.

[121] Koh Takeuchi, Katsuhiko Ishiguro, Akisato Kimura, and Hiroshi Sawada. Non-
negative multiple matrix factorization. In Twenty-Third International Joint Confer-
ence on Artificial Intelligence, pages 1713–1720, 2013.

[122] Koh Takeuchi, Ryota Tomioka, Katsuhiko Ishiguro, Akisato Kimura, and Hiroshi
Sawada. Non-negative multiple tensor factorization. In 2013 IEEE 13th Interna-
tional Conference on Data Mining, pages 1199–1204. IEEE, 2013.

[123] Toshiyuki Tanaka. A theory of mean field approximation. In Advances in Neural
Information Processing Systems, pages 351–360, 1999.

[124] Bruce Thompson. Canonical correlation analysis: Uses and interpretation. Sage,
1984.

[125] Roberto Todeschini and Viviana Consonni. Handbook of molecular descriptors. John
Wiley & Sons, 2008.

[126] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[127] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimensionality
reduction: a comparative review. J Mach Learn Res, 10(66-71):13, 2009.

[128] Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM
Journal on Optimization, 20(3):1364–1377, 2010.

[129] P. Weiss. L’hypothèse du champ moléculaire et la propriété ferromagnétique.
Journal de Physique Théorique et Appliquée, 6(1):661–690, 1907.

[130] Max Welling and Markus Weber. Positive tensor factorization. Pattern Recognition
Letters, 22(12):1255–1261, 2001.

124 References



[131] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1–3):37–52, 1987.

[132] Tong Wu, Yunlong Wang, Yue Wang, Emily Zhao, and Yilian Yuan. Leveraging
graph-based hierarchical medical entity embedding for healthcare applications.
Scientific Reports, 11(1):1–13, 2021.

[133] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 267–273,
2003.

[134] Yuan You, Hongmin Cai, and Jiazhou Chen. Low rank representation and its
application in bioinformatics. Current Bioinformatics, 13(5):508–517, 2018.

[135] YuYuan Yu, Kan Xie, Jinshi Yu, Qi Jiang, and Shengli Xie. Fast nonnegative tensor
ring decomposition based on the modulus method and low-rank approximation.
Science China Technological Sciences, 64(9):1843–1853, 2021.

[136] Yuyuan Yu, Guoxu Zhou, Ning Zheng, Yuning Qiu, Shengli Xie, and Qibin Zhao.
Graph-regularized non-negative tensor-ring decomposition for multiway represen-
tation learning. IEEE Transactions on Cybernetics, 2022.

[137] Guoying Zhang, Min He, Hao Wu, Guanghui Cai, and Jianhong Ge. Non-negative
multiple matrix factorization with social similarity for recommender systems. In
Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies, pages 280–286, 2016.

[138] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from
incomplete ratings using non-negative matrix factorization. In Proceedings of the
2006 SIAM International Conference on Data Mining, pages 549–553. SIAM, 2006.

[139] Tong Zhang and Gene H Golub. Rank-one approximation to high order tensors.
SIAM Journal on Matrix Analysis and Applications, 23(2):534–550, 2001.

[140] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor
ring decomposition. arXiv preprint arXiv:1606.05535, 2016.

[141] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Fast nonnegative matrix/tensor
factorization based on low-rank approximation. IEEE Transactions on Signal
Processing, 60(6):2928–2940, 2012.

[142] Xiaowei Zhou, Can Yang, Hongyu Zhao, and Weichuan Yu. Low-rank modeling and
its applications in image analysis. ACM Computing Surveys (CSUR), 47(2):1–33,
2014.

References 125





Publications by the Author

Journal Papers

[J1] K. Ghalamkari and M. Sugiyama. Non-negative low-rank approximations for multi-
dimensional arrays on statistical manifold. Information Geometry, 2023.(accepted)

Peer-reviewed Conference Papers

[P1] K. Ghalamkari and M. Sugiyama. Towards geometric understanding of low-rank
approximation. In NeurIPS 2020 Workshop: Differential Geometry meets Deep
Learning, Virtual Event, December 2020.

[P2] K. Ghalamkari and M. Sugiyama. Fast tucker rank reduction for non-negative tensors
using mean-field approximation. In Advances in Neural Information Processing
Systems, volume 34, pages 443–454, Virtual Event, December 2021.

[P3] K. Ghalamkari and M. Sugiyama. Fast rank-1 NMF for missing data with KL
divergence. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, pages 2927–2940, Virtual Event, March 2022.

Review papers

[R1] ガラムカリ和,杉山麿人, Leslie O’Bray, Bastian Rieck, Karsten Borgwardt. グラフ
カーネルの進展,人工知能 36 (4), 421-429

Conference Proceedings

[C1] ガラムカリ和,杉山麿人. 欠損を含む非負行列の高速なランク１分解,人工知能
学会研究会資料第120回人工知能基本問題研究会, 1-5, 2022.3

[C2] ガラムカリ 和, 杉山 麿人. 平均場近似に基づく正テンソルの最良ランク１近似,
人工知能学会全国大会論文集, 1H3GS1b02-1H3GS1b02, 2021.3

127





Index

Symbols
η-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 19, 73
θ-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 21, 73
e-flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 73
e-geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 73
e-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
m-body approximation . . . . . . . . . . . . . . . . . . . . . . 76
m-flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
m-geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
m-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 73
n-body interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 75
n-body parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 74
em-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A
attributed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

B
Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
bingo index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
bingo rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
bingo space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 28
Boltzmann machine . . . . . . . . . . . . . . . 7, 10, 25, 75

C
canonical distribution . . . . . . . . . . . . . . . . . . . . . . . 93
causal inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
coarse-grained transformation . . . . . . . . . . . 70, 80
core tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
CP decomposition . . . . . . . . . . . . . . . . . . . . . . . . .1, 69
CP-rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
cyclic two-body approximation . . . . . . . . . . . . . . 77

D
data manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
dimensionality reduction . . . . . . . . . . . . . . . . . . . . . 1
directed acyclic graph (DAG) . . . . . . . . . . . . . . . . . 7
directed interaction . . . . . . . . . . . . . . . . . . . . . . . . . 94
discrete structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
dually-flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

E
Eckart–Young–Mirsky theorem . . . . . . . . . . . . . . . . 1
empirical distributions . . . . . . . . . . . . . . . . . . . . . . . . 2

energy function . . . . . . . . . . . . . . . . . . . . . . . 3, 70, 75
energy-based model . . . . . . . . . . . . . . . . . . . . . . 3, 70
expectation parameter . . . . . . . . . . . . . . . . . . . . . . . .8
expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
exponential family . . . . . . . . . . . . . . . . . . . . 8, 19, 72

F
factor . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 6, 15, 43, 69
factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
fiber balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fisher information matrix . . . . . . . . . . . . . . . 10, 73
Fisher-Yates method . . . . . . . . . . . . . . . . . . . . . . . . . 18

G
geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
graphical model . . . . . . . . . . . . . . . . . . . . . . . . . 75, 94
grid-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

H
Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Helmholtz free energy . . . . . . . . . . . . . . . . . . . . . . . . 8
homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
hyper-diagonal tensor . . . . . . . . . . . . . . . . . . . . . . . 80

I
incidence algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
inclusion–exclusion principle . . . . . . . . . . . . . . . . 20
independent distributions . . . . . . . . . . . . . . . . . . . 14
information geometry . . . . . . . . . . . . . . . . . 2, 10, 73
interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
interaction representation . . . . . . . . . . . . . . . . . . . 75

K
KL-WNMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Kronecker product . . . . . . . . . . . . . . . . . . . 15, 43, 45
Kullback–Leibler divergence . . . . . . . . . 11, 15, 45

L
least squares error . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Legendre decomposition . . . . . . . . . . . . . 14, 32, 72
linear combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
log-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
low-rank approximation . . . . . . . . . . . . . . . . . . 1, 83
low-rank structure . . . . . . . . . . . . . . . . . . . . . . . . 1, 69
low-Tucker-rank approximation . . . . . . . . . . . . . .14
lraSNTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

129



M
Möbius inversion formula . . . . . . . . . . . . . . . . . 9, 72
Möbius function . . . . . . . . . . . . . . . . . . . . . . . . . 19, 72
many-body approximation . . . . . . . . . . . . . . . . . . .70
many-body parameter . . . . . . . . . . . . . . . . . . . . . . . 21
matrix rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 43
mean-field approximation . . . . . . . . . . . 14, 25, 83
missing NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 54
mixture coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
mode-k expansion . . . . . . . . . . . . . . . . . . . . . . . . . . .15
model manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
multidimensional array . . . . . . . . . . . . . . . . . . . . . .13
multilinear map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
multiple matrix factorization . . . . . . . . . . . . 44, 45

N
natural gradient method . . . . . . . . . . . . . . . . . . . . .11
natural parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
non-Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . 10
non-negative matrix factorization . . . . . . . . . 2, 43
non-negative Tucker decomposition . . . . . . . . . 13

O
one-body parameter . . . . . . . . . . . . . . . . . . . . . . . . . 21
order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

P
partition function . . . . . . . . . . . . . . . . . . . . . . . . . 8, 75
permutation matrix . . . . . . . . . . . . . . . . . . . . . . . . . 57
poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
power set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Q
quantum Boltzmann machines . . . . . . . . . . . . . . .93
quantum many-body approximation . . . . . . . . . 94

R
rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
rank-1 approximation . . . . . . . . . . . . . . . . . . . . . . . 13
rank-1 tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
reconstruction error . . . . . . . . . . . . . . . . . . . . . . 1, 69
relative error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Riemannian manifold . . . . . . . . . . . . . . . . . . . . . . . . .9
Riemannian metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

S
simultaneous rank-1 subspace . . . . . . . . . . . . . . . 51
simultaneously rank-1 decomposable . . . . . . . . 49
singular value decomposition . . . . . . . . . . . . . 1, 13
Sinkhorn algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33
slice balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
statistical manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 14
statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . .89

T
tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
tensor balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . 69
tensor network . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 80
tensor ring decomposition . . . . . . . . . . . . . . . 69, 80
tensor train decomposition . . . . . . . . . . . . . . . . . . 69
tensor tree decomposition . . . . . . . . . . . . . . . 69, 83
Tucker decomposition . . . . . . . . . . . . . . . . . . . . .1, 69
Tucker rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 15

U
undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

W
weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
weight matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
weighted cost function . . . . . . . . . . . . . . . . . . . . . . 54

130 Index



Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from
Apple Inc. Soham Chatteerjee developed some theorem environments.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/



	Cover
	Committee Members
	Abstract
	Abstract (Japanese)

	Acknowledgement
	Contents
	1 Introduction
	1.1 Main Contributions
	1.2 Remarks on Terminology

	2 Preliminaries
	2.1 Log-linear Model on Posets
	2.1.1 Boltzmann machine as an Example of Log-linear Model

	2.2 Projection Theory in Information Geometry
	2.2.1 Parameter Conservation in Projections


	3 Legendre Tucker rank Reduction
	3.1 Low-Tucker-rank Approximation for Tensors
	3.2 Idea of LTR
	3.3 The LTR Algorithm
	3.3.1 Computational Complexity of LTR

	3.4 Posets and Modeling for LTR
	3.5 Information Geometric View of Rank-1 Approximation
	3.6 Rank-1 Approximation as Mean-field Approximation
	3.7 Bingo Rule for General Low-Tucker-rank Approximation
	3.8 Invariance of the Summation in Each Axial Direction
	3.9 Relationship to Legendre Decomposition
	3.10 Connection between Rank-1 Approximation and Balancing
	3.10.1 Slice Balancing and Rank-1 Approximation
	3.10.2 Fiber Balancing and Rank-1 Approximation

	3.11 Experiments for LTR
	3.11.1 Results on Synthetic Data
	3.11.2 Results on Real Data

	3.12 Conclusion

	4 Fast Rank-1 NMF for Missing Data with KL Divergence
	4.1 Rank-1 Non-negative Multiple Matrix Factorization
	4.2 A Closed Formula of the Best Rank-1 NMMF
	4.3 Posets for NMMF
	4.4 Derivation of the Exact Solution of Rank-1 NMMF
	4.5 Rank-1 Missing NMF based on Rank-1 NMMF
	4.5.1 Connection between NMMF and missing NMF
	4.5.2 Rank-1 Missing NMF for Grid-like Missing
	4.5.3 Rank-1 Missing NMF with Rank() 2
	4.5.4 Rank-1 Missing NMF for the General Case
	4.5.5 Relation to em-algorithm
	4.5.6 Relation between A1GM and LTR
	4.5.7 Experiments for A1GM

	4.6 Conclusion

	5 Many-Body Approximation for Nonnegative Tensors
	5.1 Legendre Decomposition and Its Optimization
	5.1.1 Reminder to Legendre Decomposition
	5.1.2 Optimization

	5.2 Interaction and Its Representation of Tensors
	5.3 Many-body Approximation for Non-negative Tensors
	5.4 Connection to Tensor Network
	5.5 Other Example of Many-body Approximation and Its Tensor Network
	5.6 Many-body Approximation as Generalization of Mean-field Approximation
	5.7 Computational Complexity
	5.8 Experiments for Many-body Approximation
	5.8.1 Results on Synthetic Data
	5.8.2 Results on Real Data
	5.8.3 Implementation detail

	5.9 Conclusion

	6 Conclusion
	6.1 Characteristics and Strengths of This Study
	6.2 Questions to Be Answered
	6.3 Limitations of the Proposed Methods
	6.4 Future Directions
	6.4.1 From Array to More General Data Structure
	6.4.2 From Classical to Quantum Many-body Approximation
	6.4.3 From Intra-tensor to Inter-tensor
	6.4.4 From Undirected to Directed Interactions

	6.5 Final Remarks

	Symbols
	List of Definitions
	List of Propositions
	List of Theorems
	List of Tasks
	List of Tables
	List of Figures
	References
	Publications by the Author
	Index

