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Chapter 1

Introduction

In the financial economics, the management of the market risk and credit risk becomes
the most important subject. The market risk is defined to be the loss by the market
fluctuation, of financial institutions and individual investors who have the financial assets.
The credit risk is defined to be the loss by the default of the counterparties, of those who
have some contracts. In recent years, the international financial markets are expanded and
deeply linked. There is a possibility that the financial crisis of a certain country causes
the financial instability of other countries. Therefore, the financial regulators propose
the methods of the risk management and intend to control risks by its methods. The
main concept of this method is called VaR (Value at Risk). The VaR is defined to be the
maximum loss of an asset return. It is measured by the following process. Firstly, the
99 percents one-sided confidence interval is decided by the financial regulators. Secondly,
on the one-sided confidence interval, the VaR is calculated by using actual distribution of
returns, For example, if the distribution of asset returns is normal and the expectation
is zero, the result of multiplying 2.326 by the standard deviation yields the VaR. In the
proposed method, it is asssumed that the distribution is normal.

In this way, most of the financial asset returns traditionally tend to be analyzed
on the assumption of the linearity and Gaussianity. However, it can be seen that the
actual distribution is not normal. Recently, various methods of analyzing nonlinear and
non-Gaussian system are developed. The fact that the financial asset returns have the
nonlinearity and non-Gaussianity has been made clear. Furthermore, the number of the
bankruptcy is very important information for the credit risk management. The number of
the bankruptcy of large companies is very small but its influence is very wide. Therefore,
the time series analysis of the bankruptey is also very important.

The purpose of this study is to develop financial models which represent the nonlin-
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earity and non-Gaussianity of the financial economic data. This study may be directly
applied to the risk management.

In this study, we focus on the returns of stocks and the number of the bankruptcy.
To begin with, we describe the characteristics of stock returns. Firstly, the asymmetry
of price movements in stock markets is observed. The upward trend tends to continue.
On the contrary, the downward movement is instantaneous and its amount of movement
is occasionally very large. Therefore, the distribution of returns becomes asymmetric.
Secondly, the distribution of returns is observed to be heavy-tailed than the normal dis-
tribution. Thirdly, the volatility is time-varying. In this study, we adopt the type VII
and IV family of Pearson system in order to describe the asymmetry and heavy-tail. For
the Pearson system, there is the relationship between the stationary distribution and a
stochastic differentical equation.

In Chapter 2, recursive formula for evaluating the normalizing constant for the type
IV family of Pearson system is derived. The non-central and heavy-tailed distribution
is introduced by adding non-central parameter to numerator of equation of the type VII
Pearson System. This distribution belongs to the type IV of Pearson System. Analytic
solutions of normalizing constant are derived in order to evaluate numerical integration
of normalizing this distribution.

Cauchy distribution and ¢ distribution (with low degree of freedom) have heavy-tails
compared with normal distribution. They belong to the type VII family of Pearson
System. In this thesis, the non-central and heavy-tailed distribution is introduced by
adding non-central parameter, 8, to the numerator of the Pearson System equation (1.1)

IR Gat)

TP BT e
The probability density function is given by
C exp{2b6 arctan(Z=#£
plalu, 7,8,8) = SR ()} (12)

(G- +rp
for 5> 1/2,7>0,00> 6§ > —c0.

This type of distribution is known as the type IV family of Pearson System (Johnson
and Kotz (1970), Pearson (1914), Pearson and Hartrey (1954)). In the past research,
this distribution is not introduced in this way, but used as a approximation to non-
central ¢ distribution by using moment ratio (Merrington and Pearson (1958), Shenton
and Carpenter (1964), Pearson (1963)). And the type IV family has not been used in
actual data analysis because of its difficulty in computation. Therfore, in order to use this
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distribution in actual statistical modeling, it is necessary to develop a practical method
for evaluating normalizing constant. In this thesis, a recursive formula for evaluating
normalizing constant is given for a family with discrete parameter series, b = n and
b=mn++1/2, n = 1,2,3... Analytic form of normalizing constant is derived by using
recursive formula. The recursive formula is also useful for the numerical evaluation for
general b. Also, the first four central moments, which specify the distribution of Pearson
System, are explicitly calculated.

Price movements in a stock market are often associated with industrywise movements
of stock prices. In other words, it is often said that stock prices move industrywise,
which is usually referred to as “industry-effect”. However, Nagahara (1992) observed
that there is an asymmetry in the contributions of industry prices to the movements
of a market price. In the upward movements of the market price, it is often the case
that a certain industry prices move first prior to the movement of other industry prices.
On the other hand, in the downward movements of the market price, most industry
prices move together. This asymmetry may be measured by the skewness of the cross-
sectional distribution of industry returns, and it will be made a good use of a description
or prediction of the market average returns. In fact, in Chapter 3 of this thesis it shows
that the skewness of the distribution of industry returns is very effective in describing
and predicting the variations of the market average returns. In the stock market, by
the empirical studies many researches have observed an industry-effect in the movement
of prices or returns, meaning that industry returns (returns based on industry indices)
move rather independently. However, Nagahara (1992) observed that there also exists co-
movement (correlations) of industry returns and asymmetry of the co-movements. In fact,
when the market price is in a downward trend, almost all industry prices tend to move
downwards together. On the other hand, when the market is in an upward trend, the
following two typical cases are observed: In one case only some specific industry returns
move upwards while others do not move so much, and the other case all the industry
returns move together and form an upward trend. This implies that the correlations
among industry returns and the skewness of the cross-sectional distributions of industry
returns will change with time £. In other words, there may be some information in these
changes of the co-movements and asymmetry of cross-sectional industry returns over time
for predicting future market average returns. These observations motivate our study.

In the literature, much attention has not been paid on this effect, though there are
many time series studies on the distributional aspects of market and individual returns.
For examples, Fama (1965) and Mandelbrot (1966) suggested the use of such a heavy-
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tailed distribution as the stable Paretian distribution as a model for daily returns. Kariya,
et al. (1995) extensively studied on this feature as well as some nonlinear features in the
Japanese market (see also Kariya (1993)), which showed that the distribution of market
returns is not only leptokurtic but also skewed. In our time series analysis below, to
take into account of this feature, we use the Pearson type IV distribution which is a
non-central version of the type VII distribution and forms a broad class of distributions
including #-distribution and Cauchy distribution (Pearson, K (1914), Pearson, E.S and
Hartrey (1954), Pearson, E.S (1963), Johnson and Kotz (1970)) and skewed version of
these distribution.

In this thesis, we mainly study on a predictive power of past values of the cross-
sectional skewness variable S for future values of the averaged return R. In predicting
the averaged return, we compare with an AR-GARCH (Autoregressive model with Gen-
eralized Autoregressive Conditional Heteroskedasticity errors, Bolleslev(1986)) type time
series model by using the AIC criterion for model selection, and examine that the skew-
ness of the cross-sectional distribution of industries has more predictive power for future
averaged returns R,’s than only the past averaged returns. We also propose some state-
dependent models to find that the conditional variances depend on some shape parameters
such as skewness, which may be functions of economic fundamentals, in addition to the
past conditional variances and past errors.

In Chapter 4, daily returns of stock prices are observed to have heavy-tailed and
non-central distribution. In this chapter, we adopt the type VII and IV family of Pear-
son System to express the daily returns of stock prices. Furthermore, we also consider
a stochastic differential equation whose stationary distribution is the type VII or IV of
Pearson system (Wong, 1963). This reveals the relationship between the stationary dis-
tribution of stock returns and related stochastic differential equation. Wong showed the
transition probability density functions of stochastic differential equation for the Type
VII Pearson distribution. It can be written more explicitly for ¢ distribution. In this
chapter, we derive the transition probability density function for a more general family
of distributions, and present a method for estimating the parameters of its stochastic
differential equation. Furthermore, in order to estimate the parameters of stochastic dif-
ferential equation which corresponds to the Pearson IV type (asymmetric distribution
and continuous shape parameter), we consider local linearization method (Ozaki (1985a,
1985b, 1989, 1992a, 1992b, 1993), Biscay, Jimenez, Riera and Valdes (1994), Shoji and
Ozaki (1994) and Nagahara (1995b)).

In Chapter 5, Non-Gaussian stochastic volatility model is proposed. The model as-
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sumes the time series is distributed as the Pearson type VII distribution. The scale
parameter of the distribution is stochastic and is described by AR model with a con-
stant term. For estimating the parameters of stochastic volatility model, we apply the
non-Gaussian filter. The model can be further generalized to the case when the shape
parameter of the Pearson type VII distribution is time-varying. Usefulness of the model is
demonstrated by the analysis of stock returns data. In the finance area, the management
of the market risk is very important subject. In this area, ARCH model (Engle (1982)),
GARCH model (Bollerslev (1986)) has been used because of its easy implementation.
The method of estimating a stochastic volatility model was recently developed. On the
other hand, the comparison of GARCH and stochastic volatility model are researched
only empirically (Heyman, et.al. 1994). According to their result, for stock returns, the
stochastic volatility model is better than GARCH and EGARCH (Exponential GARCH,
Nelson (1991)). In this thesis, in order to construct the stochastic volatility model for the
risk management, we consider the simple form of a stochastic volatility model, namely the
observation model has the heavy tailed distribution and the expectation of observation
is zero. Recently, stochastic volatility models are extensively researched and applied to
actual data analysis. We apply the non-Gaussian filter to a stochastic volatility model
(Kitagawa 1987, 1991). This paper focus on Pearson VII type, including #-distribution
and Cauchy distribution. The research by Nagahara (1995b) and other research for the
daily returns of stock index prices conclude that the distribution of stock daily returns
are heavy-tailed like the Pearson type VII or the Paretian distribution compared with
Gaussian distribution. Furthermore, according to Nagahara (1995b), the shape parame-
ter of the Pearson type VII tends to be time-varying. Therefore, we develop general state
space model of a stochastic volatility model with the time-varying shape parameter. We
estimate these parameters by using the method by Kitagawa (1987, 1991).

Finally, we consider the characteristics of the number bankruptey of the large compa-
nies. These data are discrete and very small, occasionally becoming zero. And there is
seasonal component in its intensity. In Chapter 6, we develop the non-Gaussian model by
using general state space model, in which the observation model is given by the Poisson
distribution. We use Monte Carlo filter to estimate the parameters.

In Chapter 7, the conclusions are given.
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Chapter 2

Recursive Formula for Evaluating
the Normalizing Constant and
Cumulative Distribution Function
of Type IV Family of Pearson
System of Distributions

2.1 Introduction

Financial data, especially daily or weekly rate of returns of stock prices, are observed
as heavy-tailed and non-central distribution. In order to fit this distribution, we need
non-central heavy-tailed distribution whose parameters vary continuously according to
exogeneous variables like economic fundamentals.

Cauchy distribution and ¢ distribution (with low degree of freedom) have heavy-tail
compared with normal distribution. They belong to type VII family of Pearson System.
In this chapter, heavy-tailed non-central distribution is introduced by adding non-central
parameter, ¢, to numerator of the Pearson System equation (2.1)

g s =¢

B e

The probability density function is given by

C exp{2b6 arctan(Z=£)}
R

plzlu, 7, 6,b) = (22)

forb>1/2,7>0,00> 8> —o00.
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This type of distribution is known as type IV family of Pearson System (Johnson
and Kotz (1970), Pearson (1914), Pearson and Hartrey (1954)). In the past research,
this distribution is not introduced in this way, but used as a approximation to non-
central ¢ distribution by using moment ratio (Merrington and Pearson (1958), Shenton
and Carpenter (1964), Pearson (1963)). And the type IV family is not used for empirical
purpose because of its difficulty in computation. Therfore, in order to use this distribution
in actual statistical modeling, it is necessary to develop a practical method for evaluating
normalizing constant. In this chapter, a recursive formula for evaluating normalizing
constant is given. Analytic form of normalizing constant, forb=nand b=n+1/2, n=
1,2,3..., are derived by using recursive formula. The recursive formula is also useful for
the numerical evaluation for general b. Also, the first four moment, which specify the
distribution of Pearson System, are calculated. Furthermore, recursive formula is shown
to calculate cumulative distribution function.

In section 2.2, normalizing constant is derived by using recursive formula, and the first
four moments are given. In section 2.3, cumulative distribution functions for b = 1,3/2

and recursive formula are shown.

2.2 Evaluation of the Normalizing Constant

Let p be probability density function. We assume that the distribution is a solution to
the following differential equation
P =g s
p (EP+1 '
As it can be seen later, i and 7 specify the center and the dispersion of the distribution.
6 is introduced here to specify the non-centrality of the distribution. From (2.3) we have

2b(x — p — 67)
— dl == P
| = [
—logp = 2b %log{(a: —p)?+7 -6 arctan(in:—ﬂ) -+ C‘r]

T -

= blog{(x — p)* + 7%} — 2b6 arctan(

)+ 25C".

=
Therefore, the density function p(z) is given by

-

p(z) = Cexp [—blog{(:r: — u)* + 7%} + 206 arctan(x ke )]

16



- {&- .u?; + 72} xS mtan(x%}}'

Obviously, the normalizing constant C should satisfy the following relation

f_c:; T ;):; TP exp{2b6 arctan(x—;-ﬁ}}dx = 1. (2.4)

Lemma 2.2.1 Forb=1, C is given by

o 6t

"~ sinh(é7)’ (2:5)

Proof. By evaluating the left hand side of (2.4), we have

. [e
T (O

= = 50 VPR
= 557 [exp{26 aa'ctan(T)}] de

exp{2§ arctan(g)}dx

C T—
= Br= exp{26 a.rctan{—f—)}

C —0o
= Eﬁ?{exp(&:r) —exp(—ém)} = 1.
Therefore, the constant term is given by

oT
e sinh(67)’

Corollary 2.2.1 For b =1, the density function is given by

e 6T  exp{20arctan(*=£)}
)= Sinh(37)  (z — p)2 + 72

(2.6)

Lemma 2.2.2 For b= 3, C is given by

_ {(367)% + 72}

2 cosh(%f-) ' (2.7)

17



Proof. We consider the transformation £ = tan, & = Ty = 7(1 + tan?#).

Then we have

3 —_—
fm ¢ - cxp{2x§xéarctan(zrﬁ)}dr

k3 exp(366) dx 8
-5 T30+ tan ) 0

_ C/T exp(3ﬁﬁ') _— 1 8

cos?

2 cos
5 cosf

= Cf —3 XP 366‘)d6‘

=

_C { exp(366)
(

30 + 12(36 cos @ +3'1n6')]

exp(%57) + exp(—2)

] { (36)2 + 12 }

_ G2cosh(§—g~’5) -
(367)2 + 72
Therefore, the constant term C is given by
_ {(@367)% + %}
"~ 2cosh(¥x) -

Corollary 2.2.2 For b= 3, the density function is given by

{(367) + 7%} exp{36 arctan(Z=£)}
T

Lemma 2.2.3 Let I), be defined by

L={ a .
N (R

then we have the following recursion formula,

p(z) =

. b_-
fe.‘—l[ z—p 2

T |- -+ % I“

Proof. The proof of the lemma is omitted since it is trivial.

18
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Lemma 2.2.4 Let J(b,c) be defined by

= 1 r—LU
_/_m CEETI exp{2cé a:ctau(T)}rfx

then we have the following recursive formula

- 2
gi— 2; {1 + %}Tz‘“b:c) =J(b-1,¢).

Proof. According to Lemma 2.2.3, we obtain

J(b,e) = jm{ G TP exp{2cé arctan(x—;ﬁj}da;

T— 2b—3 1

(2.11)

—oo T2 [{ (26— 2){(z — u)* + Tz}*"]} T2 (- ap
X exp{2cé a.rctan(—T—)}dm

1 T— U
T [(25 = 2){(z — p)? + 721
- f‘” T — p 2c6T
o B 2) (@~ WP F PP @ A
+l 2b—3 [ 1
220 — 2 Jooo {(z — )2 + 72}0-1
= ,_%;i’rl e _-‘ﬂ#)gi T exp{2c6 arctan(g}}dm
12-3

Next, for b > %,

o=
exp{2cé arctan(—

9.

exp{2cé arctan( e

o2 1 Tr—p
J(b = el e
(b,c) T PP exp{2cd arctan( = )}dz
/ {(x — p)? + 72} 441 " 2ebT
2¢éT (z—p)P+r2

= [ i ‘[LZ;_TQ}_&H [exp{2¢6 arctan(——= }]'d

[{(r-#) g n:—n)} ”

2007 exp{2cé arctan( - -~
00 (..4)-1—1) 2(3;._#) i
~eo 2007 {(z — p)2 + 72} exp{2c6 arctan( =

b—1 feo T i
ebT Jooo {(x — p)? + 120

19
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p 5 exp{ 2¢é arctan( )}d:c

£)}da

(2.12)

exp{2cé arct&n( )}d'r

B)yda



Summarizing the above results, we have

12

J(bye) = 2;_ J(b—1,¢)
_i cdT oo T —p
72b—1J-oo {(z — p)?2 + 72}

Secondly, we have

- exp{ 2cé arcta.u(x—;ﬂ-)]-d:v

J(b,c) 7 exp{2cé ar{:t-a,n(:C ; ‘“)}dx.

b—1 - U
cbr j:m {(z — p)2+ 72}
Substituting the second formula into the second term of the first formula, we get the
following formula

12b-3 1 cér cbt
B
722b — J( ki) 2b—1b—1

Finally from (2.12) and (2.13), we have
(c6)? 1.20~3 e
{1+ b-17 J(b,8) = 29— J(b 1,¢).
This completes the proof of the recursion formula. »

J(b,c) =

J(b,c). (2.13)

Theorem 2.2.1 (Normalizing Constant) Normalizing Constant of the distribution (2.2)
is given as follows,
1)Forb=n ,n=1,2,...

_ b6r** 1 exp{2bf arctan(Z=£)} n=! b26* 2k
p(x|p, 7,6,b) = = R T g J;E[]. L) 5 (2.14)
2)For b=n+3,n=1,2,...
(1 4+ (2b6)2)7%" exp{2b6 arctan(Z=£)} 2! b6 | 2k+1
e, 7, 6,b) = : - (2
L A T = R A Lt TIE) T (319

Proof. 1)For b=2,3,...(b=n,nr=2,3,...)
Firstly, for b= 1

i 1 . &~ I :
J(1,¢) = f_m G exp{2¢6arcta.n(—?—)}d1

20



ks
L.

1
2céT

2edT
“p2 72

[c*{p{ 2¢6 a.rctan(

exp{2c6 a,rcta.n

—)] e

236?

2(‘5
[exp{2c§ arcta.n(j:%)}] )

Therefore, we obtain

5 ];S'r {exp(cdm) — exp(—cén)}.

cbT
" sinh(cén) Tetsel

Secondly, the recursion formula (2.11) is applied to (2.16).

1 ey J(1,¢)

sinh(céw) (

coT

(2x2-2)

sinh(cé)
cht

{1+(cﬁ)2

(22 =3) 2—1)

(cb)?

sinh(cdr)

cbT
sinh(cé'n')

2)For b=5/2,7/2,...
Firstly, J(b, ) is evaluated for b = §. By the transformation Z=£ = tan§ %

(1 + tan?6), we

T(5.0) =

}#ﬂz@
2(2 % 3—2)

{1+
}-,-

21+ )

(b:n+%, iR B

(2-1)

(cb)?
12

)

have

|
{

(2x3-3)

}sz

(c)”
22

] {w—nF+f}

exp(2¢éf)

3 exp{2¢cé ar-:ta.n

d
¥

B f__{ﬁ

(1 +ta.n29 }2 df

{”(

3-1)2

7 2c66
j‘ exps{ cbh) y 12 0

-5 T cos? f

= /‘i exp(2céh) CDSﬁdﬂ
1 | exp(2cé8) ; 3
—_— e T 3
[(2.:36)2 17 (36 cos @ + sin 5',]_1

1 fexp(cér) + exp(—cém)

s (2¢6)? + 12

21

,u

(c6)?

(2¢ —2)

* (2c—3)

—£)}da

)}z

(2.16)

b33,
(c5’

{” - 17

1
Tcus! [

}#ﬂqd

(2.17)



2 cosh(edm)
(2e67)2 + 72
Therefore, we have i ;
(267 +7° .3
= —J( =, ). : 2.18
2 cosh(cér) (2 ) (18
Secondly, by applying the recursion formula (2.11) to (2.18), we have

_ (2067)2 4+ 72(2 X 5 — 2) { (cbr)? } 5
I = +3— s 1 (509
2 cosh(cédr) (2 x 3 — 3) (3—-1)
(2e67 + 72 (2% 2-2) (e67)2 1 (2% % -2) (ed7)? 7
Secal{ ) (2% --3) { tEo } Gx1=3) {"J* - 1)2}”5"’)

(72 +%] —g—{‘r2+ ((57')2 }X {’rz-l- (cb7)? }x

2 cosh(cd) 5 -1)2 (£—1)2
(2{‘ —~2) (&’5?‘)2
o= Tl 7 @0
Incidentally, the following formula are known in the literature (Grobner and Hofreiter
(1958)). The method above prove the following formula indirectly

x om o _ (2m)I(1 — exp (—pr))
[ e (cpmonsan - Gl

v omit o (2m+ 1I(1 — exp (—pr))
j{; exp (—pz)sin®"* zdz = Mieo(p? + (2k + 1)2)

L =7(1 +tan?0),b= =2 we have

By the transformation £=£ = tan§ £ =

j_ _pla)dz=C f_ : o )1 s P2 arctan(— - B)tdz  (2.19)

—df
1+ tan24)} % do

Cf exp(2b§.9) ri 1

s /’ exp(2bé8) dz
-5 T

dé

= C / i exp(?bé&)cos O a6

By the transformation A = # + 7 /2

[ (z)dz = C f S X exp(—b6 + 266A)d) (2.20)

22



By the formula above, we get the theorem. And the recursive formula is also introduced
by the following formula.

Ilm,0] = j exp(az)sin™ zdz

= _{_o{exp(aa:]sinm_l z(asinz — mcosz) + m(m — 1)I[m — 2,0]}

a2 + m?
= Ty (s s(asing — (m +2)cos2)
+(a® + (m +2)})I[m +2,0]} , bl

Theorem 2.2.2 (The Central Moments, Skewness and Kurtosis ) The ezpectation,
variance, third and fourth central moments of the distribution are given by

béT

E[X] = c—+u (1<) (2.21)
T2 b A
VARX] = 5—— {1+ (b—_—lé) . (3/2<b), (2.22)
2613 b \?
FIX-EXD) = Gohp—am—9) {1 +(5219) }
= OG- i?f;_ 2)VAR[X], (2 < b), (2.23)

374 b+2( b5\ b \?
Bl = BAr] = (zb_s)(gbhs){”m(m) }{”(m‘ﬁ}

2 2
" (2:_5] {1+§1’§ (;’_‘51) }VAR[X}, (5/2<b). (2.24)

_ _ B[(X—E[X])} _ 2b67 E
Skewness = VAREX] = GoDBo Z)VAR ?(x]),

__26v2h-3 5 5 05
®-D0-2) it Lo e

. _E[(X-EX)Yq _ 3 b+2( b6 \*|. . ...

Kurtosis = VARIX] = m {1 + s (m) } VAR T[_-X]

b4+2¢ b8

_ 3@ -3 {l+ 555G (2.26)

(26—-5) {14 (362} °
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Proof.
1) The expectation of this distribution is calculated.

z—p
Blx]= [ 0 E}Ee}:p{Qbéarctau(T}}dz

o C 2 —
- j:m l{(-‘f _(P., 2 _f),rz}a + (- )f+ TQ)J exp{2bé arctan( - B

f

= Cfm {2(11 ){{x—,u)2+'r2} Hl] exp{?béarct&n(—)}dr-{-p

)}dz

o0

1
- c[—-—g{l_b)
1

i > ! A2 4 Sy -bH I T =4
cf o b){(z )2 + 72} ~Hops x Ty X 7 {2 arctan(*E)}da + 4

{(z = p)? + 72}~ exp{2b6 arctan(m}}i)}J

-0

. bér o0 Ty
= f s #)2 —_r exp{2bé arcta.n(T)}da, + p

_ bé'r+
S e

2) The variance is caluculated below.

Var[X] = B(X*|~ E[X]? = E[(X - p)X+uX] - E[X]? = E[(X — p)X]+ E[X](u~ EIX])

E[(X — p)X] = - (z — p)zr— C; 515 exp{2bé arcta.n(u)}dm
~o {(z—p)?+ 7% T

= f_: {2(11 —pu)+ 1‘2}'“1] Cmexp{%ﬁarct.an )}d:z'

1 T - =
=5 i) [2(1 i P (ERRT exp{2bé arcta.n(x = “)]]_

i f_i [2(11_ ) {(z —p)?+ TE}_6+1] [:5 exp{2b6 arctan( ; IJ')}Yd:c
= ‘—Cfm 5—(-11—?{(:.-: — u)? + 72}~ exp{206 arctan(~ ]}d
i 11
f 2(1 {(m — w4 ) 11256—(:—__&? exp{2bé arctan )}d'a

= ———J(b—1,b)+ 2 i o exp{2b§ arctan{'—%—)}d:r

ey 2= 1) J-x (@~ pP + 727
C  _2-2_ [, (b6
2(6—1)  26-3 {'r b= 1)2}J(b‘b)
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bé-r oo Czbt
./ {(z — p)2+ 72}t
- 1 {'r Py (b67)? }+ béT (b-:ﬁ'r +H)
26— 3 b-12f b-—1\b-1
. 2(b67)? béT
= Bos T @m-3p-1  “i-1

Therefore

exp{2bé a.rcta.n(#)}d:c

Var[X] = E[(X — p)X] + B[X](u - EX])
72 )2 T T
e i 2(b6T) +“bi1+(#+i)(ﬁ*#”m)

26—3 " (2-3)b—1) " 'b b—1 b1
_ 7 2(bé7)? bor \?
= 21:—3+(2b-3)(b—1)_(b—1)

72 (b67)2{2(b — 1) — (2b — 3)}
®-3 1 (-3 b=1)

_ 1 2 b 2
= 2b-—3{T +(:b_15‘r] }

3) Third central moment is caluculated by the following.

E[(X - E[z])®] = E[X?] - 3E[X?|E[X] + 2E*[X].
Firstly, we caluculate E[X?3].
E[X?] = B[(X — p)X* + pX?) = E((X — p)X?] + uE[X?).

E((X - wX? = [ (z- s

C N
{(;g — #Jz + -;-2}6 EKP{QM arctan(_?__)}di

—E)}da

= ./Z [ b}{( p)? + 12}"‘""1] ’sz exp{2bé arctan( e

2
= { ‘; TP - exp{2bé arctan( }}]

[

il
= f b) —{(z - p)? + 7" “12xexp{zbéamtan(
/.3

{(1 — w472 H“] [22 exp{2bs arr,ta.u[—)}] dz

£)}dz
1

{(z = p)® + 72} ~H1222p exp{2b6 arctan(—)} Io

b} 14+ (EFFr
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Czx

1 o<
"‘lfoo {(.n_”)z 2}& 1

exp{2bé .a.:ct.m( )}dr

béT o0
/ o= U exp{2bé arctan[ }d.’b

First term is caluculated by the following.

Cxzx

./—m {(I — ‘u)i + TZ}b—I
® C{lz—p)+up}

exp{2bé arctan(x—;"'f)}d:c

oo (@ — AP + 2P

exp{2b5 a.rcta.n(““—T-”)}dx
Clz —p)

f—: {(z — p)? + 72}-1

exp{2bé arctan(m—;—“)}d:c + pCJ(b—1,b)

]:: [a—z(i—b;{(:”‘“)””?}‘m C exp{2b8 arctan(*—E) bz + uC7(b - 1,8)

ke

= sz ) (@ =W+ )28

){(x — u)? + T2} 72 C exp{2b6 al'ctan{m—;—'%}}

—00

1
I_HJ;'-—AEL).E E}(p{zbﬁ arctall(_)}dr

+uCI(b -1, b)

bor >
b — 2_[ {(z - ¥ 2Pl exp{2bé arctan(—)}d;g + uCJ(b—1,b)

béT
b—2

bér
b—2

+ ,u) CJ(b— 1,b)

(26—2) [ , (b67)2
+u) % G ™+ o)

Second term is caluculated by the following.

Accordingly,

And,

E[X%] = E[(X — p)X? + uE[X?Y =2 (

. Cx? i
-[—m {(z — p)? + r2}* exp{2bé ElICta.n[:—T_J Vdz

1 (b67)? béT g
25— 3 {72"'(&—1)2}*' ( b1 "'”) :

b—2 b—1

E[(X -uwX? =2 ( b0 ) VAR[X] + iﬁ'—E[XJ]

bér
b-2

+ ,u) VAR[X] + ( "’5'1 p) E[X?).
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Consequently,
E[(X - E[z])}] = E[X% - 3E[X?E[X]+2E’[X]

= 2 (;’5—2 + p) VAR[X] + ( e ;L) E[X?] - 3E[X?E[X] + 2B°(X]
2béT 2 2 . 2b6T
= G-pe-p "I P = ooy

4) Forth central moment is caluculated by the following.

VAR[X].

E[(X — E[z])*] = E[X*] — 4E[X®|E[X] + 6 E[X? E*[X] — 3E'[X].
Firstly, we caluculate E[X*].

E[X*] = E[(X — i) X* + pX¥ = B[(X — p)X] + pE[XY).

E[(X - u)X? = /_O:D(w - p)a? exp{2b8 m‘cta,n(m ; 'uj}d:r

C
{@—uP+rp

= j: [2(11_ b){('r — )+ 1'2}"’“] Ca® exp{2b6 a,rctan(x—‘:—pj}dx

B 1 ¥ z—p 17
= C [2{1 [ P exp{2bé arctan( = }}] N

=8 f; [2{1 - e —m+ 72}_“1] [Is =P {20 a‘mta“(i;_#}}] i

o i fco 1 {(rﬂ _ #)2 3 Tz}—b+13x2 e}cp{zbﬁ a.rctaﬂ(x i 'u)}d’r
—pg 2(1 ) b) ’ |

X = 1 2 29 -b4+1_3 1 1 Tr— i
C/_m 5 = E}){(a: py + et %‘SH@; exp{2bs arctan(-T—)}da.

Cz?

3 oo
—1) f {(z — p)? + 2341
btﬁ'r o0 Cq3

/ (G=pr+ exp{2bé a.rctan(-—)}d:c

First item is caluculated by the following.

exp{2b6 arctan( _& )}z

f (@ — P + 721 exP{Ebéarctan(gj}dm
oo Cf(e— ;L)T + px}
g {(:1: . H)z R 7—2}!:—1

— o C(J}' = ;‘,.‘,}I ) e
B -/ {(1‘ —_ #}2 + 72}5—1 Ekp{ﬂbé arcta.n( =

exp{2bs arctan(g)}dﬂ:

£)}da
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)}dT

+;.sf i _#}2 = T exp{ 206 a.rol:an(

= f [2{2 b){ ;ﬁ)‘+1‘2}'5+2] C exp{2b6 arctan(~
o (550 < G )

= [zi—féc—b—){(a: — p)* + 72} exp {206 arcta.n(x — “)}] L

e

—£)}dz

s e 2 R BN SO 1 1
C_[_m 2(2_&'){(32 n)* + 7%} Ebél—f-(f-ﬁ_) exp{2bs arcta.n(—— )}dz

béT (26—-2) [ , (b67T)? }
“‘(b 2+“) X @-3) {T ML
1 béT o< C

- 20— 2)0'}('5 — b+ 53 o {(& — P2 + 121

b6 T (2b —2) (b67)?
+“(b—2+”)x(2b 3){T2+(b~13 }

1 26-2 24 G } { 4 (bér)?
A6—2)  Wb—3  B—5 (b—1)2 (b— 2)2}

i
" bér 25 2 { béT £ (bé7)?
(E)le )

b—2 2b 3 (b—1)2
et (;f_f“) gz 3{ *(bbf?ﬁ}
" 2
= Egihg(b&izﬂ‘) {Tg b—l}}
MeEolb e R s s [

Second item is caluculated by the following.

E\ydz

f s #),, 7P exp{2bd a.rcta.n{:v ;
boT
b—2

= E[X¥=2 ( + ,u) VAR[X] + E[X]|E[X?).

Accordingly,

E[(X — w)X?]
3 [(2b=2) [ bsr (5, bér
To2(b-1) {(2%3) (b-2 +”’) {"r +(b~1)2}

28
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(26-2) 1 (bé7)>2 (bé7)? ]
+(2!’J— )ZbﬁS{TE‘F_(b_l}g}{Tz'['(b_z)‘i}
brS'r 3
+e 7 EX]

ElXY] = E[(X - pu)X®)+ uBIX?
3 [(2b—2) [ béT . b6 .,
- 2(b-1) [(2&-3) (5—2“") {"'2“5-1)}

(26 —2) 1 o (b6T)2 o (b67)? ek
t@—3) " ®m-35" {T = 1)2} {T +“,—_;,)?H + BIX]E[X7].

Consequently,

E[(X — E[z])Y] = = E[X*-4E[X}E[X]+ SE[X?]E?[X] — 3EY[X]

T g :
= 3VAR[X] -(bbé + 1)+ = 5{ +(g;i 2})2}]

—-3E[X’|E[X] + 6 E[X?|E?[X] — 3E*[X]
B 1 [, (ver)y boT 2
= 3VAR[X] %5 {—r + b= 2}2} + {(b_ NG 2}} }

i b2 b6T
-5 +(2b—5){b—2)(b—-1)}

= 3VAR[X] {

2.3 Cumulative Distribution Functions

The cumulative distribution functions are evaluated by the following theorem.

Theorem 2.3.1 (Cumulative Distribution Functions) The cumulative distribution
functions are given by

(1)For b =1
P@)= [ : p(z)dz = m];(ﬁ—ﬂ_)[exp{mﬁ arctan(¥—£)} — exp(=6)]. (2.27)
(2)Forb = 2
v 1 367 + = 387
Pig)= j:mp(:ﬂ) T = 3 cosh (%) [\/1 1 (1-'_;1)2 exp{Séarcta-n(y )} + exp( —?) i
(2.28)
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(8)Recursive Formula

(c6)? .
{l ¥ (b -—}1)9}_/ (- #)2 7y exp{2cé arctan( 'u]}dx

1 ST 1 B
= 2(6—- 1)7 T2 (?:"—pt+ bc— 1) {(y “)?-i-rf"}b‘l exp{Zcé a.rcta.n(?l?_—p)}

(2b — 3) 1 -
Z
T2(20-2) Jeo {(z — p)2 + 7251 exp{2cd arctan(

Proof. (1)For b=1

£)}da. (2.29)

+

- 67  exp{26 arctan(*=£)}
PO = Sob(er) (= p

v _ ot v exp{:Zé arctan(==£)}
[_m p(z)dz = sinh(é7) J- (z— )2+ 72
or

- sinh(é?r) 25T [ﬂp{%mtﬂn(—)}

6t  exp{26arctan(Z=£)}
sinh(6m) (2 — p)2 + 72

—_

(2)For b = 3
p(z) = {(367)% + 72} exp{36 arctan(*=£)}
QCosh(ﬁgl) {(z — p)? +1‘2}§‘

We considers £2£ = tan A, & = 7%+ = 7(1 + tan? })

2
/y daide {(367) + 7 }/ exp(36) Ed,\

(2.30)

2cush(3é-r {,_,.2 (1+ tan? \) }2 ax
{(357' + 7‘2} exp(gé‘.g) i
= 3617 —dﬁ'
e {(351')2 + 72} e>:p(3§,k) .
= 2(;05}1{35:') : TgEEI:.—A b a4 COSEAd’\
5 LPOEL e Tg} ooe
= Qcosh(”" P exp(36A)dA

9
(36 cos A +sin \)

—E
3

{(367)2+ 72} 1 [ exp(35))
2cosh(¥E) 72 [(36)? +12

{(367)2 + 72} 1. {exp{%i){% cos(arctan £=£) + sin(arctan £=£)} + exp(—2x)
ZCOSh(%) T2 (35)2 41

{(367)* + 72} exp{36 arctan(ZZ£)}
200sh(%F)  {@—pr+ 2t
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Because of the following formula,

- 1
cos(arctan y ’u) = cos(arccos —————),
T L (EER
—u _ . y—p
sin(arctan ) = sin(aresin ——=I—=).
Y1+ (5E)?

(3) Recursive Formula
Firstly, we obtain the following formula.

¥ 1 s
e -/y i T — P; I
— —c0 T2 (25 < 2){(3: S #)2 + 7“2}5—1
2b—-3 1 .
+2b —2{(z — pu)2+ .,.2}5_1] exp{2cé arctan( *E )}dz
— ;-5 [(Qb — 2){{$ — ﬁ)z S '."2}5 —1 EXP{ZCE a.rcfan( )}:’
ey ¥ idamll 2ebT _ o
2 /— (26— 2){(z — p)? + 72)b-1 X = exp{2ch MCtm(T)}dm
12b— 1 B
: 2§ 72} exp{2ed arctan(m #)}d:':

tE% 2 ./—m {(z = p)2+

1 y— y—p
= =3 [(25&2}{@_ W T — exp{2cé arctan(- )}J

1 ebr v T—p
ey (TN 1"2}!' exp{2cé a.rctan( )}dz.
12b—3 rv 1 =
+ exp{2cé a.rctan(—a—-—)}d:c.
T

22— 2 oo {(x — p) + T2}t

Next, in the case of b > 3 the formula below is introduced.

! ! exp{2¢cé arct I_‘M)d
e (@R 2P p ctan( - }dz.

2edT
R

. 21 -b+1
= f (G QC;T ) [exp{2cé a.rctan(

exp{2c6 arctan( m%i—}}d:c

[ ezt
2cb1 X

—5))da
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N s e
2¢éT
v (=b+1) 2(x — p)
_f—oo 2edT {(;[;— }2+T2}b

[My—#F+fﬂ*H

exp{2¢cé a.rcta,n( )}]

E)}da

exp{2c6 arctan( - ;

9ehr exp{2¢é arcta.n( }

,;:5-— f”" (3: _2;;2 2}5 exp{2cc5 arct.&n(x ; !ﬁ)}dm

We input second formula to first formula.

v 1
j—w {(z — p)2+ 72}

exp{2cé arctan(m—;—'t-{)}d:.;
_ 1 [ y—p
- 26— 2){(y — )2 + 2P

{
Uﬂ
1 ebr cOT

Th—1 b—1 [/_m {(z — #};’i Y exp{2cé arct&n(f;—#}}dx
A — P ,u)}}

2¢67
exp{2c6 arctan( x—;-—'u]}dg;

exp{2¢cé arctan( - :

exp{2¢eé a.rctan(y _
4 126—-3 v 1
722b— 2 Jooo {(x — p)? + 72}0-1
n c67 | exp{2cé arctan(¥z£)}
272(b —1) B b—1| {(y—p)?+ r2p-1

1, cor 5 fv 1 z—p
—(b l-) [m {(E_#}z 2y exp{2céarctan( = )}dx

1 Qb 3
'r2 2b — 2)/ {z = p2+ 2 IBXp{Qcéa,rcta,u(

]}dm.

Consequently, we obtain the following recursive formula.

{ (ccﬁJ? }f {(m_ =y exp{zcéarctan[x%“)}dz

1 codT 1 B
- -_"—'I}j (3’ M + ) =P+ P exp{2cé a,rctan(y_?‘_“)}
1(2b—3) 1
+'r? (20 —2) f {@=p2+2p- lexp{ﬁcé arctan(—— )}dz.

We can caluculate cumulative distribution functions in the same way of normalizing con-
stant by using this results.
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Chapter 3

Cross-Sectional-Skew-Dependent
Distribution Models for Industry
Returns in Japanese Stock Market

3.1 Introduction

In the stock market, many empirical researches have observed an industry-effect in the
movement of prices or returns, meaning that indusiry returns (returns based on industry
indices) move rather independently. However, the author (1992) observed that there
are also co-movement (correlations) of industry returns and an asymmetry of the co-
movements. In fact, when the market price is in a downward trend, almost all industry
prices tend to move downwards together. On the other hand, when the market is in an
upward trend, the two typical cases are observed ; the case that only some specific industry
returns move upwards while others do not move much, and the case that all the industry
returns move together and form an upward trend. This implies that the correlations
among industry returns and the skewness of the cross-sectional distributions of industry
returns will change with time ¢. In other words, there may be some information in these
changes of the co-movements and asymmetry of cross-sectional industry returns over time

for predicting future market average returns. This motivates our study.

In the literature, this part has not much been paid an attention to, though there are
many time series studies on the distributional aspects of market and individual returns.
For examples, Fama (1965) and Mandelbrot (1966) suggested the use of such a heavy-
tailed distribution as stable Paretian distribution as a model for daily returns. Kariya,
et al. (1995) extensively studied on this feature as well as some nonlinear features in the
Japanese market (see also Kariya (1993)), which showed that the distribution of market
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returns is not only leptokurtic but also skewed. In our time series analysis below, to take
into account this feature, we use the Pearson type IV distribution which is a non-central
version of the type VII distribution and forms a broad class of distributions including
t-distribution and Cauchy distribution (Pearson, K (1914), Pearson, E.S and Hartrey
(1954), Pearson, E.S (1963), Johnson and Kotz (1970)).

To describe our problem more specifically, suppose there are N industries in the stock
market, let r;, denote the j-th weekly industry return at ¢, and let the averaged return of
all the industry returns at ¢ be

N
By %r_;r (3.1)
which we sometimes call market return. It is noted that this averaged return is not equal to
the so-called market return based on a market index. The skewness of the cross-sectional
distribution of industry returns is defined by

ma, ; x
Sy = —373 with Mi = ?E(?“,‘# -- Rt:] ; (32)
My 4 N3

Here r;; is the weekly rate of return obtained as the average of daily NIKKEI 36 Industry
Indices over each week. Hence N equals to 36, and R, is not such an index return as the
NIKKEI 225 Index return.

In this chapter, we mainly study on a predictive power of past values of the cross-
sectional skewness variable S for future values of the averaged return R. In predicting the
averaged return, we use an AR-GARCH type time series model with the AIC criterion for
model selection, and examine that the skewness of the cross-sectional distribution over
industries has a predictive power for future averaged returns R,’s. We also present some
state-dependent models to find that the conditional variances depend on some shape pa-
rameters such as skewness, which may be functions of economic fundamentals, in addition
to the past conditional variances and past errors.

In section 3.2, our framework is introduced including Pearson IV distribution. In

section 3.3, we make our empirical analysis with various models and draw our conclusion.

3.2 Model

To study on an effect of past cross-sectional skewness Si—;'s on the averaged return R,,
we start with the conditional likelihood function by
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T

H p(Rﬂ |B:Rn—h---:RhSn—l:"'!SU)' (3'3)

n=R+1
This formulation of the conditional likelihood ignores the following term

T

]_-_[ P{Sﬂ'—l [3: Rﬂ*—l:"'ﬁRI:Sﬂ—31+"!SU} (34)
n=I+1

in the unconditional likelihood. This point is described by the following.

We consider the joint distribution of Ry,..., Ry, Sr—1,...,Sp. This is an ordinary
likelihood function. As can be seen below, this joint distribution can be expressed by
using conditional probability distributions.

p(RTl-"!RlsST—ls"'vsﬂ1'9) (35)
':P(RT:ST—l | ﬁ:RT—-h vas :RIJST—2$ v :Sﬂ)p{RT—lr+ . :RI:ST—-21 . ‘150 I E)

T
=p(RK?'"TRIJSI'L""].!“'1SU ] 3) H P(Rmsn—l | H,Rn—ls---:Rl}Sn—2)+--1SO)-
n=K+1

Here the second term in the right hand side of (3.5) can be expressed as

p(Sn—l | H: Rn-h rray Rl*pSn—ﬂ: vy SDJP(RTI l 9: Rn-lp P 1Rlv Sn—l: = aSDJ
Then, by taking logarithm, we have

logP(RT,---,Rl,ST_h...,S{}|3) = IUSP(RKV--:RhSK—l’--o:SlJr'g) (36}
T

+ Y logp(Sn-1|6,Ru-1,...,R1,503,...,50)
n=K+1
T

+ Z k)gp(R.n|Q,Rn_l,...,Rl,Sﬂ_h...,S(})
n=K+1

The second term in the right hand side of (3.6) is ignored for our model. Therefore
our log-likelihood function is the third term. Further, for simplicity, we also omit the
first term. This is justified since the sample size T is large (in our particular example
T =511, K = 5). Thus, we regard the third term as a reasonable approximation to the
log-likelihood function.

In addition, we assume the following Markov property in (3.6) ;

P(Rn I e: Rﬂ—l: vl TRl!SH.—ll v :SCI) = p(Hn ] lga-Hrt——ll‘ Rn—‘l: Sn-l.)+ (37)
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It is noted that our likelihood is used for estimation via the Maximum Likelihood Method
and model selection via the AIC (Akaike (1973, 1974), Sakamoto, Ishiguro, and Kitagawa
(1986)) ;

AIC = -2 X (maximum log likelihood of the model)

+2 x (number of free parameters of the model).

The models we use to take into account an effect of skewness on prediction are as follows.

[Model 1 : AR model with skewness]
k I
Ri=op+ Z aiRyi + Z f[?jStLj + €y, (3-8)

i=1 j=1
where ¢, ~ N(0,0}).

[Model 2 : AR-ARCH model with skewness]

k !

Ri=ag+ Y aiRi—i+ Y BiSij+ u, (3.9)
i=1 i=1

where u; | Q1 ~ N(0, hy,) and the conditional variance h; ; is given by

hig=m+ ’fz’uf_l- (3.10)
[Model 3 : AR-GARCH model with skewness]

k ]
Ri=oao+) eiRii+ ) 35 +e, (3.11)

i=l i=1

where e; | ;-1 ~ N(0, hy;) and the conditional variance hy; is given by
hot = Y3+ na€i_y + Yshae1. (3.12)

These three models are based on the normal assumption for errors. We also use the models
with the type IV Pearson family of probability distributions for errors, whose density p(z)
is given by the solution to the differential equation
| brzop g
e -**:(__2_) (3.13)
p (—TE) +1
where 6 is called the non-centrality parameter. The density is given by

C exp{2bé arctan(*=£)}
(CEmETo

p(zlp,7,6,b) = (3.14)
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where b > %, 7> 0, —o0 < § < 0. Note that, if § = 0, then the solution defines the type
VII distributions of Pearson system.

In the past research, this distribution is not introduced in this way, but used as
an approximation to non-central ¢ distribution by using moment ratio (Merington and
Pearson (1958)). And this type IV family is not used for actual data analysis because
of its difficulty in computation. The analytic solution of the normalizing constant C is
obtained by using a recursive formulaforb=nand b =n+1/2,n=1,2,3... (Chapter 2).
The recursive formula as well as the first four moment, which specify the distribution of
Pearson System, are given in Chapter 2. We use this distribution to model the conditional
distribution p(R; | 8, Ri—1, Ri—2, Si—1).

[Model 4 : State-dependent model under type IV distribution]

—E0} /(e — ) + Y (3.15)

The shape of the distribution varies depending on the skewness, S,_;. Therefore, p, 7, 8,

x —
(x| phe, Te, 62, b)) = Cy exp{2b,6, arctan(

and b depend on . For simplicity, we use the quadratic formulation of S,_, :
My = ay + agS_y + ﬂ:tsi?_l + a13Ri1 + a1a Ry o
Ty = aq + as5i_1 + -‘1353_1
6 = ag + agSi—1 + agSE
be = a0 + a11Si—1 + a12S7;.

[Model 5 : State-dependent model under type IV distribution with T, T3—1 and error
term]

p(x|s, 7, 61, be) = Crexp {m: arctan (“’ = = *)} Mz = pP+728,  (3.16)

Pt = ay + asR;

T = a3+ ag(Rey — pe1)? + ag72,
0 = ag + ar S, + ﬂsS?_l

by = ag + a105:-1 + 31132_1.

The difference between Model 4 and 5 lies in the formulation of the scale parameter
Tt

To estimate the parameters and identify the models, the procedure described in Kita-
gawa (1993) is used, where pseudo-Newton-Raphson method. Furthermore, We adopt DE
(double exponential formula) to calculate the normalizing constant by numerical integra-
tion for any b (Mori (1987)). We examine the accuracy of numerical integration by using
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the analytical solution (Chapter 2).

3.3 Empirical Results
3.3.1 Data

Our data consist of weekly returns from January, 1983 to December, 1992 with 511 ob-
servations. In Figure 3.1 and Figure 3.2, the time series of the averaged returns {R,} and
skewness {S,} are plotted. According to these figures, in the first half of the time interval,
certain industry sectors caused an increase of the market price and the low volatility of
averaged returns, which is characterized by wide range of skewness. Contrarily, in the
latter half, a co-movement of industry returns formed a downward trend of the market
price and the high volatility of average returns, which is charaterized by narrow range
of skewness. A period in 1989, which is characterized by narrow range of skewness, low
volatility of averaged returns and the increase of market price, is an exception to the
asymmetry, which was probably caused by a huge volume of the index funds invested on
NIKKEI 225 or TOPIX in this period.

In Figure 3.3, the distribution of R, is given with Pearson IV distribution fitted, where
the parameters are estimated
p= 0.93858, 7 = 2.22641, § = —0.15801, b = 1.86462.
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Figure 3.2: The time series of skewness
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3.3.2 Comparison of Models

To investigate the predictive power of {S,} for { R}, we fit the models presented in section
3.2.

First, we fit Model 1. With k = 5and ! = 5 fixed, all possible submodels are considered
by the AIC. Table 3.1 summarizes the results.

In Model 1, the model given by,

Ry = 0.247520R,_, — 0.1874685,; + 0.254871 + &, & ~ N(0,5.018) (3.17)

attains the minimum of AIC among all possible submodels. On the other hand, when the
skewness is not introduced into the model (I = 0, i.e. §; = 0), the AR(1) with constant
term given by,

R, = 0.228235R,_; + 0.165205 + &;, &, ~ N(0,5.057)

attains the minimum of AIC. The table also indicates that under the presence of R,_;, the
information of skewness S;_; is more informative than R,_; because both the variance of
residuals and the AIC are smaller than the case without the skewness variables. Instead
of skewness, we also tried models with cross-sectional standard deviation or kurtosis. The
AIC values of AR(1) with s.t.d and kurtosis are 2260.1 and 2261.4 respectively, which will
imply that the cross-sectional skewness is better than these variables.

Table 3.1: The results of submodels
o* AIC

(1) | co, a1, 5.018 | 2258.1
(2) | a0, 01, 51,05 | 5.002 | 2258.5
(3) ﬂo,al,ﬁl,ﬂ; 5.005 | 2258.9
(‘H Gu,&;,ﬂ:g,ﬁl 5.008 | 2259.1
(5) | 01,61, 85 5.030 | 2259.4

Qg, 0 5.057 | 2260.1
g, 0y, Qo 5.047 | 2263.9

Second, we also fit Model 2 (AR-ARCH) and Model 3 (AR-GARCH). The AIC of AR-
ARCH(1,1) and AR-ARCH(2,1) without S;_; are 2170.5, 2172.3 respectively, and smaller
than the minimum AIC in Model 1.
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On the other hand, the AR-ARCH model with S;_,,

R, = 02121+ ﬂ44g{)R;_1 — 015185';._.1 + uy,
he = 2.5006 + 0.6541u2_,,

has smaller value of AIC, 2167.8 than these models. The AIC of AR-GARCH(1,1) and
AR-GARCH(2,1) are 2072.0, 2073.7 respectively. But the GARCH model with S,_,,

R; = 0.4062+ 0.2767R;—1 — 0.12025,_; + ey,
he = 0.1340 + 0.1794e? , + 0.8083h,_,,

has further smaller value of AIC, 2069.3.
Consequently the skewness variable S,_; under the presence of R,_; has more infor-
mation than other lagged values, R,_; in these models and will give a predictive power.
Thirdly, we consider Model 4 with errors following Pearson type IV distribution. In
the case that both of a;3 and a4 equal to zero in Model 4, the AIC’s of the some of the

models are shown in Table 3.2.

Table 3.2: The results of Model 4 without R, ; and R;_»

Model AIC
(a) b is quadratic, é is linear, others are constant 2143.0
(b) b is quadratic, others are constant 2144.3
(c) b and é are quadratic, others are constant 2144.6
(d) b, é, and 7 are quadratic, others are constant 2145.5
(e) All parameters are quadratic function of skewness | 2146.3
(f) 7 is quadratic, others are constant 2149.0
(g) All parameters are constant 2157.5
(h) ¢ is quadratic, others are constant 2158.6

The estimated parameters of the AIC best model (a) are

pe = 1.00006, 7, =2.39850, & = —0.17558 — 0.028985,_,,
by = 1.78561 + 0.267335;-1 + 0.1433957% ,.
In all of the prefered models by the AIC, the parameter b is quadratic function of S,_;.
This suggests that the market tends to be unstable when the absolute value of S,_; is
small, and stable when it is large.
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When S;_; is around zero, the value of § is negative and the market is unstable. It will
imply that no-preference over industries causes a decrease of the market price. When S,_,
is negative due to increases of most industry prices, the return distribution of the next
week tends to be symmetric. But, when it is positive, the prices of some industries are
increasing with that the market price increasing, or the prices of most industries decline
with the market price declining, the return distribution of the next week tends to be
asymmetric. In the latter case, since the value of b is high, the standard deviation of the
distribution is low (stable).

Next, we fit Model 4 with R,_, and R, 5. The estimated models are summarized in
Table 3.3, where AR(1) and AR(2) indicate i, = a1 + ay3Rs_y and py = a; + ay3Rey +
a14 ;g respectively.

Table 3.3: The results of Model 4 with R;_; and R;_»

Model Order AIC
(a) b is quardratic, 6 is linear, others are constant AR(1) | 2118.0
(b) b and § are quadratic, others are constant AR(1) | 2119.8
(c) b, $é, and 7 are quadratic, others are constant AR(1) | 2120.8
(d) All parameters are quadratic function of skewness | AR(1) | 2120.8
(e) b and é are quadratic, others are constant AR(2) | 2121.8
(f) All parameters are quadratic function of skewness | AR(2) | 2123.0
(g) b is quadratic, others are constant AR(1) | 2125.4
(h) 7 is quadratic, others are constant AR(1) [ 2127.1
(i)  All parameters are constant AR(1) | 2137.0

The estimated parameters of the AIC best model (a) with AR(1) are

pr = 0.88404 + 0.22741R,_;, = 2.38417,

0 = —0.13664 — 0.05210S5;_;,

by = 1.81264 + 0.292795,_; + 0.1352157 ;.
For this AIC best model, b is quadratic and § is linear. The coefficient of R:_1(0.22741)
is close to the one of the AR model (0.247520) shown in Model 1. The reduction of the
AIC values from the ones in the previous subsection is significant.

Finally, we consider Model 5 whose distribution depends not only on the skewness

Si-1 and averaged return R,_; but also on the error term and ,_; as follows:
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e = ay + ag Ry
7 = a3 + aa(Re-y — pe1)* + asd,
8 = ag + a7 Si—1 + agS%
by = ag + ay0Si—1 + 6115?__1.
Firstly, we adopt the model only with error term like AR-ARCH model. The best AIC
value among them is 2086.4 and the estimated parameters are
pe = 0.66419 + 0.28628R;_;
77 = 4.53618 + 0.80384(Riq — t1—1)?
§ = —0.09269 — 0.04701S;_;
by = 2.07579 + 0.256335,_; + 0.1083152 ;.

We can improve the model with b being quadratic and é linear and AR(1), by intro-
ducing error term to 7;. The qualitative characterestics of b and é are the same as the
ones in model 4. The coefficient of error term (0.80384) is similar to the AR-ARCH term
(0.65).

Next, we adopt the model with both error term and the previous term of 7 like AR-
GARCH model. The best AIC value among them is 2030.7 and the estimated parameters
are

pe = 0.90539 + 0.24308R,_4

72 = 0.63235 4 0.66434(R,_; — py—1)? + 0.7727772,
& = —0.12744 — 0.043955,_;

b, = 3.47490.

3.3.3 Summary of our Results

Table 3.4 summarizes the various models in this section. SDM stands for state-dependent
model based on Pearson IV type distribution. The state-dependent model without AR
has better AIC than AR-ARCH model. It will suggest that the variance is explained
by some fundamental factors like skewness. The state-dependent model with error term
is better than the state-dependent model with AR, but not better than the model with
AR-GARCH. Furthermore, the state-dependent model with error term and 7 in the formu-
lation of AR-GARCH is better than the AR-GARCH. Consequently, the state-dependent
model with error term, 7, b constant and & a linear function of Si_1, is the best AIC model
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among our possible models.

Table 3.4: The summary of results

Model AlIC
(1) SDM with error and 7(b:const,:linear) 2022.7
(2) SDM with error and 7(b:const,d:quadratic) 2023.6
(3) SDM with error and 7(b:quadratic,§:quadratic) | 2024.8
(4) SDM with error and 7(b:const,8:const) 2028.6
(5) SDM with error and 7(b:quadratic,é:const) 2029.9
(6) SDM with error and 7(b:const,é = 0) 2040.6
(7) AR-GARCH(2,1)( skewness included) 2069.3
(8) AR-GARCH(1,1) 2072.0
(9) AR-GARCH(2,1) 5073.7
(10) SDM with error(b:quadratic,é:linear) 2086.4
(11) SDM with error(b:quadratic,§:quadratic) 2087.8
(12) SDM with error(b:const,é:const) 2098.8
(13) SDM with AR(1) 2118.0
(14) SDM without AR 2143.0
(15) AR-ARCH(2,1)( skewness included) 2167.8
(16) AR-ARCH(1,1) 21705
(17) AR-ARCH(2,1) 2172.3
(18) AR( skewness included) 2258.1

3.3.4 Examples

Although Model 5 has better AIC than Model 4, Model 4 is more interpretable by some
financial factors (such as asymmetric phenomena). Therefore, we adopt three examples
by using Model 4.

The first example is the crash of October 17-24, 1987, so-called ‘Black Monday’. The
previous cross-sectional skewness is close to zero (—0.204845). No specific industries are
preferred. The parameters of the state-dependent model are y, = 1.18018, 72 = 5.68427,
6, = —0.12597, and b, = 1.75834. Figure 3.4 gives the distributions of R, obtained by
the state-dependent model and AR(1) model with S,_; respectively. The distribution
of the state-dependent model has a heavier tail than normal distribution. The +sign in
the figure denotes the actual return (—9.03956) of R,. The four dots (0.24891, 2.71310,
0.97135, 1.30221) indicate the returns of four previous weeks. No information is drawn
from these four numbers. The expectation and variance of the state-dependent model
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are 0.48380 and 11.94010 respectively. On the other hand, those of AR(1) with S,_; are
0.61560 and 5.018 respectively.

The second example is for an increase of the market price by a movement of several
domestic demand-related industries (Real Estate, Electric Power, Rail and Bus) and fi-
nancial sectors (Securities, Insurance) in March 8-15, 1986. The cross-sectional skewness
of the previous week is 0.98630, implying a heavy-tail to the right side. The parameters of
the state-dependent model are p; = 1.40406, 72 = 5.68427, §, = —0.18803, b, = 2.23294.
Figure 3.5 gives the distributions of the state-dependent model and the AR(1) model with
S-1 respectively. The +sign denotes the actual return (3.44620). The four dots (2.02946,
1.18535, 1.89667, 2.28671) indicate the returns of four previous weeks. When the skewness
is positive, due to investors’ preference over several specific industries, the positive returns
tend to continue. But the range of returns is not so wide. This actual return (3.4462)
is one of the biggest returns. Therefore, it is reasonable that the density obtained by
the state-dependent model has heavier tail than normal density. The expectation and
variance of the state-dependent model are 0.59217 and 4.32740 respectively. On the other
hand, those of AR(1) with skewness variable are 0.63598 and 5.018 respectively.

The third example is on the increase of market prices for June 23-30, 1984 by the
movement of many industry returns. The previous cross-sectional skewness is —2.54400.
The parameters of state-dependent model are p; = 0.60939, 72 = 5.68427, 6§, = —0.00410,
be = 1.94288. Figure 3.6 shows the distributions of state-dependent model and AR(1)
model with skewness variable respectively. The +sign indicates actual return (0.78510).
The four dots (—0.28890, 1.69412, —0.75399, —1.20773) indicate returns of four previous
weeks. Contrary to the second example, in this example it does not continue to get positive
returns. And the variance is larger than the case of the second example. The expectation
and variance of state-dependent model are 0.58925 and 6.41785 respectively. On the other
hand, those of AR(1) with skewness variable are 0.43285 and 5.018 respectively.

Finally, Figure 3.7 shows the time series of expected returns and actual returns of
Model 5. The solid line and dotted line indicate expected returns and actual returns
respectively.

3.3.5 Examples of the Out-of-sample Case

Examples in the previous subsection are based on the in-sample analysis. In this sub-
section, two typical examples based on the out-of-sample analysis are shown. The first
example is the crash of October 17-24, 1987, so-called ‘Black Monday’. To begin with,
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we estimate the parameters of Model 4 by using the time series data from 1983, January.
to the previous week of October 17-24, 1987, with 242 observations. The estimated pa-
rameters are pe = 0.63095 + 0.22368R,—;, 7 = 2.40117,

6y = —0.03807 — 0.02630S,_;,

by = 2.47479 + 0.43378S,_; + 0.1711252 ,.
Next, compared with the parameters estimated by the in-sample analysis, the absolute
value of the constant term of § (-0.03807) is smaller than that of the in-sample case (-
0.13664). The constant term of b (2.47479) is bigger than that of the in-sample case
(1.181264). The value of 7 is almost the same. Finally, the parameters of the pre-
dicted distribution by using this out-of-sample analysis are p, = 0.9222, 72 = 5.765617,
6; = —0.03268, by = 2.39311. The § is bigger than that of the in-sample case. It indicates
that the degree of skewness of the out-sample case is smaller than that of the in-sample
case. Nevertheless, the tendency of left-skewed distribution is the same. The expectation
and variance are 0.78742 and 3.23800 respectively.

The second example is the price down from March, 30 to April, 6, 1990. The previous
cross-sectional skewness and return are -0.220891 and 0.2113191 respectively. To begin
with, we estimate the parameters of Model 4 by using the time series data from 1983,
January, to the previous week of March 30, 1990, with 367 observations. The estimated
parameters are pe = 1.09857 + 0.16559R,_,, 7, = 2.33814,

& = —0.17056 — 0.0429285,_4,

b: = 2.33637 + 0.319855,_; + 0.1117957 ,.
Next, compared with the parameters estimated by the in-sample analysis, the absolute
value of the constant term of § (-0.17056) is bigger than that of the in-sample case (-
0.13664). The constant term of b (2.33637) is bigger than that of the in-sample case
(1.181264). The value of 7 is almost the same. Finally, the parameters of the predicted
distribution by using this out-of-sample analysis are y, = 1.13356, 72 = 5.46690, 6, =
—0.16108, by = 2.27117. The parameters of the predicted distribution by using the in-
sample analysis are p1, = 0.93210, 77 = 5.68427, §, = —0.12513, b, = 1.75456.

The 6 is smaller than that of the in-sample case. It indicates that the degree of
skewness of the out-sample case is bigger than that of the in-sample case. The tendency
of left-skewed distribution is the same. The expectation and variance of the out-of-sample
analysis are 0.47510 and 3.52743 respectively. And the expectation and variance of the
in-sample analysis are 0.23840 and 12.11010 respectively.
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Figure 3.7: The time series of expected returns and actual returns
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Chapter 4

Non-Gaussian Distribution for
Stock Returns and Related
Stochastic Differential Equation

4.1 Introduction

Measuring the market risk of financial assets such as stocks and bonds is very important
problem for financial institutions and regulators. In this area, the normal distribution is
commonly used because of its simplicity. But, for the daily returns of stocks, it is well-
known that they are actually not distributed as normal distribution. Many researches
reported that heavy-tailed and skewed distributions are observed (Kariya, et al. (1995),
Nagahara, (1995a)).

Fama (1965) and Mandelbrot (1966) suggested the use of such a heavy-tailed distribu-
tion as stable Paretian distribution as a model for daily returns. Blattberg and Gonedes
(1974) compared the stable and ¢-distribution for stock prices of United States. Kariya,
et al. (1995) extensively studied on this feature of the Japanese market (see also Kariya
(1993)) and showed that the distribution of market returns is not only leptokurtic but
also skewed. In our time series analysis below, to take into account of this feature, we use
the Pearson type IV family of distributions which is a noncentral version of the type VII
distributions and forms a broad class of distributions including t-distribution and Cauchy
distribution (Pearson, K. (1914), Pearson, E.S. and Hartrey (1954), Pearson, E.S. (1963),
Johnson and Kotz (1970), Nagahara (1994, 1995a)).

We also consider a stochastic differential equation whose stationary distribution is the
type VII or IV of Pearson system (Wong, 1963). This reveals the relationship between

the stationary distribution of stock returns and related stochastic differential equation,
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Wong pointed out the transition probability density function of stochastic differen-
tial equation for the Type VII Pearson distribution. It can be written more explicitly
for i-distribution which have even degrees of freedom. In this chapter, we derive the
transition probability density function for a more general family of distributions, and
present a method for estimating the parameters of its stochastic differential equation.
Furthermore, in order to estimate the parameters of stochastic differential equation which
corresponds to the Pearson IV type (asymmetric distribution and continuous shape pa-
rameter), we consider the local linearization method (Ozaki (1985a, 1985b, 1989, 1992a,
1992b, 1993), Biscay, Jimenez, Riera, and Valdes (1994), Shoji and Ozaki (1994), and
Nagahara (1995b)).

In section 4.2, heavy-tailed and non-central distributions are introduced and the max-
imum likelihood method for parameter estimation is shown. In section 4.3, the stochastic
differntial equations related to the stationary distribution in section 4.2 are introduced.
The parameters are estimated by maximum likelihood method using the transition prob-
ability density function and the local linearization method. In section 4.4, the conclusion
of the previous section is shown. In section 4.5, a comparison of parameter estimation
methods for stochastic differential equation is shown.

4.2 Non-Gaussian Distribution for Stock Returns
4.2.1 The VII and IV Type of Pearson System

In this chapter, x, denotes the daily returns of stock price index defined by

By

1'1=I\UgP l,
-

(4.1)

where P; is the closing price of t-th day. We shall use the type IV Pearson family of
probability distributions as the distribution of the daily stock returns. The type IV
Pearson distribution can discribe heavy-tailed and skewed distribution. It is easy to
‘compare with symmetric distributions such as t-distribution and the type VII Pearson
distribution. Furtheremore, since the type IV distribution belongs to Pearson System, it
is possible to introduce a stochastic differential equation which generates the distribution

as the stationary distribution (Wong (1963), Ozaki (1985a)).
The density function p(x) of the type IV distribution is defined as the solution to the
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differential equation
! 2bre—p
_r _FE -9 (4.2)
P (FEP+L
where i, 7 and § are the location parameter, the scale parameter and the non-centrality
parameter, respectively. The solution is explicitly given by

C exp{2b8 arctan(Z=£)}

G-t P o

plz|p, 7,6,b) =

where b > 1, 7 > 0, —o0 < § < oc. Note that, if § = 0, then the solution defines the type
VII distributions of Pearson system.

In the past research, this distribution has not been introduced in this way, but used
as an approximation to non-central ¢ distribution by using moment ratio (Merrington
and Pearson (1958)). As far as the author knows, this type IV family has not been
used for actual data analysis because of its difficulty in computation. In particular, it
is necessary for empirical use to develop a practical method for calculating normalizing
constant, C. In order to compute the normalizing constant, analytic expressions of the
normalizing constant are obtained by using recursive formula for b =n and b =n + 1/2,
n=1,2,3,... (Chapter 2). In this section, we model the distribution of 2, by using (4.3)
as the probability density function. Namely, z; are assumed to be independently and
identically distributed according to the density function (4.3).

Given T observations x;,. .., zr, the log-likelihood of this model is given by

T
Wp,7,6,b) = Zlogp(:c:} (4.4)

= ZlngCJrEbéz.m'ctan( ) —bzmg{{m, p)? + 7%}

t=1
We use DE (double exponential formula) to calculate the normalizing constant, C, by
numerical integration for any b (Mori (1987)). The accuracy of numerical integration was
checked by comparing with the analytic solution for some specific values of b (Chapter
2). To estimate the parameters and to identify the models, the procedure based on quasi-
Newton method is used (Kitagawa (1993)). Model is selected by AIC (Akaike Information
Criterion) defined by

AIC = —2(maximum log-likelihood) + 2(number of free parameters). (4.5)



4.2.2 Results

The daily rate of returns were obtained from the daily index of Nikkei 225 index, TOPIX
index and Standard and Poor’s 500 index. The data of Japanese market consists of
returns from January 5, 1970 to December 30, 1994 with 6912 observations. The data
of U.S. market consists of returns from January 5, 1975 to December 30, 1994 with 5053

observations.

The results are shown in Table 4.1 - Table 4.6. The = indicates the minimum values of
AIC. LL stands for log-likelihood. According to Table 4.1, in Japanese market, the esti-
mated parameter b over the entire period is around 1.75. It suggests that the distribution
of the returns has heavier tail than the normal distribution. The AIC values of asymmetric
distributions (Pearson IV type) is smaller than that of symmetric distributions (Pearson
VII type). Table 4.2 - Table 4.6 show the results of fitting the models to subintervals of
five year span. Whether asymmetric distribution is selected or not, depends on its period.
From 1970 to 1974, both of the AIC values of asymmetric distribution are much smaller
than symmetric ones. In other periods, there are smaller differences. As for TOPIX, ac-
cording to the AIC criterion, the asymmetric distribution is considered to be better than
the symmetric one for the first two periods, 1970-1974 and 1975-1979. Then the symmet-
ric distribution is selected for the rest three periods 1980-1984, 1985-1989, 1990-1994. As
for NK225, the asymmetric distribution is selected for the first four intervals, 1970-1974,
1975-1979, 1980-1984, 1985-1989. However, the symmetric distribution is selected in the
last interval, 1990-1994.

According to Table 4.1, in U.S. market, the estimated parameter b is around 2.70. It
also suggests that the distribution of the returns has heavier tail than the normal dis-
tribution, but is not so heavier than the one for the Japanese market. The AIC values
of symmetric distribution (Pearson VII type) become smaller than that of asymmetric
distribution (Pearson IV type). Only at the interval, 1980-1984, the AIC value of asym-
metric one becomes smaller than the symmetric one, but the difference is not so much.
From these results, for long term such as 5 years, it is reasonable that the stationary
distributions of U.S. market are symmetric, especially from 1975 to 1994.

Figure 4.1 shows the density function of real returns of Nikkei 225 (a broken line) and
the density function estimated by the maximum likelihood method (a solid line). Figure
4.2 shows the density function of real returns of SP500 (a broken line) and the density
function estimated by the maximum likelihood method (a solid line). In both cases, the
estimated distributions are well fitted with actual distributions. As the characteristic,
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each distribution is leptokurtic. And there is a little skewness for Nikkei 225.

Table 4.1: Comparison of symmetric and asymmetric estimated distributions
(Japan 1970-94, U.S. 1975-1994)

Index 7] T & b LL AIC
NK225 (symmetric) | 0.00064 | 0.00885 | 0.00 1.78268 | 23235.95 | -46465.90
(asymmetric) | 0.00152 | 0.00881 | -0.06384 | 1.78297 | 23246.50 | -46485.00"
TOPIX (symmetric) | 0.00053 | 0.00745 | 0.00 1.75860 | 24305.54 | -48605.08
(asymmetric) | 0.00105 | 0.00743 | -0.04468 | 1.75832 | 24310.99 | -48613.98"
SP500  (symmetric) | 0.00041 | 0.01390 | 0.00 2.69815 | 16970.88 | -33935.76™
(asymmetric) | 0.00033 | 0.01391 | 0.00410 | 2.69998 | 16970.91 | -33933.82

Table 4.2: Comparison of symmetric and asymmetric estimated distributions

(1970-1974)
Index 7 T ] b LL AlIC
NK225 (symmetric) | 0.00096 | 0.01102 | 0.00 1.97605 | 4787.22 | -9568.44
(asymmetric) | 0.00291 | 0.01096 | -0.11871 | 1.98996 | 4793.90 | -9579.79"
TOPIX (symmetric) | 0.00092 | 0.00805 | 0.00 1.85563 | 5135.51 | -10265.02
(asymmetric) | 0.00257 | 0.00797 | -0.13534 | 1.86905 | 5144.96 | -10281.92*

Table 4.3: Comparison of symmetric and asymmetric estimated distributions
(1975-1979)

Index 7 T ; b LT AIC
NK225 (symmetric) | 0.00048 | 0.01033 | 0.00 3.10319 | 5389.06 | -10772.13
(asymmetric) | 0.00144 | 0.01017 | -0.07050 | 3.06240 | 5390.70 | -10773.40*
TOPIX (symmetric) | 0.00041 | 0.00954 | 0.00 3.64864 | 5688.67 | -11371.35
(asymmetric) | 0.00118 | 0.00946 | -0.06361 | 3.62304 | 5689.78 | -11371.56*
SP500 (symumetric) | 0.00030 | 0.02405 | 0.00 6.56703 | 4382.07 | -8759.95"
(asymmetric) | -0.00110 | 0.02454 | 0.04990 | 6.79835 | 4383.29 | -8758.58




Table 4.4: Comparison of symmetric and asymmetric estimated distributions
(1980-1984)

Index I T ] b LL AIC
NK225 (symmetric) | 0.00054 | 0.00918 | 0.00 2.59165 | 5332.04 | -10658.08
(asymmetric) | 0.00149 | 0.00913 | -0.07508 | 2.59013 | 5334.09 | -10660.17"
TOPIX (symmetric) | 0.00052 | 0.00791 | 0.00 2.49152 | 5490.92 | -10975.85*
(asymmetric) | 0.00070 | 0.00791 | -0.01615 | 2.49293 | 5491.03 | -10974.06
SP500  (symmetric) | 0.00019 | 0.02278 | 0.00 4.40873 | 4120.55 | -8235.09
(asymmetric) | -0.00328 | 0.02292 | 0.12381 | 4.51945 | 4123.37 | -8238.74*

Table 4.5: Comparison of symmetric and asymmetric estimated distributions

(1985-1989)
Index 1 T ] b LL AlC
NK225 (symmetric) | 0.00120 | 0.00929 | 0.00 2.02186 | 4713.14 | -9420.27
(asymmetric) | 0.00203 | 0.00933 | -0.05990 | 2.03760 | 4714.65 | -9421.31*
TOPIX (symmetric) | 0.00101 | 0.00906 [ 0.00 1.93043 | 4672.03 | -9338.05"
(asymmetric) | 0.00130 | 0.00907 | -0.02115 | 1.93354 | 4672.23 | -9336.46
SP500  (symmetric) | 0.00101 | 0.01038 | 0.00 1.86298 | 4102.91 | -8199.82*
(asymmetric) | 0.00145 | 0.01043 | -0.02782 | 1.87138 | 4103.27 | -8198.55

Table 4.6: Comparison of symmetric and asymmetric estimated distributions

(1990-1994)
Index i T 5 b LL AIC
NK225 (symmetric) |-0.00065 | 0.02137 | 0.00 2.34822 | 3441.07 | -6876.14"
(asymmetric) | -0.00071 | 0.02138 | 0.00179 | 2.34926 | 3441.07 | -6874.14
TOPIX (symmetric) | -0.00070 | 0.01440 | 0.00 1.06979 | 3601.40 | -7376.80"
(asymmetric) | -0.00120 | 0.01440 | 0.02347 | 1.97130 | 3691.66 | -7375.32
SP500  (symmetric) | 0.00024 | 0.01178 | 0.00 2.64030 | 4429.81 | -8853.62*
(asymmetric) | 0.00055 | 0.01180 | -0.01874 | 2.64502 | 4429.93 | -8851.86
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Figure 4.1: The density function of Nikkei225
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Figure 4.2: The density function of SP500
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4.3 Related Stochastic Differential Equation Model

4.3.1 Stochastic Differential Equation which has Non-central
Stationary Distribution '

In the previous section, we consider the type VII and IV of Pearson system to represent
skewed and heavy-tailed distribution. According to Wong (1963), there is a relation-
ship between the Pearson system and Markov diffusion process. He showed that for any
distribution p(x) which belongs to the Pearson system, defined by the following equation,

dp(z) cy+ 1T :
dff j— dﬂ+d1$+d2f2p{t)1 (4‘6)

it is possible to derive a diffusion process whose marginal distribution is p(x).
According to Ozaki (1985a), it can be extended to any distribution p(z) defined by
proper analytic functions ¢(z) and d(z) in a distribution system given by,

dp(z) _ o(z)
g = @p{i).

He also showed that the corresponding Markov diffusion process is given, with ¢(z) and

(4.7)

d(z), by the following Fokker-Planck equation for the transition density function q(z|aq, 1),

dq(z|zo, 1)

208 - 2 {{ela) + ¢/ (@) alalzo, 0] + 5y

2922
According to Mortensen (1979), the diffusion process z(t) defined by (4.8) has a

stochastic differential equation representation,

[2d(z)q (|0, 1)]. (4.8)

& = a(z) + 1/b(z)n(t), (4.9)

where
a(z) = c(z) + d'(z), (4.10)
b(z) = 2d(z), (4.11)

in the Ito form of stochastic calculus.
In this chapter, we adopted the type VII and IV of Pearson system to express the sym-
metric and asymmetric heavy-tailed distibution of returns, respectively. Correspondingly,

we consider the diffusion process defined by

P _ P-4 xF _ Wa-p-tHx %
PP +1}xs {(e-wP+rtx g

(4.12)
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In this case, the diffusion process is given by
dzr = o®{(1 = b)(z — p) + bré}dt + ay/(z — p)? + 72dw. (4.13)

This diffusion process is reasonable because the time series data have the first order
positive autocorrelation (AR term).
Furthermore, with the variable transformation for the equation of (4.9),

(4.14)

z 1
= —_dt,
y f_m ) i

we can replace by a dynamical system driven by Gaussian white noise n(t) as follows:

z = h(y), (4.15)

¥ = f(y)+nl), (4.16)

where h(y) is a smooth function given by the inverse function of (4.14) and
a(z) 1 ¥(z)

fly) = .
(v) m 4 b(l‘)

We can consider the various diffusion processes which have stationary distribution like

(4.17)

Pearson type (Ozaki 1985a, 1992b). We apply the same method to our case, and obtain
the following transformation.
“Specifically for the following diffusion process

dz = 0*{(1 - b)(z — ) + bré}dt + oy (= ; Bye 4 1240, (4.18)

the transformation (4.14) is given by

z d
y = f_ . J—@E\/—% (4.19)
= glog{(x;m L s S (4.20)
= garcsinh (r ; ,u) j (4.21)
Therefore, x is given by:
x = p+ 7sinh (%) : (4.22)
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and we define the f(y) as follows,

fly) =710 (% » b) tanh (f}) " E-OZ—]‘Z(’% (4.23)

we obtain the transformation of (4.18) defined by

dy = f(y)dt + Tdw. (4.24)

We apply the local linearization method to this formula in subsection 4.3.4.

4.3.2 The Transition Probability Density Function and Esti-
mation of the Parameters

In this subsection, we obtain the transition probability density function of the symmetric
case in order to define the likelihood for estimating the parameters of the stochastic
differential equation. In the case that § = 0, Wong (1963) studied a symmetric version of
the diffusion process given by

dz = {(1 — 2a)z}dt + 1/2(22 + 1)dw. (4.25)

Wong pointed out the transition probability density function of this stochastic differential
equation is given by
1 N

p(z|zo,t) = (14 :cﬁ)(“"'l"z) {'7_1'- E n!I‘((Zc:t;?)— 7 e‘“tgﬂ_")fﬁn(ﬂsa)ﬁn(m)

n=0
+§]?/0m e—(a“"-i-}-‘t:"[d;(p'::g)w(—#, T) o Tii'(_'ruv a'l])ﬂ)(lu': 'L‘)]d#} ? (426)

where
0u(z) =2 "I(a —n+ %)(—1)"(1 - xEJ““f?E%[(l + gh)n-a-1/?), (4.27)

are polynomials of degree n, and ¥(u, z) is given by

; ) M i
) = (x + V14 22)*(1 + 222, F (— o+l =4 o—e ], (4.2

with o Fy being the Gauss hypergeometric series (Abramowits and Stegun(1965)).

For a equals to a positive integer, K, it is possible to get more explicit form. These
are the cases when the stationary distributions belong to t-distributions which have even
degrees of freedom and we calculate the transition probability density function of our
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stochastic differential equation. The transition probability density functions for o =
K, (b=1/2+ K,K =1,2,3,...) are given by,

; ) (Bt }%
z i) =
p('f-|xﬁs ) T{(’—:E)g-}-l}’i’“f [{ +1
x—u—m—l e"f‘z”"_‘e_“ + —= i{: {a; k(z, zo) f "zidz}
24T X & =3 i=1 ’
where
inh(Z=£) — inh{ Z=#
,  Axesin (2=£) aj,rcsm (2= ). (4.29)

2

The analytic solution of the parameters, a; x(z, %), are defined as follows:

(DK =1
1
a(z,x0) = 5 (4.30)
(2)K =2
8 fu— = .
aa(z,20) = 3 (m . ”) (""1”,r 2 ) S (4.31)
3 3x1
az2(z,70) = i (4.32)
(3)K = 3
3 - L TA 22
a13(,79) = T {4 (I = £ } {4 (IOT p:) — 1} e~ BXt (4.33)
15 2
az3(,20) = ( 'r “) ( 'u) R (4.34)
aga(z,20) = I_E 2_1 (4.35)
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ass(T, To)

as6(z, z0)

a46(z, 2o)
as,6(z, To)

ﬂs,ﬁ(ﬁ: -’b"u)

ﬂl,T(E,ﬂTo) =

asz(z,x9) =

ﬂ-3,7(5'3,$0) =

04'1(.'1', ﬂ:U) =

(55‘7($, Eg:} =
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1
{ 1:0—,(5) lﬁ(i‘—ﬂi) +1}e“‘32xg;" (4.46)
- B -]
{ xu— 3 3(93;#)}6—2?*% (4.47)
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2048 211 (4.7

ﬂ?,f(ﬂ”. 1‘0) =

4.3.3 Estimation of Parameters by Maximum Likelihood Method

We can obtain the exact log-likelihood by using the transition probability density function.
Therefore, by maximizing this log-likelihood we can obtain the maximum likelihood esti-
mates of the parameters of stochastic differential equation. The results are summarized
as follows. In the tables the % denotes the maximum of the log-likelihood.

The results for entire interval, i.e., 1970-1994 for Japan and 1975-1994 for United
States, are shown in Table 4.7. Figure 4.3 and 4.4 show the time series data of Nikkei
225 and SP500, respectively. For Japan data, the minimum AIC values are achieved at
b= 1.5. They are close to the results of the stationary distribution, b = 1.75 — 1.78 given
in section 4.2.

For U.S. data, the minimum AIC value is achieved at b = 2.5. It is also close to the
result of the stationary distribution, b = 2.70. The difference between Japan and U.S. is
that the distribution of Japanese stock returns has heavier tail than that of U.S.. The
AIC values of stochastic differential equation are smaller than those of the stationary
distibution models.

According to Table 4.9 - Table 4.16 which show the parameters estimated by maximum
likelihood method, in Japanese market, the minimum AIC values are achieved at b = 3.5
(Table 4.9), b = 2.5 (Table 4.10), b = 2.5 (NK225, Table 4.11), b = 1.5 (TOPIX, Table
4.11), b = 2.5 (Table 4.12). The number of b are close to the results of the stationary
distributions. In U.S. market, the minimum AIC values are achieved at b = 6.5 (Table
4.9), b = 4.5 (Table 4.10), b = 1.5 (Table 4.11), b = 2.5 (Table 4.12). The number of b
are also close to the results of the stationary distributions.

The summary of results in this subsection is given as follows.

First, the estimated parameters, y1, 7, and b, of stochastic differential equation are close
to the parameters of the stationary distribution. Second, the distribution of Japanese
stock returns is heavier tailed than that of the United States. Third, for long term such
as 5 years, by the AIC values, it can be concluded that the stationary distributions are
symmetric, especially from 1975 to 1994. Fourth, this stochastic differential equation and
its maximum likelihood methods are very useful for describing the stock price behavior
and for the risk management. Fifth, the AIC values of stochastic differential equation are
consistently smaller than the stationary distribution except for SP500 of 1985-89, Nikkei
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225 of 1990-94, SP500 of 1990-94. This clearly suggests the necessity of modeling the
autocorrelation by adopting the stochastic differential equation.
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Figure 4.3: The time series data of Nikkei225 returns
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Table 4.7: The parameters estimated by maximum likelihood method
(Japan 1970-94, U.S. 1975-1994)

models 7 T b |o LL AIC
NIK225 K=1|0.00071 | 0.00728 | 1.5 | 1.81926 | 23259.72" | -46513.44
K=2 | 0.00062 | 0.01234 | 2.5 | 1.24933 | 23216.29 | -46426.58
K=3 | 0.00057 | 0.01639 | 3.5 | 0.99371 | 23086.13 | -46166.25
K=4 | 0.00053 | 0.02030 | 4.5 | 0.84705 | 22973.96 | -45941.91
K=5 | 0.00050 | 0.02364 | 5.5 | 0.75012 | 22883.21 | -45760.41
K=6 | 0.00048 | 0.02669 | 6.5 | 0.68052 | 22809.88 | -45613.76
K=7 | 0.00046 | 0.02952 | 7.5 | 0.62682 | 22748.05 | -45490.10
TOPIX K=1 | 0.00059 | 0.00624 | 1.5 | 1.56155 | 24435.43" | -48864.86
=2 | 0.00053 | 0.01048 | 2.5 | 1.09030 | 24378.49 | -48750.98
K=3 | 0.00050 | 0.01406 | 3.5 | 0.87067 | 24241.41 | -48476.82
K=4 | 0.00048 | 0.01720 | 4.5 | 0.74208 | 24122.57 | -48239.13
K=5 | 0.00046 | 0.02004 | 5.5 | 0.65608 | 24025.38 | -48044.76
K=6 | 0.00045 | 0.02265 | 6.5 | 0.59393 | 23946.60 | -47887.19
K=7 | 0.00043 | 0.02539 | 7.5 | 0.50387 | 23865.39 | -47724.78
SP500 K=1 | 0.00040 | 0.00794 | 1.5 | 1.81676 | 16876.15 | -33746.29
K=2 | 0.00041 | 0.01302 | 2.5 | 1.27592 | 16982.50* | -33959.01
K=3 | 0.00041 | 0.01710 | 3.5 | 1.01967 | 16972.93 | -33939.85
K=4 ] 0.00042 | 0.02058 | 4.5 | 0.87124 | 16949.36 | -33892.73
K=>5 | 0.00042 | 0.02365 | 5.5 | 0.77245 | 16925.50 | -33845.00
K=6 | 0.00042 | 0.02644 | 6.5 | 0.69865 | 16904.13 | -33802.27
K=T7 | 0.00043 | 0.02901 | 7.5 | 0.64984 | 16883.94 | -33761.88




Table 4.8: The parameters estimated by maximum likelihood method

(1970-1974)

models I T b |¢o LL AIC

NK225 K=1|0.00113 | 0.00825 | 1.5 | 1.68441 | 4788.74 | -9571.48
K=2 | 0.00097 | 0.01370 | 2.5 [ 1.17504 | 4793.23" | -9580.46
K=3 | 0.00088 | 0.01823 | 3.5 | 0.93737 | 4773.13 | -9540.26
K=4 | 0.00083 | 0.02217 | 4.5 | 0.79846 | 4753.82 | -9501.64
K=5 | 0.00078 | 0.02571 | 5.5 | 0.70557 | 4737.46 | -9468.92
K=6 | 0.00075 | 0.02895 | 6.5 | 0.63837 | 4723.82 | -9441.64
K=7 | 0.00072 | 0.03196 | 7.5 | 0.58638 | 4712.26 | -9418.53

TOPIX K=1|0.00112 | 0.00642 | 1.5 | 1.48838 | 5163.69* | -10321.37
K=210.00095 | 0.01065 | 2.5 | 1.05014 | 5158.58 |-10311.17
K=3 | 0.00087 | 0.01422 | 3.5 | 0.84111 | 5134.23 | -10262.47
K=4 | 0.00081 | 0.01735 | 4.5 | 0.71708 | 5112.41 |-10218.82
K=5 | 0.00076 | 0.02017 | 5.5 | 0.63366 | 5094.37 | -10182.75
K=6 [ 0.00073 | 0.02275 | 6.5 | 0.57393 | 5079.51 | -10153.01
K=7 | 0.00070 | 0.02515 | 7.5 | 0.52601 | 5067.06 |-10128.11




Table 4.9: The parameters estimated by maximum likelihood method

(1975-1979)

models 7 T b |e LL AIC
NK225 K=1|0.00062 | 0.00532 | 1.5 | 1.47270 | 5379.50 | -10753.00
K=2 | 0.00056 | 0.00863 | 2.5 | 1.03991 | 5409.44 |-10812.89
K=3 | 0.00052 | 0.01130 | 3.5 | 0.83288 | 5410.42" | -10814.83
K=4 | 0.00049 | 0.01358 | 4.5 | 0.71088 | 5407.48 | -10808.96
K=5 [ 0.00048 | 0.01559 | 5.5 | 0.62908 | 5404.15 | -10802.29
K=6 | 0.00046 | 0.01740 | 6.5 | 0.56843 | 5401.23 | -10796.46
K=7 ] 0.00046 | 0.01907 | 7.5 | 0.52405 | 5398.44 | -10790.87
TOPIX K=1 | 0.00055 | 0.00445 | 1.5 | 1.33340 | 5686.27 | -11366.54
K=2 | 0.00049 | 0.00709 | 2.5 | 0.95121 | 5720.01 | -11434.03
K=3 | 0.00045 | 0.00924 | 3.5 | 0.76458 | 5723.87~ | -11441.73
K=4 | 0.00043 | 0.01107 | 4.5 | 0.65368 | 5723.01 | -11440.02
K=5]0.00042 | 0.01268 | 5.5 | 0.57915 | 5721.25 | -11436.51
K=6 | 0.00041 | 0.01414 | 6.5 | 0.52431 | 5719.63 |-11433.26
K=T7 | 0.00040 | 0.01548 | 7.5 | 0.48295 | 5717.81 |-11429.62
SP500 K=1 | 0.00036 | 0.00788 | 1.5 | 1.37360 | 4340.60 | -8675.19
K=2|0.00030 | 0.01228 | 2.5 | 0.99520 | 4385.34 | -8764.69
K=3 | 0.00028 | 0.01583 | 3.5 | 0.80426 | 4395.58 | -8785.16
K=4 | 0.00028 | 0.01884 | 4.5 | 0.69000 | 4398.71 | -8791.41
K=5 | 0.00028 | 0.02150 | 5.5 | 0.61278 | 4399.65 | -8793.30
K=6 | 0.00028 | 0.02389 | 6.5 | 0.55402 | 4400.05* | -8794.10
=7 | 0.00028 | 0.02609 | 7.5 | 0.51313 | 4399.54 | -8793.09




Table 4.10: The parameters estimated by maximum likelihood method

(1980-1984)

models I T b |eo LL AlIC
NK225 K=1|0.00065 | 0.00547 | 1.5 | 1.61547 | 5313.39 |-10620.78
K=2 | 0.00057 | 0.00890 | 2.5 | 1.14336 | 5339.70" | -10673.41
K=3 | 0.00054 | 0.01169 | 3.5 | 0.91662 | 5334.93 | -10663.87
K=4 | 0.00051 | 0.01409 | 4.5 | 0.78355 | 5327.01 | -10648.02
K=>5 | 0.00049 | 0.01622 | 5.5 | 0.69479 | 5319.53 | -10633.07
K=6 | 0.00048 | 0.01815 | 6.5 | 0.63207 | 5313.05 | -10620.10
K=7 | 0.00047 | 0.01993 | 7.5 | 0.58105 | 5307.40 | -10608.80
TOPIX K=1|0.00054 | 0.00492 | 1.5 | 1.41833 | 5496.29 [ -10986.58
K=2 | 0.00053 | 0.00793 | 2.5 | 1.00799 | 5517.82* | -11029.63
K=3 | 0.00052 | 0.01041 | 3.5 | 0.80936 | 5511.43 | -11016.87
K=4 | 0.00052 | 0.01256 | 4.5 | 0.69201 | 5502.69 | -10999.37
K=5 | 0.00051 | 0.01447 | 5.5 | 0.61310 | 5494.73 | -10983.46
K=6 | 0.00051 | 0.01619 | 6.5 | 0.55298 | 5488.15 | -10970.29
K=7 | 0.00051 | 0.01781 | 7.5 | 0.51192 | 5482.11 | -10958.22
SP500 K=I1 |-0.00005 | 0.00927 | 1.5 | 1.68928 | 4072.40 | -8138.80
K=210.00006 [ 0.01486 | 2.5 | 1.20058 | 4114.12 | -8222.23
K=3 [ 0.00012 | 0.01933 | 3.5 | 0.95910 | 4121.18 | -8236.36
K=4 | 0.00016 | 0.02311 | 4.5 | 0.81796 | 4122.13" | -8238.26
K=5 | 0.00019 | 0.02644 | 5.5 | 0.72392 | 4121.54 | -8237.08
K=6 | 0.00021 | 0.02945 | 6.5 | 0.65511 | 4120.56 | -8235.13
K=7 | 0.00022 | 0.03221 | 7.5 | 0.60358 | 4119.48 | -8232.97




Table 4.11: The parameters estimated by maximum likelihood method

(1985-1989)

models I T b |e LL AIC
NK225 K=1 | 0.00126 | 0.00682 | 1.5 | 1.69636 | 4710.57 | -9415.14
K=2 | 0.00122 | 0.01125 | 2.5 | 1.19616 | 4716.33" | -9426.65
K=3 | 0.00119 | 0.01493 | 3.5 | 0.96360 | 4697.16 | -9388.32
K=4 | 0.00116 | 0.01814 | 4.5 | 0.82915 | 4678.24 | -9350.47
K=>5 | 0.00114 | 0.02102 | 5.5 | 0.74008 | 4661.86 | -9317.72
K=6 | 0.00112 | 0.02367 | 6.5 | 0.67932 | 4647.84 | -9289.67
K=7 | 0.00111 | 0.02611 | 7.5 | 0.62726 | 4635.80 | -9265.59
TOPIX K=1]0.00102 | 0.00695 | 1.5 | 1.52129 | 4688.47* | -9370.94
K=2 | 0.00102 | 0.01147 | 2.5 | 1.08440 | 4686.06 | -9366.13
K=3 | 0.00102 | 0.01526 | 3.5 | 0.87677 | 4663.03 | -9320.05
K=40.00101 | 0.01858 | 4.5 | 0.75470 | 4641.52 | -9277.04
K=5]0.00100 { 0.02157 | 5.5 | 0.67310 | 4623.24 | -9240.48
K=6 | 0.00099 | 0.02431 | 6.5 | 0.61322 | 4607.99 | -9209.82
K=7 | 0.00099 [ 0.02686 | 7.5 | 0.56904 | 4594.52 | -9183.04
SP500 K=1 | 0.00102 | 0.00815 | 1.5 | 2.23198 | 4093.98% | -8181.95
K=2 | 0.00104 | 0.01383 | 2.5 | 1.49805 | 4093.07 | -8180.13
K=30.00103 | 0.01847 | 3.5 | 1.18130 | 4072.62 | -8139.24
K=40.00102 | 0.02249 | 4.5 | 1.00214 | 4053.45 | -8100.91
K=5 | 0.00101 | 0.02609 | 5.5 | 0.88396 | 4036.97 | -8067.94
K=6 | 0.00100 | 0.02937 | 6.5 | 0.80370 | 4022.81 | -8039.63
K=7 | 0.00098 | 0.03241 | 7.5 | 0.74302 | 4010.57 | -8015.13
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Table 4.12: The parameters estimated by maximum likelihood method

(1990-1994)

models 1 T b |o LL AIC
NK225 K=1|-0.00061 | 0.01350 | 1.5 | 2.03554 | 3421.98 | -6837.96
K=2|-0.00065 | 0.02261 | 2.5 | 1.40528 | 3438.85" | -6871.70
v=3 | -0.00067 | 0.02997 | 3.5 | 1.12119 | 3432.57 | -6859.14
[K=4 | -0.00068 | 0.03624 | 4.5 | 0.95973 | 3425.14 | -6844.28
K=5 | -0.00068 | 0.04179 | 5.5 | 0.85294 | 3418.69 | -6831.39
K=6 | -0.00068 | 0.04680 | 6.5 | 0.77453 | 3413.33 | -6820.65
K=7 | -0.00068 | 0.05140 | 7.5 | 0.71612 | 3408.83 | -6811.66
TOPIX K=1 | -0.00076 | 0.01077 | 1.5 | 1.60129 | 3700.29 |-7394.57
K=2 | -0.00070 | 0.01803 | 2.5 | 1.10309 | 3703.28* | -7400.56
K=3 | -0.00068 | 0.02404 | 3.5 | 0.87593 | 3688.98 | -7371.97
K=4 | -0.00066 | 0.02924 | 4.5 | 0.74445 | 3675.87 | -7345.75
K=5 [ -0.00065 | 0.03390 | 5.5 | 0.65710 | 3665.16 | -7324.33
K=6 | -0.00064 | 0.03812 | 6.5 | 0.59348 | 3656.54 | -7307.08
K=7 | -0.00064 | 0.04203 | 7.5 | 0.54563 | 3649.34 | -7292.68
SP500 K=1 |0.00026 | 0.00672 | 1.5 | 2.08554 | 4402.90 | -8799.80
K=20.00026 | 0.01125 | 2.5 | 1.40256 | 4426.27* | -8846.55
K=3 | 0.00024 | 0.01485 | 3.5 | 1.10224 | 4424.01 | -8842.02
K=4 [ 0.00024 | 0.01790 | 4.5 | 0.93495 | 4419.32 | -8832.64
K=5| 0.00023 | 0.02060 | 5.5 | 0.82528 | 4414.90 | -8823.81
K=6 | 0.00023 | 0.02303 | 6.5 | 0.74633 | 4411.13 | -8816.26
K=7 | 0.00023 [ 0.02526 | 7.5 | 0.68676 | 4407.94 | -8809.88

76



4.3.4 Estimation of Parameters by Local Linearization Meth-
ods

In order to estimate the parameters of stochastic differential equation of Pearson type IV
(with asymmetric distribution and continuous shape parameter), we consider the local
linearization method by using the first order Taylor’s expansion (Ozaki (1985a, 1989,
1992a, 1992b, 1993), Biscay, Jimenez, Riera, and Valdes (1994), Nagahara (1995b)). In
this chapter, we call it simply extended local linearization method. We consider the

following diffusion process,

dz = o%{(1 - b)(z — p) + bré}dt + ary| (2=£)2 + 124w, (4.58)

T

According to subsection 4.3.1, we apply the following transformation

. I dé T X T— U
Yy = /;m o_x/(g_:g]g 7 12 — EMCSlﬂh (T) i (459)

Then, z is given by

T = pu+ Tsinh (%) ; (4.60)
and we obtain the equation for y,
1 oy obTé
dy = - — o — ; ;
Y {TU‘ (2 )tanh( = ) + cosh(’Tif)}dt+wa (4.61)

According to the local linearization method, we estimate the parameters by the simple
version of the log-likelihood as follows. This simply extended local linearization and log-
likelihood is as follows.

We defined the simply extended local linearization of the following equation,

dzy = f(z)dt + odw,. (4.62)
For t > s, we approximate f(z,) by the first order Taylor expansion,

flz) =~ f(a:.;)+ai;€:3}

~ Love+ M, (4.63)

X (3-‘1‘ - :rs)

i



where

_ Of(=,)

Ls = 3:8,, 1

M, = f(z,)- aj;z} T
= f(z,) — L,z,.

Therefore, (4.62) can be approximated by

dry = f(x)dt + odw,,
(Lyxe + M,)dt + oduw,.

We assume that L, and M, are constants for a small interval.

In general, if we have the ordinary differential equation as follows,

% — P(w)z + Q(u),

the solution in the case that z(s) = z, is
t .
@y = ey P (f Qu)els —F@d gy +$J) .
&
In this case, we assume that P(u) is L, and Q(u) is M, + o432,

Therefore, we obtain the following solution.

1 4 u
z = el b {/ (M, +crj—w)efa 'L""du-i—:c_,.}

= e"‘f*‘s){ M +cr—~ yeld M"du+x,,}

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

—Ls ¢
= elt-2) { N e )M, + eL’f oe~ " dw + :vs}
- —L.s
= eLff—S){ Ls )(f(:rs) T xa)—f_'r.s'}'eLSf ae Ludw}
—-Lt —Ls
i (!ma]{ (ﬁ }f( ) ( Lis=t) _ 1}1-".;—'-:1:, 4, EL.‘;/ Ue—Ludw}

+ fE;ra)(cL,(!—s) =— 1) o 0./ eLc(f-—quw_
i 8

By the Ito’s rule, it is obvious that this is the solution of (4.66).
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In another way, we can also consider the following procedure.

By the Girsanov theorem (Girsanov (1960)), we obtain

dr, = (Lyz,)dt + odwy,
where @, is the Wiener process after a change of measure defined by
t
= w— [ Bluds,
B(u) = . M,
= —=M,
Transformation of y; = e~ *+'z; yields
dzt = (L,ﬂ:t}df =+ EL’sdyp
Therefore, we have
dy, = oe Lt dp,.
Solving this formula, we obtain
t
Vi = Us + G"f E_L'ud?ﬂu

t t
= y,,+[ Mse'L'“du+Jf e~ Lt duy,,
L 8

f(:rs) i L_,.."C_, i

= y! + —L_,

By using transformation of y, = e~%+'z,, the equation for z, is obtained by

t
Ty =2, + JFE;S)(EL..(!—&) _ 1) K 0'-/’ EL;{t—u]dwu:

&

where

Var,(z,) = {exp(‘ZLsétL— 5)) — 1}02.

(e7let — g~ 1e%) 4 a‘f e~ L du,,.

(4.70)

(4.71)

(4.72)

(4.75)

(4.76)

(4.77)

This conditional variance differs from that of ordinary local linearization (Ozaki (1992b),
Biscay, Jimenez, Riera, and Valdes (1994), Shoji and Ozaki (1994), Nagahara (1995b)).

The Vary(x,) of ordinary local linearization is given by

Vary(a,) = {EXPQRSQ(;__ 5)) — 1}{72‘
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where
K, = "_:— 10g{1+ f('”"]( bali=2). 1)}. (4.79)
If #1,...,2r, are equisampled observation with time interval At, the log-likelihood is

obtained by
T-—=1
log(p(xy,...,2r)) = log(p(z1)) + Y log p(wes|zs),

t=1

= log(p(:’:l)) + Z_; "2'%{$:+1 — T ££ (EXPL At — 1)}
J S

2 log(27V}) (4.80)

Furthermore, if the transformation of y = () exists, the likelihood is given by

y L Rl Iy
p(1; 1) = p(y1, .., Y1) H : (4.81)
Therefore, the log-likelihood is given by
T-1 d‘f,l.’)
log(p(21, -, 27)) = log(p(ys, - yr)) + 3 log(— (4.82)
t=1

In this chapter, since the estimated parameters, especially shape parameter, of this
simply extended local linearization are close to the parameters estimated by the exact
maximum likelihood method using the transition probability density function, we adopt
this simply extended local linearization whose difference with ordinary local linearization
is only the conditional variance of z;, V;. The detail of these comparison is given in the
section 4.5.

According to this local linearization method, we have

_3f_{(1_)_ . (ﬁ)} o
=ga=lg bé sinh = X cost? ()’ (4.83)
{exp(2L:At) — 1} ,
Vi = 2 _
3L, ™, (4.84)
and the log-likelihood is given by
7-1
1
1(6) = =3 1% sV —p— "*-(E\P LAt — 1))
=1
e T-1 1 i
3 " log(2nV;) + D log : (4.85)

=1  of(2E)P2+12
In this chapter, the time interval, At is set to 1. And we estimate the parameters of
stochastic differential equation by maximizing this log-likelihood.
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4.3.5 Stochastic Differential Equation Estimated by Local Lin-
earization

We estimate the parameters and compute AIC for each model. The results for each term
are shown in Table 4.13-Table 4.18. The * shows the minimum AIC. The results of the
parameters of stochastic differential equation are close to the parameters of the station-
ary symmetric and asymmetric distributions. Therefore, it may be concluded that the
local linearization methods are useful to estimate the parameters of stochastic differential
equation of Pearson IV type (asymmetric distribution and continuous shape parameter)
and Pearson VII type (symmetric distribution and continuous shape parameter).

The details of results are as follows. The results for entire interval, i.e., 1970-1994 for
Japan and 1975-1994 for the United States, are shown in Table 4.13. For Japan data,
the minimum AIC values are achieved at b = 1.66 which are close to the results of the
stationary distribution, b = 1.75—1.78 and the transition probability density method b =
1.5. The asymmetric distribution has smaller AIC. For the U.S. data, the minimum AIC
value is achieved at b = 2.56 which is close to the result of the stationary distribution, b =
2.70 and the transition probability density method b = 2.5. The symmetric distribution
has smaller AIC.

The results of only Japanese data for the term, 1970-1974, are shown in Table 4.14.
The minimum AIC values of Nikkei 225 and TOPIX are achieved at b = 1.80 and b = 1.73,
respectively. They are close to the results of the stationary distribution, NK225 (b = 1.98),
TOPIX (b = 1.56).

The results of Japan and U.S. data for the term, 1975-1979, are shown in Table 4.15.
For Japan data, the minimum AIC values of Nikkei 225 and TOPIX are achieved at
b = 229 and b = 2.78, respectively. They are close to the results of the stationary
distribution, NK225 (b = 3.06), TOPIX (b = 3.62). For the U.S. data, the minimum AIC
value is achieved at b = 5.42 which is close to the result of the stationary distribution,
b= 8.57.

The results of Japan and U.S. data for the term, 1980-1984, are shown in Table 4.16.
In Japan, the minimum AIC values of Nikkei 225 and TOPIX are achieved at b = 2.94
and b = 2.05, respectively. They are close to the results of the stationary distribution,
NK225 (b = 2.59), TOPIX (b = 2.49). For the U.S. data, the minimum AIC value is
achieved at b = 4.86 which is close to the result of the stationary distribution, b = 4.41.

The results of Japan and U.S. data for the term, 1985-1989, are shown in Table 4.17.
The minimum AIC values of Nikkei 225 and TOPIX are achieved at b = 1.91 and b = 172,
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respectively. They are close to the results of the stationary distribution, NK225 (b = 2.02),
TOPIX (b = 1.93). For the U.S. data, the minimum AIC value is achieved at b = 1.85
which is close to the result of the stationary distribution, b = 1.86.

The results of Japan and U.S. data for the term, 1990-1994, are shown in Table 4.18.
For Japan data, The minimum AIC values of Nikkei 225 and TOPIX are achieved at
b = 2.05 and b = 1.72, respectively. They are close to the results of the stationary
distribution, NK225 (b = 2.34), TOPIX (b = 1.97). For the U.S. data, the minimum AIC
value is achieved at b = 2.34 which is close to the result of the stationary distribution,
b= 2.64.

The summary of conclusion in this subsection is as follows. The estimated param-
eters of stochastic differential equation by local linearization method, especially b, are
close to the estimated parameters obtained by the maximum likelihood method of the
transition probability density function. Therefore, local linearization method is useful to
estimate the parameters of stochastic differential equation which corresponds to the Pear-
son IV (asymmetric and continuous shape parameter) and the Pearson VII (symmetric
and continuous shape parameter).

4.4 Conclusion

The summary of conclusion in this chapter are as follows. First, the stationary distribu-
tions of stock returns are heavier tailed than normal distributions. Especially, the Pearson
type VII and IV are well fitted to the data distributions. Second, the stochastic differ-
ential equation related to the stationary distribution of the Pearson type VII and IV are
valid for the generating process of stock returns. Third, the maximum likelihood method
by using the tramsition probability density function and the local linearization method
are very useful to estimate the parameters of this stochastic differential equation. Forth,
when the shape parameter, b, is low, there is a possibility that the big price change occur.
The fact that this shape parameter differs with the terms indicates that the stability of
the stock markets is changing.
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Table 4.13: The parameters estimated by local linearization method
(Japan 1970-1994, U.S. 1975-1994)

models L T ] b o LL AIC
NK225 (Type VII) | 0.00070 | 0.00796 | 0.00 1.65285 | 1.25206 | 23517.14 | -47026.28
(Type IV) | 0.00159 | 0.00808 | -0.07493 | 1.66125 | 1.24950 | 23530.10 | -47050.20*
TOPIX (Type VII) | 0.00058 | 0.00682 | 0.00 1.60539 | 1.18916 | 24648.47 | -49288.94
(Type IV) | 0.00109 | 0.00681 | -0.05163 | 1.60736 | 1.18916 | 24654.42 | -49298.84*
SP500 (Type VII) | 0.00040 | 0.01389 | 0.00 2.56937 | 0.92077 | 16972.14 | -33936.28*
(Type IV) | 0.00040 | 0.01389 | 0.00009 | 2.56875 | 0.92080 | 16972.14 | -33934.28
Table 4.14: The parameters estimated by local linearization method
(1970-1974)
models I T é b a LL AIC
NK225 (Type VII) | 0.00107 | 0.01001 | 0.00 1.77457 | 1.14736 | 4829.82 | -9651.64
(Type IV) | 0.00283 | 0.01005 | -0.12262 | 1.80520 | 1.14030 | 4836.16 | -9662.33*
TOPIX (Type VII) | 0.00105 | 0.00766 | 0.00 1.69666 | 1.10196 | 5190.99 | -10373.98
(Type IV) | 0.00252 | 0.00769 | -0.13637 | 1.73057 | 1.09247 | 5198.57 | -10387.14"
Table 4.15: The parameters estimated by local linearization method
(1975-1979)
models 1 T o b o LL AIC
NK225 (Type VII) | 0.00048 | 0.00820 | 0.00 2.34039 | 0.90087 | 5431.51 | -10855.03
(Type IV) | 0.00136 | 0.00803 | -0.08355 | 2.29912 | 0.90962 | 5433.73 | -10857.46*
TOPIX (Type VII) | 0.00044 | 0.00801 | 0.00 2.83069 | 0.75897 | 5733.60 | -11459.20
(Type IV) | 0.00131 | 0.00786 | -0.08813 | 2.78494 | 0.76540 | 5735.55 | -11461.10"
SP500  (Type VII) | 0.00026 | 0.02123 | 0.00 5.30824 | 0.56114 | 4406.54 | -8805.08*
(Type IV) | -0.00189 | 0.02141 | 0.08823 | 5.42218 | 0.55584 | 4407.39 | -8804.79
Table 4.16: The parameters estimated by local linearization method
(1980-1984)
models m T ) b o LL AIC
NK225 (Type VII) | 0.00061 | 0.00816 | 0.00 2.20870 | 0.97090 | 5353.07 | -10699.94
(Type IV) | 0.00175 | 0.00822 | -0.10472 | 2.24466 | 0.96267 | 5357.60 | -10705.20*
TOPIX (Type VII) | 0.00058 | 0.00679 | 0.00 2.04545 | 0.95693 | 5535.13 | -11062.26"
(Type IV) | 0.00095 | 0.00682 | -0.04081 | 2.05843 | 0.95345 | 5535.72 | -11061.44
SP500  (Type VII) | 0.00022 | 0.02475 | 0.00 4.77957 | 0.64507 | 4116.64 | -8225.27
(Type IV) | -0.00413 | 0.02470 | 0.15339 | 4.86736 | 0.64019 | 4119.69 | -8229.37~
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Table 4.17: The parameters estimated by local linearization method

(1985-1989)

models i T 6 b o LL AIC
NK225 (Type VII) | 0.00121 | 0.00877 | 0.00 1.80859 | 1.10823 | 4757.00 | -0507.79
(Type IV) | 0.00228 | 0.00882 | -0.08698 | 1.91826 | 1.10137 | 4760.56 | -9511.11*
TOPIX (Type VII) | 0.00093 | 0.00810 | 0.00 1.72100 | 1.12247 | 4733.85 | -9459.70*
(Type IV) | 0.00110 | 0.00810 | -0.01437 | 1.72093 | 1.12244 | 4733.93 | -9457.86
SP500 (Type VII) | 0.00114 | 0.01086 | 0.00 1.80873 | 1.20719 | 4085.78 | -8163.56
(Type IV) | 0.00218 | 0.01110 | -0.06526 | 1.85269 | 1.18973 | 4087.33 | -8164.67
Table 4.18: The parameters estimated by local linearization method
(1990-1994)
models I ) 5 b o LL AlIC
NK225 (Type VII) | -0.00054 | 0.01886 | 0.00 2.05312 | 1.10258 | 3461.17 | -6914.34*
(Type IV) | -0.00045 | 0.01882 | -0.00351 | 2.04989 | 1.10374 | 3461.18 | -6912.36
TOPIX (Type VII) | -0.00059 | 0.01270 | 0.00 1.72272 | 1.14109 | 3733.86 | -7459.72"
(Type IV) | -0.00086 | 0.01270 | 0.01455 | 1.72296 | 1.14042 | 3733.94 | -7457.88
SP500 (Type VII) | 0.00022 | 0.01096 | 0.00 2.34282 | 1.00644 | 4424.27 | -8840.54"
(Type IV) | 0.00052 | 0.01093 | -0.02001 | 2.33639 | 1.00827 | 4424.40 | -8838.80
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4.5 A Comparison of Parameter Estimation Meth-
ods for a Stocahastic Differential Equation

First, we compare the parameters of stationary distribution by maximum likelihood
method to the parameters of stochastic differential equation by local linearization method.
Second, we use the transition probability density function of stochastic differential equa-
tion and compare the parameters of stochastic differential equation by maximum like-
lihood method using the transition probability density function with the parameters of
stochastic differential equation by local linearization method.

We estimate the parameters of the stochastic differential equation by local linearization
method researched by Ozaki (1985a, 1989, 1992a, 1992b, 1993), Biscay, Jimenez, Riera and
Valdes (1994), Shoji and Ozaki (1994), Nagahara (1995b). In this section, two different
local linearization method ; one is based on the first order Taylor’s expansion (we call it
simply extended local linearization in this note) (Biscay, Jimenez, Riera and Valdes (1994),
Nagahara (1995b)), another is based on Ito’s expansion (new local linearization, Shoji and
Ozaki (1994)), are shown. We compare the exact maximum likelihood method by using
the transition probability density function and two local linearization. In the result, the
Taylor’s expansion local linearization method (simply extended local linearization) has
closer estimated parameters to that of the exact maximum likelihood method by using
this transition probability density function than the Ito’s expansion local linearization
method (new local linearization).

In subsection 4.5.1 and 4.5.2, the parameters of stationary distribution estimated by
maximum likelihood method and the parameters of related stochastic differntial equation
by local linearization are shown. In subsection 4.5.3 and 4.5.4, the transition probability
of related stochastic differntial equation are shown. And the parameters estimated by
maximum likelihood method using this transition probability density function and local

linearization are compared.

4.5.1 Parameter Estimation by Simply Extended Local Lin-
earization and New Local linearization

In order to estimate the parameters of stochastic differential equation of Pearson IV type
(asymmetric distribution and continuous shape parameter), we consider simply extended
local linearization method and new local linearization(Ozaki (1985a, 1989, 1992a, 1992b,
1993), Biscay, Jimenez, Riera and Valdes (1994), and Nagahara (1995b)) and new local
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linearization (Shoji and Ozaki (1994)). We consider the following diffusion process,

de = 0*{(1 = b)(x — 1) + bré}dt + o7y [ (Z=E)2 + 12du. (4.86)

[

According to subsection 4.3.2, we apply the following transformation:

[ d,s
= (4.87)
Y f_m 0\/(%&)3 +12
P TIPS M
= aarcsmh{ = % (4.88)
Then, 2 1s given by
2= u+ Tsinh(%éf), (4.89)

and we obtain the equation for y,

obrd

1 oy
dy = {TJ(E —b) tanh('?) + m

} dt + Tdw. (4.90)
In this section, we compare two local linearization methods, one is based on the first order
Taylor’s expansion of the drift function, (simply extnded local linerization), another is
based on the Ito’s expansion of the drift function (new local linerization, Shoji and Ozaki
(1994)).

First, we introduce the log-likelihood of the simply extended local linearization method.
According to the last section, we obtain the following log-likelihood.

_Of 1 ., OY e
L= —35 = {(2 b] = b(ﬁﬂlnh( o )} X m (491)
2L AL — 1
‘ll",-; - {EKP[ 2::: ) }1-2. (492)
. - T—1 1 ft 5
(log —likelihood) = -3 ﬁ{ym — = i—(exp LAt —1)}° (4.93)
t=1 t
G T—1
A log(27V;) + > log : (4.94)

2 =1 oy/(BE)2 412

In this section, At equals to 1. And we estimate the parameters of stochastic differ-
ential equation by maximizing this log-likelihood.
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Second, we introduce the log-likelihood of the new local linearization method. Ac-
cording to Shoji and Ozaki (1994), new local linearization is defined by the following,

dzi = f(xe,t)dt + odw,. (4.95)

In the case of ¢ > s, they approximate f(z;,t) by the Ito’s lemma.

2 "
f(xht) = f(xsl S:’ + (%azfa{zg’s-] + 6f(g:’ S)) [:t = S) + "afgf_;_;s) X (.’E; = .'L",,)
= Ly, + M+ N,, (4.96)
_ Of(=s,s)
L, = =n (4.97)
_ 2% f(z,5)  Of(as,s)
M, = CRT + e (4.98)
N, = f(rs:s) — Loz, = M,s. (499)

Therefore,

dxt = f(xht)dt + ﬂ'dwh
= (Lyzy + Myt + N,)dt + odw,. (4.100)

They assume that L,, M, and N, are constant for a small interval.
By the Girsanov theorem,

da; = (Lxs)dt + odiiy, (4.101)

where 1 is the Wiener process after a change of mesure defined by

W, = wy~— f: B(u)du, (4.102)
Blu) = _clr(M-?“ + N,). (4.103)
Transformation of y, = e~ %z,
dxy = (Lyxy)dt + e+idy,. (4.104)
Therefore,
dy, = oe™ Lot d,. (4.105)

Solving this formula,
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1
o = Ys+ Uf e~ Lot iy,
t t
= 1, +f (M,u+N,,]e‘L*“du+af e Lt duy,,. (4.106)
& &
By transformation of y; = e L=tz

t
T = Ts+ M(BL‘“"’} -1)+ %{(exp LAt —1) — LAt} + 0'_/ el =Y duy,,
5 8

L
(4.107)
where
Vi LR RLE—~ ) — 1} 5 (4.108)
2L,
If 21, ...,z are given as the same time interval At, the log-likelihood is the following.
T-1
log(p(x1,...,27)) = log(p(z1)) + »_ log p(zes1l2e),
t=1
= log(p(x +T§-:1 : Tip1 — T ~I'-(ex LAt —1)
= log(p 1 ‘- W 1+1 t I\ P Ly
_ 2
m%{(exp LAt —1)— Lfﬁt}
_T-1 log(27V;). (4.109)

Furthermore, if the transformation of y = ¢(z) is existing, the likelihood is given by

= 3(3}'1: noxy yT)
p(y,..nar) = p(y, . yr) Bz, or)|” (4.110)
Therefore, the log-likelihood is
-1 d’lp’)
log(p(x1,...,a7)) = log(p(y1, ..., yr)) + Z 105( (4.111)
According to our case, we obtain the following log-likelihood,
af oy i OY } o2
i s :
L=% {( ) b6 sinh( %) X Sy (4.112)
aL _ &f  o? tanh(Z¥) 5, OY .
il T cosh(%) —bé + (2b — I)W_}—) + 2bé tanh T)}. (4.113)
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2 9L _ T2 9% f

N i el [ 4.114

M= 5 dy 2 ay?’ ( )

Vi — {exp(2L,At) — 1} ) (4.115)

2L,
T i f M .
(log —likelihood) = — >  —— [Yey1 — Y — 5—(exp LAt — 1) — —{(exp LAt — 1) — LAt}
=1 2V Ly Ly
T-1 — 1

= log(2xV;) + 3 o ; (4.116
A P €=y s )

And we estimate the parameters of stochastic differential equation by maximizing this
log-likelihood.

4.5.2 Empirical Results

The daily rate of returns were obtained from the daily index of Nikkei 225 index, TOPIX
index and Standard and Poor’s 500 index. The data of Japanese market consist of returns
from 5, January, 1970 to 29 December , 1994 for a total of 6912 observations. And, the
data of U.S. market consists of returns from 5, January, 1975 to 29 December, 1994 for a
total of 4801 observations.

The Table 4.19 - Table 4.35 are the comparison of empirical results. S.D., SELL, and
NLL stand for stationary distribution, simply extended local linearization, and new local
linearization, respectively. The new local linearization method tends to over-estimate the
level of b more than maximum likelihood method for the stationary distribution and the
simply extended local lenearization method. And the parameters of the simply extended
local lenearization method is nearer to that of the stationary distribution than the new
local linearization method. Furthermore, we compare two local linearization to the max-
imum likelihood method by using the transition probability density function in the next
section.
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Table 4.19: Comparison of S.D, SELL and NLL (NK225) (1970-1994)
models It T ] b o LL AIC
S.D. (VII type) | 0.00064 | 0.00885 | 0.00 1.78268 23235.95 | -46465.90
(IV type) | 0.00152 | 0.00881 | -0.06384 | 1.78297 23246.50 | -46485.00
SELL _ (VII type) | 0.00070 | 0.00796 | 0.00 1.65285 | 1.25206 | 23517.14 | -47026.28
(IV type) | 0.00159 | 0.00808 | -0.07493 | 1.66125 | 1.24950 | 23530.10 | -47050.20
NLL (VII type) | 0.00088 | 0.01134 | 0.00 2.36502 | 1.01548 | 23278.26 | -46548.52
(IV type) | 0.00254 | 0.01131 | -0.10116 | 2.39635 | 1.01496 | 23301.99 | -46593.98
Table 4.20: Comparison of S.D, SELL and NLL (NK225) (1970-1974)
models 7! T b b o LL AIC
S.D. (VII type) | 0.00096 | 0.01102 | 0.00 1.97605 4787.22 | -9568.44
(IV type) | 0.00291 | 0.01096 | -0.11871 | 1.98996 4793.90 | -9579.79
SELL  (VII type) | 0.00107 | 0.01001 | 0.00 1.77457 | 1.14736 | 4829.82 | -9651.64
(IV type) | 0.00283 | 0.01005 | -0.12262 | 1.80520 | 1.14030 | 4836.16 | -9662.33
NLL (VII type) | 0.00131 | 0.01343 | 0.00 2.49348 | 0.96837 | 4792.77 | -9577.54
(IV type) | 0.00433 | 0.01383 | -0.15722 | 2.65900 | 0.94979 | 4803.47 | -9596.94
Table 4.21: Comparison of S.D, SELL and NLL (NK225) (1975-1979)
models n T b b o LL AIC
S.D. (VII type) | 0.00048 | 0.01033 | 0.00 3.10319 5389.06 | -10772.13
(IV type) | 0.00144 | 0.01017 | -0.07050 | 3.06240 5390.70 | -10773.40
SELL (VII type) | 0.00048 | 0.00820 | 0.00 2.34039 | 0.90087 | 5431.51 | -10855.03
(IV type) | 0.00136 | 0.00803 | -0.08355 | 2.29912 | 0.90962 | 5433.73 | -10857.46
NLL (VII type) | 0.00056 | 0.01150 | 0.00 3.71735 | 0.77557 | 5418.91 | -10829.82
(IV type) | 0.00238 | 0.01121 | -0.12253 | 3.66112 | 0.78827 | 5423.73 -10837.46
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Table 4.22: Comparison of S.D, SELL and NLL (NK225) (1980-1984)
models i T b b o LL AIC
SD. (VI type) | 0.00054 | 0.00918 | 0.00 9.50165 5332.04 | -10658.08
(IV type) | 0.00149 | 0.00913 | -0.07508 | 2.59013 5334.09 | -10660.17
SELL  (VII type) | 0.00061 | 0.00816 | 0.00 2.20870 | 0.97000 | 5353.97 | -10699.94
(IV type) | 0.00175 | 0.00822 | -0.10472 | 2.24466 | 0.96267 | 5357.60 | -10705.20
NLL (VII type) | 0.00065 | 0.01303 | 0.00 4.06027 | 0.75808 | 5332.96 | -10657.92
(IV type) | 0.00344 | 0.01273 | -0.16703 | 4.08068 | 0.76865 | 5341.15 | -10672.30
Table 4.23: Comparison of S.D, SELL and NLL (NK225) (1985-1989)
models I T § b a LL AIC
5.D. (VII type) | 0.00120 | 0.00929 | 0.00 2.02186 4713.14 | -9420.27
(IV type) | 0.00203 | 0.00933 | -0.05990 | 2.03760 4714.65 | -9421.31
SELL  (VII type) | 0.00121 | 0.00877 | 0.00 1.89859 | 1.10823 | 4757.90 | -9507.79
(IV type) | 0.00228 | 0.00882 | -0.08698 | 1.91826 | 1.10137 | 4760.56 | -9511.11
NLL (VII type) | 0.00141 | 0.01278 | 0.00 2.96960 | 0.90490 | 4728.97 | -9449.94
(IV type) | 0.00430 | 0.01277 | -0.16005 | 3.06772 | 0.90644 | 4737.44 | -9464.88
Table 4.24: Comparison of S.D, SELL and NLL (NK225) (1990-1994)
models ! T & b o LL AIC
S.D. (VII type) | -0.00065 | 0.02137 | 0.00 2.34822 3441.07 | -6876.14
(IV type) | -0.00071 | 0.02138 | 0.00179 | 2.34926 3441.07 | -6874.14
SELL  (VII type) | -0.00054 | 0.01886 | 0.00 2.05312 | 1.10258 | 3461.17 | -6914.34
(IV type) | -0.00045 | 0.01882 | -0.00351 | 2.04989 | 1.10374 | 3461.18 | -6912.36
NLL (VII type) | -0.00057 | 0.03406 | 0.00 4.18618 | 0.76177 | 3416.07 | -6824.14
(IV type) |-0.00218 | 0.03391 | 0.03588 | 4.16568 | 0.76343 | 3416.37 | -6822.74
Table 4.25: Comparison of S.D, SELL and NLL (TOPIX) (1970-1994)
models 7 T & b o LL AIC
5.D. (VII type) | 0.00053 | 0.00745 | 0.00 1.75860 24305.54 | -48605.08
(IV type) | 0.00105 | 0.00743 | -0.04468 | 1.75832 24310.99 | -48613.98
SELL  (VII type) | 0.00058 | 0.00682 | 0.00 1.60539 | 1.18916 | 24648.47 | -49288.94
(IV type) [ 0.00109 | 0.00681 | -0.05163 | 1.60736 | 1.18916 | 24654.42 | -49298.84
NLL (VII type) | 0.00075 | 0.00882 | 0.00 2.15907 | 1.04596 | 24546.44 | -49084.89
(IV type) | 0.00159 | 0.00884 | -0.06798 | 2.17899 | 1.04491 | 24558.10 | -49106.20
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Table 4.26: Comparison of S.D, SELL and NLL (TOPIX) (1970-1974)

models U T ) b o LL AIC

S.D. (VII type) | 0.00092 | 0.00805 | 0.00 1.85563 5135.51 | -10265.02
(IV type) | 0.00257 | 0.00797 | -0.13534 | 1.86905 5144.96 | -10281.92

SELL  (VII type) | 0.00105 | 0.00766 | 0.00 1.69666 | 1.10196 | 5190.99 | -10373.98
(IV type) | 0.00252 | 0.00769 | -0.13637 | 1.73057 | 1.09247 | 5198.57 | -10387.14

NLL (VII type) | 0.00118 | 0.00968 | 0.00 2.28119 | 1.00094 | 5181.07 | -10354.14
(IV type) | 0.00324 | 0.00985 | -0.15187 | 2.39563 | 0.98821 | 5192.32 | -10374.64

Table 4.27: Comparison of S.D, SELL and NLL (TOPIX) (1975-1979)

models m T & b o LL AIC

S.D. (VII type) | 0.00041 | 0.00954 | 0.00 3.64864 5688.67 | -11371.35
(IV type) | 0.00118 | 0.00946 | -0.06361 | 3.62304 5689.78 | -11371.56

SELL (VII type) | 0.00044 | 0.00801 | 0.00 2.83069 | 0.75897 | 5733.60 | -11459.20
(IV type) | 0.00131 | 0.00786 | -0.08813 | 2.78494 | 0.76540 | 5735.55 | -11461.10

NLL (VII type) | 0.00048 | 0.01048 | 0.00 4.27462 | 0.68967 | 5729.08 | -11450.16
(IV type) | 0.00205 | 0.01019 | -0.12026 | 4.18228 | 0.70318 | 5732.85 | -11455.70

Table 4.28: Comparison of $.D, SELL and NLL (TOPIX) (1980-1984)

models I T é b o LL AlIC

S.D. (VII type) | 0.00052 | 0.00791 | 0.00 2.49152 5490.92 | -10975.85
(IV type) | 0.00070 | 0.00791 | -0.01615 | 2.49293 5491.03 | -10974.06

SELL (VII type) | 0.00058 | 0.00679 | 0.00 2.04545 | 0.95693 | 5535.13 | -11062.26
(IV type) | 0.00095 | 0.00682 | -0.04081 | 2.05843 | 0.95345 | 5535.72 | -11061.44

NLL (VII type) | 0.00071 | 0.00916 | 0.00 3.03576 | 0.84410 | 5524.89 | -11041.77
(IV type) | 0.00168 | 0.00914 | -0.08019 | 3.05920 | 0.84735 | 5527.38 | -11044.77

Table 4.29: Comparison of S.D, SELL and NLL (TOPIX) (1985-1989)

models f T ) b o LL AIC
S.D. (VII type) | 0.00101 | 0.00906 | 0.00 1.93043 4672.03 | -9338.05
(IV type) | 0.00130 | 0.00907 | -0.02115 | 1.93354 4672.23 | -9336.46
SELL  (VII type) | 0.00093 | 0.00810 | 0.00 1.72100 | 1.12247 | 4733.85 | -9459.70
(IV type) | 0.00110 | 0.00810 | -0.01437 | 1.72093 | 1.12244 | 4733.93 | -9457.86
NLL (VII type) | 0.00109 | 0.01046 | 0.00 2.36577 | 1.00762 | 4723.11 | -9438.22
(IV type) | 0.00163 | 0.01051 | -0.03604 | 2.38138 | 1.00619 | 4723.69 | -9437.38
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Table 4.30: Comparison of S.D, SELL and NLL (TOPIX) (1990-1994)

models i T ] b o LL AIC
SD.  (VII type) | -0.00070 | 0.01440 | 0.00 1.96979 3691.40 | -7376.80
(IV type) | -0.00120 | 0.01440 | 0.02347 | 1.97130 3691.66 | -7375.32
SELL (VI type) | -0.00059 | 0.01270 | 0.00 1.72272 | 1.14109 | 3733.86 | -7459.72
(IV type) | -0.00086 | 0.01270 | 0.01455 | 1.72296 | 1.14042 | 3733.94 | -7457.88
NLL (VII type) | -0.00031 | 0.01779 | 0.00 2.49840 | 0.94422 | 3703.63 | -7399.26
(IV type) | -0.00046 | 0.01778 | 0.00609 | 2.49699 | 0.94428 | 3703.65 | -7397.29
Table 4.31: Comparison of S.D, SELL and NLL (SP500) (1975-1994)
models mn T é b o LL AIC
S.D. (VII type) | 0.00041 | 0.01390 | 0.00 2.69815 16970.88 | -33935.76
(IV type) | 0.00033 | 0.01391 | 0.00410 | 2.69998 16970.91 | -33933.82
SELL  (VII type) | 0.00040 | 0.01389 | 0.00 2.56937 | 0.92077 | 16972.14 | -33936.28
(IV type) | 0.00040 | 0.01389 | 0.00009 | 2.56875 | 0.92080 | 16972.14 | -33934.28
NLL (VII type) | 0.00042 | 0.02426 | 0.00 5.58025 | 0.65787 | 16868.28 | -33728.55
(IV type) | 0.00082 | 0.02436 | -0.01328 | 5.61711 | 0.65646 | 16868.40 | -33726.80
Table 4.32: Comparison of S.D, SELL and NLL (SP3500) (1975-1979)
models i T & b fog LL AIC
S.D. (VII type) | 0.00030 | 0.02405 | 0.00 6.56703 4382.97 | -8759.95
(IV type) | -0.00110 | 0.02454 | 0.04990 | 6.79835 4383.29 | -8758.58
SELL  (VII type) | 0.00026 | 0.02123 | 0.00 5.30824 | 0.56114 | 4406.54 | -8805.08
(IV type) | -0.00189 | 0.02141 | 0.08823 | 5.42218 | 0.55584 | 4407.39 | -8804.79
NLL (VII type) | 0.00028 | 0.02633 | 0.00 7.81047 | 0.54176 | 4405.62 | -8803.25
(IV type) | -0.00297 | 0.02550 | 0.10760 | 7.54759 | 0.55550 | 4406.98 | -8803.96
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Table 4.33: Comparison of S.D, SELL and NLL (SP500) (1980-1984)
models 7 T & b o LL AIC
5.D, (VII type) | 0.00019 | 0.02278 | 0.00 4.40873 4120.55 | -8235.09
(IV type) | -0.00328 | 0.02292 | 0.12381 | 4.51945 4123.37 | -8238.74
SELL  (VII type) | 0.00022 | 0.02475 | 0.00 4.77957 | 0.64507 | 4116.64 | -8225.27
(IV type) | -0.00413 | 0.02470 | 0.15339 | 4.86736 | 0.64019 | 4119.69 | -8229.37
NLL (VII type) | 0.00035 | 0.04816 | 0.00 14.79109 | 0.42862 | 4110.19 | -8212.37
(IV type) |-0.00918 | 0.04472 | 0.19143 | 13.50001 | 0.44076 | 4112.71 | -8215.43
Table 4.34: Comparison of S.D, SELL and NLL (SP500) (1985-1989)
models I T & b o LL AIC
5.D. (VII type) | 0.00101 | 0.01038 | 0.00 1.86298 4102.91 | -8199.82
(IV type) | 0.00145 | 0.01043 | -0.02782 | 1.87138 4103.27 | -8198.55
SELL (VI type) | 0.00114 | 0.01086 | 0.00 1.80873 | 1.20719 | 4085.78 | -8163.56
(IV type) | 0.00218 | 0.01110 | -0.06526 | 1.85269 | 1.18973 | 4087.33 | -8164.67
NLL (VII type) | 0.00102 | 0.01939 | 0.00 3.47259 | 0.82814 | 4024.67 | -8041.33
(IV type) | 0.00403 | 0.01992 | -0.11123 | 3.65364 | 0.80951 | 4027.89 | -8045.77
Table 4.35: Comparison of S.D, SELL and NLL (SP500) (1990-1994)
models " T 8 b le LL AIC
S.D. (VII type) | 0.00024 | 0.01178 | 0.00 2.64030 4429.81 | -8853.62
(IV type) | 0.00055 | 0.01180 | -0.01874 | 2.64502 4429.93 | -8851.86
SELL (VII type) | 0.00022 | 0.01096 | 0.00 2.34282 | 1.00644 | 4424.27 | -8840.54
(IV type) | 0.00052 | 0.01093 | -0.02001 | 2.33639 | 1.00827 | 4424.40 | -8838.80
NLL _ (VII type) | 0.00024 | 0.02979 | 0.00 9.53724 | 0.51751 | 4387.06 | -8766.13
(IV type) | 0.00340 | 0.02995 | -0.09137 | 9.70002 | 0.51685 | 4388.06 | -8766.12
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4.5.3 Comparison of Maximum Likelihood Method by the Tran-
sition Probability Density Function and Local Lineariza-
tion

In this subsection, a comparison of maximum likelihood method by the transition prob-
ability density function and local linearization is shown. The Table 4.36 - Table 4.52 are
the comparison of empirical results. The * is the best log-likelihood in each methods. T.P.
stands for the transition probability density function method. The new local linearization
method tends to over-estimate the level of b more than the transition probability density
method and the simply extended local lenearization method. In the area of K = 7, the
result of the new local linearization is close to the results of others. It suggests that, as for
the new local linearization, in the area of low b, heavy-tailed, the new local linearization
has the problem for the condition of applying the Girsanov theorem. Since the number of
the assumed constants for the new local linearization is three, L,, M, and N,, the number
of constants is bigger than the simply extended local lenearization method which has two
assumed constants, L; and M, . Therefore, by this empirical results, it is better to use
the simply extended local linearization method in our case.



Table 4.36: Comparison of $.D, SELL and NLL (NK225) (1970-1994)

models 7 T b o IL AIC
K=1  T.P. |0.00071 |0.00728 | 1.5 | 1.81926 | 23250.72- | -46513.44
SELL | 0.00072 | 0.00730 | 1.5 | 1.33297 | 23509.98~ | -47013.97
NLL | 0.00104 | 0.00748 | 1.5 | 1.25986 | 23158.34 | -46310.68
K=2 T.P. |0.00062 | 0.01234 | 2.5 | 1.24933 | 23216.20 | -46426.58
SELL | 0.00064 | 0.01207 | 2.5 | 0.97221 | 23426.95 | -46847.90
NLL | 0.00086 | 0.01191 | 2.5 | 0.98983 | 23276.83" | -46547.66
K=3  T.P. |0.00057 | 0.01659 | 3.5 | 0.00371 | 23086.13 | -46166.25
SELL | 0.00058 | 0.01615 | 3.5 | 0.80232 | 23278.64 | -46551.27
NLL | 0.00073 | 0.01583 | 3.5 | 0.84837 | 23217.40 | -46428.79
K=4 T.P. |0.00053 | 0.02030 | 4.5 | 0.84705 | 22973.96 | -45941.01
SELL | 0.00055 | 0.01975 | 4.5 | 0.69932 | 23152.50 | -46299.01
NLL |0.00065 | 0.01936 | 4.5 | 0.75609 | 23132.68 | -46259.35
K=5 T.P. |0.00050 | 0.02364 | 5.5 | 0.75012 | 22883.91 | -45760.41
SELL | 0.00052 | 0.02301 | 5.5 | 0.62855 | 23050.00 | -46094.18
NLL | 0.00059 | 0.02258 | 5.5 | 0.68901 | 23050.84 | -46095.69
K=6 T.P. |0.00048 | 0.02669 | 6.5 | 0.68052 | 22800.88 | -45613.76
SELL | 0.00050 | 0.02600 | 6.5 | 0.57615 | 22066.26 | -45926.52
NLL | 0.00055 | 0.02556 | 6.5 | 0.63700 | 22977.61 | -45949.22
K=7 T.P. |0.00046 [ 0.02952 | 7.5 | 0.62682 | 22748.05 | -45490.10
SELL | 0.00048 | 0.02879 | 7.5 | 0.53537 | 22896.52 | -45787.05
NLL | 0.00052 | 0.02835 | 7.5 | 0.59494 | 22913.34 | -45820.67
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Table 4.37: Comparison of S.D, SELL and NLL (NK225) (1970-1974)

models n T b |eo LL AIC
K=1 T.P. |0.00113 | 0.00825 | 1.5 | 1.68441 | 4788.74 | -9571.48
SELL | 0.00112 | 0.00846 | 1.5 | 1.27533 | 4825.90* | -9645.80
NLL | 0.00148 | 0.00854 | 1.5 | 1.22938 | 4764.31 | -9522.62
K=2 T.P. ]0.00097 | 0.01370 | 2.5 | 1.17504 | 4793.23* | -9580.46
SELL | 0.00099 | 0.01373 | 2.5 | 0.93492 | 4818.72 | -9631.45
NLL | 0.00130 | 0.01346 | 2.5 | 0.96706 | 4792.77 | -9579.54
K=38 T.P. | 0.00088 | 0.01823 | 3.5 | 0.93737 | 4773.13 | -9540.26
SELL | 0.00093 | 0.01817 | 3.5 | 0.77264 | 4794.76 | -9583.52
NLL | 0.00117 | 0.01776 | 3.5 | 0.82769 | 4784.34 | -9562.67
K=4 T.P. | 0.00083 | 0.02217 | 4.5 | 0.79846 | 4753.82 | -9501.64
SELL | 0.00088 | 0.02207 | 4.5 | 0.67347 | 4773.35 | -9540.70
NLL | 0.00106 | 0.02159 | 4.5 | 0.73550 | 4770.01 | -9534.02
K=5 T.P. | 0.00078 | 0.02571 | 5.5 | 0.70557 | 4737.46 | -9468.92
SELL | 0.00084 | 0.02557 | 5.5 | 0.60490 | 4755.57 | -9505.14
NLL | 0.00097 | 0.02508 | 5.5 | 0.66739 | 4755.61 | -9505.22
K=6 T.P. ]0.00075 | 0.02895 | 6.5 | 0.63837 | 4723.82 | -9441.64
SELL | 0.00081 | 0.02879 | 6.5 | 0.55389 | 4740.80 | -9475.60
NLL | 0.00091 | 0.02828 | 6.5 | 0.61384 | 4742.48 | -9478.95
K=7 T.P. |0.00072 | 0.03196 | 7.5 | 0.58638 | 4712.26 | -9418.53
SELL | 0.00078 | 0.03177 | 7.5 | 0.51403 | 4728.38 | -9450.76
NLL | 0.00085 | 0.03127 | 7.5 | 0.57019 | 4730.82 | -9455.65
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Table 4.38: Comparison of S.D, SELL and NLL (NK2235) (1975-1979)

models 1L T b |o LL AIC
K=1 T.P. |0.00062 | 0.00532 | 1.5 [ 1.47270 | 5379.50 |-10753.00
SELL | 0.00055 | 0.00539 | 1.5 [ 1.19010 | 5417.67 |-10829.34
NLL | 0.00078 | 0.00542 | 1.5 | 1.17633 | 5370.23 | -10734.46
K=2 T.P. | 0.00056 | 0.00863 | 2.5 | 1.03991 | 5409.44 |-10812.89
SELL | 0.00047 | 0.00868 | 2.5 | 0.86685 | 5431.34* | -10856.68
NLL | 0.00065 | 0.00842 | 2.5 | 0.92867 | 5412.46 |-10818.92
K=3 T.P. |0.00052 | 0.01130 | 3.5 | 0.83288 | 5410.42* | -10814.83
SELL | 0.00044 | 0.01135 | 3.5 | 0.71594 | 5426.43 | -10846.87
NLL | 0.00058 | 0.01093 | 3.5 | 0.79709 | 5418.80* | -10831.60
= T.P. |0.00049 [ 0.01358 | 4.5 | 0.71088 | 5407.48 | -10808.96
SELL | 0.00043 | 0.01362 | 4.5 | 0.62459 | 5420.51 | -10835.02
NLL | 0.00054 | 0.01322 | 4.5 | 0.71093 | 5417.86 | -10829.73
K=5 T.P. | 0.00048 | 0.01539 | 5.5 | 0.62908 | 5404.15 | -10802.29
SELL | 0.00043 | 0.01562 | 5.5 | 0.56170 | 5415.34 | -10824.69
NLL | 0.00051 | 0.01521 | 5.5 | 0.64742 | 5415.06 | -10824.11
K=6 T.P. | 0.00046 | 0.01740 | 6.5 | 0.56843 | 5401.23 | -10796.46
SELL | 0.00043 | 0.01743 | 6.5 | 0.51501 | 5411.03 | -10816.07
NLL | 0.00049 | 0.01701 | 6.5 | 0.59663 | 5411.86 | -10817.71
K=T T.P. | 0.00046 | 0.01907 | 7.5 | 0.52405 | 5398.44 | -10790.87
SELL | 0.00042 | 0.01909 | 7.5 | 0.47856 | 5407.44 |-10808.87
NLL | 0.00047 | 0.01867 | 7.5 | 0.55432 | 5408.75 | -10811.49
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Table 4.39: Comparison of S.D, SELL and NLL (NIK225) (1980-1984)

models T T b |o LL AIC
K=1 T.P. | 0.00065 | 0.00547 | 1.5 | 1.61547 | 5313.39 | -10620.78
SELL | 0.00064 | 0.00564 | 1.5 | 1.23403 | 5341.89 | -10677.78
NLL | 0.00095 | 0.00580 | 1.5 | 1.17924 [ 5278.13 | -10550.25
K=2 T.P. | 0.00057 | 0.00890 | 2.5 | 1.14336 | 5339.70" | -10673.41
SELL | 0.00060 | 0.00909 | 2.5 | 0.90350 | 5353.23* | -10700.46
NLL | 0.00080 | 0.00902 | 2.5 | 0.93111 | 5323.09 | -10640.17
K=3 T.P. | 0.00054 | 0.01169 | 3.5 | 0.91662 | 5334.93 | -10663.87
SELL | 0.00055 | 0.01189 | 3.5 | 0.74958 | 5346.11 | -10686.22
NLL | 0.00069 | 0.01169 | 3.5 | 0.80621 | 5332.17 | -10658.35
K=4 T.P. | 0.00051 | 0.01409 | 4.5 | 0.78355 | 5327.01 | -10648.02
SELL | 0.00052 | 0.01427 | 4.5 | 0.65675 | 5338.29 | -10670.59
NLL | 0.00062 | 0.01401 | 4.5 | 0.72676 | 5332.62~ | -10659.25
K=5 T.P. | 0.00049 | 0.01622 | 5.5 | 0.69479 | 5319.53 | -10633.07
SELL | 0.00050 | 0.01637 | 5.5 | 0.59295 | 5331.45 | -10656.89
NLL | 0.00057 | 0.01607 | 5.5 | 0.66980 | 5330.30 | -10654.59
K=6 T.P. |0.00048 | 0.01815 | 6.5 | 0.63207 | 5313.05 | -10620.10
SELL | 0.00049 | 0.01827 | 6.5 | 0.54558 | 5325.61 | -10645.22
NLL | 0.00054 | 0.01795 | 6.5 | 0.62599 | 5327.04 | -10648.08
K=7 T.P. | 0.00047 | 0.01993 | 7.5 | 0.58105 | 5307.40 | -10608.80
SELL | 0.00048 | 0.02003 | 7.5 | 0.50860 | 5320.61 |-10635.23
NLL | 0.00052 | 0.01968 | 7.5 | 0.59071 | 5323.55 | -10641.10
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Table 4.40: Comparison of S.D, SELL and NLL (NK225) (1985-1989)

models 7 T b |o LL AIC
K=1 T.P. [0.00126 | 0.00682 | 1.5 | 1.69636 | 4710.57 | -9415.14
SELL | 0.00122 | 0.00698 | 1.5 | 1.28104 | 4751.23 | -9496.46
NLL | 0.00167 | 0.00727 | 1.5 | 1.20906 | 4685.41 | -9364.82
K=2 T.P. |0.00122 | 0.01125 | 2.5 | 1.19616 | 4716.33* | -9426.65
SELL | 0.00119 | 0.01122 | 2.5 | 0.94443 | 4751.55" | -9497.10
NLL |[0.00148 | 0.01116 | 2.5 | 0.97046 | 4726.60 | -9447.20
K=3 T.P. [0.00119 | 0.01493 | 3.5 | 0.96360 | 4697.16 | -9388.32
SELL | 0.00116 | 0.01474 | 3.5 | 0.78577 | 4732.10 | -9458.20
NLL |0.00136 | 0.01449 | 3.5 | 0.84725 | 4727.02" | -9448.04
K=4 T.P. | 0.00116 | 0.01814 | 4.5 | 0.82915 | 4678.24 | -9350.47
SELL | 0.00114 | 0.01782 | 4.5 | 0.68924 | 4712.89 | -9419.78
NLL | 0.00128 | 0.01745 | 4.5 | 0.76643 | 4717.45 | -9428.90
=5 T.P. |0.00114 | 0.02102 | 5.5 | 0.74008 | 4661.86 | -9317.72
SELL | 0.00112 | 0.02060 | 5.5 | 0.62258 | 4695.96 | -9385.93
NLL | 0.00123 | 0.02016 | 5.5 | 0.70692 | 4705.32 | -9404.65
K=6 T.P. |0.00112 | 0.02367 | 6.5 | 0.67932 | 4647.84 | -9289.67
SELL | 0.00111 | 0.02315 | 6.5 | 0.57294 | 4681.30 | -9356.60
NLL |0.00119 | 0.02267 | 6.5 | 0.66014 | 4693.01 | -9380.02
K=7 T.P. |0.00111 | 0.02611 | 7.5 | 0.62726 | 4635.80 | -9265.59
SELL | 0.00110 | 0.02553 | 7.5 | 0.53409 | 4668.55 | -9331.11
NLL |0.00116 | 0.02503 | 7.5 | 0.62175 | 4681.33 | -9356.66

100



Table 4.41: Comparison of S.D, SELL and NLL (NK225) (1990-1994)

models 7 T b |e LL AIC
K=1 T.P. |-0.00061 | 0.01350 | 1.5 | 2.03554 | 3421.98 | -6837.96
SELL | -0.00047 | 0.01376 | 1.5 | 1.34421 | 3452.69 | -6899.38
NLL | -0.00079 | 0.01508 | 1.5 | 1.19855 | 3360.86 | -6715.72
K=2 T.P. | -0.00065 | 0.02261 | 2.5 | 1.40528 | 3438.85% | -6871.70
SELL | -0.00058 | 0.02254 | 2.5 | 0.98217 | 3459.03" | -6912.07
NLL |-0.00069 | 0.02310 | 2.5 | 0.94904 | 3405.36 | -6804.71
K=3 T.P. |-0.00067 | 0.02997 | 3.5 | 1.12119 | 3432.57 | -6859.14
SELL | -0.00060 | 0.02973 | 3.5 | 0.81635 | 3449.12 | -6892.24
NLL | -0.00061 | 0.02990 | 3.5 | 0.82126 | 3414.99 | -6823.98
K=4 T.P. |-0.00068 | 0.03624 | 4.5 | 0.95973 | 3425.14 | -6844.28
SELL | -0.00060 | 0.03591 | 4.5 | 0.71683 | 3439.37 | -6872.73
NLL | -0.00055 | 0.03587 | 4.5 | 0.73909 | 3415.92* | -6825.83
K=5 T.P. |-0.00068 | 0.04179 | 5.5 | 0.85294 | 3418.69 | -6831.39
SELL | -0.00058 | 0.04140 | 5.5 | 0.64862 | 3431.16 | -6856.33
NLL |-0.00051 | 0.04123 | 5.5 | 0.67997 | 3414.11 | -6822.23
K=6 T.P. |-0.00068 | 0.04680 | 6.5 | 0.77453 | 3413.33 | -6820.65
SELL | -0.00057 | 0.04639 | 6.5 | 0.59806 | 3424.38 | -6840.76
NLL | -0.00048 | 0.04613 | 6.5 | 0.63451 | 3411.45 | -6816.91
K=T7 T.P. |-0.00068 | 0.05140 | 7.5 | 0.71612 | 3408.83 | -6811.66
SELL | -0.00056 | 0.05098 | 7.5 | 0.55857 | 3418.73 | -6831.47
NLL | -0.00046 | 0.05068 | 7.5 | 0.59799 | 3408.61 | -6811.22
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Table 4.42: Comparison of S.D, SELL and NLL (TOPIX) (1970-1994)

models I T b |o LL AIC
K=1 T.P. | 0.00059 | 0.00624 | 1.5 | 1.56155 | 24435.43" | -48864.86
SELL | 0.00058 | 0.00636 | 1.5 | 1.24237 | 24645.15% | -49284.30
NLL | 0.00081 | 0.00630 | 1.5 | 1.23939 | 24462.27 | -48918.54
K=2 T.P. | 0.00053 | 0.01048 | 2.5 | 1.09030 | 24378.49 | -48750.98
SELL | 0.00054 | 0.01044 | 2.5 | 0.90581 | 24549.30 | -49092.61
NLL | 0.00072 | 0.01005 | 2.5 | 0.97760 | 24535.39" | -49064.78
IK=3 T.P. | 0.00050 | 0.01406 | 3.5 | 0.87067 | 24241.41 | -48476.82
SELL | 0.00052 | 0.01390 | 3.5 | 0.74607 | 24398.28 | -48790.56
NLL | 0.00065 | 0.01338 | 3.5 | 0.83559 | 24441.87 | -48877.75
K=4 T.P. | 0.00048 | 0.01720 | 4.5 | 0.74208 | 24122.57 | -48239.13
SELL | 0.00050 | 0.01697 | 4.5 | 0.64871 | 24269.34 | -48532.68
NLL | 0.00059 | 0.01638 | 4.5 | 0.73906 | 24329.81 | -48653.62
K= T.P. | 0.00046 | 0.02004 | 5.5 | 0.65608 | 24025.38 | -48044.76
SELL | 0.00049 | 0.01974 | 5.5 | 0.58155 | 24163.57 | -48321.14
NLL | 0.00055 | 0.01913 | 5.5 | 0.66579 | 24225.93 | -48445.86
K=6 T.P. | 0.00045 | 0.02265 | 6.5 | 0.59393 | 23946.60 | -47887.19
SELL | 0.00048 | 0.02230 | 6.5 | 0.53165 | 24076.14 | -48146.29
NLL | 0.00053 | 0.02169 | 6.5 | 0.60713 | 24135.02 | -48264.03
K=T T.P. | 0.00043 | 0.02539 | 7.5 | 0.50387 | 23865.39 | -47724.78
SELL | 0.00046 | 0.02469 | 7.5 | 0.49277 | 24002.81 | -47999.61
NLL | 0.00051 | 0.02408 | 7.5 | 0.55909 | 24056.62 | -48107.25
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Table 4.43: Comparison of S.D, SELL and NLL (TOPIX) (1970-1974)

models 1 T b |o LL AIC
K=1 T.P. |0.00112 | 0.00642 | 1.5 | 1.48838 | 5163.69* | -10321.37
SELL | 0.00108 | 0.00677 | 1.5 | 1.19024 | 5189.08* | -10372.16
NLL | 0.00136 | 0.00661 | 1.5 | 1.21254 | 5161.21 |-10316.42
K=2 T.P. | 0.00095 [ 0.01065 | 2.5 | 1.05014 | 5158.58 [-10311.17
SELL | 0.00094 | 0.01094 | 2.5 | 0.87316 | 5178.26 | -10350.52
NLL | 0.00114 | 0.01047 | 2.5 | 0.96041 | 5180.30* | -10354.60
K=3 T.P. | 0.00087 | 0.01422 | 3.5 | 0.84111 | 5134.23 | -10262.47
SELL | 0.00087 | 0.01441 | 3.5 | 0.72190 | 5154.53 | -10303.05
NLL | 0.00100 | 0.01381 | 3.5 | 0.82407 | 5166.34 | -10326.68
K=4 T.P. |0.00081 | 0.01735 | 4.5 | 0.71708 | 5112.41 |-10218.82
SELL | 0.00082 | 0.01744 | 4.5 | 0.62931 | 5133.25 | -10260.50
NLL | 0.00090 | 0.01678 | 4.5 | 0.73018 | 5147.43 | -10288.87
K=5 T.P. | 0.00076 | 0.02017 | 5.5 | 0.63366 | 5094.37 | -10182.75
SELL | 0.00078 | 0.02016 | 5.5 | 0.56507 | 5115.25 | -10224.49
NLL | 0.00083 | 0.01947 | 5.5 | 0.65672 | 5129.00 | -10251.99
K= T.P. |0.00073 | 0.02275 | 6.5 | 0.57393 | 5079.51 |-10153.01
SELL | 0.00075 | 0.02267 | 6.5 | 0.51706 | 5099.99 | -10193.99
NLL |0.00078 | 0.02197 | 6.5 | 0.59620 | 5112.38 | -10218.75
K=7 T.P. | 0.00070 | 0.02515 | 7.5 | 0.52601 | 5067.06 |-10128.11
SELL | 0.00072 | 0.02500 | 7.5 | 0.47935 | 5086.95 |-10167.91
NLL | 0.00075 | 0.02432 | 7.5 | 0.54621 | 5097.80 | -10189.60
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Table 4.44: Comparison of S.D, SELL and NLL (TOPIX) (1975-1979)

models I T b |o LL AIC
K=1 T.P. | 0.00055 | 0.00445 | 1.5 | 1.33340 | 5686.27 | -11366.54
SELL | 0.00053 | 0.00458 | 1.5 | 1.11816 | 5713.76 |-11421.52
NLL | 0.00073 | 0.00458 | 1.5 | 1.12272 | 5675.42 | -11344.83
K=2 T.P. |0.00049 | 0.00709 | 2.5 | 0.95121 | 5720.01 |-11434.03
SELL | 0.00045 | 0.00725 | 2.5 | 0.81594 | 5733.10* | -11460.20
NLL | 0.00058 | 0.00703 | 2.5 | 0.88659 | 5718.92 | -11431.85
K=3 T.P. |0.00045 | 0.00924 | 3.5 | 0.76458 | 5723.87* | -11441.73
SELL | 0.00043 | 0.00940 | 3.5 | 0.67342 | 5732.72 |-11459.43
NLL | 0.00051 | 0.00908 | 3.5 | 0.75913 | 5727.92 | -11449.84
K= T.P. |10.00043 | 0.01107 | 4.5 | 0.65368 | 5723.01 | -11440.02
SELL | 0.00041 | 0.01122 | 4.5 | 0.58704 | 5730.03 | -11454.05
NLL | 0.00048 | 0.01087 | 4.5 | 0.67272 | 5729.03* | -11452.05
K=5 T.P. |0.00042 | 0.01268 | 5.5 | 0.57915 | 5721.25 | -11436.51
SELL | 0.00041 | 0.01283 | 5.5 | 0.52752 | 5727.26 | -11448.52
NLL | 0.00045 | 0.01246 | 5.5 | 0.60623 | 5727.80 | -11449.59
K=6 T.P. |0.00041 | 0.01414 | 6.5 | 0.52431 | 5719.63 | -11433.26
SELL | 0.00040 | 0.01428 | 6.5 | 0.48328 | 5724.80 | -11443.60
NLL | 0.00044 | 0.01390 | 6.5 | 0.55220 | 5725.91 |-11445.82
K=7 T.P. ] 0.00040 | 0.01548 | 7.5 | 0.48295 | 5717.81 | -11429.62
SELL | 0.00040 | 0.01561 | 7.5 | 0.44872 | 5722.68 | -11439.36
NLL | 0.00042 | 0.01524 | 7.5 | 0.50780 | 5723.96 | -11441.92
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Table 4.45: Comparison of S.D, SELL and NLL (TOPIX) (1980-1984)

models I T b |o LL AlIC
K=1 T.P. | 0.00054 | 0.00492 | 1.5 | 1.41833 | 5496.29 | -10986.58
SELL | 0.00057 | 0.00503 | 1.5 | 1.16544 | 5526.83 | -11047.66
NLL | 0.00083 | 0.00505 | 1.5 | 1.16285 | 5486.35 |-10966.70
K=2 T.P. |0.00053 | 0.00793 | 2.5 | 1.00799 | 5517.82" | -11029.63
SELL | 0.00057 | 0.00809 | 2.5 | 0.84801 | 5532.96* | -11059.92
NLL | 0.00075 | 0.00784 | 2.5 | 0.92147 | 5522.68 |-11039.37
K=3 T.P. |0.00052 | 0.01041 | 3.5 | 0.80936 | 5511.43 | -11016.87
SELL | 0.00056 | 0.01060 | 3.5 | 0.69929 | 5523.23 | -11040.45
NLL | 0.00068 | 0.01023 | 3.5 | 0.79163 | 5523.97" | -11041.95
K=4 T.P. |0.00052 | 0.01256 | 4.5 | 0.69201 | 5502.69 | -10999.37
SELL | 0.00055 | 0.01274 | 4.5 | 0.60951 | 5513.78 | -11021.56
NLL | 0.00063 | 0.01233 | 4.5 | 0.70509 | 5518.69 | -11031.37
K=5 T.P. ]0.00051 | 0.01447 | 5.5 | 0.61310 | 5494.73 | -10983.46
SELL | 0.00054 | 0.01463 | 5.5 | 0.54790 | 5505.86 | -11005.72
NLL | 0.00060 | 0.01420 | 5.5 | 0.63988 | 5512.23 | -11018.45
K=6 T.P. | 0.00051 | 0.01619 | 6.5 | 0.55298 | 5488.15 | -10970.29
SELL | 0.00053 | 0.01635 | 6.5 | 0.50219 | 5499.30 | -10992.59
NLL | 0.00057 | 0.01591 | 6.5 | 0.58704 | 5505.98 | -11005.95
K=7 T.P. |0.00051 | 0.01781 | 7.5 | 0.51192 | 5482.11 [ -10958.22
SELL | 0.00053 | 0.01792 | 7.5 | 0.46658 | 5493.80 | -10981.60
NLL | 0.00056 | 0.01749 | 7.5 | 0.54233 | 5500.30 |-10994.61
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Table 4.46: Comparison of S.D, SELL and NLL (TOPIX) (1985-1989)

models 7 T b |eo LL AlIC
K=1 T.P. |0.00102 | 0.00695 | 1.5 | 1.52129 | 4688.47~ | -9370.94
SELL | 0.00092 | 0.00707 | 1.5 | 1.22215 | 4731.27" | -9456.55
NLL | 0.00105 | 0.00702 | 1.5 | 1.22545 | 4697.86 | -9389.73
K=2 T.P. |0.00102 | 0.01147 | 2.5 | 1.08440 | 4686.06 | -9366.13
SELL | 0.00095 | 0.01140 | 2.5 { 0.89988 | 4720.35 | -9434.70
NLL | 0.00110 | 0.01096 | 2.5 | 0.98450 | 4722.80" | -9439.60
K=3 T.P. |0.00102 | 0.01526 | 3.5 | 0.87677 | 4663.03 | -9320.05
SELL | 0.00097 | 0.01508 | 3.5 | 0.74587 | 4694.01 | -9382.02
NLL | 0.00110 | 0.01446 | 3.5 | 0.85451 | 4709.50 | -9412.99
K T.P. |0.00101 | 0.01858 | 4.5 | 0.75470 | 4641.52 |-9277.04
SELL | 0.00099 | 0.01834 | 4.5 | 0.65194 | 4670.49 | -9334.98
NLL | 0.00109 | 0.01764 | 4.5 | 0.76723 | 4690.17 | -9374.33
K= T.P. | 0.00100 | 0.02157 | 5.5 | 0.67310 | 4623.24 | -9240.48
SELL | 0.00099 | 0.02128 | 5.5 | 0.58717 | 4650.83 | -9295.67
NLL | 0.00108 | 0.02056 | 5.5 | 0.70212 | 4671.32 | -9336.63
K=6 T.P. |0.00099 | 0.02431 | 6.5 | 0.61322 | 4607.99 | -9209.82
SELL | 0.00100 | 0.02399 | 6.5 | 0.53912 | 4634.39 | -9262.78
NLL |0.00106 | 0.02327 | 6.5 | 0.65029 | 4654.36 | -9302.71
K=7 T.P. | 0.00099 | 0.02686 | 7.5 | 0.56904 | 4594.52 | -9183.04
SELL | 0.00100 | 0.02652 | 7.5 | 0.50166 | 4620.48 | -9234.95
NLL | 0.00105 | 0.02581 | 7.5 | 0.60693 | 4639.42 | -9272.83
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Table 4.47: Comparison of S.D, SELL and NLL (TOPIX) (1990-1994)

models 1 T b |o LL AlIC
K=1 T.P. |-0.00076 | 0.01077 | 1.5 | 1.60129 | 3700.29 | -7394.57
SELL | -0.00061 | 0.01100 | 1.5 | 1.24973 | 3731.74* | -7457.49
NLL |-0.00042 | 0.01125 | 1.5 | 1.20652 | 3681.25 | -7356.50
K=2 T.P. |-0.00070 | 0.01803 | 2.5 | 1.10309 | 3703.28" | -7400.56
SELL | -0.00056 | 0.01807 | 2.5 | 0.90433 | 3723.66 | -7441.31
NLL |-0.00031 | 0.01780 | 2.5 | 0.94401 | 3703.63* | -7401.26
K=3 T.P. |-0.00068 | 0.02404 | 3.5 | 0.87593 | 3688.98 | -7371.97
SELL | -0.00054 | 0.02402 | 3.5 | 0.74229 | 3704.66 | -7403.32
NLL |-0.00032 | 0.02351 | 3.5 | 0.80458 | 3697.37 | -7388.75
K=4 T.P. |-0.00066 | 0.02924 | 4.5 | 0.74445 | 3675.87 | -7345.75
SELL | -0.00052 | 0.02920 | 4.5 | 0.64442 | 3689.07 | -7372.14
NLL | -0.00035 | 0.02858 | 4.5 | 0.71238 | 3687.00 | -7367.99
K=5 T.P. |-0.00065 | 0.03390 | 5.5 | 0.65710 | 3665.16 | -7324.33
SELL | -0.00051 | 0.03384 | 5.5 | 0.57737 | 3676.52 | -7347.04
NLL | -0.00037 | 0.03316 | 5.5 | 0.64431 | 3676.89 | -7347.78
K=6 T.P. |-0.00064 | 0.03812 | 6.5 | 0.59348 | 3656.54 | -7307.08
SELL | -0.00050 | 0.03807 | 6.5 | 0.52781 | 3666.47 | -7326.94
NLL |-0.00038 | 0.03736 | 6.5 | 0.59084 | 3667.94 | -7329.89
=7 T.P. |-0.00064 | 0.04203 | 7.5 | 0.54563 | 3649.34 [ -7292.68
SELL | -0.00049 | 0.04198 | 7.5 | 0.48929 | 3658.29 | -7310.57
NLL [-0.00040 | 0.04125 | 7.5 | 0.54727 | 3660.23 | -7314.46




Table 4.48: Comparison of S.D, SELL and NLL (SP500) (1975-1994)

models 7 T b |o LL AIC
E=1 T.P. |0.00040 | 0.00794 | 1.5 | 1.81676 | 16876.15 | -33746.29
SELL | 0.00039 | 0.00853 | 1.5 | 1.26328 | 16906.41 | -33806.82
NLL | 0.00033 | 0.00911 | 1.5 | 1.15273 | 16600.82 | -33195.65
K=2 T.P. | 0.00041 | 0.01302 | 2.5 | 1.27592 | 16982.50" | -33959.01
SELL | 0.00040 | 0.01359 | 2.5 | 0.93477 | 16972.03" | -33938.06
NLL | 0.00037 | 0.01382 | 2.5 | 0.91653 | 16788.33 | -33570.65
K=3 T.P. | 0.00041 | 0.01710 | 3.5 | 1.01967 | 16972.93 | -33939.85
SELL | 0.00041 | 0.01764 | 3.5 | 0.78093 | 16961.11 | -33916.21
NLL | 0.00040 | 0.01769 | 3.5 | 0.79599 | 16844.61 | -33683.22
K=4 T.P. | 0.00042 | 0.02058 | 4.5 | 0.87124 | 16949.36 | -33892.73
SELL | 0.00041 | 0.02109 | 4.5 [ 0.68722 | 16941.34 | -33876.68
NLL | 0.00041 | 0.02105 | 4.5 | 0.71835 | 16863.66 | -33721.32
K=5 T.P. | 0.00042 | 0.02365 | 5.5 | 0.77245 | 16925.50 | -33845.00
SELL | 0.00042 | 0.02413 | 5.5 | 0.62231 | 16921.81 | -33837.62
NLL | 0.00042 | 0.02403 | 5.5 | 0.66214 | 16868.25" | -33730.50
=6 T.P. |0.00042 | 0.02644 | 6.5 | 0.69865 | 16904.13 | -33802.27
SELL | 0.00042 | 0.02689 | 6.5 | 0.57381 | 16904.06 | -33802.12
NLL | 0.00042 | 0.02675 | 6.5 | 0.61853 | 16866.37 | -33726.74
K=7 T.P. | 0.00043 | 0.02901 | 7.5 | 0.64984 | 16883.94 | -33761.88
SELL | 0.00042 | 0.02943 | 7.5 | 0.53570 | 16888.18 | -33770.36
NLL | 0.00042 | 0.02926 | 7.5 | 0.58308 | 16861.37 | -33716.75
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Table 4.49: Comparison of S.D, SELL and NLL (SP500) (1975-1979)

models T T b |o LL AIC
K=1 T.P. |0.00036 | 0.00788 | 1.5 | 1.37360 | 4340.60 | -8675.19
SELL | 0.00026 | 0.00821 | 1.5 | 1.12694 | 4363.39 | -8720.77
NLL |-0.00004 | 0.00853 | 1.5 | 1.08148 | 4313.52 | -8621.04
K=2 T.P. |0.00030 | 0.01228 | 2.5 | 0.99520 | 4385.34 | -8764.69
SELL | 0.00022 | 0.01261 | 2.5 | 0.83583 | 4396.91 | -8787.82
NLL | 0.00005 | 0.01251 | 2.5 | 0.87295 | 4371.49 | -8736.99
K=3 T.P. |0.00028 | 0.01583 | 3.5 | 0.80426 | 4395.58 | -8785.16
SELL | 0.00023 | 0.01612 | 3.5 | 0.69619 | 4404.30 | -8802.59
NLL | 0.00013 | 0.01582 | 3.5 | 0.76144 | 4391.33 | -8776.66
K=4 T.P. |0.00028 | 0.01884 | 4.5 | 0.69000 | 4398.71 | -8791.41
SELL | 0.00025 | 0.01909 | 4.5 | 0.61051 | 4406.25 | -8806.50
NLL | 0.00019 | 0.01868 | 4.5 | 0.68803 | 4399.73 | -8793.46
K= T.P. |0.00028 | 0.02150 | 5.5 | 0.61278 | 4399.65 | -8793.30
SELL | 0.00026 | 0.02171 | 5.5 | 0.55101 | 4406.53* | -8807.05
NLL | 0.00022 |0.02122 | 5.5 | 0.63363 | 4403.50 | -8801.00
=8 T.P. | 0.00028 | 0.02389 | 6.5 | 0.55402 | 4400.05* | -8794.10
SELL | 0.00027 | 0.02407 | 6.5 | 0.50650 | 4406.19 | -8806.38
NLL |0.00025 | 0.02355 | 6.5 | 0.58992 | 4405.10 | -8804.20
K=7 T.P. |0.00028 | 0.02609 | 7.5 | 0.51313 | 4399.54 | -8793.09
SELL | 0.00028 | 0.02624 | 7.5 | 0.47153 | 4405.63 | -8805.26
NLL | 0.00026 | 0.02569 | 7.5 [ 0.55249 | 4405.60* | -8805.20
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Table 4.50: Comparison of S.D, SELL and NLL (SP500) (1980-1984)

models 7 T b |o LL AIC
K=1 T.P. |-0.00005 | 0.00927 | 1.5 | 1.68928 | 4072.40 | -8138.80
SELL | -0.00005 | 0.00996 | 1.5 | 1.22020 | 4080.81 | -8155.62
NLL |-0.00017 | 0.01074 | 1.5 | 1.10617 | 4007.02 | -8008.05
K=2 T.P. |[0.00006 [ 0.01486 | 2.5 | 1.20058 | 4114.12 | -8222.23
SELL | 0.00011 | 0.01558 | 2.5 | 0.90495 | 4109.97 | -8213.95
NLL |0.00005 | 0.01592 | 2.5 | 0.88415 | 4063.69 | -8121.38
K=3 T.P. [0.00012 | 0.01933 [ 3.5 | 0.95910 | 4121.18 | -8236.36
SELL | 0.00017 | 0.02002 | 3.5 | 0.75587 | 4115.51 | -8225.01
NLL | 0.00016 | 0.02015 | 3.5 | 0.76898 | 4084.95 | -8163.91
K=4 T.P. | 0.00016 | 0.02311 | 4.5 | 0.81796 | 4122.13* | -8238.26
SELL | 0.00022 | 0.02378 | 4.5 | 0.66482 | 4116.60" | -8227.21
NLL |0.00022 | 0.02378 | 4.5 | 0.69464 | 4095.32 | -8184.64
K=5 T.P. |0.00019 | 0.02644 | 5.5 | 0.72392 | 4121.54 | -8237.08
SELL | 0.00024 | 0.02709 | 5.5 | 0.60176 | 4116.48 | -8226.96
NLL | 0.00026 | 0.02700 | 5.5 | 0.64100 | 4101.05 | -8196.10
=6 T.P. |0.00021 | 0.02945 | 6.5 | 0.65511 | 4120.56 | -8235.13
SELL | 0.00026 | 0.03007 | 6.5 | 0.55469 | 4115.98 | -8225.96
NLL | 0.00029 | 0.02993 | 6.5 | 0.59968 | 4104.47 | -8202.94
K=7 T.P. |0.00022 | 0.03221 | 7.5 | 0.60358 | 4119.48 | -8232.97
SELL | 0.00028 | 0.03280 | 7.5 | 0.51776 | 4115.38 | -8224.75
NLL | 0.00030 | 0.03263 | 7.5 | 0.56640 | 4106.60* | -8207.21
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Table 4.51: Comparison of S.D, SELL and NLL (SP500) (1985-1989)

models 7 T b |o LL AIC
K=1 T.P. |0.00102 | 0.00815 | 1.5 | 2.23198 | 4093.98 | -8181.95
SELL | 0.00115 | 0.00896 | 1.5 | 1.35443 | 4082.51" | -8159.03
NLL | 0.00124 | 0.00969 | 1.5 | 1.20208 | 3987.68 | -7969.37
K=2 T.P. |0.00104 | 0.01383 | 2.5 | 1.49805 | 4093.07 | -8180.13
SELL | 0.00110 | 0.01462 | 2.5 | 1.00299 | 4079.20 | -8152.40
NLL | 0.00110 | 0.01506 | 2.5 | 0.95156 | 4019.92 | -8033.83
K=3 T.P. | 0.00103 | 0.01847 | 3.5 | 1.18130 | 4072.62 | -8139.24
SELL | 0.00104 | 0.01923 | 3.5 | 0.83850 | 4063.65 | -8121.30
NLL | 0.00101 | 0.01950 | 3.5 | 0.82535 | 4024.66" | -8043.33
K=4 T.P. |0.00102 | 0.02249 | 4.5 | 1.00214 | 4053.45 | -8100.91
SELL | 0.00099 | 0.02319 | 4.5 | 0.73764 | 4049.05 | -8092.10
NLL | 0.00096 | 0.02336 | 4.5 | 0.74330 | 4022.13 | -8038.26
K=5 T.P. | 0.00101 | 0.02609 | 5.5 | 0.88396 | 4036.97 | -8067.94
SELL | 0.00096 | 0.02672 | 5.5 | 0.66723 | 4036.29 | -8066.59
NLL | 0.00092 | 0.02683 | 5.5 | 0.68323 | 4017.08 | -8028.16
=6 T.P. | 0.00100 { 0.02937 | 6.5 | 0.80370 | 4022.81 | -8039.63
SELL | 0.00093 | 0.02994 | 6.5 | 0.61431 | 4025.14 | -8044.29
NLL | 0.00090 | 0.03001 | 6.5 | 0.63629 | 4011.14 | -8016.28
K=7 T.P. | 0.00098 [ 0.03241 | 7.5 | 0.74302 | 4010.57 | -8015.13
SELL | 0.00091 | 0.03291 | 7.5 | 0.57256 | 4015.29 | -8024.57
NLL | 0.00088 | 0.03296 | 7.5 | 0.59802 | 4004.95 | -8003.90
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Table 4.52: Comparison of S.D, SELL and NLL (SP500) (1990-1994)

models L T b |o LL AIC
K=1 T.P. | 0.00026 | 0.00672 | 1.5 | 2.08554 | 4402.90 | -8799.80
SELL | 0.00024 | 0.00715 | 1.5 | 1.32413 | 4411.74 | -8817.48
NLL | 0.00028 | 0.00782 | 1.5 | 1.17063 | 4315.66 | -8625.32
K=2 T.P. |0.00026 | 0.01125 | 2.5 | 1.40256 | 4426.27* | -8846.55
SELL | 0.00022 | 0.01159 | 2.5 | 0.96962 | 4424.09* | -8842.18
NLL | 0.00031 | 0.01202 | 2.5 | 0.91679 | 4361.16 |-8716.31
K=3 T.P. |0.00024 | 0.01485 | 3.5 | 1.10224 | 4424.01 | -8842.02
SELL | 0.00022 | 0.01519 | 3.5 | 0.80516 | 4419.51 | -8833.01
NLL | 0.00030 | 0.01549 | 3.5 | 0.78834 | 4375.52 | -8745.05
K=4 T.P. [0.00024 | 0.01790 | 4.5 | 0.93495 | 4419.32 | -8832.64
SELL | 0.00022 | 0.01826 | 4.5 | 0.70586 | 4414.13 | -8822.27
NLL | 0.00028 | 0.01848 | 4.5 | 0.70702 | 4381.58 | -8757.17
K=5 T.P. | 0.00023 | 0.02060 | 5.5 | 0.82528 | 4414.90 | -8823.81
SELL | 0.00022 | 0.02096 | 5.5 | 0.63776 | 4409.59 | -8813.18
NLL | 0.00028 | 0.02114 | 5.5 | 0.64937 | 4384.49 | -8762.97
=6 T.P. |0.00023 | 0.02303 | 6.5 | 0.74633 | 4411.13 | -8816.26
SELL | 0.00022 | 0.02340 | 6.5 | 0.58738 | 4405.91 | -8805.82
NLL | 0.00027 | 0.02354 | 6.5 | 0.60559 | 4385.94 | -8765.88
K=7 T.P. |0.00023 | 0.02526 | 7.5 | 0.68676 | 4407.94 | -8809.88
SELL | 0.00022 | 0.02564 | 7.5 | 0.54816 | 4402.92 | -8799.84
NLL | 0.00026 | 0.02574 | 7.5 | 0.57086 | 4386.66" | -8767.32
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Chapter 5

Non-Gaussian Stochastic Volatility
Model

5.1 Introduction

In the area of finance, the management of the market risk is a very important subject. In
this area, ARCH and GARCH models have been used for their easy implementation. On
the other hand, the stochastic volatility model was proposed in the finance area by Hull
and White (1987) and a method of estimating the parameters of the model was recently
developed (Harvey, Ruiz, and Shephard (1992), etc.). The empirical comparative study of
GARCH and stochastic volatility model is reported by Heyman et al. (1994). According
to their result, for stock returns, the stochastic volatility model is better than GARCH
and EGARCH.

In this chapter, in order to analyze the stochastic volatility of the process for the
risk management, we consider a non-Gaussian extension of a simple version of a stochas-
tic volatility model. Namely we assume that the observation model has a heavy tailed
distribution and the expectation of observation is zero. According to the standard VaR
(Value at Risk) model, so-called Risk Metrics by J. P. Morgan (1995a, 1995b) in the 1
day forecast, estimates from the zero-mean and estimates from estimated mean do not
differ significantly. Therefore, to measure the VaR, zero-mean estimates are commonly
used in this area. Our model can also be introduced in this framework.

Recently, several methods for estimating the parameters of stochastic volatility models
have been developed. Firstly, quasi-maximum likelihood method by Harvey, Ruiz, and
Shephard (1992) is used because of its easy implementation. They transform the obser-
vation equation to linear state space model by multiplying the observation and taking
logarithm of it. They approximate the distribution of noise by normal distribution and
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use the Kalman Filter to maximize a quasi-maximum likelihood. Secondly, Danielsson
(1992), Danielsson and Richard (1992) approximate the likelihood using Monte Carlo
integration. They proposed an efficient method called accelerated Gaussian importance
sampler. Thirdly, Jacquire, Polson, and Rossi (1994) adopt a Bayesian analysis using
MCMC (Markov Chain Monte Carlo) method which is based on sampling from the pos-
terior of the model parameters and then from the posterior for the latent variables.

In this chapter, we apply a non-Gaussian nonlinear filter (Kitagawa 1987, 1991) to
stochastic volatility model. The method is based on a numerical representation of the
arbitrary distributions. By the computer-intensive numerical computations, this method
can handle various types of nonlinear or non-Gaussian models including the non-Gaussian
stochastic volatility model.

This research focuses on the type VII Pearson family of distributions, including ¢-
distribution, Cauchy distribution and Gaussian distribution. However, the computational
method presented in this chapter can be easily applied to other distributions. The research
by Nagahara (1995a, 1995b) and others (Mandelbrot (1963), Fama (1965), Kariya, (1993),
d Kariya et al. (1995) etc.) for the daily returns of stock index prices conclude that
distribution of daily stock returns is heavy-tailed and is better approximated by Pearson
type VII or Paretian distribution than the Gaussian distribution. The t-distribution was
considered by Harvey, Ruiz, and Shephard (1992). Furthermore, according to Nagahara
(1995b), the shape parameter of Pearson type VII distribution tends to be time-varying.
These motivated us to develop general state space model of stochastic volatility model
and adopt the time-varying shape parameter. We estimate these time-varying parameters
by the non-Gaussian smoother developed by Kitagawa (1987, 1991). The outline of this
chapter is as follows. Non-Gaussian stochastic volatility models are introduced in section
5.2. Non-Gaussian filter and smoother for the estimation of the unknown parameters of
the model such as the time varying volatility and the shape parameter are also given
in this subsection. The case study on the analysis of the daily returns of Standard and
Poor’s 500 Index is shown in section 5.3.
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5.2 Stochastic Volatility Models with Gaussian-Noise
and Non-Gaussian Noise

5.2.1 Stochastic Volatility Model

The stochastic volatility model with Gaussian noise is defined by
Yo = Oy, (5.1)

where ¢ ~ NID(0,1) and o, is the stochastic volatility and its logarithm h; = log o} is
assumed to be generated by a first order autoregressive model with a constant term

h-; = ag+ Crlht_i + 1y, (5.2)

with uy, ~ NID(0, 4?) (Harvey, Ruiz, and Shephard (1992)).

In this study, we consider an extension of this stochastic volatility model to non-
Gaussian distribution case. As the distribution of the observation noise, we use the
Pearson type VII density function defined by

T(b 7251
Helb ) = S R 5% =P
The details of the distribution is given in Johnson and Kotz (1970). This distribution
contains broad class of distributions such as Cauchy distribution (b = 1), ¢-distribution
with the degree of freedom & (b = (k+41)/2, k: positive integer) and the normal distribution
(b= o0).
Based on this Pearson type VII distribution, our non-Gaussian extension of the stochas-

(b > 1/2). (5.3)

tic volatility model is defined as follows. In this model we assume that the observation g, is
distributed as type VII Pearson family of distributions with mean 0, the shape parameter
b and the dispersion parameter 72,

I'(b) 'rf!’_l
Y Th-1/2)0(1/2) 2+ 2F

(5.4)

2

Here the dispersion of the distribution, 77, is time-varying and its logarithm h, = log 7;
follows an autoregressive model with a constant term,

he = ap+ arhy—1 + v, (5.5)
where v; is a white noise sequence with v, ~ NI1D(0,2?).
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This non-Gaussian stochastic volatility model can be further generalized to the case
where the shape parameter, b, is also time-varying. In this model, y; is assumed to be
distributed as type VII Pearson family of distributions with the shape parameter b, and

the dispersion parameter 72,

I'(be) ot
T T - 12T/ (7 + a2

Here both of the shape parameter and the dispersion parameter are time varying, and as

(5.6)

above, h; = log 77 follows
he = ag+ oqhey + 1y, (5.7)
with vy, ~ NID(0,£7), and I, = log(b; — 1/2) follows the random walk model
Ly = L1+ v, (5.8)

with vy ~ NID(0,£3). The above transformation, I, = log(b, — 1/2), is used so that the
by = €' +1/2 always satisfies the basic condition for the shape parameter of the type VII
Pearson system that b, > 1/2.

5.2.2 General State Space Model

In this subsection, we first derive a general nonlinear non-Gaussian state space representa-
tion of the non-Gaussian stochastic volatility model introduced in the previous subsection.
This general state space model facilitates to compute the log-likelihood and obtains the
maximum likelihood estimates of the non-Gaussian stochastic volatility model. General
state space model is defined by

Xt = f(xt-1,vt) (5.9)
ye ~ m(:|xe), (5.10)
where yy is the observation, x4 is k-dimensional state vector and vy is l-dimensional system
noise with densities ¢(v). The f(x,v) is a possibly nonlinear function of x and v, and
m(-|x¢) indicates the conditional distribution of the observation y¢ given the state xi.
(5.9) and (5.10) are called the state model (or system model) and the observation model,

respectively. Our non-Gaussian stochastic volatility model given in the previous section
can be expressed in general state space model form by

f(xt_l,vt) = fo+Fxi_ 1+ Gvg, (5.11:}
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where the state vector x¢, the system noise v¢ and fo, F, G are respectively defined by
| e _ | mg | a0 _|Zx % "
xt"l:‘rr‘|1 Vt—[vz,tln fﬁ“[o 3 F*—[U l]l G_[D 1 ('312)
Namely, the state model (5.10) is given as
hf . g y 0 h't-l 1 0 Ut
YR R 1 K R F B
On the other hand, the observation model (5.10) is given by

T'(by) b1 [(e' + %) exp(hee't)

") = AT T v~ T/ s gt M)
with
2 = exp{[l O]xt},
by = exp{[01]x¢}+ % (5.15)

Based on this state space representation of the non-Gaussian stochastic volatility model,
we shall obtain the likelihood of the model and the maximum likelihood estimate of the
parameter in the following subsection,

5.2.3 Recursive Estimation of State and Likelihood Computa-
tion

In this subsection, we consider the estimation of the state of the general state space model
given in (5.9) and (5.10). The estimated state is then used for the computation of the
likelihood of the stochastic volatility model. Finally, by the state estimation for the model
with the maximum likelihood estimates of the parameters, we can estimate the volatility
7y at each time point as well as the shape parameter, b;.

Hereafter, Y is defined to be the set of the observations up to time s, Y = {¥1,..,¥s}
Then the problem of the state estimation is formulated as to obtain the conditional dis-
tribution p(x¢|Ys) of the state x¢ given the set of observations Ys. Corresponding to the
three distinct situations, s <t, s =t and s > ¢, the conditional density p(x|Ys) is called
the predictor, the filter and the smoother, respectively.

In Kitagawa (1987, 1991), it was shown that, similarly to the Kalman filter and the
fixed interval smoother for ordinary state space model (Anderson and Moore (1979)),
the recursive formulas for obtaining one step ahead predictor p(xs|Y¢_1), and the filter
p(x¢|Y¢) can be given as follows.



One step ahead prediction:

p(xe] Y1) = f p(xe, Xe—1|Ye—1)dx¢-1
—
= j p(xefxe—1, Ye1)p(xe-1|Ye—1)dxe_1

=]
= f p(xe|xe-1)p(xe—1|Ye_1)dx¢1. (5.16)
—00

Filtering:

p(xt[Ye) = p(xe|y, Yeo1)
p(yelxt, Ye—1)p(xe|Ye-1)

p((ytlYt—l)
p(yelxe)p(xe[Yi—1) "
P(ye|Ye-1) (5.17)

where p(y:|¥¢_1) is obtained by /p(y,|xt)p(xt|Yt_1)dxt.
Smoothing:

Using the results of non-Gaussian filter, the smoothed density p(x¢| Y1) is obtained by

p(thYT) — ./:wp(xt,xt+llYT}dxt+1

= fmp(xt+llYT)P(xt|xt+l}YT)dxt+1

- f P(Xe41 Y1) p(xe[Xe 41, Ye)dxe i
—o0

= % p(Xt41|Y7)p(Xe41]%e, Ye)
a p(xtth)j—w ) P(Xt+1|'£.}

dxp1. (5.18)

For the present general state space models, the conditional density p(x¢|Ys) becomes non-
Gaussian and cannot be specified by using mean and variance. In the next subsection,
we will present a numerical method for handling non-Gaussian state densities (Kitagawa
1991).

In our non-Gaussian stochastic volatility model, the coefficients of the autoregressive
model (5.7), ap and a4, and the variances of the system noise, & and &2, are unknown
parameters. The vector of the parameter # is defined by 6 = (g, ay, €2, £2)!. Then the
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log-likelihood function is obtained by

W(6) = logp(yi,...,yr)

i
= Elogp(ydyl,...,y,_l)
t=1

-
= ZIIOEP(IJ:'Yt—l)- (5.19)
t=

Since the conditional density, p(y|Yt-1), has already been obtained in the filtering step,
the log-likelihood of the model is obtained as the byproduct of the recursive non-Gaussian
filter. The maximum likelihood estimates of the parameters can be obtained by maximiz-

ing this log-likelihood.
The goodness of fit of the model can be evaluated by the AIC (Akaike 1973) defined

by

AIC = —2(maximum log-likelihood) + 2(number of parameters). (5.20)

We shall use this AIC for the comparison of Gaussian and non-Gaussian stochastic volatil-
ity models and EGARCH model.

5.2.4 Numerical Implementation of the Nonlinear Smoothing
Formulas

Numerical implementation of the non-Gaussian filtering and smoothing formulas for non-
Gaussian stochastic volatility model is considered in this subsection. A similar implemen-
tation for a nonlinear state space model is given in Kitagawa (1991).

We use a simple step function approximation of an arbitrary function on a two di-
mensional space, which is specified by the numbers of segments, k; and %,, location of
nodes, wyg, (1 = 0,...,k1), waj, (7 = 0,...,ky) and the value of the density at each
node, p(4,7), (i =1,...,k1,5 =1,...,k2). We express the approximated step function by
{k1, w14, ko, wa 5, p;;}. Specifically, we use the following notations: p(xe|Yi_1) ~ py(x¢) =
(kv wig ko, wey,pit,  p(xe|Ye) ~ filxe) = {ky,wig, ko, way, i}y p(xe|Yr) ~ solxe) =
{k1, wy i, ko, wa g, 8: 5}

Similarly, the system noise densities ¢y () and gs(x), which are mutually independent,
are discretized by using k,; segments, i.e., qi(z) ~ §i(z) = {kq,wq1 4, @1} and using kqo
segments, i.e., g2(x) ~ G@(x) = {ky2, wga 4, g2,5}, respectively. In the simplest implementa-
tion, wy; = wyo + (wik, — wip)ifk, (1 =0,...,k) and wa; = wayg + (wok, — w20)j/ka,

{_;.' = ':}, e ,kg) 3 kq‘l =2 % kl, 'wa,[] = —WL k. wa,?xh = _wl,kl: wa,l’ — z'ul,kl'i{’kl
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and kg =2 X ky, wWpo= —Wok, Weoxk = —Wak, Weaj = WarJ/ke. To realize
the recursive formulas shown below, it is necessary to develop a numerical method for the
linear transformation of variables, the convolution of densities, Bayes formula, and the

normalization.
One step ahead prediction:
pij (i=1,...,k,7=1,...,ks) is obtained by

(s =] o0
Pij = pe(wyi, way) = f; f_mp(wm,wz,jlhr—hf:—l}ﬁ(hr-hfr~1|Yt—1)dh:—1cﬂx-1

(= =] (s =] a.
= ] _/ qi(w1i — 21)qa(wa; — 22) fie1(z1, 22)dz1d 2o

= f f @(wr; — 21)G@2(way — 22) froa (21, 22)d21d2s,
i= IJ 1 5,i=1 Y 52,51

(5.21)

with 21 = ap + a1h,—; and 2z, = I;_;. The density f,_l(zl, z3) for the transformed state
(21,22)" can be evaluated numerically by the following algorithm. For simplicity, we
assume that the nodes {w} are equally spaced and that Aw; = (w4, — w;0)/k:.
1. Fort=1tok; and j =1 to ks
put f,,_, = (.
2. Fori=1to k;
(a) Z10 = min{crg + aywy 1,09 + alwl,;}
(b) 213 = max{au + oqwy iy, 00 + ﬂflwl,i}
(c) i = (25222 iy = [22gme]
(d) fornzig-f-lto i

211 = max{z1,0, w10 + (§ — 1)Aw; }

219 = min{zq 3, W10 +j&w1}

r ; z
fng —.fn,j :: :_:::fl‘j

Using this f,a, (5.21) can be evaluated approximately by p; ; ~ Zn:_h i (zg““:_kz gmfaﬁ),

Filtering

fij (i=1,...,k,j=1,... k) is obtained by

fig = flwy i, wa ;) = p‘(wlrh1”2J)mé‘yi(wlmw‘3a} ) = P"g"’. (5.22)
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Here y is the given observation at time t and r;; = m(y|(w;;, w2;)") can be evaluated
directly from the function m(v). In (5.22), C is the normalized constant given by

oo te'a) ki ka 1,0 2,3 5
C=/ [ pe(xe)m(ylxe)dxe =~ Y > / " m(yl(wig, w )iz, 22)dzd2s
—ra S = i=1j=1 E1,0=-1 Y T2 51
ky k2
o ZZT,'JP;J&'M] (5-23)
i=1j=1

Smoothing

sij (1=1,...,k,j =1,...,k) is obtained by

® 8pp1(21, 22) @1 (21 — ap — oqwy ) Go(20 — wo
8i g :S!(wl,{,w2ﬁ‘) — ft(wl,f:wﬂj]f_ H‘l( 1 E}QI( 1 0 1 It)qz( ZJszldzz

ft+1(—'51= 22)

= fi(wii, way;)
y i -‘-i fn..' /21.1 3:.,.1_[21,32)@1(21 — ap — ‘llwhi)é?(z? s wzﬂ-) 515,
i=1 j=1"%1i=1 ¥ 32,51 ft+1{-3‘1= 22)

(5.24)

The integral in the summation is given approximately by s;;G:i¢2;/ fi s Where 8;; =
e (wy g, wa5), fi i = Fn(wyy, ws ;) and gy ; can be evaluated either directly or numerically
by a similar way as the one for the prediction.

5.3 Results

We analyzed the daily returns of Standard and Poor’s 500 Index for 1985-1994 shown in
Figure 5.1. We compared six versions of stochastic volatility models and EGARCH(1,1)
model (Nelson (1991)) which is defined by

he = ag+ arhe_y + 0261 + o3 (|E:-1| i) Zf?r) 5 (

In Table 5.1, EGARCH, GSV and NGSV denote EGARCH(1,1) model, Gaussian and
non-Gaussian stochastic volatility models, respectively. T denotes restricted trend (or

25)

o

random walk) type model for the volatility, namely the model obtained by assuming
ap =0, @ = 1in (5.2), (5.5) or (5.7). AR denotes unrestricted autoregressive type model
with constant term given in (5.2), (5.5) and (5.7). S denotes the most general model with
time-varying shape parameter. LL denotes the log-likelihood of the estimated model.
The AIC values of these stochastic volatility models are significantly smaller than that
of EGARCH. This result supports the research by Heyman et al.. Within the Gaussian
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stochastic volatility model, the AIC of GSV-AR is significantly smaller than that of GSV-
T. This indicates that it is better to assume that the model does not have a unit root.

The AIC values of all of four non-Gaussian stochastic volatility models are significantly
smaller than those of the Gaussian models. Within these four models, the autoregressive
type models are better than the restricted trend type model with opp = 0, @y = 1. However,
the differences of AICs are only about 3 and are not so significant compared with the case
of Gaussian stochastic volatility model. The models with time varying shape parameter
is better than the ones with time-invariant shape parameter. The overall AIC best model
was NGSV-AR-S, namely the non-Gaussian stochastic volatility model with AR type
volatility change and time varying shape parameter.

To check the structural changes of the economic system in ten year period, we devide
the time interval into two subintervals and fitted the six models to each subset of data.
The results of the models for the first half of the data are summarized in Table 5.2. The
ones for the latter half are given in Table 5.3.

The most interesting findings with these tables are that the restricted trend type
(g = 0, a3 = 1) become consistently better than the autoregressive type models in
both of the divided data. Probably, this indicates that there is one reverting cycle of the
dispersion parameter in ten years not but in the five years. This phenomena relate with
business cycle which is ten years long.

In Figure 5.1, the upper graph shows the time series of daily returns in 1985-1994, the
lower graph shows the estimated time evolution of the dispersion, ¢ obtained by GSV-AR
model. In Figure 5.2, the upper graph shows the smoothed posterior density of h, = log 72,
and the lower graph shows the smoothed posterior density of [, = log(b;—1/2) obtained by
NGSV-AR-S model. The figure shows the mean and # one standard deviation intervals
of each distribution. When the market crashed down, h, was rising to the peak and [,
was falling to the bottom. It indicates that the big volatility change was decomposed to
the two part depend on scale parameter and shape parameter. In Figure 5.3, the upper
graph shows the filtered posterior density of h; = log 72, and the lower graph shows the
filtered posterior density of I, = log(b, — 1/2). Figure 5.4 shows the birds-eye view of the
filtered distributions (above) and the smoothed distributions (below).

In Figure 5.5, the upper graph shows the time series of daily returns in 1985-1989.
and the lower graph shows the estimated time evolution of the dispersion, 02 obtained by
GSV-AR model. In Figure 5.6, the upper graph shows the smoothed posterior density of
hy = log 77, and the lower graph shows the smoothed posterior density of I, = log(b;—1/2)
obtained by NGSV-T-S model. The level of h; was almost the same during this period and
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the movement of [, corresponded to the movement of the market volatility. It indicates
that in this period the market volatility was explained by the shape parameter change.
In Figure 5.7, the upper graph shows the filtered posterior density of h; = log 72, and the
lower graph shows the filtered posterior density of I; = log(b, — 1/2). Figure 5.8 shows
the birds-eye view of the filtered distributions (above) and the smoothed distributions
(below).

In Figure 5.9, the upper graph shows the time series of daily returns in 1990-1994,
and the lower graph shows the estimated time evolution of the dispersion, 62 obtained by
GSV-AR model. In Figure 5.10, the upper graph shows the smoothed posterior density of
he = log 7, and the lower graph shows the smoothed posterior density of I, = log(b:—1/2)
obtained by NGSV-T model. The level of I; was the same during this period and the
movement of h; corresponded to the movement of the market volatility. It indicates
that in this period the market volatility was explained by the scale parameter change.
In Figure 5.11, the upper graph shows the filtered posterior density of h, = log7? of
1985-1994, and the lower graph shows the filtered posterior density of I; = log(b, — 1/2).
Figure 5.12 shows the birds-eye view of the filtered distributions (above) and the smoothed
distributions (below).
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Table 5.1: Comparison of various types of stochastic volatility model fitted to the entire
data set (1985-1994)

Model Qo @) pas) | Eas) | & LL AlIC

EGARCH -0.262 | 0.971 | -0.070 | 0.184 | — 8453.99 [ -16900.00
GSV-T 0 1 0.023 | — - 8549.75 | -17097.50
GSV-AR 0.185 | 0.965 | 0.044 | — — 8566.54 | -17127.08
NGSV-T 0 1 s 0.0033 | 0 8607.37 | -17212.74
NGSV-AR 0.025 | 0.993 | — 0.0048 | 0 8611.03 | -17216.06
NGSV-T-S 0 1 = 0.0008 | 0.0010 | 8609.97 | -17215.94
NGSV-AR-S | 0.060 | 0.984 | — 0.0045 | 0.0004 | 8613.48 | -17218.96

Table 5.2: Comparison of various types of stochastic volatility model fitted to the first
half data set (1985-1989)

Model @y ay piaz) | Elas) [ & LL AIC

EGARCH -0.582 1 0.934 | -0.114 | 0.232 | — 4029.01 | -8050.01
GSV-T 0 i | 0.043 | — — 4096.81 | -8191.62
GSV-AR 0.190 | 0.965 | 0.041 | — — 4106.58 | -8207.16
NGSV-T 0 | — 0.0052 | 0 4132.32 | -8262.64
NGSV-AR 0.025 [ 0.993 | — 0.0051 | 0 4134.83 | -8263.66
NGSV-T-S 0 1 —_ 0.0001 | 0.0024 | 4136.44 | -8268.88
NGSV-AR-S | 0.125 | 0.967 | — 0.0018 | 0.0017 | 4138.23 | -8268.46

Table 5.3: Comparison of various types of stochastic volatility model fitted to the latter
half data set (1990-1994)

Model ag o W as) | El(as) | & LL AIC

EGARCH -0.002 | 0.999 | -0.047 | 0.001 | — 4460.45 | -8912.90
GSV-T 0 1 0.006 | — — 4458.15 | -8914.30
GSV-AR 0.050 | 0.990 | 0.0063 | — _ 4461.80 | -8917.60
NGSV-T 0 1 — 0.0014 | O 4474.97 | -8947.94
NGSV-AR 0.025 | 0.993 | — 0.0026 | 0 4476.10 | -8946.20
NGSV-T-S 0 1 — 0.0014 | 0.00002 | 4474.97 | -8945.94
NGSV-AR-S | 0.022 | 0.994 | — 0.0024 | 0.00003 | 4476.20 | -8944.40
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Figure 5.1: Time series of data (1985-1994) and Gaussian S.V.M.’s o*
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Figure 5.2: The smoothed estimate of h, = log 7 (above) and I, = log(b, — 1/2) (below)
obtained by the NGSV-AR-S (1985-1994)
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Figure 5.3: The filterd estimate of h, = log7? (above) and I, = log(b, — 1/2) (below)
obtained by the NGSV-AR-S (1985-1994)
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Figure 5.4: The filtered distribution, and the below graph is the smothed distribution
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Figure 5.5: Time series of data (1985-1989) and Gaussian S.V.M.’s o
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Figure 5.6: The smoothed estimate of k, = log 72 (above) and I, = log(b, — 1/2) (below)
obtained by the NGSV-T-5 (1985-1989)
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Figure 5.7: The filterd estimate of h, = log7? (above) and I, = log(d, — 1/2) (below)
obtained by the NGSV-T-S (1985-1989)
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Figure 5.8: The filtered distribution, and the below graph is the smothed distribution
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Figure 5.9: Time series of data (1990-1994) and Gaussian S.V.M.’s ¢*
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Figure 5.10: The smoothed estimate of h, = log 72 (above) and I, = log(b, — 1/2) (below)

obtained by the NGSV-T (1990-1994)
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Figure 5.11: The filterd estimate of h; = log 77 (above) and I, = log(h, — 1/2) (below)
obtained by the NGSV-T (1990-1994)
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5.4 Conclusion

Non-Gaussian version of the stochastic volatility model was proposed. The generalization
to time-varying shape parameter model is also considered. We showed that the parame-
ters of this model can be estimated by the general state space model and the numerical
implementation. According to the AIC criterion, the non-Gaussian stochastic volatility
model is better than Gaussian stochastic volatility model. Especially, the difference of
the AIC values between two models for the interval, 1985-1989, is much more than that
for the interval, 1990-1994. Furthermore, the AIC values of the models with time-varying
shape parameter is smaller than that of the model having the constant shape parameter
for the interval, 1985-1989 and the entire period. However, for the interval, 1990-1994,
the log-likelihood value is almost the same. For the interval, 1985-1989, the movement
of the shape parameter indicates the structual change before October, 19, 1987, “Black
Monday”. Therefore, the model having the time-varying shape parameter is good for pre-
dicting the big structural change and has better AIC than the model having the constant
shape parameter in some cases.
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Chapter 6

Monte Carlo Smoothing Method for
Seasonal Adjustment

6.1 Introduction

Various time series models have been developed for seasonal adjustment, e.g., seasonal
ARIMA model (Hillmer and Tiao 1982), Bayesian model (Akaike and Ishiguro 1980) and
the state space models (Kitagawa 1981, Schlicht 1981, Kitagawa and Gersch 1984, Harvey
1989).

The main advantages of these modeling approach are that the model reveals the as-
sumption used in the analysis explicitly and that there are objective criteria for the
estimation of the parameters and the evaluation of the model such as the likelihood and
the AIC (Akaike 1973). Therefore, if there arises a problem which needs to be solved for
specific data set, we can freely develop a new model to cope with that problem and then
compare it with the standard models. The state space model can also be applied to the
analysis of count data such as the Poisson or binomially distributed process (Kitagawa
1987, Harvey and Fernandes 1989, Kashiwagi and Yanagimoto 1992). Friiwirth-Schnatter
(1994) considered seasonal adjustment of count data.

The problem with the non-Gaussian modeling is the computational cost. In any of the
recursive filtering algorithms including the non-Gaussian filtering, the necessary amount of
comutation is proportional to the data length n, namely O(n). In particular, the Kalman
filter algorithm for Gaussian linear structural state space models requires computations
proportional to & x n or k? x n, where k is the dimension of the state vector. On the
other hand, in the general non-Gaussian filtering (Kitagawa 1987), computationaly costly
numerical integration is necessary (i.e., O(d* x n) computation is necessary with d being
the number of segments for each domain of integration). Thus the direct application of
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the method to the seasonal adjustment, where the state space model with state dimension
over 13 is necessary, is impossible.

To alleviate this problem, West, Harrison and Migon (1985) and Harvey and Fer-
nandes (1989) used conjugate priors. A Gaussian-sum filter and smoother were used to
approximate the non-Gaussian filter and smoother in Kitagawa (1989, 1994). Schnatter
(1992) developed a numerical integration based Kalman filter, in which the distribution
of the state vector is approximated by a Gaussian distribution.

In this chapter, we use a new method for state estimation based on the Monte Carlo
filter and smoother developed in Kitagawa (1993). The algorithm is based on the ap-
proximation of successive prediction and filtering density functions by many of their re-
alizations. The difference between the present algorithm and other Monte Carlo-Gibbs
sampling methods, (Carlin, Polson and Stoffer 1992, Friiwirth-Schnatter 1994), is that we
use the Monte Carlo method for the entire filtering and smoothing procedure whereas the
others are used for numerical integration. The virtue of this algorithm is that it can be
applied to very wide class of nonlinear non-Gaussian higher dimensional state space mod-
els, if the dimensions of the system noise and the observational noise are low by simply
specifying the nonlinear functions and noise densities. It can properly handle the filtering
and smoothing problems even when the distribution of the state vector is multimodal or
the observations are discrete valued.

In this chapter, the seasonal adjustment of count data and additive and multiplicative,
namely mixed type decomposition are considered for seasonal adjustment. To develop a
unified procedure for the paramater estimation, the model evaluation and the decompo-
sition, a Monte Carlo filter and smoother (Kitagawa 1993) are used.

6.2 A Non-Gaussian State Space Model for Sea-
sonal Adjustment

6.2.1 Non-Gaussian nonlinear models for seasonal adjustment

The standard state space model for seasonal adjustment is given by (see, for example,
Kitagawa 1981, Schlichit 1981 and Kitagawa and Gersch 1984)

Tpn = Fz,1+ G,
Yo = Hzp+w,, (6.1)

140



where z, is the p + 1 dimensional state vector, with p being the period length, F, G and
Hare(p+1)x(p+1), (p+1)x2and 1 x (p+ 1) matrices defined by

- LI [2 —1 (1 0]

Tﬁ—l 1 0 0 _._...__D U

S N PRS- SO 01

W= | g |, F= ) » G=19 o

L Sn—pt1 i 1 0 | L0 0]
H=1[1010 -- 0] (6.2)

In the definition of the state vector, 7, and S, are the trend and the seasonal compo-
nent, respectively. The noise inputs v, and w, are mutually independent white noise
sequence with mean zero and the covariance matrix @ = diag(77, ) and the variance o2,
respectively. Harvey (1989) used a slightly different representation of the model called a
structural time series model.

One of the significant merits of the state space modeling is that the model can be easily
modified or extended to deal with various situations. Some examples of the extension of
the models to include other components than the trend and seasonal ones such as the
trading day factor or the stationary component are given in Kitagawa and Gersch (1984).
In Kitagawa (1989), the model was generalized to the one with non-Gaussian noise inputs
to detect sudden changes of trend or seasonal component and to handle outliers in the
observation.

In this chapter, we consider a more general state space model of the form

Tn = F(Tn-1,vn) (6.3)
Un ~ P(|an), (6.4)

where vp, = (Un1,¥y2)" is a two dimensional white noise sequence, v,; ~ ¢1(v), vn2 ~ go(v)
with ¢; and g» being possibly non-Gaussian density functions. P is a distribution function
which is specified by the state vector z,. The function F(z,v) is a possibly nonlinear
function of z and v; R? x R? — RP. The initial state, zy, is assumed to be distributed as
the density function py(z).

If the distribution of the observed process is continuous and has a density function,
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the observation model (6.4) can be written more explicitly as
In = h(zm Wa), (6.5)

where w, is a 1-dimensional observation noise with density function r(w) and h is a
possibly nonlinear function R* x R — R.

It is possible to consider a mixed multiplicative and additive model,
h(Zn, wy) = exp {Tn} X exp {S,} + w,. (6.6)

In this case, exp{T,} and exp{S.} are considered as the trend and the seasonal factor,
respectively. Fitting the above multiplicative model with log-normal noise distribution is
equivalent to fit an additive model with normal distribution noise after taking logarithm
of the original time series. For discrete valued series such as the nonstationary Poisson or
binomial process with seasonal variation, we can consider, for example, a model which is
expressed by using the conditional distribution

e )E

£

Probiys =z} = (6.7)

where A, is the mean value function with trend and seasonality and is expressed by
An = exp {Tn} x exp {S,}. (6.8)

Here Prob{y, = £|z,} denotes the conditional probability of the observation being £ given
the state vector z, defined in (6.2). With this model, it is possible to analyze, a count

data with trend and seasonal variation in the intensity function.

6.2.2 State Estimation

The most important problem in state space modeling is the estimation of the state vector
T, from the observations, since many problems in time series analysis such as the like-
lihood computation for parameter estimation, the prediction, the interpolation and the
decomposition of a seasonal time series into the trend and the seasonal components can
be handled by estimating the state vector z,.

The problem of state estimation can be formulated as to evaluate the conditional
density p(x,|Y}), where ¥; is the set of observations defined by ¥; = {v1,--.,4}. Corre-

sponding to three distinct cases, n > t, n = t and n < t, the state estimation problem
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can be classified into three categories and the conditional density p(z,|Y;) is called the
predictor, the filter and the smoother, respectively.

For the standard linear Gaussian state space model, each density can be expressed
by a Gaussian density and its mean vector and the variance-covariance matrix can be
obtained by computationally efficient recursive formula such as the Kalman filter and the
fixed interval smoothing algorithms (Sage and Melsa 1971, Anderson and Moore 1979).

For nonlinear or non-Gaussian state space models, however, the state distributions
become non-Gaussian and various types of approximations to or assumtions on the den-
sities are used to obtain recursive formula for state estimation. Typical examples are the
extended Kalman filter (Anderson and Moore 1979), the Gaussian-sum filter (Alspach
and Sorenson 1972), dynamic generalized linear model (West, Harrison and Migon 1985),
non-Gaussian filter and smoother (Kitagawa 1987, Hodges and Hale 1993, Tanizaki 1993).
In this chapter, we shall use a different method based on Monte Carlo filter and smoother
(Kitagawa 1993).

6.3 Monte Carlo Filtering and Smoothing

In this section we shall briefly review the algorithms of Monte Carlo filter and smoother
(Kitagawa 1993). By the use of these algorithms, it became possible to apply the general
nonlinear non-Gaussian state space model to seasonal adjustment problems.

In the Monte Carlo filter and smoother, each state or noise density function is approx-
imated by many of realizations (called “particles”) from that distribution. It is equivalent
to approximate the distributions by the empirical distribution functions determined by
the set of particles. Then it can be shown that a set of particles expressing the one step

ahead predictor p(x,|Y;—1) and the filter p(2,|Y;) can be obtained recursively.

6.3.1 The Algorithm for Monte Carlo Filtering

In the following algorithms, p{f), ) and v{) denote the j-th independent realizations
from p(w,|Yn_1), p(2.|Y,) and g(v,), respectively. We use m realizations (particles) to

approximate each density function. For example, given the m particles v, ... v{™) the
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cumulative distribution function
T
Q@)= [_atyit (6.9)
can be approximated by the emperical distribution function defined by

= Z I(z; o)), (6.10)

where I(z;v) is the indicator function defined by

l a>9v

I(:ﬂ;t‘r)z{ 0 e (6.11)

Now, it can be shown that p{/} and f{) are obtained recursively by the following Monte
Carlo filter algorithm.
[Monte Carlo Filter]
1. Generate a (p + 1)-dimensional random number f(’) ~polz) forj=1,...,m
2. Repeat the following steps forn=1,...,N.
(a) Generate a 2-dimensional random number v) ~ g(v) for j =1,...,m.
(b) Compute p) = F(f9, o) for j =1,.
(¢) Compute ay) = P(y,|pW) for j=1,...,m

(d) Generate f{9) for j =1,...,m by the resampling with replacement from piD, . . ., ptm
with weights proportional to oM, ... al™,

6.3.2 Monte Carlo Smoothing Algorithm

Using the particles, f{",---, f{™) which approximate the filter density p(z,|Y,), an ap-
proximation to the smoother density can be simply obtained by the following modification
of the the Monte Carlo filter algorithm. Hereafter 55{?|1 denotes the j-th independent real-
ization from p(x,|Y;) with ¢ > n.

(d) Generate (sf,jzﬂ Ef—)1|n=' ffi)’ for y =1,...,m by the resampling of
9,5 s --,sffz_l)‘ with weights proportional to afl), ... alm),
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Here if we put ¢ = 1, then we obtain the approximation to the fixed interval smoother
p(z|Ys) for t = 1,...,n. However, the repetition of the above algorithm makes the
number of distinct particles monotone decreasing. Since the number of distinct particles
are at largest m for {p{’}, it is very likely that the number of distinct particles will
decrease rapidly. Therefore it is recommended to stop the above smoothing algorithm
after L times, namely to put 7 = max{1,n — L}. According to the authors’ experience, it
is recommended to take 10 < L < 50 (Kitagawa 1993). It is interesting to note that this
modified smoothing algorithm yields a fixed lag smoother with lag L.

6.3.3 Likelihood of the Model

The general state space model contains several unknown parameters such as the variances
of the noise. The vector consisted of these unknown parameters are denoted by 6. Given

the observations i, ..., yy, the likelihood of the parameter @ of the model is obtained by

N N
L(8) = p(vs, .., yw10) = [1 pwnltn, - 001,0) = [] p(tal¥os),  (6.12)

n=l

where p(y1|Yp) = po(y1). Here, by using the approximation

P(%H’n-l) = fp(yn:xnlyn—l)dxn (613)
=5 '/P(ynlmn}ptmnfyn—l)drn (6.14)
I & 5
= —> Palp?) (6.15)
=1
-y o, 6.16
mZ (6.16)

the log-likelihood can be approximated by
N N m ]
U0) = 3 logp(yn|Ya1) = 3 log(z aEE}) — Nlogm. (6.17)
n=1 n=] =1

The parameter of the model, #, can be estimated by maximizing the log-likelihood. How-
ever, since the log-likelihood obtained by (6.17) is subject to the sampling error, only a

rough approximation to the maximum likelihood estimate is available by this method.
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6.4 Seasonal Adjustment of Count Data

In this section, we consider non-Gaussian seasonal adjustment models. A Poisson dis-
tribution model with seasonal mean value function is considered. The model was earlier

approximated by integration based Kalman filter (Schnatter 1992).

Figure 6.1 (a) shows the monthly number of bankrupted companies with capital over
100 milion yen in Japan provided from Tokyo Shoko Research. The seasonal variation and
gradually changing trend is seen. We decomposed this series with the Poisson observation
model (6.7). The approximate maximum likelihood of the variances of trend and seasonal
system noises were 77 = 0.125 x 1073 and 7} = 0.312 x 107%. Since the number of
bankrupted companies are small, the seasonal parttern in the original series looks variable.
Figure 6.1 (b), (c) and (d) respectively show the estimated trend, seasonal factor and the
observation noise. From the decomposition it can be seen that the trend increases at the

end of the time interval and that the seasonal factor gradually changes with time.

To check the property of this seasonal adjustment of the discrete valued process, we
also performed a simulation study by using an artificially generated Poisson process with

trend and seasonal variation in the mean value function.

Figure 6.2 (b)-(d) show the intensity of the Poisson process, the assumed trend and
the seasonal factors. The intensity was obtained by multiplying the trend and the seasonal
factors. A realization of this non-homogeneous Poisson process is also shown in (a). Figure
6.2 (e)-(g) show the estimated trend exp (T,), seasonal factor exp (S,) and the residual,
respectively. Visually, very good reproducton of these components are obtained. Figure
6.2 (h) shows the data obtained when the trend of the intensity is 1/10 of the original
data. In the middle part, the observed data become 0 for a consecutive interval. Plots
(i), (j) and (k) show estiamted trend, seasonal factor and the residuals obtained from this
data. By the present seasonal adjustment procedure, the trend and seasonal factor are

reasonably estimated even for such time interval.
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6.5 Conclusion

A general state space model for seasonal adjustment which includes the additive and

multiplicative models with Gaussian or non-Gaussian noise inputs and discrete valued

process model is considered. The Monte Carlo filter and smoother which are based on

the approximation of the distributions by many independent realizations, are used for the

estimation of the state vector, the decomposition of the seasonal time series into trend,

seasonal and irregular components, and the likelihood computation.

Caption

Figure 6.1

Figure 6.2

(a) Monthly number of bankrupted companies in Japan
(b) Estimated trend

(c) Estimated seasonal factor

(d) Residual of the fitted model

Analysis of the artificially generated count data
(a) Assumed intensity function

(b) Assumed intensity of the Poisson process
(c) Assumed trend of the intensity

(d) Assumed seasonality of the intensity

(e) Estimated trend

(f) Estimated seasonal component

(g) Residual of the model

(h) Simulated data when the trend is 1/10 of the original trend shown in (b)
(i) Estimated trend

(j) Estimated seasonal component

(k) Residual of the model
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Chapter 7

Conclusion

The conclusion of this study is summarized from two aspects, financial ecomomics and
statistics. From an aspect of financial economics, the summary of conclusion is the follow-
ing. Firstly, the distributions of stock returns in United States and Japan are heavy-tailed
and skewed. They are far from normal distributions. The type VII and IV family of Pear-
son system are fitted well to them. From an aspect of the risk management, Value at
Risk which is based on normal distributions is smaller than one which based on actual
distributions. Therefore, it is better to use heavy-tailed distributions or the mixture
of normal distributions, or to multiply VaR by the adequate constant. Secondly, the
asymmetry of the movement of stock markets is explained by the behavior of investors,
so-called “industry-effect”. This model explained the big price change like a sharp de-
cline or thema-oriented upper trend. Thirdly, from the stationary distribution of daily
stock returns, we introduced the stochastic differential equation which has heavy-tailed
stationary distribution. This process is valid for the generating process of daily stock
returns. Forthly, the truth that the shape parameter had been decreasing before the
so-called “Black Monday crash”, October in 1987, indicates that the market had been be-
coming gradually unstable. Therefore, from an aspect of the risk management, this model
is superior to the Gaussian stochastic volatility model and the non-Gaussian stochastic
volatility model which has time-invariant shape parameter. Fifthly, time series data of
the bankruptey of large companies has seasonal component. This component differs from
that of small companies.

From an aspect of statistics, the summary of conclusion is the following. Firstly, we

defined the type IV family of Pearson system by introducing the non-central parameter
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to the type VII family of Pearson system. And the analytic solutions of normalizing
constants are introduced. Furthermore, by using double exponential method for the nu-
merical integration of the normalizing constant, we put this distribution to practical
use. Secondly, by using heavy-tailed and non-central distribution (the type IV family of
Pearson system), we proposed the model superior to ARCH, GARCH model which use
the normal distributions. Thirdly, we introduced a stochastic differntial equation whose
stationary distribution is the type VII or IV of Pearson system. And in the case that
the stationary distribution is the ¢-distribution which has even degrees of freedom, we
calculate the transition probability density function. The parameters of this stochastic
differential equation can be estimated by the maximum likelihood method using this tran-
sition probability density function. Furthermore, we showed that the local linearization
method is useful to estimate the parameters of this stochastic differntial equaiton which
correspond to the type IV (asymmetric and continuous shape parameter) and the type
VII (symmetric and continuous shape parameter). Forthly, we showed the parameters of
stochastic volatility model can be estimated by the non-linear non-Gaussian filter using
the numerical approximation of distributions. Furthermore, we extended the observation
model to the type VII family distribution of Pearson system. We developed general state
space model of the non-Gaussian stochastic volatility model with the time-varying shape
parameter. We obtained the non-Gaussian stochastic volatility model which can describe
the big structual change superior to the Gaussian stochastic volatility model. Fifthly, we
use Monte Carlo filter for seasonal adjustment to estimate the parameters of general state

space model in which the observation model is given by the Poisson distribution.
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