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ABSTRACT.

Random cocllision models which are represented by random time changes
of standard Poisson processes are studied in this paper. A strong law of
large numbers for a model of a one-sided prey-predator relation between
two species is discussed. Moreover, a random collision model which has a
cyclic prey-predator relation is presented. In our model each component of
the stochastic process is decemposed into a counting process of the number
arriving over time ¢ and a counting process of the number serviced by time
t, and the number increasing over time ¢ of the i-th component is equal to
the number decreasing by time ¢ of the 1 + 1-th component with pericdic
boundary condition. A stochastic structure of the model is investigated.
An ordinary differential equation from a weak law of large numbers and
a stochastic differential equation of the Gaussian diffusion process from a
central limit theorem arc obtained in our model. In addition to this, by
using a simulation method the behavior of a simple model where mutations
are represented by random time changes containing the frequency of one

apecies (that is the allelic state) is investigated.



1. Introduction

Problems of interspecific competitions have been studied by many authors.
Lotka [22] and Volterra {33] studied interacting populations as deterministic
systems. The larger populations are implicitiy assumed for the deterministic
systems. For smaller populations it is important to deal with the systems as
the probabilistic systems. Ehrenfest’s urn model was discussed by Kac [15] and
Moran [27] studied an urn model for the random genetic drift introduced by
Fisher [6] and Wright [37]. Itoh [11, 12] introduced a random collision model
which is an urn medel for competing species in finite numbers of individuals
of several types interacting with cach other and studied the probability of co-
existence of species. The discrete systems of interacting populations are ap-
proximated by the Fokker-Planck equation, The forward Kolmogorov equation,
which is the Fokker-Planck equation, is characterized by the drift coefficient for
the change of the mean of the frequency and by the diffusion coefficient for the
change of the variance of the frequency.

In this paper we study a system of an interacting population. An ordinary
differential equation from a law of large numbers and a stochastic differential
equation from a central limit theorem are derived in chapters I and II. In the
course we use the method of martingales which are linked in a natural way to the
concept of increasing information pattern describing the history of a stochastic
process. The optional sampling theorem due to Doob [3] is a powerful tool for
our analysis.

We analyze the random collision model introduced by Itoh [13, 14] which
satisfies the following conditions:

(1) There are three species 1, 2 and 3 whose numbers of particles at time ¢ arc
XM (#), X9 (8) and X5 (8 respectively, where XM (1) + XM (1) 1
X‘-gM)(t) = M, when M is a positive integer. We denote XM)(t) =
(X1, X0 (0, x5 1),

(it) Each particle collides with another particle d¢ times on the average per
time interval df.

(iit) Each particle is in a chaotic bath of particles. Each colliding pair is
cqually likely chosen.

(iv) Collisions between particles of the same species do not make any change.
A particle of species 1 and a particle of species ¢ 4+ 1 collide with cach
other and become two particles of species ¢, where { = 1,2, 3 and if i =3
then weset 14+ 1 =1 and if 1 = 1 then we set i — 1 = 3 fromn now on.

We assume the following moaodel, represented by random time changes of three
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standard Poisson processes, which satisfies the above conditions:

’

X0 = X000+ Mty [ TR 6
Nm(];‘[f ()X (5)ds),

XP0(0) = X§00)+ NGy [ X80 (6) X4 (5
*Nw(wf X0 () X0 (5)ds),

X0 = X0+ M5y [ X)X 5

A
- Nasl 3z / XM x M (5)ds),
0

XM00) + x5 (0) + XM (0) = M,

where X,-(M)(O) are nonnegative initial values (¢ = 1,2,3 ) and where X is a
positive constant. The standard Poisson processes Njjq(%) (1 < § < 3) are
assumed to be mutually independent, when the stochastic structure of the model
is considered. We call this model paper-scissors-stone model because of the cyclic
prey-predator relation, as in paper-scissors-stone game. Note that the model is
an example of the system which has a cyelie prey-predator relation.

There is a large body of literature concerning random time changes. Volkon-
skii [34] and Helms [8] discussed the strong Markov property of general models
represented by random time changes (the latter is the version of the former
in multidimensional view point). For the multiparameter strong Markov model,
Helms [8] showed that the model in which parameters are substituted by random
time changes 1s strong Markov. Thus the paper-scissors-stone model is strong
Markov because of the strong Markov property of standard Poisson processes.
The optional sampling theorem for martingales indexed by directed sets is de-
rived for the purpose of analyzing models represented by random time changes
by Kurtz [17]. A strong law of large numbers and a central limnit theorem are
obtained by Kurtz [19] for general random time substituted models including
the present model. A diffusion approximation indicated in Itoh [14] is obtained
by Kurtz [18, 19] and Ethier and Kurtz [4].

In chapter I we study a random collision model of two species which is a special
casc of the paper-scissors-stone model {[31]). For the case where X;EM)(O) =),
there is one-sided prey-predator relation whicli is represented by one random
time change of one standard Poisson process. We solve the model explicitly in
section 1. This enabics us to prove a strong law of large numbers for this model.
It section 2 the convergence of the strong law of large nnmbers is shown by using
the explicit solution.

In chapter IT the paper-scissors-stone model is stwdied ([32]). The cyclic
prey-predator relation in the model complicates the situation. Itoh [13] studied
the random collision models which involve the paper-scissors-stone model and
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obtained an asymptotic result for coexistence of species. Motivated by the mar-
tingale method, we analyze the paper-scissors-stone model and investigate limit
theorems. Before we mention about this, we present the leading case.

A qucuing model of computer networks by Kogan, Liptser and Smorodin-
ski [16] and Liptser and Shiryayev [21] is successfully analyzed by a martingale
methad. Their discussion is based on the assumption that a stochastic structure
has orthogonal martingales in multi-dimcensional queues. In their model, queues
are assumed to be of two types. Servicing of a request in queunes of the first type
is by the rule “the first order is served first”. Each request that arrives at a
quene of the second type begins to service immediately with constant intensity,
that is same for all requests. There are n 41 queues. The 0-th quene is assumed
to be the second type queue and other quetes are assumed to be the first type,
The martingale method was applied to the n-dimensional stochastic process of
queues where the 0-th queuc is removed. Each compouent is decomposed into a
counting process of the number of requests arriving over time ¢ and a counting
process of the number of requests serviced by time ¢. Moreover it is assumed that
there are no two jumps at the same time. The Doob-Meyer decomposition {25]
of the process is such that martingales are orthogonal and bounded variations
are continuous. They obtained an ordinary differential equation from a weak law
of large numbers and a stochastic differential equation of the Gaussian diffusion
process from a central limit theorewm.

In chapter II of this paper we alm for the paper-scissors-stone model to ob-
tain an ordinary differential equation from a weak law of large numbers and a
stochastic differential equation of the Gaussian diffusion process from a central
limit theorem ([32]). We solve the paper-scissors-stone model explicitly in sec-
tion 1. A reference family and a stopping time are found to apply the optional
sampling theorem by Doob [3], and a stochastic structure of our model is ob-
tained in scction 2 ([32]). Martingales in different components arc not always
orthogonal in our case. In section 3 and section 5, we refine the weak law of large
numbers and the central imit theorem in [16, 21] to more generalized ferm in
order to apply to our model. We obtain an ordinary differential equation from a
weak law of large numbers in section 4 and a stochastie differential equation of
the Gaussian diffusion process from a central limit theorem in section 6, starting
fromn [32]. In section 8 for the paper-scissors-stone model the actual behavior of
the weak law of large numbers and the central fimit theorem is shown by using
computer simulation ([23]).

In Chapter IIT we compare the following two simple models and discuss the
simulation study ([24]).

Oblita and Kimura [29, 30] formulated a madel of allelic mutation in which
mutational changes are represented by stepwise movements in order to estimate
clectrophoretically detectable alleles in finite populations. If an amino acid is
sibstituted in the molecule, the band observed hy the electroploresis usually
varies with one unit in the positive or negative direction. Then the model ex-
plains how gametes vary at amino acid sites. The model is expressed by o Markov
chain as will he disenssed in section 1. Mutational changes occur by constans
probability from sites of allelic states to the neighboring sites with no selections.
This model is called “ladder” or “stepwisc-mntation™ model. Moran [27] stud-



ied the model theoretically,. A modern version of the Ohta-Kimura model is
discussed in Fleming and Viot [7] and Dawson and Hochberg [2].

In section 2 we discuss a continuous time model in which mutational changes
are represented by random time changes of Poisson processes. These random
time changes contain the frequency of one species {that is the allelic state). For
simplicity we call this new model a time-change model in this paper.

As pointed out above, the time-change model has the strong Markov property.
It is difficult to investigate explicitly the generator of the time-change model
{Lamperti {20]}). Motivated by this, we compare the time-change model with the
stepwise-mutation model.

In section 3 we give a statistical method whether a new model corresponds
to a known model or not. In this discussion we calculate the maximum likeli-
hood estimator of the known model which is the stepwise-mutation model. The
maximum likelihood estimation is reasonable, since the logarithmic likelihood is
the estimator of the Kullback-Leibler information. By generating data for the
time-change model through computer simulation, we directly fit the data to the
stepwise-mutation model and compare the two models.

In section 4 we give a simulation study by using the statistical methed in
section 3. We make sure the correspondence between the time-change model
and the stepwise-mutation model through computer simulation. We conclude
that the two models well corresponds in a statistical sense,

The mathematical results are summarized as follows.

By assuming conditions given in Chapter Il section 4, for any ¢ € {0, 00) we
have a weak law of large numbers which shows a convergence of X (¢)/M to
the solution u(#) = (u1(t), u2(t), us(t}) of the deterministic system expressed by
the differential equation

dL;t(ﬂ = Alu(thue(t) — us(B)ur (1)),
d?t;t(l‘-) = Mg ()ug{t) = wy (£)ua(£)).
() o) a6

Put

Y (M)
1"("\”(” — \/ﬁ(# —u(t)).

By assuming conditions given in Chapter 1T section G, we have a central limis
theorem which shows a weak convergence of the sequence of the probahility dis-
tributions of the R -valued processes Y(M) = (YEMI(1)) oy to the distribution of
an B*-valued Gaussian diffusion process ¥ = (Y(t)),,:fg defined by the stochastic
differential equation

dY (1) = BEY ()t + 7 (£)dTV (1),



with an R*-valued Wiener process W = (W,),>0 and with 3 x 3 matrix

Mua{t) — ua(t)) Auq(2) —Auy (t)
bit) = —Auy(t) Aus(t) — u (1) Aug(t)
AU;}(t) —/\TL;;(t) /\(ul(t) - Ug(t))

e(t) =
Al (g () + wa () () —Auy (t)uy(t) —Auz (g ()
—Aug (thug(t) Alug{hus(t) + ) (H)ua(8) —Aug(t)us(t) .
~Aug{t)uy (£) —Aup(t)us(t) Aug (E)uy (8 + ua ($)ug(2))



CHAPTER 1

Random collision model of two species

1. Random collision model of two species and its solution

Let us consider a population of two types of individuals in which individuals
randomly interact with each other. Changes occur by interactions only between
particles of different types. If two individuals of different types interact, then
two individuals of the dominant type result from the interaction. Hence the total
number of the particles is invariant under interactions.

We set any positive integer M which denotes the total number of the particles.

For each 7, 7 = 1,2, let XJ(_M)

number of individnal of type j. We assume that X%‘m(*) is dominant and that
each of the individuals is represented by the time change of a standard Poisson
process iV (x) in a differential form as

(¥) be a stochastic process which denotes the

t
dx () =dN % f X x M ()ds),
i
(1.1) /\" y
axy" (1) =~ dN (57 ] XM () X5 (s)ds),
1 0

where A is a positive constant. This is also written in the lutegral form as

t
XM () =X 0) + N(% /0 X ()X (s)ds),

(1.2) (M) -(A1) A0, | w0
‘ "(2‘ (t) :Ag‘ (0) - -N{‘ﬁ / le (S).‘.z (S)(i’.‘i),
SO

A
X0+ x M0y = M,
where _Y](-'xf)(()) are nonnegative initial values of ,f‘{;f"')(*) (=12
Now we shall prove the existence and uniqueness of the solution of equation
(1.2). We denote by {7;}i»n the set of the jump times of the standard Poisson

process N (%) (ry = 0).
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THEOREM 1.1. There exists a unique solution of cquation (1.2} and it is rep-
resented in the form

M-x3(0

i M
(1.3) XMy = xMo) — 14 Zﬂ X0 e (8),
=
M—X Mg
%4 M
(1.4) BPO=X"0+1- 3 Xm0,

i=0

where JE_,M) {(0< k< M) are defined by

G"(]‘M) ==(],
M —oe for 1< k<M, XP*0)=0 or M,
(15)  { o™ Z LT

M0+ — D1 - (X 0) +i - 1)/M)
for 1< k< M- X{*"(0), x{™(0)#0,M,
oM o0 for k> M= X0y +1, XM0) 20, M.

Proor. Let XJ(-M)(*) ( = 1,2) be the solution of equation (1.2). For each
fixed t € Ry = [0,00), we define

A .
(1.6) THM(f) = u/ XM x M (5)ds.

Every time when the function T*)(x) comes to the jump time 7, of the
standard Poisson process N (%), the stochastic process Xf‘m{*) increases in the
width of one. We define G’E,M) by

) 0_‘().‘1/1') — 01
(1.7) (s1) _ . (M)
oy =inf{t > T (t) = 7.} (ISkSﬂ/f)

When Xi"m(()) = 0 or M, wec sce that T("”)(t) = 0, and so, X](M)(t) =
XfM)(O). It is clear that (1.3}, {1.4) and (1.5) hold.

When X\ M(0) % 0, M, if oY) <t < ol™ for 1 <k < M — XM(0), and
50, Thoy < TV M')( ) < Ty, then

XM = XM+ NT () = X0y 4k -1
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Hence

xMigy = xM 1+21

i=0

_X(w) - 1+Z\[ an

(M) (M) M0 ,
Ht> Tt xiMgy then TVM(t) = ot XMy’ and so,

XM () = x{M(0) + N(T (1))

M—x0(0)
=xMoy -1+ 3 2
i=0
M
M
= X_E )(U) 1 Z X[USM),ooj(t)'

i=0

Therefore we sec that (1.3) and {1.4) hold. It can be seen from (1.7) that the

(M)

random times o, ° satisfy a recursive relation (1.5).

Converscly, let X{‘M)(*) be a stochastic process defined by (1.3) and put

X.L(,M)(*) =M - XEM)(*). It is easy to sec that XJ(-M)(*) are right continuous
and have the limit from the left-hand side {j = 1,2).
xU')

When the time t is involved in the interval [o7] T <k <M~
X%M)(O)), we have the estimate:
e TUO(6)
A o M) Af
_ A : M M), A M)y (A
=7 Iﬂ/ﬂ(y‘) X7 (50X, (5)ds+M, ./;i“_") Xy (8)X, (s)ds
k—1 A
(M . M : M M
= 30 O+ G - DI = X(0) - 1) - o))
=1
A (M) A .
+ (M <0)+(k—1)>(w— X0 - (k= 1)t - o)

= TE—1 + ’\_f X M)(O) + (k—1N(M - XEM)(O) (k= )t — Jix_fl))

< The

Hence N(TO (1)) = &k — 1. :

On the other hand, it follows from {1.3) that when the time ¢ is involved
in the mterval [UEL\II),UL"")), Xf‘m(t) = X,("m([)) - 1 4 &, and so, XfM)(t) =
X0y + N(THD (),



When ¢ 2 Opr_ximiggy we find that
T

A MEXPIO) o . A
=<7 Z /(MJ XfM)(s)X,gM)(s)ds + ﬂ]w; Xf‘”’(s)ng””(s)dg

i=1 oM S

M-Xi0)

= Z E(X{M)(U) + (i = LM = X0) = (i — 1))(atM) = M)
=1

Hence X\ () = XM(0) + (M — X1 (0)) = X300y + N(TOO(8)).
Consequently Xj,(-M)(*) (7 = 1,2) satisfy (1.2). 0O

2. A strong law of large numbers

Let uy = u;(f) and ug = u2(t) (£ € By) be the solution of the deterministic
system

du (¢
HEA = Auy ()ue{t),
(2.1) z t(t)
i
(ji!t = —Aup{t)u(t).
XMy
We show the weak convergence of ~ir—= (j = 1,2) to the deterministic

system in use of the martingale method in Chapter IL
As a strong law of large numbers, we shall show

TuporeM 2.1. We assume

M)
)

;’l}g»no-o M
0 <u(0) <l and w(0)+uy(0) =1

=u(0) a.s.,

Then for any t € (0,00),

(M)
X t
“}1_12)0 _IT() =u{t) «a.s.,
(M)
X,
A}l_l—g)o bﬂ-f( ) = uy(t) s,

Proor. We rewnite the solution in the integral form

A x Oy
XMy xMgy
2.2 ! - oar ()i
(2:2) M M ""fn war {3},
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where the function @as is defined by

k-1
M

<s< Pt 1<kenr

(2.3) pumls)= X[Uiu)!m)(t) for e

We fix any element w € {? and s € Ry such that

i XU 0)w)
(2.4) A}TMT = u;(0),
1 M
(2.5) Mi'l—gf:o 7, Z(T,-(w) ~ T (w)) =1,
(26) Jdm 37 3 () - rea)) =2,
2.7) 0<s<lom(0), 0<wu(0) <l

We note that the set of the element w € € satisfying (2.4) - (2.6) has the
probability one. In the sequal we shall abbreviate the variable w.

[Step 1] We claim that

My xiMo)
M M

1—1uy(0)
+/ war(s)ds +o(l) (M — oc).
0

By (2.2), we have

r x M) 1-up(0) M- "0
IT_'_/ t,o,\f(s)ds+f war(8)ds
i a 1—u(0}
M - XM
X0 for 1w (o) < TG
M

_YU”) 0 L—wuy(0) 1—uq(0)
#4»/ war(8)ds — /"_X(.mm) wr(s)ds
+ 0 +

M — XM

| for ¥ <1 —wu (D).
Since 0 < gpr(s) €1
~( M) (MY -1, {0) (ALY
W _xiVo | x)
T +. ; war(8)ds 2= O]u {0) — TI)

Hence the claim holds,

Tle convergence of the solntion to the determindstic system is now reduced to
(M)

the integrand ¢ar(s). For that purpose we shall show the convergence of

L



We take for each M > 0 an integer kj; such that —M—— <s< —M- It is to be

noted that %ﬁi converges to s as M tends to infinity. VVc chomposc cri::) into

(M) 1 ) ) Ti=Ti1
Thone ——Elg,’[ﬁ(X[ung} X{:g[Ms]}) T T D (XEM)(O)JH—U
A px e
1 Ti—¥i—1 Ti Ti—
+ Ly icn :
MX{‘S[Ms”{)\(x?{)g)j’"”“_(XEMJ(‘U[H'_”) u1(0)+—wl-)(l—u1 (0)—
Ti—Ti-1 1

+.L o { .
A X G N  Sh O—an (=50 M 0 Sy (= () - 555

1 1
R XM S o B S )

=851 +S+ S+ Sy

[Step 2] We claim that limps..oo S = 0.
By (2.8), there exists a positive constant € such that

1 max {kae,[M 3]}
J‘f_f Z (T:' = Ti }2 < 7.
i=min{kyr [Ms]}+1
Moreover, it follows from {2.4) that there is a positive integer Ay such that for
any M > M,

wp (0) < X(u (M 1—u(0) = s

2.
( 8) 5 i < ul(()) + 7
Hence
|51
1 max {kar ,[M 8]}
) . 2
Stgr 2. (r=m )
i=min{kar [Ma]}+1
{ 1 max {kpr [ M 8]} 1 }-}
Af N oy pi p oM i1
i=min{kar,[Ma]}+1 (A= (:,) R T M(OH ’)2
1 max { Mk} 1
1 P 1
< {Cl}f{jﬁ Z (/\ul((l] ]—ltl(n}~.~i]) 17
i=tmin{Ma ka1 2 2
|AM JWH 1 !

= {C1}H{

| 2
{ ul(ll = ((Jy—e:) b
T2

T

}

=y}



Therefore it follows from the convergence of %}f— — sas M — oo that Hm e &) =

0.

[Step 3] We claim that limys—.o0 Sz = 0.
By (2.6), there exists a positive constant Cy such that

[M 5]
iy Z(Ti - Tz‘—l)z < Cs.

i=1

Hence by using (2.8) of [Step 2], we have the estimate:

|52
1 [M 5]
< {:ﬁ( 2. {ri = 1i-1)")
[MS] 1 1 - A](M (OJ i—1 0 i—1
_( ( 17 M ) (“1( )"‘ e
M x{* {— X0 i— i— —
S METE A - B - ) w0+ (L - (0) - B
250 )
M “

=u (0)(1 — w1 (0) — )
1 a1 X M)(())
PRI w - S

—u(0)].

Therefore we see from (2.4) that limas e Sa = 0.

[Step 4] We claim that limas .o Sz = 0.

Now for any arbitrary real number ¢ > 0, we take a natural number N such
that 7%,- < &. Here C is a positive constant, which is defined later by (2.9).

Let L be a natural number such that [Ms] divided by L equals &V and let »
be the remainder: [Ms] = NL+7 and 0 < r < L. We note that M — co iff

L — oG, Put

[M 3]

Y Z RTIH

=1

&
}

kL

) L 1
Ly = ﬂ/_[g“k(f Z Ei)!

i=(hk— )T+

12



where

1
a; M = . FRar Al
Ay (0) + )1~ w (0) — 57)
1
ap = ol de ok ]
M (0) + 25701 — uy (0) — 271y
Li=7i~Tiq1— L1
By Schwarz’s inequality, we get
S5 ZMl
kL 1 NEir
< ITZ > (i —an)&l+ |M ' > aiméil
=1i=(k—1}L+1 i=NL+1
L& kL 1N kL
2 1
<72 2 & Grl 2 e wfh)r
k=1i=(k—1)L+1 k=1i=(k-1)L+1
NL+r
s 1 2 1 L
¥ ('ﬁfi—gﬂ SN N ()‘Ul(o)(l — uy(0) — 5))? )

Since the running suffix ¢ in the region (k — 1)L + 1 < i < kL of the first term
of the right-hand side means that

i—1 s(k-1) (k=D (r+1) 1
MU TN T YT N T TR
i—1 s(k—-1) N{L-1)—-r{k-1) 1
- < s
7] N =° NI <2spp

we have the estimate:

1 KL ‘
e 2. lmw-af=
k=1i=(k-1)L+1
RS U5 — 2w (0) + 5 = (1 - wi(0) — 251
1 | M N : — N —
i kz=1{=(k§L+1 ’\{ul(o) + ’,_:f—l' (1 - "'-"'1(0) - ‘__n_%)(“‘l(o) + i(k,v_n)(l - ILI(O) - Lri'r\:"")‘}
(25)? N kL 1
MN? {kz—:ﬁl .=(k—21:)1,+1(’\(1 — u1(0) ~ %)(“1(0) + W)(l —u1(0) ~ %ﬂ)
1 .
+ 2
Mur(0) + 5 ML — i (0) = ) (wy (0) + “ﬁx—l‘))
< 433( 1 1 )2
- Ay (0)(1 — u (0 — 5)2 A1L1(0)2(1 —u (0)—s)"

N2
By {2.6), there exists a positive constant Cy such that

|2

A

1 NL+r

—NL+ - Z (T[ - Ti—1 ™ 1)2 < C;;.

i=1



We see that

kL NIL+r

1 1

. ) , 2 . .
ma,x{l‘rsr}cag\(N{f | Z {i—miz1—1)°}, T Z (re — 7ic1 = 1)%}
i=(h—1)L+1 i=NL+1

- NL+r
ANL"{- T ]. 2
ST NI & (T
< 21\"03.
Hence
|83 ~ Zar
< [{25Ca} {25 . + : )y}
- Ay (01 = 21(0) — 5)2 * 41(0)2{1 — u1(0) — 5)
1 1 1, 1
4 {2sC3} 7 s 7| ——
BOP e Tum a1 Uw

where

1 1
C = s/ 203[\/2—3(/\“1(0)(1 _ ul(O) — 5)2 + /\1L1(0)2(1 - “1(0) - S))

+ : }
Aug (0)(1 — uq (0) — 5)"

(2.9)

This fact yields
1j - =0.

A |S3s — Zag| =0

On the other hand, noting that 0 <

0.
Therfore it follows that lim o S5 = 0.

7 <

% we see from {2.5) that limps oo Zar =

&5
N

[Step 5] It is easy to scc that when M tends to infinity, the fourth sum 84 is
convergent to the non-random function v(s) such that

1 1
vis) = Xfu (u1(0) + p)(1 — w1 (0) — p)
1 1 {u1{0) + s)(1 — ur ()

o8 w {0)(1 — u, (0) — &)

dp

LM
[Step 61 It follows from Step 1 - Step 5 that w, {t) = limyy .o ‘\—J'T“) exists and

it 15 equal to

1 —u{0) 0 (0)(’.“
wi(0) + L X[via) o) (E)ds = i {Q)er 41—y (0)
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This is a logistic distribution, which coincides with the solution of the determin-
istic system (2.1).
Consequently we complete the proof of Theorem 2.1. [

3. Experimental study for the law of large numbers

We prove a strong law of large numbers for the model in section 2 and derive
the ordinary differential equation which has a solution of the logistic function.
The values of the logistic function and the values of the solution of M = 1000
by using the construction (1.3), {1.4) and (1.5) are shown in Figure L.1. Pseudo-
random numbers generated by the mixed congruential method (o1 =AX,.+
C (mod M) for A = 1229, C = 351750 M = 1664501 [36]) are used in the

- - ’(0) x{M ()
simulation. We set A = 1, M = 1000, i = ur(0) = u{0) =

As M is sufficiently large, we observe that the process of the random (,011151011
model is close to the deterministic system. Thus the strong law of large numbers
for (1.2) is seen from the numerical experiment.

ratic
1+ e oowa & &
xn Jazung 08
‘,‘._; ot
0.8+
X1 My
.64
0.4
XoM)ym
0.24
<
ey ‘N.q. ‘e
% 1 ® e 99 e :
t } } t t—~time
1 2 3 4
1 (M)
Ficure 1.1. Values of —‘—W(:l L”—( and values of the logis-

tic function @ (*), w2(*} for j = 1,2 and M = 1000 {vertical)
apainst time (horizontal).



CHAPTER 11

Paper-scissors-stone model

1. Paper-scissors-stone model and its solution

Let us investigate a model for competition between types of individuals in a
population. Consider a population consisting of individuals, each of which is one
of 3 types. The types may rcpresent species, genotypes, types of consumers or
other classifications. Any positive integer M is defined to be the total number of
individuals. Let X{M)(«) = (XEM)(*),XéM)(*), X_gM)(*)) be the stochastic pro-
cess and let XJSM)(t) denote the number of individuals of type j in the population
at time ¢t (t € [0,00) =Ry, f=1,2,3).

For each pair of types, a dominance relation is defined such that type i dom-
inates type 1+ 1 (¢ = 1,2,3). Here we consider integers on mod 3 and if j = 3
then we put § +1 =1 and j =1 then we put j — 1 = 3 from now on (on mod 3
we use 3 rather than 0). Rardom collisions between individuals are assumed to
occur at the rate of Adt/M on the average during time interval [t, t + dt) per one
colliding pair, where A is a positive constant. If two individuals of different types
collide, then two individuals of the dominant type result from the collision. Note
that the term “dominant” is not used here in the sense in which it is used in the
genetics (see [26]). We assume that the process is written in the following form
(t € R+):

A

. t t
dxXM)(t) = AN u/ XM () X3 (s)ds) — ANy, XM

(
4X;"(t) = dNx( Mf X" () X5 () ds) = AN (£
) (

i
Ly
JAK

)
15" (3)ds),
XM XM (5)ds).

A : A
| 4™ () = ANy (55 f XM ()X (3)ds) — g

4

G

s Xl(M)(s)rls),



This is also written in the integral form (t € R,.):

’

)‘ 11
XMy = xMio) + Ny, (u[ XM (XM (5yds)
1\"‘51 __A_/_f X(M X- U)( ) )
. A
XgM)(t) = X.gM)(O) + Nz.;(v] XgM)(s)XéM)(s)ds)
Ay
ng(TI—/XI ($)X57 '(s)ds),
X0 (0 = X00) + 8y [ XD (X )

A (7 ;
— Nag( / XU ) XM (5)ds),
M,

XM )+ xM0) + xPM0) = M,

where X(M)(O) are given nonnegative initial values of X” e %) (7 =1,2,3). We
assume thdt there do not exist accumulation points of j Jump times of standard
Poisson processes V(%) for j = 1,2, 3.

We call (1.1) paper-scissors-stone modcl.

REMARK L1. The case of the n-species is treated to have a cycle of n prey-
predator relations in a similar way as the paper-scissors-stone model. The num-
ber increasing over time t of the i-th species is equal to the number decreasing by
time t of the i + 1-th species. The stopping time, the semi-martingale decomposi-
tion, the weak law of large numbers and the central limit theorem in the following
sections ave easily extended to the case of the n-species.

THEOREM 1.1. There cxists a unique solution of equation (1.1) in R,

Proor. We fix a sample path of (Ny2{*), Noy(x), Ny (x)). We denote by
{T”+1},>q the set of the jump times of three standard Poisson processes Vi {x)
where we put 77! = 0 (] =1,2,3). Note that 0 = 707! < /771 ¢ it <

A Tf{_fl - for 7 =1,2,3. We define o{0) = 0 and K7+1{(0) =0
for j=1,2,3.

For an integer I — 1, I > 1, we define the proposition PB(I - 1) as follows:
There are nonnegative 11(mdcc1oasmg sequences {a (k) Yochgr—1 in By U{oo} and
{K9* 2 (k) bocker—1 in N = {0,1,2,---} (1 € j < 3) such that for XMy =
(X300, X5 (0, X4(8)) and for TOO(r) = (TG0 (1), T (8), TV (#)) (¢ &
{v e Ry ue 0,01 —1)]}) defined by (1 <5 <3)

‘Yﬁh{)(t) — \1)(() +Z I’JJ+1 ’J'.H-l(( _ 1)) {U(” OO)( )

(1.2) ;i'l

_ Z - U{? — KN - L) X[t iy,00) (£)s

=1



M S AT M
Tjjjl(t):H/; XM () x4 (),

with 320, = 0, the following (i) and (i) hold:
(1) For any 7 satisfymg 0 <: < I — 1, if o(i) < oo, then

‘pj(l) : TJ(]+)1(U(?')) € [TfjJTil(i)*Ti'Jjjll{i).}.l) fO‘J" 1 S. 7 S 3

For any k satisfying 1 < k¥ € T — 1, if o(k — 1) < oo, then for any t
satisfying e{k — 1} < t < o{k),

" i1 .. )
Pj(k - lvk) : T;j+)1 (t) € [Ti?;r'ﬂ(kq)aT:Z\-J;ii(kfl)ﬁ) for 1 <3 <3,

(i) Fort € {u € Ry = w € [0,0(7 — )]}, X™' () (1 < j < 3) in (1.2)
satisfies (1.1).

Assuming PB(F -~ 1), by using the jump times of standard Poisson processes
and by using the factors {X}M}{O),U(f), K3 D hacicr—1,1<j<s in P(I -~ 1), we
define ¢(I) and K¥*+1(1) (1 < j < 3) by the following (1)-(4):

(1) o(l —1) = oo, we define o(I) = oo,
(2) If a(I — 1) < co, we define o(I} by

A ~ T (o(1 — 1
(1.3)o(I) = min {a(l — 1)+ —& J};“”“ ”:;;E - .
1<j<3 X (eI = 1) X7 (o(I - 1))

When we have .XJEM)(O'(I - 1)) =0or X](-ifl)(rr(f — 1)) = 0, since

i1 M .
Tf\?”“(‘,__IJ_H - T;j_k)l(a(f — 1)) > 0 from P;(I - 1) in BT — 1), we
pidsl —TH (a1 -1))

replace the term o(f — 1 LS RAEESIEY
! ( )+ XM -1 X a1 -1)

(3) If (1) = oo, we define KTy = KA — 1) for 1 < j < 3.

: by infinity.

Tﬁjt‘lﬁ-lu-nw_T;;i)l(”(r—l)) . : Citiha
BN (1 T (T 8 the smallest i (1), Wedefine & - !
I\’J1j1+l(I — 1)+ 1. Forj#j {1<j< 3) we define K“+1(I) =
I{j-"'H{I - 1).

{4) If o{I) < oo, choose j (= ji, say) for which the term o(J — 1) +
V=

By mathematical,induction on I, we shall prove the proposition (I}

18



Now we prove P(0). At ¢t =a(0)

X5 (00)) = X5 (0) + J(EI @) = K96 = 1))x(000),000(0)

9
+ 3 (KUY = KTY (i 1) X oti),00) (0)

i=1]
_ (M)
= X*0).

And we have

o) 0
(M) A (M) (M) A (M) M
T;4i(o(0)) = ﬁjn X5 () XG4 (s)ds = Hfo XM )X s)ds = 0.
From the definition R¥i+! (0)=0for j=1,2,3,
1 M) i1
JI\J.;:-I'I(U) = T(J+1( (0))=0< T}?Iﬂ(o)_,.l
For j, 1 < j <3, it follows that

]
DB E) = KIH = 1)) = 0 = Ny (T3 (0(0)),

Then at #{0), (1.2) satisfies {1.1}. Therefore J3(0) hold.
We assume the proposition P(I — 1} for I > 1.

[Case A] We consider the case where o(I) < cc, X(M)( (I)) >0for0<i<TI-1

and 1 < j < 3. This case describes that the values of X( (*) have not reached
zero in [0,0(F — 1)].

Note that (1) < o0 in [Case A]. If the term of j = 1 is the smallest in (1.3),
for example, then we have K'*(I) = K**(I - 1) + 1, K*?*(I) = K*(I - 1) and
K1) = K3YI — 1). If the terms of j = 1,2 are the smallest in {1.3), then we
have K12(I) = K'?(J-1)+1, K**(I) = K®(J~1)41 and K" (J) = K11y
If the terms of j = 1,2,3 in (1.3) take the same value, then we have A1*(]) =
K21~ 1) 41, KB(I) = K®{I - 1)+ 1 and K3(J) = K3 - 1) + 1.

If the term of j = 1 is the smallest in (1.3), we have K'2(I} = K'2(I —1)+1,
K*(I) = K¥({ — 1) and K (1) = K*(I - 1).

This means

Tru T(U)( {‘[—1))
DI -1 Yo = '
oI} =a(l 1)+ 22X o1 - 1) XM e (I - 1))
TRyt~ Tha" (a1 - 1))
_v(‘”< (=X (o1 = 1))
i =T ol = 1)
, . kng-ne ~ T
o(I) <ol - 1)+ X - XD (- )

o(l) <a{l — 1)+
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From P;(I - 1) all numerators are positive and all random variables XJ(- MY o1 —
1)) are positive in [Case A]. Thus we have (I} > ¢(I — 1) and

(1.4)
Hiairasn = T30 = 1)) 4 X000~ )X (o = 1) (1) = oI - 1)),
(1.5)

Buairony > TR (o~ 1) + 2 X506 = D)X (01~ 1) {o(T) = o1 = 1),

TRonropan > T (eI = 1)) + oI = )X} (o]~ 1) (o(I) = o(I - 1)).

M

[Step 1] We consider P, (I —1,I) and P (I).
Foro(I — 1) < t < a(I),

TV () = T (eI - 1)+ %Xf“)(cru - X (I =)t~ o7 - 1)),

and, from (1.4),
; A
T (e (D) = TH (eI - 1)) + =X (o1 = )X (o0 = 1) (o) = o(1 - 1))
= T}(2”(1—1)+1-
The condition of positiveness of random variables XJ;M)(U(I -1 (1<7<3)in
[Case A} leads T4 (o (T ~ 1)) < TG (1) < T (o (D)) for o (I — 1) < t < o(]).
From P (I — 1) it follows that

M M M -
T < Tl (o0 = 1) < TR0 < TE(00)) = Ty,
M ;
T}fﬂuﬁnﬂ = 7'11<21?(1) = TI(Q )(U(I}) < T}\’z”[l)-i-l'
Therefore Py (I — 1,1} and Py ({) hold.

[Step 2] We consider (I — 1,1) and (1)
Foro(l - 1) <t < a(T),

Ty = T ({1 = 1)) + %X.EM)(O’(I — XM (T — 1)t — o(I — 1)),
and, from (1.5},
T (1) =53 (o1 - 1)) + ;{-}xé"‘”(au — X (ol T - D))o = o (1 = 1))
<TRE(- 14
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From P,(f — 1) it follows that

(M M M LK
TRaaroy < Tha (0 = 1)) < T (8) < T (o(1) < 78 ronyps

A : :
Th?d([ 1) = TKﬂ(I) < T( )( (I)) < T§}23(171J+1 = 1—12{?”()')-}-1'
Therefore P(I —1,1) and P,(J) hold. &
We also have Py(] — 1,1I) and Py(I).
If the terms of j = 1,2 are the smallest in (1.3}, we have K'*(I) = K'2(J —
D41, K¥(I) = K1 - 1)+ 1 and K*(I) = K-’“(I —1). In this casc

’1’}‘212 I—1)+ (G(I )
o)==+ 5 »;)(0211 1)) Y“‘“(o(f by
;’W]
71‘23 1 ( (I )
U’(I) :(;(I—l)+ J_X“;)[( 1(); ))X(M ( ( ))
T 31 T(W)
oI} <o(I = 1)+ l;( u(r(:(f _X—(A(f (( ))

For j == 1,2, we have P;(I — 1,I) and P;(I) similarly as in [Step 1]. B{I-10n
and P3(I) hold in a similar way as [Step 2].
If the terms of j = 1,2,3 in (1.3) take the same value, we have K9+1(]) =
Ki+H{I - 1)+ 1 (1 <5 <8). Then
; i M)
T}(z”(! 1)+1 © le ( (I_ 1)
A (M
X e - )X (e(1 - 1)
o(l - 1))
a M
X% e = 1) X5 o (1 - 1)
MY
T.a'l-“(l 141 Tgl (a(I-1))
M (M)
XM (= )X o1 - 1))

For j =1,2,3, P;(I —1,I) and P;{I) hold similarly as in [Step 1].
From P;(I — 1,1} (j =1,2,3), for any ¢, o(I — 1) < t < o{I), we have

ol =l 1)+

kl

(M)
Th'ﬂﬂ(r—l)ﬂ T5s (

o(1) =l - 1) +

o1} =a(l 1) +

D OEITTE) = KNG = 1)) X (o(i),00 () = KT = 1) = N (THD (),

and from (I} (f = 1,2,3), at ¢{f), we have

I
D BTG — K = D)oy, (0(D)) = K5I = Ny (T (o)),

i=1

Thus for any t rT(I-—'l) <t < oI}, (L.2) satisfies (1.1) and at o(T), (1.2) satisfies
(L1). In {0,a(F — 1}], (1.2} is assumed to satisfy {1.1).
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In [Case A] we obtain the propaosition (7).

[Case B] We consider the case where o{l) < oo, for some k satisfying 0 < k <
-1, X3 em) > 0, X\ (a()) > 0, X“”( (")) = 0 and X130 (0(1)) > 0
(0<I<I—1 O<I’<k k<l”<I-—la.ndl<j<3) This is the case
that the value of one of X(M (#) (1 < j <€ 3) has come to zero and kept zero in
[g{k).a(] - 1)]. If the value of .YJ(-‘M)(O'UC)) (1<7<3,0<k<T~1)comes to
Zero, thcn there are no choices for j and j + 1 in (1.3). Thus we do not consider
the case where X_SM)(*) does not keep the value zero in [o(k),o(I — 1)]. Tor
example we prove in the case of j =
In this case A'%(k) = - = KT — 1) and K®{k) = ... = K¥(T - 1) is
implicitly assumed. It follows that XéM)(t) =0 for any t € [¢{k),c(I—1)]. Thus
M M M !
TV (o (k) = TH(2) and TS (o(k) = T (t) fov any ¢ € [o(k), o(J — 1)].
We determine (I} by

T?‘.'l"”(f71)+l - T: m( o(l 1))
XN -1 XM (0T - 1))
co(l - 1) /\T?\'t";;;’—l)+1 T";;M(lé)(f - 1)) _
X" (oI = 1) X7 (oI~ 1))
Note that o(I) < co in [Case B]. We have A3 (1) = K'(1 1) + 1, K'¥{]) =
K'(I — 1) and K*¥(I) = K**{I — 1). Thus the implicit assumption is satisfied

to the I-th step.
By Ps(I — 1) the numerator is positive and o(I) > ¢(I — 1). We have

(I} =min{e(f — 1)+

!mﬁoo}

M
Similarly as in [Step 1} in [Case A], Py{ — 1,71) and P;(I) hoid.

s = T = 10) 4+ 2 X0 (7 = D)X (I - D)(o(d) = o7 - 1))

[Step 3] We consider Py (I —1,1) and P, (]).
In [Case B] for {f - 1) < t < o{I) we have

(M M
T3 (8) = T (a1 - 1)),
and
el M A1)
" (o(1) = T, (o (1 - 1))
From P (I — 1) it follows that

Al M
oy ST eI - 1) = TH(0 < 7z o).

12 "3 (ALY (M) 12 12
Ttagrony = Ticiay S Ty (oI = 1) =Ty (o{1)) < 7ida o1y = TR e

Therefore P (4 ~ 1,7) and P\ {I) hold. &
Po(I —1,71) and Po(I) also hold.
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n (o(I - 1),0(1)), (1.2) satisfies {1.1) and, at o(I), (1.2) staisfies (1.1). In
[Case B] the proposition B(I) is obtained.

[Case C] We consider the case where cr(!) < o0, for some k satisfying 0 < k <
I-1, XM (e(t") > 0, XM (o(I - 1)) = 0, X (o (1)) > 0, XM ey =0
and X}fﬂ(g(z >0 0<1<1 1, 0<I’<k k<l <I-1, o<z”’<1 1and

1 £ j £ 3). This is the first case in which the values of X{ 1 (%) and )i(M)(*)
(1 £ 7 < 3) have come to zero at o{I ~ 1), after several tunes of [Case B] For
example we prove in the case of j == 2.

By [Case B] we implicitly have K (k) = --- = K'*{(T — 1) and K23(k) =
= KB(I—1). Thus for ¢, t € [a(k),o(I ——1)},X(m(t):~0cu1d T (a(k)) =

:(zfl)(t} (L - 1 2)

We determine o(7) by

o{I) = min{oo, 0o, c0}

=0,

[Step 4] We consider Pj(I - 1,I) (L <j <3).
Fort, o(I - 1) <t < o(l) = oo, we have (j = 1,2,3)

M M
T (8) = T (a1 - 1)),

From P;(I — 1} it follows that

2 (M) +1
Tty ST, JJ+1 (ol - 1)) = Tj55: (1) < Tj;}”“u 1+1°

Thus P;(I —1,1) for 1 < j < 3 hold. &

For any ¢, o(I — 1) < t < o(I), (1.2) satisfies (1.1). Thereforc P{I) holds in
[Case C}.

If (I — 1) = oo, P(I) holds.

Assuming the proposition PB(I — 1), we have the proposition P(I).

By mathematical induction (1.2) satisfies (1.1) in Ry.

Now we shall prove that the solution constructed above is unique.

If there exist several solutions of (1.1) including the above construction, let
XMig) = (XEMJ(t),X.gM)(t),X;(‘M)(t}) (t € Ry) be any one of the solutjons.
Each random variable XJ(»M)(t) has a nonnegative initial value. In the neighbor-
hood of t = 0 we see that for j =1,2.3,

A

(1 A
i A X (9)ds = = X

M’)
o7 (X202 0.

Thus the intcgra.ls are monotenically nondecreasing in the neighborhood of ¢ = 0.,
. (M o .

Each random variable Xﬁ )(t) is integer valued (j = 1,2,3). If one of the

rapdom variables is negative valued after several jumps of the system from the
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nonnegative initial value, it goes through the value zero. We see that the random
variables XJ(.M)(*) (1 < j <3} are nonnegative by the following claim.

Put XI(GM)(t) (1 £k < 3) to be a solution of the system of (1.1). We claim

that when X}ifl)( ) =0, Xg(i?( } > 0 and Xﬁ-M)(t) = 0 for some t € {0, 00) and

for some j € {1,2,3}, X'(M){s) = 0 holds for any s > £.
Weset u, u > t, to be the first jump time of both N;_1;(4 [ X} M) (g )XJ(-M)(s)ds)

71

and Njjp1(3 fo X(-M)( )Xﬁiﬂ (s)ds). Then it foll()w:; that X(M (s) = 0 for any

7
s,t <5 < u. Since 57 f; X(M)( )X( M)(5)ds and = X (a) )X;-fl)(s)ds are
continuous,

AfYon M) A M M)
o [ xS = 5 [ XX s,
A Y o M A (M M)
H/n XM x 3 (5)d M/ XM (X (5)ds.

Therefore we have

B} AT ; M M
Nj-y(57 j X ()X (s)ds) = Nyovs(57 / XM () XM (s)ds),

AN M M) M
Nty [ XOOXE 89 = Mgty [ XX 0.

This is in contradiction. Therefore the claim helds. 3
The random variables Xi-M)(*) are nonnegative, bounded and integer valued

n [0, M| for 1 < j < 3. The integrals 35 f; X" (s) X5 (s)ds (1€ Ry and 1 <
1< 3) are nonnegative, monotonically nondecreasing and we have inequalitics
0< & fﬂ X(M)( $) X ’(M)( s)ds < ’\—‘1‘13 Thus all possible classifications arc covered
in the fol]owmg, proof

For an integer £ — 1, I > 1, we define the proposition £2(F — 1) as follows:
Fort € {u € Ry : u € [0,0(I-1)}}, the solution X M) (t) = (XgM)(t),Xé‘m(t),XgM)(t))
constructed by {1.2) in the proposition P{f ~ 1) is the unique solution of {1.1).

The initial values are given. At o(0) the unique solution of {1.1) is written
by (1.2}. Therefore £(0) holds.

We assume (I — L) for 7 — 1 > 0.

We consider the case where o(f—1) < co. We trace the time from o(I—1) and
search the next jump time of the system of {1.1). If there exist several solutions
of (1.1), all the solutios arc nonnegative. The system changes the previous state
at s(I) such that, by using the factors o(J ~ 1), K+ — 1)) JX(W)( (I—-1y))

and T}Jﬂi)]( (I -1})) (1 <3 <3) which are given by B - 1) in Q(7 - 1),

s() = min (inf{t > o(T=1): "\rx(“( (I— )X (eI = 1)t —o(f - 1))
= i — T e = )}
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[Casc a] We consider the case where a(I) < oo, X;M)(cr(l)) >0for0gig -1
and 1 <5 <3
We have
ji+1 M)
T;gjj+l(j_1)+1 - T](J-}-l(a-(‘[ - l))
) M .
X o1 = DX (o - 1))

s(I) = 1151‘1;1513{0'(1 -1+

[Casc b} We consider the case where o(I) < o0, for some k satisfying 0 < k <
M ) ] M M
-1 XM o) > 0, X3 (o)) > 0, X (o(1")) = 0 and XD (0(1)) > 0
(0<I<TI~1, 0V <k k<I"<I-1andl<j<3). Forexample we prove
in the case of j = 2.
We have %X_EM)(J(I - 1))X§-iﬁ)(0(f —1))t—-o(I-1))=0fort>o(l—-1)
for j =1,2. By using P;(I--1) (7 =1,2)

5 M
{t>o(T-1:0=m070 |, — T (eI~ 1))} = 6.
It follows that
(M
T?\’l31(1_1)+1 —~ Ty, )(G(I— 1))

XXM o (= 1) XM (o (T - 1))

s(I) =min{o(J — 1) + , 00,00},

where inf ) = oc.

[Case ¢] We consider the case where o (1) < oo, for some k satisfying 0 < k < I —1
X o) > 0, X{MUo(T - 1)) = 0, XM (o(1)) > 0, XM (o (1)) = 0 and
X)) >0 0<I<TI=1,0<l <k k<I"<T—1,0<I" <I—1and
1 <7 £ 3). For example we prove in the case of j = 2.

It holds that X ™ (o(1 - 1) X (c(I-1))(t=o(I=1)) = 0for j = 1,2, 3.
From P;{I — 1} {1 <j < 3) it follows that

{t>a(l-1):0= ngﬁil(!ﬂ)ﬂ - T}ﬁ_)l(o(fm Mr=40

Thus we have
s(1) = min{co, oo, 00}.

The jump time o(I) constructed in {Case Aj~[Case C] in (L) coincides with
s(I) of [Case al~[Case ¢]. If ¢{I — 1) = o0, then we do not need the solution for
t > a{I — 1} and we put s(I) = o(I) = co. Thus cquality () = s(I) holds.

The jump time o(I)in P(I) is determined uniquely by the jump times of stan-
dard Poisson processes and by the factors {X“EM)(O), a{l), K+ () ycicro1,1<jen
which are given by B{I — 1) in Q{F — 1). Therefore ¢(I) is uniquely determined
by Q(I - 1).

If o{I — 1} < oo, the state of o(I — 1) is kept for any t {o(I —1) < t < o(I)).
If o{I) < oo, choose j (= ji, say) whose term is the smallest in (1.3), When ¢ =
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o (1), 3 X5 (oI = 1) X (oI = 1) (t— o (I = 1)) reaches at TJ05TL, 0 —

Ti (0 = 1) and for 2 # 1 (1< o € 3), g X0 (00 = XS (ol -

1)){t—o(I—1)) does not reach at T?\?f:;}d”*l)ﬂ _TJ(:J'?Jrl( (I-1)). If a(I) < o0,
we define L7+ = K9IF1([ — 1)+ 1 for j = j, and L+ = K3+1(1 1) for
i =j2. U o{I) = 0o, we define LW+ = K37+ — 1) for 1 < j < 3. We should
give the unique solution of (1.1) for any t € {u € Ry : w € (o(I = 1), 5(1)]} by
{1<5<3)

L6) XM (T = 1)) + (L KT = 1)) 00,000 (1)

— (L7 = KT = 1)) X o) 000 (8).
We have L+ = K+ Iy for 1 < j < 3and forany t € {u ¢ Ry : v €
(o(I —1),0(I]} (1.8} coincides with X(M)(t) (1 <37 < 3)of (1.2) in PI).
Thereforc (1 2) in B{T) is the unique solution of {1.1).

Assuming the proposition Q(I — 1), we have the proposition $3(1}.
By mathematical induction there exists a unique solution of (1.1) in Ry. [

CoroLLaRry 1.1, There exists a unique solution of equation (1.1), for t €
[0, fo], when £y € B,

Proor. The proof of existence and uniqueness of the solution of (1.1) is done
step by step. We stop the proof when the step excess the time #5. Thus we have
the present corollary. [J

For any v, v = 0, we define

( ) . {‘ jj+1(t)= <t <,

*ijJrl (‘U), t>wv

T
1’\”H

We consider the system in which Nya(*) is replaced by NY(x) in (1.1). This
system is

t
(M M arw s A (M) WM
XMy = X{ "0y + Nw(;,;fl Xf ") XM (5)ds)
At (M) (M)
- f\‘n(ﬁ[ X7 ()X (s)ds),
A : ;
ﬁmmmﬂmm+n(M[X¥%mW%m)
1.7 v A ¥ J
(L7 wNuﬁAkW%mW%mx

, Xt :
XM = xPM) + Nl | XM X0 (8)ds)

A (A1) A,
M[\ ()X 5y,

X0+ xM0) + XMy = M.

= Naa{
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We have the following theorem.
THEOREM 1.2. There exists a unique solution of (1.7) in R

Proor. We fix a sample path of {Ny, (%), Naz(x), Na;()). For the purpose
of proving existence and uniqueness of the solution of {1.7) in a similar way as
Theorem 1.1, we introduce the same definitions as in Theorem 1.1.

There exists an integer K, K, > 0 such that 7}2 <wv <72 .

When for the fixed sample path the monotomcally nondecreasing function
T(M) (*} in Theorem 1.1 does not reach 7j% | |, we prove the present theorem in

just the same way as Theorem 1.1

We consider the case in the following way. There is the smallest integer I,
fo 2 1, such that K'¥(Iy — 1} = Ky and KV {Iy ~ 1)+ 1 = K'¥ (L) = K, + 1
in Theorem 1.1, when o(I) < oo, X(M (a(1)) > 0 and X'( M) (e(D)) > 0 for
0 <1< Ip—1. In this sitnation [y is the smallest integer of Tia?) (oI, ) =T L

Differently from Theorem 1.1, the standard Poisson process Nyp(x) in (1.1) is
replaced by N, (*) in (1.7). There are no jumps of Nia(*) after the fy-th step
and we replace T;?ig(lt)71)+l by infinity. By replacing (1.1) with (1.7), we define
P(I — 1} and QI — 1).

Note that the proof from Iy — 1 to Iy is slightly different from the proof from
I'—1toI(I>1Ip)in the classification of cases of the mathematical induction.

We assume the proposition B{J; — 1).

[Case A’1] We consider the case where o(l) < oo, Y(M)((TU)) >0for0 <<

Iy~ 1and 1 < j < 3. This case describes that X “')(*) have positive values
from the 0-th step to the J; — 1-th step.

From P;(Iy — 1) in Theorem 1.1, it holds that Tl(;u)(cr(fu ~ 1)) < 20
We determine o(fp) by

fi+1
TR Ty )41 T (ol — 1)

- - , 00
2 XM oLy - )X (01 - 1))

a{ly) = in {oldo — 1)+

Note that o{fy) < oo iu [Case A'1]. If the term of j = 2 is the smallest in (1.3),
for example, then we have K3 (1p) = K'* {1y — 1), K® (L)) = K® (I, — 1)+ 1
and K*(Iy) = K% (Iy — 1), If the terms of j = 2,3 in (1.3) take the same
value, then we have K'2(1,) = K'¥{Iy — 1), K*¥(ly) = K*(ly — 1)+ 1 and
Ry =K (I~ 1)+ L.

If the term of j = 2 is the smallest in (1.3), we have K2 (1) = K12{f, — 1),
K1) = K2(Iy - 1)+ 1 and K1) = K3(Iy — 1). Then

20 U)
Tty 1ye — (a(fy — 1))
X oy - )\" ia(ty - 1))
! M
T};\’l'“(fn'wl)‘l—l f( ) I’}'(I(] )

ﬁ-\':(:m(ff([u — XM - 1)

ally) =o(ly ~ 1) +

0’(1()) <(J‘(1T(} — ]) -+

27



By P;{Iy — 1) for j = 2,3 the numerators are positive. Thus a(fy) > o(fp — 1)
and

j A j
ety —n =Tz (7o = D) + 57X0" (0T = )X (0o = 1))(0{Lo) — a(lo ~ 1)),

) A .
Rorry-n T3 (0o = 1) + X5 (0 (L = )X (0o = 1))(0 (o) = o (I - 1)).

[Step 5] We consider Py(fy — 1,1y} and P {I,).
Foro(ly — 1)<t < o(ly)

T8 = T (o Uy ~ 1) 4+ S XM (oo = )X (T = D)t = oly — 1)),

and
Ty (olho)) = Ty (o (T — 1) + X“‘”( (Io = VX (0 Ly — L))o (To) — oIy — 1)).

Since o(fy) < oo, it hoelds that Tl(éw}(u) < oo foru, u € (o(fy — 1}, o{lp)]. This
leads

' M M
T;(Z”(Iogl) < T.I(Z )(C"(Iﬂ 1)) < T( )( t) < TI\“(.’n +1 = 09

and

(M) (M y
T}<212(1r1) = 7111‘212(10) <Ty (e(lo— 1)) < T, )(J(IO)) < Tll{zli’(fu-l)-i-l = 711(212(10)“ = 00.

Thus Pl(I{) - 1,10) and Pl(I(]) held. 0

We have Po(Iy — 1,1) and Pa(fp) similarly as in [Step 1] in Theorem 1.1
Similarly as in [Step 2] in Theorem 1.1, P3(Iy — 1, fy) and P3(1;) hold.

If the terms of j = 2,3 in (1.3) take the same value, we have K'2([) =
K {Ip = 1), K% (Iy) = K*¥(Iy — 1)+ 1 and K*' (L) = K* (I, — 1)+ 1. And

r2 T(M)( {In — 1))
() 2ol — TR (I—1)+1
(Iny=o{ly — 1)+ 2 XM oty — 1) XM oIy - 1))
(
(

3 M a1y - 1))
K31(f5—1 1 0
oI} =o(la = 1)+ e T
WX:s (o(lp — )‘\ a(fy — 1))

Py{Iy — 1,1p) and Pi(Iy) hold in a similar way as [Step 5]. Similarly as in
{Step 1] in Theorem 1.1, P;(Iy — 1,1} and P;{I) hold for 2 < 5 < 3.
Note that for ¢, o(fy — 1) <t < a{ly) Pl — 1, 1) leads

]E]

S R = K0 = )Xot ,00 (8 = Ky = 1) = N {TH (),

=1



and P (1) leads

o
Z(Klz(i) — K05 = 1)) X[o(i),00) (7 (T0))

= K%)= K (I - 1) = NFZ(TS{)(U(IO)))-

For o(ly — 1) <t < o{lp), (1.2) satisfies (1.7) and, at a(Jy), (1.2) satisfics (1.7).
Therefore the proposition P(1y) is obtained in [Case A1).

[Casc B’1] We consider the casc where o(1) < oo, for some k satisfying 0 < k <
Io~1, X" (@) > 0, X (0(1) > 0, XS (o()) > 0 and XM (007) = 0
(01 -1, 0<V <k k<!"<Ij—1land 1l <j<3). In this case the
value of X:(,MJ(*) has reached zero until the Ty — 1-th step after several times of
[Case B| in Theorem 1.1.

We determine oIy} by

o(Iy) = min{co, oc, 00}

=00.

[Step 6] We consider Py{I; — 1,1,).
For ¢ satisfying a(Iy — 1} <t < a(lp) = oo, we have

M :
T}ﬂ?”(lnvl) < TI(Z )(t) < r}(ﬂ;([uﬂ)ﬂ = 00,
Thus P (fy — 1, 1p} holds. ¢
Similarly as in [Step 4] in Theorem 1.1, P;(fy — 1, y) held for j = 2,3,
In {o(fy - 1),00}, (1.2} satisfies (1.7). Therefore P3(Iy) holds in [Case B’1].
Assuming the proposition (/g — 1), we have the proposition B(I,).

We assume the proposition B(7 — 1) for I > I,.

[Case A’] We consider the case where o(!) < oo, X_;‘w)(o(l)) >0for0<li<TI~1
and 1 < j < 3. This is the case that X;MJ(*) have positive values until the J—1-
th step.

In the present system of (1.7) we implicitly assume K'2(I, — 1) = ... =
K'2(I - 1). Thus T}‘:‘:12([_1)+1 = T}fu(,rl)_+_1 = 0.

As P{I —1)in B(I — 1} is assumed, it holds that Tl(é“)((f(f - 1)} < .

We determine o{I) by

. Tf\?ﬁil(hl)—n - T;J""-IF)I(J(I - 1))
o\l = win (oI = 1+ =, oo ok
<ig X eI = 1)XGT (e - 1)

Note that o{l} < oo in [Case A’L If the term of j = 2 is the smallest in (1.3},
then we have K¥(1) = R'Y{T — 1), K2(I) = K*¥(I - 1) + 1 and K(]) =
RAYT — 1), If the terms of § = 2,3 in (1.3) take the same vaine, then we have

29



KBy =K¥I-1), K¥3(I)= K¥{I ~ 1)+ 1 and K1) = K] — 1)+ 1.
The implicit assumption is satisfied to the I-th step.

If the term of § = 2 is the smallest in (1.3), we have K'?(} = K12(] - 1),
KBy =K®(I-1)+1and K*(I) = K*{I — 1). Then

2323 T(M)(O'(I ))
o e (] — Tk (I—-+1 "
= ”+Mﬁm<(—wﬁmw< 1)’
(I-
(

»-...

o (M)
1\'“(1 1+1 - Ty (” 1))

o) <o(I-1)+ X:SM)(O' ) Y(U) e ))

If the term of j = 2,3 in (1.3) take the same value, we have K12{J) = K12(J—
D), K¥(I) = K®¥(I - 1)+ 1and K3(7)= K3 (I - 1)+ 1. And

P (M)

"12\'3“(1—1)4-1 Tz:} (U I-1))

) (
e S o - X e 1y
(
&

i ﬂ“wz D)
oI} =o(] — 1) + K ]";.1—1)'?'1 31
e F XM e -1 (- 1))

In these above two cases, similarly as in [Case A’1], P;(J — 1,1) and P;(J)
hold for y = 1,2,3.
Note that for o{f — 1) < t < a(I} Pi(I —1,I) lcads

I
DE 6 = K2 (i = 1)X(o (0,000 (1)
=1
= K- )= = KT~ 1) = N, (T, (1),

and that P (I) leads

1

Z (K2 (6) ~ K20~ 1))X(o() 00 (0(1))

= KP(I) = K™ -1)=---= Kl - 1) = N (T, (o(I)).

For o(I - 1) < t < o(I), (1.2) satisfies (1.7) and, at o (I}, (1.2) satisfies {1.7).
Therefore in [Case A™ the proposition JB(F) holds.

[Case B’] We consider the case where o(1) < oo, Y (M) ( a(l)) > 0, X.EM)(J([)) > ),
‘\':{,“I)(d(l’)) > 0 and X‘.(;M)(J(I—— MN=0for0<I<TI~1,0< <7 —-1and
1 <35 <3, X(M (*) has come to the value zero at o{f — 1}, before Xf‘“)(*)
comes to the value zero.

Tu this case we have A (fy — 1) = - = K'2(T — 1} by several times of [Case
A
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We determine o{I) by

a{I} = min{oo, 0o, o0}

=0C.

Similarly as in [Case B'1] we prove P;{I —1,I) for j = 1,2, 3.
In (o1 1), 00}, (1.2) satisfies (1.7). Therefore (1) is obtained in [Case B.

[Case C’| We consider the case where a(I) < oo, for some k satisfying Iy —1 < k <
I-1, X))y > 0, XM (o)) = 0, XMNo (1) > 0, and X (o(1) > 0
0<i<I-1L0<V <kand k<" <T-1and 1l <j<3) In this case the
value of X](M)(*) has come to zero at o(k) and kept it in [g(k), (] — 1)].

In this case we implicitly assume K'2(fy—1) = -+ = K'*{J~1) and K™ (k) =
oo = K3 ~1). We have XgM)(t) =0fort € [a(k),a(l —1)]

We determine o(I) by

i rn = Ty (ol = 1))
A1 - 1) X o7 - 1))

o(I) =min{o(I — 1) +

, 00,00}

2 M
T;{}zau,lﬁ.] - Té:} )(U(I - 1))

T OO T

Note that o(J) < oo in [Case C’]. In this case K'2(7) = K'3(I - 1), K3(]) =
K#(I—1)+1 and K*(I) = K" (I — 1). Thus the implicit assumption holds
to the J-th step.

In a similarly way as [Step 3|, Pi(I — 1,I) and P;(I) hold. Similarly as in
[Step 1} of Theorem 1.1, we have Py(7 — 1,1) and P5(I). Similarly as in [Step 3]
of Theorem 1.1, Fa{I — 1,I) and P;(I) hold.

In (o(f —~1),0(I)), (1.2} satisfies (1.7) and, at o(I}, {1.2) satisfies (1.7). Thus
we obtain the proposition PB{I) in [Case C'].

{Case '] We consider the case where o(l) < oo, for some k satisfying Iy — 1 <
k< I=1, X{" (o)) > 0, X{" (0(”) = 0, X (o(1)) > 0, X5 (o)) > 0
and XM (o(I-1)) =0 (0 <I<I-1,0< <k k<I'<I-1,0<0" < -1
and 1 < j € 3). This is the first case that the value of Xé'u)(*) reaches zero
after several times of [Case C].

In the present case we implicitly have K (fy — 1) = -+ = K7 — 1) and
K* (k)= ... = K®(I - 1) by several times of [Case .

We determine (1) by

a(I} =min{oo, cc, e0}

=0C.

Similarly as in [Step 4] in Theorem 1.1, Py{{ — 1,I) hold for j = 2,3. We
prove Py (I — 1,1} similarly as in [Step 6).
In (o(f —1),00}, {1.2) satistics (L.7). Therefore B(I) holds in [Case D).
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Assuming the proposition B — 1) (I > Iy), we have the proposition P{I).
By mathematical induction (1.2} satisfies (1.7) in 8.

Now we shall prove that the solution constructed above is unique.

Let XJ(-M)(*) (1 <j < 3) be any one of the solutions of (1.7). In a similar
way as the previous theorem, we see that the random variables X(-M)(*) are
nonnegative, bounded and integer valued in [0, M] for 1 < j < 3. It follows that
the integrals -+ [ X(w)( }-¥3(f1)( Jds (te Ry and 1 <€ j < 3) are nonnegative,
monotonically nondecreasing and inequalities 0 < 37 fﬂ ( )X(M)( Jds <

j+1
’\Mt hold. Thus all possible classifications are covered in thc followmb proof.

VVe assume the proposition Q(fy — 1).

The system changes the previous state at s{Iy) such that, by using the factors
of B{lp — 1) in (I — 1),
A
M

M
= gy~ T (oo — 1)}

s{Iy) = lrgl}gs{anf{t > o(lo — 1) XM (I = 1) X (0T = D)~ 0Ty — 1)

[Case a’1] We consider the case where o (1) < 00, XJ(M){G(I)) >0for0<1 < -1
and 1 <5 <3,

Note that T}{QIQ(IU_UH = 0.

Fort > o(ly — 1) we have

A ]
I‘Z_Xf”)(a(Io — XM (I ~ 1) — oy ~ 1)) < oo
As Tféw)((r(fn ~ 1)) is bounded from P, {I; — 1) given in Thearem 1.1,
A
S X (hy - XM (oI ~ D)t = ally - 1)

M
(M)
- Th?lﬁ(rrl)ﬂ - le (C’(In - 1)} =6

infi{t > o{ly — 1)

It follows that

it ~ T30 (a(Iy — 1))
s(I) = min (ol = 1) 4 oot 2 ,co}.
X0 oy~ )X (a1, 1)

{Case b'1] We consider the case where o{l) < oo, for some k satisfying 0 < & <
I =1 Xy » 0, X5 e () > 0, X)) > 0 and X (0(1)) =
{(]SISL]—-I O<l <k bh<l"<ly—1land 1< <3).

As 2X oty — )Xoy~ D)t~ ol —~ 1)) = 0 for t > a(dy — 1)
(7 =2,3) aud P;{/y — 1) hold, we have for j = 2,3

AF)
{t>ally =1 0= v =T (ol — 1)) = 0.
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It follows that
s(Iy) = min{oo, o0, s},

The jump time o(fy) in [Case A’l] and [Case B'l] coincides with s(fy) of
[Case a’1] and [Case b’l]. If o(fy — 1) = oo, then we do not need the solution
for £ > oIy — 1) and we put s(Iy) = o(Jy) = co. Thus a(Iy) = s(Iy) holds.

The jump time (I} is determined uniquely by jumip times of standard Pois-
son processes and by the factors of P(Iy — 1) in Q(fy — 1). Therefore o(fy) is
uniquely determined by Q(I, — 1).

By using the same discussion as in Theorem 1.1, we should give the unique
solution of {1.7) in {u € Ry :u € (s(fy — 1),0{fp)]} by (1.2} with A#+1(])
(1 <J < 3) given in B{Iy). Thercfore (1.2) in P(fo) is the unique solution of
{1.7).

Assuming the proposition Q{Iy — 1), we have the proposition 2(1y).

We assume 2(7 — 1) (I > ).

The system changes the previous state at s(I) such that, by using the factors

of P(I — 1) in QI — 1),

s(I) = min finf{t > o - 1) %X}"“(g(r — )X - 1))t — oI~ 1))

. (A1)
= T;’\?erﬁl—l(f—l)‘kl — T oI = )}

[Case a’] We consider the case where o(l) < oo, X;;"‘”(o'(l)) >0for0<iI<gI~1
and 1 <35 <3,

Wehave A'?(fy—1) = -+ = K'*(I-1) and T}(212(1—1)+1 == 711\?"(10—1)+1 =
oc in [Case a’].

Similarly as in [Case a’l] we have

ii+1 (M) :
T?:‘Hl(;—l)ﬂ - TJ’J’+1(‘7{J —1))

(M y O0
2xMa(1 - X ({1 - 1))

s{(I) = 21211]_123{0(1' -1+

[Case b’] We consider the case where o(l) < oo, X\ (a(1)) » 0, XM (o(1)) > 0,
X:EM)(U(I’)) > () and XgM)(UU — 1)) =0for0<I<I-1,0<V <T—1and
1<;7<3.

Similarly as in [Case b'l], we have

s(I) = min{o0, o0, ™},

[Case '] We consider the case where o{{) < oo, for some k satisfying [y ~1 < & <
I=1, X" ey > 0, XMo@y = 0, X3 o)) > 0, and X530 (a(1)) > 0
(0<i2I-1, 0 <kand k<" <T—-Tand1<j<3)
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We have 2 X o(I - 1) XM (o(T ~ 1))(t - o(T ~ 1)) = 0for t > o(I — 1),
From F3(I — 1) in P(I — 1), it follows that

K A
{t>a(l—~1):0=r3h iy — T3 (a1 = 1))} = 0.
We have

; M
T}(123(I—1)+1 - nga ){U(I - 1))

s(I) = min{o (I — 1) + 2XMN a1 — 1) XM (o1 ~ 1))’0O -

[Case d’] We consider the case where o(l) < oo, for some k satisfying Iy — 1 <
k<I-1, XMoo >0, XMo@ =0, X1 (60) > 0, XM () > 0
and XM o(T-1) =00 <1< I-1,0<V <k k<" <I-1,0<I" <I-1
and 1 <7 <3).

In this case we have K'*(Jy —~ 1) = -+ = K'¥(J — 1) and Kk} = --- =
E2(1 1),

As we have £ X (o1 = 1) X (0T = 1))t - o(T = 1)) = 0 (j = 2,3) for
t>o(l—1)and P;(I ~1)(j=2,3) hold, it follows that

i g M
{t>o(I-1):0= 00 1y — Tj(o( = 1)} = 6.

Thus
${J) = min{co, oc, 0o}.

The jump time o(f) in {Case A’]~[Case D’| coincides with s{f) of [Case
a’}~[Case d']. If ¢(I — 1) = oo, then we do not need the solution for ¢ > o(I ~1)
and we put s{I) = o{I} = 0o. Thus o(I) = s(I) holds.

The jump time o () is determined uniquely by jump times of standard Poisson
processes and by the factors of P(F — 1) in QI — 1). Therefore o{I) is uniquely
determined by 2(f — 1).

In a similar way as Theorem 1.1, we should give the unique solution of {1.7)
in {u € Ry 1w € (o — 1),0(D)]} by (1.2) with K% H1(I) (1 < j < 3) given in
RB(I). Therefore (1.2) in P(I) is the unigue solution of (1.7).

Assuming the proposition Q(7 — 1) ({ > Ip}, we have the proposition Q(7).

By mathematical induction there exists a nnique solution of (1.7} in Ry, O

Cororranry 1.2, There exists a untque soluteon of equation {1.7), when t €

[0,t9] for ty € Ry

2. A stochastic structure of the model

From now on, we assume that XE“”(O), Njj1(*) are mutually independent
{1 <:<3,1<7<3). Wedefine the reference family (ff']+l)!-2ll (7 =1,2.3)
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by

F =o(x{*(0):1<i<3)
Vo (Njjaa(s) : 0

Vo Ny {u):u <1 i# j).

Let random times T}(;‘i)l( ) (t € Ry, j =1,2,3) be the same as in the previous

section, that is
t
(M) (M) (M)
JJ+I(t /ﬂ -Xj s )X;+1( Jds.

From equation (1.1}, for TM)(t) = (TI(M T M)( ),T:f{w)(t)) (t e Ry} we

have the following relation:
(230) = 27 [ (P00) + M (T (5)) = Win (750 )
(3G (0) + N (T35 (5)) = Miz(T{3" () ds,
700 = 37 [ KE00)+ M1 (6) - Nia(r ()
(X5*(0) + Nou (T30 (3)) - Nza(Té;”)(smds,
700 = 4 [ O8O + 8 (0 6) - (T 51

(P(0) + Nio(TH " (5)) — Naa (T (5)) ),

L T (0) = 0,

THEOREM 2.1. When we fir the sample path w € Q, T (t){(w) s uniquely
determined,

Proor. For each t € R, we define
X0ty =X M(0) + Mo (T 0(0) = N (THD(0)),
(2.2) X5 (1) =x{"(0) + N (THV (1) = N (THD (),
X510 =X5M0(0) + N TV (1) - Naa(T3 (1),

From (2.1) and (2.2), we have

(M) A [yt L ang
(700 (4 = M/ XM x M (),

M A (] ;
(2.3) T (6 = / X (5. X5 () s,

A
| 700 =5y [ s
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It follows that

4

- At (3
XM (1) = XM0(0) + N u[ X () X5 (s)ds)
A ; (M
~ Ny [ X)X s)as),
XW():ﬂW@+N(§jfﬁmmxwwuﬂ

~ Nia( fX(“) XM (5)ds),

XM (1) :X-'(’M)(O)+N“(V] XM XM (6)ds)
My

At P
- IVQ_';('T“/"["/ XgMj(s)‘X;E U)(s)ds).
M Jg

Therefore there exists a solution of the above equation and the sclution is
represented by (2.2).

By the way there exists a unique solution of the above equation by Theo-
reml.1. If there exist two solutionq T () = (T () T(m(f) Té;w)(t)) and

TMI () = (T(M)* (t T(w)* (t)) of equation (2.1}, thern by (2.3)
M M) A -(M
ﬂﬂmxm>m=u[x”mfmma
(M) (M)
A X sids,
& e

t
T =T = 57 [ X0 (s
4 . 0

T3 (t) = Ty (1) =

Therefore T0M) (¢) = T (4),
This completes the proof. []

Conoriary 2.1. When we fiz the sample path w € Q, T (t) is uniquely
determined for t ¢ [0,tq] (to € B, ).

Proor. Applying Corollarly 1.1 to Theorem 2.1 we have the present corol-
larly. [

For any v, v > 0, we define a random field @2 : RL — R by

DY ({xy, wy,23))

A0y + Ny (1) = Ny (@)} (0) + N (2) = Ny}
= b A M0) + Nag(aa) = N5 DA (0) + Ny (ag) — Nog(a))
Fr(XG0) + Nyy(ie) = Naa(2) ) (0) + Niylen) = Nag(y))

=
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Put 5{t) = (5:(¢), S2(¢), S3(t)) to be the solution of

2.9 St = [ #LSi)w)ds

THEOREM 2.2. When we fiz the sample path w € Q, S(t)(w) is uniquely de-
termined.

ProOF. Applying Theorem 1.2 to S{t), the present theorem is concluded in
a similar way as in Theorem 2.1. []

CoroLLARy 2.2. When we fiz the sample path w € Q, S(t) is uniquely deter-
maned for t € {0, 5] (to € Ry ).

Proor. Corollarly 1.2 and Theorem 2.2 lead the present corollarly. [J
LEMMA 2.1, S(t) is Fli-measurable.

Proor. Since Y (r) is represented by the generators of F!?, &2 (x) is F}2-
measurable.
There exists a non-random function FY such that

S(t) = FY( XM)(0), N7, (w), Nag(u), Nay (u),u > 0),

where XM)(0) = (XgM)(O),XéM)(O),Xé’m(O)). As S(t) is represented by the
generators of 72, S(t) is F}l-measurable. [

Now, we prove the following lemma.

LEMMA 2.2, Foreach j, ¢ (1 <5 <3, t € Ry ), T;J‘I_)](t) s ¢ stopping time

with respect to the reference family (.ﬂjjﬂ)tzg.

Proor. We consider the case of j = 1, for example. To be proved is that, for
any v € Ry,

(T < v) = {w TR ()W) < v} e FI2

We claim that (TS (1) < v) = (S, (t) < v).

For any w € (Tl(;”(t) < w). Tl(ﬁu)(s) is a monotonically nondecreasing func-
tion for s > 0 and recall Corotlary 1.1. It follows that 0 < Tl(.;u)(n} < Tl(ém(t)
for 0 < w < ¢t and that Nl"'z(T,(;”(u,)) = 4'\7]2(T](;”('IL)) for 0 < u < t. Thus the
solution of (2.1) satisfies (2.4). By uniqueness of the solution of (2.4) in [0, 1]
(Corollary 2.2) we have Tl(éw)(v.'.) =5 () for 0 < u <t Thus Tl(ém(t) = 5,(1).

Hence w € (5,{t) < v). It concludes that (Tl(f”(t) Loy (Si) <)k

Forany w € (5,(t) € ©). Si(s} is a monotonically nondecreasing function for
8 2 0 and recall Corollary 1.2, Tt follows that 0 < S{u) < 5 (¢) for 0 < u < ¢t
and that Npp(S5 (1)) = NH(S (u)) for 0 < u < t. Thus the solntion of (2.4)
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satisfies (2.1). By uniqueness of the solution of (2.1) in [0, t] (Coroliary 2.1) we
have Si({u) = Tl(é“)(u) for 0 < u < ¢. Thus 5,(t) = T(MJ(t).
Hence w € (T3") < v). We conclude (§;(t) < v) C (T (t) < v). 4
Thercfore the proof is completed. [0

The martingale parts of Nj;11(t) with respect to the reference family o (N1 (¢) :
0<s<t)for 1 <j<3are represented by

Njjai(t) = Ny () ~ t.

Since Y(U {0), Y(M)(O), X(M)( 0). Nia(*), Nog(*) and Nyy(*) are mutually
independent, N”_H(t) is an 77" -martingale.
Put

(W] (X“”(O)‘j=1,2,3)

VU(NJJ+1( _1}-}—1( )) <<t = 112:3)5
and
'HEM) = G'(X('M)(s) 0<s<¢,7=1,2,3).

We shall recall the general theory in Corollary to Theorem 3.2 of Chapter I of
Ikeda-Watnabe [10]. We assume that (O (}"”H)Dg) is a standard measurabie
space for each j, 1 < j <3, and let P he a probabilty on (£, (F77*? Jizo)- Let G
be a sub o-field of {flj+k)g>g and Pg(w, ) be a regular conditional probability
given G. Let £(w) be a mapping from {2 into a measurable space {9, 5) such that
it is G/B-measurable. We assume that B is countably determined and {2z} € B
for every z € 5. Then

(2.5) Polw AAuwj () =€) =1 a.a.w.

M)

LEMMaA 2.3, gf C f” w) fort, t >0, and j, 1 < j <3, where

JJ+1()

.7: A1) SeriT (M <u)NS e F? for any u > 0).
( e ]z u

) =

Proor. We consider that QEM) c Fl2
We define

F(”)(f)

] [ Np(s)(w), for s < TR (6)(w),
Npp(s)(w) = (M)

0, for s > I75 () {w).
Since

3 r
N () = Niz()X (2001

we have (Nl[;](u.) < a)yn (Tl(;”(t) < w) € Ffor dny n > (. Hence N{fj(u)

is J":Tl:‘fn,)m—nmasurablu. We also have (Nyg{n) < o) N (T ‘m(t) < wv) € F)2
132

BLa]



for any @ > 0. Hence Na3(u) is fl(M,( 5 -mcasurable. Also Ny (u) is .7-";?,,)(8)_
12

measurable.

We shall prove that N12(T}y" (5)), Nas(Ths " (s)) and Nay (T4 (5) is Fatsr oy

measurable, for 0 < s < t.

(Step L] Put F = N, {T(M)(s)).
We claim that

[F|}‘ (")(1)]( ):F(u‘;)'
As the mapping in (2.5), we take an F!? T )-measurable mapping
(W) = (Naa(w){w') 1 u > 0).
It follows that

E[F|F (M)(t)](w}

:] Prio (w,dw)F(w)
{wiglwy=¢(w)} T o

:/ Ppiz  (wdu'yNag(Tfy" () (), )
{wglw=¢(w)}

T(M)( ty

- fﬂpm (w, dw') F(T5" (5)(w)),

(M)
Ty 9

where flu) = Nog(u,w).
Similarly as in (2.1), for u, 0 < v < ¢, we have

(7000 = 37 [ 0 + NI () - N (1061
(20™(0) + Noa(T33" () = NE(T3," (1)) s,
14300 = 2 [T + M T - N 6)
(2.6) (X5™(0) + Ny (T3 () = Naa(T55" (5)) s,
T ) = 5 [0 0)+ N (T ~ N (1847 (6)

(0) -+ MATER" () — Nan(T5" (s)))ds,

7)) = 0.

Hence there cxists a non-random function H from Ry to N sucl that
FTAT ()(w")) = H(s X0y, N (0, '), Nay (e, '), Ny (0,007, 1 > 0).
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Therefore f(Ti"(s)(w')) is fT‘fM)(t)-mca.sm'a.ble.
12

-measurable, for

Hence the claim holds. Tt follows that 1\’23(T2(5w)(s)) is F’;’%M)(t)

0<s <t
Similary, we prove that J’Val(Ts(i‘J)(S)) is f}%m(”-measumblc, for0 <5<t
12

(Step 2] Put G = No(TH0 ().

We claim that

As the mapping in (2.5), we take 73%,,, -measurable mappings
Pping T gy
12

&(w) = (N3 (") s u > 0),
and
&(w') = T, (1)(),

and note that Tff)(t), which is the solution of {2.6), is f}f,&”m—measurable. We
12

have
E[G|]’;ﬁ?£““)](u)
= /P}-n {w,dw'}G(u’)
Ja '1'1(‘2")(:)

_/ Fian
{W';fl(u’):El(w)}ﬁ{u';f;(u’):&z(w)} Ty 't

[ Py {w, dw’)J\‘]g(Tfém(s)(w'),w)
Hwngw)=a (@) N{w g (@)=} o

=f Prsy e, de YTy (8)(w)),
Q ]

e
wlhere g{u) = Nyo(u, w).
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Thus g(T(M){ Wwh)) is F12

T -measurable,

f Py, (0 d )T (6) ()
0 Try 't

= g(Tfa"“ (8)(w))(w)
= Nio{TH (5)(w),w)

= Glw).
The claim holds. Tt follows that Nm(Tl(éM)(s)) is ]:1””( 0 -measurable for () <
s <t
It concludes that
gzM) C ‘7'_1"“‘”
(M) 23 (M) 31
It also holds that G;” ' C .7: a0 and gt CF My O

For1 <7 <3, put

(M M
MGEA) = Ny (T30 ().
THEOREM 2.3. The process X'Mi{x) = (Xl(M)(*),XgM)(*),X:(EM)(*)) s a

( t(M)}tzg-scm:i-martz'nga,le such that (t e Ry )

XM (6 = P00+ (MED (6 = MET©) + TG (1) - T (1)),

X§M0(6) = XP0) + (MED (1) - MET () + (17 (1) - THV (1)),

XM = x§M0) + (M.%i‘“(t) -~ MED®) + @0 () - TR (1),
gives the Doob-Meyer decomposition and

(i) M(;ﬂ( *) are square-integrable (gt(M))tzo-mart:ingales Jor 1<j <3,

(i1) T_'](J_j_)l (*) are continuous tncreasing (Q’gM))tzg-adapted processes for 1 <
7 <3,

M) A .
(iil) < ME,-]-+)1(*) = T;ﬁ)l( Yfor 1<j <3,
. M M . .
(i) < M () MU () >0 for L< Gk <3, # 6.
CoroLLARY 2.3. The process X(M)(*} s an (HiM))tZO-sr:mi—martingale.
ReMark 2.1, zm“")( ) = J'Vfg‘;ir)l( *) — MEMBJ(*) are martingale parts and
Qi_(jh{}( ) T(M)

i1 (%) — T( J(* are bounded variation parts (1 < j <3).

Proor. We claim that for a connting process Ny whose martingale pact is
M, and whose bounded variation pact is o,

!
<M >= / (1= AAL)dA,.

S0
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By Ito's formula

t
M? =2 / M,_dM, + AM,)?.
h i > (aMy)

0<3<t

As Ny is a counting process, (AN,)? = AN, and (AM,)* = (AM, + AA,) -
2(AM; + AA)AA; + AA?. Thus we have

! t
M? = / (2M, + 1 - 2AA4,)dM, + +f (1—-AA4)dA,.
0 0

Therefore the claim holds.
(M’)

Each counting process N;; (75, (*)) has the continuous bounded variation
part (1 <7 < 3). Therefore

AT M) A
< ij+1(TJ('j+1(*)) > = T_g('j+1(t)'

Ag there are no two jumps of the mutually independent Poisson processes
Njjg1(t) and N {t) (1 € 5,k <3, j # k) at the same time £, we have no

two jumps of the processes ij.;_l(T}fiJl(t)) and ijH(T,E}::_)l(t)} (1 <j,k<3,

J # k) at the same time t. Thus ijH(TJ(J{\i)I(*)) + NkkH(T;Eﬂ_)l(*)) is also a

counting process whose bounded variation part is continuous. Hence

T M ~ M M (M
< Ny (T80 00) + N (T ) > = TED (1) + 70D (1),

On the other hand,
AT LMY 7 M
< i\’jj+1(3§j+1(*)) + Nkk+1(T£k+)](*)) >y
=< Njjar (T (#)) >0 + < N (TED, (30 >
AT M ~r M
+2 < Ny (T 00), N (T () >4

Therefore

T A N M
< Nyt TR0 N (T (1)) > = 0.

3. A weak law of large numbers of model which has a certain
stochastic structure

From now on, the norm }|=f| of the vector @ = (&), 24, 2,) 15 to mean
’ 1 2y 1

Y cien j2il. We consider integers on mod nand if § =n then weput j 41 =1

and j =1 then we put j — 1 = {on mod o we use n rather than 0).
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Let z(#) = (2 (t), -~ , zx(t)) (¢t € Ry} be a solution of the differential equation

[ = 7 aule) 2(6) = 7 o) 10
d::{-iit) — f23(:2(t) u'}( )) f12( ( )’32(”)’
d~(;j§t) = f“+1(zi(t)7 zH—l(t)) - fl_h(Z{_1(t), z;(t)),
—d;;t(t) = M (a5 () 21 (8) — F 7z (1), 2a (),

with the property infocs<s zi(s) > O for I <4 < nand 37 | %(0) = 1. Here
fIFY = piit y} are nonnegative functions on R with local Lipschitz condi-
tions for each variable z,y (1 < j < n).

By using the same method as in the queuing model by Kogan, Liptser and
Smorodinski [16] and Liptser and Shiryayev [21], we show a weak law of large
numbers with respect to a model which has the following stochastic structure.

Foreach M > 0, the process Z{M}(*) = (Zg'M)(*), e, Z,{{m(*)) isan (HEM))QO—
semi-martingale such that (¢ € Ry)

Q) z M>( 1) = 20000y + MM (1) 2 AP0 (1 < i <),
(u oM () = MO (1) - M) (1< <),
(i ‘”( ty= AL () - AM) (1< i< ),

-1t

) m
1) 2
{iv) MSJ?I( %) are square-integrable (HEM))Qo—martingales {i<j<n),
(v) A

are continuous increasing M) »o-adapted processes (1 <
JJ-H) ¢ z
i<n
/('\I) Z(Af)
() AM () = [EMx Lo, X e gt 2 g0 g
” et s ) ‘

I

J<n),
(vit) < MU (6) >0= AL (1) (1 <5 <),
(vild) < MUD G, MG (0 > =0 for j# B (1<, k < m),
where Z{M(0) > Ofor 1 < i < n, T, 287(0) = 1 and HM = (ZgM)(s) :
0<s<t,1<7<n)
. . (AL} A—(WJ()
We introduce random times T;7 7 = inf{t : =mprr

; < £} (1 <i<n)and
Tu(t\'f) U').

ln1“1<t<n T

Lemma 3.1, Tf"n is a stopping teme with respect to the reference famaly
'H(M) t»0 for each 1 < 1 < n. T s o stopping time with respect to the
t 2 0 ppiny ).
reference family (Hg A Jizo-

Proor. To be proved is, for any s € Ry,

(3.2) (T(M) <s)= {w T(w (W) < s} € ’H_(,‘”).
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We decompose (T'-(M) < s) into

(A1)
(M) < gy ={(T™) < Z 0
(Tl —_ "") {(TL - S) n( ﬂ/I —_ ft’f)}
(M)
(M) Z; (0
The first term is
(M) (M)
; Z 0 Z; 0 2 3
@ <onB Y < 2y B0 By o g,
The second term is
(M) (M) M)
(M) Z;{0) 2 y Z; " r) < 2 N Z; o) 2
{Ts = .S‘) n( M > M) r'gs( 1% = ]u.) ( 17 > ﬂ/f)

(M)
Sinee (Zot) ¢ 23 ¢ H“"” c H and (B9 > 2y e 1M 1M, the

second term (TI-(‘ ” < s) ﬂ( M(O) >&)e 'st).

Thercfore (3.2) holds.
From the general theory, T(EM) =min|<i<n Ti(M) is also a stopping time. (]

THEOREM 3.1. We assume

(M)
(3.3) &}lm ||Z—AJ—(9—)—2(U)||:D in  probability.
Then for any t € (0,20)
ZM)(5)
n}lm sup | i —z{s)|| =0 in probability.
—o0 0<a<t i
Proor.
M
Z;"()
M
{af)
Z;7(0) M
= S MU () - MU )
(MY 4 (M)
(o X s, fjj+1(Zj (-‘»)’ZJH( ))
o (Cigony (2 M M

(M) (M)

. R 5 Z. b

- Y "")( JL' (M')( fJ_lJ( J71 ( )3 : ( ))}d.‘a.
(o) (o) M M
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From the previous lemma, for any ¢ € Ry,

zZM AT
M
zi") 1
= (M AT — MM (e AT

M M

. ‘ o M M
+/tATD {fjj+l(ZJ('w)(3) Z§+1)(S))”fj_1j(3§—1)(5) Z;‘!)(S))}dg
0 MM MM

From the assumption of the local Lipschitz condition, there exists a constant
CL,'p such that

Ifjj+l(1_1’ yl) - fjj+1(w23 yZ)!

sup e
0<21<1,0<22<1,0<y; £1,0€y, <1 l-Il a ;E2|
sup 54 @, ) = f7 7 (2, 4) <yt
0<71<1,0<22 S 1,0<y €10y <1 v — 2| S
o i1 i+l
(3.4) Crip = pax (G2, G/
Put
oy ZU0(
UM = 12— )]
M
Thus

tATY

t
M M 1 M
100l < Tl + 1R A T8+ 2005 [ ULl

i 0

. 1 ac,
ST+ sup IR0 () e e,

o<y <tATIM?
For any real number ¢ > 0,

P( sup  {UP]] > ¢

0 <taT{ M

L e,
<P osup (U™ IO )]} > et

a<s<eaty
Note that

P(sup IlUM] > €)
H<a<t
<P <ty + PO s US> e T 2 )
pCagenTiM

; M 1 —2C0,
< PIY <+ P s (G IO ()] > e,

p<a<tAT M



For any real number 8 > 0 we claim

(35)  Jim P( s (001 + IO > ) =0,
T ogs<taTiM
(3.6) A}@mP(Tg‘“’) t) = 0.

We estimate (3.5):

P osup  (J|Us ”)H + ||5m(M)( N > 8}
0<s<aTi M

(M) L am(an é
< 7 S — : —
Pl > 2)+P( sup I > )

0agiaT M

(M) 8 (A1) (M) &
P, =4 E P M M —).
(1% > 2) 1<j<n (n<s:<3tl,\p;nw) MI i (s) = Myt ()1 > 2?1)

By using Chebyshev’s inequality and the inequality for the martingale
gale,

(M) (a1) §
P J —
erimin TR BT
2n (M) (M)
< ME[ . :111) () v[]JM_;]+]( ) J\/[ng]( )l ]
0<Cs<tATy
2n Cmar M M
< 7 1o Bl ML () > g + < MG 00 >, ]
(M) M M (M) M M)
_ TnarE[ o fJJH“l(Z( J(rf) Z§+1J(?f )]:+ ”\IO fj—IJ(Z( )( ) Z( ()
- ESU M T M 0 M
2'n(?rn.cn"(jﬁ

t
- 5M 2

where Cinq, is the maximum of positive constants for the martingale inqualiiies
and

(3.7) Co = max sup  FUT Nz ).
LLi<n <z <l 0<y<I

By letting M tend to infinity, (3.5) holds.

Now we estimate {3.6). We define the {1,2, - n}-valued function ™) such
z 8 ()
that —"T = m1111<1<n{—‘—} for s € Ry.. Here

Zon(s) o

A y
T oy c i) < ¢ wf e < ]
{ 0 } C { i = } C {UE"‘Slit'\T(gM) M - M

46
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We estimate the third term: for any s, s <t A T(M)
M (M)
Zf.wl(s) Z,»(M)(S)
-——J‘J ZZL.S’M)(S) - |zi(,M)(S) - —‘ﬂf |
> inf =z, §) — sup UﬁM) .
2,mt *EM)( ) OSSSL:T";M] { Il

We put r = infacs<s mini<icy, 2i(s) and it follows from the assumption that
r> 0.

(Af)
T -
inf o T >r—  sup UM
G<s<tAT, ‘£ US"’SU\TKE'”)

We have the relation

{TéM) <tyc{r—- sup |
0< s <IATS

2
v < Zy.
Sl s 5t

Therefore
2
PLM™ <) < P( sup (UM 2r— ).
o<a<eArit -

When M — oo, (3.5} concludes {3.6).
Therefore for any ¢ > 0

lim P{ sup |]U(M)|| >e)=0.
M o0 0<y

4. Application of the weak law of large numbers to
paper-scissors-stone model

Let w(t) = (u1(t), ua(t),u3(t)) (¢t € Ry) be the solution of the deterministic
system expressed by the defferential equation

duq(t) () — wa (D

— i = A (tua(t) ~ us(thua (1),
(4.1) % = Alug(t)uy(t) — i (£)ua (1)},

dua(t)

e Aleeg(f)u () — ug () ua ().
REMARK 4.1. The system of {4.1) has two constants of motion that u | (¢) +
uz(t) + ua(t) = w1 (0) + ug(0) 4+ u3(0) and wy(t)ua(thua(t) = ur (0)uy(0)uy(0).
)
Now, we shall discuss the couvergence of &
infinity.

to u(t), when M tends to

By applying the previous general theorem to our model, we have the following
theorem.



TuUEOREM 4.1. We assume the convergence and conditions:

P (A1)
lim |——X1 (0)
M w00 ﬂ/f

x™ )

~u{0)| =0 in probability,
~u3(0)] =0 in probubility,

{4.2) lim |—~—% —u3(0)|=0 in probability,

Then for any t € (0, 00)

lim sup —ua(s)| =0 in probability,

M—eoop<sgy M

( (M)(s
. L) (s} =0 in probabilit
Jm [)Sgltztl i wy ()] in probability,
M
|ﬂ)w)

~(M) s)

L lim sup |[=2

—u3z{s)l =0 in probability.
‘M’_'OOUSSS-'. i‘/f 'i( )1 p e y

Proor. Remark (4.1) and (0} > 0 (i = 1,2,3) shows that infy< <, ui(t) > 0
forany t > 0.
Put for 1 €57 <3

(43) £ (2, ) = (s, y) = Azy.
The constant Cy of (3.7) is A. The following estimation holds:

[h(@1,y1) = hze,p2))

sUp < AA
0<71€1,0<x2 <10y €1,0€y2 <1 lx1 — 24
h{zy,y1) ~ b2y, ye
sup [z, o) v )] < 44,
0<e, <1,0<e, <105y, €1,0<y, <1 l.fll - 'yﬂ

Thus we take the constant Crip, of (3.4) to be 44,

5. A central limit theorem of model which has a certain stochastic
structure

Similarly as in the queuing model by Kogan, Liptser and Smorodinski [10]
and Liptser and Shirvayev [21], we show the following central limit theorem with
respect to the model in section 3.

Let 2(&) = (= (), Lz, (1)) (t € Ry be asolution of the differential equation
{3.1), with the property iufpcyce zi(s) > 0 for 1 < i < noand 30, 2(0) =
L. In the present case, we assume that f00 = 0G0 are nounegative

AR



continuously differentiable functions on R with local Lipschitz conditions of the
derivatives f#+1 = 2L (2 4 for variable y and with local Lipschitz conditions
of the derivatives fii+! = 80210 z,y) for variable z (1 < § < n).
Y dy J =
For each M > 0, the process Z(M)(*) has the same stochastic structure as in
Theorem 3.1.

Put

ZD ()

VO = U a7 )

TuroreM 5.1. We assume (3.3) tn Theorem 3.1.

Let the sequence of random variables {V ) (0)} a5 converges weakly to a
distribution F.

Then the sequence of the probability distributions of the R"-valued processes
VM) — (V(M)(t))tzo converges weakly to the distribution of an R”-valued pro-
cess V = (V(t))1>0 defined by the stochastic differential equation

AV (1) = bV (£)dt + c7 (£)dW (£),

with an R -valued Wiener process W = (Wy)>q, with the inilial condition V(0)
having the distribution F and with n x n matriz

af 8t (27 0 0 _ar
= way 24 8 12 23 9z
2] af a 8
— &L —éf;* — _E% s 0 0
afnl 0 0 ——a[‘nwln ot ggnmin
[E b e dy

Jr12 +fﬂl __fl? ‘ U 0 _fnl
—fi2 R4 0 0
_fnl 0 0 _fn-ln fn'l +f"7]n

The (7, j)-th elemenis of b(t) and c(t) {1 < i,7 < n) are given by

b,’j(t) =
poti apimt o
> 5 (zilt), zin (1)) — _)',.E)T(:‘_l(t)’ {8y, for j =1,
Vit ) i
Q'G)y_(j:i(t)a (), for J=i4+1,
-H“ G (zi"l(t ,Z,‘(t}), f(”" j = n', - _L,
0, otherwise.
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cij(t) =

f"ifl(zi(t):zi+1( N+ Tz (1), 2:(t), fori =,
~fN (), 2o (1), for F=i4,
~ il (), (), for j=i-—1,

0, otherwise.

PmmRLaWWHhﬂﬁM%)~ A0, B () = (BY (), -, BEM (+))
and m{Mha(x) = (m(lM)‘a(*),-- miM): “*(*)) be defined by (1 <i < n)

v = v

‘ Z(w) 7M) o
+[ VII{X on., X Long, fn-+-1( (a) it ))
<0 {——>0} (&0 M

- f (z=-<~e), 2i41(s)) }ds

s 11 25 (8) 20 (s)
- MAx Lo X a0 Al qua = S B
/; { {Z‘_,\}r(ﬂ)>0} {z\. A!(a)>0} ( M M )

= F (o (8), 7i(s)) s

(M () — MM,

1
+
T
{M) (M)
M) i i1 4 (8) J:-&-l( s)
/ M{x z”‘”( )>0}X{ 5:’3() ﬂ}f ( M M )
~ P (zi(s), e (5)) Vs
t W) (M)
e . Z;0 (8) Z;
- / VM {x S0y N gong [T i ‘11, ( ) $ ))
Jo [ i—1 >0} { g >0} M M
= FV (i), 2i(s)) Y,

mg;\-!),a(*) (M)(*).

= X{Jp<al 7 \/__
Note that (1 < j,k < n)
< mgﬁ-{),a(*)’m(ﬂ/f),u(*) >,
M) (M) .
N <apar (A (0 + AL 0), for j =k,
{ M
_ ) Xigesa i A (), for k=41,
M) .
‘X{W<(1}Af‘A§ ]J( ) for L’:JW]‘!
(0, otherwise.

Now, we present the following general conditions which are known in [21, 16,
1, 33].
ForcachT >0, ec (0,1l and 7, k=12, ,n

(A) iy — oo SUPg ey AV | = 0 in probability,

-

1]



(B) lmps—oo supge ey [|B(t) —~ fnt b{s, VM) (s))ds|| = 0 in probability,

(€) Wmseeoo supgg e | < m§™ (e}, mi*) 2 () 3, — [ i (s, VOO (5))ds]
0 in probability,

and so-called conditions of “lincar growth” of the functions of b{¢,V(t)) and
c(t. V(1)) (tERL)
(1) 0t VN < L+ supocec [V,
(1) 351 leis (8 VI < LI +supyc, < |Vs)P),
(I) f L(s)ds < cc.

By assuminig the above conditions, the sequence of the R"™-valued processes
VM) = (VM($}),. converges in distribution to an B"-valued process V =
{(V(t))i>0 defined by the stochastic differential equation

AV (t) = b{t, V(£))dt + T (£, V(1)) dW (1),

with an R"™-valued Wiener process W = (W {(¢));»0 consisting of independent
components, as M tends to infinity ([21]).

Now we shall prove these conditions.

Condition of “lincar growth” is clear because of the local Lipschitz property
of the functions. We prove three conditions (A}, (B} and (C) in the following
steps,

[Step 1] We claim that condition (A) holds.
For any ¢t > 0,

1
VM

AZM(y
lavenm) = ViR <

Hence condition (A) holds, since for any € > 0,

1 1
PAVID G > ) < —=B[[|AVD B « ——.
{l (O] » ) < . [l (il < evi

[Step 2] We claim that

t
(51) erll’l’i P(/ X ZEM)\”_ s > ()) =0,
= Joo {2g—=0}

forany t e R,.
The following estimate holds:

t ZUM)
P(/ X piang,,  ds>0) < P{oinf =—(b) = ).
0 (—igg—=0) 0<a<t Af
Since
Z(-M)(.a') Z(-"\”(.ﬁ')
. TS s 8 —— = (¥
nél-ifﬁl M - <l£.-qugr, i) ”;1:’1_%!! ¥ ()]



we have

zM(s)

t
< : L > P
P(_/; X{izsgzo}ds >0) < P(DE:;;J i z(s)| > ﬂgft (5)).

From the weak law of large numbers {Theorem 3.1} and from the assumption of
infocqcs 2i(s) > 0, the claim (5.1) holds.

[Step 3] We claim that B{*?(¢) is replaced by BOD () M)(t) in condition (B) and that

< m; (M), “{x),m M) (%) > is replaced by < m( M)a (*),mi‘m' (%) >, in condition
(C), where

ey Z0 (s y
B (1) f VET{5i (2 f(')v ﬁ}(&))ff”“(z,-m,zi+1(s>>}ds

' . Z(w) (M)
_/0 VM{F( lf() & M(s)) TH(zima(s), ils)) s,

<), m{ 0% () >

¢ P Z(.M)[s] 2iM) ()
X{.\7L;.<a}{fn I (g, 25— )ds

K} Mg i
+f JiH( —*’-:-1-2 4 M( ))d&} for 7 =k%,
i+l O Z.Ei’l)(b) T
TX{Fp<al rﬂ f ( g Jds, for k=j+1,

i “”(a) ‘”’(s) i
TX{ Fp<a} fg J(w, -~+ﬁ+-)d9 for k=71,

L 0, otherwise.

We consider the case of B(M){3). The following estimate holds:

t
supHB(M)(t)ﬁ/ b(s) VM (5)ds||
0

1T

-1
< sup [ BTN - / () V) (s)as]
E<T J0

] A
fii+1(Zi(‘”(3) Z«(+Ixj(s)

) 1s
+!Zlfl<1?| ] X A e Fr A v
(M) \1)
1—11 : 1 ( ) ( )
/ \/M’\ /(\r)( , 20, f 1i ( i fU (f‘?]
=0 or —tgg—=0}
- ¢
< sup || BUMI{t) - / W VD (5)dsli
1< S0
¢ i
4 Cy v M ZSHI){.Z/ X e, (l.‘;‘—l—[ X 080, d.s'-{-/ Ay 20y rfs}
tsr o {gpe—=0 Jooo A —=0) D QU Ry



< sop| B - [ by (s)is]

t<T
T T
+ Chy ﬂer{Q/ X LMY, db‘+f X gean,, ds-%»f X My ds},
{_lT 0} 0 { \+1 —U} 0 { I—'l :n}

where Cy is defined by (3.7). Thus

£
Plsup [B90(e) = [ bV (5)as]] > o
t<T 0

< P{sup {[BUI() - f W O (s)as] > )

LT &4

€
+Zp°qJA/- 00 _ fﬂ>§9

< Plsup [0 - f bV (s)asl) > )

mn T
+ZP(/0 X 2 ds > 0).
J=1 {5

=0}

When we take the limit of M — oo, from (5.1)

t
hm P(sup || BM) (1) - f b(S)V(M)(f")ds” > €)
0

{00 i<T

t
< mlpmmww> /Mgwmumw>§)
Fal =

M—oo £<T

The estimate with respect to condition {C) is done in a similar way.
Therefore the claim holds.

[Step 4] We claim that condition (B) holds.
From the assumption of the local Lipschitz conditions of derivatives, there is

a positive constant U such that

Lip

Ef!{j+1($!ayl) j” {we, y2)

sup < CEr,
0z, <102, <1,0<y, <1055 <) B -'-zl
FESIN AL
2 ) = fP o)l i
sup ST
02 <1 0<e, <0<y <1,0<y,<1 |'.?11 - .Uzl
3 (1) : i+l iRt
5.2 o = max {CY C .
( ) Lip lSJ(‘S”{ &y Y pr }



Considering {Step 3|, we have the following estimate:

supl BT - [ bV (o]

(M)
< [ A 2o e oy

Z(M)(s) Z_(M’)(S)

=P B ) = Sl
< [ VO )+ 0 Byten BEEL
VD) 0 )+ 0 B gt )+e“+1<2'(‘+‘§(3) ~ )
V) a4 0B ) i )

N . o gDy gl
T R e LA o L BB

= VIO L ) 2 () = VT (055 (5:(5), 201 (9)
+ VP () Y (9, 2409) + VI () 137 (i (5), 2a(s)lds

< sup||V) 200 _ ac'V T,
< supltv 0 ()l sup |2 — zqaylact)
t<T t<T i

where 9771 € [0,1] (1 < j < n) are parameters in the mean value theorem.
Hence

Ploup BT [ ooV sl 2

t<T 0
ZM) () €
< Psup |[VMY || > D 4 Plsu —z{t)|| >
< PanpllV 0l 2 0+ Plengl 15 - (0 2 2
if
(5.3) lim Tm g oo P(sup [V > D =0
{—oo t<r

then, from the weak law of large numbers {Theorem 3.1}, for any 8 > 0 there
exists an integer { such that

Plsap VOO 8] 2 1) < 5

L<T
ZMI() €
Pls — ()| > ——) <
(:‘SITI;H 7 Wl > elts )



Therefore

t
T s1—ee Psup | B0 — [ 69V (5)s] 2 €)= 0
Q

t<T

Now, we shall prove (5.3).

t
VD@ < VAP + [ 2C0s V() ds
a

oo
+CGV‘M'Z‘/- {2y Z(.wn(!) T X p0n, + X o, }ds
- { i :0} { \+1 0} { i—1 20}

|Mff‘ii( ) - M),

+ sup

0<s<t v M
where Cy and Cy;p are defined by (3.7} and (3.4).
By using Gromwell’s incquality,

IVEO Ol < VD)

n t
+ C(]VJ‘JZ/ {2){ (M), +X Z(M’)( o +x UMY, }dS
: (a0 =0} (Z5pl=0)

{ i+l
+Z sup

M M L
o<s<t VM M£=+)l( )“'JM ( )I}.62CL.,,£.

i—1i

Thus (5.3) is estimated by

Plsup [[VOD ()] > 1) <PV (0] 2 —)
t<r 3¢

T x
+ Zp(fo X A0 ds > 0}

:[)}
(41) () {
+E P sup i MT > -
e 0<3-I<1 1) = (ol 2 3nC,

).

where Cy = e22ir!, From the assumption of the theorem, the first term is con-

vergent to zero in probability as M tends to infinity. From (5.1), the second terin
is convergent to zero in probability as M tends to infinity. By using Chebyshev's
inequality and the martingale inequality, the third term is estimated;

l

(M) MM s
P(o?:.l/f, \/—\%m( $) = M2 (s)] 2 B

3 c Crn(:r‘ :
< PO gl M0 0) Sy 4 < MED (0 >4
< 31C0C: Cinar pon

- !
wlere Cy is defined by (3.7) and where C0 18 the maximum of positive con-
) Y

stants for the martingale incqualities. Thus the third term is convergent to zero
in probability, as I tends to infinity.

ot
o1



Therefore the claim holds.

[Step 5} We claim that condition (C) holds.
By [Step 3], we prove that (1 < j,k < n)

(M‘),u(*) (M)a

L
lim sup |< m; my () >y —[ cjk{s)ds| =0 in probability.
0

Moo o

We take the integer M as M > L.

There are no interactions hetween j and & for 2 < |j — k] < n — 2. Hence
condition (C} holds for this case.

We consider the case of diagonal clements.

_ . t
sup | < mEM)’a(*) >, —/ cii(s)ds]
t<T )
: (M) (M)
_ Pl i i+1 il (8), = d
fgl 0{f (S ) T EG), ms))ds

" i Zz(l?(g) Z:'(M)(S) i—1i
+/[; FA M 0 M )= F T ziea (), 2i{8))ds ds|

ZM)( g
<20, Tsup |2 - <o),
< :

where Cpj, is defined by (3.4). This term is convergent to zero in probability,
from the weak law of large numbers of Theorem 3.1.
Moreover,

i
sup [< m{ (), mO 9 (4 >, — / cier (s)ds|
1 1]

1<T
Co 2y 2
= sup| /0 (-G Ze g o) s
Z(M')(S)
<& T —_— ] .
_CLtp ?;?” M (S‘)“

This term is also convergent to zero in prabability, from the weak law of large
numbers of Theorem 3.1.

Therefore the claim holds. O

REMARK 5.1. [tig casy to sce that the matriz ¢(t) has eigenvalue zero and the
eigenvector (1,1,--- . 1). Hence we consider the eigenvector (+, %, -+ | %,0) which
s andependent of (1,1,--+ 1), In the restricted (n — 1) x {n — 1) mairiz of (1)
all determanants of the leading minor matriz are positive. Thus the restricted

{n ~ 1) x (n — 1) matriz is positive definite. Conscquently, the matriz c(t) s
pasitive semi-definele,



6. Application of the central limit theorem to paper-scissors-stone
model

We apply Theorem 5.1 to our model
Put

yon(y = vIEEY e,

for t € R.. A sequence of the process ¥ (M) (Y(M)(t))tgo admits the following
central limit theorem,

THEOREM 6.1. We assume (4.2) in Theorem 4.1.

Let the sequence of random wariables {Y(M}(O)}le converge weakly to a
distribution G.

Then the sequence of the probability distributions of the B3 -valued processes
VM) = (yIM (g V>0 converges weakly to the distribution of an R*-valued process
Y = (Y(£))i>q defined by the stochastic equation in the vector form

(6.1) dY (t) = b(t)Y (£)dt + c* (£)dW (),

with an R*-valued Wiener process W = (W, )50, with the initial condition Y (0)
having the distribution G and with 3 x 3 mairiz

Alua(t) — ug(t)) A (8) —Au(t)
bit) = —Aus(t) Aug(t) ~ u1(2)) Auz{t) ,
Aug(t) —Auy(t) Aluy (8) — up{t))

e(t) =

Alug (Dua{t) + uz(thuy (2) —Aung(thug (i) —Ausg{t)u, (1)
= Ay (s {t) Az (B)uy(8) + uy (Hua(t)) —Aug(t)uy(t)
~Aus( t)u,(t —Aua{t)us(t) Aluy )ul(t)—{—uz (thus(t))

ProoF. Recall (4.3). We have the derivatives fi/*1 =

fgf”l - %{x,y) =Xz (1 <37 <3). The constant CEIL of (3.

i

S

(
,:( y) = Ay and
Yis A [0

7. Experimental study for paper-scissors-stone model

[\J

The solution of the system of the ordinary differential equations (4.1) is analyt-
ically solved by using an clliptic function which is so-called Weierstrass type. By
Theorem 4.1 the construction of the solution of the paper-scissors-stone model is
convergent in probability to the solution of the system of the ordinary differential
equation {4.1). Note that the solution is applicable ta approximate numerical
values of the elliptic function.

The actual behavior of (4.1) ts computed by the fourth-order Runge-Kutta
mcthod with the step width 1/1000 (Henriei [9]). The system of (4.1) has two
conserved quantities (Remark 4.1). The Runge-Kutta method is done for the
vector w(t) = (uy(t), uz( ), L=y {t) —up(t)) {t € Ry} and the conserved quantity
wy (g (th-{1—uy (#) —wp(#)) is observed to be constant in five signifteant digits,

7
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By the construction of (1.2) and (1.3} in Theorem 1.1, we perform the sim-
ulation for (1.1). Pseudo-random numbers generated by the linear congruential
method which is the same method as in section 3 of chapter I, are used in the
simulations. The simulation study of the system {1.1) is done in the cases of
M = 100, M = 1000 and 3 = 10000. Figs IL.2, IL.3 and I1.4 show that the de-
terministic process of (4.1) and the stochastic processes of M = 100, 1000, 10000,
where we set A = 1, X0 — y(0) = (0.4,0.25,0.35). When M tends to be
larger, as we sce from Figs IL2 - 114, we observe that the process of (1.1} ap-
proaches to the deterministic system. Thus Theorem 4.1 for (1.1} is seen from
the numerical experiment.

We do not know the definite solution of {6.1) in general. From Theorem 6.1
the solution of (6.1} is approximated by Y™} (x) for large M. As the theorem
states the convergence in distribution, several sample paths are nceded in order

to investigate (6.1). Figure II.5 shows, for example, 10 sample paths of YI(M)(*)

(A

with M = 10000, where we set A = 1, 2 — y(0) = (0.4,0.25,0.35). The
actual behavior of the density of the process ¥; () is considered to be close to
the distribution behavior in this figure, as we set M to be large. Theorem 6.1

leads the numerical observation in Figure 11.5.
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CHAPTER IIT

Mutation model compared with Ohta-Kimura model

1. Stepwise-mutation model

Ohta and Kimura [29, 30] formulated the following model called the stepwise-
mutation model.

Let us assume that particles which are gamectes exist in the integer-numbered
sites of allelic states. The total number of particles is M. The set of allelic
states 1s constructed by discrete points of n sites in a one-dimensinal lattice with
periodic boundary cendition. We supposc that the offspring is produced by a
Markov chain. The offspring of any gamete of the site ¢ is assumed to mutate to
the site 7 — 1 with probability £ or to the site i+ 1 with probability £ or remain
in site ¢ with probability 1 —p. A site is chosen with probability proportional to
the frequency in the previous generation, one of the particles of tle chosen site
changes the allelic statc with the probabilities £, 1 —p and £ and the process is
repeated 2N, times. Here N, is the effective size of population (Wright [37] an
Ewens [5]). We set one step to be a process of one choice of a gamete. The next
generation is considered to be obtained after 2V, steps of Markov chain.

2. Time-change model

Let us consider the model which satisfies the followings:

(i) There are n integer-uumbered sites of allelic states in a one-dimensional
lattice with periodic boundary condition. The number of particles be-
longing to the i-th site at time ¢ is denoted by X;(¢). Genetically particles
are interpreted as gametes. The time ¢ is measured by the same unit as
the step in the stepwise-mutation model. The total number M is to bhe
X+ X+ -+ X ()= M.

(il} A particle of site ¢ mutates to a particle of site i + 1 or to a particle of
site i —1, wherei=1,-.- ,n. fi=nthen wesct i+1=1andifi=1
then we set 1 — 1 = from now on.

(iii) Frequency of mutations to the neighboring sites per one particle is pedt
during time interval [t,¢ -+ dt) on the average, where g is a positive
constant.
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(iv) Each particle is in a chaotic bath of particles. Each mutating particle is
equally likely chosen.

We assume the following model which satisfy the above four conditions:

'4

Xi(t) = Xq1(0) - Nl’"(,u[; Xi(s)ds) - N{(p,ful Xi(s)ds)

t

H t

N3 [ Xnls)as) + NG [ Xa(s)as),
{ 0

{

Xa(t) = Xa0) = N3 [ Xal)ds) = N [ Ka(o)as)

@1 X(0) = X0) = Ni(u [ Xitose) = Mo [ Xeto)as)

t

t
+N£'L1(H/ Xi—l(-"')ds)"‘i\‘riﬂ(ﬂ/ Xip1{s)ds),
0 Jo

¢ ¢
Xa{t) = Xn(0) - N,':(,u-[o Xa{s)ds) — N,ﬂ(,u,ﬁ Xn(s)ds)

t t
NI [ Xaca(9)d) + VG [ Xi(s)as),
0 0
L X1 (0) + Xa(0) -+ 4+ Xn(0) = M,

where X;(0) are nonnegative initial values (1 = 1,2, -+, n) and where NT arc
standard Poisson processes (j = 1,2,--- ,n and o = », ). Here we assume that
there are no jumps of N7 and NJI- at the same time for each §, 1 < 7 < n and that
there are no accumulation points of jump times of standard Poisson processes.

We assume that N in (2.1) are mutually independent standard Poisson pro-
cesses {7 = 1,2,--- ,n and o = r,{). In this paper the model (2.1} 15 called a
time-change model for simplicity.

3. Statistical method for comparing time-change model with
stepwise-mutation model

We measure time by the step in the stepwise-mutation model from now ou.
In order to compare the continuous time model with the discrete time model, we
regard that the Markov chain of the stepwise-mutation model is embedded in a
Markov process of continnous time.

It 1s difficult to investigate the time-change model theoretically, in particular
its waiting time, This is because the jump time of the system of equation (2.1}
is determined by the complicatedly linked factors. Thus we study the waiting
time of the time-change model by the following statistical methodl,

At first we have the probability function of the walting time k to be f(k|p) =
p(1—p)*~! for the stepwise-mutation model. The expected value of the waiting
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time is Y oo, kf(kjp) = 1/p. Then we expect almost constant waiting time
against the number of jumps of the system. Thus we will have the nearly lincar
relation between the number of jumps of the system and the jump time, if we
take sufficiently large steps.

When waiting time data © = (21, , #m) are given, the likelihood for the pa-
rameter p is calculated as L(p|z,- - , Tm) = ', f{zi|p). Thus the logarithmic
likelihood is

log L(plz1,-+- ,xm) =y log f(zifp)
i=]

=mlogp + { (Zzi) —m}IOg(l —-p),

and the maximum likelihood estimator of p is

(3.1)

(3.2) = e —.

In other words the relation {3.2) corresponds to the inverse value of the mean
of waiting times for a fixed sample path.

When there are sufficiently large number of data of waiting times, we have
the asymptotic normality of the maximum likelihood estimator p'in {3.2). Then
it holds

1
) B~ AN(p., —174).
(3.3) p~N(p — )

Here p. is a consistent estimator and 7 is the Fisher information by

8log f(X|p) dlog F(X|p")

I=Ex| ap ap’ }P=P'=P-
9% log f(X|p)
= —EX[W}I*:P-
B 1
il —p.)’

where we use the relation 3 7= | k% f(klp) = (2 - p)/p%.
Hence the variance in (3.3) is given by

}_I_l _ pf(l _p*)

s T

(3.4)

Let the standard deviation of the maximum likelihood estimator be a.{m), we
have o.{m) = \/p%(1 — p.)/m. The standard deviation o.(m) is a characteristic
gunantity of the stepwise-mutation model with its m waiting time data and is
known to be the smallest from the asymptotic efficiency.

The logarithmie likeliliood is a biased estimator of Kullback-Leibler informa-
tion. In fact we must use the bias correction. But in this paper we use the
logarithinic likelihood as the measure of the similarity between two models for
simplicity with ignoring smail bias, Thus the asymptotic normality (3.3) holds.
We will not discuss the bias correction in this paper.
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We compare the time-change model with the stepwise-mutation model as
follows.

Through computer simulation of the time-change model we get data of the
jump times of the system of equation (2.1) and we fit the data to the stepwise-
mutation model directly. Let p(m) be the right hand side of (3.2) computed
from m waiting times generated through one simulation for the time-change
model. Through several computer simulations we get the sample mean p{m)
and the sample standard deviation s{m). Then we regard p(m) as the consistent
estimate p.. By using it we have the standard deviation o.(m). We compare
s(m) with o,(m). Note that the sample standard deviation s{m) is an estimate of
a characteristic quantity for the time-change model. Thus we check the similarity
of the two models by using these quantitics.

4. Simulation study by using the statistical method

A computer simulation for the time-change model is performed by generating
jump times of standard Poisson processes and by determining the jumps of the
system of equation (2.1) in order from the first jump. The jump of the system
occurs when one of the integrals reaches the jump time of the standard Poisson
process. In Figure IIL.6 we show the cmpirical relation between the number
of jumps of the system and the time at which the jump of the system occurs,
where we set parameters g = 501Wr M = 1000 and n = 10. Here we put
randomly chosen initial value and totally we have 1000 jumps of the system.
This simulation is done by using pseudo-random numbers generated by the linear
congruential method which is the same method as in section 3 of chapter 1.
Surprisingly we have the nearly linear relation of the jump of the system and
the jump time in Figure IT1.6. The number of jumps to the site of the positive
direction is 515 and the number of jumnps to the site of the uegative direction is
485, This near equality of the number of two kinds of jumps is expected from the
symmetry of equation (2.1). In Figure IIL.7 we give a similar empirical relation
as in Figure II1.6, when we have more successive 9000 jumps of the system, The
nearly linear relation is also observed in Figure I11.7. By these observations we
guess that the model has a kind of uniformity of the jump time of the system.
This fact leads to the ncarly constant mean value of the waiting time for the
fixed sample patlh. The mean value of waiting times is 2.507 for 1000 jumps of
the system and 2.500 for total 10000 jumnps in this simulation. By the lincar
regression for the present example of 1000 jumps of the system, the slope of the
jump time of the system against the number of jumps is 2.537 with the standard
error 0.001, when we let the line pass the origin. This value of the slope is close
to the mean value 2.507 of waiting times.

We discuss the concept of the generation in the time-change model. In ge!
netics the concept “generation” is brought in order to explain scasonal breeding
for example, When we interpret the present system of the time-change model
genctically, we need to measure time ¢ divided by 28, For example we consider
the special case of ¥, = M. Note that the range of the vertical axes of Figs. IILG
and ITL7 ronghly corresponds to 1.2 and 12.5 generations respectively,

TFigure TIL8 gives walting times against the number of jumps of the system
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obtained by taking differences of the jump times in Figure II1.6. We compute
the logarithmic likelihood by (3.1) and plot it against the parameter p € [0,1] in
Figure II1.9. The inverse values of the mean of waiting times for Figs. II1.6 and
IL7 are p(1000) = 0.399 and p(10000) = 0.400 respectively in three significant
digits.

We perform other independent 10 simulations of 10000 jumps. We use good
tested physical random numbers in these and the following simulations. In Ta-
ble III.1 we give p(100), p(1000) and p(10000) for these simulations. Here we
set the same values of parameters as in Figs. 1[1.6 and L7 with the randomly
chosen initial value. From Table IIL1 it is obvious that p{(m) is almost constant
regardless of m and sample path.

In Table IT1.1 we see that the variance of p{m) gets smaller as m tends larger.
This tendency is expected also in the stepwise-mutation model from {(3.4). In
order to investigate it in detail, we perform independent 50 simulations with
several values of g Here we set the same values of M and n as in Figs. IIL6
and IT1.7 with the randomly chosen initial value. Table II1.2 shows the sampie
mean p(m) and the sample standard deviation s(m) for m = 1000 and 10000
through these simulations. The sample mean p(m) is observed to be almost
independent of m and to be almost constant. We observe that 5(10000) is smaller
than ${1000). By this fact we guess that s{m) tends to be smaller as rn gets
larger. If p(10000} is regarded as p, in the stepwise-mutation model because of
near equality of p{1000) and p{10000}, the standard deviation of the maximum

likelihood cstimator is computed as g.(m) = \/p(lD[)UU)z(l — p(10000})/m. We
put in Table II1.2 its value in the 4th and 7th columns. We see that s(m) is
almost coincident with ¢.(m} for m = 1000 and 10000 in Table I11.2. Thus the
efficiency of the time-change model is considered to be nearly equivalent to that
of the stepwise-mutation model,

If the value of u becomes larger than, roughly speaking, "2”0“10? for the parame-
ters M = 1000 and n = 10 (found by experiments in the example of Table 111.2),
then p(m) is observed to exceed the value 1. As p(m) is regarded as the parame-
ter in the stepwise-mutation model, the corespondence of the time-change model
with the former breaks in this point. When the value of ;¢ gets larger from 0
as shown in Table ITL.2, s{m) is observed to be larger than o.(m). The waiting
times in the time-change model tend to distribute nearby zero. On the other
hand it never occurs in the stepwise-mutation model. Thus s{rm) is expected to
get larger in this case. Omn the contrary, when the value of 1 is close to 0 as in Ta-
ble TIL.2, s{m} is considered to be almost coincident with o.(m), as the waiting
times in the time-change model tend to distribute away from the neighborhood
of zero. Accordingly the correspondence between the stepwise-mmutation model
and the time-change model is fairly good when the parameter ;1 is smaller thaun,
for example, 'zulW for M = 1000 and n = 10. This threshfold value varies for
combinations of values of M and n. In relation to this, we observe the nearly
linear relation between g and p(m) as is seen in Table TEL2. From this fact the
threshold value = is expected in the above case.

1
2000
Morcover we have doune computer simulations for some combinations of values

of pr, M and n (2 < M < 10% 2 < 0 < 107 and suitable ) with the randomly
- —_— 1 — — .
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chosen initial value. In all simulations which include the simulations of Table I11.2
we observe that the time-change model well corresponds to the stepwise-mutation
model.
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TasLE IT1.1. Inverse values p{m) of the mean of waiting times
with M = 1000, n = 10 and g =

1

5

000"

experiments | m == 100 | /o = 1000 | m = 10000
1 0.420 0.412 0.407
2 0.326 0.405 0.398
3 0.414 0.425 0.403
4 0.383 0.407 0.402
5 0.456 0.420 0.397
6 0.403 0.396 0.401
7 0.352 0.391 0.399
8 0.377 0.405 0.395
9 0.475 0.406 0.400
10 0.376 0.418 0.405

TapLE II1.2. Independent 30 simulations with several p’s with

M = 1000 and n = 10Q.

I p(1000) | £(1000) | ¢, (1000) | p(10000} | s{20000) | o. (10006}
- 0.800 0.022 0.011 0.708 0.009 0.004
ﬁ 0.398 0.016 0.010 0.401 0.004 0.003
50(}00 0.0398 | 0.0012 0.0012 (.0400 0.0004 0.0004
wropng | 0-00399 | 0.00013 | 0.00013 § 0.00400 | 0.00004 0.00004

G7
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200 400 600 800 T00g Per

Figurg II1.6. Empirical relation between the number of jumps
of the system (horizontal) and the jump time {vertical). The
case of 1000 jumps.

step
250004

20000
15000
10000
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2000 4000 5000 8000 Togogurber

Ficure II1.7. Empirical relation between the number of jumps
of the system (horizontal) and the jump time (vertical). The
case of 10000 jumps.
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step

Ficure II1.8. Waiting times (vertical} against the number of
jumps of the system (horizontal).

logL
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-25001
-300071
-35001

—-4000+

—4500

-5000

LA T Y

Fraurrn IT1.9. Logarithmic likelihood (vertical) against the pa-
rameter p £ [0, 1] (horizontal).
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