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Abstract

In this doctoral thesis, we discuss how the type IIB supergravity is induced in IKKT matrix
model. After the establishment of the Standard Model of particle physics, the quantization
of gravity is one of the most impotant problems. Matrix models which propose non-
perturbative formulation of superstring theory might become the clue which solves this
problem.

IKKT matrix model has the picture that the spacetime is dynamically generated as a
discrete object made of N D-instantons (D(—1)). It is the impotant problem what fills the
role of the background when we deal with gravity in the matrix model. In this paper, we
introduce (N 4 1) x (N + 1) matrices and regard the extra 1 x 1 block as a background.
We may expect that the effective action for N D-instantons is modified by backgrounds so
that they live in a curved space-time. This is analogous to a thermodynamic system. In a
canonical ensemble, a subsystem in a heat bath is characterized by several thermodynamic
quantities like temperature and pressure. Similarly a subsystem of N D-instantons in a
“matrix bath” can be characterized by several “thermodynamic quantities”. We call this
extra D-instanton a “mean field D-instanton”.

We construct wave functions and vertex operators for N D-instantons by expanding
a supersymmetric Wilson loop operator. They form a massless multiplet of the N' =
2 type IIB supergravity and automatically satisfy conservation laws. The emergence of
conservation laws seems to be a sign of the local symmetry.

Next, we discuss the condensation of supergravity modes with the analogy between
thermodynamics and the multi-particle system of N D-instantons. The condensation of
a mean field D-instanton with an appropriate wave function fi(y, &) represents the back-
ground with various terms corresponding to the choice of the wave functions by integrating
over off-diagonal blocks of the one-loop effective action. In particular, a Chern-Simons-like
term is induced when the mean-field D-instanton has a wave function of the antisymmetric
tensor field. A fuzzy sphere becomes a classical solution to the equation of motion for the

effective action.
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1 Introduction

The Standard Model of particle physics which is a great accomplishment of modern physics
describes the three forces — the electromagnetic, weak and strong forces — as the gauge
theories of quantum electro-weak and quantum chromodynamics (QCD). These quantum
field theories describe the forces between particles by exchanging field quanta which are
the spin-1 gauge bosons: the photon for the electromagnetic force, the W and Z bosons for
the weak force, and the gluon for the strong force.

The gravitational forces can be also described as one of the gauge theories. The gauge
boson for the gravitational forces is the spin-2 graviton. The earliest attempts to unify
gravity and quantum mechanics were based on trying to fit general theory of relativity
into a quantum field theory like electrodynamics (QED). The aim was to find a set of
rules for calculating scattering amplitudes in which the photons of QED are replaced by
the gravitons of the gravitational field. In the framework of the quantum field theory,
however, the gravitational forces become increasingly strong at the higher order for the
perturbative calculation as the energy of the participating quanta increases wildly, and the
theory turned out to be violently out of control. Attempting to treat the graviton just as
“a point particle” gave rise to non-renomalizable divergence at short distances.

Superstring theory is the theory which considers extended 1D elastic strings as essential
elements of nature instead of point particles. The typical size of a string is very small. Its
scale is of the order of the Planck length which is 1.6 x 1073°m. Thus, in the far distance,
the string will effectively appear as a point-like object. Moreover, the spectrum of a closed
string contains a spin-2 massless particle that is the graviton. Superstring theory is our
most promising candidate to be such a high energy theory for gravity, as it regularizes the
divergences found in a quantum field theory of gravity.

Superstring theory is mathematically beautiful and consistent. But it offers us many
challenges to be a real framework for particle physics and cosmology, and has been studied
aggressively. The most important discovery in recent years is “D-branes”. D-branes are
surfaces that exist in superstring theory, and they have various dimensions. For example,
DO-branes are like particle and D1-branes are like string. D2-branes are two-dimensional

and can also be called membranes. And moreover, higher-dimensional objects can exist.



These non-perturbative objects which were found by J. Polchinski in 1995[1] had renewed
the understanding of superstring theory. Until then, we had thought that closed and open
strings were different objects, and there were five different superstring theories — SO(32)
type I, type ITA, type IIB, SO(32) heterotic and Fg x Eg heterotic superstring theories.But
the discovery of D-branes enables to introduce dualities into five superstring theories, and
interpret that five 10D string theories are themselves a Kaluza-Klein compactification of
an 11D theory which became known as “M-theory”.

M-theory appears to be basic for all superstring theories. The five different versions
of superstring theory are just different ways of compactifying the extra-dimensions. But
M-theory is not itself a string theory. It has no strings, and the argument that string is
only the fundamental object becomes weak. Indeed, some attempts to treat D-brane rather
than string as a fundamental object were suggested, like BFSS matrix model[2].

It can be seen from the fact that Einstein’s theory is based on Riemannian geometry,
the gravitation is closely related with spacetime geometry. Therefore the quantization of
gravity is the same as the quantization of spacetime geometry. The problem is what is the
quantized geometry instead of Riemannian.

Spacetime needs to be quantize at the region that the gravity becames strong such as
the beginning of universe. At that time, the spacetime described by Einstein’s gravitation
theory is crushed and becomes a point, and Riemannian geometry becomes nonsense. If
it was true that universe came from “nothing” at first, then spacetime should be itself
semi-classically generated by the dynamics of multi-D-branes system. Therefore the cor-
rect theory quantizing spacetime would be the supersymmetric matrix model which has
“D-instantons(D(—1))” — all of the spacetime degrees of freedom are jammed into ma-
trices. That is just IKKT matrix model, which was proposed by N. Ishibashi, H. Kawai,
Y. Kitazawa, A. Tsuchiya in 1996[3]. This model is beautiful in the sense that it has
high symmetry such as the Lorentz symmetry, the N' = 2 type IIB supersymmetry and
the SO(9,1) rotational symmetry. The action of IKKT matrix model is the same as the
effective action for N D-instantons [4]. This correspondence suggests a possibility that
D-instantons(D(—1)) can be considered as fundamental objects to generate both of the
space-time and the dynamical fields (or strings) on the space-time. The bosonic matrices

represent noncommutative coordinates of D(—1)’s and the distribution of eigenvalues of the



bosonic matrices A, is interpreted to form space-time. Although there are still many issues
to be resolved, IKKT matrix model is solving fundamental and philosophical problems of
quantum gravity, for example, why spacetime is just four dimension[5, 6].

In this paper, as a threshold for the quantization of gravity from IKKT matrix model,
we consider the matrix model to be an effective theory for D-instanton multiparticle system,
and induce 10D supergravity multiplet using an analogy with ”thermodynamics”. Namely,
we think that several geometrical quantity, such as the metric, in the multi-D-instanton
system can correspond with several thermodynamical quantities, such as the temperature,
in the heat bath.

The contents are as follows. In chapter 2, as a first step, we review IKKT matrix model.
At the beginning, we propose IKKT matrix model as the Green-Schwarz action of type IIB
string in the Schild gauge. Then we discuss the classical solution for the static D-strings
in the matrix model and consider the one loop effective action of the model. And, we
examine interactions between diagonal blocks and cluster property. Finally, conjecturing a
background as “heat bath” of matrices, we discuss the thermodynamic analogy to multi-D-
instantone. In chapter 3, we discuss what role N’ = 2 supersymmetry plays in IKKT matrix
model with the heat bath background, and we construct a supersymmetric Wilson loop
operator which is proposed by K. J. Hamada[7]. In chapter 4 and chaper 5, We construct
wave functions and vertex operators corresponding to 10D supergravity multiplet for the
N D-instantons by using the supersymmetry transformations and expanding a supersym-
metric Wilson loop operator. They automatically form a supersymmetry multiplet and
satisfy conservation laws [8]. Finally, in chapter 6, we discuss the graviton condensation of

the type IIB supergravity multiplets using the perturbative expansion of matrices.

2 IKKT matrix model

In this section, we review IKKT matrix model [3]. BFSS matrix model naturally describes
ten dimensional type ITA superstring. In analogy with BFSS in which the Lagrangian is
expressed in terms of DO-branes, we might expect that type IIB superstring is described in
terms of D-instanton variables. Namely, IKKT matrix model was proposed another matrix

model associated with type IIB superstring.
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2.1 The IKKT action from Schild form

The starting point in the IKKT approach is the Green—Schwartz action of type IIB super-
string theory in Schild gauge:

Ssenia = / Po [\/goé (}L{XM,XVV _ %\TJP“{X“, \IJ}) + Wg} , (2.1)

where the vector index p of X* runs from 0 to 9 and the spinor index «a of ¥, runs from
1 to 32. The fermion V¥ is a Majorana-Weyl spinor in 10D which satisfies the condition
'y = ¥, so that only 16 components effectively remain, and /g is positive definite
scalar density defind on the world sheet which can be identified wih \/det(g,;) made from

a worldsheet metric g,,, and the Poisson bracket is defined by

(X, v} = %gabaaxaby. (2.2)

The equation of motion for \/g in (2.1) becomes
1 1

——x

4 (v9)?

The action (2.1) have the N = 2 supersymmetry as follows;

(€0, X 0 X")? +8=0. (2.3)

1
sWy = —§eab3aXM8bX,,F“”e,
SWXH = jelny, (2.4)
and
P = ¢,
sAXH = . (2.5)

The path integral over the positive definite function /g, the bosonic matrices X* and the

fermionic ¥,
ZSchild = / D\/E'DX DY ¢ Oschild (26)

can be interpreted as the definition of the ”partition function” in the Schild formulation of
type 1IB superstring at least in the classical limit. Eq. (2.1) and (2.6) represent type 1B

superstring in the Schild formalism with fixed k-symmetry|[3].



The IKKT matrix model can be obtained from the representation (2.6) of type IIB

superstring in the Schild formulation by replacing

X, = AY, (2.7)
U, = ¢», (2.8)

where AZ” and ¥ are hermitian n x n bosonic and fermionic matrices, respectively.

The IKKT matrix model is defined by the partition function

Z:i/dAd@b e ™, (2.9)
n=0

with the action
1 5 1 _
S =« ~1 tr[A,, A — 5 tr (YI*[Au, ¢]) ) + Btrl,. (2.10)

The summation over the matrix size n in Eq. (2.9) implies that n is a dynamical variable
(an analog of /g in Eq. (2.6)). The action (2.10) closely resembles the Schild action (2.1) in
the sense of forms respectively. Indeed, when the matrix size n gets large value in (2.9) and
the distributions of eigenvalues for A, and v, becomes smooth enough, we expect that the
commutator and the trace can be replaced with the Poisson bracket and the integration,

respectively:

_i[v ] = { ) }7
tr = /d%\/g. (2.11)

This is the same as the ordinary correspondence between the quantum and classical me-
chanics. The similarity between the Eguchi-Kawai large-N reduced model, which is the
original spirit of IKKT, and string theory in the Schild gauge was investigated by Bars
some time ago for bosonic string case[9].

Furthermore we can easily check that the N = 2 supersymmetry (2.4) and (2.5) is
directly translated into the symmetry of the action (2.10) as
s[4, AT,
WA, = Pl , (2.12)

8



and

0PA, = 0. (2.13)

So, if we interpret the eigenvalues of the matrices A, as “space-time coordinates”, then

the above symmetries can be regarded as 10D N = 2 space-time supersymmetry.

2.2 Classical solutions of static D-strings

The classical equations of motion for the Schild action (2.1) read
{X* {X,, X,}} =0, {X* ("), }=0. (2.14)
Their matrix model counterparts are
(A% A, AT =0, (A", (Tue)a] =0, (2.15)

which are got by being solved for n x n matrices A, at infinite n.
We can easily construct a solution of Eq. (2.14), which represents a static D-string

extending straightly in the X! direction:
xt = (17, L0 0 v =0 (2.16)
12 ) 27T Y LA Y (6% J *
where T and L /27 are large enough compactification radii and
0<7<1, 0<o<27. (2.17)

Considering the relation between the commutator and the Poisson bracket, we obtain a

solution of Eq. (2.15) corresponding to the above one as follows:

T L
A = , ,0,...,0), =0, 2.18
: (mq Normia v (2.18)

where the (infinite) n x n matrices p and ¢ obey the canonical commutation relation;

lg,p] =1, (2.19)



and

0<qg<vV2mn, 0<p<+2mn. (2.20)

while T'/+/27n and L/v/2mn are (large enough) compactification radii. They are operator-
like solutions because such p and ¢ can not exist for finite n but Eq. (2.19) can be ap-
proximately satisfied as the canonical commutation relation for large n. An argument
which supports identification of the classical solution (2.18) with static D-string is that the

interaction between two D-strings is reproduced at large distances [3].

2.3 One-loop effective action

The calculation of the one-loop effective action in the IKKT matrix model at fixed n can
be performed for an arbitrary background, Af} and ¢, obeying the classical equations of
motion (2.15).

To expand around the classical solution, we decompose matrices,

Ay = A+ ay, (2.21)
Yo = Yo+ Pa (2.22)
where AZ] and ¢ are (classical) backgrounds and a, and ¢, are quantum fluctuations.

We expand the action (2.10) (a« = 1 and 5 = 0) up to the second order for the quantum

fluctuations as follows;

where
1 1 -
Sy = — b [AS, AS? — Str YITHX,, 0 (2.24)
c c c v ]' RS C ]' — C C ]' C c
Sl =tr <_[A,}7Ayl] [A lﬂ’a ] - §¢ lrﬂ[aluw 1] - §SOF“[A,},¢ l] - §¢ 1FH[AM17 90]> )
(2.25)
and
Sy = tr[ —I[AL A", 0] — S[AM @)[AT q,] — S[AW 0*][ay,, AS]
2 wo v Y 2 9 wo 2 9 123 v
1 - c e
— écpr“[A;, ©] — VT (a,,, go]) . (2.26)

10



S1 vanishes due to the equations of motions, or is dropped in the back ground field method.

To fix the gauge invariance, we add the gauge fixing and the Faddeev-Popov term
1 C C. C
E——— (g[A,}, 0?4 A2 Bl[A c]) | (2.27)

where ¢ and b are ghosts and anti-ghosts. In the following, we set 1) = 0. And when we

drop the first order term of the quantum fluctuations, we obtain

Sy = So+ Sy rirp
1 1
= - (G AL A o)+ ST Al + AL A% 229
We rewrite the action (2.28) as

- 1 1 _
So=Tr (5%(192% — 2iF,,)a, — §@F“Pmp — @, [a,, @] + bP%) , (2.29)

where the adjoint operators P, and F,, are defined on the space of matrices by

b = [AZI’ ’ } ’
Fur = [ 1 =014 A7] - ]
o, = W&la ’ ] ) (230)

and 77 is the trace for the adjoint operators. From (2.29), the one-loop effective action W
is evaluated as

W=W,+W; =— 1n/dadg0dcdb e 5 (2.31)

where

B , | 1 s i\ (14T
Wy = STrin(Phn, —2iF,) 4Tr1n<(P + 5l )( 5 )

~Trn P?, (2.32)

1 1 1
W, = ~Trin(n, (—> OT—T, ) . 2.33
=3 rn("“ VY- RS ) (2:33)

The first term on the right hand side of Eq. (2.32) comes from the quantum fluctuations
of A,, the second and third terms which come from fermions and ghosts have the minus
sign for this reason. The same thing is applicable also about the terms of Eq. (2.33). The

extra factor 1/2 in Wj, and Wy is because the matrices A and 1 are hermitian.

11



If A5 is diagonal
A = diag (p,....p"), WY =0, (2.34)

which is a solution of Eq. (2.15) associated with the flat space-time, then F),, = 0 and

1 1
Wb:(§'10_1'16_1) tr log(P?) =0, Wy=0. (2.35)

The plane vacuum is a BPS state. Namely, half of the supersymmetry is preserved in these
backgrounds.

The same thing is proper (to all loops) for any Af} whose commutator is diagonal:
(A AT = (2.36)

where ¢, are c-numbers rather than matrices. Such solutions preserve [3] a half of SUSY

and are BPS states.

2.4 Long range interactions without fermionic backgrounds

In this subsection, we investigate the interactions between diagonal blocks for the one-loop
effective action (2.31). By considering such interaction, the gravitational interactions can
be observed and type IIB supergravity is expected to be reproduced. Graviton and dilaton
exchange are culculated in [3, 10].

At the beginning, we consider backgrounds having a block-diagonal form:;

o
AN = p‘u = pLQ) 5 (237)

where pﬁf) (i=1,2,---) are n() x n matrices. We can interpret each pff) as a D-object

occupying some region of space-time. We use a term D-object to represent D-instantons,
D-strings, D3-branes, --- , and their composites. We decompose pg) into diagonal and

off-diagonal parts as follows;

trp) = 0, (2.38)

12



where x,(f) is a real number and represents the center of mass coordinate of the i-th block.

We assume that blocks are respectively separated far enough from each other, that is,
1/ \/m are so small for all of ¢ and j that we can expand the bosonic term of the
one-loop effective action (2.32) perturbatively.

Actually, we expand the bosonic term of the one-loop effective action (2.32). We can
take traces of the I'-matrices after expanding the logarithm in Eq. (2.32). Due to the
supersymmetry, contributions of bosons and fermions cancel each other to the third order

in F),,, and we have,

1 1 1 1 1 1 1 1
Wb == —TT‘ (ﬁfMVﬁFVA_zf)‘PﬁfPM) — 277‘ <ﬁfuyﬁf)‘pﬁfupﬁf>\y)
1 1 1 1 1 1 1
+ TT (PQf/W P2fuyp2f,\pp2./f,\p> ZTT <ﬁfuuﬁf)‘pﬁfuuﬁf/\p)
+O (Fuw)?) - (2.39)

P, and F,, operate on each (i,j) block independently, therefore the one-loop effective
action W, is expressed as the sum of contributions of the (4, j) blocks Wb(” ), and Wb(” ) can
be recognized as the interaction between the i-th and j-th blocks. We can easily calculate

W) to the leading order of 1/r (where r = \/(z@ — z0))2 ) as

i, 1 i i
WD = AT FrFopFon) = 210 (Fo Py Fo)
+ ST (Fu FunFrnFrp) + Zﬂwwwﬂpfwﬂp)}
30 o i
= ﬁ{—”ij(f())—mbs(f(”)
=St QS w (F91D) + w (FDSD e (P} (240
where

(1) = {0 UuwFonfofn) + 20 (FuFpfupfn)
tr (ful/fuuf)\pf)\p) - ;l tr (ful/f/\pfuuf)\p)}- (241)

In order to investigate the gravitational interaction, we consider the “photon-photon scat-
tering amplitude” on the brane as in [10], which amplitude corresponds to nonplanar

diagrams in noncommutative gauge theory. If we impose the forward scattering limit on

13



the amplitude, then we have

Vards [ i dy L E () () ov
~12(5 7 [l [ bl (o) ) 0 )W) (242

where C' is the determinant of the c-number ¢, of Eq. (2.36). This is expected to be just

graviton exchange.

2.5 Thermodynamic analogy to multi-D-instantone

As in the previous subsection, the interactions between two blocks are weaker than or
equal to 1/r®. Therefore, when D object is fully located in the distance from each other,
they can exist independently and a system owns the cluster property. Indeed, Eq. (2.42)
consists of the product of x- and y-systems. With the cluster property, the trace parts
of diagonal-blocks become collective coordinates. Moreover the blocks obtain the physical
meaning as the centers of mass of the D-objects. In other words, space time coordinate is
dynamically generated as a trace parts.

Now, IKKT matrix model is also considered as an effective theory for N D-instantons
(D(—1)) [4]. Therefore D-instantons could be considered as fundamental objects to gen-
erate both the spacetime and the dynamical fields. That is to say, the space-time is
constructed by distribution of D-instantons.

If we take the above interpretation, how can we interpret the SO(9,1) rotational sym-
metry of the matrix model action? This symmetry can be interpreted in the sense of mean
field. Namely we can consider that the system of N D-instantons are embedded in larger

size (N + M) x (N + M) matrices as

ND(-1)

: (2.43)
“heat bath” of M D(—1)

and consider the action (2.10) as an effective action in the background where the rest

M eigenvalues distribute uniformly in 10 dimensions. If the M eigenvalues distribute
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inhomogeneously, we may expect that the effective action for N D-instantons is modified
so that they live in a curved space-time. This is analogous to a thermodynamic system.
In a canonical ensemble, a subsystem in a heat bath of matrices is characterized by several
thermodynamic quantities like temperature. Similarly a subsystem of N D-instantons in
a “heat bath” can be characterized by several thermodynamic quantities. Under such
thermodynamic picture, what does the N/ = 2 type IIB supersymmetry, which is the other
feature of IKKT matrix model, fill the role of?7 We would talk about the interpretation

and the role of supersymmetry of IKKT matrix model in the next section.

3 Supersymmetric Wilson loops in IKKT matrix model

In this section, we discuss the AN/ = 2 type IIB supersymmetry which IKKT matrix model
has, and supersymmetric Wilson loop operators. By virtue of this supersymmetry, we
expect that the configuration of the M D-instantons can describe condensation of massless
fields of the type IIB supergravity and the thermodynamic quantities of the heat bath of
matrices are characterized by the values of the condensations. And the supersymmetry
Wilson loop operator is necessary for introducing the type IIB supergravity multiplets and

the corresponding vertex operators.

3.1 N =2 supersymmetry and mean field D-instanton

As we have seen in Eq. (2.12) and Eq. (2.13), IKKT matrix model has the N" = 2 type IIB

supersymmetry

§A, = il b,

| (3.1)
o0 = —5[Au, AT e+ €y,

we expect that the configuration of the M D-instantons can describe condensation of
massless fields of the type IIB supergravity and the thermodynamic quantities of the heat
bath of matrices are characterized by the values of the condensations.

In order to discuss which type of configurations for M D-instantons correspond to the
condensation of massless type IIB supergravity multiplet, we consider the supersymmetry

transformations (3.1) in the system of N + M D-instantons (2.43). In particular, from

15
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the corresponding vertex operators.

3.1 N =2 supersymmetry and mean field D-instanton

As we have seen in Eq. (2.12) and Eq. (2.13), IKKT matrix model has the N" = 2 type IIB

supersymmetry

§A, = il b,

| (3.1)
o0 = —5[Au, AT e+ €y,

we expect that the configuration of the M D-instantons can describe condensation of
massless fields of the type IIB supergravity and the thermodynamic quantities of the heat
bath of matrices are characterized by the values of the condensations.

In order to discuss which type of configurations for M D-instantons correspond to the
condensation of massless type IIB supergravity multiplet, we consider the supersymmetry

transformations (3.1) in the system of N + M D-instantons (2.43). In particular, from
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here, we consider the simplest case that the background is represented by one D-instanton
(namely M = 1). This simplification can be considered as a mean field approximation
that the configuration of M D-instantons is represented by a mean field described by a
single D-instanton. We call this extra D-instanton a mean field D-instanton. This
kind of idea was first discussed by Yoneya in [11]. We hence embed N x N matrices into
(N +1) x (N + 1) matrices as

Al — AH a/lu‘ ¢l — w SD
o ’

(3.2)
al, Y, ot €

Here we use A, ¢’ for (N + 1) x (N + 1) matrices and A,, ¢ for N x N parts of the

matrices. (y, &) is the coordinate of the mean field D-instanton and its configuration (or the

wave function) f(y, &) specifies a certain background of the massless type I1IB supergravity

multiplet. The supersymmetry transformation (3.1) for (A4, ¢') can be rewritten as

dA, =iel 1),
oy, = i€l &, (3.3)
da, = el o,
and
%( ww + aua — al,aT)F’“’e + €1y,
%(aT a, — aTa )Fl“je _|_ E (34)
590 = _% {(A yu)al/ - (AV - yu)&;t} I"IJVE’
where F,, = [A,,A,]. We can obtain an effective action for the diagonal blocks by in-

tegrating the off-diagonal parts a,, ¢. In the leading order of the perturbation, we can
neglect terms depending on the off-diagonal fields and the susy transformations are given

by

0A, = i€l 1, (3.5)
) = —%F#VF"VG +¢€,
0y, =€l &, (3.6)
06 =¢€.
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The first transformations for N D-instantons are the same as the original susy transforma-
tions, eq. (3.1). The second ones are N = 2 supersymmetry transformations for the single

mean field D-instanton. The generators of the former are given by

) 1 )
€l = ) 71—‘ - — —F FMV P .
te 2(6 MQ/J) 514“ 2 j22%4 an’ (3 7)
)
@QQ = E@, (38)
while those of the latter are given by
0

g = el ,&{— 3.9

—/ / 0

€{> € 8_5 (310)

In order to obtain the correct wave functions f(y,&) corresponding to the massless su-
pergravity multiplet, we need to obtain the multiplet of wave functions that transform
correctly under the supersymmetry transformation (3.6).

When the supersymmetry transformations (3.6) act on wave functions of the form

e~ *Y f(£), they become

epf(&e ™ = (k&) f(&)e ™,
Eqf(&)e ™ = 6/8_5 (&)™, (3.11)

3.2 Supersymmetric Wilson loop

In order to construct wave functions fa(£)e™™*%¥ and vertex operators V(A" ;&) that
transform covariantly under supersymmetries (3.6) and (3.5) respectively (A denotes a
field of a massless N/ = 2 supergravity multiplet), we first consider a supersymmetric
Wilson loop operator first introduced in [7] for the IIB matrix model;
w(C) = tr H i@ eIk A =501 (3.12)
j=1
Since we are interested in the massless multiplet, we here consider the following simplest

Wilson loop operator
wA k) = @ tret A @ (3.13)
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We will then show that by expanding the operator w(\, k) we can obtain a set of wave
functions and vertex operators. Hereafter, we assume that the NV x N matrices A, and v

satisfy the equations of motion,

A%, 1Ay 4] = 5 (CoT) p {8h0s 05} = (3.14)

I'"[A,,¢] =0. (3.15)
First we show that w(A, k) is invariant under simultaneous supersymmetry transforma-

tions for N x N matrices A*, 1) and the parameter (A, k). When we act supersymmetry

transformation e?! on w(\, k), it becomes
e w(\ k)e @ = efQ1 AR etk A AR~
e(Aung\)Ge(ngZ\)Ql treikA 6—(X+€)Q16(AVEFW\)G
= w(e+ A\ k). (3.16)
Here G is the generator of U(N) transformation and we have used the commutation relation
[61Q1,60:] = 2A4"6T,6 G

7T L s 0
+ <—§(61F’u€2)ru + m(ﬁl—w . GQ)FM'“/%) FAV“;@M@'

The second term on the right hand side vanishes due to the equation of motion (3.15). Simi-

(3.17)

larly for the other supersymmetry transformation e“?2, the Wilson loop operator transforms
as
e Ly(\ ke @2 = A el AR
_ Q1@ AT T kA, ~IATWE) 5 —eQ2 - AQ:
= ¢ () k), (3.18)

where we have used the commutation relation

0
DA
From (3.16) and (3.18), the following two relations for the supersymmetric Wilson loop

[€1Q1, E2Q2] = —i (61 €q) (3.19)

operator are obtained;

[€Q1,w(\ k)] — e%w()\, k) =0, (3.20)
[€Qq, w(\, k)] + (Me)w(N\, k) = 0. (3.21)
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These relations mean that the supersymmetric Wilson loop operator is invariant if we per-
form supersymmetry transformations (3.5) simultaneously with the supersymmetry trans-
formations for (A, k). By expanding w(\, k) in terms of an appropriate basis of wave

functions for A as

WA k) = fa€) ValAu 5 k), (3.22)
A
we can define supersymmetry transformations for the wave functions by
M 9
SPFNE) = (ENFNE). (3.24)

These transformations are the same as (3.11) except that these two supersymmetries are
interchanged. As we explain later, the interchanging can be realized by a charge conjugation
operation.

The Majorana-Weyl fermion A\ contains 16 degrees of freedom and there are 2'¢ inde-
pendent wave functions for A\. To reduce the number, we impose massless condition for the
momenta k. Then since A has only 8 independent degrees of freedom the supersymme-
try can generate only 2% = 256 independent wave functions for A\. They form a massless
type IIB supergravity multiplet containing a complex dilaton ®, a complex dilatino P, a
complex antisymmetric tensor B,,,, a complex gravitino ¥, a real graviton %, and a real
4-rank antisymmetric tensor A, ..

We now define a charge conjugation operation on the massless wave functions f(\, k).
The charge conjugation is an operation to interchange a wave function with p (< 8) A’s

and that with (8 — p) X’s. It is defined by

(CHCR) = F(C k) = / A PP R), (3.25)

where the integration of A is performed with respect to eight A’s included in fA. The

integral measure is normalized so that C?=1. Acting C? =1 on a wave function, we get
CNWR) = [0 k) = [acllae £+ X,k
L~ /
=[G+ ). (3.20
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If we take a special momentum k* = (E,0---0, E) and use the Gamma matrices given in

appendix, we have
%(C}M)S = (2E)8(C9C10 <+ C16)(Ag -+ - A1), (3.27)

and the normalization of the integration is given by

/[dC] (2E)*(Co -+~ Ci6) = 1. (3.28)

It is easy to show that supersymmetry transformations for the charge conjugated fields are

interchanged between 6() and §(?;

V¢ R) = (k) f(C) = 8P f4(Q), (3.29)

GOPF(CR) = a% (¢) = 60 f(0). (3.30)

4 Wave functions corresponding to type IIB super-
gravity multiplets

In this section we derive wave functions f(A, k) for a massless supergravity multiplet by
using the transformations (3.23) and (3.24). It can be seen that these wave functions
satisfy the susy transformations of the type IIB supergravity. We refer to the works of
J. H. Schwarz and P. C. West [12] and of Y. Kitazawa [13] for the type IIB supergravity

transformation.

4.1 Dilaton ® and dilatino ®

We start with the simplest wave function which can be interpreted as a dilaton field ® in

the type IIB supergravity multiplet;
O\ k) =1. (4.1)

Dilatino wave function ® can be generated from the dilaton wave function ® by super-
symmetry 6 as
SDD(N k) = e\ = ed(\, k). (4.2)
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satisfy the susy transformations of the type IIB supergravity. We refer to the works of
J. H. Schwarz and P. C. West [12] and of Y. Kitazawa [13] for the type IIB supergravity

transformation.

4.1 Dilaton ® and dilatino ®

We start with the simplest wave function which can be interpreted as a dilaton field ® in

the type IIB supergravity multiplet;
O\ k) =1. (4.1)

Dilatino wave function ® can be generated from the dilaton wave function ® by super-
symmetry 6 as
SDD(N k) = e\ = ed(\, k). (4.2)
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Hence the dilatino wave function is given by
DN k) = FA. (4.3)
The dilatino wave function automatically satisfies the equation of motion

ko =0, (4.4)

because of the massless condition k% = 0. Then we can show the supersymmetry transfor-

mation between the dilaton and the dilatino;

WD = fe = TPe(—id, D). (4.5)

4.2 Antisymmetric tensor field B,

The wave function of the next field, an antisymmetric tensor field contains two A’s and can
be generated from the dilatino wave function by 6®) transformation as

. 1 _ ]
SPB(N k) = =€ iy (Ko AT N) = —if“”peHWp, (4.6)
We identify H,,, as the field strength of the antisymmetric tensor B, (A, k),
H/w,o = i(kuBl/p + kVBpu + kPBMV>' (4-7)
Then the wave function B, is given by

1 1
Bu,(\ k) = —éb,w + (kv — kyvy) = —§b,w + kpuvy), (4.8)

where v, represents gauge degrees of freedom corresponding to the two form gauge field

B,,,. Here we have defined an antisymmetric bilinear of A by
buy(A) = EP(AT ,0). (4.9)

They are the only independent bilinear forms constructed from 8 independent massless
spinors (namely nonzero component of f\) and there are sCy = 28 degrees of freedom.

This number can be understood as follows. b, satisfies two relations

kb, = 0, (4.10)
b X = 0, (4.11)
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and an independent number of each relation is 9 and 8. Hence the number of independent
by is 1002 — 9 — 8 = 28. The proof of the second relation (4.11) is given in the appendix.
For simplicity we fix the gauge degrees of freedom as v, = 0. For the wave function

(4.8), the equation of motion for the antisymmetric tensor is satisfied,
K*H,,, = 0, (4.12)

because of k2 = 0 and

kB, = 0. (4.13)

A variation under the other supersymmetry 6(!) of the wave function B (A, k) is calculated

as
sWB,, = —,,o. (4.14)

4.3 Gravitino ¥,

A gravitino wave function contains three A’s and can be generated from B, through 5

supersymmetry transformation. It is defined through the susy transformation
6P B, = 2i(eT, U, + k). (4.15)
A" is a gauge transformation parameter. Since the left hand side of (4.15) becomes
5By = (N B\ K) =~ (e, (4.16)

we can identify the wave function

i

U, (\ k)= —24(l€pI”’p)\)bW, (4.17)
and the gauge transformation parameter
A\ k) = —é(él“”)\)b,w. (4.18)

The wave function (4.17) automatically satisfies the equation of motion

ke, THPW = 0, (4.19)
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With the gauge choice in (4.17), this equation of motion is equivalent to
k¥, =0, (4.20)

because of

TH, = k"W, = 0. (4.21)

The supersymmetry transformation 8" for the gravitino wave function is given by

SOWUAK) = o ()b + 2T EN) ()

1
= opq OV ety = Lyypoe ] + (gauge tr.). (4.22)

4.4 Graviton h,, and 4-rank antisymmetric tensor A, ,,

In the wave functions containing four A’s there are two fields, graviton h,, and 4-rank an-
tisymmetric tensor field A,,,,. These wave functions can be read from the supersymmetry
transformations of the gravitino field as

1
45!

[PPT eF,, .. + (gauge tr.). (4.23)

5O, (k) = %FA”kph,Me +
Here the field strength F),, .- (A, k) is defined by
Fvpor = tkyAypor + (antisymmetrization) = ikj, Aypor - (4.24)

Since the left hand side becomes

S, (N k) = (fN)T, (4.25)
4 — v
= BN
Z’ 14 (o 102
= ﬂF Pek,b," boy + 5116 QF" P2P3PY ek b pabpspa — (gaTIGE t1.) |
(4.26)
we have the graviton wave function h,, as
1,
Py (A, k) = %bu bow. (4.27)
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Because of the identity b,,0"" = 0, the graviton wave function is traceless. By using the

self-duality of F}, 07,

o Fyps = Fpl'“pSqulu-ps + SV E (4.28)
= 1007 F, (4.29)

we can also obtain the wave function for the field strength as

1

Fpl"'ﬁ4# = mk[ﬂb

p1p2 bﬂ3p4] . (430)

and hence for the 4-rank antisymmetric tensor A, ...,, as

i

Apypi (A k) = _Wb[mpszsm]a (4.31)

up to gauge transformations. It can be checked directly that the field strength F),, ., is
self-dual with this wave function.

Under the other susy transformation 6(), these wave functions transform as follows,

Wh,, = —%EF(M\I/V) + (gauge tr.), (4.32)
1 _
5(1)Am,pa _mer[qu’d + (gauge tr.), (4.33)

where a round bracket for indices means symmetrization with a weight 1.

4.5 Charge conjugation and the other wave functions

The other wave functions in the massless supergravity multiplet can be similarly con-
structed by using the supersymmetry transformations. In the following we instead make
use of the charge conjugation operation (3.25) to obtain the other wave functions.

First the charge conjugation of the dilaton field is given by

) Ab\7b Q). (4.34)

() = [N P = RE)(Gr- o) = by

The determination of the coefficient is straightforward but not easy to obtain. We have
determined the coefficient by using a computer and verified that it is consistent with the

susy transformations of the wave functions.
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The charge conjugated dilatino wave function becomes
(¢, k) = / [dA] P DN k) = ékal““”a)\bypbp“bw. (4.35)
It also satisfies the same equation of motion as the dilatino field
fd© = 0. (4.36)
By taking the charge conjugation of the transformation (4.2) and (4.5), we have

SMde(¢, k) = €d°(C, k), (4.37)
6P 0e(¢, k) = Te(—id), d°). (4.38)

The wave function for the charge conjugated antisymmetric tensor field is given by
c 32\ 1 oo
BHV(g’ k) - [d/\] € BNV()‘7 k) = _abupb bcn/‘ (439)

From transformations (4.6) and (4.14), we have supersymmetry transformations for the

charge conjugated field as

- i
SW(C k) = — o T e(Howy)", (4.40)
sABe, = —l,," (4.41)

Finally the charge conjugated gravitino wave function becomes

l

U6k = [ P, 00) = — T, (4.42)
and its supersymmetry transformation is given by
B, = 2i(el, ) + kiAy), (4.43)
1
(5(2)\112((’, k) = ——[9I"%e(H,,,)" — T wpee(H"?)°] + (gauge tr.). (4.44)

24 -4

Graviton and 4-rank antisymmetric tensor field are invariant under the charge conju-
gation:

ey =P s A = A (4.45)

nvpo
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Therefore we have the charge conjugated supersymmetry transformation as

SO = %F”pk’phwe 2 : ST e F g + (auge tr), (4.46)
6Ph,, = —%EF(M\IJIC,) + (gauge tr.), (4.47)

1 — c
0D A = —mef‘[wp\lfa] + (gauge tr.). (4.48)

We summarize the wave functions for the massless multiplet and their supersymmetry

transformations in appendix.

5 Vertex operators in IKKT matrix model

In this section, we construct the vertex operators in IKKT matrix model.The construction
can be done systematically by expanding the supersymmetric Wilson loop operator in terms
of the wave functions f4(A) constructed in the previous section. Such vertex operators were
obtained up to leading order of k, by Kitazawa[13] for the type IIB matrix model by using
the supersymmetry transformations. But, in this section, we give the vertex operators
with more higher order of k,. And we see that they automatically form a supersymmetry
multiplet and satisfy conservation laws.

In BFSS matrix model, such vertex operators corresponding to the supergravity mul-
tiplets were also constructed by one-loop calculations in fermionic backgrounds[14] or by
using supersymmetry transformations of the Wilson loop operator[15]. Vertex operators

for matrix strings were also constructed in [16].

5.1 expansion of supersymmetric Wilson loop operator

First we rewrite the Wilson loop operator (3.13) in terms of the supersymmetry transfor-

mations of (ik - A) as follows,

w\ k) = 9 trethA @

tr e©, (5.1)
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Therefore we have the charge conjugated supersymmetry transformation as

SO = %F”pk’phwe 2 : ST e F g + (auge tr), (4.46)
6Ph,, = —%EF(M\IJIC,) + (gauge tr.), (4.47)

1 — c
0D A = —mef‘[wp\lfa] + (gauge tr.). (4.48)

We summarize the wave functions for the massless multiplet and their supersymmetry

transformations in appendix.

5 Vertex operators in IKKT matrix model

In this section, we construct the vertex operators in IKKT matrix model.The construction
can be done systematically by expanding the supersymmetric Wilson loop operator in terms
of the wave functions f4(A) constructed in the previous section. Such vertex operators were
obtained up to leading order of k, by Kitazawa[13] for the type IIB matrix model by using
the supersymmetry transformations. But, in this section, we give the vertex operators
with more higher order of k,. And we see that they automatically form a supersymmetry
multiplet and satisfy conservation laws.

In BFSS matrix model, such vertex operators corresponding to the supergravity mul-
tiplets were also constructed by one-loop calculations in fermionic backgrounds[14] or by
using supersymmetry transformations of the Wilson loop operator[15]. Vertex operators

for matrix strings were also constructed in [16].

5.1 expansion of supersymmetric Wilson loop operator

First we rewrite the Wilson loop operator (3.13) in terms of the supersymmetry transfor-

mations of (ik - A) as follows,

w\ k) = 9 trethA @

tr e©, (5.1)
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where G is given as a finite sum

G = z’k~A+[5\Q1,ik-A]+%[5\Q1,[;\Q1,ik'f4ﬂ+“'
+%[)\Q17... ,[;Qlyeikﬂ] 4.

(5.2)

[l
N
Q

Note that the sum terminates at ¢ = 8 because there are only 8 independent \’s for on-shell

(k* = 0) Wilson loop operator. Each term can be evaluated as follows;

Go = k-4, (5.3)
Gr = —(), 55
G = 1AL (5.5)
Gy — _%bwww’flu]’ (5.6)
G = %{%b“”(AFWUA)[[A”,A”],AV]—z'b“”[AFu@/J,AFﬂ/J]}v (5.7)
G = g { P Or BT, A7) ) 4 30 O, A A} 59

Note that GG,, contains n A’s. In order to obtain a vertex operator of each field, we need to

expand w(A, k) and collect all terms with the same number of A as

WA k) = tr (ARG

. 1 3.
= Str €Zk'A |:1 -+ G1 + (§G1 . G1 + G2> + <(G1)

3!

+G1-G2+G3>

GH. 1 1
+ <—( 4}) + E(G%) -G + é(Gg) +G1-Gs+ G4)

G5 _ 1 1 1
+ (( 5}) + g(G?) -Gy + §G1 (G3). + E(G%) Gz + Gy Gy
—I—Gl G4+G5)

+] (5.9)
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Here ”Str” means a symmetrized trace which is defined by

Str ¢*4B; - By - - / di / dty - - / dt,_1
t1 tn—2

Xtr elk‘ AtlB elk‘ A t2 tl)BQ . ik‘A(tn—I*tn—2)B 1€ik~A(17tn_1)B
n—

n

+ ( permutations of B;’s (i =2,3,--- ,n) ). (5.10)

The center-dot on the left hand side means that the operators B; are symmetrized. We

denoted Gy - G --- Gy as (G}).. Various properties of the symmetrized trace is given in
————

n
the appendix. For notational simplicity we sometimes use Str with a single operator like
Str (e*4B) which is equivalent to an ordinary trace. If we set k = 0, the symmetrized

trace becomes

Str(B; - By - - Ztr W Bi, - Bi.). (5.11)

" perm.

5.2 Dilaton ® and dilatino ®
Dilaton vertex operator V?® is given by the leading order of \, namely a term without \,
V= tr et (5.12)

Dilatino vertex operator V? is read from the term with a single \. This is also easily

obtained as

r e®AG) = tr e A(=AfY) = (tr &P D) - (FN), (5.13)

V= tr ey, (5.14)

5.3 Antisymmetric tensor field B,

The vertex operator for the antisymmetric tensor B, can be obtained from the terms with

two A’s;
(1 1 , :
Str ¢t (éal-aﬁ@) — Str o4 <§(Ak¢) - <Ak¢>+§bﬂ%AM,Ay])

) 1 _ )
= Str e™4 (—ﬁk”(w T ph) + i[AM,AV]) b (5.15)
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Hence the vertex operator for the antisymmetric tensor field is given by

- 1 i
V/f, = Str elk-A (Ekﬂ(w . ijpw) — 5[14/“ A,j]) . (516)

This vertex operator satisfies

KV =0, (5.17)

which assures the gauge invariance of the coupling with the wave function obtained in the

previous section, B*(\) V7.

5.4 Gravitino ¥,

The 3rd order terms give the gravitino ¥, vertex operator as
Str e'F4 <%G1 -G1-G1+ Gy -Gy + G3>
_ Str it <-é(}k¢)? _ %(};w)bw (A, A — éb’“’[AM, mm) - (5.18)
Here the following relation is useful,

bu(\) (M) = i {07k (AT gy10) — b,k (AT gppt0) — kb (ATot)) + kb (AT500) }

(5.19)
Using this relation, the first term on the right hand side of (5.18) becomes
{—5—2% e AP (¢ - Typth) - wry] TH(N), (5.20)

where W#(\) is the wave function of the gravitino (4.17). Similarly the second term on the

right hand side of (5.18) is rewritten as
. ; _ 1 _
Str e [—f—QkaM" (VL) - [A, A — 6bW (AT 0) - [A,, ik - A]} : (5.21)

By using the relation (E.3) in the appendix, it is easily understood that the last term
cancels the third term of (5.18). Therefore the terms with three \’s become

Str e'*4 (%(Gi’). + GGy + G3>
= Strett4 (—ék”(@ Lwpth) — 2[AH,AV]> STV x UH(N), (5.22)
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and thus we have the vertex operator for the gravitino

- i -
vVl = Stre*4 (—Ekp(w L) — 2[AH,AV]> ST,
. 1 1
— _étr/ dtl/ dtg eik-Atlz/_)eik-A(tgftl)kauyp,l/}eik-A(lftg),lEFl/
0 t1
1
—2tr / dt e* YA, A, ]t A0=0gTY. (5.23)
0

The second term is a matrix regularization of the supercurrent ju = {X,, X, }y" associ-
ated with the supersymmetry di) = €’ of the Schild action. Here { } is Poisson bracket on
the world sheet.

This gravitino vertex operator is shown to satisfy
v
KV, =0. (5.24)

The first term of VH‘I’ trivially satisfies this relation and the second term is calculated as

follows;
1 . . —
k* (the 2nd term of VM‘I’) = —2tr/ dt e* Mk A, Au]e’k'A(l_t)@bF“
0

1
= Qitr/ dt 4 (eik'AtAueik'(l_t)) YTH
0 dt
= 2itr [e*4 A, JyTH
= 2itr M A[A,, ]TH
= 0. (5.25)
In the last line, we used the equation of motion for the fermion, T*[Ay,¢] = 0. (5.24)

assures the gauge invariance of the coupling with gravitino wave function

v
vy, (5.26)

5.5 Graviton and 4-rank antisymmetric tensor field

The next terms with four A’s give the vertex operators for the graviton %, and the 4-rank

antisymmetric tensor A,,,,. The calculation becomes more complicated and we need to
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use various identities involving fermions. Here we only write down the final results:

: Gh. 1 1
Stl" €lk'A<(4}) —|—§G1~G1'G2+§G2'G2+G1'G3+G4>

. 1 - ) 1
_ Str oA (awwr* LR [ A = D04, A (Ao, A
L < uroory i MUY 3\ i \[eBH
RO [0 A = S 0BT AT+ b (AN 40, 4] 4,

QZJ ’ FH[AIM w]

DN | —

1 "
= Vst A{[Au, A”) - [A,, A +

. B 1 - T
—|—%k‘)‘(¢'ru,\o—¢) . [AJ,AV] _ mk)\kT(w'FM)\U ) (¢-Fzrro‘w)}

1 1 )
— . = uv i, po nppov Lo VP ik-A
+3 ( 32) (B*bP7 4 DHPLTY + DHIYP)Str e

{10 A 1Ay Al 4 O Doy Ao 0] = OR  Tyan) [y A
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where C' is a numerical constant which we could not determine in this approach of the
calculation. But we can instead make use of another information of the block-block inter-
action briefly explained in the next subsection and determine it to be C' = —1/3. Therefore

we have the vertex operators for the graviton and the 4-rank antisymmetric tensor field

respectively,
- 1- v >
Vyhu = 2 5Str ezk A{[Alh Ap] ' [Aua Ap] + 11/} ’ F(M[Au)a ¢] - gka:D ’ Fpa(/ﬂvb ’ [AV)7 A ]
1 _ _
—mk‘)‘k‘TW L) - (- FWJ@D)}—(trace part), (5.28)
: ik - 3i —
V;ﬁ/po = —iStre kA{F[,uz/ . Fpa] + Ow : F[,uzlp[Acr]a 1/1] - ZCk)\w : F)\[;ww : Fpa]
1 _— -

P D) G T ) (529)
where F,, = [A,, A)]. These vertex operators satisfy the conservation laws by similar
calculations as (5.25),

KV, =0, KV o =0, (5.30)
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if we use the equations of motion (3.14) and (3.15). In the vertex operator of the graviton,
while the fourth term trivially satisfies this equation, the first three terms multiplied by
k, are combined to terms proportional to the equations of motion. In the case of the
4-rank antisymmetric tensor, by multiplying k,, the forth term trivially vanishes and so
does the first term due to the Jacobi identity. The second and the third terms satisfy the
conservation law because of properties of the symmetrized trace.

Thus the couplings with the graviton and the 4-rank antisymmetric tensor wave func-
tions

h,u,uvh A,uzxpovA

pvo nrvpo?

(5.31)

are respectively gauge invariant.

5.6 Other vertex operators

The other vertex operators are obtained from the terms containing more \’s and the cal-
culations of them become exponentially difficult. Therefore we do not proceed with this
calculation here and give a part of the vertex operators by using other approaches.

The IIB matrix model can be regarded as a matrix regularization of the Schild type
action for the IIB superstring. The supercurrent of the Schild action associated with the

homogeneous supersymmetry (3.1) is given by
21, -
T2 = X XX XTI = = (P17 { Xy, 0} T (5.32)

It is expected that the vertex operator for the charge conjugation of the gravitino includes
a term which is a matrix regularization of the above supercurrent of the Schild action.

Hence we have

In

V¥ = Str 4 ([AM, A [A,, A,] - TPITVe) + 21; T, [A,, ] - rw) : (5.33)

This satisfies the relation k“V#‘I’C = 0 up to the equations of motion. Of course, the vertex
operator will also contain other terms which include more fermions and momentum k.
In the IIB matrix model, the interactions between supergravity modes can be obtained
from the one-loop calculation by integrating out off-diagonal components of the matrices.
These interaction terms are interpreted as exchange of massless supergravity particles be-

tween vertex operators for the diagonal-blocks of the matrices. Exchange of the graviton,
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dilaton and antisymmetric tensor field is identified in [3] by calculation of one-loop effective
action without fermionic backgrounds. With fermionic backgrounds we can also identify
exchange of the fermionic fields such as gravitinos and dilatinos. Moreover we can also read
off other terms of the bosonic vertex operators containing even number of fermion fields
such as the second term of the graviton vertex operator (5.28) or the coefficient C' in the
4-th rank antisymmetric tensor field. The one-loop effective action expanded with respect

to the inverse powers of the relative distance between two blocks was given in [14, 17, 18];

(27]) — — (27‘7) - = TG0 ()8
1%,74 — 3S7Tr (fMVfVUfJTfTM 4Fuy.lfuyfrafro) (x(l) . x(j)>8
1
(i.9) S S
tWei” +0 ((x(i) - x(j))g) ’ (534

—SSTT(i’j) (@F“F”proufyp[})m (I)])

where W) is the (i,5) block of the one loop effective action such as Eq. (2.31) and
expresses the interaction between the i-th block and j-th block and S7r is the symmetrized
trace of the adjoint operators. Wys denotes terms including four W’s. The terms up to
O(r~") cancel each other when backgrounds are restricted to satisfy the matrix model
equations of motion. From the above result we can identify some terms in the vertex
operators.

In the case of the vertex operator for the charge conjugation of the antisymmetric
tensor Vﬁc, the leading term with the least number of fermion fields can be read from the
calculations of the block-block interaction as,

Str ¢4 ([AM,AP] C[APL AT [As A — %l[A“’ A)] - [AP A% - [A,, Ap]) . (5.35)
Requiring the current conservation, k“VMB;c = 0, it can be understood that the vertex

operator should include the following terms,
V/f/c = Str ™4 ([Aw Ap} ) [Apv AU] ’ [AU, AV] - i[A/u AV] ) [Apa AU] : [Am Ap]

¥ Y0[A, ¥ (A7 A

1 =

_Zw Tu[Ap), ¥] - AP Ay] +

+1_16¢ ’ chr[,uw ' [Au}a [Ap’ AUH - %k}ﬂ/) : F)\paw : [Al“ Ap] . [Al,, Acr]) . (536)
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For the charge conjugations of the dilaton, the leading terms of the vertex operators

can be similarly read from block-block interactions as,
V® = Str eik'A{[Au,Ay] [AY,AP]-[A,, Ay - [A7, AF
1 v g
— 1A Al (A7 AR - [Ay, Ap] - A7, A7)
+[Ay, Al - [A,, A - pTHTVP [Aa,z/z]}. (5.37)

The charge conjugated dilatino vertex operator can be obtained from this charge conjugated
dilaton vertex operator by supersymmetry transformations. The leading order term is

proportional to

c

Ve = s et (L A [ (o A = A A [ [ A ) T

L
24

oy <iv

(A A+ 1Ay Al LA, ATV (5.38)

In order to obtain complete forms of the vertex operators, we need to accomplish the
calculation which we performed in the previous section. The calculation is very complicated
and tough. As we briefly explained above, we can instead determine the leading order terms
of the vertex operators from the calculations of block-block interactions with bosonic and

fermionic backgrounds.

6 Condensation of type IIB supergravity multiplets

In this section, we would like to present a considerasion on the treatment of graviton con-
densation in IKKT matrix model as the final topic of this paper. Using supersymmetry
transformation for the Wilson loop operator, we have already seen that the matrix model
has the 10D supergravity multiplets and the corresponding vertex operators in the previ-
ous two sections. It is clear, however, that we do not have considered the quantum and
dynamical picture which might explain the emergence of gravity from the matrix model.
we here discuss that the condensation of mean field D-instanton with certain wave function
represents the background for N D-instantons by integrating over off-diagonal blocks of

matrices.
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6.1 Preliminary

To begin with, we consider the action of the IKKT matrix model with (N 4 1) x (N + 1)

matrices in Eq. (3.2) as follows;

/ / 1 / / 1 i / !
SIKKT(A ,w ) = —Ztr [AM’ AV]Q — §tr ¢ FN[AM’w ] . (61)

We decompose the matrices A" and v’ to the backgroundss and the quantum fluctuations,

Y= U+ (6.3)

where X, and ¥ are backgrounds and a, and ¢ quantum fluctuations. We find this
decomposition is the same as Eq. (2.22) except for the size of matrices. Therefore, when
we expand the action (6.1) around the above quantum fluctuations, we get the same one-

loop effective action as Eq. (2.31);
W=Wy+W;=— ln/dadtpdcdb e 5 (6.4)
and

W, = %Tr (P2 — 2iF,,) — iﬂ In ((zﬂ + %]—"WFW> (%))

~Trln P? (6.5)

1 1 1
W, = ~Trn(n, (—) OTy—T, ) . 6.6
=3 rn("“ \Pr2F) TP ) (6.6)

We have already seen the expansion of Eq. (6.5) as in Eq. (2.39). In this section, we
would expand Eq. (6.6) with respect to the inverse powers of P. Now, we set matrices

(6.2) and (6.3) as follows;

A 10 N 0
e E R (6.7
0 |y, I1 01]¢
and
0 la 0
0, = i L= - (6.8)
g 0 0
aj, %)



where

A, =2, + A, (6.9)
x, is a real and diagonal matrix which represents the corrective coordinate of fl# and A, is
the off-diagonal part of fl#. Yy, is the coordinate of a mean feild D-instanton and we suppose
that =, and y, are separated far enough from each other. Therefore 1/P, is pretty small

and we can expand the effective action (6.6) with 1/P,. We use the following formulas,
1 1 1

= — 6.10
P+ 2F 1+ 5 F P?’ (6.10)
1 1 1

= —T.P 6.11
r.-pP 1+ 55T F P? (6.11)

1 1 1 1 1 1
- ——  __TI.P+I.P——— — 6.12
21+ 55 F P? T3 14 5751 F P?’ (6.12)

where
1

(F-P)Q:P2+§P~}'. (6.13)

6.2 Perturbation for second order of ¢

Using Eqgs. (6.10) and (6.12), the second order terms of the fermionic background @ are

given by
W, = }177"{ (ﬁ)# %@FV@% (- P)T,®
+<@)W%¢ry(r.ml+#ﬁf%r#@ C(6.14)
6.2.1 P73

The terms of this order are

1 1.1 1 1
= JTr {—cpr —(F-P)FM(I>+ECI>FM(F-P)—FM<I>}

P2 MPZ P2
1 -1
= —277" ﬁq)ﬁFM[P’u’ q)] .

Namely, this is propotional to the equation of motion (2.15) for the fermion.
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6.2.2 P°

At this order we have the following terms,

-
L

1 2 1 1 2 1 = 1
- T {—ﬁ}",m PQ(I)FA 530 P)D,® = S Fop O - P) 5,0
1 - 1 1 1
——or r. I'-P)',® — —or,(I'-P r-F)=r,e 1
p g F) (0 PIN® — 00,0 P (- F) e (6.16)
1 1 1 1 1 1 1
= —§Tr (EEAP;DPQFMR[PMD]) — 57T (ﬁf;mpg [, P, FuAﬁq’)
1 1 = 1
T (ﬁfwﬁ@ﬁnuﬂy,@}) +7r( Fuog (%, P ) | (6.17)

In the last equation, the first two terms are proportional to the equation of motion (2.15).
It is noted that the terms in the second lines vanish if P, is replaced with d,(= x, — y,).

Therefore these terms are actually O(d~%) in the 1/d expansions.

6.2.3 P77

The terms of the order P~7 are

ﬁﬁ%iﬁ

:—77« P2 ﬁrfmrpmp

< 1 (hr ) s

1
) 53875 (T P)T,@

(

( ) —or,(I"- P) ; r,o

4 ﬁqm# (%r - ]—“) (%r - ]—“) % (T-P)T,®

+ —&r, (- P) (—r - ]—") (%r : f) %rucb] : (6.18)
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These are rewritten as

i7wv<f%71y£3f%j;gggruwgrﬂfaﬁm)
+—7%(%?QHLE¢;®;J‘F[R”®>+7W(;fﬂnif@;J®fﬂPngﬂg
_ Ty (%FMV%}}M;Q@;J P, CD]) Tr( 1 fW;fW;Q 3, P]FPP12<I>)
_ %TT (%ﬁw%é; T )
_ % ( prz ,M;QP - @) - % (;2]-“ ,,(,]_;P éruyp%qp)
_ % ( 3B M; uwm@g) ; (;f m;énm%@a)
_ % < fpp WPJHLW®)+;T¢(;faHﬂ };ﬁwéfwﬂﬁ
+ .a W;@;FP@>+W%Q#&;J%W©&WF®)
Ty (%ﬂw%fw ;chru ;2@13) +Tr (%f,w%};p ;zcbrp ;Zcpp )
~ Ty (%}"W ;nyp ;QP T, ;2 ) LTy ( L F, ;nyp%PchrM%cp>
+ ﬂ(%ﬂ%%{é#@éPF@)+ﬂ(1?@;®QPJ%;F¢> (6.19)

The first six terms vanish each other if the fermionic background satisfies the equation of

motion.

6.3 Perturbation for fourth order of ®

Following the previous section, we calculate more higher order terms of the perturbation

expansion. The fourth order terms of ® are given by

1 1 - 1 1

) —en—— (P,
{(14—%]—")“”}72 R G
1 1 1 1
) S, (I-P)T,0 2
8 (1+%]—") P rEp TP (6.20)
P po 2P
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6.3.1 P6

The term of this order is

1 1 = 1 1 -1
1 1 1 1 -1
= ——Tr|{=0=PI,0I,o—0— p,Ir,r,r',® 21
1 ( R T ) (6:21)
6.3.2 P8

This order terms are

j:i(xz | XQ

- K 22;: PQ@FA%(F-P)F,,@) (%_FV%(F-P)FM(I))}
+3 L7 K Lugps Faﬁfaﬁ)%(r-mry@) izén%(r-mru@)] . (6.22)

6.4 1/d expansion

Here we try to derive the result of block-block interactions by Suyama and Tsuchiya[17].
Then, we consider the terms showed in preceding sections with the expansion by d,. P, is

the adjoint operator, that is, for a certain off-diagonal matrix M

PM = [X,, M]

. om + A# 0 0 mi2 0 mi2 om + AN 0
0 Yu mgr 0 mar 0 0 Yu
= {(du+ AL — (dy + A)rYM, (6.23)
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where

d,+A, 0 0 0
g , (d,+ AR = . (6.24)

(d,+ A, =
ot 0 0 0 d,+A,

Therefore P, can be effectively replaced as
P, —d,+A,. (6.25)

By 1/d expansion, the P~% term Eq. (6.15) apparently vanishes due to the equation of
motion. Moreover we can easily see that the order d~° terms vanish by using the equations
of motion. Thus nontrivial contributions of the 1/d expansion start from the order of d=°.

Finally, we perform the expansion of 1/P? with respect to the inverse powers of d, as
follows;

1 1
P2 d2 +2d- A+ A2

1 2d- A A2 2d- A A2\?
2 Ve Te)t e e
2d- A A*\®  [(2d-A  A%\'
— - +—d2 + iz +—d2 — e
1 2d - A A? d-A\?]
A G 2 R R

d- A)A2 + A2(d - A) d-A\°]
d* AN

+2<

+ _(’3—22)2 e APAT <d'A)z;1§(d-A) A AP (d;)“
+} (6.26)

6.4.1 d°°

There is a contribution of ®? from the Eq. (6.17),

1 -
5 Tr[A,, FIOT, 0. (6.27)
The following terms with ®* come from Eq. (6.21),
1d,d, - _
5T (BL,0,0,0) (31,0,1,0) . (6.28)
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By using the “Fierz transformations” and the “cyclic property” of the trace, this term iss
simplified as

%TT‘ (Or,®) (OT,P) . (6.29)

Therefore these two contributions cancel each other due to the bosonic equation of motion

(3.14).

6.42 d77

Terms with ®? come from the Eq. (6.17),

2;P7r(Af oI, A,® + F,, AT, A, @ + F,,PA,A,T,®

+ A F®T, B A, + Fp A, 8T, 0A, + F, AT, A,
— A, Fu A 0T, ® — F,,A,A,0T,® — F,, A, AT,

— A FW®AT,® — FuA,DAT,® — F,,0A,A,T,®) (6.30)
and from the Eq. (6.18),
2d, — _ -
LT (FpuF L@ + FuyuFy 0,0 + 7, 8F,,0,0) (6.31)

These two contributions are combined into

Tr{ (d- A)[Ay, Fu)OT,® + [A,, Ful(d- A)OL,® + [A,, Fu|@(d- AT, @} .  (6.32)

6.5 Condensation of the supergravity modes

We would like to discuss effective actions for the IIB matrix model under condensation of D-
instantons corresponding to the massless type IIB supergravity multiplet. We here consider
backgrounds produced by a mean field D-instanton. Then, the free energy is a function
of the diagonal components of Egs. (6.7) and (6.8). Namely, W (P, ®) = W(A, z,¢;y,§).
We choose wave functions fi(y,&) of (F.1) for the mean field D-instanton, which corre-
spond to the massless type IIB supergravity multiplet[8]. Then we obtain effective actions

Seft (A, x,1; fr) under condensation of the massless modes by integrate over y, &;

o —Se (A,z. 93 1) :/dyd§ fi(y, &) e “WAYwE (6.33)
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6.5.1 Condensation of the antisymmetric tensor B,

In order to see a coupling to the antisymmetric tensor field B, , we choose the following

wave function for the mean field D-instanton;

fB(k) = e*ik-wa,(k)k (FuprO aﬁ&{ aéﬂ (H ﬁfy)

1
— 3 fzkyHWpr)(FWpFo aﬂaf afﬁ (Hf»y) (6.34)

Thus only second order terms of £ in Wy are contribute the effective action under the
condensation with this wave function.

Let us first see contributions from the second order terms of ®. In these terms we can
simply replace ® with ¢ and thus the terms of the order P~3 and P~® vanish. The terms

of the order P~7 becomes
2T [T b (1)~ P (1) o
L F (%) 2 P33 Fro s + Fuupg (%) 2 Prs
— Fu <%)2f,ﬂ%a% +ﬂwPQP f ( ! ﬂ . (6.35)

Furthermore we expand these terms with respect to the inverse powers of d,,. For example,

1/P? is expanded as in Eq. (6.26),

1 1 d-A 1

It is easily realized that the leading term with 1/d” vanish. And the 1/d® term has the

following simple form,

-3 d8 — (€T po) tr [Ay, FL|F o (6.37)

After the integration of y, and ¢ with the wave function (6.34), we obtain the effective

action under condensation of the antisymmetric tensor field,
Seff(A, x,; fB(]{Z)) = SikxT + Hupg(k> e T 4y [A,,, FW,]F[,U . (638)

Here we assumed an appropriate regularization in the infrared region of y, integration and
renormalized the wave function B, . This effective action indicate that the Chern-Simons

term is induced by an effect of condensation of the antisymmetric tensor.
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7 Conclusion and Discussion

Firstly we have constructed a set of wave functions and vertex operators in the IIB ma-
trix model by expanding the supersymmetric Wilson loop operator. They form a massless
multiplet of the type IIB supergravity. The vertex operators satisfy conservation laws, for
instance Eq. (5.24) or (5.30) by using equations of motion for A* and . Where do the
conservation laws come from? What is the origin? We have used the supersymmetric Wil-
son loops and the supersymmetry transformations in order to obtain the vertex operators.
We did not use the explicit form of the action. Nonetheless the vertex operators satisfy the
conservation laws by using the equations of motion derived from the action (2.10). This
is due to the commutation relation of the supersymmetry generators (3.17). Recall that
the supersymmetric Wilson loop is invariant under simultaneous supersymmetry transfor-
mations of the matrices and wave functions as Eq. (3.20) and (3.21) only by using the
equations of motion. On the other hand, the supersymmetry transformations of the wave
functions (D.2) contain gauge transformations. Because of it, the vertex operators satisfy
conservation laws by using the equations of motion. In this sense, the conservation laws
for the vertex operators follow from the supersymmetries. In string theories, conformal
invariance guarantees the gauge invariance and the decoupling of unphysical modes from
the S-matrix elements. It would be interesting to search for such a hidden symmetry in
matrix models.

Next, we have incompletely discussed the condensation of supergravity modes with
the analogy between thermodynamics and the multi-particle system of N D(—1)’s. The
condensation of a mean field D-instanton with certain function fi(y,§) represents the
background for N D(—1)’s by integrating over off-diagonal blocks of the one-loop effective
action. Although we have found the emergence of the Chern-Simons term in the last of
previous section, it is the gravitational terms which we want to investigate. But, technically,
computations required for such a generalization become increasingly difficult. We may
need some entirely new framework for developing the idea in a tractable wa