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Preface

The affine scaling method was proposed by Dikin [11] in 1967, and is well-known as the
first and the simplest interior point (IP) method for linear programming (LP) problems.
Many implementations and numerical experiments [1, 2, 10, 18, 26, 33, 42, 45, 46, 47]
have been done, and they show excellent performance of this method when a long step-
size choice is adopted. In that case the next iterate is chosen by proceeding a fixed ratio
A = 0.99 (typically) in the direction to the boundary of the feasible region. In faet, it
is reported that the affine scaling method is comparable or even superior to the simplex
method in some cases. Though polynomial complexity has not yet been proved, the affine
scaling method has the great advantage of its simplicity. It may be numerically robust,
and yield fitness for preconditioning and parallel computation among other properties.
The affine scaling method is among the promising IP methods for LP.

On the other hand theoretically, its global convergence with a practical step-size choice
has long been an open question. There have been many papers which prove global con-
vergence of the affine scaling method under various nondegeneracy assumptions and/or
short step-size choice [3, 8, 11, 14, 20, 38, 58, 59, 57, 62, 63]. See [21] or [23] for a detailed
history of the proof of the affine scaling method up to now. In particular, when the LP
problem is degenerate, a global convergence proof of the affine scaling method becomes
difficult. Many LP problems in the real world however, are tend to be degenerate due
to their artificial backgrounds. Therefore, a convergence proof without nondegeneracy
assumption is important from the practical point of view, and this is the first subject of
this thesis.

In order to start an IP method, we need an initial feasible interior solution. Initializing
an IP method is another general important problem. Two major approach have been
proposed to overcome this latter difficulty. Omne approach is to use an IP method by
introducing artificial variables like so-called Phase I-Phase IT method or Big-M method.
The other and more straight approach is to consider IP methods which allow an infeasible
starting point [4, 6, 7, 14, 15, 16, 17, 27, 31, 54, 55]. A method of this type is called
an infeasible-IP method (for the naming, see the remark at the end of [27]). It is an
interesting question to determine how we can extend the affine scaling method in the
framework of the infeasible-IP method, and that is the second subject of this thesis.

This paper consists of four chapters.



Preface

The first chapter is an introduction in which we give a general framework of this thesis.

In the second chapter, we deal with the long-step affine scaling method, and give an an-
swer to the first problem. The local Karmarkar potential function developed by Tsuchiya
[58] to analyze the global convergence of the affine scaling method plays important role
here. We develop a new inequality to estimate the reduction of the local Karmarkar po-
tential function, and succeed in proving that primal sequence will converge to a relative
interior point of the optimal face, while dual estimates converge to the analytic center of
the optimal face of the dual problem, if we take step-size A < 2/3. The original contents
of this chapter were given in Tsuchiya and Muramatsu [61], but the proof is somewhat
simplified.

In the third chapter, we analyze a long-step variant of Karmarkar’s projective scaling
method {25] by applying the convergence results developed in the first chapter. This
variant is essentially the long-step affine scaling method applied to homogeneous LP
problem, and in practice, it could be expected to work well. By analyzing the local
Karmarkar potential function more precisely, a new polynomiality proof of the projective

scaling method is obtained. The original paper is appeared in Muramatsu and Tsuchiya
(43].

In the fourth chapter, we challenge the second problem and propose an infeasible-IP
method which is an extension of the affine scaling method. The search direction is com-
posed of two affine scaling directions aiming at feasibility and optimality. The combination
1s defined to keep the scaling invariance of the search direction. The method can start
from an arbitrary positive point, and generate a sequence which directly approaches an
optimal solution. Again we prove the global convergence of the method by means of
the local Karmarkar potential function without any kind of nondegeneracy assumption.
When we use an infeasible-IP method, we do not know whether or not the LP problem
has an (interior) feasible solution before the algorithm starts. In this point, infeasible-IP
methods are quite different from feasible IP methods. We investigate the behavior of the
primal and dual sequence in such various cases. The contents of this chapter are the same
as Muramatsu and Tsuchiya [44}.
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(General

A(C)C Band B(D)D A
A+

Feas{P)

Face( F)

Int(A)

Rel-Int(.A)

Notation

means that x is defined by .

is j-th component of vector z.

is component-wise inequalities if x and y are vectors.
implies that at least one inequality is violated.

is maximum component of vector z.

is Euclidean norm (2-norm) of x.

is (component-wise) absolute value of z.

is number of elements of .J if J is a set, and

is complement of .J with respect to {1,...,n}.

is the set {z € R"|x > 0}.

means image of A,

means null space of A.

means rank of A.

is a vector of all 1's of appropriate dimension.

is a vector of all 0’s of appropriate dimension.

is an identity matrix of appropriate size.

is an orthogonal projection operator onto Im{A*) with
respect to Euclidean norm.

denote optimization problems.

means that there exist some constant kg and M such that
|gF| < M| f*| for all k > ky. We sometimes use O(f*) as
a sequence ¢g* having the above property.

mean that A is a {proper) subset of B.

1s the orthogonal complement of linear subspace A.
denotes a feasible region of {P).

denotes a face determined by F of indicated polyhedron.
is a set of strictly positive points of A.

is a set of relative interior points of A.



Subscript expression: For an index set J of {1,...,n}

Notation

7

(1) if h is a vector, then h; is a sub-vector of 4 composed of components corresponding

to J,

(2) if D is a diagonal matrix, then Dy is a |J| x |J| diagonal sub-matrix of D whose
diagonal components are corresponding to J,
(3) if M is an m x n matrix, then My is a sub-matrix of M whose column vectors are

corresponding to .J.

Strictly speaking, M, is doubly defined if M is a matrix if arbitrary m x n matrix M
happens to be diagonal. But the use of the notation never cause confusion because we
always use (2) to the case where D is obviously diagonal.

Chapter II
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is the primal form LP problem to be solved.

is the dual problem of (P).

is the primal sequence.

is the dual sequence.

is an affine scaling direction at z.

is the step-size.

is a lower bound of the step-size.

is an upper bound of the step-size less than 1.

is the limit point of 2*.

is an index set satisfying 2% = 0 and z%. > 0.

is an alternative cost vector. §g- = 0.

is the scaled direction ({2.2.1) on page 30).

is an approximating vector for af, ((2.2.8) on page 31).

is of /(' - 'z™) ((2.3.2) on page 32).

is an approximating vector for 8% ((2.3.3) on page 32).

is the local Karmarkar potential function {(2.2.11) on page 31).
is the difference of the local Karmarpar potential function
at iteration k.

is approximation for A* ({2.3.13) on page 33).

is the LP problem to be solved.

is the dual problem of (A4).

is a homogenized problem from (A).

is the dual problem of (H).

is the primal sequence for {A).

is the primal sequence for {H).

is the step-size.

is an affine scaling direction at z for (H).
is an inhomogeneous constraint vector.
is the optimal face of (A}.

is the optimal face of {H).

is the always-active index set on (H).
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Notation

is the complement of N.

is the Karmarkar potential function.

is the scaled direction devided by the objective
function value ((3.3.5) on page 46).

is the difference of the Karmarpar potential function
at iteration k.

is the primal form LP problem to be solved.

is the dual problem of (F).

is the LP problem to find a feasible solution of {P).

is the dual problem of (F).

is the primal sequence.

is the dual estimate for optimality ((4.5.7) on page 75).
is the dual estimate for feasibility ({4.8.97) on page 99).
is an infeasibility criteria ((4.2.20) on page 62).

is the limit point of 2.

is the limit point of w*.

is an index set satisfying 3% = 0 and 2% > 0.

s B - F.

is defined in (4.2.6) on page 60.

is defined in (4.2.8).

1s an alternative cost vecter. See Proposition 4.6.4 on page 76.
is the search direction ((4.2.6) on page 60).

is the optimality direction ((4.2.4) on page 60).

is the feasibility direction ((4.2.5) on page 60).

is the step-size A\¥/a((X*)~1Azh),

is the local Karmarkar potential function for feasibility
associated with F ((4.4.36) on page 69).

is the local Karmarkar potential function for optimality
associated with E ((4.8.59) on page 93).

is a scaled optimality direction ((4.4.3) on page 65).

is a scaled feasibility direction ((4.4.4) on page 65).

is an approximation for af, {(4.6.9) on page 77).

is an approximation for 8% ((4.4.6) on page 65).

is an approximation for 8%. ((4.4.7) on page 66).

is an approximation for &% ((4.8.11) on page 86).

is an approximation for &% ((4.8.12) on page 86).

are defined on page 81.

is | X&) + ®#. (Sce page 90.)
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CHAPTER 1

Introduction to Linear Programming and
Affine Scaling Method

In this chapter, we give a general framework of this thesis. In the first section, we introduce
lincar programming (LP) problem and related concepts which are indispensable to the
paper. In the second section, we describe the Dikin’s affine scaling method for LI> which
is the origin of this thesis. In the third section, we observe a relation between the affine
scaling method and the Karmarkar’s projective scaling method, which is frequently used
in the thesis. In the fourth section, we show a few properties of a projection operator used
to define the affine scaling method. The readers will also refer to the textbooks [51, 48]
or papers [9, 58] for more complete description.

1. Linear Programming

Let £ be an m dimensional subspace of R*. We call a set which is a parallel trans-
portation of £: {x € RB"|x — a € L} where a € R* an affine space A. A polyhedron P
is an intersection of an affine space A and the positive orthant, namely,

(1.1) P={zcAlz>0}.

If P is bounded, P is called a polyfope. Since we can express a linear space £ in various
ways, we also have as many choice to express a polyhedron P. Among them, the following
two expressions arc well-known; primal form

(1.2) P={reR*" Az = Aa, x>0}
and dual form
(1.3) PZ{:{'ER”|:E=B‘y~a, :rZD}

where A and B are appropriate matrices. A point x € P is called an interior point if it
is strictly positive. {We use this term even if  is not included in P in Chapter IV where
we treat an infeasible interior-point method.) If

(1.4) {z ePlop=10, ap >0}
is nonempty for an index set F, then

(1.5) FE2{r€Plap=0, rp.>0)}

12



L Introduction

is called a face of P determined by F', and F is the always active index set on F. The set
(1.4) is relative interior of F and denoted by Rel-Int F. It is easy to see that F is also a
polyhedron in R™. In particular, P is a face of itself if it is nonempty. The lincar space

(1.6) TE£{de R |d=7(x; - m), x,12€F, T€ER}

is called direction space or tangent space of F. The dimension of face F is equal to that
of its direction space. Therefore, we have in primal form expression

(1.7) dim F = dim Null{ A . },

while in dual form,
(1.8) dim F = dim { Bl.y| Bly =0}

Recalling that the direction space of P 1s the original linear space £ which is m dimen-
sional, we see that at least m — dim F constraints in dual form must be always active on

F. I
(1.9) |F| > m — dim F,

then the face F is called a primal-degenerate face. In particular, if P is primal-degencrate,
then |F| > 0 which implies P does not have an interior point. It is easy to sce that if a
face F is primal-degenerate, then a subface of F determined by an appropriate index set
F' o F 1s also primal-degenerate.

We define the analytic center of F by the optimal solution of

(1.10) minimize ;e logx;
’ subject to @ € Rel-Int F.

If and only if F is a polytope, the optimal solution exists. If 1t exists, it is unique since
the objective function is strictly convex.

A linear programming (LP) problem is an optimization problem on polyhedron whose
objective function 1s linear;

minimize ctx
(1.11) (P) {

subject to & € P.

The polyhedron P is referred to as a feasible region, which is denoted by Feas{P). A point
r € P is called a feasible point or a feasible solution. A feasible solution which attains the
optimal value is called an optimal solution. We note that an LP problem may not have an
optimal solution nor a feasible solution. The whole set of the optimal solution is referred
to as the optimal face, because it is a face. If the objective function value is constant on
a face, then the face is called a dual-degenerate fuce. In particular, the optimal face is a
dual-degenerate face and a vertex is always dual-degenerate.
Now we introduce the two nondegeneracy assumptions which are frequently used in
analysis of affine scaling method or simplex method, but are never made in this paper;
(1} Prunal-nondegeneracy assumption:
Feas{P) does not have a prinmal-degenerate face.
(2) Dual-nondegeneracy assumption:
Feas{P) does not have a dual-degenerate face other thau vertices.

13



1. Introduction

We admit that there is no primal-dual relation between (1) and (2), but we follow the
tradition.

Assume that P has a primal expression {x € R*|Ar = b, =z > 0}. Then we have a
primal form or standard form LP problem;

minimize 'z
112) i}

subject to Ax =b, x> 0.

Given coeflicients (A, b, ¢) of (P}, we can construct another LI problem;

(1.13)

(DP) maximize b'y
subject to s =c— Ay, s> 0.

which is called a dual problem of (P} !. In contrast with the dual problem, we sometimes
call {P) the primal problem. A primal-dual pair of LP problems plays important role in
the theory of LP. In the rest of this section, we observe some of the relations between
them.

First, we introduce the so-called weak duality theorem.

LeMMA 1.1. Ifx € Feas{P) and s € Feas(DP), then a's = c'o —b'y > 0. In particular,
if #'s = 0, then » and s are optimal solutions of (P) and (DP), respectively.

The direct consequence of the weak duality theorem is that if the minimum value of {P)
cannot be attained, then (DP) does not have a feasible solution, and vice versa. The
proof of Lemma 1.1 is easy, thus we omit it.

Next we introduce two fundamental theorems of LP.

THEOREM 1.2 (DUALITY THEOREM). If (P) has an optimal solution, then (D) also
has an optimal solution and the two optimal values coincide.

THEOREM 1.3 (STRICT COMPLEMENTARITY THEOREM). If (P) has an optimal solu-
tion, then there exists a pair of optimal solutions (x,s) for (P) and (DP) which satisfies
strict complementarity condition;

(1.14) ;=0 if and only if 55> 0.

One can find thier proof in any textbooks of L. See, for example, [51]. We remark that
these theorems can be proved as a byproduct of the results of Chapter II (See pages 40).
The following lemma is a variant of the well-known Farkas’ lemma.

LEMMA 1.4, If (P} has an inferior feasible solution, then every dual-degenerate face of
{(DP) 1s bounded.

PrOOF. Assume that an index sct F determines a dual-degenerate face F of Feas{DP):
(1.15) {sER“‘|3:(2ﬁA1y1 sp=0, $pe 20},

and choose an & > 0 such that Az = b. If F 1s not bounded, then therc exists an “infinite”
direction d such that

(1.16) ped #0, And<0, Ald=0 and  bd=0.

"We can also define the dual problem in coordinate-free form, but it exceeds the aim of this chapter.

14



I Introduction

Suppose there exists such d. Then we have
(1.17) bd=i'Ald = il Aled <0
which contradicts the fact that b'd = 0. d

The last lemma we introduce in this section is a characterization of a dual-degenerate
face.

LEMMA 1.5. A Face(F) is dual-degenerate, if and only if there exists an § such that
(1.18) 5=1c— A'y, Gpe =0,
Furthermore, in this case c'x — '3 = §'z = shap for all v € Feas(P) and ¥ € Face(F).

Proor. Assume that Face( F') is dnal-degenerate. Then foralld € T = {d ¢ R"|dp =
0, Aj:'cdpc = 0}, Crd = CtF(‘dj,‘c‘ = 0. Since {dlnc d € T} is NllH(AF'r), Cpe € Im(Aﬂ,,C),
which implies the existence of 5.

On the contrary, assume that such s exists. Choosing a point & € Face(F'), we have for
all » € Feas{P),

ca — k= chap 4 Spo(Tpe — Epe)
= crap+ 9 Apc(tpe — Zpe)
= chap 4+ 9{b— Apxp) — § Apeipe
= (cp — Ap§)'ar — §{ApBpe — )
(1.19) = &t

This implies that for # € Face(F'), ¢'r = ¢'& which means Face(F) is dual-degenerate,
and the latter part of the lemma. O

2. The Affine Scaling Method for Linear Programming

There have been many kinds of affine scaling methods proposed for linear programming
[11, 8, 63, 28] and Convex Quadratic programming [52, 60]. A distinct feature of the affine
scaling methods is that they are invariant under the change of unit of the coordinates which
is called scaling invariance. But not all the methods which is scaling invariant cannot be
called affine scaling method’. In order to obtain the name, they should have something
to do with the Dikin’s original affine scaling method for LP, which we introduce in this
section.

We consider the LP problem (P) in (1.11). We assume

AsSUMPTION 1. {P) has an interior feasible solution x°.

Most interior point methods need this assumption since they produce a sequence of interior
feasible solutions. But it is not casy to find an interior feasible solution in general, and in
Chapter IV, we will remove this assumption and discuss how to extend the affine scaling
method defined here to allow an infeasible starting point. We also make the following
assumption;

AsSUMPTION 2. The objective function value is not constant on the feasible region.

15



1. Introduction

If the objective function value is constant, then every feasible point including the initial
point 2% is optimal, and we can check it easily. Therefore, it is reasonable to make this
assumption.

For an interior feasible point &, we consider a metric matrix G(«) and a steepest descent,
direction with respect to (G(2) which is the optimal solution of

{ minimize (G~ (z)e — d)'G(2) (G (x)e — d)

(21) subject to d& L

where £ is the direction space of P. We define the affine scaling direction d(z) at x as
the opposite direction of the steepest descent direction (steepest ascent direction} when
we choose the metric G(x) to be X~ where X = diag(z}. We have an explicit formula
of the affine scaling direction by using primal form expression for P as

(2.2) d(x) = X{I — Pyx)Xe,

while by dual form,

(23) d(r) = ‘XPBxfl){('.

(This observation means that the so-called primal and dual affine scaling methods are
essentially identical.)

Given an initial feasible solution z°, the affine scaling method produces a sequence of
interior feasible solutions z* : k = 0,1,2,... as follows:

(2.4) abtt = ok k()
where ;% is a real positive number. We note that p* < o({X*)7'd(2*))~! must hold to
keep the next iterate positive. If we choose

)\k

5 ‘=
(2.5) BT (X))

where A* < 1, then the step-size choice is called a long step-size choice and the method
is called a long-step affine scaling method. On the other hand, if we choose
/ik

F =
20 S EURFT)

where AF < 1, then it is called a short step-size choice and the method is a short-step
affine scaling method. In the Dikin’s original affine scaling method, A is taken to be 1.
We note that since ||(X*)"1d(z*)|| > o((X*) 1d(«*)), the next iterate is always feasible
even under a short step-size choice.

The short-step affine scaling method is also derived as follows. For convenicuce, we
consider the primal form. Given an interior feasible point x¥, we definc a mapping A
R} — R by

(2.7) hiz) = (X*) e
Then, {P} in primal form is transformed to
minimize ! X*x
(2.8) {nP) { subject to AX*y =0, x>0,

16



1. Introduction

and z* is mapped to e. This procedure is sometimes called centering or scaling. We con-
sider an unit ellipsoid around e which is inscribed in Feas{h?) and optimize the objective
funetion on it;

mMinimize Xke)ty
29) e e

subject to |[x —el? <1, AXFy=0b.
This optimization problem can he easily solved, and the optimal solution is

(I — Py )X e
(1 - P/L-Y*)JYkC”-

{2.10) X"=e

In the original space, we have
(2.11) = Xy =t - NI = Pagi)Xe
/ (£ - PAxk)XkCH

and x” can be regarded as an approximation for the optimal solution of {P). Therefore,
a X*I — Py ) XFe
11— Paxi) X

is sometimes called a short-step affine scaling direction, and the iteration of a short-step
affine scaling method is;

(2.12) d(z*)

(2.13) 2= b 3R,
We note that a short-step may not be really shorter than a long-step if A > A Butin
practice, their difference is great {See, for example, page 40).

The affine scaling direction also has the third characterization. Again we use the primal
form to discuss it. For given an intcrior feasible solution 2, we define a dual estimate s(z)
be the optimal solution of

(2.14) {mlmmlze | X s||

subject to s = ¢ — Aly.

By calculating Karush-Kuhn-Tucker condition, we have

(2.15) s(x) = X YT — Pay)Xe = X%d(x).
Therefore, the affine scaling direction d{x) can be calculated as
(2.16) d(z) = X?s{x).

We note that s(z) satisfies the equality condition of {DP} and this is why s(x} is called
dual estimate. If s(z) > 0 happens then s(z) is a feasible solution of {DP). In this sense,
the affine scaling method generates not only «* but also implicitly s* = s(«*), which are
candidates for a dual optimal solution. In fact, we will prove that the dual estimates
converges to the analytic center of the optimal face of (DP} under a certain step-size
choice in Chapter II. The sequences z* and s* are called primal and dual sequence,
respectively.

If d(z*) < 0 happens, then the objective function value can be decreased to minus
infinity, hence we terminate the algorithm and find that () does not have the optimal
solution.

17



I. Introduction

Censidering the above situation, we describe the algorithm of a long-step affine scaling
method.

LONG STEP AFFINE SCALING METUHOD
Initialize x° &k .= 0:
while r* does not satisfy a stopping criteria do
begin
Compute s* by using (2.14);
if s* < 0 then return UNBOUNDED endif
dk = (){k)QSk;
g = AR o ((XE) TR,
oR = b gk hs
ki=k+1
end
return 3?‘“;

We will discuss how to determine the step-size A* and the stopping eriteria in Chapter
I1.

3. The Projective Scaling Method as an Affine Scaling Method

The projective scaling method was first proposed by Karmarkar [25] in 1984 and well-
known as the first polynomial time interior point method. In this section, we show
that the projective scaling method is equivalent to an affine scaling method applied to a
homogeneous LP problem. The relation has been well-known {See, for example, Bayer
and Lagarias [9]), and will be very helpful to understand the analysis of this thesis.

We define the projective scaling method. Consider the following LLP problem which is
called Karmarkar canonical form;

. minimize clu
(3.1) { ){

subject to Au=10, eu=1 u>0.
We assume;

(1) An initial interior feasible solution u” > 0 is given.
(2) The optimal value is known to be 0.

Then the projective scaling method produces a sequence of interior feasible solutions
w*  k=0,1,2,... as follows;

(3.2) wb = wb — pkd” (uF)
where
(3.3) dP(u) 2 U(I — Py )Ue — ' U(I — Py )Ucu = d{u) — e'd{u)u,

U £ diag(u), and u% is the step-size which is a positive number. The vector dF (u) is
called the projective scaling direction.
Next we consider

| minimize da
(3.4) (HE) { subject to Axr =10, x>0,

18
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which is a homogencous LP problem. Obviously, (HK) is derived by removing the con-
straint e‘z = 1 from (K}. We apply the affine scaling method (2.4) for (HK) and get a
sequence x¥,

Then we have the following lemma.

LemMMA 3.1. If we put

k
x
3.5 ]
(3.5) i T
then
(3.6) W = gh — (2" pkydt (e

where 8 is a positive valued function.

This lemma means that the conically projected affine scaling direction is equivalent to
the projective scaling direction as a direction. Therefore, the projective scaling method
can be regarded as a kind of affine scaling direction though the step-size choice is changed
nonlinearly.

Proor. Noting that for ( € R,

(3.7) d(Ca) = ct(ab),
we have
(3.8) gt ot — ()

et el (et — ptd (M)

’l"k k ,.!,,k)Qd ,~Ic)
e'a® (1 — pFela®eld(@))
A ()

et e'a*(1 — pretaeld(a®))
kot ke
~ Hew ~ b g by =k
=4 — d(2") — e'd{u’)u
1 — ilf’.i"kf‘rd(u )((( ) ( ) )1
and
elat — pFeld(a®)
(3.9) 1 — pFelzfeld(if) = —
exr
el gt
- (2'!:1”;” > 0
Therefore,
k(o k
(3.10) @ = gk ”;Zil) d® (i),
and this completes the proof. O
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4. On the Projection Operator

We used Payx, a projection operator onto Im{ X A"), to define the affine scaling direction
in (2.2). The projection operator is also used hy most of the IP methods proposed to date
(see [24]). Therefore, we are motivated to show a few lemmas on this projection matrix
in this section.

The first lemma is on the norm of X' P4y X which appears in the affine scaling direc-
tion (2.2).

LEMMA 4.1. For given c € R" and A € R™*", there exists a constant M such that for
any positive diagonal matriz X € R™*",

(4.1) | X Pax Xe|| < M.

The reader may notice that the above lemma implies the boundedness of dual estimates
{See (2.15).). We will follow the proof by Vanderbei and Lagarias [63]. To do that, first
we introduce the following basic theorem on determinant.

THEOREM 4.2 (BINET-CAUTHY THEOREM). For A, B € R™*",

(4.2) det(AB") = Z det A; det By
JeS

where & is the set of index sets of {1,...,n}, each of which has m indices arranged in
tncreasing order.

PRrROOF. Let C = AB*. We use component-wise expression @ ¢;; = p=1 Qiphjp. Since

i
determinant is a linear function of each column, we have

n n
E}J]:l (5111151}')1 T E}Jm:l Al pm bmpm
(4.3) det(C) = det : ' :
n n
):191:1 Qmpy bl;ﬂl e Z}Jm:] Lrrt g b"'i’m
t1p, blpl Tt Qlpy bmpm
— Z det ' .
D1y P
v Qo blm o O, bm-pm
alp] U a'lpm blpl O
= > det| : - |det '
P1ysPm
2] a‘m;‘n e ampm 0 bmpm

If, in summation, there exist indices 4, j such that p; = p;, then that term is zero. For
p € 6, let [p] be a sct of index sets, each of which is a juxtaposition of p. Then for some

20



p € &, we have

I Introduction

Q1p a1y, bip, O
(4.4) > det| b | det
p'elp] amp.'l Qrpt O mpt,
lp, Qip,, b];r)'l O
= > sgn (5,) det [ D | det .
v'e [P] U ™ tim P O bm. p’m
alm (L]pm ‘ bl p'l O
= det : Z sgn (5,) det
Ampy Urnep, Pl O bmp;”
where
D
(4.5) sgn (;),)

takes 1 if p’ becomes p in even nnmber of index changes, and —1 if odd. Now we have

0

blp’l
(4.6) ) P det : =Y P by b
- Sgn pf € . - 581 pf Ipy " * " VUmpl,
P'elp] 0 Dot P'Elp]
blm blpm
=det| :
bmp] te bm Pm
Hence we have
a1 p, p,, b1y, 0
{(4.7) det(C) = > det det
PL. P a-mpl arn,pm O bynpm
alpl alf’m bjpl blpm
= Z det det ,
Pe® - Lo, bmp, bmpm

which completes the proof.

We are ready to prove Lemma 4.1.

Proor or LEMMA 4.1. Without loss of generality, we can assume that A 1s full rank.

Now what we should prove is that

(4.8)

y 2 (AX?A)TTAX e

is bounded for arbitrary X. Let U/ 2 AX, G £ (AX?A)™ = (UUY ! and z £ AX?c.

By using Cramer’s formula, we have

(4.9)

y; = det G[j]/ det G
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where G[j] is a matrix whose j-th column is z and others are the same as G. Now from
Binet-Cauthy theorem, we have

(4.10} det G =det(UU") = > (det Uy)?
JeG
= > (det A;)*(det X;)”
JeB

where & is the set of index sets in Binet-Cauthy’s thcorem. As for G[j], we have the
following component-wise expression;

(4.11) (ali])re = { wo Mg=)

Gpg Otherwise.

Recalling the definition of G and z, we have

(4.12) (aliD = { T apia i g =

Yoy agriay otherwise.

Hence, if we put

(4.13) (elD)ps = { :j;q ()‘glgr\jige,

then we have

(434) (oD = 3 oyl

Again from Binet-Cauthy theorem, we have

(4.15) det G[j] = Z (det X;)* det Ay det(A[5])y,
JEG

thus

> (det X;)* det Ay det(A[7]),

4.16 =2 :
(4.16) Y 3" (det X,)%(det A4,)?

JeB

To evaluate the above amounts, we invoke the following proposition.

ProrosiTion 4.3.

(4.17)

if s; > 0 for all 4.
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The proof of this propositoin is easy, thus we omit it.
Now we have from (4.16)

det{Afj]),
. u:| < ¢ |
(18 il < mex | “qera, |
det A 750
which proves that |y;] is bounded by a constant independent of X. 0

Next we investigate an important property of affine scaling direction.

LEMMA 4.4, For given c € R* and A € R™*", there exists a constant M such that for
any positive diagonal matriv X € R™*",

(4.19) | X (I ~ Pax)Xe|| < M||[(T — Pax)Xe|*.
The proof is essentially due to Tseng and Luo [57).

Proor. In view of (2.1), we note that d(.X) £ X(I — Pyyx)Xc¢ is a solution of

(4.20) { minimize (XZ2¢ —d) X2 X% — d)

subject to  Ad = 0,
and ||{I — Pax)Xc|? = ¢'d(X). Let

- o 14X
4.21 X)) &
We will prove the lemma by contradiction. Suppose contrary that ©(X) is not bounded.
In this case, we can choose a sequence X* such that O(X*) — co. Putting 2% £
|d(X*)|/etd( X*), we can choose an appropriate subsequence k; of &k sucl that

(4.22) z;-“ —oc ifjel,
(4.23) Mo < M <oe ifjel

Obviously the index set I 1s not empty. If j € I9 then there exists a constant M| such
that |d;(X*)| < Mctd(X*) for all k.
Now we consider the following system;

(4.24) ctd = cld( X )
(4.25) Ad =0
(4.26) dye = dye(X*).

This systemn has an obvious solution d{X**), hence there exists a soliution d* such that

(4.27) [ || < Ma(ctd(X ) + || dp-(X5)||) < Ma(1 + [I°| M)t d( X ™).

Therefore, ||d*| < |d;(X*)| for all j € I and sufficiently large & This implics that
(4.28) (dFOEX2(dM) < (d(X*)) X 2(d( X))
which produces, combined with (4.24),

(4.29) (X2 — d* ) X4 X% — d") < (X?c— d(X*)' X 2( X2 — d(X™)).
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This contradicts the assumption that d(X*') is the optimal solution of (4.20). O

The next lemma is on the property of I — Pyx, the projection operator onto Null{ AX'),
when some diagonal components of X" tend to 0. This is essentially equivalent to Lemma
4.1 of Tsuchiya [58]. Let 3%, 3p and Ape be the optimal solutions of the following opti-
mization problems respectively:

-, | minimize |8 — vl
(4.30) {¥) { subject to AX/3 =0,

i minimize  ||3r — yp||?
(431) (}F> { subje(‘,t to 44F‘X’pﬁp € Illl(Apc),
_ minimize  ||8pc — ypel|?
(4.32) {Ype) { subject to Ape Xpefpe = 0,

where y € RY, A € RP*? and X € R9*7 which is a positive diagonal matrix. Then, we
have the following lemma;

LEMMA 4.5 (PROJECTION DECOMPOSITION LEMMA). There exists some constants M,
My, My and M, which is independent of X and y, and satisfy:

(4.33) 185~ el < MUXEPIX el P lyrll + Mol XX ey,
(4.34) 185~ Brell < Myl XpHIXp | lyell + Mall X e 21X el 2l ye- |-

It may be worth noting that when ¥ = Xe¢, 5* 1s the affine scaling direction in the scaled
space. In fact, the above lemma will be applied when X = X* = diag(2*) and 2% — 2.
In that case, Lemma 4.5 gives us a good approximation of 3* if [|(X5)7[|| X %] — 0. For
further explanation and motivation, see page 30, for example. We also point out that the
orthogonal complements of

(4.35) Ve 2 {8p € R ApXpfr € Tm(Ape) }
and

(4.36) Vie 2{ Bpe € RN Ape Xpefpe =0}

are

(4.37) Vi ={pre R |8y =XpAly, Aby=0}
and

(4.38) Vi ={8p € REFV Bpe = Xpe ALy 1,

respectively.
To prove the lemma, we show several lemmas.

LEMMA 4.6. If ype = 0, then the opltimal solution of

N - )
4. v minimize  ||Bp — Bp||* + || Fpe!
(4.39) () { subject to ApXpSp + Ap-Xpe3pe = 0

2

is (35, O ).
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Proor. It is easy to see that
(4.40) 136~ Bel* = 13r = yrll* = 18F — yell* — 2008 = 3)' (B — up).

Here, the last term is always 0 since fp ~ B € Yp and Gp — yr € Vg. Then (Y)) is
equivalent to:

. minimize  ||8r — yr||? + |35 |2
(4.41) (¥2) { subject to  ApXpfp + Ap-Xp-Ope = 0,
which is identical to (¥). O

COROLLARY 4.7. If ype =0, then (5} — _ﬁ’p,ﬁ}f ) is the optimal solution of

minimize || 8r||* + || Fp-|)?
o {

4.42 . .
( ) subject to ApXpfr+ Ape Xpflpe = —ApXpip.

LEMMA 4.8, If ypo =0, then

(4.43) 1Bpll < MIXENIXEIIBEN < MIXEHIX ey
PrROOF. It is easy to see that J}. is the optimal solution of
. minimize  ||Fpc|?
(444) (}1>{ Sllbj(j(‘,t to AF'cXpr,(’ip'(: = —-A.F){'Fﬁ;'.
On the other hand, there exists a solution o of Apcax = —ApXpiy such that ||o/|| <
M| XF|l|| 35 holds. If we set 3. £ X7'o!, then we have
(4.45) [1B3ll < Bl = 1 X < MUXENX N85
Recalling that | 35| < [|yr|l, we obtain the lemma. O
LEMMA 4.9, If yp- =0, then
(4.46) 187 = el < MIX R PIX R[]y
ProorF. Consider the following linear equation
(4.47) Ape Xpe(Bpe — B ) = —ApXp(fr — B5).

We see that this system has a solution in consideration of the definition of 3* and ﬁp
Hence there exists a solution p. of (4.47) such that

(4.48) |5p — B3
Then, Lemma 4.8, (4.48) and the fact that {|3p — 33l < 2|lyp|l imply that
(4.49) [1Brelt < MNXENNX pllllwell.

On the other hand, noting that (4.47) is actually

< MIXE X eSr - 3311

(4.50) ApXpefpe = —ApXpfp,
which implies that (0, 3p.) is feasible for (¥3). So we have

(4.51) 185 = Brll* + |8} 2
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Now we see
(4.52)
|85 = BplP < 13ee I~ 11511

= (B = Bp ) (Bre + Bie)
< | Bpe — Bre |||l Bre + By
< MIX X eI = B7hllBe- + B
< MM\ XRHPIXEI 30 = Billlye |

Wher(? in the last inequality, we use Lemma 4.8 and (4.49). Then dividing the both sides

by ||Br — 35|, we obtain the lemma. O

{Use (1.48))

LemMA 4.10. If yp = 0, then the optimal solution of

- -y ) minimize | Bpe — [3;”2
(4.53) (¥5) { subject to Ap-XpefFpe = —Ap Xpir

5 Ffe.

PROOT. Since 3« is the optimal solution of {Yp:), by sctting up the Lagrangian, we
sCe

(4.54) Bpe — ype — Xpe AL d =0

holds for some A. On the other hand, J5. satisfies

(4.55) Bre —ype — Xpe A N =0

for some A since G5 is the optimal solution of

(450 o e, Wl

Comparing (4.54) and (4.55), we have

(4.57) B = Bpe = Xpe Al N = A) =0

which is the Lagrangian equation for (¥;). Now the lemma readily follows since J}. is

feasible for (¥73). O
LEMMA 4.11. If yp = 0, then

(4.58) 1351 < MIXFANX Py

PROOF. Let P be the projection matrix onto Null(AX), and decompose it correspond-
ing to the index sets F' and F°, namely,

_ Pa Pb
(4.59) pP= (Pg Pﬂ)

where P, € RIFIXIFI p e RIFIXET and P, € R Obviousty, 3* = Py. If ype = 0,
then from Lemma 4.8,

(4.60)

= | Piyr| < M| X5

e

||X:«‘|| ||‘.UF||
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holds for any yp. This implies | Pf|| < M|| X7/
(4.61) I18E = | oy

and we completes the proof.

LEMMA 4.12. If yp = 0, then

| Xg||. So, if yr = 0, then
< MIXENX Ny

(4.62) 185 = Brell < MIXEHPIX el lyee]-
ProoF. It is easy to see that from Lemma 4.10,
(4.63) 155 = Al < MIXEIINPISFL-

Now the lemma easily follows from Lemima 4.11.
Now we have all to prove the Projection Decomposition Lemma.
Proor orF LEMMA 4.5. Since

8e\ _ Yr 0
() =r () e ()

(4.64)

1. Introduction

where P is the projection operator onto Null{ AX), the relation (4.33) follows from Lemma

4.9 and Lemma 4.11, whereas (4.34) from Lemma 4.8 and Lemma 4.12.
In the last of this section, we show one more proposition.
ProPosSITION 4.13. If yp. =0, then

(4.65) 0 < [18rll = 1187 < MIX 121Xl Pllyel

O

Proor. Lemma 4.6 implies that 3* is a projection of (BF, (}). Hence the left inequality

readily follows. Further, we have

(4.66) 13°11% = 3.3;.
Thus we see that
(4.67) IBFI1P = 18117 = (136l — 187 I3 + 1371
= 3p(Be = A7) < 18rI11Br — A
< MyrlllBell| X PI1X A
Now we have
3 * r— ‘ - P BF”
(4.68) 18l = 181 < Mlyelll X5 PIXel e
i3rl + 1137l
< MlypllIX AP,

which completes the proof.
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CHAPTER 1II

Global Convergence of
a Long-Step Affine Scaling Method

1. Introduction

In this chapter, we deal with a long-step affine scaling method for LP defined in Scction
1.2 applied to the primal form LP problem {P);

minimize c'x
)

(1.1) subject to Ax =b, x>0,

where ¢c,x € R", b € '™ and A € R™*". We assume Asssumption [-1 and Asssumption I-
2 in Section I-2, but do not make any kind of nondegeneracy assumption nor full rankness
of A.

The main theorem proved in this chapter is as follows.

TueorEM 1.1. Let us apply the long-step affine scaling method on page 18 with step-
size

(1.2) 0 < Ain < A <2/3

where Ay 18 a constant independent of iteration number k. Suppose that x* is an infinite
sequence and c'ax® is bounded below. Then the primal sequence x* converges to a relative
interior point of the optimal face of {P), while the dual sequence s* converges to the
analytic center of the optimal face of (DP).

This chapter is devoted to the proof of Theorem 1.1, which is substantially the same
as that of Tsuchiya and Muratatsu [61]. While the dual form LP problem was treated
in [61], here we deal with the primal form LP problem (P). But we have already scen
Section I-2 that there is essentially no difference between the primal and the dual affine
scaling methods.

To start the proof, we introduce the following lemma. which was first proved by Tseng
and Luo [537].

LemMa 1.2, If we choose the step-size as

(13) 0< )\min S Ak S Ammt < 17

28



II. Long-Step Affine Scaling Method

and if c¢tx® is bounded below, then the primal sequence x* converges to a point ¥ which

18 a relative interior point of a dual-degenerate face satisfying

('t.‘l"-k _ Ctmoc
(1.4) ——— > 8 >0
[l
where E determines a dual-degenerate face and & is a positive constant.

We note that the step-size choice (1.3) covers (1.2).

Proor. Since

e oo ke .‘ A\ (.t(l(:}[}k)
(15) <X ' ,CZ}] (X))

> Td(2")|1?
Z__: ) (@)

(b))’
we have
= R X (b))
1.6 AR
o > R <
Now we see that
oo oa k
7 LR L — G | d{=®)|l
&) 5";0 AZ:O o({(X*)~td(: "“))
o0 F 1 2
< Z )\"'AI] (X)) dl H (Use Lemma 1.4.4)

o o((xXh) )
< ¢ (Use (1.6)).

Therefore, 2* converges. Let z be the limit point and F be the index sct such that

x> =01f j € E and 2* > 0if j € £ Again from (1.6), we note that

fore) ‘Xk 2 fos)
(1.8) m>§ﬁgag )” > 3 X))
thus
(1.9) I(X*)7Hd(=")| — .

In view of (1.2.15), (1.9) produces
(1.10) | X*s*|| — 0.

Due to Lemma 1.4.1, the dual estimate s* is bounded, hence has an accumulation point
s*. Now from (1.10), we have

(1.11) $h =0,

which implies, by Lemma 1.1.5, that the face determined by E is dual-degenerate.
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II. Long-Step Affine Scaling Method

Finally, we see that

(1.12) lahll < Jla* - 2| < ZHT“” &'
Ilf’ x )H
< )\‘
Z D)
cd(zh)
<3 MM
Z Lo((XN) (")
= ]L/Il((: 2k — efp™),
which completes the proof. O

The rest of this chapter is organized as follows. In Section 2, we investigate asymptotic
property of the scaled direction (X*)~'¢* and introduce the local Karmarkar potential
function associated with Face( £). In Section 3, we make a few preliminary observation on
the primal sequence. In Section 4, we prove a key inequality which will be used to estimate
the difference of the potential function. In Section 5, we prove that 2> is a relative interior
point of the optimal face, while in Section 6, we prove the global convergenee of the dual
sequence.

2. Asymptotic Direction

We call
(2.1) ok & XKyl gk
a scaled direction. Due to Lemma 1.1.5, we can choose some 3 such that
(2.2) s=c— Ay, dpe=0,
and that
(2.3) o —-cdx® =§rp  forall z € Feas(P).

‘e have the following lemma.
LEMMA 2.1. o is the optimal solution of

{ minimize |jo — X*§|?

(2.4) subject to AX*a = 0.

Proor. Since
(2.5) Xfe— X*5 = XAty € Im(XFAY,

the lemma readily follows if we recall of is the projection of A*¢ onto Null( AXF). ]

Now imagine that z* is converging to ™. In the last stage of the convergence, E°-

components of z* is relatively much greater than E-components. In the light of (2.1), we
may suppose that the incqualify constraints g > 0 in (P) lLiave very little effects on o,
If we completely ignore the inequality constraints, we get

oy
n ] minimize §Lxp
(2.6) () { subject to Av =b, xp > 0.
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Noting that Ag.2%. = b, we can regard (P') as the following homogeneous LP problem;

it ol
o minimize  §hrgp
(2.7) {Hp) { subject to Agxy € In(Ag-), xg > 0.

Let ¢4 be the scaled affine scaling direction for (Hg) which is the optimal solution of

(2.8)

winimize |lag — XE3g(|?
subject to ap € Lg,

where L5 £ {ap € RE| ApXkap € Im(Ag)}. Then we have the following lemma by
using Projection Decomposition Lemma (Lemma 1.4.5).

LevmMa 2.2. There exist some constants M, and M, such that

(2.9) lok = Gl < MUNEW |51 < Ml sefll XN
(2.10) ok || < M| XE6%] < Mol 3]l X &2
PROOF. From ( “&E” < ”Xk f” ||Y}3||||§E|| follows. Duc to Lemma 2.1, we

can apply Lemma 1.4. by substituting ¥ = X*5. Noting that the optimal solution of
{Yre) is obviously 0 since §pe = 0, and that ||(X£.)7Y| is bounded, we obtain the lemma
immediately. [

The above lemma means that (&4,,0) is a good approximation for o if k is sufficiently
large. Recall that an affine scaling method applied to the homogencous LP problem (Hp)
1s essentially Karmarkar’s projective scaling method (See Section 1-3 ). Therefore, we
may cxpect that the behavior of #%, in large & can be analyzed by using the Karmarkar
potential function for (Hg);

(2.11) Iplag) £ |E|log 8paly, — 3 log 2},
ick
= |E|log(c'z® — c'a™) — 3 log T’;,
JEE

which is called the local Karmarkar potential function associated with F. In fact, this
function plays very important role to prove the main theorem.
Next we prove a few properties of &%,

LEMMA 2.3.
(2.12) spX gk = |,
(2.13) elaky = §hak.

Proor. If we denote by #» an orthogonal projection operator onto £, then
(2.14) bEXEC‘E - ""F»X.EWXE E= “WXF gF‘H2 = ”dE”Z
follows. Further, we have
k

{2.15) e'él = 't Xhip = ' Xhs), = §ak

since e € Lg. O
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3. Property of the Primal Sequence
We see some properties of the primal sequence in this section when we take the step-size
(31) 0 < /\min < )\k < Ama,x <1,

which includes the step-size choice of the main theorem.
We first introduce two new variables;

aF aF
3.2 Bt = ,
(32) ‘ sab elat — )
. P — -

gak b - =y
From Lemma 1.2 and Lemma 2.2, we see that

ok — kil _ MilIXEI 13k

(3.4) 18 = Bkl = = < — & < Mif|xg)?
ks E‘LE "’E"I:E
and
o Negell Myl XE[PL el "
(3.5) 3Rl = 5 < ——=5= " < M||XE].
SeTE SELE

Then we have the following lemma.

LEMMA 3.1,
k41 nk
x 3"
3.6 SR [ N N T W ()
(3.6) (;” o(3%)

forallj=1,...,n, and
gkl 409 akn2
cHa 1 ):1_)\,C el >80,

t(a® — ™) o(5%)

(3.7)

for a positive constant 9.
Note that o(3*) > 0 because otherwisc, the objective function value goes to —cc.

Proor. We have

k+1 k 2k
'y i3
(3.8) A R Y S S P
ko ola™) (%)
Zl_AkzlvAmax>0
which proves (3.6).
Since
(3.9) dd¥ = X — Pyyn) XFe = ||of)?,
we have
(3 10) Ct(xk:+l . 3300) L /\k”ak‘”'z . )\k ”81‘“2
' ok — =y a® — 2®)o(a¥) a(6%)
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which proves the first equality of {3.7). To prove the inequality, we also have

(3.11) (2P — %) = ghahH
> M||z5H (Use Lemma 1.2)
> M(1— Al (Use (3.6))
gtk
2 ﬁ/f(l - )\max)*%—E
BT
M(1 - )\max )
= ——( - )((‘t.'r;l” — cla™)
skl
and this completes the proof. O

Now we can calculate the difference of the local Karmarkar potential function defined
in (2.11} at the k-th iteration which is

(3.12) AF 2 fp(ai™) - fe(oh)
k2 gk
s {1 -2 (5h ) - 5 {1 -2

due to Lemma 3.1. To make a bound of A* we first recall (Hp). Given a point 2k, €
Feas(Hg), if we take a step A* of the way to the boundary of Feas{Hy) and if fp is
well-defined on the destination @4, then the difference of the local Karmarkar potential
function can be written as

(3.13)
Ak = fL(T’;") - fE(Iﬂ?IE)
Aeat Xk gk, pRrt
:|E|log{1 — s f}—Zlog{l— " }

- J(CYJ,F:)'5;:$E JER o(é&)
AR|| 3512 AR B
:|E|10g{1——”~£—|-|»~} —Zlog{lﬂ (/] (Use (2.12)).

G(Bﬁs) jEE U(»‘-?’fr})

We expect that A* is a good approximation for A*. In general, fg is not well-defined on
Tp. We however, prove the following lemma.

LEMMA 3.2. There exist a number K and a positive constant & such that fork > K

kN ak2
UL

3.14 — b >0,

(3.14) (k) =

and

(3.15) 3 AF - Ak < 0.
k> i

PRrROOF. In view of (3.7), if we can prove
s
o) o)
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then (3.14) readily follows. To prove (3.16), we first observe that ||3%|| is bounded. In
fact, due to (3.7),

(3.17) 1—2A -||9*=||>1—,\’~‘M>0
N min ||/ . O'(ﬁk)
hence we have
(3.18) 18°] < (i)™
In view of (3.4), @i is also bounded.
Then by using {3.4) and (3.5), we have
(3.19) 357 = USEI = BN — 13512 + 135"

<185 + 8% ?

< M| XE|2.

135 — S|l + 1135

On the other hand, from

L~k
(3.20) el = ZOE = (Use (2.13)),
Sprp
3.21 o(35) > 1/|E
E

follows. This implies that there exists a number K| such that o(8%) is greater than a
positive constant § if & > K7, while o(8%.) < & due to (3.5). Hence, there exist a number

K and a constant M5 such that for & > K
(3.22) |0(3%) — a(BR)] = o (B5) — o(B5)] < Ma|| XE|I2.

In consideration of (3.21), we have for k > K,

23y WP WP WBHIP+OUXER) (8IP
a8 o(BF) oA+ OUNE®)  a(BE)

— “B;“E‘Hz(l +O(I|X—k‘“‘2)) +O(”X}c“2) _ “Bi”z

U(BE) E E 0_(5,;}%)

= (X
Since || X'§|| — 0, we have (3.16) which proves (3.14). Similarly, we easily have for j € E,

5
a(B")

(3.24) | -5 | = O(IXEN)
‘ o(ppy T
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From (3.12) and (3.13), we have for k > K,

(3.25)

. 3°)|? AR5
AP —AF = |E]o {1—/\’“”’_ }mElor ] — = 2El

3r A 3E
— Zl()g{lm)\k—J‘}—Zlog R .
(jEE (8% JEE o(/1%)

Now we 1nvoke the following proposition.

PROPOSITION 3.3. If two real sequences {p*} and {q*} satisfy

(3.26) 1—p*F > 6 >0,

(3.27) 1 —¢* > é >0,

(3.28) " — " =0,

then,

(3.29) [tog(1 — p¥) = log(1 — ¢")| = O(p" — ¢*|).

In view of Lemma 3.1, (3.14), (3.23), and (3.24), we apply Proposition 3.3 to (3.25) to
have

(3.30) |AF — A¥| = Of|| X %))

for k > K. Note that from (3.7),
(3.31) Z (c'2* — ™) < o0

follows. Then we see from Lemma 1.2,

(3.32) oA =AM < My > laklP < My Y (cfaF - ) < o,
k=K k=f k=R
which proves (3.15). This completes the proof. 0

Now, by using the same K in Lemma 3.2, we see for k > K

N k—1
(3.33) Fe(ah) = Feleg)+ 3 A
=K
~ lcjl R k=1
= fe(zp)+ Y. A" = ST(AF - A%,
=K =k

Lemma 3.2 gives us a bound for }:f;l;_{ﬁ.k — A*). Now our next target is to bound Ak,
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4. The Key Inequality
In this section, we show an inequality used for bounding A*. This tnequality is a source

of the number 2/3 of the maximal step-size.

LEMMA 4.1, Let

(4.1) H(3,0) % rlog(1 ~ Bl 3|PP) — > log(1 — 3;)
i=l1
and
- rY .~ € v
4.2 Tr 871:/ £ =0 == e - teu &
(4.2) (5,)2 " T,n{ ! Q(M}U(ﬁ))}

which are well-defined on the set

(4.3) Q& {B ) eRM =1, DAL <1, 0<io(d)<1}.
Then, H, is bounded as follows over Q.

(4.4) H.(3,5) <T,(3,7).

— =~

Furthermore, if

(4.5) (B.7) € 2 {(5,0) € Y|oB <2/3},
then we have

(4.6) T,(3,7) <0

where To{3,0) = 0 holds if and only if 3 = efr.

To prove the above lemma, we introduce the following inequality for summation of
logarithm.

ProrosiTioN 4.2. Let h be a vector in R" such that h < ¢. Then,

[

(4.7) - T

log(l —h;) < e'h+

i=1
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Proor.
- h: o hd
i=] ith;>—a(h)
+ Z log{1 — h;)
ith; < —o(h)
2i* R
> Y, (R =)
:hy>—a(h) 2 2
+ 0y log(l—hy)
ithy<—co(h)
> Y (hom gt )
B ithi>—alh) I 2(1 - |h!|)
+ > (~h hi )
th<—o(h) l 2(1 —a(h))
2
R
2{1 —o(h))
and this completes the proof. 0

Now we prove Lemma, 4.1,

Proor oF LEMMA 4.1. We introduce a new variable v £ 3 — e/r. Then we have

(4.9) 1= =12 =y, =Bl =1- 2= i
Putting
(4.10) oo "

r—U

and taking note that 0 < < 2r/3 in € (this follows from 3'e = 1), we obtain

(4.11) HL(3,5) = rlog(1 — 8]l7]12) = 3 log(1 — 67:).
i=1

3

It is easy to see that

(412) o(r) = o(f) - =

and

(4.13) e = 0.

The following inequality is also well-known:

(4.14) log(l —6) < —é for any ¢ < 1.

37
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Now we use Proposition 4.2 with the above relations to produce

(4.15) H,(3,0) = rlog(1 = #l|7]*) — 3 log(1 — 6)
i=1
il ol
< —rd|yl° + 21— 00(7))
¢
= 0|ly|*(~ )

T2 ()

provided that 6o () < I and 8||7]|> < 1. These conditions are always satisfied on Qg sinee

{4.16) fo(v) <1l Tf/ﬁ (J(;’}) - —1—) <1

-1 T

r—U

<:>TU(/§)—1< -
U

& ra(B) < r/v

e 1—wo(3) >0

and
- 2 v ane E
(4.17) ollvl° <1 e p— (|!,j|| 7,) <1
srlf)r—1< =Y
v
s 181F < 1/
(4.18) & 1—]|3]% > 0.

Substituting the definition of - and # into the rightmost hand side of (4.15) we obtain

1
TRy

Note that o(3) > 1/r follows from '3 = 1. Thercfore, we have

?

(4.19) H,(3,7) < - v ) = To(3, ).

v 2/(30(3)) 1
4.20 ~7‘+Wm+_~<——r+————<ﬁr+—~<0
420 2(1—vo(g)) ~ 2(1-2/3) ~ )
which, combined with (4.19), proves (4.6). Since o(3) = 1/r occurs if and only if 3 = efr,
the last statement is also obvious. 0

5. Global Convergence of the Primal Sequence

Now we return to ‘rho analysis of the sequence. Recall that 1 — \||35]]2/o(3%) > 0 for
k> K. If we set % £ /\"/0(8" then we have for k > K

(5.1) A¥ = |E|log(1 — ¥ 351 — 3 log(1 = Hpf B, %)

JEE
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and

(5.2) e'Bh =1
(5.3) P8I < 1
(5.4) DEa(h) = Ak,

Hence, if A" satisfies the step-size choice (1.3), then ([3}},13*’) € {2y, and if (1.2), then
(8%, 2%) € ;. We deal with the case of step-size (1.2) from now on. We apply Lemma
4.1 to get

(5.5) A* < Tip( 9, %) < 0.

Taking limit of (3.33) in consideration of (3.15) and (5.5), we see that fp{a%) is bounded
above. Furthermore, we have the following lemma;

LEMMA 5.1. fe(x%) is bounded below throughout the iteration.

Proor. By using the well-known arithmetic and geometric mean, we have

(c'zh — olem)lF > |E|(C£-‘7’k — ¢'z™)
II .'.r,;'-’ - ||*'I;?||

JE
> (V]E|SIF > 0 (Use Lemma 1.2),

1]

(5.6) exp fl.;(:rr%) =
=3

hence, fr(a%) is bounded below, |
Now we are ready to prove the following theorem.

THEOREM 5.2. The primal sequence converges to a relative interior point of the optimal
face of the primal problem.

Proor. In view of (3.33), {3.14), (5.5} and the above lemma, AF st converge to 0.
Hence,

N e
5.7 3y —

( ) Pp |E’

follows from Lemma 4.1. This implies that there exists a number K* such that &% > 0
holds for k£ > K™,

Choose & > K~ and let 3% = (X%)"'a% > 0. Recalling the remark after Lemma 1.4.5,
we see that

(5.8) Xp(3p — 8p) € L= {ap € R |ap = XpALy, Al.y=0}.
Hence, there exists an appropriate §* such that
(5.9) i —sp = ALY, AL =0,

£ E el

and we have

(5.10) (%)

I

2 Uk n— AL — R
(SE +0AEg) _ (cE AEU(y g )) e A=),
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which means that (3%, 0) satisfies the equality condition of {DP). Therefore, (5%, 0) and
% = (0, 2% ) satisfy the strict complementarity condition, and Face(E) is the optimal
face of {P). 1

This proves the global convergence of the primal sequence. We note that we have got
the strict complementarity pair ° and (5%,0) in the above. Hence, the duality theoren
(Theorem 1.1.2) and the strict complementarity theorem (Theorem 1.1.3) are now proved
if the primal problem has an interior feasible solution. It is also casy to prove them under
the case where no interior feasible solution exists, if one consider a Phase-I problem to
find an feasible solution.

The following corollary may be interesting from practical viewpoint.

COROLLARY 5.3. Under the same assumption of Theorem 1.1, the asymptotic reduction
rate of c'a® — clx™® is 1 — Ak

Proor. From (3.4), (3.5) and (5.7), we have

1541 _ I8EI” + OUIXEN®)
a(8%)  o(35) + O(| XE)

Therefore, from Lemma 3.7,

(5.11)

(J£($k:+1 _ .Eoo) ”bwLHZ
5.12 N Y 1)

(5.12) Ha® — %) a(3%) -
follows. 0
Furthermore, we see that

& k

- B
o) I - Iy =

o(a®) a(8Y)  ole/|E])

which implies that the step length of the short step affine scaling method is about 1/4/|E|
of that of the long-step method asymptotically.

6. Global Convergence of the Dual Sequence
Next we prove the global convergence of the dual sequence s*.

First, we characterize the analytic center of the optimal face of (D).

LeMMA 6.1. The analytic center of the optimal face of (DP) is the unique solution of
the following system;

(61) AESFI(’ € Im(A_p;c),
(6.2) Sgp + /-ﬁuy = Cy,
(6.3) Ay =cpe, sge=0

where Si £ diag(sg).
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Proor. Recall that the analytic center is the optimal solution of

(6.4) minimize  — ¥ .. plogs;
' subject to s=c¢— A"y, s> 0, sp =0,

The Karush-Kuhn-Tucker conditions for the above optimization problem are {6.1), (6.2)
and (6.3). The existence and uniqueness of the solution follow from Asssumption I-1 and
Lemma 1.1.4. I

Now we prove the latter part of the main theorem Theorem 1.1 which is described
below.

THEOREM 6.2. The dual sequence converges to the analytic center of the optimal face
of (DP).

Proor. From (2.10),
(6.5) e

= l(XE) o

< 1\4”){5”2 — 0.

Hence, (6.3} is obvious. Now we analyze s%.

We can choose 55 > 0 since we have already got strict complementarity solutions in
Section 5. We put for j € F,

&
(6.6) oL T—J
’ 'g‘tﬁﬂ-’jzré
Then we have
(6.7) jlé'[Hp;‘-' = exp(—felzh)

which is bounded above and below by positive constants. Since pf; itself 1s bounded above
by a positive constant 1/(min;eg §;), pf,f is also bounded below. We can casily see that

5j” = pj-“)‘lﬁf for j € E, hence s% is also bounded and has a strictly positive accumulation
point s%. Let &, be the subsequence convergent to s},. Then,

ki y— ke f gkey—1 x “y—
(6.8) (57"} ! =p; {37 = piE] = (s7) !

On the other hand, we have

R ok
& 4’4E-LE b -—_ A].;C.EEC

6.9 App” = = .
.4 e ‘ofoc - K:kr
= Lk (lj - Zi) € Im{Ag.),
§pry
hence,
{6.10) App® € Im{Ag.),

which 1mplies that every accumulation point s satisfles (6.1). Since it is obvious that s%
satisfies (6.2), s = (s},0) is a solution of (6.1}, (6.2) and (6.3). As was shown in Lemma
6.1, the system (6.1), {6.2) and (6.3) has the unique solution hence, every accumulation
point of s* must be identical. Therefore, s* converges to {s%,0) which is the analytic
center of the optimal face of (DP). 0
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This completes the proof of Theorem 1.1.
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CHAPTER III

Convergence Analysis of
a Projective Scaling Method

1. Introduction

In this chapter. we apply the results of Chapter II to obtain new convergence results on a
long-step variant of the projective scaling method. Let us consider the lincar programming
problem:

minimize  ¢u
(1-1) (4) { subject to Au =10, ¢'u=1, u>0,

where g.c,u € R" and A € R™*". We make the following assumptions.
ASSUMPTION 1. An interior feasible solution u® is known.
AssuMPTION 2. rank(A4)=m andn >3
ASSUMPTION 3. g > 0 but g # 0,
ASSUMPTION 4. The problem (A) has an optimal solution whose optimal value is 0.

It is well-known that (A) contains Karmarkar’s canonical form and the standard form
LP problems. {A} has a close relation to the homogeneous problem

minimize 'z
(1.2) (H) { subject to Ax =0, z > 0,

obtained by removing the inhomogeneous equality constraint g‘u = 1. Recalling that
Section I-3 . we define the algorithm which gencrates the iterates by a conical projection
from the ones obtained by applying the long-step affine scaling method for (H) that
moves with a fixed ratio A upto 2/3 of the way towards the boundary.

Specifically we will show that this variant has an Q(nL) and O(n’L) iteration poly-
nomial complexity according to A < 2/3 and A = 2/3, respectively, gencrating sequences
of primal iterates and dual estimates which converge to a relative interior point of the
optimal face of (4) and the analytic center of the dual optimal face, respectively. The
asymptotic reduction rate of the objective function is exactly 1 — A. We will also point
out that a standard assumption of the boundedness of the optimal set, which usually is
assumed in most of the literatures dealing with the projective scaling algorithm and is
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III. Projective Scaling Method

regarded as inevitable due to its convergence proof, is not necessary to ensurc the global
convergence.

The proof of polynomiality in this chapter seems to contain some novelty in that it
is based on the homogencous affine scaling direction, whicl is different from the search
direction of Karmarkar’s original algorithm when viewed as a search direction for (H).
Lemma 1.3.1 however, implies that these two directions coincide when projected hack to
the original problem (A}. The step-size is parameterized in terms of the ratio towards the
boundary of the feasible region of {H), and this makes a remarkable contrast with the
existing polynomiality proofs where the unit displacement vector is taken on the surface
of the unit eilipsoid in scaled space. The proof affords a guaranteed worst-case reduction
—0.42 in the potential function when n is sufficiently large by taking the step-size A = 0.54,
which is 58% of the tight bound on the guaranteed worst-case reduction when we perform
cxact line search obtained by Anstreicher [5] and McDiarmid [34]. As will be shown in
Section 5, this proof can be combined with Todd and Burrell's lower bound updating
procedure [56] to relax Assumption 4 of the optimal value being zero without sacrificing
complexity. Convergence of the dual estimates and asymptotic convergence rate of the
objective function 1 — A(> 1/3) seem also new to projective scaling methods.

2. Algorithm

We introduce the algorithm. Given an interior feasible solution = of (H), the affine
scaling direction d(x) is defined as

(2.1) d{z) = X(I ~ Pyx)Xc.

Assume that a feasible solution «” > 0 of {A4) is given, and let 2% = u°. Obviously, 2% is a
feasible solution of (H) . Let A be a constant between 0 and 1. With this initialization, we
apply the long-step affine scaling method for (H) to generate a sequence {z*} of interior
feasible solutions, and obtain a sequence {u*} of interior feasible solutions of (4) from
{2*} by conical projection:

.Tk+l — .Ek Y
(2.2) i

uk*l =
=

Taking step-size A means that we move a fixed fraction A of the way toward the boundary
of the feasible region of (H); thus the next iterates ', »**! are interior points of (H)
and (A) respectively, if 0 < A < 1.

In the remaining part of this chapter, we use Sy and Sy to denote the optimal faces of
(A) and (H), respectively. Further, we denote by N the index set for the always-active
constraints on Sy, and by B its complement, respectively. Let N and B’ be the index
sets for the always-active constraints on Sy and its complement, respectively. We have
the following propositions.

ProrosiTion 2.1. If z is e relative interior point of Sy, then ¢tx > 0.
PROOF. By contradiction, assume that ¢’z = 0. Since vy > 0 and 2y = 0, we have

(2.3) g'x = ghrp =0,
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which implies

(2.4) gp =0,

Hence, we have, for any optimal point &' of (H),

(2.5) g'r' = ghaly = 0.

This means that {A4) has no optimal solution, contradicting the Assumption 4. O

ProrosiTiON 2.2. We have N =N and B = B’

PROOF. Since an optimal solution of (A} is also that of (H)}, N 5 N. To prove
N D N, assume by contradiction that there exists some index j € N’ which is not
contained in N.

Let 2 be a relative interior point of Sg. Due to Proposition 2.1, « £ x/¢'x is a solution
of (A) and u; > 0 which contradicts the assumption that j € N'. 7

ProrosITion 2.3. If {a*} converges to a relative interior point of the optimal face of
(H), then {u*} converges to a relative interior point of the optimal face of (A).

PrROOF. From Proposition 2.1, it is easy to see that u* converges to u* £ z*/g'z". In
consideration of uy; > 0 and wy = 0, the proposition readily follows from Proposition
2.2 Ol

From this proposition and Theorem 2.1.1 we have the following result.

THEOREM 2.4, If A is taken to be 0 < X < 2/3 in the iteration (2.2), then u* converges
to u*, a relative interior point of the optimal face of {A).

An interesting point of this theorem is that it does not require boundedness of the
optimal face, unlike any other convergence results on the projective scaling method.

3. Evaluation of Potential Reduction

To analyze the polynomialityof the algorithm, we define the Karmarkar potential fune-
tion :

(3.1) fl@) 2 nlogde — ) log ;.

i=t

THEOREM 3.1. If A is taken to be 0 < A < 2/3 in the iteration (2.2), we have, for all
k

?

(3.2) flab+y — fla®) < —S\)\/_E(g —A).

If A = 2/3, we have, for all k,

(3.3) F@F) — fa*) < ==
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ProOOF. The reduction of the potential function is written as follows.
{3.4)
Ay(z*) & F(ab) = fab)
Actd® n (:r:’?)_ldl?'
=nlogl — : -5 1 - A—2
! g{ a((xﬂ-ld‘*)c%k} > °g{ a((x’“rld’“)} ’

where d* £ d(xF). Let

XE)y-Igk 'z A
35 pall T pey = 5
( ) ! Ct.Tk v J((_Xk-)—ldk) J([)’k)
Noting that
{ gk

k2 Cd
(3.6) 171" = e
we have
(3.7) An(2*) = nlog {1 — ¥ 8*?} - S log {1-vFst}.

J=1

Since the objective function is nonnegative even we hit the boundary by taking A = 1, we
have

(3.8) 1 - o) > T Ll & > 0.
=T (3 ko ((XF)db) =

It 1s easy to verify

(3.9) ol = A < 2/3,

and from (3.8),

(3.10) v a51P < 2/3 < 1.

Observe also
f’.t(_[ — PAXk))&'kC

cz*

(3.11) el gt = =1.

With (3.9), (3.10) and (3.11), we can apply Lemma 2.4.1 to {3.7) to obtain

(3.12) A2 < T(B* ) <0,
Let

(3.13) To(8.0) = S(8)6(9),
(3.14) O nnfyllﬁ — %IIQ,

v

(3.15) Ww(B) 2 _n+ m

We observe that 3% is not strictly positive for all k. By contradiction, assume that
3% > 0 for some k. This means that (X*)=2d* is a strictly positive feasible solution of
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the dual problem of (H). Hence, Lemma 1.1.4 implies that the optimal face of (H ) is
bounded; thus = = 0 is the unique optimal solution of {(H). This contradicts Assumption
3. Now we have

(3.16) g* 40,
and hence

1
3.17 ky > .
( 7 (s ) T n-—1

From (3.9), (3.10) and (3.11), we see that ¢(8%) > 0 and ¥(3*) < 0. Now we concentrate
our efforts on finding a lower bound and an upper bound for ¢ and v, respectively.
First we deal with ¢. Due to (3.11), we have

”/Bk _ EHQ _ HﬂkHz - 1/”

(3.18) $(3") = Yy

ny
1’

n —

We minimize ||3||? assuming that o* £ ¢(3*) is given. By taking account that 3 satis-
fies the conditions o(3) = ¢* and (3.16). we are lead to the following simple quadratic
programming problem {G).

minimize |[B||2 + (a*)?
subject to 3 € R*7!

(3.19) (G) eld=1-c*
fh <0
Fi<a® (j=2,...,n-1)
If we denote the optimal solution of (G} by B* then
oy o P AP = 1n
2 3%y > J
(3:20) o) 2 ljv—1/n
The Karush-Kuhn-Tucker condition for (G} is:
(3.21) 29 e+ =0, p=(m, ... ) € R
(3.22) =0, 41 >0
(3.23) pi(B; 0"y =0, ;>0 (j=2,....n 1)
(3-24) gr <o
% k I
{3.25) Br <o (3=2,...,n—1)
(3.26) '3 =1~ a".
From (3.21), we have
(3.27) By =—(mo+up)/2 G=1,....,n—1)

We first consider the case f)’f < 0. Then, from (3.22), we have y; = 0 and from (3.27),
#o > 0. This implies that all 87 are negative, which contradicts {3.26) recalling that
o* <1 due to (3.8).
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Now we get [;’{‘ = 0 and gy < 0. Then it is easy to see that each [?3-‘, i=2,...,n—=1)
has the same value at the minimum. This and {3.26) produce B}" ={1-¢*}/(n—2) and
the optimal value (1 — 0%)2/(n — 2) 4 (o%)2.

With this result, now we are ready to come up with the following bound for ¢(3*).

2

| > (0" + (1 - /(n—2)=1/n S A

(3.28) &3 af /A= 1/n V2n

for n > 3. To simplify the notations, we let 0 £ ¢*. We have

P+ (1—0)?f(n—-2)—1/n

(3.29) gfA—1/n
)\02 +(1=0a)*/(n-2)—1/n
B o —A/n
B A (n—1(c=1/n -1 -1/(n—1)+2/n
N (71—2) og—A/n
B ( A ) (n —1)¢* 4w,
S An-—2 ¢+ ws
A
= (%ﬂ . 2) ()
where
(3.30) (=a—-1/(n—1)
(3.31) w), 22n—1/(n—1)>0
(3.32) wry = 1/ (n—1)—A/n>0 and
2 4w
(3.33) oy & MV run

C"l"u}g

Now we evaluate p(() for 0 < ¢ < {n—2)/(n —1). Differentiating p with respect to ¢, we
can easily see that p({) has its minimum at

(3.34) (& —wy+ \/’w% +wy f{n —1).
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Hence
: 2
(n—1) {—wg + \/u,é + wy f(n — 1)} + 1
(3.35) p(C) =
\/w% +wi/(n—1)
Un
> v
\/w«j—l-wl/(nwl)
n—2
(n—1
S n(n — 1)
1 + n—2
\ (n—1)2 " n(n—1)*
B n-—2
nyl+(n—2)/n
n—2
P

\/§ n

Here we used the relation w3 < 1/(n ~ 1)? which follows from ({3.32). From this relation
and (3.29), we have

(3.36) ¢(5%) >

\/— 2n
Thus (3.28) was shown,

Next we evaluate . From (3.17), we have ||#*||* > 1/(n - 1). By using (3.9) and
(3.10), ¢/ can be bounded from ahove as follows:

yk

2(1 = vro(B*))
(1-3)/2)(n — 1)

(3.37) W) = —n +

<—n+{n—1)-

1-X
<—-1- (2 A) ( 1).
37 Mg\
Combining the results on ¥(3) and ¢(3) above, we see, if A < 2/3, then
2.2 A
3.38 T, f’“,’“<{—1————)\ —1}
(3.39) (.04 G- V=1
(,_ —
\/_
and if A =2/3,
A V2
3.39 - 2 - ¥z
(3.39) T.(8%, %) T am
This completes the proof of Theorem 3.1. I
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In order to obtain the polynomial complexity results, we stop the iteration when ctu* <
272k Since f(u*) = f(z*) for all k, we immediately obtain the following corollary by a
standard argument.

COROLLARY 3.2. Assume that the optimal solution set of {A) is bounded. Given an
initial point such that c'u® = O(2"), the algorithm terminates in O(nlL) iterations if
A < 2/3 in the iteration (2.2), and in O(n2L) iterations if A = 2/3.

Now we focus our attention on estimating the guaranteed worst-case reduction of the
potential function. McDiarmid [34] and Anstreicher [5] proved independently that the
potential can be guaranteed to be decreased at least as much as —0.72 per iteration by
performing exact linescarch, and that this bound is tight. McDiarmid [34] proved the
potential function can be reduced at Jeast about —0.69 where the step-size is taken to be
nearly equal to 1 in the meaning of Karmarkar’s paper. Here we will show that our proof
gives an estimate of the guaranteed worst-case reduction —0.42 with A = (.54, which is
58% of Anstreicher and McDiarmid’s bound.

We prove the following theorem.

THEOREM 3.3. If n 1s sufficiently large, we have
(3.40) Fla*thy — f(2%) < —0.42

for all k by taking \ = 0.54.

ProoF. Recall that A,(z") denotes reduction of the potential function when we take
the step-size A. Our problem is to find an upper bound for

(3.41) sup A, (%),

By (3.12), we have

(3.42) AL () < T, (8(2%), #).

In view of (3.13), (3.14), (3.15) and (3.28), letting

. a M= Do? — 2no + 2
(3.43) Pl ) BN
A A
(3.44) gnlo,A) = =1+ ma
(3.45) holo, N) & folo, Nga(a, \),
we have
(3.46) Ay (xF) < Tn(ﬁ(aﬁk), _.__L) < max  h,{o,A)

a(BF) T 1jin-1)<e<t
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From (3.34), f.(o, A} has its maximum with respect to o at

A 1 AN on-2
3.47 ~a - = - =
( ) ? n +J (n -1 n) + n(n—1)2
:i_}_ 1 \/(1”11—1/\)2+ri,—2.
n n-—1 7 n

Let ,(A) be the o where h, takes its minimum. Since ¢,(c, A) is monotone decreasing
with respect to o, we sce that

1 3
<ou{A) <o" < :
m— 1 n—1

(3.48)

Hence putting o 2 (n — 1)o, we have

k
4G Fy < : : = ma  — .
(3.49) AL (28 < lj(nIPlc)nS{agl ha(a,A) max, hy(af(n—1),A)
By evaluating the optimal solution appearing on the right-hand side, we obtain an estimate
of the worst-case reduction when the step-size A is taken. Further, an optimal step-size
Ay 1s obtained as a solution for the following optimization problem:

{3.50) min 1max, hp(af(n — 1), ).

We denote by «), the optimal « for this problem.

Now we analyze the behavior of A, and o when n is sufficiently large. The domains
of o and A we are interested in are [1,3] and [0,2/3] respectively, and it is easy to check
that h,(c/(n — 1), A) is nniformly continuous on this domain. Hence h,(a/(n — 1), )
converges uniformly to the function A{a, A) on the domain, which is defined as follows:

(3.51) h{a, \) 2 lim halaf(n— 1), ) = fla, Ngla, A),
_ 2
(3.52) fla ) £ lim fu(a/(n —1),A) = —A{(”a _”AJ’ U
- A
(3.53) gla,X) 2 dim g, (a/(n—1),A) =1~ = e’

Let (a*, A*) be the optimal solution for the following optimization problem:

(3.54) min max A, A).
A 1<a<s

Due to the uniform convergence of h, to h, we have

(3.55) lim AT =A%, ﬂli}}glo o = a”, nh__nol‘3 m}n jnax, holaf(n 1), X) = h{a™, A").

Unfortunately, it is difficult to obtain exact value of A* and a*. We choose approximately
optimal value 0.54 ~ A* by numerical computation, and solve the following optimization
problem with respect to «:

= T § I
(3.56) nax, hia, 0.54),
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which 1s an upper-bound and a good approximation to
(3.57) h{a™, X*).

We solve this problem by numerical calculation to obtain an approximate minimum value
—0.423 when o = 1.374. We can also confirm that exact minimum value is smaller than
—0.42 even if we take numerical error into account. Thus we have

(3.58) An(a®) < ~0.42

when A = 0.54 if n is sufliciently large. This completes the proof. [

4. Other Convergence Results

In this section, we analyze convergence rate of the objective function value and conver-
gence of dual estimates.

THEOREM 4.1. If A is taken to be 0 < A < 2/3 in the iteration (2.2), the asymptotic
reduction rate of the objective function value {c'u*} converges to 1 — A.

Proor. From Corollary 2.5.3, we have

gkt
(4.1) T — 1 — A
dx
Since
{1
. T
(4.2) m 25— 1,
k—no gtl'k
we have
ctuk-f—l Cirk""lgt:l,‘k
. ctu® ] c’;r:kgla:k“
(4.3) lim = lim ——————=1.

k—oe 1 — A BF—oo 1 — A

Now we show convergence of the dual estimates. The dual problem of (A4} is

Maximize  Zpyy
4, y .
(4.4) (DA) { subject to £=c— Az — 2,119 >0, 2 € R™, 2,4 € R.

From duality theorem, the optimal value is 0.
Given an interior feasible solution u* of (A}, the dual estimate (2(u*), 241 (u*)) for
(A) is defined as the optimal solution of the following problem:

(4.5) minimize  ||U*(¢ — A'z — 2pn419)||?
: subject to (2, 2my1) € R™H

where U £ diag(u®) (See 13). The explicit formula of the dual estimate is given by
(4.6) 2(u?) = (AURZANY AU (¢ — 2 g)
thk(I — PAUk)erC

4.7 () = - |
(4.7) Emp1 () g USI — Py YUy
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On the other hand, the dual problem of (H) is

find Y
(4.8) (DH) { subject to s=¢— A'y >0, y € R™.

Given an interior feasible solution 2* of (H), the dual estimate y(+*) for (DH } is defined
as the optimal solution of the following optimization problem:

(4.9) { minimize || X*(c — A'y)||?

subject to y € R™,
The dual estimate is written explicitly as
(4.10) y(a®) £ (A(XF)24N TA(X*) e

The above definition seems different from (1.2.14). The full rankness of A however,
implies that y(+*) is uniquely determined by s(z*), hence y(x*) and s(z*) have a one-to-
one correspondence. We use the term “the dual estimate” for (z(u*), 2,11 (u*)), and call
y(xz*) “the homogeneous dual estimate” to avoid confusion.

Next we introduce the analytic center of the optimal faces of (DA) and (DH). Taking
note that z,4: is always 0 on the optimal solution of (DA} and that the always-active
index set on the dual optimal face is given by B due to Proposition 2.2, we see that the
analytic center of the optimal face of (DA) is the optimal solution of the following convex
optimization problem.

minimize — 3} ;¢ v log;
(4.11) subject to &y = ey — Az — Loy > 0,
AYz + Zmi1gn = €5y Zwgr = 0,

Similarly, it is easy to observe that the analytic center of the optimal face of (DH) is
given as the optimal solution for the convex optimization problem:

(4.12) mi}n.imi?’e ~jenlogs; o
subject to sy = ey — Ay >0, ALy = ¢p.

We denote the analytic center of the optimal face of (D A) and (DH) by (2*,z,.,) and

¥, respectively. Comparing both problems, we have (27, 2%, ) = (y*,0).

By applying Theorem 2.1.1 to the algorithm, we immediately obtains the following
lemma.

LEMMA 4.2. If we choose 0 < A < 2/3 in the iteration (2.2), the homogeneous dual
estimate y(a*) converges to y*, the analytic center of the optimal face of (DH).

Now we are ready to see the convergence of the dual estimates (2{u?), 2,11 (v*)) to the
analytic center of the dual optimal face of (A).

THEOREM 4.3. If A is taken to be 0 < A < 2/3 in the iteration (2.2), the dual estimate
(2(uF), 2ma1(€F)) converges to (y7,0), the analytic center of the optimal face of (DA).

Proor. From {4.6),

(4.13) 3(uk) = y(uk') — ,,m_,_l(uk)(A(Uk)‘zAt)_lA(Uk)gg.
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Due to Lemnma 1.4.1, A"(AU?A") ' AU?g = U~ P4y Uy is bounded for any diagonal matrix
U which has positive diagonal components. The full rankness of A also assures that
(AU?AY) "1 AU%g is bounded. Hence if

(4.14) Zppr () — 0,
then using the fact that y{u*) = y(2*) and Lemma 4.2, we have
(4.15) 2(u®) -y,

which proves the theorem.
Below we show (4.14). We can write (4.7) as follows:

g (U (e — Aly(u))
(I — Pays)U¥g|*

(4.16) 2 (WF) =

Since e'l7*¢ = 1 and U*y > 0, U*g is bounded for all £. We also have

XH(e = Aly(ah))

(4.17) Ur(c — Aly(u*)) = ™
g

— 0

from complementarity condition. These facts imply the numerator of (4.16) converges to
zero. Hence, to show that zm+1(uk) — 0, it is enough to prove the denominator of (4.16)
is bounded below by a positive constant. Since

(4.18) eI — Pyye)U%g = e'Urg — o' PyniUg = 1,

we have

(4.19) I = Pay)U¥g||* = 1/,

and this completes the proof. 0

5. Todd-Burrell Lower Bound Updating Procedure
In this section we replace Assumption 4 with the following assumption:
Assumption 4 A lower bound for the optimal value of {4) is known,

We will show that an analogue of Todd-Burrell lower bound updating procedure [56] is
applied to the algorithm without sacrificing the complexity analysis.

We denote by 2* the optimal value of (4). For z < z*, we consider the following
problem modified from (A):

3 minimize (¢ — zg)tu
(5.1) {A(2) { subject to Av =0, gu=1 u>0.

and the associated Liomogeneous problem (H):

i minimize (¢ — zg)
(5.2) (H(2)) { subject to Ax =0

t.‘]’,‘

x> 0.

b

Note that the optimal value of (A(z7)) is 0 and that if we know z*, we can apply the
original algorithm to (A{z*)).
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Given a lower bound z for the optimal value and an interior feasible point x of (H{z)),
we define the Karmarkar potential function as

(5.3) flx, 2} 2 nlog({c— zg)'x) — ilog.rj.
i=1

By using the standard argument, we can solve (H) by finding (z, 2) such that
(5.4) flz,z)=-2L,

where L is the input size of the problem. Since we can easily derive an optimal solution
of (A) from that of (H), we now intend to reduce f until (5.4) is satisfied.
It is not difficult to see that

(5.5) Fla,21) < flw, )
if zp < 5y < 2™,

Due to these obscrvations, if we can gencrate a sequence {(x%, 2¥)} of the pair of an
interior feasible solution for {H) and a lower bound for the optimal value such that

(56) f((??k+l, 2k+l) < f(fb‘k, Zk') _ 5’ Z)’c < Zk'+1

for all k, we can solve (H) and (A) with O(nl) and O(n?L) iteration complexity when
6 = O(1) and & = O(1/n), respectively.

Todd-Burrell update is a procedure to generate a sequence with this property. At the
k-th each step it first computes

(5.7) d(*, 2%y = XM — Py ) X(F = 2%g)

as a candidate for the search direction. )
If d(z*, %) # 0, we can show that moving to the direction d gives a sufficient decrease
in the potential function f(-,z%), hence set

(5.8) = ok
and adopt
(5.9) d(z*, %) (= d(2*, *H))

as the search direction, which yields a sufficient decrease in f.

On the other hand, if (5.7) is positive, the procedure generates z*+! such that z* <
¢+l < »* with which the search direction cf(:r"',z’“‘l) can decreasc the potential suffi-
clently. This is an outline of the algorithm. Below we explain it in more detail.

Suppose d(z*,2*) # 0. Then we put 21 = z*. By using the direction (f(:r"’,z’“)(:
d(z*, 2*t1)), the difference of the modified potential can be written as

(5.10) A & F(ahHT ) - flaks k)

log 1 A (¢ — z%g)d*
= nloe - -
oS a((X*Y1d*) (' — 2*g)'a*
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Putting
) L gk
(5.11) gk & _(___)%
(c—zg)'x
and
1 o M=ol
e = kN1 Gk g kYD
a((X*)d")  o(37)
we have
. (¢ — z%¢)td*
(5.13) 1351 = e
(e = 2Fg)t)’
and
= 14 13k _ e'(I — Pyye)X*(c— 2*g) _le— Fg)tat —1
(5.14) Cp = (c— Fg)a* = RNk T
- 2T {c — 2%z
We rewrite (5.10) as
(5.13) Ap =nlog {1 — 17"||{§""||‘2} — Zlog{l — r?’“ﬁ;"} ,
J=1

which has the same form as (3.7). It is easy to see that (3%, &%) satisfies (3.9), (3.10) and
(3.11). Since sign of 3* is the same as d*, d* # 0 implies % satisfies (3.16), and we can
see that the sufficient reduction is obtcuned in the value of the potential function by using
the same argument given in the proof of Theorem 2.

On the other hand, if cf(zk, #%y > 0, we have

(5.16) 3> 06— AYAXF) 2 ANAX ) e~ 2Fg) — 2Fg > 0.
Letting
(5.17) 7" £ (AXFPAVAXR) (e - 24g),

d(z*; 2¥) > 0 implies that (§*, 2*) is a feasible solution of (DA}, the dual problem of (A).
Further, if we put

- LG Y
(5.18) FH & i LI
Jig;>0 g

where a; is the j-th column vector of A, then ¢— Afﬂ"" — 2" g > 0 and (¥, 251 is another
feasible solution of (DA). Obviously, z**! > 2* and we get a better lower bound for 27
Now we use r?(rj‘ ,2*T1) as the search direction. From its construction, it is easy to see
that the d{z*, 2*+1) is not positive, namely, (3.16} holds, and, again, in a similar manner
as in the proof of Theorem 2, wo see that the potential f can be reduced sufficiently by
moving in the direction of d(a*, z*+1),

Now we obtain the following algorithm and theorem on its complexity.
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MODIFIED ALGORITHM
Initialize 2°(< 2*),2% :== ", k = (;
while c'u® — ¥ is not sufficiently small do
begin
d* = X*(I - Piyi)XF (e~ 2Fg):
7= (AXFPP AN TA(XR Y (o - ),
if d* > 0 then

begin
A= j{giilo(cj — aly®)/ g5
d* = X*(I — Pyxr) X (e — Fg)
end
else M1 .= k.
endif
o= b f\kdk_] =)
kHU((-X )7 dY)
S )
g,zxk-&-l’
k=k+1
end
return u*:

THEOREM 5.1. Assume that Assumption 1, 2 and 3 hold, and that the optimal face of
(A) is bounded. Given a lower bound for the optimal value and an initial interior point u°
such that c'u® = O(2%), the modified algorithm terminates in O(nl) iterations if X < 2/3
and in O(n®L) iterations if A = 2/3.



CHAPTER IV

An Affine Scaling Method with
an Infeasible Starting Point

1. Introduction

As was already pointed out in the preface, the original affine scaling method as well
as most of the early interior point (II’) methods has the problem of initialization. In
this chapter, we challenge this problem and propose an infeasible-IP method which is an
extension of the affine scaling method. In contrast with the method proposed here, the
original affine scaling method which uses an interior feasible solution is sometimes referred
to as feasible affine scaling method.

The search dircction is composed of two directions, one of which aims for feasibility
and the other for optimality. Each of the directions is an affine scaling direction of a
certain LP problem. We define the search direction by combining these two directions so
that it has scaling invariance property. The method can be viewed as an extension of the
affine scaling method in this sense. In fact, if the starting point happens to be feasible,
then the method is reduced to the feasible long-step affine scaling method whose global
convergence has already been proved in Chapter I1.

As for history, many infeasible-IP methods have been already proposed. Most of them
are classified into two types: primal-dual infeasible-IP methods (e.g. Kojima, Megiddo
and Mizuno [27]) and combined Phase I-Phase IT methods (Anstreicher [6], Anstreicher
[7], Freund [15},Freund [16],Freund [17], Lustig {31], Todd [54], Todd [55]). Our method
works on the primal problem only, thus it is not a primal-dual infeasible-IP method and
1s similar to the combined methods. While they are based on projective scaling methods
[6, 54], path-following methods [31], barrier-function method [15, 17], or affine potential
rednction methods [7, 16, 55], our method is based on the original affine scaling method.
Another similar algorithm was developed by Dikin and Zorkaltsev {14], in which they used
the two same directions as ours. Recently, Andersensen [4] also proposed an infeasible-
IP method which uses the two directions, and left some numerical experiments. But
the combinations of them are different from ours, and no global convergence proof has
been made with their algorithms. On the other hand, we succeed to invent such a nice
combination that we can prove the global convergence of our method. We also point out
that our method is related to feasibility-improving gradient-acute-projection (FIGAP)
methods developed by Tanabe [53]. FIGAP methods arc a certain family of algorithms
for nonlinear programming, and our method can be regarded as a kind of FIGAP methods
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applied for linear programming.

We prove that if the original LP problem has an optimal solution, then the sequence
converges to a relative interior point of the optimal face. The objective function value
may not decrease monotonically since the initial objective function value may be less
than the optimal value. Instead, we define a certain infeasibility criteria, which decreases
monotonically. As a result, the method finds an interior feasible solution in a finite
number of iterations if it exists. Then, as was already mentioned, the method is reduced
to the feasible affine scaling method. If no optimal solution exists, then due to the duality
theorem (Theorem 1.1.2}, the original problem and/or its dual problem does not have a
feasible solution, in which case the method detects at least one of the infeasibilities of the
primal or the dual problem. Since we have two directions for feasibility and optimality,
we can construct two types of dual estimates correspondingly. If the primal problem has
an optimal solution, then dual estimates for optimality converge to the analytic center of
the optimal face of the dual problem, while the dual estimates for feasibility is used to
detect infeasibility of the primal problem.

We will prove the global convergence of the proposed method under very weak assump-
tions by means of local Karmarkar potential function. In fact, we do not assume any kind
of nondegeneracy nor boundedness while assuming that the coefficient matrix is full rank
for convenience.

This chapter consists of ten sections and one appendix. In Section 2, we introduce the
problem, define the algorithm and state the main theorem of this chapter. In Section 3, we
prove that if the objective function value is bounded below, the sequence is convergent. In
Section 4, we prove that the limit point is feasible if the original LD problem has a feasible
solution. We also deal with the case where no feasible region exists in this section. Section
5 to Section 9 are devoted to prove the optimality of the limit point. In Section Section
5, we prove that the limit point is in a dual degenerate face. In Section 6 and Section 7,
we make preliminary analysis for the main thecorems which are proved in Section 8 and
Section 9. Section 10 is concluding remarks where the theorems proved in this chapter
are summarized. Section 10 is an appendix where we prove a few technical lemmas used
in the chapter.

2. The Algorithm and the Main Theorem
2.1. The Algorithm

We consider the standard form linear programming problem

(2.1)

(P minimize c'x
subject to Az =08, x>0,

where ¢, € R",b € R™ and A € R™™. The dual problem of (P} is

maximize by
(2.2) <DP> { subject to  Aly < c.

We denotes the set of feasible solution by Feas{(l?). We make the following assumption.

AssUMPTION 1. rank(A) = m.
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We do not make any other assumptions on nondegeneracy nor boundedness. The problem
{P) may not have an optimal solution nor even a feasible solution. Our analysis, however,
deals with all these irregular situations.
The algorithm starts from an arbitrary positive point 2°, and make a scquence of
positive points. The whole algorithm can be roughly sketched as follows.
ALGORITHM 0
Inttialize z° > 0,k := (;
while z* does not satisfy the stopping criteria do
begin
Compute Az*;
oFt = gk — R AR
ki=k4+1
end
return x*;

Here, Az* is the search dircction and z* is a step-size. To keep the iterates always positive,
(2.3) pF < a((XH) Akt

must hold where X* £ diag(s*).

The starting point 2° may not satisfy the equality constraints of (), hence the algo-
rithm should improve not only optitnality but also feasibility. In fact, the search direction
is composed of two differently originated directions for optimality and feasibility. We
define the optimality direction at x by

A X(I — PA_»();YC

2.4 FA —
(24) (1= Pre)xe]

and feasibility direction by

(2.5) Ayr = X?A(AX?AY Az — b)

where X £ diag(z). We will motivate these two directions and investigate their properties
in the next subsection. The search direction is defined by:

(2.6) Az* 2 0A 2%+ A, 2,

where 0 < @ < 1. Wesct ¢ 21— 0,
If we choose u* = 1, then

(2.7) AP = A(2* - Az®) = Axf — AN Y = A2b — (At — ) =,
which means that the next iterate satisfies the equality constraints of (P}, Hence in view
of (2.3), if o((X*)~1A2*) < 1, then by taking stcp-size ¥ = 1, we obtain an interior

feasible point. In consideration of the above observation, we adopt the following step-size
choice.

Step Size Choice 1 While 2* is infeasible, if a¥ £ o((X*)77A2%) < 1 then choose
(¥ =1 (we find an interior feasible solution.), else choose A* satisfying

(J'k

l+o

(2.8) Amin < AF < min(Z ~ b,

W b

7
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and let
(2.9) k= Mot

where Amin and & are predefined positive constants. Once x* becomes feasible, then we
choose the step-size as (2.9) with

(2.10) Amin < A< 2/3.

The step-size choice (2.9) means to move with the ratio A* in the direction to the boundary
of the positive orthant. Note that since ¢* > 1 in (2.8),

o 1

-
1+o" =2

(2.11)

holds. We also point out that if #* is feasible, Algorithm 1 is nothing but a feasible
long-step affine scaling method, which can be easily verified.
Now we describe the complete algorithm:

ALGORITHM 1
Initialize 2° > 0,k = 0;
while z* docs not satisfy the stopping criteria do
begin
Compute Az*;
if «* 45 not feasible
then if o((X*) 'Az*) <1

then ¥ := 1;
else pf = A [o((XF)"1Az*),  # \F is chosen by (2.8).
endif
else pf:= M/a((X*")TAZ%);  # Apin < M <2/3
endif
¥l = gk kALK
k=k+1
end
return z*;

The main iteration is written by using projection operator as

{ )&—k(f — PAXk)XkC
(I~ RAX‘“)XkC”

(2.12) ol = gk b + XEPy e (XY (2 - T)}

where 7 is a solution of Az = b,

2.2. Optimality Direction and Feasibility Direction

In this subsection, we motivate the optimality and feasibility directions. We first discuss
the optimality direction. Given a point ¥ > 0, consider the following LD problem.

I t
i IINIINZE, cr
(2.13) (O(z ) { subject to Az —b =171 >0

61
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where r* £ Az* — b is the residual at =*. Noting that z* itself is an interior feasible point
of (O(z*)), we define the affine scaling direction at z* by using the unit ellipsoid in the
scaled space, which is the optimality direction (2.4). In other words, this is a short-step
affine scaling direction (See (1.2.12)).

As to the feasibility direction, we can interpret it as follows. Given a point z*, we define
a mapping h : R} +— R} by

(2.14) h{z) = (X¥) e

Then A(z*) = e, and {x|Ar = b} is mapped to { x| AX*x = b}. Let § be the nearest
point in { x| AX*y = b} from e, which is the optimal solution of

v . . 3 2
- minimize ||y — e||
(2.15) { subject to AX*y = b.

It 1s casy to verify that the feasibility direction is equal to
(2.16) XFe—%).

We can also view the feasibility direction as an affine scaling direction. Before showing
it, we make some observations. First, we introduce the following LP problem to find a
feasible point of (P):

mMinimizeg, ) w
(2.17) () { subject to Ar —wr' =0, x>0,

where w € R and ¥ 2 Ax® — b is the initial residual. Note that w is a free variable. The
dual problem of (F) is:

o .
(2.18) (D >{ minimize by

subject to  A'y >0, (rO'y = 1.
Obviously, (z,w) = (2°,1) is an interior feasible solution of (F). If we succeed to reduce

w to 0, then we find a feasible solution of (P}. In this sense, w-component expresses
infeasibility. Recall that the residual at @* is v* = Az* — b. In view of (2.4} and (2.5),

(2.19) P AR b= Ax® — b — pFAALY
=r* — P AN = rF - ,Ltk(A:rk' - b)
~ (1=

holds. Hence, if we define

(2.20) wh & f[_[;(l — ),

then

(2.21) r* = whr’

holds and (z¥,w®) is a feasible solution of (F"). In particular, if #* > 0 and w* > 0, then
(z*,w*) is an interior feasible solution of {F). .

Given an interior feasible point (x,w) of (F), let us define (Ax, Aw) be the affine
scaling direction at (x,w) which is scaled so that Aw = w holds. Then we have an
explicit formula for Az as follows.
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LEMMA 2.1.
(2.22) Ax = wX Pyx X '(2" — &)
where T is a solution of Ax = b.

Lemma 2.1 1s proved in Appendix. Now we show that the feasibility direction is an affine
scaling direction.

LEMMA 2.2, The feasibility direction at x* is equal to x-components of the affine scaling
direction for (F) at (z*,w®) which is re-scaled so that the w-component is equal to w*.

Proor. We have

(2.23) ArF = wF X*Py o (X9 (0 — )

= wF(XF)ZANA(XE)2 AN 10

= (XFPAAXFPAY At —b) = Aa®,
which shows that the affine scaling direction for (F) is the feasibility direction. O
In view of Lemma 2.1 and Lemma 2.2, we can write the main iteration (2.12) as
Xk(f - PAxk)XkC
(1 = Paxs)X*e|

Let w” be the optimal value of (F). Then the following facts are easily observed by
strict complementarity.

(2.24) af = gF {9 + WP AP (XEY (20— :?)} .

ProposiTION 2.3. (1) Ifw” > 0, then Feas(P’) is empty.
(2) If w* = 0, then Feas(P) is nonempty but Int Feas(P) is emply.
(3) If w* < 0, then Int Feas{P) is nonempty.

2.3. Main Theorem

The following is the main theorem on the primal sequence of the algorithm derived in
this paper.

THEOREM 2.4. If (P) has an optimal solution, then the sequence x* produced by the
Algorithm 1 under Step Size Choice I converges to o relative interior point of the oplimal
face. In particular, if (P} has interior feasible solutions, the algorithm finds one of them
in a finite number of iterations, and then, becomes identical to the feasible long-step affine
scaling method with step-size A¥

If ¢'a* is bounded below and (P) does not have a feasible solution, then the sequence
converges to a relative interior point of the optimal face of (F).

In addition to this, we will prove several theorems on two kinds of dual sequence defined
later. We discuss the behaviors of dual sequences in Section 8.5 and in Section 8.6, and
suminarize the results in concluding remarks in Section 10.

We remark that if ¢'z* is not bounded below, then the dual problem (DP) does not
have a feasible solution, which means (P) cannot have an optimal solution. Therefore,
Algorithm 1 terminates by

(1) finding an optimal solution,
(2) detecting infeasibility of (P), or
(3) detecting infeasibility of (D).
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If ¢ € Im{A*), then the optimality direction is always 0 by definition. In this case, we
can regard our algorithm as a long-step afline scaling method for finding feasibility and
it is easy to see that the above theorem holds in view of the results of Chapter 11, To get
rid of this trivial case, we make the following assumption throughout the analysis.

ASSUMPTION 2. ¢ & Im{A!),
If Feas{P’) is nonempty, then the above assumption implies that ¢fr is not constant on

Feas(P).

3. Convergence of the Sequence
We begin the analysis of our algorithm by proving the following theorem.
THEOREM 3.1. If c'2* is bounded below, 2* converges.

PRrROOF. Since c¢'z* is bounded below, there exists a positive constant M, which satisfies
the following:

(3.1)
—~M, < Z(ct:r;1"+1 — by
k=0
=3 {,kag“(f — Paxs) X || 4+ prub ! XA Py oo (X520 — :f:)}
k=0
&9 ]
< - Z T 1. Z phw® (Use Lemma 1.4.1)
k=0 k=0
< wZu’“f’ll Pax)XEe|| + el My Y- (w* — w1y
k=0
< - Z fEO||(1 — Paxs) X || + |el| M.
k=0
This implies
(3.2) ST UPO|(I ~ Pyxe) X e|| < My + ||c

k=0

Using the above inequality, we have

b | X*(I — Pyxe) X
(3.3 mk«l»l k < "”9
: kzzoll “ Z:o (7 = Payr)Xell

Z ot | X Py (X7 (0 )|
he=()

< M3 Y pbO)(1 — Pax) X + M,y > e
k=0 k=0
(Use Lemina 1.4.4 and Lemma 1.4.1)
g A’fg(ﬂ’f‘[ + ”(”Aﬁfg) + JMQ

< 0C.
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Hence z* converges. O

If (DP) has a feasible solution, ¢'a* is bounded below due to the duality theorem.
Theorem 3.1 implies that the sequence will converge independently of the existence of
feasible region of (P} in this case.

4. Feasibility of the Limit Point

Up to now, we have seen that z* converges if ¢'&* is bounded below. Let 2% be the
limit point. The next problem is whether % is feasible or not. We give an answer to the
problem in this section. Let

(4.1) Eé{je{l,...,nHr?":O} and E"é{je{ Sonplag? >O}

It is easy to see that the limit point * cannot be an interior poiut, thus F is not empty.

This section consists of two subsections. Iu the first subsection, we investigate propertics
of feasibility direction in the scaled space. Lemma 4.1 is the main lemma of this subscction,
which is used frequently in the consccutive analysis. In the second subsection, we prove
that the limit point is feasible if the problem (P} has a feasible region (Theorem 4.5), and
that the limit point is an optimal solution of (F) satisfying strict complementarity if (P)
has no feasible region (Theorem 4.12).

4.1. Asymptotic Direction for Feasibility
We multiply both sides of the iteration (2.12) by (X*)~} to obtain

O(I — Pyxe) XPe
(I = Paxe) X 5|

(4.2) (XEy gkl — e b { + Py XF) (2 — T)} :

Since this expresses the iteration in the space transformed by f defined in (2.14), we call
it the scaled iteration. Let

(4.3) of (I - Py )Xbe and
(4.4) B & Py (X512~ 7).
Then we can rewrite the scaled iteration (4.2) as
k
(4.5) (XM 2k = e ,uk(Hﬂg-kW + 3%).
a

The aim of this subsection is to construct vectors which approximate 3% when z% — 2
by means of Projection Decomposition Lemma (Lemma 1.4.5). { The approximate vector
for o* also plays important role in the consccutive analysis, and will be considered later
i Section 6.)

We will prove the following.

LEMMA 4.1. Assume that w* is an infinite sequence of positive numbers which converges
to w™ > 0, and let ﬁE and 6"& be the optimal solutions of the following optimization
problem:

minimize ||fg — ¢||?
(4.6) (Br) { subject to Bp = XEALy, Ay =0,
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and

TN e — (] kc —1 ,_k-_‘r — % 9
(47) (B { e, W )

subject to  fge = XE. Ab.y,

respectively. Then we have

k o0
wh—w™ _ o
(4.8) IITﬁ'p‘: = A5l = OUIXEN®) + OUIXEllxhe — 511
and
wh — w r Ak -k -k 121 ok oo
(4.9) “TﬂEF = Bpll = OUIXE]) + O XE[* 2 — 2Fel).

uw

It might be a helpful observation for understanding Lemma 4.1 that the feasible regions
of (Bg} and (Bg-) are the orthogonal complements of { ap € RIFI| Ay Xtap € Im(Ap) )
and { ape € RE| Ap- Xk age = 0}, respectively. In fact, as for (Bg), let {vy, ... ,Uj} be
a basis of Null(4%.) where [ £ dim Null(A%.), and N be a matrix whose j-th row vector
is v}, namely, N* = (v1,..., ;). Putting

(4.10) Ap £ NA,,

we see that

(4.11) {cyE | ApXEap € Im(Ag:) } = {cyE | ApXtap =0 } )
Hence, the orthogonal complement of the above is

(4.12) {ﬁE |Bp = Xp ALy } = {ﬁE | 8p = X§ ALy, Ay =0 }

The above observation suggests that Lemma 1.4.5 will be used to prove Lemma 4.1.
Before proving Lemma 4.1, we characterize 3% as follows.

LEMMA 4.2, If w* is an infinite sequence of positive numbers which converges to w™ >
0, then 3% is the optitnal solution of

k

_ w Rl ok so\|12

(4.13) minimize |4 m(ﬁ yHa® — )|
subject to 3 = X*Aly.

ProOF. From the discussion in Section 2.2, it is casy to see that 3% is e— v (See (2.16)).
Since ¥ is the optimal solution of (2.15), 5% is the optimal solution of

| minimize || 3]
(4.14) { subject to  AX*3 = wFy0.

k¥ w*) is a feasible solution of (F'), we have

On the other hand, since (&
{4.15) Ax® — b= uhr?
and from the assumption,

(4.16) Ax®™ — b= w=r"
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Subtracting (4.16) from (4.15), we have
(4.17) A(x® — %) = (w* — w™)r?,
which yields

w® Az — 2%)

w® — w™

(4.18) whr? =

Hence, (4.14) can be written as

minimize ||ﬁ || 2
(4.19)

k k o0
. oL w Alzx" —x
subject to AXFJ3 = g - )
W —

By solving Karush-Kuhn-Tucker conditions of the above optimization problem, we have
w*
(4.20) B = Py (XF) 7 (2F - ™).
w” —w
Obviously this is the optimal solution of (4.13). |
Now we prove Lemma 4.1.
PrOOF OF LEMMA 4.1. Let 5* be the optimal solution of

{ minimize ||y — (X*)7 (% — )2

(4.21) subject to  AX*y = 0.

Furthermore, let 4§ and 4%. be the optimal solutious of

minimize  ||vg — ¢||?
(4.22) { subject to Ap X%y, € Im(Age)
and
(4.23) minimize lve: — (XE SN 2he — %)
subject to  ApeXE vuo =0,

respectively. We note that the feasible region of (4.21) is the orthogonal complement of
that of (4.13). In view of Lemma 4.2, it is casy to see:

IUA — >

TUA

(4.24) ¥ b3 = — (X",

Recalling that the remark after Lemma 4.1, it is also easy to sce:

(4.25) A+ Ak =

and

(4.26) Bl + Ao = ¢ — (XE) 232

On the other hand, it follows from Lemma 1.4.5 that

(4.27) 17e = 42l = O(IXE) XX E) ™ (e — 2500
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and

= O(|| X%

(4.28) 17 — e )+ O(IXEIPH(XE) ™ (2 —

).

Thus the lemma casily follows by substituting the relations (4.24), (4.23) and (4.26) into
(4.27) and (4.28). O

COROLLARY 4.3. If w™ =0, then

(4.29) 185 = Bl = OUIXER) + OUXENlok: — @pe)
and
(4.30) 185 = 35l = OUXEI) + OUX LNl — &pell).

The next lemma shows a basic property of B;;

LEMMA 4.4, Ifﬁg > 0 for some k, then ™ is the optimal solution of (F). In particular,
if 3% > 0, then T is a relative interior point of the optimal face of (F).

PrOOF. Let (35, 9*) be the optimal solution of {By). By using (4.18), we have

g ok ooyt
wa\xr —=r
(4.31) w* (r)'g* = —(k — ! Al
w —w
w () AL GE
ke

w’ — w™
wel Xk AL
™
]
wr — ™
Putting
k 0oy AR
A Wt —w™)y
(4.32) §E —
135!
we have
(4.33) (rYg=1 and  Al.gy=0

If ﬁ’; > 0, then we have A%y > 0, which implies that 2> and § satisfy the complementarity
condition of (F) and (DF). If 3% > 0, then the strict complementarity is satisied. O
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4.2, Proof of Feasibility of the Limit Point

We will prove the following theorem.
THrOREM 4.5. If 2% converges and (P has a feasible region, then w* — 0,
The case where the feasible region of (P) is empty will be also analyzed in the end of

this subsection.
To prove Theorem 4.5, we show the following two lemmas.

LEMMA 4.6. If a* — 2 and w® — w™ > 0, then there exists o constant M such that
for all k,

(4.34) ahd| < M(w® — w™).
PPrROCGF.
(4.35)
2]l < 3 Nl — o
=k
§ ” )l+l . :L[”

#;9” X'l( PAX*)X c||

IA

iLM8 LT.M8

||(I PAYfA(H +Z,Uu;!!|YPAYr(X) ( _f-)”
=k

< M, Z (T = Pax)X'e| + M ¥ plut

1=k I=k
> M| - P Xl
< Z M['U/'i 1”( AXf) H + M,
= W™

< ple'M (since ||z*|| is bounded)
I=k

= M(w" — w™)
which completes the proof. 0

LEMMA 4.7. If 2F — 2%, w* — w™ > 0 and (P) has a feasible region, then the local
Karmarkar potential function for feasibility defined by

(4.36) fe(z®) £ |E|log(w® — w™ -3 log 2. g

JEE

diverges to —oo.
Once Lemma 4.7 is proved, the proof of Theorem 4.5 is easy.

Proor oF THEOREM 4.5. The proof is by contradiction. Suppose that w* — w™ > 0.
Then from Lemma 4.6, using the well-known inequality between arithmetic and geometric
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mean, we obtain

: 00 : ooy |El
~ (w® — ™) Fl w® — w
(4.37) exp( fe(a*)) = g z lE'T
jeri o

k =" |E|

w" — 1

> ( |E|—-—) >— >0  forall k.
Teal i

On the other hand, Lemma 4.7 implies that exp fp(z*) — 0. These two facts contradicts

each other, hence the assumption that w™ > 0 should be denied, ]

To prove Lemma 4.7, we prepare a few lemias.

LEMMA 4.8. If 2% — 2 and w* — w™ > 0, then o((X*)TAx) = o((X5) 1 Azp)
holds for sufficiently large k.

PROOT. Since w*™® > 0, we see that ¢* — 0 in view of (2.20). This implies that
a((X*)"1Az) — oo. Obviously, o®/||c*|| is bounded. Since A,z is bounded,

(4.38) Bpe = (XE) Ay
is also bounded. Thus o(f%) must diverge to infinity. Now the lemma readily follows. [

LEMMA 4.9. If 2% — 2 and w* — w™® > 0, then there exist some constants & and 6o
such that

ot )
(4.39) 1>———>6>0, and o(B)>6>0

w' - w
for sufficiently large k. In addition,
,uku)k )\k

= ———— + O{wh — w™e).
W —w™ g 5 )

(4.40)

PROOF. Since w® — w™ > w* — wh+l = phu*,
;Lkwk
(4.41) e
w" — w
follows.
We have by using Lemma 4.1 and Lemma 4.8,
Ak )\k
4.42 b= , = :
442 " S T T+ ) a0+ 5
/\k
- T

. w ok '
o (9@}}/“@’“” + m(ﬁﬁ + O(”X?“)))

for sufficiently large k. Taking note that ||X%| = O(w* — w™) due to Lemma 4.6, we sce
that

,(Lklb'k )\.’c
(4.43) 1> — = = = -
wh —w a( ) + Ow® — w™)

> 0.
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Therefore,

(4.44) o(B) + O(w* —w*®) = M > Ay > 0
holds and we have

(4.45) a(3%) > Anin/2> 0

for sufficiently large k. i i
On the other hand, since 3% is the optimal solution of {Bg), 3% is bounded, thus (4.40)
and the former part of {4.39) readily follow from (4.43). O

LEMMA 4.10. Assume thatv € R, n € R4, A; € R, j =0,...,q, and A, € R satisfy:

(4.46) e'n = 1+ Ay,
(4.47) va(n) <2/3,
(4.48) 1 —v|n|* + Af > 0,
(4.49) |A;] < 1/4, fori=20,... 4.
Then the following inequality holds:
(4.50)
4
qlog(1 ~ v|[nl|* + Ag) — 3 log(1 —wm; + A))
7=1
qu € 5 v ‘ , 4
< n—- —q—i-m}-l—M Ag| + |Ay| + A
= S g M 1) >ia)

where M is a positive constant depending only on q.

Note that the left hand side is well-defined due to (4.48), (4.47} and (4.49). The above
lemma is slightly stronger than what we need to prove Lemma 4.7. However, we will use
this lemma again in the proof of Lemma 8.18, and there we need Lemma 4.10 in its form.
We will prove the above lemma in Appendix.
The following lemma is substantial to the proof of Lemma 4.7.

LEMMA 4.11. Ifz* — 2> and w* — w™ > 0, then the difference of the local Karmarkar
potential function for feasibility is bounded as follows for sufficiently large k-

(4.51)
Afp(a®) & fe(z"") — fu(a)
|E|o* i e 2{ " } . .
< —— 7" — = 1P = E| + % T O{w" —w™
|E| — o | |E| 1] 2(1 — #*a(7*)) ( )
< el = gl + Ok = )
where
3k MF)| 35|12 AF
(4.52) T ?ff 3 s ”[*L” =%
“ﬁFH U(P‘,E) U(’?E)

and € 15 a positive constant.
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PRrROOF. The E-components of the scaled iteration can be written by using Lemma 4.1
as follows:

k k
' o W .
(4.53) (Xp) T = e~ pf S0+ ——— (5 + O X))
le®]|  w" —w
koo ko
=e— #———(Béﬂ + O(w* — w™))
w” —w
Y 3k
=e— + O ™).
o(85) (wf )
In the last equality, we used (4.40) of Lemma 4.9. Since
(4.54) et =1, and
(4.55) Pro(ik) = A <2/3 -4,

we apply Lemma 4.10 with Ay = 0 as follows.
{4.56)

ik

?
Afp(a®) = {E|log {1 — ﬂk} Z 105{ —-—wﬂf&]—(ﬁ;” + O(w* — w"o))}

w w JEE -~ W

k ok
z|E[log{1 ()\ + O(w® — w™ }—Zlog{l ﬁ + Ot 00)}

Oe) i€E a (%)
= |E|log {1 - ‘E'I‘7||"1‘:'J”'2 + O(u* — ww)} - Z log{l - ﬁt'ﬁj + O(w® — -wm)}
JER
'E|V 9 ok )
< 2 B .
> rEI 7.& ” |E| ” | | + (I _ Dk()'(ﬂk)) -+ (w U )

This proves the first inequality of (4.51). Furthermore, from (4.54)

(4.57) (i) > 1/|E|
follows. Hence

—Fo_ikn = —|E| + T
2(1—-v U(’?E)) 20 (”?L)(l_)\ )
2/3 -6

b
<5 <0
2/3 + 26

(4.58) —|E| +

< —|E| +|E]|

holds for a constant é' under Step Size Choice 1. We also have
(4.39) |E| ~ 7% > |E|/3

and #* is bounded below by a positive constant since o af ﬂff ) is bounded below by a positive
coustant due to (4.39). Now the lemma follows from (4.56) |

Now we are ready to prove Lemma 4.7,

-1
8
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PrROOF OF LEMMA 4.7. Due to Proposition 2.3, w™ cannot be the optimal value of
(F) (recall that we assumed the existence of a feasible solution of {P) which has smaller
value of w), and E does not determine the optimal face of {F). Hence, from Lemma 4.4,
we see that 3% % 0. If |E| = 1, then from (4.54) 3% > 0 follows, which contradicts the
above observation. Therefore, we assume |F| > 2. In this case, from (4.54)

. 1
4.60) A —/IE|I? > ————
follows. Then from Lemma 4.11 we see that the difference of Afp(2*) must be smaller
than a negative coustant for sufficiently large k. Therefore, fu(a*) - —o0 as k — oo,
and this completes the proof. ]

Next, we deal with the case when the feasible region of (P) is empty.

THEOREM 4.12. If (P} has no feasible solution and ¢'a* is bounded below, then w* —
w* and t* — 2°° where ™ is a relative interior point of the optimal face of (I

Proor. In this case, Lemma 4.6 holds, thus the local Karmarkar potential function is
bounded below. From (4.39),

E+1 o0 k, k
wi Tt —w IR
(4.61) xSl <14
w —w we = w

holds for sufficiently large A. This implies

oG

(4.62) Y (w* — w™) < 0.

k=0
In view of Lemma 4.11 (cf. (4.51)), if 77} does not converge to ¢/|E|, then fg(2*) - —oo
which contradicts Lemma 4.6. Hence, 75 — e follows, thus there exist some k such that
8% > 0. Now the theorem follows from Lemma 4.4. O

5. Convergence to a Point on a Dual-Degenerate Face

We have proved that if ¢'2* is bounded below and {P) is infeasible, then the sequence
converges to an optimal solution of (#) (Theorem 4.12). When c'2* is not bounded from
below, we find the infeasibility of (DF?). In both cases, there is no optimal solution of
(P).

We have also proved that if ¢'z* is bounded below and {P) is feasible, then the limit
point of the sequence is a feasible solution of (1), Therefore, our concern naturally turns
to the optimality of the limit point in this case. In the rest of the paper we deal with the
case where T* converges to a feasible point. In other words, we assume

ASSUMPTION 3. w* — 0

in the consecutive analysis except in Theorem 8.25 where we discuss the convergence of
dual sequence when {/) is infeasible.

If the algorithm finds an interior feasible point in a finite number of iterations, then
the proposed method becomes identical to a long-step affine scaling method, thus the
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optimality of the limit point and the global convergence of the dual estimates have been
already established in Chapter II. Hence, we assume

ASSUMPTION 4. the algorithm produces an infinite sequence of infeasible points
from now on. Recalling Step Size Choice 1, we can easily see that Assumption 4 implies

(5.1) c((X*)'Ax®) > 1 for all k.

A face of Feas(P) is called dual-degenerate if the objective functiou value is constant
on the face. The aim of this section is to prove the following lemma.

LEMMA 5.1. If 2* converges to a feasible point of (P), then x> is contained in a dual-
degenerate face.

To prove Lemma 5.1, we first show the following lemma.
LEMMA 5.2. o((X*)71Az) is bounded above.

ProoT. It is obvious that the first term of (X*)~'Az® in the expression of (4.5},

(I — Pyyi)XFe
(T~ PA,w)X'“CII

is bounded by 1. Since the second term can be written as
(5.3) wPyxe (XY (2" — &) = (XM XEP (X9 12 - 2)
and X* P4y« (X*)~"(2"—#) is bounded duc to Lemma 1.4.1, we see that (X%.) A, zh. —

0.
From Corollary 4.3, we have

(5.4) o((XE) T Aualy) = a(BE) + O(||24|)

where 3’123 is the projection of ¢. This shows that a{(X j’j)‘lAﬂm’E) is bounded. Now the
lemma readily follows. O

COROLLARY 5.3. There czists a constant & such that yu* > 6 > 0 for all k.
Next we show:

LEMMA 5.4,

(5.5) (1 = Paxx) X el = 0
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PROOF. We make the following inequality due to the boundedness of objective function
value:

>

(5.6) —oo < (™ —2%) =Y (' )
h=0
< - Z wFo||(1 - Paxe)X* |

k=0

=Y b XE P (XE) T - 7
k=0

< =M > = Paxs)XFe|| + M,
k=0
(Use Lemma 1.4.1 and Corollary 5.3)

where My and M, are positive constants. This implies 332 ||( — Pyx#)X*¢|| < 00, thus
the lemma follows. O

Now we prove Lemma 5.1.
Proor or LEMMA 5.1. Let
(5.7) s®F 2 (XFY U - Pyon) XEe,

which is the dunal estimate for optimality. We can also express it by usiug an appropriate
k
y© as

(5.8) 58 =c— Aly~,

Since Lemma 1.4.1 implies s* is bounded, s* has a convergent subsequence. Let s* be an
accumulation point of s*. Then, from Lemma 5.4,

(5.9) I XFs%| — 0,

thus s%. = 0 follows. This implies ¢ € Im A, which means that the face defined by E
is dual-degenerate. 0

6. Convergence Rates of Infeasibility Criteria and Objective Func-
tion
We investigate convergence rates of w* and ¢'a* — ¢/2° compared with |4 in this
section. As was stated in the previous section, we deal with the case where z* is an
infinite sequence of infeasible points and converges to a feasible point. We also know that
the limit point is in a dual degenerate face due to Lemma 5.1.
We will prove the following two lemmas:

LEMMA 6.1,

k
(7

(6.1) — 50
[
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LEMMA 6.2. There exist some constants & and 8, such that

t k 100 t,.k t, oo
ca® - crt—cu
(6.2) s 26 >0 and ——r = >8>0

hold for sufficiently large k.

Note that ¢!z* may be smaller than ¢!z® in general. Lemma 6.2 however, implies that
ctz* approaches ¢!z from above in the final stage of the convergence.
We will prove the following lemma.

LEMMA 6.3.
where
(6.4) fe(a®) = |E|log(w* — w™) — > logal
JEL
= [E|logw® — 3 log xy

JEE

is the local Karmarkar potential function for feasibility.

Once Lemma 6.3 is proved, then Lemma 6.1 follows. Lemma 6.2 will be derived from
Lemma 6.1. Thus our first goal is to prove Lemma 6.3.

One may think that Lemma 6.3 is similar to Lemma 4.7. An important difference is
that w® is zero in Lemma 6.3 while w® is assumed to be positive in Lemma 4.7. Because
of this, we have a new difficulty in proving Lemina 6.3 that we should take care of ak,
which we could ignore in (4.53) in the proof of Lemma 4.7.

The test of this section cousists of three subsections. In the first subsection, after
proving a basic proposition about the objective function ¢’z on Feas(F) (Proposition
6.4), we construct an approximate vector for o (Lemma 6.6) and express the scaled
iteration in terms of the approximate vector (Lemma 6.8). These results will be used in
the consecutive sections as well as in the proof of Lemma 6.3 and Lemma 6.2. We prove
Lemma 6.3 in the second subsection, and Lemma 6.2 in the third subsection.

6.1. Preliminary Observation

First, we consider the objective function value ¢z on Feas(F).

PRrOPOSITION 6.4. There cxist a vector ¢x € REl and a real number M such that
(6.9) o= da® =ty — wM
for all (z,w) € Feas(F}.

PrROOF. Let % be a vector such that cg- = A%y, whose cxistence is guaranteed by
Lemma 5.1. Then we see:
3 st
(66) C?f[f = (,’Lw.]f]g -+ CfEc.TfEc = C%.’I]E + Yy AEc.’Ifﬁc
= cpap+ P b+ wr’ — Apag)

= (cg — Af,jg)fsr_p + wi'r + u'b
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for any (x,w) € Feas(F). Letting = z* and w = w*, and taking their limits, we obtain
c'x™ = g'b. Setting ¢g = cp — ALy and M = —§'r®, we obtain the lemma., O
Due to the above proposition, we observe the following.

LEMMA 6.5. o is the optimal solution of
Xkeép 2

0
subject to  AX*a = 0.

(6.7) minimize |lo —

ProoF. Since

vk kAL &
(6.8) Xke - (‘YB"E) _ (“fg“‘by)

Xt pe

= X*A'y € Tm(X* 4Y),
and o is a projection of X*¢ onto Null{ AX %), the lemma readily follows. 0
Let &% be the optimal solution of

k minimize ||(JZE — X}fjéﬁng
(6.9) (AE) { subject to  ApXiap € Im{Ag.).

We recall that the feasible region of (Af) is the orthogonal complement of that of (B%)
(See the remark following Lemma 4.1). Thercfore, (5%)'a%, = 0. We also have:

LEmMMA 6.6,
{(6.10) ok = &+ O(| XL kD, and
(6.11) ahe = O(| XgllllaGIh.
ProoF. From Lemma 6.5 and Lemma 1.4.5, the lemina readily follows. O
LEMMA 6.7.
ok, ~k
(6.12) —r = —— + O([ XE ),
le®ll llék
PROOF. Lemma 6.6 implies
: 7 =l Eell” = llag XillPllag
(6.13) o |I? = el + e |* = GEI® + OCIXEI*ab %)

= &% + O(IXE).
Hence,

le]

(6.14) ey
e |

= 1+ O(|| XE[*).

=1
=-I
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Therefore we have

615 ot _ XEPlak])
letll kNt + O XEIP)
ke k2
g L OUXEl")
= (1= O(IXEI") + S
6%l " L+ O(|| X5
ko
&p -
(6.16) - + OUIXEI),
=l
which completes the proof. ]

Next, we check the scaled iteration.

LEMMA 6.8. The E-components of the scaled iteration is written as

BAL
(6.17) (xh) ’E;“-‘e—u"'{”fl.”+ﬁ"+0( Xt}
F

PrOOF. From Corollary 4.3, we have

(6.18) Bk; =ﬁ§i+o(|X§i|)
Combining (6.18) and Lemma 6.7, we obtain the lemma. [l

6.2. Proof of Lemma 6.3

We first observe that {5’]’{3 # 0 for all k. Suppose contrary that [S’fr > () for some k. Then
from Lemma 4.4, ™ must be a relative interior point of the optimal face of (F ). If there
exists an interior feasible solution, it cannot occur. (To see this, recall that the optimal
value w* of (F) is negative while w™ = 0. Thus, (*°,w>) cannot be an optimal solution
of (I").) Even if there cxists no interior feasible solution, the limit point is contained in
a dual-degeneratc face of (P) which is a proper subset of the optimal face of (F) due to
Assumption 2. Hence, the limit point cannot be a relatlvc interior point of the optimal

face of (F). Therefore, we have 3% % 0. This implics — 35 > 1
Let
&k
(6.19) fyf&% ok || — (e~ 0§).
Y

Since 3% is a projection of e and { ALY @k = 0 (see the remark following (6.9}), we have

i Hef@’“
(6.20) evh = —F — |le — B2,
and
t~k
(6.21) V52 = 6%+ [le — B %:zeljf‘:*”
‘E

The fact that ||v5||? > 0 implies that

(6.22) —lle=A51* <

(6%~ |le — Bi%) < 0

na |
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From Lemma 6.8, the scaled iteration can be written by using v& as follows:
it
(6.23) (Xb) e = - {e= b oD ).

Noting that u* < 2/3 — b {due to Step Size Choice 1 and (5.1)), we give a bound for the
difference of the potential function for feasibility as follows.

(6.24) Afp(a*) & fe(z™") = fr(z*)
= |Bllog(w**! fwk) — 3 log(ah+! [2)

je;«;

__ Zlog{l - ko Yﬁn)}

jer

N e
< ,uk t k 1 — pt E

=1 ,ukc YE + ,uk
2 (1 Egotab) + ol

+ O(|XED (Use Lemma 1.4.4)

_ p {et,},k + u’“llv’ﬁ;llz }
L—p* L7 7 201 = pro(h + ) + O(IXED)
+O(|XE).
Since [[y%[1? is bounded and
(6.25) L—prolyp+e) =1 - pla(0ah/|lah] + 55)

=1—pg*o(8c®/||f| + B*%) + O XL
=12+ 0(|X5) > 1/3

holds for sufficiently large &, we have

k et Lk }uk“’)/]b&”‘3 -k
(6.26) Afp(r7) < 7 o {6 e+ m} + O(IXElD.
We define
A ik

~ ky A —
(62{) C()‘ ) - (1 m)\k)ﬂ((Xk)—]Alk) - (1 __)‘k)

Then obviously, ((A*) > 0. Furthermore,

(6.28) (MY <1 M < (1= 2 ((X*) ' AM)
& (o((XF) A% + DI < o((XFYy TARK)
N a((X*)7 Axb)

= AT <
T 1+ o{(XF)T Ak
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hence, we have
(6.29) ¢y <1

due to Step Size Choice 1. (See (2.8).)
Substituting (6.20) and {6.21) into {6.26), we have

(6.30)

wtooela
s < o -

& (,tﬂk
-+£&Ll(92+ikﬁﬁéw e )} +O(IXE])

le = BEII”

] B
k [
_ M 0k X e
= 7o (e — e 3e)
My
+_C(2 )(ez—n - B )}+O(||X )
Eorl—c0h .
< L (P e - e- sy
ARy -
+ 0 e i) + Ol (Use (622).)
< 0~ e BB + OUIX)
~ 2(1 _'uk) HE £l

Recalling that Jle — 5%/ > 1, 6 < 1, g% < 2/3 due to (5.1) and that x* is bounded below
by a positive constant (Corollary 5.3), we see from (6.30) that the difference is smaller
than a negative constant for sufficiently large k. Now the letuma follows. |

6.3. Proof of Lemma 6.2

From Proposition 6.4, we have

{6.31 doak — WM = olak — o™ c H'l
ek
:}L
=3 WO — Pax) X el
I=k
Z Fte XTPy (XD — ).
=k

Recall that

(6.32) 3 pfut = S (! -ty = b
=k
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We have from (6.31),

(6.33) YOI — Py X'e|| < épak — whM + 3 plu' M,
=k I==k

!
-—(Frp-ﬁ-ﬂ/f w®

where M) is an appropriate constant wlose existence is guaranteed by Lemma 1.4.1, and
M =M + |Mr |. Then we have the following inequality.

(6.34) la* — 2l <37 ettt =2t

L IXHT = Py} X'
I(Z — Pax:) )X |l

Z p! | X Py (X1 (20 — 2|

1A
gk
=

< MQZMQH(I Pix)X'e|l +Zy w! My
I=k 1=k

(Use Lemma 1.4.1 and Lemma 1.4.4)
< M.Z(agrf;g + w" M]) 4+ w* M;
= Modhah, + (M My + My)w®
= My(&ah — wh M) + (M| My + M; + MyM)w'
< My(c'a® — ' x™) + (M| My + M + M| M]|)w*.
By dividing both sides by ||* — £>||, we sec from Lemma 6.1 that (6.34) implies

t k t

ot =™
(6.35) L S
l* — 2|
for sufficiently large k. Now the lemma readily follows. ]

7. Asymptotic Property of the Sequence

Before proving further convergence results, we make a few observations in this section.
Note ‘rhat we deal with the case where £ is a feasible solution in a dual degenerate face
and @¥ is an infinite sequence of infeasible points. (See the remark in the beginning of
Section 5.)

We define for a nonempty index set F* C F,

(7.1) ®p(x*) & |(XE) T IXE,
k
(7.2) Wp(at) & S
ek
(7.3) Ap(a®) 2T k.
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We sometimes use &%, W% and Ak ‘;ﬂ as abbreviation for ©p(z%), ¥ p(2*), and Ap(x ") re-
spectively. We remark that ®p(z*) already appeared in Lemma 1.4.5, and ¥ p(2* ) in
Lemma 6.1.

The aim of this section is to prove the following lemma.

LEMMA 7.1. One and only one of the following two cases occurs on the sequence {.q:k}:

(1) there exists a nonempty index set F C E such that
(7.4) (®h, ALY - 0 and M>T% >8>0

where M and & are positive constants which do not depend on k and A% T converges
asymplotically linearly; or

(2) there ezists a noncmpty index sct F C E such that (%, A%) has 0 as an accumu-
lation point and W is not bounded above.

We say that an index set J defermines a face of Feas{P) if there exists an x € Feas({P)
such that

(7.5) xy=0 and x; >0.

We denote by Face(J) a face of Feas{P) determined by index set J.
The meaning of Lemma 7.1 may become clear in view of the following lemma which is
proved in Appendix.

LEMMA 7.2, If (Bp(z*), Ap(a*)) has 0 as an accurnulation point, then F determines a
face of Feas(P).

Due to the above lemma, we sce that the index set F identified in the cases (1) and (2)
of Lemma 7.1 determines a face. Intuitively speaking, in both cases of Lemma 7.1, there
exists a face Face(F') larger than Face(E) and that the sequence approaches the limit
point in Face(£) tangentially to Face(F).

To prove Lemma 7.1, we use the following two lemmas:

LEMMA 7.3. There exists an index set F C E such that (&%, A%) has 0 as an accumu-
lation point and (®%, A%, UL does not have 0 as an accumulation point.

LEMMA 7.4. Assume that therc exists an index set F' which satisfies
(1) FCE.

(2) UL is bounded above.

(3) ®% has 0 as an accumulation point.

(4) (®%, Wk does not have 0 as an accumulation point.

Then, ®% converges to 0 and A% converges asymptotically linearly to 0.
Based on these two lemmas, Lemma 7.1 is shown as follows.

PrROOF OF LEMMA 7.1. Due to Lemma 7.3, there cxists a nonempty index set F such
that (9%, A%) has 0 as an accumulation point. Suppose that the case {2) of Lemma 7.1
does not oceur, that is, ¥% is bounded above. Then it is easy to check that F satisfies
the condition (1), (2), and (3) of Lemma 7.4.

Suppose that (@ T5) — 0 Lolds for a subsequence. Since P is bounded above, we
see that A < |F|®% W4 < M®E holds, thus if &% — 0, then A% — 0. Therefore, we th(‘
(D, Ak 111;”') — 0 Whl(‘h (‘ontrachctq Lemma 7.3. Hence 0 cannot be an accumulation
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point of (®%, ¥%), and condition (4) of Lemma 7.4 holds. Now applying Lemma 7.4, we
sec that the case (1) of Lemma 7.1 holds. [

Lemma 7.4 is proved in Appendix. We prove Lemma 7.3 in the remaining part of this
section. To begin with, we prove the following lemma.

LEMMA 7.5. w*(X*)te does not have 0 as an accumulation point.

Proor. We have
(7.6)
Ha®
o]

<#+ J‘Jw"'o((Xk)“le) (Use Lemma 1.4.1).

c((X*)'Az) = a(

+ oM (XTI P (X)) (20— 2%)) (Use (2.22))

Suppose contrary that 0 is an accumulation point of w*(X*)~e. Then, o((X*)"1Az*) < 1
occurs for some %, which contradicts (5.1). O

Since w*( X §.) e converges to 0, the above lemma implies that w® (X%) e does not have
0 as an accumulation point.
Next, we prove the following lemma.

LEMMA 7.6. Assume that (®%,, A%, U has 0 as en accumulation point for an index
set E'. Then, there exists a nonempty index sct F' C E' such that (B, A% has 0 as an
accumulation point.

ProOOF. Let (@ﬁ},, A'E., lIJ?,) be a subsequence convergent to 0. Let

—_ ~k A ;I’E'
(f 7) TLEl — - T
w

Then ||@%]| — oo. We can choose an appropriate subsequence ky of k, such that

(7.8) i — iy, < o,
(7.9) 17’;'1' — 00,
(7.10) F+F=F.

Suppose that Fy is empty. It means that for all j € E',
(7.11) wk'-’/:rf" — 0.
On the other hand, for j & E’,

(7.12) wkf’/w;?" < Aiff — 0

also holds. These facts contradict Lemma 7.5. Thus F) cannot be empty.
Since F} is also not empty, we have ¥, ¢ E' and

ks By oy Iy
(7.13) O = (XA THIIXG ] — 0.
Next, let
k
- 'TF’
(7.14) uk, & 8
T ekl
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Then we can choose an appropriate subsequence kv of &, such that

(7.15) w0,
(7.16) 't.LF;_;f;’ — g >0,
(7.17) B+ Fy=F.

Due to the existence of F), we can assume that F is not empty. Obviously, F, is not
empty too, thus Fy C E’. There exists a positive constant é such that

(7.18) w650

holds for all j € Fy and all ky. Hence we have

kpr wher “1

(719) AF?, ko

|| min 2

kf” ||
D -‘Cin ktu
L <ok s = 0Ty — 0,

P L

j
We also have
(7.20) S = [I(XE) X
= max((|(X5 )71, XD e - o.
Now the index set Fy is what we sought. 7
Finally, we prove Lemma 7.3.

PRroOF OF LEMMA 7.3. From Lemma 6.1, we have W% — 0, which implies (&%, A%, wh) —
0. We can apply Lemma 7.6 and see that there exists an index set E; € FE such that
(@’EI,A%I) has 0 as an accumulation point. If (@%I,Aﬁ;],@%l) does not have 0 as an
accumulation point, then the lemma follows. Suppose that 0 is an accumulation point
of (@%I,A’EI,W%]). Then we can apply Lemma 7.6 again with E' = E;. We can apply
the above procedure recursively and produce a sequence of index sets {E;|j=1,2,...}
where

(7.21) EoE,DE, D,

H

Since £ is a finite set, this procedurc should end up with some subset Ey. Since Ey is
produced by Lemma 7.6, Ey is nonempty and (@’;}N, Ak, ) has 0 as an accumulation point.
Furthermore, since Ey does not satisfy the assumption of Lemma 7.6, (@%N,A%N, \IJ%N)
does not have 0 as an accumulation point. Now Ey is what we want. O

8. Case (1) of Lemma 7.1

In this section, we investigate the behavior of the primal sequence and dual estimates
in the case (1) of Lemma 7.1 extensively. Therefore, we assume that

(8.1) (@5, AfF) -0  and M>Th >8>0

and that A% converges to 0 asymptotically lincarly throughout the section. From the
boundedness of W4, we see that

(8.2) AL < |F|950F = O(@F).
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We let F 2 E — F. Since
(8.3) ok = AL n}gmr < AR|IXE

holds for suffictently large %, we have
(8.4) = O( QR XE]).

The case (2) will be discussed in the next section. We will show that (P) has no interior
feasible solution in the case (1} of Lemma 7.1. In other words, we will prove:

THEOREM 8.1. If the case (1) of Lemma 7.1 occurs, then F determines the optimal

face of (F).

This section consists of six subsections. First three subscctions are devoted to proving
the following lemma:

LEmMMA 8.2. Assume that the face determined by F is not the optimal face of (F).
Then, \Ilk - (.

Once this lemma is shown, Theorem 8.1 readily follows by taking account of the second
relation of (8.1). We will prove Lemma 8.2 by using the local Karmarkar potential function
developed in Chapter II. To evaluate the local Karmarkar potential function, we prepare
a few lemmas on behaviors of 8% and &% in Subscctions 8.1 and 8.2, respectively. The
lemmas and corollaries derived in these subsections are used in the pwof of Lemma 8.2 as
well as in the consecutive subsections. In Subsection 8.4, we prove global convergence of
the primal scquence when the case (1) of Lemma 7.1 occurs by using the local Karmarkar
potential function. Subsections 8.5 and 8.6 are devoted to proving global convergence of
dual estimates for optimality and feasibility, respectively.

8.1. Behavior of 3.

The first lemma we introduce here is:

Lemma 8.3. ||3%] = O(%).
PRrOOF. In view of Lemma 2.1 and Lemma 1.4.1, it is casy to sce that ||6‘” | = O(A%) =
O(@f). m

We denote by 8% the optimal solution of

_ _ minimize  ||GF — ¢||*
(8.3) (Br) { subject to  Op = XpApy, Ak.y=0.

Then we have the following lemma.
LEMMA 8.4.
(8.6) 13 — A%l = O(@%).

This lemma means that 3% approximates 3% when ®% - 0. The proof is almost the same
as that of Lemma 4.1 if we recall that w™ = (), hence we omit the proof.
Next we show the following property of 3%.

LEMMA 8.5. If 3% > 0 happens for some k, then Face(F) is the optimal face of (F).
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PrOOF. From (8.1) and Lemma 7.2, F determines a face of {P), and there exists a
point ¥ € R" such that

(87) flpcli'pr = b, Tpe > U’ Ip = 0.
Let (3%, 7%} be the optimal solution of {(Bf). Putting
k
_ wy
(8.8) = TSR
131
we have
(89) (T{])I?_I _ wk‘(j.o)tg}k _ (.Tk . _:E,Oc)lAlgk:
L 135017 [EAS
_ (b =) A (e — e (X)X AL
I3 I 1551
I ]
=l =
TR

Hence ¥ satisfies the equality constraints of (DF).
Since ALy > 0 follows from 3% > 0, we see that 7 and (7, 0) satisfy strict complemen-
tarity condition for {F) and (DF). |

8.2. Behavior of &%,

We recall that &% is the optimal solution of
E

inimize  [|ay — Xképl|?
(8.10) (AF>{ minimize  [lag BeEll

subject to ApXfay =0,

where Ag is defined by (4.10). Let offp and u’; be the optimal solutions of

- minimize  [jop — Xhép||?
(8.11) {Ar) { subject to ApXfoap € Im(A;),
and
minimize ||rv P X?ffﬁnz

(8.12) (i) {

subject to AFXFG,F =1,

respectively. Then we see from Lemma 1.4.5 that there exist some constants M, Ma, Ms,
and Ay such that

(8.13) = G5l < BR(@p(e*) 85 + S (%)
(8.14) o - }Fnsmp( &L + 3a(@ (ot >||.-r1;||.

We will prove the following three lemmas in the remaining part of this subsection.

LEMMA 8.6. (”}Tf; 15 positive for sufficiently large k, and
o ff}l\: .
(8.15) i 11’: =1+ O(P}).
P
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LEMMA 8.7.
[l :
(8.16) L= O(k).
O‘E”
LEMMA 8.8.
ke 2k
Lo X
(8.17) = =+ O(F).
|| &l C"ﬁ”

The above lemmas, combined with Lemma 8.3 and Lemma 8.4, suggest that F-component
of the scaled direction is almost 3%, while F-component is close to a’;-
To prove the above lemmas, we prepare a few lemmas. The following lemma is sub-

stantial to the proof of Lemma 8.6.

LEMMA 8.9, Letf ’”y’; be the optimal solution of

i minimize ||y — ¢)|?
(8.18) (Gr) { subject to Aﬁxig»h:, = (.

Then,
(8.19) 175 = el = O(@p(2*)).
Proor. Recall the matrix N defined after Lemma 4.1. We have
(8.20) NAp- =10
by definition. Since
(8.21) Apxh + Ape(ah, — 2%5) = 0P = wF(A2" - b)

= w*( A2l + Apeahe — Agea),
multiplying both sides by N, we have, due to (8.20),

(8.22) ApXhile — w®( X520 = 0.

Let 4% = ¢ — wF(X%) 12%. From (8.22), we have

(8.23) ApXEAk = ~ApXEah = —Ap(ah — wbal).

Then there exists a % which is a solution of tle system A Xk 77 = 0 such that
(824) 45—l < ALJCYEY e — wtal = O(@(r*) + Ap(ah)).

Noting that A% = O(®%) since W%, is bounded, we have

(8.25) e = wh(X5) 2% — 5E]| = O(@p(ct)).

hence

(8.26) le — 7kl = O(@p(at)).

On the other hand, since '_y;“ is feasible for (G ) and 'y’} is optimal for (G ), we have
(8.27) 17 = ell <1175 — el = O(@:(2%))

and this completes the proof. O
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COROLLARY 8.10.

(8.28) ol = ok + O(| X |9k,

Proor. Since é’;; and g/iif, are projections onto the same linear space Null( A FX'FE.) of

)&f;fp and e, respectively,

(8.29) (Yeyals = (35) Xhe
holds. Then, in view of the previous lemma, we have
(8.30) cldk = (AL)ak + C’?’(lléﬁp*H‘I’k

(V) XbEés + O] &k @%)
e'XEe + O(IIX}:II@%)
dhak 4+ O] XE| %)

i

i

fi

and this completes the proof. O

LEMMA &.11.

(8.31)

for sufficiently large k.

ProorF. In view of Lemma 6.1, Lemma 6.2 and Proposition 6.4, we see that

Atk
Cplg

=Tk
& Newillkl

Tkl il

(8.32) 0<é <

holds for sufficiently large k. Now the lemma readily follows from the fact that ®p(2*) —
0. ]

COROLLARY 8.12,

(A,i 'L'k
(8.33) E>6>0
|
for sufficiently large k.
ProoF. Since ||z%| > corollary is obvious in view of Lemma 8.11. O

Now we are ready to prove the main lemmas.
ProoF oF LEMMA 8.6. Lemma 8.11 implies that 6%1:13% 1s positive for sufficiently large
k. Then, from Corollary 8.10 and Corollary 8.12,

b h”(I)k

-..;
35"‘

ﬂ.!-";'::

P GprE+ Ol [ X
T e
LE Cpe

{oF

m

(8.34) =1+ 0O(2%).

l'}:

T

”’Jf?i'

t
I
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COROLLARY 8.13.

lll

(8.35) o JFI

— 4+ O(®%) for sufficiently large k.

Proor. This is obvious from Lemma 8.6. |

COROLLARY 8.14

(8.36) ||::r{|||| >6>0 for sufficiently large k.
I
ProoOF.
AR
. Ia5 _ Vb
legll ekl
O
Proor or LEMMA 8.7. Frowm (8.13), we have
(8.38) i85l = 651 + OU@E) &1l + BENIXE)
= O(llaFll + PEIXEI)
= O|lz7l + DHIXEN).
Thus,
lé | HLFI|+‘I"‘ IX; H
(8.39) Tk = K
(.’}537}3 (F’Tf.
k o
x| X 2
= (’)(w k) (Use Corollary 8.12)
[ Tt
= O(®%) (Use Corollary 8.12 again)
for sufficiently large k. Then we have from (8.14) that
5.0 IG5 _ G + OO + (o6 1XE)
: 3 otk
Epy Cply
ek || (‘I’i-llX?fl(H (XE) Ik | +‘I’§¥))
= )
CFIF Cpat
) ‘Zk + O{2}.)%) (Use Corollary 8.12)
i
>8>0  (Use Corollary 8.13).
Hence, from (8.39) and (8.40),
~k ~k “ k|| at
(841) ”(;1;:” < “(’,\i}(” ”OZF”C E O((I)k)
eIl — NGl & ~?’pllﬂfpll
|
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PrROOF OF LEMMA 8.8. Lemma 8.7 implies that

(8.42) 65117 = la%]1? + O((@4) 6% 1)
Therefore,
(8.43) &I = lapll(l + O((®4)*))

holds. On the other hand, (8.14) implies that

(8.44)

gl = ekl < llak — &l
= O(@} ]| afll + (@)% ().

From (8.43) and (8.44), we have

(8.45) 16N = llaEIl = Ok ).

Then by using (8.14} we have

it _ Q’; + O((I"%HJ?%”)
+O(‘I’ HTE||)

k Tp
k) (1 rotlen ))
T

Ak ko ok

'+ O(F ||k
= ai‘ ‘+ (@] i“) (Use Corollary 8.14)
a’f?“(l + O(®%))

dk

II“’“H

and this completes the proof. 0

(8.46)

+ O(D%), {Use Corollary 8.14 again)

8.3. Proof of Lemma 8.2

From Lemma 6.7, Lemma 8.7 and Lemma 8.4, we see that the scaled iteration associated
with F' can be written as

(8.47) (X3 'kt = e — pFBE + O(@% + | XE|?)

where 3% is the optimal solution of (B} in {8.5).
We consider reduction of the local Karmarkar potential function for feasibility:

(8.48) fr(a®) = |F|log w® — > log rﬁ

JEF

Let ok £ ®% + || X%|2. Then we have the following lemma which is an substantial part
of the proof of Lemma 8.2.
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LEMMA 8.15.

(8.49)
Afp(x®) & fp(a®) = fp(2®)

< ( s )“e—ﬁ ||2{~1+ "’k }+O(¢>F)
Al - ,u 2(1 - (ﬁr))
< —elle — FE|I* + O(¢5)

for sufficiently large k and for a posttive constant .

Proor. We have

(8.50)
wk+ 'H']
Afp(ak) = |F|log o ~ 3 log -2
JEF )
= |F|log(1 - p*) = 3 log(1 — u*)(1 + 1 - ku — 35+ 0(%))
J'EI

——Zlogl-i"

JEF

( #Lk )2 ||E’ 6;2: HZ

k o 1 — 4* - PF

< () e e+ I
2(1 l_pka(—(ﬁ~/3§))+0(¢%))

O(%) (Use Proposition 2.4.2)

'( - )Hf—ﬁ 4 -1+ v ogy
[ 2(1 - pfa(3h) + O(h) o

Furthermore, we have

(1—/3k)+0(®"))

(8.51) pFa(8E) = pho(Ah) + O(8%) (Use Lemina 8.4)
= pra(fa/|lof|| + 85) + O(@% + | XL|I*)
(Use Lemma 6.7 and Lemma 8.7)
< pfa(Ba’ /||t + 3% + O(@f + | XE[P)
= M+ O(f + | XE[)
<2/3 -6 +O(% + | X[

Therefore,
(8.52) 2/3—6/2> po(Bh)

holds for sufficiently large k. Also, we note that p* = A /a({ X*)~1Az) < 2/3 — 6. From
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these observation, we see

k .
i B ut

21— po(F) + O(h) 201 — iFa(A}))
Now substituting (8.53) for (8.50) and noting that 3% is bounded by definition, we have

the first inequality of (8.49).
The inequality {8.52) implies

(8.53) +O(¢h).

. .
2/3—-¢
(8.54) —1+ P < a 3T el
201 — p o (53)) 2/3+8
Hence from Corollary 5.3 and the fact that p* < 2/3, the lemma readily follows. |

Now we prove Lemma 8.2.

PROOF OF LEMMA 8.2. By assumption, A% % 0 from Lemma 8.5. Hence we have
|le— 3% > 1. From Lemma 8.15, Afp(aF) < —¢ < 0 for sufficiently large k. This implics
fr(z*) = —o0, which completes the proof. 0

8.4. Global Convergence of the Primal Sequence
In this subsection, we prove global convergence of the primal iterates.

THEOREM 8.16. If the case (1) of Lemma 7.1 occurs, then x* s a relative interior
point of the optimal face.

First, as we already know that Face(F) is the optimal face of (I}, we consider the
following LP problem by removing F-components of {P):

L ,
. minimize ¢ pe

8.55 Ppe .

( ) (Pre) subject to Aperp. =0, ap > 0.

Note that (Ppc) has an interior feasible solution and that the optimal face of (Ppe) is
derived by ignoring ' components of the optimal face of (P) which are all zeros. Now we
prove the following lemma:

LEmMMA 8.17. If 55;‘ > 0 for some k, then Face(F) is the optimal face of {P).
PROOF. By setting up Lagrangian of (A;) in (8.12), we see that
(8.56) ok~ Xhép — XEALy =
for an appropriate 3. Then letting s’; 2 (XE)Tlak
(8.57) 88 =5 — AL = ¢p — ALNG

where N is defined in Subsection 8.1. Hence,

k o
(8.58) (bd“) = ((6:) ~ AL Ny = cpe — Al

holds for an appropriate . If c:\,i > 0, then % > 0 follows thus (5‘;,0) and {0, z%)
satisty strict complementarity condition for {Pp.) and its dual (DPpc). Now by recalling
the remark following (8.55), the lemia readily follows. O
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Next we define the local Karmarkar potential function for optimality:

(8.59) gp(a®) £ |F|log(c'z* - ¢'z%) — ¥ logah.

JEF

We point out that c'z* may be less than ¢'2® in gencral. In this case, gp(2*) cannot
be defined. Lemma 6.2, however, guarantees that there exists a number K such that if
k > K, then ¢'a* > ¢'2* and g;(2*) is well-defined. Since our main concern is convergence
property of the sequence, we are not interested in the case where & is so small that gp(z®)
is not well-defined. It is sufficient to deal with the case where k > K, and we assume it
in the consecutive analysis until the end of this section.

To prove Theorem 8.16, we prove the following lemma.

LEMMA 8.18. If Face(F') is not the optimal face of (P), then gp(a*) —» —oc.
If we can prove Lemma 8.18, then the theorem is proved as follows.

PROOF OF THEOREM 8.16. Lemma 6.2 implies that there exists a positive constant &
such that

(5.60) R A B L SN S 650
(|l 2% |
Since
n T ooy P
(cla® — ctax>)IF] —(ctak — oty )
(8.61) exp(gp(a*)) = T > | V] lW :
jer J r

we see that gz(2*) is bounded below. Suppose that F is not the optimal face. Then from

Lemma 8.18, exp(gz(«*)) — 0. This contradicts (8.61). Hence, Face(ﬁ’) must be the
optimal face. ]

We show a fow lemmas to prove Lemma 8.18.

LeEMmA 8.19,
Ctmk+l _ Ctli’,’oo “&:“ -
(8-62) T o = 1 — ng v [‘k +O(¢F_)
P AR fr =

where QBI} = CI”‘% + ||_X’If3||2
ProoF. We have

A I T R sy V|

thk _ c.'.l,oo

(8.63) (Use Proposition 6.4)

ok, — wh M
¢ CeXp(Bah /|0t + BE) — w* A
—_ M .

(’F :‘1:’3 — wr M
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Now we see:

& Xhak, Y -
(8.64) b—%—ﬁ = AR [ + (9(“)&%”3)) (Use Lemma 6.7)
o]l |
XLk ik .
= =+ O(IXEI®E + | XE])
oz
(Use Lemina 8.7 and Lemma 8.8)
= Jlafill + O XEl| %)
(Recall the definition of c}’;)
and

e Xuog = Okl + O(| XE18%)  (Use Lemma 8.3)
= O(||X}]|9%).
Hence, we have

At dta O]+ OIS + X5 ~ utar

cdat—ca® F”f’r’; + épxk — wh AL
_ 1 polakll + O(IXESE)
Fpri(1+ 02 )
(Use (8.1), (8.4) and Lemuna 8.11.)

(8.65)

e 10K
=1—po—
C.Tﬁ

(Use Lemma 8.11)

[ &
L F'k + O(gb'}')
Cﬁ$ﬁ

(Use Lemma 8.11 and Corollary 8.14.)

&

(1+0(85)) + 0(4h)

=l—,uk6’

The following lemma is essential to the proof of Lemma 8.18.

LEMMA 8.20. The difference of gp(;rk) at each iteration is evaluated as
(8.66)
Agp(a*) £ gp(@*) — gp(a*)

Pl e . . V¥ h
< F'_—M”’?’}—WHZ _‘F|+2(1my"‘*g(ﬁ;’€)) + O( )
%
Sk € ~
< —ellnf — |75*I*||2 +O(oh)
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for sufficiently large k where

“k
(8.67) i =

vt & Rk
and € 15 a positive constant.

Proor. By using Lemma 8.19, we have

(8.68)
dopktl
Agp{a®) = |F)| log{i-;iwkr—(——a:—} Zlog IH]/I
cat ¢ oy
- k d%” ko k
= |F|log{ 1 —p QW — 3 log(1 — p*(Ba et + 3 )
BT o
In view of Lemma 6.7 and Lemma 8.8, we sce that
k_ &k :.‘c i
(8.69) 7+ OUXEN?) = —fF= + O(|XE|? + ®p(a*))
||le| N l &k ||
Since ||6§|| = O(®%) due to 8.3, we have
(8.70) Agp(a*) = |F|log {1 — p*0]| k]| + O(h)}
“k
—Zlog{l— b2 C’)(qy;)}
JEF ” 1 ”
. o’
= |F] log{l - Ili%"iH I7511% + O(5)
P

—Zlog{l 6 fj+0(¢'r)}

ek 175
= |Fllog(1 = (|73 + O(d})
-3 logl1 — oA+ O38))
Jer
Due to the facts that vka(ﬁ’}) < u4*8 < 2/3 and Lemma 8.6, we apply Lemma 4.10 to

obtain the following bound

k

. . v
< |7 — 2 { P + :
|F| = | 2(1 - vFo (k)
which proves the first inequality of (8.66).
From Corollary 8.12 and the definition of Ex’i, we have

|F I

(871)  Agp(a®) } +O(e)

I “FHIIX" I

(8.72) 1l = =t
Xl

< o0
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for sufficiently large k. Furthermore, Corollary 5.3 tells us that 4% is bounded below by a
positive constant. Hence, #/* is also bounded below by a positive constant.
By using Corollary 8.13, we have

(8.73) |F| = v* = |F| = b0l
2 |Fl = 1| F| + O(®%) > |Fi/3+O(Bh) > ¢ > 0

for sufficiently large k. Finally, we have

k k ~k
- - v - 18/ |17 |
(8’4) —|F|+ 3 :—|F'+ ik &
2(1 - vralifz) 201 = u* o (i) /%)
. (2/3-8)|F
<y 2B 81P
2/3 + 26

<=8 <0

Now the lemma follows from (8.71) and the above observations. I

Now we are ready to prove Lemma 8.18.

ProoF oF LEMMA 8.18. By assumption, Face(F) 1s not the optimal face. Note that
if |F| = 1, then for sufficiently large k, f]’; > 0 follows from Lemma 8.6. Thus, from

Lemma 8.17, Face(F) is the optimal face which contradicts the assumption. Thus we
assume |F| > 2.

Due to Lemma 8.17, df} (hence, ﬁtﬂ) has at least one non-positive component. This and
Lemma 8.6 imply

ke e 1 \
(8.75) 7 — ﬁ;{“ 2 W—FO(@%).
Hence, from Lemma 8.20, we have

; €

(8.76) Agp(at) < THFF = 1) <0
for sufficiently large & where € is identified in (8.66). Therefore, we have
(8.77) gp(z®) — —oc,
which completes the proof. 0

8.5. Global Convergence of Dual Estimates for Optimality

Next we investigate the limiting behavior of the dual estimate for optimality s* which
is defined by (5.7). We have already seen in Section 5 that s* is bounded and she — 0.

We define the analytic center of the optimal face of (DPp.), the dual problem of (Pp)
by the optimal solution of

minimize  — 3. g logs;
(8.78) (CDPpe)< subject to s; + Ay =cp, sp> 0,
Aﬁ@fy =cpe, Spe =10,
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The Karush-Kuhn-Tucker condition for (CDPp.) is

(8.79) ApSile— Ap£ =0,
(880) 5}} -+ A}g = Cp,
(8.81) AL = epe,
(8.82) sp >0,

where § 5 2 diag(sy). The convexity of logarithm aud the boundedness of the optimal
face of (DPp) imply that 57 is unique.
We have the following lemmas.

LEMMA 8.21.

(8.83) Yot <
k=0
Proor. From Lemma 8.19 and Corollary 8.13, we sec that c'z* — ctz™ converges to ()
asymptotically linearly. Thus we see that for sufficiently large k, there exists a positive
constant Af; such that

(8.84) STt € My > (cfz! — 2™ < o0
=k l=k
in consideration of Lemma 6.2. Since A% converges to 0 asymptotically linearly, we have
(8.85) Yo @p(e) <MY AL < oo,
I=k =k
which, combined with (8.84), shows (8.83). O

LEMma 822. (1) gp(a®) is bounded above.

£

PROOF. Noting that gz(z*) is bounded below due to Lemma 6.2, the lemma readily
follows from Lemma 8.20 and Lemma 8.21. I

Now we are ready to prove the theorem.

THEOREM 8.23. If the case (1) of Lemma 7.1 occurs, then s&. — 3pe, which is the
analytic center of the optimal face of (D Pp.).

We do not mention the behavior of the F-components of s*. In fact we do not even tell
whether s% converges or not., One may think that the above theorem is meaningless from
practical viewpoint since F is not known. In the next subsection however, we prove that
we can detect the index F by observing dual estimates for feasibility. Hence, Theorem
8.23 still gives us a good information on the dual problem.

Proor or THEOREM 8.23. We use éf; = (X"g;)“'é% which 1s defined in the proof of
Lemma 8.17 again. The proof has the following two steps.

(STEP 1) Prove §fﬁ — Sj.
(STEP 2) Prove ||§i‘,~ — q’;?” = 0.
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Then, recalling that s§. converges to 0 due to Proposition 5.1, we have the theorom.
(STEP 1) s% — 5. ,

From (8.58), we see that c’} satisfies (8.80) and (8.81).

We see from Proposition 6.4 that

(8.86) bk, — ot = E’P?i; + O(uw* + IE3A)E

Since Proposition 6.4 also holds if w = 0, we may assume that ¢p > 0 by strict comple-
mentarity of (Pg.) and (DPp-).

Forj e F,
lb t.00 otk otk ko
oo CX 0T G+ G —wt M
(8.87) p; = " = —
.‘j .lj
> minég + O(®h + AL) > 6 >0
jEF

holds for sufficiently large & and a positive constant 6. On the other hand, (1) of Lemma
8.22 implies that there exists a constant M; such that

< M.

(cteh — ™)l
8.88 1T = 4
(8.88) jef‘z ’ I zf
jer

The inequalities (8.87) and (8.88) imply that there exists a constant M, such that
(8.89) Pt < M.

Hence p;-“ is bounded and every accumulation point of pf;' 1s positive. Then every accumu-

lation point of 5'; is also positive since

S &
(8.90) § =~ =ph :};f
TJ
and 7:];” — 1/|F| due to (2) of Lemma 8.22.
Let
k o
, ¥ —a
(891) qk é N ="
ol [ &

Lemma 6.2 implies that ¢* is bounded above for sufficiently large k. Let &, be a subse-
quence of k such that ¢& — ¢* which is an accumulation point. Then we see that p* and

3’}’ are also convergent to p* and §%, respectively and that for j € F, )ﬁ’|qj = |Fl( p)l =

(§3‘)_1 Since

k "
+ Ape(ahe — 2F0) wh 0
ko clpe o L

e Ty

k
AFIL‘F A
Tk

(8.92) Agt = Tk

F.’E

-

cta® — ™ e cr™ At
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we have
(8.93)
s = - HCESR) o I
c'r* — cly claf — o
Apele =) bk k) [l
T TR (tTDO + O ab)|  efat — ct;z:"")

Agpclr (I}Hc 3 8
- Et (kib 7 OEO ) + O(0% 4 o), (Use Lemma 6.1 and Lemma 6.2).
™ —c'r

Taking limit of the above, we have
(894) Aﬁq*ﬁ' = Apeqp.,

which implies that s* satisfies (8.79). Since ewly accumulation point of .5~ satisfies
(8.79)-(8.82) and §; is unique, we conclude that &= 8.
(STEP 2) ||9 — s’“|| — 0.

Since pj ts bounded above and below by a positive constant, we see
max p
JEF

min p
JEF

(895) o0 > M;;

e = IR HIXED:

Thus we have
(8.96) 155 — skl = 1(XE) ™" (k- ab)]
< IXE il — &Gl + llas ~ C:’(fmll)
< MUCXE) IXEIPIaE] + Mal(XE) |95 |12
(Use Lemma 6.6 and (8.14))
< MM || XG5 + MaMy®% — 0

1l

and this completes the proof. |

8.6. Global Convergence of Dual Estimates for Feasibility

We consider the following optimization problem;

- minimize || X*z||?

(8.97) { subject to z = Aly, (r")y = 1.

Let z* = A'y* be the optimal solution. We call z* a dual cstimate for feasibility.
By calculating Karush-Kuhn-Tucker condition, it is casy to see that

; (‘X—k)—lﬁk
(8.98 P T e
) GG
The optimal face of (DF) is
(899) D é {Z I &= ‘Aiyy ipe = Oa &0 Z O: (T'O)Iy =1 } .
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We define the analytic center of the optimal face of (DF) by the optimal solution of

minimize  — 3. plog 2
(8.100) (CDF) { subject to 2z €D, zp > 0.

The Karush-Kuhn-Tucker condition for (CDF) is

(8.101) 7= Aly,

(8.102) ArZpte = Apcbpe — Er0 =0, (Zp 2 diag(3r)),
(8.103) Zp >0,

(8.104) Zpe = 0,

(8.105) (r’)'y = 1.

Since (F) has an interior feasible solution, the optimal face of (DF) is bounded, thus %
18 unique.
Then we have the following theorem.

THEOREM 8.24. If the case (1} of Lemma 7.1 occurs, then z* — 3,

PROOF. The equations (8.101) and (8.105) follow from the definition.
From (8.1), fr(*) is bounded below. Then 3§ — ¢ in view of (8.49} and Lemma 8.21.
This and Lemma 8.4 imply that

(8.106) By — e

Hence ||5*| is bounded below. Since A% — 0, it is easy to see that 25, — 0 from (8.98),
which proves (8.104).

We also casily see that fp(z") is bounded above due to (8.49) and Lemma 8.21,

Let q;‘-" = J:;“ / wj-" for 7 € F. Since F determines the optimal face of (F), we can write

w® = Lok where 2p > 0 by strict complementarity. Hence ||¢*|| is bounded above.
On the other hand,
(8.107) JL(g))™ = oxp(fr(at))

is bounded below by a positive constant and above since fp(2*) is bounded below and
above. Hence, g; is also bounded below by a positive constant. Therefore, 7% has an
accumulation point g7 which is strictly positive. Let &, be a subsequence of k with which
¢ - qp. Then for j € F, (2;-“)_1 — |F|g; > 0 holds from (8.98) and (8.106).

Now

k A[ﬂ.’lf? 1 by 0 b R
(8.108) Apqp = —p— = — (w rt — Ape(rh. — ﬂ:,»«))
LTI wht
A ki EA
_ ?10 o FL‘(.TFC - .LF’C)
e '

Since left hand side is convergent, the right hand side is also convergent and there exists
some gp. such that

(8.109) Apdy =" = Apegie.
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This implies that 2% satisfies (8.102) by setting & = {F|. In addition, obviously 2 > 0.

Hence 2* satisfies (8.101)-(8.105). Now from the uniqueness of 7, we have 2% — 3. d

It is worth noting that we can construct strict complementarity solutions of (P) and
(DP) due to Theorem 8.24. The key observation is that we already have an “infinite
direction” of the optimal face of {DP), Z. To show this, recall that s* is bounded due to
Lemma 1.4.1 thus therc exists a constant M such that |s¥] < M for all j € F. Let s% be
an accumulation point of s%. Then,

C;‘ S} M EF'
(8.110) ¢ §p | +———] 0
0 O IlllIlje[*' < 0

2

and (0, 2% ) satisfy the strict complementarity condition.
The dual estimate for feasibility z* also plays important role when we detect infeasibility
of (P). We have the following theorcm.

THEOREM 8.25. If c'z* is bounded below and (P) is infeasible, then z* — 3 which is
the analytic center of the optimal face of (DF).

Due to the above theorem, if 2 and 2™ satisfy strict complementarity, we know that
(P) does not have a feasible solution. In view of the proof of Theorem 4.12, the proof of
the above theorem is almost same as that of Theorem 8.24, hence we omit the proof.

9. Case (2) of Lemma 7.1

In this section, we deal with the case (2) of Lemma 7.1. Swrprisingly, the main lemma
is as follows.

LEMMA 9.1. The case (2} of Lemma 7.1 cannot occur under Assurnption 4,

Recall that we make Assumption 4 in the analysis up to now and that (P) does not have

an interior feasible solution in the case (1) of Lemma 7.1 duc to Lemma 8.1. Therefore,

Lemma 9.1 implies that if (P} has an interior feasible solution, then Assumption 4 must

break, thus the proposed method finds an interior feasible solution in a finite number of

iterations. This proves, combined with Theorem 8.16 and Theoremn 4.12, Theorem 2.4.
To prove Lemma 9.1, we will prove the following lemma.

LemMaA 9.2, If the case (2) of Lemma 7.1 occurs, then 35 — 0.
Once the above lemma is proved, Lemma 9.1 can he proved as follows,

PrROOF oF LEMMA 9.1. We first see that for j & F,

w™ &
(91) T § l'\]j — 0
o
for some subsequence k,. Since
(9.2) BF = wh(XE)TIXEP o (XR) (20 — )

and X*Pyxr(X*)"1{2® — 2} is bounded due to Lemma 1.4.1, (9.1) implies o(B%) — 0.
This and Lemma 9.2 imply ¢(3*) — 0. On the other hand, obviously a(faf/|a*||) <
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6 < 1. Hence we have o((X*) ' Az™) < 1 for sufficiently large ¢, which contradicts (5.1)
and Assumption 4. O

Hence, all we should prove is Lemma 9.2. We use Bf again which is defined by the
optimal solution of (Bp) in (8.5). It is easy to sce that Lemma 8.4 also holds in the
case, thus to prove Lemma 9.2, it is sufficient to show that Bﬁ‘ — (. In fact, we give the
following lemma which is stronger than we need.

LEMMA 9.3. If T% is not bounded above, then A% =0 for all k.
To prove Lemma 9.3, we give the following two lemmas:

LEMMA 9.4. One and only one of the following two cases occurs:
(1) @“ =0 for allk; or
(2) 5% #0 for all k.

LEl\gMA 9.5. If B’; # 0, then W% is bounded above by a constant depending only on
A bz,

Then, Lemma 9.3 is proved as follows.

PROOF OF LEMMA 9.3. Suppose contrary that 8% # 0 for some k. Then Lemma 9.4
imply that 3% # 0 for all k, and Lemma 9.5 imply % is bounded above by a constant
for all k. This contradicts the assmmnption. g

To prove Lemma 9.4, the following lemma is essential.
LEMMA 9.6.

(9.3) B =0 Apzh e Im(Ap).
ProoF. The Karush-Kuhn-Tucker condition for (BF) 18
(9.4) Ap(XEY Apy — Apat, — Ap-€ =0,
(9.5) Apey = 0.

Since 3}« = X}?A%y, necessity 1s obvious. To prove sufficiency, we assume that there exists
a vector & such that Apzh = ~Ap.£'. Then, (y,£) = (0,&) satisfies {9.4) and (9.5}, and
we get 3% = 0. O

Then we can prove Lemma 9.4.
ProoFr oF LeMMA 9.4. Since
(9.6) Apah = w*r® + b — Apeak,

= w* Aprl + Ap{w 2%, +(1 - w)ipe — 2k},

we see
(9.7) Apah € Im(Ap.) © Apzl. € Im(Ap).
Now the lemma readily follows from Lemma 9.6. 7
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Next, we prove Lemma 9.5. We set for z* such that 3% # 0,
(9.8) oA ﬁ—“’k(“‘:@;lﬁ‘
[y
Then we have the following lemma.
LEMMA 9.7. 2% is bounded by a constant depending only on A, b, 2V,
PROOF. Since (z*,w*) is a feasible solution of {F), we have

(99) AF.‘EI}:—- + Aprﬂ?j;m - Apnif,“[.m = wk(A[:";L'g' + AFciL'?,C - ‘4Fn.'f,‘l.‘f).

Let {#),..., &} be abasis of Null(A%.) where [ 2 dim Null(A%.). Since ﬁr # 0, Null(Af.)
18 not {0} We denote by NV the matrix whose j-th row vector is v thdf is, Nt =
(21,..., 7). We multiply both sides of (9.9) by N and get

(9.10) Apah = w* Apah,

where Ay & NAp. )
It is easy to see that (Bp) can be written as

0.1 e W,

Let (7, Z) be the optimal solution of the above problem. Then § is a solution of
(9.12) Ap(XEY ALy — Apzt. = 0.

Due to (9.10), the above equation becomes

(9.13) Ap(X5Y ALy = w* ApXH(XE) "2y,

which is a normal equation and we have

(9.14) B = XpApg = wb Py (X5) 2!

There exists a matrix B such that Im(X}A%L) = Null(B(X%)™"). By using B, we have
the following inequality:

(9.15)
X E) ™ iy (XE) T2l = IOXE) (1 = Py 1)(XE) 2|
< MI|(I - PB{\”“) 1)(-X “”z
= Mf”PAFx,*; (XE)y b2 (Use Lemma 1.4.4)
where M = M(Ap,2%.). Then we have

(9.16) w*(l(XE) B = (P (XE) IPA; \(’f (XE)a Fl
< (Wh) M| Py, xy (XF) |
= MIIGE|*.
Now the lemma readily follows. ' O

Now we are ready to prove Lemma 9.5.
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PrRoOOF OF LEMMA 9.5. Noting that 5‘} Is a projection of e, we have

k 13k
- e whe iy !
(9.17) (xh)izk = W = w".
B
Then by using Lemma 9.7, we sec that
k kot sk
w TR E
(9.18) . :("Z.FSIZ}%IéM,
ler il lEl
which completes the proof. O

10. Summary

We summarize the convergence results of Algorithm 1 derived in this paper.

When (DP) has a feasible solution, ¢‘z* is bounded helow, thus we sce from Theorem
3.1 that z* converges to . The convergence results of this case are divided into three
cases.

(1) (Theorem 2.4) When (P) has an interior feasible solution, z° is a relative interior
point of the optimal face of {F), and dual estimates for optimality s* converge to
the analytic center of the optimal face of {DFP). There exists a finite number &
such that for k& > K, 2% is feasible. Once z* is feasible, the proposed method is
reduced to a feasible affine scaling method.

{2) (Theorem 2.4, Theorem 8.23 and Theorem 8.24) When (P) has a feasible solution
but no interior feasible solution, x> is a relative interior point of the optimal face of
(P). Dual estimates for feasibility z* converge to the analytic center of the optimal
face of (DF) while F° components of dual estimates for optimality sk converge
to the analytic center of the optimal face of (D Py} which is the dual problem of
(Ppe) defined in (8.53). Here, F is the index set which decides the feasible region
of {P) and F* is its complement.

(3) (Theorem 4.12 and Theorem 8.25) When (P) has no feasible solution, then £ is
a relative interior point of the optimal face of (F) and dual estimates for feasibility

2% converge to the analytic center of the optimal face of (DF).

When (DP) has no feasible solution, we have two cases.

(1) (Theorem 2.4) When (P) has a feasible solution, ¢'z* diverges to minus infinity
and z* also diverges.

(2) (Theorem 2.4, Theorem 4.12 and Theorem 8.25) When () has 1o feasible solution,
we do not tell whether ¢'a* is bounded below or not. If ¢!2* is bounded below, then
the primal sequence converges to a relative interior point of the optimal face of
(F) and dnal estimates for feasibility converge to the analytic center of the optimal
face of (DF). Otherwise, z* diverges.

The above is all what we get in this chapter. But since we do not know about the
feasibility of (P) and (DP) before the algorithm starts, when we usc the algorithm, what
we need is the classification of the results on the behavior of the sequence. From the
viewpoint, we have the following three cases.

(1) The algorithm finds an interior feasible solution in a finite number of iterations.
In the case, initialization of interior point method is succceded, and we can start
any kind of feasible interior point method for solving linear programming problem.
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A natural method in the context of our method is a long-step affine scaling method.
The reason is found in Section 2.

(2) The algorithm does not find an interior feasible solution, but the primal sequence
converges.
In the case, if the limit point of the primal scquence is feasible, then it is optimal.
The original LP problem () does not have an interior feasible solution, and dual
estimates for feasibility tells us the indices which is always-active on the feasible
region. Combining the dual estimates for feasibility and optimality, we get a strict
complementarity solutions of {P) and (DP).
If the limit point is not feasible, then () is not feasible.

(3) The algorithm does not find an interior feasible solution and the primal sequence
diverges.
This implies that (D P} is not feasible, hence {P) does not have optimal solutions.

We can neither tell whether (DP) has a feasible solution or not when z* converges to
an infeasible point nor whether (P) has a feasible solution or not when z* diverges.
Convergence analysis in these cases deserves further research.
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Appendix: Proof of Technical Lemmas
A.l. Proof of Lemma 2.1
We choose a basis of Null(A) as ',..., "™, and let B* & (3!, ..., b*~™), Then,
(A1) AB'=0, and Im({B*) = Null(4).
Let @ be a solution of Au = r”. Since
(A.2) Ar —uwr’ =b e Alr — & — wit) =0,
< o — & —wi € Null(A),
we can express Feas(F) as
(A.3) {z>0]a = B'y+wii+i}.
Then we can convert (P) to dual form by using the matrix B' 2 (B', %), as
minimize w

(A4) subject to 3! (i) > —i.

Now the formula of affine scaling direction for dual form LP can be applied and after
some calculation, we have the affine scaling direction d(z) as:

BX-?B' BX 23\ ' /0
F#XTIRY atX 2 1
—W(BX"BB‘_)lBX“Qﬁ)

(A.5) d(x) = BY{(BX B! (?) = (D', @) (

s

= (B, %) (

where
(A.6) T2 (WX = Pyy-)X oy
Continuing the calculation, we have
(A7) d(z) = —x(B"(BX"B") 'BX %4 — @)

=#X{I - Ppx-1 )X *a

_ X(I— Pex )X

I = Pex- )X

Note that the direction of w is 7 itself. To rescale the direction so that the length is w,
we should multiply w/7 to the direction and get

(A.8) wX (I - Pyx-1)X 4.

We convert it to the primal form. Note that
(Ag) I""PB)(—] - PA)('.
Then we have

(A.10) A,z = wXPyx X 'a.
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From (A.2), we have

(A.11) Ax® -3 —a) =0,

S0

(A.12) Pax X li= Pix X1 a% - &),

Substituting (A.12) from (A.10), we have the lemma. |

A.2, Proof of Lemma 4.10
Due to (4.47), we have

q
(A13) Zﬁlog(l -—l/f]j+A3,)
=1
q A,
1 -~ —1
; og(1 — vy +zl ()g{l-i— WIJ}
= j
Then,
(A.14)
g
Z—log{l }<Z——log1m3|AI)
j=1 1~ V”J j=1
q
2
’ QZA.f
< 32 |A;] + ﬁ—gm (Use Proposition 2.4.2.)

i=1

l/\

imﬂsz;\z
A1)

On the other hand, from (4.46) and (4.49),
(A.15) a(n) 2 (1+8)/q>0
follows. Hence, we have from (4.47) and (4.49), v < 2¢/(3(1 — |Ay])) < 8¢/9 and

(A.16) q—v>q/9>0.
We set
(A.17) pEn—c/q

It is easy to verify:

(A.18) elp = Ay and
(A.19) Il = lnll* = 1/¢ - 220/q.

107



IV. Infeasible Affine Scaling Method

Now we make the following evaluation:

(A.20)

q
qlog(1 —wlinll* + Ag) — 3 log(1 — vy + A
i=1
4 b
< qlog(1 — vlnll* + AY) — 3 log(1 — vry) + 21 > A (Use (A.14))

7=l i=l

= qlog {1 — v(|lp|l* + 1/q — 22p/g) + Ay}

q q
=2 log {1 —vip;+1/g)} +213 1485 (Use (A.17) and (A.19))
i=1 7=1

q-v 2 / i-v K
= glog T—zz”p” + 2000 /g + Dy — D log —~vp; o+ 21 (A

j=1 4 =1

2vA /
= alog {1— 2 4 220020
qg—v Gq— v

q qv q
_Zlog{l ﬁquj}—é—?th&jl (Use (A.16))
i=l1

i=1

gr \° .
2 ( )upuz

q— v

(- (75)0)

q
+213 |A] (Use Proposition 2.4.2 and (A.17))
i=1

qv q qv
1Pl 4 —=—(20A + qAD) + —— A +
g—v q—v qg—v

< —

qu € 5 v , 4
< — P~ b 124 9 A,
Sl K| { Q+2(1~7/(r(:r7))}+ 4 A| + QIA0|+21J_=ZIIAJI,

and this completes the proof. ]

A.3. Proof of Lemma 7.2

There exists d%. which is the solution of
(A.21) Ape{dpe — ale) = —whr® 4 Apah
and satisfy:

(A.22) ldp. — &k || < My|jw*r® — Apap|| < My(w® + ||l 25|,

Let (®p(z*), Ap(x*)) — 0 as t — oo. Then
(A.23) Apediy. = Apait + Aper®, — bt =
holds for all ¢ and we have

(A.24) |:‘1:J’;" - dft| < My(|l2k )| + w*).
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IfjeFe,
(A.25) df’ > o — My(J|l23 )| + w*) > 0.
holds for sufficiently large ¢, and (0, d5. ) satisfies (7.5). O

A.4, Proof of Lemma 7.4

We first give the following lemma.

LEMMA A1, If {(®* ARk = 0,1,...}, pairs of real positive numbers satisfy the fol-
lowing conditions;
(1) The sequence has 0 as an accumulation point.
(2) There exist some constants € > 0,0 < M, Ma, My < 00 and 6 > 0 such that if
®F < ¢ | then

(A.26) % < MAF < My®*
(A.27) AR < (1~ H)AF
(A.28) L < Myt

then (®%, A*) — 0.
PrROOF. Given any positive ¢ < ¢, let
(A.29) Q) 2 {k|®* < e A* <}

Choose € such that ¢ < e/ max(M,, M;3). Without loss of generality, we assume that
My, M>, M3 > 1. From assumption (1), there exists a number K such that

(A.30) ¥ <é  and  MAN <
Obviously, K € €2(€) C Q(¢). We now see from assumption (2) that
(A.31) I < MR < Myé < e < e,

which means the condition of (2} is also satisfied at the (X 4 1)-th element. Then using
(A.26), (A.27) and (A.30), we have

(A.32) P < MAM T S M(1-8AF <(1—f)e<é<e.

This implies that K + 1 € Q(é) C Q(e) and {A.30) also holds at (K + 1)-th element.
Applying the above procedure recursively, we see that k € Q(e) if & > R O

Now we are ready to prove Lemma 7.4.

Proor oF LEMMA 7.4. We confirm the condition to use Lemma A1,
First, choosing a subsequence { k¢ |t = 0,1,...} of k such that ®% — 0, we have

(A.33) Ay = o(akut) = O(oh)

since ¥4 is bounded above. This means ( &%, A%) has 0 as an accumulation point.
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Next from the assumption (4), there exists a small positive number ¢ such that if
dL < ¢, then T > 6 for a positive constant &. In the case,

1
(A.34) Pr < (TH)TTAE < EA‘;}. and
(A.35) AL < |F|®%0h < MOk
hold.

Further, from the definition of the iteration, we have the following expression:

gl 0 at w* k
J _ t J R 4 0 — \
(A.36) h =1—-pu (9”(1.%“ + :r’?‘ £ ) for j=1,...,n
where €8 = X P, vi( X") Ya® — 2). Note that € is bounded from Lemma 1.4.1. Noting
also that ¢ < 1, we see that there exists a positive constant ¢ such that

ki1
o
(A.37) = 1= pr

;!

for j ¢ I' and sufficiently large ¢ since w*t / ij‘ — 0. Then we have the following estimation:

Akl et kt +1
(ASS) Aka ‘<* ’U’kt (I}él}! Jj-’;.rt )
< (1 -,u (L~ pk 4y
<1-—

for sufficiently large ¢.
Next in consideration of Corollary 4.3, we see that §% is bounded. Therefore, there
exists a constant A’ such that

k+1 (k
(A.39) RN ( I "HH}A) <M
x5

for j € F. Hence we have
kA1 f X
IXES X

[
i (1

(A .40) Phrl

min x; — A%y min 2
igr gk

< Mok,

Now due to (A.34),(A.35),({A.38) and (A.40), we can apply Lemma A.1 which shows
®% — 0. Since (A.27) holds if ®% is sufficiently small, A% converges to 0 asymptotically
linearly, and this completes the proof, O
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Conclusion and
Direction in Further Research

In Chapter II, we give an answer for the first problem (identified in the preface) on the
global convergence of the affine scaling method in a practical setting. The result is that
the long step-size 2/3 is admissible for ensuring the global convergence of the primal and
dual sequences. To date, this is the best result on the global convergence of the affine
scaling method. The bound 2/3 is tight in the scuse that if A > 2/3, then we can construct
an example showing that the dual estimates do not couverge to the analytic center of the
optimal face of the dual problem [61, 22]. We also prove that the asymptotic reduction
rate of the objective function value is 1 — A, which is independent of the dimension of the
LP problem. Since 2/3 is tight for the dual sequence, an interesting direction in further
research 1s to find the tight bound for the global convergence of the primal sequence.
(Recall that A = 0.99 is adopted in most of the implementations.) Very recently we
recelved a paper by Mascarenhas (32] showing an example that by taking A = 0.999, the
long-step affine scaling method fails to converge to an optimal solution. Searching a tight
true bound for the primal sequence is still an open problem.

In Chapter III, the results of Chapter IT are applied to obtain a new complexity proof of
a long-step variant of the projective scaling method. In this variant, we use a fixed step-
size A < 2/3. By analyzing the inequality of the potential reduction more precisely, we
give a new proof of the polynomiality with complexities of O(nL) and O(n%L) iterations
for A < 2/3 and A = 2/3, respectively. The asymptotic reduction rate of the objective
function is shown to be 1 — A, We also prove that the primal sequence converges to a
relative interior point of the optimal face, and that the dual estimates converge to the
analytic center of the optimal face of the dual problem without the assumption of the
boundedness of the optimal face. These convergence results are new to the projective
scaling algorithm. Finally, we apply the well-known Todd and Burrell’s lower bound
updating procedure [56] to our variant without affecting the complexity results.

In Chapter IV, we propose an extension of the affine scaling method to allow an infea-
sible starting point which is a solution to the sccond problem identified in the preface.
We discuss the case where there exists an interior feasible point as well as the case where
no interior feasible point or no feasible point exists. It is shown that (i) if the optimal
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solution of the LP problem exists, then the primal sequence converges to a relative interior
point of the optimal face, (ii) if there exists an interior feasible region, then an interior
feasible solution is obtained in a finite number of iterations, and then the method becomes
identical to the long-step affine scaling method, (iii) dual estimates for optimality con-
verge to the analytic center of the optimal face of the dual problem, (iv) dual estimates
for feasibility give us useful information about the feasible region. All of the convergence
results are obtained without nondegeneracy assumptions. A weak point of the proposed
method however, is that the optimality direction is a short-step affine scaling direction
and might be too short in practice. It is desirable to lengthen the optimality direction.
Convergence analysis of this variant as well as the numerical experience deserves further
research.
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