
 

 

 

Population genetics theory of natural selection 

 

 

 

 

Takahiro Sakamoto 

Doctor of Philosophy 

 

Department of Evolutionary Studies of Biosystems 

School of Advanced Sciences 

SOKENDAI 

 

2023 

 

 



Abstract

One of the ultimate goals of population genetics is to understand how changes in DNA se-

quences are influenced by various evolutionary factors. Natural selection is a very powerful

evolutionary force that determines the direction of evolution. How natural selection affects

evolution is of great interest for researchers in population genetics and has been a subject

of many studies. Most previous theoretical studies have considered simple situations where

selection pressure is homogeneous across multiple populations and interactions between dif-

ferent loci are negligible. These studies have revealed how natural selection affects various

properties such as mutation fixation probability and allele frequency distribution. However,

recent advances in DNA sequencing technology have made it possible to obtain large amounts

of sequence data across multiple loci from many populations, demanding new theories that

take into account more complex selection pressures involving multiple loci and multiple pop-

ulations. It is not yet clear how such complex natural selection affects the temporal changes

of DNA sequences. In this thesis, I develop theories to explore the effects of complex natural

selection on molecular evolution.

In Chapter 2, I focus on the evolutionary process of genome divergence in a local adapta-

tion process. In local adaptation, the direction of natural selection could differ among popula-

tions. Using a two-population model, I quantitatively evaluate the establishment probability

of a locally adaptive allele and the level of nucleotide diversity after the establishment. The

results show that the combination of diffusion and effective migration approximations de-

scribes the dynamics well. The probability of establishment of a new locally adaptive allele

is obtained as a function of selection coefficient, migration rate, and population sizes of the

two populations. The expected patterns of nucleotide diversity are also derived. It is found

that nucleotide diversity changes significantly when a new locally adaptive allele is estab-

lished, and then the pattern changes gradually through a joint work of migration, selection,

recombination, and mutation.

In Chapter 3, I incorporate sexual selection into the model of local adaptation described in

Chapter 2 and examine the effect of sexual selection on the establishment of locally adaptive

alleles. First, an approximate expression of the probability of establishment is derived. It

is found that assortative mating enhanced by sexual selection inhibits the establishment of

locally adaptive alleles. The probability of establishment depends mainly on the relative

strength of natural and sexual selection, but random genetic drift also affects the dynamics

when the population size is small. I also describe the expected trajectory of allele frequency

during the establishment process.

In Chapter 4, I examine how a turnover of sex-determining loci is driven by sexually

antagonistic selection at linked loci. Turnovers of sex-determining gene are often observed

in amphibians and teleost fishes, and sexually antagonistic selection is thought to be one of
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the driving forces. Previous studies have investigated this process in deterministic models,

whereas I use a more realistic stochastic model and demonstrate that the stochasticity of

random genetic drift essentially changes the establishment dynamics of a new sex-determining

allele. The mode of sexually antagonistic selection is a key determinant of the establishment

probability. The establishment probability is high when linked selection works as balancing

selection, while it is low when selection works as directional selection. I also use simulations

to illustrate how the mode of selection affects the pattern of nucleotide diversity following

the turnover process.

In Chapter 5, I study the degenerative process of Y chromosomes. It is theoretically

known that in non-recombinant chromosomes such as the Y chromosome, the interaction

between multiple deleterious mutations makes them easily fix. Recent genome analyses have

revealed that Y chromosomes retain duplicated genes in many species and that gene con-

version between homologous sequences occurs frequently. However, previous models of the

degenerative process of the Y chromosome have not taken this into account. Therefore, I

construct a new model of Y chromosome evolution that takes gene duplication and gene

conversion into account and analyze its evolutionary dynamics. The results show that gene

duplication and gene conversion affect the evolutionary dynamics in a complex manner.

In summary, in this thesis, I developed new theories of natural selection for local adapta-

tion and the evolution of sex chromosomes. To understand these processes, it is necessary to

consider multiple-loci models or multiple-population models, which made detailed theoretical

analysis difficult. I introduced new approximation methods to make these models tractable

and clarified the evolutionary dynamics in these processes. In Chapter 6, I systematically

organized the approximations used in this thesis and discussed their usefulness. This thesis

demonstrates how useful various approximation methods can be in the analysis of multi-loci

multi-population models with natural selection.

iii



Contents

Abstract ii

1 General Introduction 1

1.1 Natural selection in one-locus one-population model . . . . . . . . . . . . . . 2

1.2 Natural selection in more complex models . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Diffusion approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Structured coalescent approximation . . . . . . . . . . . . . . . . . . . 4

1.3 The content of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Evolutionary Dynamics of a Genetic Barrier to Gene Flow: From the

Establishment to the Emergence of a Peak of Divergence 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Model and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Establishment probability . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Reduction of genetic variation due to a selective sweep . . . . . . . . . 13

2.2.3 Consolidation of a barrier locus with a peak of divergence . . . . . . . 18

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Establishment Process of a Magic Trait Allele subject to Both Divergent

Selection and Assortative Mating 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Haploid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Diploid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Establishment probability in the haploid model . . . . . . . . . . . . . 33

3.3.2 Establishment probability in the diploid model . . . . . . . . . . . . . 37

3.3.3 Establishment trajectory of allele frequency . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Establishment of a new sex-determining allele driven by sexually antago-

nistic selection 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



4.3.1 Case 1: Turnover without changing the heterogametic sex . . . . . . . 55

4.3.2 Case 2: Turnover with changing heterogametic sex . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Muller’s ratchet of the Y chromosome with gene conversion 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Simplification for mathematical analyses . . . . . . . . . . . . . . . . . 83

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Duplication with no fitness effect of dosage . . . . . . . . . . . . . . . 85

5.3.2 Duplication with an additive fitness effect of dosage . . . . . . . . . . 89

5.3.3 Duplication with an intermediate fitness effect of dosage . . . . . . . . 93

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 General Discussion 99

Acknowledgments 101

References 102

v



Chapter 1

General Introduction

Theoretical population genetics studies how the population dynamics of DNA sequences are

determined by the interaction of various evolutionary forces, including mutation, natural

selection, recombination, population structure, and random genetic drift. Of these factors,

natural selection would be one of the most important forces because it determines the direc-

tion of evolution. Natural selection works when multiple genotypes with different survival

and reproductive abilities are present in a population, and it favors the spread of more fa-

vorable genotypes. Natural selection tends to fix beneficial mutations in a population and

to purge harmful ones. The dynamics of evolution under such selection pressures has been a

major interest of researchers in population genetics.

Previous theories have successfully revealed the effects of selection in a simple one-locus

one-population model. However, to fully understand the mechanism behind molecular evo-

lution, it is required to consider the interactions of selection at multiple loci and in multiple

populations. Many species live in geographically extended spaces, and population structure

is an important factor to determine the evolutionary dynamics. Recent developments in

DNA sequencing technologies have made it easier to obtain large amounts of sequence data

from many populations. These data can reveal how genome is shaped in the face of inter-

actions of multiple loci and multiple populations, and there is need to develop multi-locus

multi-population theories to infer evolutionary history from genomic data. It is particu-

larly important to consider the interactions of multiple loci because linkage is a fundamental

property of the DNA sequences in all species. However, theoretical studies of selection in

multi-locus/multi-population models have not been fully explored due to technical difficul-

ties in mathematical analysis.

The aim of this thesis is to construct theories for evolutionary processes that inherently

involve selection at multiple loci and/or in multiple populations. As examples, I especially

focus on local adaptation and the evolution of sex chromosomes. Although the analysis

of the multi-locus and multi-population models is generally difficult, I successfully derive

theoretical expressions for these evolutionary processes with several approximations. These

theories show that developing useful approximations is a powerful strategy for overcoming

theoretical difficulties and exploring multi-locus multi-population models.

In this chapter, I briefly explain the theoretical background of natural selection. First,

I review the results of one-locus, one-population models. In such simple models, diffusion

approximation often allows us to obtain analytical results, and the effect of selection is well

understood. Next, I consider multi-locus multi-population models. In such complex models,

mathematical analysis is more difficult than in one-locus one-population models, and analyt-
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ical results can be obtained only in limited situations. I review these studies and explain how

theoretical difficulties arise in these models. Finally, I explain how local adaptation and the

evolution of sex chromosomes, that are topics I focus on in this thesis, are inherently involved

in selection at multiple loci and selection in multiple population.

1.1 Natural selection in one-locus one-population model

The effects of natural selection have been extensively studied using one-locus one-population

models. In this section, I briefly review the results of these studies.

Consider a biallelic locus A/a at which allele A and allele a coexist. Let x be the frequency

of allele A. It is assumed that allele A has fitness 1 + s(x) while the fitness of wild type allele

a is fixed to 1. Under the Wright–Fisher model (Fisher 1930, Wright 1931), the expected

change of x in one generation, M(x), is given by

M(x) ≈ s(x)x(1− x). (1.1)

Well known classic results are as follows. Haldane (1927) derived the fixation probability of

an allele A as Pfix ≈ 2s for constant s(x) ≡ s > 0 using a branching process approxima-

tion. Allowing for mutation between the two alleles, Wright (1938) derived the equilibrium

distribution of x, φ(x), as:

φ(x) ∝ 1

V (x)G(x)
, (1.2)

where G(x) = exp
(∫
−2M(x)

V (x) dx
)
, V (x) = x(1−x)

2N and N being the population size of diploid

species. These results illustrate how natural selection interacts with mutation and random

genetic drift to affect evolution in the Wright–Fisher model.

Later, Motoo Kimura have developed various mathematical methods based on the dif-

fusion approximation, which is very powerful in the analysis of allele frequency dynamics.

Using the diffusion approximation, the evolutionary process is described by the Kolmogorov

forward equation:

∂φ(p, x, t)

∂t
=

1

2

∂2

∂x2
[V (x)φ(p, x, t)]− ∂

∂x
[M(x)φ(p, x, t)] (1.3)

and Kolmogorov backward equation:

∂φ(p, x, t)

∂t
=
V (p)

2

∂2φ(p, x, t)

∂p2
+M(p)

∂φ(p, x, t)

∂p
, (1.4)

where φ(p, x, t) is the probability density that the allele frequency is x at time t when the

allele frequency at t = 0 is p (Crow and Kimura 1970). From this equation, many evolutionary

properties can be obtained in a more general form. For example, the fixation probability is

derived for arbitrary s and dominance as:

Pfix =

∫ p
0 G(x)dx∫ 1
0 G(x)dx

, (1.5)

where p is the initial allele frequency (Kimura 1962). Other various properties are also de-

rived using the diffusion approximation such as average allele age (Maruyama 1974), average
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fixation time (Kimura and Ohta 1969) and temporal change of allele frequency distribution

(Kimura et al. 1955, Song and Steinrücken 2012). In summary, the diffusion approximation

is applicable to general situations and is very useful for studying the evolutionary dynamics

in the one-locus one-population model.

While the diffusion approximation is the most common way to incorporate selection in the

one-locus one-population model, some theories have been constructed based on the coalescent

theory. The coalescent theory considers the evolutionary history of samples taken from

current populations. This approach is very useful to handle neutral mutations, and most

studies of the coalescent theory have focused only on neutral mutations. However, several

studies have attempted to incorporate selection into the coalescent theory framework. Krone

and Neuhauser developed an ancestral selection graph to simulate selection by permitting

bifurcations of genealogy (Krone and Neuhauser 1997, Neuhauser and Krone 1997), but this

approach is suitable for a computational use and may not be useful for deriving analytical

results (but see Wakeley 2009).

1.2 Natural selection in more complex models

When selection operates in multi-population or multi-locus models, theoretical description

of the evolutionary dynamics becomes much more difficult. In this section, I briefly review

the theories of such complex natural selection and point out the difficulties in theoretical

construction.

1.2.1 Diffusion approximation

The diffusion approximation is still a useful framework in multi-population multi-loci models.

First, I focus on the effect of population structure. The Kolmogorov forward equation for the

two-population model is given by:

∂φ

∂t
=

1

2

∂2

∂x2
1

[V1φ]− ∂

∂x1
[M1φ] +

1

2

∂2

∂x2
2

[V2φ]− ∂

∂x2
[M2φ], (1.6)

where xi, Vi and Mi are x, V and M in population i, respectively (Ewens 2004). Compared

to Equation 1.3, Equation 1.6 has two additional terms because the dimension of the diffusion

process is increased. This increase in dimension makes it very difficult to obtain analytical

expressions.

A similar difficulty of increased dimension arises when we consider a multi-locus model.

Consider a two-locus model consisting of loci A/a and B/b, and let x1, x2, and x3 be the

frequency of genotypes AB, Ab, and aB, respectively. The frequency of genotype ab is given

by 1− x1 − x2 − x3. The Kolmogorov forward equation for this two-locus model is given by:

∂φ

∂t
= −

∑
i

∂

∂xi
[Miφ] +

1

2

∑
i

∂2

∂x2
i

[Viφ] +
1

2

∑
i

∑
j 6=i

∂2

∂xi∂xj
[Cijφ], (1.7)

where Mi is the expected change of xi in one generation, Vi is the variance of xi in one

generation, and Cij is the covariance between xi and xj in one generation (Ewens 2004). We

can see that the number of terms in Equation 1.6 has increased considerably compared to

Equation 1.3. Thus, the theoretical description of the process is again difficult.
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e
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Figure 1.1: Summary of the structured coalescent approximation. First, x(t) is determined (green
line). Next, assuming that alleles linked to each selected allele belong to different populations, standard
structured coalescent theory is applied, in which mutation at locus A/a and recombination function
as “migration” events (black arrows).

In some special cases, analytical results can be obtained even in multi-population mod-

els. Maruyama (1970) considered a multi-populations model of haploid species where selec-

tion pressure s is homogeneous in all populations. Then, Maruyama (1970) mathematically

showed that the fixation probability is the same as the fixation probability in an unstructured

population with the same total population size. In the case of low migration limit, where

the evolution in each population can be considered independent, Slatkin (1981) obtained an-

alytical expressions for the fixation probability and the average fixation time. However, in

general situations in which selection pressure differs between populations and migration is

not negligible, solving the diffusion equation is still very difficult.

1.2.2 Structured coalescent approximation

Another approach to handle a multi-locus multi-population model is the structured coales-

cent approximation. It was developed to consider the amount of neutral polymorphism in the

vicinity of selected locus (Kaplan et al. 1988, Hudson and Kaplan 1988). The basic scheme

is explained in Figure 1.1. Let us consider the evolutionary history of a neutral locus that is

close to a selected locus. First, the allele frequency dynamics at the selected locus, x(t), is

determined. Both simulations and analytical formula can be used to determine x(t). Next,

we consider that alleles linked to different selected alleles (alleles A and a) belong to differ-

ent “subpopulations”, and that mutations at the selected locus and recombination between

the linked neutral locus and the selected locus work as “migration” between the different

subpopulations. Then, standard structured coalescent theory can be applied.

This technique has been used to investigate various topics such as the effect of balancing
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selection (Hudson and Kaplan 1988), selective sweep (Kaplan et al. 1989), and background

selection (Charlesworth et al. 1993a, Hudson and Kaplan 1995) (see also Nordborg 1997,

Wakeley 2009). Some analytical results are obtained when x(t) can be considered as a con-

stant (see Hudson and Kaplan 1988, for example). However, when x changes dynamically,

it is generally difficult to obtain analytical results in a closed form. In summary, while the

diffusion approximation and structured coalescent approximation are very useful frameworks,

multi-locus multi-population models are complex and generally not possible to obtain math-

ematical expressions in an exact manner.

1.3 The content of this thesis

In this thesis, I develop a new theory of selection involving multiple loci and multiple popu-

lations. Since such complex models cannot be analyzed in a rigorous manner as I reviewed

above, I take a different approach, using approximations to describe the evolutionary dynam-

ics. These approximations may not be valid in the full range of parameters, but they work

well in specific situations that are biologically significant. Then, such theories are very useful

to understand the evolutionary dynamics.

I especially focus on two processes; local adaptation and the evolution of sex chromosomes.

Local adaptation occurs when the direction of selection pressure is different among multiple

populations. Since this process inherently involves multiple populations, our knowledge from

the one-population model should not be applied. In Chapter 2, I develop a new theoretical

framework to understand local adaptation process using a two-population model. In Chapter

3, this framework is extended to incorporate the effect of assortative mating driven by sexual

selection.

The evolution of sex chromosomes is a situation in which linkage between different loci

becomes very important. In Chapter 4, I focus on the evolution of young sex chromosomes in

which recombination between two sex chromosomes (X/Y or Z/W) is ongoing. In such cases,

linkage to sex-determining alleles has large effects on the evolutionary process. I investigate

how such linkage affects the dynamics of turnover of sex-determining genes. In Chapter 5, I

focus on later stages of sex chromosomes in which recombination between the two chromo-

somes is suppressed. In this situation, it is well known that multiple deleterious mutations

arise in linkage, affecting the evolutionary dynamics of Y and W chromosomes. I study the

degeneration speed of the sex chromosomes in such situation. My theories which I describe

in this thesis demonstrate how complex natural selection affects the evolutionary dynamics

and how useful approximation techniques can be in analyzing evolutionary dynamics.
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Chapter 2

The Evolutionary Dynamics of a Genetic Barrier to

Gene Flow: From the Establishment to the Emer-

gence of a Peak of Divergence

2.1 Introduction

A genomic island of divergence could arise when a locally adapted allele establishes in a certain

subpopulation (e.g., Wu 2001, Turner et al. 2005, Nosil 2012). This local establishment

could be stably maintained by divergent selection if the allele confers sufficient benefit in

the subpopulations in which it is adaptive, but not in the ones in which it is deleterious.

Such a locus works as a genetic barrier to gene flow or a barrier locus because migrants are

maladaptive. Due to recombination, the genomic region that is affected by divergent selection

is limited, thereby creating a peak of divergence along the chromosome (i.e., a genomic island

of divergence). Further development of multiple barrier loci in the genome might initiate

ecological speciation (Turner et al. 2005, Nosil 2012). In this study, I am interested in the

evolutionary dynamics of a barrier locus, from its establishment via a partial local sweep, the

emergence of a peak of divergence to its stable preservation.

I consider theoretically the process by dividing into three phases, the establishment, con-

solidation and equilibrium phases, as illustrated in Figure 2.1. I consider a simple situation

with two subpopulations, I and II. Assuming a relatively high migration rate between them,

the levels of polymorphism within the two subpopulations are similar to each other (mea-

sured by the heterozygosities, hw1 and hw2, for subpopulations I and II). In the meantime, the

population divergence (measured by hb, the heterozygosity between the two subpopulations)

is very low (Figure 2.1A). Then, a de novo mutation (the star in Figure 2.1A) arises in sub-

population I, in which the mutation is advantageous, but it is maladaptive (or deleterious)

in subpopulation II. In the establishment phase, the mutation spreads in subpopulation I

and nearly fixes (Figure 2.1B), but its frequency in subpopulation II is low because it should

be selected against if migrated into subpopulation II. In a strict sense, this is not a fixation

that can be mathematically treated as an absorbing state, because migration keeps provid-

ing maladaptive alleles. Therefore, after Kimura (1954), I hereafter use the terminology of

“quasi-fixation” for this nearly fixed state. The quasi-fixation should occur quickly, and a

partial local selective sweep occurs in subpopulation I (Figure 2.1B), thereby establishing a

barrier locus. Around the barrier locus, it is typical to observed a “block” of region with

low genetic variation in subpopulation I with a slightly elevated FST. The consolidation
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Figure 2.1: Illustrating the evolution of a barrier locus in a simple two-population model with fairly
high migration between them. (A) A locally adaptive de novo mutation arises in subpopulation I
at position 0. A typical pattern of polymorphism is shown in left. The star is the locally adaptive
mutation and gray circles are neutral polymorphism in the surrounding region. The right panel shows
the spacial distributions of nucleotide diversity obtained by a simulation. The simulation considers two
subpopulations with population sizes are 2N1 = 2N2 = 2000, between which symmetric migration
is allowed at rate 4N1m1 = 4N2m2 = 5.0. I assume selection intensity s1 = 0.2 and s2 = −0.2.
The entire simulated region is 400 kb if a population recombination rate of 4Nr = 0.001 per site is
assumed. See Appendix A for details about the simulation. The polymorphism levels within the two
populations (πw1 and πw2) are in red and blue, and divergence between the two populations (πb) is in
black. πw1, πw2 and πb can be considered as the averages of hw1, hw2 and hb in a 20 kb window. The
y-axis is adjusted such that E(πw1) = E(πw2) = 1 under neutrality (the solid line) and the broken
line exhibits E(πb), (i.e., = the genomic average). (B) The mutation quasi-fixes in subpopulation I,
causing a drastic reduction in πw1. (C) Migration shuffles polymorphisms in the two subpopulations,
while selection works to maintain the quasi-fixation of the mutation. (D) The divergence gradually
increases around the mutation, and (E) a clear peak of divergence arises. It should be noted that
the star is fixed in the sample (left panes in B-E), but it does not necessarily mean that it is fixed in
subpopulation I because there should be maladaptive immigrant alleles at a low frequency.

phase starts after the initial establishment of the barrier locus, during which the block of

low genetic variation gradually shrinks in length over time by recombination and migration,

while new mutations accumulate and the divergence between two subpopulations increases

particularly near the barrier locus (Figure 2.1C). Then, at the end, a stable sharp peak of

divergence arises in the equilibrium phase (Figure 2.1D). The equilibrium shape of the peak

of divergence is mainly determined by the balance between selection intensity and the rates

of recombination and migration.

The scope of this work is to provide a unified and comprehensive theoretical understand-

ing of the evolution of a new peak of divergence, from its birth to stable preservation in

equilibrium. I use a simple two-population model, where migration is allowed between sub-

populations I and II. Suppose a de novo mutation arises that confers a selective advantage

specific to subpopulation I, which is the initial state of my system. Under this model, I derive

the following:

for the establishment phase,

(i) The establishment probability of the de novo mutation, that is, the probability that the

mutation quasi-fixes in subpopulation I.

(ii) The expected reduction of genetic variation within subpopulations I and II after the

quasi-fixation (i.e., partial local sweep).

for the consolidation phase,

(iii) the evolutionary dynamics at both the barrier locus and the linked neutral sites since

the quasi-fixation.

and for the equilibrium phase,

(iv) The expected shape of the peak of divergence at equilibrium.

There have been several theoretical works that focused on a specific part of these aspects.

For (i) the establishment probability, perhaps the most flexible, useful theoretical framework
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was introduced by Barton (1987) in a general multiple-island-model. By using a diffusion

approximation, Barton (1987) derived a partial differential equation for the establishment

probability. Essentially the same result was obtained by Pollak (1966), who used a branching

process and the establishment probability was derived from a probability generating function.

Barton’s differential equation was solved and closed forms of the establishment probability

have been available only in several specific situations in continuous habitat models. In a one-

dimensional continuous habitat model, Barton (1987) solved his partial differential equation

analytically assuming two forms of fitness gradient (linear and pocket). Kirkpatrick and

Peischl (2013) used a branching process, from which they obtained a partial differential

equation that is similar to that of Barton (1987). Then, the authors successfully incorporated

changes in fitness gradient along time, and derived an approximate establishment probability.

In discrete population models, Barton’s general formula (and also Pollak’s one) is difficult

to handle, and it has not been fully explored even in a simple two-population model with

symmetric migration. Therefore, the currently available theoretical results are not based on

Barton’s differential equation, and have some limitations. In a continent-island model with

unidirectional migration, Aeschbacher and Bürger (2014) solved the establishment proba-

bility of a locally beneficial mutation linked to another locally beneficial mutation that was

already established, where mathematical treatment is facilitated by unidirectional migration

(see also Yeaman et al. 2016). Yeaman and Otto (2011) obtained an approximate establish-

ment probability by using a heuristic approach that is a combination of the leading eigenvalue

of the transition matrix of deterministic process and Kimura’s formula of fixation probability

(Kimura 1962). As shown in their paper, this formula well describes the establishment prob-

ability when a de novo mutation arises in the adapted subpopulation (i.e., subpopulation I

in my model), but it does not work when it arises in the maladapted subpopulation (i.e.,

subpopulation II in my model). Recently, Tomasini and Peischl (2018) provided an approxi-

mate establishment probability by assuming a slightly supercritical branching process. Their

formula works well under the assumption of slightly supercritical approximation, namely, the

leading eigenvalue of the transition matrix of deterministic model is not large, but it may not

work well when the selection intensity in the adapted subpopulation is very large.

In this work, I derive a closed form formula of the establishment probability in a two-

population model with bidirectonal migration along the formulation of Barton (1987). I

extend Barton’s derivation with simultaneous quadratic equations and solve them allowing

unequal subpopulation sizes. My formula is more general than previous ones (Yeaman and

Otto 2011, Tomasini and Peischl 2018); it works with strong selection and it allows that a de

novo mutation can arise either subpopulation I or II.

To my best knowledge, there is no theoretical work on the hitch-hiking process of a partial

local sweep in a two-population model. With regard to a single population model, many stud-

ies theoretically investigated the reduction of polymorphism due to a selective sweep. These

studies considered a selected site and a linked neutral site, and assumed that a sufficiently

advantageous mutation arises and goes to fixation in the population. Along this fixation,

they derived how much polymorphism can be reduced at the linked site. Maynard Smith

and Haigh (1974) first obtained the reduction of polymorphism, where the stochastic effect of

genetic drift at the linked site was ignored. The model was extended to include the stochastic

effect by using a coalescent approach (Kaplan et al. 1989) and by using a diffusion method

9



(Stephan et al. 1992) (see also Barton 1998, Etheridge et al. 2006). Durrett and Schweinsberg

(2004) used a different approach for a faster approximate simulation of a selective sweep and

derived some analytical expressions (see also Schweinsberg and Durrett 2005).

There are several theoretical studies on a sweep in multi-population models available,

but these considered a fixation across multiple subpopulations, not a local fixation. In a

model with multiple subpopulations, Slatkin and Wiehe (1998) and Santiago and Caballero

(2005) considered the process where a beneficial mutation fixes in the entire population

through weak migration. Kim and Maruki (2011) allowed stronger migration and derived an

analytical expression in a two-population model. My interest is different from these studies

in that I consider a locally beneficial mutation that can quasi-fix only in the subpopulation

in which it is beneficial (not in the entire population). I here extend the theory of Stephan’s

diffusion model (Stephan et al. 1992) to a two-population model, and consider how much

polymorphism can be reduced locally at a linked site after a partial local sweep.

I then turn to the evolutionary dynamics at both the barrier locus and the linked neutral

sites after the completion of the partial local sweep. I here consider this process after a local

sweep as described in Figure 2.1. A local sweep creates a “block” of a fairly long region with

almost no genetic variation within the subpopulation in which the new mutation is adaptive

(i.e., subpopulation I in my model). In this work, given an arbitrary configuration of genetic

variation after a local sweep, I analytically obtain the moments of allele frequency at a linked

site, with which I describe how a genomic island decays. Yeaman et al. (2016) investigated a

similar problem in a different situation, where an genomic island evolves due to the clustering

of two barrier loci. In their model, considering a secondary contact, erosion starts when there

already are a large number of fixed sites that spread over the genome, and islands appear

because selection works to maintain divergence at selected site(s), while losing divergence in

other regions through homogenization by migration. By using the structured coalescent, they

obtained the expected spacial distribution of FST (in terms of relative coalescent time) around

selected sites as a function of the time since the secondary contact. They also considered the

scenario where a de novo mutation broadens a genomic island which has been created by a

barrier locus and revealed the final shape of a two-barrier island is the same as the genomic

island under the secondary-contact scenario. However, their derivation did not consider the

effect of selective sweep of the de novo mutation. It should be noted that, because my

derivation accepts any arbitrary initial allele frequency at a linked site, it can be applied to

any situation, not only that after a secondary contact but also that after a local sweep.

In the equilibrium phase, the balance between selection, migration, recombination and

mutation holds. Theoretical treatment at equilibrium is relatively straightforward, and there

are several theoretical studies on the spacial distribution of FST (Charlesworth et al. 1997,

Akerman and Bürger 2014, Yeaman et al. 2016). Under my framework for the consolidation

phase, essentially the same result can be provided as a special case with time going to infinity.

2.2 Model and Results

I consider a two-population model with discrete generations and monoecious diploid indi-

viduals that mate at random. The diploid population sizes of subpopulations I and II are

assumed to be constant at N1 and N2, respectively. As illustrated in Figure 2.1, I am specif-

ically interested in selection for local adaptation in subpopulation I. I consider a genomic
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Position 0

Locus A (A/a)
selected site

Locus B (B/b)
neutral site

Recombination
(r)
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A

a

x1

1- x1

B

b

B

b

yA1

1- yA1

Subpopulation II

A

a

x2

1- x2

B

b

B

b

yA2

1- yA2

Figure 2.2: Two-locus model used in this work. Locus A targeted by divergent selection is placed
at position 0, and a linked neutral locus B can be placed at an arbitrary position. The frequencies of
allele A and allele a at locus A and those of allele B and allele b at locus B in the two subpopulations
are illustrated.

region encompassing a selected site at position 0, which is referred to as locus A (Figure 2.2).

At locus A, two alleles (A/a) are allowed with no recurrent mutation between them. Allele

A confers a selection coefficient s1 in subpopulation I and s2 in subpopulation II (I assume

s1 > 0 and s2 < 0). Additive selection is assumed so that the fitness of individuals with

AA, Aa and aa are given by 1 + 2s1, 1 + s1 and 1 in subpopulation I, and 1 + 2s2, 1 + s2

and 1 in subpopulation II. Selection works only at this selected site, and all remaining sites

are assumed to be neutral. For the following derivation under a two-locus model, I consider

a secondary neutral site (locus B), at which two alleles (B/b) are allowed with recurrent

mutation between them (Figure 2.2). The mutation rate from allele B to allele b is u and

that from allele b to allele B is v. The recombination rate between the two loci, A and B, is

r.

The system starts when a de novo mutation (allele A) arises in a single individual either

in population I or II, where allele a is fixed in both subpopulations. Therefore, the initial

state is (x1, x2) = (1/2N1, 0) or (0, 1/2N2), where x1 and x2 are frequencies of the new allele

A in subpopulations I and II, respectively. Throughout this article, I assume strong selection

and weak migration so that maladapted individuals are rare in each subpopulation once the

initial establishment is achieved.

2.2.1 Establishment probability

I derive the establishment probability of a new de novo allele using the general framework

of Barton (1987), who derived a simultaneous quadratic equation from the diffusion theory.

This section focuses only on the selected locus A (see Figure 2.2), at which I am interested

in the probability that allele A quasi-fixes in subpopulation I. Following Haldane (1927), I
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approximate the establishment probability by the probability that the new mutation increases

in frequency and escapes from immediate extinction. This is because, under the assumption

of strong selection, the behavior of such a mutation is almost deterministic once it escapes

from extinction by genetic drift.

Let F (x1, x2) be the establishment probability when the frequencies of allele A are x1 and

x2 in the two subpopulations. By using an analogous procedure to Barton (1987), I derive

p1 = F (1/2N1, 0) and p2 = F (0, 1/2N2), the establishment probability when the new allele

arises in subpopulations I and II, respectively. According to the diffusion theory, F satisfies

the Kolmogorov backward equation:

0 =
x1

4N1

∂2F

∂x2
1

+
x2

4N2

∂2F

∂x2
2

+ {s1x1 +m1(x2 − x1)} ∂F
∂x1

+ {s2x2 +m2(x1 − x2)} ∂F
∂x2

, (2.1)

where m1(m2) is the proportion of immigrant individuals just after migration in subpopula-

tion I (II). To keep the subpopulation sizes constant, I assume N1m1 = N2m2, and I ignore

higher order terms of o(xi) (i.e., x2
1, x2

2). This is reasonable because of the assumption that

the establishment probability is mainly determined at low frequencies. Because the extinction

probabilities of individual mutations are independent, we can write F as

F (x1, x2) = 1− exp(−2N1x1ψ1 − 2N2x2ψ2) (2.2)

where exp(−ψi) is the extinction probability of a new mutant in subpopulation i, therefore,

pi is determined as pi = 1− exp(−ψi). After substitution of Equation 2.2 into Equation 2.1,

one can show that solutions to Equation 1 can be obtained by solving the following system

of equations:

ψ2
1 = 2(s1 −m1)ψ1 + 2

N2

N1
m2ψ2

ψ2
2 = 2

N1

N2
m1ψ1 + 2(s2 −m2)ψ2,

(2.3)

which corresponds to Equation 4b in Barton (1987). Equation 2.3 can be rearranged to

ψ1(ψ3
1 − 2aψ2

1 + (a2 − bd)ψ1 + b(ad− bc)) = 0 (2.4)

ψ2 =
ψ2

1 − aψ1

b
, (2.5)

where a = 2(s1 − m1), b = 2N2
N1
m2 = 2m1, c = 2N1

N2
m1 = 2m2, and d = 2(s2 − m2).

Equation 2.4 can be solved by using the solution of a cubic equation. Equations 2.4 and 2.5

have at most one solution which fulfills p1 > 0 and p2 > 0. The condition where Equations 2.4

and 2.5 have such a solution is a+ d > 0 or ad− bc < 0, which corresponds to the situation

where the deterministic growth rate of the mutant allele is positive (see Appendix B for

details).

Figure 2.3 shows the establishment probability from Equations 2.4 and 2.5 as a function

of migration rate. I first consider a symmetric model (N1 = N2 = 1000), and two selection

intensities (s1 = 0.02 and s1 = 0.1) are assumed, while s2 = −0.01 is fixed (Figures 2.3A and

B). The establishment probability can be computed when a locally adaptive mutation arises

either in subpopulation I or II, represented as F (1/2N1, 0) and F (0, 1/2N2), respectively. I
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performed a forward simulation to check the performance of my analytical result (Appendix

A). For each parameter set, I ran 1,000,000 independent replications of the simulation and

counted the number of replications where the new allele A was preserved in 10,000 genera-

tions. The establishment probability was then obtained as the proportion of such replications.

Therefore, it includes replications where two alleles (A and a) coexisted (case C) and those

where allele A is completely fixed in both subpopulations (case F). The proportion of case C

in the established replications (Pc) decreases with increasing migration rate (see below).

The result (red in Figure 2.3) is in excellent agreement with the simulation result: F (1/2N1, 0)

is approximately Fm=0 = 1−exp(−2s1)
1−exp(−4N1s1) when the migration rate is very low, consistent with

the prediction in a single population model (Kimura 1957). As the migration rate increases,

F (1/2N1, 0) decreases and F (0, 1/2N2) increases, and they become similar to each other.

With a very high migration rate (m ∼ 0.5), the two subpopulations can be considered as a sin-

gle random-mating population, and the fixation probability of a single mutation is mainly de-

termined by the average selection coefficient, s̄ = s1N1+s2N2
N1+N2

, namely, Fm=0.5 = 1−exp(−2s̄)
1−exp(−4NT s̄)

where NT = N1 +N2 (Nagylaki 1980). Indeed, in the simulations, allele A was fixed in both

populations in almost all established cases (Pc = 1). In each panel in Figure 2.3, a gray

region is placed such that Pc > 0.9 in the left, while Pc < 0.1 in the right. It has been

demonstrated that, under a deterministic model, the condition where two alleles (A and a)

coexist is s1s2 < 0 and ∣∣∣∣∣m1(1 + s1)

s1
+
m2(1 + s2)

s2

∣∣∣∣∣ < 1 (2.6)

(Nagylaki and Lou 2008). The critical migration rate predicted by this equation is shown by

the vertical lines in Figure 2.3, which roughly agrees with the line of Pc = 0.9 (see Yeaman

and Otto 2011). It is indicated that the pattern dramatically changes in a short range of m1,

and the left side is the scope of this article. Similar results were also obtained in asymmetric

models (N1 = 3N2 in Figure 2.3C and N1 = N2/3 in Figure 2.3D).

Figure 2.3 quantitatively compares my analytical results with those of previous studies

(Tomasini and Peischl 2018, Yeaman and Otto 2011). It is found that F (1/2N1, 0) from

Yeaman and Otto (2011) is almost as good as the present one, but unfortunately F (0, 1/2N2)

was not provided by Yeaman and Otto (2011). It seems that Tomasini and Peischl (2018)

overestimates F (1/2N1, 0) and underestimates F (0, 1/2N2).

2.2.2 Reduction of genetic variation due to a selective sweep

When a new locally adaptive mutation (a→A) arises and quasi-fixes in subpopulation I,

genetic variation in the surrounding region in subpopulation I should be dramatically reduced

due to the hitch-hiking effect. In this section, I consider a two-locus model as defined in

Figure 2.2. I derive the degree of reduction in heterozygosity at a linked neutral site (locus

B) in subpopulation I, DLS , by extending the diffusion approach of Stephan et al. (1992),

who investigated the effect of hitch-hiking in a single population model with no population

structure.
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Figure 2.3: Establishment probability as a function of migration rate. (A) Weak selection (s1 = 0.02 and
s2 = −0.01) and (B) strong selection (s1 = 0.1 and s2 = −0.01) are assumed in a symmetric model (N1 = N2).
(C, D) Asymmetric population settings are considered (N1 = 3N2 in C and N1 = N2/3 in D). my result in
red is compared with those of Tomasini and Peischl (2018) and Yeaman and Otto (2011), together with the
result of my forward simulation. The establishment probability for a mutation that arises in subpopulation I
(F (1/2N1, 0)) is shown by solid lines and closed circles, and that for a mutation that arises in subpopulation
II (F (0, 1/2N2)) is shown by broken lines and open triangles. The establishment probability at the high
migration limit (m = 0.5) is shown by a yellow triangle. In each panel, a gray region is placed such that the
proportion of the replications where two alleles (A and a) coexisted (Pc) > 0.9 in the left, while Pc < 0.1
in the right. The vertical line presents the critical migration rate above which allele A fixes in the entire
population, obtained by Equation 2.6 (see text for detail).

Overview of Stephan et al. (1992)

I first introduce the approach of Stephan et al. (1992) briefly, which provides the basis of my

derivation below. The expected reduction of heterozygosity at locus B for a single population

model with diploid size N is denoted by D0. With the assumption of strong selection, Stephan

et al. (1992) assumed that the behavior of the frequency (x) of the beneficial allele A with

selection coefficient, s, follow a deterministic function:

dx

dt
= sx(1− x), (2.7)

where selection is additive. This deterministic treatment works once the frequency of allele A

exceeds a certain threshold such that it escapes from immediate extinction by genetic drift, as

mentioned in the previous section. This treatment makes the following derivation much easier

because the dynamics can be described by a two-dimensional diffusion equation. It should

be noted that x with no subscript denotes the frequency of allele A in the single population

model, whereas in my two-population model, the frequencies of allele A in subpopulations I

and II are denoted by x1 and x2, respectively (see Figure 2.2). I consider another biallelic

neutral locus (B/b), and the recombination rate between this neutral locus and the selected

locus is assumed to be r. yA is the frequency of allele B among A-chromosomes and ya is

the frequency of allele B among a-chromosomes. Then, the expected changes of an arbitrary

14



function f(yA, ya) is described as the following ordinary differential equation:

d

dt
E(f) = E(L(f)), (2.8)

where L is a differential operator of the Kolmogorov backward equation:

L =
yA(1− yA)

4Nx

∂2

∂y2
A

+ r(1− x)(ya − yA)
∂

∂yA
+
ya(1− ya)
4N(1− x)

∂2

∂y2
a

+ rx(yA − ya)
∂

∂ya
. (2.9)

By using this formula, Stephan et al. (1992) solved the first and second moments of yA and

ya after a sweep, from which the expected reduction of heterozygosity at the linked site can

be computed numerically. With some approximation, Stephan et al. (1992) further obtained

a nice closed form of the solution:

D0 =
2r

s
(2Ns)−2r/sΓ

(
−2r

s
,

1

2Ns

)
. (2.10)

In this work, I found that this equation somehow undervalues the effect of random genetic

drift at the linked neutral locus perhaps due to the approximation of Stephan et al. (1992).

I noted that, in Equation 2.10, D0 goes to exp(−1/2Ns) in the limit of r → ∞, whereas

heterozygosity should decrease by genetic drift by a factor of 1/2N per generation even in

the absence of the hitch-hiking effect. I here consider the expected reduction of heterozygosity

along the quasi-fixation as exp(− log(2N)/Ns), because the fixation time is approximately

given by

T =

∫ 1−1/2N

1/2N

dx

sx(1− x)
≈ 2 log(2N)

s
.

This equation means that the expected reduction of heterozygosity due to genetic drift,

exp(− log(2N)/Ns), is not negligible compared to exp(−1/2Ns). To correct for this factor,

I add this into Equation 2.10:

D′0 =
2r

s
(2Ns)−2r/sΓ

(
−2r

s
,

1

2Ns

)
exp
(
− log(2N)

Ns

)
. (2.11)

I found that this heuristic approach is in very good agreement with the numerical solution

obtained by directly computing Equation 2.9.

Local sweep in the two-population model

In this work, I extend Stephan et al.’s derivation (1992) to the two-population model defined

above. I first consider the dynamics of the new mutant allele frequency (x1) at the selected

locus (position 0) in the subpopulation I. The major difference from the corresponding formula

in Stephan et al. (1992) (i.e., Equation 2.7) is that the effect of migration should be considered

in the two-population model. Because allele A is very rare in subpopulation II under the

assumption of strong selection and low migration, I can ignore migrants with A allele from

subpopulations II to I. Then, the dynamics of x1 can be approximated by a deterministic

function:
dx1

dt
= s1x1(1− x1)−m1x1. (2.12)
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I set the time such that t = 0 when the mutation arises and t = τ when the mutation

quasi-fixes.

I next consider the neutral locus B (B/b). As illustrated in Figure 2.2, yA1 (yA2) is the

frequency of haplotype A-B among A-chromosomes in subpopulation I (II), and ya1 (ya2) is

the frequency of haplotype a-B among a-chromosomes in subpopulation I (II). I assume that

yA2 is very small throughout the sweep process. Then, the expected changes of an arbitrary

function f(yA1, ya1, ya2) is described as the following ordinary differential equation:

d

dt
E(f) = E(L(f)), (2.13)

where L is a differential operator of the Kolmogorov backward equation. Following Ohta and

Kimura (1969), I obtain L for my model as

L =
yA1(1− yA1)

4N1x1(t)

∂2

∂y2
A1

+ r(1− x1(t))(ya1 − yA1)
∂

∂yA1

+
ya1(1− ya1)

4N1(1− x1(t))

∂2

∂y2
a1

+ {rx1(t)(yA1 − ya1) +
m1

(1− x1(t))(1−m1) +m1
(ya2 − ya1)} ∂

∂ya1

+
ya2(1− ya2)

4N2

∂2

∂y2
a2

+ {x1(t)me,1→2(yA1 − ya2) + (1− x1(t))m2(ya1 − ya2)} ∂

∂ya2
.

(2.14)

This equation is derived such that several terms are added to Equation 2.9 for incorporating

random genetic drift within subpopulation II (first term on the third line) and the effect of

migration. The second term of ∂/∂ya1 (second line) is for migration from subpopulation II

to subpopulation I, and the term of ∂/∂ya2 (third line) is for migration from subpopulation

I to subpopulation II. Due to the assumption of strong selection, migrant A-chromosomes

from subpopulation I to subpopulation II should be selected out immediately. Therefore, the

migration rate of locus B can be effectively considered as the product of migration rate and

the probability that at least one recombination event occurs before selection purges allele A,

me,1→2:

me,1→2 =
(1 + s2)r

1− (1 + s2)(1− r)
m2 (2.15)

(Bengtsson 1985). Then, Equation 2.13 directly allows us to compute the first and second

moments of yA1 and ya2 after the quasi-fixation of allele A (i.e., yA1(τ) and ya2(τ)). I obtain

heterozygosity within each subpopulations (hw1 and hw2) and between them (hb) at t = τ as

hw1(τ) = 2E(yA1(τ))− 2E(yA1(τ)2),

hw2(τ) = 2E(ya2(τ))− 2E(ya2(τ)2),

hb(τ) = E(yA1(τ)) + E(ya2(τ))− 2E(yA1(τ)ya2(τ)),

(2.16)

from which the expected reduction of heterozygosity is obtained as

DLS = hw1(τ)/hw1(0). (2.17)

Generally, DLS involves the initial frequencies, ya1(0) and ya2(0). However, it should be

noted that their quantitative effect on DLS is not large unless ya1(0) and ya2(0) are not very
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Figure 2.4: The expected reduction of heterozygosity after a local partial sweep in the two-population
model. Position is shown in 4N1r from the selected site. Theoretical results for hw1(τ) hw2(τ) and
hb(τ) computed from 2.14-2.17 by assuming ya1(0) = ya2(0) = 0.3 for convenience, but very similar
results were obtained for other values of ya1(0) and ya2(0). In the case of no migration (red), my
results is identical to Stephan et al. (1992) (i.e., Equation 2.11)

similar.

Figure 2.4 shows the effect of migration on the reduction in heterozygosity. The plot in red

is the case of no migration, where my result is essentially identical to Stephan et al. (1992),

and the plots in blue and green are for migration cases. I consider three pairs of population

sizes, N1 = N2 = 1000 in A, N1 = 1000, N2 = 5000 in B, and N1 = 5000, N2 = 1000 in C. For

each parameter set, filled circles represent the average over 100,000 replications of forward

simulation (See Appendix A). In Figure 2.4, hw1(τ), hw2(τ) and hb(τ) are plotted such that

hw1(0) = hw2(0) = 1 before the sweep, so that hw1(τ) directly corresponds to DLS . In all

cases, my theoretical result from Equation 2.14 is in excellent agreement with the simulation

results. It is found that the effect of a local partial sweep seems to be only on subpopula-

tion I, and there is almost no effect on the variation in subpopulation II. Moving away from

the selected site at position 0, DLS is larger for a higher migration rate. This is because

that migration brings standing variation maintained in subpopulation II into subpopulation

I, thereby increasing the polymorphism level in subpopulation I. I observed hb(τ) is slightly

elevated around the selected site at position 0. If I assume 1−hw(τ)/hall(τ) roughly approx-

imates FST where hall is heterozygosity when the two subpopulations are merged together,

it can be said that a local sweep creates a relatively wide block of region with elevated FST,

which can be considered as an initial peak of divergence.
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2.2.3 Consolidation of a barrier locus with a peak of divergence

When a new locally adaptive mutation (a→A) quasi-fixes in subpopulation I, a block of region

with elevated FST arises, where genetic variation in subpopulation I is dramatically reduced

(Figure 2.1B). In this section, by using the two-locus model defined in Figure 2.2, I consider

the process after this state, but my derivation is flexible enough to plug in any initial state.

I use a similar diffusion approach to the previous section but I focus on the behavior of

yA1 and ya2. The expected changes of an arbitrary function f(yA1, ya2) is described as the

following ordinary differential equation:

d

dt
E(f) = E(L(f)), (2.18)

where L is a differential operator of the Kolmogorov backward equation, which is given by

L =
yA1(1− yA1)

4N1

∂2

∂y2
A1

+
ya2(1− ya2)

4N2

∂2

∂y2
a2

+ [v − (u+ v)yA1 +me,2→1(ya2 − yA1)]
∂

∂yA1
+ [v − (u+ v)ya2 +me,1→2(yA1 − ya2)]

∂

∂ya2
.

(2.19)

The two terms in the first line of Equation 2.19 are for random genetic drift within subpop-

ulation I and II, and the terms in the second line describes the deterministic change of the

frequency of allele B due to mutation and migration. As well as the previous section, I use

the effective migration rate (Bengtsson 1985):

me,2→1 =
(1 + s̃1)r

1− (1 + s̃1)(1− r)
m1, (2.20)

where s̃1 = 1/(1 + s1) − 1 is the relative selection coefficient of maladapted individuals in

subpopulation I. me,1→2 is defined by Equation 2.15. I consider the dynamics of the first and

second order moments, and put y = (E(yA1), E(ya2), E(y2
A1), E(yA1ya2), E(y2

a2))T . By using

Equation 2.18, I derive a differential equation for y as follows:

dy

dt
= Qy + e, (2.21)

where Q is the 5× 5 matrix given by

Q =


−(u + v +me,2→1) me,2→1 0 0 0

me,1→2 −(u + v +me,1→2) 0 0 0

2v + 1
2N1

0 −2(u + v +me,2→1 + 1
4N1

) 2me,2→1 0

v v me,1→2 −(2u + 2v +me,2→1 +me,1→2) me,2→1

0 2v + 1
2N2

0 2me,1→2 −2(u + v +me,1→2 + 1
4N2

)


(2.22)

and e = (v, v, 0, 0, 0)T . See Appendix C for details. By solving Equation 2.21, y is given by

y(t) = exp(tQ)y(0) + Q−1(exp(tQ)− I)e (2.23)

where I is the identity matrix of size 5 (Appendix C). y at equilibrium is given by ỹ = −Q−1e.

My solution at equilibrium is well consistent with previous studies (Charlesworth et al. 1997,

Yeaman et al. 2016) that used the coalescent approach (see Appendix D for a proof).

Figure 2.5 compares my theoretical results from Equation 2.23 (broken lines) with simu-
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lation results (closed circles). N1 = N2 = 1000, s1 = −s2 = 0.05, u = v = 2.5 × 10−6,m1 =

m2 = 1.25 × 10−3 are assumed to represent a strong selection case. As the initial condition

(t = 0), I set hw1 = 0, hw2 = 0.18 and hb = 0.1, representing a situation after a local sweep in

subpopulation I. Equation 2.23 describes how a sharp peak of divergence grows along time.

As time goes, hw1 and hw2 become closer to each other, and eventually reaches their equilib-

rium values (t� 10, 000). hb also decreases except for a short region surrounding the selected

site. The rate of erosion (decrease of hb) increases moving away from the selected site. At

the selected site, hb gradually increases and eventually develops a sharp peak, and simulta-

neously hw1 and hw2 also exhibit a small peak that can be created by migration between

two subpopulations. It reaches an equilibrium after a significant amount of time, where the

selection-migration balance holds so that the shape of the peak does not change much.

Figure 2.5 shows that Equation 2.23 (broken lines) is consistent with the simulation

results, but the agreement could be further improved if we account for the presence of locally

maladapted allele, i.e. allele A (a) in subpopulation I (II). At migration-selection equilibrium,

alleles A and a are present in subpopulation I and II at an expected frequency of 1 − x1 ≈
−m1/s̃1 and x2 ≈ −m2/s2, respectively. Even though these frequencies are small under

my assumption of weak migration relative to selection, I show in the following that the

approximation in Equation 2.23 can be improved by accounting for them. Let us focus

on the fate of a single neutral allele at the neutral locus linked to an immigrant locally

maladaptive allele. I ask how long such a neutral immigrant allele survives on the locally

maladaptive background. The linked neutral allele will either be eliminated by selection

against the locally maladapted allele in its background, or it recombines off its deleterious

background onto a locally beneficial background. The expected time until elimination by

selection or recombination in subpopulations I and II are, respectively, given by

t2→1 =
∞∑
i=0

{(1 + s̃1)(1− r)}i =
1

1− (1 + s̃1)(1− r)
,

t1→2 =

∞∑
i=0

{(1 + s2)(1− r)}i =
1

1− (1 + s2)(1− r)
.

(2.24)

Therefore, the expected numbers of neutral alleles from the other subpopulation with the

maladapted allele is N1m1t2→1 and N2m2t1→2 in subpopulations I and II, respectively.

Let the frequencies of B in subpopulations I and II including those on the locally mal-

adapted background ỹ1 and ỹ2. Accounting for the presence of locally maladaptive alleles,

the first and second-order moments of ỹi are,

E(ỹ1) =(1−m1t2→1)E(yA1) +m1t2→1E(ya2)

E(ỹ2) =m2t1→2E(yA1) + (1−m2t1→2)E(ya2)

E(ỹ2
1) =(1−m1t2→1)2E(y2

A1) +m2
1t

2
2→1E(y2

a2) + 2m1t2→1(1−m1t2→1)E(yA1ya2)

E(ỹ1ỹ2) =(1−m1t2→1)m2t1→2E(y2
A1) +m1t2→1(1−m2t1→2)E(y2

a2)

+
{

(1−m1t2→1)(1−m2t1→2) +m1t2→1m2t1→2

}
E(yA1ya2)

E(ỹ2
2) =m2

2t
2
1→2E(y2

A1) + (1−m2t1→2)2E(y2
a2) + 2m2t1→2(1−m2t1→2)E(yA1ya2).

(2.25)

See Appendix C for details. Figure 2.5 shows that Equation 2.25 fits to the simulation
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results better than Equation 2.23. A notable improvement is seen in hw1 for a narrow

region around the selected site. Because Equation 2.23 ignores the presence of maladaptive

alleles (assuming their immediate death), Equation 2.23 predicts a small dip, but rather my

simulation demonstrated that a small peak arises. This small peak of hw1 is well described

by the improved Equation 2.25.

2.3 Discussion

In the early stages of ecological speciation with gene flow, divergent selection is required to

maintain phenotypes that are adaptive to each niche (Wu 2001, Turner et al. 2005, Nosil

2012). Each target locus of divergent selection works as a barrier locus to migration, because

maladaptive migrants should be selected out in a short time. Such a barrier locus can be

formed if a locally adaptive mutation arises and established in subpopulations where it is

adaptive. This quasi-fixation of a locally adaptive mutation causes a local partial sweep,

thereby creating a block of region with elevated FST. Then, during when divergent selec-

tion maintains the mutation, recombination shuffles genetic variation in the linked regions

while mutations accumulate around the barrier locus. Through this process, a sharp peak of

divergence develops in a narrow region around the barrier locus.

This article theoretically considers the evolutionary behavior of a barrier locus, from

its initial establishment to stable preservation. The process was divided into three phases,

the establishment, consolidation and equilibrium phases (Figure 2.1). I obtained (i) the

establishment probability of a locally adaptive mutation, (ii) the expected reduction of genetic

variation within subpopulations I and II after a partial local sweep, (iii) the evolutionary

dynamics at both the barrier locus and the linked neutral sites since the sweep, and (iv) the

expected shape of the peak of divergence around the barrier locus at equilibrium.

For (i), I have derived a closed-form formula of the establishment probability along

the formulation of Barton (1987). My simulations showed that my theoretical results for

F (1/2N1, 0) and F (0, 1/2N2) outperform the previous approximations, although Yeaman

and Otto (2011)’s heuristic approach is almost as good as the presented one. Because I fo-

cused on divergent selection so that allele A is quasi-fixed in subpopulation I whereas allele

a is quasi-fixed in subpopulation II, I assumed s1 > 0 and s2 < 0. However, as shown in

Figure 2.3, it is possible that either allele A or a could fix in the entire population even if

s1 > 0 and s2 < 0 hold, although it might take an extremely long time. In contrast, Gavrilets

and Gibson (2002) and Whitlock and Gomulkiewicz (2005) obtained the probability of such

eventual fixation in the entire population. These studies and my result can be understood in

a single framework as follows. Assuming s1 > 0 and s2 < 0, the establishment of allele A first

occurs and is maintained quite stably for a long time, but with time going towards infinity,

allele A could fix in the entire population most likely when the average selection coefficient

s̄ is positive, while allele a could likely fix when s̄ is negative. This is why my formula of

the establishment probability (Equation 2.2) is the same as the numerator of the fixation

probability when s̄ is positive (Equations 7 and 8 in Gavrilets and Gibson 2002 and Equation

6 in Whitlock and Gomulkiewicz 2005). On the other hand, the establishment probability

significantly differs from the fixation probability of Gavrilets and Gibson (2002) and Whitlock

and Gomulkiewicz (2005) when s̄ is negative because such a mutation hardly goes to eventual

fixation, although it can be maintained as a quasi-fixed state for a sufficiently long time.
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For (ii), I extended the diffusion method of Stephan et al. (1992) to the two-population

model. Because the beneficial allele A quasi-fixes only in one subpopulation, the process is

very similar to that of a single population model (Stephan et al. 1992), except that migration

between two subpopulations has some effect. My theoretical result (see Figure 2.4) demon-

strated a relatively minor effect of migration; with an increasing migration rate, the level of

polymorphism in subpopulation I increases because migration brings genetic variation from

subpopulation II.

For (iii) and (iv), I considered the evolutionary dynamics at both the barrier locus and the

linked neutral sites since the quasi-fixation, followed by the development of a stable peak of

divergence around the barrier locus. This process to equilibrium can be described by a single

formula 2.25. Furthermore, Equation 2.25 is flexible enough to plug in any initial state, such

as a secondary contact of already diverged subpopulation. To demonstrate this, in Figure 2.6,

I compare the pattern after a local sweep (left panels) and that after a secondary contact

(right panels) (see also Appendix E for details). After a secondary contact, hb is already

high across the genome, and hb gradually decreases but selection works to keep divergence

around the selected site, thereby creating a peak of divergence. After a very long time (i.e.,

in equilibrium), the shape of the peak becomes identical to that after a sweep, as pointed

out by Yeaman et al. (2016). I further performed simulations to investigate how robust my

derivation is when the selection intensity is reduced (although I assumed strong selection).

The results with 10 times lower selection intensity are shown in Figure 2.7. This selection

intensity is fairly weak, and close to the lower limit to maintain the quasi-fixation state of

the two alleles. Yet, Equation 2.25 is in fairly good agreement with the simulation results,

although the performance of Equation 2.23 is not very good. This is because the frequency

of maladaptive alleles is not negligible with a reduced selection intensity.

I have thus developed analytical expressions for the evolutionary behavior of a barrier

locus, from its emergence to development of a peak of divergence. In the early stages of

ecological speciation, it is possible that multiple barrier loci are developed and genomic

islands of divergence arise, but it does not necessarily mean that the emergence of genomic

islands of divergence always results in speciation. It is possible that genomic islands of

divergence could disappear by environmental changes or by chance, and no speciation occurs.

To achieve speciation, there would be many other forces necessary, including emergence of

additional islands (Feder et al. 2012a, Via 2012, Feder et al. 2012b, Aeschbacher and Bürger

2014, Yeaman et al. 2016), further divergence on a genomic-scale possible due to a reduction

in migration rate, and environmental changes. More theoretical works are needed to fully

understand the process to ecological speciation.

2.4 Appendices

Appendix A: Forward simulation

I here describe the setting and assumptions of my forward simulations. A model with two

subpopulations (I and II) is used. Subpopulations I and II consist of 2N1 and 2N2 haploids.

I am interested in how DNA sequence evolves at the population level around a selected locus.

I considered a genomic region encompassing a selected locus at the center, and assumed the

infinite-site model for simulating patterns of nucleotide polymorphisms (e.g., Figure 1). For
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other simulations, I consider a two-locus model with the selected locus and a linked neutral

locus. The recombination rate between the two loci is r. The fitness of an individual is

determined by the allelic state at the selected locus: The fitness of an individual with allele

A and a are, respectively, 1+s1 and 1 in subpopulation I, and 1+s2 and 1 in subpopulation I.

Every generation, migration is allowed such that 2Nm individuals are swapped between the

two subpopulations, Then, to construct a new population in the next generation, 2N1 and

2N2 individuals are randomly chosen from the current subpopulations I and II, respectively,

where their fitness is taken into account. No recurrent mutation is allowed at this site in

order to trace the fate of the mutation (unless otherwise mentioned). In contrast, at the

linked neutral locus, recurrent mutation is allowed at rate µ per generation. Heterozygosities

within and between (hw and hb) subpopulations can be scored at any arbitrary time point.

Appendix B: The solution of Equations 2.4 and 2.5

First, I present a proof that there is at most one solution which fulfills p1 > 0 and p2 > 0,

and the condition on which such a solution exists is a+ d > 0 or ad− bc < 0. Then, I give a

closed expression of the solution.

For ψ1 and ψ2 to satisfy p1 > 0 and p2 > 0, ψ1 > 0 and ψ2 > 0 are needed. Notice that

b, c > 0 because the migration rate and population size are always positive. Although in this

work I consider only the case of d < 0, Equations 2.4 and 2.5 may also work in the case of

d ≥ 0. Therefore, I here present the proof which allows d ≥ 0. I set f(x) = x3− 2ax2 + (a2−
bd)x+ (abd− b2c) and note that the first derivative of f(x) is f ′(x) = 3x2 − 4ax+ (a2 − bd).

I discuss for the complementary following three cases.

1. a ≥ 0

From Equation 2.5, ψ1 > a, then x > a is needed. Because the x-cordinate of the vertex

of f ′(x) ,2
3a, is not greater than a, f ′(x) monotonically increases when x > a. Noting

that f(a) = −b2c < 0, there is only one solution to f(x) = 0.

2. a < 0 and d ≤ 0

From Equation 2.5, ψ1 > 0, then x > 0 is needed. Because f ′(0) = a2 − bd > 0 and

the x-coodinate of the vertex of f ′(x) ,2
3a, is smaller than 0, f ′(x) > 0 when x > 0.

Therefore, whether f(x) = 0 has a solution or not in (0, ∞) depends on the sign of

f(0). If f(0) ≥ 0, i.e. b(ad− bc) ≥ 0, there is no solution. Otherwise, there is only one

solution.

3. a < 0 and d > 0

From Equation 2.5, ψ1 > 0, then x > 0 is needed. Because the x-coodinate of the vertex

of f ′(x) ,2
3a, is smaller than 0, f ′(x) monotonically increases when x > 0. Noting that

f(0) = b(ad− bc) < 0, there is only one solution.

Noting that b, c > 0 and ad − bc is negative when ad ≤ 0, the condition on which one

solution exists is rearranged to a + d > 0 or ad − bc < 0. This is the same as the condition

where a deterministic model,

d

dt

(
x1

x2

)
=

1

2

(
a b

c d

)(
x1

x2

)
, (2.26)
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has a positive growth rate, in other words, the matrix in Equation 2.26 has at least one

positive eigenvalue.

Next, I present a closed form of ψ1. From the above proof, if there is a nonzero real root

of f(ψ1) = 0 which fulfills p1 > 0 and p2 > 0, the root is the largest real root of f(ψ1) = 0.

Therefore, by using the solution of cubic equation, ψ1 can be expressed as

ψ1 =


0 when a+ d ≤ 0 and ad− bc ≥ 0

3

√
−Q

2 +
√
R+ 3

√
−Q

2 −
√
R− A2

3 when R > 0 and (a+ d > 0 or ad− bc < 0)

2S cos(1
3 arccos( T2S ))− A2

3 when R ≤ 0 and (a+ d > 0 or ad− bc < 0)

,

(2.27)

where A0 = abd − b2c, A1 = a2 − bd,A2 = −2a, P = A1 −
A2

2
3 , Q = A0 − A1A2

3 + 2
27A

3
2, R =

(P3 )3 + (Q2 )2, S =
√
−P

3 , T = − Q
S2 . In the above expression, I assume the range of principal

value of y = arccos(x) as 0 ≤ y ≤ π.

Appendix C: Derivation of Equation 2.21, 2.23 and 2.25

I here describe the derivation of Equation 2.21, 2.23 and 2.25 in more detail. By applying

Equation 2.18 to f = yA1, ya2, y
2
A1, yA1ya2 and y2

a2, we can derive the time derivative of

moments of yA1 and ya2 as follows:

dE(yA1)

dt
= v − (u+ v +me,2→1)E(yA1) +me,2→1E(ya2)

dE(ya2)

dt
= v − (u+ v +me,1→2)E(ya2) +me,1→2E(yA1)

dE(y2
A1)

dt
= (2v +

1

2N1
)E(yA1)− 2(u+ v +me,2→1 +

1

4N1
)E(y2

A1) + 2me,2→1E(yA1ya2)

dE(yA1ya2)

dt
= vE(yA1) + vE(ya2)

+me,1→2E(y2
A1)− (2u+ 2v +me,2→1 +me,1→2)E(yA1ya2) +me,2→1E(y2

a2)

dE(y2
a2)

dt
= (2v +

1

2N2
)E(ya2)− 2(u+ v +me,1→2 +

1

4N2
)E(y2

a2) + 2me,1→2E(yA1ya2).

(2.28)

By setting y = (E(yA1), E(ya2), E(y2
A1), E(yA1ya2), E(y2

a2))T , e = (v, v, 0, 0, 0)T and defining

Q as Equation 2.22, Equation 2.28 can be rearranged in a matrix form (Equation 2.21).

Then, by using the solution of a linear differential equation with constant coefficients, the

solution of Equation 2.21 is given by

y(t) = exp(tQ)y(0) +

∫ t

0
exp((t− s)Q)eds

= exp(tQ)y(0) + Q−1(exp(tQ)− I)e.

(2.29)

The solution 2.23 is further improved by accounting for neutral immigrant alleles linked

to maladaptive alleles. To do so, we derive the expected time of a neutral immigrant allele

until its elimination by selection or recombination as Equation 2.24. The expected frequencies

of such an allele are m1t2→1 and m2t1→2 in subpopulations I and II, respectively. ỹ1 and

ỹ2, denote the frequencies of B in subpopulations I and II including those on the locally
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maladapted background. Then, ỹ1 and ỹ2 can be approximated by

ỹ1 = (1−m1t2→1)yA1 +m1t2→1ya2,

ỹ2 = (1−m2t1→2)ya2 +m2t1→2yA1.
(2.30)

By using Equation 2.30 and taking expectations, the first and second-order moments of ỹ1

and ỹ2 are given by Equation 2.25.

Appendix D: Comparison between diffusion and coalescent at equilibrium phase

In the main text, I show that replacing the migration rate in the neutral diffusion equation

by the effective migration rate well approximates the effect of linkage with the locus under

divergent selection. In a neutral model, heterozygosity at equilibrium in a structured popu-

lation is already well studied by the coalescent theory under the infinite-site model (reviewed

in Wakeley 2009). In this work, I alternatively used the forward diffusion approach because

the diffusion approach can be applied to more general conditions. In this Appendix, I show

my diffusion result at equilibrium is consistent with that of the coalescent theory.

I attempt to derive the expected heterozygosity under the infinite-site setting along my

diffusion-based derivation. In practice, I first consider a K-allele model, and then the results

will be transformed to the infinite-site model. Let B allele be one of the alleles at the locus. I

put y1 and y2 as frequency of allele B in subpopulation I and II, respectively. In the following

derivation, I assume N1 = N2 = N and m1 = m2 = m. The differential operator of the

Kolmogorov backward equation is as follows,

L =
y1(1− y1)

4N

∂2

∂y2
1

+
y2(1− y2)

4N

∂2

∂y2
2

+ [v − (u+ v)y1 +m(y2 − y1)]
∂

∂y1
+ [v − (u+ v)y2 +m(y1 − y2)]

∂

∂y2
,

(2.31)

At the equilibrium, I derive the moments up to the second order as

E(y1) = E(y2) =
V

U + V
,

E(y2
1) = E(y2

2) =
V (V + 1)(U + V +M) + V 2M

(U + V )(U + V +M + 1)(U + V +M)−M2(U + V )
,

E(y1y2) =
MV (V + 1) + V 2(U + V +M + 1)

(U + V )(U + V +M + 1)(U + V +M)−M2(U + V )
,

(2.32)

where U = 4Nu, V = 4Nv and M = 4Nm. In the limit to the infinite-allele model, that is,

v = u
K−1 and K → ∞, the expected heterozygosity within and between subpopulation goes

to

hw = 1−KE(y2
1)→ U2 + 2UM

(U +M + 1)(U +M)−M2
,

hb = 1−KE(y1y2)→ U(U + 2M + 1)

(U +M + 1)(U +M)−M2
.

(2.33)

This result under the infinite-allele setting can be transformed to the infinite-site mode: If

24



we put U = θ
n and n goes to ∞, πw and πb are described as

πw = nhw → 2θ

πb = nhb → θ(2 +
1

M
),

(2.34)

which is identical with the result from the coalescent theory (Charlesworth et al. 1997, Yeaman

et al. 2016).

Appendix E: Comparing the scenarios of local partial sweep and secondary con-

tact

I compute Equation 2.23 for a scenario of secondary contact, and compared with the results

of a local partial sweep shown in Figure 2.5. For a secondary-contact scenario, I assume that

already diverged two subpopulation have merged so that there are a number of fixed sites

between the two subpopulations. To make a realization of this situation, I set y1(0) = 0.1 and

y2(0) = 0.9, and the other parameters are identical to those used for Figure 2.5 (i.e., 4N1s1 =

−4N2s2 = 200 and 4N1m1 = 4N2m2 = 5). Figure 2.6 compares the patterns after a local

sweep (left panels) and after a secondary contact (right panels). After a secondary contact,

hb is already high across the genome, and hb gradually decreases but selection works to keep

divergence around the selected site, thereby creating a peak of divergence. In equilibrium,

the shape of the peak becomes identical to that after a sweep, in agreement with Yeaman

et al. (2016).

Figure 2.7 shows the results with identical parameter sets to those for Figure 2.5 except

for the selection intensity. The purpose is to check how robust my derivation is when the

selection intensity is reduced. I here set 4N1s1 = −4N2s2 = 20 and 4N1m1 = 4N2m2 = 5.

The results with 10 times lower selection intensity are shown in Figure 2.6. This selection

intensity is fairly weak, and it is close to the lower limit to maintain the quasi-fixation state

of the two alleles.
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Figure 2.5: Temporal change of heterozygosity (hw1, hw2, hb) after a local sweep in subpopulation I.
The spacial distributions of hw1, hw2 and hb are shown for seven time points (t=0, 250, 1000, 2500,
10000, 50000, and 500000 generations after a sweep). Position in the simulated regions is shown in 4Nr
from the selected site. N1 = N2 = 1000, s1 = −s2 = 0.05, u = v = 2.5×10−6,m1 = m2 = 1.25×10−3,
y1(0) = 0.0 and y2(0) = 0.1 are assumed. Theoretical results from Equations 2.23 and 2.25 are shown
by broken and solid lines, respectively. Simulation results (closed circles) are the averages over 50,000
replications of forward simulations.
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Figure 2.6: Temporal change of heterozygosity (hw1, hw2, hb) as a function of recombination rate
(A) after a local sweep in subpopulation I and (B) after a secondary contact. y1(0) = 0.0 and
y2(0) = 0.1 are assumed in (A), whereas y1(0) = 0.1 and y2(0) = 0.9 in (B). Theoretical results from
Equations 2.23 and 2.25 are shown by broken and solid lines, respectively. Simulation results (closed
circles) are the averages over 50,000 replications of forward simulation. The left panel is identical to
Figure 2.5.
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Figure 2.7: Temporal change of heterozygosity (hw1, hw2, hb) as a function of recombination rate
(A) after a local sweep in subpopulation I and (B) after a secondary contact. I here set 4N1s1 =
−4N2s2 = 20, while all other parameters are the same as those for Figure 2.6. The theoretical results
from Equations 2.23 and 2.25 are shown by broken and solid lines, respectively. Simulation results
(closed circles) are the averages over 50,000 replications of forward simulations.
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Chapter 3

Establishment Process of a Magic Trait Allele sub-

ject to Both Divergent Selection and Assortative Mat-

ing

3.1 Introduction

Speciation occurs when reproductive isolation establishes between different populations. One

of the major forces driving reproductive isolation is sexual selection (Coyne and Orr 2004).

Speciation driven by sexual selection could occur when phenotypic difference is involved in

mate choice. Several theoretical models indicated that sexual selection alone can lead to

speciation even in the face of gene flow (Wu 1985, Turner and Burrows 1995, Higashi et al.

1999, Takimoto et al. 2000), but these results largely rely on their assumptions such as

ample genetic variation, symmetric distribution of female preference or strong female choice

(Arnegard and Kondrashov 2004, Gavrilets 2004), and are empirically not well supported

yet, as reviewed in Ritchie (2007). At the moment, it is considered that speciation by sexual

selection alone is difficult to occur (Gavrilets 2004). This is largely because diversity in female

preference is difficult to maintain in the presence of genetic drift, as female preference is not

directly subject to selection (i.e., selection works through male phenotype). Ritchie (2007)

pointed out that sexual selection should work efficiently together with niche specialization or

local adaptation.

Synergy between local adaptation and assortative mating can be a powerful driver of

speciation (Gavrilets 2004). Establishment of a locally adaptive mutation could lead to

stable genetic divergence between local populations in different environments, even in the

face of gene flow between them. If there is another locus that is involved in sexual selection,

it also reduces gene flow between populations. This effect is particularly strong when the

locus is genetically linked to the target locus of local adaptation, and an extreme case is

that a single locus is pleiotropically subject to both divergent selection and sexual selection.

Models that handle sexual selection at a locus under divergent selection are called “magic

trait” models (Gavrilets 2004, Servedio et al. 2011). Previous theoretical studies revealed

that the magic trait models are one of the easiest scenarios of speciation with gene flow (see

Gavrilets 2004, Kopp et al. 2018, for reviews). There are many potential examples of a magic

trait in nature (Maan and Seehausen 2011, Servedio et al. 2011), suggesting the importance of

the establishment process of a magic trait for speciation. In the present article, I specifically

focus on a case of a single magic trait locus, which produces a phenotype difference and
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undergoes similarity-based mating (i.e., females prefer males with similar phenotypes).

Many theoretical models have considered a magic trait that is subject to both natural

selection and similarity-based assortative mating (Dieckmann and Doebeli 1999, Matessi et al.

2001, Doebeli and Dieckmann 2003, Kirkpatrick and Nuismer 2004, Bürger and Schneider

2006, Otto et al. 2008, Pennings et al. 2008, Thibert-Plante and Gavrilets 2013, Rettelbach

et al. 2013, Servedio and Bürger 2015, Cotto and Servedio 2017) (see Kirkpatrick and Ravigné

2002, Gavrilets 2004, Weissing et al. 2011, Servedio and Boughman 2017, Kopp et al. 2018,

for review). However, these models often consider complicated scenarios, for example, that a

magic trait contributes to speciation in interaction with other traits or other selective forces,

making it difficult to understand the relative contribution of the magic trait.

So far, theoretical arguments on the evolutionary dynamics of a magic trait have been

only based on limited studies in an infinite population (Slatkin 1982, Kisdi and Priklopil

2011, Servedio 2011). Slatkin (1982) considered a haploid infinite-size island population

connected to a stable continent population, between which migration is allowed. The model

involves a single magic trait locus, at which two alternative alleles are considered: One

allele is preferred in the island subpopulation, and the other allele is fixed in the continent

subpopulation. In addition, assortative mating is incorporated by assuming that mating

pairs of haploid individuals with different alleles produce fewer offspring than pairs with the

same alleles. Although this is a form of fecundity selection, it is mathematically identical to

assortative mating, where females dislike to mate with males having different alleles. Slatkin

(1982) analytically showed that successful invasion of a new allele requires a larger selection

coefficient of adaptive selection than the sum of the migration rate and strength of assortative

mating, both of which have an effect against the invasion of new alleles. Additionally, the

author derived the critical migration rate, above which a polymorphic state is unstable so

that new alleles likely become extinct. Recently, Kisdi and Priklopil (2011) explored the

evolutionary branching of a magic trait in an infinite population, although this model is not

very relevant to my interest because the magic trait is a quantitative trait determined by

multiple genes. Servedio (2011) investigated the evolution of the strength of assortment after

the stable maintenance of magic trait is established (i.e., secondary contact), which is also

not very relevant to this work because my interest is in the establishment process of a magic

trait before its stable maintenance. While the analysis assuming an infinite population gives

a great deal of insight, it is also very important to consider this process in a finite population

with the stochasticity of random genetic drift. However, to the best of my knowledge, there

has been no research which explored analytically the establishment process of a magic trait

in stochastic two-population models, while some theoretical results are available only in one-

population models (Yamamichi and Sasaki 2013, Newberry et al. 2016).

The aim of this work is to theoretically describe the behavior of allele frequency along the

establishment of a magic trait allele in a finite population. One of the advantage of my theory

over deterministic theory under an infinite population is that my theory can be applied to any

size of population, while deterministic theory works only for a sufficiently large population.

Local adaptation often occurs in a small niche with a limited number of individuals, in which

the behavior of a magic trait allele should be quite different from that in a large population.

By exploring this process stochastically, I can probabilistically argue the fate of a magic trait

allele, whereas deterministic theory simply tells which of the counteracting forces (selection
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vs. assortative mating) is dominant. Another advantage is that stochastic theory allows us

to theoretically understand how the allele frequency behaves along time.

To take these advantages of stochastic theory, I here consider a two-population model

with bidirectional migration and derive the establishment probability of an allele that is

pleiotropically subject to both divergent selection and assortative mating. My model can ar-

bitrarily set the sizes of the two populations, so that Slatkin’s situation (with the assumption

of infinite population size) can be a special case of my model. I consider haploid and diploid

models, and obtain theoretical expressions of the establishment probability and the trajectory

of allele frequency along the establishment. My derivation of the establishment probability

bases on the approximation method developed by Yeaman and Otto (2011). Yeaman and

Otto (2011) considered divergent selection alone in a two-population model and derived an

approximate formula for the establishment probability of a locally adaptive allele (for the-

oretical works on this model of selection, see also Pollak 1966, Barton 1987, Tomasini and

Peischl 2018, Sakamoto and Innan 2019). The authors developed a heuristic method, which

essentially focuses on the process in the subpopulation where a new allele is beneficial, rather

than considering the dual process in both subpopulations. This is because the establishment

probability is largely determined by how the focal allele increases in frequency when it invades

into the subpopulation it is favored in, and the process in the other subpopulation does not

play a crucial role. The authors showed that Kimura’s formula (Kimura 1962) well approxi-

mates the establishment probability when a new allele arises in the subpopulation where it is

beneficial if the selection coefficient is replaced by the leading eigenvalue of transition matrix

of deterministic dynamics. However, their method considered only frequency-independent

selection and cannot be directly apply to frequency-dependent selection such as sexual selec-

tion. In addition, they did not provide the establishment probability when a new allele arises

in the subpopulation where it is deleterious. In this work, by extending the idea of Yeaman

and Otto (2011) to my model with sexual selection, I derive the establishment probability

and time in both of the two cases, when a new allele arises in the subpopulation where it is

beneficial and deleterious. My result describes the stochastic process on how a magic trait

allele behaves in a finite population.

3.2 Model

I use a discrete-generation model with two populations, between which bidirectional migration

is allowed, and I consider both haploid and diploid cases. The assumptions and model settings

shared by the haploid and diploid models are described here. The sizes of subpopulations I

and II are assumed to be N1 and N2, respectively. On average, N1m1 = N2m2 individuals are

exchanged per generation where m1 and m2 are backward migration rates of subpopulation

I and II, respectively. There are two alleles, A and a, on which selection works. Allele A

is favored in subpopulation I, and disfavored in subpopulation II. Assuming no recurrent

mutation between the two alleles, I focus on the behavior of allele frequencies to obtain the

establishment probability of allele A forward in time. The life cycle is assumed to be in

the order of (natural) selection, mating (inducing sexual selection), reproduction (including

random genetic drift) and migration in each generation. The major difference between the

haploid and diploid models is in how selection and assortative mating work. I assume that

the fitness of allele a is 1 in both subpopulations, and the fitness of allele A is given depending
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on the model, as will be explained below.

3.2.1 Haploid model

In the haploid model, I simply assume that the fitness of allele A is 1+s1 > 1 in subpopulation

I, but 0 < 1 + s2 < 1 in subpopulation II (summarized in Table 3.1). Let pi be the frequency

of allele A in subpopulation i. Then, the expected frequency after selection is

p′i =
(1 + si)pi
1 + sipi

. (3.1)

For females, the reproductive opportunity (i.e., expected number of offspring) is indepen-

dent of genotype. Assortative mating occurs such that a female avoids mating with males

carrying an allele different from hers with probability α, whereas if she meets a male with the

same allele as hers, she accepts him with probability 1 (see also Table 3.1). Since males can

be chosen by more than one female (or none at all), this results in sexual selection against

males carrying the locally rare allele. Then, the expected frequency of allele A after mating

and sexual selection is given by

p′′i = p′i
p′i

1− α(1− p′i)︸ ︷︷ ︸
A (female)×A (male)

+
p′i
2

(1− α)(1− p′i)
1− α(1− p′i)︸ ︷︷ ︸

A (female)×a (male)

+
1− p′i

2

(1− α)p′i
1− αp′i︸ ︷︷ ︸

a (female)×A (male)

. (3.2)

Reproduction and the formation of the next generation occurs by binomial sampling (i.e.,

offsprings are drawn from a binomial distribution with parametersNi and p′′i , as in the Wright-

Fisher model of random genetic drift. Finally, N1m1 = N2m2 individuals are exchanged

between subpopulations in the migration step.

Genotype A a
Fitness in subpopulation I 1 + s1 1
Fitness in subpopulation II 1 + s2 1

Female Male genotype
genotype A a

A 1 1− α
a 1− α 1

Table 3.1: Relative fitness (left) and relative female preference (right) in the haploid model.

3.2.2 Diploid model

In the diploid model, we need to consider the effect of dominance. I assume allele A has a

dominance coefficient, h, which means that if genotype AA and genotype aa have trait values

PAA and Paa, respectively, the trait value of genotype Aa is given by hPAA + (1 − h)Paa.

Both selection and assortative mating will be proportional to this phenotype. I denote by pi,

qi and ri the frequencies of genotypes AA, Aa and aa, respectively, in subpopulation i.

During selection, I assume the fitness of genotype AA, Aa and aa to be 1+s1, 1+hs1 and

1, respectively, in subpopulation I, and 1 + s2, 1 + hs2 and 1 in subpopulation II (s1 > 0 and

s2 < 0) (summarized in Table 3.2). Then, the expected frequencies of AA, Aa after selection
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are given by

p′i =
(1 + si)pi

1 + si(pi + hqi)

q′i =
(1 + hsi)qi

1 + si(pi + hqi)
,

(3.3)

and the expected frequency of aa is given by r′i = 1− p′i − q′i.
In the mating step, females avoid mating with males whose phenotype differs from their

own. To incorporate the effect of dominance, I assume that mate discrimination is propor-

tional to the trait difference, and that AA females reject aa males with probability α (see

Table 3.2). Then, the expected frequencies of genotype AA and aa after mating are

p′′i = p′i
p′i

1− (1− h)αq′i − αr′i︸ ︷︷ ︸
AA (female)×AA (male)

+
p′i
2

(1− (1− h)α)q′i
1− (1− h)αq′i − αr′i︸ ︷︷ ︸

AA (female)×Aa (male)

+
q′i
2

(1− (1− h)α)p′i
1− (1− h)αp′i − hαr′i︸ ︷︷ ︸
Aa (female)×AA (male)

+
q′i
4

q′i
1− (1− h)αp′i − hαr′i︸ ︷︷ ︸
Aa (female)×Aa (male)

r′′i = r′i
r′i

1− αp′i − hαq′i︸ ︷︷ ︸
aa (female)×aa (male)

+
r′i
2

(1− hα)q′i
1− αp′i − hαq′i︸ ︷︷ ︸

aa (female)×Aa (male)

+
q′i
2

(1− hα)r′i
1− (1− h)αp′i − hαr′i︸ ︷︷ ︸
Aa (female)×aa (male)

+
q′i
4

q′i
1− (1− h)αp′i − hαr′i︸ ︷︷ ︸
Aa (female)×Aa (male)

,

(3.4)

and the expected frequency of Aa is given by q′′i = 1 − p′′i − r′′i . Individuals for the next

generation are produced by multinomial sampling according to these probabilities. Following

reproduction, N1m1 = N2m2 individuals are exchanged between subpopulations.

Genotype AA Aa aa

Fitness in subpopulation I 1 + s1 1 + hs1 1

Fitness in subpopulation II 1 + s2 1 + hs2 1

Female Male genotype
genotype AA Aa aa

AA 1 1− (1− h)α 1− α
Aa 1− (1− h)α 1 1− hα
aa 1− α 1− hα 1

Table 3.2: Relative fitness (left) and relative female preference (right) in the diploid model.

3.3 Results

3.3.1 Establishment probability in the haploid model

The initial state is that all individuals have allele a in both subpopulations. First, I derive

the establishment probability of allele A if it arises in subpopulation I with initial frequency
1
N1

. I assume mi � |si|, α to ensure the stable maintenance of divergence (see below).

By assuming that |si|, α,mi � 1 and ignoring second-order terms in these parameters, the
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expected changes in allele frequency in one generation are given by

Mp1 = (s1 −
α

2
+ αp1)p1(1− p1) +m1(p2 − p1)

Mp2 = (s2 −
α

2
+ αp2)p2(1− p2) +m2(p1 − p2).

(3.5)

The first term in each equation represents the total effect of natural and sexual selection and

the second term is for migration. I note that, from the first terms of the above equations,

the direction of sexual selection is negative when p < 1
2 and positive when p > 1

2 .

The change of allele frequencies, p1 and p2, can be well described by a two-dimensional

diffusion equation, which unfortunately is very difficult to solve. Alternatively, I use the

heuristic approach developed by Yeaman and Otto (2011), which is based on their demon-

stration that the establishment probability of an allele that arises in subpopulation where it is

beneficial can be approximated by the establishment probability of an allele under directional

selection (in a homogeneous environment) if the selection intensity is replaced by the leading

eigenvalue of the transition matrix of the deterministic process. This means that the leading

eigenvalue is considered to represent the ‘effective’ strength of natural selection on allele A

in subpopulation I.

The deterministic process considering divergent selection and migration (but not assor-

tative mating) is described as

d

dt

(
p1

p2

)
=

(
s1 −m1 m1

m2 s2 −m2

)(
p1

p2

)
. (3.6)

The leading eigenvalue of the transition matrix in Equation 3.6, λ, is given by

λ =
1

2

[
(s1 + s2 −m1 −m2) +

√
(s1 − s2 −m1 +m2)2 + 4m1m2

]
. (3.7)

By incorporating λ and the term of assortative mating, the expected change in allele frequency

in one generation is approximated in the one-population system by:

Mp = (λ− α

2
+ αp)p(1− p). (3.8)

Then, the establishment probability of allele A which newly arises in subpopulation I, u1, is

given along Kimura’s formula (Kimura 1962) as

u1 =

∫ 1/N1

0 G(x)dx∫ 1
0 G(x)dx

, (3.9)

where G(x) = e−2N1(λ−α
2

)x−N1αx2
.

Next, I derive the establishment probability of allele A if it newly arises in subpopulation

II with initial frequency 1
N2

. Because allele A is maladaptive in subpopulation II, we can

assume that its frequency in this subpopulation should remain low and can be described by

a branching process. Since p2 is small, the selection coefficient against allele A is s2 − α
2 in
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subpopulation II. Then, the establishment probability is approximated by

u2 ≈ u1
c

1− b
− u2

1

2

c2

(1− b)3
, (3.10)

where b = (1 + s2 − α
2 )(1 −m2), c = (1 + s2 − α

2 )m2. For the details of the derivation, see

Appendix A.

The accuracy of my derivation was checked by simulations (Figure 3.1). Forward simu-

lations were carried out under the haploid model to obtain u1 and u2, with initial frequency

of allele A (p1, p2) = (1/N1, 0) and (0, 1/N2), respectively. For each parameter set, I ran

≥100,000 replications and counted the number of replications in which A established in the

simulated population. “Establishment” in my simulation is defined such that the newly in-

troduced mutation is still present after TE = 5N1 generations (I confirm that the effect of

this arbitral choice of TE on the establishment probability is very small as long as TE is

sufficiently large). It should be noted that, according to my definition, the established repli-

cations include two cases; case C, where alleles A and a coexist, namely, allele A is nearly

fixed in subpopulation I while allele a is nearly fixed in subpopulation II, typical for strong

divergent selection, and case F, where allele A is fixed in both subpopulations (swamping).

Let Pc be the relative proportion of case C in established replications. In Figure 3.1, a gray

region is shown such that Pc > 0.9 on its left (corresponding to low migration rates), while

Pc < 0.1 on the right (high migration). According to my derivation, u1 and u2 from Equa-

tions 3.9 and 3.10 evaluate the sum of these two cases, so that they are comparable to the

simulation results, even though my interest is mostly in case C where divergent selection is

strong relative to migration and both alleles are maintained in the population (i.e., on the

left of the gray region).

Figure 3.1 shows the establishment probability derived from Equations 3.9 and 3.10 as

a function of migration rate, together with the simulation results. I fix s1 = 0.02 and

s2 = −0.01, and the strength of assortative mating varies between subplots. In addition,

three pairs of population sizes N1 and N2 were considered; (A): N1 = N2 = 2000; (B):

N1 = 2000, N2 = 10000; (C): N1 = 10000, N2 = 2000. It is found that Equations 3.9 and

3.10 generally agree well with the simulation result as long as the selection intensities si and

α are small enough so that their second-order terms are ignorable.

When the effect of assortative mating is very weak (i.e., α = 0.01, the top left panel in

Figures 3.1A, B, C), my results are overall similar to the model that considers only divergent

selection (Sakamoto and Innan 2019): when the migration rate is very low, the two subpop-

ulations can be treated as independent, so that u1 ∼ 2λ where λ = s1 if I ignore assortative

mating, while u2 ∼ 0. As the migration rate increases, u1 decreases and u2 increases, and

they become similar to each other for large migration rates. Because allele A is advanta-

geous only in subpopulation I, this beneficial effect is reduced with increasing the migration

rate, and vise versa for allele a. When the migration rate is very large (m ∼ 0.5), the two

subpopulations can be considered as a single randomly-mating population, and the fixation

probability of a single mutation is mainly determined by the average selection coefficient,

u1 = u2 =

∫ 1/NT
0 G(x)dx∫ 1

0 G(x)dx
, (3.11)
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where G(x) = e−2NT (s̄−α
2

)x−NTαx2
, s̄ = N1s1+N2s2

NT
and NT = N1 +N2 (presented by a triangle

in Figure 3.1). The gray region for 0.1 ≤ Pc ≤ 0.9 occupies a narrow window of the migration

rate, indicating that a fairly small difference in the migration rate around the gray region

could change the typical outcome dramatically (maintenance or loss of polymorphism). In

the cases of asymmetric subpopulations (Figures 3.1B, C), the larger subpopulation affects

the establishment probability more because individuals tend to stay for a longer time in

the larger subpopulation. For example, in Figure 3.1B, u2 is over smaller than that in the

symmetric case (Figure 3.1A) because allele A is more strongly selected against in population

II. u1 quickly drops as the migration rate increases with the same reason. In contrast, when

population I is larger (Figure 3.1C), the opposite pattern is observed.

In the following, I explain the effect of α on ui by focusing on the symmetric case

(N1 = N2 = 2000) shown in Figure 3.1A. Allele A is favored in subpopulation I through

divergent selection, which is a positive force for its establishment, although this positive ef-

fect is weakened by migration. Mathematically, λ in Equation 3.7 can be considered as the

effective intensity of divergent selection, when migration is taken into account. In contrast,

assortative mating is a negative force when allele A is rare, which makes it difficult for allele A

to increase in frequency. This is because males carrying allele A almost exclusively encounter

females with allele a, by which they are rejected with probability α. Thus, the relative con-

tributions of divergent selection and assortative mating largely determines the fate of allele

A, in agreement with the results of the deterministic models (Slatkin 1982, Kirkpatrick and

Nuismer 2004).

Let us first assume a very small migration rate (see the left end at m1 = 5 × 10 −5 in

each panel in Figure 3.1A). If we ignore migration, λ is simply given by si and the total

strength of selection (divergent selection and assortative mating) on allele A is roughly given

by si− α
2 in subpopulation i. As expected, the establishment probabilities u1 and u2 decrease

with increasing α. When assortative mating is weak (α = 0.01 ∼ 0.03 in Figure 3.1A), u1

can be roughly approximated by u1 = 2s1 − α. When α = 0.04, I have 2s1 − α = 0, where

the two selective forces should roughly cancel each other, but it seems that u1 exceeds the

neutral expectation (1/N1) because the negative effect of assortative mating is relaxed once

p1 increases. The establishment probability u1 is very low for α > 0.04, where selection in

total works against allele A due to strong assortative mating. It is interesting to point out

that, even with strong assortative mating, allele A can establish if it happens to initially

increase in frequency by random genetic drift. Once it becomes common, the negative effect

of assortative mating is reduced, and the allele could successfully go to establishment by the

positive effect of divergent selection.

As the migration rate increases, the intensity of divergent selection is effectively weakened,

so that u1 decreases and I have u1 as given by Equation 3.11 in the limit of free migration

(yellow triangle). The behavior of u2 is more complex: u2 decreases to the level presented by

the yellow triangle with increasing the migration rate due to the same reason as u1 when the

migration rate is high (roughly in the right of the gray region), whereas u2 increases as the

migration rate increases when migration rate is low (roughly in the left of the gray region)

because migration helps allele A in subpopulation II to move to subpopulation I.

Focusing on u1, Figure 3.2 explores a wider parametric space for s1 and α, while the

other parameters are fixed (m1 = m2 = 0.005 and s2 = −0.02). To demonstrate the effect
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of the population size, three population sizes are considered, assuming the same sizes for

the two subpopulations (N = N1 = N2 = 2000, 6000, 20000). In each panel, analytical and

simulation results are shown: Analytical results from Equation 3.9 are presented by the color

of the background, while colors inside the circles represent simulation results.

Again, the overall agreement of colors in the circle and those in the background suggest

excellent performance of Equation 3.9 for a wide range of the parameter set. It seems that

my analytical result slightly overestimates the establishment probability when si and α are so

large that the establishment probability is sensitive to the second order of si, α, which were

ignored in my derivation. The blue dashed line represents 2λ = α, where the two selective

forces roughly cancel each other so that it can be considered as a threshold for establishment

in an infinite population. When the population size is very large, u1 drops quickly above

this line, whereas allele A may still establish when the population size is small, because of

random genetic drift.

3.3.2 Establishment probability in the diploid model

In the diploid case, the initial state is that all individuals are aa homozygotes in both sub-

populations. I first consider the establishment probability of an allele A that newly arises

in subpopulation I with initial frequency 1
2N1

. As in my derivation for the haploid model, I

approximate the two-population process by a one-population system by focusing on the es-

tablishment process in subpopulation I alone (Yeaman and Otto 2011). To do so, the fitnesses

of genotypes AA, Aa and aa are given by 1 + λ, 1 + hλ and 1, respectively, where λ is the

effective strength of natural selection as defined above. Allele A can be considered dominant

over allele a when h = 1, and recessive when h = 0. Following Yeaman and Otto (2011), I

assume that the leading eigenvalue of the transition matrix approximates the growth rate of

allele A in a hypothetical one-population system (when allele A is rare). Then, λ is given by

hλ =
1

2

[
(hs1 + hs2 −m1 −m2) +

√
(hs1 − hs2 −m1 +m2)2 + 4m1m2

]
, (3.12)

where I assume fairly strong selection, say hsi � 1
Ni

.

Given Equation 3.12, Mp and Mq, the expected changes in the genotype frequencies of AA

and Aa in one generation, are obtained by assuming that λ, α� 1 and ignoring second-order

terms in these parameters, and the Kolmogorov forward equation is given by

∂φ

∂t
= −∂[Mpφ]

∂p
− ∂[Mqφ]

∂q
+

1

2

∂2[Vpφ]

∂p2
+
∂2[Vpqφ]

∂p∂q
+

1

2

∂2[Vqφ]

∂q2
, (3.13)

where Vp = p(1−p)
N1

, Vpq = − pq
N1
, Vq = q(1−q)

N1
and φ(p, q) is a transition density (see Appendix

B for the expressions of Mp and Mq). By changing the variables, Equation 3.13 is rewritten

as a function of the allele frequency of A, x, and the frequency of heterozygotes q as

∂φ̃

∂t
= −∂[Mx(x, q)φ̃]

∂x
− ∂[Mq(x, q)φ̃]

∂q
+

1

2

∂2[Vx(x, q)φ̃]

∂x2
+
∂2[Vxq(x, q)φ̃]

∂x∂q
+

1

2

∂2[Vq(x, q)φ̃]

∂q2
,

(3.14)

where φ̃(x, q) is a transition density after changing the variables (for the expression of each

term, see Appendix B).
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Figure 3.1: Establishment probability of a magic trait allele in the haploid model, plotted against
the migration rate. s1 = 0.02 and s2 = −0.01 are fixed, and three pairs of the population sizes are
assumed: (A) N1 = N2 = 2000, (B) N1 = 2000 and N2 = 10000, (C) N1 = 10000 and N2 = 2000. For
each pair of population sizes, the strength of assortative mating is changed from α = 0.01 to 0.05. In
each panel, a gray region is presented such that the proportion of the replications where two alleles
(A and a) coexisted (Pc) > 0.9 in the left, while Pc < 0.1 in the right. The yellow triangle on the
right vertical axis indicates the establishment probability assuming a very large migration rate.
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Figure 3.2: Establishment probability of a magic trait allele in the haploid model with different
population sizes (N1 = N2 = 2000, 6000, 20000). m1 = m2 = 0.005 and s2 = −0.02 are fixed. The
background color presents the theoretical approximation (Equation 3.9) while circle’s color presents the
simulation result. The blue dashed line presents the invasion criteria assuming an infinite population
(see text for details).
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This forward equation with two variables, x and q, is still difficult to solve, so that I

attempt to reduce the dimension by approximation, that is, the frequency of heterozygotes, q,

is approximated by a function of x. If I ignore assortative mating so that the Hardy-Weinberg

equilibrium holds, we can simply assume q(x) = 2x(1 − x). Even with assortative mating,

Yamamichi and Sasaki (2013) demonstrated that the assumption of the Hardy-Weinberg

equilibrium (i.e., q(x) = 2x(1 − x)) works fairly well. Recently, Newberry et al. (2016)

proposed that q(x) can be given by the solution of the differential equation dq
dx =

Mq(x,q)
Mx(x,q)

which satisfies the condition limx→0 q(x) = 0. I here employ the method of Newberry et al.

(2016) and obtain q(x) ≈ 2x(1−x)− 4x2(1−x)2(x2− 2hx+h)α by a perturbation approach

(for details see Appendix C). With this approximation of q(x) and by ignoring the stochastic

deviation of the frequency of heterozygotes from q(x), Equation 3.14 can be reduced to a

one-dimensional diffusion equation:

∂φ̃

∂t
= −∂[Mx(x, q(x))φ̃]

∂x
+

1

2

∂2[Vx(x, q(x))φ̃]

∂x2
. (3.15)

Then, by using Kimura’s formula (Kimura 1962), the establishment probability of an allele

A that newly arises in subpopulation I, u1, is given by

u1 =

∫ 1/2N1

0 G(x)dx∫ 1
0 G(x)dx

, (3.16)

where G(x) = exp
(
−
∫ 2Mx(x,q(x))

Vx(x,q(x)) dx
)

.

The establishment probability of an allele A that newly arises in subpopulation II, u2 can

be derived as in the haploid case, and is given by

u2 ≈ u1
c

1− b
− u2

1

2

c2

(1− b)3
, (3.17)

where b =
(
1 + h(s2 − α

2 )
)
(1−m2), c =

(
1 + h(s2 − α

2 )
)
m2.

The establishment probability derived from Equations 3.16 and 3.17 is compared with sim-

ulation in Figure 3.3. Simulations were performed by assuming N = N1 = N2 = 1000, s1 =

0.02, s2 = −0.01, and α was changed from 0.01 to 0.05. Three different degrees of dominance

were considered; complete dominance (h = 1), additivity (h = 0.5), and near recessivity

(h = 0.05). Overall, my analytical results again agree well with the simulation results when
1
N � hsi, hα � 1. I obtain almost the same results as in the haploid model when h = 1

(Figure 3.3A), and u1 and u2 decrease as h decreases (Figures 3.3B and C). This trend can

be explained if I consider how selection works on allele A in the very early phases, namely,

when the allele frequency is very low. When h = 1, a newly arisen allele A causes a full

phenotypic difference, which is immediately subject to selection. This is a similar situation

to the haploid model. For h < 1, the phenotypic effect of allele A is reduced to some extent

(i.e., by a factor of h), therefore the selective pressure is relaxed. Thus, the selective pressure

on allele A in the diploid model can be summarized by hsi and hα in the early phases. As

expected, if I plot u1 for different h where the horizontal and vertical axises are adjusted by

hsi and hα, respectively, the establishment probabilities are very similar (Figure 3.4).
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Figure 3.3: Establishment probability of a magic trait allele in the diploid model, plotted against
the migration rate. s1 = 0.02, s2 = −0.01 and N1 = N2 = 1000 are fixed, and three dominance
coefficients are assumed: (A) h = 1.0, (B) h = 0.5, (C) h = 0.05. For each dominance coefficient,
the strength of assortative mating is changed from α = 0.01 to 0.05. In each panel, a gray region
is presented such that the proportion of the replications where two alleles (A and a) coexisted (Pc)
> 0.9 in the left, while Pc < 0.1 in the right. The yellow triangle on the right vertical axis indicates
the establishment probability assuming a very large migration rate.
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Figure 3.4: Establishment probability of a magic trait allele in the diploid model in different level
of dominance (h = 1.0, 0.75, 0.5, 0.25). N1 = N2 = 3000, m1 = m2 = 0.005 and hs2 = −0.02 are
fixed. The background color presents the theoretical approximation (Equation 3.16) while circle’s
color presents the simulation result. The blue dashed line presents the invasion criteria assuming an
infinite population (see text for details). The results are plotted such that the horizontal and vertical
axises are scaled by hs1 and hα, respectively, therefore the blue dashed lines show up at the same
position in each panel.
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3.3.3 Establishment trajectory of allele frequency

When allele A establishes, it rapidly spreads in subpopulation I and is stably maintained

at frequencies around the migration-selection balance, p∗1. I now consider the frequency

trajectory of allele A under the condition that it establishes. In practice, I obtain the mean

sojourn time of allele A until it reaches frequency p∗1 for the first time under the condition

that it reaches frequency p∗1.

In the haploid model, assuming a low migration rate and strong selection, p∗1 is given by

p∗1 ≈ 1 − m1
s1+α

2
. Following Ewens (1973), I can derive the conditional mean sojourn time at

frequency x, T ∗(x) as

T ∗(x) =
2

VxG(x)

∫ p∗
x G(p)dp∫ p∗
0 G(p)dp

∫ x

0
G(p)dp, (3.18)

where Vx = x(1−x)
N1

, G(x) = e−2N1(λ−α
2

)x−N1αx2
. I then obtain the time required for a newly

arisen allele A to reach allele frequency x:

t(x) =

∫ x

0
T ∗(p)dp, (3.19)

so that t(p∗1) provides the establishment time. Note that although this argument holds for a

new allele arisen in subpopulation I, it can also be applied to an allele arisen in subpopulation

II after it has migrated into subpopulation I.

In the diploid model, I can approximate p∗1 = 1−
√

m1
(s+α

2
) for h ∼ 1 and p∗1 = 1− m1

(1−h)(s+α
2

)

for other cases where h is relatively smaller than 1. I then obtain the conditional mean

sojourn time at frequency x by using Equation 3.18 while replacing Vx = Vx(x, q(x)) and

G(x) = exp(−
∫ 2Mx(x,q(x))

Vx(x,q(x)) dx). My derivation works well when h is not small.

The theoretical result is quite simple, and there is no marked difference between the hap-

loid and diploid models. Therefore, I demonstrate the point by using the haploid model.

Figure 3.5A shows the theoretical trajectory of t(x) by the red line when assortative mating

is strong (α = 0.04), compared with the case with no assortative mating (α = 0, Figure 3.5B).

For each panel, I also show ten independent established runs by black lines. The major dif-

ference is that the allele frequency tends to stay a long time at low frequency with assortative

mating (Figure 3.5A), in comparison with the symmetric function in Figure 3.5B. This dif-

ference is easy to understand: As mentioned above, the negative effect of sexual selection on

the newly arisen allele is strong only when its allele frequency is low, and the effect is relaxed

once it increases. This pattern is globally observed both in the haploid and diploid models.

3.4 Discussion

I am interested in how a newly arisen allele for a magic trait (allele A) behaves and contributes

to ecological speciation. A magic trait is defined such that a single trait is subject to both

divergent selection and assortative mating. Divergent selection simply favors the new allele

to fix where it is beneficial, thereby creating a genetic difference between subpopulations.

Assortative mating works in a more tricky way: it also favors difference between subpopu-

lations but a new allele is not always advantageous. This is because, when allele A is still

rare after it arises, it is disadvantageous because male carriers encounter females with allele
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Figure 3.5: Trajectory of the frequency of allele A in the haploid model. s1 = 0.02, s2 = −0.01,m1 =
m2 = 0.0005 and N1 = N2 = 2000 are assumed. (A) with strong assortative mating α = 0.04 and (B)
with no assortative mating α = 0. The black lines shows 10 independent paths from simulations and
the red line is the theoretical prediction.

a in most cases with a risk of being rejected. Once allele A becomes common so that A-A

encounters are frequent, the allele A loses this disadvantage and can fix in the subpopulation

it is adapted to, thereby contributing to genetic divergence.

Many theoretical studies have focused on the evolution of magic traits and demonstrated

that assortative mating impedes the invasion of a new magic trait (Slatkin 1982, Kirkpatrick

and Nuismer 2004). However, because most of them used deterministic treatments, it has

not been known how much the establishment probability of a new magic trait is reduced

by assortative mating. In order to understand the quantitative effect of random genetic

drift, this work investigated the establishment probability of a magic trait allele for both

haploid and diploid models. I successfully obtained the establishment probability by using

the approximation method of Yeaman and Otto (2011). I confirmed that my derivation

agreed well with my simulation results. My theory mainly focuses on the early phases, that

is, when allele A is still rare so that divergent selection and assortative mating counteract.

It is theoretically demonstrated that the relative contributions of divergent selection and

assortative mating largely determine the fate of allele A.

In the haploid model, λ in Equation 3.7 explains the effective intensity of divergent selec-

tion with migration taken into account, and the intensity of assortative mating is parameter-

ized by α. Theoretically, 2λ−α is the key quantity to determine the fate of allele A when its

frequency (p1) is rare. If 2λ−α > 0, allele A is on average selected for, and selected against if

2λ−α < 0, at least in an infinite population. In a finite population, I show that allele A can

establish even when 2λ − α < 0. This is especially true for small populations (Figures 3.2,

3.6-3.8), because random genetic drift occasionally increases p1, and the negative effect of

assortative mating is relaxed once allele A becomes common. Then, it is likely that allele A

goes to establishment.

The results for the diploid model are similar to those for the haploid model. The major

difference is due to dominance. I show that the establishment process can be well described

if both si and α are scaled by h.

I also explore how the allele frequency behaves over the course of establishment. I the-

oretically obtained the trajectory of allele frequency, which clearly demonstrated that the
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negative effect of assortative mating retards establishment while this effect is relaxed once

the allele frequency increases.

In summary, my theory well demonstrates the behavior of a magic trait allele that is

subject to divergent selection and assortative mating. My result is qualitatively in agree-

ment with those based on deterministic models; the establishment of a magic trait allele is

quite likely under the invasion criteria (2λ > α). It is indicated that a magic trait allele

could contribute to ecological speciation when assortative mating is weak. In such a case,

strong assortment may evolve after the magic trait diverges (Servedio 2011), leading to solid

speciation.

The main focus of this work is the effect of random genetic drift on the establishment

process. The establishment of a magic trait allele is largely affected by the population size,

because the fate of a newly arisen allele is mainly determined when it is rare, where random

genetic drift plays a central role. Considering that local adaptation (potentially followed by

ecological speciation) often occurs in a small niche with a limited number of individuals, a

magic trait allele with a fairly strong assortative mating might happen to increase in frequency

by random genetic drift and establish. My result provides fundamental understandings on

the stochastic process of a magic trait allele in a finite population.

3.5 Appendices

Appendix A: Establishment probability of allele A that arises in subpopulation

II

I here derive the establishment probability of a single allele A which arises in the subpopu-

lation II where it is deleterious. First, I use a branching process approximation to derive the

probability distribution of the number of A alleles originating from a single mutant allele in

subpopulation II that migrate into subpopulation I. Then, by assuming that migrant alleles

behave independently, I derive an approximate formula for the establishment probability.

The derivation works for both haploid and diploid models.

I define the random variableXt as the number of A alleles in subpopulation II in generation

t and Yt as the number of A alleles that have migrated to subpopulation I by generation t.

Because I consider the case where selection on allele A in subpopulation II is negative, we

can assume that its frequency stays low and the allele mostly exist in heterozygotes in the

diploid case. Therefore, Xt is almost identical to the number of heterozygotes in the diploid

model. I define a probability generating function in generation t as ft(x, y) = E[xXtyYt ].

I also define the generating function of the joint distribution of the number of A alleles in

subpopulation II and the number of A alleles that have just migrated to subpopulation I

while originating from one allele A in subpopulation II in generation t − 1 as h(x, y). If

we assume the number of offspring follows a Poisson distribution with mean 1 + s2 − α
2 ,

h(x, y) = e−(1+s2−α2 )(1−(1−m2)x−m2y) in the haploid case. Then, we have

ft+1(x, y) = ft(h(x, y), y). (3.20)
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I put vt =
(
∂ft(1,1)
∂x , ∂ft(1,1)

∂y , ∂
2ft(1,1)
∂x2 , ∂

2ft(1,1)
∂x∂y , ∂

2ft(1,1)
∂y2

)T
. By using Equation 3.20, we obtain

vt+1 = Qvt, (3.21)

where

Q =


b 0 0 0 0

c 1 0 0 0

b2 0 b2 0 0

bc 0 bc b 0

c2 0 c2 2c 1

 , b = (1 + s2 −
α

2
)(1−m2), c = (1 + s2 −

α

2
)m2.

When t goes to infinity, v∞ = (0, c
1−b , 0, 0,

c2

(1−b)3 )T .

Then, the establishment probability of a single allele A that arises in the subpopulation

II, u2, is approximately given by

u2 ≈ 1− f∞(1, 1− u1)

≈ u1
c

1− b
− u2

1

2

c2

(1− b)3
.

(3.22)

For the diploid case, we should substitute s2 and α by hs2 and hα in the above equations.

Appendix B: Coefficients of diffusion equations 3.13 and 3.14

I here describe the coefficients of the diffusion process in Equations 3.13 and 3.14. Following

Equations 3.3 and 3.4, Mp(p, q) and Mq(p, q) in Equation 3.13 are given by

Mp =
(
p2 + pq +

q2

4
− p
)

− hq3 + {(4h+ 1)p− h}q2 + {(4h+ 4)p2 − (2h+ 2)p}q + 4p3 − 4p2

2
λ

− hq3 + {(6h− 1)p− h}q2 + {8hp2 + (2− 6h)p}q + 4p3 − 4p2

4
α

Mq =
{
pq +

q2

2
+ 2p(1− p− q) + q(1− p− q)− q

}
+
[
hq3 + {(4h+ 1)p− 2h}q2 + {(4h+ 4)p2 − (4h+ 3)p+ h}q + 4p3 − 6p2 + 2p

]
λ

+
−hq3 + {−(2h+ 1)p+ 2h}q2 + {−2p2 + (2h+ 3)p− h}q + 2p2 − 2p

2
α,

(3.23)
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and Vp = p(1−p)
N1

, Vpq = − pq
N1
, Vq = q(1−q)

N1
. By changing the variables, the coefficients in

Equation 3.14 are given by

Mx = −2αx3 + {2s+ (4αh− 2α)q − 3α}x2

2

− [{(4h− 2)q − 4}s+ αq2 + (5α− 8αh)q + 2α]x+ (2− 2h)qs+ (αh− α)q2 + (αh− α)q

4

Mq = 4sx3 + [{(4h− 2)q − 6}s− αq + α− 2]x2

+
[{(6− 8h)q + 4}s+ (α− 2αh)q2 + (2αh+ α)q − 2α+ 4]x+ (2h− 2)qs+ (αh− α)q2 + (−αh+ α− 2)q

2

Vx =
4x(1− x)− q

4N1

Vxq =
q(1− 2x)

2N1

Vq =
q(1− q)
N1

.

(3.24)

Appendix C: Approximation of the frequency of heterozygotes

I derive an approximate formula which describes the frequency of heterozygotes in the diploid

model. I assume that the strength of assortment mating, α, is small and the frequency of

heterozygote q(x) can be expanded as

q(x) = 2x(1− x) + q1(x)α+O(α2), (3.25)

where x is the frequency of allele A. Following Newberry et al. (2016), I assume that q(x) is

the solution of the differential equation, dq
dx =

Mq(x,q)
Mx(x,q) . By substituting Equation 3.25, I have

sq′1(x) = −4x2(1− x)2(x2 − 2hx+ h) + q1(x)

(2h− 1)x3 + (−3h+ 1)x2 + hx
(3.26)

Because I assume s � 1, I can derive q1(x) ≈ −4x2(1 − x)2(x2 − 2hx + h) by ignoring the

left side of Equation 3.26.
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Figure 3.6: Establishment probability of a magic trait allele in the complete dominant case (h = 1.0)
for different population size (N1 = N2 = 1000, 3000, 10000). m1 = m2 = 0.005 and s2 = −0.02 are
assumed. The background color presents the theoretical approximation (Equation 3.16) while circle’s
color presents the simulation result.

48



Probability

Simulation

Invasion criteria
in an infinite population

(A) N = 1000

(C) N = 10000

(B) N = 3000

α
α

α

s₁

s₁

s₁

10−6
10−5
10−4
10−3
10−2

0.000

0.025

0.050

0.075

0.100

0.00 0.01 0.02 0.03 0.04 0.05

0.000

0.025

0.050

0.075

0.100

0.00 0.01 0.02 0.03 0.04 0.05

0.000

0.025

0.050

0.075

0.100

0.00 0.01 0.02 0.03 0.04 0.05

Figure 3.7: Establishment probability of a magic trait allele in the additive case (h = 0.5) for different
population sizes (N1 = N2 = 1000, 3000, 10000). Other parameters are the same as Figure 3.6.
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Figure 3.8: Establishment probability of a magic trait allele in a nearly recessive case (h = 0.05)
for different population sizes (N1 = N2 = 1000, 3000, 10000). Other parameters are the same as
Figure 3.6.
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Chapter 4

Establishment of a new sex-determining allele driven

by sexually antagonistic selection

4.1 Introduction

Recent genome analyses have demonstrated that genetic systems that determine sex are more

labile than previously thought and that the turnover of sex-determining loci has repeatedly

occurred. In some clades such as teleost fish and amphibians, sex-determining loci differ

among closely related species or even within a species (Bachtrog et al. 2014, Beukeboom and

Perrin 2014). Frequent turnover should occur in species especially when sex is determined by a

single sex-determining locus, rather than a pair of highly diverged sex chromosomes. Turnover

should be initiated by mutation at another potentially sex-determining locus, which could

become a new sex-determining locus while the polymorphism at the original sex-determining

locus disappears.

Many theoretical studies have investigated the evolutionary process of such turnover (Bull

and Charnov 1977, van Doorn and Kirkpatrick 2007, 2010, Kozielska et al. 2010, Blaser et al.

2013, 2014, Veller et al. 2017, Scott et al. 2018, Saunders et al. 2018, 2019). A consensus

has been established that, if a new sex-determination system has higher fitness than the

old one, the new system could potentially override the old one. This explains why turnover

hardly occurs in species with a diverged pair of sex chromosomes, such as the X/Y system in

mammals and the W/Z system in birds. Theoretical examinations of turnover usually involves

a two-locus system, under which turnover has to pass through a phase in which dimorphic

sex-determining alleles segregate at both of the two sex-determining loci. A deterministic

theory assuming a population with an infinite size (Bull and Charnov 1977) demonstrated

that the system with higher fitness can be stably maintained by selection. It is indicated that

the fitness advantage of the new locus over the existing one would be an important factor for

the turnover of sex-determining loci.

A possible scenario that a new sex-determining locus confers a fitness advantage is that the

new locus arises in close linkage to a locus under sexually antagonistic selection (van Doorn

and Kirkpatrick 2007, 2010). This process is explained in Figure 4.1A. Initially, sex is deter-

mined by the original X/Y locus, while the A/a locus is another potential sex-determining

locus on a different chromosome (autosome). That is, the A/a locus is monomorphic (fixed

for allele a) so that it does not play a role in sex determination, but when allele A arises

from allele a by mutation, it creates a new sex-determination system. I refer to allele A as

a sex-determining allele. There is another polymorphic locus (B/b) that is located close to
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the A/a locus. The B/b locus is assumed to be subject to sexually antagonistic selection; for

example, allele B is beneficial in males and allele b is beneficial in females. At this point, the

B/b locus does not confer any advantage or disadvantage because there is no physical linkage

to the sex-determining locus X/Y. If a sex-determining allele (A) arises by mutation at the

A/a locus, then one of the possible outcomes is that this new dimorphic locus takes over the

role of sex determination and the original X/Y locus becomes monomorphic.

I am here interested in how often such turnover of sex-determining loci occurs. To under-

stand this, it is crucial to theoretically describe the entire process, from the birth of a new

sex-determining allele to its stable establishment. However, previous studies on this topic

mainly by van Doorn and Kirkpatrick (2007, 2010) focused on the second half of the process

(as explained below). The purpose of this work is to provide an analytical description for the

first half, which largely determines how often turnover occurs under what conditions.

The entire process may be divided into two phases, which are referred to as the stochastic

and deterministic phases. The stochastic phase starts when a new sex-determining allele A

arises, and continues until the frequency becomes high enough to escape from extinction due

to random genetic drift. Then, the deterministic phase follows, in which allele A further

increases in frequency by positive selection and genotype Aa becomes fixed in the heteroga-

metic sex; in this way, the new A/a locus takes over the role in sex determination. The

theoretical results currently available are for the deterministic phase, in which analytical

treatment is quite straightforward because random genetic drift may be ignored. van Doorn

and Kirkpatrick (2007, 2010) used a deterministic approach to describe the rate of increase in

the frequency of allele A during the early stages of the deterministic phase. In contrast, the

behavior of allele A in the initial stochastic phase is much more complicated and many factors

are involved in it, which is the scope of this work. One such factor is the effect of random

genetic drift, which is the major evolutionary force acting when the allele frequency is low.

The linkage to B/b is also a very important factor. If allele A arises in linkage with allele

B, allele A immediately benefits from positive selection because the haplotype A-B confers

a selective advantage. On the other hand, if allele A arises in linkage with allele b, selec-

tion works against allele A because the haplotype A-b is deleterious. Recombination plays a

crucial role in determining the rate at which the advantageous haplotype A-B is created and

broken up. Another important factor is how selection works on the B/b locus. Depending on

the parameter setting for the effect of the B/b locus on fitness, selection operates in various

modes (see Figure 4.2): Selection works for or against allele B, or even in some parameter

space, balancing selection works to maintain the two alleles at intermediate frequencies. It

is easy to imagine that this parameter setting largely affects the fate of the sex-determining

mutation.

The purpose of this work is to theoretically understand how often turnover of a new sex-

determining A/a locus occurs. I here mathematically describe the probability that a newly

arisen sex-determining locus turns over the old one, which is referred to as the establishment

probability. I found that the establishment probability is markedly high in the case of bal-

ancing selection, while it is very low in other modes of selection. It is indicated that the

mode of selection at the B/b locus is critical in determining the fate of a newly arisen sex-

determining allele. Therefore, to understand the rate of turnover, it is necessary to know how

many sexually antagonistic loci are under balancing selection. My simulations provide insight
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X/Y: ancestral sex-determining locus
A/a: new sex-determining locus
B/b: locus under sexually antagonistic selection
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Figure 4.1: (A) The three loci model used in this work. (B) Relationship between sexes and genotypes
when allele A has a masculinizing effect. (C) Relationship between sexes and genotypes when allele A
has a feminizing effect. The red and blue stars are given to the genotypes that determine sex under the
ancestral and new systems, respectively. The genotypes with no stars arise in the phase of transition
from the ancestral to the new system.

into how to distinguish the mode of selection from the pattern of polymorphism around the

sex-determining locus.

4.2 Model

I use a discrete-generation model of a diploid species with population size N . Three loci are

considered in the model (Figure 4.1A). One is the ancestral sex-determining locus, which is

located on the sex chromosome where males have genotype XY and females have genotype

XX. Although male heterogamety (XY system) is assumed here, my model can also handle

female heterogamety (ZW system) by swapping males and females. The model includes

another sex-determining locus A/a on the autosome, at which the initial state is that allele

a is fixed, so that the locus does not play a role in sex determination. Then, I consider that

masculinizing or feminizing allele A just arises by mutation at locus A/a. I am interested in

how this new sex-determining allele A behaves in a finite population and how often it spreads

and eventually enables the A/a system to override the old X/Y system.

In my model, if allele A has a masculinizing effect, its turnover does not change the

heterogamety sex and involves four genotypes (Case 1, Figure 4.1B). If allele A has a strongly

feminizing effect (i.e., strong enough to make XYAa a female) (van Doorn and Kirkpatrick

2010), the turnover changes the heterogamety system and involves six genotypes (Case 2,

Figure 4.1C). In either case, to evaluate the effect of the B/b locus, I assume that the

levels of fitness of the new and old systems are identical. Therefore, the fate of allele A is

mainly determined by the selection effect of another linked locus B/b. It is assumed that

the recombination rate is r between the A/a and the B/b loci. I ignore mutation at the A/a

locus to trace the fate of a single mutation, whereas at the B/b locus, recurrent mutation

is allowed between alleles B and b such that this locus should be under selection-mutation

balance. The mutation rate from allele B to allele b is denoted by u and v denotes the reverse

mutation rate from allele b to allele B. The frequency of allele B is denoted by p. The fitness

of genotypes BB, Bb, and bb is given by 1+sm, 1+hmsm, and 1 in males and 1+sf , 1+hfsf ,

and 1 in females, respectively. As I assume allele B is beneficial for allele A, I set sm > 0 and

sf < 0 when allele A has a masculinizing effect (Case 1), and sm < 0 and sf > 0 is set when

allele A has a feminizing effect (Case 2).
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Figure 4.2: Various modes of selection depending on dominance and selection coefficient at the B/b
locus when locus X/Y determines sex. The net effect of selection at locus B/b is given by the average
of the two sexes. If the dominance and strength of selection are similar in males and females but the
directions of selection are opposite, the fitness of allele B equals the fitness of allele b (A). Positive
selection works when the average fitness of the three genotypes genotype (shown in black) is in the
order of b/b < B/b < B/B (B, C), while negative selection works when the order is b/b > B/b >
B/B (D, E). Balancing selection works such that the average fitness is in the following order: b/b <
B/b > B/B (F).
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4.3 Results

I derive the probability that a single sex-determining mutation at the A/a locus spreads in the

population so that the A/a locus becomes the new sex-determining locus and the old X/Y

locus becomes monomorphic under the three-locus model illustrated in Figure 4.1A. This

probability is essentially identical to the probability that the new sex-determining mutation

successfully increases in frequency by avoiding extinction immediately after its introduction,

as pointed out by van Doorn and Kirkpatrick (2007, 2010). Once the frequency of the new sex-

determining mutation increases, it is very likely that it further increases to an intermediate

frequency so that the sex-determining locus transitions from the X/Y locus to the A/a locus.

This is because my model assumes that the presence of the B/b sex antagonistic locus provides

a benefit only for the new A/a system. In the following, I derive this probability of the

successful spread of allele A, which is referred to as the “establishment probability.” The

“establishment” means that the new system is used by all individuals in the population (i.e.,

the new system is fixed but alleles A and a coexist stably), rather than the old and new

systems coexisting in the population. The establishment probability is derived separately for

the two cases (Cases 1 and 2).

4.3.1 Case 1: Turnover without changing the heterogametic sex

I first consider Case 1, where allele A has a masculinizing effect (Figure 4.1B). For allele

B to be beneficial for allele A, I assume sm > 0 and sf < 0 in this section. I derive the

probability of allele A escaping immediate extinction by using the branching process. Let

ϕi(p0) (i ∈ {B, b}) be the establishment probability of allele A that arises in linkage with

allele i at the B/b locus when the frequency of allele B is p0. If allele A links with male-

beneficial allele B, allele A is favored by linked selection. On the other hand, if allele A

links with female-beneficial allele b, allele A is disfavored by linked selection. By denoting

the frequencies of haplotypes A-B and A-b by xB and xb, respectively, and ignoring second-

order terms in sm, r, u and v, the expected changes of the frequencies of A-B and A-b in one

generation are given by(
E[∆xB]

E[∆xb]

)
=

(
α(p)− (1− p)r − u pr + v

(1− p)r + u β(p)− pr − v

)(
xB

xb

)
, (4.1)

where α(p) and β(p) are functions defined such as α(p) = hmsm+(sm−3hmsm)p+(2hmsm−
sm)p2 and β(p) = −hmsmp+(2hmsm−sm)p2 (for details, see Appendix B). It is interesting to

point out that Equation 4.1 involves only selection parameters in males, not those in females.

This means that E[∆xi] directly depends on selection among males, but does not necessarily

mean that selection does not work in females. Selection in females is involved because it

affects p, the frequency of allele B.

In the following, I first derive the establishment probability for a special case where

selection at the B/b locus does not provide any systematic pressure on p. In this case, p

does not change rapidly, so we can treat it as a constant, at least in the timescale of a newly

arisen allele escaping from initial extinction (see Appendix C). With this assumption, we can

obtain the establishment probability as a solution of a cubic equation, which is given by a

function of p0, the frequency of allele B when allele A arises. Next, I consider a more general
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case where p changes, from the initial value p0 to the equilibrium value p∗. In this case, by

contrast, I show that the establishment probability is given by a function of both p0 and

p∗, of which the effect of p∗ is quite large. In either case, I first obtain the establishment

probability conditional on p0, and then I derive the unconditional establishment probability

by incorporating the stationary distribution of p0.

Establishment probability when a constant p can be assumed

I consider a case where we can assume p does not change significantly in the timescale in which

I am interested in. In other words, the expected change of p in one generation, Mp ≡ E[∆p],

is assumed to be as small as ∼ 1
N , where Mp is given by:

Mp =
1

2

∑
i∈{m,f}

sip(1− p){hi + (1− 2hi)p} − up+ v(1− p)

=
[hfsf + hmsm

2
+

(1− 2hf )sf + (1− 2hm)sm
2

p
]
p(1− p)− up+ v(1− p),

(4.2)

if the second-order terms of sm, sf , u, and v are ignored. This assumption holds when hm ≈ hf
and sm ≈ −sf , so that the levels of selection in the two sexes are of the same strength, but

work in opposite directions. This mode of selection is referred to as “equalizing selection”.

I assume that sm, sf , u, v, and r are so small that their second-order terms can be ignored.

Then, following the branching process approximation (Barton 1987), it is straightforward to

show that the two establishment probabilities satisfy:
[α(p)− (1− p)r − u]ϕB(p) + [(1− p)r + u]ϕb(p)−

ϕB(p)2

2
= 0

[pr + v]ϕB(p) + [β(p)− pr − v]ϕb(p)−
ϕb(p)

2

2
= 0

(4.3)

(for details, see Appendix C). Notably, similar models were used to analyze the effect of a

linked allele on the establishment of locally beneficial alleles (Aeschbacher and Bürger 2014)

or the effect of population structure on the establishment of a beneficial mutation (Pollak

1966, Barton 1987, Tomasini and Peischl 2018, Sakamoto and Innan 2019). Equations 4.3

can be reduced to a cubic equation and be solved analytically (for details, see Appendix

D). It is important to note that establishment is promoted by selection if ϕB(p) is positive;

otherwise, allele A is likely selected against and goes extinct. Whether ϕB(p) > 0 depends on

the leading eigenvalue of the matrix in Equation 4.1. When the leading eigenvalue is positive,

ϕB(p) and ϕb(p) are given by:

ϕB(p) =


3

√
−Q

2 +
√
R+ 3

√
−Q

2 −
√
R− A2

3 when R > 0

2
√
−P

3 cos(1
3 arccos(3Q

2P

√
−3
P ))− A2

3 when R ≤ 0
, (4.4)

and

ϕb(p) =
ϕB(p)2 − 2[α(p)− (1− p)r − u]ϕB(p)

2[(1− p)r + u]
(4.5)
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where

A0 = 8[(1− p)r + u][α(p)β(p)− (pr + v)α(p)− ((1− p)r + u)β(p)]

A1 = 4[α(p)− (1− p)r − u]2 − 4((1− p)r + u)[β(p)− pr − v]

A2 = −4[α(p)− (1− p)r − u]

P = A1 −
A2

2

3

Q = A0 −
A1A2

3
+

2

27
A3

2

R = (
P

3
)3 + (

Q

2
)2.

When r is small, they can be approximated in quite simple equations:ϕB ≈ 2[α(p)− (1− p)r]

ϕb ≈ 0.
(4.6)

I performed simple forward simulations in a Wright–Fisher population to check the ac-

curacy of my derivation (for details of the simulations, see Appendix A). I confirmed that

Equation 4.3 is in excellent agreement with the simulations for a wide range of the parame-

ters. Some of the results are shown in Figure 4.3, where the two establishment probabilities,

ϕB(p0) and ϕb(p0), are plotted by assuming sm = −sf = 0.02, N = 10, 000. Through this

work, the mutation rates at locus B/b are fixed to be quite small values, u = v = 1.0× 10−6,

unless otherwise mentioned. Note that the effect of mutation rate is small in the establish-

ment process unless the mutation rate is very large (but the mutation matters when the

stationary distribution of allele B is considered, as demonstrated below).

I first focus on the case of r = 0, that is, the A/a and B/b loci are completely linked, in

order to investigate the effect of dominance (h). Suppose that allele B is recessive (h = 0,

left panel in Figure 4.3A). Then, a newly arisen allele A can benefit from the B/b locus

only when it arises in a BB homozygote. In such a case, ϕB increases as p0 increases to

p0 = 0.5 (plotted in red), where the effect of sexually antagonistic selection is maximized. ϕB

decreases as p0 decreases from 0.5 to 1, making a symmetric function. With the assumption

of no recombination, it is obvious that ϕb ≈ 0 for any p0 (plotted in blue). The weighted

average of ϕB and ϕb (i.e., p0ϕB + (1− p0)ϕb) is plotted in black.

In contrast, in the dominant case (h = 1, left panel in Figure 4.3C), ϕB for a small p0

is quite high because a newly arisen allele A in linkage with allele B is immediately selected

for, regardless of the genotype at the B/b locus. This selection works particularly efficiently

when B is so rare that the selective advantage of A-B haplotypes is large in comparison with

the population fitness. Therefore, ϕB is given by a monotonically increasing function with

decreasing p0, but as p0 decreases the probability that allele A arises in linkage with allele B

decreases; therefore, the weighted average has a peak in the middle. An intermediate pattern

is observed in a case of partial dominance (h = 0.5, left panel in Figure 4.3B). Similar results

were obtained for other values of selection intensity as long as sm = −sf (not shown).

I next consider the effect of recombination. The approximations given by Equation 4.6

agree overall with the simulation results as long as r is small. As the recombination rate

increases, ϕB decreases because the association with allele B becomes weaker. When r is
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Figure 4.3: Establishment probability of allele A for different dominance and recombination rates.
Three dominance coefficients are assumed: (A) hm = 0.0, (B) hm = 0.5 and (C) hm = 1.0. The other
parameters are as follows: sm = −sf = 0.02, hf = hm, N = 10, 000, u = v = 1.0 × 10−6. Error bars
on the red and blue circles represent the 95 % confidence interval, but they are too small to be seen.

relatively small, ϕb increases as the recombination rate increases because recombination gives

a chance to link with allele B and the A-B association may be preserved if further frequent

recombination does not break the association. However, this benefit does not hold for a

large r, and ϕb decreases as the recombination rate increases because further recombination

prevents the stable linkage of allele A and allele B and reduces the benefit of linkage.

Establishment probability when p changes

I next consider the case where p can change during the establishment process due to selec-

tion and mutation (i.e., Mp � 1
N ). To derive ϕB(p0) and ϕb(p0), I use a continuous time

approximation of the branching process (Barton 1995). With a deterministic approximation

for Mp (Mp 6= 0), the two establishment probabilities satisfy:
[α(p)− (1− p)r − u]ϕB(p) + [(1− p)r + u]ϕb(p) +Mp

dϕB(p)
dp − ϕB(p)2

2
= 0

[pr + v]ϕB(p) + [β(p)− pr − v]ϕb(p) +Mp
dϕb(p)
dp − ϕb(p)

2

2
= 0,

(4.7)

(for details, see Appendix C). This differential equation can be solved numerically by setting

an initial condition, for which I use the establishment probability of allele A that arises

when p is at stable equilibrium p∗. ϕB(p∗) and ϕb(p
∗) can be numerically computed by

Equation 4.3 because we can assume p does not change significantly around p∗. Technically,

we cannot use the exact values of ϕB(p∗) and ϕb(p
∗) as an initial condition because they

violate the assumption of Mp 6= 0. To avoid this problem, assuming a very small ε, I use

ϕB(p∗±ε) ≈ ϕB(p∗) and ϕb(p
∗±ε) ≈ ϕb(p∗) as an initial condition, which does not markedly

affect the numerical solutions as long as ε is small.

When p is not constant, both p0 and p∗ play an important role in determining ϕB(p0)

and ϕb(p0). The relative contribution of p∗ can be large when selection is strong and p0 is

not far from p∗, so that p quickly approaches p∗. In such a case, ϕB(p0) and ϕb(p0) cannot

be large when ϕB(p∗) and ϕb(p
∗) are very small. This argument can be explained as follows.

Let us consider the fate of the descendants of an allele A that arises. After the mutation
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arises, p changes and finally reaches around p∗. Denote the numbers of haplotypes A-B and

A-b when p reaches p∗ as XB and Xb, respectively. Then, the establishment probability is

approximately given by:

1− {1− ϕB(p∗)}XB{1− ϕb(p∗)}Xb ≈ ϕB(p∗)XB + ϕb(p
∗)Xb, (4.8)

unless the population is very small.

Because p∗ largely depends on the mode of selection on the B/b locus (see Figure 4.2),

I here consider ϕB(p0) and ϕb(p0) under three modes of selection separately (i.e., balancing,

negative, and positive selection on allele B). For each mode of selection, I performed extensive

forward simulations to check the performance of Equation 4.7. It was found that ϕB(p0) and

ϕb(p0) computed by Equation 4.7 well agreed with the simulation results for a wide range

of parameter space, and representative cases are shown in Figures 4.4, 4.5 and 4.6 (see also

Figures 4.14 and 4.15).

First, I consider the case of balancing selection. To make a realization of balancing

selection, it is necessary to set hm large enough to secure the average fitness of B/b het-

erozygote higher than 1. When hm is large, a newly arisen allele A would be immediately

selected for together with allele B. Therefore, the overall behavior of ϕB(p0) and ϕb(p0)

could be quite similar to that in the case of a high h when p does not change (e.g., Fig-

ure 4.3C where hm = 1 is assumed). This is demonstrated in Figure 4.4, where I assume

sm = 0.02, sf = −0.02, hm = 1.0, hf = 0.0 (as a consequence, p∗ = 0.5), while all other

parameters are the same as those used in Figure 4.3. To emphasize the difference from the

case of a constant p, this figure also shows ϕB(p0) and ϕb(p0) computed by Equation 4.3 for

comparison. The major difference from Equation 4.3 is that, when p0 < p∗, ϕB(p0) is lower

than that in the case of constant p (the red broken lines in Figure 4.4), because the selective

advantage of haplotype A-B would be reduced by the rapid increase in the frequency of allele

B by selection (i.e., both haplotypes A-B and a-B increase). ϕb(p0) is overall very low, similar

to the case of a constant p (Figure 4.3C). On the other hand, when p0 > p∗, ϕB(p0) is larger

than that in the case of constant p because the number of males having allele B decreases,

with which haplotype A-B has to compete. Figures 4.14B and C are for weaker selection

coefficients (sm = −sf = 0.008 and 0.002), where ϕB(p0) and ϕb(p0) are overall reduced and

the difference from Equation 4.3 is small perhaps because p does not change rapidly with

weak selection.

I next consider the case of negative selection, where p would move from p0 to p∗, which is

usually very low. If a very low p∗ is assumed, from Equation 4.3, I can approximate ϕB(p∗)

and ϕb(p
∗) as:

ϕB(p∗) ≈

2(hmsm − r) when r < hmsm

0 when r > hmsm

ϕb(p
∗) ≈ 0.

(4.9)

These equations mean that the establishment of allele A is very unlikely when r > hmsm.

Thus, the major difference from the case of a constant p is that, as the recombination

rate increases, the establishment rate decreases to ∼ 0 around the threshold r > hmsm

(see Appendix E for the behavior for large r). This is demonstrated in Figure 4.5, where

59



r = 0.005 r = 0.01 r = 0.02r = 0.0

p0
P

ro
ba

bi
lit

y

Equation 4.7
Equation 4.3
Simulation

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
02

0.
04

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
02

0.
04

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
02

0.
04

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
02

0.
04

Figure 4.4: Establishment probability for the case of balancing selection on allele B. Parameters are
assumed to be sm = −sf = 0.02, hm = 1.0, hf = 0.0, N = 10, 000, u = v = 1.0× 10−6. Error bars on
the red and blue circles represent the 95 % confidence interval, but they are too small to be seen. For
full version, see Figure 4.14.

sm = 0.02, sf = −0.04, hm = hf = 0.5 are assumed such that the comparable result for the

case of a constant p is Figure 4.3B with the same selection parameters for males (all other

parameters are identical). In Figure 4.5, r = hmsm holds at r = 0.01, which works as the

threshold. When r is smaller than this threshold (r = 0.0 and 0.005 in Figure 4.5), ϕB(p0)

and ϕb(p0) are roughly in agreement with those in Figure 4.3B, although ϕB(p0) and ϕb(p0)

are slightly higher than the case of a constant p, especially when p0 is not small. The sit-

uation changes dramatically as the recombination rate exceeds the threshold (i.e., r = 0.02

in Figure 4.5): ϕB(p0) and ϕb(p0) decrease to as low as ∼ 2/N (i.e., the neutral expec-

tation for a sex-determining allele), where there is no benefit of linked selection and only

drift-driven establishment occurs in a nearly neutral fashion. In contrast, in Figure 4.3B,

ϕB(p0), ϕb(p0) � 2/N unless p0 is close to 0 or 1. Such strong reduction of ϕB(p0) when

r exceeds hmsm (Figure 4.5) can be explained as follows. A newly arisen allele A benefits

from linked selection when it arises in association with allele B. Once the linkage is broken by

recombination, allele A has almost no chance to recombine back to link to allele B because

the frequency of allele B is very low. Therefore, after allele A loses linkage with allele B, there

would be no selection for allele A so that the establishment of allele A has to rely on random

genetic drift. Figures 4.15B and C show the results for weaker selection (sm = 0.015 and

0.008), where the general pattern is similar to that in Figure 4.5, while ϕB(p0) and ϕb(p0)

are overall reduced.

I finally consider the case of positive selection, where p∗ is generally very large (i.e., ≈ 1).

Unless p0 is small, p increases very quickly to p∗ ≈ 1, that is, the B/b locus is almost fixed

for allele B. Therefore, even when allele A arises in association with allele B, allele A does

not benefit from linked selection on locus B, resulting in a very low ϕB(p0). Particularly

when allele A at p ≈ p∗, random genetic drift plays a role in the establishment process. The

theoretical treatment for this situation is shown in Appendix E. Figure 4.6 shows ϕB(p0) and

ϕb(p0) for the case of positive selection assuming sm = 0.02, sf = −0.01, hm = hf = 0.5. It is

demonstrated that allele A can spread efficiently with the help of linked selection for allele B

only when p0 is small and r is so small that the initial association between A and B can be

maintained for a while. The performance of Equation 4.7 is not as good as that in the cases

of balancing selection and negative selection. It appears that Equation 4.7 underestimates

the establishment probability because my derivation based on the branching process ignores

establishment events occurring in a nearly neutral fashion.

Unconditional establishment probability

In the above, I consider the establishment probability as a function of the initial frequency of

allele B, p0. I am here interested in the unconditional establishment probability, which is the
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Figure 4.5: Establishment probability for the case of negative selection against allele B. Parameters
are assumed to be sm = 0.02, sf = −0.04, hm = hf = 0.5, N = 10, 000, and u = v = 1.0×10−6. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen. For full version, see Figure 4.15.
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Figure 4.6: Establishment probability for the case of positive selection for allele B. Parameters are
assumed to be sm = 0.02, sf = −0.01, hm = hf = 0.5, N = 10, 000, and u = v = 1.0 × 10−6. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen.

weighed average over the stationary distribution of p0. Following Wright’s formula (Wright

1931), the stationary distribution of p0, g(p), is given by:

g(p) =
C

Vp
exp
(∫ 2Mp

Vp
dp
)

= C(1− p)4Nu−1p4Nv−1 exp
(
2N(hfsf + hmsm)p+N((1− 2hf )sf + (1− 2hm)sm)p2

)
.

(4.10)

where Vp = p(1−p)
2N and C is determined such that

∫ 1
0 g(p) = 1 (Connallon and Clark 2012).

It is well recognized that this formula works very well when the selection intensities, sf and

sm, are relatively small so that their second-order terms are negligible (Crow and Kimura

1970, Ewens 2004). An intriguing exceptional case is when selection is weak but the absolute

values of the selection intensities are not small. In the previous section, I considered a case

where selection in males and that in females are well balanced when hf ≈ hm and sf ≈ −sm,

irrespective of the absolute values of sf and sm. In such a special case of equalizing selection,

the stationary distribution may be better given by:

g(p) = C(1− p)4Nu−1p4Nv−1 exp
((
−(1− 2hf )2p4 − 4hf (1− 2hf )p3 − 4h2

fp
2
)
Ns2

f

)
. (4.11)

Then, the unconditional establishment probability of allele A, ϕ, is given by:

ϕ =

∫ 1

0
g(p)[pϕB(p) + (1− p)ϕb(p)]dp, (4.12)

where ϕB(p) and ϕb(p) are given by Equation 4.3 for hf ≈ hm and sf ≈ −sm, and otherwise

by Equation 4.7.

We can obtain an approximation of the establishment probability in a simple form for

several special cases of r = 0. When sexually antagonistic selection works as balancing
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selection, the establishment probability for r = 0 is approximated by:

ϕ ≈ 2p∗α(p∗)

≈ 2p∗[hmsm + (sm − 3hmsm)p∗ + (2hmsm − sm)p∗2].
(4.13)

It is implied that ϕ is on the same order of magnitude as sm.

In the case of negative selection, assuming that selection is much stronger than mutation

(u and v) and hm is not very small, we have p∗ ≈ 0 and ϕ ∼ ϕb(0). Furthermore, because

ϕB(p)� ϕb(p) and Mp ≈ 0, Equation 4.7 for r = 0 is roughly simplified:

α(0)ϕB(0) =
ϕB(0)2

2

vϕB(0) =
ϕb(0)2

2
.

Under these approximations, ϕ is given by

ϕ ≈
√

4vhmsm, (4.14)

indicating that ϕ is on the order of
√
vhmsm. For selection to be dominant over random

genetic drift, N2vhmsm � 1 is required.

If sexually antagonistic selection works as positive selection and the mutation rate is low,

linked selection no longer works and establishment is driven by random genetic drift, as

discussed above. Then, the establishment probability is roughly given by 2
N . In such cases,

sexually antagonistic selection does not markedly increase the establishment probability.

The unconditional establishment probability computed by Equation 4.12 is plotted for

the four modes of sexually antagonistic selection in Figure 4.7. The approximations for

r = 0 (Equations 4.13, 4.14) are also presented by triangles on the y-axis, which show

excellent agreement with the exact formula and simulation results. Three different values of

the mutation rate are considered (u = v = 10−5, 10−6, 10−7).

The establishment probability is in general highest when balancing selection works (Fig-

ure 4.7A). This is because an intermediate p provides both the benefit of linkage and a higher

chance to link with allele B to allele A. Because the mutation rate at locus B/b does not

markedly influence the stationary distribution of p, the establishment probability does not

depend on the mutation rate either.

When negative selection works at locus B, the establishment probability is quite low

(Figure 4.7B) because negative selection keeps allele B very rare. Mutation from allele b to

B contributes to the establishment of allele A in two ways. First, it increases the frequency

of beneficial allele B, resulting in a higher chance that allele A acquires linkage with allele B

by recombination. Second, it increases the probability that haplotype A-b mutates to A-B.

As a consequence, as the mutation rate v increases, the establishment probability becomes

larger.

When positive selection works, the establishment probability is very low for all three

mutation rates (Figure 4.7C). This is because allele B is already fixed and linkage with allele

B is no longer beneficial. Allele A may benefit from linked selection only when u is extremely

high.
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Figure 4.7: Establishment probability of a masculinizing allele for different modes of sexually
antagonistic selection. N = 100, 000 and u = v are assumed. Other parameters are (A)
sm = 0.02, sf = −0.02, hm = 1.0, hf = 0.0, (B) sm = 0.02, sf = −0.025, hm = hf = 0.5, (C)
sm = 0.02, sf = −0.01, hm = hf = 0.5 and (D) sm = 0.02, sf = −0.02, hm = hf = 0.5. Similar results
were obtained for N = 10, 000. Error bars for circles represent the 95 % confidence interval.

Thus, if selection is directional, p∗ is very low or high (under negative or positive selection,

respectively), which does not markedly help the establishment of allele A. On the other hand,

if balancing selection maintains alleles B and b in an intermediate frequency, allele A can take

advantage of it. An intermediate situation is when equalizing selection works ((Figure 4.7D),

where the process is nearly neutral because sf ≈ −sm and hf ≈ hm). Because p fluctuates

between 0 and 1 by random genetic drift, allele A can likely benefit from locus B/b if it arises

when p is intermediate. This is why the establishment probability is largely affected by the

mutation rate at locus B/b, which determines how often mutation is produced.

It is interesting to note that very tight linkage does not necessarily increase the uncondi-

tional establishment probability (e.g., Figures 4.7B, D). With an increasing the recombination

rate, in general, ϕb increases while ϕB decreases because recombination enhances exchange

between haplotype A-B and haplotype A-b. Because the unconditional probability is given

by the weighted average of ϕB and ϕb, there appears to be an optimal recombination rate to

maximize ϕ.

The pattern of neutral polymorphism after turnover

To investigate the effect of the mode of selection at locus B/b on the pattern of neutral

polymorphism in a surrounding region, I performed forward simulations under the infinite-

sites model. The spatial distributions of the nucleotide diversity after turnover in a typical run

are plotted for each of the four modes of selection in Figure 4.8. The amount of nucleotide

variation is measured by the average pairwise differences (π) standardized by the neutral

expectation (θ = 4Nµ where µ is the neutral mutation rate). Haplotype i (i ∈{A, a}) is

denoted as the haplotype with allele i, and Figure 4.8 plots three π values: πA−A for π

within haplotype A (red line); πa−a for π within haplotype a (blue line); and πA−a for π
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Figure 4.8: The temporal dynamics of nucleotide diversity after turnover of the sex-determining locus.
Results for a single simulation run with N = 10, 000 are shown for each mode of selection. The spacial
distributions of the normalized πA−A, πa−a and πA−a are shown in red, blue, and black, respectively,
along the relative position in the (0,1) interval (also rescaled in units of 4Nr in parentheses). In the
simulation, locus A/a is located at relative position 0.25 (vertical orange lines) in the (0,1) simulated
region, while locus B/b is located at relative position 0.75 (vertical green lines). t is denoted as
the number of generations since the new sex-determination system was fixed (i.e., since the old sex-
determining locus X/Y became monomorphic). The recombination rate of the entire region was
assumed to be 0.0002 such that the recombination rate between loci A/a and B/b = 0.0001. The
selection parameters used for each mode of selection were (A) sm = −sf = 0.02, hm = 1.0, hf = 0.0,
(B) sm = 0.02, sf = −0.04, hm = hf = 0.5, (C) sm = 0.025, sf = −0.02, hm = hf = 0.5 and (D)
sm = −sf = 0.02, hm = hf = 0.5.

between haplotypes A and a (black line). Let us first focus on the case of t = 0 (i.e., just

after the turnover has completed). When balancing selection works, πA−a has a striking peak

around the locus B/b (Figure 4.8A), and a weaker peak is observed for πA−A and πa−a due

to recombination between the two loci. This is because the B/b polymorphism had been

maintained for a very long time by balancing selection before the turnover occurred, which

is not observed in the other modes of selection (Figures 4.8B-D).

As time passes, in all four cases, neutral mutations start to accumulate around the A/a

locus, making a novel peak of divergence between haplotypes A and a (i.e., πA−a). The

growth of the peak at the A/a locus proceeds while maintaining the peak at the B/b locus in

the case of balancing selection (Figure 4.8A). The pattern is as predicted by Kirkpatrick and

Guerrero (2014). In contrast, in the other three cases (Figures 4.8B-D), a peak newly arises

at the B/b locus and grows along with the peak at the A/a locus. Thus, the patterns are

similar in the cases of negative, positive and equalizing selection, whereas balancing selection

is unique in that the peak at the B/b locus already exists, which is much higher than that

at the A/a locus shortly after the turnover.

4.3.2 Case 2: Turnover with changing heterogametic sex

I next consider Case 2, where allele A has a feminizing effect so that the heterogametic sex

changes from male to female. That is, Case 2 assumes sf > 0 for allele B to be beneficial for

allele A. As in Case 1, allele A can spread if allele A successfully avoids extinction shortly
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after it arises (van Doorn and Kirkpatrick 2010). Therefore, I again use the approximation

of the branching process, following Case 1. By ignoring the second-order terms in sf , r, u,

and v, the expected change of the frequency in one generation is given by:(
E[∆xB]

E[∆xb]

)
=

(
α(p)− (1− p)r − u pr + v

(1− p)r + u β(p)− pr − v

)(
xB

xb

)
, (4.15)

where α(p) = hfsf + (sf − 3hfsf )p + (2hfsf − sf )p2 and β(p) = −hfsfp + (2hfsf − sf )p2

(see Appendix B for details).

By comparing Equation 4.15 with Equation 4.1, I notice that the two equations are

identical if we replace hf by hm and sf by sm. It is indicated that the above arguments for

Case 1 are also applicable to Case 2 by changing these variables. When equalizing selection

works and p does not change rapidly (i.e., hm ≈ hf and sm ≈ −sf ), the establishment

probability is given by Equation 4.3. On the other hand, when p changes when allele A is

rare, the establishment probability depends on both p0 and stable equilibrium p∗. If balancing

selection works, the establishment probability is given by Equation 4.7. When allele B is

subject to negative selection, the establishment probability depends on whether r is larger

or smaller than the threshold that is given by hfsf . When hfsf > r, the establishment

probability is given by Equation 4.7. Whereas, when hfsf < r, ϕB(p∗) ≈ 0 so that the

establishment of allele A would be drift-driven once p reaches p∗: therefore, ϕB(p0) could

be as small as ∼ 1/N . When allele B is subject to positive selection, we have ϕB(p∗) ≈ 0.

Consequently, the establishment process is driven by random genetic drift after p reaches

p∗. Therefore, as long as p0 is near p∗ and positive selection is strong, the establishment

probability is as low as ∼ 1/N (for more details, see Appendix E). Thus, the process in

Case 2 can be well described by the equations developed for Case 1, as is demonstrated in

Figures 4.16-4.19. The unconditional establishment probability is also given by Equation 4.12

(see Figure 4.20).

4.4 Discussion

In some clades such as teleost fish and amphibians, sex is often determined by a single

locus rather than heteromorphic sex chromosomes. In such species, turnover of the sex-

determining locus occurs so frequently that genetic divergence around the locus does not

proceed. There are many factors that potentially promote the turnover of sex-determining

loci, such as random genetic drift (Bull and Charnov 1977, Veller et al. 2017, Saunders et al.

2018), deleterious mutation load (Blaser et al. 2013, 2014), sexually antagonistic selection

(van Doorn and Kirkpatrick 2007, 2010), sex ratio bias (Kozielska et al. 2010) and haploid

selection (Scott et al. 2018). Recently, van Doorn and Kirkpatrick (2007, 2010) pointed out

that turnover of sex-determining loci could be enhanced by linked selection. That is, a new

sex-determining allele (allele A in my model) can be beneficial when it arises near a locus

under sexually antagonistic selection (locus B/b). This study is aimed at understanding how

often turnover of sex-determining loci occurs with the help of linked selection at a nearby

locus. Previous studies mainly by van Doorn and Kirkpatrick (2007, 2010) focused on the

deterministic phase to obtain the rate of increase in the frequency of allele A, which is not

sufficient to address the question on the rate of turnover, as mentioned in the Introduction. I
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here provide a full theoretical description of the behavior of allele A from when it newly arises

to its establishment, where both the initial stochastic and following deterministic phases are

taken into account. I provide some technical comments in Appendix F to provide intuitive

insights on how to understand the results of van Doorn and Kirkpatrick (2007, 2010) in my

framework.

My theory shows that the establishment probability is given by a function of the initial

frequency of allele B, p0, and the equilibrium frequency, p∗. It is demonstrated that the estab-

lishment probability largely depends on the mode of selection on allele B, which determines

p∗ (Figure 4.7). The establishment probability is relatively high when balancing or equaliz-

ing selection works because polymorphism at locus B/b increases the benefit of linkage. In

contrast, when directional selection works (either positive or negative), linked selection does

not significantly help establishment. When negative selection works, the establishment prob-

ability is low because the frequency of allele B is so low that allele A has difficulty linking

with it. When positive selection works, the establishment probability is also low because

beneficial allele B should be almost fixed. The effect of p0 appears to be smaller unless p0 is

very different from p∗.

My results demonstrate that the fate of newly arisen sex-determining mutation is mainly

determined in the early phases (i.e., stochastic phase), where random genetic drift is the

major evolutionary force. It is indicated that the stochastic phase plays an important role in

understanding the evolutionary process of turnover of sex-determining loci. In the stochastic

phase, p0 is a very important factor affecting the initial behavior of the new mutation, and

the density distribution of p0 largely depends on the mode of selection at the B/b locus. The

establishment probability of allele A is very low when directional selection works at the B/b

locus, indicating that the presence of loci under sexually antagonistic selection could signif-

icantly enhance turnover of sex-determining loci only when sexually antagonistic selection

works in the form of balancing selection.

My theory has great implications for the rate of turnover of sex-determining loci in natural

populations. An important biological question is how sexually antagonistic loci help the

turnover of sex-determining loci on the genomic scale. One might think that most turnover

occurs with the help of sexually antagonistic loci under balancing selection, because the

establishment probability is markedly high when balancing selection works at the B/b locus

(see also van Doorn and Kirkpatrick 2007, 2010). On one hand, one might consider that

there may not be a large number of sexually antagonistic loci under balancing selection in

a genome, so that their relative contribution might be small. Alternatively, there might be

a negligible contribution of sexually antagonistic loci under other modes of selection (i.e.,

equalizing and directional selection). Even if the establishment probability is not high for

each, on a genomic scale, their cumulative effect may not be small. To answer the question on

the relative contribution of linked selection, we need to know how many sexually antagonistic

loci exist in the genome, and what mode of selection is working. While empirical studies may

be powerful to address this, it is also interesting to look at polymorphism data surrounding

the sex-determining locus. My simulations (Figure 4.8) provide insight into how to distinguish

the mode of selection at a linked locus. Shortly after turnover, if divergence between male

and female haplotypes is restricted in a very narrow region around the sex-determining locus,

it may be likely that the sex-determining allele has become established with no help from
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linked selection (i.e., Myosho et al. (2012), Kamiya et al. (2012), Koyama et al. (2019)). On

the other hand, if a highly diverged region spreads surrounding the sex-determining locus,

then either the sex-determining allele has become established together with a linked allele at

a sexually antagonistic locus, or sexually antagonistic loci arose after the establishment of

the sex-determining locus.

4.5 Appendices

Appendix A: Details of simulation model

The details of the simulation model are presented. The life cycle is assumed to be in the

order of mating (random genetic drift), selection, gamete production (recombination) and

mutation.

First, the details of simulations for establishment probabilities are provided. Let sijk and

eijk be the frequency of genotype ijk among sperm and egg population at the beginning of

the generation, respectively, where i ∈ {A, a}, j ∈ {B, b} and k ∈ {X, Y}. In a mating

step, N individuals are produced by random mating. Denote by f0(ijk/lmn) the frequency

of zygotes between a sperm of genotype ijk and an egg of genotype lmn. E[f0(ijk/lmn)]

is given by sijkelmn. According to this probability, N zygotes are produced by multinomial

sampling. Then, sex is determined by a combination of loci A/a and X/Y (see Figure 4.1B

and C).

During the selection step, fitness of each genotype is determined by locus B/b. Let F be

a set of genotypes that grow into a female. The fitness of genotype X = ijk/lmn, W (X), is

given by

W (X) =


1 if (j,m) = (b, b)

1 + hfsf if (j,m) = (B, b) or (b, B)

1 + sf if (j,m) = (B,B),

(4.16)

for females (i.e., X ∈ F ) and

W (X) =


1 if (j,m) = (b, b)

1 + hmsm if (j,m) = (B, b) or (b, B)

1 + sm if (j,m) = (B,B),

(4.17)

for males (i.e., X /∈ F ). For X ∈ F , the genotype frequency among female population, ff1 (X),

is

ff1 (X) =
f0(X)W (X)∑
Y ∈F f0(Y )W (Y )

. (4.18)

For X /∈ F , the genotype frequency among male population, fm1 (X), is

fm1 (X) =
f0(X)W (X)∑
Y /∈F f0(Y )W (Y )

. (4.19)

In gamete production, genotype ijk/lmn produce 8 kinds of gametes, ijk, ijn, imk, imn,

ljk, ljn, lmk and lmn, with proportion 1−r
4 , 1−r

4 , r4 , r4 , r4 , r4 , 1−r
4 and 1−r

4 , respectively. After

that, proportion u of allele B mutates to allele b while proportion v of allele b mutates to
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allele B. Then, the frequency sijk and eijk at the beginning of the next generation is defined.

Initial condition of simulations are determined as follows. In simulations for conditional

probability, initial frequency of each gamete is set as

sijk =


1−p0

2 if (i, j, k) = (a, b, X) or (a, b, Y)

p0

2 if (i, j, k) = (a, B, X) or (a, B, Y)

0 otherwise,

(4.20)

and

eijk =


1− p0 if (i, j, k) = (a, b, X)

p0 if (i, j, k) = (a, B, X)

0 otherwise.

(4.21)

After the mating step of first generation, an allele A is introduced. To investigate the fate

of allele A arising in linkage with allele i (i ∈ {B, b}), an allele i is randomly chosen and

the linked allele a is changed into allele A. The simulation is run until either locus X/Y or

locus A/a becomes monomorphic. In simulations for unconditional probability, I first run

simulations without introducing allele A to obtain stationary distribution of sajk and eajk.

After a burn-in period of 10N generations, sajk and eajk are sampled. For each set of sajk

and eajk, an allele a is randomly chosen and turned into allele A after the mating step of first

generation. The simulation is run until either locus X/Y or locus A/a becomes monomorphic.

Next, the details of simulations for the pattern of neutral polymorphism are provided. A

genomic region of relative length 1 is simulated where the locus A/a is located at relative

position 0.25 and the locus B/b is located at relative position 0.75. For neutral sites, the

infinite-sites model is assumed. Although the basic assumptions are the same as the three

loci model, implements are slightly different to improve efficiency of simulations such that all

events are incorporated into the mating step.

In a mating step, a father and a mother are chosen from individuals in previous generation

to form an offspring. To incorporate selection, the probability that an individual is chosen

as a parent is proportional to its relative fitness among individuals of the same sex. For each

parent, a haplotype is made through recombination where a constant rate of recombination

across the simulated region is assumed. By combining two haplotypes, an offspring is formed.

Mutation is finally introduced in both the locus B/b and neutral sites. These procedures are

repeated N times to generate individuals of the present generation.

The dynamics of polymorphism are simulated as follows. First, to simulate the polymor-

phism just before turnover, I run simulations for 200N generations without introducing allele

A. Then, allele A is introduced at the locus A/a. If turnover occurs, simulation continues

until 50N generations pass since the turnover.

Appendix B: Derivation of Equations 4.1 and 4.15

The details for the derivation of Equations 4.1 and 4.15 are provided. First, Equation 4.1 is

derived. I here focus on deterministic changes of allele frequency while allele A is rare and

ignore stochastic changes. At the beginning of each generation, the frequencies of haplotypes

A-B and A-b in the sperm population are assumed to be xB and xb, respectively. Because
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locus B/b is not on the ancestral sex chromosome, I assume that the frequencies of allele

B in the two sexes are almost same. By denoting the frequency of genotype i after random

mating as f0(i), the frequencies of four genotypes are given by

f0(A-B/a-B) = xBp

f0(A-B/a-b) = xB(1− p)

f0(A-b/a-B) = xbp

f0(A-b/a-b) = xb(1− p).

(4.22)

Since allele A has a masculinizing effect, the above genotypes are all male. During allele A is

rare, the effect of mutants on the average fitness can be ignored. Then, the average fitness of

males is w̄m = 1 + smp
2 + 2hmsmp(1− p). The frequency of genotype i after selection, f1(i),

is given by

f1(A-B/a-B) =
1 + sm
w̄m

f0(A-B/a-B)

f1(A-B/a-b) =
1 + hmsm

w̄m
f0(A-B/a-b)

f1(A-b/a-B) =
1 + hmsm

w̄m
f0(A-b/a-B)

f1(A-b/a-b) =
1

w̄m
f0(A-b/a-b).

(4.23)

Note that a half of the population is male. Then, the haplotype frequencies after recombina-

tion among the sperm population, x′B and x′b, are given by

x′B = f1(A-B/a-B) + (1− r)f1(A-B/a-b) + rf1(A-b/a-B)

x′b = rf1(A-B/a-b) + (1− r)f1(A-b/a-B) + f1(A-b/a-b).
(4.24)

After mutation at locus B/b, the frequency changes in one generation are given by

∆xB = (1− u)x′B + vx′b − xB
∆xb = ux′B + (1− v)x′b − xb.

(4.25)

By ignoring the second order terms of sm, r, u and v, Equation 4.25 is reduced to Equation 4.1.

For Equation 4.15, the above derivations are also valid if w̄m, hm, and sm are substituted

by w̄f , hf , and sf , because I assumed that allele A has a strong feminizing effect such that

genotype XYAa grows up into females. It is obvious from the derivation that Equation 4.15

takes the same form as Equation 4.1.

Appendix C: Branching process approximations

The derivation for Equations 4.3 and 4.7 are provided. Each evolutionary force is assumed

to be relatively weak such that sm, sf , r, u, and v are at most the order of magnitude ε� 1.

Denote by λ(p) the leading eigenvalue of the matrix in Equation 4.1. I also assume that

λ(p) � 1
N such that allele A increases deterministically once its frequency becomes large.

Note that ε� 1
N is required for λ(p)� 1

N .

To derive the establishment probability, I focus on descendants of an allele A after one
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generation. Let a random variable ξji be the number of offsprings of haplotype A-j that is

left by a haplotype A-i (i, j ∈ {B, b}). Because I assume that allele A is rare, each ξji can

be treated as independent and the probability distribution of ξji may be approximated by

Poisson distribution. Then, the probability generating functions of the number of offspring

are given by

Eξ[x
ξbByξ

B
B ] = e((1−p)r+u))(x−1)e(1+α(p)−(1−p)r−u))(y−1)

Eξ[x
ξbbyξ

B
b ] = e(1+β(p)−pr−v)(x−1)e(pr+v)(y−1),

(4.26)

where terms of O(ε2) are ignored in the exponent and x and y are indeterminates. Let ∆p

be the change of p in one generation. Then, establishment probabilities, ϕB and ϕb, satisfy

following equation:

1− ϕB(p) = E∆p

[
Eξ

[(
1− ϕb(p+ ∆p)

)ξbB(1− ϕB(p+ ∆p)
)ξBB |∆p]]

= E∆p

[
e−((1−p)r+u))ϕb(p+∆p)e−(1+α(p)−(1−p)r−u))ϕB(p+∆p)

]
1− ϕb(p) = E∆p

[
Eξ

[(
1− ϕb(p+ ∆p)

)ξbb(1− ϕB(p+ ∆p)
)ξBb |∆p]]

= E∆p

[
e−(1+β(p)−pr−v)ϕb(p+∆p)e−(pr+v)ϕB(p+∆p)

]
.

(4.27)

Assume that ϕB(p), ϕb(p) are the order of ε. Then, Equation 4.27 is expanded as

[(1− p)r + u]E∆p[ϕb(p+ ∆p)] + [1 + α(p)− (1− p)r − u]E∆p[ϕB(p+ ∆p)]− ϕB(p)− 1

2
E∆p[ϕB(p+ ∆p)2] = O(ε3)

[1 + β(p)− pr − v]E∆p[ϕb(p+ ∆p)] + [pr + v]E∆p[ϕB(p+ ∆p)]− ϕb(p)−
1

2
E∆p[ϕb(p+ ∆p)2] = O(ε3)

(4.28)

Noting that evolutionary forces are so weak that the frequency of allele B changes slowly,

E∆p[ϕi(p+ ∆p)] and E∆p[ϕi(p+ ∆p)2] can be approximated by

E∆p[ϕi(p+ ∆p)] ≈ E∆p

[
ϕi(p) + ∆p

dϕi(p)

dp
+

(∆p)2

2

d2ϕi(p)

dp2
+ · · ·

]
= ϕi(p) +Mp

dϕi(p)

dp
+O(

ε

N
),

E∆p[ϕi(p+ ∆p)2] ≈ E∆p

[
ϕi(p)

2 + 2∆pϕi(p)
dϕi(p)

dp
+ · · ·

]
= ϕi(p)

2 +O(ε3).

(4.29)

Recall that ε� 1
N is assumed such that λ(p)� 1

N is satisfied. By substituting Equation 4.29

into Equation 4.28 and taking terms up to ε2, Equation 4.7 is derived. By assuming Mp is

negligible (i.e., ∼ 1
N ), Equation 4.3 is also derived.

The scope and the limitation of the approximation are discussed. Equation 4.3 and 4.7

are accurate if terms of order 1
N are ignored, as long as λ(p) � 1

N . Noting that ϕi(p) ∼ 1
N

when λ(p) ∼ 1
N , they are generally accurate if the order of 1

N can be ignored. Since such small

terms can be ignored in many cases, my approximations may be valid in broad situations.

However, there are exceptional situations, for which terms of order 1
N become too large

to be ignored. Such situations occur when λ(p) ∼ 1
N when p ≈ p∗ while λ(p)� 1

N otherwise.

Typical situations are that negative selection works on allele B and r is large, or positive
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selection works. In such cases, it is probable that the number of allele A may increase ∼ N

before p reaches p∗, especially in small populations. Although ϕi(p) are still proportional to
1
N , the absolute value of establishment probability may become large. For the details of these

cases, see Appendix E.

Appendix D: Explicit solution for Equation 4.3

The details for the derivation of Equations 4.4 and 4.5 are provided. The first equation of

Equation 4.3 is rearranged to Equation 4.5. By substituting Equation 4.5 into the second

equation of Equation 4.3, a quartic equation can be obtained:

ϕB(p)
[
ϕB(p)3 +A2ϕB(p)2 +A1ϕB(p) +A0

]
= 0, (4.30)

where Ai are defined in the main text. The largest real root of the Equation 4.30 is the

biologically relevant solution (see also Sakamoto and Innan (2019)). The root is expressed

by Equation 4.4 (see Abramowitz and Stegun 1970, Oldham et al. 2010).

Appendix E: Establishment probability when linked selection is very weak at

p ≈ p∗

I describe the behavior of the establishment probability when linked selection is very weak at

p ≈ p∗. This is a typical situation when negative selection works against allele B and r is large,

or positive selection works for allele B, so that the establishment probability is very small

(unless p0 is very different from p∗). I here explore such a case in detail because Equation 4.7

could underestimate the establishment probability (see Figures 4.5 and 4.6). This is because

my derivation based on the branching process approximation ignores establishment events

occurring in a nearly neutral fashion. In this Appendix, I derive another approximation

focusing on the establishment of allele A through a nearly neutral fashion. It is assumed that

selection is strong and p0 is close to p∗.

First, I consider Case 1 (i.e., the turnover without changing heterogametic sex) and

negative selection on allele B is assumed. For linked selection to be very weak at p ≈ p∗,

r > hmsm is also assumed (see Equation 4.9). Under this condition, the establishment

process does not occur simply by increasing the frequency of haplotype A-B: rather, because

frequent recombination keeps breaking the linkage between alleles A and B, allele A has

to increase without increasing allele B. In practice, negative selection works to reduce the

frequency of allele B and allele b is almost fixed. Therefore, establishment occurs such that

haplotype A-b increases. In this case, haplotype A-b is selectively neutral, so that I can

derive an approximation of the establishment probability by following Equation 4.8. By

using ϕb(p
∗) ≈ 2

N , where 2
N is the establishment probability of a neutral masculinizing allele,

the establishment probability is approximated by

2

N
× E(Xb) (4.31)

where Xb is the number of haplotype A-b when p reaches p∗. We can calculate E(Xb)

numerically under the branching process approximation as described below.

Next, positive selection on allele B is assumed in Case 1. At equilibrium with p∗ ≈ 1,
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haplotype A-B is selectively neutral because the frequency of allele b is very low. Similar to

the previous case, we can derive an approximate formula for the establishmemt probability

as
2

N
× E(XB), (4.32)

where XB is the number of haplotype A-B when p reaches p∗.

I briefly explain how E(XB) and E(Xb) can be computed. I here assume that mutation

rate is low enough to be ignored. Let Xi
j(p0)(i, j ∈ {B, b}) denote the number of descendant

A-j haplotypes at p = p∗ originated from the focal single haplotype A-i that arose when

p = p0. E(XB) and E(Xb) depend on p0 and the allele at locus B/b with which the allele A

initially links. By considering the change of the haplotype frequency in one generation, we

can obtain the recursion equations:

E[XB
j (p)] = (1 + α(p)− (1− p)r)E[XB

j (p+ ∆p)] + (1− p)rE[Xb
j (p+ ∆p)]

E[Xb
j (p)] = prE[XB

j (p+ ∆p)] + (1 + β(p)− pr)E[Xb
j (p+ ∆p)]

(4.33)

(for each coefficient, see Equation 4.1), where ∆p is the expected change of p in one generation.

By ignoring the order of 1
N and using a continuous time approximation, Equation 4.33 is

rearranged as

dE[XB
j (p)]

dt
= −(α(p)− (1− p)r)E[XB

j (p)]− (1− p)rE[Xb
j (p)]

dE[Xb
j (p)]

dt
= −prE[XB

j (p)]− (β(p)− pr)E[Xb
j (p)]

dp

dt
=
[hfsf + hmsm

2
+

(1− 2hf )sf + (1− 2hm)sm
2

p
]
p(1− p),

(4.34)

where t is an auxiliary variable. Then, by setting the initial condition at t = 0, we can obtain

E[Xi
j ] as a function of p.

When negative selection is assumed, the initial condition is set by the values at equilibrium

p∗ = 0 as E(XB
b ) = r

r−hmsm and E(Xb
b ) = 1. However, for a technical reason, we cannot use

p = 0 at initial state because we cannot calculate Equation 4.34 under dp
dt = 0 (see the main

text). Instead, I set p = ε (ε � 1) as an initial state. When positive selection is assumed,

E(XB
B ) = 1, E(Xb

B) = r
r+(1−hm)sm

and p = 1 − ε is used as values at t = 0. As long as ε is

small, its effect on the numerical value appears to be very subtle.

For the case of negative selection, the establishment probability is plotted for different

population sizes N = 10, 000 and 100, 000 (Figure 4.9). All other parameters are the same as

those used for Figure 4.15B, so that Figure 4.9A is identical to Figure 4.15B. In Figure 4.9,

simulation results are plotted together with Equations 4.3, 4.7 and 4.31. Note that Equa-

tion 4.31 can be applied only when r > hmsm. It is demonstrated that, when r < hmsm, as

stated in the main text, establishment is driven by selection such that its probability does

not depend on the population size (r = 0.0, 0.005 in Figure 4.9). On the other hand, when

r > hmsm, the establishment probability is no longer determined by the selection intensity,

and proportional to 1/N because random genetic drift is the dominant force involved in the

establishment. This is shown in the inner panels for r = 0.01, 0.02 in Figure 4.9, where

Equation 4.31 agrees with the simulation results better than Equations 4.3 and 4.7 especially

for a large r (i.e., r = 0.02).
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Figure 4.9: Establishment probability for the case of negative selection against allele B in Case 1.
Different population sizes are assumed: (A) N = 10, 000, and (B) N = 100, 000. Other parameters
are sm = 0.015, sf = −0.03, hm = hf = 0.5 and u = v = 1.0 × 10−6. Note that Equation 4.31 is
plotted only for r = 0.01, 0.02. In the inner panels, the y-axis is log-scaled. Error bars on the red and
blue circles represent the 95 % confidence interval, but they are too small to be seen.

Figure 4.10 shows the establishment probability for the case of positive selection. Sim-

ulation results are plotted together with Equations 4.3, 4.7 and 4.32. Two population sizes

(N = 10, 000, 100, 000) are considered, and all other parameters are the same as those used

for Figure 4.6 so that Figure 4.10A is identical to Figure 4.6 except that the establishment

probability is log-scaled in Figure 4.10. For all recombination values, as the establishment

process depends on random genetic drift, the establishment probability is on the order of 1/N

(see Figure 4.10). Equation 4.32 agrees very well with simulations unless p0 is very small.

Finally, I consider Case 2 that involves a turnover of the heterogametic sex. Approxima-

tion formulae can be derived in a similar way to Case 1. By noting that the establishment

probability of a neutral feminizing allele is 1.07/N (Veller et al. 2017), the establishment

probability can be approximated by,

1.07

N
× E(Xb) (4.35)

when negative selection works and r > hfsf , and

1.07

N
× E(XB) (4.36)

when positive selection works. E(XB) and E(Xb) are calculated by using Equation 4.34 with

substituting hm and sm by hf and sf . These equations agree with simulation results (see

Figure 4.11 and 4.12).

Appendix F: Relationship with van Doorn and Kirkpatrick (2007, 2010)

I here attempt to relate my results with the previous theory of van Doorn and Kirkpatrick

(2007, 2010). Because their results based on a completely different model (i.e., an infinite-size

population model), it is difficult to directly compare my results and theirs. To do so, I focus

on the establishment probability in a finite size population, which may be comparable to

the growth rate obtained by van Doorn and Kirkpatrick (2007, 2010) assuming an infinite

population model. First, I briefly overview van Doorn and Kirkpatrick (2007, 2010), and

then, I provide a simple, intuitive interpretation of the difference between my results and van

Doorn and Kirkpatrick (2007, 2010).
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Figure 4.10: Establishment probability for the case of positive selection for allele B in Case 1.
Different population sizes are assumed: (A) N = 10, 000, and (B) N = 100, 000. Other parameters
are sm = 0.02, sf = −0.01, hm = hf = 0.5 and u = v = 1.0 × 10−6. The y-axis is log-scaled. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen.
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Figure 4.11: Establishment probability for the case of negative selection against allele B in Case 2.
Different population sizes are assumed: (A) N = 10, 000, and (B) N = 100, 000. Other parameters
are sf = 0.015, sm = −0.03, hm = hf = 0.5 and u = v = 1.0 × 10−6. Note that Equation 4.35 is
plotted only for r = 0.01, 0.02. In the inner panels, the y-axis is log-scaled. Error bars on the red and
blue circles represent the 95 % confidence interval, but they are too small to be seen.
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Figure 4.12: Establishment probability for the case of positive selection for allele B in Case 2.
Different population sizes are assumed: (A) N = 10, 000, and (B) N = 100, 000. Other parameters
are sf = 0.02, sm = −0.01, hm = hf = 0.5 and u = v = 1.0 × 10−6. The y-axis is log-scaled. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen.
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Overview of van Doorn and Kirkpatrick (2007, 2010):

I briefly introduce the infinite-size population models of van Doorn and Kirkpatrick (2007,

2010). Initially, the X/Y locus is the sex-determining locus, at which females have genotype

XX and males have genotype XY. There is another potentially sex-determining locus A/a, at

which allele a is initially fixed. Then, their model considers that a new sex-determining allele

A arises at locus A/a. It is also assumed that sexually antagonistic selection works at some

other loci. The model allows that there can be more than one loci under sexually antagonistic

selection and that the X/Y locus can also link with one of the sexually antagonistic loci,

whereas my model has only one sexually antagonistic locus. In order for their results to

be comparable with ours, I here set the model of van Doorn and Kirkpatrick (2007, 2010)

such that there is only one sexually antagonistic locus (corresponding to the B/b locus in my

model).

Under this model, van Doorn and Kirkpatrick (2007, 2010) derived the “invasion fitness”

of a newly arisen allele A with considering the effect of linked selection. The invasion fitness is

defined as the growth rate of allele A when the frequency of allele A is very low. They derived

the invasion fitness both for a masculinizing allele (van Doorn and Kirkpatrick 2007) and for

a feminizing allele (van Doorn and Kirkpatrick 2010). Although the two articles consider

different situations, the formulae are in the same form if we interchange the parameters of

selection in male and female, which is analogous to my results. Therefore, in the following, I

arbitrarily chose to focus on the invasion of a feminizing allele, while the same argument will

hold for a masculinizing allele.

Although they derived several approximations, I here focus on the tight linkage approx-

imation because they demonstrated that it is most accurate. In Equations 5 and 8 in van

Doorn and Kirkpatrick (2010), the invasion fitness of a feminizing allele was derived as

λA = (1− 2r)af
pW (1− pW )(af − am)− [p∗(1− p∗)− pW (1− pW )](af + am)

2(r + u+ v)
, (4.37)

where af = sf [hf + p∗(1− 2hf )], am = sm[hm + p∗(1− 2hm)] and pW is a solution of

−(−p∗ + pW )r + pW (1− pW )af + [(1− pW )v − pWu] = 0

(see also the supplementary materials of van Doorn and Kirkpatrick 2010).

Reinterpretation of van Doorn and Kirkpatrick (2007, 2010):

I here attempt to interpret Equation 4.37 in the context of my stochastic model. Although

the invasion fitness is based on an infinite-size population model, several studies (Connallon

and Clark 2010, Yeaman and Otto 2011, Charlesworth et al. 2014) suggested that the estab-

lishment probability is strongly correlated with the invasion fitness, that is, the establishment

probability of a single mutant allele with an invasion fitness of λ is given by

f =
1− e−2λ

1− e−4Nλ

≈ 2λ,

where N is the population size.
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Figure 4.13: Equation 8 of van Doorn and Kirkpatrick (2010) is plotted together with my theoretical
results. N = 100, 000 and u = v = 1.0×10−6 are assumed. Other parameters are (A) sf = 0.02, sm =
−0.02, hf = 1.0, hm = 0.0, (B) sf = 0.02, sm = −0.025, hf = hm = 0.5, (C) sf = 0.02, sm =
−0.01, hf = hm = 0.5 and (D) sf = 0.02, sm = −0.02, hf = hm = 0.5. Error bars on the red and blue
circles represent the 95 % confidence interval, but they are too small to be seen.

I find that 2λA is quantitatively in very good agreement with my ϕB(p∗), the establishment

probability of allele A arising in linkage with beneficial allele B, as demonstrated in Figure 4.13

(the blue line with + and green line with 4 in Figure 4.13). Note that I here use a fairly

large N to reduce the effect of random genetic drift so that 2λA can be better understood in

my framework. It appears that 2λA does not take into the case that allele A arises in linkage

with allele b because 2λA does not agree with p∗ϕB(p∗) + (1−p∗)ϕb(p∗) (the red line with©
in Figure 4.13). It may be concluded that their λA should well reflect the behavior of allele

A when (i) the frequency of allele B is p∗ and (ii) the focal allele A is linked with allele B,

rather than the general establishment probability with no conditions that correspond to my

ϕ (the black line with × in Figure 4.13). The first condition (i) makes sense because p would

be at the equilibrium frequency, p∗, in a deterministic treatment. The second one (ii) may be

understood if the case that allele A links with allele b is ignored because the invasion fitness

for this case is smaller than 1.
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Figure 4.14: Establishment probability for the case of balancing selection on allele B. Different
strengths of selection are assumed: (A) sm = −sf = 0.02, (B) sm = −sf = 0.008 and (C) sm = −sf =
0.002. Other parameters are assumed to be hm = 1.0, hf = 0.0, N = 10, 000, u = v = 1.0 × 10−6.
Error bars on the red and blue circles represent the 95 % confidence interval, but they are too small
to be seen.
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Figure 4.15: Establishment probability for the case of negative selection against allele B. Different
strengths of selection are assumed: (A) sm = 0.02, (B) sm = 0.015 and (C) sm = 0.008. Other
parameters are assumed to be sf = −2sm, hm = hf = 0.5, N = 10, 000, and u = v = 1.0 × 10−6.
Error bars on the red and blue circles represent the 95 % confidence interval, but they are too small
to be seen.
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Figure 4.16: Establishment probability of allele A for different dominance and recombination rates
in Case 2. Three dominance coefficients are assumed: (A) hf = 0.0, (B) hf = 0.5 and (C) hf = 1.0.
Other parameters are as follows: sf = −sm = 0.02, hm = hf , N = 10000, u = v = 1.0 × 10−6. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen.
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Figure 4.17: Establishment probability for the case of balancing selection for allele B in Case 2.
Different strengths of selection are assumed: (A) sf = −sm = 0.02, (B) sf = −sm = 0.008 and (C)
sf = −sm = 0.002 are assumed. Other parameters are hf = 1.0, hm = 0.0, N = 10000, u = v =
1.0× 10−6. Error bars on the red and blue circles represent the 95 % confidence interval, but they are
too small to be seen.
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Figure 4.18: Establishment probability for the case of negative selection against allele B in Case 2.
Different strengths of selection are assumed: (A) sf = 0.02, (B) sf = 0.015 and (C) sf = 0.008. Other
parameters are sm = −2sf , hm = hf = 0.5, N = 10, 000, and u = v = 1.0 × 10−6. Error bars on the
red and blue circles represent the 95 % confidence interval, but they are too small to be seen.
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Figure 4.19: Establishment probability for the case of positive selection for allele B in Case 2. Other
parameters are sf = 0.02, sm = −0.01, hm = hf = 0.5, N = 10, 000, and u = v = 1.0 × 10−6. Error
bars on the red and blue circles represent the 95 % confidence interval, but they are too small to be
seen.

Approximations

Recombination rate

E
st

ab
lis

hm
en

t p
ro

ba
bi

lit
y

A Balancing selection B Negative selection C Positive selection D Equalizing selection

Equation 4.12 Simulation

u = v = 1.0 × 10-5

u = v = 1.0 × 10-6

u = v = 1.0 × 10-7

1e−04 5e−03 5e−01

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

1e−04 5e−03 5e−01

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

1e−04 5e−03 5e−01

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

1e−04 5e−03 5e−01

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

Figure 4.20: Establishment probability of a feminizing allele for different modes of sexually an-
tagonistic selection. N = 100, 000 and u = v are assumed. Other parameters are (A) sf =
0.02, sm = −0.02, hf = 1.0, hm = 0.0, (B) sf = 0.02, sm = −0.025, hm = hf = 0.5, (C)
sf = 0.02, sm = −0.01, hm = hf = 0.5 and (D) sf = 0.02, sm = −0.02, hm = hf = 0.5. Error
bars on the red and blue circles represent the 95 % confidence interval.
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Chapter 5

Muller’s ratchet of the Y chromosome with gene con-

version

5.1 Introduction

Non-recombining chromosomes such as Y chromosome often degenerate rapidly because dele-

terious mutations accumulate irreversibly. This process called Muller’s ratchet (Muller 1964)

has been investigated extensively in many theoretical studies (Haigh 1978, Stephan et al.

1993, Gessler 1995, Charlesworth and Charlesworth 1997, Gordo and Charlesworth 2000a,b,

Jain 2008, Rouzine et al. 2008, Waxman and Loewe 2010, Neher and Shraiman 2012, Goyal

et al. 2012, Metzger and Eule 2013). Although these studies used models of single-copy genes,

recent sequencing of the Y chromosome has revealed that many genes have acquired multi-

ple copies through gene duplication. These theoretical results therefore cannot be directly

applied to the Y chromosome, because the evolution of duplicated genes is not as simple as

that of single-copy genes. Duplicated genes are likely to undergo concerted evolution, during

which the duplicated copies coevolve by exchanging their DNA sequences with each other

by gene conversion (Ohta 1983, Arnheim 1983). The major effect of gene conversion during

concerted evolution is that, under neutrality, the level of divergence between the duplicated

copies is kept low, while the level of polymorphism within each copy is increased (Innan 2002,

2003, Teshima and Innan 2004). It has been theoretically demonstrated that the effect of

selection is enhanced in duplicated genes; deleterious mutations are more efficiently removed,

and beneficial mutations are more likely to become fixed in both of the duplicated copies

(Mano and Innan 2008). However, the way in which gene conversion affects the degeneration

of the Y chromosome, in which single-copy genes and duplicated genes coexist with complete

linkage, is not fully understood.

The aim of this study was to theoretically understand the degeneration process of du-

plicated genes with special interest in the Y chromosome. Y chromosomes have a unique

evolutionary history. They usually evolve from an autosome, on which a sex-determining

locus arises. After recombination with the X chromosome is suppressed, the Y chromosome

gradually loses functional genes by the accumulation of deleterious mutations (Charlesworth

and Charlesworth 2000, Bachtrog 2013). During this process, many genes undergo gene du-

plication (Skaletsky et al. 2003, Hughes et al. 2010, 2012, 2020, Soh et al. 2014). Duplicated

gene copies are either in large palindrome structures, as found in primates (Skaletsky et al.

2003, Hughes et al. 2010, 2012), or arranged in tandem, as found in mouse (Soh et al. 2014),

bull (Hughes et al. 2020) and fruit fly (Bachtrog et al. 2019). Since homologous copies of-
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ten show high sequence identity, frequent gene conversion should have occurred between the

copies (Rozen et al. 2003, Hallast et al. 2013, Skov et al. 2017). These findings indicate that

the degeneration of the Y chromosome involves both single-copy and duplicated genes. In

this work, I develop a theory to address the following questions: (i) After gene duplication,

will the degeneration rate become faster or slower? and (ii) How does gene duplication affect

the rate of degeneration of linked single-copy genes?

To investigate these questions, I used a model of Muller’s ratchet. In a broad sense,

Muller’s ratchet is a process by which deleterious mutations are fixed irreversibly in the

absence of recombination (Muller 1964). In theoretical reports, it is commonly assumed

that all mutations have the same effect on fitness (but see Söderberg and Berg (2007)).

Under these conditions, the fitness of an individual depends only upon how many deleterious

mutations it has, therefore individuals in the population can be classified based on the number

of deleterious mutations (d), as illustrated in Figure 5.2A, in which all haploid individuals

have four functional genes, represented by different colored boxes. The class d = 0 consists

of individuals with no deleterious mutations, which have the highest fitness in the population

(i.e., the least-loaded class in this situation). The second class is that of individuals with

one deleterious mutation (d = 1), and those who have two deleterious mutations belong to

the class d = 2. Because I assume that all mutations are irreversible (i.e., back mutation is

ignored), the class of an individual can shift down (e.g., d = 0 → 1 → 2) as it accumulates

mutations. Under these assumptions, the population can be structured according to d, and

Muller’s ratchet proceeds as these classes turn over and over. In practice, if the least-loaded

class (d = 0 in Figure 5.2A) goes extinct, the ratchet clicks and the class of d = 1 becomes

the least-loaded class.

I here extend the model of Muller’s ratchet to the case of duplicated genes. Figure 5.2B

illustrates an example in which all haploid individuals have four genes which have been dupli-

cated. Again, the population can be structured based on the number of deleterious mutations,

and the process of Muller’s ratchet proceeds along the turnover of the classes. The major

difference is that a new deleterious mutation which has occurred in the duplicated genes is

not “irreversible” because gene conversion could remove it. If the original part of the in-

tact copy without the corresponding mutation is transferred, the mutated copy will lose the

mutation. However, if gene conversion occurs in the opposite direction—from the mutated

copy to the intact version—the mutation becomes irreversible in this individual, because gene

conversion cannot remove it any more, under the assumption of no back mutation. I refer to

the former and latter types of mutations as reversible and irreversible mutations, respectively

(presented by yellow and red circles in Figure 5.2B). Thus, when a new mutation arises in

one copy, its fate is not determined, and we can consider that the mutation can contribute to

an irreversible click of Muller’s ratchet when the mutation is shared in both copies. In this

model, we can simplify the process of Muller’s ratchet if we assume that all mutations are

recessive and have the same fitness effect. Individuals can therefore be classified according

to the number of irreversible mutations they carry. Note that reversible mutations have no

fitness effect. Intuitively, gene conversion should have two opposite effects on the degenera-

tion process (Graves 2004). If gene conversion mutates both copies, producing an irreversible

mutation, the degeneration process is accelerated. If, however, gene conversion removes the

mutation and restores both copies to the original form, the speed of degeneration is slowed. I
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used this model to explore the way in which gene conversion affects the degeneration of dupli-

cated genes. I was particularly interested in the interactions between the two counteracting

effects of gene conversion. I provide analytical expressions of the speed of Muller’s ratchet

under this simplified model with a constant selection coefficient. I also consider the effect of

variable selection coefficients and the degree of dominance, using mathematical analysis and

simulations.

Several studies have investigated the effect of gene conversion on the degeneration of Y

chromosomes (Connallon and Clark 2010, Marais et al. 2010), but their focuses have been

different from those of the present study. Connallon and Clark (2010) investigated the role of

gene conversion on the conservation of duplicated pairs. Because their model assumes that

deleterious mutations have lethal effects, a mutation cannot be shared by both duplicated

copies, because this situation would be lethal. Therefore, there is no gene loss through the

accumulation of deleterious mutations. Marais et al. (2010) investigated the evolution of the

human Y chromosome using simulations, in which gene conversion between duplicated genes

was taken into account. Their focus was on the process of fixation of a modifier of the gene

conversion rate, rather than the long-term degeneration process.

5.2 Model

5.2.1 General model

I used a discrete-generation Wright–Fisher model of a haploid population with size N . Each

chromosome consists of L1 single-copy genes and L2 pairs of duplicated genes (Figure 5.1A).

I assume no inter-chromosomal recombination, or crossing-over, so all genes on the same

chromosome are completely linked. A chromosome therefore behaves as a single haploid

individual. I am interested in the way in which the genes lose their functions through Muller’s

ratchet, resulting in a reduction in the number of functional genes on the chromosome. To

this end, I applied a simple loss-of-function model to each gene and gene pair. For the i-th

single-copy gene, I assume the fitness effect of losing the gene function to be si. I only consider

loss-of-function mutations, so that one mutation is sufficient to make a gene a pseudogene,

with loss of the gene function. Throughout this article, I say a gene is “lost” when it loses

the function. The rate of loss-of-function mutation is u per copy per generation, and no back

mutation is allowed. Every mutation therefore results in an irreversible loss of the gene (see

the right state with a red circle in Figure 5.1B).

For a pair of duplicated genes (Figure 5.1C), I set the fitness as follows. To be comparable

with the case of single-copy genes, the fitness of the state with one functional copy is 1 (middle

in Figure 5.1C). The other copy is inactivated by a loss-of-function mutation, which is shown

by a yellow circle in Figure 5.1C because it is not irreversible, but “reversible”. A reversible

mutation can disappear when the intact sequence is transferred from the other functional

copy by gene conversion. If gene conversion occurs in the opposite direction, the loss-of-

function mutation is transferred to the functional copy, resulting in a state in which the

loss-of-function mutation is shared by both copies (the right state with red circles in both

copies in Figure 5.1C). In this state, the gene has completely lost its function, because the

mutation became irreversible, since gene conversion cannot rescue the gene function anymore,

and the fitness is given by 1 − t2,i for the i-th pair of duplicated genes. The fitness of the
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state with two intact copies (left in Figure 5.1C) is given by 1 + t1,i. Having two copies

therefore confers a selective advantage by t1,i. It is well documented that Y chromosomes

have a number of duplicated genes, some of which seem to provide an advantage by increasing

the dosage of the gene product (Hughes et al. 2010, 2012, 2020, Soh et al. 2014). Under this

model, if we assume t1,i = 0, t2,i > 0, the functional allele is in complete dominance, whereas

if t1,i = t2,i > 0 is assumed, the dominance effect is additive. Loss-of-function mutations arise

at a rate of u per copy per generation, and no back mutation is allowed. Gene conversion

occurs at a rate of c per copy per generation in both directions between the duplicated copies.

I assume that a gene conversion event transfers the entire genic region (represented by a single

box in Figure 5.1C).

It should be noted that two independent mutations can cause a loss of the gene function,

as illustrated in the lower case of the right part of Figure 5.1C. This situation is more complex,

because the gene function is lost but the two mutations are still reversible. Nevertheless, I

treat this situation as if the gene function is irreversibly lost, which is true in my model, in

which a gene conversion event transfers the entire genic region.

The fitness of a haploid individual (chromosome) is determined by the multiplicative effect

of all genes. That is,

f =

L1∏
i=1

w1,i

L2∏
i=1

w2,i, (5.1)

where w1,i and w2,i are determined as follows:

w1,i =

1 (if i-th single-copy gene is functional)

1− si (if i-th single-copy gene is lost)

and

w2,i =


1 + t1,i (if both copies of the i-th duplicated genes are functional)

1 (if one copy of the i-th duplicated genes is lost)

1− t2,i (if both copies of the i-th duplicated genes are lost)

Based on the fitness of all individuals in the current population, the next generation is

generated following the Wright–Fisher model.

5.2.2 Simplification for mathematical analyses

Since the general model described above is too complicated for mathematical analysis, we

make the following two simplifying assumptions. First, I assume that all genes have the same

fitness effect. Therefore, si = s, t1,i = t1, t2,i = t2 for all i. Second, we assume that the

fitness effect of losing the function is the same for a single-copy gene and a pair of duplicated

genes (s = t2). Under these assumptions, I derive the rate of gene loss in two special cases:

one in which the functional copy is in complete dominance (t1 = 0), and one in which it is

additive (t1 = t2). In the complete dominance case, the fitness of an individual depends on

the number of irreversible mutations, d, and the population can be structured based on d

(Figure 5.2). In the additive case, the fitness of an individual depends on the total number

of mutations, d∗, and individuals can be classified based on d∗ (Figure 5.3).
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Figure 5.1: Summary of the model. (A) Chromosome considered in the model. (B, C) Fitness models for
a single-copy gene (B) and a pair of duplicated gene (C). Red and yellow circles are, respectively, irreversible
and reversible mutations.
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Figure 5.2: Illustration of the population structure based on d, the number of irreversible mutations for
(A) the case of all single-copy genes and (B) all duplicated genes. Boxes in different colors represents genes,
or genic regions. Boxes in the same color in (B) indicate duplicated gene pairs. Red and yellow circles are,
respectively, irreversible and reversible mutations.
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Figure 5.3: Illustration of the population structure based on d∗, the number of deleterious mutations for
(A) the case of all single-copy genes and (B) all duplicated genes. Boxes in different colors represents genes,
or genic regions. Boxes in the same color in (B) indicate duplicated gene pairs. Red and yellow circles are,
respectively, irreversible and reversible mutations.

5.3 Results

I investigated the way in which a non-recombining chromosome loses functional genes through

Muller’s ratchet. My model assumes a chromosome carrying L1 single-copy genes and L2 pairs

of duplicated genes, and I compared the rates of gene loss for single-copy genes and duplicated

genes. I theoretically consider the speed of gene loss per gene, conditional on L1 and L2.

The most part of the following is a theoretical analysis, to which the simplifying assumptions

detailed above apply. These assumptions are relaxed in the simulation-based analysis, where

I mention it.

5.3.1 Duplication with no fitness effect of dosage

I first consider the case in which the presence of two copies, which have arisen by duplication,

confers no selective advantage in comparison with having only one copy (t1 = 0). In this

case, the fitness of each individual is specified only by the number of irreversible mutations,

d, as defined in Figure 5.2, and reversible mutations can be ignored. I first derive the

equilibrium size of the least-loaded class (d = 0), Ne, conditional on L1 and L2, which

is the most important quantity with which to determine the evolutionary dynamics of the

population. Let U be the total rate of production of irreversible mutations per chromosome

(haploid individual). Irreversible mutations arise at rate uL1 in single-copy genes, while

the rate for duplicated genes is (u + c)Hj , where Hj is the number of reversible mutations

in the j-th individual. If we ignore the variance of Hj among individuals, U is given by

U = uL1 + (u + c)H̄ where H̄ is the average of Hj . We can ignore irreversible mutations

segregating in the population, because they exist at low frequencies under the conditions I

consider in this work, u� U ∼ s. Following Haigh (1978), Ne is then expressed as

Ne = N exp(−U/s), (5.2)
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indicating we need to derive H̄ to obtain Ne. It is obvious that H̄ largely depends on the

frequency of individuals having one reversible mutation in each gene pair, which is denoted

by pi for the i-th gene pair. pi is mainly determined by the frequency dynamics in the least-

loaded class, and the deterministic change of pi per generation in the least-loaded class is

given by

E[∆pi] =
pi + 2u(1− pi)− (u+ 2c)pi

1− (u+ c)pi
− pi

≈ 2u(1− pi)− cpi − (u+ c)pi(1− pi),
(5.3)

where the term (u+ c)pi in the denominator represents the proportion of individuals that are

removed from the least-loaded class by an irreversible mutation, by additional mutation or

gene conversion that occurred in individuals that already had one mutation. Therefore, by

using Wright’s formula (Wright 1931), the stationary distribution of pi, φ(pi), is given by

φ(pi) = Ce−2Ne(u+c)pip4Neu−1
i (1− pi)2Nec−1, (5.4)

where C is a constant determined such that
∫ 1

0 φ(pi)dpi = 1. Then, considering L2 pairs of

duplicated genes, H̄ can be approximately as

H̄ ≈ L2

∫ 1

0
pφ(p)dp

= L2
2u

2u+ c
1F1(4Neu+ 1; 4Neu+ 2Nec+ 1;−2Ne(u+ c))

1F1(4Neu; 4Neu+ 2Nec;−2Ne(u+ c))

(5.5)

where 1F1(·) is a confluent hypergeometric function. We now have H̄ as a function of Ne.

We can therefore obtain Ne as a solution of Equations 5.2 where H̄ in U is replaced by

Equation 5.5.

With Ne from Equation 5.2, it is straightforward to derive T , the expected waiting time

for the first click, conditional on L1 and L2 by using the common approach in the theory of

Muller’s ratchet for single-copy genes (Gordo and Charlesworth 2000a, Jain 2008, Rouzine

et al. 2008). When Nes > 1 (i.e., slow ratchet regime), T is approximated by

T ≈ eαsNe

αs

√
π

αsNe
(5.6)

(Jain 2008), where α =
√
s/U (Goyal et al. 2012). When Nes < 1 (i.e., fast ratchet regime),

following Rouzine et al. (2008), T is approximately given by

T ≈ 1

Uv
, (5.7)

where v is a solution of the following equation:

α2 log(NUα3) =
(

1− v

2

(
(1− log v)2 + 1

))
− α2 log

[√
v3

1− v
1− log v

1− v(1− log v) + 5α2/6

]
.

Then, the gene loss rate per gene for a single-copy gene and that for a pair of duplicated
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genes (R1 and R2, respectively) can be derived as

R1 =
uL1

U

1

L1T

=
u

U

1

T

R2 =
(u+ c)H̄

U

1

L2T
,

(5.8)

because these rates are proportional to 1/T and the rates of irreversible mutation.

To verify the performance of Equation 5.8, I carried out forward simulations, and part

of the result is shown in Figures 5.4 and 5.5. My simulation assumed a Wright–Fisher

population with N haploid individuals with L1 single-copy genes and L2 pairs of duplicated

genes. Mutation and gene conversion rates and their fitness effects were as described in the

Model section. I assumed that N = 10, 000 and u = 1.0× 10−5. Then, in every generation, a

random N haploid individuals were generated based on the fitness of the individuals in the

previous generation (see Equation 5.1). The selection parameters were assumed such that

s = 0.01 for a strong selection case, and s = 0.0025 for a weak selection case. The purpose

of this simulation was to obtain T̄1 and T̄2, the average time required for one click of the

ratchet at single-copy genes and duplicated genes, respectively, conditional on L1 and L2.

From them, the two gene loss rates per gene, R1 and R2, can be computed as R1 = 1
L1T̄1

and R2 = 1
L2T̄2

, respectively. However, if we simply run a simulation, L1 and L2 decreases

along the run, making it difficult to evaluate T conditional on a specified pair of L1 and

L2. To solve this problem, in my simulation, I used an ad-hoc method, in which L1 and L2

were kept constant by adding an intact gene (or a pair of duplicated genes) when I observed

a loss of a gene (or a gene pair). This treatment allowed us to approximately obtain the

expectation of T conditional on L1 and L2. See Appendix A, in which I demonstrate that

this heuristic treatment worked quite well. In each simulation run, after a burn-in period of

100N generations, I scored the waiting time T for every click for both classes of gene, and

the run was terminated when we observed 10,000 clicks or 10,000N generations had passed.

Figure 5.4 compares the results of two extreme cases: In one, the simulated chromosome

consists only of duplicated genes (L1 = 0 and L2 = 2, 000), and in the other, only single-copy

genes are present in the chromosomes (L1 = 2, 000 and L2 = 0). In the case of all duplicated

genes, three levels of dominance were considered (t1 = 0, t2/2, and t2 presented in blue, green

and red, respectively), and the gene conversion rate was changed from 10−7 to 10−3. The

result for the case of all single-copy genes is shown by the black broken line in Figure 5.4.

Let us focus on the simulation result of no dominance presented by blue circles (t1 = 0),

to which Equation 5.8 (blue line) is applicable. Equation 5.8 is in a good agreement with

the simulation result, except when the gene conversion rate is very large (c > 10−4). In

the strong selection case, where the ratchet proceeds so slowly that each click occurs almost

independently, R2 in the case of all duplicates is largely affected by the gene conversion

rate (Figure 5.4A). When the gene conversion rate is very small (c = 10−7), R2 is almost

identical to R1 in the case of all single-copy genes. This is because the ratchet process in

duplicated genes is quite similar to that of single-copy genes. The pattern illustrated, with

two independent mutations, in Figure 5.1C, applies to this case. In a pair of duplicated

genes, a first mutation itself is neutral and rarely transferred to the other copy, because of
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a very small c, and only a secondary mutation contributes to the ratchet, behaving as if it

occurs in a single-copy gene. R2 increases as the gene conversion rate increases. This can be

explained by the increase of U in Equation 5.2. Because Equation 5.5 is approximately given

by H̄ ≈ 2uL2
2u+c when Neu,Nec� 1, U becomes:

U ≈ u(L1 + L2) +
uc

2u+ c
L2. (5.9)

This equation indicates that, when the mutation and gene conversion rates are not large

(Neu,Nec � 1), U for the case of all duplicates is the same as that for the case of all

single-copy genes when c = 0, and R2 increases as c increases. For a very large c (Nec ∼
1), R2 decreases with increasing c, because a high c keeps pi very low and reduces U (see

Equation 5.4). At an extremely high gene conversion rate, the fate of a reversible mutation is

determined very quickly. In such a case, a reversible mutation arises at a rate of 2u, and half

become irreversible mutations. These mutations then behave like mutations in a single-copy

gene that arises at rate u. Therefore, R should be as low as the expectation for a single-copy

gene (the dashed line). This explains why R decreases as c becomes very high. Since the

size of the least-loaded class, Ne, is reduced significantly as U increases, the gene loss rate is

quite sensitive to the change in c in this regime.

Figure 5.4B shows the result for the weak selection case, in which selection is so weak

that multiple clicks occur in a sequential manner with overlapping fixation processes. The

qualitative effect of gene conversion on R2 appears similar to that in Figure 5.4A: If c is very

small, R2 is almost identical to R1 in the case of all single-copy genes (black dashed line).

With increasing c, R2 increases up to an intermediate c, and then decreases. The overall

quantitative effect of gene conversion is smaller in comparison with Figure 5.4A, because Ne

is always very small in this regime, and the effect of U on R2 is small.

Figure 5.5 assumes that single-copy genes and duplicated genes coexist. In this simulation,

it was assumed that L1 = L2 = 1, 000, and the other parameters were the same as those used

in Figure 5.4. The gene loss rates are shown by open circles for single-copy genes (R1) and

by filled circles for duplicated genes (R2). Let us focus on the results of no dominance (blue

circles). Equation 5.8 (blue dashed line in the left panel for R1, blue solid line for R2 in the

right panel in Figure 5.5) agrees well with the simulation results, unless the gene conversion

rate is very large.

In the strong selection case (Figure 5.5A), R1 and R2 are very similar to each other. The

increase in R1 and R2 from that for the case of all single-copy genes (black dashed line) is

smaller than that in Figure 5.4A, which is merely due to the smaller L2 assumed in Figure 5.5.

R2 is slightly larger than R1 because the rate of generation of irreversible mutations is larger

for duplicated genes (see Equation 5.9).

In the weak selection case (Figure 5.5B), R1 is less sensitive to c and almost identical

to R1 for the case of all single-copy genes, while R2 shows a similar behavior to that for

the case of all duplicates in Figure 5.4B. This is because weak selection causes a small Ne,

a situation in which random genetic drift dominates. In such a case, the gene loss rate is

roughly proportional to the rate of generation of irreversible mutations, which is constant at

u in single-copy genes for any value of c.

I next consider the ratchet process over the long term, where a chromosome gradually
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loses its functional genes. Let L1(τ) and L2(τ) be the number of remaining single-copy and

duplicated genes at time τ , respectively. Using Equation 5.8, the differential equations for

L1(τ) and L2(τ) are given by

dL1(τ)

dτ
= −L1R1

dL2(τ)

dτ
= −L2R2,

(5.10)

from which we can numerically compute L1(τ) and L2(τ). To check the performance of

Equation 5.10, I ran forward simulations, and the results are shown in Figure 5.6. For this

purpose, I simply ran the above simulation without keeping L1(τ) and L2(τ) constant (see

above for details), so that the number of genes monotonically decreased during the process. I

assumed that each chromosome initially had L1(0) intact single-copy genes and L2(0) intact

pairs of duplicated genes. It was also assumed that N = 10, 000, L1(0) = L2(0) = 1, 000,

u = 1.0×10−5 and s = t2 = 0.0025, and three levels of dominance were used (t1 = 0, t2/2, t2).

Two different gene conversion rates were considered: c = 1.0 × 10−4 (deep green) and c =

1.0 × 10−6 (orange). In each panel, the result is compared with that for the case of all

single-copy genes presented by black circles (i.e., L1(0) = 2, 000, and L2(0) = 0), which was

obtained by additional simulations.

As I consider the case of no dominance in this section, let us focus on Figure 5.6A.

Equation 5.10 (solid lines) is in good agreement with the simulation results. When the gene

conversion rate is low (c = 10−6), the gene loss rates for both single-copy genes and duplicated

genes are very similar to those in the case of all single-copy genes, consistent with the results

in Figure 5.5. When the gene conversion rate is high (c = 10−4), the gene loss process is

slightly accelerated in duplicated genes, consistent with Figure 5.5B. I also consider the case

where si and t2,i are heterogeneous among loci in Appendix B and obtained qualitatively

similar patterns (see Appendix B for details).

5.3.2 Duplication with an additive fitness effect of dosage

I consider the case of t1 = t2 = s, in which duplication has an additive effect on fitness. In

this case, the fitness of individuals can be specified by the sum of the number of reversible

mutations and irreversible mutations, d∗. The treatment for single-copy genes is the same as

in the previous section, while some modifications are needed for duplicated genes. Unlike the

previous section, a single irreversible mutation in duplicated genes should be counted as two

deleterious mutations, because having an irreversible mutation is as deleterious as having two

reversible mutations. Based on d∗, the Muller’s ratchet process is illustrated in Figure 5.3.

This ratchet is different from that in the previous section (see Figure 5.2) because a ratchet

click can occur in either direction. Let us consider the situation where the least-loaded class

has d∗ = d0 mutations. A ratchet click occurs in the forward direction when the class d∗ = d0

goes extinct, as in the previous section. We also need to consider a click in the backward

direction, when an individual with d∗ = d0 − 1 mutations arises by gene conversion, and its

descendants become the majority of the population, thereby constituting the new least-loaded

class, with d∗ = d0 − 1. Clicks in both directions simply change the number of reversible

mutations, and only a part of the forward clicks can cause gene loss. The analytical approach
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I use here is quite different from that in the previous case, but is similar to that of Goyal et al.

(2012), who incorporated back mutations into the model of Muller’s ratchet for single-copy

genes. Following Goyal et al. (2012), I consider the click process in each direction separately.

I first consider clicks in the forward direction, which increases d∗. I derive the expected

waiting time until the next click in the forward direction, TF , from which the rate of gene

loss will be derived. Let H̄ be the average number of reversible mutations per individual, and

denote the total rate of production of deleterious mutations per chromosome as U∗. We need

to incorporate the following three types of deleterious mutation to derive U∗: irreversible

mutations that arise in single-copy genes at the rate uL1, irreversible mutations that arise

in duplicated genes at the rate (u + c)H̄, and reversible mutations that arise in duplicated

genes at the rate 2u(L2 − H̄). U∗ is then given by

U∗ = uL1 + (u+ c)H̄ + 2u(L2 − H̄) (5.11)

as a sum of the three types, and the size of the least-loaded class is

N∗e = N exp(−U∗/s). (5.12)

From N∗e , TF can be obtained in a similar manner to the previous section. When N∗e s > 1

(i.e., the slow ratchet regime), TF , can be obtained from Equation 5.6 by substituting U with

U∗ and T with TF . When N∗e s < 1 (i.e., the fast ratchet regime), TF is given by Equation 5.7

by substituting U with U∗ and T with TF . Therefore, the gene loss rate per gene for a

single-copy gene and that for a pair of duplicated genes (R1 and R2, respectively) can be

derived as

R1 =
uL1

U∗
1

L1TF

=
u

U∗
1

TF

R2 =
(u+ c)H̄

U∗
1

L2TF
,

(5.13)

because these rates are proportional to 1/TF and the rates of mutation.

It should be noted that R1 and R2 are functions of H̄, which can be obtained as follows.

The dynamics of H̄ involve both forward and backward processes. That is, if we let ∆HF and

∆HB be the expected changes in H̄ per generation in the forward and backward processes,

respectively, the expected change in H̄ per generation is given by

dH̄

dτ
= ∆HF + ∆HB. (5.14)

I here explain how H̄ behaves when a forward click occurs. H̄ increases by one when a forward

click occurs by the fixation of a reversible mutation in duplicated genes, and decreases by

one when it occurs by the fixation of an irreversible mutation in duplicated genes. Because

these events occur at rates 2u(L2−H̄)
U∗TF

and L2R2, respectively, ∆HF is given by

∆HF =
2u(L2 − H̄)

U∗TF
− L2R2. (5.15)
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I will below obtain ∆HB in the following derivation for the backward process.

I next consider clicks in the backward direction, where H̄ decreases by one. I first derive

the expected waiting time until the next click in the backward direction, TB. A backward

click usually occurs when a reversible mutation is removed by gene conversion in an individual

in the least-loaded class and its descendants become the majority of the population, resulting

in a new least-loaded class. When N∗e s > 1, the treatment of the new least-loaded class is

relatively simple because its fate is determined quickly. Suppose a new least-loaded class

with d∗ − 1 arises by gene conversion in the population where the least-loaded class is d∗.

Because of strong selection, the new least-loaded class spreads in the population quickly with

probability ≈ 2s (Haldane 1927), otherwise becomes extinct. Therefore, TB is given by

TB ≈ (2scH̄N∗e )−1, (5.16)

because gene conversion creates a new least-loaded class at rate cH̄N∗e per generation.

When N∗e s < 1, the treatment of the new least-loaded class is not straightforward. Be-

cause selection is weak, the frequency of the newly arisen least-loaded class with d∗ − 1

fluctuates because of genetic drift. The newly arisen least-loaded class could be maintained

in the population for a while and become extinct by genetic drift, or it could increase in fre-

quency to some extent when a backward click occurs (but it does not necessarily mean that

the new least-loaded class becomes the majority). It is technically difficult to distinguish the

two situations. Rouzine et al. (2008) proposed that the least-loaded class can be considered

to be lost when its frequency is smaller than 1
S∗N , where S∗ = U∗v(1 − log v). Following

this proposition, I assume that the frequency of the new least-loaded class is significantly in-

creased (i.e., it is considered as a backward click) when the frequency reaches 1
S∗N , an event

which occurs with probability S∗. Then, because the expected size of the least-loaded class

is approximately given by N∗e ≈
exp(S∗TF )−1

S∗2TF
(see Rouzine et al. 2008), TB is approximately

given by

TB ≈
(exp(S∗TF )− 1

S∗TF
cH̄
)−1

=
1− log v

(e/v − 1)cH̄
,

(5.17)

where e is Euler’s number. From TB, it is straightforward to obtain ∆HB. Because a

backward click always reduces H̄ by one, which occurs at rate 1/TB, we have

∆HB = −1/TB. (5.18)

Together with Equations 5.14 and 5.15, we are now ready to compute dH̄
dτ . This treatment is

general, in that we can obtain the temporal change in H̄ from any initial condition.

To check the performance of Equation 5.13, I compare it with simulation results in Fig-

ures 5.4 and 5.5 (see above for details about the simulations). Although we can compute

R1 and R2 using Equation 5.13 for any initial values of H̄, I use a treatment with no initial

conditions specified, because I am interested in R1 and R2 conditional on L1 and L2 in a

steady state, in which the initial condition is relatively unimportant. To obtain R1 and R2

conditional on L1 and L2, I assume that the frequency of reversible mutation is in equilibrium.

91



Then, H̄ is determined from Equations 5.13 and 5.14 such that d
dτ

H̄
L2

= 1
L2

dH̄
dτ + H̄

L2
R2 = 0.

Using this H̄, I derived R1 and R2 by Equation 5.13.

Figure 5.4 shows the results of two extreme cases: In one case, the chromosome consists

only of duplicated genes (L1 = 0, L2 = 2, 000), and in the other case, it consists only of

single-copy genes (L1 = 2, 000, L2 = 0). In the case of all duplicates, since Equation 5.13 is

applicable to the case of t1 = t2, let us focus on the result represented by the red circles. The

result for the case of all single-copy genes is represented by black broken lines. Equation 5.13

agrees well with the simulation results, unless the gene conversion rate is very high.

In the strong selection case (Figure 5.4A), R2 is strongly affected by the gene conversion

rate. When the gene conversion rate is very low (c = 10−7), R2 is much higher than R1 in the

case of all single-copy genes, because U∗ is elevated due to the increase in copy number caused

by duplication (see Equation 5.11). As the gene conversion rate increases, R2 decreases, and

then drops dramatically when c ∼ 10−4, producing a bad fit between Equation 5.13 and the

simulation result. This situation arises because reversible mutations at duplicated genes are

quickly removed by gene conversion in this regime. Individuals with a reversible mutation

in the second most loaded class are quickly transferred into the least-loaded class, which

increases the size of the least-loaded class and retards its extinction. In this situation, d∗ in

the population does not follow a Poisson distribution, explaining why the simulation result is

not well explained by my derivation (Equation 5.12), in which a Poisson distribution is used

for the distribution of d∗.

In the weak selection case (Figure 5.4B), R2 is relatively robust to the gene conversion

rate. In this regime, N∗e is small enough for random genetic drift to dominate, and R2 is

roughly proportional to the rate of generation of irreversible mutations per gene, (u+c)H̄/L2

(see Equation 5.13). When the gene conversion rate is very low (c = 10−7), R2 is almost

identical to R1 in the case of all single-copy genes (Figure 5.4B). This phenomenon can be

explained by considering the fate of a newly arisen mutation, as shown in Figure 5.1C, in

which gene conversion should be ignored. If a mutation arises in one copy, given a small

N∗e , the mutation can become fixed in one copy with a specific probability. Once it is fixed,

as my model does not allow back mutation, the state with one reversible mutation (middle

in Figure 5.1C) is prolonged, because this mutation cannot be removed (if gene conversion

is ignored). The next event that could happen is that an independent mutation fixes in

the other copy, causing a loss of the duplicated genes (the lower case in the right part in

Figure 5.1C). Thus, if we consider a chromosome with L2 pairs of duplicates in a steady

state, it is likely that most pairs would be in this state (H̄ ∼ L2), because genes with their

functions already lost are out of the system. Given this situation, the rate at which another

mutation causing a gene loss is generated is approximately u per gene, which is identical to

that of the all single-copy case, explaining the similar gene loss rates in the two cases. As

the gene conversion rate increases, R2 decreases because gene conversion removes reversible

mutations to some extent, resulting in H̄ � L2.

In Figure 5.5, I consider a chromosome in which single-copy genes and duplicated genes

coexist. It was assumed that L1 = L2 = 1, 000 and other parameters were the same as those

used for Figure 5.4. In the additive selection case (red circles), Equation 5.13 is in a good

agreement with the simulation results unless the gene conversion rate is very large.

In the strong selection case, R2 exhibits behavior similar to that shown in Figure 5.4A,
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but R1 is quite different. When the gene conversion rate is very low (c = 10−7), R1 is

much higher than that of the all single-copy case, because U∗ elevated by gene duplication

reduces N∗e , so that the ratchet clicks in the forward direction occur more frequently (see

Equations 5.11–5.13). Unless the gene conversion rate is very high (c < 10−4), R1 is quite

robust to c, because gene conversion in duplicated genes should not have a direct effect on

mutations in single-copy genes. When the gene conversion rate is very high (c > 10−4), R1

starts decreasing with increasing c. The fit of Equations 5.13 to the simulation result is not

good for the same reason as that in Figure 5.4A.

When selection is weak, R2 is very similar to that in Figure 5.4B. R1 is less affected by the

gene conversion rate, because Ne is small enough for random genetic drift to dominate, and

the gene loss rate is roughly proportional to the rate of generation of irreversible mutations,

which is constant for u in single-copy genes.

Next, I focus on the long-term degeneration process. L1(τ) and L2(τ) are the numbers of

remaining single-copy genes and duplicated gene pairs, respectively, and H̄(τ) is the average

number of reversible mutations per individual at time τ . By using Equations 5.13 and 5.14,

the differential equations for L1(τ), L2(τ) and H̄(τ) are given by

dL1(τ)

dτ
= −L1R1

dL2(τ)

dτ
= −L2R2

dH̄(τ)

dτ
= ∆HF + ∆HB,

(5.19)

from which we can compute the way in which L1(τ), L2(τ) and H̄(τ) change over time.

To check the accuracy of Equation 5.19, I performed simulations (Figure 5.6C). In the

initial state of the simulation, each chromosome had 1, 000 intact single-copy genes and

1, 000 intact duplicated pairs of genes (L1(0) = L2(0) = 1, 000 and H̄(0) = 0). Two gene

conversion rates (c = 10−4, 10−6) were considered. It was found that, at both of the two gene

conversion rates, single-copy genes decreased faster and duplicated genes decreased more

slowly than in the case of all single-copy genes (black circles in Figure 5.6C), because the

rapid decrease in the number of single-copy genes slows ratchet clicks in the forward direction.

As a consequence, more duplicated genes remain functional than in the case of all single-copy

genes. The deviation from the case of all single-copy genes is larger when the gene conversion

rate is higher. A very similar result was obtained when the assumption of constant selection

coefficient was violated. See Appendix B for details.

5.3.3 Duplication with an intermediate fitness effect of dosage

Finally, I consider the case of an intermediate degree of dosage effect, where t1 = t2/2 is

assumed. Since it was difficult to obtain analytical results, I investigated this case using

simulations. The green circles in Figure 5.4 show R2, the gene loss rate in the case of all

duplicated genes (L2 = 2, 000). In the strong selection case, R2 generally decreases as c

increases, whereas in the weak selection case, R2 is almost identical to R1 in the case of all

single-copy genes. When both single-copy genes and duplicated genes coexist (L1 = L2 =

1, 000, in green in Figure 5.5), the pattern is generally similar to that in Figure 5.4. In the

strong selection case, R1 and R2 show a similar pattern to the additive case. Figure 5.6B
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Figure 5.4: Gene loss rates per duplicated gene pair for (A) the strong selection case and (B) the weak
selection case when all genes are single-copy (L1 = 2, 000, L2 = 0) or all genes are duplicated genes (L1 =
0, L2 = 2, 000). The closed circles are the simulation results for the case of all duplicated genes (R2), while
the black dashed lines are the simulation results for the case of all single-copy genes (R1). The solid lines are
the theoretical results, which are available for t1 = 0 (blue) and t1 = t2 (red). N = 10, 000, u = 1.0 × 10−5,
and s = t2 are assumed.

shows the long-term degeneration pattern. In Appendix B, I consider the case where si

and t2,i are heterogeneous among loci. Overall, the behavior when t1 = t2/2 seems to be

intermediate between those of the cases of no fitness effect of dosage (t1 = 0) and additive

effect (t1 = t2).

5.4 Discussion

Muller’s ratchet is a process in which a non-recombining chromosome irreversibly accumu-

lates deleterious mutations (Muller 1964). Muller’s ratchet has been considered to play an

important role in the evolution of Y chromosome (Bachtrog 2008). Previous theories regard-

ing Muller’s ratchet considered only single-copy genes, and the way in which Muller’s ratchet

works in duplicated genes has not been fully understood. Because there are a number of

duplicated genes on the Y chromosome in many species (Skaletsky et al. 2003, Hughes et al.

2010, 2012, 2020, Soh et al. 2014, Bachtrog et al. 2019, Peichel et al. 2020), in this work

I developed a theory for the process of Muller’s ratchet on a non-recombining chromosome

in which single-copy and duplicated genes coexist. Mutations in duplicated genes can be

considered to be a kind of epistatic mutations, because the strength of selection on a mu-

tation depends on whether the other copy already has a mutation or not. Several studies

have investigated the effect of epistasis on the process of Muller’s ratchet (Charlesworth et al.

1993b, Kondrashov 1994, Butcher 1995, Jain 2008). However, these studies have focused on

more complex epistatic interactions, in which the fitness effect of a mutation depends upon

mutations at all other loci.

This work focuses on the role of gene conversion between duplicates, which has two

opposite effects on the degeneration process. Degeneration is promoted if gene conversion

leads to the mutation of both copies, while degeneration is retarded if gene conversion restores

both copies to the original state. My theoretical results demonstrate that the effect of gene

conversion is complex, depending on the fitness effect of dosage change by gene duplication.

When duplication has no fitness effect by dosage, gene conversion increases the rates of loss

of both single-copy and duplicated genes (see Figure 5.5). In the case of an additive dosage

effect on fitness, the gene loss rate of single-copy genes is elevated by gene duplication, while

gene conversion prevents duplicated genes from losing their functions (see Figure 5.5). These
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Figure 5.5: Gene loss rates per gene (or gene pair) for (A) the strong selection case and (B) the weak
selection case when single-copy genes and duplicated genes coexist (L1 = L2 = 1, 000). The left panels show
the gene loss rate of single-copy genes (R1) and the right panels show that of duplicated genes (R2). The
open and closed circles are the simulation results, and the colored lines show the theoretical results, which are
available for t1 = 0 (blue) and t1 = t2 (red). The black dashed lines are the simulation results for the case of
all single-copy genes. N = 10, 000, u = 1.0× 10−5 are assumed.
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Figure 5.6: Long-term degeneration process with different dominance: (A) t1 = 0, (B) t1 = t2/2, and (C)
t1 = t2 are assumed. The open circles represent simulation results. The solid lines are theoretical predictions,
which are available for (A) and (C). Other parameters are N = 10, 000, u = 1.0× 10−5, s = t2 = 0.0025, and
L1 = L2 = 1, 000.
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patterns are more clearly observed when selection is strong.

This complex nature of the effect of Muller’s ratchet on the Y chromosome has not previ-

ously been identified. Most of the previous studies have considered only the positive effects

of gene conversion. For example, Connallon and Clark (2010) showed that gene conversion

works positively in the conservation of essential duplicated genes, assuming mutations are

lethal when present in both copies. My work demonstrates that this is not the case when du-

plicated genes are not essential (see the Introduction for the difference in the models). Mano

and Innan (2008) considered a “single” pair of duplicated gene in a Wright-Fisher popula-

tion, so the effect of linked genes was ignored, and demonstrated that deleterious mutations

could be efficiently removed by gene conversion, which suggests that gene conversion could

slow the degeneration process of duplicated genes (similar to Connallon and Clark (2010)).

However, I found that, when multiple genes are completely linked and multiple mutations

exist simultaneously, gene duplication can accelerate the degeneration process in some cases.

My results suggest that understanding the way in which the Y chromosome evolves re-

quires the consideration of a number of parameters, including the number of duplicated genes

and their fitness effect through dosage increase. Unfortunately, there are very few empirical

data that allow us to estimate those parameters. Theory suggests that dosage increase of

many duplicated genes may be beneficial because duplication is more likely to be fixed in

the population when it has a direct selective advantage (Clark 1994, Connallon and Clark

2010, Innan and Kondrashov 2010). If so, my theory predicts that duplicated genes are well-

conserved by gene conversion, while linked single-copy genes are lost rapidly. However, the

situation should be much more complicated, particularly in the early stages of the evolution

of the Y chromosome, when duplication-rich Y chromosomes may be developed. Duplicated

genes with no dosage effect on fitness may be fixed with a linked gene which has a selec-

tive advantage due to a dosage effect. More data with reliable estimates of those selection

parameters will give us deeper insights into the evolution of the Y chromosome.

Another important parameter is the gene conversion rate, which has been relatively well

estimated in the palindrome regions of the human Y chromosome. Rozen et al. (2003) es-

timated the gene conversion rate of human palindrome as 2c = 2.2 × 10−4 per nucleotide

per generation, based on the amount of divergence between duplicates. Hallast et al. (2013)

used a phylogenetic approach, and reported a similar but slightly smaller value (2c = 2.9 -

8.4 × 10−5). At such a high gene conversion rate, my theory predicts that gene conversion

plays a significant role in the degeneration of the Y chromosome. Although the gene conver-

sion rate in other species has not been as well investigated, high sequence identity between

duplicated copies is observed in many species (Soh et al. 2014, Hughes et al. 2020), suggesting

that my theory would apply to a wide range of species.

5.5 Appendices

Appendix A: On the ad-hoc treatment in the simulation to keep L1 and L2 con-

stant

In the simulation to obtain R1 and R2 conditional on L1 and L2 in a steady state, I used an

ad-hoc treatment in which an intact single-copy gene, or an intact pair of duplicated genes,

suddenly appears in all individuals when an irreversible mutation is fixed in the population.
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The problem is that this method skips a burn-in period, in which some mutations could

be accumulated. The performance of this ad-hoc method was verified using the following

simulation. Let us assume that we would like to obtain R1 and R2 conditional on L∗1 and

L∗2. Then, we need to consider a degeneration process of a chromosome on which L0
1 =

L∗1 + ∆L1 single-copy genes and L0
2 = L∗2 + ∆L2 duplicated genes are initially located, where

∆L1,∆L2 should be sufficiently large. Then, the system waits for the state with the focal

pair (L1, L2) = (L∗1, L
∗
2), and we can continue the simulation run to obtain the waiting time

for the next click. Very few simulation runs hit (L1, L2) = (L∗1, L
∗
2), and all other runs are

terminated when L1 < L∗1 or L2 < L∗2. This method is honest and correct, but requires a

very large number of runs to accumulate a reasonable number of simulation runs that hit

(L1, L2) = (L∗1, L
∗
2). This is why I used the ad-hoc treatment in the main text. I here show

how the ad-hoc treatment works in comparison with the correct simulation with a limited set

of parameters.

I assumed that N = 500, u = 2.0 × 10−4 and L1 = L2 = 1, 000. The gene conversion

rate changed from 2.0 × 10−6 to 2.0 × 10−2. In Figure 5.7A I assumed strong selection

(s = t2 = 0.2), while in Figure 5.7B, weak selection (s = t2 = 0.05) was assumed. All

population scaled parameters (Nu, Nc, Ns, Nt1, and Nt2) are identical to those in Figure 5.5

if scaled by the population size N . This process demonstrates that the results of the two

methods are almost identical, indicating that my ad-hoc method works well.

Appendix B: Variable selection coefficients across loci

In this Appendix, I relax the assumption that all genes have identical effects on fitness,

and explore the effect of varying fitness selection coefficients across genes on the long-term

degeneration process. Three types of dosage effect on duplication are considered: t1,i = 0,

t1,i = t2,i/2, and t1,i = t2,i. I performed simulations for these three types of dosage effect, with

variation allowed between individual gene pairs. I randomly chose si and t2,i, assuming they

follow an exponential distribution with mean s̄, and they were shared by the simulations

for the three types of dosage effect to focus on the effect due the dosage type alone. I

simulated the case of all single-copy genes, in which I also used the parameters determined

above (si = t2,i−L1 is assumed for L1 + 1 ≤ i ≤ L1 + L2). All other parameters are the same

as those used in the main text. Figure 5.8 shows the simulation result, which is qualitatively

very similar to Figure 5.6.
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(A) Strong selection (s = t2 = 0.2)

(B) Weak selection (s = t2 = 0.05)
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Figure 5.7: Verification my ad-hoc method. The results of my ad-hoc method (circles) are compared with
the results of the exact method (crosses). N = 500, u = 2.0 × 10−4, L1 = L2 = 1, 000 were assumed in the
simulations.
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Figure 5.8: Long-term degeneration process for different dominances when the selection coefficients are
not constant over genes: (A) t1,i = 0, (B) t1,i = t2,i/2, and (C) t1,i = t2,i are assumed. The strength of
selection (si, t2,i) is randomly drawn from an exponential distribution with mean s̄ = 0.0025 (see text). Other
parameters are N = 10, 000, u = 1.0× 10−5, and L1 = L2 = 1, 000.
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Chapter 6

General Discussion

Many evolutionary events are results of interactions among multiple loci and multiple popula-

tions. Therefore, it is very important to understand these interactions theoretically. However,

when natural selection is at work, analysis of evolutionary dynamics in these situations are

generally difficult and theoretical studies are still not sufficient. In this thesis, I focused

on two examples of such unresolved situations, local adaptation and the evolution of sex

chromosomes, and mathematically described their evolutionary dynamics. In these complex

situations, rigorous and general mathematical analysis is yet not possible, but I overcame

this difficulty by developing approximate formulas that are valid over a biologically impor-

tant range of parameters.

The approximations used in this thesis can be classified into three categories: (i) the

branching process approximation for alleles in low frequency, (ii) reduction to a one-dimensional

model, and (iii) reduction to a neutral model. In the branching process approximation (i),

second and higher order terms of the allele frequency are ignored. This approach is useful

when the evolutionary dynamics are largely determined while the focal allele is at low fre-

quency. A typical example of such evolutionary process is the fixation (or establishment)

probability of alleles that are subject to positive selection. In this thesis, I used this approxi-

mation to derive the establishment probability of locally adaptive alleles (Chapter 2) and the

establishment probability of new sex-determining alleles (Chapter 4).

The second kind of approximation is the reduction to a one-dimensional model (ii). Al-

though a full multi-dimensional model is not tractable, if the dynamics can be successfully

approximated by a combination of one-dimensional models, it may be possible to describe

the dynamics. I took this strategy to derive the establishment probability of magic trait

alleles (Chapter 3). In this study, I approximated the dynamics in a population in which

a magic trait allele is disfavored. When the allele has low frequency, I used the branching

process approximation to derive the number of surviving alleles that successfully move to a

favorable subpopulation. I then used “effective selection coefficient” (Yeaman and Otto 2011)

and considered the subsequent dynamics as if the allele were effectively subject to selection in

a one-population model. I also used the approximation by a one-dimensional model to derive

the speed of Muller’s ratchet (Chapter 5). In this study, I first approximated the generation

rate of deleterious mutations at duplicated genes, using the one-dimensional diffusion ap-

proximation. Then, previous theories about one-dimensional Muller’s ratchet were applied.

These results demonstrate that this type of approximation is very useful.

The reduction to a neutral model is also an attractive strategy. I used this approximation

to derive changes of nucleotide diversity during the local adaptation process (Chapter 2). In
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this study, I used “effective migration rate” (Bengtsson 1985), which incorporates the effect

of natural selection into migration rates. Using this approximation, the dynamics become

neutral evolution in a two-population model. Although the analysis of the neutral two-

population model is still limited, we can use Ohta-Kimura equation (Ohta and Kimura 1969)

to derive moments of allele frequencies. This method is very effective when only neutral forces

are at work. I show that this approximation works very well to describe the local adaptation

process.

In summary, I have developed theories to consider evolutionary processes involving multi-

ple population and multiple loci, using various approximations. In general, building theories

of complex evolutionary processes is difficult due to mathematical constraints, but making

appropriate approximations is a good way to understand such evolutionary processes. Species

in nature live in a much more complex world than the models in this thesis. Further devel-

opment of useful approximations will be needed in the future to understand evolutionary

dynamics in the real world.
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Söderberg, R. J. and O. G. Berg, 2007 Mutational interference and the progression of Muller’s

ratchet when mutations have a broad range of deleterious effects. Genetics 177: 971–986.
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