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Chapter 1

Introduction

Since some 3D type perovkite compounds have been found experimentally to give gigantic
dielectric constant, in contrast to ordinary dielectrics, its underlying microscopic mechanism
has attractted much attention in the field of solid state theory. As is well-known, the
ferroelectric modes play an important roll in the dielectric property, electron transport and

phase transition of these materials. Many efforts!

were performed on the connection of this
ferroelectric mode with the quartic or sextic anharmonicity. By experiments, gigantic
photo-enhancements of the electronic conductivity and the dielectric constant have recently
been observed in SrT'103.[1°'m It was also pointed out that, this dielectric enhancement
remains only under the ultraviolet (UV) illumination, while vanishes as the illumination is
turned off. As for the photo-induced electronic conduction in SrTiOs, it is expected to be an
alternative mechanism from that of the ordinary field induced one in metallic systems.
However, the microscopic origin of these photo-induced phenomena has not been clarified
theoretically yet. Thus, this is the trigger of the present study.

We will give a short introduction to the soft mode theory in the second chapter, since our
work will be based on this theory. The spatial structure and the electronic property of this 3D
perovskite, SrTiOs, are also stated, since we will focus our efforts only on this compound in
the present work. Some key points of the previous studies on the fundamental properties of

StTiOs, are summerized as well. In Chapter 3, a detailed illustration is given to the

Super-Para-Electric(SPE) large polarons, from the set-up of the theoretical model to the
1



various numerical calculations, and ends up with the impurity effect for this polaron. Then it
is followed by Chapter 4, the applications of this SPE polaron theory in the interpretation of
the photo-induced giant dielectric constant and electronic conductivity. In Chapter 5, we will
discuss the relaxation process of the lattice after the photo-excitation. We will show the
formation of the SPE large polaron is an ultra-fast process of about several picoseconds. The
evolution of the lattice relaxation is also illustrated numerically. The conclusion is given at

Chapter 6.



Chapter 2

Soft Mode Theory

The general condition for the lattice stability of the crystal is that, all normal mode
vibrations of this lattice have real and positive frequencies. The limit of stability is

approached when the frequency of a mode decreases and approaches zero. Such a mode is
referred to as “soft mode”. If the frequency of the mode is zero, atoms once displace along that

particular mode, there is no restoring force to make them return to their original equilibrium
positions. These atoms then reach the new equilibrium positions determined by the symmetry
of the mode, and the structure of the crystal changes.

The study of Ferroelectricity has a long history. Except for the excellent phenomenological
theory by Mueller'!), Ginzburg® and Devonshire®, the early efforts to describe the ferro-
electric transitions were cast in terms of an individual-ion Lorentz-field picture.m] The stress
on a lattice mode depict was first made in the pioneering work of Cochran* and Anderson™™
in 1960. They recognized the existence of a soft transverse optic phonon mode of long
wavelength and suggested a connection between the strong temperature dependence of this
mode near the phase transition and the dielectric anomaly observed in many ferroelectrics.

After that, the soft mode theory gained vast applications.!*® 3]

2.1 Fundamental Knowledge about SrTiO;



\V

Perovskile type solids are a class of important ferroelectrics. They possess a far great
dielectric constant, as comnpared with ordinary dielectrics.”! This property is usually attributed

(141617215401 @i 2 1 gives the structure of

o the presence of the soft mode in these materials.
the typical 31} perovskite compound, SrTiO;. Since the Ti ion is only loosely boxed up in the
octahedral oxygen cage of the perovskite structure, at Jow temperatures, the restoring force is
very sinall. Ii is then expected to result in the aforementioned soft mode. With environmental
influences, say, an external electric field or a mechanical pressure, the diele;ctric response of

this odd and soft mode will become very large, being the typical characteristic of this

maierial.

FIG . 2.1. Structure of SrTiO;.

T iz band structure of SrTiO; was already calenlated by Mattheiss!! as shown in Fig. 2.2.
The top of the valence band of this material is mainly composed of the 2p orbital of G, and
the bottom of the conduction band is mainly composed of the 3d orbitai‘ of Ti. In between,
there is a wide indirect energy gap of about 3.2 eV. This result was also confirmed by

Hasegawa et al 12|
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FIG . 2.2. LACO band structure and density of states for SrTiO;.

2.2 Ferroelectric Transition and Quantum Paraelectricity

It is well known that, a ferroelectric transition can usually be associated with the
condensation of a soft mode of lattice motion at the Brillouine-zone center. The occurrence of
the ferroelectric transition in solids is determined by a competition between cooperative,
long-range forces, which try to order the system, and fluctuations, which favor disruption of
this order. When the transition occurs at high temperature, i.e., in the classical regime, thermal

fluctuation are at work. These fluctuations dominate the high temperature phase and there is



no ordering. However, on lowering the temperature, the fluctuations decrease and eventually

the ordering wins, and the system finally orders at a transition temperature, 7. On the other

hand, if the transition occurs at sufficiently low temperature, quantum fluctuations, or
zero-point motions, come into play, and they can strongly influence the response of the
system.

Since Barrett*’! gave an expression of dielectric constant in perovskite type crystals which
seems to be good for all temperatures, there have been considerable theoretical™*”’ and
experimental®>% efforts devoted to the study of the manifestations of quantum effects on
ferroelectric behavior. For general 3D ABO; perovskites, on cooling from the

high-termperature, high-symmetry phase, the frequency of the soft mode decreases and will

ultimately vanish at a transition temperature T,, thereby transforming the crystal to the

low-temperature ferroelectric phase. However for SrTiOs, as is shown in Fig. 2.3 by Miiller,™”

it actually does not undergo the ferroelectric phase transition but remain stable against its
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FIG . 2.3. Temperature dependences of dielectric constant € at 1 bar of SrTiOs.
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ferroelectric soft mode even at ~ 0K. Hence, SrTiOsis referred to as an intrinsic quantum
paraelectrics. The formation of the quantum paraelectric state is believed to come from the
complete suppression of the ordering phase by the quantum fluctuations.*® This is shown
in Fig.2.4. As noted, in the high-temperature classical regime the soft mode is stabilized by

thermal fluctuations. These fluctuations decrease with decreasing temperature T and

ultimately the stabilization vanishes at some T, , the classical transition ternperature designated

by T, as depicted by curve A. However, when T, dips into the regime of zero-point motion,

decreasing T does not appreciably decrease the total fluctuations. Consequently, the

high-temperature paraelectric phase will remain below its classical limit, i.e. the transition
temperature in the quantum regime, designated by T, falls below T . This is depicted by

curve B. Ultimately, at low enough temperatures, zero-point fluctuations can suppress the

occurrence of the phase transition as shown by curve C.

2
s

®

1/¢ or

Temperature

FIG . 2.4. Schematic representation of the suppression of the ferroelectric phase transition
temperature by quantum fluctuations.

Since the hypothetical ferroelectric transition temperature of SrTiO3 is very low, the ionic

vibrations are expected to have quite a small frequency compared with that of the crystals
7



with finite transition temperature. The small frequency actually suggests a quite weak
restoring force for the soft mode. In order to reflect this weak restoring force, it is expected
that the harmonic contribution of the soft mode should be neglected because they will result
in a restoring force in proportion to the ionic displacements, which seems too large. So, it is
expected that the restoring force should take a nonlinear dependence on the ionic
displacements. Thereby, the anharmonic contributions of the soft mode are appropriate for
this crystal, say, quartic, sextic or even high order ones.

An ultraviolet light shone to SrTiO; excites a valence band electron to the conduction band

of this material. As mentioned in the above, the top of the valence band are mainly composed

of the 2p orbits of O”"and the bottom of the conduction band the 3d orbits of Ti** . In the

ground state, the electrons are relatively closely bound within the ions to which they belong.
While, when an electron is excited to the conduction band, it becomes quite itinerant,
extending over the whole crystal. Thus, various lattice vibrations of distinct parities will
inflict different influences on this extended electron. It has already been pointed out by
Miiller™, that a simple anharmonic (or harmonic) soft mode picture is inadequate for the
quantum paraelectricity of SrTiO; even in the ground state. Therefore, more than one types of

phonon modes are expected to take part, especially, in the electronic excited states.

2.3 Sextic Anharmonic Effect in SrTiO;

Many efforts have been devoted to the theoretic model for perovkites.[4'9] One of them is by

Vogt[g]

. He measured the temperature behavior of the zone-center soft mode of KTaO; and
SrTiO3 between 5 and 300 K by hyper-Raman spectroscopy, and took the results as a stimulus
to a refined treatment of the dynamical model of the crystal. For SrTiOs, his result indicates
that the sextic anharmonic mode instead of the conventional quartic one becomes a simple but

better model so as to reproduce the experimentally observed temperature-dependency of the

soft-mode frequency. In our work, as will be carried out, we claim an assurance to the

8



presence of this sextic anharmonicity by combining the soft mode theory and the

photo-generated dielectric and conductive phenomena in SrTiOs.



Chapter 3

SPE Large Polaron Theory

3.1 Photo-induced Phase Transition in SrTiO;

Photo-excitation introduces nonequilibrium phases which possess well-defined long range
periodic crystalline or electric order as well as the observable relaxation time in some
insulating solids, say, TTF(Tetrathiafuluvalene)~CA(p—Chloranil)[57'59], polymers[6°'62], and
perovskite type compound® ' It is quite different from the static external fields such as
magnetic fields or mechanical pressures in material design. Photons have definite momentum,
phase, helicity and energy. Hence, they create particular excited states, selectively and
intensively. In the case of static external field, it changes all the electronic states of the
material, both ground and excited states without selection. In contrast to the chemical design
or synthesis, the photoinduced phase transition process realizes new states without changing
the chemical composition of the material. Thus the research for photoinduced phase
transitions are becoming more and more attractive for material science.””

Because of its particular character as a typical intrinsic quantum paraelectricity, SrTiO;
attracted a lot of interest. Recently, Katsu et al.!'? presented the resistivity versus wavelength
curve for SrTiOs as shown in Fig. 3.1. As can be seen, in the ultra-violet range, there is a

drastic drop for the resistivity. This indicates that there is a metallic like conduction occurs,

i.e., with the ultra-violet irradiation, the crystal undergoes a phase transition from the insulator

10
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phase to the quasi-metallic phase.

This phase transition is considered to be concerned with the electronic transport property.
Two possible mechanisms were put forward. The first is the increase of photo-carrier
generation efficiency caused by the change of the electronic band structure. With the phase
transition induced by temperature decrease, it has been proposed that: (1) point R in k-space
becomes equal to point I (2) the number of degeneracy of indirect gaps increases; (3) a
direct gap becomes an indirect one!**.

The second mechanism is the change of electron mobility accompanied by the phase
transition. It is known that SrTiOs undergoes a second order structural phase transition at
105K, In this cubic-to-tetragonal structural phase transition, neighboring TiOg octahedrons
are rotated in opposite directions along the ¢ axis by a small angle (8) as shown in Fig. 3.2. In
a cubic system above 105K, the overlap of neighboring 3d orbitals is relatively small, but in a
tetragonal system below 105K, the overlap is larger because of octahedron rotation, leading to
the wider bandwidth. Therefore, this band widening increases the electrical conductivity

sharply at the phase transition temperature.

3.2 Luminescence in SrTiO;

A very important experiment is the luminescence in SrTiOs. Hasegawa et al.*? observed a
broad luminescence band at 2.4eV under the band-to-band excitation. No luminescence is
observed under the excitation below the indirect gap. This suggests that this luminescence

band is intrinsic for this material. Taking account of the broad bandwidth™*!%

and the large
Stokes-shift, the origin of the luminescence can be assigned to a recombination of the
self-trapped-polaron (STP). This will be elucidated in detail in the following section.

Figure 3.3 gives the temperature dependence of luminescence decay curves in SrTiOs. It is

clearly shown that the lifetime of the luminescence can be up to several milliseconds. The

decay curves have time dependence expressed in r* as shown in Fig. 3.3. This suggests that

12



this decay includes a bimolecular reaction process.m] The inset of Fig. 3.3 shows
time-resolved luminescence spectra observed in 1-2, and in 2 u s after the photo-excitation.
As is shown, there is no difference between the two spectra. This indicates that the origin of

the luminescence is always of the same STP state.

Luminescence Intensity in Log Scale [arb. units]

100n g 10p 100 1m 1om
Time [s]

FIG . 3.3. Temperature dependence of luminescence decay curves in SrTiOs;. Signals are
detected at 500 nm (2.48 eV). Solid lines representing £* dependence are drawn to guide the
eyes. The inset shows time resolved luminescence spectra observed at 4.5 K.

3.3 Photo-induced Dielectric Enhancement

SrTiO; has already been known to possess far great dielectric constant by comparison with

[17-20,

ordinary dielectrics®. This is believed to come from its ferroelectric mode 4 However,

13
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stated the same fact that with the ultra-violet irradiation, SrTiO; undergoes a gigantic

dielectric enhancement. However, this dielectric enhancement remains only under the ultra-
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FIG . 3.5. (a) Temperature dependence of the inverse dielectric constant of SrTiO3 measured
by parallel electrodes ( A ) and surface electrodes (© ) before UV illumination at 1kHz . The

dashed curve is the best fit of Barrett’s formula to the data using 7, =72K , T, =32K.
The schematic picture represents surface electrodes and their dimensions. (b) The dielectric

dispersion of £ =€ —ig, at 5K, before the UV illumination & (®), &, (A) and under

the UV illumination £ (©), &,( Y ). The solid curves represent the best fit. The

schematic picture represents the geometry of electrodes and back-surface illumination.



violet illumination, while vanishes as the illumination is turned off as pointed in the latter
work. So, we can also say, this is a kind of photo-induced structural phase transition'®’ ! and
is expected to come from the coupling between the photo-excited electrons and the

aforementioned soft anharmonic phonons of this material®®".

3.4 Dual Electron and Phonon Coupling Model

3.4.1 Band Structure

As we have mentioned that SrTiO; has a large band gap of about 3.2 eV between the
valence and conduction bands. Here we phenomenologically illustrate them by the vacant and
shaded rectangles respectively as shown in Fig. 3.6 (b). The experimentally observed long
lifetime of the luminescence and the large Stokes-shift (0.8 eV) actually indicate that a couple
of electron and hole polaron levels are expected to exist in the large energy gap. We express
them with dashed (hole polaron) and solid line (electron polaron) within the energy gap. In
the ideal circumstance, the valence band and the conduction band are completely symmetric
in the electronic structure. Further, the lattice potential associated with the electron and hole is
equal, and comes just from the energy release of the electron and hole respectively during the
lattice relaxation process to keep the total energy conserved. Consequently, we can imagine
the whole story for the SrTiO; after photo-excitation as illustrated in Fig. 3.6 (a). With an
ultra-violet illumination of the energy of 3.2 eV for a single photon, the valence electron is
excited to the conduction band. Then, the valence band is left with a hole and the conduction
band becomes negative by a unit charge. Further, due to the lattice relaxation, the electron and
hole relax down to the electron and hole polaron states respectively. These relaxations are
denoted by the dashed and dotted arrows in Fig. 3.6 (b). Then during a long time, the electron
and hole polarons will recombine and gives rise to the luminescence as observed by the

experimentm]. As aresult, the system goes back to its adiabatic ground state as designated by

16
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the short-dash arrow of Fig. 3.6 (a).

However, we know from Fig. 3.1, that after photo-excitation, SrTiO; undergoes an abruptly
huge enhancement in conductivity. This suggests a free electron-like behavior. However, in
this crystal, the electron cannot move in a completely free way because it can never avoid
being scattered by phonons. So, it will be more or less trapped by the lattice. Thereby, we
could expect a shallow electronic state arise just slightly below the bottom of the conduction
band after the photo-excitation, as denoted by the dash-dot line in Fig. 3.6 (b). Thus, we can
expect an alternative relaxation route as indicated by the dash-dot arrows in the same figure. It
should be noted that there appears another shallow hole state just slightly above the top of the
valence band after the photo-excitation, which is not sketched out in the diagram, and the

corresponding relaxation route is also absent.

3.4.2 Model Hamiltonian for Conduction Band Electron

A single electron coupling with the phonons in a crystal is usually called a polaron. In
ordinary semiconducting and ionic solids, the electron and phonon (e-p) interaction exerts
great action on their dielectric and transport properties. In connection with the aforementioned
optical phenomena in SrTiO3, we think of two typical vibrational modes shown in Fig. 3.7. As
shown by Fig. 3.7 (a) the six O 's displace along the three rectangular directions in a
completely symmetric way, keeping the center of the mass of oxygen ions invariant. This is
the A;, mode. Figure 3.7 (b) gives a typical T1, type mode different in parity from the A, type
mode. The six O>'s of the particular TiO¢ unit will displace along the inverse direction of y
axis, while the central Ti** displaces along y direction. That is, a dipole appears in this TiOs
unit.

We thus introduce two types of vibration modes into our model Hamiltonian (= H ), which

describes the electrons in the 34 conduction band of SrTiO;, coupling linearly with the

aforementioned breathing (Az) mode and quadrutically with the T}, mode (% =1),

18
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Here, ay,(a,,) is the creation (destruction) operator of a conduction band electron at a lattice
site [ with spin o (=a, £) in a simple cubic crystal, and T is the transfer energy between the

neighboring two lattice sites / and ! ' denoted by {1, [ '}. S, (>0) is the dimensionless constant
of the linear coupling between this electron and the site localized breathing mode, whose
energy is @, and the dimensionless coordinate isB,. On the other hand, S,(>0) is the
dimensionless constant of the quadratic coupling between the electron and the site localized
T1, mode, whose energy is @, and the dimensionless coordinate in the direction i (= x, ¥, 2)

19



is D;. While U denotes the intra-site (intra-3dorbital) Coulomb repulsion. B, is an effective

mass parameter. The dispersions of phonons are neglected, and only the long wave
characteristics of each mode are taken into account.

It should be noted that, the Tj, mode couples with the 3d electron not linearly but only
quadratically, due to the symmetry of this mode. While, for A;, mode, there is no such
restriction. This quadratic coupling has been already observed by the two-phonon Raman
expeﬁment.[66] One can easily infer that, this 7;, mode will be related to the dielectric

enhancement, while the A;; mode to the luminescence with a large Stokes-shift.

3.4.3 Derivation of the Model

We can always expect a space-inversion symmetry for the Hamiltonian because different
choice of the coordinate system does not change the energy of the electron and phonon
interacting system. This condition, as will be shown in the following, has an important effect
on the normal coordinates of distinct phonon modes. Next, we shall start our model
investigation with the A;g type phonon mode as schematically shown in Fig. 3.7 (a).

Within the scheme of the second quantization, the electronic coupling with the Einstein

phonons genegally reads!®” 58

-S> Qaja,, (3.2)
1

wherein, S is the general notation of the coupling strength of the e-p interaction. Q; are the
normal coordinates of the phonons of the / th quantum state. The normal coordinates Q; can
be expanded by the real displacements of the crystal atoms or ions. For a lattice with N unit

cells and s atoms or ions in each, the expansion can be written as

N s

qu - Z Z U 'hzize_“.R'p , 3.3)

i=1 £=1

20



wherein, u, is the transient vibrating displacement of the &th atom or ion in the i th unit

cell, whose center of mass coordinate is R’, and h,f, is the character vector of the

corresponding mode.

For SrTiO;, by setting up a rectangular coordinate system with a proper choice of its origin
point in the crystal, we can always find an O* with a transient displacement of Uy
pertaining to a particular TiO, cell centered at —~RJ, given an O with the transient
displacement of U ¢ pertaining to the cell centered at R,.‘; , meeting U=u,=u, and
R} =R} =R’ . From these two O ’s, we then obtain an / containing only two terms in the
summation stated in (3.3)

I=u, e ™™ —u, hie™™ (3.4)

On the other hand, by making a space inversion over the rectangular coordinate system, we

can obtain a corresponding two-term summation ' as

—iLR® RO
I'=u, -h,fle LR, —u. b "% (3.5)
which meets
Upg =~y
R =-R]. (3.6)

Inserting (3.6) into (3.5) yields I =1I'. Therefore, according to the symmetry of A, mode,
itis clear that O, keeps invariant by space inversion operation.

Following the same arguments, however, we can prove that for T,, mode, the normal
coordinate Q, changes its sign by the space inversion operation. So, we can say, the normal

coordinate of T

lu

mode vibration must enter the Hamiltonian in an even power to keep the

energy invariant after the space inversion operation. While for A, mode, there is no
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restriction on the power of its coordinate. As the lowest order approximation, we take linear
term for A, mode and quadratic term for 7;,, mode and write the e-p coupling Hamiltonian
temporarily as
-S> Baja, -S,Y D}ajfa,, (3.7
! !
with B, and D, representing the normal coordinates of A, and 7;, modes respectively.

S; (i=1,2) are concerned with the electron and phonon coupling strength.

For the time being, we can strategically write the whole Hamiltonian of the e-p coupling

system in the following way

! 2
H=-T Y (aja,,+H.c)-SY Bn, +%Z(—-£9—2+ B?)
1

(o ] 1
2 S; 82 2r
-8, .Din, +72(___8D2 +D)+UD nym . (3.8)
Li 1 L I

Here, we take a harmonic approximation for A, mode phonons, but for 7;, phonons, we,
for the present, assume a 2rth power anharmonicity with r being assumed to be an integer.
S 1 and S; are the constants related to the effective mass of the two modes respectively.

In order to unravel the boundary condition for the integer r, we temporarily make a
digression and proceed to the adiabatic property of the system by a variational method.

Under the adiabatic approximation, the Hamiltonian as expressed by (3.8) then reads

hy=-T Y (a4, +Hc)-S > Bn, +%—ZB,2
1

{tite !

S, ,
_Szlez,inz + _iz—ZDlz.i + Uznl,anl,ﬁ ) (3.9
I 1

i

For a trial wave function of a polaron state (= [ p)), we take as
|p)= 2 eDal,]0), Do) =1, (3.10)
! I

where ]0) is the true electron vacuum, and this ¢(/) is assumed to be a Gaussian as
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@(I) ~ exp[ -

2 -
A (2l D, I=(l,,1,.1,), (3.11)

wherein, A denotes the reciprocal localization length, and l,l,,l, are the Cartesian

components of /. It should be noted here, that ¢(l) is a localized state when A>1 and an

extended state when A<1 . Using this | p> , we take the expectation value

(ha)=(p

hy | p> and with the Helmann-Feynman theorem

a(had)=0 8(had)=0
0B, " oD,

we can obtain a simple form

r

2 _ 1 r
(ha)=(-T ¥ apa,s ) =253 (n ) -2 L5, E™S (V5 G
{ti}o 25'1 ] Szr Li

In order to give an analytic expression for the adiabatic energy with respect to the extension

parameter A, we employ the continuum approximation.®® Within this continuum

approximation, I, (i=x,y,z) can be regarded as a continuous variable from —co to -roo.

In such a case, (3.12) is reduced to

3T A? S? s 28, = 5= [r-1,2
<had>= 2 -25/27;3/2S'A _352(5,'2) e _r_A g (3.13)

1 2T

From the preceding two terms of the right-hand side of equation (3.13) it is clear that, at
A>1, there might exist a minimum on the adiabatic surface. This localized state is just the
self-trapped state. However, as we have shown in the phenomenological band structure by Fig.
3.6 (b), for SrTiOs, there is another shallow state appear in the energy gap according to the
experimentally measured metallic conduction'?. In order to theoretically obtain this shallow

state, i.e. another minimum on the adiabatic surface in the range A <1, it most likely comes
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from the combination of the first term and the third term in (3.13), with r being restricted to

be greater than 5/ 2. Since ris an integer, the choice of the smallest value for r is then 3, i.e.,

the lowest anharmonicity for 7;, phonons is the 6th power. This result is in good agreement

with the hyper-Raman scattering experiment.”' It should be noted that the exclusion of the

harmonicity or quartic anharmonicity for T,

lu

phonons is also validated by numerical

calculations. The sextic is really the lowest order anharmonicity to produce the shallow

extended state in the band gap.

S,

Ultimately, by substituting S, and S, with S,®, and . S; and S; with @, and

w, / 3, respectively, we can obtain our discrete model of the Hamiltonian (3.1) from (3.8).

3.4.4 Numerical Confirmation of the Model
In the above section, we have shown the sextic anharmonicity is the best option for the odd
parity 7, phonons. However, it seems yet unclear why the lower order cases for this mode

are absent in the Hamiltonian. In attempt to get some knowledge about the effect of the lower
order terms, we resort to numerically calculating the adiabatic surface of the simplified

Hamiltonian

2 2 D6‘
Sdza’d S D}, +%Z(xb,-j +=29), (3.14)
Li i

H, =-TY {a,a.,+H.c}-

Ll'\o
wherein, x serves as a ratio to reflect the effect of the harmonic terms on the sextic
anharmonic ones.

We employ the Gaussian type trial function for the variance of the degrees of freedom of

the soft mode as D, =dexp[—

AX(l-D) ‘ . .
—9——2———-—]. The electronic trial function is already stated in

(3.10). For a particular S, =60, we obtain the corresponding adiabatic surface as shown in

Fig. 3.8.
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We can ses, only when xis v ry sinall (~ 0.0001), can the extended electronic staie survive.

ven if x is as small as 0,001, the extended state will be Jifted up itto- the conduction band. So

conchude; the introduction of haruonic tams for the soft mode will give 1ise to loo

large a restoring force, which will suppress the extended state.
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FIG . 3.8 Adinbatic energy of the simplified Hamilionian for vatious ratios of the

harmonicity to the sextic anfianmonicity

nomc terms 27 in (3.14) with the guartic anharmoenic terms 1 __J.’/;-' "

we can obtain the similar result, except that the critical value for x to suppress the extended
state 18 about 0.01-0.1.
Compared with the sextic anharmonicity, the lower order anharmonic terms or harmonic

lerms must bave a very small ratio if they appear. So we can temporarily peglect them in the

estigation of the low twmperatore properties.
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3.5 Unified Theory for Large Polaron and Small Polaron

3.5.1 Adiabatic Surface
Now we rewrite the Hamiltonian of Equ. (3.1) as
H=H,+H, 6+H,, (3.15)

H,=-T Y (a,aa,a+Hc)+UZn,anw,

{L.I'Yo

o 9’
=-S,0,) Bn,+—LY (~——+ B}
022, Byt 22 gt B
Hom-3005 Do+ 23 2 D
lu 2 L I ﬂ aD 3
By this separation, H,, clearly denotes the Hamiltonian for A;; mode and H,, for Tj,

mode. Since for SrTiOs, its bandwidth (2eV)!*!! is far greater than the phonon energy
observed in this crystal (~1-10meV)*>*%, we can take the adiabatic approximation. Then from

Equ. (3.12), we can obtain the corresponding adiabatic energy of Equ. (3.15) for the single

electron system as
<had ) = <h“d >ele + (had >lg + <hﬂd >lu ’ (3'16)

(Pag),, =T D, <a;;a,.a + H.c.),

{LI'lo

@,S}
<h’ad >1g =- —"’2_"2[ <nla>2a

5302
<had >1u = —&)"—3"—2 <”1a >3/2'
1,

The conduction band-width 12T is already known to be 2eV from the non-relativistic

augmented-plane-wave calculation. el According to the absorption spectra,*? the energy of

the breathing mode @, is about 20meV, and that of the T, mode @, is about 1meV from the
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Raman scattering.” The Coulomb repulsion U is usually one order greater than the charge

transfer energy, so we take U =4eV. S is assigned to be 1.294, so that the lowest transition

energy between the ground state and the first excited one of the original sextic anharmonic

oscillator meets the experimental observation.”” S, and S, are the coupling constants

between the electron and these two types of phonons respectively. They, as a set, are to be
determined so as to reproduce the observed large Stokes-shift (0.8eV) of the luminescence,
i.e. the lowest level of the adiabatic surface has a 0.2eV offset below the bottom of the
conduction band. The quadratic coupling, being always subsidiary to the linear one, is

assumed to be of the order of 10% of this offset.

3.5.2 Large Polaron and Small Polaron

By absorbing a photon with an energy greater than the band gap of this crystal, a valence
band electron is excited to the conduction band. In SrTiOs, such a band like state of electron
will immediately decay into other state, because this electron interacts with the phonons, and
causes lattice distortions around it.

In the previous work,” a continuum model is employed to investigate the adiabatic
surface of the single electron system, hence, the degree of localizations of various polaron
states are remained unclarified. As a result, the large polaron and the small polaron can never
be obtained on the same adiabatic surface. In this connection, we turn to apply a discrete
lattice model in the present study.

In practice, we take 1000 lattice sites each along x, y and z directions. First we simply take

account the traditionally linear e-p coupling model

H'=H, +H,, (3.17)
whose adiabatic energy for the single electron system is
(had>' = <had >ele +<had>lg . (318)
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FIG . 3.9. Adiabatic energy per electron with respect to A . The solid curve denotes the energy from
the dual e-p coupling model. The dashed curve denotes the energy within the linear e-p coupling
theory. Inset (a) gives the detailed information of the energy minima in the two curves. A comparison
between the single large polaron (solid line or dashed line) and the large bipolaron (dotted line) is
also given; (b) shows the contribution of each part of the Hamiltonian of the dual e-p coupling
model, solid, dot and dash-dot denote the potential of Aj;; phonons and their couplings with the
electron, the potential of 73, phonons and their couplings with the electron, and the ( kinetic energy
+ 6T), respectively. Parameters are:, S, = 9.5, Sa= 35.5.

We can numerically calculate this adiabatic energy for a couple of typical values of S, and

S, , in accordance with experimental Stokes-shift.“? In Fig. 3.9, the dashed curve gives the

adiabatic surface of the traditional e-p coupling model. We can see there are two minima on
this curve. As is well known, they just represent the two kinds of polaron states, that is, a large
(or free) polaron (A=0) and a small (or here self-trapped) one (A >2.0).

Although the two polaron states are now obtained in a unified way, this large polaron is

almost same as the abovementioned band-like plane-wave state. Such a state is actually quite
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unstable. By taking into consideration the additional quadratic electron and phonon coupling,
this free polaron state will be easily transformed to a more or less slightly trapped state. This
is just the so-called super-para-electric (SPE) large polaron state as we will explicate in detail

in the immediate section.

3.5.3 SPE Large Polaron and Self-Trapped Polaron

In this section, we proceed to the dual e-p coupling model as stated in Equ. (3.15). The
corresponding adiabatic energy for the single electron system is shown with the solid curve in
Fig. 3.9. At A=2.2, there is the globle minimum, at which the electron is tightly bound
almost within one lattice site. This is the off-center type self-trapped polaron, which actually
has no difference from the above-mentioned small polaron. However, in the region A<1.0,
as we can see clearly from the solid curve in Fig. 3.9 (a), there is a rather shallow bound state,
extended over about 1000 lattice sites. This state actually indicates a charged
quasi-macroscopic ferroelectric domain. Such kind of charged domain is favorable for
polarization. It is called super-para-electric large polaron, abbreviated as SPE large polaron
hereafter. The polarized property of the SPE large polaron will be shown in detail in the
application part of this dissertation.

In Fig. 3.9 (b), each part of the energy of the one-electron system is given. The solid, dot
and dash-dot curves denote the energy from the Ajg part, that from the Ty, part, and the
(electronic kinetic energy + 6T), respectively. In the region A<1.0, the Ty, part is the most
dominant. In fact, at A =1.0, the energy from the A;g part is almost zero, which indicates that
the large polaron state is determined by a parity violation induced by the quadratic coupling
between the photoexcited electron and the Ty, phonons. While at the region A>1.5, the
effect of the A, mode rapidly increases, and at A =2.2, it becomes prevailing. That is, the
self-trapped state is dominated by the breathing mode.

Besides, the dash-two-dots arrows in Fig. 3.9 represent a quantum tunneling[69] by which

the SPE large polaron state can transform into the self-trapped state. This process is shown
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F1G . 3.10. Schematic diagram for local versus global parity violation.'®”!

clearly in Fig. 3.10. With the ultra-violet itlmnination, the crystal, (a), undergoes a globle
parity violation an¢ first relaxes down to the SPE 'large palaron state, (b). As we have shown,
this state is actually a charged macroscopic domain dominated by the odd-parity 71, mode.
Therefore, it is guitc dipole active, say, under an external electric field £. 1t is just in this
sense that we call it super-para-electric large polaron. In this diagram, the dashed arrow
represents the ‘quantum tunneling process, through which the shallow extended state
trausforms into the self-trapped polaron state, (¢). The latter only has a local parity violation

as sketched by the small dashed circle.

3.6 SPE Large Bipolaron and Bipolaron Clusters




In contrast to the single electron system, the two-electron system cannot form any strongly
localized states, because of the relatively large Coulomb interaction,U . However, two
electrons can be loosely bound in an extended state. In order to investigate the many-electron

effect, we will next proceed to the two or few electrons cases.

We can write the trial wave function (= |<I> j>) for a 2j-electron system (j =1,24,---) as

(@)= ¥ 40000)0,0)0,U, ) a;, -af a [0). (3.19)
[

> 8, =6;.

1

The adiabatic energy per electron (= h,; ) of this 2j-electron system is then given as

1
h .=§7(q>j

had

&)=L 3 ((aia +he)) -2 5 ()

2] e I

—“g—ifm2<<n,>>”2 +%2((n,anw)), (3.20)

Li

where,«---)) = <(I> i Ild) j>. Then, we can obtain the adiabatic surface for the 2 j-electron

system by calculating Equ. (3.20), which has been shown by the dotted curve in Fig. 3.9 (a).
Since U does not work at all in the extended case, there appear a minimum on this curve as
expected. This is just an SPE large bipolaron. It is clearly shown in Fig. 3.11 that the SPE
large bipolaron is also a charged macroscopic ferroelectric domain, and dipole active. By the
quantum tunneling process, it will fissure into two self-trapped polarons. From Fig. 3.9 (a),
we can see that these extended states are very shallow in contrast to the self-trapped one,
being metastable states relative to the latter.

In addition, from the energy difference between the two kinds of adiabatic minima in Fig.
3.9 (a), we can expect that two single SPE large polarons will aggregate to form an SPE large
bipolaron. Then, it seems natural to ask what happens in the crystal with few bipolarons. For
this purpose, we studied a bipolaron molecule composed of two bipolarons with an

inter-bipolaron distance(= r ) as shown in Fig. 3.12 (a). The trial functions are assumed as
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FIG . 3.11. Schematic diagram for SPE large bipoiaron fission.
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In Fig. 3.13, the solid curve shows the adiabatic energy per electron as a function of r, and
it takes rainimum at » = 14. Thus, the largé bipolaron molecule can be stabilized without
changing its large radius.

In order to further elucidatec possible SPE large bipolavon clusters, we alzo invesiigated a
4-bipolaron molec:le with a square struciure as shown in Fig. 3.12 (b). The inter-bipolaron
distance is also assumed to r. The result is given by the dotted curve in Fig. 3.13. It is almost
same as the solid curve. So we can conclude that, before the whole e-p system relaxes down

to the globally stable self-teapped state, various bipolarcn clusters appear. Of course, these
32




(a)

(b)

FIG . 3.12. Schematic structure of many-bipolaron system:
(a) Two bipolarons. (b) Four bipolarons.

-1.0027

T

< -1.0028

-1.0029

1.0030 +

~1,0031 |

Adiabatic Energy (eV

1

-1'wnnlxlal TGN TN O SN SR R U NS B
0 4 8 12 16 20 24 28 32 36

r

FIG . 3.13. Adiabatic energy per electron of a bipolaron molecule (solid line) and of a square

bipolaron molecule (dotted line) with respect to r.
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clusters will finally fissure into the off-center type self-trapped polarons through a quantum

[69]

tunneling" "’ process as schematically shown by the dash-dot-dot arrows in Fig. 3.9.

3.7 Impurity Effect

In real experiments, a completely pure material is hard to achieve. Thus, it is important to
study the impurity effect in theory. Since some impurity exerts attractive action on electron, it
exhibits alike character as the polaron. To distinguish the impurity effect from the intrinsic
lowering of the electronic state, we introduce an impurity potential term into the Hamiltonian

as following

Himpurity = —-UZ al'::rala ’ (3‘21)

wherein, 77 is the positive potential energy, and [ is a particular site at which an impurity is
pinned. Here we have the impurity localized at the center of the polaron in order to obtain the
globly stable state. Calculations of the adiabatic surface show that the SPE large polaron or
bipolaron will not be extincted if the impurity potential is small enough (7<1eV ). The
consideration of the impurity with small potential only reduces the adiabatic potential barrier
between the extended state and the localized one, and causes very small change in the

effective radius of the SPE large polaron or bipolaron. This indicates that for SrTiOs, the

impurity of small attractive potential does not suppress the SPE large polaron or bipolaron.

Our calculation also shows that if 7 is far greater than leV, the globly stable state will get

far deep into the energy gap, even lower than the top of the valence band. Such kind of

adulterated samples actually make no significance in usual experiments.

34



Chapter 4

Applications

In this chapter, we will be concerned with the applications of our e-p interaction model. In
section 4.1, we will first discuss one of the fundamental problems for phonons, phonon
softening or phonon hardening with the introduction of e-p coupling. In section 4.2, we will
apply our SPE large polaron theory to the experimentally observed static dielectric
enhancement in SrTiO;, clarifying the microscopic origin of this photo-induced phase
transition. In section 4.3, we will give a phenomenological interpretation to the

experimentally reported metallic conduction in SrTiO;.

4.1 Phonon Softening and Phonon Hardening

The e-p interaction, on the one hand, causes the electron to get into the aforementioned
bound state, but, on the other hand, it causes the frequency change of phonons. Next, we will
proceed to this phonon frequency change due to e-p interaction.

In the SPE large polaron state, Ti ions are correlated with the photo-induced electron,

which is itinerant within the macroscopic domain. As a result, this polaron involves a great

number of vibration modes. For brevity, first we focus only on a single 7}, mode at a typical

lattice site, for example, the x direction of the central site of the SPE large polaron, and keep
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all coordinates of other modes at their equilibrium positions given by the aforementioned
adiabatic theory. So we can get an effective Hamiltonian (= H',,) only for this particular T},
mode

, ) 02 D*
H', =-S,0,|pOf D? +(- 75 +3) (4.1)

wherein, ¢ is the Gaussian type electronic state announced in Eq. (3.10). In Fig. 4.1, the
square-block-curve gives the calculated transition energy (= E'),) from the ground state to the
first excited state of this single-mode Hamiltonian with respect to S,. It is shown that the

electronic coupling with the anharmonic T,

. mode in a quadratic manner does cause
softening of this mode. The stronger the quadratic coupling strength is, the greater the

softening gets. However for the A, mode

, 2 a, 9?
H', =-5,0,|p0) B+-2—E(—a?+B2), 4.2)
our calculations show there is neither softening nor hardening occur. This can be easily

understood in that we have shown A, mode plays the dominant role in the localized state.

In such a state, the electron is tightly bound within one lattice site. On the contrary, the lattice
is also tightly bound by the trapped electron. As a result, the phonon energy structure is

relatively stable.

Our calculation results also show that in the self-trapped polaron state, the anharmonic T},

mode quadratically coupling with the electron will result in degeneracy in low phonon energy
levels, which actually leads to phonon hardening. This effect in itself will prevent the
dielectric enhancement as schematically shown in Fig. 4.2. However, since this phonon
hardening happens in the self-trapped state, essentially it will not affect the dielectric property

of the material as will be elucidated in the following section.
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FIG . 4.1. Square blocks are for Phonon softening: AE' versus S;. AE'|, is the energy

difference between the ground state and the first excited state of the single sextic oscillator
coupled with the electron quadratically. Filled circles are for dielectric ratio A& with respect
to S,.

FIG . 4.2. Schematic static dielectric enhancement with respect to phonon softening. Solid and
dashed curves denote the frequency dependent dielectric constant before and after the
introduction of the e-p coupling respectively. Dashed arrow shows the direction of phonon
softening. Solid arrow shows the increasing direction of the static dielectric constant.
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4.2 Static Dielectric Enhancement

In order to reflect the variance of dielectric constant, we define a ratio Ae (=¢'\/¢)).
Where, &', represents the static dielectric constant resulted from H', and g the static

dielectric constant from the original 7;, mode, whose Hamiltonian (= H,,) is already given

as
o, > Df
H, =—2t(-———=+—). 4.3
A AR 4.3)
£, can be approximately calculated by
Do
g~ ) . 4.4
1 ; AEmO

Here, D,, is the matrix element of dipole transition from the vibrational ground state to the
mth excited state, and AE_, is the energy difference between them.

In Fig. 4.1, the dots depict A& versus S,. As is seen, The static dielectric constant

averagely increases by a half, and our calculations indicate that this increase mainly comes
from the softening suggested by the blocks in the same figure. This can be seen more clearly
in Fig. 4.2. The dashed arrow shows the direction of phonon softening. At the same time, the
static dielectric constant is increased as instructed by the solid arrow. However, it should also
be noted here, that this enhancement of the static dielectric constant results only from one
typical T, mode, as we have mentioned in previous discussion. Actually, the SPE large

polaron is a macroscopic domain with hundreds and thousands of lattice sites involved. We

have validated that, at each lattice site, this T3, mode will be softened by the e-p

interaction, and as such results in huge dielectric enhancement respectively. Their corporative

effect gives rise to a gigantic enhancement in the macroscopic static dielectric constant, which
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has been observed experimentally.[42] It should be mentioned that this photo-enhancement of
static dielectric constant occurs also in the SPE large bipolaron, or in other large polaron
clusters.

As for the off-center type self-trapped polaron, the electron is tightly bound almost within
one lattice site. Therefore, only few soft T, modes are involved. As a result, the extra e-p
coupling almost brings out no macroscopic dielectric change although there appear a phonon
hardening, instead of phonon softening in this case as stated previously. This agrees with the
experimental fact that when the ultraviolate illumination is turned off, the phenomenon of
dielectric enhancement disappears.”) The reason is that there will be no new SPE large
polarons created after the turn-off of the ultraviolet illumination, and the existent SPE large
polarons and bipolarons incline to transform into the self-trapped polarons by a quantum
tunneling process.®” |

From the above discussions, we can see that the enhancement of static dielectric constant
comes from the phonon softening, and the latter is due to the introduction of e— p coupling.
However, phonon softening happens only to the T}, mode in the SPE large polaron state.
Therefore, we can say, the enhancement of static dielectric constant comes mainly from the
sextic anharmonic oscillator coupled with the photo-induced electron. This functional
distinction actually results from the difference of parity. The T, mode of odd parity is easy to
be polarized and thus inclines to give rise to a conspicuous dipole. While, the A;; mode has an

even parity, and remains free from the polarization, even under an external electric field.

4.3 Photo-induced Metallic Conduction in SrTiO;

As is known, in the absence of the scattering of phonons, the conduction electron moves

freely under an external electric field. However, with the account of the e— p interaction,

the conduction band electron will distort its nearby ions and results in lattice displacement
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around it. On the contrary, the electron might get heavier because whenever it moves there
will be an induced lattice displacement dragged by it. This is just the mass enhancement of the
polaron. In order to clarify this mass enhancement effect, we next study a one site translation
motion of the polaron by calculating the expectation value of the electronic transfer operator

Za,"aamg between two polaron states with neighboring centers as schematically shown by
1

the big dashed and big solid circles in Fig. 4.3. We define a ratio between the real polaron

transfer and the hypothetical bare electron transfer as

<\P' IZ alaaH-l d, ‘{‘>
< ele z alaal+l al ele>

) is the electronic state and |¥) is the polaron state encompassing both

4.5)

wherein, |

ele

electronic and phonon configurations. The state with a prime distinguishes from that without a
prime by the center of the polaron. The Hamiltonian of the e-p coupling system generally
involves the charge transform, phonon energy and the e-p interaction part. If we take the e-p
interaction as the mean field on the phonons, then under Hartree-Fork approximation, the

polaron state can be reduced to the direct product of the electronic state and the phonon state

as “'P) ete>

Le., R=<‘I"ph|‘I‘ph>. The state |‘I’ph> encompasses many modes of T, type as well as

) The ratio R is then reduced to the inner product of the two phonon states,

A

1g

type modulated by the e~ p couplings. Namely,

3
(¥, %,.)= []‘[(\Pm | %, @+ 1))} [H(T% |, @+ 1)>}, (4.6)

wherein, "PTW (l)> are the phonon ground states of the modulated single 7, modes with the

effective Hamiltonian

6
7 802 + 2 =) @.7)

H'\ () = -S,0, o) D* + 24 -
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and \PA]‘ (l)> are the phonon ground states of the modulated single A, modes with the

effective Hamiltonian
' 2 a)b 82 2
H'\ ()=-S,0,|p0)| B+ > (————+B). (4.8)

m

In Fig. 4.4, we give the result of R versus S, for the self-trapped polaron as well as for the

SPE large polaron. For the case of SPE large polaron denoted by square blocks, R has
almost no deviation from 1, which indicates a quite similar behavior to that of the free
conduction band electron. It suggests that the SPE large polaron has almost no mass
enhancement. With the onset of ultraviolet radiations, many charged SPE large polarons will
be created. They move smoothly under an external electric field and contribute to the high
electronic conductivity. This conductive property of SPE large polaron is also applicable to
the SPE large bipolaron, and can be employed to understand the observed large
photo-conduction in SrTiO3."? For the case of self-trapped polaron as denoted by triangles, R
is almost 0. This indicates a gigantic mass enhancement, because the electron is tightly bound
within a lattice potential well and entails very strong external electric field to help it break
away from the bondage. This also suggests a perspective disappearance of the photo-current

in SrTiO3; when the ultraviolet irradiation is removed.
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FIG . 4.3. Schematic diagram of polaron shift. Big circles denote the effective range of the
polaron. Small filled circles denote bare phonon modes, and small unfilled circles denote the
modes coupled with the electron.
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FIG . 4.4. §,-dependent ratio R, triangles are for self-trapped polaron and square blocks are
for SPE large polaron.
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Chapter 5

Lattice Relaxation Process

In this chapter, we aim to discuss the relaxation of the crystal lattice after photoexcitation.
It has already been studied that for polymers, the formation of the polaron or exciton is an
ultra-fast process.'! In experiment, these states could be detected and predicted from the
spectra. However, by virtue of the molecular dynamics theory, the information of the lattice
configuration as well as the electronic state can be traced so as to compare with the energetic
evolution. Then, the lattice relaxation process could be recognized more clearly. In section 5.1,
we will give a description to the molecular dynamics theory for the e-p interacting system. In
section 5.2, we will apply this method to SrTiO; and give some detailed descriptions about the

relaxation process in this crystal.

5.1 Molecular Dynamics

Photo-excitation brings forward rich phenomena especially for ionic crystals. The excited
electrons induce lattice distortions with the introduction of e-p interactions. This is just the
lattice relaxation process. Various relaxation paths arise from different conditions, the initial
lattice configurations, the preliminary electronic states and the electron and phonon

interactive mechanisms.
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Usually, the e-p coupling system will undergo a great number of meta-stable states. Then
through the quantum tunneling process, these states will transform into other relatively stable
states, say, the globally stable states. The system can remain in such kind of states for
relatively long period. After this period, the system will finally come back to its ground state
through luminescence or non-irradiative decay process.

On the other hand, under certain conditions, the system does not undergo such complicated
relaxation process. The electron can find a direct route without any medium state from the
conduction band to the valence band, releasing its energy to the lattice in the form of phonons.

In experiment, various medium states could be observed and/or predicted from various
spectra. However, the detailed relaxation process is generally left unclear. Starting from the
properly chosen model, molecular dynamics method can reappear the evolutions of the lattice
configuration as well as of the electronic state. SSH” model has been proved to be a
successful model for one dimentional system such as polymers, and the molecular dynamics

method has gained important applications in investigating the quasi particles, say, solitons, /'

Y (61

excitions'’? and polarons,” ™ in such kind of materials.

Since the electron has far less inertia relative to the phonon, especially in complex ionic

crystals, the relaxation process can be taken as an adiabatic process. Thus, for any particularly

given lattice configuration {=®,}, of some transient time, the electronic state can be

described by the combination of the eigen states out of this lattice potential.

If we take the Hamiltonian as
H = H oy (O, 0D + H i (O, (DD + Hyrore {0,0]) 5.1)
the total Hamiltonian is composed of three parts, the electronic Hamiltonian H,,,,,,({®,()}),
being the function of the lattice configuration {@®,(r)} by encompassing the e-p coupling

terms, the lattice potential H ,,,,.,({©,()}) and the lattice kinetic energy H,,,,.. ({@, (t)}).

As just discussed, the relaxation process can be regarded as an adiabatic process. So the



electron and the phonons can be handled separately. The electronic eigen states (= @, (z))

satisfy the following equation
H poeron (@, (DN 9, (1) = 4, (D)9, (1) . (5.2)
If the relaxation starts from the Frank-Condon state, the electron can be regarded always to be
at the lowest eigen state.
For the lattice, it evolves in terms of the Newtonian equation

MO,@) = £, (5.3)

d

2 w(r)),
e (0] )

==

with M, being the effective mass for the /th lattice site and f,(®) the transient force on it.

As a result, the evolution of the e-p coupling system can be obtained by numerically
calculating the coupled equations (5.2) and (5.3).

Practically, given small enough time span 7, the lattice evolution can be handled by the
general differential method as

@,(t+r)=-]%1'+®,(t),

0,t+17)=0,t+7)7+0,(1). " (5.4)

SrTiOs is a perovskite type complex. It has been confirmed to possess a large indirect
gap over 3eV both theoretically™®’ and experimentally™*”. With the introduction of e-p
interaction, it is then expected to bring about rich phenomena in such a large energy gap. To
understand the microscopic evolution process in the crystal, the above mentioned molecular
dynamics method can be applied to the corresponding e-p coupling system. Combining the
Hamiltonian (3.1), we can obtain the relaxation picture of this crystal acted by

photoexcitation.
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5.2 Relaxation of the Electron and Phonon Coupling

Systemn

In this effort, we mean to investigate the polaron effect during the relaxation process. So we
carry out the dynamics only for the single glectron system. Tn such a case, the photo-excited
electron 1s asétmxed initially to be in the bottom of the conduction band. Although this
clectron is in a quasi piane wave state, the real crystal can always approximate to an infinite
region for the electron, and the electronic motion concerned region is only a small part of the
crystal, This pictire is illustrated in Fig. 5.1. The black circles denote the region within which
the eleciron transfers from site to site and couples to the lattice. Lattice vibrations in such 2

region are described by the dressed phonons. In contrast, the blue circles denote the region in

.
0000000

Fig. 5.1. Schematic diagram of the e-p coupling system.

which the lattice bas not any interaction with the electron. Lattice vibrations in this region are
described by the bare phonens. The blue region actually serves as the thermal reservoir. In

contrast, the black region is regarded as the system in the following.

2 32
By replacing the kinetic operator 5 (55:)—2) with the corresponding classical expression
I L

B} (Dfi ), the Hamiltonian (3.1) is transformed inio the following
46




N 1 N . S,
H=-TY (afa.+hc) ~$,@,> By, +EZ(KBB; +M,B?) —-—dz—"ZDfin,
! { Li

(L1

I oy 1 1
+52(KDD§,. +M,D},) +51<,,B > B,B, +—2—KDD > DD}, (5.5)
4,

{t.e} {e.e}is
where the summation index ! runs over the black region and the index 7/ over the whole
region containing the black and the blue in Fig.5.1. The expression {---,---} indicates the
summation is over the nearest neighboring sites. The Jast two terms in (5.5) are introduced so

that the energy can transmit within the whole crystal in the form of phonons. They actually

realize the damping during the real dynamics process.

If the Plank constant % is forced to be a dimensionless constant, %=0.6591, then s~

is equivalent to eV . In consequence, we have the elastic coefficients K, ~@, and

@), . n BA .
K, 3 and the effective masses M, ~zo—-and M, ~ P Usually, K,, (K,,) is one
b d

order less than K, (K,,), S0 practically we take K, =K, /10 and K=K, [10.

As previous, the e-p coupling system is assumed to start from the Frank-Condon state with
zero phonons, and the electron starts from the bottom of the conduction band. With the size of
5x5x5 for the system and 21X21x21 for the total crystal, we obtain the energy evolution
curve of this e-p coupling System as shown in Fig. 5.2. We calculated 10,000 steps with the
step of 1 fs. As shown in Fig. 5.2, with time, the total energy is conserved, while the energy of
the system decays gradually. However, after 2000 fs, it reaches a stable value of about
—1.018eV. This is because the electron induces the lattice vibrations first in the e-p coupling
system. Then these vibrations are gradually transmitted to the whole crystal and the energy
contained in the lattice is prone to be evenly distributed. This is just the essence of damping in
crystals./”!

This value of —1.018eV actually implies a meta-stable bound state. Figure 5.3 gives the

electronic distribution in space at different time. It is clearly shown that the relative difference
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of the charge distribution at distinct sites is very small during the relaxation. This suggests the
electron consists always in an extended state. It is just the SPE large polaron state.

From the above discussions, we can see the relaxation of the SPE large polaron in the
3-dimensional SrTiO; crystal is also a ultra-fast process. It is of the pico-second order. This is
why with the ultraviolet irradiation, SrTiO3 will immediately exhibit an enhanced dielectric
character as well as the extra-ordinary conductive ability, combined with the previous

. -12,
conclusions.!'1274
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Chapter 6

Conclusion

Here, it is worth mentioning that the sextic potential for the T;, mode in our model is a

necessity. It is the lowest order choice for the anharmonicity because a substitution of quartic

anharmonicity for this T,

lu

mode will suppress the extended state in the energy gap.
Therefore, the quartic anharmonicity cannot reflect both the conductive and the dielectric
property of SrTiOs. Instead, the sixth or higher order anharmonicity is the nature to this
crystal. This result is in quite good agreement with the hyper-Raman experiment.[g]

In summary, we employed a discrete lattice model to investigate a dual e-p interacting

model for SrTiO;. The photo-generated electron is assumed not only linearly coupled with the

A, phonons but also quadratically coupled with the T, phonons, which results in two

kinds of polarons, the SPE large polaron and the off-center type self-trapped polaron. In terms
of the energy difference, two SPE large polarons are expected to aggregate to form an SPE
large bioplaron. The SPE large bipolaron is shown to be the most stable quasiparticle state for
the many electron systems. Many SPE large bipolarons will not constitute even large polaron,
instead, they will form various clusters. The SPE large polaron, bipolaron and bipolaron
clusters are all dipole active. The photo-excited electrons interact with the phonons and the
e-p coupling system reaches the SPE large polaron or bipolaron state first because it is

energetically close to the Frank-Condon state. In these extended states, the quadratic e-p
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coupling results in the softening of the 7, mode. This softening causes gigantic static

dielectric enhancement in SrTiO;. However, in the localized state, the dielectric property will
not be changed. These results are in agreement with the experimental phenomenon.
Calculations of the ratio R show that the SPE large polarons or bipolarons contribute to large

photo-conduction, while the self-trapped polarons are immobile. In addition, the impurity
with a small attractive potential (77<1eV) does not suppress the SPE large polaron and
bipoalron states. The introduction of the impurity only tends to reduce the barrier between the
extended state and the localized state and the poalron effect can never be neglected for SrTiOs.

Therefore, the impurity does not seriously alter our present conclusions.

The dynamics study of SrTiOs indicates the formation of the band states is an ultra-fast

process of the picosecond order.
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