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Abstract

We studied lepton flavor violation in physics beyond the standard model. Especially
in the Randall-Sundrum type extra-dimension scenario, we showed that the g — ey decay
branching ratio becomes large. The loop diagrams mediated by Kaluza-Klein modes of
the bulk neutrinos, which are introduced so as to generate tiny neutrino masses, are large
and we obtained a severe constraint on the mass of the lowest Kaluza-Klein mode i.e.
mgk > 25TeV. For the 7 lepton physics, we analyzed P and CP violation of 7 decays
in model independent way. We calculated the differential cross sections of the processes
in which one of the pair created 7 particles at an ete™ collider decays into lepton flavor
violating final states e.g. 7 — pvy, 7 — 3y, 7 — pee. Using the correlations between
angular distributions of both sides of 7 decays, we can obtain information on parity and
CP violations of lepton flavor non-conserving interactions. We also studied the muon-
electron conversion process in nuclei. With values in this thesis, we can calculate the y—e
conversion rate in any models for each nucleus. We find that the conversion branching
ratio has a tendency that it is larger in the nuclei with moderate atomic number than

that in light or heavy nuclei.
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Chapter 1

Introduction

Now theorists are getting into the sccond phase of the particle physics. The modern

» which describes

particle physics have begun with a powerful tool “quantum field theory’
motions, creations, and annihilations of particles and is a consistent theory based on the
Lorentz symmetry, the gauge symmetry, and the quantum theory. The prediction of the
quantum field theory is verified with a great accuracy, for example in QED processes
such as the anomalous magnetic moment of the electron [1,2]. As an application of
the quantum field theory, the standard model has been proposed [3] 1t is a simple and
beautiful model which describes the interactions between the quarks, leptons, and gauge
hosons with the gauge group of SU(3)c x SU{2);, x U(1l)y. The properties of the gauge
interactions are successfully confirmed by the LEP experiments [4]. The flavor structure
and the CP violation cffect in the quark sector are consistently included in the standard
model [6,7] and investigated in experiments [2,5]. The determination of the mixing and
CP phase parameters is one of the important subjects now. This is the first phase of the
particle physics including the construction and the test of the standard model.

However, on the other side of such great progress, the standard model can be effective
only below the TeV energy range by a theoretical reason. In the standard model, there
is a dimensionful parameter which is the mass parameter of the Iiggs particle m%,. For
the consistency of the theory, the parameter should be of the order of 100 GeV. In the

quantum field theory, the values of such parameters are the sum of the bare value defined
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at some scale and the quantum corrections. If we take a cut-off scale A below which the
standard model is good description, the quantum correction to m3% is of the order of AZ.
It follows that the bare value should be also of the order of A% and the my is obtained by
the subtraction of m% = O(A%} — O(A?). From the naturalness point of view, the scale A

should be at most a few TeV.

We need, therefore, a new theory describing the physics beyond TeV energy region
which might be a theory beyond the quantum field theory. Seeking the new physics is
the work in the second phase of the particle physics. The condition for being a candidate
of the new theory is that the theory is free from a quantum correction of the order of A2
to the m2, parameter, where A is the cut-off scale of the new theory. Among models in
the quantum field theory, supersymmetry (SUSY) is one of the candidates in which the
quantum corrections are almost canceled between boson and fermion loop diagrams and
the remained contributions are of order log A2 [8]. The cut-off scale of the standard model
A ~ TeV is identified to the SUSY breaking scale. Interestingly, if the supersymmetric
world is realized beyond TeV energy region, the three coupling constants of the SU(3}¢,
SU(2)., and U(1)y gauge interaction coincide each other at the energy of 10'® GeV [9)].
This fact strongly supports the Grand Unified Theory (GUT) in which the gauge interac-
tions are unified to a large simple gauge group such as SU(5) [10] so that the quantization
of the electric charges of the quarks and leptons are naturally explained. Models with
extra-dimensions are also candidates in which the TeV scale is the fundamental scale of
the gravitational interaction [11,12]. These theories are out of the applicable range of the
quantum field theory. It is supposed that the standard model particles and interactions
are confined in a four dimensional brane in the higher dimensional space. The weakness
of the gravity we feel is explained by the large volume of the extra-dimensional space
which dilutes the graviton wave function [11], or the localization of the graviton wave
function away from our brane by the warped geometry of the fifth dimension [12]. The
use of the extra-dimensions provides us many interesting theoretical applications such as

self-tuning mechanism of the cosmological constant of our universe [13] and very small



neutrino masses {14,15]. In such theories, the theory describing the beyond TeV region
should include quantum gravity which might be string theories [16| or something unknown
theories. We escape from the condition of no A? correction with the less knowledge of

quantum gravity.

Anyway, the current status of the theoretical particle physics is that we recognize the
necessity of the physics beyond the standard model and several attractive models such
as SUSY and extra-dimension have been already proposed. One of the important theme
now is, therefore, discrimination of the models which appear in high energy. The study
of lepton flavor violation (LFV) is one of the most effective methods for this purpose. In
the standard model, lepton flavor is approximately conserved because of the smallness of
the neutrino masses and the expected branching fractions of LFV processes, e.g. u — e7,
T — Wy, it — e conversion in nuclei, are too small to be ohservable [17,18]. However,
interestingly many new physics include extensions of the lepton sector and such extensions
may easily break the symmetry. Therefore, if a LE'V process is observed, this is purely
the effect of the physics beyond the standard model and the observed quantities such as
the branching ratio, angular distribution, etc. have important information on the physics

beyond the standard model.

SUSY and extra-dimensional models both include the extension of the lepton sector. In
SUSY models, the prediction of the branching fraction of the LFV processes can be close
to the current experimental upper bound. In this case, the flavor mixing in the slepton
mass matrix is a new source of LFV. Even in the minimal supergravity scenario [19], in
which the slepton mass matrix is proportional to the unit matrix at the Planck scale, the
renormalization effects due to LFV interactions can induce sizable slepton mixings [20)].
For example, such LFV Yukawa interactions exist in SUSY GUT [21-23], SUSY model
with right-handed neutrinos [24, 25], and SUSY models with exotic vectorlike leptons
[26]. There is another interesting possibility in models with extra dimensions, where
the neutrino masses and mixings are obtained from the Yukawa interaction between the

ordinary left-handed leptons and the gauge-singlet neutrinos which propagate in the bulk
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of extra dimensions [14,15|. This Yukawa interaction breaks the lepton flavor conservation
and the Kaluza-Klein (KK) modes of the bulk neutrinos enhance p - ey decay, 7 — py

decay, etc. through the loop diagrams [27,28].

In the side of experiments, the status of the current and near future experiments for
i — ev and p — e conversion search are both prospective. The expected reach of the
branching ratios covers wide range of the parameters in models of physics beyond the
standard model. The MEGA collaboration has already given an upper bound for the
p — e decay branching ratio of 1.2 x 107! [29] and the new experiments at PSI [30] and
JHF [31] are proposed with a sensitivity of 107! and 107'%, respectively. For the p — e
conversion, an upper bound for the conversion branching ratio, which is conversion rate
divided by the ordinary muon capture rate, in Ti nuclei is 6.1 x 10~1* [32] reported by
the SINDRUM II experiment at PSI and now SINDRUM Il is running with Au targets.
The MECO experiment at Brookhaven (33| and the PRISM experiment at JHF [31] are
planned with a sensitivity of 10717 using Al nuclei and 107!, respectively. In the T
decay, the search for the LFV processes have been done in B-factories. Especially in
the 7 — wy decay, the CLEO collaboration have accomplished to obtain the upper limit
of B( — pv) < 1.1 x 107% [34], and the on going experiment at KEKB (the Belle
collaboration) have obtained the upper limit of 1.0 x 107% from the present data [33).
These values also give severe constraints for the parameters in the models of physics

beyond the standard model.

In this thesis, we studied the physics of LFV in detail. This study is useful to both
the current experiments of the LFV search and discrimination of the models after the
discovery. The theoretical side of LFV physics is reviewed in the next chapter. Especially
the branching fraction of the 1 — ey decay is calculated in SUSY GUT models and SUSY
models with right-handed neutrinos, in which we scan a wide range of the parameter space.
LFV in extra-dimension models and the parity violation of the g — ey decay are also

reviewed.

The remained part of this thesis is organized by our original works concerning LFV.




In Chapter 3, we consider a new possibility of LFV in the Randall-Sundrum (RS) type
extra-dimension scenario [28]. In the extra-dimension scenario, the introduction of the
bulk neutrinos is necessary in order to obtain the tiny neutrino masses [14,15]. The
introduction of bulk fermions in the RS background leads to the existence of the KK
modes whose masses are at the electroweak scale in four dimensional effective theory.
The effect of the KK modes on the low energy phenomenoclogy is not negligible. We
show that the experimental bound of B{y — e7y) gives severe constraints on the mixing
between the bulk fermions and neutrinos. If the Yukawa coupling is O(1)}, the KK modes
should be heavier than 25 TeV which means the fine-tuning of the Higgs mass parameter

is necessary to reproduce the correct vactum expectation value (VEV).

In Chapter 4, we discuss the LFV processes of 7 decays such as 7 — uvy, 7 — 3u,
7 — pee, taking into account P and T odd asymmetries, based on the work by Y. Okada
antd the present author [36]. In the 7+~ pair production at ete™ collision, we can extract
information on the spin of the decaying 7 particle from the angular distribution of the =
decay products in the opposite side. Using this technique, we can obtain the P and T odd
asymmetry defined in the rest frame of 7. The method of the spin correlation has been
developed since the days before the discovery of 7 particle [37]. There have been many
works on spin correlation method in search for anomalous coupling involving 7 [38]. We
have applied the formalism in order to obtain information on LFV interactions under P
and T transformations. We also calculate angular correlation of the process where one
of the 7's decays through 7 — lviy mode. This mode is a background process to the
7 — |y search if the neutrinos carry little energy. We show that the angular correlation
is useful to identify the background process and the background suppression is effective

for = — u7y (vt — u}y) search.

In Chapter 5, the 4 — e conversion rates in various nuclei are precisely calculated,
which is based on the collaboration with M. Koike and Y. Okada [39]. With the values
listed in this chapter, one can calculate the accurate conversion ratio in any models. We

solve the Dirac equations numerically for the initial state muon and the final state electron
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in the Coulomb force, and perform the overlap integrals between the wave functions and
the nucleon densities. The results indicate that the conversion branching ratio is larger
in the nuclei with moderate numbers of Z than that in the light or heavy nuclei if there
is no accidental cancellation between the parameters of the models. Our calculation is
useful to distinguishing models of physics beyond the standard model since each model
may predict different Z dependences of the conversion ratio. The summary of this thesis

is given in Chapter 6.



Chapter 2

Lepton Flavor Violation (Overview)

We review the LFV physics from the theoretical point of view.

2.1 LFV and physics beyond the standard model

2.1.1 What is LFV?

Lepton flavor is a quantum number assigned in each generation of leptons. For example,
the electron number one is assigned for the electron and the electron neutrino, and zero
for the other leptons i.e. y, 7, v, and v;. These quantum numbers are conserved in the
standard model if we do not consider the neutrino masses. The Lagrangian for the lepton
sector is given by

. - i T e : L, .
L=1 Z Ly (0, + EQYB“ — 5920 AC)Prli + Z eriY (O + igy B,) Prer;

t=e T i=e,u,7

- > f7{{her; +hel (2.1)

ij—epT
where the fields I; and eg; are the SU(2), doublet left-handed lepton fields and the right-
handed lepton fields, respectively. B, and Al are the gauge fields of the U(1)y and
SU(2) 1, gauge group, and gy and g, are the corresponding coupling constants, respectively.
This Lagrangian includes all the renormalizable terms allowed by the gauge symmetry of

SU(2)r and U(1)y. The terms in the second line describe the Yukawa interactions between
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the SU(2). doublet Higgs field A and lepton fields. The essential point is that we can
diagonalize the Yukawa matrix f¥ by the redefinition of the lepton fields [ and eg. [n the
basis of the diagonal Yukawa matrix (f = f34;;), there is no interaction term of the inter
generation transition so that lepton flavor is conserved. In other words, this Lagrangian
possesses a global U(1) symmetry automatically within the particle content and the gauge
symmetries of the standard model. As a consequence, the branching ratio of u — ev,
tt — 3e, 7 — py, ete. are predicted to be zero exactly because the quantum numbers of

the initial and final state are different.

This situation slightly changes when we consider the neutrino masses. In the La-
grangian (2.1), we cannot obtain non-vanishing neutrino masses while the charged leptons
become massive by the condensation of the Higgs field. It is thus necessary to extend this
minimal standard model. First, we consider the case where the neutrinos have Dirac mass
terms which come from the newly introduced Yukawa interaction terms f(L;h)vg; + h.c.
in the Lagrangian. Here vg; is the additional gauge singlet field called the right-handed
neutrino. These terms are gauge invariant and generate the mass terms of the neutri-
nos through the SU(2);, x U(1)y breaking effect. In this case, lepton flavor is no longer
conserved since the Yukawa matrices f, and f. cannot be diagonalized simultaneously.
However, the effect on LFV in the charged lepton sector is negligible because of the small-
ness of the neutrino masses [17, 18]. The data from Super-Kamiokande shows that the
neutrino masses are at most a few eV [40]. It follows that the Yukawa coupling f, is
small of order 107'% and the prediction to the branching ratio of the ¢ — e~y decay is
at most 1075¢ [17] which is much smaller than the current experimental upper bound of
1.2 x 107!}, In the case of the Majorana masses for the neutrinos, the additional terms in
the Lagrangian are A;{l;h)({;A1) + h.c., where the parameters A;; have mass dimension of
—1 and are of the order of 1071 GeV~! in order to fit the neutrino masses. These small
values of \;; are naturally explained by the seesaw mechanism [41], in which the (hlh!
terms are obtained by integrating out the heavy right-handed neutrinos. Again the LF'V

effect by the introduction of these terms is negligible because of the small parameters A;;.
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The contribution to the B{p — ev) is calculated to be at most 1074 [18].

The standard model forbids LFV processes such as yu — ev by symmetry, and the
extension of the neutrino mass inclusion does not change this situation so much. However,
the importance of LFV is not the verification of the standard model. As we mentioned
in the introduction, the LFV processes are very sensitive to physics beyond the standard
model which is required from the theoretical point of view. The SUSY theory is one of the
most promising candidates describing beyond TeV scale. Since SUSY is a symmetry under
the transformation of the boson into the fermion and vise versa, we need superpartners
of different statistics for each particles in the standard model. By the symmetry, the
properties of the particles and newly introduced their superpartners are almost the same,
for example, the same strength of the interactions, the same masses, and the same charges.
The minimal embedding of the standard model into the SUSY model is easily done by
adding superpartners in the spectrum and making interaction terms (See Appendix A). In
the lepton sector, corresponding to the leptons, we introduce the scalar leptons (sleptons)
which have the same quantum numbers. In this stage, there is no additional LFV effect to
the (non SUSY) standard model since the properties of the slepton interactions are almost
the same as the lepton ones as we mentioned above. The interesting point is that the
SUSY must be slightly broken because of the fact of non-observation of any superpartners
which have the same masses as the known particles. The SUSY breaking terms which are

introduced in the Lagrangian can be a new source of LFV as we see later.

Models with extra-dimensions are also interesting candidates for physics beyond the
standard model. In such theories, the small neutrino masses are naturally explained by
the introduction of the bulk neutrinos instead of the seesaw mechanism which does not
work in extra-dimensional theories [14,15]. The bulk neutrinos are gauge singlet fermion
fields and can propagate out of our four-dimensional world. As in the standard model, we
introduce the LF'V Yukawa interactions between the bulk neutrinos and ordinary leptons
in order to obtain the neutrino masses. In the case of the standard model, the effects on the

charged lepton are much suppressed because of the smallness of the coupling constants.
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However, the situation dramatically changes in the extra-dimensional scenario. In the
words of four dimensional effective theory, the existence of the KK modes enhance LFV
in the charged lepton sector [27,28].

Interesting points are not only that there is a large possibility to observe the LFV
processes in near future, but also we can extract information on the physics beyond the
standard model including SUSY and extra-dimensional models by the analysis of the LFV

processes.

2.1.2 LFV in SUSY models

Now we review LFV in SUSY models. As mentioned before, the SUSY invariant La-
grangian does not have LFV terms, namely the SUSY Lagrangian only contains the flavor
diagonal terms. LFV comes from the SUSY breaking terms for the slepton fields which

are given as follows:
Loon = —(M)lll; — (ML )geelee; — (AVH, - €50 + hie) . (2.2)

The indices 4, j represent the generation (i, j = e, 4, 7) and the fields [, ¢, and H, are the
left-handed sleptons, the right-handed sleptons, and the Higgs field, respectively. (The
notation of e represents the charge conjugation of er.) The source of LFV is the ofl-
diagonal components of the soft mass terms (117);; and (1% )y, and the coupling constants
of the scalar three point interactions A,

The terms in eq.(2.2) break SUSY softly by giving the different masses for the bosons
and fermions, but, successfully, do not introduce the radiative correction to the Higgs
mass parameter of the order of square of the cut-off scale [8]. One of the most interesting
scenarios for the nature of the soft terms in eq.(2.2) is the supergravity scenario in which
we feel the SUSY breaking only through the gravitational interaction [19]. We do not
need a complicated mechanism in this scenario because all the particles have couplings
to the gravity. In the minimal version of this scenario, the soft terms in eq.(2.2) are still
flavor diagonal and moreover the same for all the scalar particles since the gravitational

interaction is uniform for any particles. However, if there is a LF'V interaction in the theory
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describing between the Planck (Mp ~ 10'® GeV) and TeV scale, the renormalization
effects induce the off-diagonal terms in the low energy effective Lagrangian.

The first example for such a LFV interaction is in SU(5) GUT models [21-23]. The
superpotential, which describes the supersymmetric interactions including Yukawa inter-

actions and scalar potentials, for the matter part of the SU(5) SUSY GUT is given by

1 - b ‘
W= gfabcde(?}u)ijTiabedHe + ()i FyaT H (2.3)

where T and F are the matter superfields of 10 and 5 representation of SU(5), respectively,
and H and H are the Higgs superfields of the 5 and 5 representation. The indices ¢, j
represent the generation (i,7 = 1,2,3), and a,b,c,d, e are the SU(5) indices (a,b,¢,d, e =
1 — 5). The decomposition of the superfields of 7 and F into the standard model gauge
group is shown in Appendix B. The important point is that the superpotential contains
LFV terms as follows:

Wipv = — Va3 fAELUS He + fiLQulc (2.4)

7]

in the basis where the lepton Yukawa matrix is diagonalized. The coupling constants
are determined so that they reproduce the masses and mixing of the quarks. The matrix
Ve is the Cabibbo-Kobayashi-Maskawa matrix [6,7], and f, and f; are the diagonalized
up-type and down-type Yukawa matrix, respectively. The superfields £¢, L, U¢, and
are the right-handed leptons, the left-handed leptons, the right-handed up-type quarks,
and the left-handed quarks, respectively. The colored Higgs fields H- and He are super
heavy fields whose masses are the GUT scale {Mgur ~ 10'® GeV). It follows that these
interaction terms are cflective in physics beyond the GUT scale. However, the running
effect from the Planck scale to the GUT scale induces off-diagonal components of the
soft. masses for the slepton through the loop diagrams. Especially, from the fact that the
Yukawa coupling constant for the top quark f2 is as large as nearly unity, the first terms
in eq.(2.4) give sizable contributions to the soft masses of the right-handed sleptons /.

Figure 2.1 shows one of the loop diagrams which induces the off-diagonal components of
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Figure 2.1: The loop diagrams for the off-diagonal components of the right-handed slepton
masses in SU(5) SUSY GUT are shown.

soft masses. Approximately, the off-diagonal components are evaluated to be

= 3 ]
(m )"J - 8 VC'SKM |ful2 (3+ Ia'Ul )mﬂlog M UT

where ag and my are the universal coupling constant of the scalar three point interactions

(2.5)

and universal masses for the scalar particles, respectively. The renormalization equations
for the coupling constants and the SUSY breaking parameters in SU(5) SUSY GUT are
listed in Appendix B.

Now we evaluate the LFV processes, especially the branching ratio of the p — ey
decay, in SU(5) SUSY GUT models with the minimal supergravity scenario. The effective
Lagrangian for the ¢ — ey decay is given by

4
L= _% {muArpc** PreFy, + m,ALpo™ PreFu} + hee. | (2.6)

where Gr and m, are the Fermi constant and the muon mass, respectively, and P r are
the projection operators of the chirality. The dimensionless coupling constants A, g are
calculated by the loop diagrams mediated by the neutralinos and charginos as shown in
Figure 2.2. The neutralinos and charginos are the fermionic superpartners of the Higgs
fields and the gauge bosons. The interaction vertices and mass matrices are listed in
Appendix A. With the notation of Appendix A, the coefficients A g are calculated as
follows [25]:

V2
Ap= ——22 (49" £ ¢  A; = Aglger , 2.7
R SmMGF(gR +95") L RlRoL (2.7)
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R ] . . (r) . . T . (n) . ,
where the chargino contributions g; s and the neutralino contributions g; 5 are given by

=D 2. sy

A=12X=1- 22
v ()2 c}3
o | ot olte) M = — 32k 4 625 — 2l — 62 log 2Py
14X L24x )
m2, 6(1 — 25 )
() (e)2
Lie)s ~Rie) a7 3 — i,y + 34 +210£,J o
+ CriY’ C2A‘( 2 - C A (2.8)
x (1 —x,x)°
9 =g lr . (2.9)
and
=3 > s
A=1-4 X—1-6
Lie)x p Lie 1 - 6;1; +3 A»( +2:E (an *log 27
x le(l_g N2/g7()'m2’ (rn ) ¥ AX
Tx 6(1 — a:AY)
m (?1)
Loy R TG 1 = 2 + 225 log 2y )
+ Nax Naax -3 > ; : (2.10)
T (1-— $Ax)

g = g limr . (2.11)

Here e (> 0} is the positron charge, and my,, My My and o are the masses of the

sneutrinos, charginos, charged sleptons, and neutralinos, respectively, and scif‘)\( and dc(f' ,)(
are defined by z'0y = mz, /m3, and ' = m? 2 / m , respectively.
A
With the coeflicients A g, the branching ratio is given by
Bl — ey) = 384n*(|Ag|* + |AL]) . (2.12)

We plot B(iz — e7v) in Figure 2.3. The horizontal and the vertical axis represent the
universal scalar mass my and the gaugino mass M,;, at the Planck scale. We can see
in the figures that there are parameter ranges where the branching ratio reaches 10715,

Especially, B{zz — ey) enhances for large tan # which is the ratio of the two VEVs of the
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Figure 2.2: The Feynman diagrams for the pp — ey decay in SUSY models are shown.

Higgs fields. The region below the thick line is excluded by the mass bound for the Higgs
mass i.e. mp > 113.5 GeV [42]. In the bottom-right area of the figures, B(i — e7) is very
small because of the cancellation between the diagrams [23]. This is one of the typical
features in SU(5) SUSY GUT.

Another contribution in SUSY models comes from the effect. of the Yukawa interac-
tions between the left-handed lepton doublets and the right-handed neutrinos [24], which
are introduced in order to account for the non-vanishing neutrino masses by the seesaw

mechanisin. The LFV part of the superpotential is given by

13 e 1 iJ p7C ATC ;
WLFV:fVJHQ- N‘ELJ+§MAJ:N1NJ ) (213)
where N¢ are the right-handed neutrino superfields. The neutrino mass matrix is obtained

from these terms as follows:
My = —(f] M f)isv3 (2.14)

where v, is the VEV of the neutral component of the Higgs field H,. If we assume the
Yukawa coupling constants f, to be of order unity, the order of the masses for the right-
handed neutrinos My are determined as large as 10’ GeV by substituting the neutrino
masses m,,. Thus, the LFV interactions in eq.(2.13) give the radiative correction to the
the generation mixing of the left-handed sleptons beyond the scale of My (See Figure

2.4). An approximate formula for the off-diagonal components of the left-handed slepton




2.1 LFV and physics beyond the standard model 19

(m2)y; is given by

Mgur
My

1 ..
(F)i5 = —gr“gf;f"ﬂf]@ + |ao|*)m3 log

(2.15)

where we put the initial condition of the universal scalar mass at the scale of Maur.
If we assume the right-handed mass matrix My is proportional to the unit matrix, i.e.

My = diag.(my, my, my), the Yukawa matrix f, can be determined as

ij MNTY, i
= 2 s (2.16)

where m and Uyjys are the neutrino masses and the Maki-Nakagawa-Sakata (MNS)
matrix [43], respectively.

Now we show B{u — ev) in this model in Figure 2.5, where we choose the large
angle MSW solution to the solar neutrino anomaly [44] in the parameters of the neutrino
masses and mixing, and take my = 10" GeV. For the Uglyg component of the MNS
matrix, which we know only the upper bound of < 0.1 [45], we take the maximum value
of 0.1. In this set of the parameters, B(pr — ey} exceeds the current experimental bound
of 1.2 x 107" in a wide range of the mqo — Mi,; plane, so that the g — ey experiments
have already given a severe constraint on the SUSY models. The parameter region below
the thick line is excluded by the constraint of the Higgs mass (mp > 113.5 GeV). Also,
the top-left region is excluded by the condition that the lightest superparticle should be
neutral from a cosmological reason. In this case the lightest superparticle is scalar 7, and

one of the neutralinos is the lightest in the other region.

2.1.3 LFV in models with extra-dimensions

Not only in SUSY models, the LFV processes are also enhanced in models with extra-
dimensions [27,28].

Recently, it was pointed out that the existence of extra-dimensions could be a solution
of the hierarchy problem [11,12]. In the RS model, the electroweak scale is generated from

the Planck scale parameters through the non-factorizable metric of the extra-dimension.
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In these models, however, it is not easy to explain small neutrino masses suggested by
the neutrino oscillation data. In four dimensional theory, the seesaw mechanism is an
elegant way of providing such tiny neutrino masses [41]. However, the RS scenario is
incompatible with an intermediate scale such as the right-handed Majorana mass scale
because all the dimensionful parameters on our brane are suppressed by the exponential
factor to electroweak scale. Recently a new mechanism for generating tiny neutrino masses
was proposed by Grossman and Neubert [15]. They introduce bulk fermion fields which
couple to the lepton doublets with Dirac Yukawa couplings in the same way as right-
handed neutrinos. In this scenario, the neutrino Dirac Yukawa couplings are exponentially
suppressed in four dimensions because the zero mode wave functions of the bulk fermions

are localized on another brane and the tiny Dirac mass terms for neutrinos are generated.

The introduction of bulk fermions in the RS background leads to the existence of
KK modes whose masses are at the electroweak scale in four dimensional theory, and
the neutrino Dirac Yukawa couplings for these KK modes are not suppressed. Therefore
sizable effects may arise in the phenomenology at the electroweak scale [46-4%| because

of the large mixing between KK modes and neutrinos.

LFV processes reflect such effects. As we see in the next chapter, the eflect of the KK
modes of the bulk neutrinos on the LFV processes is large through the mediation of the

loop diagrams. This model is, therefore, severely constrained.

There is another scenario of the extra-dimension which is so-called the large extra-
dimensions [11]. In this scenario, the weakness of the gravity is explained by the wide
spreaded wave function of the graviton over the large extra dimensions. The smallness of
the neutrino masses can be explained in the same way as gravity. In this scenario, the
masses of the KK modes of the neutrinos are of the order of 1/R where the R is the large
radius of the extra-dimension. It means that the KK modes are light typically of eV order.
It follows that the number of the KK modes which mediate the loop diagrams of g4 — ey
is enormous of order millions, so that this type of models is also severely constrained. The

estimation in ref. [27] shows that the fundamental scale of the gravity, which should be of
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at most TeV from the naturalness point of view, must be larger than 100 TeV when the

existence of two extra-dimensions is assumed.

2.2 Studies of LFV processes

In this section, we review the studies of the LFV processes. The model independent
analysis of each LE'V process gives a method to distinguish models of physics beyond the

standard model.

2.2.1 Model discrimination by angular distribution of LFV de-
cay

For the decay processes, the angular distribution of the particles in the final state have
information on the LFV interactions. In the g — ey decay, the parity breaking quantities
of the LFV interactions are obtained by using the decay of the polarized muon [49]. The

angular distribution of the y — ey decay is given by

dB(,U'+—>€+7) 2 2 2 dCOSGe
= 384m* (| AL 1 [AR[*) [1 1 Py cos 6 , 2.17
dcos . AT (|AL” + [AR[) [T+ Py cos 0] — (2.17)
where
2 _ 2
A AL~ |ARF (2.18)

KT AL+ AR
Ay r are the same quantities defined in eq.(2.6), and 8, is the angle between the direction
of the muon polarization and the electron momentum. P, is the magnitude of the muon
polarization. By using this distribution, we can distinguish the models which have a
different parity violating quantity of A,_,..,. Interestingly, the models we reviewed in
the previous section have characteristic values. In the SU(5) SUSY GUT model, LFV
originates from the right-handed slepton mixing. This implies that Ag ~ 0, namely
A, ey = 1. In contrast, SUSY models with right-handed neutrinos predict A, .., = —1,
since the effect of the right-handed neutrinos appears only in left-handed slepton mixing,.

As we see in the next chapter, the prediction of the models with extra-dimensions is also
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Ay ey = —1. This fact of characteristic values of A,_.., shows that the measurement of
this quantity is indeed important.

For the three body decays of the muon of 1 — 3e, we can define the T-odd quantities.
They are also important to extract information on the CP violating phases in the LF'V
interactions [49].

In the LFV 1 decay, such as 7 — pv, 7 — ey, 7 — 3u, etc. , we can also define the
P and T-odd quantities in the same way [36]. In experiments, 7’s are created in ete~
colliders by the pair production of the QED process. In this case, the polarization of the
7 can be measured by the analysis of the 7 decay in the other side. The detailed analysis

are given in Chapter 4.

2.2.2 yu — e conversion in nuclei

The p— e conversion in nuclei is one of the most prospective processes for the discovery in
the current and the near future experimental circamstance. In this process, the nucleus
dependence of the conversion ratio is important for discrimination of the models and also
for the planning of experiments. In order to know that the precise calculation is necessary.

There have been several calculations of conversion rate. Weinberg and Feinberg have
calculated in the case where the conversion occurs through the photonic interactions
(¢ — e — 7y vertex) [50]. In this calculation, they used several approximations which
the muon wave function is taken to be constant in nuclei and plane wave is used for the
outgoing electron. The plane wave treatment of the electron is a good approximation only
for the light nuclei because the Coulomb distortion effect on the electron wave function
is large for heavy targets. Shanker improved these points by solving the Dirac equations
for the muon and electron wave functions in the electric potential of the nuclei [51]. The
calculation was carried out about all the interactions including the photonic and four-
fermi operators in the effective Lagrangian, but the treatment of the photonic dipole
operator was incomplete because he used an approximate value for the off-shellness of the

photon (g% = —mi) and non-relativistic approximation in the amplitude level. Recently,
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Czarnecki et al. presented calculation in which the off-shell photon is correctly treated as
an electric field in the nuclei and listed the value of the conversion rate for Al, Ti, and
Pb targets in the case where the photonic dipole operators are dominated [52]. Kosmas
also calculated the conversion rate by solving the Schrédinger equation for the muon wave

function and pointed out that the binding energy of the muon is important [53|.

In Chapter 5, we complete the calculation of the g —e conversion rate in the nuclei with
wide range of atomic numbers by the method of Czarnecki et al. We take into account

all the operators for the p — e transition.

2.2.3 Collider signals

If we assume SUSY, the LFV decays of the SUSY particles are also interesting signals.
The SUSY particles are expected to be discovered in the experiment of the Large Hadron
Collider (LHC) at CERN. Agash et al. studied the LFV 9 decays, mainly ¥3%3 —
eppit + X, and pointed out the possibility of the LFV discovery by using the parameter
point of so-called Point 5 i.e. mg = 100, M,;;» = 300, ap = 3, and tang = 2.1 [54].
Recently, Hinchiliffe et al. considered the x5 — 717 — 7ux] mode and concluded that it

is also observable in a wide parameter range [55].

Hisano, Nojiri, and the present author considered another possibility of the u — e
transition mode of ¥3 — gl — eux?, where [ (Iz) stands for the electron or the muon
(right-handed selectron and smuon) [56]. The reach in the parameter space of the SUSY
models is shown in Figure 2.6. The slepton mixing is taken to be sin20 = 0.5 and
Am = 1 GeV for the right-handed sleptons. The bottom-right region is not allowed
kinematically and the top-right region is suppressed statistically by the domination of
X9 — hx? mode. The top-left region is also suppressed by the x* — Il modes. In this
analysis, we investigate the parameter point of 4 = M,, where g and M, are the mass
parameters of the Higgsino and the SU(2) gaugino, respectively, in addition to the point

where the minimal supergravity relation g ~ 1.5M, is satisfied.
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2.3 Summary

We reviewed LFV in models of physics beyond the standard model, and the studies of the
LFV processes for the purpose of the extraction of information on the nature of LFV.

In SUSY models, LE'V originates from the slepton mixing. B(i — ev) is calculated in
the wide range of the SUSY parameters and plotted. LFV in models with extra-dimensions
is also sizable. We investigate this point in detail in the next chapter.

For the LFV decays of the muon and 7, P and T-odd asymmetry are the useful
information on the high-energy models. The use of the polarized muon enables us to
measure such quantities in the muon decay. In the 7 decay, we do not necessitate an
additional experimental set-up in the experiment at ete™ colliders, since the angular
distribution of the decay products from the other side 7 have information on the spin of
7 which decays into LFV final states. The detailed analysis are given in Chapter 4.

Although the st — e conversion in nuclei is extremely important, the complete calcula-
tion have not done yet. We, thus, calculated the conversion ratio taking into account the
effects of the relativistic wave functions, Coulomb force, and binding energy. The methaod
and the results are shown in Chapter 5.

The collider reach of the discovery at LHC assuming the SUSY model is plotted. This

signal also gives independent information on LFV.
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Figure 2.3: The branching ratio of the p — ey decay in SU(5) SUSY GUT are shown.
The first and second figure show the case where tan 5 = 10 and tan 3 = 30, respectively.

We take ap = 0 and y > 0.
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Chapter 3

LFV in the Randall-Sundrum model
with bulk neutrinos

In this chapter, LFV in the Randall-Sundrum model with bulk neutrinos is considered [28].
Grossman and Neubert recently proposed that the existence of tiny neutrino masses and
large mixing could be explained by the presence of the bulk neutrinos in the Randall-
Sundrum background [15]. Since the zero mode wave functions of the bulk neutrinos are
localized on Planck brane, the Dirac Yukawa couplings on our brane are exponentially
suppressed enough to generate tiny neutrino masses. However, the existence of Kaluza-
Klein modes of these bulk neutrinos enhance LFV processes such as pp — ey, from which
lower bounds on their masses can be derived. We find that the first KK mode must be
heavier than 25 TeV if all the neutrino Yukawa couplings are of order unity, which requires

a fine-tuning for the Higgs mass parameter.

3.1 Randall-Sundrum model and bulk neutrinos

The RS model is a five dimensional theory in which the fifth dimmension is compactified
to S1/Z» and two 3-branes are located at two orbifold fixed points. The five dimensional

metric is given as

ds? = e Hreldly  drrdr® — ride? (3.1)
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where k is a parameter of the order of the fundamental scale M, r. is the compactification
radius which is also of the order of M~! and ¢ is the coordinate of the fifth dimension
which is defined on |0, 7]. The standard mode! fields are confined on the brane at ¢ = 7. In
this set-up, the Planck scale Mp) and the VEV for the Higgs field » in the four dimensional
effective theory are given as

M3

(1= ey =My (3.2)

M gi =
where vy is the VEV for the Higes field in the five dimensional theory. We can see fromn
eq.{3.2) that if we consider M, k,1/r. and vy as parameters of the order of 10" GeV, all
the dimensionful parameters on weak brane such as v can be taken of the order of 100
GeV for kr. ~ 12 while keeping Mp close to 10'® GeV.

The action of the bulk fermion in the RS set-up is given by {15
S = /d4:c/ do'G {%W’}ASA\IJ - %(BA@)'?A\I’ —m sgn(q’))@\ll} . (3.3)
40

The Majorana mass term is omitted by imposing lepton nuinber conservation. Kaluza-
Klein decomposition of W reduces this action to the usual four dimensional Dirac action

which is given by

5= [ d'a {hu@ipin@) = mada()nlz)}. (3.4
where ¢ = ¥ +¢f, and % is defined as

Bl d) = 2015 0¥ = Y ) () (3.5)

= _ / — 5 ’ . v
L,R\T, 9 + Vs \/T—c — n n

The wave functions £ and the masses of KK modes m,, are expressed by the following
parameters:

c=e Tt = ety = % . (3.6)

where the parameter ¢ should be fixed as ¢ ~ 107! i.e. kr, ~ 12 in order to produce the

hierarchy between the Planck scale and the electroweak scale. The parameter ¢ € [¢, 1] is
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the redefined spatial coordinate of the fifth dimension; { = ¢ is the location of the Planck
brane and ¢ = 1 is that of our brane. By rescaling the function as fER(¢) — Eree fLR(1),

the wave functions and the masses are explicitly given as

1-—2v
o)y =0, ft) =/ —— 5t~ (3.7)
1—¢
LR V2 y 1 .
n (t) - Jy.{_%(‘(l’.fl) qu:%(mnt) (71, 7’( 0 ¥ > 2) ? (38)
My = KTy , (3.9)

where x,, is the solution of J,_1(z,) = 0. For € ~ 107'% the masses of the KK modes

-l
my are of the order of the electroweak scale. The zero mode wave function (there is a
zero mode f§& since o = 0.) on our brane is very suppressed such as ff(1) o< €” -3 for
v > 1/2. This smallness is the origin of the tiny neutrino masses. I'he wave functions
of KK modes are not suppressed (f7(1) = v/2) and this gives large coupling constants
which violate lepton flavor conservation.

We can construct the gauge invariant interaction terms between the lepton doublets

L = (U5, ebr) (i = e, pu, 7} and the two kinds of bulk fermions ¥* (o = 1,2) as
SY = - /dfl&?éAderﬁ {?}1(1 ( )HU('T)\IIQ ("U TI') + h c. } ) (310)

where Hy = oo} = (H*, Hy ) is the Higgs field. At least two kinds of bulk fermions are
necessary to give masses for two neutrinos. The couplings #:, are dimensionful parameters
which are naturally of the order of M;ll/ ?. In four dimensional effective theory, this action
is written in terms of ¢ as

Z/d" v Li(z)H(z) ga(a,-)+h.c.} , (3.11)

n>0
where the lepton doublets L and the Higgs doublet H = iooH* are properly rescaled to

give canonical kinetic terms in four dimensions. The relation of ¢, and yff' is

i = Vkiia [R(1) = 2 fR(1) (3.12)
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Here we take that z;, to be parameters of order unity. From eq.(3.4) and eq.(3.11), the

mass matrix for neutrinos is given by

wtfa d’ﬁa ;‘za
v [ouie vy
Yyl 0 mua O 0 0
M= 0 ¢ . 0 0] (3.13)
Ll o 0 0 ma O
\o o o o .}

where My o (from eq.(3.4)) is the mass of the n-th KK mode for ¥*. For appropriate
choices of v (v ~ 1}, ¥ (= zia fE(1)) becomes small enough to explain the tiny neutrino
masses. In four dimensional effective theory, this model also contains a series of vector-like

neutrinos which may lead to sizable LF'V [57].

The 3 x 2 submatrix for the light neutrinos is written as

2i — 1™ 2zelv 2uy — 1e*2 %z
Mopw = | 204 — I~ 2z W 21 — L2 liz , (3.14)
207 — le¥1™ zzﬂv 2y — 12 iz ot

where v, = mq/k (o = 1,2) and m, is the mass of the bulk fermions (see eq.(3.3)). We
take here m; > my. Since this matrix is 3 x 2, one of the three light neutrinos remains

massless.

3.2 LFV mediated by Kaluza-Klein modes

Now we discuss the lepton flavor violating processes such as y — ey, 7 — gy and 7 — e7.
The experimental bounds for these processes give severe constraints on the mass of the

KK modes and/or couplings zi,.

The four dimensional gauge and Yukawa interaction terms relevant to p — ey, 7 — py
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and T — ey process are given by

covee = ST Lwte yiput the

V2
2N 43

- Y ¥ % AW ey Pt + hee. (3.15)

i—eu,m A=1

i=e,u,T

N
= YN > yre H Pyl - Y B HT Prelr +huc

n=0 i=e,u, T =12 i=e,u,T

N N
= Z Z Z Zyﬁ“Wn.a)AéiH‘Pwa

n=0i=e,u,7 a=1,2 A=1

N
-3 N FULWMHY Prefy thee. (3.16)

i=e,u,T A=1

EYukawa

where the indices ¢, A, n, o represent the flavor, the mass eigenstates of neutrinos, the
KK excitations and the species of the bulk fermions, respectively. Here the left-handed
mixing matrix {/ and the right-handed mixing matrix V are defined as the matrices
which diagonalize M M' and MTM, respectively. To cut-off the infinite KK modes we
introduce N and consider up to N-th KK mode. Then U and V are (2N +3) x (2N + 3),
(2N +2) x (2N + 2) matrices respectively. The coupling f* is the lepton Dirac Yukawa
coupling of the i-th generation and 3:* are neutrino Dirac Yukawa couplings defined in

eq.(3.11). The field ¢/ represents the A-th mass eigenstate of the neutrinos.

We first calculate B{(y — evy). B(r — py) and B{(r — ev) can be calculated in the
same way. Neglecting the mass of the electron, Ay and Ag in eq.(2.6) can be expressed

as

AL=0, (3.17)
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e
Ap= ——N" U, .U*
R 4\/523 AV na

1
XGIT =gyt 10— 486a + T8E — 496 +4G + 186 ogla) . (318)

(64 = m’ /M)
where Mw is W boson mass and my is the mass of the A-th mass eigenstates of neutrinos.
Notice that this model predicts u= — e7 7 (or ¥ — e}v) decay. If all the neutrino masses
are small, this ampiitude is suppressed by the GIM mechanism [58]. However, due to the
existence of heavy neutrinos, the GIM cancellation does not work and Ag is estimated
approximately as

N
1 £ ZelZul Ze2Zu2
Ap ~ E By # . 3.19
R (47)% 44/2GF ( m2 | W’Ji,z ) ( )

n=1 7

and from eq.(3.9), this is written as

1 e 1

AR =~ (411_)2 4\/§GF‘ (Ek)z (zelz,u.lCl(N) + 2322#202(N)) , (320)
N
1

where xp o are the solutions for J, _ 1 (Zn,e) = 0. The functions C,(N) are slowly increas-
ing functions of N, and therefore the cut off dependence of Br{pu — ev) is small. In the
limit of N — oo, Coa(N) — (2204 + 1))7L.

The branching ratio is given by eq.(3.20) as

v 4 .
B( — e) =~ 0.0037 (g) |2e12,0CL(N) + 2e22,2Co (N[ (3.22)

The same calculation for 7 — uy and 7 — ey gives

TS

B(r — py) =~ 0.00065 (&) 12021 C1N) + 2,2202C2(N)? (3.23)
vy 2

B(r — e) ~ 0.00065 (g) 1261201C1(N) | Ze2202Ca(N)]? . (3.24)
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The present experimental bounds are B{jn — ev) < 1.2 x 1071 [29], B(r — uy) <
1.0 x 107°% [35] and B(r — ey) < 2.7 x 107" [59]. I all z;, are of order unity, the
dimensionless combination v/ek must satisfy
v , .
— <0.02, (3.25)
ek
from the constraint from B(i — evy). In eq.(3.25), we use Co(N) ~ (221, + 1))7! and
v, ~ 1 which is a reasonable region for producing light neutrino masses. The parameter
T1a 18 roughly estimated to be @1, ~ 3 for v, ~ 1, so that we can derive the following

hound for the lowest KK mode mgk from eq.(3.9) and eq.(3.25):
mxx > 25 TeV . (3.26)

Since this value is two order of magnitude larger than the Higgs VEV, a {ine-tuning of
1072 is necessary.

An individual constraint on 2, can be obtained by considering the neutrino oscillation
data. To reproduce the mixing angle sin® 201, ~ 1072 for the small angle MSW solution,
sin 26015 ~ 1 for the large angle MSW solution, sin? 26,3 ~ 1 to explain the atmospheric
neutrino anomaly [40] and sin® 20,3 < 0.1 from the CHOOZ experiment [45], the structure

of the Yukawa couplings are roughly given hy

|zell ~ m|:j£1| N$|‘:T]| : (32?)

|zea] < |zp2] ~ |272] (3.28)

where © ~ 14,1/28 for the small angle MSW solution and x ~ 0.7 for the large angle

MSW solution [15]. Therefore the restrictions on z;; are given as

’U|Z]:1| 5 0.08 : U|3:l| N Ulzjz;ll S 0.006 (l‘ — 14) (329)

ck ch 4

V| ze1] vlzal  vlz 1

=l <0.004, —20 ~ <01 (v = 330
ek ™ L ek ek ™ (= 28) )

vlzal vlzal vlan| 0.02 (z =0.7) . (3.31)

ck ck ck
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Since we only know the upper bound on the mixing angle sin? 263, typically we take

sin? 2613 = 0.05. Then the constraints on 2, are given by

V|zue|  v|zeo]
—== < 0.009 e~
ek ™ " ek ek

<0.05 . (3.32)

In ref. [15], the constraint v|zia|/ck < 0.1 was derived from the invisible decay width
of the Z° boson i.e. the deviation from unitarity of the MNS matrix which is 3 x 3
submatrix of the matrix U/ [43]. We can find more severe constraints from considering
LFV. The smallness of v|zia|/ck means that the five dimensional Yukawa couplings #ia
or the five dimensional VEV of the Higgs field vy should be much smaller than J’VI;,'/ ‘ or
Mp,, respectively, which is the only natural scale of the original parameters. In this sense,

the bounds in eq.(3.29-3.32) are considered to be somewhat unnatural.

3.3 Summary

We have considered LFV processes in the context of the small extra-dimension scenario.
The neutrino mass and mixing needs right-handed neutrinos, but naive introduction of
the right-handed neutrino does not provide tiny neutrino masses. Grossman and Neubert,
then proposed the existence of right-handed neutrinos which live in bulk and couple to
the lepton doublets and we saw that this model lead to small Dirac neutrino mass terms.
The neutrino mass and mixing causes LF'V. The KK modes of the right-handed neutrinos
enhance the branching ratio of these processes. We calculated the B(p — ev), B(r — i)
and B(r — ev) and found that B(u — e7) gives severe constraints on the neutrino Yukawa

couplings #;, and/or the Higgs mass parameter vy in the five dimensional theory.
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P and T odd asymmetries in LFV 7
decays

We calculated the differential cross sections of the processes in which one of the pair
created 7 particles at an ete™ collider decays into LFV final states e.g. 7 — py, 7 — 34,
r — uee [36]. Using the correlations between angular distributions of both sides of
T decays, we can obtain information on parity and CP violations of lepton flavor non-
conserving interactions. The formulae derived here are useful in distinguishing different
models, since each model of physics beyond the standard model predicts different angular
correlations. We also calculate angular distributions of the major background process to
7 — lv search, namely 1 — vy, and discuss usefulness of the angular correlation for

background suppression.

4.1 General formula for spin correlation

In this section, we present general formulae used in the calculation of differential cross

sections and spin correlations.

*7~ — fpfa, where fg (fa) repre-

sents the decay products of 7% (77). If the intermediate states were spinless particles, the

We calculate differential cross sections of ete™ — 7

cross section is simply a product of a production cross section and decay branching ratios.

However, in the case of spin 1/2 particles, we have to take into account spin correlation
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between two intermediate particles. If we take 7+ — fp to be a LFV decay mode, we
can measure P and T violation of LFV interactions by using the angular correlations of
decay products of 7 and 7.

The differential cross section of e"e™ — 77~ — fgfa is given by

3
do = do® dB" /4 dB"" e + 3" ash dr] e dR) T (4.1)
a,b=1
and
d*pa dpp 1 ,
do” = — (2m)t &t pp — per — po-) aF 1.2
- 1 &g d®q 1 e

dBT 74 = - - 2m)* 6 = b 4.3
I (2r)32¢} (2m)32¢° 2m. (27) ;q pa) @ (4.3)

+f 1 d3q +1 d.‘iq + 1 4 o4 il D
dB™ B — — - it L 2n)* 8 i — (4.4
T Bndn B, T O 0 2 e | e D)

dapA dapB 1
duh, = , — (2m)* &* pp — Pet — o) ph 4.5
ab (277_)321)% (271-)321008 2s ( ﬂ-) (pA +PB — Pet Pe ) [ ( )
_ 1 &g d3q 1 e

dRT —fa = 2 : in 27} 54 — D_, 4.6
. T e g am ;q Paj fa (4.6)

tagy 1 &Poan By 1 4 o4 pAkiy Dy
dRT s = Z ‘n- ‘nm 2 5 - ¥ ,47
¢ T Greg, | @R, 2w ) Z;q po | £ (A7)

where we assume that f4 is a n body system and fg is a m body system. p.+ {p.-)is et
(™) four momentum, pg (p4) is 7% (r7) four momentum, and ¢;’s are momenta of final

state particles. s is determined as s = (p.+ +p.- ). I' and m, are the width and the mass
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D_, Q,D.i.

of the 7, respectively. In order to define of, o , ph, pP-, and pf*, we first write

down the invariant amplitude of ete™ — 7177 — fgfa as follows:

M=

cn["“m

A(pa + m)v* (P — m:) B Tryutte-
1 1

Ph—(m-—9)" ph—(mr )"

(1.8)

X

where v+ {ue-) is the wave function of positron (electron) and A and B are spinors which

include wave functions of final states and interaction vertices. By using the Bouchiat-

Michel formulae [60] and the narrow width approximation, o, oP-, aP+, pf,, pP-, and
pf* are given by
1 et
o = 2 5 Trl(a o)y (s — )] Tr et (4.9)
1, -
oP- = 3 {A(fa + m;)A} | (4.10)
1 —
al+ = 5 {B{ps — m-)B} | (4.11)
1 e “ Y )
Pab= 7 2 I [s A4 (b + ma)ras e (Bp — ma )y’ Tr [yt wl (4.12)
P .
p =5 (A A (pa+moA} (4.13)
1.
=5 {B s by (pp —m:)BY (4.14)

where the spins of the final state fermions are summed over, and four vectors (s%)* and

(s%)” (a,b=1,2,3) are a set of vectors which satisfy following equations.

pa- 5% = pg-sh =0, (4.15)
3314 . 3?4 = S% . SbB = _(Sab , (416)
3 3
a @ DapPAv PBuPBY
Z(SA).u(SA)v = —Gu + ,:,Lz ) Z(SIJ)B)M(S%)V = G t :12 . (417)

a=1 T b=1 T
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The derivation of the above result is shown in Appendix C. Notice that do¥, dB™ /4,
and dB""=/® in eq.(4.1) are the v+7~ production cross section and 7 decay branching
ratios, in which spins of 7’s are averaged, and d¥f,, dRT —/4, and dR;Jr_'f B represent the
spin correlation effects of this process.

In above formulae, it is assumed that the 7 pair production occurs through the photon
exchange. It is straightforward to include the contribution from the Z boson exchange
and the v — Z interference. If we consider the ete™ center of mass energy to be in
the range of the ¥+~ threshold energy considered in the 7-charm factory or the T(45)
resonance energy where ete™ B-factories are operated, these effects only contribute to the

production cross section at the level of O(107*) of the photon exchanging diagram.

4.2 Parity asymmetry in 7 — py decay

+t7= — pty + fa processes. For f4, we

Let us calculate the cross section of ete™ — 7
consider hadronic and leptonic modes such as (7wv, pv, aiv, and lvv). Below we neglect
the muon mass compared to 7 mass, and therefore all formulae can be applied also to the

T — ey process. The effective Lagrangian for v+ — pty decay is given by

4G
L= —"Z{m,ARFo* PLuF,, + m A 70" PauF,, +h.c} | (4.18)

V2

where Gy is the Fermi coupling constant, Py, = (1 — vs5)/2, and Pgr = (1 + ¥5}/2. Here,
we use the conventions o# = i[y*,v"], F., = 8,4, — 8,A,, and D, = 8, + ieA, for the
electrons where e{>> 0) is the positron charge. The operator with the coupling constant A%
(A7) induces the 7+ — pbvy (1 — u}v) decay. As mentioned in Chapter 2, each model
of the physics beyond the standard model predicts a different ratio of A} and A%. For
example, the SU(5) SUSY GUT in the minimal supergravity scenario predicts that only
A7 has a non-vanishing value for small and intermediate values of tan 8. Therefore the
separate determination of A} and A% provides us important information on the origin of
LFV. For this purpose, we need information about the r polarization. This can be done

by observing angular distributions of final state of v decay in the opposite side in the
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Figure 4.1: The coordinate systems. The plane determined by e T¢~ and 77~ momentum
vectors corresponds to the xz-planes in each of three coordinate systems.

modes of T — 7v, 7 — pv, T — ayv, and T — [Py, because these processes proceed due
to the V — A interaction and therefore have a specific angular distribution with respect
to polarization of 7. Using 7+ — 7~ spin correlation, we can determine |A7|? and [A%]?,
separately.

We first define three coordinate systems (Fig.4.1). The first coordinate system (Frame
1) is the center of mass frame of the e*e™ collision in which the z axis is taken to be the
et momentum direction. The second one (Frame 2) is the rest frame of the 7, and the
third one (Frame 3) is the rest frame of the 7. More explicitly, the relation of a four

vector in the three systems are given as follows:

1 0 0 0 v 0 0 75
e 0 cosf, 0 sind, 0 1 0 0 "
P o 0 1 0 0 01 0 ~2
\ 0 —sin@, 0 cosé; v3: 0 0
(1 0 0 0 1 0 0 0 v 0 0 ~+58;
B 01 0 O 0 cosf, 0 -siné. 0 1 0 O .
- ¢ 0 -1 0 0] 0 1 0 O 01 0 53‘(4'19)
\0 0o 0 -1 0 smné, 0 cosé, 3. 0 0~

where v = /5/(2m.) and 3, = /1 —4m?2/s, and the four vectors £ _3 are defined in
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Frame 1-3, respectively. We calculate the production process in Frame 1, and the 7+ (77)

decay in Frame 2 (Frame 3). In the calculations, we choose the spin vectors {s%)*, (s%)*

as follows:
(4 = ( 52# ) (in Frame 3) , (4.20)
(sh)F — ( 5‘3“ ) (in Frame 2) . (4.21)

The production cross section and spin dependence term are obtained from eq.(4.9)

and eq.(4.12) as follows:

2 2 2 2
doF — dQ. 7o’ 1—4mf{(1+47nf)+(1—4mf)cos2ﬂr} ’ (4.22)
4T s 8 S 8
dQl, wa? 4m?
drf, = — —/1 - —F
ab 4r s s
(1 + @) sin? @, 0 —2\/"%' sin 26
x 0 (1 - @) sin? 9, 0 ,
2%5111 20, 0 — (1 — #) _ (1 + 47:-3) cos? 0,

(4.23)

where 8, is the angle between the e* and 7 directions in the Frame 1, and d€2, is a solid

angle element of 77, dQ); = dcos 0, d¢,.

For decay processes, we take 7+ — ut+y for the v+ side and hadronic (7= — 7~ v,
7= = p~v, and 77 — a7v) and leptonic (t~ — I~ ow) decays for the 7~ side. dB™ —#77
and deﬁ_"‘h’ {see eq.(4.1)} can be calculated from eq.(4.11) and eq.(4.14) in which the
spinor B is given by
8i T oy
B = — Grm.0"(g,)u(ARPL + ALPr)e;v(qu) (4.24)

V2
where ¢, is the polarization vector of the photon and (gy), is the momentum of the photon
and v(g,) is the wave function of the muon. These quantities are given as follows:
dQ, 1 2

dBT T = S o = Ghm? (AL + AR (4.25)
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inf,cos ¢
0,12 , SN U COS O
ARy = = D0 D 2 G2d (AT (A | sing,sing, | | (4.26)
dm ['m cosf
s0,

where (6,,, ¢,.) are angles in the polar coordinate for a unit vector of the muon momentum

direction in Frame 2. The three components in eq.(4.26) corresponds to b= 1,2, and 3.
Next, we list dB and dR for the 7= decay in each mode of 77 — 77w, 77 — p7v,

77 — ajv, and 77 — 70y, For 77 — 77 v decay, the spinor A in eqs.(4.10) and (4.13)

is given by
A= 2V [ Grlr Prulq,) , (4.27)

where fr is the pion decay constant, ¢, is the momentum of the pion, and u(g,) is the

neutrino wave function. Then, dB™ =7 ¥ and d, " ¥ are given by

- - di, 1 1 9 203
T —T VvV — - : . 42
B 47 I 87 |VUd| fTrGFmT : ( 8)
sin @ cos ¢
dRT =™V =dB™ =™ Y| sinf,sin¢. , (4.29)

cos 0
where {#,, ¢») are the polar angles of 77 momentum in Frame 3 and d$Q; = dcos 0 dpx
(we use a similar notation in the following expressions). Here we neglect the mass of the
pion. As before three elements in eq.(4.23) corresponds to a = 1,2, and 3. Similar results

can be obtained for the vector mesons. The spinor A for 7 — pr, 7 — a v is given by
A= =2V 49vGriv Prul(q,) , (4.30)

where g and ey are the decay constant and polarization vector of the corresponding
vector mesons, respectively. From this expression, we can obtain dB and dR for the

longitudinally polarized vector mesons e.g. 77 — p~ (L)v and 7= — a7 {L)v as follows:

vy Wy 11 2 gv ’ 2, 3,2 my :
) _ . ) sin fy cos ¢y
dRT VT — g VLT L gingy singy |, (4.32)

cos By
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where my and (fy, ¢y} are the mass, and polar angles of the corresponding vector meson,
respectively. For the transversely polarized vector mesons, the spin dependence terms

have a minus sign contrary to the case of the pion and longitudinally polarized vector

mesons.
_ _dYy 11 av \° m2  2m?
oV e BV 2 ( 9V 2, 3 2 v 4
ap=v - g Wl () Ghmimt - DT sy
) . ) ) — sin By cos v
dR; —V(T)"v — dBT —V(T) v —sin 6\/ Sin@’?V . (434)
—cos by

For leptonic decays, after integrating over the phase space of the neutrinos, the branching

ratio and the spin dependence term are given hy

P (9] 1 Gimj
dB™ —l b _ 47_: dr f lgF;:’; 21:2(3 _ 21.) ’ (435)
in 8; cos ¢y
e AU 1 GRm o
dRT U — dr — ——T 2221 — 2x) | sinfsindy (4.36)
a Y3 ’
4 ' 1927 cos 0,

where we neglect the masses of the leptons (e and p) and z is the lepton energy normalized

by the maximum energy m,/2 i.e. x = 2E;/m., and (6, ¢y) are the polar angles of the

lepton in Frame 3.

Substituting these results into the formula in eq.(4.1), we obtain the differential cross

sections of each processes. For example, the differential cross section of ete™ — 717~ —
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pty + 7~ v process is given by

trm sty + )

oclete™ - rHr7)

do(ete”™ — 7

dQ, dQ, dQ,

B(r™ - 77v) B(r" — u'y)

4 (1 + @) ir An  Ax
4m? 4m?
X ( mT) + ( m,,) cos? 0,
s s
+Ap( sinf@y cospr sinfrsing, cosb, )
a7\ gip? _my
(1 + = )sm ¢, 0 /o sin 26,
x 0 (1- #2) sin?o, 0
2\’}‘1'511129 0 —(1—4%%)—(1+4m)0059
sin@, cos @,
x | sinf,sing, ] , (4.37)
cos 8,
where
4 4m?2 2m?
sletem -ty = Tl A (1 + m’) (4.38)
5 s
is the 717~ production cross section. The branching ratio of 7~ — 7#7v and 7+ — uty
is given by
_ _ 11
B(r~ =71 v) = 5 — [Vl f2Gim: (4.39)
' 8x
+ + 1 2 v2 5 T2
B(rt - uty) =5 = HIALP + 1ARP) (4.40)

and the asymmetry parameter Ap is defined as follows:

_ |ALI? - |ARP

Ap .
RV AENVIAE

(4.41)

We can see that the measurement of angular correlation of the pion and muon momen-
tum enables us to determine the parameter Ap, so that we can obtain |AT[* and |A}|?

separately.
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A simpler expressions can be obtained if we integrate over the angle €., ¢, ¢, and
¢ in eq.(4.37). The differential cross section is given by

do(ete” =771~ - uty +77v)

dcost, dcos O
2 2
s — 2m?
X (1 - m Ap cosé’“cosﬁﬂ) . {4.42)

Notice that angular distribution in the rest frames of 7" and 7= can be easily converted

=olete” = 77r7)Brt - T Y)B(r7 = 77v)

to the energy distribution in the center of mass frame of the ete™ collision. We obtain

dolete” - "~ > pFy+770)

_ _ _ _ 5
=olete” 5> )B(rt - ptY)B(rT = n7w) P dz,dze
s(s — 2m?2)
|- r Ap (22, — (22, = 1)} , 4.43
(1 G A 2 Dz ) (449

where z, = F,/E; (zx = F:/E:), and E,, E;, and E; = {/s/2 are the energies of the
muon, pion, and 7 in the center of mass frame, respectively.

The angular (or cnergy) distributions in eq.(4.42) (eq.(4.43)) can be understood as
follows. Because of the helicity conservation of the 77~ production process, the helicities
of 7% and 7~ are correlated, namely 7/ 75 or 747 is produced. This means that two
T spins are parallel in the limit of /s > m,. In the decay process, the 7~ tends to be
emitted to the spin direction of 7~ for 7= — 7~ v, because of the V — A interaction.
On the other hand, for 7+ — uty decay, the muon tends to be emitted to the same
direction of the 71 spin if Ap > 0. Therefore the differential branching ratio is enhanced
(suppressed) if the sign of cosf, cos @, is negative (positive). In other words, pion and
muon energies in the center of mass frame of the ete™ collision have a negative correlation
if Ap > 0. If Ap < 0, we have an opposite correlation.

+ - . R . '
We can define an asymmetry A# "™ ¥ by the following asymmetric integrations
Y Y Y g asy

. o
f dcos 6'# d cos 911- TU(COS 9“,008 0-,1-) m

A,u'*’q«,'rr‘v _
olete — vt )B(rt — ptvy)B(r— — 77v)
NP NTT Nt N

Nt L N-- o N¥— - N+ (4.44)
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Figure 4.2: The weight function w(u,v).

where the weight function w(u,v) is defined by

(1Y

wlu,v) = (4.45)

[uwo] *
and shown in Fig.4.2. In the second line, N** are the event numbers where the first &
represent the sign of cosf, and the second one is that of cos fl, respectively. A#' "™ ¥ is

related to the parameter Ap by

. s — 2m?2
Aty — T T _Ap 4.46
A(s +2m2)" (4.46)
In Fig.4.3, /s dependence of A*'™ 7 is shown for Ap = —1. We can see that the

asymmetry is already close to the maximal value at the B-factory energy.
It is straightforward to extend the above formula to other cases. We only present here
formulae corresponding to eq.(4.42) for different decay modes of 7.
do(ete” - 7t~ =ty + V7o)
dcos 0, dcos Oy
2 2

s — 2m?2
X (l + m Ap cosf, cos()v) , (4.47)

=ofete” - 777 )B(rt - uty)B(r- = V)
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Figure 4.3: The observable asymmetry A** "% vs (/s for Ap = —1. The dashed line
represents the /s of 7-charm factory and the dotted line represents that of B-factory.
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where + corresponds to the vector mesons with transverse polarization V = p(T), a,(T’)
and — corresponds to those with longitudinal polarization V' = p(L), a;(L). For leptonic

decay, we obtain

do(ete” = 7t~ - uFy +17w0)

dcos 8, dcos b

—oleTe” = T )BEFY -t )B(r~ — ") 5 5 dx 2x°
— 9m?2
X {3—2;6— ;—2::;(1—2;5)/4;:(;059#(:039;} . (4.48)

The measurement of the polarization of the vector mesons can be done by the analysis of
the distribution of the two (or three) pions from the p (a;) meson decay [61].
In the case of 7~ decays into u=v and 71 decays via V — A interaction, the dR7 /4

t . . .
and dR} /8 acquire extra minus signs. For example,

.3 I Y
sin ), cos ¢,

T =Y dQLlQ 2. .5 T2 T2 : [ !
dR; =4 T = Gem, (|AL|* — |ARIF) sinfd, sin ¢, , (4.49)
cos 0],
M ! . AT
) 11 sinf, cos ¢,
ARy =7 = ; i T & |Via 2 f2GEmE | sin@ sing’ | . (4.50)
T T cos .

where (6, ¢,)} (07, ¢7)) are the polar angle of the muon (pion) momentum in Frame
3 (Frame 2). The formula in eq.(4.42) can be applied to the 7= — pu v case by the
replacement of (6,,0x) by (0,,0;), and therefore same angular and energy correlation
holds as in the 77 — pt~ case. In a similar way, we can obtain the formulae corresponds
to eqs.(4.47) and (4.48) for the 7= — u~v case by replacement of (6y,8;) by (6,8},
where 8}, (6]) is the angle between the vector meson (lepton} momentum and =+ direction

in Frame 2.

4.3 P and T asymmetries in LFV three body 7 decays

In this section, we consider LFV three body decays ie. 7 — 3u, 7 — 3¢, 7 — puee, and

T — epp. Within the approximation that the muon and electron masses are neglected,
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Figure 4.4: The coordinate system in the 7 — 3y calculation.
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Figure 4.5: The relation between Frame 2 and Frame 4.

T — 3u and 7 — 3e {or 7 — pee and T — eup) give the same formula, so that we only
consider 7 — 3u and 7 — pee processes. In these processes, we can define the P odd as
well as T odd asymmetries of T decays.

For rt — u*t = decay, the effective Lagrangian is given by

_ 4G

L=

{m, ARTo" PLpF, +m AL 7o Pruk,,
g1 (7 Pop) (0 Prpe) + go(7 Prpt) (i Pryt)
+ga (77" PR} (Ava Prit) + ga(Ty* Prp) (i, Prp)

+g5 (T Prig) (A, Pru) + ge(Fv* Pop)(iv, Prp) +hoc} . (4.51)

With this Lagrangian in eq.(4.51), we can calculate the differential branching ratio dB™" 3
and the spin dependence term dR;Jr_'s" in eq.(4.1). In order to calculate these quantities
we first define the Lorentz frame (Frame 4) for the three body decays [49]. Frame 4 is

the rest frame of r+ and we take z-direction to be g~ momentum direction, and zz-plane
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to be the decay plane. The z-direction is determined so that the z-component of the
momentum for the put with larger energy is positive. The coordinate system are shown
in Fig.4.4. Any four vector in Frame 4 is related to that in Frame 2 by the Euler rotation

with three angles (8, ¢, ¥) as follows (Fig.4.5):

£ =
1 0 0 0 1 0 0 0 1 0 0 0
0 cos¢p —sing 0 0 cos®# 0O sinf 0 cosyy —siny 0O "
0 sing cos¢ 0 |]0 o 1 o 0 sing cosyp 0 |52
0 0 0 1 0 —sinf 0 cosé 0 0 0 1
(4.52)
where
0<h<t , 0<¢<2r , 0<o¥<2r. (4.53)

We also define the energy variables x; = 2F; /m, and zy = 2E»/m, where E; (E;) is the
energy of ut with a larger (smaller) energy in the rest frame of 7.
With these angles and energy variables, the branching ratio and spin dependence term

can be expressed as follows:

gt = L RGE e deos B do dp X (4.54)
C T 256m° ’ '
7+ 3 1 m5G123
)i e
dR, T 5565 dr, dzs dcos8 do dy
—Y'sp oy + Z(coceey — 5953) + W (cosecy + Co5y)
X | Ysg sy + Z(—cecpsy — 8ecy) + Wi—cosssy +cpcy) |, (4.55)

Yo + Zsecy + Wsesy

where sg (84, sy) and ¢ {(cg, cp) represent sinf (sing, siny) and cos@ (cos ¢, cos ),

respectively. The functions X, Y, Z, and W are defined as lollows:

2 2
X = (|gllﬁ! + |9126| t |93|2 + lgd|2) al(ﬂ?[,l‘g) + (lg’;lz + |95|2) a2($1’$2)

1 (JeAR? 1 leAT?) aal, x2) — Re(eARg; 1 eAfgl) (e, z2)
—RefeARgs + eALgs) as(er,2) | (4.56)
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2 2
Y = (% — lgf—ﬁ! + |gal* — |g4|2> aq(xy,x2) + Re(eALg) — eALgy) ag(xy, 22)
—Re(eAgRgs — eALgs) as(zi, z2) + (lgs1* — lgel®) i1, z2)
+ (leARI* — |eAL|?) Baly, 22} , (4.57)
Z = (lgs|* = lgsl*) M1, x2) + (leARI* — [eAL|?) a1, x2)

—Re(eARg; — BAEQS) Ya{x1, x2) + Re(eApgs — eALgs) nalxr, 22) | {1.58)

W = —Im(eARgi + eATg}) valwr,2) + Im (eARgy + eALgs) len,z2) ,  (4.59)

where e (> 0) is the positron charge and functions a5, 3 2, and v,—4 are given in
Appendix D. Notice that the Y and 7 terms represent P odd quantities with respect
to the 71 spin in the rest frame of 77 and the W term represents a T odd quantity.
These are the same as P and T odd terms considered in the differential decay width of
pt —etete™ [49].

The differential cross section is obtained by substituting this into eq.{4.1). In the case
that the opposite side T decays into 7~ v, we obtain after integrating over ¢, 9, 6, and
br
trr s utpteT )
mSGE
12874

do(ete — 1

. 08 By
=olete” = 7 77)B(r” - 77v) ( /l) da?; dx) dxs dcos 8 dg

s — 2m2
X [X - ﬁ {Ycos#+ Zsinfcosp + Wsinfising} cosO| . (4.60)
The terms X, Y, Z, and W can be extracted by the following (asymmetric) integrations.
/dcos@ de deos @ Lo
08 O
dxdxadcos 6 do dcos @
meGE !
x calete” = rtr7)B(r~ = 77v) il B =X, (1.61)
3273
do

/d0059 dcos b w(cos 0, cos br) dx dxy dcos @ deost)
T 2 : OS5ty

_ _ . _ [ miGE ! s — 2m?) _
X {U’(€+€ — 7t rB(rT — 1Y) ( 3571_31: F)} == —mr;;—)}/, (4.62)




54 P and T odd asymmetries in LFV 7 decays

d*o
dr dro do dcos

m2G2, ! (s — 2m?)
tem B T TF g — BTN g 463
X{J( o TIT)B(r = y)('szﬁ/ )} Gl )

/ dip dcos O, w(cos g, costy)

Ao

/dgﬁ dcos @ ’u)(SiIl ¢5COS 0’“’) dzydx, d¢ deos

512 -1
e . m2GeE (s —2m3?) .
X {J((, € ) B(7 v (52 3 /l)} R TR )VV (1.64)

Notice that the function W represents CP violating LFV interaction. We can see that
this is induced by the relative phase between the photon-penguin coupling constants (A7
and A%) and the four-ferion coupling constants (g5 — ¢s)-

A similar formula can be obtained for the 7+ — ptete™ decay. The effective La-

grangian for the 7t — ptete™ is given by

46
L = F {m  ALT o Pk, - ma AL 1ot Prpl,,

V2
A (TP (EPLe) + AT Pru)(8Pre)

AT Prij(EPpe) + Aq{T Prp) (8 Fpe)

X5 (Y Prp)(eyu Pre) -+ Ae (P PLud (v, Pre)

A7 (P Prp) (8, Pre) + ds (7Y Pris) (84,0 ¢)

X (T Prp) (€0 ) + Mo(Fot” fR,u)(g 0100) + e} . (4.6%)

In this calculation, we define Frame 4' which is almost the same as Frame 4 in the 71 —
Tt~ case. The definition is obtained by the replacement of 1~ of 71 — p 'ty by e
of 77 — ptete ., the p with a larger energy of 74 — ptputp= by pt of 71 — ptete,
and gt with a smaller encrgy of 71 — ptutyu~™ by e of v+ — ptete . If we take the
definition of (@, ¢, ¥) in such a way that the same relation is satisfied as in eq.(4.52), the
branching ratio and the spin dependence term are given by

1 n2GE
T T 25670

+_ytet
dBTT pTeTe”

dx| dzy deosl dop dyp X', (4.66)
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1 miGi
=T 956.5 dxy dxy deos O do dy

( —Y'sg ¢y + Z'(CocpCy — Sp8y) + W (cosscy + Cs8y) )

dR tete”

Y'sp 8y + Z'(—cpcpsy — 3eCy) + W (—coss8y + Coty)
Yiep + Z'secy + Wisgsy
(4.67)

where the functions X', Y’ Z/, and W' are given by

X' = (leAR* + eAL]?) Ai(z1, x2) + Re (eARAL + e ATAY) Ax(z1, 22)
+Re (e ARAS + e ALA) Aa(xz) + (M + el + [ + [Maf?) Aulzr)
+ (12s]? + Xal?) As(s, z2) + ([Xsl® + [M]?) Agl2)
F (Pol? + [Arof2) Ar(r, 22) + Re (A + MiXio) As(ay, z2) (4.68)

Y' = —Re(eARA; — eALN}) Aa(x1, 12) + Re (e AR, — e ALA}) As(xy, x2)
— (1Xs* = [Xs[?) As(z1,22) + ([eARI* — [eAL|?) Bi(a1, 22)
+ (A + 1hef® = [Aal* = [Xa[?) Ba(er, z2) + ([ Xs]® — [M1]?) Ba(za, 22)
+ (|)\g|2 - [)\10|2) By{xy,x2) + Re (A1 A5 — AAlo) Bs(zr, x2) (4.69)

7' = (leAR|* — |eAL]*) Cilz1, 22) + Re (eARA; — eALA) Colay, 22)
+Re (e AR — eALAD) Ca(z, z2) + ([M17 + X2 = [Asf* — (Al®) Calzr, z2)
{6l = A7 4 Re (=208 + 20uA}0) } Cs(n, 22)
+ (|Xe]? — |M0l?) Co(1, 2) | (4.70)

W' = Im(eARA: + eA7N;) Cazy, x2) + Im (e ARAL + e ALA}) Ca(xy, 22)
+II1’1 ()\1)\; -+ /\4)\;0) C’f(ﬂ')l, .’.Ez) . (471)

The functions A;_7, B;_4, C1_¢ are given in Appendix D. The X', Y’, Z/, and W' can be
extracted in the same way as in eqs.(4.61)-(4.64).
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Next we consider the decay mode of 7+ — p~etet. This case is different from above in
the point that both 7 — e and g — e transitions are necessary. The eflective Lagrangian
for this process is given by

£ = 2O R aPue) b gy Pac) (2Pre)

7

+g5(7T" Pre}(fivuPre) + g4 (Fv* Pe)(ivu Pre)
+95(7v* Pre)(ivuPre) + g5(Tv* Pre){fiy Pre) + he} . (4.72)
If we take a coordinate system similar to Frame 4, in which the larger (smaller} energy

i+ is replaced by the larger (smaller) energy et, dB™ ~#"<"¢" and de"“ """ are given
by

- 1 m2GE
B'r*—»,u etet . F X" ‘

d T 9568 dxy dry dcos @ do dip , (4.73)
52
Ttoptete™ l G

dR, =T 256.5 B dx, dzy deos 6 do dy
—Y"sg cy + Z"(cocscy — S45y)
X Y sq L ZH(—CQC¢S¢ — S¢C¢) , (4.74)

Y”Ca -+ Z”Sg Cp

where functions X”, Y” and Z" are given by

2 2
X" — |91| |92|
( 16 16

3+ |Q4|2) ar(zy, 22) + (|95 + |951%) ealz1, 22) , (4.75)

ARk ,
y" = (116 126 +1g51° ~ |gil* ) ar(@r, 22) + (Ig51° — 1961%) Bularr, z2) , (4.76)

Z" = (lgs* — 1gs*) m(z1,22) (4.77)

where a;_3, 81, and v, are the same functions that we defined in 7+ — ptptyu~ caleu-
lation. X", Y”, and Z" can be extracted by asymmetric integrations as before, but we
cannot obtain information on CP viclation in this case.

Notice that the above three cases exhaust all possibilities in the three body decay of

7 to e and/or i as long as we neglect the electron and muon masses compared to the 7
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mass. Namely, the formula for other cases can be obtained by appropriate replacements
of e and/or .

The formulae for LFV decays with 7~ can be obtained in a sitnilar substitution as the
T — py case. Using appropriate angles of 77 decay in Frame 3 and 77 decay in Frame 2,

dRp gets an extra minus sign in eqs.(4.55), (4.67), and (4.74).

4.4 T — pviy process and background suppressions

In this section, we consider the background processes for the r — 1y search, and we show
that the measurement of angular distributions is useful in identifying the background
process. In the muon decay, the physical background can be suppressed if we use polarized
muons [62]. In the following, we show a similar suppression mechanism holds for 7 decay
if we use the spin correlation.

One of the main background for the 7 — py search comes from the kinematical
endpoint region of the 1 — priy process where two neutrinos carry out a little energy
at the rest frame of 7. In the following, we assume that rt decays into ptviy and
T~ decays through one of hadronic and leptonic decay processes. For the 77 decay, the
differential branching ratio and the spin dependence term are given in eqs.(4.28)-(4.36).

For 7t — putviy, these quantities are given by

1 '21' 5 4

4B = - ;% dr dy dz dQ, sinz %_ F, (4.78)
1 GEm?
dRPC = T % dx dy dz dQ, sinz %
T (1]
sinf, cos ¢,,
X (—3,G + Hcosz ) | sind,sing, , (1.79)
cosf,

where x and y are the muon and photon energies normalized by ., /2, respectively, and
(0., ¢,.) is the polar coordinate of the unit vector of the muon momentum direction, all

defined in the rest frame of 7+ (Frame 2). 8, = /1 —4r/z? with r = m2/m2. The
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angle z is defined by z = 7 — 8,,, where 0, is the angle between the muon and photon
momentum in the same frame. These quantities can be obtained by a simple replacement
from the formula of the differential decay width for the radiative muon decay presented
in Ref. [63]. For completeness, the functions F, G, and H are given in Appendix D.

The background comes from the kinematical region near z = 1 +rand y = 1 —r,
at which the branching fraction vanishes. However, with finite detector resolutions, this
kinematical region gives physical backgrounds. If we take the signal region as 1+4r—dx <
r<l4+randl—r—dy <y <1-r,theleading terms of the branching ratio and spin
dependence term expanded in terms of r, dx, and dy, after integrating over z, are given

by

1 Gimnia 8 .
BG. . L L a2 © o 303
dB S T dqQ,, ((5:1: dy* - 7 dx by ) , (4.80)
1 GZmia , 8 . sin 0, cos g,
B.G. ., -+ LM Csods2 O oo3coa - :
de o F W dQ,u ( (5.'13 6?} + 3 (S.L' (5?} ) blll()‘u Slnqﬁ“ . (481)

cosd,
Then after integrating over ¢, ¢, ¢-, and 6, the differential cross section for ete™ —
717 — putviy 4+ 7 is given by

do(ete™ — 7t~ — ptvy +77v)

2,5
— olete — rHo) Bl — 1) ( Gimla / ) dcost, dcosby

3 x 2974 2 2
. 8 . s - 2m2 . y B .
X {(éa:déyz -+ 5(53?351;3) — m (—ém"&yz o g&t%jtf) cos 6, cos 977} :

(4.82)

If the photon energy resolution is worse than the muon energy resolution, the term dz4y?
is small compared to (8/3)éz*0y*. In such a case, the angular distribution is similar to
the AL = 0, A7 # 0 case of the 7 — py angular distribution. See eqs.(4.25), (4.26}, and
(4.42). This feature is useful for the background suppressions for 7 — uk+y search because

signal and background processes have different angular correlation. For vt -» pf~y search,
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the signal to background ratio is almost the same even if we take into account angular
correlation.
A similar background suppression works for T — ey case because eqs.{4.80) and (4.81)

do not include the mass of the muon explicitly.

4.5 Summary and Discussion

In this chapter, we have calculated the differential cross sectionsof ete™ — 717~ — fpfa
processes, where one of 7's decays through LFV processes. Using spin correlations of 7777,
we show that the P odd asymmetry of 7 — gy and 7 — ey and P and T asymmetries
of three body LFV decays of T can be obtained by angular correlations. These P and
T odd quantities are important to identify a model of new physics responsible for LFV
processes.

We have also considered the background suppression of the 7 — py and 7 — ey search
by the angular distributions. We see that the analysis of the angular distributions are
useful for the 7+ — uky (r= — upv) and 7+ — ety (r= — e77) searches.

We would like to give a rough estimate on the number of 7+ 7~ pairs needed for the
asymmetry measurement at the B-factory energy. As an example, we take 7 — py process
for LFV decay and 7 — wv, pr, and a1(— n#EaF7F)v for the opposite side T decay. For
T — wv, we use the angular distribution in eq.(4.42). In 7 — pr and 7 — a,v, we
have to look at the angular distribution of two or three pions in addition to the cosf,
and cosfly distributions in order to use the information on the p and a; polarizations.
With help of optimized observable quantities defined in ref. [64], the statistical errors for
the determination of the parameter Ap with N signal events are 3.4/v/N, 4.6/v/N, and
9.5/v/N for 7 — nv, 7 — pv, and 7 — ayv, respectively. The combined error is then

given by

1 - Br  e,B,  €a,Ba, N\ V?
(C +EP P+€ 1 ]) : (4.83)

TAp — > ‘
AT SN B, \ 347 1 462 T 9.52

where €, €,, and ¢,, are the signal selection efficiencies for these modes, and B,_.,,, By,
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B,, and B,, are the 7 decay branching ratios, namely B._,., = B{(t — uy), Br = B(r —
mv) = 011, B, = B(r - pv) = 0.25, and B,, = B(r — aiv — ns¥n¥v) = 0.09. N;
is the total number of = pair. If we assume the B(r — p7) is 1 x 107%, which is just
below the current experimental bound [35], and the signal selection efficiency is 10-20%,
(2.5 — 5) x 10* 77~ pairs are required in order to distinguish Ap = +1 and —1 at 3¢
level. This number means that the on-going B-factory experiments could provide useful
information on LFV interaction if the B(r — u+v) is close to the current experimental
bound.

In this chapter, we only consider 7 decay. We can obtain similar information in muon
decay experiments if initial muons are polarized. Although highly polarized muons are
available experimentally, a special setup for production and transportation of a muon
beam is necessary for actual experiment. The advantage of the 7 case is that we can
extract the information on 7 spins by looking at the decay distribution of the other side

of 7 decay so that we do not need a special requirement for experimental setup.



Chapter 5

Nucleus dependence of
muon-electron conversion ratio

We complete the calculation of the u — e conversion rate in the nuclei with wide range of
atomic numbers by the method of Czarnecki ef al. We take into account all the operators
for the i — e transition. With results of this chapter, we can calculate the i — e conversion
branching ratio in any models for each nucleus. The results of our calculation indicate a
tendency that the conversion branching ratio is larger in the nuclei with moderate atomic

number than that in the light or heavy nuclei.

5.1 Calculation of conversion rate

In this section, we present a method of the conversion rate calculation. We solve the
Dirac equations for the muon and electron in the initial and final state, respectively, and

obtain transition amplitudes by integrating the overlap of the both wave functions.

We start the calculation with the most general gauge invariant interaction Lagrangian



62 Nucleus dependence of muon-electron conversion ratio

which contribute to the g — e transition in nuclei as follows:
4Gy
V2

G = — _
_—\/_% Z (915(0)€Prit + grsq€PLit) Gy

g=u,d,s

Eint - -

{mu,Arpct PreF,, + m,Appc* PreF,, + h.c.}

+ (gLP(q)é Prit + grp(q) éPL,U) qvsq
+ (9Lvi@ €Y Poit + 9rv(g) €Y Prit) ¢huq

+ (947 Fuit + gra@ @Y Prit) Tv.vs0

i

T3 (978" Prpt + grrig 0" Pup) qowq + he. |, (5.1)

where GF and m, are the Fermi constant and the muon mass, respectively, and Ay g and
g’s are all dimensionless coupling constants for the corresponding operators. The size of
each coupling constant depends on the interaction of the new physics in which the lepton
flavor conservation is violated. We use these interaction terms as a perturbation and take
the initial and final states to be eigenstates of the QED Hamiltonian.

In the u — e conversion process, the initial state is the 1s state of the muonic atom
and the converted electron escapes from the electric field with the energy of the order of
the muon mass. Both the wave functions in the initial and final state can be obtained by
solving the Dirac equations in the electric field of the nucleus. The Dirac equation in the

central force system is given by [65]

w¢_[_i750r (i+l—ﬁf<)+vm+ﬁ]w, (5:2)
or v r
(01 {1 0 (o 0
"’5(10)’[3(0—1)*"“‘( 0 cr-'r)’
o-l+1 0
K‘( 0 —(a-l+1))’ (5:3)

where W and V{r) are the energy and potential in the unit of the reduced mass, respec-

tively, and o and I are the Pauli matrices and the orbital angular momentum —ir x V,
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respectively. Since the operator K and the z-component of the total angular momentum j,
commute with this Hamiltonian, two eigenvalues of these operators, —« and pu, represent

the quantum numbers which describe the wave functions of this system as follows:

o [ glr)xk(0,9) 5
V=9 ( iF()X (0, 9) ) ’ (5:4)

where x# is the normalized eigenfunction of {¢ -1 + 1} and j, such as

1

2
(0 L+ 10X = =it s Gox = x| / dcos 0 [ 46 XX = buyibue - (5.5)
0

-1

With the notation of ui(r} = rg(r) and uz(r} = rf(r), the Dirac equation for the radial

function is given by

%(ZQ)—(—(W_fg—l) W_n;iﬂ)(zl) '

For the initial state, the ls state corresponds to the quantum numbers of ©p = +1/2

(5.6)

and Kk = —1. We take a normalization of
[ et e =1, (5.7)

which means that the wave function describes the state that one muon is trapped in ls

orbit of the nuclei. The normalization for the final electron is taken to be
/ Pa ) ()Y, (X) = By O 276 (W — W) | (5.8)

which describes the state that one electron is emitted per unit time. With this normal-
ization, the conversion rate weony is simply written by the square of the amplitude M,
Weonv = |M |?, with final state sum and spin average of the initial muon. The amplitude

M is obtained from the effective Lagrangian in eq.(5.1) just by replacing the fields with
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the wave functions as follows:

4G e 4
M = —“‘“ [ &z {mHAE Do Prapt) Fos + m ALt o “ﬁPLwﬁg)Faﬁ}

G‘ e i —
P Z fdxl gL Py PRYY + grsi Py Pr ’)) (N'|qq| N}

q =u,d,s

+ | 9LP(g) lb”( o PR 4 grpi 015 PL%/h“)) (N'|gvsq| N}
q)lf)f(fv’TQPleg’. + grv( q)lbﬁ W’YQ sz’f,fJEf»)) (N’W%ﬂN}

GLa@ P Pobly + gray iy P ) (N'|qva¥sq|N)

/_"\/—"\/_"\

_i

+ (QLT(MDK wo P Prity + grrig o’ PL’¢§§)) (N'lgoapq|N) }

(5.9)

B o

where (N’'| and |N) are the final and initial states of the nucleus, respectively. With the

notation of eq.(5.4), the muon wave function 1/)5’;) is written as follows:

e gz (X% (0,9)
(7" 0, ¢’) ( f;( ) +1/ 2(0 qb) ) (5-10)

where upper index (—) of g, and f, represents the corresponding eigenvalue of x. By the
angular momentum conservation, the electron final states are restricted to following two

states for each muon spin.

5 9o (NxZ1(0,9) (r)xi""*(6,9) .
Yraln,9) = (zf ()x*‘”(e,qs)) ’ (tf.;*() “/2(0,0) o0

Neglecting the electron mass, we can find g7 =if; and if}t = ¢,

For the coherent conversion processes in which the final state of the nucleus is the
same as initial one, the matrix elements of {N|Gysq|N), (N|§Vavsq|N), and (N|Goasq|N)
identically vanish. Hereafter, we concentrate on the coherent conversion processes since
the fraction of coherent process is generally larger than the non-coherent one by a factor of

the mass number of the target nuclei approximately. The non-vanishing matrix elements
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{N|gq|N) and (N|G7.q|N) can be expressed by the proton and neutron density (p™ and

o) in nuclei as follows:

(N|gqIN) = ZdPp®) + (A= Z)cPp™ (5.12)
2207 4 (A—2Z)p™  for g=u

(NIgY’qIN)Y = Zp® +2(A - Z)p™ for g=d (5.13)
0 for g=3s

(Nlgv'gIlN) =0 (i=1,2,3). (5.14)

Here we define coefficients cﬁ,";’,)1 for scalar operators which are evaluated to be cﬁ,“) = a(ld} =
51, = = 4.3, and & = & = 2.5 by Kosmas et al. [66]. The normalization for

the density functions is

o0
/ Amr?plP)(p) = 1 | (5.15)
0

The final formula of the conversion rate can be obtained with the above density func-

tions and the wave functions in eq.(5.10-5.11} as follows:

4 * * = - = - -
ey = G2 Emu( AL / drr?(~E(r) (g f7 + 1797
/ drr G+ 30 20 (g7 g7 — 17 17)
/ drr? (300 + G0 (A = 290 s gn — o f7)
f
/ drr?(G8 + 38 20 (97 g7 + 1717
1 2
+—= [ d FNA-Z A
\/5]0 (G0 4 A - 209 (aTgn + ST D)
+(AR — —Ag :f}ip.s" - g(Lpsn: Q'van) - ‘.f},(gp\}n)) : (5-16)

where F(r) is the electric field strength and the coupling constants g’s are defined as

~(pm
LPSRS = Z: D 95 s » (5.17)



66 Nucleus dependence of muon-electron conversion ratio

~{p (1) (d)

) .
Jrvirv = 29rv.rv T 9Lvey {5.18)
~{n u d
Wy = 950 v + 2050y - (5.19)

5.2 Nucleus dependence of conversion rate

Now we calculate the conversion rate numerically by using eq.(5.16). We use the two-
and three-parameter Fermi model, the three-parameter Gaussian model, and the Fourier-
Bessel expansion for the proton {charge) densities where the values of the parameters are
listed in ref. [67]. From the proton density function, we can calculate the electric field
strength in eq.(5.16) and potential in the Dirac equation (5.2) for the muon and electron

by solving the Maxwell’s equation as follows:

E(r) = % /r r2pP (P Yy, (5.20)
Vir) = —e /oo E(rYdr' | (5.21)

where e (> 0) is the positron charge. Next, with the above electric potential, we can
calculate the muon and electron wave functions by solving the Dirac equation (5.2). In the
calculation of the electron wave function, we take that the energy of the electron is equal
to the muon mass minus the binding energy. We ignore the recoil of the nucleus which is
of the order of mi /My, where My is the nucleus mass, and that is negligible compared
to the muon mass. After that we can estimate the conversion rate by substituting the
obtained wave functions with the normalization of eq.(5.7} and eq.{5.8) into eq.(5.16) and
executing the overlap integrals.

As an example, we show the muon and electron wave functions in Ti nucleus in
Figure 5.1 and Figure 5.2. We can see that uz(= rf,) have a non-vanishing value in
Figure 5.1. Although it is very small compared to the upper component w,, the ef-
fect for the conversion rate is not negligible as pointed out in ref. [51]. In Figure 5.2,

the electron wave functions look like the plane wave solution i.e. wu; & sin{m,r) and
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Figure 5.1: The normalized muon wave function in Ti nucleus is plotted. The solid
line and dashed line represent ui(= rg; ) and uz(= rf;} components, respectively. The
horizontal axis is the distance between the nucleus and the muon in the unit of 1/m,.
The unit for the wave function is taken to be ,/m,,.

uy o {cos(m,r) — sin{m,r)/m,r). However, it is also pointed out by Shanker [51] that
the Coulomb distortion effect becomes extremely important in heavy nuclei.

Now we perform the evaluation of the overlap integrals defined as follows:

P—;%mgﬁmmﬂeﬂwnmw;+ﬂ@n, (5.22)
:W=§%Adme@m~ggm (5.23)

w_ 1 QOTT2 _ (nyg, — — _ ==
S‘vﬂﬂd (A~ D)™ (gTas — [T (5.24)
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The Z dependences of each variable P, S®™ and V™ are shown in Figure 5.3 and
Table 5.1, With the values in Table 5.1, we can calculate the conversion rate in any high
energy models. Here we use the neutron density functions p,, listed in ref. [68] which are
obtained from the data of 7N scattering experiments. Since the values listed in ref. [68]
are available only for the selected 19 nuclei, we use the same density as the proton one
when the neutron data is lacked in Figure 5.3. Both the values obtained from the data
of ref. 168] and in the case of p, = p, are listed in Table 5.1. The neutron and proton
density are almost the same for light nuclei because of the isospin symmetry and the fact
of Z ~ N. Even in the heavy nuclei, the differences are only within 5% in the radius
parameter R, and R, of the two-parameter Fermi model in ref. [68]. However, we can see
in Table 5.1 that the differences in the overlap integrals becomne more than 20% in heavy
nuclei. It shows that the overlap integrals are very sensitive to the input parameters of
the nucleon densities.

Figure 5.3 shows that the values are increasing function of Z for the light nuclei and
saturate or decrease for the heavy nuclei. This property comes from somewhat accidental
suppression of the electron-nucleon form factor at the energy of m, as seen below. When
we adopt an approximation of the average muon wave function and the plane wave for
the electron wave function as done by Weinberg-Feinberg [50], the formula for the overlap
integrals are proportional to (¢,)Z F,, where F), is the form factor defined by

o0 P
F, :/ dranr? p® (r) SN
0 mur
and {¢,) is the average value of the muon wave function in the nucleus calculated to be

o0 dmia’ Z3
() = / drazr? (g + 1) PV = ——= £ (5.29)
Jo
The last expression is the standard definition of Zyg. With Zur, the overlap integrals are
proportional to Z2 ZV2F,. Z.q is the effective charge which the muon in the s state feels.
For the heavy nuclei, the muon does not see the whole charge of the nuclei Z since the

muon wave function enter into the inside of the charge distribution of the nuclei. Zu thus

does not increase linearly with respect to Z as shown in Figure 5.4. However, since Zoy



70 Nucleus dependence of muon-electron conversion ratio

0.18
0.16
0.14 |
0.12 |
0.1
0.08
0.06

Overlap Integrals ( (m.)*?)

0.04 |

0.02 |

Figure 5.3: The Z dependence of the overlap integrals are plotted.

is still an increasing function, the saturating property of the overlap integral should be
understood by properties of the form factor F,. Figure 5.5 shows the decreasing property
of Fy. As mentioned before, these small values for the heavy nuclei are an accidental result
caused by a small factor of {sin(m,r)) where (---) is the mean value in the nuclei. This
is also the reason of the sensitivity to the input parameters of the nucleon distributions
in heavy nuclei.

As an illustration, we show the Z dependence of the i — e conversion to muon capture
ratio in a special case that Ay and Ag are much larger than the other coefficients. Now
we define following quantity Rz.

“E — 3847% (| Anf? + |ALP) Rz | (5.30)

Weapt
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Figure 5.4: The Z dependence of Z.4 is plotted.

where weapt is the muon capture rate and 384x2(|Ag|* + |AL]?) is nothing but the u — ey
decay branching ratio. The quantity Rz is calculated to be
GLP?

Ry=—F
2 1927w

(5.31)

and shown in Figure 5.6. Here we use the experimental values for the capture rate [69].
We can see that Rz varies in the range of 0.002 to 0.006 and moderate number of Z like
30 £ Z < 60 is preferred for the experiments. The maximum value is 0.00545 for Sr
(Z = 38).

Now we comment on the comparison with the previous calculation. In the Weinberg-
Feinberg calculation, they ignored the relativistic effects, the Coulomb distortion, and the

binding energy of the muon [50]. The approximate capture rates and form factors are used
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Figure 5.5: The Z dependence of the form factor £}, is plotted.

for the numerical evaluation. By replacing the approximate values with the experimental
one, we can obtain a similar behavior to our results shown in Figure 5.6 (long dashed
line). Shanker gave correction factors for the Weinberg-Feinberg formula [51]. We also
re-evaluated the correction factors by using the updated proton density functions instead
of the approximate formula used in Shanker’s calculation. The correction gives positive
contributions to the R} ¥ (dashed line in Figure 5.6). Another calculation is further done
by Czarnecki et al. in which the correction to R% ¥ is negative by a correct treatment for
the photonic dipole operators in Al, Ti, and Pb nuclei [52]. We can reproduce their results
within a good accuracy (See three boxes in Figure 5.6). However, our results conflict with

the calculation by Kosmas in which the conversion ratio have a monotonically increasing




5.2 Nucleus dependence of conversion rate 73

0.008
0.007
0.006

0.005

Rz

0.004

0.003 §

0.002

0.001

Figure 5.6: The Z dependence of the u — e conversion branching ratio divided by the
¢ — ey decay branching ratio is plotted. Rz, RY", R, and RZ™M represent the results
of our calculation, the Weinberg-Feinberg formula, the Shanker evaluation, and Czarnecki
et al. calculation, respectively.

property with respect to Z [53]. In his analysis, the essential point is that the binding
energy cannot be neglected in heavy nuclei and the value of the form factor Fj, at the
energy of m, minus the binding energy e, is much greater than that at the energy of m,, for
heavy nuclei. Although we could verify this fact, the problem is that the author ignores
the Coulomb distortion effect on the electron wave function. Originally Fp(m,) is used
as an approximation for the overlap integral of the charge distribution function p*! and
the electron wave function in the Coulomb force g_ with the energy of m, — ¢;. However,

this approximation breaks in the heavy nuclei by two reasons. One is the binding energy
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effect which is considered in the Kosmas calculation and the other is that the Coulomb
distortion effect which is also important for large Z. Both effects are included in the
Shanker’s correction factors of '3 which makes the conversion ratio suppress in contrast
to the case of considering only the binding energy effect. It follows that solving the Dirac
equation for the electron in the Coulomb force is indeed necessary to obtain the correct

conversion rates in heavy nuclei, as is done in our calculation.

5.3 Calculation in typical cases

Now we evaluate the conversion ratio in three typical cases of the parameters A and g in
the effective Lagrangian of eq.(5.1), and discuss the possibility of the model distinction.

In Figure 5.3, each overlap integrals have different. Z dependences especially in heavy
nuclei. For example, the scalar (S®™) and the vector (V"™ type integrals are almost
the same values in light nuclei (Z < 30), whereas the ratios of the scalar type integral
over the vector type one are enhanced by a factor of more than 1.5 in heavy nuclei.
These differences come from the relativistic effects of the muon wave functions which are
significant in heavy nuclei. In the limit of ignoring the relativistic eftects, namely we
ignore the small component of the wave function f, the overlap integrals in eqs.(5.23)
and (5.25) [eqgs.(5.24) and (5.26)| are exactly the same.

Figure 5.7 shows the three typical Z dependence of the i — ¢ conversion ratio B,. =
Weonv /Weapt, Where the values are normalized by the conversion ratio in Ti nuclei. The
first case (solid line) is that the conversion occurs dominantly through the photonic dipole
operator Az g which is already evaluated in the previous section. This is often the case
in SUSY models, especially in SO(10) SUSY GUT models because of the m,/m, en-
hancement [22] and in SUSY models with right-handed neutrinos [25]. The long dashed
line represents the case of the scalar operator domination. In particular, we take non-
vanishing values only for grsw) and grs@. Such kind of parameter sets are realized in
SUSY models with R-parity violation [70]. The third one (dashed line) is for the case of

the vector operator domination. This case also appears in SUSY models with R-parity
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Figure 5.7: The Z dependences of the typical models are plotted. The solid, the long
dashed, and the dashed line represent the cases that the photonic dipole, scalar, and

vector operator dominates, respectively. We normalize the values by the conversion ratio
in Ti nuclei (Z = 22).

violation and in a special parameter range of SU(5) SUSY GUT models where the dipole
operators Ay, g are very suppressed [23]. We take grv(w) = —2¢rv(ey which is the relation
of the photon exchange diagrams.

We can see the large differences of the conversion ratio in heavy nuclei in Figure 5.7.
This property of the different Z dependences indicates the possibility of distinguishing the
models of physics beyond the standard model through several experiments with different

targets.

The calculation for the typical models such as SUSY-GUT and SUSY with right-
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handed neutrinos is also an important work now. Figure 5.8 is the conversion ratio in
Ti nuclei in SU(5) SUSY GUT. Comparing with Figure 2.3 in Chapter 2, the parameter
region where the cancellation occurs is different with that of the g — ey decay. Also,
in the 1 — e conversion process, the cancellation point changes when we differ the tan 3.
Figure 5.9 shows the conversion ratio in MSSM with right-handed neutrinos and the
masses of the right-handed neutrinos are taken to be My = 10! GeV, and the neutrino
masses and mixing parameters are chosen so as to account for solar neutrino anomaly by
the large angle MSW solution and Uglyg = 0.1 In this model, the difference between the
i — ey decay and the p — e conversion is remarkable. In the case of tan 3 = 10, we can
see the cancellation point which does not appear in Figure 2.5. This cancellation occurs
between the dipole and the vector operators. In the large tan / region, this cancellation

disappears because of the tan 3 enhancements of the dipole operators.

5.4 Summary

We calculated the coherent u — e conversion rate in a model independent way. This calcu-
lation is important not only for the choice of the target in i — e conversion experiments,
also for the extraction of information on new physics by comparing the conversion rate
among several experiments running with different targets.

In our calculation, we solve the Dirac equations for the muon and electron wave func-
tions in the Coulomb force of the target nuclei. This treatment is especially important for
the heavy nuclei where relativistic and Coulomb distortion effects on the wave functions
are large.

The numerical results of the overlap integrals for various nuclei are obtained and listed
in Table 5.1, so that we can calculate the conversion ratio in general models of physics

beyond the standard model.
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lzl A “ P | S@) I v S (D] S(n)|pp=pn V(n)|pp=pn

6 | 12 | 0.0073 | 0.0031 | 0.0031 0.0031 0.0031
7 | 14 | 0.0103 | 0.0044 | 0.0045 0.0044 0.0045
8 1 16 [ 0.0133 | 0.0057 | 0.0058 0.0057 0.0058
9 | 19 1 0.0166 | 0.0071 | 0.0073 | 0.0080 | 0.0082| 0.0079 0.0081
10 | 20 | 0.0205 | 0.0088 | 0.0090 (0.0088 0.0090

11| 23 || 0.0260 | 0.0111 | 0.0114 | 0.0119| 0.0122| 0.0121 0.0125
12| 24 || 0.0299 | 0.0128 | 0.0132} 0.0126 | 0.0131} 0.0128 0.0132
13| 27 § 0.0357 | 0.0153 | 0.0159 | 0.0163 | 0.0169| 0.0165 0.0171
14 28 | 0.0421 | 0.0181 | 0.0188 | 0.0173 | 0.0180| 0.0181 0.0188

15| 31 || 0.0467 | 0.0200 | 0.0209 0.0213 0.0223
16 | 32 || 0.0529 | 0.0227 | 0.0238 | 0.0221| 0.0232| 0.0227 0.0238
17| 35 || 0.0564 | 0.0241 | 0.0254 0.0256 0.0269
18 | 40 || 0.0628 | 0.0268 | 0.0284 | 0.0310| 0.0330} 0.0328 0.0347
191 39 | 0.0699 | 0.0299 | 0.0317 0.0314 0.0334
20| 40 || 0.0778 | 0.0333 | 0.0355 | 0.0319 | 0.0341| 0.0333 0.0355
22 | 4% || 0.0828 | 0.0351 ; 0.0379 0.0415 0.0448
23| 51 || 0.0942 | 0.0401 | 0.0434 0.0488 0.0528
24 | 52 | 0.0977 | 0.0415 | 0.0451 0.0484 0.0526
25| 55 | 0.1071 | 0.0456 | 0.0496 0.0547 0.0596
26 | 56 | 0.1095 | 0.0464 | 0.0508 | 0.0O503 | 0.0555| 0.0535 0.0586
27| 39 || 0.1116 | 0.0470 | 0.0519 0.0558 0.0615
28 | 58 | 0.1248 | 0.0527 | 0.0583 0.0565 0.0625
29 | 63 || 0.1237 | 0.0520 | 0.0579 | 0.0585 | 0.0653| 0.0610 0.0678
30| 64 | 0.1311 | 0.0550 | 0.0615 0.0624 0.0697

32| 72 | 0.1379 | 0.0575 | 0.0650 | 0.0670 | 0.0763| 0.0719 0.0812
33| 75 | 0.1405 | 0.0584 | 0.0664 | 0.0689 | 0.0791 0.0743 0.0845

38| 88 || 0.1662 | 0.0680 | 0.0795 0.0895 0.1046
39 | 89 | 0.1647 | 0.0671 | 0.0789 0.0860 0.1011
40 | 90 | 0.1704 | 0.0694 | 0.0818 0.0867 0.1023
41| 93 | 0.1713 | 0.0693 | 0.0824 0.0879 0.1046
42| 92 | 0.1779 | 0.0720 | 0.0858 0.0857 0.1022
46 | 110 || 0.1662 | 0.0653 | 0.0806 0.0908 0.1121
48 | 114 || 0.1782 | 0.0698 | 0.0868 (0.0959 0.1194
49 | 115 || 0.1809 | 0.0705 | 0.0884 0.0950 0.1190
50 1 120 || 0.1830 | 0.0709 | 0.0896 0.0992 0.1254

Table 5.1: The Z dependence of the overlap integrals in the unit of fm.f/ ? are listed. We

use the neutron distributions in ref. [68] in the calculation of S and V™ and the same
quantities calculated with p, = p, are listed in the last two columns.
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z] A P | S® [ VP | S | V® | Sp [Vlpmpn |

o1 | 121 || 0.1953 | 0.0761 | 0.0959 0.1045 0.1316
56 | 138 || 0.1837 | 0.0687 | 0.0909 0.1005 0.1331
57 | 139 || 0.1886 | 0.0705 | 0.0935 0.1014 0.1345
58 | 140 || 0.1875 | 0.0696 | 0.0931 | 0.0821| 0.1141 | 0.0984 0.1316
60 | 142 || 0.1823 | 0.0668 | 0.0908 0.0913 0.1241
62 | 152 || 0.1939 | 0.0710 | 0.0970 0.1030 0.1408
64 | 158 |f 0.1730 [ 0.0614 | 0.0866 0.0902 0.1273
67 | 165 || 0.1774 | 0.0618 | 0.0894 0.0904 0.1308
68 | 166 || 0.1999 | 0.0695 | 0.1013 0.1002 0.1459
73 | 181 || 0.1566 | 0.0515 | 0.0796 0.0762 0.1177
74 | 184 || 0.1562 | 0.0501 | 0.0797 0.0744 0.1185
79 | 197 || 0.1663 | 0.0622 | 0.0857 | 0.0608 | 0.1081| 0.0779 0.1280
81 | 205 || 0.1609 | 0.0489 | 0.0832 0.0749 0.1274
821207 | 0.1614 | 0.0493 | 0.0836 | 0.0569| 0.1058 | 0.0752 0.1274
831209 | 0.1629 | 0.0494 | 0.0845 | 0.0578 | 0.1078 | 0.0750 0.1283
90 1 232 |{ 0.1541 | 0.0430 | 0.0810 0.0678 0.1278
92 ) 238 || 0.1519 | 0.0418 | 0.0801 0.0664 0.1271

Table 5.1: (Continued).
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Figure 5.8: The u — e conversion ratio in Ti nuclei is plotted in SU(5) SUSY GUT model.



80

Nucleus dependence of muon-electron conversion ratio

Figure 5.9: The i — e conversion ratio in Ti nuclei is plotted in MSSM with right-handed
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neutrinos. The masses of the right-handed neutrinos are taken to be 104 GeV.,




Chapter 6

Conclusions

We have investigated LFV from the both sides i.e. the calculation based on the models
and the extraction of information on new physics by means of the detailed studies of the
LFV processes.

We pointed out that LF'V give an eflective constraint on the parameters of the models
with extra-dimensions. The non-vanishing neutrino mass and mixing needs the existence
of the right-handed neutrinos, but naive introduction of the right-handed neutrino does
not provide tiny neutrino masses in the RS model. Grossman and Neubert then proposed
the existence of ri ght—handed neutrinos which live in bulk and couple to the lepton doublets
and we saw that this model lead to small Dirac neutrino mass terms. The neutrino
mass and mixing causes LFV. The KK modes of the right-handed neutrinos enhance
the branching ratio of these processes. We calculated the B{u — evy), B(r — uvy) and
B(r — e7) and found that B — evy) gives severe constraints on the neutrino Yukawa
couplings #;, and/or the Higgs mass parameter vy in the five dimensional theory.

As an analysis of the LF'V processes, we defined P-odd and T-odd quantities in 7 decays
which have important information on new physics. Using spin correlations of 7177, we
show that the P odd asymmetry of r — py and 7 — ey and P and T asymmetries of
three body LFV decays of 7 can be obtained by angular correlations. These P and T odd
quantities are important to identify a model of new physics responsible for LE'V processes.

We have also considered the background suppression of the 7 — vy and 7 — ey
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search by the angular distributions. We see that the analysis of the angular distributions
is useful for the 7+ — phy (r= — pry) and 7+ — ehy (= — e ) searches,

We can obtain similar information in muon decay experiments if initial muons are
polarized. Although highly polarized muons are available experimentally, a special setup
for production and transportation of a muon beam is necessary for actual experiment.
The advantage of the 7 case is that we can extract the information on r spins by looking
at the decay distribution of the other side of r decay so that we do not need a special
requirement for experimental setup.

The p — e conversion in nuclei is another important process of LFV. We calculated
the coherent u — e conversion rate in a model independent way. This calculation is
important not only for the choice of the target in 4 — e conversion experiments, also for
the extraction of information on new physics by comparing the conversion rate among
several experiments running with different targets.

In our calculation, we solve the Dirac equations for the muon and electron wave func-
tions in the Coulomb force of the target nuclei. This treatment is especially important for
the heavy nuclei where relativistic and Coulomb distortion effects on the wave functions

are large.
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Appendix A

The Minimal Supersymmetric
Standard Model

A.1 Notation

We use the following notation.

1
o = -1 » . (A1)
—1

0 1 . (0 —i s (1 0
10)"’_10)"’(0—1)' (A.2)

o_ {01 i 0 o o233 -1 0 .
’7(10 Y= g ) sEYYY =, ) (AB)

1- 1
P = B pr= LlLy (A.4)
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A.2 SUSY Lagrangian

The SUSY Lagrangian is given as follows:

1
Lsusy = ZF,?,,FQ“V‘I‘ )\M’}’p([)“ij Mr)® + (Du)l (D" )i + iy (DF);
+V2g (d; Ao Ta Py + 0: PrAY T ¢5)
1 82w 1 9%+
1/)3 Rw

*'ansfafﬁjwc"‘g”b’ zﬁp*aqs*

aw |?
__g ((p‘l 1](15]) aq;)z

where ¢, 7 are the gauge index depend on the representation of matter fields ¢ and v,

, (A7)

and a is the gauge index of the adjoint representation. The fields ¢ and ¢ are the boson
and fermion fields which belong to the same representation of the gauge group. g and T*
are the gauge coupling constants and the generator of the gauge group, respectively. The
Majorana field Ay is the superpartner of the gauge fields called gaugino. This field is a

adjoint representation of the gauge group and the covariant derivative Df:dj. is given by

(D,

adj.

)2 = 5P — g fapc AF (A.8)
The covariant derivative for the matter fields are given by
(D#),‘j - 5{1'6()“ - *igTi‘;A‘”‘ . (Ag)

The superpotential W in eq.(A.7) is arbitrary holomorphic functions of ¢. The charge

conjugation ¢° is defined by

Yt =CyT, C =iy, (A.10)

A.3 Particle content

The particle content of the MSSM is given in Table A.1. where R is the R-parity. With

this superfields, the renormalizable superpotential is written as follows:

Wassm = pHy - Hy + f2 Hy - ES L + fPH, D5Qs+ [ Hy - UsQy (A.11)
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SU@)s | 5U@): [ U0y [ A
Q 3 2 +1/6 | —
Ue 3 1 -2/3 | -
peio3 1 | +1/3 ] -
L 1 2 -1/2 | -
E* 1 1 +1 —
H| 1 2 | —1/2 |+
H; 1 2 +1/2 +

Table A.1: The particle content of the MSSM.

where ‘-’ represents the contraction of the SU(2), index by €;; = i0®. The Yukawa coupling

constants fe, fi, and f, can be related to the masses and mixing of the fermions as follows:

i _ _\/Qmi(s i _ —V2mg

€ veosB 2 4T ycosB

ij \/ivﬁ mﬁ
0y, fi= _7)__8% : (A.12)

Here m¢, mfi, and m?, are the masses of the fermions in each generation, and Vogy is the

CKM matrix. The vacuum expectation value v and the angle 3 are defined as

(HI)_(%‘), <H2>_(f2), v = /202 +03) tanf = 2. (A1

A.4 Soft SUSY breaking terms

The soft SUSY breaking terms are given as follows:

Loon = = (Bulh - Hy+ AZHy - &5l + AT Hy - &y + A Hy 1505 + hic)
- ot~ - -t ~ . -t~
—(M2)ald; — (ML) yuetas; — (mk.)ide, do;
—(D)illl; — (k)iyeelee;
— (%, ) H Hy — (in}y,) H Hy

1 P 1 P =
G MBOBY — M %Mg,gagﬂ . (A.14)
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A.5 Renormalization group equations

The renormalization group equations (RGEs) for the Yukawa coupling constants are given

as follows:
(47m)*— dt 9= FAVE A+ S O (A.15)
d ij Hl qi
(4m)? 7 i = fiva t+ 'ch + £ (A.16)
2 d ij . Ha ik Y5 ki a
(477) afu :fu 7H2 +f'u. ’Yui+fu fqu y (A17)
where
. . 1 3
Ty = FESE 3 - 59 - 5o (A.18)
7l = 2f 9~ 2628, (A.19)
_ kl*f'zl_lzé‘__§26. {(A.20)
thc e 2gY ki 292 ki .
. 2 8
= 2f 7 — §g§5kj — gg{:’ékj , (A.21)
_ pkix ki
Fqu — Jd + f fu - _gY(skt - 29261:1. - 39351:1 . (A22)

The RGEs for the gauge coupling constants gy, g2, and g3 corresponding to the gauge
group of U(1l)y, SU(2)., and SU(3)¢ are given by

(4m)? dgy = 1lgy , (A.23)
dt

()22 g = 48 (A.24)
dtgz g2 ] .

d
(4«)2593 = 345 . (A.25)
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The RGEs for the gaugino masses are given by

(417)2 M1 = 22gy My ,
d
(47T)2'CEM2 = 2g§M2 ,

d
(47[')2'CEM3 = —GggMg .
The RGEs for the A-terms are given as follows:

d i th~ %5
(4m) 2 A = ADYf + ARG + AP+ 2SR 200N 4 2PN

(47 )2 AT = Aff -+ AP AT+ 2f T+ 20 4 28R

d 1 ) ik U5 ) i
(4m)* = AL = Alvig + A + ATV + 20 0] + 2000 22

where

- . . 1 3
'Ygll = fH AN + 3 Al - §g)2/M1 — §9§M2 ,

;?eg = ink* Ai:j - QQ%Mlékj '

;{11; — fkl*A:l QQYMICS;“ 292M25k= ,
=47 _ o plkx plj 8 ,
7d‘,-; - 2f A —_ §gyM1(5kJ 393M35kj ,

1

,?ql' — *Azl + ffl*Ad =

Tk

3 8
— g% M6y — Egé’Mzéki - §9§M35kz‘ -
The RGE for the scalar soft mass terms are given as follows:

(471')2 (mz)u (mz)tk’}’zk + (7 gg)kf)’t +27l - QYS‘LJ )

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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d . - et o et ~es
(477)25(?”3)1; = (ML)iYed + (ME)vd + 272 + 203585 (A.38)
d 1 ,
(4W)2d—t( M) = (ME)ayS + (M) -+ 235 + 3959 (A.39)
d - - us .y u ~us 4 .
(471')2&(‘,”'12;': tj — (mfic)ikf)(ué + (’In'zzfc)kjﬂfuét + Z’Yu::’, - 59}2/5611 ' (A40)
d, . . P . de zd; 2
(477)25(‘”?-32)& = (mffc)imfdi + (M )Vt + 278 + 5935515 ; (A.41)
d P
d . . .
(47'{')25{?71%{2 = QmH27H2 -+ 2')/}12 -+ gyS (A43)
where
S = (M) — 20m% )k + (M )kx — (M) ke + (M )k — 3y, + WYy, (A.44)
,):/IIJ _ eik* jt(m ) f‘lk*f]kal Aik*Ajk
3 -
— gy | M1|*8:; — 395 | Ma|*6,; + 29y(m2)=3 + 595 () (A.45)

;?eg' — kaz* l_;r ~ 2)lk + kau: ki -42 + 2Akz*Ak3
—4gy |M[*8:; + 203 (M) (A.46)

SIS Hal A GO N PR S Ht 1 SR A G ST bl P9
FAR AT L ATk ATF
1 16
—5912/|M1|251'j — 35| My %85 — ?9§|M3|25ij

1 . 3 N 8 -
+Eg§(m§)q + Egg(m?j)ij + ggi(mé)ij ; (A.47)
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:Yu; — kaitflj (ﬁl;)lk 4 kai*fk:j ~ 2 + QAkitAkj

16 16 ot
— SR8 — DRI+ Sgh (e + SaAl),
i ki ~ 2 kix k.?~2 kix pk7
’Ydf. = Zf f( ( )Ik+2f d Ty, -+ 2Ad Ad
16 . 2 . 8
—593|M1|25ij - §9§|M3|25ij + 5932»(mf;c)ij + 3%( Mz )i
Y = FEFRORER )k £ RO v 3F7 £ 4 3£ £ (M)

—I-A;J*Aif + 3A;J*A;J
. 1, . ~
—g¥ M ~ 3GIMLI* 1 Sgping, + 293 My,
,:Y}J}’j — +3fzg*fzk( )k; e 3f1ktf]k( ~ 2)31 4 3A13*A1]
1., . 3 5.
—gy|Mi[* — 395 | Ma|? + 591/"’”;{1 293””%{1 .

The RGE for the ¢ and B parameters are given by

o d
—u=plvg + V),

(47)? o

d
(4m)* = (Bu) = Br(vit + i) + 2 (3 +352)

A.6 The mass matrices
The mass matrices of the charginos and neutralinos are defined by

Echargino — _(ﬁ/+, ﬁ;)ﬁchL ( I/"‘V: ) + h.c. y

Hl
Bo
1 = = = = WO
»Cneut,mlino = _E(BU) WO: H(I)J Hg)MN JfIrD
1

H3

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)




92 The Minimal Supersymmetric Standard Model

The matrices are given by

ﬂffg — g2
Me = , A.56
¢ ( — 202 H ) ( )

M, 0 gyu1/V2  —gyva/V2

0 M, —u1/V2  gava/V2
wyui/V2 —gani/V2 0 —p
—gvv2/V2  gava/V2 — 0

We define unitary and complex orthogonal matrices which diagonalize the above two

My = (A.57)

matrices as follows:

OrMcO! = Mimeenal (A.58)
OnMyOYL, = Miigenal (A.59)

The mass matrix for the sfermions are defined as

Eslepton - _(é:,-é.ci)Méz ( ggj* ) ) (A60)
2
Esneut.rino - —lj’:ﬂ/fgﬂj 3 (Aﬁl)
Lowp = — (@}, 15 ) M2 ( poc) ) : (A.62)
W
- d
Lsdown = —(d}, d°;) M3 ( J% ) : (A.63)
Each components for the mass matrices are given as follows:
. o o 1 1 1,
(ME)i; = (D) + 2 [ |oa® + §(|'Uz>|2 - lU1|2)(—§9§ + 59‘%)(51'1 ; (A.64)
2 ~ 2 ke phip, (2, 1 2 2 2
(Mg )ivsges = ()i + Jo7 fe lrl” + 5 (lwal” = [n ) (=gv )i (A.65)

(M2)igra = (Méz);+3,i = AZ*0} + uf s (A.66)

€
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(M2)is = 032)ss+ 5(al” ~ o) (543 + 5980 (A6)
(MD)i; = (m3)yy + i fi¥loal® + %(|Tz’2|2 = |v )(;95 19?/)51'3' : (A.68)
(MEirs v = i + [ [l + 3 (ol = 1aP) 26335 (A.69)
(M3)ijes = (MD)3pas = —ATv; — ufilvy (A.70)
(M)es = 7y + 2 0?5 (al? — [oal) (568 — 506 (A7)
(MBirs oo = (k) + 57 F50? + 5(al? = =3 0206 (A7)
(M2isrs = (M2 yas = Ad"01 + i fy vz (A.73)

We define the unitary matrices which diagonalize the sfermion mass matrices as follows:

Us MEUL = (M 2ydiagonal | (A.74)
U MU = (M2)dingonal (A.75)
Us Msz — (M )dlagona] : (A.76)
UgM3UT = (M3)tReonal (A.77)

We also define the unitary matrices which diagonalize the fermion mass matrices as follows:

U (—fPu)US = midy (A.78)
U= f7v) U = mids; | (A.79)
UL(fu)UR = mé;; . (A.80)

In the convention of eq.(A.12}, the above unitary matrices are simply the unit matrices

except for UL = Vi
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A.7 The vertices

We write down the interaction terms in the Lagrangian which are often used in the

calculation.

e Neutralino-fermion-sfermion

1

£= 35 (NELPrt+ NP 1]k + b (A81)

where 2, A, and X are the indices of the mass eigenstates of the fermions, neutralinos,

and sfermions, respectively. The coupling constants are given as follows:

NES = V2gy (Us)xars(On) 5 (URL
+ 8 (U x p(On) 55 (URY (A.82)

[+ ]' * *
NERY = —ﬁga(Ue)x,k(ON)A,z(Uf)i,k

1 * *
_EQY(Ué)Xsk(ON)A,I(U;J)i,k

+f:l*(UE)X,3+1(ON):1,3(UJJ):J¢ 5 (A.83)
N =0, (A.84)
NEQ = —=alUo)xi(Ow);
iAX ﬂgz #)Xi\UN) 40
1
——=gv{(Us)x4(On) 1 (A.85)

V2

. 22 A
NiY = v (V) xa4x(ON): (Ui

— M Ua)xx(On) 54U (A.86)
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95

1

Ni%;() = 7592(Uﬁ)X,k(ON)E,2(U{Z):,k
2v2 . .
+t (Ua)x k{ON) i1 (Ui )ik

— P (Uz) x,34(On) 3 4 (U

V2 \ .
N2 = TQY(Uﬁ)X@-I*k(ON)A,I(Uf)i,k

+ MU xe(ON) 4 (UG
1

NED = ——ga(Un)xx(On)s(UR

V2

V2 . .
+?QY(UJ)XJ¢(ON)A,1(U£ ik
+ £ (U x,341(On)a s (Ui -

e Chargino-fermion-sfermion

1

£~ % (ChYPr+CURP) ey
1124 (CEY Pr+ ClR P ey
+1x (CIY Pr+ CUR PL) dii

(Ci(;)PR -+ Cﬂ;)PL) u,,cf} + h.c.,

1

where

CEY — _ £ U5) x x(01) a2(UDY:,
CLSl = 92(Us) x 6 (Or) a1 (UF):

R(

1

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)
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CHY = g2Ue)xa(On)an — FE(Ue)x24x(O1) a2,

Ciax = =[5 Ua)xx(On) a2 (U)s,

CHL = 92U xk(OR) a1 (UN)E L + FRUR) x,311(OR) a2(UF )k

R = F U x (0L an(UBY:

CHY = U xa(O) an(UE);, ~

e Neutralino-neutralino-Z°

[ UDx3(0) a2 (UL

L= %" (ZAB Py + 249 Pr ) 82,

where

R(n) L(n)
ZA; — —ZBA

e Neutralino-chargino-W

£ e () P+l

where

Wi = g2(ON)4(0OLY 51 +

R . x
wAg] = 92(On)42(Or)p, —

) PR)

g2

V2

b2
\/_

™ 1 * *
Zas = 1V 9% + 9% [(On)a3(On)Bs — (ON)4a(On)B4]

xeW*t +he,

(On)as(OL)ps

(ON)a3(OR)B2 »

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)

(A.104)
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e Chargino-chargino-Z*
L= 3" (Zf{%?PL + 248 Pr) X520 (A.105)
where
L(e) 9
245 = ——==——=(0r)41(0L)p,
Vi + gy
1 4 1 g
+15 -5 (OL)a2(0L) a0 (A.106)
(2 VG Tay 2yt gy
R(c) 93
25 = ———=—==(0r)a1(ORr)5,
V93 + gv
1 2 l 2
+ (5 éqy T 5 32 2) (Or)42(0R)g, - (A.107)
g9z + gy g9z t+ gy






Appendix B
The minimal SU(5) SUSY GUT

The superpotential of the minimal SU(5) SUSY GUT is given by
1 ~ abrpa e ~ I ab )
W= ()il TTPHE 4 (Ga)o Fra TP Ho

_ 1 1 i
+mygHH + §mgzng; + g)\gzgzgzg +AgHYL A, (B.1)

where F and T are the matter fields of 5 and 10 representations, respectively, and 0, H,
and ¥. are the Higgs fields of 5, 5, and 24 representation. In the basis where the matrix
i, 1s diagonal, the matter fields and the Higgs fields in the MSSM are embedded in the
F, T, H, and H fields as follows:

T = GW(UEMUE; , (B.2)
T = —(U5Q57 (B.3)
ToHoHs = e U UR)G ES (B.4)
Fhi = (UETUg)ing,j , (B.5)
Fotai= —€apLl? | (B.6)

Hots = He | (B.7)
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H0r+3 = _EdﬁHig ) (BS)

where d,B,é =1,23, a,8=12 and i,j = 1,2,3 corresponding to SU(3)¢, SU(2), and
the generations, respectively. The remained part of H and H is called colored Higgs field:

H& = g' ’ Hd = HC&. . (Bg)
In the basis in eq.(A.12), the terms in superpotential (B.1) are decomposed as follows:
. . 1

W = fiH, -UjQi— f]E;UHc — E(quCKM)ijQinHC

i Hy - LiES + f Hi - QuD5

+(VCKMfd),'jUfD§HC + f;ij . QiHC 4 (Higgs sector) . (B.lO)

The soft SUSY breaking terms are given as follows:

Con — (—éﬁfemﬁ“”f’;‘f}]e _AY ﬁ,-atf?bﬁb + h)

1 * ~ ~ ax yra ~ [J*
_5 T)’-JTab Tab_( F)U m mHH H _m?} aHﬂ
~ 1
_ (BHmHH“Ha + 532771)32?22 + hc)
1 _
— (gAgEEEﬁEE + ApHSE H, + h.c.)
—myEy Ey . (B.11)
The RGEs for the coupling constants are given as follows:

e gauge coupling constant

d
(411')2595 = -3¢ . (B.12}

¢ Yukawa coupling constants

2d

(4m) 7

- ~ : ~ T
()i = @) ¥R + Gdrvsy + Gudar (B.13)
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d T N
(471')2'd_t(yd)ij = (Jadshi + @i + G)arp (B.14)
d
(4m)* = = 3Aes (B.15)
d _
(4m)* = = du (v + v + ) (B.16)
where
-\ g 12 24
UHEE CAHOANERE PP (B.17)
T: ~ \k f~ ~ Nk [~ 36 2
Y1, = 3(Fu) i (Yu)it + 2(Fa) ke (Ga)u — *5—955:& ) (B.18)
: e g~ 12 24
Y = 4Ga)ia (Ga)u + gl)\lﬂz - 3952. ’ (B.19)
By ~ s 24 .
Vg, = YGa)i(Fa)is — gggdkj = (B.20)
21 1
n_ 4 2, - 2 _ 2 B.21
98 = sl + Al — 104 (B.21)
e Imass parameters
d _
(47T)235mﬂ = mu(vf + v + %) (B.22)
(B.23)

d
(41?)2&7713 = 2mng
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® paugino mass

(47r)2(%M5 = —6g2Ms . (B.24)

e A-terms

. ik ~T;
+2y137:’1 + 25855 + 2yukm , (B.25)
d i qii 0 | AkiL Ty ik, Fi
(4w)2£,4; = AjyH+ AF + Adk'yp
i H ki T ik~
20738 + 20 + 20 s (B.26)
e -
(477)2EA2 = 347 + 65 (B.27)
d . N -
(47 A = Au(YE +4H 445 + 2 (3E + 38 4+ 38) (B.28)
where
~ e 120, 24
’Yg = 3(Ju) A + 5 HAH — €9§M5 y (B.29)
o Al 42 A _ 36 281 B.30
'YTk = 3P Au + 2(Ja)u 5 = I50ki (B.30)
i e w120, 924
g = AJa) A + ?AHAH 5 giM; (B.31)
~Fj ~ vk Ald 24
TE = fa)inAd — 5 — g5 Msdys (B.32)

FE = A* As; + ,\ c Ay — 10g2 Ms . (B.33)
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e B-terms
d ) A
(4m)* By = 207 +¥g) - (B.34)
d .
(47?2 B = 43 . (B.35)

e soft mass terms

d . . . e

(dm )25(’”1%):'1 = (& )kva + ('m-ffr)z'w;i + 25y (B.36)

P d ~ ~ F ~ F'J :Fj

(4W)2£(m%)i1 = (m%)kﬂ% + (my)wTE + 275 (B.37)
d . - >

(4@2&-”15, = 23y + 278, (B.38)
d ¢ ~ ¥, o~ Iy

(4w)25m§q = 2mEvg + 25, (B.39)
d _ N =

(4m)* Mg = 25 + 2% (B-40)

where
:T] ~ Nk £ ~ ~ Nk o~ -
Y, = B(yu)ik(yu)ﬂ(m%")lk + 3(%)%(%)%’”&1

+2(3a) 5 (Ga) st (BN + 2(8a) 5 (Ga) Yy
F3AR A 4 24 AT
72 36 ,

— = I Ms |3 + —g5 (M) (B.41)
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:F'J‘ ~ Nk f o ~ - NE f o ~
Ve = 40k (M )n + 4(5a) 5 (Ga) T
4 Ak Ak
48 24
__“95|M5|25t.1 + 5 95( %‘)L’f ; (B.42)
= ~ Nk [~ ~ ~ Nk [~ ~ 12 ~ ~
Y= A5G )a (R + A(a) ks (Fa)u (M ik + gl)\le(m% + )
o 12
+3AkhAﬁI + ___IA |2
48 24 N
——gé’li"»/fsl2 —ggm% : (B.43)
W= )G a(mEw + 40a) 5 (Ga)u(mp)u + —|/\H! 2(mf +mg)
+4 AR AR 4 —|A 2
48 24
—= G5 Msl* + g5y (B.44)
~ 42 1 21 1
PA) 2L 222 | 2, - 2
s = 40|)\>:| My, + 2I)\H| (i + M) + 0|Al>:| + 2|AH|

—20g%| Ms|? + 10g2m3 . (B.45)




Appendix C

The derivation of the general
formulae for the spin correlation

In this appendix, we derive the eq.(4.1) from the amplitude in eq.(4.8).
By using the completeness relation of the fermion spinors, the amplitude squared is
deformed to

| A(pa + me)y* (b — m:)B|’

2

Z Z Au(pa, A)a(pa, AM)Y'v(ps, A2)u(ps, A2) B

=+ Ap=

Z > Z Z {(Au(pa, M)a(pa, A)A)

== Ag= ﬂ:)\’ :l::\'
x (@(pa, A 1)7“’0(133, X2)0(ps, Ao)Y u(pa, A))) (Bu(ps, X)o(pa, A2)B) ,(C.1)

where A's are the spin eigenvalues. The spin summation can be performed by using the
Bouchiat-Michel formulae as follows [60, 71]:
|Alpa + ma )y (ps — mo) B
~ Tr{(pa +me)y (Be — me)y”] @P*
+aP Tr [(Ba + me)y yshp (Bs ~ me)y'] 0"
+ 00" Tr [yofa(Ba + mo )y (B — ma)y'] P

+ pP Tr [ys£5(Ba + M)V vy (s — mo)y] oyt (C.2)
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where
P = % [A(pa + m)A} , P = % (B(ps — mn)B) . (C.3)
o0 = Ay atmA) . ol = (Bsks w-maBY, (CO)

where (54)# and (s%)” are four vectors which satisfy the following equations:

DA Sy =PB- slj; =0, (C.5)
% - sb = 5% - s = —6°, (C.6)
3 3
a PauPav PBuPBY .
Z(SA)p(SJaq v — —Yuv + ;{2 ) Z(S%)P(S%)U = —Ouvr + :;L_?, . ((’7)
a=1 T b=1

The second and third terms in eq.(C.2) vanish because the production parts are anti-
symmetric on u and v indices while the square of the electromagnetic current from e*e”

collision is symmetric on p and v indices. Explicit calculation gives

Tr [(Pa + me) Y yshp (P — M)V ] = 4im, P pp,(sh)s + 4ime e pa,(s%), (C.8)
Tr [156% (a + me )7 (b5 — ma)v"] = dimee*pp,(sh)o + dime e pay(sh)s - (C.9)

Z |€'e+ﬂfpue— |2 =Tr Me* 'Yp]be* 'Yu]

spin

= 4pe+,upe'v + Ape+ vPe—p — 49',uype+ " Pe- . (CIO)

Using the narrow width approximation,

2
1

7= (=)

the first and last terms in eq.(C.2) give formula (4.1) after the phase space integral.

T
~—mI

8(g* —m?) (C.11)




Appendix D

The kinematical functions in LFV 71
decays

In this appendix, we list the kinematical functions used in the formulae of branching ratios
in Chapter 4.
etet

The functions oi_s, Bi—2, and v_4 in the 77 — utputp and 7+ — p~ decay

calculations are given as follows. These functions are the same as those used in pu* —

etete™ decay [49]. x; and z» are given by x; = 2FE;/m, and x, = 2E;/m,.

a1(zy,Te) = 8(2 —x1 —x2)(X1 + 22— 1), (D.1)
az(zy,T2) = 2{x1(1 — 1} + x2(1 — 22)} , (D.2)
as(xl,x2)=8{2x%1__2?l+1 +2$%;_2:[;2+1} ’ (D.3)
ag(xr, 22) = 32(x1 + 22 — 1), (D.4)
as(zy,x2) = 8(2 —x) — x2) (D.5)
Bu(zr. 22) = 2xy + 22) (2} + 22) — 6{x1 + 22)* + 12(x) + 22) — B (D.6)

2—131—1‘2
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8
ﬁ?(II)I‘.?) - (1 _ IEI)(]. _ .TQ)(Q - - $2)
X { 2(x1 + @) (x] + 73) — Ay + 22) (207 + wpes + 273)
+(192% + 30z 25 + 1923) — 12(22; + 275 ~ 1) } . (D.7)
4/(1 — 1— —1 -
oy g = DALZBI_z) ) o= Dl n) (0$)
2— Ty — X2
.’L‘1+£L'2—1 (JJ1+.’E2—1)(1}2—(81)
=32 1.
n2(71, 2) \/(1—x1)(1—x2) 21— ! (D)
T +xTo—1
=16 —1 — ), D.10
3(x1, T2) \/(1 “ el —x2) (1 + 72 Wx2 — 1), ( )
£+ xp — 1
-5 2 —1r— — 7). D.11
Ya(zy, 22) \/(1 e —z3) ( r1 — T2}(T2 — 1Y) ( )
The functions A, 7, By_4, and C)_s in the 7T — ptete™ decay calculation are given
by
8(2—uxy—4 2 2 x2
Al(.’E],.’Eg) _ ( &I o+ 21122+ CL‘2) , (Dl2)
1-— Ty
As(zr,a2) = -8 (1 + a2 — 1), (D.13)
Ag(IL‘Q) = -8 (1 — .’1'12) N (Dl"—l)
ri(l—x
Ag(x1) = 1—(2—1) : (D.15)
A5($1,CL‘2) =2 (2 - T — CL’Q) (Il + T — 1) ) (Dlﬁ)
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Aglzg) = 2122 (1 — x2) (D.17)
A7(z1,22) = ~8 (4= 52y + 3} — 8z + 4z 22 + 423) | (D.18)
Ag(zy,z2) = —4 (1 —xy) () + 222 — 2) (D.19)
Bz, x2) = 8

(1 —1‘1) (2—"3}'1 —‘.’I]Q)
x (=6 + 8xy — 322 + 1223 — 1la1z2 + 25iz2 — 875 + 47123 + 273)

(D.20)
—(1—x3) (2-2x;+ 23— 222+ 11 7
Ba(z1,22) = ( ) (2 @ —1561 _Ix2) 2 2122) , (D.21)
2 (1— 2—2x) — 220 + X1 T2 + 25
Bs(z1,22) = ( 72) ( Q_I;_l _;22 12 2) , (D.22)
8
Blonw) =5 0,
x ( — 10 + 162, — 722 + 3 + 2219 — 23212
+5z%1y — 1622 + 81123 + 45 ) , {D.23)
1— 2—4 2_4 3 215°
B5(.’L‘1,:L‘2) _ 4 ( 1‘1) ( £L‘12+ X T, +3r1x0 4+ 225 ) , (D.24)
— I — T2
—16 (xy + 22 — 1) \/(1—1131) (1 —x2) () + 22— 1)
Ci{zy,z0) = , D.25
1 (@1, 22) (1—x1) (2— 21— 22) (D-25)
8 )V —z) (01— Yz -1
C2(x15$2) = (371 R ) \/( lilll( 1.2) (:Bl = ) ? (D-ZG)
—8({l—=x 1— 1-— 2 — 1
C3(a:1,:c2) = ( :1"2) \/( 9:1) ( xz) (xl o ) ' (D-27)

1—1‘1
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(1—:13]) \/(1—1'1) (]*Eg) (.’L‘1+£C2—l)
2—1‘1—,’172 '

C4(I1,3’32) = (DQS)

4 (1 —x) (1 —x1) (1 —x) (21 + 32— 1) .

2—2’31*3)2

Cs(x1, 1) = (DD.29)

Colar, 2) — —16/(1—x)) (1 —x2) (11 + 22— 1) (3— 1, — 212) | (D.30)

2— x|~ T2

C‘T(LE‘],Z‘Q) =3 \/(1 - :1:1) (1 — .’L’Q) (.‘I?l - Iy — 1) . (D3l)

Finally, the functions F, G, and H in the 7 — pviy decay calculation are given by

F=FO4,p04 200 (D.32)
G =G +rGW 4+ 2G93 (D.33)
H=HO9 £y 4243 (D.34)

where F{-@ GO=-2 and HO-@ are the functions of z(= 2F,/m,), y(= 2£,/m.),
d(= 1+ B, cos 2} with 3, = /1 —4r/x? (r = m’/m2) and z = 7 — 0,,. These functions
are given by

8(—3-+2zx+2y) (222 +2zy + y?)
d
8z {x? 2 +4y) +ty (-3+y+y?) ta (-3+yt+4y’)}

22y {-6+y 5+2y)+2x (4 +3y)} d
220y (24 y) & (05

FO>z y.d) = —

32 (r+y) (-3+2x+2y) N B{6x*+ (6-5y)y—2x (4-+y)}
T d? d
—Br {-4—(=3+y)y+3z(l+y}+62°y 2+y)d, (D.36)

F(l}(:l?,’y,d) =

32 (—d 43z +3
FO(g g d) = o2 ;d?“ y)+4éjiy, (D.37)
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GO(x,y,d) =

GV (zx,y,d) =

G (z,y,d) =

H(O)(x,y,d) =

HY(z,y,d) =

HO(z,y,d) =

—8xz {42 +y (=1 +2y) +x (=2+6y)}
d

+ax? {—243y+4y +x (4 +6y) -4’y 2+y) d,

32 (-14+2x+ 21 Rr (6xr — o,
( d2 J) ’i‘ ‘I‘(d y)_lnzxz (2_|_y),

—96
@

-8y {r+y (-1+2x42y)
d
+4xy {2$2+2y (I+y)+z(-1+4y)}

2%y (—~1+dz 4 2y) d+22°y* 4,

2y (—1+2x+2y) By (—2+z+5y)
xd? d
—4z 3z —2y) y+ 6274 d,

—9%y 48y
py R

(D.38)

(DD.39)

(D.40)

(D.41)

(D.42)

(D.43)
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