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Abstract

There are some peculiar phenomena in non-commutative field theories. One is
the planer limit that nonplaner diagrams arising from non-commutativity of space-
time disappear in the maximal non-commmutativity. We send the parameter 6 which
presents the non-commutativity to co. The other is the UV/IR mixing that ultra-
violet divergences in the commutative case change into infrared divergences due to
non-commutative parameter §. Then, we study whether nonplaner diagrams disap-
pear, when we fix # and take the external momentum p — oo limit instead. We
perform explicit two loop calculation to confirm the above limit by using perturbation
theory. And,we calculate the effective action of non-commutative gauge theories to see
infrared singular terms due to UV/IR mixing. We discuss the meaning of the terms

from the point of view of instability in the system.
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§1. Introduction

Non-commutative geometry?) has been studied for quite a long time as a simple mod-
ification of our notion of space-time at small distances possibly due to effects of quantum
gravity.?) Ref. 1) gave us an example of a Lorentz invariant discrete space-time or quan-
tized space-time. And Ref. 2) proposed uncertainty relations for the different coordinates
of space-time events, motivated by Heisenberg’s principle and Einstein’s theory of classical
gravity. Non-commutative geometry has recently attracted much attention, since Yang-Mills
theories on a non-commutative geometry have been shown to appear as a low energy limit of
string theories with some background tensor field on D-brane.®) When we think the quantum
gravity, it is possible to treat more general geometry than usual Riemannian geometry. Since
the non-commutative geometry actually is led from the superstring theory which describes
the quantum gravity, it is important to study the field theories on the non-commutative ge-
ometry. At the classical level, introducing non-commutativity to the space-time coordinates
modifies the ultraviolet dynamics of field theories, but not the infrared properties. This is
not the case at the quantum level, however, due to the so-called UV/IR mixing effect.?
This effect causes various peculiar long-distance phenomena such as spontaneous breaking
of translational invariance. In the scalar field theory, this phenomenon has been predicted
in Ref. 5) and confirmed by Monte Carlo simulations in Refs. 6)-8). An analogous phe-
nomenon is also predicted in gauge theories.”) The relation between the § — oo limit of
noncommutative field theories and the large NV field theories are reconsidered in Ref. 10).

In this paper, first we focus rather on ultraviolet properties of non-commutative field
theories. In perturbative expansion of field theories on a non-commutative geometry, pla-
nar diagrams dominate when the non-commutativity parameter 6 goes to infinity.) This
may be regarded as a manifestation of the nonperturbative relation between the § — oo
limit of non-commutative field theories and the large N matrix field theories,!® which is
based on the lattice formulation of non-commutative field theories'! and the Eguchi-Kawai
equivalence.'?-13) (Note, however, that this relation does not hold when the translational
invariance is spontaneously broken.) We discuss whether the “planar dominance” occurs
also in the case where 0 is finite, but the external momentum goes to infinity instead. While
this holds trivially at the one-loop level, it is not obvious at the two-loop level in partic-
ular in the presence of UV divergences. We perform explicit two-loop calculations in the
six-dimensional ¢* theory, and confirm that nonplanar diagrams after renormalization do
vanish in the above limit. We will consider the massive case specifically since in the mass-
less case the equivalence of the infinite momentum limit and the § — oo limit follows from

dimensional arguments.



Some comments on related works are in order. In Ref. 14) correlation functions of Wil-
son loops in non-commutative gauge theories were studied, and it was stated that planar
diagrams dominate when the external momenta become large. However, this statement was
based on a regularized theory, and the issue of removing the regularization has not been
discussed. In Ref. 15) Monte Carlo simulation of 2d non-commutative gauge theory was
performed and the existence of a sensible continuum limit was confirmed. nonperturbative
renormalizability There the expectation value of the Wilson loop agrees with the result of
large N gauge theory at small area, which implies the planar dominance in the ultraviolet
regime. The aim of the present work is to confirm such a statement by explicit diagrammatic
calculations in a simple model taking account of possible subtleties that arise at the two-loop
level. due to planar subdiagrams in nonplanar diagrams. Two-loop calculations in scalar
field theories have been performed also in Refs. 16) and Refs. 17) in the case of ¢* and ¢?
interactions, respectively, from different motivations. The issue of renormalizability to all
orders in perturbation theory has been discussed in Ref. 18).

Secondly we focus on infrared properties of non-commutative field theories. There are
infrared singularities due to UV/IR mixing in non-commutative field theories. We adopt
U(1) non-commutative gauge theory as the model in which we study the effect of infrared
singularities. Because the infrared singularities of U(1) non-commutative gauge theory cause
instability of the theory. We calculate the effective action of non-commutative U(1) gauge
theory and derive infrared singularities from nonplaner diagrams. We find that the nonplaner
effective potential is negative, suggesting tachyonic behavior for the low momentum modes
of the gauge field. Then, we discuss a critical point of the phase transition which occurs due
to instability of the theory. Regarding the instability of U(n) noncommutative gauge theory,
the infrared singularities are calculated in Ref. 9)

The rest of this paper is organized as follows. In section 2.1 we show how to rewrite
the non-commutativity in non-commutative space-time for commutative space-time. We
derive star-product from the commutator of the non-commutativity. In section 2.2, using
the way of section 2.1, we derive ¢” non-commutative field theory. In section 2.3 we study
non-commutative perturbative dynamics in ¢* non-commutative field theory. We find two
peculiar phenomena in non-commutative field theory. One is the planer dominance in maxi-
mal non-commutativity. The other is UV /IR mixing. In section 3.1 we set up some notations
necessary for the perturbative expansion in non-commutative ¢ theory. In sections 3.2 and
3.3 we investigate nonplanar two-loop diagrams of different types separately and show that
the diagrams vanish in the p? — oo limit. In section 3.4 we discuss the result of diagrammatic
calculations. In section 4.1 we calculate the effective action to find infrared singularities in

non-commuatative U(1) gauge theory. In section 4.2 we find the critical point where the



instability occurs in the theory. Section 5 is devoted to a summary and discussions.
§2. Non-commutative perturbation theory

2.1. Non-commutativity and *-product

We discuss the non-commutative field theory by rewriting the events of non-commutative

space for commutative space. The nature of non-commutative space is
[2#, 2" ] = 6", (2-1)

where £* is a non-commutative space coordinate and #*" is an antisymmetric tensor, which
characterizes the non-commutativity of the space. Then the function of non-commutative

space is defined by

&(3) = / %Wf) (2:2)

where ¢(k) is the function which is obtained by fourier-transforming é(z) in commutative
space as follows.

o(k) = /ddx o(z) e 2.

We want to resolve (2-2) in terms of ¢(z) of commutative space. Multiplying the both hand
of (2-2) by e~*% and taking trace, we can obtain as follows.

e [ot@) 4] = [ iy bt oooe)

— 'k - e%kxl Wg (d1. _
= [ o 0 e (2m) 159k - 1)
1 -

= ),
) (1)

e,

where we used (2:1) for e#%.¢~#% = eakxl. ¢ik=D% and k x | = k,6,,1,. Then we can obtain

#(x) as follows.
1

o) = o / a1 tr [9(@) 7] (2:3)

Next, we want to rewrite the product @,(%)®P2(Z) of functions on non-commutaive space

for an algebra of the functions ¢,(z) and ¢2(z) on commutative space. We take the same
procedure in which we derived ¢(z) from &(z) . First,

d ~ y oA d ~ oy oA

R R AL P 0P
1

(27T)2d

/ddk d4l (;1(]43)@;2([) e—%kxl ei(k+l)~5s
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Secondly,
p [ e e m@n@e ]
:(2 1) /ddk ddl &1(]{:)&2(” e—lkxl i(k+l)-z

=¢1(z exp( 59;11/ )

Here we can define a following % -product which presents the non-commutativity of the

50,3, ) palc) (2:4)

product of functions in commutative space
2

#1(c) * ¢2(z) = 1(w) exp 7

There is a following useful nature in the x-product
d°k ddl 3 ~

/ / ( ) ¢2( ) ik T zl T

v 55 G, (k)Ba(l) (228D (k + 1

/ @ni@Eni®
K 3 (k)a(—h)
(2-5)

(2m)?
= / d’z ¢1(x) ¢2()

Using this nature , we can obtain a following equation immediately.

/dd$¢1*¢2*¢3=/dd$¢2*¢3*¢1

/ d?z ¢, () * oz

(2-7)

2.2. Non-commutative ¢™ theory
In non-commutative space, ¢" theory is given by a following action
2 m2 ~\2 A S\

SR S (COMERTEN)

u
Using the function ¢(z) in commutative space ,we can rewrite this action for the commutative
(2-8)

, o)
space as follows. We substitute the &(Z) of (2-2) for the above action S[®]. Since
dik - ;
¢ eau ezkw’
[ oo

[#,00)] = [ 757 606) (37,

the first term in (2-7) is as follows
00 [3°,0(2)]

trzzﬁl 7, d(z)]6



Similarly, the second term in (2-7 ) is

2
tr %45(92)2

m?2 1 dik - ~
= G / i 9H) 8(0)

1 m?
~ (2m)d2 /ddx 7¢2' (210

The third term in (2-7) is

tr i T B(2)"

A d?k, d’k,
=l / @ i V)

é(kn) e~ Dic; (ki xks)¢p [ei(k1+---+kn)~:%]

=y | a(m)' (1)

From (2-9), (2-10) and (2-11), we can obtain a following action in the commutative space for

which the action (2:7) in the non-commutative space is rewritten.

S[¢] :/ddx[%(au¢)2+T2—2+%¢*.--*¢‘]. (212)

2.3. Non-commutative perturbation theory

We explain the non-commutative perturbation theory by using non-commutative ¢* the-

ory in d-dimentional Euclidian space-time. We start from a followimg action.

S = /dd [ +——¢2+ !qﬁ*qs*(;s*qs] (2-13)

The Feynman-rules are

:k2+m2’_



The diagrams for calculating the two point function up to the one loop level are shown as
follows (See Fig.1). We notice that there are two types of the diagrams. One is called ” planer
diagram” which is the same diagram as commutative one. The other is called ”nonpalaner

diagram” which has some phase factors.

—. L.
( planer )

( nonplaner )

Fig. 1. The diagrams for calculating the two point function up to the one loop level in noncom-
mutative ¢* theory

First, we calculate a following planer diagram.

1 /\/ k1
-3 (27)4 k2 + m?’

where the factor 1/3 is a symmetric factor of this diagram,

a1 ® L am?
T3Wmae f, “aZ®

Taking the limit d — 4, we can obtain as follows.
A m?
3 (4m)2

I'(1 —d/2) of the right in this equation shows UV-divergence.

Next, we calculate a following nonplaner diagram.

k
=5 GrimEEe
AN

k

D

r(1-d/2). (2-14)




where the factor 1/6 is a symmetric factor of this diagram,

A1 * 2 (6p)®
_6(47r)d/2/0 daexp[ om 1o ]

Taking the limit d — 4, VVVG can obtain as follows.

2

Al o [, 1 z
a1

o 4

where 22 = m?(0p)? and K;(z) is a modified Bessel function. And the right in this equation
is UV finite due to 6 # 0. In (2:15), when we take the limit § — oo (i.e. 2 — o0), (2:15)
vanishes. Because the asymptotic behaviour of K;(z) is as follows.

| ™
Kl(Z) ~ 56_2.

Therefore, in the maximal non-commutativity # — oo , nonplaner diagrams vanish and
planer diagrams dominate. This phenomenon occurs in not only one loop level, but also all
orders.”) The phenomenon is discussed in section 3 by taking high-momentum limit p — oo
instead .
We are also interested in the behaviour of (2-15) around z ~ 0(i.e. § ~ 0 or p = 0).
Using a nature of K;(2) (See Appendix A), we can obtain as folows.
A m? 14 z
215) =2 =[S +2m i+ oq |
( ) 6 (47)2 22+ n2+ (1)
2002
A1 [ 4 4 m?ln ™ (6p)
6 (47)% L(6p)? 4

From (2-16), we can see that the UV-divergence by taking the limit # — 0 and IR-divergence

+ 0(1)]. (2-16)

by taking p — 0 are mixing. This phenomenan is called UV/IR mixing . And the nontrivial
mixture between UV and IR phenomena is the most surprising result in the non-commutative
field theories. These infrared singularities are discussed in non-commuative gauge theories

in section 4
§3. Ultraviolet behavior in non-commutative field theories

3.1. Perturbative expansion in non-commutative ¢ theory

We adopt non-commutative ¢* theory as the model that we study the ultraviolet behavior
in non-commutative field theories. The Lagrangian density for the non-commutative ¢?
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theory in d-dimensional Euclidean space-time can be written as
1 2
£=50u0) + 5+ Lo g (31)

The parameters mg and gy are the bare mass and the bare coupling constant, respectively.
As in the standard perturbation theory, we decompose the bare Lagrangian density into the

renormalized Lagrangian density £, and the counter-terms L., as £ = L, + L., where

2
Lr = %(@@)2 + m7¢72~ + g‘¢r * ¢r * ¢r 3 (32)
Low = 200,07 + 2202+ 26, 5.6, 50, (59)

Here we have introduced the following notations.
6=23i¢,, Z=1+46,, Op=miZ-m?, 6b,=gZi—g. (3-4)

The Feynman rules are

° k —_—__1_’
k2 4+ m?

d =g,

b k
° > :eikxp,

p

A
° _597
° P R =0,p% + .

The diagrams that need to be evaluated in the two-loop calculation of the two-point
function are listed in Fig. 2. For diagrams (e),(h),(j),(k),(1),(m),(n),(0),(p) and (q), we need
to put a factor of 2 to take into account of the same contributions from analogous diagrams.

10



. } @ e
ore=

Fig. 2. The list of diagrams for calculating the two-point function up to the two-loop level.
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+

+
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We will focus on two types of nonplanar diagrams; i.e., the diagrams (e) and (f) in Fig. 2.
The type 1 diagram is a diagram in which an external line crosses with an internal line. This
type includes the ultraviolet divergence coming from the planar one-loop subdiagram. We
investigate whether this diagram vanishes at infinite external momentum after appropriate
renormalization. The type 2 diagram, on the other hand, is a diagram in which internal
lines cross. Since the non-commutativity parameter 6, does not couple directly to the
external momentum in this case, it is not obvious whether the effect of sending the external
momentum to infinity is the same as that of sending 6, to infinity. We will comment on
the remaining non-planar diagrams in section 3.4.

Throughout this paper we consider the massive case specifically. On the technical side,
this condition simplifies the evaluation of the upper bound on the nonplanar diagrams. On
the theoretical side, this is the more nontrivial case since in the massless case, the equivalence

of the infinite momentum limit and the # — oo limit follows from dimensional arguments.

3.2. Type 1 diagram

Since the type 1 nonplanar diagram includes an ultraviolet divergence, we have to renor-
malize it by adding a contribution from a diagram involving the one-loop counter-term for
the three-point function (the diagram (o) in Fig. 2). After this procedure, we may study

11



the behavior at infinite external momentum. We adopt the dimensional regularization and
take the space-time dimensionality to be d = 6 — ¢. Since the coupling constant ¢ has the
(6 — d)/2 power of the mass dimension, we set g = u%g,, where y is the renormalization
point, and g, is the dimensionless coupling constant. The ultraviolet divergence will appear

as a 1/e pole in the d — 6 limit.

Fig. 3. The list of diagrams for calculating the three-point function up to the one-loop level.

q
b K
kq
kp
a-p

Fig. 4. The planar one-loop diagram for calculating I'(p, q).

The one-loop counter-term for the three-point function can be determined in such a way
that the three-point function becomes finite at the one-loop level. The relevant diagrams
are listed in Fig. 3. Since the nonplanar diagrams are finite due to the insertion of the
momentum dependent phase factor, we only need to calculate the planar diagram depicted

in Fig. 4, which can be evaluated as
dk 1 1 1
r =g
(o) =g / (2m)4 k2 + m? (k— ¢)2+m? (k — p)2 +m?

g3 1 d d 1 o0 1
= /0 doat=3(1 — a)$-2 /0 dp /0 dexp(—td), (39

where A is defined by

2
A=m—+q2—2ﬂp-q+é
@) e

a(l - (1 —(1- a)ﬂ) p*. (3-6)

12



(The derivation of (3-5) is shown by Appendix B.) The divergent part can be extracted as

I.0) = (55 2+ O) (37

from which we determine the one-loop counter-term as

5, = — g pt

ey (3-8)

q

)
Fig. 5. The type 1 nonplanar diagram for calculating ITyp1(p?).

Using eq. (3-5) we evaluate the type 1 nonplanar diagram in Fig. 5 as

e (p%) = / 2 (p, ) o : el
e 9] Cryd " PV e rm? (= p2 + m2

_ 9“) [(;)F_Sfdw 31— )i /Oldﬂ/old<<2—%(1—<)

/ dn/ dt t4 6exp t—%p (0p) ) (3-9)

where (0p)? = —pt0*6*Pp” > 0 since B** is an antisymmetric tensor. The A is defined as

T ¢

m

i=Tl g -+ esa-man-o (e -nrna-n)] . G

Extracting the divergent part from (3-9) and taking the d — 6 limit for the finite part (See

Appendix C), we obtain

IIxp1(p?) = (497’;’1)6 [(0;1)) {A (ln (mu?(0p)?) + 1) A—- B- C} +p2D] : (3-11)
where we have introduced

A= / dn / dt exp[ W +:’£—") (0p)2:| , (3-12)

B= / dn/ dt (Int) exp[ t— 2 z(tl_") (9p)2], (3-13)

/da/ dﬂ/ dC/ dn/ dt(l—a)e [ t—%p(@p)] (3-14)

D=/0da/0dﬂ/0dC/Odn/o at &

13

¢ exp [—t - 4%19(91))2] : (3-15)



which are functions of Z‘—; and p?(6p)%. The coefficient F in eq. (3-15) is defined by

2

F="5(1-0(l-0a)) +(1-a) [ﬁu =) +a((1-20)(8 - n)? (1 - n))] . (316)

We are going to demonstrate that the functions A, B, C and D vanish in the p?* — oo
limit. For that purpose, we first confirm the convergence of all the integrals. Then it will
be suffice to show that the integrands vanish in the p?> — oo limit. The convergence of
the integrals in A, B and C is evident. As for the function D, the a- and t-integrals would
have singularities at the lower ends of the integration domain if 6,, were zero, but they are
regularized by the term proportional to 1/(at) in the exponent, which appear for nonzero
0u. Actually we can put an upper bound on the absolute values of these functions by
integrating elementary functions, which are larger than the corresponding integrand. We
may obtain upper bounds on |A|, |B| and |C| as

A4 <1, |Bl<2, [c|<1, (317)

by omitting the term proportional to p?(6p)? in the exponent. Putting an upper bound on |D|

is more involved due to the “noncommutative” regularization of the singularities mentioned

above, but the calculation in Appendix D yields

32 2 2 2 /4] 2

2(1+1np—2) (4+lnp—2+1np (6p) ) ,
m m 4

p*(6p)

where we assumed m?/p? < 1 since we are ultimately interested in the p? — oo limit. This

ID| < (3-18)

confirms the convergence. Since the integrands of the functions A, B, C and D decrease

exponentially at large p?, we conclude that all the functions vanish in the p? — oo limit.

q

gp

Fig. 6. The nonplanar one-loop diagram for calculating ITnp c.t.(p?).
Next we evaluate the diagram in Fig. 6 involving the counter-term (3-8) as
HNPl,c.t.(p2)

= (59 g / o : ! etk op
(2m)4 k2 4+ m? (k — p)?2 + m?

14



52 ™+ ol - o)
2 d_3 . Pz — 2002
= %[ ] / da/ t2 exp[ t m p°(0p)
4gt 1

:(43 o7 [———6—+{——ln(7ru Bp)2) A+ = B}]. (3-19)

The first term cancels the 1/¢ pole in (3-11), and we have taken the d — 6 limit for the
remaining terms.
Adding (3-11) and (3-19), we obtain a finite result

yp1:(p?) = (4f)6 {(027)2{ (ln (mu*(6p)?) + Z)A - B- 2C} +p2D} : (3-20)

Since the functions A, B, C and D vanish in the p? — oo limit as we have already shown, the

type 1 nonplanar diagram after renormalizing the divergence from the planar subdiagram,
vanishes in the same limit. In fact, using (3-17) and (3-18), we obtain an upper bound on

[IIxpi:(p?)| as

8g: 1
2 T
iHNPlr(p )| < (471.)6 (ep)Q

3 1 ) p? » . p’(6p)?
-§+Zln(7r,u (0p))+4(1+ln—)(4+1 - +1In 1 ) )

where the right-hand side does vanish in the p? — oo limit, thus confirming the above

conclusion more explicitly.

3.3. Type 2 diagram

In this section we consider the type 2 nonplanar diagram in which internal lines cross,
and study its behavior in the p? — oo limit. Let us first evaluate the one-loop subdiagram
in Fig. 7 as

d’k 1 1 1 ;
r _ 3 ik-0q
NP(p7 ) g /(27rdk2—|-m2 (k__q) +m2 (k p) +m26

d/daaﬂ 1—a"2/ dﬂ/ dt ——

- exp [—tA — % (0g)* +iB(1 —a)ph - q] (3-21)

where Ko(z) is the modified Bessel function, and the A in (3-21) is defined by

2

A:m%—)+q2—zﬂp-q+—£—(1—(1—a)ﬂ)p2. (3-23)

15



When we proceed from (3-21) to (3-22), we have taken the d — 6 limit. This diagram is
finite since the logarithmic ultraviolet divergence, which would arise in the commutative
case, is regularized by the non-commutative phase factor. We may appreciate this fact by
considering the asymptotic behavior of (3-22)

3

Ie(p,q) = — (Z;) lng?(6g)’ (3-24)

for (6¢)? =~ 0 at nonzero p?. The logarithmic behavior reflects the ultraviolet divergence in

the commutative case. This may be regarded as a result of the UV /IR mixing.

Fig. 7. The nonplanar one-loop diagram for calculating I'vp(p, q).

In what follows we assume for simplicity that all the eigenvalues of the symmetric matrix
(62)#° = 6 @"? are equal and denote it as —0% (< 0). The general case will be discussed
later. In fact when some of the eigenvalues are zero, there are certain differences in the

behavior at large p?, but our final conclusion concerning the p? — oo limit is the same.

Fig. 8. The type 2 nonplanar diagram for calculating ITxp2(p?).

Using (3-21), we evaluate the diagram in Fig. 8 as

Mywals) = [ L Lo, 0) - :
NP2{D7) =9 (2m)e NP\P, 4 C+m2 (q—p)2+m?

_ 9" avas ' €301 _ A\ 22 ' ' 2(1 _. :
= Lot [Cawat= -t [as [acca g [an

/ dt t* ! T exp [—-tﬂ—t - a(?_l‘g — 2] . (3:25)
0 [t2C+ 9&14—_&)92(132)2] 2 t2¢ + TG (r?)
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where we have defined

A= e+ D g (- na - ), (320)
A = =2 (81~ @)+ a(¢8+ (1 - On)’] P27 (3:27)

The (- and t-integrals would have singularities at the lower ends of the integration domain
if 62 were zero, but they are regularized by the term proportional to 62 in the denominator.
This appearance of the §2 term is peculiar to nonplanar diagrams in which the internal lines
cross.*) By omitting the t2¢ term in the denominator and omitting the terms other than the
ones proportional to m? in the exponent, we put an upper bound on |ITxpz(p?)| as *
2 gt 43
[IInp2(p°)| < (4m)? (GQ)g.(mQ)s

which confirms the convergence of the multiple integral in (3-25) in the d — 6 limit. Given

, (3-28)

this, the fact that the integrand in eq. (3-25) decreases as 1/(p?)°® at large p? implies that
the type 2 nonplanar diagram vanishes in the p*> — oo limit. As we have done in the case
of type 1 diagram, we can actually put a more stringent upper bound on |IIxps(p?)|, which
vanishes in the p? — oo limit. This confirms our statement more explicitly. See Appendix
E for the details.

Let us comment on the case in which the number of non-commutative directions is less
than the space-time dimensionality d. In this case the upper bound on |IIyp2(p?)| can be
evaluated as

4 1 . , ) . 1
M) < iz @)*™ [ daat =)t [Lap [Cac-o) [ dn
o0 d 1 )
. dtt4H T exp|—tA|, (3-29)
/0 j=1 [tQC + 5(—14——@0]2.(1,2)2] 2 [ ]

where (—62) is the j-th eigenvalue of (§2)* and A is the same as the one defined in (3-26).
If the non-commutativity is introduced only in % directions (2 < k < 6), we obtain an upper
bound from (3-29) generalizing (3-28) as

k
g4 ai 42

d Tk T _
(47) Hj=1(032')2(m2)k !
where a; is a k-dependent constant which is irrelevant to the issue we are discussing. In the
p? — oo limit the integrand on the right-hand side of (3-29) decreases as (1/p?)*~!. Thus we

conclude that the type 2 nonplanar diagram vanishes in the p? — oo limit for general O -

! Since the upper bound (3-28) is independent of p?, we find that |IIxp2(p?)| is finite even in the p? — 0
limit. This is in contrast to the type 1 diagram (after renormalization), which actually diverges in the p? — 0
limit due to the UV/IR mixing.

[ Iypa (p?)] < , (3-30)
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3.4. Discussions with respect to planer limit and infrared divergence

In this section we have discussed the vanishing of nonplanar diagrams in the p? — oo
limit in 6d non-commutative ¢3 theory at the two-loop level. We have discussed two types
of nonplanar diagrams separately. In the type 1 nonplanar diagram we have confirmed
the statement after renormalizing the ultraviolet divergence coming from the planar sub-
diagram. In the type 2 nonplanar diagram the statement holds despite the fact that the
non-commutative phase factor does not depend on the external momentum.

Based on the behaviors observed for these two types of diagrams, we can argue that the
other types of nonplanar diagrams in Fig. 2 also vanish in the p?> — oo limit. The situation
concerning the diagrams (k) and (1) is analogous to the type 1 and the type 2 diagrams,
respectively. The diagram (k) has a planar subdiagram, which causes a UV divergence.
This divergence can be cancelled by adding the contribution from the diagram (q), and the
resulting finite quantity should vanish due to the crossing of an external line and an internal
line. The diagram (1) is finite by itself, and it should vanish in a manner similar to the
type 2 diagram due to the crossing of internal lines. The diagrams (g),(h) and (i) have
more crossings of momentum lines than the type 1 diagram. Therefore one gets extra non-
commutative phase factors, which make the diagrams finite by themselves. The vanishing of
these diagrams then follows as in the type 1 diagram. An analogous argument applies to the
diagram (m), which has more crossings of momentum lines than the diagram (k). Although
we have studied a particular model for concreteness, we consider that the statement holds
in general models.

We should mention that the renormalization procedure!® in non-commutative scalar
field theories encounters an obstacle due to severe infrared divergence at higher loop.? This
problem may be overcome by resumming a class of diagrams with infrared divergence in ¢*
theory.? Indeed Monte Carlo simulations show that one can obtain a sensible continuum
limit,® which suggests the appearance of a dynamical infrared cutoff due to nonperturbative
effects. Introducing an infrared cutoff with such a dynamical origin in perturbation theory,
we consider that the statement we have discussed up to two-loop can be generalized to all
orders.

§4. Infrared behavior in non-commutative field theories

4.1. Infrared singularities in non-commutative U(1) gauge theory

We adopt U(1) non-commutative gauge theory as the model that we study the infrared
behavior with respect to non-commutative field theories. We calculate the effective action

of non-commutative U(1) gauge theory in d-dimentional Minkowski space-time to discuss
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the meaning of infrared singularities. (Of course, we will take the limit d — 4.) We use
background field perturbation theory for this aim. We rescale the gauge field A, — %Au,
because the gauge coupling constant e is moved to the coefficient of the gauge field kinetic

energy term. We thus start from the action as follows.

§=—— | dis F?

e w?

(4-1)
where
F,, =0,A —0,A, —i[A,x A, — A, x A,].

Hereafter, we abbreviate [A x B — B x A] to [A, B]. The action is invariant under a non-

commutative gauge transformation
0A, = 0, A+ i[A,, A]. (4-2)

Next we split the gauge field into a classical background field Zu and a fluctuating
quantum field a, as follows.

A, =4, +a,
The field strength decomposes as follows.
F,, = F,W + 5ua,, - ﬁ,,au —ilay, a,),

where

F,,=08,4, - 8,4, —iA,A),
D,a, = 8,0, — i[A,, ay].

Thus, we can write the action that is gauge-fixed(Feynman-'t Hooft gauge) and includes

Faddeev-Popov ghost as follows.'®
S = /dd [ F,“, + DﬂaV ﬁ,,au — tla,, a,])?
= 5o (Dua“)(D )+ D"ex (uc — i[ A, +ay,d]) (4-3)
To calculate the effective action to one-loop order, we drop terms linear in the fluctuating

field a, and then integrate over the terms quadratic in a, and ghost fields. The terms

quadratic in a, and ghost fields are
1 — S — T —
S’ :/dda; [—@(Duay - Dyau)D”a” + ;FW *a* x a”
1

- %E(ﬁ”a“)(ﬁ,,a”) + D" Dyc|. (4-4)
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After integrating by parts , we can rewrite this as
1 — — —
S'= /ddx [—2—62% * (—D2g‘“’ +2F o (T?7)™) % ay — T De|, (4-5)
where
(TP = i(g™g”" — g7g™).
This detailed calculation is shown by Appendix F.

Thus, we can obtain a path integral from the Faddeev-Popov lagrangian Lpp and a
counterterm L.; as follows.

T @ _ / Da Dcexp [/ dz (Lrp + L'c.t.)}

1 1
=exp[ " 2F + Ect] (det A 1) 2 (det Ag 0) , (4-6)
where
AG,l = - 52 + 27/;0(»7,)0)7 (47)
AG,O = — 52. (48)

Solving this equation for I'(A), we obtain as follows.
F(Z) = /dd [—EF + c ] + %ln(det AG,I) - zln(det AG’,O)- (49)

Now, we have to calculate In(det Ag ;) and In(det Agg). We must first calculate —_D’in
(47) and (48) .

-D'=-D"D, = —E“(a —i[4,, ])

[au(a [, 1) -4, ]]]
— _ 82 + A(l) + A(2),
where

AD i(oA,, |+ [F5,),
A® _[",[4,, 1.

Thus we can rewrite (4-7) and (4-8) as

Agy = — 0%+ AW 4 A 4 AD), (4-10)
Ago = — & + AD 1 A®) (411)
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where
AY) = 9F,, 77",

Now,we can calculate In (det Ag,l) or In (det AG,o) as

In(det Ag1) =In(det(—8% + AD + A®) 4 AV))
=Indet(—06%) + Indet[1 + (-8%) (AN + A® 4+ AW))]
=Indet(—8?) + Tr In[1 + (=8%) (AW + A® 4+ AV)]
=Indet(~6%) + Tr [(=0%) (AW + A® + AW))
_1
2
4. ]

(—-82)_1(A(1) + A@ A(J))(~82)_1(A(1) +A@ 4 A(J))

The first term of the right in this equation is irrelevant constant. We pick up the terms
quadratic in the classical background field A, from the second term. We thus obtain three

terms as follows.

Tr (—6%)71A® — %’H (=0%)1AW (=% 1AM
- %Tr (=82)1 AW (—2) LA (412)

These calculations in terms of trace correspond to the final step we must calculate to
obtain the effective action. The detailed calculation is shown by Appendix G. We have to
note that the trace includes a trace over spin indices. Thus there is a difference in terms
of the trace between the case of the gauge field Ag; and the case of ghost field Agg. The
calculation of the first term of the (4-12) in the case of gauge field is

Tr (=6%)71A®

d d

=4/ (g:;?‘(k)zﬂ(—k) 0- F(2 - g) o

=82 [ d% <, =, 1 .
+ (471’)2/(27T)4A (k)AM( k)(k9)2 + ) (4 13)

The first row of the right hand in the last line of (4:13) corresponds to planer part and the
second row corresponds to nonplaner part. When we expand the second line into the third
line in (4-13), we take the limit d — 4, and pick up the ultraviolet singularities from the
planer part and the infrared singularities around & = 0 from the nonplaner part. Similarly,the
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second term of (4:12) is

a1 A 52\-1 A)
STr (—0%) A (-6%) A

d d I v . .
— é/ d*k Z”(k)zu(—k)/ (d p (2p+ k) (2p+ k) (2 _ e—szk _ e—zkxp)

’2 (2m)d 27)d P(p + k)2
=~y | s RO T (2 ) -
-32i dk —  — (kO)*(kO)" g
+ (47)? / (27)* Au(k)Au(_k) [2 ((k0)2)2 — (kﬁ)z] + . (4-14)

The third term of (4-12) is

a2y A 52\ -1 A(D)
STr (—0%) 1 AD)(—9%) 1A

— dd_k_ A (_ w2 LpLv ddp 1
=16 f G AR k) [ oo
164 d'k — . — w2 v d
= — (47(')2 / (2w)4Au(k)Ay(—k)(g k* — k*k )F(Q — 5) —+ ..., (415)

Adding (4-13) , (4-14) and (4-15), we can obtain In(det Ag ) as follows.

In(det Ag,) = / %Xu(k)zy(—k)(g“”kz — kR ( 4;)2 (-1:—4)r(2 - 9)

2
+f %Zﬂ(k) J(—H) {- z (k_@)"(k_")] ¥

2 ((k0)?)?
Similarly,we can also obtain In (det Aa,o) as follows.

2

(4-16)

In(det Agg) = / —(%Z“(k)z,,(—k)(g’”kz - k“k”)ﬁ %r(z - g)

dk i (k)" (k6)”
+/(2W)4Au(k)A,,(—k) [_FW] T (4-17)

At last, substituting (4-16) and (4-17) for (4-9) and imposing a renormalization condition
at the scale M, we can obtain the effective action as follows.

Ak — ) LT 11 23 M
I(4) = [ S S AR GR — k) [ + e
5

ik — 1 (kO)“(k0)” .
+/(%)4A,J(k)AV(—k)ﬁ——((kw)2 S (4-18)

4.2. Critical point of instability of the theory

Now, we can evaluate a 1-loop effective potential V.
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d*k — 1 1 (k)" (k6)”
V= Au(k)AL (=) | (g™ K = kMK 5 — -
[ A AR (o S gt | 019
where 1 1 1 23, M?
=S 42
2e(k)?  2e2  (dm)Z 3 k2 (420)
From the second term of the right in (4-19), we can see a tachyonic behavior for the low
momentum modes of the gauge field due to infrared singularities.
We are interested in the mode which makes this potential unstable(i.e. nagative). We

assume that there is the non-commutativity in the only 2 and 3 directions as follows.

00 0 0
, oo 0o o
=10 0 o o (4-21)
00 —6 0

And so, we put k* = (0,0, k2, k3) simply to study the effect of the non-commutativity. To
tell the truth, from the result of a simulation by a lattice regularization , we have obtained
the lowest mode k? = k3 = 2a/6 in which the instability occurs. (a is the lattice space.) In
(4-19), putting
i = (g — ey L LU0
2e(k)? w2 ((k0)2)2
and substituting (4-21), k> = k* = 2a/6 and M? = —n?/a? for (4-22), we can obtain a

following matrix.

(4-22)

A 0 0 0
0 —-A
M® = 0 0 , (4-23)
0 O B —-B
0 0 -B B
where
402 1
A —
( 62 )Ze(k)
4q? 1 1
5=(5) 57 ~ o (124)
202
1 1 1 231n7'('9. (4.25)

2e(k)2  2¢2 (472 3 8at

To consider the direction in which the instability occurs, we take the following part of the

matrix (4-23).
B -B (4-26)
-B B |
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At this point, solving an eigenvalue equation with respect to (4-26), we can obtain eigenvalues
A =0,2B . Then we can obtain a critical point from the condition B < 0 as follows. Putting
f=1/(2¢€?), from (4-24) and (4-25) we can obtain as follows.

62 1 23, 7%6?

b< 647m2a* * (47r)2§ln 8at (4:27)

Using the matrix size N = 76/a? in the lattice side, above the inequality (4-27) is

N? 1 23 N?
i TP e (4-28)

8 <

From the above, in the non-commutative U(1) gauge theory, we have been able to derive the

critical point which causes the instability of the theory due to the infrared behavior.
§5. Summary and discussions

We have investigated the ultraviolet and infrared behavior in non-commutative field the-
ories. To study ultraviolet behavior, we adopted non-commutative ¢ theory and performed
explicit two loop calculation. In non-commutative field theories, there is the established the-
ory that nonplaner diagrams which include the effect of the non-commutativity vanishes in
maximal non-commutativity (§ — oco). We investigated whether such a planer limit also oc-
curs in the case where 6 is finite but external momentum goes to oo (i.e. ultraviolet region).
We took two types of nonplaner diagram as typical diagrams of two loop level to study above
the statement. One was the diagram which we have to renormalize for the UV divergence
of subdiagram. The other was the diagram in which non-commutativity parameter 8 seem
to not correlate the external momentum p. Consequently, we confirmed that both of the
nonplaner diagrams vanished at the ultraviolet region.

Next, to study infrared behavior, we adopted non-commutative U(1).gauge theory. In
the theory, there were infrared singularities which cause instability of the system due to the
effect of UV/IR mixing. To find the critical point which causes instability, we calculated
the effective action at one loop level. We fixed the gauge and introduced ghost field. In
the calculation, the effective coupling constant was derived from planer part and infrared
singularities were derived from nonplaner part. We balanced the kinetic energy term which
includes the effective coupling constant with the infrared singular potential term which
condences at a low momentum mode to find the critical point.

We have to consider where such a result of non-commutative field theories apply. We are
interested in restoring the phenomena of non-commutative field theories to D-brane physics

with respect to string theories. And when we consider a physics in the region of plank length,
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we may develop quantum gravity on non-commutative space-time. In the technical side, we
can also change the treatment with star product into the treatment with matrix.? When it

is difficult to calculate by using star product in non-commutative field theories, we often use
a matrix model instead.
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Appendix A

—— Leading term of K1(2)/z around z ~ 0 ——

We start from a following equation.

| 2?21 4
We can expand the K;(z) as power series in terms of z as follows.
R 1 2\ 1+2m z  p(m+1)+p(m+2)
== — - [z JmZ = .
Ki(z) z+mz::0m!(m+1)!(2) [n2 2 ’ (4:2)
where ) .
¢(m+1)=1+§+ +——E
Thus, we can write down the leading term K;(z)/z around z ~ 0 as follows.
Ki(z) 1 1 =z
=—=+-In-+0(1 -3
z 22 + 2 . 2 +0(1) (A-3)
Appendix B

—— Derivation of (3-5) ——

We start from the following equation.

I(p,q) = 3/ 'k 1 1 1
pa)=9 (2m)¢ k2 +m? (k — ¢)2 + m? (k — p)2 + m?

At this point, we introduce Schwinger parameter as follows.

1

" —alk? +m)].
o /0 doexp[—a(k? + m?)]
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d
I'(p,q) =¢° / (;iﬂ];d

In the exponent, we complete the square in terms of k¥ and integrate over k.

/000 dadﬂd’yexp[—a(k2+m2) —ﬂ((k—q)2—|-m2) -'y((k—p)2+m2)],

g3

o0 1
I'(p,q) :—(47r)d/2/0 dadﬂdv(a+ﬁ+7)d/2

2Bvp - q — Bla+7)g® — (o + ﬁ)pz]
a+ B+ '

-exp[—(a+/3+v)m2+

Hereafter, first we put o + 8 + v = t and change integral variables from a, 3,7 to t, 3, .
Secondly we transform in terms of scale § — ¢,y — t7y . Thirdly we transform in terms of
scale ¥ — (1 — 3)7. Then we can obtain as follows.

3

1 1 e} 1
I.0) = s || 480=8) [ v [ dt g exo(-t0(1 - 9)2),

where ,
A= —ﬂ—@@_——ﬂ—)+q2+%(1—(1—ﬁ)7)p2—27p'q-

Putting t5(1 — 8) = «, we can obtain as follows.

1 a_ a_ 1 [e’s) 1
I'(p,q) =/ B g2=*(1 - p)> 2/ dv/ ~aj=z exp(—ad)
0 0 0
At this point, transforming 8 — o,y — (8, @ — t, we can obtain (3-5).

Appendix C
—— Derivation from (3-9) to (3-11) ——

We start from (3-9) as follows.

4 4 d-5 o1 . J 1 1 .
IInp(p?) :(4€r)d {(ep)z] /0 doaaz3(1 — a)r2/0 dﬁ/o d¢ ¢ 2(1 - ¢)
1 oo} A”
-/0 dn/0 dttd_sexp(—t— Ep2(0p)2) ,

where

2

A=l -+ aesa-pran-o (e -wrna-n)].

At the lower end 0 of (-integral, there is the UV divergence of the three- point function at
one loop in the limit d — 6. Then, in the limit d — 6, the divergent part and the finite part
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separate as follows. The divergent part is

<4g7:)d[(e§>2r_5/ daat(1- )/ ‘w/ acers

/ dn/ dt t4~ 6exp[ t— L il +Z(tl_n)p2(9p)2]. (C-1)

The finite part is

(49f)6(9;)2/Oldau_a)/ldﬂ/ldgl(l—g)/ldn/wdtexp[ t——~p Gp)]
_%@/Olda(l /dﬂ/ dCC/ dn/ dtexp{ m_2 4(t 77) (Hp)Q].

(C-2)

Putting d = 6 — ¢, (C-1) is expanded in terms of ¢ as follows.

(497;‘) (04) (m*(8p)%) /0 daaE(1 - ) /0 g /0 g i
/ dn/ dtt™ Eexp[ t— ﬂf—?Zlil—an)pz(ep)ﬂ,
6(0p ( *(6 )2)EF(1 }(% 2__ / / dt (1 —elnt)

- n)p2(9p)2] :

H~

exp [

—i—+ n(mp (9p))-|—1~lnt)

'”—2 — 1)
4t
And (C-2) is expanded as follows.

_%@/ /dﬂ/ dC/ d??/ dtexp[ t—ép (gp)2}
+(4f)6(7;13?/0 da(l_a)/o dﬁ/g dC(lnC)'/O dn/o dt

: [GXP[ t— %p (9p)2] — exp [—t - ﬂC—4t:—0)172(9pz)” (C-4)

eXP[ t— p2(010)2] : (C-3)

The second term of (C- ) is integrated by parts in terms of { as follows.

1—a/d,8/ dClnC/ dn/ dt| — 4t %?
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'GXP[ t—ép (0p)2]

4 1 1 1 o0
=9 2/da/d/d/d/thlnC
(47T)6p0 oﬁocono at

2

F= %(1 —a(l-a)) +(1-0) [ﬂ(l ~ 8)+a((1-20)(8 - n)* - n(1 —n))]-

Consequently, adding (C-3), the first term of (C-4) and (C-5), we can obtain (3-11).

exp{ t— ép (9p)2], (C-5)

where

Appendix D
Derivation of the upper bound (3-18) ——

In this appendix we derive the upper bound (3-18) under the condltlon ® < 1. Let us
pay attention to A and F in eq. (3-15). Since

A~:A~1+A~27

~ m? ¢ m? (
A= — | —> — >
T L%(l-*Oé)+1 C]>p2a’

<

da=z[esu-p+at-0 (- +a0-m)] > <o -,

we may put a lower bound on A as
2

As g(’;—zwu—ﬁ)). (D-1)

Similarly we decompose F' as F = F} + F, + F3, where

m2

F = F(l——a(l—a)) ,

B=01-a)s1-7),

B=a(l-a)(1-20B-n*-n1-1n).
Since |Fi| < 1, |F3| < 1, |F3| < 2, we obtain |F| < 4. Thus we have

|D|<4/ da/dﬁ/ dC/ / 4t 11 C|exp[ 4f ( +ﬁ(1—5))p2(9p)2].

Next we change the integration variable ¢ to A = —g—(’;‘—2 +6(1 - ,8)) p?(6p)?, and send the

4ta
upper end of the )\—integral to oo, which yields

/ ﬁm2+ﬂ1— /da/ dt/ dhe 2

ln(p ﬂ(l—ﬁ))’+

[jlnt|+|lna|+|lnA|+
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Using the inequalities

2

111(’];’—2 +801-9))

2

b
<lnm,

- 2
/ df — = ! ln( +2+ ) <1+lnp—22),
m—|-,31—,3) \/__‘_—r;z_; ’:—2 m

3
/ dt|Intlet=c< =,
0 2

we arrive at the upper bound (3-18) on |D|.

N

Appendix E

—— Derivation of a stringent upper bound on |IIypy(p?)] ——

In this appendix we obtain an upper bound on |IIxpz(p?)|, which is more stringent than
eq. (3-28) and actually vanishes in the p?> — oo limit. Let us consider the integrand in the
last line of (3:-25). In the denominator we omit the #¢ term, and in the exponent we omit
Ayp and the term (1 — () (C(ﬂ -n)?+n(l - n)) in A. Thus we obtain an upper bound

Hhe2(p)] < (4€r)d(%) E(mIZ)5 6(5) (E-1)

where the function G(z) is defined by
(.’L’ — xS/ d,@/ da/ dC 240[2(1 — a)3C2(1 - C) :
z(¢+a(l —a)(1- ) +¢(1 - a)B(1 - §)]

12 l+:z:+l 1 1
=2 <1n - 24z i+e)- (E-2)

(i +2)

Since lim, 0 G(z) = 0, eq. (E-1) confirms explicitly that ITyps(p?) vanishes in the p? — oo

o

L

limit.

Appendix F
—— Derivation from (4-4) to (4-5) ——

First we have to prove a following equation.
/ d*:(D,a,) (Dya,) = / 4% [0,(a,D.a,) ~ 0,D,D,05). (F-1)
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We expand the left in this equation as follows.
/ d*:(D,a,) Doay) = / d (8,0, — i Ay, a,)) Dyas
= / dz [aﬂ(a,,ﬁ,a,) — a,0,Dya, —i[A,, a,] E,,aa] (F-2)
We can rewrite the third term of the right in (F-2) as follows.
—i/ddx[zu, a,) D,a, = — i/ddx [—ap[zu,—ﬁ,,ag] + a,[ Ay, Dyas |+ [A,,a,) Eyaa]

= - z‘/dd:c [—a,,[Z“, Dya,]—a,*Dya, x A, + A, *a, *D—,,aa]
—— z’/dd:c [—aP[ZM,E,,a,,] —a,xDya, x A, +a,* D,a, *Zu]
— 4 / 'z a,|A,, Dyay ] (F-3)

When we removed from the second line to the third line ,we used the nature (2-6) of *-
product in the third term. We have been able to prove the (F-1) by using (F-2)and (F-3).
Similarly, we can prove a equation in terms of the ghost field as follows.

/ d%o(D"ex Dc) = / 4% [0 (2 Dye) 2+ DDV, (F-4)
Using (F-1) and (F-4) , we can expand (4-4) as follows.
s = [ diz|-2 D¢ — D" D I cxDe|. (F5
= T\ =5z —D g~ ,D"] Oy = 5 aux *xa, —¢xD'c|. (F-5)
At this point , we have to prove a following equation .
/dd:z: (aﬂ * {5“,ﬁu] * a,,) = -2 / dda:( ay * " % a,,). (F-6)
We expand the left integrand in this equation as follows.
a, %[ D", D" xa, = a, * (D'D" - (u V) * ay (F-7)
The first term of the right in (F-7) is
—p—V N u( Y ey =
a,*D"D" %a, =a, % [8 (D a,,) —i[A",D a,,]]
=a, * 0*0"a, — i(au * [ A" a, ]+ a, x[A",0"a, ])

—a,* [Z“, (A, a,,]] (F-8)
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Furthermore, we expand the second , the third and the fourth term to look for the terms
which cancel by some terms of the (1 <> v) term in (F-7). As the result , we can pick up

some following terms which remain in (F-7).
*x[D", D" | *a, = — i[au * (O"A" — 0"A") % a, — a, % a, x (O*A" — BVZ”)]
- [au* (A A | % a, + a, % a, x [ZV,Z”]].
Using the nature (2-6) of x-product in the second and the fourth term of the right in this
equation, we can obtain as follows.

/ddx(a“*[ﬁu,ﬁu]*a,,)
/ dz [ * (OHA” — 0"A") e ay — a4, % (A" — G"Z”)*au)
+ (au*[Z”,ZV]*aV+a,,*[ZV,Z“]*au)}
= Qi/dda: [au " (aﬂZ” — A z'[Z“,Z”}) *a,y]

~_——2i/ddx(au*7””*a,,).

Since we have been able to prove the (F-6), substituting (F-6) for (F-5),we can obtain a

At last, using (J*°)* = i(gPtg° — g"*¢**) for F' in this equation,we can obtain (4-5)

immediately.

Appendix G
Derivation of (4-13), (4-14) and (4-15) ——

First we calculate Tr (—82?)7*A® in detail.
Tr (—0%)~ 1A(2
dd

=tr

——zkm 82)_1[Zﬂ, [Zmeik'w]L

where the tr is taken over spin indices. In the case of gauge field, we may put tr = d. (In
the case of ghost field , we put tr = 1. )

d d d ‘ .
—d/dd / d*k d ll d l)2 Z“(ll)zu(h) e—z’kw(__aQ)—l[eih'm,[ezlzm,ezk-x]].



Using [e'22 ethe] = ei(l2+k)’m(e‘%’2x’° - e‘i’“xh) the above right in this equation is

dek ddl dély, — — 1 )
_ d 1 2 —u i(l1+H2) -z
A7(l —_—
d/d / 2m)d (27)d (i) Au(l2) (ll+12+k)26

. (e zllx(l2+k) _ e—g(zﬁk)le) (e=dbxk _ g~ skxl2),

d dl _ _ i i
:d/ dk d 2 Au(—b) AM(ZZ) ki(e—ikxlz e‘§l2><k) (8 212Xk e—glez)

(2m)e (27)@ ’
ddk —u — ddp 1 —ikXp —ipX
=d/(2) i (k)AM(—k)/(27r) (2 emxp _ ok, (G-1)

Similarly, we can calculate —1Tr (—82)"1 AW (-52)~1 AW as follows.

- %Tr (=0%)71AW (=%t A,

__d d%k —u o — _ d*p (2p+ k)*(2p + k)* _ o—ipxk _ ,—ikxp )
- 2/(27f)dA (B k)/(27r)d p2(p + k)2 (2 € ) (G2)

Next we have to explain the calculation of —1Tr (—82)"1AW)(-52)~1AU) in detail.

_ %Tr (=82) LA (~5%) 1 AD),

_l d ddk —tk-x _a\—-lop po _an\—-lop uv ik-x
—2tr/d$/(27r)de * (—0%) T 2F ) T % (—0°)2F ,, T* % e*®,

d
= —8tr (J7 ") / d'z / —(;lﬂ’;d e % (=0%) (9, A,) * (~0%) (B, A, ) x €.

From this point, we take the same way that we have calculated the above Tr (—82)"1A®),
And using tr (7?7 J*) = 2(g**¢°" — g°#g**), we can obtain as follows.

d’p 1
2m)ip?(p + k)2

=—16 / (gjr]; A,(k)A,(—k) (g™ k® — k"K) / ( (G-3)

In this case , we notice that there are no nonplaner parts.

When we derive (4-13 ), (4-14) and (4-15) from (G-1), (G-2) and (G-3) , we use some
following equations in d-dimentional Minkowski space-time.

/%%ZO'F@_;)_}_”"
d¢ 1 ; p
/(275‘1 pz(p+k)2 = (471’)2[‘(2__2—) +

ddp pH 7 kM d
- _ (o2 .
/ (2m)4 p2(p + k)2 (47)2 2 F( 2) T




ddp pupu i 1 1 . d
/(Qﬂ)d o+ k)2 (4m)? E(—!] k* + 4k*k )F(2 - -2—) TE

d .
/dp leikXp: ¢ —4_+...,

(2m)d p? (47)2 (k)

d’p 1 ibxp — __ ' p2e0)2
[ G- (@mp ME RO+
/ d’p p* eikxp — _ (k0)“_2_ e

(2m)¢ p?(p + k)2 (47)2 (k)2 ’

dp PP gy i 29" i _ 4
/ (2m)d p?(p + k)2 (472 (k6)%  (4m)? (6)u (k). ((k)2)? ’

Note that in planer part, we pick up singular terms in the limit d — 4, and in nonplaner
part, we pick up singular terms (infrared singularities) around k ~ 0 in 4-dimention.
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