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Abstract

Representation learning has become a critical topic in many domains, such as natural
language processing and computer vision. This thesis concerns representation learning
on the knowledge graph. It contains two topics. The first topic focuses on learning
implicit type representations to improve the type-agnostic knowledge graph completion
models. The second topic turns to the application of knowledge graphs. It concerns
learning representations for item features extracted from the knowledge graphs to help
alleviate the user-side cold start problem in the recommender system. These two topics
can constitute a pipeline: task 1 can add new facts to a knowledge graph according to
existing ones, and these facts in the knowledge graph are used as features in task 2 to
help improve the recommender system’s performance.

Research in the first topic starts with a method that uses global entity co-occurrence
to improve the link prediction of bilinear type-agnostic knowledge graph completion
models. The entity co-occurrence is used with a loss function that is adapted from
the language models to calibrate entity and relation representations in the bilinear
knowledge graph completion models. In addition, it induces a relation-specific
embedding to represent acceptable implicit entity types. Experiments show that this
method has more improvement compared to a similar baseline approach designed for
the bilinear knowledge graph completion models.

The second research in the first topic drops the requirement of entity co-occurrence
and increases the number of relation-specific embeddings to capture implicit entity
types. Compared to the first research and other similar unsupervised type representation
learning methods, the method in the second research can capture more diverse implicit
entity types and can be applied to both bilinear and translational knowledge graph
completion models. Experiments show significant improvements for translational
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knowledge graph completionmodels, even on the knowledge graph that it is challenging
to define types on. The visualization of learned embeddings indicates that the proposed
method can capture diverse implicit entity types by indirectly utilizing entities in
relations.

In the second topic, the proposed method utilizes hypernetwork to generate
parameters in the recommender network for the user-side cold-start problem. The
contents of different attributes constitute item features in the second topic. Compared
to the model-agnostic meta-learning approaches, the proposed method can adapt
representations of both item attribute contents and the user interests in the item
attributes themselves faster. In addition, the proposed method is robust towards
different sizes of support and query sets in the meta-learning setting.

The research in the thesis focus on learning appropriate representations for the
underlying task: the first topic is link prediction and entity clustering. The second
topic is the recommendation for users with little data. The algorithm for the tasks is
simple: the proposed methods in the first topic adapt existing type-agnostic knowledge
graph completion models. The proposed method in the second topic uses a neural
network that takes facts in the knowledge graph about items for the recommendation
and another neural network for generating parameters for the recommender network.
Both neural networks are with a simple structure. Experiment results in the thesis
reveal that the (relatively) simple algorithms can have satisfying performance with
appropriate learned representations.
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1
Introduction

1.1 Background

Representation learning has become an important topic along with the rapid devel-
opment of deep learning because the performance of machine learning techniques
essentially depends on the underlying representations of data [3]. Representation
learning often refers to distributed representation learning in the deep learning era.
Input data is represented over many computing elements to extract active patterns,
and each computing element is involved in different input data [4]. The computing
elements are often represented by low-dimensional dense vectors; therefore, they are
also referred as "embeddings." Distributed representation learning combined with deep
learning has achieved great success in diverse domains, such as natural language
processing [5, 6] and image recognition [7].

This thesis concerns representation learning on the knowledge graph. A knowledge
graph contains real-world facts in the form of triples, namely, (head, relation, tail). For
example, the fact "NII is located in Tokyo" can be expressed as (NII, is-located-in, Tokyo).
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Figure 1.1: The connection of two tasks discussed in the thesis.

Facts in the knowledge graph can help downstream tasks, such as the Recommender
System [8] and Question Answering [9]. As representation learning should be discussed
with specific tasks [10, 3], this thesis considers two tasks: (1) adding new facts to a
knowledge graph according to existing ones; and (2) taking facts in a knowledge graph
to help the recommender system in a low-resource scenario. To be specific, these two
tasks are (1) calibrating representations of these facts themselves to improve the link
prediction performance; and (2) utilizing facts and fact structures to improve the
meta-learning recommender system performance on the user-side cold-start problem.
The first topic is about the knowledge graph itself, and the second topic is about
integrating knowledge graphs into the downstream task, recommendation. Both topics
focus on learning distributed representations of facts to improve the performance of
the given task. In addition, the proposed methods for these two tasks can constitute a
pipeline: adding new facts to a knowledge graph according to the existing ones to
provide features for recommender systems. Figure 1.1 presents the connection between
these two tasks.

As shown in Figure 1.1, the essential component in both tasks is the facts in the
knowledge graph. All proposed methods in this thesis concern learning distributed
representations of the facts in the knowledge graph to help the given tasks in the
pipeline. Note that, in task 2, i.e., learning representations of facts to help recommender
systems, the proposed method and the baseline models do not need other frameworks
to utilize the facts in the knowledge graph (as introduced later) - the task can benefit
from well-learned representations of facts without depending on other machine
learning techniques (to show a counterexample, integrating knowledge graphs into
question answering depending on language models and semantic analysis.) This
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property is the reason why the recommender system is chosen for the downstream
task.

The first topic concerns learning representations to extend the ability of knowledge
graph completion (KGC) models. Knowledge graph completion models learn entity
and relation embeddings from facts in the knowledge graph. KGC models use these
embeddings to answer queries. For example, "Who is the president of the United
States?" can be expressed as (?, president-of, United States). These embeddings are
also used for adding new facts into the knowledge graph according to existing ones.
Suppose there is a fact (Alice, born-in, United States) in the knowledge graph, we can
add (Alice, citizen-of, United States) into the knowledge graph, because, according
to the existing fact, this fact is very probable to be true. Most KGC models learn
type-agnostic embeddings. They ignore entity types and relation type constraints
(e.g., "Alice" probably has type "Human," "Animal," or "Creature," and the relation,
"born-in," probably requires the last term to be an entity with the type "Location.") I
proposed an unsupervised method that can enable KGC models to learn type-aware
entity embeddings to improve their link prediction ability. In addition, the proposed
method can also infer entity type according to entity embeddings. Details of this topic
are introduced in Section 1.2.

The first topic is about learning representations to help enrich the contents (i.e.,
facts) in the knowledge graph itself, whereas the second topic is about utilizing the
contents (facts and entity types) in the downstream application. Especially, this
topic focus on improving the recommender system in a data-scarce scenario, i.e.,
meta-learning in the recommender system. This topic concerns the user-side cold-start
problem, a problem caused by scarce user-item interactions and results in inferior
recommendation results. The intrinsic reason of this problem is that the system
cannot sufficiently optimize its parameters (i.e., the parameters in the recommender
system, and the representations of items and users.) due to the shortage of user-item
interactions. As a result, the sub-optimal parameters in the system cannot accurately
reflect user interests. I proposed a method based on the hypernetwork [11] and
reinforced it with the knowledge graph. Different from model-agnostic meta-learning
methods, the proposed system requires fewer training data. The proposed system
utilizes properties (i.e., facts) about the items from an external knowledge graph. It
uses a hypernetwork to generate weights and biases to capture user interests in the
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properties in the recommender system.
The first and second topics use contents from the knowledge graph, and the

motivation behind these two topics are the same: learning representations (rather than
drastically changing the algorithm) to perform better on corresponding tasks. The
detailed backgrounds of the two topics are presented in the following sections.

1.2 Improving Knowledge Graph Completion Models

with Type Representations

Knowledge graph stores facts about the real world in the form of triples, namely,
(head, relation, tail). For example, "NII is located in Tokyo" can be expressed as (NII,
is-located-in, Tokyo) in a knowledge graph. The head and the tail are entities in the
knowledge graph. Let E and R denote the entity and relation sets, respectively. A
knowledge graph can be expressed as a rank three tensor: G = E × R × E.

An essential task related to knowledge graphs is link prediction. Given a triple
with one missing entity, namely (?, relation, tail) or (head, relation, ?), predict the
plausible candidates from E to fulfill the missing entity. The link prediction can be
used for adding new facts into the knowledge graph according to existing facts and
answering queries. Knowledge graph completion models learn embeddings of 𝑒 ∈ E
and 𝑟 ∈ R to provide a feasible link prediction approach. KGC models have a score
function to use learned entity and relation embeddings to estimate the plausibility of a
given triple. For a query (?, relation, tail) or (head, relation, ?), KGC models evaluate
the plausibility of all entities in E to replace the missing entity. The entities with high
scores are ranked higher in the prediction.

Most KGC models [12, 13, 14, 15, 14, 16, 17, 18, 19, 20, 21, 22, 23] ignore entity type
constraints in relations. For example, for the relation "born-in," the head entities should
be type "People," and the tail entities should be type "Locations." As a result, such
ignorance degrades the link prediction performance. Many studies [24, 25, 26, 27, 28]
attempted to add type information to the KGC models. These methods depend on
existing type annotations in the knowledge graph to learn and use type embeddings to
justify the entity type compatibility in relations. However, the type annotations are not
guaranteed, and the granularity is too general to math certain entity type constraints
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in relations [29].

Recent studies [1, 29] have focused on unsupervised type representation learning.
The unsupervised type representation learning depends on only triples in the knowledge
graph. Embeddings that represent entity type and type constraints are learned based
on triples in the knowledge graph. Each relation has its embeddings for entity type
constraints in the head and tail positions, and the entity embeddings are used for
evaluating plausibility with respect to all relations. These methods use a type-agnostic
KGC model as the base model to evaluate the interdependency of the head and the tail
in a triple, and type compatibility is evaluated using entity-specific type embeddings
and relation-specific type constraint embeddings.

Existing unsupervised methods have two feature spaces, one for entity and relation
embeddings in the base model (i.e., a type-agnostic KGC model) and another one for
the entity type and type constraint embeddings. The inconsistency of feature space
results in difficulties balancing type compatibility and triple plausibility. False triples
with high type compatibility may have a high plausibility estimation. For example, the
triples (Donald Trump, born-in, Tokyo) and (Aragaki Yui, born-in, New York) are not
true, but the type of entities "Donald Trump" and "Tokyo," "Aragaki Yui" and "New
York" matches the type constraints (namely, "People" and "Location") of head and tail
in relation "born-in," respectively. Additionally, many relations take diverse entity
types on the head and the tail. For example, the relation "influenced-by" can take entity
with following types: "Philosopher," "Actor/Actress," "Celebrity," "Scholar." However,
existing methods use only one embedding to represent such constraints. They fail to
capture the multiple type constraints in the relation.

I proposed two methods to alleviate these two issues by unifying the feature spaces.
In the proposed methods, entity embedding locations are used to represent implicit
entity types. The first method defines entity co-occurrences and uses the statistics,
pointwise mutual information, to adjust entity embedding locations in bilinear KGC
models. The second method drops the requirement of entity co-occurrences in the first
method and generalizes the idea of the first method to bilinear and translational KGC
models. In addition, although the first method uses only one embedding to capture
type constraints on the head or tail location, the second method can use multiple
embeddings for each relation to capture the various entity type constraints.
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Figure 1.2: An example of knowledge graph based recommendation.

1.3 Knowledge Graph Enriched Meta-learning Rec-

ommender Systems for the User-side Cold-start

Problem

As mentioned above, an important application of knowledge graphs is to improve the
quality of recommender systems. For example, Amazon and Alibaba Inc. established
knowledge graphs that include tremendous facts about the products for retail [30, 31].
These facts are used in their recommender systems to improve online retail services.
Recent studies show that facts in knowledge graphs can help capture user interests
[8, 32, 33]. These methods extend the traditional recommender systems by considering
the high-order preference propagation between items. For example, in the "Movie"
domain, there are many facts in the knowledge graph about attributes of movies,
i.e., "Director," "Genre," "Actor/Actress"..., the contents of these attributes (i.e., "The
Wachowskis" for "Director," "Sci-fi" for "Genre," and "Keanu Reeves" for "Actor/Actress")
constitute movie descriptions. Figure 1.2 shows an example of the knowledge graph
based recommendation with the attribute "Genre." Suppose User 1 has interacted with
the movie "Matrix," "MIB," and "Blade Runner." Because these three movies have the
genre "Sci-fi," the recommender system with knowledge graph will propagate such
preference to other Sci-fi movies so that the Sci-fi movie will be recommended to User
1 with high priority. In this example, a movie with genre "Sci-fi" (i.e., the "Ghost in the
Shell") will be recommended to User 1.
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The knowledge graph based recommender system, akin to traditional recommender
systems, suffers from the cold-start problem. These recommender systems require a lot
of user-item interactions to learn adequate representations of users, items, and the
contents in item attributes. If the number of user-item interactions is insufficient, the
not well-optimized representations will result in inferior recommendation results. In
the extreme case where a new user registered or a new item has been added and no
interaction is available, it is referred as the user-side (item-side) cold-start problem.

This thesis concerns the user-side cold-start problem. Because in practice, the new
item can be classified into pre-defined categories and recommended to users with
interests in the category. However, for the new users, it is hard to use the same method,
as the system has no clue about the user’s interest. In practice, the system will require
the new user to choose some categories from a pre-defined range and recommend the
in-trend items that belong to those categories to the user. For example, Reddit will
show a list of communities to its new users and recommend content according to
the user’s choices. Therefore, for the user-side cold-start problem, it is vital for the
recommender system to rapidly capture the new user’s interests and provide them
with personalized recommendations.

Recent studies [34, 35, 36, 37, 38, 39, 40, 41, 42, 43] use the meta-learning framework
on the user-side cold-start problem. These studies use the Model Agnostic Meta-
Learning (MAML) [2] framework. The MAML-based methods include a neural network
to recommend items to users. The parameters in the neural network are learned
from the samples from the existing users and are used as the initial parameter for
new users. The MAML-based recommender system reduces the optimization steps
(i.e., the requirement of user-item interactions) to capture user interests rapidly.
Moreover, because the parameters in the neural network are user-specific, it can
provide personalized recommendations. From the representation learning perspective,
the personalized parameters and other embeddings in the neural network recommender
constitute the representation of the user preference.

Some MAML-based methods [38, 36, 34] need the user demographic information
(i.e., user profile, such as age, gender, and job.) Such requirement raises privacy
concerns. Furthermore, if the user demographic information is not sufficiently diverse,
the recommendation quality would be inferior [44, 45]. In addition, some MAML-based
methods [35, 46, 42] require a large number of records in the sample to learn the
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initial parameters in the recommender neural network. Such requirement restricts the
application of the system because the number of user-item interactions are not always
sufficient [47].

Another problem in the MAML-based framework is related to the capability of
learning personalized user-interest representations. A recent study [48] shows that the
MAML-based methods tend to reuse representations (i.e., user and item embeddings
and parameters in the neural network) rather than learning unique, user-specific
neural network parameters. As a result, it is difficult for the MAML-based methods to
capture user interests over the item attributes.

The critical factor in alleviating the cold-start problem is whether the model can
fast adapt the parameters in it to the area where are nearby to the unknown optimal
parameters in the parameter space. Recent studies [49, 11, 50, 51] indicate that the
hypernetwork can achieve this goal.

I proposed a hypernetwork-based meta-learning recommender system for the
user-side cold-start problem in this thesis. The proposed method generates the
parameters in the recommender neural network instead of gradually optimizing the
parameters after initialization. The proposed method learns a user-interest embedding
as the representation for the user preference over different item attribute contents
extracted from the knowledge graph. The parameters in the recommender neural
network are generated by the hypernetwork using the user-interest embedding.

The proposed method eliminates the user demographic information requirement. It
can capture user interests over different item attributes (e.g., genre, actor/actress, and
directors) and the contents of the item attributes (e.g., Sci-fi, Will Smith, and Don
Peterman). Because the optimization steps for learning user-interest embedding of new
users are few, the proposed method can capture user preference in the case where
user-item interactions are scarce (e.g., the cases of furniture and second-hand cars.)

1.4 Motivation and Contribution

The proposed methods in this thesis aim to learn better representations to help the
downstream task. The methods used for representation learning depend on the task.

For the type representation learning for KGC models, this thesis describes two
methods that can alleviate the issue due to inconsistent feature spaces in unsupervised
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type representation learning for KGC models. The common motivation of the proposed
methods is using entity embedding locations in the feature space to represent entity
type and associate embeddings to relations to capture the feature space areas in which
compatible entity embeddings tend to appear. The first method utilizes global statistics
to adjust entity embedding locations in bilinear KGC models. The second method
drops the requirement of global statistics and extends the method for both bilinear and
translational KGC models. The contributions of the proposed methods are listed below.

• The proposed methods learn entity type and type constraint representations
based on unsupervised learning. Unlike supervised type representation methods,
the proposed methods eliminate the requirement of type annotations and can
capture dynamic entity type constraints in different relations.

• The proposed methods unify feature spaces of type, entity, and relation represen-
tations. Such unification enables better balancing of type compatibility and triple
plausibility. The improvement of the underlying type-agnostic KGC model for
link prediction is better than other unsupervised methods.

• One proposed method can extend to both bilinear and translational KGC models.
Unlike existing methods that restrict the category of underlying KGC models,
the proposed method has a broad application range.

For the meta-learning recommender system for the user-side cold-side problem, I
proposed a hypernetwork-based recommender system. The motivation is to learn
embeddings to generate the parameters in the recommender neural network for users.
All items are described by attributes in the knowledge graph. The proposed method
decouples the representation of the parameters in the recommender neural network
based on the hypernetwork. Each user has a user-interest embedding used in the
hypernetwork to generate the personalized parameters in the recommender neural
network. The weights, biases, and item attribute content embeddings are used to
capture the user preference in the recommender neural network. The contributions of
the proposed method are listed below.

• The proposed method requires less data than the MAML-based methods. Instead
of optimizing all parameters in the recommender neural network after initializa-
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tion (i.e., the MAML setting), the proposed method needs only to update the
user-interest embedding used for the hypernetwork.

• The proposed method does not depend on demographic information. Because
the proposed method uses the hypernetwork to generate the parameters in the
recommender neural network, it does not need the user demographic information
to provide appropriate initial parameters for different categories of users.

• For the scenario where the user-item interactions are scarce, the proposed
method outperforms the MAML-based methods. In addition, experimental
results show that the proposed method learns more appropriate initialization
parameters for the underlying recommender network than other approaches.

1.5 Notation Convention

The thesis follows the notation convention used in most Graduate Texts in Mathematics
book series 1 and research articles about the knowledge graph and machine learning.

Scalar numbers are in the regular font (e.g., 𝑎, 𝑏, 𝑐). Vector and matrix are in bold
font. All vectors are lowercase (e.g., a, b, c), whereas matrices are in uppercase (e.g.,
A,B,C). All vectors are column vectors by default.

The elements of vectors and matrices are in bold font with the same letter for the
vector (matrix). The subscript denotes the position of the element. For example, the
second element in the vector v is presented as v2. Similarly, the element in the first row
and second column of the matrix M is presented as M1,2.

Tensors are in hand-writing font, e.g., A,B, C. For tensors, it is similar to the
notation convention for vector and matrix. The subscript denotes the element location.
For a three rank tensor A, A2,3,1 is a scalar. Note that in machine learning convention,
the loss function (L) is denoted by the hand-writing letters as well. In this case, the
letter’s property can be distinguished according to its context.

Sets are denoted in uppercase letters with the regular font (e.g., 𝐴, 𝐵,𝐶) with three
exceptions:

1cf. https://www.springer.com/series/136.
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1. Number sets are in black board font. The sets for natural number, integer, rational
number, real number, and complex number are N, Z, Q, R, C, respectively. It is
worth to note that the natural number set includes 0, as defined in the ISO 80000-2
standard.

2. Sets used for optimizing models (e.g., training set Dtrain, validation set Dvalid,
test set Dtest) are in the hand-writing font. The tensor and dataset can be
distinguished according to the letter’s context.

3. Some scalars are in capitalized regular letters to emphasis they are a member
of experiment settings (epoch number 𝑁 , batch size 𝐵, etc.) or have special
meanings (e.g., the number of parameters).

Occasionally, the superscript on the letter indicates its range, e.g. Z+ = N − {0}.

1.6 Thesis Structure

This thesis includes six chapters. The structure of the thesis is organized as follows.
The first chapter briefly represents the background, motivation, and contribution of

the two research topics in the representation learning on of knowledge graph. It also
introduces the notation convention used all over the thesis.

The second chapter introduces the related work of the two research topics. The
second chapter presents the concept of the knowledge graph, knowledge graph
completion models, and the type representation learning for the KGC models. The
second chapter also reviews the concept of the model-agnostic meta-learning, the
development of the meta-learning recommender system for the user-side cold-start
problem, and the hypernetwork. For both topics, the corresponding sections in the
second chapter have a discussion about current flaws in the reviewed existing methods.

The third and fourth chapter are related to the first research topic, i.e., the type
representation learning for KGC models. Two methods I proposed are presented in
these two chapters. The third chapter presents a method for the bilinear KGC models.
The method proposed in the fourth chapter extends the method in the third chapter
to both bilinear KGC models and translational KGC models and simplifies the data
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requirement. Both methods use unsupervised learning to obtain implicit entity type
and type constraint representations.

The fifth chapter presents the proposed method for the meta-learning recommender
system. The proposed method learns representations for generating user-specific
parameters in the neural network recommender. The representations are learned based
on the hypernetwork. Item attributes and the contents of these attributes constitute
item descriptions in the proposed recommender system. These attributes and contents
are extracted from the external knowledge graph. By taking hypernetwork to generate
parameters in the neural network recommender, the proposed system can capture the
user interests in both item attributes and contents of item attributes.

The last chapter includes conclusions and summaries of the proposed methods
from the perspective of representation learning on knowledge graph.
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2
Related Work

This chapter introduces related work of research topics in this thesis. It starts with the
introduction of knowledge graph and knowledge graph completion models. After
that, it reviews the development of type representation learning in knowledge graph
completion models. Next, it introduces the research incorporating knowledge graphs
into recommender systems and the efforts to alleviate the user-side cold-start problem.
For the related work of each topic in the thesis, this chapter discusses the shortcomings
of current methods.

2.1 Knowledge Graph and Knowledge Graph Com-

pletion Models

The strict definition of knowledge graph is contentious [52]. Generally speaking,
Knowledge graphs contains facts about the real world. These facts are organized in a
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Figure 2.1: An example of a knowledge graph.

graph structure, and can be expressed in the form of triple (head, relation, tail). 1 For
example, the fact "Apple Inc. is the manufacture of the M1 chip." is expressed as (Apple
Inc., manufacture-of, M1 chip).

In most cases, the "head" in the triple is an entity, whereas the "tail" can be an entity,
a literal, or another digital resource. Figure 2.1 shows an example of a knowledge graph
as a directed graph. The facts were extracted fromWikidata (https://www.wikidata.org/)
on August 7, 2022. Texts on the arcs are the name of relations. Entities are in rounded
rectangles with standard font, whereas literals are with the italic font. The start vertices
are "head" in the triples, and the end vertices are "tail" in the triples. For example, the
triple (Apple Inc., product or material produced, iPhone) is presented as an arc starting
from the vertex "Apple Inc." and ending at the vertex "iPhone." Triples with tails that
are not entities describe the property of the head entity. For example, the "Apple Inc."
has a property, "Inception," and the value of this property for "Apple Inc." is 1 April 1976.

A knowledge graph can store facts about a specific domain or facts in the world.
The choice of domain depends on the purpose of the knowledge graph. For example,
WordNet [53] has facts about relations between English words; PharmKG [54] contains
facts of the biomedical domain, whereas Freebase [55] are not focusing on a specific
domain. The Freebase contains facts abut the real world.

A knowledge graph can accompany along with a group of schemes. The schemes

1In some literature, the form of the triple is also expressed as (subject, predicate, object). This naming
convention is from the semantic triple.
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describe how to organize facts in the knowledge graphs. For example, suppose there is
a scheme (Book, has-attribute, Author), it can put constraints on the arguments (i.e.,
head and tail) of the relation "written-by": the head entity in "written-by" must be
"Book"; and the tail entity in "written-by" must be "Author." If there is a fact (12 Rules
for Life, written-by, Jordan Peterson) in the knowledge graph with this scheme, it can
be inferred that:

1. 12 Rules for Life is a Book (according to the constraint on head entity in the
relation "written-by.")

2. Jordan Peterson is a Author (according to the constraint on tail entity in the
relation "written-by.")

3. Jordan Peterson is the Author of the Book 12 Rules for Life (according to the
scheme and the fact.)

The schemes can be also organized in the graph structure. In this case, they
are similar to ontology. Altough the schemes can help extend and analyze facts in
knowledge graphs, they are not mandatory components in the knowledge graph.

The facts in knowledge graphs are in a discrete form. It is difficult to use them
directly for other tasks. Early studies of utilizing these facts are in the perspective of
relational learning. They use bayesian networks [56] or Markov networks [57] to
analyze existing facts and to discover new facts according to existing ones. These
methods need prior knowledge about the knowledge graph, i.e., the schemes or the
ontology used for the knowledge graph. Because prior knowledge is not guaranteed,
this requirement restricts the application of these methods and the knowledge graph.

Recent studies [18, 17, 19, 20, 21, 23, 22, 14, 13, 15, 12, 16, 14] model the knowledge
graph in the view of representation learning. Entities and relations are represented as
embeddings in these models. A score function 𝑓 (ℎ, 𝑟, 𝑡) takes the embeddings of head
ℎ, relation 𝑟 , and tail 𝑡 to evaluate the plausibility of the triple (ℎ, 𝑟, 𝑡) 2. These methods
do not depend on prior knowledge, and the learned embeddings can be used in models
for other tasks, such as the recommender system with a knowledge graph [32]. An
essential task on the knowledge graph is the link prediction, i.e., given a triple (?, r, t)

2Although 𝑡 can be literal or another digital resource, in the KGC models, 𝑡 is only considered to be
an entity.
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or (h, r, ?) with a missing entity, predict the candidates to fulfill the missing entity.
These methods are effective in link prediction, and link prediction can help add new
facts to the knowledge graph according to existing facts. Therefore, these methods are
referred as Knowledge Graph Completion models.

The score function is vital in the KGC models because it evaluates the plausibility
of triples. Therefore, KGC models are categorized by the form of their score functions.
The KGC models in different categories are introduced in the following subsections.

2.1.1 Bilinear Knowledge Graph Completion Models

Bilinear KGC models use tensor decomposition to learn entity and relation embeddings.
As the category indicated, their score functions are in bilinear form.

A representative bilinear KGC model is the RESCAL [18]. As mentioned in Section
1.2, a knowledge graph can be presented as a tensor G = E × R × G, where E is the set
of entities, and R is the set of relations. If a fact (ℎ, 𝑟, 𝑡) is in the knowledge graph,
G = 1, otherwise, G = 03.

RESCAL factorizes the tensor G by

Gℎ,𝑟,𝑡 ≈ 𝑓RESCAL(ℎ, 𝑟, 𝑡) = h × R × t, (2.1)

where h, t ∈ R𝑑 , R ∈ R𝑑×𝑑 . 𝑑 is the dimension of the vector h and t. R is a 𝑑 × 𝑑
matrix. h and t are embeddings for entity ℎ and 𝑡 , respectively. R is the embedding for
the relation 𝑟 . 𝑓RESCAL(ℎ, 𝑟, 𝑡) is the score function in RESCAL. Entity embeddings in
RESCAL are vectors, whereas relation embeddings are matrices.

The relation embeddings in RESCAL are difficult to learn due to the matrix form.
DistMult [17] changes the relation embeddings in RESCAL to diagonal matrix form.
The score function in DistMult is

𝑓DistMult(ℎ, 𝑟, 𝑡) = ⟨h, r, t⟩ =
𝑑∑︁
𝑖=1

h𝑖r𝑖t𝑖, (2.2)

3Note that, a triple is not in the knowledge graph not necessarily implies the triple is not a fact
because most knowledge graphs are incomplete. The "closed world assumption" presumes that all facts
are included in the knowledge graph. Triples not in the knowledge graph are all false, whereas the "open
world assumption" presumes that triples not in the knowledge graph are not known.
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where r is a vector that represents main diagonal elements. h and t are vectors.
h, r, t ∈ R𝑑 . 𝑑 is the dimension. DistMult factorizes the tensor G in the same way of
RESCAL (this is the same for all following models if there is no additional explanation.)

Note that, in Equation 2.2, 𝑓DistMult(ℎ, 𝑟, 𝑡) = 𝑓DistMult(𝑡, 𝑟, ℎ). This property indicates
that DistMult can successfully model symmetric relations (e.g., the relation "spouse-of"),
but it lacks the ability of modeling asymmetric or anti-symmetric relations (e.g.,
"descendant-of.") ComplEx ameliorates DistMult by transferring the embeddings from
real domain R to complex domain C. The score function in ComplEx is

𝑓ComplEx(ℎ, 𝑟, 𝑡) = Re(⟨r, h, t⟩) = Re(
𝑑∑︁
𝑖=1

r𝑖h𝑖t𝑖)

= ⟨Re(r), Re(h), Re(t)⟩ + ⟨Re(r), Im(h), Im(t)⟩
+ ⟨Im(r), Re(h), Im(t)⟩ − ⟨Im(r), Im(h), Re(t)⟩, (2.3)

where h, r, t ∈ C𝑑 . t is the conjugate of complex embedding t. Re(·) and Im(·) are
functions that take the real and imaginary parts of a complex number, respectively.
The score function in ComplEx is not symmetric because of the last term in Equation
(2.3), therefore, ComplEx can model asymmetric and anti-symmetric relations.

ANALOGY [20] generalizes DistMult and RESCAL by restricting the relation
matrix R in Equation (2.1) to be a normal matrix. Entity embeddings in ANALOGY can
recover embeddings in ComplEx, and ANALOGY can support analogical inference in
knowledge graphs. Other bilinear models such as TuckER [21] and SimplE [23] factorize
G using approaches different from RESCAL. TuckER uses Tucker factorization [58]
and SimplE utilizes CP factorization [59].

2.1.2 Translational Knowledge Graph Completion Models

Different from bilinear models whose motivation is from tensor decomposition,
translational KGC models are inspired by language models such as word2vec [60] and
Glove [61]. Similar to word embeddings with the property that eking − emale + efemale ≈
equeen, the relation embeddings in translational models transfer head entity embeddings
to tail entity embeddings (this is the origin of this category’s name.)
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Figure 2.2: The hypothetical example for illustrating differences between the biliear
model DistMult and the translational model TransE.

A typical translational model is TransE [12]. The score function in TransE is

𝑓TransE(ℎ, 𝑟, 𝑡) = −∥h + r − t∥1,2, (2.4)

where ∥ · ∥1,2 represents the ℓ-1 or ℓ-2 norm. h, r, t ∈ R𝑑 . Note that, different from
bilinear models introduced previously, the value of the score function 𝑓TransE(ℎ, 𝑟, 𝑡) is
in R−.

Figure 2.2 illustrates the differences between the typical bilinear model, DistMult,
and the typical translational model, TransE, by a hypothetical example. Suppose there
are four entities, "Alice," "Bob," "Charlie," and "Diana," and one relation, "spouse-of," in
the knowledge graph. The knowledge graph has two facts, (Alice, spouse-of, Bob) and
(Charlie, spouse-of, Diana). The example assumes all entity embeddings are in the
identical locations in these two feature spaces to address the differences. The circles
with names in the regular font are entity embeddings, and the dotted circles with
names in the italic font in Figure 2.2 are entity embeddings after transforming by the
relation embedding.

First, note that the arrows in Figure 2.2 are different. The dotted arrows in
DistMult represent the shift of entity embeddings by the relation embedding. Because
DistMult has a bilinear score function, the relation embedding (recall that it is a
vector containing main diagonal elements of a diagonal matrix, cf. Equation 2.2.)
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scales elements in the entity embeddings. The effects of scaling are presented by
dotted arrows to address that DistMult does not directly move entity embeddings. In
contrast to DistMult, the relation embedding in TransE moves entity embeddings
with the same offsets - the length and the direction of the offset are the same (cf.
Equation 2.4.), as indicated by the arrows in TransE case. As a result, the score
from 𝑓DistMult(eAlice, rspouse-of, eBob) is the same as 𝑓DistMult(eBob, rspouse-of, eAlice), but
𝑓TransE(eAlice, rspouse-of, eBob) ≠ 𝑓TransE(eBob, rspouse-of, eAlice), i.e., the DistMult can model
symmetric relations, but TransE cannot.

Second, note that the moved entity embeddings of "Alice" and "Bob," "Charlie"
and "Diana" diverge in a different level. The distance between the transferred entity
embedding of "Alice" and the entity embedding of "Bob" is smaller than it for "Charlie"
and "Diana" case. If the embedding of "Diana" deviates, TransE would evaluate the
triple (Charlie, spouse-of, Bob) with high plausibility. This phenomenon becomes
severe in N-to-N relations, such as "authors-of" and "act-in," and because of the same
reason, TransE cannot model N-to-1 and 1-to-N relations.

Many translational models extend TransE to overcome the weaknesses mentioned
above. TransH [14] projects head and tail entity embeddings to a relation-specific
hyperplane. It has a relation-specific normal vector for the projection. The plausibility
is evaluated similar to Equation 2.4, but TransH computes the distance of the projected
entity embeddings translated by the relation embedding.

TransR [15] uses another strategy to project entity embeddings. Instead of a normal
vector, TransR uses matrices on head and tail entity embeddings for projection. The
score function in TransR is

𝑓TransR(ℎ, 𝑟, 𝑡) = ∥M𝑟h + r −M𝑟 t∥2. (2.5)

where M𝑟 ∈ R𝑚×𝑛 is a relation-specific projection matrix. h, t ∈ R𝑛 and r ∈ R𝑚. Note
that, TransR evaluates the implausibility of triples, because its score function is in the
form of distance, and 𝑓TransR is in R+.

There are many other translational models. Generally, these models extend TransE
by different strategies for projecting entity embeddings. For example, TransD [13]
associates two embeddings in addition to the entity embedding for every entity, and the
projection matrices for every relation are different for head and tail entity embeddings



20 Chapter 2. Related Work

to mitigate the impact of entity types.

2.1.3 Knowledge Graph Completion Models in Other Forms

There are some KGC models based on specific feature spaces [62, 16, 63] or neural
network [22]. HoloE [64] uses holographical embeddings for entities and relations. It
has been proved that embeddings in HoloE and ComplEx are equivalent under the
Fourier transformation [65].

RotatE uses a feature space in complex domain C. The relation embeddings
in RotatE are complex vectors with norm 1. The relation embeddings rotate head
embeddings, and the plausibility of a triple is evaluated by the distance between the
rotated head embedding and the tail embedding. QuaternionE [62] extends RotatE
by using quaternion numbers as the elements of entity and relation embeddings.
Mathematically, the feature space of RotatE is isomorphic to the special orthogonal
group SO(2), and the feature space of QuaternionE is isomorphic to SO(4). The feature
space of TorusE [63] is in the torus manifold. These three methods use feature spaces
related to the Lie group.

KGC models based on neural network benefit from the rapid development of deep
learning. ConvE [22] takes a convolutional neural network to evaluate triples. ParamE
[66] uses neural network weights as relation embeddings to assess the plausibility of
triples.

2.2 Type Representation Learning for KGC Models

KGC models introduced in Section 2.1 ignore entity type when evaluating the triple
plausibility. Such ignorance results in inaccurate link prediction results. Although the
KGC models have some ability to infer the entity type according to the training data
[18], the effectiveness is not satisfying [1].

The entity type can be a part of the schemes (if they exist) defined on the knowledge
graph [67]. The entity type is also described in the triple form. For example, in the
knowledge graph shown in Figure 2.1, "MacBook" is a subclass of "Laptop." This
type-alike description is expressed by the "subclass of" relation 4. Even in large-scale

4There is another relation, "instance of," in the Wikidata for describing entity type.
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knowledge graphs, these schemes are often manually designed and maintained [68].
Therefore, the type information may not be accurate or exist in the knowledge,
especially for the large-scale knowledge graphs. This is the main challenge in the type
representation learning for KGC models.

This thesis categories existing type representation learning for KGC models by the
underlying method. The supervised type representation learning for KGC models
uses embeddings to encode the pre-defined entity types. The unsupervised method
uses only triples in the knowledge graph to infer entity types and type constraints in
relations. A common point in these two categories of type representation learning
methods is that they take a type-agnostic KGC model as the base model and modify the
score function to consider type compatibility in the head and tail of relations for link
prediction. The following two subsections introduce these two methods in detail.

2.2.1 Supervised Type Representation Learning for KGC Models

The supervised type representation learning for KGC models encodes pre-existing
entity types in the knowledge graph into additional parameters to evaluate the match
of entities and types constraints in relations. Research in this category can be traced
back to the RESCAL model, whose authors extended the original RESCAL model
by encoding rdf:tag and rdf:range into additional parameters. When optimizing
parameters, only entity embeddings that match the type restrictions are updated [28].

TKRL [24] considers a hierarchical structure of types when encoding entity types.
TKRL uses TransE as its base model. When encoding entity types, TRKL introduces
additional matrices for each relation to represent entity types and entity type constraints
in the relation. Entity embeddings are projected by weighted type matrices, and in
the score function they are projected again by the matrices representing the type
constraints in the relation. Only entity embeddings that match the type constraints
will have a higher score in link prediction.

ConnectE [25] captures entity types and type constraints by two score functions.
These score functions map entity embeddings by a type matrix to match their type
embeddings. The two score functions of types and triples jointly assess the plausibility
of facts.

As addressed at the beginning of this section, the entity type annotations are not
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guaranteed in the knowledge graph. Furthermore, even the annotations exist, since
they are often a part of the schemes, their definitions are very general to keep the facts
and schemes consistent. Moreover, an entity’s type may shift according to the contexts
in relations [29].

Take the "Apple Inc." in Wikidata as an example. On August 8, 2022, Wikidata
describes the type of entity "Apple Inc." with the following types (by the "instance of"
relation): "enterprise," "business," "brand," "public company," "corporation," "technology
company," "computer manufacturer." Suppose there is a relation, "manufacture-of," and
the tail entities in this relation are mobile devices such as "iPad," "iPhone," "Xperia,"
"Pixel," "Galaxy" and the head entities are the manufacturers of these devices, i.e.,
"Apple Inc." "Sony," "Google," and "Samsung." In this example, the entity type of
"Apple Inc." is inappropriate, as they are too general to reflect these companies’
property accurately. An appropriate entity type for "Apple Inc." in this relation could
be "mobile device manufacturer." In addition, if the tail entities are PCs or laptops,
such as "ThinkPad," "MacBook," "VAIO," "Chromebooks," and the head entities are
manufacturers of these devices, "Lenovo," "Apple Inc." "Sony," "Google," etc. The entity
type of the same entity, "Apple Inc." in the same relation, "manufacture-of," should be
"computer manufacturer," which is presented in the WikiData. However, the entity
types (described by the "instance of" relation) of "Google" in WikiData do not take it as
a "computer manufacturer."

The above example indicates that the entity types could be inferred from the
contexts of a specific relation, i.e., the entity’s types should be consistent with the
types of other entities that also appeared in the same location (head or tail), and the
type constraints on arguments (i.e., head and tail) of a relation should be inferred
by all entites that co-occurred in the relation. This inspires the unsupervised type
representation learning methods for KGC models, which is introduced in the following
subsection.

2.2.2 Unsupervised Type Representation Learning for KGC
Models

Unsupervised type representation learning methods do not rely on the annotated entity
types. They do not assume such information exists. The entity type representations
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Figure 2.3: The structure of TypeDistMult and TypeComplEx [1].

are learned from the triples in which the entities appear. Because the entity type
information does not exist, the unsupervised method can distinguish whether two
entities are in the same type(s) but cannot represent their explicit type(s).

Jain et al. proposed TypeDistMult and TypeComplEx [1] to extend DistMult
and ComplEx. TypeDistMult and TypeComplEx add a new feature space for type
representations. They associate every entity with a type embedding. For every relation,
they add two embeddings to represent type constraints on head and tail. The score
function in these methods is

𝑓Jain(ℎ, 𝑟, 𝑡) = 𝜎 (⟨wℎ, u𝑟 ⟩)𝜎 (𝑓base(ℎ, 𝑟, 𝑡))𝜎 (⟨w𝑡 , v𝑟 ), (2.6)

where 𝑓base(ℎ, 𝑟, 𝑡) is the score function of the base model. 𝑓base(ℎ, 𝑟, 𝑡) takes the entity
and relation embeddings h, r, t. If the base model is DistMult, h, r, t ∈ R𝑛 . For ComplEx
as the base model, h, r, t ∈ C𝑛. wℎ and w𝑡 are entity type embeddings associated to
head and tail entities, respectively. u𝑟 , v𝑟 are relation-specific embeddings representing
type constraints on head and tail locations of the relation 𝑟 . wℎ,w𝑡 , u𝑟 , v𝑟 ∈ R𝑚 . 𝜎 (·) is
the sigmoid function and ⟨·, ·⟩ is the inner product.

The structure of TypeDistMult and TypeComplEx is shown in Figure 2.3. The
different colors (yellow and blue) denote that the type embeddings (wℎ,w𝑡 , u𝑟 , v𝑟 )
and entity and relation embeddings (h, r, t) are not in the same feature space. The
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three terms in Equation 2.6 constitute a logical "AND" relation - only triples that have
high plausibility (evaluated by 𝑓base(ℎ, 𝑟, 𝑡)) and high type compatibility (evaluated by
𝜎 (⟨wℎ, u𝑟 ⟩) for the head location and 𝜎 (⟨w𝑡 , v𝑟 ) for the tail location.) will appear in
the top of link prediction results.

AutoEter [29] takes a different strategy from TypeDistMult and TypeComplEx.
AutoEter assemblies different type-agnostic KGC models to learn entity type represen-
tations. The type compatibility is evaluated by a method similar to TransE, and RotatE
evaluates the triple plausibility. In addition, AutoEter uses a method that varies from
TransR with the attention mechanism to encode type information inferred from triples.

The inconsistent feature space is the main problem in AutoEter, TypeDistMult, and
TypeComplEx. They separate type embeddings from the entity and tail embeddings,
and their score functions have three components. One is inherited from the base model,
and the others evaluate entities’ type compatibility on head and tail locations. Due
to the inconsistent feature space, it is challenging to balance the type compatibility
and triple plausibility. Recall the example in Section 1.2, false triples with high type
compatibility (e.g., (Donald Trump, born-in, Tokyo)) may be incorrectly assigned with
a high overall plausibility (i.e., false positive.)

Another problem is that current approaches use only two embedding for represent-
ing type constraints in relations. Many relations can take more than one type as their
head and tail. For example, the relation "influence-by," the head and tail entities can
have following types: "scientist," "philosopher," "politician," "comedian," "actor/actress,"
etc. It is difficult for a single embedding to represent such diverse type constraints.

The last problem is that current approaches restrict the type of base models
that they take. TypeComplEx and TypeDistMult are designed for the bilinear KGC
models, and AutoEter is an assembling method based on RotatE. It is difficult for these
approaches to be generalized to other KGC models.

The unsupervised type representation learning in KGC models is a novel trend in
the research of representation learning for knowledge graphs. The first research topic
in this thesis belongs to this domain. The proposed methods aim to alleviate the issues
mentioned above. Details of the proposed methods are in Chapter 3 and Chapter 4.
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Figure 2.4: An example of user-item interactions as a bipartite graph.

2.3 Meta-learning for the User-side Cold-start Prob-

lem in Recommender Systems

Many online service providers use the knowledge graph to improve their service:

• Google 5 established Google Knowledge Graph to refine the research results 6.

• Amazon 7 built Amazon Product Graph [30] to help users discover their preferred
goods.

• eBay8 constructed eBay Product Knowledge Graph [69] to recommend items
based on their properties to users.

These examples indicate an essential task of the knowledge graph is to improve the
recommendation results. The mission of recommender systems is to suggest items to
users based on their historical interactions.

5https://www.google.com/
6cf. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
7https://www.amazon.com/
8https://www.ebay.com/



26 Chapter 2. Related Work

Figure 2.5: An example of capturing the high-order user preference by the knowledge
graph.

Let 𝐷 denote the user-item interactions in the system. 𝐷 can be expressed as
a bipartite graph: 𝐷 = 𝑈 × 𝐼 . 𝑈 is the set of users, and 𝐼 is the set of items. The
recommender system suggests items 𝑖 ∈ 𝐼 − 𝐼 (𝑢) to a user 𝑢 ∈ 𝑈 according to 𝑢’s
interaction history 𝐼 (𝑢). 𝐼 (𝑢) = {𝑖𝑛, ..., 𝑖𝑚}. 𝐼 (𝑢) ⊂ 𝐼 .

A basic principle for recommender systems is that they assume similar users tend
to choose similar items.

Figure 2.4 shows an example of the user-item interactions in a bipartite graph. The
example has four users and four items in the movie domain. The arrows in Figure 2.4
represent users’ interactions with items. The interaction could be explicit (e.g., rate,
like, vote) or implicit (e.g., click, save, block.) Let the interactions in the example to be
"watch." Because User 3 and 4 both watched "Blade Runner" and "MIB," they could be
treated as similar users. Therefore, the system can recommend "Ghost in the Shell" in
User 4’s historical interactions to User 3.

Many approaches [33, 8, 70, 71, 32, 72, 73] use the knowledge graph to introduce
item properties to improve the recommendation results. These recommender systems
use relations in the knowledge graph to capture high-order user preferences. An
example is shown in Figure 1.2. In that example, the user has a high-order preference
over the property "Genre" with the content "Sci-fi."

These models use undirected paths and graph convolutional neural-network (GCN)
in the knowledge graph to capture such user interests. Suppose there is a knowledge
graph in Figure 2.5 for the recommender system in the Movie domain, these methods
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use the knowledge graph as a heterogenous information network (HIN) 9. Different
types of entities about movies are in different colors: red for "Caster," yellow for "Genre,"
and blue for the movie itself. They follow the pre-defined meta-paths in the HIN to
integrate neighbors of an item for the representation. Assume the in-use meta-paths
are "Movie—Caster—Movie"（M—C—M) and "Movie—Genre—Movie" (M—G—M), the
representation (i.e., embedding) for the movie "MIB" will be constituted by "Comedy"
and "MIB 2" (by M—G—M), "Will Smith" and "MIB 2" (by M—C—M), "Comedy" and
"Ted" (by M—G—M), "Will Smith" and "Pursuit of Happiness" (by M—C—M), "Tommy
Lee Johnes" and "Lincoln" (by M—C—M.) If a user watched the movie "MIB," the 2-hop
neighbor movies (i.e., Ted, MIB 2, Pursuit of Happiness, and Lincoln) of "MIB" found
according to the meta-paths are more likely to be recommended.

In general cases, these methods will integrate the user-item bipartite graph (cf.
Figure 2.4 to the knowledge graph. The relations between users and items are user
behaviors on items (watch, like, dislike, vote, down-vote, save, block, etc.) The
meta-path can include the user behaviors for recommendation.

Training recommender systems with the knowledge graph need a tremendous
number of data because of the significant number of parameters in the system.
Therefore, similar to the traditional recommender systems, these recommender systems
suffer from the cold-start problem as introduced in Section 1.3. The item-side cold-start
problem is not extremely severe in these systems because if the item information is
provided, the knowledge graph can provide appropriate neighbors according to the
meta-paths. However, the user-side cold-start problem is still critical, because the
knowledge graph has no users’ information.

The cold-start problem’s critical factor is capturing user interests with little data.
Many studies [40, 34, 38, 75, 35, 41, 36, 42, 43, 46, 40, 76, 77, 39, 37] attempt to alleviate
the user-side cold-start problem are with Model-agnostic Meta-learning framework [2]
introduced in the following sections.

9A HIN is an undirected graph. The discussion about differences between HIN and knowledge
graph is beyond the scope of this thesis. Interested readers can refer to the "Heterogeneous Network
Representation Learning" [74] for further reading.
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2.3.1 Model-agnostic Meta-learning Framework

Finn, Abbeel, and Levine proposed the model-agnostic meta-learning at the Inter-
national Conference on Machine Learning in 2017 [2]. This section serves as the
theoretical background of the following subsection. It briefly summarizes the overall
MAML framework.

The task in MAML is defined as

𝑇 = {L(x1, a1, ..., x𝐻 , a𝐻 ), 𝑞(x1), 𝑞(x𝑡+1 |x𝑡 , a𝑡 ), 𝐻 }, (2.7)

where a𝑖 is an output from a model 𝑓 (a neural network). x 𝑗 is a observation. 𝑞(x)𝑘 is
a observation distribution, and 𝑞(x𝑡+1 |x𝑡 , a𝑡 ) is the transition distribution. 𝐻 is an
episode length. In this thesis, all cases are with 𝐻 = 1, as it is the setting for i.i.d.
supervised learning. The loss function L(x1, a1, ..., x𝐻 , a𝐻 ) ∈ R provides feedbacks
from a defined task (classification, regression, etc.)

Let 𝑝 (𝑇 ) be a distribution over tasks 𝑇 . 𝑝 (𝑇 ) is the distribution that a model ought
to be adapted to. In the process of meta-learning, a task 𝑇𝑖 is sampled from 𝑝 (𝑇 ) and a
partial of data in 𝑇𝑖 is used for optimizing the model 𝑓 with the loss L𝑇𝑖 . The rest data
in 𝑇𝑖 is used for testing the model 𝑓 . 𝑓 is improved by considering how the test error
on new data from 𝑞𝑖 varies w.r.t. the parameters.

Note that the test error on the sampled task 𝑇𝑖 serves as a training error of the entire
meta-learning process. When the training stage is over, new samples that are different
from samples that have been drawn from 𝑝 (𝑇 ) are used for testing the performance of
𝑓 in the validation and test stages.

Figure 2.6 shows an example with three drawn task and corresponding gradients
from the losses L1,L2,L3. \ is the parameters in 𝑓 . At the beginning of training, \ is
randomly initialized. Three tasks 𝑇1, 𝑇2, 𝑇3 are drawn from the distribution 𝑝 (𝑇 ) and
the corresponding gradients L1,L2,L3 are used for optimizing \ in 𝑓 .

After the training stage, the model takes \ for new tasks and uses partial data from
the new tasks to optimize \ . After the training stage, \ will not be updated globally. For
each new task, 𝑓 uses the \ that is optimized in the training stage (i.e., meta-learning
stage) as the initial parameters (the \ at the end of the arrow in Figure 2.6) and \ will
be only updated according to the partial data in the new task, as shown by the dotted
line in Figure 2.6. Each new task has its own parameter, \ ∗1, \

∗
2, \
∗
3 .
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Figure 2.6: An example cited from the MAML paper [2] to introduce the framework.
The figure shows the feature space of the parameters in 𝑓 .

Formally, the entire training stage is described in Algorithm 2.1.

Algorithm 2.1 Model-Agnostic Meta-Learning (from the MAML paper [2])
Require: 𝑝 (T ): distribution over tasks.
Require: 𝛼, 𝛽 : step size hyperparameters.

1 Randomly initialize parameters \ ;
2 while not done do
3 Sample batch of tasks 𝑇𝑖 ∼ 𝑝 (𝑇 )
4 forall 𝑇𝑖 do
5 Evaluate ∇\L𝑇𝑖 (𝑓\ ) w.r.t. 𝐾 examples in 𝑇𝑖
6 Compute \ ′𝑖 by gradient descent: \ ′𝑖 = \ − 𝛼∇\L𝑇𝑖 (𝑓\ )
7 Update \ := \ − 𝛽∇\

∑
𝑇𝑖∼𝑝 (𝑇 ) L𝑇𝑖 (𝑓\ ′𝑖 )

Note that, Algorithm 2.1 is independent from the task type of the underlying model
𝑓 . The task type decides the way of implementing gradient descent in line 5. After
optimization, the parameter \ in 𝑓 can be used for initializing the model 𝑓 on new
tasks. In addition, MAML only assumes the i.i.d. of tasks.

The MAML framework is widely used in methods that attempt to alleviate the user-
side cold-start problem because it supports fast parameter adaption. The recommender
systems based on MAML can provide personalized recommendation. The related
research is introduced in the following section.
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2.3.2 Meta-learning Recommender Systems for the User-side
Cold-start Problem

Themeta-learning recommender systems for the user-side cold-start problem implement
the framework in Section 2.3.1 by setting each task as a user. The model 𝑓 in the
meta-learning framework is a neural network for the recommendation.

MeLU [38] is a representative model that adopts meta-learning for the cold-start
problem. Each user is a task in MeLU. The user’s interactions are used for training. It
uses a neural network 𝑓 (u, i) that takes a user embedding u𝑛 and i𝑚 to estimate the
user’s preference. The user embeddings are constructed by user demographic, and item
properties construct the item embeddings. MeLU predicts a score to represent user
preference:

𝑦𝑛,𝑚 = 𝑓\ (u𝑛, i𝑚), (2.8)

where 𝑦𝑛,𝑚 is the predicted preference of the user 𝑛 for the item𝑚. 𝑓 is the neural
network for estimating user preference with the parameters \ . u𝑛 and i𝑚 are embeddings
for user 𝑛 and item𝑚, respectively.

The user-item interaction dataset 𝐷 is divided into training, validation, and test
sets. In each dataset, every user’s interactions are divided to two sets: the support set
S𝑢 , and the query set Q𝑢 . The support set is used for updating \ locally, whereas the
query set is used for updating the global parameters that correspond to \ . Items in S𝑢

Algorithm 2.2 The Meta-learning stage for MeLU.
Require: 𝛼, 𝛽 : step size hyperparameters.

8 Randomly initialize parameters u, i for all users and items;
9 Randomly initialize parameters \ ;

10 while not done do
11 Sample batch of users 𝐵 ∼ 𝑝 (𝑈 )
12 for every user 𝑗 ∈ 𝐵 do
13 Set \ 𝑗 = \
14 Evaluate ∇\ 𝑗L 𝑗 (𝑓u,i,\ 𝑗 )
15 Local update \ 𝑗 := \ 𝑗 − 𝛼∇\ 𝑗L 𝑗 (𝑓u,i,\ 𝑗 )
16 Global update u = u − 𝛽∑ 𝑗∈𝐵 ∇uL 𝑗 (𝑓u,i,\ 𝑗 )
17 Global update i = i − 𝛽∑ 𝑗∈𝐵 ∇iL 𝑗 (𝑓u,i,\ 𝑗 )
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and Q𝑢 are not overlapped. Algorithm 2.2 displays the meta-learning stage for MeLU.
The loss function L 𝑗 is

L 𝑗 =
1
|D|

∑︁
𝑘∈𝐷
(𝑦 𝑗,𝑘 − 𝑦 𝑗,𝑘)2, (2.9)

where D is the support set S𝑗 for local update and the query set Q 𝑗 for global update.
𝑗 is a sampled user, and 𝑘 is a item that user 𝑗 consumes. 𝑦 𝑗,𝑘 is the predicted score by
𝑓\ 𝑗 for user 𝑗 about item 𝑘 , and 𝑦 𝑗,𝑘 is the real score.

Note that Algorithm 2.2 implements Algorithm 2.1 for the cold-start problem in the
recommender system. The entire meta-learning stage in MeLU has two phases: local
update and global update.

• Local update refers to line 11 to line 15 in Algorithm 2.2. The parameter
optimization in line 14 and line 15 uses partial user-item interactions of user 𝑗 .
The parameter \ 𝑗 is the user-specific parameters for user 𝑗 . The optimization in
local update uses data in the support set S𝑗 for user 𝑗 . This stage is named "local
update" because updates (optimization) in \ 𝑗 do not affect parameters for other
users.

• Global update refers to line 16 to line 17 in Algorithm 2.2. This stage uses the
rest of the user-item interactions of user 𝑗 , i.e., the interactions that are not
used for local updates in the query set Q 𝑗 for user 𝑗 , to optimize user and item
embeddings u and i. Because these embeddings are shared across all users (the
user embedding is constructed by their profiles: age, gender, job, etc.) Therefore,
this stage is named "global update" because it optimizes these global embeddings.

In the validation and test stages, MeLU takes a modified version of Algorithm 2.2.
The global update in line 16 and 17 are replaced by testing the model 𝑓\ 𝑗 for every user
𝑗 in 𝐵 on the corresponding query set Q 𝑗 .

The experiments in MeLU show that the parameters in 𝑓 can fast adapt to users.
Therefore, it can alleviate the user-side cold-start problem and provide personalized
recommendations. Many approaches [40, 34, 75, 35, 41, 36, 42, 43, 46, 40, 76, 77, 39, 37]
have been proposed to improve these abilities. All these methods follow a similar
training and testing setting to MeLU:
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• Taking support set for local update;

• using query set for global update;

• testing the model after few updates on the support set.

MAMO [34] extends MeLU by a memory-augumented neural network [78]. It
associates a user profile memory and a user memory to provide different global
parameters for different users. Every user is described by a mixture of components
in the user profile memory (a matrix). The user memory is used for personalized
recommendations for every user. In addition, MAMO has a parameter memory that
saves the global parameters for initialization in the new user’s case. All of these
memories are global parameters, which means they are shared across all users. In the
local update, the user-specific parameter in the recommender network 𝑓 is initialized
by using these three memories and locally updated by the user’s interactions.

PAML [41] modifies MeLU on the learning rate aspect. They change the stochastic
gradient descent in Algorithm 2.2, lines 15 - 17. They proposed an approach that takes
an adaptive learning rate (similar to AdaGrad [79]) to replace the SGD process in the
MeLU model. The adaptive learning rate is user-specific, so it enables the model to
adapt to preference changes for different users at different speeds.

Meta-SSIN [37] considers the problem of capturing user interests in multiple
scenarios. It uses three neural networks, meta-scenario interest units for computing
scenario representations, a scenario attention unit to compute the similarity between
items and scenarios, and a recommender network to calculate the user’s interest in an
item. Meta-SSIN focuses on providing diverse personalized recommendation results. It
does not concern the cold-start problem.

Different from Meta-SSIN, some methods [76, 39] adjust MeLU for specific domains.
For example, DCDIR [76] use the meta-learning approach for providing personalized
recommendations in the insurance domain, and MFNP [39] is in the travel domain. It
recommends the next place that a user wants to travel by meta-learning.

MetaHIN [36] methods attempt to integrate the knowledge graph to the meta-
learning process. It takes the meta-paths approach introduced at the beginning of
Section 2.3 to fast capture users’ high-order preference. MetaTL [40] use the user-item
bipartite graph, and use embeddings for user behaviors as translation vectors between
the user embedding and the item embedding.
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Figure 2.7: An example of MAML-based methods and their flaws

These methods need the user profile, i.e., user demographic (gender, job, age,
location, etc.) This requirement raises privacy concerns, and users are probably
unwilling to provide factual information. In addition, online services in multiple
regions with different jurisdictions may have potential legal issues (cf. General Data
Protection Regulation, GDPR [80].) In addition, if the aspects in the user profile is
not diverse, it is difficult to adapt the parameters \ in 𝑓\ quickly, because the initial
parameters (i.e., the learned global parameter) in 𝑓 may need many interactions to be
optimal for the user [41].

Figure 2.7 shows a hypothetical example of the MAML-based methods. 𝑁 is the
number of user-item interactions. The global parameter 𝜙 is learned from existing
users: User 1 and User 2. For new registered users (User 3 to User 6), the parameters
in the recommender network 𝑓\ are initialized by the global parameter 𝜙 . For the
new users with (relatively) many interactions, their parameters in 𝑓 can reach the
areas close to the optimal location. User 3 (7 item interactions) and User 4 (11 item
interactions) belong to this case, their parameters are initialized by the 𝜙 , and their
interactions are used to optimize their parameters \3 and \3, respectively, so they are
nearby the corresponding (unknown) optimal parameters \ ∗3, \

∗
4 in the parameter space.

However, User 5 has little interactions - they only has 3 interactions. As a result,
their parameters \5 in the recommender network 𝑓 are far away from the optimal
parameters \ ∗5 . In this case, the recommendation results for User 5 are not satisfying.

Some studies [43, 75, 77, 81] attempt to accelerate the parameter adaption. MetaDNN



34 Chapter 2. Related Work

[43] changes the recommender network 𝑓 in MeLU to a deeper, wider network. The
training procedure in MetaDNN is designed to utilize deep neural networks to capture
user interests with fewer interaction data. 𝑠2Meta takes the REINFORCE [82] algorithm
to accelerate the parameter adaption. The 𝑠2Meta takes a reinforcement learning
approach that is similar to CAVIA [83], which is a mixture approach of reinforcement
learning and meta-learning. ProtoCF [77] uses the prototype network [84]. It captures
user interests in item prototypes to increase the adaption speed. Similarly, Zhu
et al. proposed a method [81] to warm up embeddings by a scaling and shifting
neural network. They use existing well-trained embeddings to help optimize the new
embeddings. Their work focus on the item-side cold-start problem, but the same
technique can apply to the user-side cold-start problem as well.

A central problem in the MAML framework is that, although the approach requires
only a few data for every user, it needs many users to train the global parameters:
the item embeddings and the embeddings for aspects in the user (if required) need
many data to optimize. Besides, the global parameter for initializing 𝑓 may also
need a considerable number of data, depending on the complexity of the underlying
recommender network.

Moreover, the embeddings and the global parameter for initializing the underlying
recommender network can entangle. If, in the middle of the training stage, the
embeddings are well optimized, then in the later parameter adaption phase, the
gradients from the well-optimized embeddings are not in a large magnitude. As a
result, it is difficult for the recommender system to capture user interests with little
data due to this feature reuse problem [48, 85].

If one re-thinks the MAML framework, it is clear that learning a global parameter
for initializing is the critical factor for the cold-start problem because it allows the
parameter to be adapted with little data. Current methods use gradient-based methods
to optimize the global parameter, and if the gradient magnitude is small, the models
cannot achieve the fast adaption of parameters.

The proposed method in this thesis aims to alleviate the issue of feature reuse and
integrate the knowledge in the knowledge graph to empower the recommender system.
Different from existing approaches, the proposed method is based on hypernetwork.
Global parameters for initializing the recommender network for new users are not
optimized with gradients from existing users along with a trajectory (as shown in
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Figure 2.6). Instead, every user has two embeddings - one for generating parameters
for the fast-adapt, personalized recommendation, and another for computing their
preference over items. Details of the proposed method are in Chapter 5, and the
following section reviews hypernetwork and its application in meta-learning.

2.3.3 Hypernetwork and Meta-learning

Hypernetwork [11] is proposed by Ha, Dai, and Le at the International Conference on
Machine Learning 2017. A representative property of the hypernetwork is that it
allows the parameters in a neural network to be generated by another neural network.
Different from previous attempt with the dynamic weights [86], the hypernetwork
enables end-to-end training. Hypernetwork uses one or more representations to
generate the parameters in the other neural network. Figure 2.8 shows an example of a
hypernetwork structure.

Figure 2.8: An example of hypernetwork structure
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In Figure 2.8, there are two neural networks: 𝑓 for the pre-defined task (classification,
regression, etc.) and 𝑔 for generating parameters in 𝑓 . j1 is the input for the underlying
neural network, and j3, j3 are transformed input after feed-forward. Similarly, i𝑚,1 is
the𝑚-th input for the hypernetwork (𝑚 = 1, 2, 3) , and i𝑚,2, i𝑚,3 are transformed input
after feed-forward. The parameters in 𝑓 are

{M𝑛, v𝑛 |𝑛 = 1, 2, 3}. (2.10)

These parameters are generated by the corresponding inputs i𝑛, 𝑛 = 1, 2, 3 in the
hypernetwork 𝑔, as the brown arrows indicate:

M𝑛, v𝑛 = 𝜙𝑛,2(W𝑛,2i𝑛,2 + b𝑛,2)
i𝑛,2 = 𝜙𝑛,1(W𝑛,1i𝑛,1 + b𝑛,1), (2.11)

where𝜙𝑛,1 and𝜙𝑛,2 are activation functions in the hypernetwork. Suppose the matrix M𝑛

contains𝐾 ×𝑉 elements, and the bias vector v𝑛 contains𝐾 elements. The hypernetwork
generates (𝐾 +1) ×𝑉 elements and splits these elements into corresponding parameters
in the underlying neural network 10.

Note that all parameters and inputs in Figure 2.8 can be optimized by back-
propagation [87] if all activation functions (𝛿𝑛 and 𝜙𝑛,𝑚, 𝑛 = 1, 2, 3 and 𝑚 = 1, 2)
are differentiable. The parameters that need gradients from the loss function are
parameters in the hypernetwork, e.g., W𝑛,𝑚 and b𝑛,𝑚 , 𝑛 = 1, 2, 3;𝑚 = 1, 2.

Zhao et al. show that the hypernetwork can be used for meta-learning, and it is not
affected by the feature reuse as severe as the MAML-based methods do [88].

Formally, Zhao et al. assume that a neural network 𝑓 with parameters as a vector
of real number: w ∈ R𝑁𝑤 that are partitioned into 𝐶 chunks:

w = [w(1), ...,w(𝐶)] .

Every chunk is with 𝑁𝑐 dimension. 𝑁𝑐 = 𝑁𝑤/𝐶 (assuming that 𝑁𝑐 ∈ Z). They define a

10In the paper of hypernetwork [11], the weights and bias are genereted by a tensor and a matrix,
respectively. The modification of generation in this thesis does not affect the explanation.
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set of template weight vectors in a matrix:

M = [t1, ..., t𝐾 ] .

t𝑖 ∈ R𝑁𝑐 for 𝑖 = 1, ..., 𝐾 . The chunk w𝑖 can be generated by a linear combination of
template weight vectors:

w(𝑖) =
𝐾∑︁
𝑘=1

𝛼
(𝑖)
𝑘

t𝑘 = M𝛼.

M is shared across all w𝑖 . A study indicates that the parameter 𝛼 , which represents
how to reuse t𝑘 across layers in 𝑓 , can be used to share feature information [49].
Similar to Algorithm 2.1, the meta-learning with hypernetwork has local and global
update stages. The sampled task𝑇𝑖 ∼ 𝑝 (𝑇 ) (cf. Algorithm 2.1) also has a support set S𝑇𝑖
and a query set Q𝑇𝑖 .

At the beginning of the local update, the parameters in the neural network 𝑓 is
generated by 𝛼𝑇𝑖 = 𝛼 . The local update optimizes the weight parameter 𝛼 by gradients
from the loss function L:

𝛼𝑇𝑖 = 𝛼𝑇𝑖 − [
1
|S𝑇𝑖 |

∑︁
(𝑥,𝑦)∈S𝑇𝑖

∇𝛼𝑇𝑖L
(
𝑓𝛼𝑇𝑖 (𝑥), 𝑦

)
. (2.12)

where [ is the learning rate for the local update stage. (𝑥,𝑦) are data in the support set
S𝑇𝑖 . 𝑓𝛼 is the neural network for predicting 𝑦 according to 𝑥 . The subscript 𝛼𝑇𝑖 is to
address that the parameters in 𝑓 are generated by a mixture component of M with
weights in 𝛼𝑇𝑖 .

In the global update stage, the 𝛼 and M are updated:

𝛼 = 𝛼 − 𝛾 1
𝐵

𝐵∑︁
𝑖=1

1
|Q𝑇𝑖 |

∑︁
(𝑥,𝑦)∈Q𝑇𝑖

∇𝛼L
(
𝑓𝛼𝑇𝑖 (𝑥), 𝑦

)
,

M = M − 𝛾 1
𝐵

𝐵∑︁
𝑖=1

1
|Q𝑇𝑖 |

∑︁
(𝑥,𝑦)∈Q𝑇𝑖

∇ML
(
𝑓𝛼𝑇𝑖 (𝑥), 𝑦

)
. (2.13)

where 𝛾 is the learning rate for the global update stage. 𝐵 is the number of sampled
tasks. Q𝑇𝑖 is the query set in the sampled task 𝑇𝑖 .
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The hypernetwork-based meta-learning shares some common points with the
MAML-based meta-learning in Algorithm: they both have two stages, one for updating
the parameters for providing personalized results (the local update), and the other
one for updating the parameters that fit to all sampled tasks (the global update);
they assume the tasks are following a certain yet unknown distribution 𝑝 (𝑇 ) and use
samples 𝑇𝑖 from the distribution to learn parameters that are useful for other tasks.
However, unlike the MAML framework, hypernetwork-based meta-learning obtains
the initial parameters for the underlying neural network 𝑓 by a linear combination (i.e.,
weights in 𝛼) of vectors (i.e., vectors in M that span over the parameter space).

Note that Zhao et al. take the initial weights 𝛼 as a global parameter that needs
optimizing. This setting can be changed according to the underlying task. Because the
initial parameters for 𝑓 are not optimized with gradients from the loss function, the
initial parameters are not following a trajectory anymore. Therefore, the hypernetwork
suffers less from the feature reuse problem caused by the insignificant gradients for
learning the initial parameters for 𝑓 .

In addition, it worth to address that the dimension of feature space is decided by M
because the parameter space is spanned by the column vectors in M. The dimension of
𝛼 does not determine the dimension of feature space. The hypernetwork is more
flexible than the MAML framework because the dimension of the feature space depends
on the choice of 𝛼 and M.

Raphael et al. applied the hypernetwork for image generation under the meta-
learning setting [51]. Moreover, Shamsian et al. have shown that the hypernetwork can
be used for providing personalized models for a given task [50]. Lamb et al. show that
the hypernetwork can adapt to new features rapidly [89]. These studies encouraged
the proposed method in this thesis. The proposed method uses a hypernetwork to
establish a recommender system that can adapt to user preference with little data and
fast-adapt to new features (i.e., item properties). In addition, the proposed method can
capture the user’s interest in item properties themselves, not only the contents of the
item properties. Details of the proposed method are introduced in Chapter 5.
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3
Unsupervised Type Constraint Inference
in Bilinear Knowledge Graph Completion

Models

This chapter introduces the first proposed method for learning type representations in
type-agnostic knowledge graph completion models. The proposed method in this
chapter focus on unifying the feature space of type representations and entity and
relation embeddings. It utilizes global statistics in the knowledge graph, namely, the
entity co-occurrences, to adjust and refine the entity emebddings, and associate two
type constraint embeddings on the head and tail locations of every relation. The
experiments are conducted with DistMult [17] and ComplEx [19] as the base models for
the proposed method, and the benchmark models are TypeDistMult and TypeComplEx
[1] proposed by Jain et al. The experiment settings follow the instructions in the
benchmark’s paper and the implementation code in their GitHub repository 1. The

1cf. https://github.com/dair-iitd/KBI
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experiment results show that the proposed method can improve link prediction better
than the benchmark models and has more preferable entity clustering results. The
proposed method in this chapter has been published as a conference paper in IEEE
International Conference on Big Knowledge, 2021 [90]. The proposed method in this
chapter is a pioneer research that inspires the research in the next chapter.

3.1 Propagate Implicit Type Information Across Re-

lations

As mentioned at the beginning of this chapter, the purpose of this method is to unify
the feature spaces of entity and relation embeddings and type representations. The
introduction of the proposed method starts with a central definition of this model and
the definition of entity co-occurrence, which is a critical concept for the proposed
method.

3.1.1 The Assumption and Definition of Entity Co-occurrence

The proposed method has a straightforward assumption: entities that frequently
co-occur in multiple relations are of the same type. If two entities, 𝑒1 and 𝑒2, If two
entities, 𝑒1 and 𝑒2, appear at the same location (head or tail) of a relation, then this
appearance counts as one co-occurrence of 𝑒1 and 𝑒2.

This assumption is quite intuitive. If 𝑒1 and 𝑒2 appear together across many relations
𝑟1, ..., 𝑟𝑛 , they are more probable to be the same type because they both satisfy the (very
probable) different type constraints in these relations. Formally, the co-occurrence of
entities can be defined as

X𝑖, 𝑗 =
∑︁
𝑟∈R

head𝑟 (𝑒𝑖) × head𝑟 (𝑒 𝑗 ) + tail𝑟 (𝑒𝑖) × tail𝑟 (𝑒 𝑗 ), (3.1)

where R is the set of relations in a knowledge graph. head(·) and tail(·) are two
functions that take the frequency of an entity in the head or tail location of the relation
𝑟 , respectively. X is the matrix for entity co-occurrences in all relations. The element
X𝑖, 𝑗 represents the co-occurrence of entity 𝑖 and entity 𝑗 .
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Figure 3.1: An example of entity co-occurrence in a relation.

Figure 3.1 shows an example of the entity co-occurrence in a relation 𝑟 . In this
relation, the head and tail location contains five entities. The arrows indicate the
fact. For example, there are four facts about 𝑒3, among which two use 𝑒3 as the head
entity, and the other two use 𝑒3 as the tail entity: (𝑒3, 𝑟 , 𝑒5), (𝑒3, 𝑟 , 𝑒6), (𝑒4, 𝑟 , 𝑒3), (𝑒1, 𝑟 , 𝑒3).
Similarly, 𝑒2 occurs in 𝑟 as the head for two facts and as the tail for one fact. Therefore,
head(𝑒3) = 2, head(𝑒2) = 2, tail(𝑒3) = 2, tail(𝑒2) = 1, the co-occurrence of 𝑒2 and 𝑒3 in 𝑟
is

X2,3 = head(𝑒2) × head(𝑒3) + tail(𝑒2) × tail(𝑒3) = 2 × 2 + 1 × 2 = 6. (3.2)

The definition in Equation 3.1 plays a critical role in inter-relation type information
propagation. First, note that in Equation 3.1, if two entities 𝑒𝑖 and 𝑒 𝑗 occur in many
relations, 𝑋𝑖, 𝑗 will be large. Second, note that 𝑋𝑖, 𝑗 will be significant if 𝑒𝑖 or 𝑒 𝑗 has a
high frequency in all relations. Therefore, entities with high frequency are responsible
for propagating type information across relations.

3.1.2 Empirical Conditional Probability of Entities Defined by
Co-occurrence

The co-occurrencematrixX𝑖, 𝑗 is symmetric and is used for defining empirical conditional
probability of two entities. The entity and type constraint embeddings are calibrated
according to this empirical conditional probability. The empirical conditional probability
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is defined as follows.
𝑃 (𝑒𝑖 |𝑒 𝑗 ) =

X𝑖, 𝑗∑|R |
𝑛=1 X𝑖,𝑛

. (3.3)

|R | represents the number of relations. According to Equation 3.1 and Equation 3.3, if
𝑃 (𝑒𝑖 |𝑒 𝑗 ) is large, 𝑒𝑖 and 𝑒 𝑗 are likely to appear together in the same argument (head or
tail) across all relations. Therefore, they are more probable to have the same type
because they satisfy multiple type constraints in the same location of many relations.

Consider three entities, 𝑒𝑖 , 𝑒 𝑗 , and 𝑒𝑘 that 𝑒𝑖 and 𝑒 𝑗 both frequently co-occur with 𝑒𝑘 ,
but 𝑒𝑖 and 𝑒 𝑗 never co-occur, the type implied by the co-occurrence of 𝑒𝑖 , 𝑒𝑘 and 𝑒 𝑗 , 𝑒𝑘
should be propagated from 𝑒𝑖 to 𝑒 𝑗 by 𝑒𝑘 . This propagation is by 𝑃 (𝑒𝑘 |𝑒𝑖) and 𝑃 (𝑒𝑘 |𝑒 𝑗 ).
Take a function 𝐹 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘) as

𝐹 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘) =
𝑃 (𝑒𝑘 |𝑒𝑖)
𝑃 (𝑒𝑘 |𝑒 𝑗 )

. (3.4)

The definition is similar to the method that measures the word relatedness in
GloVe [61] model. In GloVe, 𝑒𝑘 represents the contextual words. The idea is to calibrate
embeddings of 𝑒𝑖 , 𝑒 𝑗 , and 𝑒𝑘 by Equation 3.4.

3.1.3 Calibrate Entity Embeddings with Empirical Conditional
Probability

This section concerns about use 𝐹 in 3.4 to refine entity embeddings with type-agnostic
bilinear knowledge graph completion models. The method in this subsection is similar
to the approach of learning word embeddings in the GloVe.

The general motivation is to express 𝐹 in Equation 3.4 in the form of entity
embeddings. Because 𝐹 is a scalar, and entity embeddings e𝑖, e 𝑗 , e 𝑗 ∈ R𝑛 where 𝑛 is
the embedding dimension. Therefore, the 𝐹 can be constituted by the inner product
as follows. For entity embeddings with complex numbers as elements, the real and
imaginary parts are concatenated to map them in real domains.

𝐹
(
(e𝑖 − e 𝑗 )𝑇 e𝑘

)
=
𝑃 (𝑒𝑘 |𝑒𝑖)
𝑃 (𝑒𝑘 |𝑒 𝑗 )

. (3.5)

Let 𝐹 (e𝑇𝑖 e𝑘) be defined as
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𝐹
(
e𝑇𝑖 e𝑘

)
= 𝑃 (𝑒𝑘 |𝑒𝑖) =

X𝑖,𝑘∑|R |
𝑛=1 X𝑖,𝑛

. (3.6)

Substitute Equation 3.6 into Equation 3.5:

𝐹
(
(e𝑖 − e 𝑗 )𝑇 e𝑘

)
=
𝐹
(
e𝑇𝑖 e𝑘

)
𝐹
(
e𝑇
𝑗
e𝑘
) . (3.7)

The next step is to choose a function that satisfies both Equation 3.6 and Equation
3.5. A choice 2 is to use the exponential function:

𝐹 (·) = exp(·) .

The inner product becomes

e𝑇𝑖 e𝑘 = log(𝑃 (𝑒𝑘 |𝑒𝑖)) = log(X𝑖,𝑘) − log(X𝑖). (3.8)

Equation 3.6 enables the model to refine its entity embeddings according to
co-occurrences. Because Equation 3.6 takes the inner product to represent the empirical
conditional probability, it naturally fits into the bilinear knowledge graph completion
models.

The loss function for calibrating entity embeddings is

Lrefine =

|E |∑︁
𝑖, 𝑗=1,𝑋𝑖, 𝑗>0

𝑔(X𝑖, 𝑗 )
(
e𝑇𝑖 e 𝑗 + 𝑏𝑖 + 𝑏 𝑗 − logX𝑖, 𝑗

)2
, (3.9)

where 𝑔(·) is a weighting function:

𝑔(𝑥) =

(𝑥/𝑥max)𝛼 if 𝑥 < 𝑥max,

1 otherwise.
(3.10)

𝑥max and 𝛼 are two hyperparameters. 𝑔(·) composes an upper bound of the co-
occurrence to prevent the co-occurrences from dominating the entity embeddings over
the facts in the knowledge graph. In Equation 3.9, 𝑏𝑖 and 𝑏 𝑗 are two biases that absorb

2this is inherited from GloVE
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log(X𝑖) because log(X𝑖) is independent from 𝑒𝑘 . e𝑖 and e 𝑗 are entity embeddings for 𝑒𝑖
and 𝑒 𝑗 . Equation 3.5 to Equation 3.9 propagate the implicit type information inferred
by co-occurrence from 𝑒𝑖 to 𝑒 𝑗 via 𝑒𝑘 as introduced in the previous Subsection 3.1.2.

During the optimization, ei and ej are moving forward to the ek because X𝑖,𝑘 and
X 𝑗,𝑘 are significant, and according to the Equation 3.8, ei

𝑇 ek ∼ X𝑖,𝑘 and ej
𝑇 ek ∼ X 𝑗,𝑘 .

Consequentially, e𝑖 and e 𝑗 will locate in the area where is close to e𝑘 . Therefore, this
property satisfies the assumption in Subsection 3.1.1 and make entity with the same
implicit type locate nearby each other in the feature space.

Note that, the loss function in Equation 3.9 is ill-defined if X𝑖, 𝑗 = 0. The solution for
this issue is to use only non-zero elements in X to fine-tuning entity embeddings.

The loss function in Equation 3.9 aims to calibrate the entity embeddings, making
co-occurred entities close to each other in the feature space. To incorporate type
constraints, learning embeddings that represent such constraints is necessary. This aim
needs help from bilinear type-agnostic KGC models. The following section includes
details about achieving this aim.

3.2 Incorporate Intra-relation Type Constraint

The previous section introduces the loss function for learning implicit inter-relation
entity types, whereas this section is about intra-relation type constraints, i.e., how
to incorporate the entity co-occurrence statistics into relations based on bilinear
type-agnostic models. The score functions in the base models are modified to take
(implicit) type constraints to evaluate the triple plausibility. A loss function refines the
entity embeddings in the base KGC models, and two embeddings are associated with
every relation for representing the implicit type constraints.

The extended score function is

𝑓 (ℎ, 𝑟, 𝑡) = 𝜎 (⟨h, cℎ𝑟 ⟩)𝜎 (𝑓base(ℎ, 𝑟, 𝑡))𝜎 (⟨t, c𝑡𝑟 ⟩), (3.11)

where 𝜎 (·) is the sigmoid function. ⟨·, ·⟩ is the inner product. h, t are entity embeddings
for the head or tail argument in the relation 𝑟 . ℎ𝑟 and c𝑡𝑟 are two relation-specific
embeddings representing the implicit type constraints in head and tail. For bilinear
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(a) The proposed method. (b) The benchmark [1].

Figure 3.2: Comparison between the proposed method and the benchmark.

model that uses complex domain as its feature space, the real and imaginary parts
of entity embeddings in C𝑛 are concatenated to map them into R2𝑛 where 𝑛 is the
dimension of the feature space.

The design of the score function in Equation 3.11 obeys the following criteria:

1. The type compatibility and the triple plausibility should be considered when
the model evaluates a triple. This is achieved by combining two terms of type
compatibility (𝜎 (⟨h, cℎ𝑟 ⟩), 𝜎 (⟨t, c𝑡𝑟 ⟩)) with the score function inherited from the
base model in a logic-and relation: optimally, only triples that are with significant
plausibility and best type compatibility in both arguments of the relation should
be returned in the top of link prediction results.

2. The type compatibility and the triple plausibility should be balanced when
the model evaluates a triple. The sigmoid function, 𝜎 (·), is responsible for this
criteria. First, the sigmoid function assures that all scores, even in the inner
product form, have a consistent sign - because its domain is in (0, 1) ∈ R. Second,
during the optimization, the sigmoid function guaranteed that all embeddings in
Equation 3.11 are significantly affected by back-propagated gradients only when
one of the three terms in the Equation is insignificant.

Figure 3.2 explains the difference between the proposed method and the benchmark
[1]. The background colors indicate the feature space of corresponding components.
The proposed method has only one feature space. All embeddings in the proposed
method are in the feature space used by the base model. The benchmark, as introduced
in Section 2.2.2, Equation 2.6, has two different feature space - one feature space
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inherited from the base model (blue), and the other one is for evaluating the type
compatibility (yellow.) Type compatibility is represented by the inner product of
type-related embeddings (w𝑒 , u𝑟 and v𝑟 .)

The loss function for training entity and relation embeddings from the facts in the
knowledge graph is

𝑃 (𝑡 |ℎ, 𝑟 ) = exp(\ 𝑓 (ℎ, 𝑟, 𝑡))
exp(\ 𝑓 (ℎ, 𝑟, 𝑡)) +∑𝑡 ′ exp(\ 𝑓 (ℎ, 𝑟, 𝑡 ′))

,

𝑃 (ℎ |𝑟, 𝑡) = exp(\ 𝑓 (ℎ, 𝑟, 𝑡))
exp(\ 𝑓 (ℎ, 𝑟, 𝑡)) +∑ℎ′ exp(\ 𝑓 (ℎ′, 𝑟 , 𝑡))

,

(3.12)

LKGC = −
∑︁
(ℎ,𝑟,𝑡)∈G

(
𝑃 (𝑡 |ℎ, 𝑟 ) + 𝑃 (ℎ |𝑟, 𝑡)

)
. (3.13)

In Equation 3.12, 𝑃 (𝑡 |ℎ, 𝑟 ) is for queries in the form of (ℎ, 𝑟, ?) and 𝑃 (ℎ |𝑟, 𝑡) is for
queries in the form of (?, 𝑟 , 𝑡). (ℎ′, 𝑟 , 𝑡) and (ℎ, 𝑟, 𝑡 ′) are negative examples constituted
by corrupting the head entity ℎ or the tail entity 𝑡 in (ℎ, 𝑟, 𝑡), respectively. \ is a scalar
hyperparameter. The negative sampling method used in Equation 3.12 is uniform
sampling as it is for the benchmark [1] and the base models [17, 19].

3.3 Experiment Setting

The proposed method is evaluated on three widely used datasets that are extracted
as subsets of existing knowledge graphs. The benchmark is TypeComplEx and
TypeDistMult [1]. The base models in the proposed methods are DistMult [17] and
ComplEx [19]. The following subsections contain details of the experiment settings.

3.3.1 Dataset

The proposed method is evaluated on three datasets: (1) FB15k-237; (2) WN18RR; and
(3) YAGO3-10:

• FB15k-237 is a subset of the knowledge graph Freebase [55]. Most facts in
FB15k-237 are about popular cultures, e.g., movies, music, and shows.
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Table 3.1: Statistics of datasets.

|E | |R| Train Valid Test Density

FB15k-237 14,541 237 272,115 17,535 20,466 0.0381
WN18RR 40,943 11 86,835 3,034 3,134 0.0053
YAGO3-10 123,182 36 1,079,040 5,000 5,000 0.1610

• WN18RR is a subset of the knowledge graph WordNet [53]. Facts in WN18RR
are about relations of English words, such as synonym, hypernym, hyponym.

• YAGO3-10 is a subset of the knowledge graph YAGO [91]. Facts in YAGO3-10 are
geographical - the locations where an entity stays or the place in which a person
was born.

A statistic, co-occurrence density, has been defined to represent the richness of
entity co-occurrences in datasets. Let |X| be the number of non-zero elements in the
matrix X in Equation 3.1 and |E | be the entity set cardinality of a knowledge graph.
The co-occurrence density is

Co-occurrence Density =
|X|

|E | × |E| . (3.14)

The co-occurrence density is in the range of [0, 1] ∈ R. A large co-occurrence
density indicates that entities frequently co-occur across relations. The statistics of
these three datasets are summarized in Table 4.10. The density in the table represents
the co-occurrence density defined above.

3.3.2 Benchmarks, Hyperparmeters, and Optimization Settings

Base models for testing the proposed method are DistMult and ComplEx. DistMult uses
real feature space, whereas ComplEx takes complex domain as its feature space. The
DistMult and ComplEx proposed by Jain et al. [1] are benchmarks. The hyperparameter
settings follow the instructions in the benchmarks to ensure a fair comparison.

The optimizer used for all models is Adam [92]. All hyperparameters are tuned by
grid-search. The embedding dimension is set to 200. 𝛼 in Equation 3.9 is 0.75. 𝑥max is
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250 for FB15k-237 and YAGO3-10, and it is 10 for WN18RR. Other hyperparameters,
such as batch size, learning rate, and regularizer weight, are optimized from the
following ranges:

1. learning rate and ℓ2 regularizer weights: {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1×
10−3, 5 × 10−3};

2. batch size: {4096, 8192, 16384};

All models are optimized up to 1,000 epochs with early stopping [93]. All models
are optimized by the loss function in Equation 3.13. In addition, the loss function in
Equation 3.9 is used periodically - the optimization with Equation 3.9 only happens
every 𝐾 epoch. The grid search range for 𝐾 is {5, 10, 20, 50, 100, 200, 250, 300, 500, 800}.

3.3.3 Performance Evaluation Measures

The evaluation metrics are filtered Mean Reciprocal Rank and Hits@K. For facts
(ℎ, 𝑟, 𝑡) in the validation and test sets, one of the entities ℎ or 𝑡 will be removed, and all
entities in the entity set E are feed into the score function of the model to compute the
rank of the removed entity ℎ or 𝑡 . In addition, all other known correct entities as
answers for (?, 𝑟 , 𝑡) or (ℎ, 𝑟, ?) are removed before computing the rank. Note that the
evaluation criteria follow the setting of the benchmark, and in their setting, they
remove other known entities in training, validation, and test sets. 3 This is a
different setting from what has been used for evaluation which only removes the
known correct entities only in the training set for the given query.

Formally, let rank(𝑒) be the rank of an entity 𝑒 in the prediction. The MRR is

MRR(𝑒) = 1
rank(𝑒) .

If rank(𝑒) ≤ 𝑁 and 𝑒 is the correct entity for the query (ℎ, 𝑟, ?) or (?, 𝑟 , 𝑡), Hits@N= 1.
Otherwise, Hits@N= 0. Hits@N and MRR are computed by all facts in the validation
or test sets, and averaged by the number of facts in the corresponding set. The 𝑁 = 1, 3
and 5 are used in Hits@N for evaluation.

3cf. code of the official implementation in https://github.com/dair-iitd/KBI.
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Table 3.2: Link prediction results. Prefix "Type" is associated to benchmarks. Prefix
"Co" is associated to the proposed methods.

DistMult ComplEx TypeDM TypeCX CoDM CoCX

FB15k-23

MRR 0.2888 0.2896 0.2959 0.2914 0.2950 0.2904
Hits@1 0.1995 0.2079 0.2067 0.2086 0.2091 0.2063
Hits@3 0.3194 0.3166 0.3203 0.3188 0.3262 0.3188
Hits@5 0.3818 0.3752 0.3788 0.3748 0.3823 0.3779

WN18RR

MRR 0.4257 0.4683 0.4286 0.4190 0.4199 0.4079
Hits@1 0.3963 0.4107 0.3908 0.4028 0.3884 0.3878
Hits@3 0.4375 0.4371 0.4436 0.4254 0.4392 0.4147
Hits@5 0.4566 0.4471 0.4639 0.4363 0.4537 0.4290

YAGO3-10

MRR 0.4191 0.4133 0.4376 0.4533 0.4912 0.4932
Hits@1 0.3255 0.3193 0.3405 0.3595 0.4011 0.4064
Hits@3 0.4717 0.4647 0.4920 0.5251 0.5474 0.5459
Hits@5 0.5343 0.5232 0.5496 0.5781 0.5961 0.5941

3.4 Experiment Result

Two experiments have been conducted on the three datasets, similar to the approach
for evaluating the benchmarks in their paper. The first one is link prediction, and the
second one is entity clustering.

3.4.1 Link Prediction

The link prediction results are shown in Table 3.2. CoDM and CoCX are the proposed
methods with DistMult or ComplEx as the base model. The prefix "Co" represents
"co-occurrence," whereas models with "Type" prefix are the benchmarks with the
method proposed by Jain et al. DistMult and ComplEx are two type-agnostic KGC
models.

The experiment results show that the proposed methods outperformed the bench-
marks on most performance metrics on FB15k-237 and YAGO3-10, because the
co-occurrence density in these two datasets is high (cf. Table 4.10.) For the WN18RR,
the performance of the proposed method deteriorates. There are two twisted reasons
behind the deterioration: (1) the property of WN18RR; (2) the low co-occurrence.
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WN18RR is a subset of the knowledge graph, WordNet. Facts in it are about
relations between English words. For example, "synonym," "hypernym," "hyponym,"
and so on. These relations can take a wide range of colossally different words in their
arguments (head or tail.) Take words "mammal" and "vehicle" as examples. These two
words are hypernym of "human" and "bus." Therefore, "human" is a proper entity for
the tail location of "hypernym" if the head entity is "mammal," and "bus" fits the tail
location of the same relation if the head entity is "vehicle." Consequentially, this general
acceptance of entities in both relations results in obstacles when defining (artificially or
not) type constraints for the relation "hypernym," and the same phenomenon happens
for other relations in WN18RR that describe relationships between words.

Another reason that restricts the proposed method to reinforce the link prediction
performance is the low entity co-occurrences as shown in the Table 4.10. This is a
by-product of the previous reason because relations in WN188RR take a wide range of
words, and their co-occurrences are low. These two reasons make the gradients from
Equation 3.9 and 3.13 help little to calibrate embeddings.

The co-occurrences are critical in the proposed method - the improvements of base
models on YAGO3-10 are more significant than these on FB15k-237, and for the low
co-occurrence dataset WN18RR, the proposed method deteriorates the base model. The
density of FB15k-237, WN18RR, and YAGO3-10 are 0.0381, 0.0053, and 0.1610, as shown
in Table 4.10. Because the loss function (Equation 3.9) for calibrating entity embeddings
and learning embeddings representing type constraints depends on the co-occurrence,
therefore, the effectiveness of this loss function depends on the co-occurrence density.

Table 3.2 shows that the improvements of DistMult are more than those for
ComplEx because the feature space in ComplEx is in C𝑛 where 𝑛 is the dimension.
The number of parameters in the ComplEx is twice as it is in DisMult. The proposed
method that uses ComplEx as its base model requires more training examples.

3.4.2 Entity Embedding Clustering

The ability to capture entity types by co-occurrence in the proposed method is examed
by all entities that appear in the relation "influence-by" in the FB15k237. The reason for
choosing this relation is that this relation contains a diverse entity with different types
in the head and tail location, and the number of entities in different arguments is large.
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Figure 3.3: Entity clustering results of DistMult, CooccurDM, and TypeDM.

Entity types are annotated by the same entity matched by its Freebase identifier to
the corresponding entities in the WikiData 4, and the descriptions in Wikidata for
entities are taken as their types. The first concept is taken as the type for entities with
more than one type, e.g., "Jodie Foster" has a description of "American actor, film
director and producer" by the time of 5th September, 2022. In this case, the type of
"Jodie Foster" would be "Actor/Actress."

Figure 3.3 shows the results of clustering entity embeddings by tSNE [94] where
entity embeddings are from DistMult, TypeDM (the benchmark), and CooccurDM (the
proposed method.) As the figure shows, all models can distinguish "Actor/Actress"
and "Comedian" from "Politician", but DistMult cannot distinguish "Comedian"
from "Actor/Actress." whereas TypeDM and the proposed method, CooccurDM, can
distinguish "Comedian" from "Actor/Actress." But the clusters from entity embeddings
in TypeDM have more overlap compared to those from CooccurDM.

Note that the type annotations are not used in training, and neither the benchmark
nor the proposed method has the ability to utilize this information, and the differences
between types "Actor/Actress" and "Comedian" are vague because some celebrities are
with both types, and it is hard to distinguish which one is their primary type - an
actress can be a comedian and vice versa. The clustering results indicate that the
proposed method can alleviate the vagueness by utilizing entity co-occurrences, as the
clusters constituted by embeddings from the proposed method have less overlap.

In addition to testing the ability to distinguish different types by learned entity
embeddings, the type constraint embeddings in "influence-by" are clustered together
with the corresponding entity embeddings to test the ability to capture relation-specific
type constraints. The clustering results are shown in Figure 3.4. The head type

4https://www.wikidata.org/
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Figure 3.4: Entity clustering results of all entities appeared in "influence-by."

constraint embedding (cℎ𝑟 ) and the tail type constraint embedding (𝑡𝑟 ) are annotated
as "subject constraint embedding" and "object constraint embedding" in the figure,
respectively.

Note that all entities in the Figure 3.4 belong to the type "People." "Comedian,"
"Politician," and "Actor/Actress" are three sub-types of the type "People." The clustering
results show that the proposed method can distinguish entities with different types,
and can capture the relation specific type constraint because the embeddings that
represent type constraint on different arguments are close to the entity embeddings
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taken by the relation.

3.5 Discussion and Conclusion

This chapter introduced the unsupervised type representation learning method for
bilinear KGC models. The proposed method uses entity co-occurrences to infer the
implicit entity types in an unsupervised approach. The entity co-occurrences are
defined for entities across all relations in the knowledge graph, and a loss function for
calibrating entity embeddings is used periodically during the optimization to adjust
entity embeddings in the feature space. In the proposed method, the locations of
entities in the feature space represent the entity type.

Different from other methods which separate type representations and entity and
relation representations to different feature space, the proposed method unifies the
feature space. The unification of feature space allows the proposed method to balance
the type compatibility and the triple plausibility for answering queries in the link
prediction.

Experiments on three widely used datasets show that the proposed method can
improve the underlying type-agnostic KGC models’ link prediction performance, and
the entity clustering results show that the learned entity embeddings can capture the
entity type.

However, there are several shortcomings in the proposed method. The first one is
that one relation often accepts multiple entity types for the head and the tail arguments,
as mentioned in Section 3.4.2. The proposed method only uses two relation-specific
embeddings on the arguments to capture such constraints. As a result, the proposed
method fails to capture the diverse type constraints in relations.

The second shortcoming is that the current method is only for the bilinear KGC
models. The applicable range is not sufficiently general. It would be optimal to extend
the similar method to both bilinear and translational models because some KGC models
are used for warming-up entity and relation embeddings that are used in other tasks
[30, 8]. It is preferable that the proposed method can extend to a general categories of
KGC models so that it can be used as a tool for these tasks as well.

The third shortcoming is from the statistic, entity co-occurrences, used in the
proposed method. The entity co-occurrences take 𝑂 ( |E |2) space and have 𝑂 ( |G|) time
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complexity. For large datasets such as YAGO3-10, it is time-consuming to get entity
co-occurrences.

Nevertheless, the research in this chapter plays the role of a pioneer study on
unsupervised type representation learning for knowledge graph completion models.
The next chapter introduces an improved, generalized unsupervised type representation
learning method for both bilinear and translational models. The method introduced in
the next chapter is inspired by the research in this chapter. Unlike the research in this
chapter, the prerequisites are formalized in the following research rather than an
intuition in this chapter.
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4
Enhancing Knowledge Graph Completion

Models with Unsupervised Type
Representation Learning

The research in this chapter is inspired by the research in Chapter 3. It extends
the proposed method in Chapter 3 to both bilinear and translational KGC models.
The intuitive assumption in Chapter 3 is formalized by describing it mathematically.
This research extends the number of relation-specific embeddings representing type
constraints to capture the various type constraints. The loss functions for calibrating
entity embeddings and type constraint embeddings are modified accordingly to drop
the co-occurrence statistics. Extensive experiments have been conducted with the
same datasets used in Chapter 3 to examine the proposed method in this chapter on
link prediction and entity clustering. Experiment results show that the proposed
method outperforms the Type-series approach [1] designed for bilinear models and
AutoEter [29], which uses a mixture of KGC models. In addition, the proposed method
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can adapt to the KGC model with a complex feature space (i.e., RotatE [16].) The
research in this chapter is also in an unsupervised manner. The research in this chapter
has been published as a journal paper in Information [95].

4.1 Embeddings for Capturing Implicit Type and

Type Constraints

It has been mentioned in Section 3.5 that a relation can have various type constraints
on head and tail. The proposed method in this chapter utilizes relation-specific multiple
prototype embeddings to represent such various constraints. Therefore, it is named
ProtoE in the following contents.

4.1.1 Formalizing Implicit Type and Type Constraints in rela-
tions

Let
𝐻𝑟 = {ℎ1, ℎ2, ..., ℎ𝑛}

and
𝑇𝑟 = {𝑡1, 𝑡2, ..., 𝑡𝑚}

be two sets of head and tail entities of the relation 𝑟 , respectively. Let 𝐹𝑟 be the set of
facts that involve 𝑟 :

𝐹𝑟 = {(ℎ1, 𝑟 , 𝑡1), ..., (ℎ𝑛, 𝑟 , 𝑡𝑚)}.

ℎ ∈ 𝐻𝑟 and 𝑡 ∈ 𝑇𝑟 must satisfy (implicit) type constraints in 𝑟 . Therefore, the head
and tail entities with respect to a relation 𝑟 imply the type constraints in 𝑟 . Because
all ℎ ∈ 𝐻𝑟 and 𝑡 ∈ 𝑇𝑟 satisfy the type constraints in 𝑟 , 𝐻𝑟 and 𝑇𝑟 can be divided into
multiple subsets as follows:

𝐻𝑟 = 𝐻
1
𝑟 ∪ 𝐻 2

𝑟 ∪ ... ∪ 𝐻 𝑖
𝑟 ,

𝑇𝑟 = 𝑇
1
𝑟 ∪𝑇 2

𝑟 ∪ ... ∪𝑇
𝑗
𝑟 .
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Entities in 𝐻𝑥
𝑟 and 𝑇𝑦𝑟 have the same (unknown) type 𝑥 or 𝑦.

The aim of ProtoE is to capture the different, implicit entity types in 𝐻𝑥
𝑟 and 𝑇𝑦𝑟 by

relation-specific embeddings.

4.1.2 Unification of Bilinear and Translational KGC Models

The proposed method, ProtoE, unifies bilinear and translational KGC models by the
score function. Let 𝑓 (ℎ, 𝑟, 𝑡) be a score function in the bilinear KGC models, and let h, t
be embeddings of the entities ℎ and 𝑡 , respectively. As introduced in Section 2.1, the
relation embeddings r define the bilinear form used as the score function. Therefore,
the 𝑓 (ℎ, 𝑟, 𝑡) can be re-written as 𝑓 (ℎ, 𝑡, ; 𝑟 ) to address that the bilinear form in 𝑓 (ℎ, 𝑟, 𝑡)
is defined by the relation embedding of 𝑟 .

Suppose there are two triples, (ℎ, 𝑟, 𝑡) and (ℎ′, 𝑟 , 𝑡). (ℎ, 𝑟, 𝑡) is a fact, whereas (ℎ′, 𝑟 , 𝑡)
is a false claim. Now, consider the margin of scores from the score function 𝑓 (ℎ, 𝑡 ; 𝑟 )
for these two triples, 𝜙 (ℎ,ℎ′; (·, 𝑟 , 𝑡)). From the property of bilinear form, it is clear that

𝜙 (ℎ,ℎ′; (·, 𝑟 , 𝑡)) = 𝑓 (ℎ, 𝑡 ; 𝑟 ) − 𝑓 (ℎ′, 𝑡 ; 𝑟 ) = ⟨h − h′, t⟩𝑟 = 𝑓 (ℎ − ℎ′, 𝑡 ; 𝑟 ). (4.1)

In Equation 4.1, (·, 𝑟 , 𝑡) in 𝜙 addresses that the margin is about triples related to
relation 𝑟 and its tail entity 𝑡 . Because the task of the score function is to distinguish
actual triples from false triples, the margin

𝑓 (ℎ − ℎ′, 𝑡, 𝑟 ) ≠ 0.

Consequentially, by the property of the bilinear form, it is clear that

Δh = h − h′ ≠ 0,

where 0 represents the all-zero vector. Following the same procedure, the scenario
where the query is (ℎ, 𝑟, ·) has a similar score margin property:

Δt = t − t′ ≠ 0.

𝑡 is an entity that makes (ℎ, 𝑟, 𝑡) a true triple, whereas 𝑡 ′ makes (ℎ, 𝑟, 𝑡 ′) a false triple.
From the derivations above, it can be concluded that entities qualified and disquali-
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fied for filling the query naturally have a trend of constituting clusters in the feature
space of bilinear KGC models.

Now, consider the case of translational models. Let 𝑓 (ℎ, 𝑟, 𝑡) be the score function
of a translational model and h, t, r be entity and relation embeddings. Because some
translational models (e.g., TransH [14], TransD [13], TransR [15]) take projection
to map entity embeddings, the h and t represent entity embeddings that after the
projection. For TransE, h and t are the vanilla entity embeddings because TransE does
not use projection. The score margin in translational models has following properties:

𝜙 (ℎ,ℎ′; (·, 𝑟 , 𝑡)) ∝ ∥h∥2 − ∥h′∥2 + ⟨h′ − h, t⟩;
𝜙 (𝑡, 𝑡 ′; (ℎ, 𝑟, ·)) ∝ ∥t∥2 − ∥t′∥2 + ⟨h, t′ − t⟩; (4.2)

where (ℎ, 𝑟, 𝑡) is an actual triple and (ℎ′, 𝑟 , 𝑡) and (ℎ, 𝑟, 𝑡 ′) are false triples. Equation 4.2
shows that the score margin in translational KGC models is proportional to h′ − h and
t′ − t, respectively. Therefore, in both bilinear and translational KGC models, entity
embeddings tend to constitute clusters in the feature space according to whether the
entity qualifies the query ((?, 𝑟 , 𝑡) or (ℎ, 𝑟, ?)) or not.

4.1.3 Prototype Embeddings for Capturing Implicit Type Con-
straints

Section 4.1.1 and Section 3.4.2 show that:

1. Implicit type constraints in relations can be represented as multiple subsets that
contain the same type of entities (Section 4.1.1.)

2. Entity embeddings in bilinear and translational KGC models tend to constitute
clusters in the feature space according to their occurrences in triples (Section
4.1.2.)

Therefore, the type constraints in relations can be captured by relation-specific
multiple embeddings. In this research, they are prototype embeddings. Each prototype
embedding represents a subset of entities that a relation can accept. The prototype
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Figure 4.1: Structure of proposed method, ProtoE. Every relation has associated
prototype embeddings representing type constraints on head and tail.

embeddings are used in the training stage to calibrate entity embeddings, and as the
previous research in Chapter 3, entity embeddings use their locations in the feature
space to represent the implicit entity type. The name of the proposed method, ProtoE,
comes from this setting.

Figure 4.1 shows the structure of ProtoE. Every relation has prototype embeddings
that represent type constraints on the head and tail. Note that the proposed method
supports the setting of different numbers of prototype embeddings on different
arguments (i.e., head or tail) in relations. Entity embeddings of ℎ or 𝑡 in triples related
to 𝑟 will be associated with the prototype embeddings pℎ𝑟 or p𝑡𝑟 with the maximal
similarity. The automatically assigned prototype embeddings (the blue column vectors)
and h, t (i.e., the entity embeddings of ℎ and 𝑡 ) are used to evaluate the plausibility of
the triple (ℎ, 𝑟, 𝑡).

From the perspective of representation learning, the prototype embeddings
represent local areas in the feature space where entity embeddings are more likely to
have a high score from the inherited score function in the base model for the relation
𝑟 . Formally, let Pℎ𝑟 ∈ R𝑚×𝑑 and P𝑡𝑟 ∈ R𝑛×𝑑 be two matrices in which column vectors
are prototype embeddings for ℎ or 𝑡 in 𝑟 , respectively.𝑚 and 𝑛 are the numbers of
prototype embeddings associated to head or tail, respectively. 𝑑 is the dimension of
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entity embeddings. The compatibility of entities to 𝑟 is evaluated as follows.

𝑔head(h, Pℎ𝑟 ) = max softmax(h, Pℎ𝑟 )
𝑔tail(t, P𝑡𝑟 ) = max softmax(t, P𝑡𝑟 ). (4.3)

In Equation 4.3, h and t are entity embeddings learned by the base model (e.g.,
TransE [12], TransH [14], DistMult [17], ComplEx [19].) For entity embeddings in the
complex domain, the real and imaginary parts are concatenated in the real domain.
That is, h = [Re(hcomplex); Im(hcomplex)]. For some translational models with projection
matrices or vectors, h and t are the ones after projection. The max softmax function in
Equation 4.3 is

max softmax(e, P) = max
( exp(⟨e, p1⟩)∑𝑁

𝑖=1 exp(⟨e, p𝑖⟩)
,

exp(⟨e, p2⟩)∑𝑁
𝑖=1 exp(⟨e, p𝑖⟩)

, ...,
exp(⟨e, p𝑁 ⟩)∑𝑁
𝑖=1 exp(⟨e, p𝑖⟩)

)
,

where e is the entity embedding, and P represents the matrix that stores prototype
embeddings as its column vectors. p𝑖 is the 𝑖-th prototype embedding (i.e., the 𝑖-th
column vector in P.) 𝑁 is the number of prototype embeddings.

The crucial components in Equation 4.3 are the inner product between the entity
embeddings and the prototype embeddings, i.e., ⟨e, p1⟩ for 𝑖 = 1, ..., 𝑁 . The intention of
Equation 4.3 is from the squared distance:

∥e − p𝑖 ∥2 = ∥e∥2 − 2⟨e, p𝑖⟩ + ∥p𝑖 ∥2.

Because the squared distance ∥e − p∥2 is disproportional to the inner product
⟨e, p𝑖⟩, it is possible to use the inner product as the type compatibility. As discussed in
Section 4.1.2 and the summarized conclusions at the beginning of this subsection, their
embeddings for entities in a relation tend to constitute clusters in the feature space.
Combining of the max and softmax functions aims to associate entity embeddings
to a prototype embedding. In this sense, the associated prototype embedding is the
representative embedding for the cluster.

From the previous discussion in Section 4.1.1, it is known that entities that appeared
together in many relations are more probable to have the same type because they
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satisfy type constraints in multiple relations. Therefore, a critical criterion in ProtoE is
to capture type constraints with prototype embeddings by this property. In addition,
the discussions in this subsection and Section 4.1.2 guarantee that ProtoE can adopt
bilinear and translational KGC models as its base models. The score function and loss
functions in the following sections are designed for the criteria and utilize the property
for bilinear and translational models.

4.2 Score Function in ProtoE

The score function in ProtoE is in the following form.

𝑓ProtoE = 𝜎 (𝛼 × 𝑔head(h, P𝑟ℎ)) ◦ 𝑓base(ℎ, 𝑟, 𝑡) ◦ 𝜎 (𝛼 × 𝑔tail(t, P
𝑟
𝑡 )) . (4.4)

where 𝜎 is the sigmoid function. ◦ represents one of two algebra operations, namely
addition ("+") or multiplication ("×"). 𝛼 ∈ R is a scaling hyperparameter. Different
algebra operations represent different strategies for balancing the type compatibility
(measured by the function 𝑔) and triple plausibility (measured by the function 𝑓 .)

The following subsections discuss the different aspects that affect the link prediction
performance, including the impacts of different strategies and the setting of the number
of prototype embeddings, and how they would affect the results in link prediction.

4.2.1 Strategies and Design of the Score Function in ProtoE

If the binary algebra operator "◦" is addition "+", the strategy of evaluating triples
follows "OR" logic. The ranking of candidates in the prediction result depends on the
overall score in Equation 4.4. Because the compatibility for the head and tail locations
are in the sigmoid function, therefore the scale of these components is in (0, 1). Thus,
entities in the prediction with the logical "OR" strategy would not be the entities that
are apparently not appropriate (the score from 𝑓base is low) but only satisfy the type
constraints (the scores from 𝑔 are high.)

On the contrary, the multiplication ("×") follows "AND" logic. For all entities in the
prediction results, they must have high scores from all three components. Because
of the sigmoid functions on type compatibility, the interdependence plausibility
represented by 𝑓 will be scaled proportionally by the type compatibility.
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The sigmoid function 𝜎 and the hyperparameter 𝛼 are used to smooth the scores of
entity compatibility (represented by 𝑔head and 𝑔tail.) The sigmoid function uniforms
the range of entity type compatibility in (0, 1), and the 𝛼 and the sigmoid function
jointly uniform the score sign represented by 𝑓ProtoE unchanged as in the following
discussions.

The score function 𝑓base from the base model in the extended score function
(Equation 4.4) should always represent the plausibility of triples. Bilinear models
satisfy this requirement, but it may be different for translational models because some
translational models use distance to represent the triple implausibility. Their score
function is multiplied by -1 to enable ProtoE to adapt these models. Take TransR as an
example. ProtoE adapts the score function in TransR as 𝑓base in Equation 4.4 as follows:

𝑓base(ℎ, 𝑟, 𝑡) = −𝑓TransR(ℎ, 𝑟, 𝑡) = −∥M𝑟h + r −M𝑟 t∥2. (4.5)

The purpose of modifying 𝑓TransR is to keep 𝑓base and 𝑔 consistent. First, consider
the case of queries in (?, 𝑟 , 𝑡) form. In this case, because the correct tail entity is given,
the given entity must satisfy the type constraints in the tail of 𝑟 , therefore

𝜎 (𝛼 × 𝑔tail(t, P𝑝𝑡 )) ≈ 1.

The prediction depends on 𝜎 (𝛼 × 𝑔head(h, P𝑝ℎ)) and 𝑓base in Equation 4.4. Only
entities that satisfy the type constraints in the head location of 𝑟 (with a high score from
𝜎 (𝛼 × 𝑔head(h, P𝑝ℎ))) and make the triple plausibility (with a high score from 𝑓base) will
take the top locations in the prediction. Similarly, for queries (ℎ, 𝑟, ?), the prediction
depends on 𝜎 (𝛼 × 𝑔tail(t, P𝑝𝑡 )) and 𝑓base. Note that in both cases, the hyperparameter 𝛼
and 𝑓base are critical for the prediction.

Now, consider the modified score function (in Equation 4.5) inherited from the
translational models that use distance to measure triple implausibility. The change of
sign ensures that the monotonicity of 𝑓base is consistent: plausible triples have high
scores (i.e., |𝑓base | is low as 𝑓base < 0.) For the same reason, the smooth hyperparameter
𝛼 is in R− for translational models that use distance as triple implausibility. The
negative 𝛼 ensures that if a triple (ℎ, 𝑟, 𝑡) is true, the score 𝑓base will be scaled with
smaller |𝑓base(ℎ, 𝑟, 𝑡) by other two components with 𝑔head and 𝑔tail for measuring entity
type compatibility.
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4.2.2 Effects of the Number of Prototype Embeddings

The number of prototype embeddings affects ProtoE’s performance in link prediction.
Because the exact numbers of acceptable types in relations are unknown, it is difficult
to set the explicit, accurate𝑚 and 𝑛 for the number of prototype embeddings in the
head and tail of a relation 𝑟 , respectively.

If𝑚 and 𝑛 are too large, the prototype embeddings may split the entity embeddings
that should be within the same cluster to multiple clusters. If these multiple clusters
are not nearby in the feature space, the link prediction performance will deteriorate.
Another possibility is that the redundant prototype embeddings are not assigned
by any entity embedding. As a result, some of these prototype embeddings are not
optimized after initialization. In the latter case, the performance is rarely affected
because these orphan prototype embeddings are not affecting entity embeddings.

In contrast, if the𝑚 and 𝑛 are too small, the entity type compatibility functions
𝑔head and 𝑔tail fail to capture the type constraints and therefore become incapable of
help adjusting entity embeddings. In this case, the link prediction performance will
deteriorate either.

The score function 𝑓ProtoE in Equation 4.4 are used in two loss functions to learn
and calibrate all embeddings in ProtoE. The tasks and details of the loss functions are
introduced in the following section.

4.3 Loss Functions in ProtoE

The loss functions in ProtoE are similar to the method introduced in Chapter 3. One
loss function aims to optimize entity, relation, and prototype embeddings, and another
one calibrates the location of these embeddings.

4.3.1 The Loss Function for Learning Embeddings

The loss function for learning entity, relation, and prototype embeddings is similar to
the one in Chapter 3. Equation 4.6 is the loss function.
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𝑃 (ℎ |𝑟, 𝑡) = exp(\ 𝑓ProtoE(ℎ, 𝑟, 𝑡))
exp(\ 𝑓ProtoE(ℎ, 𝑟, 𝑡)) +

∑
(ℎ′,𝑟 ,𝑡)∈Dtrain exp(\ 𝑓ProtoE(ℎ′, 𝑟 , 𝑡))

,

𝑃 (𝑡 |ℎ, 𝑟 ) = exp(\ 𝑓ProtoE(ℎ, 𝑟, 𝑡))
exp(\ 𝑓ProtoE(ℎ, 𝑟, 𝑡)) +

∑
(ℎ,𝑟,𝑡 ′)∈Dtrain exp(\ 𝑓ProtoE(ℎ, 𝑟, 𝑡 ′))

,

LKGC = −
∑︁

(ℎ,𝑟,𝑡)∈Dtrain

log
(
𝑃 (ℎ |𝑟, 𝑡) + 𝑃 (𝑡 |ℎ, 𝑟 )

)
. (4.6)

where Dtrain is the training data. \ ∈ R+ is a hyperparameter. (ℎ′, 𝑟 , 𝑡) and (ℎ, 𝑟, 𝑡 ′) are
corrupted triples by replacing ℎ or 𝑡 in (ℎ, 𝑟, 𝑡) to a entity ℎ′ or 𝑡 ′ by uniform negative
sampling, respectively. The score function 𝑓ProtoE is in Equation 4.4.

Entity and relation embeddings are learned by LKGC in Equation 4.6 with 𝑓base in
𝑓ProtoE. The prototype embeddings appear in the loss function, but it is insufficient to
barely use this loss function to optimize them because of the sigmoid functions. The
derivative of the sigmoid function 𝜎 (·) in Equation 4.4 is

𝜎′(𝑥) = 𝜎 (𝑥) (1 − 𝜎 (𝑥)) .

If 𝛼 × 𝑔head(·) or 𝛼 × 𝑔tail(·) are too high or too low, the gradients for the wrapped
elements with the sigmoid function are in low-magnitude. As a result, the prototype
embedding locations change little during the back-propagation. Note that the score
function 𝑓base in 𝑓ProtoE is without the sigmoid function, therefore, the vanishing
gradient issue does not affect the optimization of entity and relation embeddings (used
in 𝑓base.)

4.3.2 The Loss Function for Calibrating Embedding Locations

Due to the gradient issue caused by the sigmoid functions in 4.6, ProtoE induces
another loss function to help calibrate embedding locations, mainly for the prototype
embeddings. The induced loss function is in the following form.
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Lprototype =
∑︁
𝑟∈R

∑︁
(ℎ′,𝑟 ,𝑡),(ℎ,𝑟,𝑡)∈Dtrain

max
(
0, 𝑔head(h′, Pℎ𝑟 ) − 𝑔head(h, Pℎ𝑟 ) + 1

)
+
∑︁
𝑟∈R

∑︁
(ℎ,𝑟,𝑡 ′),(ℎ,𝑟,𝑡)∈Dtrain

max
(
0, 𝑔tail(t′, P𝑡𝑟 ) − 𝑔tail(t, P𝑡𝑟 ) + 1

)
, (4.7)

where Dtrain is the training set and (ℎ′, 𝑟 , 𝑡) and (ℎ, 𝑟, 𝑡 ′) are corrupted triples. The loss
function Lprototype is constituted by hinge loss to separate entity embeddings whose
corresponding entities do not satisfy the implicit type constraints in 𝑟 .

For entities that satisfy the type constraints, the 𝑔head(h, Pℎ𝑟 ) and 𝑔tail(t′, P𝑡𝑟 ) wrapped
by the sigmoid function are close to 1, but for those that do not satisfy the constraints,
the sigmoid wrapped 𝑔head(h′, Pℎ𝑟 ) and 𝑔tail(t′, P𝑡𝑟 ) are not necessarily close to 0. Note
that the 𝑔head and 𝑔tail are in (0, 1) without the sigmoid (cf. Equation 4.4), and the hinge
loss is with margin 1. In this manner, the Lprototype helps calibrate the locations of the
prototype and entity embeddings so that they can be used with the hyperparameter 𝛼
in the sigmoid function to evaluate type compatibility. Note that the sigmoid function
does not appear in Equation 4.7 to prevent diminishing gradients.

4.3.3 The Role and Purpose of Loss Functions in ProtoE

LKGC and Lprototype learn embeddings in the ProtoE, but the purposes and approaches
of these two loss functions are slightly different. LKGC does not distinguish triples
in a relation-specific manner, but Lprototype iterates over all relations in the training
data. LKGC learns embeddings for distinguishing correct triples, i.e., facts, (ℎ, 𝑟, 𝑡) and
corrupted triples (ℎ′, 𝑟 , 𝑡) and (ℎ, 𝑟, 𝑡 ′). In contrast, Lprototype calibrates the relation-
specific prototype embeddings and acceptable and unacceptable entity embeddings
for every relation. There are cases where entities in the corrupted triples satisfy the
implicit type constraints, but the entities themselves are not proper, e.g., (Tokyo,
is-located-in, the U.K.) If the losses in Equation 4.6 and Equation 4.7 are used in the
approach of L = LKGC + Lprototype, the model may over-fit and fail to distinguish
corrupted triples from facts because too many entity embeddings are pushed too close
to the prototype embeddings, resulting in inappropriate entity embedding locations for
the base model 𝑓base.
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Figure 4.2: Example of effects of LKGC and Lprototype on embedding locations.

Therefore, these two loss functions are used reciprocally with different learning
rates to prevent over-fitting. LKGC optimizes all embeddings in every epoch, whereas
Lprototype is used only every𝑇 epoches. Let 𝛽KGC and 𝛽prototype denote the learning rate
for LKGC and Lprototype, respectively. During the optimization, 𝛽KGC > 𝛽prototype.

Figure 4.2 illustrates the effects of these two loss functions. The effects of these two
loss functions, LKGC and Lprototype, on calibrating embedding locations are on the left
and right sides, respectively. The yellow point represents a prototype embedding in a
relation 𝑟 . Blue points are entity embeddings associated with the prototype embedding,
i.e., the entity type is represented by the prototype embedding. The red point is an
entity embedding that does not satisfy the type constraints in 𝑟 , i.e., the corresponding
entity’s type should not be represented by the prototype embedding. The arrows in the
Figure 4.2 represent the optimization trend of these embeddings, i.e., the movement in
the feature space. Arrows in the left figure are movements accumulated in 𝑇 epochs
by LKGC , whereas arrows in the right figure represent the 𝑇 -th epoch by Lprototype.
Note that in this illustration example, because of the sigmoid function in Equation
4.4, the movement of the prototype embedding is not as significant as that for entity
embeddings in the left figure, and in the right figure, because of the relatively low
learning rate, the overall movements are not as significiant as those in the left figure,
but the directions are more toward the location where the prototype embedding is
located.
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Table 4.1: Statistical information of datasets in the experiments. These statistics are
introduced in Table 4.10 as well.

Name Entity Relation Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

4.4 Experiment Setting

ProtoE is evaluated on three datasets. These three datasets are used for evaluating the
method proposed in Chapter 3 either, namely, FB15k-237, WN18RR, and YAGO3-10.
These datasets have been introduced in Section 3.3.1. Therefore, only the statistics
(also provided in Section 3.3.1, Table 4.10) are listed in Table 4.1 on account of fast
referring for readers.

4.4.1 Baselines and Base Models

The following unsupervised type representation learning approaches are chosen as
baselines.

1. TypeDistMult and TypeComplEx [1]. These two methods are baselines in the
method proposed in Chapter 3 either. The relation-specific type constraint
embeddings and embeddings for implicit entity types are independent of the entity
and relation embeddings. Each relation has only one embedding representing
the head and tail’s implicit, acceptable entity types.

2. AutoEter [29] is a method that takes RotatE [16] as the base model. For capturing
implicit entity type and type constraints, it integrates TransE [12], TransR[15]
and TransH [14]. The score function for evaluating triple plausibility is from
RotatE, and the method measures the type compatibility mixtures TransE, TransR,
and TransH.

As mentioned in Section 2.2.2, the unsupervised methods take type-agnostic KGC
models as their base models. The TransE [12], TransR [15], RotatE [16], DistMult
[17], and ComplEx [19] are chosen as the base models for the proposed and baseline
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methods. DistMult and ComplEx are used to test the compatibility of bilinear models,
and the other models are used to test the compatibility of translational models with
and without entity embedding projection.

4.4.2 Hyperparameter Settings, Base Models and Baselines

The hyperparameter settings for DistMult, ComplEx, and TypeDistMult and TypeCom-
plEx follow those in a previous study [1]. The same method is also applied to TransE
by changing 𝑓base in Equation 2.6 with 𝑓TransE in Equation 2.4. However, the method
cannot be applied to TransR due to the numeric issue, because the norm constraints in
TransR result in float number underflow in the sigmoid function on 𝑓base in Equation
2.6.

The training for TransR followed the instructions in the companion paper [15],
with the embedding size changed to 100 for both entities and relations because a large
embedding size improves the performance of TransR. The TransR and ProtoETransR
were tested on FB15k-237 and WN18RR only because the number of entities in YAGO-3
is much larger than those in the other two datasets (cf. Table 4.1.) As a result, the
projection matrix in TransR consumes a lot of memory and causes difficulties in
optimization (about 33 hours to train for 1,000 epochs on YAGO3-10 with Nvidia Titan
X, and 25 hours with an Nvidia A6000.) For the same reason, RotatE, AutoEter, and
ProtoERotatE were not tested on YAGO3-10 due to the long training time of AutoEter.

The RotatE and ProtoERotatE followed the addition strategy in Equation 4.4, and
all other models followed the multiplication strategy. Because the negative sampling
method for corrupted triples affects performance [16, 96], all models were trained with
uniform negative sampling for a fair comparison because it is used in all base models
except for RotatE. The number of negative examples was set to 20.

All parameters were randomly initialized by the Glorot uniform initializer [97].
The loss function used in training all models was the softmax loss in Equation 4.6 with
\ = 20. The hyperparameters are optimized by the grid search. The optimizer is Adam
[92]. The range of gird search is summarized as follows.

1. Max epoch: 1000;

2. Learning rate 𝛽KGC: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};



4.4 Experiment Setting 69

3. Prototype loss learning rate 𝛽prototype: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};

4. ℓ2 regularizer weight 𝛽 : {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};

5. Batch size 𝐵:{1024, 2048, 4096, 8192, 16348};

6. Prototype number 𝑁𝑟 and𝑀𝑟 : {2, 3, 5, 10, 20};

7. Prototype loss interval 𝑇 : {50, 100, 150, 200, 400, 600};

8. 𝛼 in Equation (4.4) is −4.0 for translational models that evaluate implausibility
and 4.0 for all other type-agnostic KGC models.

The type representation feature space in AutoEter has dimension 20 to make the
size the same as that for TypeDistMult, TypeComplEx, and TypeTransE. The criterion
for tuning the parameters is the mean reciprocal rank (MRR), and the grid search is
conducted with Nvidia A6000 GPU (except for a few combinations for TransR.)

4.4.3 Evaluation Metrics and Evaluation Methods

The evaluation metrics are MRR and Hits@N. The proposed method in Chapter 3 uses
the same evaluation metrics, too. For the rapid reference purpose, these two evaluation
metrics are briefly introduced as follows.

Facts (ℎ, 𝑟, 𝑡) in validation and test sets were corrupted to (ℎ, 𝑟, ?) and (?, 𝑟 , 𝑡) forms.
The corrupted forms were fed into the KGC models as queries, and the score functions
in the KGC models ranked all entities in the knowledge graph as the candidates for
fulfilling the missing one (represented by the question mark "?".) Note that, different
from the evaluation procedure in Chapter 3, only known entities in the training set
are removed before computing the evaluation metrics because this setting is widely
used in all base and baseline models.

The MRR of an entity 𝑒 is defined as follows.

MRR(𝑒) = 1
rank(𝑒) ,

where rank(𝑒) represents the rank of entity 𝑒 . For a fact in the test or validation set
(ℎ, 𝑟, 𝑡), let MRRhead = rank(ℎ) for (?, 𝑟 , 𝑡) and MRRtail = rank(𝑡) for (ℎ, 𝑟, ?). The MRR
of this record is computed as
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MRR(ℎ, 𝑟, 𝑡) = MRRhead +MRRtail

2
. (4.8)

The overall MRR for a dataset D is

MRR =
∑︁

(ℎ,𝑟,𝑡)∈D

MRR(ℎ, 𝑟, 𝑡)
|D| , (4.9)

where D represents the validation or test set. |D| is the cardinality of D. The overall
MRR is in (0, 1].

For (ℎ, 𝑟, 𝑡) ∈ D, if rank(ℎ) ≤ 𝑁 for the query (?, 𝑟 , 𝑡), Hits@Nhead(ℎ, 𝑟, 𝑡) = 1.
Similarly, if rank(𝑡) ≤ 𝑁 for (ℎ, 𝑟, ?), Hits@Ntail(ℎ, 𝑟, 𝑡) = 1. The Hits@N on the dataset
D is:

Hits@N =
1
|D|

∑︁
(ℎ,𝑟,𝑡)∈D

Hits@Nhead(ℎ, 𝑟, 𝑡) + Hits@Ntail(ℎ, 𝑟, 𝑡)
2

. (4.10)

Similar to the overall MRR, the Hits@N ∈ [0, 1] for the dataset D.

4.5 Experiment Result and Discussion

All models are examined on the two following tasks: (1) link prediction; (2) entity
clustering. The first task includes experiments on the effect of the number of prototype
embeddings on link prediction, and the second task includes the visualization of
prototype and entity embeddings to present the ability to capturing implicit type
constraints.

4.5.1 Link Prediction

Table 4.2, 4.3, and 4.4 present link prediction results on different datasets. These results
indicate that ProtoE can improve most performance metrics for all base type-agnostic
KGC models.

Results in Table 4.2 shows that ProtoE outperforms other methods in most metrics
in FB15k-237. The improvements for KGC models with a real feature space is more
significant than those with a complex space. The reason is that KGC models with
complex feature space have twice the number of parameters as those with a real
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Table 4.2: Experimental results for FB15k-237. Best values are indicated in bold.

FB15k-237
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.2502 0.1646 0.2755 0.3373 0.4279
TypeDistMult 0.2473 0.1647 0.2695 0.3305 0.4168
ProtoEDistMult 0.2535 0.1668 0.2799 0.3426 0.4301

ComplEx 0.2509 0.1643 0.2762 0.3394 0.4288
TypeComplEx 0.2431 0.1612 0.2655 0.3233 0.4129
ProtoEComplEx 0.2514 0.1647 0.2767 0.3408 0.4290

TransE 0.2482 0.1644 0.2749 0.3324 0.4190
TypeTransE 0.2660 0.1755 0.2923 0.3573 0.4540
ProtoETransE 0.2609 0.1778 0.2858 0.3450 0.4540

TransR 0.1901 0.1144 0.2072 0.2606 0.3459
ProtoETransR 0.1984 0.1251 0.2131 0.2667 0.3515

RotatE 0.2647 0.1810 0.2886 0.3482 0.4383
AutoEter 0.2476 0.1752 0.2692 0.3216 0.3953

ProtoERotatE 0.2660 0.1804 0.2897 0.3539 0.4430

feature space. Therefore, KGC models with a complex feature space need more training
examples because of the enlarged number of parameters. Results in table 4.3 and Table
4.4 also support this conclusion because the averaged number of training examples
per relation in these two datasets is larger than it is for FB15k-237, as implied by the
statistics in Table 4.1.

Table 4.3 presents experiment results on WN18RR. Because facts in WN18RR
describe relationships between English, e.g., hypernym_of and hyponym_of.
Therefore, it is difficult to define the type and type constraints on this dataset. In this
case, ProtoE uses fewer prototype embeddings (two prototype embeddings for head and
tail, respectively) in relations to capture the areas in the feature space where the density
of qualified entities (i.e., more probable for the relation to make the triple plausible)
locate. Entity embeddings that have a high inner product with the associated prototype
embeddings are more probable to have a high score. As a result, the corresponding
entities are more likely to be appropriate for the relations.

Note that the improvements for translational models, TransE and TransR, are more
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Table 4.3: Experimental results for WN18RR. Best values are indicated in bold.

WN18RR
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4166 0.3787 0.4379 0.4564 0.4817
TypeDistMult 0.4052 0.3767 0.4236 0.4364 0.4513
ProtoEDistMult 0.4173 0.3765 0.4403 0.4623 0.4872

ComplEx 0.4133 0.3748 0.4343 0.4537 0.4767
TypeComplEx 0.3942 0.3588 0.4185 0.4325 0.4486
ProtoEComplEx 0.4171 0.3781 0.4384 0.4569 0.4817

TransE 0.1639 0.0038 0.2846 0.3744 0.4419
TypeTransE 0.2242 0.0665 0.3545 0.4303 0.4861
ProtoETransE 0.1806 0.0160 0.3138 0.3942 0.4580

TransR 0.1535 0.0099 0.2787 0.3389 0.3725
ProtoETransR 0.2163 0.1533 0.2524 0.2932 0.3385

RotatE 0.4214 0.3827 0.4399 0.4606 0.4901
AutoEter 0.4216 0.3843 0.4402 0.4596 0.4901

ProtoERotatE 0.4232 0.3866 0.4402 0.4606 0.4919

significant than those for bilinear models. The reason is that, in TransE and TransR, if
(ℎ1, 𝑟 , 𝑡) and (ℎ2, 𝑟 , 𝑡) are two facts about 𝑟 with the same tail entity 𝑡 , the (projected)
embeddings are approximately the same, i.e., h1 ≈ h2, because of the intrinsic property
of the score functions in these two models (cf. the discussion in Section 4.1.2.) In
ProtoE, the prototype embeddings associated with 𝑟 will affects the head embeddings
h1 and h2 in the optimization. The prototype embeddings increase the difference
h1 − h2 during optimization and help improve the overall MRR in these two models.

Results in Tables 4.2, 4.3, and 4.4 show that the ProtoE can improve the performance
of KGC models in different categories. DistMult and ComplEx are bilinear models.
TransE and TransR are translational models, and RotatE is akin to the translational
model, but it uses rotation instead of offset vectors to compute distance.
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Table 4.4: Experimental results for YAGO3-10. Best values are indicated in bold.

YAGO3-10
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4069 0.3070 0.4595 0.5248 0.5996
TypeDistMult 0.4591 0.3540 0.5233 0.5813 0.6504
ProtoEDistMult 0.4292 0.3338 0.4789 0.5429 0.6141

ComplEx 0.3960 0.2973 0.4471 0.4471 0.5918
TypeComplEx 0.4521 0.3523 0.5072 0.5697 0.6443
ProtoEComplEx 0.4260 0.3275 0.4819 0.5444 0.6201

TransE 0.3821 0.2736 0.4378 0.5053 0.5985
TypeTransE 0.2384 0.1515 0.2617 0.3301 0.4176
ProtoETransE 0.4070 0.2964 0.4634 0.5382 0.6291

4.5.2 Effect of the Number of Prototype Embeddings on Link
Prediction

Section 4.2.2 mentioned that the number of prototype embeddings associated with
each relation could affect the ProtoE’s performance. Therefore, another group of
experiments on ProtoE with various base models on all three datasets is conducted to
investigate the effect. The results of ablation experiments on the number of prototype
embeddings are listed in Table 4.5, 4.6, and 4.7.

The number of prototype embeddings is chosen from the range {2, 3, 5, 10}. The
digit in the parenthesis shows the number of prototype embeddings. These results
indicate that:

1. ProtoE models with more prototype embeddings have better performance on
the datasets FB15k-237 and YAGO3-10. The insufficient number of prototype
embeddings will degrade the performance, as discussed in Section 4.2.2. Most
type-agnostic KGC models need at minimal five prototype embeddings for each
relation to obtaining performance enhancement by ProtoE. In contrast, for the
dataset WN18RR, more prototype embeddings incapacitate the performance due
to the vagueness of type in the dataset. In this case, the ProtoE depends on the
capability of the base KGC model to capture the feasible local areas for entities
that are acceptable in different relations.
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2. The properties of the knowledge graph and the type-agnostic KGC models
simultaneously decide the appropriate number of prototype embeddings. Take
TransE with and without ProtoE in Table 4.7 as an example. The insufficient
number of prototype embeddings significantly damages the performance. Fur-
thermore. Different base models need different prototype number settings.
For example, the ProtoEDistMult and ProtoEComplEx in Table 4.6 need two
prototype embeddings only, whereas ProtoETransE and ProtoERotatE need ten.

Table 4.5: Results of ablation experiments for prototype embedding on FB15k-237. Best
values are indicated in bold.

FB15k-237
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.2502 0.1646 0.2755 0.3373 0.4279
ProtoEDistMult (2) 0.2491 0.1643 0.2742 0.3384 0.4275
ProtoEDistMult (3) 0.2502 0.1641 0.2744 0.3364 0.4295
ProtoEDistMult (5) 0.2503 0.1651 0.2744 0.3363 0.4270
ProtoEDistMult (10) 0.2535 0.1668 0.2799 0.3426 0.4301

ComplEx 0.2509 0.1643 0.2762 0.3394 0.4288
ProtoEComplEx (2) 0.2512 0.1648 0.2770 0.3394 0.4297
ProtoEComplEx (3) 0.2488 0.1639 0.2732 0.3663 0.4249
ProtoEComplEx (5) 0.2497 0.1645 0.2753 0.3354 0.4240
ProtoEComplEx (10) 0.2514 0.1647 0.2767 0.3408 0.4290

TransE 0.2482 0.1644 0.2749 0.3324 0.4190
ProtoETransE (2) 0.1874 0.1276 0.2022 0.2437 0.3080
ProtoETransE (3) 0.1879 0.1294 0.2009 0.2522 0.3249
ProtoETransE (5) 0.2351 0.1543 0.2584 0.3158 0.3978
ProtoETransE (10) 0.2609 0.1778 0.2858 0.3450 0.4540

RotatE 0.2647 0.1810 0.2886 0.3482 0.4383
ProtoERotatE (2) 0.2607 0.1772 0.2839 0.3459 0.4353
ProtoERotatE (3) 0.2591 0.1755 0.2831 0.3446 0.4322
ProtoERotatE (5) 0.2533 0.1694 0.2777 0.3385 0.4265
ProtoERotatE (10) 0.2660 0.1804 0.2897 0.3539 0.4430
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Table 4.6: Results of ablation experiments for prototype embedding on WN18RR. Best
values are indicated in bold.

WN18RR
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4166 0.3787 0.4379 0.4564 0.4817
ProtoEDistMult (2) 0.4173 0.3765 0.4403 0.4623 0.4872
ProtoEDistMult (3) 0.4086 0.3757 0.4271 0.4454 0.4655
ProtoEDistMult (5) 0.4038 0.3693 0.4249 0.4405 0.4561
ProtoEDistMult (10) 0.4075 0.3700 0.4304 0.4443 0.4671

ComplEx 0.4133 0.3748 0.4343 0.4537 0.4767
ProtoEComplEx (2) 0.4171 0.3781 0.4384 0.4569 0.4817
ProtoEComplEx (3) 0.4106 0.3746 0.4319 0.4467 0.4690
ProtoEComplEx (5) 0.4099 0.3751 0.4314 0.4461 0.4652
ProtoEComplEx (10) 0.4093 0.3725 0.4296 0.4486 0.4703

TransE 0.1639 0.0038 0.2846 0.3744 0.4419
ProtoETransE (2) 0.0234 0.0134 0.0247 0.0299 0.0415
ProtoETransE (3) 0.0305 0.0006 0.0330 0.0477 0.0766
ProtoETransE (5) 0.0950 0.0009 0.1471 0.2039 0.2551
ProtoETransE (10) 0.1806 0.0160 0.3138 0.3942 0.4580

RotatE 0.4214 0.3827 0.4399 0.4606 0.4901
ProtoERotatE (2) 0.4200 0.3829 0.4352 0.4574 0.4887
ProtoERotatE (3) 0.4226 0.3848 0.4389 0.4582 0.4928
ProtoERotatE (5) 0.4222 0.3834 0.4405 0.4614 0.4938
ProtoERotatE (10) 0.4232 0.3866 0.4402 0.4606 0.4919
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Table 4.7: Results of ablation experiments for prototype embedding on YAGO3-10. Best
values are indicated in bold.

YAGO3-10
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4069 0.3070 0.4595 0.5248 0.5996
ProtoEDistMult (2) 0.4025 0.3041 0.4527 0.5199 0.5969
ProtoEDistMult (3) 0.4246 0.3238 0.4969 0.5604 0.6360
ProtoEDistMult (5) 0.4175 0.3220 0.4682 0.5277 0.6046
ProtoEDistMult (10) 0.4292 0.3338 0.4789 0.5429 0.6141

ComplEx 0.3960 0.2973 0.4471 0.4471 0.5918
ProtoEComplEx (2) 0.3879 0.2880 0.4378 0.5045 0.5836
ProtoEComplEx (3) 0.3874 0.2896 0.4357 0.5001 0.5816
ProtoEComplEx (5) 0.3692 0.2707 0.4175 0.4827 0.5657
ProtoEComplEx (10) 0.4260 0.3275 0.4819 0.5444 0.6201

TransE 0.3821 0.2736 0.4378 0.5053 0.5985
ProtoETransE (2) 0.0433 0.0359 0.0425 0.0452 0.0433
ProtoETransE (3) 0.0430 0.0359 0.0420 0.0462 0.0527
ProtoETransE (5) 0.1016 0.0452 0.1176 0.1488 0.1966
ProtoETransE (10) 0.4070 0.2964 0.4634 0.5382 0.6291

4.5.3 Entity Embedding Clustering

Besides improving the link prediction performance, the ProtoE empowers type-agostic
KGC models with the ability to capture implicit entity types, i.e., the co-occurrence
tendency of entities. The following experiments evaluate such ability by clustering all
entities that are instances of "class of award, film, human, association football club, big
city, music genre, television series" and "city of the United States" in the FB15k-237.
These instances are extracted from the WikiData by the "instance_of" relation. Entities
with these five instances take 53.35% (7,758/14,541) of all entities in the FB15k-237
dataset.

The visualization of entity embeddings uses t-SNE [94], and ProtoE learns entity
embeddings with ten prototype embeddings and DistMult as the base model. Figure 4.3
shows the clustering results.
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(a) ProtoEDistMult

(b) DistMult

Figure 4.3: Clustering results of entity embeddings for ProtoEDistMult and DistMult.
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The clustering results in Figure 4.3 indicate that:

1. DistMult and ProtoEDistMult can distinguish entities with "film, human," and
"television series." These three clusters have wide margins, whereas entities with
"big city" and "city of the United States" have overlaps because of the shared
entities in both instances.

2. Entity embeddings learned by DistMult with "class of award, big city," and "music
genre" intersect, whereas the entity embeddings learned by ProtoEDistMult
can distinguish them. The ability to distinguish these entities with different
instances is brought by the calibrated entity embeddings in ProtoEDistMult with
the prototype embeddings associated with relations that appear in facts about
these entities.

The prototype embeddings have another role in ProtoE, i.e., capturing the local
areas in the feature space in which the embeddings of proper entities for the relation
tends to stay. The case study of this role starts with the relation "olympic_sports" 1 as
an example. Appendix A presents more case study examples on different relations.
Figure 4.4 presents the clustering result.

There are 581 records in training set for this relation, with 40 different head
entities and 51 different tail entities. The head entities are the Olympic Games in
different years, and the tail entities are sports in these games. Because of the low
number of training examples and entities in the relation, some prototype embeddings
have become redundant - these embeddings barely change their locations during the
optimization. However, this does not prevent the prototype embeddings in the left-top
and right-bottom from capturing the proper local areas for entity embeddings that are
acceptable in the relation.

Moreover, another clustering result on the relation "performed_in" 2 present the
locations of entity and prototype embeddings when the number of training examples
in the relation is high. The head entity is an actor or actress and, the tail entity is a film
in which they acted in. Prototype embeddings in this relation converge to almost the
same location because of the monotonous entity instance.

1The full relation path is "/user/jg/default_domain/olympic_games/sports" in FB15k-237.
2The full relation path is "/film/actor/film./film/performance/film" in FB15k-237.
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Figure 4.4: Visualization of prototype and entity embeddings in olympic_sports from
FB15k-237.

Figure 4.5: Entity and prototype embeddings related to performed_in in the dataset
FB15k-237.



80
Chapter 4. Enhancing Knowledge Graph Completion Models with

Unsupervised Type Representation Learning

Figure 3.4 and Figure 4.5 present the case studies about monotonous type constraints,
i.e., acceptable entities are in a (relatively) singular local area in the feature space.
As mentioned before, ProtoE is capable of capturing multiple type constraints by
prototype embeddings. These prototype embeddings play as a anchor of the local areas
in which proper entity embeddings stay in. Figure 4.6 presents the case study on
a relation (relation path is presented at the top of the figure) about multiple type
constraints.

The relation contains 273 different head entities and 7 different tail entities, and
355 records in the training data. The results show that both ProtoEDistMult and
TypeDistMult could recognize the multiple implicit head entity types. However,
TypeDistMult failed to capture the constraints due to the singular embedding setting.
In contrast, ProtoEDistMult uses multiple head prototype embeddings to represent the
four clusters where head entity embeddings should stay in the feature space.
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(a) Clustering with Entity Embeddings Learned by ProtoEDistMult

(b) Clustering with Entity Embeddings Leanred by TypeDistMult

Figure 4.6: Clustering results for TypeDistMult and ProtoEDistMult.
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Table 4.8: Ablation experiment results of ProtoE and the co-occurrence based method
on FB15k-237.

FB15k-237

MRR Hits@1 Hits@3 Hits@5
DistMult 0.2888 0.1995 0.3194 0.3818
CoDM 0.2950 0.2091 0.3262 0.3823

ProtoEDistMult 0.2961 0.2124 0.3239 0.3821

ComplEx 0.2896 0.2079 0.3166 0.3752
CoCX 0.2904 0.2063 0.3188 0.3779

ProtoEComplEx 0.2942 0.2058 0.3251 0.3865

Table 4.9: Ablation experiment results of ProtoE and the co-occurrence based method
on YAGO3-10.

YAGO3-10

MRR Hits@1 Hits@3 Hits@5
DistMult 0.4191 0.3255 0.4717 0.5343
CoDM 0.4912 0.4011 0.5474 0.5961

ProtoEDistMult 0.4229 0.3320 0.4740 0.5274

ComplEx 0.4133 0.3193 0.4647 0.5232
CoCX 0.4932 0.4064 0.5459 0.5941

ProtoEComplEx 0.4253 0.3235 0.4819 0.5520

4.5.4 Ablation Experiments with the Co-occurrence Method

The co-occurrence based method proposed in Chapter 3 and the ProtoE follow the
principle of adjusting entity embeddings. The co-occurrence based method is applicable
to the bilinear models, whereas ProtoE has a more comprehensive application range.
To show the differences on their performances for the bilinear models, this section
contains experiment results of both methods with the same experiment settings.

Section 3.3.3 mentioned that for a fair comparison, the evaluation metrics follow
different filtering methods in this chapter. The evaluation metrics in these ablation
experiments follow the same filtering strategy introduced in Section 3.3.3. Table 4.8 and
4.9 present the ablation experiment results comparing ProtoE and the co-occurrence
based method in Chapter 3 on FB15k-237 and YAGO3-10 datasets, respectively. The
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Table 4.10: Statistics of datasets (the contents are the same as a part of those in Table
3.1.)

|E | |R| Train Valid Test Density

FB15k-237 14,541 237 272,115 17,535 20,466 0.0381
YAGO3-10 123,182 36 1,079,040 5,000 5,000 0.1610

base models in Table 4.8 and 4.9 are bilinear KGC models, namely, DistMult and
ComplEx. The performances of DistMult, ComplEx, and the corresponding enhanced
variances, CoDM and CoCX are from Table 3.2 in Chapter 3.

For FB15k-237, the ProtoEDistMult outperforms its counterparts CoDM onMRR and
Hits@1, whereas CoDM has a better performance on Hits@3 and Hits@5. For ComplEx
on the FB15k-237 dataset, ProtoEComplEx has a better improvement compared to
CoCX. Meanwhile, for YAGO3-10, the co-occurrence based methods, CoDM and CoCX,
outperform their counterparts ProtoEDistMult and ProtoEComplEx on a large margin
for all performance measures.

The reason of the different improvements for the co-occurrence based method and
the ProtoE is the co-occurrence density (defined in Equation 3.14.) Table 4.10 presents
the co-occurrence density of FB15k-237 and YAGO3-10. The high co-occurrence
density in YAGO3-10 enables the co-occurrence based method to calibrate the entity
embeddings better than the ProtoE to reflect the implicit entity type and type constraints,
whereas the relatively low co-occurrence density in FB15k-237 limits the co-occurrence
based method’s ability to adjust entity embeddings. Note that this effect is consistent
with the discussion in Section 3.4.1: the co-occurrence method depends on the entity
co-occurrence density.

4.6 Conclusion

This chapter proposed ProtoE, a general method for both bilinear and translational
KGC models to capture implicit entity type and type constraints in relations. ProtoE
can be treated as an extension of the method proposed in Chapter 3 by dropping the
global statistics about entity co-occurrences. Different from supervised methods which
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requires type annotations; ProtoE depends on only facts in the knowledge graph and is
different from other unsupervised approaches, which could only capture a single type
constraint in relations; ProtoE use multiple prototype embeddings to capture multiple
impilicit type constraints.

ProtoE can extend both type-agnostic bilinear and translational models. Prototype
embeddings in the head and tail locations of relations represent the local areas in
which embeddings of entities that satisfy the type constraints are located. Prototype
embeddings and entity and relation embeddings in the underlying KGC models
are simultaneously optimized with facts in the knowledge graph. An additional
loss function helps calibrate the entity and prototype embedding locations to better
represent the diverse type constraints. From the perspective of representation learning,
the prototype embeddings are representations of the implicit type constraints.

The ability of prototype embeddings to capture implicit type constraints depends
on the number of training data about the relation. Prototype embeddings will converge
to locations where the density of qualified entity embeddings is high for relations with
sufficient training data. In contrast, some prototype embeddings would be orphans in
the feature space when the number of training data for the relation is low. In the
current setting, the number of prototype embeddings associated with relations is a
hyperparameter, and all relations have the same number of prototype embeddings. A
possible future work is to use some stochastic process, such as the Chinese restaurant
process [98, 99] or determinantal point process [100, 101], to automatically set an
appropriate number of prototype embeddings in a relation-specific manner.

The experiment results for link prediction and the case studies by entity clustering
show that the ProtoE improves the performance of base KGC models even in the
scenario where it is difficult to define the type on. The entity clustering results indicate
that the proposed method, ProtoE, captures implicit entity type and type constraints in
a better way compared to other unsupervised approaches. The ablation experiment
results with the co-occurrence based method in Chapter 3 show that ProtoE is more
capable of learning implicit entity type and type constraint representations in the
scenario where the entity co-occurrence is low.
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5
Hypernetwork based Meta-Learning

Recommender System for the User-side
Cold-start Problem

As mentioned in the Section 1.3, the proposed system aims fast to adapt features and
weights in the recommender system to enable high-quality recommendation, albeit un-
der little user-item interaction data. The proposed system has two components: a neural
network 𝑓\ that recommenders items to users with parameter \ , and a hypernetwork 𝑔
which is another neural network that generates \ in 𝑓\ . The hypernetwork 𝑔 takes takes
user interest embeddings as indicators to generate the appropriate parameters. From
the perspective of representation learning, the representation of users are generated by
𝑔. The personalized \ in 𝑓 and the user embedding simultaneously represent user
preferences. The following sections introduce the details of the proposed system.
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5.1 Proposed Method: HyperRS

Figure 5.1: The example of the proposed method capturing the interest of User A on
item attributes ("Genre" and "Caster") and contents in item attributes ("cyberpunk" in
"Genre", "celebrity 1", "celebrity 2" in "Caster").

The intuition of the proposed method is to capture user interest in item attributes
and the contents of item attributes. Take the domain "Movie" as an example. Suppose
items in the "Movie" domain have two attributes: Caster and Genre. Figure 5.1 shows
User A’s item interactions and the structure of recommender network 𝑓 and the
hypernetwork that generates parameters in 𝑓 . Every user in the proposed method
has two embeddings: an embedding used for recommending items that match the
user’s interest; and another embedding that generates user-specific parameters in the
recommender network 𝑓 . In the feature space of recommender network 𝑓 (shown in
the middle of Figure 5.1), the user embedding of A is close to the attribute content
embeddings that they has interacted with ("Celebrity 2" and "Cyberpunk“) after
optimization. The parameters that project these embeddings to the next layer should
be large (i.e., most neurons correspond to "Caster" and "Genre" should be activated)
after generated by the user embedding for the hypernetwork.

The top-middle of Figure 5.1 shows the feature space of user interest embeddings in
the hypernetwork. This feature space is a subspace spanned by the user interest basis.
The user interest embedding is the input to the hypernetwork for generating parameters
in the recommender network, and is a mixture of user interest basis. Following sections
introduce the details of the proposed method. Because the proposed method depends
on a hypernetwork to provide parameters in the recommender network, it is referred
to as HyperRS, abbreviated for Hypernetwork-based Recommender System, in the
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Figure 5.2: The structure of HyperRS.

following contexts.
Figure 5.2 presents the structure of HyperRS. The recommender network (left)

constitutes item embedding by the item profile and takes item and user embeddings to
predict the user’s interest in the item. Hypernetwork (right) takes the user’s interest
embedding to generate all parameters in the recommender network. Following sections
introduce all components in Figure 5.2.

5.1.1 Embeddings in the HyperRS

The user-interaction records are in the format 𝐷 = {(𝑢, 𝑖, 𝑠) |𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 , 𝑠 ∈ 𝑆}. 𝑈 and
𝐼 are the set of users and items, respectively. 𝑆 is the set of scores. In most scenarios, 𝑆
is a finite set that defines the score values. If the score is in the range of non-negative
real number, 𝑆 = R+ ∪ {0}.

Every user𝑢 ∈ 𝑈 has two embeddings: a user embedding u used in the recommender
network and another user interest embedding û used in the hypernetwork. The user
embedding u is constructed by embedding-lookup for the user id, and û is constituted
by the mixture of user interest basis. The details of û is introduced in Section 5.1.3.

Every item 𝑖 ∈ 𝐼 contains a combination of attributes: 𝑝 (𝑖) = (𝑝 (𝑖)1 , ..., 𝑝
(𝑖)
𝑘
). 𝑘 is the

number of attributes. The attribute contents are encoded as one-hot or multi-hot
vectors (p(𝑖)1 , ..., p

(𝑖)
𝑘
). The embedding of the item attribute content p(𝑖)𝑥 is constituted as
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e(𝑖)𝑥 = M𝑥p(𝑖)𝑥 ; 𝑥 = 1, 2, ..., 𝑘 ; (5.1)

The column vectors in matrix M𝑥 are embeddings of all contents in attribute 𝑥 .

5.1.2 The Recommender Network Structure in HyperRS

Figure 5.2 presents the structure of the recommender network in HyperRS on the left
side. The hypernetwork generates all parameters in the recommender network.

Item embeddings are constituted by item attribute contents embeddings in Equation
5.1. A hidden layer transforms the item content embeddings and merges them into the
item embedding:

ê(𝑖)𝑥 = 𝜙 (W𝑥e(𝑖)𝑥 + b𝑥 ); 𝑥 = 1, 2, ..., 𝑘 . (5.2)

e𝑖 = 𝜙
(
W𝑡 [ê(𝑖)1 ⊕ ... ⊕ ê(𝑖)

𝑘
] + b𝑡 ). (5.3)

⊕ is the operator of vector concentration. W𝑥 ,W𝑡 are weights and b𝑥 , b𝑡 are bias
terms. 𝜙 is the activation function.

The user embedding in the recommender network captures user interest in the
item attribute contents. The recommender network uses a residual block [102] with
attention to achieving this task.

e∗𝑖 = attention(u, P). (5.4)

ê𝑖 = e∗𝑖 + e𝑖 . (5.5)

Column vectors in the matrix P are item attribute content embeddings e(𝑖)𝑥 in
Equation 5.1. u is the user embedding. A four-layer neural network 𝑓\ predicts the
score with the user and item embedding:

𝑠 (𝑢,𝑖) = 𝑓\ (ê𝑖 ⊕ u). (5.6)

The parameter in 𝑓\ contains \ = {Wℓ1, bℓ1,Wℓ2, bℓ2,Wℓ3, bℓ3,Wℓ4}. Wℓ𝑗 and bℓ𝑗 are
weights and bias term in layer ℓ𝑗 , respectively. The last hidden layer does not have bias
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term.
The loss function in HyperRS is

L(𝑠 (𝑢,𝑖), 𝑠 (𝑢,𝑖)) = (𝑠 (𝑢,𝑖) − 𝑠 (𝑢,𝑖))2. (5.7)

𝑠 (𝑢,𝑖) is the score user 𝑢 assigned to item 𝑖 as the preference indicator. 𝑠 (𝑢,𝑖) is the
predicted score by the recommender network.

All parameters in the recommender network are in the parameter set Θ =

{W𝑥 , b𝑥 ,W𝑡 , b𝑡 |𝑥 = 1, 2, ..., 𝑘} ∪ \ .

5.1.3 The Hypernetwork Structure in HyperRS

As mentioned in Section 5.1.2, the hypernetwork in HyperRS generates all parameters
in Θ. The hypernetwork takes user interest embedding û as input:

û = M𝑢u∗. (5.8)

M𝑢 ∈ R𝑝×𝑞 and u∗ ∈ R𝑞 . 𝑞 < 𝑝 . The column vectors in the matrix M𝑢 are user
interest basis mentioned in Section 5.1.1. u∗ is constituted by embedding-lookup of the
user id. Elements in the vector u∗ represent weights of different user interest basis.

The motivation of Equation 5.8 is from latent embedding optimization (LEO)
[103]. The intuition of Equation 5.8 is to learn the user interest basis in M𝑢 from
existing users to enable rapid adaption of û for new users. Because u∗ represent
weights of user interest basis and the combination of user interest basis is optimized by
back-propagation, the û is a mixture of user interest basis (i.e., the column vectors in
M𝑢 .) The optimized M𝑢 should allow constituting û for new users by only a few steps
that change elements in u∗.

Note that because the hypernetwork takes û to generate all parameters in the
recommender network, the fast adaption of û by only changing combination weights
in u∗ ensures the parameters in the recommender network to be adequately generated
simultaneously.

The hypernetwork is constituted by one-layer neural networks:

\ ∗ := 𝜙 (W\∗ û + b\∗) \ ∗ ∈ Θ. (5.9)
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The simple structure in Equation 5.9 prevents the number of parameters in the
hypernetwork from blowing. The number of parameters in the hypernetwork increases
vastly with the number of layers: suppose \ ∗ is a 𝑖 × 𝑗 matrix, because the number of
elements in û is 𝑝 , W\∗ will have 𝑖 × 𝑗 × 𝑝 parameters. 𝜙 is the activation function. The
parameter set Φ = {W\∗, b\∗,M𝑢 |\ ∗ ∈ Θ} includes all hypernetwork parameters.

5.1.4 Optimization

Algorithm 5.1 Optimization Procedure
Data: Support Set S and Query Set Q. S,Q ⊂ D. Learning rates 𝛼, 𝛽 .

18 Randomly initialize parameters 𝚽 in the hypernetwork;
19 for 𝑖 ← 1 to 𝑁 do
20 for 𝑢 ∈ Utrain do
21 Initialize parameters in 𝚯 by Equation 5.8 and 5.9;
22 for (𝑢, 𝑖, 𝑠) ∈ S𝑢 do
23 Predict 𝑠 (𝑢,𝑖) by the recommender network;
24 ∀𝜸 ∈ 𝚯 : 𝜸 := 𝜸 − 𝛼∇𝜸L(𝑠, 𝑠 (𝑢,𝑖));
25 u∗ := u∗ − 𝛼∇u∗L(𝑠, 𝑠 (𝑢,𝑖))
26 for (𝑢, 𝑖, 𝑠) ∈ Q𝑢 do
27 Predict 𝑠 (𝑢,𝑖) by the recommender network; ∀𝜸 ∈ 𝚽 : 𝜸 := 𝜸 −𝛽∇𝜸L(𝑠, 𝑠 (𝑢,𝑖));
28 M𝑥 = Mx − 𝛽∇𝑴𝑥

L(𝑠, 𝑠 (𝑢,𝑖));
29 u = u − 𝛽∇uL(𝑠, 𝑠 (𝑢,𝑖));

The optimization procedure for HyperRS follows the setting in meta-learning
[2, 103]. The dataset 𝐷 is divided into three subsets: 𝐷train, 𝐷valid, and 𝐷test. Users in
these sets are not intersected. Every user 𝑢 has two sets: the support set 𝑆𝑢 and the
query set 𝑄𝑢 . Items in 𝑆𝑢 and 𝑄𝑢 are not intersected.

The hypernetwork takes user interest embedding û to initialize parameters in
the recommender network for every user 𝑢. The parameters in Θ are optimized by
gradient back-propagation with data in 𝑆 . The updated recommender network takes
data in 𝑄 to update the parameters in Φ.

Algorithm 5.1 describes the optimization procedure for HyperRS and all baseline
models in the experiment section. In addition, negative sampling is used for all models
during optimization. The negative samples are items that are not interacted with by
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the user. The scores for negative samples are 0.

5.2 Experiment Setting

This section introduces datasets used in experiments, a brief summary baseline models,
the details of performance evaluation metrics, and hyperparameter settings. The
experiments use three datasets with different user sizes to test the capability of HyperRS
in different data-scale. The following sections contain the details of the experiments.

5.2.1 Datasets

The experiment uses three datasets: Movielens-10m [104], BookCrossing [105], and a
TokyoTV dataset which contains one month of TV program watch logs by residents
in Tokyo 23 wards (prepared by M Data Co., Ltd. and provided by MELCO.) The
BookCrossing dataset is abbreviated as "Book" in the following contexts.

Item attributes of Movielens-10m are from WikiData to keep both datasets with the
same attributes. Movies with incomplete features are dropped from the Movielens-10m
dataset. The scores of Movielens-10m are from 0.5 to 5 with an interval of 0.5, whereas
the scores of TokyoTV range from 1 to 3 with an interval of 1.

The data in Book dataset is a mixture of explicit and implicit scores. Items that are
interacted by the user but not explicitly scored have a 0 score, whereas the explicit
score is in 0 to 10 with an interval of 1. To make the dataset compatible with all
baseline models, the scores in Book dataset are normalized as follows: all interacted
items (regardless whether explicitly scored or not) are changed to be with the score 1
because the scores in the Book dataset are skewed. Most of explicitly scored items
are with scores close to 10. Item attributes of Book dataset are extracted by the data
dump of OpenLibrary 1. The item attributes take authors as "Character," publishers as
"Creator," and subjects as "Genre." Table 5.1 shows the statistics of these three datasets.

Every user in Movielens-10m and Tokyo TV datasets only keeps 20 records to
simulate the scenario in which user-item interactions are rare. For the Book dataset,
each user keeps only 10 records. In addition, the capability of HyperRS in different
scales of the number of users is evaluated on these two datasets: Movielens-10m has

1https://openlibrary.org
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Table 5.1: Statistics of preprocessed Movielens-10m, TokyoTV, and Book datasets.

Data User Item Creator Character Genre

Movielens-10m 6,601,340 58,711 6,178 3,571 28,252 273
TokyoTV 7,183 70 579 7 9,374 11
Book 580, 476 7,383 82,790 41,533 10,829 37,780

many users, whereas the TokyoTV dataset only has few users. The ratios of users in
the training, validation, and test set are 60%, 20%, and 20%, respectively.

The criteria for choosing the item attributes in Table 5.1 are: (1) sharing a father
node in the knowledge graph, or (2) semantically similar in the textual description. The
director, broadcast TV station, and author are used as "Creator" for Movielens-10m,
Tokyo TV, and Book datasets, respectively. The caster member is used as "Character" in
Movielens-10m and Tokyo TV datasets, and it is an attribute existing for the Book
dataset. "Genre" exists for all three datasets. The structure used for choosing these three
attributes is from Wikidata, and the item contents are fulfilled with the OpenLibrary
for the Book dataset.

5.2.2 Performance Measures

Two measures evaluates all models: (1) binary normalized discounted cumulative gain
(NDCG) and (2) Recall@N. Both measures are in [0, 1] and higher values indicate
better performance. The binary NDCG@N is defined as

DCG@𝑁 (p) =
𝑁∑︁
𝑖=1

21(𝑝𝑖∈t) − 1
log2(𝑖 + 1)

, (5.10)

NDCG@𝑁 (p, t) = DCG@𝑁 (p)
DCG@𝑁 (t) . (5.11)

p is a vector with the ids of items with N highest predicted scores to a user. t is a
vector of the user-interacted item ids. 1(𝑠) is 1 if the statement 𝑠 is true, otherwise 1(𝑠)
is 0. The NDCG@N of a set 𝐷 is divided by the number of users in 𝐷 :

NDCG@𝑁 (𝐷) = 1
|𝑈 (𝐷) |

∑︁
𝑢∈𝑈 (𝐷)

NDCG@𝑁 (p(𝑢), t(𝑢)) . (5.12)



5.2 Experiment Setting 93

𝑈 (𝐷) is the set of users in 𝐷 . p(𝑢) is a vector of item ids with top-N predicted
scores to user 𝑢. t(𝑢) is the vector of user 𝑢’s interacted item ids.

In validation and testing phrases, the local parameters in all models are optimized
by data in the support set, and the optimized models are tested on the query set.

5.2.3 Baseline Models and Hyperparameter Settings

The baseline models in the experiments are listed as follows.

1. MeLU [38] is the vanilla model that uses the MAML framework. It uses the user
and item profiles as features. The user profile is replaced by a user embedding in
the experiment setting.

2. 𝑠2Meta [75] uses gates in the local and global parameter updating to accelerate
the adaption of local parameters. It utilizes REINFORCE [82] algorithm to learn
gate parameters.

3. MetaTL [40] converts items in the support set as the user’s representation. It
follows a sequential recommendation setting that uses the previous 𝑘 items
in the sequence to predict the score of the 𝑘 + 1 item. The 𝑘 items are used to
generate the transition embedding from the 𝑘 item to the 𝑘 + 1 item.

4. Mecos [106] attempts to learn the parameters in the recommender network that
match the representation of the support set 𝑆𝑢 to the query set𝑄𝑢 ’s representation.
The intuition of Mecos is akin to MetaTL: both models learn the representation
of the support set to help the recommender network predict the user’s preference
in query set items. It uses an LSTM [107] cell to match support and query sets.

The activation functions in HyperRS are LeakyReLU and ReLU. The user and item
content embeddings have 128 dimensions. The user interest basis in the hypernetwork
has 256 dimensions, and the user interest embedding is 128 dimensions. For the Book
dataset, the dimensions of user and item attribute content embeddings are 64, and
the dimensions for the user interest embedding and user interest basis are 64 and
128, respectively. The optimizer for local steps is Adam [92]. Hyperparameters are
optimized by the grid search and fine-tuning. The ranges of different hyperparameters
in grid search are:
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Table 5.2: Experiment results of NDCG@N measures on Book dataset.

Book
NDCG@5 NDCG@10 NDCG@20 NDCG@50

C-W C-C C-W C-C C-W C-C C-W C-C
MeLU 0.1524 0.034 0.1861 0.0356 0.2086 0.0388 0.2406 0.0446
𝑠2Meta 0.3748 0.1388 0.3829 0.1398 0.3874 0.1443 0.3972 0.1469
MetaTL 0.3691 0.1467 0.3892 0.1556 0.4039 0.1615 0.4203 0.1674
Mecos 0.4196 0.3693 0.4285 0.3774 0.4386 0.3862 0.4485 0.3898

HyperRS 0.2670 0.1727 0.3113 0.2156 0.3322 0.2189 0.3631 0.2235

1. Learning rate 𝛼, 𝛽 : {1×10−3, 5×10−3, 1×10−4, 5×10−4, 5×10−5, 6×10−5, 7×10−5}.

2. Embedding Size: {32, 64, 128, 256}.

3. Epoch num 𝑁 : {50, 20, 5, 1}.

The Recall@5 is used to choose the best hyperparameter on the validation set for
testing.

5.3 Experiment Result and Discussion

This section contains experiment results of recommendation in the data-scarce scenario,
the visualization of different components in the HyperRS model to show the capability
of capturing user interests in item attributes, ablation experiment results for different
support and query set sizes, and the ablation experiments for investigating the effects
of different attributes.

5.3.1 Experiment Result of Recommendation in the Data-scarce
Scenario

Table 5.2 to 5.7 present experiment results on Movielens-10m and TokyoTV datasets
with NDCG@N and Recall@N, respectively. The best values in these tables are marked
in bold font. The results on Book and Movielens-10m have two subgroups: C-C and
C-W. C-C indicates the result is cold users with cold items, i.e., items in the validation
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Table 5.3: Experiment results of Recall@N measures on Book dataset.

Book
Recall@5 Recall@10 Recall@20 Recall@50

C-W C-C C-W C-C C-W C-C C-W C-C
MeLU 0.0592 0.0276 0.2014 0.0314 0.2542 0.0381 0.3493 0.0552
𝑠2Meta 0.2873 0.1010 0.3021 0.1029 0.3127 0.1133 0.3415 0.1210
MetaTL 0.2479 0.0905 0.2796 0.1048 0.3092 0.1171 0.3514 0.1324
Mecos 0.2901 0.2590 0.3042 0.2724 0.3246 0.2905 0.3549 0.3000

HyperRS 0.3077 0.1752 0.3852 0.2514 0.4345 0.2590 0.5261 0.2724

Table 5.4: Experiment results of NDCG@N measures on Movielens-10m dataset.

Movielens-10m
NDCG@5 NDCG@10 NDCG@20 NDCG@50

C-W C-C C-W C-C C-W C-C C-W C-C
MeLU 0.2859 0.1540 0.3605 0.1615 0.4451 0.1811 0.5200 0.2232
𝑠2Meta 0.5884 0.4922 0.6782 0.5332 0.7056 0.5543 0.7389 0.5688
MetaTL 0.5657 0.4471 0.6507 0.4896 0.6618 0.4992 0.6749 0.5134
Mecos 0.4850 0.4633 0.6162 0.6377 0.6423 0.6493 0.6643 0.6571

HyperRS 0.5893 0.4965 0.8834 0.7011 0.9026 0.7356 0.9108 0.7525

and test sets do not appear in the training set. C-W indicates the results are cold users
with warm items, i.e., items in the validation and test sets also appear in the training
set. This setting examines the model capability on different item-side scenarios for cold
users.

Experiment results in Table 5.2 and 5.3 indicate that the hypernetwork can generate
appropriate parameters for the underlying recommender network in the cold users
with warm items setting (C-W) on Book dataset. HyperRS has the best Recall@N
performances in Table 5.3 with the C-W setting. It reflects that parameters in the
recommender network capture user interests with adapted item attribute content
embeddings. The lower NDCG@N (compared to Mecos) in Table 5.2 indicates that,
although the items interacted by users appear in the top-N locations in the prediction,
the positions of these items are not high. For example, 3, 4, or 5 in Recall@5, or 8, 9, or
10 in Recall@10, cf. Equation 5.10 and Equation 5.11. The performances on the C-C
setting in Table 5.2 and Table 5.3 show that HyperRS outperforms all other baseline



96
Chapter 5. Hypernetwork based Meta-Learning Recommender System for the

User-side Cold-start Problem

Table 5.5: Experiment results of Recall@N measures on Movielens-10m dataset.

Movielens-10m
Recall@5 Recall@10 Recall@20 Recall@50

C-W C-C C-W C-C C-W C-C C-W C-C
MeLU 0.2002 0.0946 0.3074 0.1051 0.457 0.1404 0.6271 0.2382
𝑠2Meta 0.4366 0.3424 0.5588 0.3988 0.6082 0.4367 0.6847 0.4702
MetaTL 0.3844 0.2812 0.4923 0.3326 0.5109 0.3531 0.5389 0.3835
Mecos 0.3294 0.3224 0.5012 0.5529 0.5445 0.5723 0.5918 0.5890

HyperRS 0.4533 0.3774 0.8699 0.6648 0.9037 0.7264 0.9223 0.7644

models except for Mecos. The reason is that the number of item attribute contents in
Book dataset is larger than other datasets, cf. Table 5.1, and the sizes of the support and
query sets for Book dataset is smaller than other datasets (5 for the support and query
sets for Book dataset whereas 10 for the support and query sets for Movielens-10m and
Tokyo TV datasets.) Consequentially, the diverse attribute contents make it difficult for
HyperRS to adapt item attribute contents that did not appear in the training set.

Results in Table 5.4 and Table 5.5 show that HyperRS outperforms all other baseline
models, especially for cases that 𝑁 > 10 in NDCG@N and Recall@N measures. The
large NDCG@N measures for HyperRS indicate that the accurate recommended items
(i.e., items in the user interests) are in front locations in the recommendations.

In contrast, MeLU’s performance is not satisfying in all cases because of the lack of
user profiles. 𝑠2Meta and MetaTL that drop the user profile requirement perform better
than MeLU.

In addition, all models are with deteriorated performances in the case of cold
users with cold items because the adaption of the new item embeddings needs more
optimization steps. Note that, for the cold users with cold items case, the HyperRS still
outperforms other baselines. It indicates that the proposed method, HyperRS, has a fast
item embedding adaption ability.

For the Tokyo TV dataset, because the number of users and items is not large
enough, it does not support conducting the experiment with cold users and cold items.
Therefore, the results in Table 5.6 and Table 5.7 are cold users with warm items.

The performances on Tokyo TV dataset are akin to those for the Movielens-10m
dataset. In the case of small-scale users and items, Mecos has a better performance than
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Table 5.6: Experiment results of NDCG@N measures on TokyoTV dataset.

TokyoTV
NDCG@5 NDCG@10 NDCG@20 NDCG@50

MeLU 0.3371 0.4135 0.4582 0.5201
𝑠2Meta 0.4435 0.4804 0.5268 0.5406
MetaTL 0.6474 0.7880 0.8151 0.8151
Mecos 0.6684 0.9077 0.9260 0.9412

HyperRS 0.6285 0.9158 0.9292 0.9323

Table 5.7: Experiment results of Recall@N measures on TokyoTV dataset.

TokyoTV
Recall@5 Recall@10 Recall@20 Recall@50

MeLU 0.2384 0.3461 0.4307 0.5692
𝑠2Meta 0.3076 0.3615 0.4461 0.4769
MetaTL 0.5042 0.7008 0.7521 0.7521
Mecos 0.4769 0.7923 0.8231 0.8538

HyperRS 0.4769 0.8846 0.9077 0.9153

HyperRS on NDCG@5 and NDCG@50 measures. MetaTL has a better performance
than HyperRS on Recall@5.

The C-C results on the Movielens-10m and Book datasets indicate that HyperRS is
more capable of capturing user interests with the parameters in the hypernetwork
than adapting items with all new features. Because the item attribute contents in Book
dataset are more diverse than those for the Movielens-10m dataset, the C-C setting
contains more items with all new item attribute contents in the Book dataset. Note
that the cold items are chosen by their item IDs rather than their attribute contents.
The "Creator" and "Genre" attributes in Movielens-10m dataset are not as diverse
as "Character." The contents in those two attributes can help the adaption of new
Character contents by the residual block in the recommender network in HyperRS, cf.
Equation 5.2 to Equation 5.5.

Additionally, the following research questions are investigated with more experi-
ments.
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Figure 5.3: Heatmap of the weights that transforms item attribute content embeddings.
The number shows the percent of elements that are larger than 0.5 after normalization.
Different users are marked by colors and IDs.

5.3.2 Visualization of Components Capturing User Interests in
Attributes

Research Question 1 - How does HyperRS capture user interest in item
attributes? As mentioned at the beginning of Section 5.1, the user interest in
item attributes is reflected by parameters in the recommender network. That is, the
parameters in the recommender network constitute the representations of user interest.
The matrix W𝑥 in Equation 5.2 that transforms item attribute contents is visualized in
Figure 5.3 to explain the effect.

There are three matrices that transform item attribute contents in the dataset:
WGenre,WCreator, and WCharacter. The elements in these matrices are normalized to the
range [0, 1] before visualization. The numbers in Figure 5.3 are the ratio of elements
larger than or equal to 0.5 in each matrix. Because the activation functions in the
HyperRS are ReLU and LeakyReLU, more significant elements in these matrices
indicate that the corresponding elements in e(𝑖)𝑥 are amplified in ê(𝑖)𝑥 (cf. Equation 5.2.)
Therefore, more components in the item embeddings which are mixtures of item
attribute embeddings are from the item attribute embeddings with the transformation
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matrix. Consequently, users with W𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 that have more prominent elements than
the other two matrices can be categorized as character preference users. Similarly, the
genre preference users and creator preference users follow the same categorization.
Figure 5.3 presents three examples for each category (character preference, genre
preference, and creator preference.)

5.3.3 Ablation Experiment Results for Different Support and
Query Set Sizes

Research Question 2 - How does the sizes of the support and query sets affects
model performance? The experiments with different sizes of support and query
sets are conducted on the Movielens-10m dataset to investigate this question. Figure
5.4 presents the results under different sizes. Note that the hyperparameter setting is
fine-tuned on the setting of |𝑆 | = 10 and |𝑄 | = 10. Two different settings are |𝑆 | = 5,
|𝑄 | = 15 and |𝑆 | = 15 and |𝑄 | = 5. All experiments are conducted by the cold users
with warm items setting.

The increment of support size improves the performance measure NDCG@5 and
Recall@5 for all models, but the other performance metrics decrease when the support
set size increases. A probable reason is that the long sequential contains some irrelevant
items in the support size to the items in the query size. Because of the optimization
setting in meta-learning methods, the parameters in the recommender network are
optimized over items in the support set, and the recommender network uses items
in the query set for testing. These irrelevant items may mislead the recommender
network. As a result, some items in 𝐼 that are similar to the irrelevant items are ranked
before the items in the query set in the lower positions of the prediction.

5.3.4 Ablation Experiment Results on the Effects of Attributes

In addition to the number of examples in the support and query sets, the ablation
experiments are also conducted to investigate the effects of different attributes in
HyperRS. The experiments use the best hyperparameter combinations in Section 5.3.1
and follow the cold user with the warm item setting.

The ablation experiment results are shown in Table 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13
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Figure 5.4: Results of all models with different sizes of support set and query set.

for the Movielens-10m, TokyoTV, and Book datasets, respectively. Results marked with
"All" use all attributes and are from Table 5.4, 5.5, 5.6, 5.7, 5.2, and 5.3, "C-W" part for
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Table 5.8: Ablation experiment NDCG@N results on Movielens-10m dataset. Improved
measures are annotated by the bold font.

NDCG@5 NDCG@10 NDCG@20 NDCG@50

All 0.5893 0.8834 0.9026 0.9108
Genre + Creator 0.5673 0.7986 0.8187 0.8335
Genre + Character 0.5720 0.8586 0.8797 0.8927
Creator + Character 0.5983 0.8464 0.8607 0.9058

Table 5.9: Ablation experiment Recall@N results on Movielens-10m dataset. Improved
measures are annotated by the bold font.

Recall@5 Recall@10 Recall@20 Recall@50

All 0.4553 0.8699 0.9037 0.9223
Genre + Creator 0.4461 0.7577 0.7939 0.8273
Genre + Character 0.4396 0.8458 0.8832 0.9120
Creator + Character 0.4555 0.8336 0.8891 0.9295

Table 5.10: Ablation experiment NDCG@N results on TokyoTV dataset.

NDCG@5 NDCG@10 NDCG@20 NDCG@50

All 0.6285 0.9158 0.9292 0.9323
Genre + Creator 0.4831 0.6533 0.6855 0.7409
Genre + Character 0.5936 0.8838 0.8845 0.9183
Creator + Character 0.4873 0.6938 0.6959 0.7296

Table 5.11: Ablation experiment Recall@N results on TokyoTV dataset.

Recall@5 Recall@10 Recall@20 Recall@50

All 0.4769 0.8846 0.9077 0.9153
Genre + Creator 0.3615 0.6000 0.6615 0.7846
Genre + Character 0.4462 0.8462 0.8538 0.8923
Creator + Character 0.3615 0.6462 0.6615 0.6923

each dataset, respectively.

Generally, the performances of the proposed model, HyperRS, deterioriate on
Movielens-10m and TokyoTV datasets if it drops one attribute except for NDCG@5,
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Table 5.12: Ablation experiment NDCG@N results on Book dataset. Improved measures
are annotated by the bold font.

NDCG@5 NDCG@10 NDCG@20 NDCG@50

All 0.2670 0.3113 0.3322 0.3631
Genre + Creator 0.3171 0.3347 0.3438 0.3495
Genre + Character 0.3303 0.3543 0.3714 0.3956
Creator + Character 0.3159 0.3541 0.3817 0.4118

Table 5.13: Ablation experiment Recall@N results on Book dataset.

Recall@5 Recall@10 Recall@20 Recall@50

All 0.3077 0.3852 0.4345 0.5261
Genre + Creator 0.2915 0.3232 0.3444 0.3613
Genre + Character 0.2915 0.3345 0.3746 0.4458
Creator + Character 0.2768 0.3451 0.4099 0.5035

Recall@5 ,and Recall@50 (annotated with the bold font in Table 5.8) with the combina-
tion "Creator + Character" for Movielens-10m dataset, and the NDCG@N measures
for the combination "Genre + Character" for Book dataset. Besides, the results for
Movielens-10m dataset do not decay as severely as those for the TokyoTV dataset. For
Book dataset, dropping attribute has a mixture effect - the NDCG@N measures are
improved (except for NDCG@50 for the "Genre + Creator" combination) whereas the
Recall@N measures decay.

One of the possible reasons is that, as shown in Table 5.1, Movielens-10m has
more users than items compared to Book dataset, and it is with relatively diverse
attribute contents compared to the TokyoTV dataset. These two factors help HyperRS
avoid suffering severely from the insufficient number of attributes. In contrast, the
combination of "Genre + Creator" decay badly on the TokyoTV dataset because the
contents in these two attributes are too small to represent all user interests.

The Book dataset has fewer data in the support and query sets compared to the
other two datasets (5 examples for the support and query sets whereas other datasets
have 10) and it has more diverse attribute contents. As a result, it could be the case
that the attribute content representations are not optimized sufficiently with the
limited data. Therefore, dropping an item attribute helps improve the locations of
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predicted items (reflected by the increasing NDCG@N) but fails to increase the number
of correctly predicted items (reflected by the decreasing Recall@N.)

5.4 Conclusion

A hypernetwork-based recommender system for cold-start users, HyperRS, is proposed
in this section. HyperRS has two neural networks as its components: a recommender
network 𝑓\ and another hypernetwork 𝑔𝜙 . The parameters \ in the recommender
network are generated by the hypernetwork𝑔, and these parameters are representations
for a user’s interest in the item attributes. 𝑓 has item attribute content embedding
transformation layers to capture the user’s interest in item attribute contents, and the
parameters in 𝑓 capture the user’s interest in item attirbutes themselves. Item attributes
and contents are extracted from knowledge graphs. Different from MAML-based
methods which learn a optimized initialization parameters for the underlying network,
the proposed method generates all parameters in the underlying recommender network,
and from the perspective of representation learning, the generated parameters for
transferring item attribute contents constitute the representations of user interests in
item attributes.

The hypernetwork takes a user interest embedding as a weight vector of the user
interest basis (a group of vectors spanning the feature space for generating parameters
in 𝑓 .) and uses the weighted user interest basis with a parameter-specific, one-layer
neural network to generate all parameters in 𝑓 . The dynamically generated parameters
in 𝑓 ensure the fast adaption of these parameters for cold users.

The performance of the HyperRS is examined on three datasets, Movielens-
10m, TokyoTV, and Book datasets. These three datasets represent different scales
of the number of users and items. The baseline models contain a vanilla meta-
learning recommender system that uses the MAML framework and other sequential
meta-learning systems which do not require the user’s profile. In HyperRS, users
are represented by their embeddings that do not correspond to any demographic
information. Therefore, it is as privacy-friendly as other sequential meta-learning
systems for cold users.

The experiment results on both cold users with warm items and cold users with
cold items scenarios show that the HyperRS outperforms all other baseline models.
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These results indicate that the feature and parameter adaption is faster in the HyperRS.
The experiment result on the TokyoTV dataset shows that the HyperRS performs
better in most evaluation metrics compared to all baselines, even in the scenario where
the number of users and items is small.

Two other experiments are conducted with the cold users and warm items setting
on Movielens-10m to investigate the capability of representing user interest in item
attributes by parameters in 𝑓 and the effect of different sizes of support and query
sets on the performance. In the first experiment, all matrices that transform item
attribute content embeddings are normalized so that their elements are in [0, 1]. Then
three examples are presented to explain the relation between user preference in item
attributes and the scale of elements in these matrices. Because the activation functions
in HyperRS are LeakyReLU and ReLU, those matrices that are with significant elements
can amplify the corresponding elements in the item attribute content embeddings to
the next layer. Therefore, they are indicators of user preference over item attributes. In
the second experiment, the results show that HyperRS consistently outperforms other
baseline models, although the support and query set size is changing.
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6
Conclusion

This thesis investigates representation learning on knowledge graphs for two topics.
The first topic is to learn type-aware representations in a unsupervised manner. There
are two proposed methods for this topic. Both use type-agnostic knowledge graph
completion models as their base model and calibrate entity and relation embeddings.
Both methods use embeddings that represent certain locations in the feature space to
encode the implicit type constraints in relations.

The first proposed method aims for the bilinear knowledge graph completion
models. Its motivation is from the language model. It induces a loss function that
calibrates entity embeddings by their global co-occurrences. Global co-occurrence is
defined as entities that appear together at the same locations across all relations in the
knowledge graph. The experiments on link prediction and entity clustering show
that the proposed method is capable of capturing entity types and improves the link
prediction performance for type-agnostic knowledge graph completion models.

The first method depends on entity co-occurrences, which is hard to count in
large knowledge graphs. In addition, it is akin to many other implicit type-aware
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approaches that use only a single embedding to represent the area where acceptable
embeddings appear. The second proposed method uses multiple relation-specific
embeddings to represent qualified entity types. As a result, it supports capturing
multiple entity types within relations. Besides, the second proposed method (ProtoE)
removes the dependency of global entity co-occurrence. This statistic is difficult to
count for large knowledge graphs because it has to iterate over all triples to get the
information. Comprehensive experiments were conducted on the same datasets used
in the first proposed method on link prediction and entity clustering. Similar to the
first proposed method, the ProtoE is capable of capturing diverse implicit entity types
within relations and improves the link prediction performance. In ablation experiments,
the effect of the number of relation-specific embeddings (the prototype embeddings)
that represent acceptable entity types on link prediction performance is examined. The
entity clustering results are visualized to explain the clusters constituted entities with
different types and the prototype embeddings that play as representative points for
them. Unlike the first proposed method, which only supports bilinear knowledge
graph completion models, the ProtoE can also be adapted to translational knowledge
graph completion models.

In the current setting, the number of prototype embeddings in ProtoE is a hyperpa-
rameter. The ablation experiment shows that this hyperparameter affects the link
prediction performance. The effect is significant for the translational models. Therefore,
it is preferable to adopt some stochastic processes, such as the Chinese restaurant
process or the determinantal point process, to help automatically or semi-automatically
determine this hyperparameter.

In the second topic, the research in this thesis focuses on the application of
representation learning on meta-learning for the user-side cold start problem with the
knowledge graph. The proposed method, HyperRS, depends on features extracted
from knowledge graphs to capture user interest with little data. It is a hypernetwork-
based method that takes several vectors to span the entire feature space of the
parameters used in the recommender network. It is akin to the model-agnostic meta-
learning (MAML)framework in that the underlying neural network uses user-specific
parameters to capture user interests rapidly. Unlike the MAML framework-based
methods, HyperRS generates the initial parameters for the recommender network by
taking a user embedding that is a mixture of user interest basis used for parameter
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generation. The experiments use the Movielens 10m dataset and the Tokyo TV dataset.
The former contains many users and items, whereas the latter only includes a few
users and items. Experiment results on a different scale of users and items show that
HyperRS outperforms other MAML-based baselines. The ablation experiment changes
the sizes of support and query sets to examine the effect on all models. It turns out
that HyperRS has the best performance for all different size settings. In addition, the
visualization of matrices that transform item attribute content embeddings shows that
HyperRS can capture user interests in item attributes themselves.

Those two tasks constitute a pipeline as shown in Figure 1.1 at the beginning of
Section 1.1. Task 1 concerns link prediction. The proposed methods learn implicit type
constraints to improve the performance of existing type-agnostic KGC models on link
prediction. These proposed methods can be used for adding new facts according to
existing ones in a knowledge graph, and the knowledge graph can play the role of
feature provider in task 2, the meta-learning for the user-side cold-start problem, by
storing the facts enriched by the models proposed in task 1. Effective methods for
adapting facts by learning their distributed representations for these two tasks are
investigated in the thesis, and the experiment results show that all proposed methods
can learn or adapt the facts in a knowledge graph in a distributed representation form
for the given tasks.





109

Bibliography

[1] P. Jain, P. Kumar, S. Chakrabarti, et al., “Type-sensitive knowledge base inference
without explicit type supervision,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, pp. 75–80, 2018.

[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proceedings of the 34th International Conference
on Machine Learning, pp. 1126–1135, 2017.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[4] Z. Liu, Y. Lin, and M. Sun, Representation learning for natural language processing.
Springer Nature, 2020.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems, vol. 26, pp. 1–9, 2013.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 4171–4186, Association for Computational Linguistics, June 2019.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.



110 Bibliography

[8] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo, “Ripplenet:
Propagating user preferences on the knowledge graph for recommender systems,”
in Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, p. 417–426, Association for Computing Machinery,
2018.

[9] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song, “Variational reasoning
for question answering with knowledge graph,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pp. 6069–6076, 2018.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[11] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” in Proceedings of the International
Conference on Learning Representations 2017, 2017.

[12] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Trans-
lating embeddings for modeling multi-relational data,” in Advances in Neural
Information Processing Systems, p. 2787–2795, 2013.

[13] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via dynamic
mapping matrix,” in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, pp. 687–696, 2015.

[14] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by
translating on hyperplanes,” in Proceedings of the 28th AAAI Conference on
Artificial Intelligence, pp. 1112–1119, 2014.

[15] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings
for knowledge graph completion,” in Proceedings of the 29th AAAI Conference on
Artificial Intelligence, p. 2181–2187, 2015.

[16] S. Zhiqing, D. Zhi-Hong, and J. T. Jian-Yun, Nie and, “Rotate: Knowledge
graph embedding by relational rotation in complex space,” in Proceedings of the
International Conference on Learning Representations 2019, 2019.



Bibliography 111

[17] Y. Bishan, Y. Wen-tau, H. Xiaodong, G. Jianfeng, and D. Li, “Embedding entities
and relations for learning and inference in knowledge bases,” in Proceedings of
the International Conference on Learning Representations 2015.

[18] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning
on multi-relational data,” in Proceedings of the 28th International Conference on
International Conference on Machine Learning, p. 809–816, 2011.

[19] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, “Complex em-
beddings for simple link prediction,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning, p. 2071–2080, 2016.

[20] H. Liu, Y.Wu, and Y. Yang, “Analogical inference for multi-relational embeddings,”
in Proceedings of the 34th International Conference on Machine Learning - Volume
70, p. 2168–2178, 2017.

[21] I. Balazevic, C. Allen, and T. Hospedales, “TuckER: Tensor factorization for
knowledge graph completion,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, pp. 5185–5194, 2019.

[22] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d
knowledge graph embeddings,” in Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, pp. 1811–1818, 2018.

[23] S. M. Kazemi and D. Poole, “Simple embedding for link prediction in knowledge
graphs,” in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, p. 4289–4300, 2018.

[24] R. Xie, Z. Liu, and M. Sun, “Representation learning of knowledge graphs with
hierarchical types,” in Proceedings of the 25th International Joint Conference on
Artificial Intelligence, p. 2965–2971, 2016.

[25] Y. Zhao, A. Zhang, R. Xie, K. Liu, and X. Wang, “Connecting embeddings for
knowledge graph entity typing,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 6419–6428, 2020.



112 Bibliography

[26] Z. Cui, P. Kapanipathi, K. Talamadupula, T. Gao, and Q. Ji, “Type-augmented
relation prediction in knowledge graphs,” in Proceedings of the 35th AAAI
Conference on Artificial Intelligence, pp. 7151–7159, 2021.

[27] C. Moon, P. Jones, and N. F. Samatova, “Learning entity type embeddings for
knowledge graph completion,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, p. 2215–2218, 2017.

[28] D. Krompaß, S. Baier, and V. Tresp, “Type-constrained representation learning
in knowledge graphs,” in Proceedings of the 14th International Semantic Web
Conference, p. 640–655, 2015.

[29] G. Niu, B. Li, Y. Zhang, S. Pu, and J. Li, “AutoETER: Automated entity type
representation for knowledge graph embedding,” in Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 1172–1181, 2020.

[30] X. L. Dong, X. He, A. Kan, X. Li, Y. Liang, J. Ma, Y. E. Xu, C. Zhang, T. Zhao,
G. Blanco Saldana, S. Deshpande, A. Michetti Manduca, J. Ren, S. P. Singh, F. Xiao,
H.-S. Chang, G. Karamanolakis, Y. Mao, Y. Wang, C. Faloutsos, A. McCallum, and
J. Han, “Autoknow: Self-driving knowledge collection for products of thousands
of types,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20, p. 2724–2734, Association for
Computing Machinery, 2020.

[31] W. Zhang, C.-M. Wong, G. Ye, B. Wen, W. Zhang, and H. Chen, “Billion-scale
pre-trained e-commerce product knowledge graph model,” in 2021 IEEE 37th
International Conference on Data Engineering, pp. 2476–2487, 2021.

[32] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowledge
base embeddings for explainable recommendation,” Algorithms, vol. 11, no. 9,
pp. 1–17, 2018.

[33] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge graph
attention network for recommendation,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, p. 950–958,
Association for Computing Machinery, 2019.



Bibliography 113

[34] M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu, “Mamo: Memory-augmented
meta-optimization for cold-start recommendation,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 688–697, 2020.

[35] X. Feng, C. Chen, D. Li, M. Zhao, J. Hao, and J. Wang, “Cmml: Contextual
modulation meta learning for cold-start recommendation,” in Proceedings of the
30th ACM International Conference on Information & Knowledge Management,
pp. 484–493, 2021.

[36] Y. Lu, Y. Fang, and C. Shi, “Meta-learning on heterogeneous information
networks for cold-start recommendation,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1563–1573, 2020.

[37] Y. Sun, K. Yin, H. Liu, S. Li, Y. Xu, and J. Guo, “Meta-learned specific scenario
interest network for user preference prediction,” in Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1970–1974, 2021.

[38] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “Melu: Meta-learned user preference
estimator for cold-start recommendation,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1073–1082,
2019.

[39] H. Sun, J. Xu, K. Zheng, P. Zhao, P. Chao, and X. Zhou, “Mfnp: A meta-
optimized model for few-shot next poi recommendation,” in Proceedings of the
30th International Joint Conference on Artificial Intelligence, pp. 3017–3023, 2021.

[40] J. Wang, K. Ding, and J. Caverlee, “Sequential recommendation for cold-start
users with meta transitional learning,” in Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1783–1787, 2021.

[41] R. Yu, Y. Gong, X. He, B. An, Y. Zhu, Q. Liu, and W. Ou, “Personalized adaptive
meta learning for cold-start user preference prediction,” in Proceedings of the
35th AAAI Conference on Artificial Intelligence, pp. 10772–10780, 2021.



114 Bibliography

[42] Y. Chen, X. Wang, M. Fan, J. Huang, S. Yang, and W. Zhu, “Curriculum meta-
learning for next poi recommendation,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 2692–2702, 2021.

[43] H. Bharadhwaj, “Meta-learning for user cold-start recommendation,” in Pro-
ceedings of the 2019 International Joint Conference on Neural Networks, pp. 1–8,
2019.

[44] F. Tahmasebi, M. Meghdadi, S. Ahmadian, and K. Valiallahi, “A hybrid recom-
mendation system based on profile expansion technique to alleviate cold start
problem,” Multimedia Tools and Applications, vol. 80, no. 2, pp. 2339–2354, 2021.

[45] S. Ahmadian, M. Afsharchi, and M. Meghdadi, “A novel approach based on
multi-view reliability measures to alleviate data sparsity in recommender
systems,”Multimedia tools and applications, vol. 78, no. 13, pp. 17763–17798,
2019.

[46] L. Wang, B. Jin, Z. Huang, H. Zhao, D. Lian, Q. Liu, and E. Chen, “Preference-
adaptive meta-learning for cold-start recommendation,” in Proceedings of the
30th International Joint Conference on Artificial Intelligence, pp. 1607–1614, 2021.

[47] Y. Zhang, D. Z. Cheng, T. Yao, X. Yi, L. Hong, and E. H. Chi, “A model of two tales:
Dual transfer learning framework for improved long-tail item recommendation,”
in Proceedings of the Web Conference, pp. 2220–2231, 2021.

[48] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals, “Rapid learning or feature
reuse? towards understanding the effectiveness of maml,” in Proceedings of the
International Conference on Learning Representations, 2020.

[49] P. Savarese and M. Maire, “Learning implicitly recurrent cnns through parameter
sharing,” in Proceedings of the International Conference on Learning Representations
2019, 2019.

[50] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized federated
learning using hypernetworks,” in Proceedings of the 38th International Conference
on Machine Learning, pp. 9489–9502, 2021.



Bibliography 115

[51] R. Bensadoun, S. Gur, T. Galanti, and L. Wolf, “Meta internal learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 20645–20656, 2021.

[52] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.,” in
Proceedings of the Semantics Conference, pp. 1–2, 2016.

[53] G. A. Miller, “Wordnet: A lexical database for english,” ACM Communication,
p. 39–41, nov 1995.

[54] S. Zheng, J. Rao, Y. Song, J. Zhang, X. Xiao, E. F. Fang, Y. Yang, and Z. Niu,
“PharmKG: a dedicated knowledge graph benchmark for bomedical data mining,”
Briefings in Bioinformatics, vol. 22, pp. 1–4, 12 2020.

[55] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A
collaboratively created graph database for structuring human knowledge,” in
Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, p. 1247–1250, 2008.

[56] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning probabilistic relational
models,” in Relational data mining, pp. 307–335, Springer, 2001.

[57] B. W. Bader, R. A. Harshman, and T. G. Kolda, “Temporal analysis of semantic
graphs using asalsan,” in Seventh IEEE international conference on data mining
(ICDM 2007), pp. 33–42, IEEE, 2007.

[58] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-
chometrika, vol. 31, no. 3, pp. 279–311, 1966.

[59] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

[60] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Proceedings
of the 26th International Conference on Neural Information Processing Systems,
p. 3111–3119, 2013.



116 Bibliography

[61] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 Empirical Methods in Natural Language
Processing, pp. 1532–1543, 2014.

[62] Z. Li, Q. Xu, Y. Jiang, X. Cao, and Q. Huang, “Quaternion-based knowledge graph
network for recommendation,” in Proceedings of the 28th ACM International
Conference on Multimedia, p. 880–888, 2020.

[63] T. Ebisu and R. Ichise, “Generalized translation-based embedding of knowledge
graph,” IEEE Transactions on Knowledge and Data Engineering, pp. 941–951, 2020.

[64] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings of knowledge
graphs,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence,
p. 1955–1961, 2016.

[65] K. Hayashi and M. Shimbo, “On the equivalence of holographic and complex
embeddings for link prediction,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pp. 554–559, 2017.

[66] F. Che, D. Zhang, J. Tao, M. Niu, and B. Zhao, “Parame: Regarding neural
network parameters as relation embeddings for knowledge graph completion,” in
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2774–2781, 2020.

[67] D. Brickley, R. V. Guha, and B. McBride, “Rdf schema 1.1,” W3C recommendation,
vol. 25, pp. 2004–2014, 2014.

[68] A. Zouaq and F. Martel, “What is the schema of your knowledge graph?
leveraging knowledge graph embeddings and clustering for expressive taxonomy
learning,” in Proceedings of The International Workshop on Semantic Big Data,
SBD ’20, (New York, NY, USA), pp. 1–6, Association for Computing Machinery,
2020.

[69] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, “Explainable reasoning
over knowledge graphs for recommendation,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, pp. 5329–5336, 2019.



Bibliography 117

[70] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo, “Exploring
high-order user preference on the knowledge graph for recommender systems,”
ACM Transactions on Information Systems (TOIS), vol. 37, no. 3, pp. 1–26, 2019.

[71] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph convolutional
networks for recommender systems,” in The world wide web conference, pp. 3307–
3313, 2019.

[72] W. Ma, M. Zhang, Y. Cao, W. Jin, C. Wang, Y. Liu, S. Ma, and X. Ren, “Jointly
learning explainable rules for recommendation with knowledge graph,” in The
world wide web conference, pp. 1210–1221, 2019.

[73] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding,” in Proceedings of The Web
Conference 2020, WWW ’20, (New York, NY, USA), p. 2331–2341, Association for
Computing Machinery, 2020.

[74] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang, “Heterogeneous network represen-
tation learning,” in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20 (C. Bessiere, ed.), pp. 4861–4867, International
Joint Conferences on Artificial Intelligence Organization, 7 2020. Survey track.

[75] Z. Du, X. Wang, H. Yang, J. Zhou, and J. Tang, “Sequential scenario-specific meta
learner for online recommendation,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, p. 2895–2904,
2019.

[76] Y. Bi, L. Song, M. Yao, Z. Wu, J. Wang, and J. Xiao, “Dcdir: A deep cross-domain
recommendation system for cold start users in insurance domain,” in Proceedings
of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 1661–1664, 2020.

[77] A. Sankar, J. Wang, A. Krishnan, and H. Sundaram, “Protocf: Prototypical
collaborative filtering for few-shot recommendation,” in Proceedings of the 15th
ACM Conference on Recommender Systems, pp. 166–175, 2021.



118 Bibliography

[78] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-
learning with memory-augmented neural networks,” in Proceedings of the 33rd
International Conference on Machine Learning, pp. 1842–1850, 2016.

[79] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization.,” Journal of machine learning research,
vol. 12, no. 7, pp. 2121–2159, 2011.

[80] C. J. Hoofnagle, B. van der Sloot, and F. Z. Borgesius, “The european union
general data protection regulation: what it is and what it means,” Information &
Communications Technology Law, vol. 28, no. 1, pp. 65–98, 2019.

[81] Y. Zhu, R. Xie, F. Zhuang, K. Ge, Y. Sun, X. Zhang, L. Lin, and J. Cao, “Learning
to warm up cold item embeddings for cold-start recommendation with meta
scaling and shifting networks,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1167–1176,
2021.

[82] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Language, vol. 8, p. 229–256, may 1992.

[83] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast context
adaptation via meta-learning,” in International Conference on Machine Learning,
pp. 7693–7702, PMLR, 2019.

[84] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
in Proceedings of the 31st International Conference on Neural Information Processing
Systems, p. 4080–4090, 2017.

[85] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and
R. Hadsell, “Meta-learning with latent embedding optimization,” in Proceedings
of the International Conference on Learning Representations 2018, 2018.

[86] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A Hypercube-Based Encoding for
Evolving Large-Scale Neural Networks,” Artificial Life, vol. 15, pp. 185–212, 04
2009.



Bibliography 119

[87] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[88] D. Zhao, J. von Oswald, S. Kobayashi, J. Sacramento, and B. F. Grewe, “Meta-
learning via hypernetworks,” in 4th Workshop on Meta-Learning at NeurIPS 2020,
pp. 296–304, 2020.

[89] A. Lamb, S. Evgeny, L. Yingzhen, T. Sebastian, L. Camilla, W. Simon, H.-L.
José Miguel, T. Richard E., C. Pashmina, and Z. Cheng, “Contextual hyper-
networks for novel feature adaptation,” in 4th Workshop on Meta-Learning at
NeurIPS 2020, pp. 616–627, 2020.

[90] Y. Lu and R. Ichise, “Unsupervised type constraint inference in bilinear knowledge
graph completionmodels,” in 2021 IEEE International Conference on Big Knowledge,
pp. 15–22, 2021.

[91] F.M. Suchanek, G. Kasneci, andG.Weikum, “Yago: A core of semantic knowledge,”
in Proceedings of the 16th International Conference on World Wide Web, p. 697–706,
2007.

[92] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the International Conference on Learning Representations 2015, 2015.

[93] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent
learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–315, 2007.

[94] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of
machine learning research, vol. 9, no. 11, pp. 2579–2605, 2008.

[95] Y. Lu and R. Ichise, “Protoe: Enhancing knowledge graph completion models
with unsupervised type representation learning,” Information, vol. 13, no. 8,
pp. 354–379, 2022.

[96] T. Madushanka and R. Ichise, “Mdncaching: A strategy to generate quality
negatives for knowledge graph embedding,” in Proceedings of International
Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pp. 877–888, 2022.



120 Bibliography

[97] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, pp. 249–256, 2010.

[98] D. M. Blei, T. L. Griffiths, and M. I. Jordan, “The nested chinese restaurant process
and bayesian nonparametric inference of topic hierarchies,” Journal of the ACM,
vol. 57, no. 2, pp. 1–30, 2010.

[99] T. Griffiths, M. Jordan, J. Tenenbaum, and D. Blei, “Hierarchical topic models and
the nested chinese restaurant process,” Advances in neural information processing
systems, vol. 16, pp. 1–8, 2003.

[100] A. Kulesza and B. Taskar, “Structured determinantal point processes,” Advances
in neural information processing systems, vol. 23, pp. 1–9, 2010.

[101] A. Kulesza, B. Taskar, et al., “Determinantal point processes for machine learning,”
Foundations and Trends® in Machine Learning, vol. 5, no. 2–3, pp. 123–286, 2012.

[102] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image steganalysis,”
Multimedia Tools Application., vol. 77, p. 10437–10453, may 2018.

[103] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and
R. Hadsell, “Meta-learning with latent embedding optimization,” in Proceedings
of the International Conference on Learning Representations 2019, 2019.

[104] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”
ACM Transaction on Interactive Intelligence Systems, vol. 5, pp. 1–19, dec 2015.

[105] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving recommen-
dation lists through topic diversification,” in Proceedings of the 14th international
conference on World Wide Web, pp. 22–32, 2005.

[106] Y. Zheng, S. Liu, Z. Li, and S. Wu, “Cold-start sequential recommendation via
meta learner,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 4706–4713, 2021.

[107] S. Hochreiter and J. Schmidhuber, “Long short-termmemory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.



121

A
Appendix

The case studies with entity clustering on the ProtoE’s ability to capture implicit type
constraints are listed as follows.
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Figure A.1: A total of 57 different head entities, 209 different tail entities, and 154
records in the training data.

Figure A.2: A total of 1,127 different head entities, 13 different tail entities, and 1151
records in the training data.
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Figure A.3: A total of 235 different head entities, 116 different tail entities, and 251
records in the training data.

Figure A.4: A total of 93 different head entities, 90 different tail entities, and 99 records
in the training data. Some of the head entities and tail entities overlap because the
relation is symmetric.
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