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Abstract

We investigate new types of matrix models based on the simply counected compact ex-
ceptional Lie group Ey ([1]) and the super Lie algebras ([8]). In the former case, a matrix
Chern-Simons theory is directly derived from the invariant on Eg. It is stated that the
sitnilar argumnent as Smolin [9] which derives an effective action of the matrix string type
can also be lLeld in our model. An important difference is that our model has twice as
many degrees of freedom as Smolin’s model has. One way to introduce the cosmological
term is the compactification on directions. It is of great interest that the properties of
the product space J° x G, in which the degrees of freedom of our model live, are very
similar to those of the physical Hilbert space. In the latter case, we investigate three
super Lie algebras, osp(1|32;R), u(1|16,16), and ¢l(1]32; R}. In paticular, we study the
supersyminetry structures of these models and discuss possible reductions to the IKKT
model. In addition to those, one view on the diffeomorphism in the matrix model, a
different «(1]16,16) model from Smolin’s, and some kind of topological effective action
derived using Wigner-Inénu contraction are also discussed.
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Chapter 1

Introduction

Today particle physics except for gravity is well described by the standard model. How-
ever, gravity cannot be (uantized in the same method because we cannot renormalize it.
Therefore the main problem of current particle physics is to establish a consistent quantum
theory which contains both the standard model and gravity. Under these circumstances,
the most hopeful and popular candidate is the string theory.

The reasou to favor the string theory is its wonderful nature. We can give as concrete
examples that the theory has no ultraviolet divergence and includes gravitational field
as well as matter and gauge fields automatically. However, due to the infinite ground
states, this theory has no capability to predict; therefore we cannot answer why the
standard model emerges. On the other hand it is possible to consider that this problem
is the problem in the framework of perturbative formulation of the theory, because the
completed region of the string theory is only the perturbative region. So if the non-
perturbative formulation of the theory is accomplished, it is quite likely that this problem
is resolved. Of course, it is pure speculation, but it seems quite probable that the non-
perturbative effects turn infinite ground states into single one. In recent years, some kinds
* of non-perturbative effects of the string theory were investigated using the concepts like
D-brane, duality, and M-theory. However these are not constructive definitions of the
string theory as yet, but attempts to understand the non-perturbative effects along the
line of the perturbation theory.

What must not be forgotten is that one theory never finish before the non-perturbative
forinulation is completed. One of candidates for the non-perturbative formulation of the
string theory at present is the string field theory. Although a considerable number of
studies have been conducted on these theories, the only successful string field theories so
far are the ones formulated in the light-cone gauge. So it is not clear whether we can
extract some essential information of the non-perturbative effects. Another candidate is
what is called the matrix model. With the advent of the BFSS model [3]' as a starter,

'The action itself has been introduced before by B.de Wit, .J.Hoppe and H.Nicolai [2].
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many proposals (e.g.[3].[4).[5].[6].[7].[8].[9], - -} have heen being made since. The common
idea of these models is that they reproduce sting or membrane theory in the large-NV
limit. In a sense the matrix model is similar to the lattice gauge theory, which is the non-
perturbative formulation of the field theory, in that they can be analyzed using numerical
simulation. Therefore it is reasonable to suppose that we will develop current matrix
models a little further and find the true model.

A virtue of the matrix model is that it has a possibility of putting an interpretation
on the space-time itself. Matrix models can describe both space-time and matter. i.c.
fluctuation around a classical background, in the same footing. (Sucl a unification seems
only possible in the case of gauge theory where bosonic fields have the same indices as
the space-time.) However, some important questions such as “what would be the real
mechanism to realize the 4-dimensional world from the 10(or 11)-dimensional universe”,
“how we can describe a curved space-time in matrix models” and “how is the diffeo-
morphism introduced into the theory” remain unsettled. One of them is the question of
background independence. Consider the IKKT model [4] for example. This model has
an SO(10) x SU(N) symmetry, and this is just a symmetry like some theory was ex-
panded around the flat background. Therefore we cannot deny the existence of different
matrix model whose expansion around a special background gets the IKKT model. On
this point Smolin proposed a new type of matrix model [6] in which the action is cubic in
matrices. Matrices are built from the super Lie algebra osp(1]32; R), and one multiplet
is pushed into a single supermatrix. Smolin's conjecture is that the expansions around
different backgrounds of the osp(1|32; R) matrix model will reduce to the BFSS or IKKT
model. However. as far as the IKKT model is concerned, the theory made from Smolin’s
way dose not reproduce the supersymmetry of the IKKT model. That is, indeed the
10-dimensionality is realized, but the half of supersymmetry required by the IKK'T model
cannot be held. Anyvway, the model described by a single matrix alone is very attractive,
and Smolin’s courageous attempt demonstrated oue concrete possibility. In this paper,
“how 10-dimensional IKKT model can be embedded in 11-dimensional Smolin’s models”
are reconsidered. These arguments are proceeded using group theoretical study on the
supersymetry of the IKIKT model. In addition to those, one view on the diffeomor-
phisim in the matrix model, a different ©(1]16, 16) model from Smolin’s, and some kind of
topological effective action derived using Wigner-Inoni contraction are also discussed.

Moreover, as Smolin’s u(1{16, 16) model [7] has demonstrated, the matrix models are
not irrelevant to the loop quantum gravity which is another approach to the Theory of
Evervthing. Furthermore, it was pointed out in [9] that the matrix string theory {5] has
a connection with the matrix model based on the exceptional Jordan algebra J, while
B.Kim and A_Schwarz have discussed in [10]? a tie-in between the IKKT model and the
Jordan algebra j with its spinor representation. For these reasons. doing research on
extended matrix model is very interesting and important. Over and above, we should
not overlook the fact that several approaches which are very similar to the matrix model

?The author learned of the existence of this study from Smolin’s paper [9].



have been pursued by other fields. We can take [11] from the non-commutative geometry,
[12] from the fuzsy sphere, and [13] from the simplicial lattice for example. It might be
inferred from these circumstantial evidence that the attempt to renounce the space-time
as a continuum holds one important key to the future progress of physics. It seems at
least that there is no need to relate the matrix model to the string theory alone.

For these purposes, we consider new types of matrix models based on the simply
connected compact exceptional Lie group Eg ((1]) and the super Lie algebras ([8]) in this
paper. This paper is organized as follows,

In the next chapter we briefly review INIKT matrix model, and Smolin’s matrix model
based on the groups of type Fj.

After that, in chapter 3, a matrix model based on the cornpact Es group is presented.
The action of the model is constructed from the cubic form which is the invariant on
By mapping. This action is an essentially complex action. Of course if one wants, one
may take up ouly real part of the action; however, there are some circumstantial evidence
where it is essential for the theory including gravity to employ complex variables. Ashtekar
variables make the constraints of the canonical formalism of general relativity quite easy
([14],(15]). Actually the chiral action is a complex action whose real part agrees with
Palatini action. Besides, the «(1|16,16) model have also complex action because of the
33th component which is pure imaginary. As in the loop quantum gravity, we may be able
to impose the reality condition on our model. In addition, it is possible that the action
expanded around the vacuum, which is a specific background of the model, gets on-shell
real. In this paper, therefore, we do not restrict the action to real part only. We proceed
with arguments using complex action. Moreover, we discuss symmetries which our model
possesses. Supersyminetry has a deep connection with cyele mapping P. Furthermore,
we investigate constraints which are huposed on our model. The reason why the model
18 a constrained system is that the group we consider here is the compact By group of
the groups of type Eg. The resulting conditions are uite similar to what we postulate
as fundamental properties of inner products of the physical Hilbert space. In addition,
we investigate one of the classical solutions of our model, and compactify the theory
on the three directions. Our model has twice as many degrees of freedom as Smolin's
model has because we are cousidering Ey instead of Fy. However, we can have the similar
arguinent as Smolin [9] which derives an effective action of the matrix string type. In
appendix; the author put together an elementary knowledge about the complex Graves-
Cayley algebra €¢ and the complex exceptional Jordan algebra 3¢ which are needed for
this paper. However, if the reader has a great interest iu the exceptional linear Lie groups,
see, I particular, a series of excellent reports presented by I.Yokota ([16],[17],[18]) one
tune,

In chapter 4, matrix models based on super Lie algebras are presented. We grope
for the extended model with larger symmetries that reproduces IKKT model after gange
fixing and integrating irrelevant fields. In order that the model may describe a curved
space-time. a spin connection term containing the y-matrix of rank 3 must be included
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or generated in the fermionic action. Therefore we search for models with higher rank
tensor fields coupled to fermions through y-matrices. Another guiding principle to con-
struct a model is a sufficient numnber of supersymmetries. In order to reproduce the IKKT
model we need at least 10-dimensional A7 = 2 supersymmetry. These requirements can
he satisfied by considering matrix models based on super Lie algebra osp(1|32;R). Con-
struction of matrix models based on this superalgebra was proposed by Smolin [6] first.
In this paper, we investigate such models, especially from the point of supersymmetries.
In the first place, we consider a model based on 0sp(1}32; R) super Lie algebra. Bosonic
fields in this model can be expanded in terms of 11-dimensional y-matrices of rank 1, 2
and 5. They are real fields. Fermionic fields are composed of 11-dimensional Majorana
fermion. Hence, reduced to d=10, this model becomes vector-like and we have to integrate
out a right{or left}-handed sector in order to reproduce IKKT model. The symmetry of
this model is a direct product of OSp(1|32; R} and U(N). The OSp(1|32;R) group is a
generalization of SO(9.1) in IKKT model. The model is also invariant under coustant
shifts of fields and we show that the OSp(1]32; R) symmetry and the constant shift of
fields are combined to form space-time algebras including space-time supersymmetry. We
discuss a possibility to obtain IKIKT model by integrating some of the fields. More-
over, we study how diffeomorphism invariance is hidden in IKIK'T model. After a brief
sumiary of the relation between matrix models and gauge theories on noncommutative
space, we show that the unitary gauge transformation is much larger in noncommutative
space than that in ordinary commutative space. Even local coordinate transformations
are generated by the unitary transformations. It is also pointed out that this diffeomor-
phism invariance is independent of the global SO(9,1) invariance and it is difficult to
extend the global S0O{9,1) to local symmetry of the model. Furthermore, to search for
extended models with local Lorentz invariance, we then construct matrix models with lo-
cal SO(9,1) symmetry. In particular, we investigate matrix models based on «(1|16, 16)
or gl(1]32; R} super Lic algebra. These models are invariant under coupled symmetries of
U(1|16,16) (or GL(1]32;R)) and U(N). Since U(1|16,16) (or GL(1]|32;R)) is an exten-
sion of SO(9,1), this model has local (i.e. U(N)-dependent) Lorentz invariance. At the
cost of this enhanced gauge symmetries, these models break invariance under constant
shifts of fields and we need another interpretation of space-time translation. We make use
of the Wigner-Inoni contraction and identify generators of SO(10, 1) (which 1s a subgroup
of U(1{16, 16) and GL(1|32; R)) with generators of SO(9,1) rotations and translations in
10-dimensional space-time. In this way, we can obtain 10-dimensional space-timne picture,
We also determine how to scale the fields to obtain the correct 10-dimensional theory.

The final chapter is devoted to conclusion and discussion.



Chapter 2

Short reviews of matrix models

2.1 IKKT model

IKKT model is a large NV reduced model of 10-dimentional A" = 1 super Yang-Mills theory
to 0 dimension. This model has been proposed as a nonperturbative formulation of type
IIB superstring theory. The action of the model is given by

S = —g—zT'r(g[A,‘,A,,][A“,A']+3‘¢)F‘ (A, ¢]), (2.1.1)
where ¢ is a 10-dimensional Majorana-Weyl spinor fleld, and 4, and ¢ are ¥ x N
Hermitian matrices. This action is formulated in a manifestly covariant way which enables
us to study the nonperturbative issues of superstring theory. The claim of this model is
that the space-time, gange filed, gravity, and matter are all generated by solving this
model.

There are several reasons to speculate that this model is a constructive definition
of type IIB superstring, and one of them is that this model is the same as the matrix
reguralization of the Schild action of type IIB superstring. Let us introduce Green-Schwarz
action of 11B superstring,

Sas = / o[V =M + ie 0, X (B'T:0,6, + 0T, 046,) + (§'T70,6%) (6T, 3,6)).
(2.1.2)
M = det(e™II'ITY) (2.1.3)
N = 0,X' —if'T9,0" + i#°T'0,8* (2.1.4)

This action possesses the N = 2 space-time supersyminetry.

b5 X' = ie' T8 — iZT'6*, 540" = ' (2.1.5)



Then, it has another syinmetry calted & symmetry

8 X =100t — i T a?, 8,6 = o', (2.1.6)
where
T 2 T 1 DY FTIT 91~
ot =(14T)k, ap=(1-D)s% T'= ﬁs TEILT; (2.1.7)
€0y = +1 (hence "' = 1) (2.1.8)

This & symmetry can be gauge-fixed by imposing the condition #' = 6% = 4. It leads to
the action

Sas = —T/dza(\/ —r + Zie“ba(,‘X"":ZJF,-ab'ep), (2.1.9)

where m = det(my) = det(3, X 3, X;). This action has the uew A" = 2 SUSY as follows.

(55”1,:’) = 5\/—’!1’!TJ'L!'J;F1J6, 551]‘—‘(’ = dielys, (2.1.10)

iy =¢, sPx =0, (2.1.11)
where ni;; = e“[’i)aXiaij. Our next job is to rewrite this Green-Schwarz action into
Schild form. Defining g, as the metric of the worldsheet. and introducing the Poisson
bracket as {X, Y} = ﬁe“b&i}(abl", this action is rewritten as

S, = [d‘za[\/ga-(i{_xﬂx"y — %@r-f{_xy, v} + B3/9)- (2.1.12)

We obtain Sgs from Sgy, after eliminating /g. The A7 =2 SUSY of this Schild action is
1 : .

6y = —Em,-jl"'”e, S X = ey, (2.1.13)

Py =¢, 8P x =0. (2.1.14)

We perform a procedure called "matrix regularization’. This procedure is a mapping from
the Poisson bracket to the commutator of large N matrices

—i[,]e{.}. Tr Hfdza\/g_;. (2.1.15)

The functions X are now mapped into the ¥V x N matrices A*. Aud we obtain the action
similar to the original proposal of IKKT model :

1 A D
S = _Q(ZT"'[Ai; A4 A7+ 5T'r(t,£fl“‘[Ai, ¥])) + STrL. (2.1.16)

By dropping the term 5771 and setting a = f,- we get the action of IKKT model.
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Although one have not yvet obtained the complete interpretation of this model as
the theory of gravity, the following arguments on supersymmetry lead us to interpret
distributed eigenvalues as the extent of space-time. In addition to the original supersym-
metry of the A" =1 super Yang-Mills

sy = ;[A“,Al,]rf“’e (2.1.17)
4, = fgr“-w, (2.1.18)
this action is invariant under the following shift of the fermionic variables
sy = ¢ (2.1.19)
§94, = 0. (2.1.20)

The action is balanced between Ty, x[4,, A,]* and Tv;,\rx,y-qz"y"*[fl,,,, ¢] under above ho-
mogeneous supersyvometry since the transformation for ¢ contains two bosonic fields.
Since the original 10-dimensional spacetime is reduced to the 0 dimension, the repetitions
of the first transformations no louger reproduce the spacetime translation. It can be set
to be zero by the SU(N) gauge transformation. However, if we take a linear combination
of 8 and 63 as

s = 5 4 5@ (2.1.21)
oD = (s — 5y, (2.1.22

we obtain an enhanced A" = 2 supersymmetry algebra

(800" — 68y = 0 (2.1.23)
(6050 — 660) A, = —2ieTes,;. (2.1.24)

The r.lis. 15 a shift of the diagonal part of the bosonic variables.
dA" = ¢*1 (2.1.25)

The reduced model action is, of course, invariant under this shift. Therefore, if we interpret

. . . - . ” s
the dragonal part of the bosonic variables as the spacetime coordinates, the above A7 = 2
supersymmetry generates translation in the new spacetime.

Another reason to consider the bosonic variables A* as the space-time comes from the
relation between matrix models and field theory on noncommutative geometry. Matrix
models can be rewritten as gauge theories on noncommutative space by expanding the
bosonic variables A* around the noncommutative background &, satisfying

[, i = —iom, (2.1.26)

where 8 are c-numbers. We assuine the rank of 8% to be d and define its inverse 3, in

d-dunensional subspace. £# satisfy the canonical commutation relations and they span the



d-dimensional phase space. The semiclassical correspondence shows that the volume of the
phase space (measured in the coordinate space of 2#) is V' = N(2r)%/det 8. Distribution
of eigenvalues of & is therefore interpreted as space-time. In noncommutative space,
space-time translation can be generated by unitary transformation of A,. Furthermore,
the dynamical generation of space-time implies that the fluctuation of space-time is also
dynamical and graviton will be hidden in IKKT model or equivalently in noncommmtative
gauge theory. Investigations of noncommutative gauge theories have indeed clarified that
they can contain much larger degrees of freedom than those in the ordinary commutative
field theories. For example, noncommutative plane waves are interpreted as bi-local rather
than local [25]. After they are expanded in terms of local operators it is expected that
higher spin fields will appear. even if we start from Yang-Mills theory. From this point
of view, we expect that noncommutative Yang-Mills can contain graviton. A possible
interpretation of diffeomorphism invariance in noncommutative Yang-Mills is given in
this paper. In the flat d-dimensional space like this case, we can identify some of the
S50(9.1) indices with the indices of S0(d) isometries of the background. But this cannot
be expected for more general curved backgrounds whose isometries cannot be embedded
in SO(9,1). If the IKKT model is a background independent model, general coordinate
transformations will be hidden and the SO(9.1) symimetries should be rather considered
as a gauge fixed local Lorentz symmetry instead of isometry of 10-dimensional flat space-
time.

2.2 Smolin’s matrix model based on the groups of
type F}

We also briefly review Smolin’s matrix model based on the groups of type Fy [9].
The action of Smolin’s model is given by
k 9 e
s = — tr( J4 . P(IE) T”(Jc)i) Fane | (2.2.1)
47

where J* are elements of real exceptional Jordan algebra J, P(J) is the cycle mapping of
J. tr(A, B,C) (A, B.C € J) is the trilinear form, and figc are the structure constants
of G which is a Lie algebra. Therefore the degrees of freedom of this model live in J x G.

The specific components of J4 € J arc written as

{l A (f)o.-i @2.4
Jt = Ot 2t 07 (2.2.2)
02,4 @1‘4 ZUA
x*eR Offec (I=0,1,2),

where z;4 are real numbers, and O are elements of Graves-Cayley algebra.



In this model, following change of variables are required in order to make the theory
Chliern-Simons type,

g =5+ e EL= 2+ 20 . e =z + Z\ (223)

and the effective theory of 7% compactified theory of this model is expected to reproduce,
at the one loop level, a theory related to the matrix string theory.

10



Chapter 3

Matrix model based on the compact
FEg group

We consider a new matrix model based on the simply connected compact exceptional Lie
group Eg ([1]). A matrix Chern-Simons theory is directly derived from the invariant on
Fj. 1t is stated that the similar arguinent as Smolin [9] which derives an effective action of
the matrix string type can also be held in our model. An important difference is that our
model has twice as many degrees of freedotn as Smolin’s model has. One way to introduce
the cosmological term is the compactification on directions. [t is of great interest that
the properties of the product space J¢ x G, in which the degrees of freedom of our model
live, are very similar to those of the physical Hilbert space.

As a beginning of this chapter, let us examine the reason why Eg 1s better than the
groups of type Fy. Although, as early as 1983, T . Kugo and P.Townsend referred to the
relevance between physics and division algebras [19], the reason why the concern with
Fy has been growing is that the critical dimension of the string theory is 10 dimensions.
The exceptional Jordan algebra J 1s a 27-dimensional R-vector space. This space can be
classified into three main parts. One is the Jordan algebra j which is a 10-dimensional R-
vector space. The others are the part of 16 dimensions which is related to the spinors and
the extra 1 dimension. In brief, what are expected as the degrees of freedom of the Theory
of Everything are all involved in this J. The extra 1 dimension may account for the M-
theory. Moreover, an important point to emphasize is the fact that the groups of type F
have some definite geometrical interpretations. For example, F) is a subgroup of projective
transformation group of Graves-Cayley projective geometry €F which corresponds to the
elliptic non-Euchdean geometry; and Fjy_ygy is a subgroup of projective transformation
group of Graves-Cayley projective geometry which corresponds to the hyperbolic non-

i1



Euclidean geometry. For these reasons, the groups of type F are very attractive to us,
but there is one flaw i these groups. That is the fact that elements of J do not have
an nnaginary unit 7. It is true the matrix model is one of candidates for the unified
theory. Now may be the state of affairs in the model building, but we will have to
account for the standard model someday. Fermions which appear in the standard model
are Weyl spinors, namely complex spinors. If the standard model were described by using
Majorana spinors only, £y might be the underlying symmetry of the universe. However,
the actual world requires comples fermions without doubt. In the usual string theory,
the real y-matrices in 10 dimensions can be decomposed by direct products of Pauli
matrices, so that the appropriate compactification can change 10-dimensional Majorana
fermions into 4-dimensional Weyl fermions. In the approaches using Jordan type algebras,
however, it needs care because the elements are non-associative which have no matrix
representations,  We canmot use above usual trick. Let us take one concrete example.
In the case of 0sp(1]32;R) supermatrix models the bosonic part can be expanded in
terms of l1-dimensional y-matrices with rank 1,2 and 5, and in the case of «(1|16,16)
models the bosonic part can be expanded in terms of 11-dimensional v-matrices with rank
0,1,2,3.4 and 5. These super Lie algebras contain the y-matrices clearly, but the Jordan
type algebras do not have the usual (associative) Clifford algebra trivially. Therefore, the
complex structure needs to be introduced into the theory from the beginning.

This is the reason why we consider Fy is better than the simply connected compact
exceptional Lie group Fy. Of course, the group F,€ is still available, but the model based
on £, is merely the complexification of the Smolin’s model. So we attempt to use the
compact Ey group. The complex exceptional Jordan algebra J¢€ is the complexification
of the exceptional Jordan algebra J. One must not confuse the complexification of the
exceptional Lie group with that of the exceptional Jordan algebra. Writing down some
definitions of the exceptional Lie groups is very informative for the comparison.

Fy = {a€1ls0p(3.3)] tr{wd,aB,aC) = tr(A,B,C), («4,aB) = (4, B)}
Fi® = {a€1s0c(3% 3% | triaX, oY, aZ) = (X, Y. Z), (aX, oY) = (X,Y)}

Esius) = {0 € T50p(3.3) ] (ad,aB.aC) =(A,B,CY}
Es = {a€ls50c(3% 3| (aX,aY,aZ) = (X.Y.Z), {aX,aY) = (X,Y)}
B¢ = {a€Ts0c(3% 3] (aX.aY,aZ) =(X,Y,2)}
Here, tr(x,*, ) is the triinear form, and (x, %, %) is the cubic form. The cubic form is
very different from the trilinear form, and their concrete forms are given in appendix.
Another virtue is that By contains Spin(10). This is never achieved by type Fy, so
this is a very good point of our model. It is quite likely that other matrix models are

reproduced via expansions around specific backgrounds of our model. In addition, Ey is
also interesting from the viewpoint of phenomenology.

On the other hand. the problem now arises: Naturally if we deal with compact Ey,
the degrees of freedom of the theory double because of J¢. Although this problem always

12



follows us as long as we handle compact Ey, even so, it seems that the benefit of the fact
that we can introduce complex structure into the theory exceeds this trouble, Therefore
we have to prepare a mechanism separately, which reduces the number of degrees of
freedom by half. This is a future problem which needs to be asked.

3.2 The model

We adopt a following definition for the simply counected compact exceptional Lie group

Eﬁ.
Ey ={a € Isoc(3°.3°) | {(aX,aY,0Z)=(X,Y.Z), {aX.a}) =(X.Y)} (3.2.1)

The second condition {o.X, oY) = (X.Y) is added to the definition to make the group
compact.

We then define our theory by the following action,
S = ( PHMW) | P(ME) | MY ) fane (3.2.2)

where M are elements of complex exceptional Jordan algebra 3, P(M) is the cycle
mapping of M, (X.Y,Z) (X,Y.Z € J°) is the cubic form, and f4gc are the structure
constants of G which is a Lie algebra whose Lie group is compact. [ --] denotes the
wetght-1 anti-symmetrization on indices.

The cubic form cannot be coupled to the structure constants as it is, because it 1s
symmetric with respect to the interchange of fields. The cycle wapping is introduced
in order to combine the cubic form with fige. The way of constructing this action is
basically the same as Smolin’s case. but the invariant is different because the group we
adopt 1s different from Smolin’s. The cubic form is employed instead of the trilinear form.
Of course. the exceptional Jordan algebra is not real (J), but complex {(J¢). Therefore
the degrees of freedom of our model live in 3 x G. One of the methods to introduce
the cosmological term or the coupling constant into the theory is the compactification on
directions. The physical diunensions can also be introduced via this compactification. Up
till then, only the units of angle are in existence.

A beauty of this model is that there is no need to change variables intentionally in
order to get a Chern-Simmous type action.

The specific components of M- € J¢ are written as follows,

Q : A QJS'J A (52 A Pl A 3 A Tty A
J‘WA — (};‘)3,-1. Qz.-t (."51‘4 + ¢ 7—r3.4 Pz.-i ﬂ.lA (3_2_3)
¢2 A (;"5 . A Q3 El Ty A T A P3 A
QIA:PIAeR qﬁf‘qrﬁf"‘ee (13123)
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A | A (I)Zi A ‘I)-‘g A

= (I):;A 42;1 (I)lA (3.2.4)
(1)2 A (I)l A A3 A
Atec  @tee (I=1,2,3)
= MYA D), (3.2.5)

where A;* are complex numbers, and &, are eletnents of complex Graves-Cayley algebra.

i order to analyze the theory, it is necessary to decompose the action in terms of the
variables defined in (3.2.4). This gives us

1 . . ‘ .3 ) '
S = I f."lBC’ EI.H\ .A]"AJB.AKC + 5 fABG 6!Ji\ .A[A(‘l"]B,(I‘;\'C)

3
— 3 fapc Re®(®50,"®\C) + fapc Y ( Re*(2/°0,%9,) ) (3.2.6)
=1
1 : .3 . = C = e
= 3 fapc €% AP AR ARS + 1 fape 7% AP (@RS + 0007
-3 fage (252,50, 9) + (8,99, 7))
3
1 , . = Oz Bya - ' -
+35 f.4502(q’1'1(‘1’13‘1’16) + (®,9®,%)0,y | (3.2.7)
- I=1
and depending on circumstances, it is helpful to rewrite these expressions using following
relations.

(0,7, @5%) = Re(®,%0,°) (3.2.8)
. 1 . ,
fapc Rec(‘l’a‘4¢23‘blc) = _E Jasc b Rec(q)r"“l’JB‘I’Kc)
— fabc o B0 @ B¢ (3.2.9)
3 3
fABCZ( Re®(®,*®,%®,“) ) = —fapc Tijk Z(‘I’J““I’ﬂﬂ‘l’mc) (3.2.10)
=1 =1

Of course there is no kinetic term because we are considering the matrix model, but the
first term of this action reproduces the Chern-Simons term. What has to be noticed is
that this Chern-Simons type action is directly derived from the invariant on Ez. Therefore
it 15 quite likely that one quality of the theory based on Ey is topological.

Now, in order to get the equations of motion of this theory, we have to vary with
respect to all fields. We first vary the action with respect to ALY, and the resulting
equations are the following.

4S 3 1 )
=5 = 3 Fapp €t ( EAIAAJB +(‘I’;‘i.,(I)JB) )
L 2
3 IJL 1 14 B A B 4 B
= 3 favp € ( ;«4:' A7+ Oy 0oy + O Dy, )
=0 (3.2.11)
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Naturally, the equations of motion are obtained by differentiatious with respect to the
fields only, because there is no derivative term in the action. It is often convenient to
rewrite these equations in terms of matrix form.

5 3 /1
riTy, = -2 ( §A1A-AJB + §p 0,7 + 0,00, ) [r!,7'] [T4,Ts)

AP 2

- 0 (3.2.12)

The variations with respect to @y, " give us

4.5

(S(I)—D f.-‘lBD EJ'JL ( QAIA(I)UJB +Rec(q)l,—ﬁq)‘].8) )
0L

fapp €t ( QA D, E + §or? 00,7 — 0,9, )

(3.2.13)

Similarly, we read off the following equations of motion from the variations with respect
to & P (I=1,---.7),

4S
0@ P

= 3 fapp €'t ( Aty P — o0, )
+3 fasp giji ( iy e’ — Gt ” )
=0, (3.2.14)
where the index L is mod 3, and the summation convention is not used about this L.
We now introduce the following notations.
A=A T, , ®y=0,"Ty , ®;=0,"T, (3.2.15)

These enable us to write preceding equations of motion as

elIL ( % [Ar. Aj] + [Por. Bos] + [Bir. iy )
(L ( 2 [A;, ®os] + [Bor. Bos) — [ir. Biy]
(L ( [Ar &) — [®0;, D1) ) + 0ix ( [Rir+1). Rizrz)] — [®ir. Bje] | =

0
0 (3.2.16)
0

Likewise, we obtain the following form for the action,

3 . 1
S = _?’ (IR n-( SAAS A+ 285 [ A, By )
+ G¢ t""( Dy [Pos, Poa) — Bit[Pos. Pin] — P [Pis. Pio] — P01 [Pis, B
3
1 -
— ok (Pa[®js. Pra) + 35k Z(‘E‘I[Qm @) ) ; (3.2.17)
I=1
where (i = 0,---,7) and (i = 1,---,7).
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3.3 Symmetries of the model

In this section, the symmetries of our model are described. First of all, the action is
invariant under the following Ey mapping as a result of our definition for the simply
connected compact exceptional Lie group Fy.

( a PX(MH) o P(MPB) | a MY ) faBc

= (PHMS) . P(MP), MDY fanc (3.3.1)
— S

Then, we have the gauge symmetry for the compact Lie group because the structure
constants fipc of G are coupled on to this action. We can take G = w(N) for example.

Moreover, as we can clearly see in (3.2.17), there exist matrix translation symmetries
with respect to the diagonal parts of the fields.

In addition to these, there is a particular syminetry which we call cycle mapping P.
This mapping is defined by the cyclic permutation with respect to the indices 1 = 1,2, 3,
and probably it belongs to the F;. The action is invariant under the transformation

MA = P(MA),

(PP PPME)) . PMDY ) fape

= (‘P“‘(M[“") , PHMPB), P(M) ) fanc (3.3.2)
= (j\/f“ , PHMP)Y P(J\/fc])) fanc (3.3.3)
= (PHME) PMY) L M) faca (3.34)
= 3

The reason why the cycle mapping is nnportant is that the invariaunce of the action under
this mapping has a deep connection with the supersymrnetry. Basically, we would like to
think that the specific components of M4 € 3¢ are divided as follows,

At gt 9y , y

a ) w4 g .
R R R Sy (339

2 1 3

where W, ¥4 and v are defined by

¥ .«4 (I); A ) (I) A .

We would like to consider that W and ¢ are bosonic fields, and ¥4 are fermionic fields
in the long run. Unfortunately, however, ¥ ave still hosonic fields at this stage. This is a
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problem common to all theories which are based on the exceptional Jordan algebra 3 or the
complex exceptional Jordan algebra 3¢, Of course, if one would like to avoid this problem,
one may consider the theory based on the Jordan algebra j or the complex Jordan algebra
j¢ and may prepare fermions made up of Grassmann variables separately. However, the
groups like Fy or Fy are very attractive, and the idea that one multiplet is pushed into
a single matrix, which is an element of J or J¢, is mathematically beautiful. Therefore
we have to prepare a mechanism separately, which introduces an anticommuting factor
into the theory. An example of the way is that we impose different boundary conditions
when we compactify the theory. It is a future problem whether other mechanisms exist.
This is very interesting, because there is a close resemblance between this situation and
that of the fractional quantum hall effects of condensed matter systems. It 1s necessary
to keep in mind that it is possible that our definition of spinors itself i1s still incomplete.
For another. this situation may have a connection with ‘Bosonic M Theory™ [20]. Anyway,
the expression (3.3.5) is the reason why we would like to relate the cycle mapping to the
supersyminetry.

3.4 Constraints of the model

We next study the constraints of our model. If this algebraically defined theory has a
deep connection with some geometry, it must be essentially the non-assocrative geornetry.
In particular, it is quite likely that this theory has its geometrical interpretation in the
projective geometry because the group we consider here is the compact Eg group. For
example, the non-compact group Eg_y6), which is also one of the groups of type Ej. is
the projective transformation group of Graves-Cayley projective plane €P, ([21]). Of
course, little is known about the geometrical interpretation of our model at this stage.
However, in order to pursue the geometrical interpretation of the theory in due course, 1t
is important to refer to the fact that this model is a constrained system first.

The reason why additional conditions are imposed on our model is that the group we
consider here is especially the compact Eg group of type E;. The constraints result from
the following condition.

(aX,aY) = (X.Y) (3.4.1)
(X, Y €39

Thanks to this condition, one invariant under the Ey mapping is introduced nto the
theory.

invariantg, = (M, MPy e C
(3.4.2)
(JMB._ J\/[A) — (,j\/f"!, J\A‘B)t

Clearly, we can couple another invariant, which is the d-term concerning G, to this. If we
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consider G = u(N) for example, summing up indices leads us to the following expression.

nvartantpg oy = 2 (J\/!A.,J\/f B) tr(T4Tg) (3.4.3)
= (M MY € R (3.4.4)
> 0 (3.4.5)

The crucial point to observe here is that this invariant satisfies a positivity condition: in
general {M1, M) > 0, and vanishes if and ouly if M+ = 0. Although this invariant is
the quantity defined on the product space J© x G, the resulting structure is, in a sense,
quite similar to that of the physical Hilbert space. Since there is a cycle mapping, this
space Is; as it were, the Hilbert space with the spinor structure. In passing. we can rewrite
above quantity with emphasis on U(N),

3

invariantp iy = Z(A}"‘A,B-l—?((b;‘*,@;s)) tr(T4Tg) (3.4.6)
=1

= t‘r‘,\rx‘\:( (AP A7 + 202, 4D, B) T, T ) (3.4.7)

where N — oo, or finite but boundlessly large.

Furthermore, we can consider the following combinations too.

(0 PP MY, a P(MP)) = (PHMY. P(MP)) (3.4.9)
(o PM™Y), 0 MPY = (P(M?), MP) (3.4.10)
(o MY a PEMEP)YY = (MY PHMPY (3.4.11)

Next, let us consider more general case. Two M’s can be independent this time. In
this case, the invariant is as follows.

invariantp, = (JW"I;J\/['B) e C
(3.4.12)
(MP MYy = (M, M7y

Therefore we can couple the d-term concerning G to this quantity in the same way as
pPrevious case.

in.uar‘é(mt;;sxU(N) — (JVi’J‘,J'\A"“) c C
(3.4.13)
(J\/[I."lgj\/t‘.}) — (JM"‘z_/M"A)*

This invariant is, in general, a complex number. The second expression of (3.4.13) indi-
A A .
cates that (M’ MY and (M, M) are complex conjugates of each other.
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Of course, we may also consider the following combinations as before.

(@ PP(MY),a P(M'P)) = (PP(M*), P(M'F)) (3.4.14)
(a P(MP).a MFY = (PMYH, MP) (3.4.15)
(o0 MA o PEHMP) = (MAPEMPY (3.4.16)

The author does not know the geometrical interpretation of the simply connected
compact exceptional Lie group Ey. The attemnpt to relate the model based on the compact
group Fjy to some geometry is a very exciting theme. It is quite likely that the theory based
on Fy is closely connected with the topological theory, because although the action was
originally constructed from the algebraic invariant on Ey mapping (i.c. cubic form), it has
a form which is similar to the Chern-Simons theory automatically. To take a hypothetical
example, if we can give the Freudenthal multiplication X x ¥ a definite mterpretation
such as the outer product in the space, we might be able to give the action a geometrical
interpretation such as some kind of volume. What seems to be lacking is the knowledge
of the projective geometry or the non-associative geometry. Therefore, we get the feeling
that we had better pay attention to the advancement of these fields.

3.5 One of the classical solutions and 7° compactifi-
cation

One way to study the dynamics of the theory is the compactification on directions. In
this section, we follow Smolin’s arguments. We investigate one of the classical solutions
of our model, and compactify the theory on the three directions. As a result, we can have
the same argument as Smolin [9] which derives an effective action sinilar to the matrix
string theory. The main difference is that our mnodel has twice as many degrees of freedom
as Smolin’s model has because we are considering Ey instead of F.

To begin with, we represent the matrix elements (\A;)% 5, where P stands for the index
of ‘row’ and @ stands for the index of ‘column’, of ¥ x N square matrices A; as A;g.
Then, let us view G as a product space which is made up of four parts. Accordingly. we

can give the one-to-one correspondence between P, ¢} and (ppops P), (41 ¢20:Q),
AIS = Al.vipzps{’ -‘ (351)

4149293 QQ

where (pl', 41 = _L'l: T 0! Tt LI) (I=1,2,3) + (PQ = 1-. e AI) so that

N=(JJeL +1) M. (3.5.2)

I=1
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Next, let us focus on one of the classical solutions of our model, given by

fil 42 ([3Q tn ¥2 43 (353)
o — £
I':;:f;,,ﬁ; P ar e 5.03

{ A ppaps = Pyrpeps (51’

q1 gz 43

with other fields vanishing. This solution satisfies the following relations.

(Pr & lyxm). (Pr®@1ywn)] = 0 (3.5.4)

Now, we expand the theory around this classical solution,

.«4 IJ1P"P3P — PPIP"P:] (SP + ay PlP”PG} (355)

Tgoygs Q Lyy 4243 Ty gags Q

and then consider the mapping into the space of functional by using the usual matrix
compactification procedure based on the complex Fourier series expansion,

OG(t
t-,;.\,-m-(F[P, a) = = f dt tr uw F(t)( i af: ))) . (3.5.6)
At this time, while the fields a3 fjjfj;’g and (I’uf;ff;:ﬁgg are compactified as bosonic fields,
the fields ®; ™ {;f;";g (n=12) are compactified as fermionic fields.

(1 +(2L1+1)) 2 I-’ _ pipopal’ -
2L, +1) s 0 = TG o (3.5.7)

(i +2E 1)) paps P pipaps PP .
‘-I)?i(q1+(21'_-1+1))qzqgc} - +(bl-5(]iq')q§Q (308)

M+L+AWppa P _ 5. prpapsP =
‘b;ck(tI1+(2L'l‘+‘l))‘l'."IgQ - q’mqingiQ (309)

The z? and 2* directions are also compactified with the same signs.

Under these conditions, the action of the theory becomes

3 . - 2
= —— I’j.‘,‘ Erags ,I“”\ ’ Ny - v
S Q(TITZTJ) f;ﬂ( (N AY] .1,[( € (a;DJa; —+ 30.]0.J(11 )
+ 2 ( _‘I’EL[D& ‘I’Ez] + '1)¥2[D3= (I)h] )
—di ( Doy [Poz. Poz] — B [Pys. Piz] — it [Puy. Py} — ‘I’m[‘I'i:i-, ‘1’1'2]
1 . _
— 0k P [Pjs. i) + gUijkq’i:s[q’j:s; P4 ) ) (3.5.10)
: . . 2¢
- _.‘3— 9{ & t"'.«uX.M( K (a;d,ar + —IGIGJGK )
2A Jm 3

/- Si
— ¢ of P- [qu):ﬁ] — gﬂ'jjk(pi:j@j:i@kli )

~ 4i Re*(®350,9®,7) + 4i Re(2,52,99,1) (3.5.11)

i the L; — oo limits, where T; = i“)(QL; + 1), with T held fixed and I 5 0. The
dimensional scales 1) are introduced in order to adjust the physical dimensions. The
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; P, o ta th . S 1
point to observe here 1s that the coefficient 775
directions fills the role of a cosmological term .

resulting from the compactification on

Incidentally, the expressions in terms of continuous functions like (3.5.6). (3.5.10) and
(3.5.11) are symbolical notations. It would be rather essentially proper to think that there
exists an {punck. which is sufficiently small but finite, such that 17 > Ipj,... In brief,
this is to say that a minimum length is introduced into the space-time itself. Accordingly
L are also very large but finite. In consequence, such concept as universality class seems
to be unacceptable because we cannot achieve the genuine continuum limit. Applying
the concept of universality class to the matrix model implies that the matrix model drops
its position down to a mere regularization of the continuum theory. We do not take the
position that we consider the matrix model to be the regularization of the continuum
theory. We take a view that it is the expression in terms of matrices that is rather proper
descriptive language. The reason why Wilson’s method achieved a great success is that
the field theory itself was a low-energy effective theory. Of course it is possible that
such concepts as nonstandard number aud nonstanderd analysis are not irrelevant to the
future physics. However, what needs to be emphasized here is that we must not handle
the micro-world as an object of ‘regulation’ in order to suit macro-phenomena to our own
convenience. Clearly, the macro-world is in existence as a consequence of phenonena
of the micro-world. The research worker of the elementary particle should pursue the
structure of minute world to the bitter end. and now, it would be wise for us to abandoun
the concept of the space-time continuum as a product of illusion.

Let us now return to our main concern. One process leading to (3.5.10) is that we
eliminate the terms which comprise the odd degree with respect to the fermionic fields
;.0 fjﬁgg (a=12) from the compactified action because they contradict the boundary
conditions. It is now easy to show that what is true for Smolin’s model is true for our
model as well (See [9], Section 5.). If we take the limit Ty — Tpner and then drop terms
in dy and ay intentionally, aside from the coefficient of each term we can expect that from
analyses of symmetries and power counting the resulting 2-dimenstonal effective action
results in what is similar to the action of the matrix string theory at the one loop level.

Ly = fi{ e t"‘.-uw( D;,0" 5[ Dy, B3] + 231755 (P o) + 00t Bix B s B

+ (Fu)? + (Du®i0)* + pijui[ @i, @33][ @1y D] ) (35.12)

One of the differences between this action and that of the matrix string theory is the form
of the four-matrix interaction terms as has been pointed out by Smolin. This is, so to
speak. a matrix string-like theory based on G3¢. The other crucial point is that our model
Lias twice as many degrees of freedom as Smolin’s model has because we are considering
Ey istead of Fy. This trouble always follows us as long as we handle Ex. We will take
the argument about this matter up some other time.

Lastly, the author would like to mention the possibility that the 3-dimensional com-
pactified action (3.5.11) might be associated with not only the constructive formulation of
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the string theory but also the loop quantumn gravity which is another hopeful approach to
the unified theory. Let us now exponentiate the action (3.5.11) and suppose the following
(uantity.

Tala. @] = 7 (3.5.13)
= ik (leta) (3.5.14)

4, IJK ; 2t
La(a) = ¢ dxe t-erM(a;c}Jah--{-Ea[aJaK) (3.5.15)

Except for the facts that this quantity contains the fertnmionic terms and U{M) takes
the place of SU(2), it is similar to Kodama’s wave function ([22],[23].[24]) which is an
exact solution to all the constraints of the loop quantum gravity in the case of non-zero
cosmological constant. In fact, the overall factor is —i% which is the same as Kodama’s
wave function. We did not use any approximation, nevertheless the samne factor is directly
derived from our model. Therefore, it seeins quite probable that there exists something
like an U{M) generalized loop quantuin gravity whose physical state is ¥ [a, ®].

N
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Chapter 4

Matrix models based on super Lie
algebras

We investigate several matrix models based on super Lie algebras, 0sp(1|32, R), «(1]16, 16)
and ¢l(1]|32, R) ([8]). In particular, we study the supersymmetry structures of these mod-
els and discuss possible reductions to IKIKT model. We also point out that diffeomorphism
invariance is hidden in gauge theories on noncommutative space which are derived from
matrix models. This symmetry is independent of the global SO(9, 1} invariance in IKKT
model and we report our trial to extend the global Loventz invariance to local symmetry
by introducing «(1|16, 16) or ¢{(1]|32, R} super Lie algebras.

4.1 osp(1]32, R) Cubic Matrix Model

Smolin proposed a matrix model based on the super Lie algebra osp(1|32, R) [6] as an
M-theory matrix model. The action is constructed from osp(1|32, R) matrix M whose
components are also N x /¥ matrices. The bosonie part of this model can be expanded
in terms of 11-dimensional y-matrices with rank 1, 2 and 5. Therefore it is a natural
extension of ordinary matrix models containing only vector field with rank 1. Furthermore
it hras a stiple cubic form in terms of matrix M and is reminiscent of Witten’s string
ficld theory. Before going into detailed analysis of the model, we first give the definitions
of vsp(1]32, R) super Lie algebra.

4.1.1 Definition of 0sp(1]32, R) supermatrix
osp(1]32, R) super matrix is a 33 x 33 real supermatrix satisfving the following conditions:

]
"™G+GM =0 for Gz(ro ?)
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M= M. (4.1.1)

Y is a 32x 32 11-dimensional y-matrix in Majorana basis which is real and satisfies (I'")2 =
Y J

—1. For conventions of a super matrix, sce Appendix A. An elenient of OSp(1|32, R) group

18 written as U = exp(M) and satisfies

"UGU =G (4.1.2)

The above conditions (4.1.1) restrict the matrix M to be

o P
M = ( 5 0 ) (4.1.3)

where ¢ is a Majorana spinor with 32 components and ¢ = 7¢I, m is a real 32 x 32
bosonic matrix satisfyving

Tl +T%n = 0. (4.1.4)

The bosonic part wn is an element of sp(32, R) algebra. It can be expanded in terms of
11-dimensional v-matrices as
-_'\1 1 7.4.] An 1 -:‘1 15 =
mo=uy [+ _)—11:'41,101' 4 _,—!'uA]...,‘sf . (4.1.5)
21 : 5!

ancl contains 528 = 11 4 55 + 462 degrees of freedom. A; are denoted as T1-dimensional
indices and run from 0 to 10, We are working in Majorana basis, where all 4-matrices are
real. Therefore the real condition means that all the coefficients wq,, wa 4, and wy, 4,
are real.

4.1.2 Action and symimetries

In considering the action of a large N reduced model, we regard each of the coefficients
;s a4, alld g, .4, and each component of 4 as an N x N hermitian matrix. ]'L"IpQ,
each component of the supermatrix A4, is thus an & x N hermitian matrix. We further
introduce N? osp(1[32, R) supermatrices A as the cocfficients of M expanded in terms
of the Gell-Manu matrices ¢*:

NZ
M=o, (4.1.6)
=l
The action proposed by Smolin 1s
; 33 32
I = FPT-J-‘.\:X.\-’ S TAO T MSB[MQT, M) — My S (MR, M)
: Q=1 p=l
: N
= - Strag,ess( MM MYTr x5 (£[t0, 9], (4.1.7)
JJ
abe=1



where p = 1,---.32, P,Q.R = 1,2,---33 and a,b,¢ are indices for U(N). To avoid
confusions, we note here that we use Tr as a trace of N x N matrices while tr {or Str)
as a trace of 32 x 32 (33 x 33 super) matrices. This action can be rewritten as

ful'_ur_'

I = - 2(t'r32XM(H‘J.”':nan“)—S’i-uf)“nzbtﬁ")
2g

= j?TrNxN(mp"[mq",m.,.”]) — 3Pt w0, (4.1.8)
fate are structure constants defined by [t., 8] = ifucte. The fermionic term has the same
form as that of IKKT model but the bosonic part is cubic and different. This difference is
related to the difference in supersymmetry. That is, in the IKKT case the supersymmetry
transformation for ¥ is proportional to a commutator of the bosonic field [4,,. 4,] while
here all (homogeneous) transformations are linear in fields as we will see soon. Another
big difference is that this model contains 32 component Majorana fermion compared to
16 in INKT model. Due to this doubling, we need to integrate out half of fermions in
order to show the equivalence to IKIX'T model.

In spite of these differences, this model possesses several similarities. First it has no
free parameter since the coupling constant is always absorbed by a field redefinition of
matrix M. Hence ¢ gives the only dimensionful parameter in the model. Symmetries of
the model also have similar structures to IKKT model. If we write the matrix M as a
tensor product of osp(1]32, R) and N x N matrix, the action is invariant under

Mo (U lyen) MU Lyen) (4.1.9)

where U 1s an element of (Sp(1]32, R) group. For an infinitesimal transformation.,

SM = [H. M] = [( ot ) ( " )] _5M4+5UM. (4.110)

i

The bosonic part is identified with sp(32. R) rotations:

8, M = ( e n] - e ) (4.1.11)

ih 0

The fermionic part, supersymmetry transformation, is given by

Wy [ i@ —¥x) —mx L1
3t M_( o ) (4.1.12)

The bosonic part is a natural extension of SO(9,1) rotation iu IKKT model and indeed
includes SO(10, 1) symmietry. Besides this SO(10, 1) symmetry generated by I442 | there
are bosonic syminetries generated by y-matrices with rank 1 and 5. These transformations
mix bosonic fields with a different number of 11-dimensional indices. The fermionic part is
a generalization of homogeneous supersymmetry in IKKT model. As already mentioned,



this homogeneous supersyimetry is linear in all fields and the action is invariant under
this supersymmetry among terins with the same number of fields. This is different from
IKKT model where the action is balanced between Tryyv[4,, 4,]% and Try oy -y?:'y“[Aﬂ, 4]
under supersymmetry since the transformation for the ferniion contains two hosonic fields.
We expect that, by integrating some of the fields, the supersymmetry structure of IKKT
model may be reproduced from this osp(1|32, R) model.

The action is also invariaut under U(N) symmetry
M = (Isgxss @ U) M (Lygxss @ U) 74 (4.1.13)

where U is an element of U(N) group. All the osp(1]32, R) fields must be transformed
simultaneously. The symmetry of our model is therefore a direct product of these two Lie

groups OSp(1|32, R) x U(N).
Another symmetry of the model is a trivial shift of the supermatrix M:
ﬁl’pr — AJPQ-FCPQLVX:\-'. (4114)

This shift contains both bosonic and fermionic inhomogeneous transformations. Some of
the bosonic shifts are identified with space-time translations while the fermionic shifts
form space-time supersymmetry together with the fermionic part of the homogeneous
osp(1]32, R) transformations. We write down the fermionic part explicitly for later con-
vellence:

552)111 =0, 5,(.2)1,{) = €. (4.1.15)

Sumimarizing the three kinds of symmetries, the bosonic invariance of the model con-
tains Sp(32, R) rotation with 528 generators, constant shifts for each 528 sp(32, R) fields
and U(N) gauge symmetry. The fermionic invariance, Le. supersymmetry, is generated
by homogeneous supersymmetry transformations (4.1.12) with real 32 components and
inhomogeneous transformations (4.1.15) with the same number of components.

We then study the algebraic structures of these symmetries . The commutation
relations among the homogeneous supersymmetries (4.1.12) are, of course, written by
Sp(32, R) rotations:

[6;5):65')]11'1 = i[(x€ — e¥), m], (4.1.16)
(687,819 = i(x& — ex)y- (4.1.17)

h =14(xé— €ex) is an element of sp(32, R) and can be expanded as

1 1

h = h.,,FA + 9!11.41‘42].-"'4["12 + 5|h-‘ql“.,‘,ﬁF:\lm"‘s, (4118)

where

1 1 1
h‘.‘, = @ff(h[‘_” ]?‘.1_1‘4,_, = —3—'t’f'(il.r,1]4._,), h‘:“...‘.h = —_jtv'(h["m...‘%). (4119)



It has the same algebraic structure as the 11-dimensional space-time supersyminetry with
central charges of rank 2 and 3. But this algebra itself can no longer be interpreted as
space-tilme supersyminetry since transfortnations generated by I'* are not the trauslation
of space-time. The situation is the same as in IKKT model. If we interpret eigenvalues
of some bosonic variables as our space-time coordinates, space-titme translation should
be identified with the constant shift of bosonic fields. A difference is that, in IKKT
model, this type of commutation relation vanishes up to a field dependent U(N) gauge
transformation while here we have sp(32. R) rotations.

Commutation relations between the homogeneous and inhomogeneous supersymmetry
transformations are, on the other hand, given by

(60, 6@ m = —i(xe — ex), [617,8P]y =0, (4.1.20)

and generate a constant shift of bosonic fields. Commnutators between inhomogeneous
transformations trivially vanish.
By taking linear combinations as
5 — 5(1)_,_5(2)_’
6 = (s — 5@, (4.1.21)

we obtain an enhanced ’'space-time’ supersymmetry algebra
[0, 8V]m = —2i(x& - ex)dis. (4.1.22)
B9 69y = o0,

up to sp(32, R) rotations. As far as the supersymmetry algebra is concerned, sp(32, R)
transformations are more appropriately interpreted as a kind of gauge symmetries.

4.1.3 Reduction to d = 10

So far we have studied the model from 11-dimensional point of view. In this subsection,
we investigate it from 10-dimensional point of view by specializing the 10th direction. For
this purpose, we first introduce the following new variables

W = u;. ALi) =u, tuy, C T (4.1.23)

f —
Hypz T

— () _— Zy, 7
Hypopy = Uppeopgts Tl = 2(“.!‘1“'.“5 £ ey i)
Here we use the indices gy, fto, - - - running from 0 to 9. f denotes the 10th direction. The
quantity ,, ..., denotes the dual of u,, ,.:
i — __l.u IRTIYS (4.1.24
s = p7 Ui o © . 1.24)
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I‘,(,T s and I;(,l ae are self-dual and anti-self-dual respectively:

(£)  _ :
0, =+, (4.1.25)
Looking at these ficlds, we have two set of fields :’1;(, " that can be identified with A, field
in IKK'T model. This is in accord with the doubling of fermions. These doublings cannot
be avoided since we start from a 11-dimensional model. It is now convenient to define an
even rank bosonic field and two odd rank fields 1, by

1 1
me = ”/’Fﬂ'f‘56"“1/1“4“}‘*‘—Hﬂl...‘qr"ul”'““’_’

4!
. 1 1
i = by 5'15: LT (LT,
1
N T 1 { iy g '
my = (24 T +5|Im e LT =T, (4.1.26)

Fermions are also decomposed into left and right handed chivalities

, 1+T7 , I _
Wy = 5 br = —— (4.1.27)

Here we note the following useful identities:
mn = mlly, =0, Gt = ml =0, (4.1.28)

(+

If we denote sets of the fields m,, g ) by M., J\/l'((ft), we also have the relations

XiEL €M) ypep e MED, e 6 M., xpép € M.,
M. . M.] € M., M., .\/t(i)] € M [M}f),MO | € .Mﬂ.,
MM =0, MM =, (4.1.29)

Then the action I = I, + I; becomes
fubc

I, = _)—t: s [ mbm + 3ing m( m —e + 3 m( )b m(‘H‘]
2¢?
3! ({15 i

Iy = o [79’2'” Yot U{ ’”(-Hb ¢y + W:e'” ‘Pu] (4.1.30)
242

The structure is very simple. There are two sectors (¢ and ma ) and (¢ p and m,, ))
which are coupled through n, fields. We can then expect to obtain IKKT like modlel if
we succeed in integrating one scctor. The situation is unfortunately more complicated
as we will see in the following discussions of supersymmetries. Here we write down the
action in terms of 10-dimensional components for later purpose:

i 4
I, = %T‘f‘:\;x;\( 96[4::1 ]C-mw ngV[AH“)u_.AE;)] + 51,1, [[(+ 7= Jdmns]
U
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_ 4H,u ___“4([‘4(+)_ I{—)m--m] _ [‘_4(—)_ I(+)I¢1“'.ﬂs]) — 8C [I(+)m Il'*)#'_"".ua]

Hs Hy G SURIE TP
8 “h T - ce gt
+ gH Jtlll?([I(+)U/\|(:3,u4;¢5-,I( Y ‘5] — [I( )V/\,(L:},u.;,ug,:-[(-{-)‘“ 15])
32 [C‘“l 2 C‘Hllls]C'HZ“a - 166'}‘1“? [H,lll FINFIRNIT] H#Q"‘Lls] (4.1 .31)
1

v iy prod
[H ,u_r,---,urtleaﬂamo]f )‘-

2_7- [
; o
Iy = E;'T?‘N (N (=3 (=L (W p] + p[W, 1 ])

— Bi( T AM ] + @ pT# A, vg])

3, - - , .
- _('l#"f_-r-”l He [C',ug,ug . '{}'JR] + ‘{r’;’ﬁ'r#l““ [C et WL])
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3¢ - -

! 2 i ! 40 fia fi. "

B Z(_?‘”ermmm [HHJ#'J.HSIM" ‘%"R] + gppH s [H.ul.ue.us.u-:-. U’[..])

Ji, - -

47 4] e p e gl + " al ey e 5 -) g

- 5(2'*'“1-“” ;3;4;5[1( ).unuwwms-. "r’I_] + Zepplrtiztaka [[( F1§2 143 fha s ¢ ¥r]))-

(4.1.32)

We then investigate the symimetry structures, especially the structures of supersymmetry,
instead of explicitly integrating out some fields in order to see a possibility to induce
IKKT model. We first perform chiral decomposition of both homogeneous and inhomo-
geneous supersymmetries. 64 supersymmetries are decomposed into 16 left{right)-hancded
homogeneous (inhomogeneous) supersyminetries:

5, 4% (4.1.33)

LR €Lt

Under the homogeneous supersymuietries, the fields transform as

§Mm, = i(xg¥r —¥LXr+ XR¥L — ¥nXL),
il = i(xr¥r — ¥RYR), Mg = —mexn —miPxu,
§Wml= = i(xpwr —voxz). 0Py =—moxp —m{ xR (41.34)
Here a natural pairing is
m((f) g, ‘mi_) V. (4.1.35)

which is different from the pairing which appears in the action (4.1.30}. The inhomoge-
neous supersymnetry transformations are trivial

552)’1;’51.-(;2) = €L(R),
§E2)'r':'z = 0. (4.1.36)

The commutation relations between the homogeneous supersynunetry transformations
are written in terins of even and odd fields as

[5£.1)=5§1)]'ff?e- = i[(x1fr — €rXn+ XREL — €rX1) 1]
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+i[xi€L — €1X1s rn(H] + i xnEn — f!?fn;"“-f,_)],
[5(’”"(551)]"”})+} = i[(xn€r — €n¥n).m.] +i{xner — EHYL)"”'LH - :."m,(,H(XLEH —€Lin)-
X
[, 6T = il(vrer — enkn) ] + FilxpEn — e vm)m — iml T (xREL — envw).

(4.1.37)

The commutation relations between the homogeneous and inhomogeneous supersymmetry
transformations are similarly written as

[5“) 8PN, = —i(xXL€r — €1.Xn + XREL — €RNL):
[8“ SOt = —i(xpEg — enin),
[d_(\,l SN = —i(yE - €LXL)- (4.1.38)

These commutation relations (4.1.38) show that constant shifts of the +(—) fields are
generated by the right(left)-handed supersyinmetries. If we neglect the m, fields, the two
sectors (‘mf,ﬂ and ¢p) and (mf,_) and @) are completely decoupled. If we can successfully
integrate out 1, mb ™ and ¥y fields, we expect to obtain a IKIKT-like matrix model. As
we see from (4.1.34), if we simply neglect these ficlds, the right-handed homogeneous
supersymmetry transformations for the remaining fields (n-sf,*),-:;b,;) become

6.5’1)31”'£+) = "'.()(H"'yﬁh‘ - '4'—"12,‘_{!1‘): égln Yp = _("”s),\'ﬂ- (4'1‘39)

Here (.} should be understood as the vacuumn expectation value expressed in terms of
+ . - . . + (+ .
m$ . Hence if C... field in {m,) is replaced by [Af‘ ),A}, )]., the transformation law can

be identified with the homogeneons supersymmetry in IKKT model.

. .. . +
Let us look at these transformations explicitly for the rank 1 field AE, ). Under the
homogeneous supersymnuetry transformation, they transform as

1) 40+ o T (1) 4(— - 11 .
5,(\»)-455 ) = g\ Ll vn. ()’(,)A( V= —xi (4.1.40)
We next consider the commutation relations among supersymmetry acting on A,(fc} fields.
Extracting the specific chirality of the supersymnetry parameters, the commutators be-
cone

[6[\1}1 e(i)] _1 - D [6(\111 (Sr ff)] +} = gE“FHXR?
i .
[(5(1) 6 ]-1 = gELFHXL: [(5£]1)5r[f}]"1£:|-) = 0 (4141)

This is consistent with the above identification of pairs: Af‘_) (—l,(f)) field 1s paired with
the left (right) chirality. Commutators of two supersymmetry parameters with different
Biralities vanich w A(E)

chiralities vanish wheun they act on A

(610, 64 = (51D 52714 = g, (4.1.42)

1 Xt
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We then look at the commutation relations between homogeneous supersymmetries. We
are interested in which generators of sp(32, R) rotations appear in the commutator. The
commutators between the same chirahty
1 3. — ! ol - .

[6£[2' 66([1)]‘45;*_) - g(f\ﬂ[,”“? r“]GR) (4'1'43)
survive only for the fields of even rank m, (W, C;;, and H; ;) in m in the r.h.s, Since
these fields are integrated out at last, we o not mind the appearance. On the other hand,
commutators between different chiralities

¢
[‘5&1;,)’5&;)]/4.5#) = E(,{me‘“eﬂ +éeplomyy) (4.1.44)

survive for odd rank fields, A" and I‘(‘T)..‘,s, and contains the field ,‘—ﬁf) itself as

(6. 8L = X AT en - (4.1.45)
The r.h.s. is generated by SO(9.1) rotation. Hence, if we interpret the eigenvalue dis-
tribution of 45[" ! or Aff ) as space-time extension, we need to perform SO(9,1) rotation
to obtain the correct space-time supersymmetry simultaneously with supersymmetries.
In this sense, SO(9,1) synunetry should be more appropriately considered as a kind of
gauge syminetry.

The above symmetry arguments support our expectation that the osp(1]32, R) matrix
model becomes IKKT model after integrating out some fields. However, there are no
terms in the action consistent with the pairing expected from the symmetry arguments
(4.1.35). In the next subsection we discuss a possibility and also a difficulty to obtain the
correct coupling between fermion and boson by integrating out unnecessary fields.

4.1.4 Integrating out m., mb™ and P fields

In order to show that the correct coupling between 4'g and —1f‘+ ' can be generated, we
need to integrate out the unnecessary fields (i, m&™ and iy, ). For this purpose, these
unnecessary fields need to have quadratic terms which may be generated by giving vacuum
expectation values to some fields. The action (4.1.32) indicates that, if W acquires a
vacuum expectation value, quadratic terms do not appear for i, fields. On the other hand,
if ALH acquires VEV such as the noncommutative g,, all the unnecessary fields can get
quadratic terms. Hence in the following we expand ALH fields around the noncommutative
classical background

AP =5, +alP, (4.1.46)

where p, satisfy [p,.5,] = i3, and each 3,, is a c-number. Applying to the action
the mapping rule from matrices to functions (briefly reviewed in the next section), we
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obtain the following action. In the following expression, all products are the so-called star
products and Try,y should be understood as an integral over noncoinmutative space.
The guadratic terms are given by

. 1

19 = —gzrr“\,x:\:(_ge(aﬂl.45;))6'“”‘2 +96(3, WA £ 4(8, H,, . )T T,

19 = ey (-3i5,T0,0 ) (4.1.47)
f y2 NxN Lo A Lo

The cubic interaction terms are given by

3 J J - 14d] Jbs — 4 — gy e
B9 = 060 AICH 9G]+ B fove
+ 4([“51-): H.uz---.us][(i)m T — [‘4&7)1 H.u'.n “-us]IH)M ---;15) - 86‘111112 [IH)M H3pte I(—)M-“”G]
8 et _ b
+ gHV tﬂlxtz([f(+)u)\;£a;e4;ts=[( o ‘5] - [I( ),,)WMW‘S,I("')“ ”])
+ SQ[CMJI?:C.uu!a]cmm - lﬁcrillitz[Hm#S.uﬂts: Hllz..-ﬂs]
1 g Lyt
+ EHlu'l i TR} [I{'I (213 L ] HV“S.F‘O.“IO]G‘ v lOﬁ)" (4'1'48)
3 ( 7 . N 7 T r e T 1 7 7 U 4 (— i
]J(r b= U_ZT"';\’x,’\’(_?"’-(_'Q’L W.abge] + p[W, ¢r]) — 3i(io T [UE;_H:"!-’L] + wplt [AL ) nl)
Sj i T HIHz ' T TR [ i
- E(WLF H[CMH?? Wp] + @pl [Crrpers ¥L])
3} n Ly o ! n NI IRy I
B E(_w‘LFI IS T H s peapes s O R) TR [Hyusnansns 1)
3’ 7 4 o fig g LE i n AL Ao fEg fEa gt - i
- E(Q'er‘ HHiskarat 5[1(+)l‘li‘2F‘3H4H5 ApL] + 2ehpTHiaababs [I( ).ul.uzﬂaﬂws: ":URD)- (4-1'49)
Vertices
(+} . (+)
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, 4
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Figure 4.1: Typical vertices of the osp(1]32, R) matrix model



We draw some typical vertices s fig. 4.1.

If we neglect the interaction terms first, an integration over €', field gives a constraint
on A7) as
8,407 — 9,47 =0, (4.1.50)

and we can solve it in terms of a scalar as ASL_) = d,A. Inserting this into the quadratic
term, we have a propagator connecting two scalars, A and W. Then we can integrate
unnecessary fields A}‘_).,PV IV H and ¢, An issue here is whether we can generate
the IKKT-like terins such as T‘I‘Nx;\:[A;j_), .4,(,+)]2 or TrNxN-aT)nF“[AEf),-c')n]. U{N) gange
symmetry assures the existence of these terms if we can show that quadratic kinetic terms
for aif) and ¥ p. that is, (0“(1,(,+) —3Ufsz))2 and 'z;.rHI“"a,,'l;"R, are generated. First, the kinetic
term for (1£‘+) is easily generated by integrating out ¢z as in fig. 4.2, since there is a vertex

dr Tl o).

q® a® Yo o Vi
S v (+) +)
@ (9 L = B R A A . By
< au+ + > -
Ve YL
<\|IL1|IL>
{(+) (+)

Figure 4.2: A propagator {¢, a,"') is induced by one-loop effect.
The kinetic term for ¢ is more difficult to generate. As is seen from fig. 4.3, one way

to generate such a termn is to connect two «[W, ¥'p| vertices by propagators of 4 and
O VYL YR A pag L

W,

Induced propagator

<WWo>

Figure 4.3: A propagator for ¢p 1s induced if W can acquire a propagator.

Propagators for W and A fields cannot be generated perturbatively as we prove in
Appendix B. But since there is no symmetry prohibiting such terms it does not exclude a
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nonperturbative generation. The existence of the propagator connecting these two scalar
fields rather indicate that hoth of these two propagators can he generated self-consistently.
We do not discuss more details here, but it is probable that W acquires a propagator and
the above mentioned kinetic terin for 4 will be also generated. In this way, we expect
that IKKT model is induced from osp(1]32, B) model.

4.2 Diffeomorphism in noncommutative Yang-Mills

In this section, we first review how noncommutative Yang-Mills is obtained from matrix
models and then investigate the special properties regarding the local gauge transfor-
mations in noncommutative background. Especially we study special types of gauge
transformnations which can be interpreted as local coordinate transformations.

First we give a brief review on a matrix model description of noncommutative field
theories. The noncommutative background & satisfying

[, i) = —if" (4.2.1)

g

1s a classical solution of IKIKT model. We assume the rank of 8% to
be d and define its inverse B n d-dimensional subspace. This expression is formal and
only valid for infinite N. &# satisfy the canonical commutation relations and they span
the d-dimensional phase space. Therefore the wmomentum operators are proportional to
the coordinates as

with a c-number #

P = Bua”. (4.2.2)

The semiclassical correspondence shows that the volume of the phase space (measured in
the coordinate space of a#) is V = N(2m)¥?y/det 8. We expand the bosonic matrices A*
around & = "), as

A [T ~

A =0"(p, + a,). (4.2.3)
If we assume that all fields can be expanded in terms of noncommutative plane wave
exp(¢k - &), we obtain a map from a matrix

a=Ya(k)exp(ik - i) (4.2.4)

I

to a function
alz) = E a{k)exp(ik - x) (4.2.5)
k
in the d-dimensional noncommutative plane. By this construction, a product of natrices
is mapped to the x product of functions

ab — ala) *b(x),
g 02

a(z)y=ble) = exp(jw)u(

@+ E)b{a + ) |e=y=0 (4.2.6)
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and the operation Tr over matrices can be exactly mapped onto the integration over

functions as L
Trla] = /det 3(- )g[(ld.’l,‘ a(z). (4.2.7)

21

i

The reduced model can be shown to be equivalent to noncommutative Yang-Mills by
the following map from matrices onto functions

a = alx),
ab — a{x) = bx),
1

(]

Tr = Vet §(5-) / . (4.2.8)
Applying the rule eq.(4.2.8), we can obtain U(1) gauge theory on d-dimensional non-
commutative space. (Noncommutative {7{m) gauge theory can be similarly obtained by
expanding around «* & 1,,.)

s

The extension of @ can be interpreted as the space-time and the space-time translation
is realized by the following unitary operator:

- exp(ip - €)2" exp(—ip - €) = & + " (4.2.9)

It is amusing that the translation in the noncomnutative space is realized by U(V) gauge
transformations in matrix models. This realization has been known as Parisi prescription
in the old reduced models [26]. The local gauge symmetry of noncommutative Yang-Mills
is originated in the invariance under U(N) invariance of IKKT model

A, = UA UL (4.2.10)
Indeed, if we expand U = exp(wf;\) and parameterize A as

;\=Zj\(k) exp{ik - &), (4.2.11)

we find that the fluctuating field of A, around the fixed noncommutative background
transforms as

e = g+ il A = il Al (4.2.12)

After mapping the transformation onto functions, we have

J
an{w) = aox) + M) — ifaq (@), Ax)]s,

Qao
a; = a; — ia; (&), Alw)]s
i = = il{w), M) (4.2.13)

where 1 < a < d and i > d. If we take X as in (4.2.9),

A=¢€"P,, (4.2.14)
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the transformations (4.2.13) becowne translation in the noncommutative space up to a
constant shift of the gange field:

an () = a,(x) — B.s6” + 6-38_5%(:1:),
a;{w) = a;{x) + Eﬁa;g(li(it,'),
W) = ) + e Ogi(x). (4.2.15)

As the above example shows, local gauge symmetries in noncommutative gauge theories
are very different from those in the ordinary gauge theories and even space-time transla-
tion 1s generated. Hence all gauge invariant operators are invariant under the space-time
translation and should be constructed by iutegrating over space-time, which is reminiscent
of the theory of gravity. We are, therefore, tempted to generalize the above discussion
to local transformations. The reason why the gauge transformations in noncommutative
space-time are much larger than those in commutative space is that gauge transformation
parameters A contain not only ordinary functions but differential operators in the semi-
classical limit in the following sense. Functions in noncommutative space are expanded in
terms of noncommiutative plane waves as in (4.2.11). For finite iV, the momenta of plane

waves take values of X
e = /208N "¢ p, (4.2.16)

where n = 0,1,---, N¥¢_ This can be seen from the explicit construction of the plane
waves in terms of 't Hooft matrices U and V' satisfying UV = exp(2mi/N)VU. The number
of independent plane waves is N*, which is the same as the number of degrees of freedom of
a hermitian matrix. Since the natural cut off scale in the noncommutative plane (2.1.26)
15 given by ) = N Vv 27/3, the natural cut off of momenta should be 27/l =
v2rd. However, some plane waves with momenta (4.2.16) exceed this natural bound
and they become very nonlocal objects since such high momentum plane waves generate
translation in space with loN~14n. Hence only N out of N? plane waves whose momenta
are smaller than /273 can be interpreted as ordinary plane waves in the semniclassical limit
and others should be interpreted as differential operators that can generate translation
in noncominutative direction in space-time. From a matrix model point of view, such
nonlocal waves correspond to off-diagonal elements while local ones to diagonal elements.

Now let us consider the gauge transformations related to local coordinate transforma-
tions. A natural generalization of the global translation (4.2.14) will be

1
A= S(aé" + o), (4.2.17)

or, if we want to mmclude both of the gauge transformations and local coordinate transfor-
mations in the semiclassical linit, we can expand A as

. 1
A=A+ 5(13(,6"' + €7 Py ). (4.2.18)
Similarly we expand bosonic matrices as
i : v ~ L. ~0y Sy~ :
A, =0,4"=a,+ i(pncu + €5 ) (4.2.19)
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and assume that the field € is close to d;:
€ =0, + R (4.2.20)

This is a natural generalization of the expansion (4.2.3). Applying the unitary transfor-
mation generated by (4.2.17) to the bosonic field expanded as above, we have the following
transformation law:

Shi(x) = —eb(x)dpe” + " Oahs,
Sau(x) = € ga,(w). (4.2.21)

Here we have assumed that all of €, a, and ¢ are slowly varyiug and dropped higher
derivative terms. In addition to the transformations of the fields, we need to transformn
the background as

8pa = Busé’ (4.2.22)

or 6:i* = e# in terins of #*. Accordingly, the commutation relations between p, change as
Po + Bas® Par + Bur3€” ] = i(Baat + 3301 0a€” + BazOu€”’ (4.2.23
[Pu + Dag€” Par + Dur € ] Hdaat + Ba’ Unt + Daglu€ ) -l )

Therefore the shift of the background can be interpreted as the transformation of 3,...

The transformation (4.2.21) indicates that local coordinate transformations can be
realized by gauge transformations in noncommutative space. But as the transformations
(4.2.21) show, the gauge field and the fermion field transform as a scalar and h,” as a
vector field. In other words, the SO(9,1) index has nothing to do with this coordinate
transformation as it should be since SU(XN) transforinations and SO(9,1) transforma-
tions are independent from the beginning. IKKT model is not explicitly invariant under
local SO{9,1). Local Lorentz transformations might be realized in a complicated way in
IKKT model and we expect that there is an extended model with obvious local Lorentz
symnetry, which becomes IKKT model after gauge fixing. In the next section, we search
for such models.

4.3 Gauged matrix models

In this section we investigate another type of matrix models with larger local symmetries.
The model studied earlier has an extension of SO(9, 1) symmetry, that is, OSp(1]32. R)
symmetry. But this symmetry is decoupled from U(N) gauge symmetry. As we have
seent in the previous section, space-time is realized as eigenvalues of bosonic matrices and
consequently some U(N) symmetry is identified with space-time translation. Hence if
local Lorentz symmetry exists it should be U{N) dependent SO(9.1) symmetry and we
need to unify decoupled SO(9, 1) and U(N) invariance in IKIKT model.
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Let us first try to gauge the global SO(9,1) symmetry. A convenient way to write
S0(9.1) is to use y-matrices. Defining

1
m=I"A,, h= gg‘wl"“’, (4.3.1)
S0(9,1) rotations of A, and ¢ are given by
dm=[h,m]|, §¢ =hy, S =—¢h. (4.3.2)

The rotation angle ¢, is a c-number. One way to gange global symmetries in matrix
models is to make transformation parameters U(N) dependent. A big difference here
from local gauge symmnietries in ordinary commutative space-time is that U(N)-dependent
matrices are generally not commutative while x-dependent local parameters are of course
counnutative. Therefore, the algebra does not close within the original transformations.
In our case of SO(9,1), since '

[ l- o l- ! ! . T 1~ - ’ wo Tl A 2
[hr ]"I] = [Eg“,,l_" ’ 15(1"*”1_“ ] = §([r' _.,F‘L ]{LHV'-C.U'V'} +{rﬁ :r'( }[Cw’: (.:.u’u’])= (4'3'3)

and the commutator between (,:‘,“, does not vanish, we need to include transformations
geuerated by the anti-commutators of T, that is, 1 and [*#2#8 - Repeating this proce-
dure, the algebra finally closes in the y-matrices with even rank, 1, T, Ty, Tevt Tuszesis
and [Heessisl There are 512 bosonic generators. The coefficients ¢, must be extended
to complex matrices. Since these transformations can be restricted to chiral sectors of
fermions, we can obtain closed gauged algebra acting on Weyl fermions of INKT type.
Generalizing this bosonic algebra by including supersymmetries, we obtain g/(1[16,C)
super Lie algebra. As far as the algebras are concerned, ¢I(1]16,C) is a minimal gauged
extension of s0(9,1). As for dynamical fields, if we start from a vector boson with rank 1 -
matrix, g/(16,C) bosonic transformations generate fields with other odd rank +-matrices
and we have to include A, ,,,, and A, . in addition to A,. There are 256 bosonic
fields. A model based on this ¢/(1}116, C} super Lie algebra is an interesting possibility,
but it turns out difficult to find an invariant action. In the following we instead inves-
tigate a model with local osp(1]32, B) gauge symmetry. That is, we demand that the
model should be invariant under U(N) dependent osp(1]32, R) symmetry. This model
has larger syminetries and more fields than the ¢/(16, C') model, but the invariant action
canl be easily constructed in terms of supermatrices as we show below. We must extend
the chiral fermions to include both chiralities. We also have to extend the bosonic degrees
of freedom m by iucluding fields with all ranks in 11 dimensions.

In constructing an invariant action of the gauged matrix model, it is generally difficult
to keep both the gauge symmmetries and invariance under a constant shift of fields. If
the fields transform as in (4.3.2) after gauging, the action of the type Try .y (¥m) or
Ty wx (m?) are invariant. However, the action such as Try , v (9T [A,.. %]} is not invariant
under gauge transformations and it 1s difficult to keep both invariances. In this paper we
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abandon the latter invariance and consider the action

1 .
I = _T'I'A.\:x_.\rst?';_;;;x;ﬂ(ﬂ’[d). (434)

g*

This action was also proposed by Smolin. We call it a gauged model because it is invari-
ant under local 0sp(1]32, R) svimmetry, that is, a tensor product of two gauge symmetries
osp(1|32, R) and u(N). Instead of this euhancement of the symmetries, this action is not
invariant under a constant shift of field. This looks troubling since, as we have seen, com-
mutators between the homogeneous and the inhomogeneous supersyninetries generate
a space-time translation, a constant shift of bosonic field, and if we lose inhomogencous
translational invariance of bosons and fermions we may also lose space-time interpretation
of supersymmetries. However, this problem can be resolved by identifying some genera-
tors of osp(1|32, R) (or its extension «(1|16,16) ) with space-time translation generators
using the Wigner-Inonii contraction.

There are two ways to gauge the osp(1]32, R) model. One way proposed by Smolin
is to use ¢(1|16.16) super Lie algebra, a complexification of 0sp(1]32, R). He conjectured
that this gauged model describes loop quantum gravity [7]. Another way to gauge is to
use ¢l(1]32, R) super Lie algebra, an analytic continuation of «(1|16,16). We next see the
definitions of these super Lie algebras and also see why they are gauged symmetries of
the global osp(1]32, R?).

4.3.1 Definitions of «(1|16,16) and ¢i(1|32, R)
An element M of u(1]16,16) super Lie algebra satisfies
] 1‘ ! i . i I‘U U
MG+GM =0 for G= R (4.3.5)

The reality condition is not imposed in this case. The above definition restricts the 33 x 33

matrix form of M as
'y ,’i
M= ( v ) (4.3.6)
v

where ¢ is pure imaginary, ¢ is a general comuplex spinor and ¢ = T, The bosonic part
m can be expanded in terms of 11-dimensional y-matrices.

1
m = ul+ U‘.!.l].—"’h + _7—"15‘.11,42 r'.h“h + ?H‘.\l‘A;,A,_AUI"A!AZ"‘S
1 Ay Ay 1 Ap--Ag ) -
+ 4_;“'-‘11"'-441—‘ + E‘lt‘ql...‘a‘sr . (43{)

where wy,, w4, 4, and wy 4, are real, while w, wy, 4,4, and wy .4, are pure lmagi-
nary. Pure nnaginary valued coefficients w, wa, 4,4, and w4 .4, are new compared to
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osp(1|32, R). Fermions arc also doubled since we do not impose the Majorana condition.
This matrix can be decomposed into two matrices

, o e i
M=H +‘413 H = ( f’f_h & ) : ‘41' — ( ”Tt'a Ffﬁd ) : (438)
iy, 0 i, v
where
my, = wy Y4+ lu [t 4 iu s
-h - A[ 2! ,"1.4'_) 5! .41"':\5 bl
1
W, = -+ g’u,;l,12,.13FA“42‘43 + I'it‘h.“,h F“hm‘ﬁh, (439)

and o, and 1, are real fermions. They satisfy the following relations
THG+GH =0, TAG~GA =0, (4.3.10)

The matrix H forms osp(1[32, R) super Lie subalgebra of w(1]16,16) algebra but A’ does
not form an algebra by themselves. We deuote the former set of matrices by H and
the latter by A’. Then the following commmutation and anti-commutation structures are
satisfied

[(H.H]eH. [H.Ale A, [A, A]eH,
{H.H}e A, {H A} eH, {A A} e A. (4.3.11)
We can sce that A’ is another representation of osp(1|32, R).

The definition of ¢I{(1]|32, R} super Lie algebra is simply given by the following form
of 33 x 33 supermatrix

. moo
M=1 .. , {4.3.12)

i v
where all components are real. The boson m can be expanded similarly in terms of 11-
dimensional y-matrices as in (4.3.7) but all the coefficients w,-- -, w4, .4, are real. Two

fermions ¥ and ¢ are also real. This matrix is decotnposed into two parts as

M=H+ A, (4.3.13)

my
H=1| .- .
( iy 0 ) '

4 = ( a2 ) (4.3.14)

—iy v

where

Here we have defined ¢ by

=+, 0= — (4.3.15)
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and sy, and i, are given in (4.3.9) with real coeflicients. H is again an element of
0sp(1]|32, R) generators and A is its representation.

These two super Lie algebras w(1]16,16) and ¢i(1]32. R) are related as follows. A
matrix M = H + A’ in (1|16, 16) is mapped to a matrix in ¢/(1|32.R) by N=H + 4
where A4 = {4’ and vice versa. Hence these two algebras are related by an analytic
continuation.

We now promote each real element of matrices to an N x N hermitian matrix to
make our model invariant under local osp{1|32. R} symmetry. If we start from a set of
0sp(1]32, R) matrices H and make a tensor product with «(V). the algebra does not close
within them because of the following relation:

[(HoH),(HeH)] = ({H.H}«[HH])+(H H]e{HH})
(A& A)+ (HgH). (4.3.16)

Here we have used (4.3.11) and denoted H and A as hermitian and anti-hermitian matri-
ces. In order for the algebra to close, it is necessary to include A’ ¢ A. From the following
relation

[(A®A)(AsA)] = (A ALe[A A+ (A A2 {A A}
(A" @A)+ (H®H), (4.3.17)

we can form a closed algebra by combining (H & H) and (A" & A) together. For ¥ =1
case, H and A are replaced by 1 and ¢ respectively and it is nothing but «(1|16, 16) algebra
we discussed before. This is a reason why we need to enlarge osp(1]32, R) to u(1{16, 16)
for gauging the osp(1]32. R) symmetry.

Instead of promoting each element to a hermitian matrix, we can make a closed algebra
by restricting them to real matrices. Since real matrices are closed under commutators
and anti-commutations, it is clear that (H+ A) @ ¢l(N. R) = ¢l(1|32. R) @ ¢l(N. R) forms
another closed algebra. In this case, we have to embed the space-time into veal matrices
instead of hermitian matrices.

4.3.2 Action and symmetries

The action we cousider is

a3 32

1 . 1 .
I = -(;;Tr:w,,v YO MOMG MpP) = MyP Mo Mg") = q—sz-)\;x‘.\,-(Str;,w MYy
“ Q. R=1 p=I !
1 N?
= g_z Z St?';;gx:;;j(jy‘lil'uﬂfbﬂfc)T‘l’i\'X_«\J(tutbtv). (4318)
b.e=1

41




where p = 1,---.32 and @, R = 1,---33. M Is a supermatrix belouging to u(1[16,16)
or ¢l(1|32, R) super Lie algebra. Each component .MQR of the 33 x 33 supermatrix M is
promoted to an N x N matrix and can be expanded in terms of Gell-Mann matrices:

N?
Mo ="t (M“)". | (4.3.19)

a=]
This action (4.3.18) is invariant under a tensor product of two gauge groups
M = M+ [u, M), (4.3.20)
where
a € gl(1132, R) @ ¢l(NV, R) or u(1]16,16) & u(N). (4.3.21)

Heunce the action is invariant under local (or gauged) «(1]16, 16) or ¢/(1]32, R) symmetry.
That is, the «(1[16, 16) symmetry and u(N) symmetry (or ¢/(1]32, R} and gl(N, R)} are
coupled. Not only the bosonic but the ferintonic symmetries are also gauged. In this
sense this action is considered as a matrix regularization of 11-dimensional supergravity

. . mooi
if we can successfully treat this model. In terms of the components of M = ¥ ¢
pov
the action beconies
I = —QT‘f':\fx;\'(f"':szxssz('”? ) — 3ipmy — i — v”). (4.3.22)

4

Iu both cases of «(1]16,16) model and ¢I(1|32, R) model, there are 64 = 32 + 32 (real)
supercharges. The action is not iuvariant under the space-time translation which was
identified with a constant shift of bosouic fields in the case of IKKT or 0sp(1]32, R) model,
and there are no inhomogeneous supersymmetry in this gauged model. To extract space-
time translation, we need another interpretation different from the non-gauged model.
Here we adopt the Wigner-Inond contraction of the SO(10,1) symmetry and identify
SO(9.1) rotation and space-time translation generators with the SO(10,1) generators.
In other words, we zoom in around the north pole of a 10-dimensional sphere on which
SO(10,1) rotations are generated by TE,

First let us consider a gl{1|32, R)-case. To perform the Wigner-Inénii contraction
systematically, it s convenient to add another term to the action

1 . .
I = gT"'.‘\’xNStr:iijx:i:i(A’[d) - RZT?'NX_.\,‘St’l';;;gx;j;jﬂ'[. (4323)

This action has a classical solution

er @ 1:\"><N 0 )

M) = 4.3.24
( ) ( 0 R@) leN ( 3 )

We take a large R limit, which is equivalent to zooming in around the north pole.
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Similarly in the case of u(1]16,16), we need to consider a quintic action fy1)16,16) =
$Str(M®) — R*StrM in order to have the classical solution,

n_ { BT* @ 1y, 0
() = ( 0 iR Inun /- (43.2)

We focus on the gi(1|32. R) type in this section, but the following discussions of the
Wigner-Inonii contraction are essentially the same as in the u(1]16.16) case.

We expand the matrix M around the above classical solution (M):

s [ m ¥y _ ’ v RTt 0 m )
Mr_(iq_'b v )—(Mr)-l—ﬂf—( 0 R)+(i(f) ; ) {4.3.26)

The action becoes

i}

’ ¢ - P ]. . : - . -~ 7
I = R(trapys(m*T?) — % —ip(1 +THe) + gtr;szxg,z(vh.d) - % — iy + vdyh)
(4.3.27)

up to a constant. In the next subsection, we investigate the model in the large R limit.

4.3.3 Wigner-Inoniu contraction and supersymmetry

In the background proportional to I'*, it is convenient to decompose bosonic fields into
even and odd rank fields with respect to 10-dimensional y-matrices:

mo=m, +m,, (4.3.28)

where 1, 1s given by

1 ;
m. = Z1+ I’Vrﬂ + 5(6'“1“21"1‘1!‘2 + Dw,gl’“”‘“)
1
+ E(GM...MT"“""‘4 + Hm...ml_“””'““ﬁ), (4.3.29)
and i, by
]. ¢ — 1 3
nm, = 5(_.49)? (1+ThH+ADT(1-T")
1 E(H [#iAzHs (] Fli E(—) [Fefzms (] 1"-11
+ 5';_3?( 14 o 3 ( +1) + [ONETE (1- ))
1 A — TS RERIT! ]
+ 5(I}“ﬂ%rﬂ (L4 T + I THes (1 — ), (4.3.30)
We further decompose the m, into mi according to the (£) in the above decomposition:

(+)

m, = M, + mi™

. Fermionic fields are also decomposed according to their chiralities:
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ey .
¢r.p = —5—. The action then becomes

. » - . 1
I = R(t‘f‘;uxgz('f?l:rﬂ) — ’Uz — Ql(b[g‘l;"JL) + t'l‘;52x32(§’l

. s -~ - - 3 - . - . 1__.
— il{dnplme+ 8)p + dp(me + 0)g + drm g + dpmn,dg) — E‘UJ. (4.3.31)

I BT
n, -Hamem;)

Since the quadratic terin is proportional to R. we first rescale 0,1, ¢ and ¢, as R~1/2,
Then, in order to make terms containing other fields such as t‘r'32x;,2(mﬁmﬁ) finite in the
large R limit, we have to rescale the other fields as R'Y*. The rescalings are summarized
as

m = RI* 4+ 7 = RT* + R”%m: + R%m;, v=R+o=R+ R*%v',
G =+ =R+ Riv,, ¢=¢,+¢p=Rid, + R 2, (43.32)

I terms of these rescaled fields, we can rewrite the action, by dropping terms with a
negative power of I, as

I = (trspasn(miTH) — o + trggm (mim?))

FHi{ =200, + G (0, + VW + Pl + S i), (4.3.33)

Since only the fields o', i), ¢ and ¢} have quadratic terms, we may integrate them and
obtain an effective action for the other fields. Before performing the integration, let us
first look at the supersymmetry structure in order to see how we can obtain space-time
supersymmetry in our model. We can also see the above scalings are consistent with
supersymmetries.

The 10-dimensional space-timne translation around the north pole is generated by Ty,
Since R is iuterpreted as the radius of S'. space-time translation generator should be
tdentifed wi 1T \ - h . ot e ey IR T _
identified with P, = T 4. Ou the other hand, a commutator of two supercharges Q. =

0 Xy, _{ 0 B
( 2 0 ) and Q,, = ( i 0 ) becomes

_( i{xn = p) 0
[Q.\’C:QPU] - ( 0 i(?-[) _ "_f,\") ) : (4334)

which contains the translation P, besides other ¢i(32, ) bosonic generators. In this
way, the homogeneous supersymmetry in ganged models is considered as 10-dimensional
space-tinie supersymmetry.

In addition to scaling the fields as above, we need to scale gauge parameters of
gl(1]32, R). Writing the gauge parameter h by

. w X ‘_
I = ( . ) ., (4.3.35)
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the field A is transformed as

M = [k, M]=[hAM)+ M)]
. ( [a, % + R +_1f(xq_'b — &) —(m+ R x 4 ad — by + x@ )
- i€(m + RTY) — i(pa + v€) + ibo i(ev — ox) + [b, 7] '
(4.3.36)

where inhomogeneous terms come from [/, (AM)]. The inhomogeneous term for m, should
survive after taking the large R limit, since space-time translations for ALi) are included
there. Decomposing the bosonic gauge parameter e into a, and «, similarly to (4.3.28),
the inhomogeneous part of dm, is given by dn, = [a,, RT?]. Since we have rescaled m, =
RY4m! , we should rescale a, as B=*/* so as to make this inhomogeneous term finite in the
large R limit. On the other hand, SO(9, 1) rotation generated by I',,,, is included in ¢, and
it transforms even {odd) rank fields into themselves. The gauge parameter e, is, therefore,
not necessary to be rescaled. Similar arguments can be applied to supersymmetries and
we finally obtain the following rescalings

a + R %d \p + R-% Y ) -
f_ — € 5 o AL AR . 4337
= (il iy 0 4330

Under this gauge transformation, each field transforms in the large R limit as

sml, = [ag. T +[al, ml] + (X, 01 — VreR), (4.3.38)
S = 2+ (@l — bl — (LX), (4.3.39)
8¢y, = =28, + ((egm,) + ¥} — dral), (4.3.40)
Sl = [ae ] + [aouml) + (X, + XnFy) — (e + Xah).  (43.41)
5, = —(ni o mixa) + (@t + aiy) — Vi, + ', (43.42)
8¢ = (Epml +Eml) + ¥ Py — (dha + dhal) — &y, (4.3.43)

§v' = i(Fp + Eml) — i(dpxy + FxR) + V.Y (4.3.44)

The underlined terms are inhomogeneous transformations. The other transformations
are homogeneous and linear in fields. As we have seen in the action, the fields that do
not receive inhomogeneous transformations, that is, m,, o', ¢ and ¢, contain quadratic
terms and can be integrated out by Gaussian integration. An important point is that the
transformations of the first three fields w!, ¢}, and ¢} do not include the other fields in
the right hand side. This means that these transformation rules are not changed after
integrating out the other fields, m!, ¢/, ¢y and '

Now let us obtain the effective action by integrating out »'.ml. ¢} and ¢%. The
integration can be easily done and the effective action vanishes!

r i : el 7 . 1 - Y { FUENN NS
W = = ptramn (D +i(0p01))) = 7(G10m)° + 5@, mdp) = 0. (4.3.43)
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Here we have used |
t)";;zxgz(rn'flf.i)4) = U (4346)

The reason for the vanishment of the effective action can be understood from the syni-
metry point of view. Since the transformations for ml ¢y and ¢} do not include the
other integrated fields, they are not changed after integration. Therefore the effective
action must be invariant under the same transformations. which include U(N) dependent
shifts of theni, not restricted to coustant shifts. The only action invariant under such
transformations is a trivial one. In this sense, this model is a topological model of fields
by and ¢ .

Although the action vanishes, we go on to investigate the supersymmetry structures.

- . N . ) ;
If we decompose the boson fields !, into m, ), we obtain the following transformations

o\ = i), IO =i\, d)),
S = 2n = (0, xy). 08 = =28 + (), (43.47)

and we can see that left and right handed fields are decoupled. We have two pairs of
fields, (-mt(,ﬂ and ¢p) and (‘m[(,_) and @ ). This pairing is the same as that of osp(1]32, R)
model. In this case, since the effective action vanishes we do not have the problem of
compatibility with the pairing in the action. More explicitly in terms of Aﬂ(i] fields, the
homogeneous supersyinnetry transforinations become
SWAT = — L F vy, S A — g ra (4.3.48)
XLt 16 7 F LY I 16 I

which are the same as those of INKT model. On the other hand, transformations for
4 ()

fermious are different from those of IKKT model. Instead of the comnutators [Agft), A,
they are proportional to a single 45? ) and accordingly supersyminetry parameters with
opposite chirality. Because of this reason, it scems difficult to interpret IKKT model as a
gauge fixed version of the gauged matrix model investigated here. But such gauged mod-
els are interesting from various points of view, especially the existence of local Lorentz
invariance, and it is worth further investigations. More analysis will be reported else-
where.

40



Chapter 5

Conclusion and Discussion

In this paper, we have investigated new types of matrix models based on the complex
exceptional Jordan algebra and the super Lie algebras. In the former case, we constructed
a new matrix model which has a compact Eg syminetry and a Chernu-Simons like structure.
The definition of Ey itself (i.e. the cubic form) was adopted for the construction of the
action. The resulting theory has a Chern-Simons term in the action as in the case of type
F, (i.e. the trilincar form) [9). The compactness of Eg derives the postulate of positive
definite metric of our model. In the latter case, we investigated three super Lie algebras.
osp(1]32; R), u{1|16,16), and ¢I(1]32;R). In paticular, we studied the supersymmetry
structures of these models and discussed possible reductions to the IKKT model. In
addition to those, a different «(1]|16,16) model from Smolin’s; and some kind of topological
effective action derived using Wigner-Inonu contraction were also discussed,

In the former part, we have introduced a new matrix model based on the simply
connected compact exceptional Lie group Ey, and discovered that the Chern-Simons like
term is also derived from the cubic form. This theory modeled itself on Smolin’s approach
based on the groups of type Fy [9]. We have adopted the cubic form in place of the trilinear
form. The cubic form is a quite different cubic linear form from the trifinear forrm. Our
model has twice as many degrees of freedomn as Smolin’s model has because we consider
compact Fg instead of Fy. That point aside, we can have the same argument as Smolin
which derives an effective action similar to the matrix string theory. An important poiut
to emphasize 1s that it is characteristic of Ey and Fy to derive the Chern-Simons type
action using this method, because Gy, E; and Eyg have no cubic linear forms which are
made up of the pure exceptional Jordan algebra alone just like the trifinear form on F,
or the cubic form on Egz. One way to introduce the cosmological term or the coupling
constant into the theory is the compactification on directions. Of course, what we have
reported here is just the first step in the analysis of the model, and many things need
to he investigated. However, as we have seen, this model has several very interesting
characteristics. Therefore it is quite likely that this theory will evolve in the future,

The problem to be specially considered is the quantization. It may be difficult to
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path-integrate as usual because the action of the theory is an essentially comnplex action.
Consequently, it seems that it is necessary to reexamine the cenonical formalism such
as the loop quantum gravity. The author is very interested in the relation between the
exponentiated quantity of the action (3.2.2) and some kind of quantity like a bi-local
expression of Dirac equation. If one point is decided as a fiducial point, another point
might be indicated using twistor-like method.

Besides, because this model is written in ‘cubic’ terms with respect to the fields, there
cannot exist the termn such as R, * essentially. In consequence, we are inevitably obliged
to take the position of the induced gravity. To put it the other way round, however, thanks
to being cubic, the theory becomes what is close to the topological theory; and that is
also one of the interesting properties of this model. Namely, there is a strong possibility
that this theory is defined as a background independent theory from the very beginning.
Therefore it is quite likely that other natrix models such as the BFSS model and the
IKKT model are reproduced via expansions around specific backgrounds of this model.

Moreover, it seemns quite probable that this algebraically defined model has a geo-
metrical interpretation. The existence of the projective geometry can be seen off and on
behind the Freudenthal multiplication or the cubic form. Although, depending on how
things go, we might have to introduce even the Freudenthal manifold 9 which is needed
to understand the groups of type E; and type Ey, the attempt to relate this theory to
some geometry is one of the most exciting subjects.

Furthermore, as discussed in chapter 3, the author would like to emphasize that there
is considerable validity in considering the physical Hilbert space to be a product space
composed of two parts J¢ and G. Because there exists a cycle mapping, the resulting
product space has a structure such that the concept of the spinor is introduced into the
infinitely dimensional Hilbert space itself. The author does not believe it is a coincidence.
It is likely that J¢ describes some degrees of freedom belonging to some internal structure
1 the each point of the space, and G plays a role of the network to the each point of the
space. What is called the postulate of positive definite metric is, from the viewpoint of
our model, merely an immediate consequence of the fact that our universe is compact.

By the way, we Lave cousidered thus far only the combination of the cubic form and
the structure constant as an action of the Ey matrix model. From the viewpoint of the
construction of iuvariants, however, we can take not only f-coupling but also d-coupling
into account,

S = «a (‘PZ(JM[A) . P(MB), M€ ) fasc

+3 (’Pz(.x\/l("") , PMB) . MO ) dapo (5.0.1)

where (- - -) denotes the weight-1 symmetrization on indices, and d 4g¢ is defined as follows.
{T..Tg} = dapec T (5.0.2)

(IABC = 2 t’!'(T‘.q{TB,TC}) (503)
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Although it is not yet clear whether considering such an action is invaluable, it is possible
that some interesting physics concerned with anomalies are gained because the third-rank
syminetric tensor is introduced into the theory. If some kinds of anomalies are given rise
to in our model, the cause of those seems to be G. Because Ey itself is a safe group.

Incidentally, the theories expressed by such actions as {3.2.2) and (5.0.1) are the global
Ey matrix models. Consequently, we naturally hit upon an idea that we might be able
to localize this symmetry. What is called the local Eg matrix model is the theory which
has an invariant action under the mixed transformation on ¢; and G. To use Smolin’s
words, we can call this type of matrix model the ‘ganged’ matrix model. In fact, if we
localize Smolin’s 0sp(1]32; R) matrix model, the resulting theory is just the u(1]|16.16)
matrix model. This u(1|16,16) matrix model is a very beautiful model. Therefore, we
get the feeling that we would like to carry out the same thing as this to the global Ey
matrix model. However, the attempt to construct the local Eg matrix model has not been
succeeded so far because of some mathematical difficulties.

Finally, there is a further question which needs to be asked: Qur model has twice as
many degrees of freedom as Smolin’s model has. This trouble always follows us as long
as we handle Fg, and it is a serious problem which cannot be avoided. This problem will
be discussed on another occasion.

In the latter part, we have investigated the cubic matrix model whose global symmetry
is the super Lie algebra osp(1]32; R). 0sp(1|32; R) cubic matrix model possesses a two-fold
structure of the A7 = 2 SUSY of IKKT model. IKKT model is induced from this model
by the multi-loop effect. And we have investigated the ¢/(1|32;R) & ¢f(N;R) gauged
matrix model as an extension. The space-time translation is introduced by meauns of the
Wigner-Inoni contraction, The effective action vanishes, therefore this model may be
related to a topological matrix model.

Firstly, we have studied osp(1]32;R) matrix model. This model is considered as
an ll-dimensional model and contains twice as many fermionic degrees of freedom as
IKKT model. The model is invariant under global osp(1j32;R) symmetry and u(N)
gauge symmetry. It is also invariant under a constant shift of fields. Combining the
0sp(1]32; R) and the constant shifts, we obtain space-time algebras including space-time
supersymmetries. In this sense, this model is a natural generalization of IKKT model.
Since this model has twice as many fermions, we need to integrate half of the degrees of
freedom. We have given an identification of the fields in this model with the fields in IKKT
model from the view point of the supersymimetry structures. We have also discussed a
possibility to induce IKKT model by integrating out the unnecessary fields.

Next, we have studied the gauged matrix models with local Lorentz symmetry. First
we have shown that the unitary transformations in noncommutative gauge theories con-
tain much larger symmetries than the ordinary gauge transformations. Especially, local
coordinate transformations can be described within this gauge transformations. This is
understandable from the D-brane point of view. If a noncommutative gauge theory is
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considered as an effective low-energy action for D-branes, the action should be invariant
under coordinate transformations on the brane. Under this transformation, all the felds
¢ and A, in gange theory transform as scalars. More interestingly we have shown that if
we expand those ficlds, not only in terms of exp(ifk,) but as a power series of j,, we can
obtain higher rank fields which transform as teusors under this coordinate transforma-
tions. However, the original SO(9,1) indices are completely decoupled from the internal
diffeornorphism.

Lastly, we have considered a model with local SO(9,1) symmetry by extending the
osp(1132; R) algebra to «(1]16,16) or ¢i(1]32; R} super Lie algebras. We have enhanced
the global 0sp(1]32; R) to local symetries, but lost the invariance under constant shifts
of fields and we need a different interpretation of space-time translation. We have adopted
the Wigner-Inénti contraction and extracted 10-dimensional space-time translation from
SO(10,1) rotations. We have then identified how to scale the fields in order to obtain the
correct 10-dimensional theory in the large radius limit. Since this model contains four
times as many fermiouic fields as IKIKT model, we need to iutegrate out half of them first
and then restrict the fermions further to be halved. But after integrating the first half of
the fields, the effective action was shown to vanish. This is because the resultant action
should be invariant under an arbitrary shift of the fields, not restricted to a constant shift.
We can interpret the final model as a topological model. This kind of topological model
was studied in [27]. It is also interesting to investigate such a possibility from the gauged
matrix model point of view, '
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Appendix A

Convention

In this paper, repeated indices are generally sumined unless otherwise indicated.

A.1 Convention of Fg matrix model

A.1.1 (Anti-)symmetrization
[- - ] denotes the weight-1 anti-symmetrization and {---) denotes the weight-1 symmetriza-
tion on indices as follows.
Yy Bz _ % (X.-xyB 7€ £ XByCgzd 4 xCyAgB
— XOYBZA - XBYAZC _ XAY©ZE) (A.1.1)
YAy ByC) é(XA},-B 7¢ + Y ByCga + xCyAzB
+ XYPZY + XBYAZC 4 XY C 78 (A.1.2)

Therefore, contracting indices with the totally anti-symnetric tensor A 4g¢ or the totally
symmetric tensor $4pc results in the following ordinary summation.

XBYBZz 4 e = XAVBZC 4,5 (A.1.3)
XUYBZO g e = XAYBZE S n (A.1.4)

A.1.2 Levi-Civita tensor in 2 dimensions
The 2-dimensional Levi-Civita tensor is defined by

(699) = (6ug) = ( 0 é) | (A.15)



A.1.3 Fundamental representation of su(2)

The matrices which generate su(2) are given by

1 1/01
L _ 4l — '
T = 50 = 5 ( 10 ) (A.1.6)
1 L0 —i
2 a2 — ALY
i = 2.cr = 3 i 0 :) (A.1.7)
1 L1 0
3 v — 3 = -
P=gr=1(s ) (A.18)
These satisfy
[#h. 77 = ih ¥ (A.1.9)
tr(r!r7) %5” (A.1.10)
N = (e TR (A.1.11)

Therefore. the 3-dimensional Levi-Civita tensor elIR (I =1,2.3) 1s defined with
6123 = €193 — +1 . (A.].].Q)

in which the exchange of the position between the upper suffix and the downstairs suffix
does not make any sense.

A.1.4 Fundamental representation of the Lie algebra G

The matrices which generate G satisfy

[T4+.Ts] = ifipe Tc (A.1.13)
1
fABC = —21, tT'(TA[TB,TC]). (‘\115)

A.2 Convention of supermatrix models

A.2.1 Imnvariant tensor
We use the negative signature with respect to the time-component of the metric about
the 11-dimensional Poincaré algebra SO(10,1).

(11)

nab = diag (—1,1.1,---,1,1) (A.2.1)
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{ In the viewpoint of the 10 dimensionality, this can be seen as the metric about the
10-dimensional de Sitter algebra (dS,,). )

Higlier rank e-symnbol is defined as follows

Z012..9y = —EUIZMW =1 . (A?'Z)
where we define f := 10.
A.2.2 Indices
A = At T Ty (A.2.3)
= AY T, (A.2.4)
AT, (A.2.5)
A.2.3 ~vy-matrix
Clifford algebra is defined by
{I®, TP} = 252P (A.2.6)
We use the following representation of I'-matrix, where v/ (I = 1,---,9) denote the

SO(9) gamma-matrices,

0 _ 0 1 I _ 0 ")’1 10 _ b 1 0 A9
T _(—115 0 I = 71 0 , P =1I" = 0 —1 (A_.r)

Of course, if one wants one may use the following representations.

-~ —_— . e "I - - .
= ( 1{1_ ;”’ ) T = ( (/) _‘jr, ) T =17 = ( 1?6 16" ) (A.2.8)

The relations between these two representations are the following.

I* = RI™R' (A.2.9)
_ 11 1y A 9
R = ﬁ( . —115> (A.2.10)




A.2.4 dS;., and AdSy,, space-time

dSy4+1 space-time

d—1
-—(XU)Z—FZ(_X'I)z-}—(Xd)Z - R?

I=1

(d+1)

-~

Tab = fliag(—l,l,l,---,l,ly

[Jab, J) = 4vf'r][a[ch]d]
2i (2 JP1Y _ ylad pbIy
— i(,,iaCde _ ,”bCJad _ nadec + ,,]bd‘]ac:)

AdSy,, space-time

B

—(.¥0)2+ — (‘xfl)z_ ()(d)'z — _R2

1

—
Il

(d+1)

tab = diag {(—1,1,1,--+,1,-1)

[, =) = 4yl oY
= 2i('r,v[ac.]b]d - r}[ade]c)

= i(T,aCde _ ch'jad _ ”ad']bc + ”bd']a(:)

Wigner Inonit Contraction
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(A.2.13)
(A.2.14)
(A.2.15)

(A.2.16)

(A.2.18)
(A.2.19)
(A.2.20)



A.2.5 u{N) Lie algebra
f-term
We define the structure constants of «(N) algebra by
[T+, Tal = ifsp"Tec . (A.2.22)
If the generators satisfy the orthonormal relation
Try{T'Tg) = Cr &3 (A.2.23)
= % &y (A.2.24)

the totally anti-svinmetric constants fqpe is expressed as follows.

1
fape = ——Trx(Ta[Tg, T¢]) (A.2.25)
'.'.CT

(d-term

As the counter of fipc, we define the totally symmetric constants d 4g¢ by

{T4. T} =dap“Tc . (A.2.26)
Therefore we have
1 ]
dapc = CTT"'E(TA{TB:TC’,}) - (A.2.27)
T
(if + d)-term
. 2
ifapc+dape = ?T"Q(TATBTC) (A.2.28)
T

A.2.6 gl{N;R) algebra
f-term

We define the structure constants of gl(N; R) algebra by

[T4.Tg] = fas“Tc . (A.2.29)



If the generators satisfy the orthonormal relation
Try(TATg) =Cr 65 . (A.2.30)
the totally anti-symmetric coustants f4pc is expressed as follows.

1
fapc = C_T"'i(TA[TB-. Te]) (A.2.31)
T

d-term

As the counter of fypc., we define the totally symmetric constants d 3¢ by

{T4, Tg}=dspg“Tc . (A.2.32)
Therefore we have
1
dape = C—ITT'E(T_.1{TB,TC'}) ) (A.2.33)
T
(f + d)-term
2
fape +dape = C—.'T‘f‘i(TATBTc) (A.2.34)
T

A.2.7 Convention of Supermatrix
Complex conjugation of Grassmann number

As a complex conjugation of the anti-commuting c-number, we use the following conven-
tion.

(a3) = 3" (A.2.35)

( Therefore if a* = o and 3* = 3, (ia3) fills the role of real number. )

Supermatrix

Let B be the mn x m and b be the n x n matrices whose elements are Grassmann even
numbers. Let F be the ' xn and f be the n x m matrices whose elements are Grassmann
odd numbers. And we construct the following (m + n) x (m + n) matrix M.

M= ( ‘? ‘Z ) (A.2.36)

This type of matrix M is called "supermatrix”.
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Construction of superspace (vector space)

| Column vector |

We denote the column vector space, whose linear transformation is expressed by the
supermatrix M, V. Any element @ of V' has the column vector ¢ whose elements are
Grassmann odd at the upper part, and the column vector » whose elements are Grassmann
even at the downstairs part respectively.

. - (?) (A.2.37)

The transposition and hermitian adjoint of the column vector « is defined as follows.
w7 = (" Ty al = (7 ri) {A.2.38)

R.O‘W vector

The transposition or hermitian adjoint of « € V' constructs the row vector space. Any
element y of the row vector space has the row vector ¥ whose elemments are Grassmann
odd at the left part, and the row vector s whose elements are Grassmann even at the
right part respectively.

y = (& ) (A.2.39)

The transposition and hermitian adjoint of the row vector y is defined as follows.

T ot l
y" ==( T ) . yh= ( 'f,+ ) (A.2.40)

Complex conjueate of the vector
1

The complex conjugate of the column and row vector are respectively defined as fol-
lows.

T ff)* * I ¥ * f
st = (0) L e = (e ) (A2.41)

lAttentiml concerning the transposition of the vector]

The transposition of the vector has a cycle of 4 times.

(However, hermitian adjoint and complex conjugate had a cycle of twice as usual.)

= (0) = @ = (7)== T T =

(A.2.42)
= (N=u (A.2.43)

58



—_—
e
.
S
-
H
’bﬂ-\
"
!\D
[Su
=
S

y=(0s) = W= (= s) = () T -
(4245
— )=y (A.2.46)
= (y) =y (A.2.47)

(Transposition)

The transposition of the supermatrix M is defined by

(M) =T M7 . (A.2.48)

Therefore we have

B F , BT —f7
M:(f b) = M’"z(FT bﬁ ) (A.2.49)

For two supermatrices M| and M. we have the identities (M M,)" = M I M,T.

{Hermitian adjoint)
The hermitian adjoint of the supermatrix M is defined by
(Maz) =Tt (A.2.50)

Therefore we have

Mz(? ‘Z) = M*:(?I {:) (A.2.51)

For two supermatrices M, and M, we have the identities (.f\/ll,-\/fz)4r = M, M\T

(Complex conjugate)

The complex conjugate of the supermatrix M is defined by

M= (MDY (A.2.52)

Therefore we have

M:(? ‘Z) — M= ( o ’;) O a2sy)

For two supermatrices M, and M,, we have the identities (M My)" = M *M,".
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Attention concerning the transposition of the supermatrix

The transposition of the supermatrix has a cycle of 4 times.

(However, hermitian adjoint and complex conjugate had a cycle of twice as usual.)

M= ( ? f) (A.2.54)
= = (B o) = (B D) L ey = m
(A.2.55)

= (M= M (A.2.56)
= (M) =M {A.2.57)

Relations between transposition, hermitian adjoint, complex conjugation and
column vector, row vector

(Ma)T = TmT (A.2.58)
(M)t = It (A.2.59)
(Mz) = Mz’ (A.2.60)
(ypM)YT = MTyT (A.2.61)
(yM)t = Miy (A.2.62)
(yM)* = g M (A.2.63)

Relations among transposition, hermitian adjoint, complex conjugation

MT = (MmNt # (M) (A.2.64)
M= (MmHT # (M) (A.2.65)
M= (MT)t # (MO (A.2.66)

Supertrace

The supertrace (STr,,, (M) of the supermatrix M is defined by

STrygn(M) = Tr,(B)—Tr,(b) . {A.2.67)

Supertrace of the product ma‘trix|
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Now we consider the product matrix of the (s +n) x (1 + n) supermatrix M and
N x N usual matrix T.

In this case, the supertrace of this product matrix can be expressed as follows.

ST smn (M ET) = STrppim(M) Try(T) (A.2.68)

Therefore, we obtain the cubic expression which is divided into f-term and d-term,
by considering the direct product with the generators and taking the supertrace of the
product cubic expression.

u(N) case

STrpnemn (M* & T )(MP © Tp)(M” & Te))
= STT'(m+n}N (M JMBJMC & ‘.1TBT(;).
= STrupny(MAMEME) Try(T4TpTe)

Cr . ) )
= —T(‘thBC +dapc) STriman) (M MEM)

Cf ) C ..
= 1—f4Bc STT () (M [M”,MC}HT%BC STrimp (MHYMT, M}
(A.2.69)
¢l(N;R) case
STT{m-I—n)*\f ((-"MA 0y T )("'MB Y TB)(J\AC Y TC))
= STrpuymn (MAMPMT @ T TTe)
= ST7(mn (M’ AMEMY) Try (TATeTe)
Cf
= (f—‘sBC + d-lB() ST’(m-}—n (-/‘Vf I\AB-/\A )
C Cr
= —f-‘;BC STI m+,,) J\/I [J‘AB J\/t ]) + —(545(' STJ' m+n .f\/[q‘{a\/fB \/!C })
(A.2.70)
Superdeterminant
The superdeterminant. (SDet(M)) of the supermatrix M is defined by
SDet(M) = STrln M) (A.2.71)
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Real Supermatrix
The "real” supermatrix M is defined by the following condition.

M= M (A.2.72)

Therefore, in the case that all the elements of B, b/ F, f are "real” Grassmanu even/odd
number, the specific form is given by

M:( bor ) | (A.2.73)

1
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Appendix B

Definitions of the super Lie algebras

B.1 Definition of 0sp(1}32;R) Super Lie Algebra

0sp(1|32; R) super Lie algebra is defined by the following relation.

osp(1]32:R) = {M e M(32|;R) | MTG+GM =0} (B.1.1)
0 1[6 0 0
0 0
J'M* = J‘M (B.l.g)
I'® can be identified as a 32 x 32 11-dimensional y-matrix in Majorana basis which is real
and satisfies (T?)? = —1. The specific components of M are written as
| 5 ¢
w=(52). B4

where ¢ is a Majorana spinor with 32 components and ¢ := ¢'T° = ¢TTY The bosonic
part s is a real 32 x 32 bosonic matrix satisfying

sST°4+1% = 0, (B.1.5)

so that s is an element of sp(32; R) algebra. We can expand this s using 11-dimensional
v-matrices as follows.

5 = I‘(l)s{” + F(2>.5(2) + F(5)5<5>

1 1
= Faua + EF"buab + Erabcdeuabcde (BIG)
Here we use the following notations about n =1,2,5.
[ = T2 (B.1.7)
1
Sy = E“al---an (B.1.8)
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s contains 528 = 11 + 55 + 462 degrees of freedom. w, are denoted as 11-dimensional
indices and run from 0 to 10.

Inner product of the vector space

Next we show the inner product of the vector space about the 0sp(1]32;R). For any two
elements ), x5 In real column vector space V', a scalar quantity is defined as follows.

/ .
£ = ( (;)ll ) = ‘; . €Ly = ( (:6; ) - l; (B.l.g)

(w1, 20) = ] (—iG)x, (B.1.10)
= —ig TO%y 4 riry (B.1.11)
= (wg. 1)) (B.1.12)

B.2 Two representations of osp(1]32; R)

B.2.1 & representation

The element (S) of § representation is the supermatrix which satisfies the following
expression.

STG+65=0 (B.2.1)
The specific component 1s given by
S = ( !:;5 g’ ) : (B.2.2)
where ¢ := ¢ = $TTY.
Of course this is the representation of osp(1]32; R).
[$.8] = 8 (B.2.3)

This s can be expanded as follows,

s = F(1>.s(1> + r'(z).ﬁ(z) + F<5)S(5)

= T®u, + %Fabuab + érﬂb“‘euabcde (B.2.4)

Here, for n = 1.2, 5, we use the following notations.
L .= Taae (B.2.5)
Smy = %ual...a” (B.2.6)
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B.2.2 A representation

The element (A) of A representation is the supermatrix which satisfies the following

expression.
—ATG+GA=0

The specific component is given by
A:( ﬂx),
—ix v

This is the representation of 0sp(1|32; R) too.

where y := \'T? = 7TV

5,4 = A

This a can be expanded as follows.

a = r(o)(L(o) + r(3>(£{3) + F<4>(1(4)

1 T abe
= lﬂu + '?)—!rabc'ltabc + El" b duabcd
Here, for n = 0, we put
F(O> = 1_2
gy = U,

and for n = 3,4, we use the following notations.

[ = R
1
lny = 'n—!’ual cfn

B.2.3 (Anti-)commutation relation between & and A

5.8]=8 . {8§.8}=A
S, A=A ., {S.A}l=8
A4 =8 . {A4.A =4
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(B.2.9)

(B.2.10)

(B.2.11)
(B.2.12)
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(B.2.14)



B.3 Definition of u(16, 16|1) Super Lie Algebra

B.3.1 u{16,16]1)

#(16.16|1) super Lie algebra is defined by

a(16,16]1) = {MeM32L;C) [ MIG+oM =0} (B.3.1)
1, 0 0

G = 0 —14 0] . (B.3.2)
0 0 1

And let us consider the different definition too.

If we use the matrix & which satisfy (" = UT, we get the following expression.

UMUNYUSUT) + GUGUNUMUT) = 0 (B.3.3)
Now, we put
M =UMUY G = ilUGUt | (B.3.4)
and., for example, we adopt the following matrix as I.
L L i
e (2%
U=\ 7z #mz 0} . U=l % 50 (B.3.5)
0 0 1 0 0 1
This gives us
u(16,16|]1) = {M e M(32|1;C) | MIG+GM =0} (B.3.6)
0 1, 0O 0
G = -1, 0 0 = ( I;) ? ) . (B.3.7)
0 0
The specific comupouents of M is given by
M ¥
m=(h V). (B3.3)

where ¥ := UITY and V is a pure imaginary nwnber.
M can be expanded by v-matrices as follows,
M = iTOMygy + TN My + TP Mgy + T Mgy + 0% My, + T M,
(= (TMMpuy +TB Mgy +T® M) + (T <°>M<0 + T M +r< "May) )

1
= ilgu+ T, + f‘ Uap + 3'Fa “Uabe + — T L abedy, bed + = l'“deeuabcde
1
( = (TMu,+ SFabuab + — 5 l"ab':deuqbcde) +i(1yu + 3'l" abey be + El"'ab"'duabcd) )

(B.3.9)
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(B.3.10)

Here, for n = 0, we put
F(O) = 132
(B.3.11)

Mo, = u.

and for n =1,2.3,4.5, we use the following notations.
e [aan (B.3.12)
1
Myy = —tay-an (B.3.13)

Moreover, this «(16,16[1) can be seen the direct sum of & and .A.

Inner product of the vector space

Next we show the inner product of the vector space about the «(16,16|1}). For any two
elements x|, xy in complex column vector space V', a scalar quantity 1s defined as follows.

@y = ( 4 ) eV &y = ( & ) eV (B.3.14)
| ry
(g1, 02) = x!(=iG)xy (B.3.15)
= —ipiT%y 4+ viry (B.3.16)
(B.3.17)

= (3-‘2-.1'1)*

B.3.2 ¢l(32]l:R)

¢l(32|1; R) is the set of “real” supermatrix.

The specific components of M is given by

m P
J ( W (B.3.18)
where ¢ and ¢(7) is independent fermions respectively, and (=) = {20 = (70,
m can be expanded by y-matrices as follows.
5
mo= 1"‘(“)1:1(11)
n=0
= F(U)'m.([,) + T(l)m(l) + f<2)'r:1(2> + F<3)‘rn<3> + F<4)-:ra(4) + f<5)-m(5)
)

(f<1>rr:<1) + F(2)m{2> + f‘<5>111(5)) + (F(U)TH((]) + F<3>rrz(3) + F‘<4)'rre(4>)
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1 1 1 1
= lgyu+ 1, + al"'abuab + gl"abcuabc + 4—ll"“b°d Mabed + 5Fab°deuabcde

1 | 1 1

( = (Faua + §Fah‘llab + grabcc‘e’uabcde) + (_1§g“ + afabcuabc + 4—II"'ab°duabcd) )
(B.3.19)

Here, in the same way as w16, 16|1) case, for n = 0, we put
o = 1, (B.3.20)
Mgy = U, (B.3.21)

and for n =1,2.3,4. 5. we use the following notations.
™ = o (B.3.22)
1

My = —jtagea, (B.3.23)

Morcover, this ¢{{32|1; R) can be seen the direct sum of & and A.

B.3.3 Decomposition of +(16, 161} into & and A

The elements of #(16, 16/1) can be uniquely decomposed into the sum of “the element(S)
of & and 7 times the element(A) of A”.

(ST —iAYG+ G(S+id) = 0 (B.3.24)
(= (S+iAG+G(S+iA) = 0 ) (B.3.25)

B.3.4 Decomposition of ¢{(32|1;R) into & and A

The elements of ¢g/(32|1; R) can be uniquely decomposed into the sum of "the clement(S)

of 8 and "the element(A) of A”.
(ST —A")G+G(S+A) =0 (B.3.26)

( <= There is no expression which corresponds to (B.3.25). )

B.3.5 Relation between u(16,16|1) and ¢{(32|1; R)

One can expresses the elements of u(16,16|1) as (8 4+ (A), and can adapt this to the
clements of ¢I(32{1;R). (S + A).

[ a sense, this 1s a kind of analytic continuation.
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Appendix C

Proof on propagators

C.1 Proof against a perturbative generation for W
and AL—) propagators

In this appendix we prove that it is impossible to generate propagators for W and :‘lff)
fields through perturbative calculations in osp(1]32, R) matrix model discussed in section
2. Of course, this proof does not exclude nonperturbative appearauce of propagators for
them. First we assign charges (1,0, —1) to the bosonic fields (m., méH, mf,_)) and (0,1/2)
to {(¢r.%¥g). As we can see from the action (4.1.30), every three point vertex has charge
3.3/2 or 0. Similarly in the background of (4.1.46), propagators appear at tree level for
(mﬁm(_)) and {¢ 1 41) and they have charges 1 and 0 respectively. On the other hand, two
point function {(WW) which is included in {mim, ) or (A;(,_)A,(,_)) i (mf,_)'ruf,_)) has charge
2 or —2 respectively. Hence it is clearly impossible to generate these two point functions
perturbatively no matter how we combine the above vertices and tree level propagators.
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Appendix D

Complex Graves-Cayley algebra €€

D.1 Graves-Cayley algebra &

Let € = Z;T:U Re; be the Graves-Cayley algebra: € is an 8-dimensional R-vector
space with the multiplication such that ¢y = 1 is the unit, ¢? = —1 (i=1,-7): €itj =
—eje; (1<izgj<r) and ejey = ey, ejey = e5, eyes = e7, ete.. The element ‘e’ of € is called
octonion (or Graves-Cayley number). The multiplication rule among the bases of € can
be represented in a diagram as Figure D.1. So if we take e, ¢y, ¢5 for example,

€

5} 7

=

€z s

Figure D.1: Multiplication diagram for octonion

Gy = €3 . €€y =€) , €46 = ¢,
. (D.1.1)

Gty — —€) . E9€) = —€3 , €1y = —€y .



The same things can be said of other six lines. What has to be noticed is that this
algebra is non-associative as well as non-commutative. It is often very useful to introduce
the following notations,

e;e; = _6ij+zgijkek'. (Dl?)
k=1
(i,j k=17

where the ;5 are totally anti-symmetric in indices, with values 1, 0, -1. For instance,

o = +1 for ijk =123, 356, 671, 145, 347, 642, 257.

In €, the conjugate @ and the real part Re{a) are defined respectively as follows.

@ = aU+Za,:6,: (D.1.3)
i=1

a = (10+Z(z,-e,- (D.1.4)
=1

7
oy — Z o€ (D.1.5)
i=1

Re(a) = %(a—}—&) € R (D.1.6)
S (D.1.7)
Re(a) (D.1.8)

Moreover, the inner product (a.b) (¢.b € €} is defined by

(a,b) = ftubu-i-zﬂibi € R {D.1.9)
i=1
= (b.a). (D.1.10)
Therefore we have
7
(e.a) = ((1.0)2-{—2((1,-)2 € R (D.1.11)
i=1
> 0 (D.1.12)



D.2 Cand H in €

D.2.1 Complex number field in ¢

The Graves-Cayley algebra € coutains the field of complex numbers C.

C = {?'U + ryey l ro.rq € R.} (D?l)

¢ = ag+ Z a;e; (D.2.2)
=1

= (ag + aqeq) + (@1 — aseq)ey + (ay + ageg)es + (a3 — arey)es (D.2.3)

= + C1€q + Cy€y -+ Cy€y (D24)

¢, €C (k=0,1.2,3)

[t must be noted that these complex numbers which have an imaginary unit ‘e, are
independent of what are introduced in the following subsection whose iimaginary unit is
U

D.2.2 Quaternion field in €

Furthermore, the Graves-Cayley algebra € contains the field of quaternions H as well.

H = {'l'u + €1 + roes 4 ryes I To.t, Ty, Iy € R} (D25)

@ = ag+ Z ;6 (D.2.6)
=1

= (ap + a1ey + avey + azes) + (aq + asey — agey + azes)ey (D.2.7)

= (o + Ga€q (DZS)

g, € H (k=10,4)

D.3 Complex Graves-Cayley algebra €°

Let €, called the complex Graves-Cayley algebra, be the complexification of €.
C={a+ib|abe, i*=-1} (D.3.1)
Here, we should notice that */° 1s iutroduced as a different imaginary unit from ‘e,

which is that of the complex number field embedded in € as mentioned in the previous
subsection. This /7 commutes to all the ¢;'s (=07 -

=~
[\



In €°, the conjugate  and the real part Re®(x) are defined respectively as follows.
7 7
£ro= ((IU + Z (L,'fii) + I(bg + z bi(ji)
=1 =1

= ((LU + !bg) + Z(Gi + il)i)f‘,’i

=1

€Ty + Z e {D.3.2)
i=1

r = (ag+ Z aze;) + i(by + Z biei)
i=1 =1

= (ap+ibo) — Y _(a; + ibie;
i=1
= —Z;::ie,- (D.3.3)
i=1
Re(x) = %(.L-FJL) € C (D.3.4)
— ik (D3.6)
Re‘(1) (D.3.7)

Moreover, for any two elements 2 = a + b and y = ¢ + id of €°. the inner product
(x,y) 1s defined by

7
(.y) = 2o+ vyi € C (D.3.8)
i=1
7
= (ag +ibo)(co +ido) + ) _(a;+ iby)(ci + idy) (D.3.9)
=1
= (y.z). (D.3.10)
Therefore we have
(.2) = (20)’+ Y (¢)? € C (D.3.11)
i=1
= rr = & . (D.3.12)

Furthermore, in €°, the hermitian product {z.y) (@.y € €°F) is defined by

{r.y) = (@".y) € C (D.3.13)



= (ay — iby){cy + idy) +Z i) (e; +1d;)
=1
where (- -)*, called the complex conjugation with respect to i’
mapping.
(a4 = a—ib
abe €

Therefore we have

7

¥ i ¥ oo ¥

€@ = .L[]-l-E €;e; .
i=l1

Naturally, we must not confuse this complex conjugation (-
jugation (---). An example is
Re®(x) = Re®(Z) # Re®(2") .

Consequently, for any element x = a + ib of €°, we have

((10 +Z([I ) (bo
= (a,a)

> 0.

(w,x) =

+(bb) € R

D.4 Some helpful formulas on elements of ¢°

We can use the following formulas for any w,x,y, z € €°.

=

(")
(k+y) = ' +y
)

(ay) = a'y"
(wt+y) = #+7¥
(ey) gT
1 v
5 :

(D.3.14)

. 1s defined by the following

(D.3.15)

(D.3.16)

-y with the octonionic con-

(D.3.17)

(DA.1)
(D.4.2)
(D.4.3)
(D.4.4)
(D.4.5)
(D.4.6)

(D.4.7)
(D.4.8)
(D.4.9)



(w,x)(y, =)

Rec(xy)

Re“(uxyz)

[, y. 2]

I

FA(wy.e2) + (e w2} (D.4.10)
1 _

5{(yw,z;z:) + (yx. zw)} {D.4.11)
Loty — Tilfi (D.4.12

1 1
§(J:y +gz) = ;(:I‘ﬂ + ya) (D.4.13
Re®(yx) (
Ree(x(y:)) = Re<((xy)?) (
LoYose — Lol s — LYo — Lilizo — Lyl TkTik {
1 1 o -
5(1:(yz-) + (Zg)z) = 5((1:3;): + z(yr)) (D.4.17
Re(yrz) = Re(zxy) (
Re®(zyz) — 22,4204k (

)

Re®(xyz)

+ ( LoYolr + Totzo + LYoo — LY

+ @l z 00+ CiYo Ot + Ll 2T

+ Y 26T G Tkt )81 (D.4.20)
Re(wy:z)

+ ( Toyost + roYrzo + LYoo — Ll

+ XYz XiYo ;05 + Ly

— LT jen T it )e( (D.4.21)
x(yy) = iy = y(ye) (D.4.22)
wlyz) . (xy)r = w(yx) (D.4.23)
eley) . wlyy) = (ey)y (D.4.24)
%{:F;(yz) + g(xz)} (D.4.25)
L {(en)+ (z)7) (D.4.26)
(wy)= — 2(y>) (D.4.27)
Yk (TijmOkim + CjkmTitn + 0xj05 — 0pidi )} (D.4.28)
iYizk (TijmOhim + Ok Citn + ThineTjtm ) €1 (D.4.29)
&iyizk (Pignt) el (D.4.30)
(pijre o completely antisymmetric)
(. 2. 2] = [z, 2.y] (D.4.31)

—[zoy. 2] = =y, a,2] = —[x,z.y] (D.4.32)

-]

T



nmn i

—lay, 2] = [5,9,%] = —[x,y,7] (D.4.33
0 (D.4.34
2Re(xyz) + [, y. 2] (D.4.35
2Re(xyz) — [2,y, 2] (D.4.36
(vy)z + y(zx) D.4.37
(xy)z + (wx)y D.4.38
r(yz) + y(wz) D.4.39



Appendix E

Complex exceptional Jordan algebra

3’(3

E.1 Jordan algebra j

We define j as the Jordan algebra consisting of all 2 x 2 hermitian matrices A with entries

in the Graves-Cayley algebra €.
j={AeM2,e)| At =4} (4=
The specific components of A can be written as follows.
‘ Gh P )
44 == n
( ¢y Q2
Q1 €R ¢y EC (I=1,2)

Therefore, j is a 10-dimensional R-vector space.

E.2 Exceptional Jordan algebra §

(E.1.1)

(E.1.2)

We define J as the exceptional Jordan algebra consisting of all 3 x 3 hermitian matrices

A with entries in the Graves-Cayley algebra €.
J={AeM3,¢ | 4=4} (4A'=(AD"

The specific components of A can be written as follows.

Q1 s b
4 = b3 Q‘z o
TR O

QreR  ¢rec (I =1,2,3)

(E.2.1)



Therefore, J is a 27-dimensional R-vector space.

E.3 Complex exceptional Jordan algebra J°

Let 3¢, called the complex exceptional Jordan algebra, be the complexification of J.
JF¥={4A+iB|ABeJ, i"=-1} (E.3.1)

Therefore, the specific components of X € J° can be written as follows,

C_)l by by P omy M
X = by Qu by | +i| T3 P om (E.3.2)
P2 B Qs ™ T B
Q. P eR dr. 7 €€ (1 =1,2,3)
1 &a E_‘z
= £ r2 & (£.3.3)
2 & oy
xy € C £ € €° (I1=1,2,3)
= X(u,¢&) (E.3.4).
ey =@+ iF;

§r = ¢r +img

§1=¢1+i7y

Accordingly, we can also define this J© as

+

JI={XeM3Be)|X =X} (Xi=(X). (E.3.5)

E.4 Two kinds of hermitian adjoints

In €°, there exist two conjugatious: One is the complex conjugation (---)*, another is
the octonionic conjugation (---). As a result, in 3¢, there exist two kinds of hermitian
adjoints.

Xt = (x)7 (E.4.1)
Xt = (x)T (E.4.2)

|



E.5 Operations

Now, for any X,Y, Z € J3° each of the operations is defined as follows.

£ & & Yoo a GG
X=1 & w & LY =91 o om , 2= G o= G (E.5.1)
& & xs 2 Th Y3 G G =3

trace tr(X)

tr{(X) = a1+ w2+ 23 (E.5.2)
Jordan multiplication X oY
i
XoY = S(XY+YX) (E.5.3)
1 .
= 5{_-‘(,}’} (E.5.4)
— YoX - (E5.5)
inner product (X,Y) €C
(X,Y) = tr(XoY) (E.5.6)
- %tr(XY)—}—%tr(YX) (E.5.7)
= (Y.X) (E.5.8)
hermitian product (X.Y) €C
(X.Y) = (X"Y) (E.5.9)
(0<(xX) ¢ R ) (E.5.10)

Freudenthal multiplication X x VY

1 1
XxY = XoY - %tr(X)Y - %t'r(Y)X + tr(X)tr(V)] = S(X.Y)!I

= ¥xX (E.5.12)

I : unit matrix




trilinear form #(X.Y.Z) € C

H(X.Y,Z) = (X,Yo0Z) (E.5.13)
— (X o(YoZ) (E.5.14)

- it-,-(X(YZ) )+ itr(X(ZY))
+ itr((} 2)X) + im-((znm (E.5.15)
= -15(\ YZ)+ %(x ZY) (E.5.16)
= t(Y.Z,X) = tr(Z,X.Y) (E.5.17)
= W(ZY,X) = tr(Y,X.Z) = tr(X.Z,Y) (E.5.18)
= (XoV.2) (E.5.19)

cubic form (X.,Y.Z) €C
(X.Y,Z) = (X.Y x Z) (E.5.20)
= tr(Xo(Y x Z)) (E.5.21)
— (X.Y,2)

—%n( ) (Y, Z)—%fr(Y) (Z,X) ——tr(Z)(‘“)

+;n( ) (YY) tr(2) (E.5.22)
= (Y,2,X) = (Z,X.Y) (E.5.23)
= (ZY,X) = (V,X,Z) = (X,Z.Y) (E.5.24)
= (X xV,2) (E.5.25)
determinant det(X) € C
det{(X) = ~(X,X.X) (E.5.26)

)
1
3
9 1 1 1 _
St (X (XX)) 4+ ctr((XX)X) = Str(X (X )+6n(\) (E.5.27)

cycle mapping P(X)

€ €s Ez
X = 53 :l;'g' gi (EE)QS)
& & wy
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For any X € 3¢, the cycle mapping P{X) is defined by

£y 3 5_3
P(X) = & oz & | . (E.5.29)
§a & @

Namely, the cycle mapping is the cyclic permutation with respect to the indices I = 1,2, 3.
Therefore, we have :

. €Ly £2 él

PHXY) = | & x & | . (E.5.30)
&1 & a2

PHX) = 1-X = X. (E.5.31)

E.6 Some helpful formulas on elements of

We can use the following formulas for any X, Y, 2 € J°©.

Iol =1 (E.6.1)
JoX = X (E.6.2)
IxI I (E.6.3)
IxX = %(tr(X)I - X (E.6.4)
(.1 = 3 (E.6.5)
(X.I) = &(X,1.I) = (X.I.I) = tr(X) (E.6.6)
(X.Y) = tr(X.Y.I) (E.6.7)
(X.YZ) = (Y,ZX) = (Z,XY) (E.6.8)
(X xY) = %t-r(X)t-r(Y) - %(x, Y) (E.6.9)
No(X xX) = det(X) I (E.6.10)
I unit matrix
E.7 Indication by components
(1) + &aba + f3§3 16 + (w1 +u2)&s &b+ (s + £1)és
XoX = §ils + (w1 +a2)€s  (w2)” + &6+ & Gals + (iUz_—i— :1:3)5_1
&)+ (3 + a1)& Loy + (w0 + w3)&; (:133)2 + &1& + &€,
(E.7.1)
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= XX (E.7.2}
dyiy — 515__1 E - -’53@ é_a__f_l - iﬂ‘zf_‘z

XxX = % — w3l wyry — {2§2 Ealy — ;L'l(f} (E.7.3)
£3&1 — w26y 5253 — &y oy — 38y

3
tr(XY) = Z (.’L'Iy,r + (&g flﬁ;)) (E.7.4)

=t

tr(X(YZ)) = Z( eryrzr + w1 (o Cga) + (rraCrae)

I=1
+ 91 ((Er1Cra1) + (ErvaCre)) +

+ (&r(mre Qi) + (Creamre2)én)

I((gl+1"!i+1) + (Ertaijrg2))

S’ B

(E.7.5)

4

tr((XY)Z) = Z( eryrzr + wr{(le1Ce1) + (re2Cri2))

=1
+ 1!/1((51+1C_1+1) + (£I+2§1+2)) + 21((5—1+1"H+1) + (Erv2iig2))
+ ((Ermrer)Craz + Crea (n14261)) ) (E.7.6)

(X.V) = Z(a:,y;—l—?(f;,m)) (E.7.7)

3

(X.y) = Z(-"ﬁy1+?(fufn)) (E.7.8)

=1
3

tr(X,. V. Z) = Z( wryrze + wp((nren, Ga) + (rae, Crae))

=1
+ yr{(Crar E1) + (Crane Eav2)) + 20 (s misn) + (Ergzs rg2))

+ Re(EryriCraz + 81Canige) ) (E.7.9)
3
R 1 . -
(X.Y.Z) = Z( §(ib‘lyl+151+2 +aryrozier) — (el G} + yi(Cr. &) + z1(Er, 1))
I=1
+ Re®(&rnrpilrr + Errpiige) ) (E.7.10)

Here, the index T 18 mod 3.

Therefore, we have

det( X} = wiwgmy — 0166 — 1968y — w36a8s + 2Re(£,6,8,) . (E.7.11)
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