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Abstract

Promotion affects short-term retail sales, of which 5 major mechanisms are sum-
marized by Blattberg and Neslin (1990) as brand switching, purchase acceleration, store
switching, category expansion, and repeat purchasing. The anthors develop a new method-
ology for decomposing sales into long-term component of baseline sales, cyelical compo-
nent of day-of-the-week effect, and short-term componeuts of brand substitution and
category expansion in order to investigate simultancously the impacts of retail price pro-
motions on consumer sales. The short-term components are consisted of brand substi-
tution and category expansion including store switching. The methodology is based on
a state space model, which is in a line of Bayesian vector state space model and has
abilities to specify not only a structure of time series such as ARMA models, but also a
cross-sectional structure, further incorporating input-output relationship between prices
and sales. The application of the methodology to the daily store level scanner sales data

of milk has shown its effectivencss.
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Chapter 1

1 Introduction

1.1 Motivation and Background

Store level scanner data contain a large amount of micro level data of sales and prices,
which provide good opportunities for a researcher to do a research from various points
of view. On the other hand, huge amount of data demands a lot of data handling time.
Morecover, there exist various levels of nu-interested noise among signals, so that there is
always a danger in which a researchier loses his or her way for a analysis. This kind of
problems became already known facts among researchers involved in scanner data analysis
and are summarized in MeCann and Gallagher (1990).

Similarly, D. M. Hansscns et al. (1990) raised the folowing questions in their book,
addressing issues of dynamic model specification and data interval on the analysis of time

series and cross-sectional data;

1) How do we ensure that the model distinguishes between lagged marketing
{effects) and lagged sales effeets?

2) What is the best data interval to use in measuring marketing cffects?
If the grid is too coarse {c.g.. annual data), we may not pick up the
dynamics of the marketing system. If the grid is too fine, we may be lost
in irrelevant data Huctuations.

3) Are the results of a macromodel consistent with those of a micromodel?
If not, which one should the modeler believe?

4) Suppose we only have macrodata but wish to examine a microresponse

model; Can we infer microbehavior from macrodata?

Conventional models for market responses are largely devided iuto cconometric (re-

gression) model and time series model. A more general approach to combine econometric
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and time series techniques, ETS in their word, are getting increasing attention. Hanssens
and others suggest an ETS approarch rather than a traditional econometric approach to
solve problems in dyummic model specification and data interval.

Micro level data are elements of the aggregated macro level data and form a certain
structure as a group. Micro level data refleet macro behavior of the aggregated total as well
as micro behavior of individual elements. Lets think about what derives micro and macro
behavior of scanner data by considering the types of models which are frequently used.
For example, when we look at the sales data of products handled at a large supermarket,

the following 4 levels of aggregation show different movements against each other:

1) the sales of each SKU (stock keeping unit' )
2) the sales of each brand
3) the sales of a category

4) the sales of a store total

[ practice, 2 different types of models are usually fitted depending ou the level of
aggregation. In order to estimate the effects of promotion and to forecast weckly sales of
a product by using the 1st or 2nd level of aggregation, econometric models such as (log)
linear regression models with prices and/or other explanatory variables of promotion
arc frequently fitted. Regading the 4th level of aggregation, a monthly sales of store
total, a time scries model with trends and seasonality is often used. The form of the
econometric model indicates that present micro level data have a correlation mainly with
other present explanatory variables and that of the time series model indicates that the
present aggregated data have a correlation mainly with the past aggregated data. Hense,
we can assmne the behavior of micro level data is mainly derived by the impacts of
explanatory variables and those of the aggregated data comes from the past habitual

patterns. However, if you think about data generating process, the data in the 4th

'the smallest unit stocked on the shelf of a retail store



level of aggregation is generated just by aggregating the data in the former case in the
direction of time and products. Therefore, it is expected to exist a mechanism such that
an aggregation process of micro level data suppresses large variances existed in the original
data, leading to smaller variances in the aggregated data,

Seanner data are always available as multivariate data and there appeared to exist a
relatively reasonable basis to assmme a multi-level structure such as between SKUs within
a brand, between brands within a category, hetween categories in a store total, or cyclical
structure such as days in a week, weeks in a year. our approach is to try to organize
micro level data via a nnified model with wmlti-level and eyelical structure as much as
possible, by using individual information and group information at the same time for the
forecasting. This approach guarantees the results of macro level model are consistent
with those of micro level model, so that results are always comparable among elements
and the total, If compntation capacity perimits, an increase in the level of hierachy makes
possible to estimate a higher multi-level structure, for example, by specifying the 1st
stage clements, the 2nd stage clemeuts that are the Ist stage subtotals, and the grand
total. This is a great advantage becanse accumulated empirical results are always useful to
understand the moveinents of elements and the entire strueture. Our research is positioned

as a unified method of ETS.

1.2 Literature Review in Combined Methodology of Econo-
metric and Time Series Model in Marketing Research
There are not many applications which take an approach to systhesize cconometric and
time serics model, i.e., an approach that has both time-varying aspects and an input-
output relationship, but roughly four methodologics have been used in the analysis of
market response. Those are distributed lag models, intervention analysis, transfer function
analysis, and a combination of OLS and ARMA model. The following is the application

examples of the first 3 models:

Distributed lag models



Bass and Clarke (1972) used distributed lag models to extend a popular Koyck
model, in which ouly monotonic (geometrical) decays of the impact of adver-

tising on sales arc allowed and measured the length of the effect of advertising.

Transfer funetion analysis

Helmer and Johansson (1977) studied sales response to advertising using the
Lydia Pinkham data and found that transfer function models had greater

forecast accuracy than certain conventional regression models.

Adams and Moriarty (1981) compared the best available regression model to a
transfer-function model on an advertising-sales relationship of a produet, and
concluded that transfer-function analysis are superior to the best regression

model.

As well as lagged effects, Doyle and Sannders (1985) studied lead effects, i.e.,
the prepromotion dip in sales examined department store sales as a fanetion
of six marketing instruments:leaflets, display, press, TV advertising, price pro-

motion, and commision structure for sales presonnel.

Intervention analysis

Box and Tiao (1975) studied the intervention effects on a response variable
in the presence of dependent noise structure, giving two examples: (1) step
intervention effect of the traffic diversion by the opening of the Golden State
Freeway and that of the enforcement of a new law on the reduction of hydro-
crabons in Los Angeles; (2) step intervention effect of Phase I and Phase 11

controls on monthly rate of inflation of consumer price index.

Wichern and Joues (1977) investigated the effeet of a firm's promotion of the

American Dental Association cudorsement on market shares of Crest tooth-

=1



paste by using intervention aualysis.

Leone (1987) proposed an intervention analysis procedure to forecast the im-
pact of changes (interventions), showing 2 examples of the impact of a change
in advertising on a firm'’s market share and a price deal effect on sales perfor-

Inance.

Our model is different from the four methodologies. particularly in terms of using
original data instead of detrended data, thus accomodating a capacity to directly deal with
non-stationary data aud further we decompose sales simultancously into trend, seasonality,

and multiple effects caused by exogencous variabels.

1.3 Price Dynamics Model with Substitution and Cyclical Struc-
ture

Blattherg and Neslin (1990) defined the 4 mechanisms of brand switching, repeat pur-

chasing, purchase acceleration, and category expansion as follows:

1) Drand switching
The consumer is indneed to purchase a different brand from that which would have
been purchased had the promotion not been available.

2} Reapeat purchasing
The consnmer’s probability of buying the brand again in the future is influenced by

purchasing the brand on promotion.

3) Purchase acceleration

The consumer’s purchase timing or purchase gquantity is changed by the promotion.

4) Category Expansion
The consumer’s total consumption of the produet category is increased by the pro-

motion.



With respect to store switching, they explained as follows: “A consumer may respond to
a retailer promotion by switching stores, that is, shopping at a different store than the

store he or she would have had the retailer promotion not been offered.”

There have been many articles publised on the subjeet of substitution (switching)

on sales promotion. Some of them are as follows:

Blattberg and Wisniewski (1989) studied 4 categories of flour, margarine, bathroom
tissue, and cannned tuna on brand switching, caused by price promotions. They
claimed their results showed asymmetric pattern of price competition: higher-priced,
higher quality brands steal share from other brands in the same price-gunality tier,
as well as from brands in their helow, but, lower-priced, lower quality brands can

not steal share from higher-priced, higher guality brands.

By using consumer scan panel data?, Sunil (1988} reports that for the examined
category of coffec, more than 84% of substitution is due to brand substitution, less

than 14% is due to purchase aceerclation and less than 2% is due to stockpile effect.

Ixumar and Leone (1988) studied store-level scanner data of the disposable diaper
category on the effects of sales promotion and found that although there is signifi-
cant promotion-induced store substitution between neighboring stores, within-store

substitution rates were two to three times greater.

Consnmer panel data provide information on individual household purchses, whereas store level data
contain all sales in a given store or collection of stores over a period of time. The scanner data are
collected by a scanning equipment placed at each checkout counter of a retail store and is connected to
a computor. As each item is scanned, the count is updated for the particular code such as JAN code or
UPC rode on the purchased package. Store data contain aggregate sales from all consnmers shopping in
the store(s). Consumer panel data contain household-level sales of a panel of consumers who present a
special rard at the check-out counter and are a subset of all consumers shopping in the store,



Walters (1991) examined ou store-level scanner data both within-store and between-
store substitution and complementary effects. Store substitution rates were very low

compared to brand switching within a store.

The substitution effects are the most casily observed phenomena in micro level
scanner data, so that we assume subsitution is a key mechanism which derives large
variances in the micro level original data and use it to organize scanner dala in a structural
model. There are several causecs to induce subsitution, but temporary price reduction can
naturally be thought of the largest factor to heighten a purchase desire by a consumer.
Meanwhile, a significant reduction on the price of a brand may not lead to an increase
in the purchases of the category total. This “zero-sum” effect in the direction of brand
occurs when the lower priced brand is purchased as a substitute of the competitive brand,
but not as an incremental demand of the eategory.

If only a brand substitution oceurs, the explanatory variable of price has an enor-
mous influence on the brand sales data, but has no influence on

the aggregated data of the category. This leads to an expectation that such a
phenomenon can exist that, for braud level, sales data have a strong correlation with
price, but not for category level. An increase in sales also arises due to the fact that
consumers substitute from future sales as consuners advance their purchases in time,
for example, by purchasing a promoted brand in the promotion period twice as much as
in nou-promotion period. Furthermore, an increase in sales may come from a category
expansion, in which a substitution from other stores can be confounded.

Research on the effectiveness of a sales promotion by decomposing the sales “bump”
during the promotion period into incremental sales due to brand switching, purchase time
acceleration, and stockpiling was done on consumer scan panel data by Sunil (1988). Also,
there is a major research on brand switching effect of promotion ou store level scanner

data by Blattberg and Wisniewski (1989) by the method of QLS.
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Our research is to develop a new methodology to decompose store level sales into
long-term component of baseline sales (trend), eyclical day-of-the-weck effect components,
and short-term incremental sales components of brand substitution and/or category ex-
pansion cansed by price promotion, sinmltancously, ntilizing a Bayesian vector state space
model with time-varying parameters. Unlike the study done by Sunil (1988) on consumer
scan panel data, we can do direct forcasts of the brand sales and the category total for
a store since we utilizes store level scanner sales data. Also, this method can provide
up-to-date forecasts by using tune-varying parameters. The most significant difference
from conventional models is that this model can avoid *pooling” of original data in order
to obtain parameter estimates. The model ntilizes the method of type IT maximum like-
lihood lLiaving a Bayesian procedure, which can deal with a model with more parameters
than the number of data points. These are methodological advantages against a constant
parameter study on pooling data doue by Blattberg and Wisniewski (1989).

Iu order to nnify the terminology regarding “zero-sum” effect, “brand switching” and
“purchase acceleration and stockpile” effeet are hereafter refer to as “brand substitution”

and “temporal snbstitution ® ", respectively.

3There may be a different opinion on calling “temporal substitution”. For example, Frand and Massy
{1971) described the term, “substitution”, for reduction in both current and future sales for competitior
products, and the term, “displacement”™, for reduction of subsequent nonpromotional period retail sales,
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Chapter 2

2 Sales Decomposition Model

2.1 Basic Model

The sales of brands are represented by h-variate time series y(n) = (n(n), ..., wla))’,

(n=1,...,N) and arc assumed to be able to decompose as follows:

y(n) = tn) +din) + x(n) + win), (2.1)

where £(n), d(n), r(n) and w(n) represent long-term bascline sales component, cyclical
day-of-the-week effect component, short-term component of substitution/category expan-
sion., and observation noise, respectively.

The observation noise w(n) obeys the following normal distribution:

LT uh g
win) N0 Eu)y Su=| & o 3 |s (2.2)
U‘f"ki T Jﬁ-‘u

Short term component is decomposed into substitution and category expansion.
Substitution component may be further decomposed into “brand substitution”, “temporal
substitution”, and “store substitution”. Although past rescarches such as IKumar et al.
(1988) snggest the existance of “store substitution” effect, the substitution components in
this paper are limited to “brand substitution”. Due to the difficultity in data availability
for competitive stores, “Store substitntion” is instead included in category expansion. For
“temporal substitution”, ouly the model framework is given in the APPENDIX, for future
data analysis.

Therefore, the short term component is decomposed as follows:

z(n) = g(n) + s(n) + z(n}, (2.3)

12



where g(n) and s(n) represent “brand substitution”, “temporal substitution”, and “cat-
egory expansion”, respectively.

Decomposing price promotion cffect into each component has a benefit in under-
standing which direction among brand, category total (including store), and time, a price
promotion has effectively affected. Except time effect, the concept of this decomposition
is virtually the same as that of empirical marketing effect decomposition of “competitive
effeet”, “primary sales effect”, and “primary demand effect”. Competitive effect is the
effect to inerease its own sales and deerease those of competitors. Primary sales effect
is the effect to increase its own sales without affecting those of competitors. Primary
demand effect is the effect to inerease both the own sales and the competitors' sales. A
taxonomy is given by Shultz and Wittiuk (1976).

For each brand i, the sales can be written as

yi(n) = ti(n) + di(n) + gi(n) + siln) + 2:{n) +wi(n), i=1,...,k. (2.4)

By summing the sales of each brand, the category total sales can be expressed as

voln) = to(n) +do(n) + go(n) + s4(n) + 24(n) + we(n)

= tu(n) +do(n) + s4(n) + 24(n) + wen), (2.5)

where y,(n) = ELE yi(n) and g.(n) = f=1 gi;(n) = 0. Thus, for the category total, the
term for brand substitution is vanished. This can be the main reason that an aggregation
in terms of brand removes a large amount of variances which existed in each brand data
under the competitive structure of “brand substitution”. By the same token, if there
exists a “temporal substitution” or a “store substitution”, an aggregation in terms of
adjacent period or store will remove variances existing in the original data by the portion
of substitution effect in time or store.

Figure 1 is the graphs of the data analyzed in this research. The first to the fourth

graphs iu the figure show movements of major 4 brands in the period of 2 years. The last
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graph is for the sum of the 4 brands and shows a brand substitution mechanism in which
an aggregation of 4 brands removed variances that existed in the orginal daily scanner

data and exhibited an obvious seasonality.
2.2 Long-term Local Polynomial Baseline Component

DBaseline sales for a hrand are defined as the sales withont any sales promotions and
basecline component in our model is characterized as habitual repeat purchasing that is
uot affected by sales promotion. We assume that long-term effects of repeat purchasing
or those of category expansion by sales promotion does not exist or negligible. Although
no empirical researches reporting the existence of repeat purchasing effects or category
expansion effects in baseline sales cansed by sales promotion are known to us, if the
effects of those two components actually exist, they are confounded to the baseline sales
of brands. There might exist explanatory variables which affect loug-term component
such as TV-advertisement, but it is not considered in this paper.

We deal with an old produet category that is already existing in the market place.
A very recently entered new produect category into the market, which is in the field of
a diffusion model, is not dealt in this paper. There is a recent study on new product
diffusion mode] with a IKalman filter {Xic et al. (1997)).

Local polynomial bascline component. t(n) = (t;(n),...,tx(n))" is represented by

the following I th order stochastic difference equation:
Alt(n) = v(n), (2.6)

where the system noise vy, (n) = (vi(n),....v(n))" obeys the following Gaussian white
noise :
i 0
vin)~ N0 ,Z)), I, = 1 (2.7)
0 ol

and A denotes the difference operator defined by At(n)} = #(n) — t(n — 1). Here, the
smoothness of the trend are controlled by the variance of the system noise, ¢, and the

order of | (Kitagawa and Gersch (1984)).
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Figure 2.1: 4 Brands and the Sum of Daily Scanner Milk Data
Variance for 4 Brands and the Sum (7584; 7930; 3138; 8059; 17213)



2.3 Cyclical Day-of-the-Week Component

Cyclical day-of-the-week component is a component which repeats similar patterns on
the same day within a week. In one week eyele, there exist 7 observations and cyelical

component may be expressed by

d(n) = din = T7), (2.8)

where d(n) = (dy(n),...,di(n))7, is a k-variate day-of-the-week component .

When cyclical component is nsed together with trend component, the following
representation for cyclical component is used instead of the represeutation in equation
(2.8) in order to guarantee uniguencss of the decomposiotion (refer to Kitagawa and
Gersch (1984)):

6

din— j) = vq(n), (2.9)
]

j=

where the system noise vg(n) = (vy(n),....ve(n))" obeys the following Gaussian white

noise and corresponds to the change of the day-of-the-week pattern:

oh 0
ven) ~ N0 ), Z,= &P : (2.10)
0 i,

Note that for small v4(n), d(n) behaves as periodic funetion (Kondo and Kitagawa

(1998)).

2.4 Short-term Two Explanatory Variable Effect Components
for Incremental Sales

There are several vehicles for sales promotions sucl as price promotion, display, adver-
tisements, coupons, and so on. Price promotion is considered to be the largest factor to

induce consumers a desire for ineremental purchases, Therefore, we selected price pro-
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motion as the representative explanatory variable. If data are available for other sales
promotions, they can be included in the model.

Exogeneons effect components are consisted of components of brand substitution and
category expansion. Temporal substitution remains future research. For each component,
how sales are related to prices must be determined and a regression model plays an
important role on this subject. Each componeut is a response variable to explanatory

variables of “price function” which are defined in the next seetion,

2.4.1 Price function

Blattberg and Neslin (1990, p.233) view sales promotion, including price promotion, as
short-termn pulses “intervening” with the normal progression of the sales of time series.
We share the view by considering price promotions are effective to canse short-term pulses
of sales. The relationship between conseentive inputs and the resultant consecutive effects
can be dealt with transfer function analysis. Intervention analysis treats the cases that
inputs are temporary pulses or permanent step change. However, the both do not treat
consecutive inputs and the resultant intermittent effects or temporary pulse effects. The
explanatory variable of price is consecutive inputs aud the resulting effects on sales are
intermittent effects through information processing within consumer’s brain. Therefore,
in order to treat this problem as a regression analysis, there is a necessity to transform
cousccutive inputs into intermittent inputs, The use of price cut level as inputs instead
of price itself is the first step to produce the iutermittent inputs. Further, a reduction
of price does not always yield pulse-like incremental sales. This may be due to too weak
inputs to produce any effects or a difference in competitive strength among brands or
cipirically suggested “deal decay”. Therefore, as the second step to synchronize inputs to
the occurrences of intermittent incremental sales, we considered an interfering mechanism
in the occurrences of price promotional effects by competitors or a wearing-out process on

promotional effects as time passes. [u summary, the relationship between prices and sales,
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L.e., whether intermittent incremental sales are produced by a price reduction or not must
be considered and a model deseribing an input-output relationship plays an important
role on this subject. The condition that pulse-like incremental sales are produced by a
price reduction can be defined and reforred to as a “price function” hereafter.

Let w(n) = (uy(n), ..., ue{n))” be a k-variate vector function of price such as “price
cut” as follows:

u(n) = flp(n)) <0, (2.11)

where p(n) = (pi(n), ..., pe(n))7 is a k-variate vector of actual prices of brands within a
product category. Price function is determined from a set of univariate models of brands.
The form of price fanction considered is a deereasing function from the origin of zero, at
which the sales level corresponds to that of the trend. The larger the absolute value of
price function, the greater the potential of ineremental sales becomes.,

The level of data aggregation can change the appearance of the relationship between
prices and sales, so that the price function of daily aggregated data can be quite different
from weekly aggregated data if prices vary largely among days within a week. Considering
the practical situation that a consumer selects a purchasing brand by comparing the
actual price and the regular price of a brand, and by comparing prices among shelf-
stocked competitive brands, the first simple choice of price function is in a forin described
with differences in prices. Therefore, we cousidered 3 candidates of instantancous price
function at first. For the first 4 price functions, used is the difference of actual price
from the maximum price during the eutire periods, i(n) = (@;(n),...,@x(n))7, which is

defined as follows:

a;{n) = piln) —

1A% }p;-l[u} £0 t=1...k (2.12)

1l
€{l,...N

Since we do not have the information on regular prices, we use the maximnm price as a
substitute for a regular price. For the 5th instantancous price function, a direct compar-

ison among price levels is cousidered. The followings are the 5 price functions:
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fi) a price cut of a brand from the maximum price during the entire periods

u{n) = d;{n). (2.13)

f:) a relative price cut to those of competitors

{(incremental effects are yiclded only when the price cut is greater than that of its
competitors)

w;{n) = w(n if dn) < min @i
() = n) if a(n)<  min dyn) _—
= otherwise.

fz) the maximum price eut among brands
{incremental effects are yielded under the same condition as f,, but the input level
is determined by the difference of the price cut from that of its competitors)

wiln) = iin)— min e i ii(n) < min i
(m) W)= e i)  win) st i) (2.15)
=0 otherwise,

f1) a price ent with a lower and an upper threshold

(incremental effects are yielded only when the price cut is within a certain range)

wi{n) = i(n) if Lth < —i(n) < Uth

(0 otherwise, (2.16)

where 0 < Lth < Uth determines lower and upper threshold,
fz) a relative price to those of competitors

(ineremental effects are yielded only when the price is the lowest among competitors)

; = =1 I il ] = I I
. if pdn) < min  pin) (2.17)
= 0 otherwise.

Further, by using the best function selected among f; through fs, the following two
non-linear functions, a deal decay function and an exponential function, were included
due to empirical consideration and the establishment of input level saturation point. In

the below, fy[ - ] denotes the best selected function among fi - f;.
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fs) deal decay function

(promotion effect decays in time if promotion runs more than one time period)

Deal-decay function is considered to incorporate empirical result that promotional
cffects decay if promotion continnes more than one time period as a result of con-
sumers’ response pattern. Further, becanse of physical obstraction in sales such as

out-of-stock, we incorporated a mechanism to reset to the initial effect level.

i) = exp{ = = no)  ulus(n), (218)

where v = 0 is a constant parameter and ng is the first period of promotion run
and is reset to n when n— ng beecomes greater than n (a positive integer) under the

hiypothesis that deal decay stops somewhere within a short span.
f7) exponential function

(inputs have a saturation point defined by an exponential funetion)

wi{n) = t*:{]r{yfg,[-n,-{n}]} -1, (2.19)

where v 2 0 is a constant parameter,

2.4.2 Brand Substitution Component Model

Brand substitution component model deseribes a component which has large variaces for
cach brand, but vanishes if they are summed by braud. Therefore, it is characterised as
“zero-sum effect” in the direction of brand.

Let us assume a brand substitution component. g(n) = (gi(n), ..., q(n))7, is rep-
resented by

gln) = Bln)ud(n), (2.20)
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where w?(n) is defined in the below as a price function for brand substitution model and

I}(n) represents tiine-varying cocfficients of «9(n), as follows:

by(n) -+ by(n)

B(n) = (2.21)

bur(m) -+ fu.-k'[ﬂj

The coefficients, b;;(n) are assmmed to be flexible time-varying parametes in order
to respond to changes in the market place and also absorb seasonality. Since cocfficients
are asstmed to have mild changes, they can be expressed as a locally constanut component

with the following 1st order stochastic difference equation:

bij{n) =bijjln—1)=wn,, (n) i j=1...k (2.22)

with an environmental system noise v, (n), obeying the following normal distribution,

ﬁ..
oy, (n) ~ N(0,03), ap =0ilal ] ob), (2.23)
i=

where, of s a product of o, a common parameter and a weight determined by o7, the
£
variance of system noise for baseline component. for a brand .
The competitive structure of brand substitution can be expressed as a constraint of

the equation (7.81) and is represented by

.
bu(n) <0, by(n)20,(i #4), 3 by(n)=0. (2.24)

i=l
These constraints have a role to define a 1009 basis of the sales for brand substitution,

coufining price promotion effect into the one for brand substitution.

2.4.3 Category Expansion Component Model

Category expansion component is the remaining incremental sales effects after removing

the ones for substitution, which contributes to a net increase in the sales of the category.
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Let us assume a category expansion component, z(n) = (z(n),...,2(n))7, zi(n) =

0, ¢=1,...,kis represented by
{n) = Aln)u(n), (2.25)

where u9(n ) is the same price function as the one for brand substitution and A(n)represents

time-varying cocflicients of u?(n) as follows:

Ai(n) 0
Aln) = . (2.26)
0 )ﬁ.m‘{ﬂj

Category expansion is a non-competitive effect, i.e., a primary sales effect and/or a pri-
mary demand effect, so that own sales and competitors sales must inerease or be zero.
Therefore, ouly diagonal elements of coefficients must be non-zero, because if off-diagonal
clements that are effects from competitors prices were non-zero, the sales of some brands
can deerease,

The coefficient, Ai(n), is assumed to be a flexible time-varying parameter as in
brand substitution component, being expressed as a locally constant compouent with the

following 1st order stochastic difference equation:

Auln) =dzln=1)=u.n) t=1,...,% (2.27)
where a system noise, vy, (n), obeys the following normal distribution,

ina(0) ~ N(O, %), 0 = at(at] S ai,); (2:28)

i=l
where, -:r** is a product of g7, a common parameter and a weight determined by B‘ , the

variance of system noise for bascline sales for a brand 1.

The conditions of category expansion can be expressed with coefficients A;; as follows:

A,‘,‘(H] E 0. {229}
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Chapter 3

3 Estimation and Identification of Model

Lin and Hanssens (1981) used a Bayesiau approach with Kaliman filter to analyze the
relationship between sales and price on inexpensive gift brands. They analyzed cross-
sectional time series data with a time-varying regression model. The type of variation®
is sequential stochastic parameter variation. As the domain of variation, their research
considered only time variation, and no cross-sectional variation with the same cocfficient
ACTOSS Cross-section,

Our analysis also follows Dayesian vector state space model on eross-sectional and
time serics data with sequential stochastic parameter vanation, but facilitates cross-
sectional variation as well as time variation. We foenuss on sales decomposition on substi-
tution and category expansion cffects cansed by retail price promotions, so that our model
deals with decomposition inte trend, cyclical component, and multiple effects cansed by
explanatory variables.

Taking a Bayesian approach is due to the reason that the used daily scanner data
contains complicated responses to complex market environments such as new entries of
brands, changes in marketing strategics, consumer tastes, competition, and so on. A
Bayesian approach provides flexible means to the analysis of such complex data, satisfying
the requirements for the estimation of many parameters, time-varying coefficients, and

the specification of structures.

TA. R. Wildt and R. S. Winer (1983) summarized time-varying parameter models in marketing appli-
cations. They classified variable-parameter models on the basis of the domain of variation, the type of
variation, and the extent of variation. The type of variation is classified due to systematic variation caused
by observable variables or stochastic variation. Within stochastic variation, there are random variation
and sequential variation. The distinction between them is that sequantial models hypothesize specific
stochastic processes that coefficients follow over time, whereas random models hypothesizd deviations
from a mean vector resulting from strictly random variations,
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3.1 Smoothness Priors Determined by Maximum Likelihood
in Bayesian Model

In an analysis of input-output relationship on cconometric time series, Shiller(1973) intro-
duced the notion of “smoothuess priors”, having “smoothuess” constraints on distributed
lags in a difference equation: A single trade-off parameter deternines the trade-off be-
tween infidelity of the model to the data and infidelity of the model to the smoothness
constraints. A similar concept appeared in Whittaker(1923), addressing a problem of the
estimation of a smooth trend. The trade-off parameter was determined subjectively untill
Akaike (1980a,1980h) formulated an objective method in a quasi-Bayesian approach.

Bayes' law provides a mathematical procedure for updating prior information on a
parameter in a distribution family, producing a posterior distribution of the parameter.
In Bayesian inference, Lindley and Swith (1972) claimed that prior and posterior prob-
abilitics can be interpreted as subjective probabilities, ealling priors as hyperparametoers.
Marits and Lwin (1989) introduced empirical Bayes method, in which previous data are
used to get an estimate of the prior distribution. Harrison and Stevens (1976) used a
dynamic linear model, a regression model and a multi-proeess model to obtain posterior
updating the prior of an estimated parameter.

Akaike proposed the method of chioosing the trade-off parameter, or hyperparameter
in a Bayesian terminology, by maximizing the likelihood of a Bayes model, which are
defined by mixing the data distribution with prior weights to yield a marginal likelihood
computation among several candidates of prior distributions. The caluculation of the
margiual likelihood requires intensive computation, of which burdan Kitagawa and Gersch
(1983) cased by employing a state space representation of the model, nsing the recursive
algorithm of Kalman filtering. Kalman filter algorithi theoretically provides a method for
the exact maximum likelihood estimation of the model. Also, prediction on the dependent

variable is effectively solved as described in the following sections.
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3.2 State Space Model Representation

The time series model explained so far is given by

yln) =tn)+dn)+xln)+ win). (3.30)

This model can be also expressed in a form of a general state space model:

y(n) = H(n)a{n)+ w(n) (observation model) (3.31)
a(n)= Fa(n — 1)+ Gue(n) (system model) (3.32)
or
[ t(n) \
[ tn—1) Y\ { v(n) \I
d{n) I v 0 din—1) va(n)
- I3,
bn) |~ Fy * ’ (3.33)
0 F, b(n—1) vl 1)
) \ A(n—1) } \ waln) /

w(n) A ] E. D )
(i )=>((8): (% 2)) -
where a(n) = (t(n), d(n),b(n),A(n))", w(n), and v(n) are state vector, observation noise

and system noise, respectively. Each component of the state vector a(n), system noise

Gu(n), matrices F and H(n) are specified in the section 3.6.

3.3 State Estimation by Kalman Filter

The state space representation of our model places the problem to estimate the state

vector. Walman filter estimates the state by evaluating the distribution of a(n) given the
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observation Y = (yy,...,w),{ =1,...,.V and the initial values agp and V.

1)

2)

3)

1)

2)

The following is the recursive process of Ikalman filter,

Prediction of State Vector

By using the equation (3.35), (3.36) of the well known Kalman filter formula in the
below, predict the next state ayg and Wy with initial condition agg. Wyg.
Filtering of State Vector

Update ay;. Wy by caleulating the equation (3.38), (3.39) with new observation
.

Continue the process 1) and 2) until the whole calenlation of agy_y, agy, Wipoy, Wi, 1 =
1,..., N has completed.

Sinoothing of State Vector

ODbtain the state vector ax v, Wy x by using the fixed interval smoother of the
enqation (3.41), (3.42). Continne the process 3) until the caleulation of ay_yn, ...,

i, Wiyopypes s Wi has completed.

Kahman Filter formula are given as follows:

Prediction (Time-Update) Formmnla
Opjp=1 = Fﬂn—lin—l {335}
Waat = FWooipoot FT 4+ G.QGT. (3.36)

where the initial conditions agy and Wy are assumed to be given.

Filter (Observation-Update) Formula
K, = Wauot H (HaWopoHy + R, (3.37)
Wi = Gt Wl — Haipi<t) (3.38)
Wan = (I = Ky Hp)Wypn-a. (3.39)
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3) Smoothing Formula

Av = WanP Wl (3.40)
u’ﬂj.ﬂr = l‘-]:rrliil + -lN{{Iﬂ{-Elﬁ: i un-i—ll'n} {3.41)
Way = W + AWy = Wagapn) AL (3.42)

3.4 Identification of the Model

The likelihood of the model can be expressed as the factorized conditional distributions

with parameter # as follows:

L(®) = flu,-...ux|0)

= flyre--oun—il@) fluxlm, - yn-1,8)

N

- Hf{yn|yl1"'!yﬂ—|!3}
n=l}
N

=TI f(walYerr.8). (3.43)
n=]

where Yoo = {th,- - =1 }-
The individual terms are given by

f(ulYamr) = (2m)*2(Vp])™/2 (3.44)
X expl —G.E{y{n} = Unjn-1 }TI.:']T'I':—I:{H{”'} - y"hr—l”! {34‘3;’
where yojn—1 and V.- are the mean and the variance covariance matrix of the observation

Y, Tespectively, and defined by
Ynjp—-1 = Hn“-nln—-l {3,46}
l;lln-| = H" l.l--"E”__lff;f' + Em- {34?}
Here oypn-1 and W,y are the mean and the variance covariance matrix of the state

vector given the observations y,_; and can be obtained by the Kalman filter shown in

section (3.3).

27



The distribution of y(n) based on the formation up to n — 1 period obeys the

following normal distribution:

2 J‘l

a-!.'n Y
y(n) ~ N(tjn-1:Vaj=1)y  Vaju—1 = : : (3.48)
a‘;i] crﬁl’l
The log-likelihood of the model can be written as
N
log L{yld) = —0.5(Nklog2x+ 3 log|V,a_] (3.49)
n=|
-I\II -
+ Zl: H[”} = Hnjn=1 }; L;;[.:_l{y{f” - yﬂ!n—l}.‘l' (3"3{”

3.5 Dynamic Recursive Model Having Major Brands and Cat-
egory Total

When we analyze marketing sales data, we seldom do analysis on every SKU. On the other

hand. we select interested brands and make the other brands total, and the category total.

The very information which reseachers need is on brands and the category total, instead

of brands and the other brands total, so that we arrange to estimate and forecast on

brands and the other total by using information on brands and the category total.
Consider the situation that we have & — 1 brands and the other total. Lets produce

g(n) by multiplying y(n) by T defined in (3.52), so that the equation

g(n) =Ty(n) =THa(n) + Tw(n) (3.51)

is for & — 1 brands and the category total, where I is defined by

» by O _ .
r=(i" 'l] ) r-':(_*l' : ) MY = = 1. (3.52)
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The distribution of g(n} based on the information up to n — 1 period obeys the

following normal distribution:

v ,, M Y]
§ln) ~ Nihpn-1, Vapp=1)y  Vajo—1 = L W | (3.53)
ﬂ'ﬁ“ R JEH:

where 02 >0, o3 >0, i=1,...k

The distribution of y(n) based on the information of §(n) up to n — 1 period obeys

the following normal distribution:
y(n) ~ NI gty T Vot 7). (3.54)
The log-likelihood of the model is given by

N
log L(y|#) = —0.5(Nklog2r+ Y log |V, ("7

n=]|

i - )
+ 2 (W) = T gt ) (D™ Vot (T (wn) — T i)

N
= —0.5(Nklog2r + 5 log|Viju_|

n=|
N
+ Z{FH{"} = i}n|r|—|}T.l_’;-._|ﬂl_..|{rylnj = ﬁnh’*-l}} {3:}:}]

3.6 Specification of System Model and Matrix H(n) for Ob-
servation Model

The system model of the general state space model in (3.33) can be specifically rewritten

as follows:

[ t(n) [(tn=1)\ [ wv(n)
d(n) L P 0 d{n—1) vy(n)
= = F + . (3.56)
bin) 0 o F, Bin—1) vy(n)
\ ) / \A=1) ) \ oaw) /
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If & state vector of b{n) has no constraint and no decomposition into brand substitu-

tion and category expansion is involved, Fiy are specified as [i: and a state vector on A{n)

is unnccessary. For the brand substitution plus category expansion model, which has a

substitution constraint and a category expansion condition, Fy and Fy will be explained

in section 3.6.2 and section 3.6.4. Each componeut of #(n),d(n), b{n), A(n), v, vq, vy,

vy, Fpy, andthematrizH(n) = ( I, Hy H, H, ) in observation model (3.31) are defined

as follows:

ti(n)
f-l[”} =

ti{n)

vy, (n)
v(n)=| : :

T'M{"}

11,
Fp=

din) =

ngln) =

( dy(n) \
;f;[n o 5}
;u{kl:fi}

\ di(n —3) /

I'r g, (n)
]
0
:ﬂ.r,!k{n:]
0
\o
-1
¢ :
n REE] g
11, 0
0
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[ buln) \
L:k{”}

é}j—l |{H.}

m(n) =

\ -%h—kf_“} /

[, My (1) \'|
';‘;,”_I[ﬂ}

Thy, (1)

\ ;'iu-k{“} /

o B o B R e T
e B e B s =

= oo o O

Aln) =

man) =

= e

0

[ Anln)
:"tm{“}

:"ucl(n]

\ Ausln) )
(3.57)

r" U, (1) )
:L-J,,u_[-u}

Udpain)

\ Udpain) r"

(3.58)

(3.59)



[ up(n) 0 0 0

0 0
1 0 0 i
0o 1 0 --- 0 : 0 uy(n) O
Hd'z . . . . B e H_]|_= ﬂ e {]
0 0 1 0 - 0 e R
0 0
\ 0 0 0 - 0 wuln)/
(3.60)
wyp{ne) -+ wgln) ] oo ]
s 0 wuln) - wln) (3.61)
] £, 0
0 0 wln) -+ wln)

3.6.1 Constraint Specification for Brand Substitution Component g(n) for

k=2
e @Yot b wi \ _f b b wp N _ f b b2 uj
g2 by b ) bai  bay h 0 0 uj |-

(3.62)

3.6.2 System Model for Brand Substitution Component on Simultaneous

Equation for k=2

bHE”:I 1 ‘ h“[” _1} !'.I']!{”}

bar(m) | ] - bet(mn —1) 0

buskn) | = i br=1) | 7| vi(n) (3.69)
bya(n) ] bea(n — 1) 0

3.6.3 Constraint Specification for Category Expansion Component :(n) for

k=2

o - Al 0 HEF'I _ Al ] u? :
I ( 22 ) - F( 0 )l-_gg ) ( u?j - },,” *‘}‘22 .ug . {354}
3.6.4 System Model for Category Expansion Component on Simultaneous

Equation for b = 2

Due to the category expansion condition, the non-diagonal coefficients of A;;(n) are zero,

s0 that the following couditions hold:
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Aat(n) = Ani(n)s Aw(n) = Aa(n). (3.65)

This leads to the following system model:

)'L”[ﬂ-} 1 0 ‘ J‘Jfl'[” - 1] ”:’lji{ﬂj
Aa(n) | _ |10 Adi(n —1) (1)
Agaln) | 10 Asa(n — 1) i3 Mgaln) |7 (3.60)
Asalm) 1 0 Asz(n —1) ;1)

3.7 Information Criterion — AIC

The information criterion, AIC, was developed by Akaike (1980a) to seleet the best para-
metric models among alternatives determined by the maxinmm likelihood method. A half
of AIC value is an approximately nnbiased estimate of the expected log-likelihood. AIC in-
corporates an approximate correction of the bias, involved in the maximized log-likelihood
as an estimator of the average expected log-likelihood. The maximized log-likelihood is
an information theoretic measure of the dissimilarity between two distributions, called as
Kullback-Leibler information or the K-L number, The larger the measure, the greater the
difference between the two distributions. The approximate bias reflected in AIC is equal
to the nnmber of parameters estimated in the model. The definition of AIC is given in

the below:
AIC(m) = -2(maximized log likelihood of the model)
+2{nnmber of estimated parameters in the model)

N
= =23 log fu(yl0in) + 2)0,n)- (3.67)
n=]

In (3.67), fulyn |6Fim]| denotes the likelihood and [l‘i’n,,,l denotes the dimension of the vector
B

The AIC has proven to be extensively applicable in statistical data analysis and
engineering modeling (see for example, Bozdogan (1994)). For the derivation of the AIC,
refer to Kitagawa and Gersch (1996). A model with a smaller valne of AIC is determined

as a better model,
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Chapter 4

4 Univariate Analysis of Scanner Sales

4.1 Determination of Price Function and Univariate Analysis
of Category Sales

The methodology presented was applied to two-years daily milk data for the period of
1994/2/28-1996/3/3 (N=T735) from two large super market stores. The data from one
store, say store C, showed very little changes in brand prices, so that only time series
analyses were conducted on the data (Out of 41 brands, one brand recorded different
prices from the maximnm for 16 days during the entire period, 14 days for another brand,
4 days for other two brands, no change at all for the rest of brands). Meanwhile, the data
from the other store, store B, showed large variances on prices. Therefore, time series plis
regression analyses were applied to the data from store B Differences in sales movements
of the two data sets are shown on Fignre 77 as a swef graph, in which the sales of the
first brand are recorded as the lowest line, the second lowest line is for the total sales of
the first and the second brand, and the top line is for the category total. Similar to price
movements, the graph on store C shows very small changes in its sales and brand share,
having small variance of milk category total (3801). On the contrary, the graph on store
B shows large changes in sales and the share as well as the large variance of the category
total (19403).

Milk is a perishable product category that can be kept even in a cool place only
less than a week, and newly delivered products are stocked on store shelves every day.
Therefore, stockpile at houscholds is not expected to oceur often to a large extent.

Daily basis analysis is important for this kind of daily delivered category. There
is no display activity and an advertisement in a flier is expected to be made not often.
Becanse price promotion may be the ouly retail promotion for the category of milk, it

can be seen as the major controllable factor by a retailer as sales promotion. Therefore,
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Figure 4.2; Litre sales of brand/category total on store A and store B for 92 days
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price is chosen as the major source of explanatory variable on regression analysis. Iu this
study, brand is defined as brand-size and sales quantity is defined as the litre of products

purchased.

Time Series Analysis on Category Sales Data from Store A and Store B

The following time serics models given in section 2.2 and 2.3 were fitted on category

sales data from the both stores, respectively,

Model 1 (trend ouly)

yln) = t{n) + win), (4.68)

Model 2 (trend + cyclical)

yln) = t{n) +d(n) + win). (4.69)

A state space model is a recursive procedure and requires initial values of state mean
and variance. If there exist some theoretically or empirically suggested values, use those
values. Sinee we do not have the information on the initial values for our data, we deter-
mined them as follows: Initial value of state mean or variance for trend component was
set to the mean or variance of the initial one fourth of the entire observations. The initial
value of state mean for day-of-the-week component or for explanatory variable component
was set to zero. The oue of state variance for day-of-the-week component or for explana-
tory variable component was set to some large arbitrary value, which produces flatter
prior distributions. If retailler managers are involved in the analysis of sales promotions
and can access to varions sources of information, use the empirieal values as the initial
valnes on specific product category. The specific knowledge on initial values will improve

the result. There were 6 days of zero sales on milk category total for store C, 39 days



for store B. All zero sales were treated as missing values, Those zero sales can be due
to closed days of the stores or due to the disappearance of existed data. The maximum
likelihood estimates of parameters were obtained by Broyden-Fletcher-Goldfarb-Shanno
algorithm.

Summarized in Table 4.1 are the values of the log-likelihood, AIC, and the number
of parameters. In Table 4.1, ¢ denotes trend order and j denotes assumed period. For the
both stores, the first order trend componeut Model (1,1), i.e., locally constant component,
gave the best result among 3 polynomial models of Model 1 in equation (4.68). The result
seems reasonable because data aggregation span is daily and very short and long-term
component is supposed to change very little day to day.

Fixing the first order for the trend component, the number of days within a eyelical
period were gradually increased for eyclical component. The result in Table 4.1 showed
the Model (1,7) with 7 days in a cyele was selected as the best model for the both
stores, confirming the existence of the day-of-the-week effect. Fixing 7 days in a cycle,
we compared the order for the trend component, yet, the result was the same as before,
choosing Model (1,7) as the best model for the both store.

Figure 4.3 shows the observed data, fitted trend, trend + day-of-the-week effect, and
the residual component ou the data from store C and store B, respectively. The residual
coponent on store B shows considerably large variances compared with the one on store

C, indicating the existence of the remaining effect by price promotion.
Regression Analysis on Each Brand and the Category Total on Store B Data

As seen in the above, “trend + day-of-the-week effeet” model, Model (1,7), was
found to be a better model than the “trend”™ model for the both data sets. The next step
is to fit models having explanatory variable component as well. As described in section
2.4, the best price functions are to be determined among hypothesizable functions at first.

Included here are examples of possible linear or non-linear regression models to show the
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Figure 4.3: from top-to-bottom: the observation, fitted trend, trend + day-of-the-week
effect, and residual component for store A and store B



Table 4.1: Log-likelihood and AIC for model (i, j) (i:trend order ; j:assumed period)

store C store B
Maodel (¢, 5) | log-likelihood  AIC log-likelihood  AIC No. of Parameters
Model (1,1) -3048 7903+ | -4223 8452 1 3
Model (2,1) -3961 7931 -4233 8474 4
Model (3,1) 3977 7904 4230 8510 5
Model (1,2) -3951 7913 -4226 8463 5
Model (1,3) -3954 7920 -4229 8470 6
Model (1,4) -3935 7923 -4231 8475 7
Model (1,3) -3955 7927 -4233 8483 8
Model (1,6) -3860 7939 -4235 8487 9
Model (1,7) -3854 TT28 tt|  -4148 8315 11 10
Model (2,7) -3875 777l -41G0 RB3nd 11
Model (3,7) -3891 T80T -4183 8391 12
Model (1,8) -3962 TO406 -4236 8493 11
Model (1,9) -3965 7955 -4240) 8504 12
Model (1,10) -3963 7953 -4241 8508 13

flexibility of our approach.

Brand Characteristics on Store B Data

Milk data from store B contaiu 46 brands, but the sales of major 4 brands, B4, B10,
B11, and B30, account for 87% of the category sales. Therefore, prices of 4 brands were
selected as the source of explanatory variable, and the sales of 4 brands and the category
total, as 5 response variables. Althongl we are interested in only the relationship between
category sales and the prices of 4 brands, the form of price function for each brand must
be determined as the condition that intermittent pulse-like incremental sales are yielded
by price reductions.

Figure 4.4 is the graphs on the data from store B in the period of 2 years. The first
through the fourth graphs show movements of the major 4 brands (B4, B10, B11, B30).
The last graph is for the sum of the 4 brands and shows a brand substitution mechanism

in which an aggregation of 4 brands removed variances that existed in the original brand
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Figure 4.4: 4 Brands and the Sum of Daily Scanner Milk Data
Variance for 4 Brands and the Sum (7584; 7930; 3138; 8059; 17213)
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data by the portion of brand substitution and exhibited au obvious seasonality.

Table 4.2 summarizes the maximum price during the periods for each brand, which
is the substitute of the regular price. B10 is a national brand and has the highest regular
(maximum) price. B11 is the low-fat type of the same brand of B10 and can be considered
in a different segment from the other 3 brands. B4 is a private brand and has the lowest

regular price among brands of regular type.

Table 4.2: The maximum price during the entire periods for each brand

brand | B2 DB10 DB11 B30
price | 198 228 178 215

In Table 4.3, the competitive relationship between B4 and B10, or B4 and B30 can
be recognized from the value of the cross correlations among the sales of each pair of 4

brands (-0.251 and -0.257).

Table 4.3: Cross correlations between cach pair of 4 brands

B4 B10 B11 B30
BG4 | 1.000

B10 | -0.251  1.000

B11 | 40.060 -0.034 1.000

B30 | -0.257 _—E]Bﬂ -0.039  1.000

Table 4.4 includes the correlations between the sales and the prices or the functions
for cach brand. No meaningful indications can be obtained from the positive correlations
or almost zero correlation between the sales and the prices as shown on the second row
of Table 4.4. Ou the other hand, high uegative correlations, especially for B10 and B11,
were recorded between the sales and the function f; shown on the third row. indicating
the function f; is a good selection as a price function in general. On the fourth row to
the ninth row of Table 4.4, the correlations between the sales and the function f to the

function f; were recorded by unsing the price functions obtained in the later analysis on
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explanatory variable compouncut.

Table 4.4: Correlations for cach hrand

brand B4 B10 Bl11 B30
sales vs. prices | 40321 -0.044  +0.00d +0.416
sales vs. f -0415 -0.714  -0.820 -0.571
sales vs. fy -().483 -0.624 -0.755 NA
sales vs. [y -0.504 7 -0.669 -0.733 NA
sales vs. f; NA NA NA -0.802
sales vs. f; -(.395 -0.201 -0.075 -0.727
sales vs. fi 0504 1 -0.741 1 -0.842F -0.903 1
sales vs. f; -0499  -0.720 -0.817  -0.807

The higher correlations on the third row of Table 4.4 implies that sales of each
brand are affected by the depth of its price cuts as the primary canse. Ou the other hand,
the lower correlations in Table 4.3, of which absolute values are less than 0.26, implics
that the sales decline in its competitors due to own incremental sales is the secondary
cause. Therefore, it is not unreasouable to assume that every consumer purchases a
product independently by comparing among the prices of brands and price function is well
described by differences in prices. There may be other factors which are confounded to
price such as stock level. If stock level information is available, the inclusion as additional
cxplanatory variable might yicld a better result,

Figure 4.5 includes the graph for cach brand on the sales (upper part) and price cuts
(lower part) with days as r-axis, showing the pulse-like incremental sales oceur rather
coincidentally with the level of price ents except B4,

Figure 4.6 shows scatter plots of the sales as r-axis against the price cuts (f)) as
y-axis for each brand, which are indicators on whether the sales can be well explained by
its own price cut alone or not.

The graph on B4 shows that the sales corresponding to each level of price cut vary
very much. This may be due to the reasou that the sales of B4 were considerably influenced

by its competitors of B10 and B30 as seen from negative correlations in Table 4.3 besides
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by its own price cut.

The plots for B10 and B30 are roughly located in a triangle, indicating mixed effects
from its own price cuts and from the competitors’ sales and price euts. In addition, B30
has considerable numbers of outliers near zero sales when the price cut is more than 60
YOIl

The graph on B11 shows a clear lincar relationship between sales and price cut
level except plots with the price eut level of around 80 yen, where the sales seem to be
distributed almost uniformly. This indicates that the sales of B11 can be well explained

by its own price eut alone except the price cut around 80 yen.
Comparison of models with price function from f, to f; for 4 Brands

The models with the seven price functions together with the first order trend and
the day-of-the-week effect were compared for 4 brands. The function f, accounts for the
price ent level of a brand from the maximmm price during the entire periods, in which only
the relationship between the own price reductions and the sales is considered. For the
price function f, and f3, competitors’ interference in the oceurrence of incremental effects
via its price cuts is considered. The function f; describes the condition that incremental
effects are yielded only when the price eut is greater than that of its competitors. For
the function f3, incremental effects are yielded under the same condition as fi, but the
input level is determined by the difference of the price cut from that of its competitors.
The function f; explains the condition that pulse-like incremental effects are vielded only
when the price cut is within a certain range, having a lower and an upper threshold to
eliminate the group that has a uniform distribution of price cut level when the sales were
recorded as close to wero. The function f; is attributed to the condition that incremental
effects are yielded ouly when the price is the lowest among competitors. The function fj
is a nou-linear version of the best seleeted model among f; through fs5, facilitating deal

decay cffects. The function f; is an exponential function of the best sclected model among
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fi through f5. which has a saturation point in the level of inputs.

Analysis on B4

The correlations between sales and f) in Table 7?7 showed the lowest for B4. This
may be due to influences by competitors regarding interference in the occurrence of inere-
mental sales and the sales reduction becanse of competitors’ price promotional incremental
sales. We assumed that the prices of B4 can yield ineremental sales only when there were
no price cuts in other competitive brands. Our assumption is defined by the function f,
or f3 and is evaluated by comparing models with other price functions, together with the
“trend” component and “trend + day-of-the-week™ component. The funetion fy was not
considered for B4, becanse plots in Fignre 4.6 appeared to come from the same group.

The comparable models are summarized in Table 4.5, in which T denotes the ex-
istence of the first order trend compounent. W denotes the existence of the day-of-the
week component, and f; denotes the existence of the ¢ th price function component, A
blank denotes the non-existence of the component in that position. The model with price
function f3 was selected as the best model among them, supporting our assumption. The
function f3 could not have been obtained by weekly aggregated scanner data, because the
combination of price cuts among competitors varys day to day. This competitive relation-

ship of B4 with the other 3 brands may be described as “competitive interference”. The
deal decay effect was not recognized because the coefficient became close to zero, which
makes the function fg virtnally the same as the function f.

The resnlt indicates comparative vuluerableness of B4 against B10, B11, and B30
in terms of producing incremental effects on price promotional occasions. This may come
from weaker impacts of price reduction of B4 to consumers than other brands, of which

regilar price is the lowest among the regular type, or a reduced shelf space of B4 in com-

petitors’ promotional periods than otherwise,

Analysis on B10 and D11



Table 4.5: Log-likelihood and AIC of models on B4

Model(T, W, fi) log-likelihood  AIC | No. of Paramecters
Model(T, , ) -4032 8071 3
Model(T,W, ) -4013 8046 10
Model{T,W, f(B4)) -3954 7930 11
Model(T,W, f>2(B4)) -3920) 7803 11
Model{T,W, f3(B4)) -3009 7839 1 11
Model(T W, f5(B4)) -3958 7938 11
Model(T, W, fs(B4)) -3909 7841 12
Model(T,W, f>(B4)) 3015 7854 12

The price function fo and f3 were superior to f; only for B4. For B10 and B11,
price function fs and fy were inferior to f; as shown in Tables 4.6 and 4.7. This indicates
that coinpetitors price reductions do not interfere in yielding incremental effects for B10
and B11. The function fi was not considered for B10 and B11, because plots in Figure
4.6 appeared to come from the same gronp although there were some outliers.

The best selected price function for B10 was deal decay function, fg, with a reset
after 4 conseentive promotion s (np = 3) and for B11, f without reset, The main
purpose of deal decay function is to include decaying cffects of consumer’s response to
price promotions. The result for B10 shows that decaying effect is reset after 4 consecutive
periods, indicating a possible situation that physically deereasing condition of stocked level
was recovered by renewed stocks. There was an obvious upward (absolute value) outlier
in price function, which is easily pinpoint as the plot having the price cut of more than

120 yen in Figure 4.6.

Analysis on B30 - Two Response Groups of Sales to Prices

The graph of B30 in Figure 4.0 showed that two groups have different movements
against its price cuts, Although a linear relationship between price cuts and sales can be
seen, there is a group that very large discount yields only negligible sales. Sinee milk is

a perishable category, there is a practice that the prices of unsold products around two
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Table 4.6: Log-likelihood and AIC of models ou B10

Model(T, W, f.) log-likelihood  AIC No. of Parameters
Model(T, , ) 4121 8249 3
Model(T, W, ) -4118 823506 10
Model(T,W.f,(B10)) -3886 7793 1 11
Model(T,W. f,(B10}) -3040 7902 11
Model(T,W. f3(B10)) -3928 7878 11
Model(T,W. f;(B10)) -4112 8246 11
Model(T,W.fo(B10)) “3804 7755 11 13
Maodel(T, W, f;(B10)) -3883 7790 12

Table 4.7: Log-likelihood and AIC of models on B11

Model(T,W. f.)

log-likelihood — AIC

No. of Parameters

Modcl(T, . ) -3607 7400 3
Model(T,W, ) -3684 7388 10
Model(T,W.f,(BL1)) “3318 6659 T 11
Model(T, W, f(B11)) -3390 6802 11
Model(T, W, f3(B11)) -3429 6830 11
Model(T, W, f5(B11)) -3684 7390 11
Model(T, W, fg(B11)) ~3289 6602 T 12
Model(T, W, f;(B11)) -3305 6815 12
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days are lowered as much as by 30%. Therefore, it is very likely that those large price
disconnt is to sell out left old products. The models on B30 with different lower and
upper thresholds, ie., the fanction fy. were fitted by chauging a threshold by yen. The
price function fy and f3 were not caleulated because B30 has been stocked on the shelf
intermittently, particularly on weekends, so that negative influence caused by its competi-
tors price reduction was very limited. The model concerning the day-of-the-week-effect
was not inclnded due to regularly unstocked condition on weekdays. The price function,
f1 with the lower threshold of 18 and the upper threshold of 57 was selected as a better
linear function than fi. The best selected price function for B30 was deal decay fanction,

fe, withiout reset.

Table 4.8: Log-likelihood and AIC of models on B30

Model(T,W.fi) | log-likelihood AIC No. of Darameters
Model(T, | ) 1713 3431 3
Model(T, .f,(B30) -1693 3301 4
Model(T, .f4(B30) -1604 3220 t 6
Model(T, .f5(B30) -1645 3208 4
Model(T, .f3(B30) 1520 3054 1T 7
Model(T, . f7(B30) -1606 3227 7

Figure 4.7 shows scatter plots of the sales as r-axis against the best selected function

as y-axis for cach brand, showing improvements in linear relationships from Figure 4.6.

Time Series + Regression Analysis on Category Sales Data from Store B

Time series plus regression analyses were conducted on Model 3 given in equation

(4.70), by using the best price funetions for the 4 brands determined in the above.

Model 3 (trend + day-of-the-week effect + explanatory variable effect)
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yln)=t(n)+d(n)+ x(n)+ win) (4.70)

Table 4.9 includes the values of the log-likelihood, AIC, and the number of parame-
ters. The mark * (on B10) shows an involvement of an extra funetion to treat an outlier
for B10. The 12th model with 3 price functions of B10*, B11, and B30 has the lowest
AIC, but violates the condition in equation (?7). The 11th model with the same 3 price
functions that have the same coefficient gave the best resnlt. This means that the price
cuts on B10, B11l, and B30 were effective to inerease both its own brand sales and the
category sales, indicating oppositely that the price function of B4 has an incremental
effeet ouly on the brand sales, but not on the category sales. Namely, the ineremental

sales of Bd were only yielded at the expense of competitors.

Table 4.9: Log-likelihood and AIC for models ou category sales

No  Model(T,W,f,) log-likelihood  AIC No. of Parameters
1 Model(T, . ) 1223 8452 3
2 Model{T,W, ) -4148 8315 10
3 Model(T,W, f3(B4)) 4152 8326 11
4 Model(T,W,f5(B10)) 4146 8318 13
5 Model(T,W,f5(B10*)) ~4144 8316 14
6 Model(T,W,fs(B11)) -4109 8242 12
7 Model(T,W,f5(B30)) 4122 8272 14
8 Model(T,W, f4(B10* B11)) -4106 8243 16
9 Model(T,W,fs(B10*,B30)) -4108 8252 18
10 Model(T,W,fs(B11,B30)) 4076 8185 16
11 Model(T,W, f3(B10*,B11,B30}) -4064 8164 1 18
12 Model(T,W,f;(B10*,B11,B30)) 4061 8163 20

Deal decay function was better than linear funetion for 3 brands out of four (B10,
B11, and B30). For the other brand, B4, although deal decay was not recognized, instead,
the brand seems to be interfered by simultancously promoted competitive brands in yield-
ing incremental effect. The result is interesting and instructive, indicating the following

hypothesis:



When incremental effects are produced by price promotions, some competitive
relations exist either between competitive promotional occasions of brands or
between the first promotional oceasion of a brand aud the succeeding promo-

tional oeeasions.

Figure 4.8 shows the comparison hetween the best fitted model from Model 2 and the
one from Model 3 on the store B data. From the top to the bottom, they are the
observed data, the fitted trend, trend + dav-of-the-week cffect, trend + day-of-the-week
effect + explanatory variable effect, and residual component, respectively. A comparison
between the third graph from the top on Model 2 and the one on Model 3 shows that the
explanatory variable effect was included in the day-of-the-week effect on Model 2. This
means that the price promotion appeared to be carried ont on partienlar days within a
week, e.g. on week-ends, and the price promotional effects on the particular days are
counted as the day-of-the-week effeet. Therefore, if a two-step model fitting procedure
were conducted. the day-of-the-week eoffect would be over-evaluated as in Model 2 and
would not give appropriate results. Ou Model 3, the day-of-the-week effeet and the price
promotional effects are separated. The smaller residual in Model 3 than that on Model 2
shows improvements in modeling.

Figure 4.9 gives a comparison on analytical results between store A and store B
and reveals how price promotion “intervene” normal movements of the sales. If price
promotions were not carried out, the sales for store B data wonld have been explained
ouly by trend and day-of-the-week effeet as do for the sales from store A. The additional
compouent of explanatory variable on store B accounts for remaining pulse-like effects
after trend and day-of-the-week effeet being removed. The level of the day-of-the-week
effect on Store B data appearced to be reasonable compared with that on Store A data.

Figure 4.10 shows how incremental effects on the category sales decays for each level
of price cuts on B10, B1l, and B30, fixing the other explanatory variable being zero.

These values will be useful in estimating how much incremental category sales are gained
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by changing the price of one brand at a tune, and how much incremental sales for each

brand decays as time passes when successive promotion rns are continued.
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Chapter 5

5 Multivariate Analysis on Scanner Sales

The presented vector state space models with time-varying regression parameters were
applied to 3 scanner data sets of milk category. One is brand sales and prices of weckly
aggregated data for the period of 1994/1st week (Jan.3) — 1995/10th week (Mar.12)
(N=062) from store A, and another, those of 2 years daily aggregated data for the period
of 1994/2/28 - 1996/3/3 (N=735) from store B. The third is only brand sales of the same
daily basis of 2 years period from store C, in which price reduction did not oceur so often.
The data sets from store B and store C are the same as in Chapter 4. All of the three
stores are large super market stores. The top 4 brands and the others total were analyzed
for the data from the three stores. In this study, brand is defined as brand-size and sales
quantity is defined as the litre of products purchased.

The left-hand side plots of Figure 5.11 are for the weekly observations from store
A, which show mildly changing phenomena in ineremental sales as well as in baseline
sales. The left-hand side plots of Figure 5.12 are for the daily observations from store
B3, also show mild changes in incremental sales, and there appear to exist more variation
in daily data than in weekly observations possibly due to day-of-the-week effect (IKondo
and Kitagawa (1998)). The left-haund side plots of Figure 5.13 are the data from store C,
in which mild changes are detected only in baseline sales. Therefore, considered models
were such that environmental factors inclnding seasonality or brand competitions affect

both baseline sales and ineremental sales.

5.1 Time Series Analysis on Data through Store A to Store C

The model 1 given in equation (5.71) was fitted to both weekly and daily data from
the three stores. The model 2 that considers also day-of-the-week component given in

equation (5.72) was applied ouly to daily basis data from store B and store C.



Model 1 (baseline ouly)

yln) = t{n) + wln), (5.71)

Model 2 (baseline + cyclical)

yln) = t{n)+d(n) + win). (5.72)

A state space model has sequential estimation procedures and requires initial values
of state mean and variance. The one of state variance for day-of-the-week component or
for explanatory variable component was set to some large arbitrary value, which produces
flatter prior distributions. A discussion on the determination of initial values is in Harvey
(1989, PP120 - 125).

All zero sales were treated as missing values, Those zero sales can be due to closed
days of the stores or due to the disappearance of existed data. For data from store A, there
were 6 weeks of modified observations ont of 62 due to missing daily data or problems
in quality, so that those data are treated as missing observations. The maximum likeli-
hood estimates of parameters were obtained by a quasi-Newton numerical optimization
procedure based on Broyden-Fletcher-Goldfarb-Shanno algorithm.

The values of the log-likelihood, AIC, and the number of parameters on the analysis
of Model 1 were summarized in Table 5.10 where ¢ denotes trend order and j denotes
assumed period. The baseline component for brand A4 of store A and brand B4 of store
B were fixed because the both are newly entered brands, show very little movements
in baseline sales, and have fewer observations than other brauds. Among 3 polynomial
models of Model 1 in equation (5.71), the first order trend component Model (1,1), ie.,
locally constant component, gave the best result for all of the stores. The result indicated
that data aggregation span of daily or weekly basis is so short that long-term component
was represented by the first order stochastic equation, a locally constant component.

For the data from store B and store C, fixing the first order for the trend component,

(i ]
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the mumber of days within a cyclical period were gradually increased for eyclical compo-
nent. The day-of-the-week component was not included for brand B4 of store B because
B4 are rather in regularly unstocked conditions on weekdays. The results in Table 5.10
showed the Model (1,7) with 7 days in a cyele was selected as the best model for the both
stores, confirming the existence of the day-of-the-week effect for multivariate data as well.
Fixing 7 days in a cycle, we compared the order for the trend component, vet, the result
was the same as before, choosing Model (1,7) as the best model for the both store. These
results correspond to our earlier work.,

The right-hand side plots of Figure 5.11 show fitted bascline for store A on brands
Al - A4 and the others total. The right-hand side plots of Figure 5.12 and Figure 5.13
show the observations and fitted baseline + day-of-the-week effect for store B and store C
for the brands, respectively. For the store C data, the residual is expected to be relatively
smiall except some occasional spikes of ineremental sales. For the data from store A and
B, it can be easily seen the existence of large variances in the residual. Further analyses

on price promoetions are conducted in the next section.

Table 5.10: Log-likelihood and AIC for model (2, j) (i:trend order ; j:assumed period)

store A store B store C

- No. of
Model (i,7) | log-L  AIC log-L.  AIC log-L  AIC Parameters
Model (1,1) | -1997.3 4044.7 | -19653.0 39336.0 t |-18897.4 37844.7 25
Model (2,1) | -2042.9 4145.8 | -19862.3 39784.6 |-192742 38608.4 30
Model (3,1) | -2094.8 4259.6 | -23663.2 474004 | -24768.5 49607.0 35
Model (1,2) 196614 393928 | -18826.7 377234 35
Model (1,3} -19669.5 39419.0 | -18837.5 37755.0 40
Model (1,4) | NA 196711 39432.2 | -18845.1 37780.2 45
Model (1,3) -19681.7 39463.4 | -18851.8 37803.6 50
Model (1,6) -19684.6 39470.2 | -18850.4 37828.8 55
Model (1,7) 19507.0 39134.0 11 | -18740.0 37600.3 60
Model (2,7) | NA -19727.2 39584.4 | -19181.3 38492.6 65
Model (3,7) -23073.6  48087.2 | -25183.1 50506.2 70




5.2 Price Function on Each Brand and Category Total for
Store A Data

Brand Characteristics on Store A Data

Out of 28 brands, the sales of the top 4 brands, Al through A4, account for 75% of the
category sales, Prices of 4 brands were selected as the source of explanatory variable, and
the sales of 4 brands and the category total, as 5 response variables.

Table 5.11 summarizes the maximum price during the periods for each brand, which
is the substitute of the regular price. Al is a national brand and has the highest regular
(maximum) price. A2 is the low-fat type of the same brand of Al and can be considered
in a different segment from the other 3 brands. A3 is a private brand and has the lowest
regnlar price among brands of regular type. A4 is a new entry into the market with the

same maxinum price as that of Al.

Table 5.11: The maximum price daring the entire periods for each brand

brand | A1 A2 A3 A4
price | 228 188 195 228

In Table 5.12, a strong competitive relationship between Al and A3 and a weak
relationship between Al and A4 can be recognized from the value of the eross correlations

among the sales of each pair of 4 brands (-0.800 and -0.276).

Price Function

As described in section 2.4, the models with four price functions together with the
first order baseline component were compared for 4 brands and functions were determined

at first among the functions, f; - f3, and fi are illustrated in Figure (to be included).
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Table 5.12: Cross correlations between each pair of 4 brands

Al A2 Ad Ad
Al | 1.000

A2 | -0.094 1.000

Ad | -0.800 0.145 1.000

Ad | -0.276 -0.083 -0.076 1.000

The functious, fy, f5, fr were not included among the alternatives. This is because the
function f5 did not yicld any better results than the simplest function f, similarly, no
better for the function f- compared with any simpler instantaneous functions in any cases
in Chapter 4. The function f; is to select a range which contribute to inerease the sales

of a brand, but there appeared to have no clear cut range for store A data.

Price Function on A3

The results on comparable models are sumimarized in Table 5.13, in which T denotes
thie existence of the first order bascline component, and fi{.r) denotes the existence of the
i th price function component of brand ». A blank denotes the non-existence of the
component in that position,

The model withont any price function was seleeted as the best model among the
alternatives. In our previous work on daily data from store B in Chapter 4, the price
cut of a private brand was effective to inerease at least the own brand sales, in which the
model with price function f3 was selected as the best model. For this weekly aggregated
scanner data from store A, however, none of the models with price function was fitted
well to the data.

Price Function on A1, A2, and AJ

The results on comparable models are summarized in Tables 5.14, 5.15, 5.16. Among
the instantaneous price function, the simplest price function f; was the best choice for
the brands, Al and A2. The price function fs was superior to f; only for brand A4. The

best selected price function for Al and Ad was deal decay function, fg, with a reset after
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Table 5.13: Log-likelihood and AIC of models on A3

Model(T, fi.) log-likelihood ~ AIC No. of Parameters
Model(T, ) 4962 9985t 3
Model(T, f,(A3)) -500.2 1008.3 4
Model(T, f,{ A3)) -500.0 1008.0 4
Model{T, f3( A3)) -497.6 1003.3 4
Model(T, f5(A3)) -497.6 10073 G

2 consecutive promotion mans (n = 1). The main purpose of deal decay function is to
include decaying effects of consumer’s response to price promotions. The result for the
two brands shows that decaying effect is reset after two consecutive periods, indicating
that consumers’ responsecs to the discount decline in the next week of the first promotion
run and recovers two weeks later. For A2, the log-likelihood was improved with the
deal decay function, but the AIC did not become the minimnum beecause that the price
reduction itself did actually follow almost the same decaying pattern as explained in the
above.

Figure (to be inserted) shows how ineremental effects on the category sales decay
for each level of price cuts on Al and A4, fixing the other explanatory variable being zero.
These values will be useful in estimating how much incremental category sales are gained
by changing the price of one brand at a time, aud how minch incremental sales for cach

brand decays as time passes when suceessive promotion rmns are continued.

Table 5.14: Log-likelihood and AIC of models on Al

Model(T, fi.) log-likelihood — AIC No. of Parameters
Model(T, ) -454.1 914.1 3
Model(T, fi{Al)) -439.9 887.8 t 4
Model(T, f( A1) 4435.5 899.0 4
Model(T, f3( Al)) -131.0 910.0 4
Model(T, fo{Al)) -436.2 884.3 tt 6
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Table 5.15: Log-likelihood and AIC of models on A2

Model(T, fi.) log-likelihood  AIC No. of Parameters
Model(T, ) -389.5 785.0 3
Model(T, fi(A2)) -364.2 736.4 1 4
Model(T, f2(A2)) -378.9 765.8 4
Model(T, f3(A2)) -382.9 T73.7 4
Model(T, fs(A2)) -363.5  738.9 6

Table 5.16: Log-likelihood and AIC of models on Ad

Model(T, fi) log-likelihood  AIC No. of Parameters
Model(T, ) 2335755  473.1510 | 3
Model(T, f,(Ad)) 2256 159.2 1
Maodel(T, fo{ Ad)) -219.3 446.6 1 4
Model(T, fa( Ad)) -230.3 468.6 4
Model(T, fo(A4)) 212.1 436.7 11 6

Price Function on Category Sales Data from Store A

Table 5.17 includes the values of the log-likelihood, AIC, and the number of param-

eters. The model with price function f(A2) of a low-fat type brand gave the best result.

This means that only the price cuts on A2 coutribute to increase the category sales as

well as the brand sales. The price cuts on Al and A4 were effective to incrcase its own

brand sales only and not the category sales.

Table 5.17: Log-likelihood and AIC for models on category sales

No Model(T, fi) log-likelihood ~ AIC No. of Parameters
1 Model(T, ) -464.5 935.1 3
2 Model(T, fg(Al) ) -468.9 949.7 6
3 Model(T.fi(A2) ) -461.7 931.5 1 4
4 Model(T, fg(Ad) ) -468.7 946.4 6
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5.3 Time Series plus Regression Analysis on Data from Store
A and Store B

Time series plus (constant parameter) regression analyses without day-of-the-week effect

were condneted on Model 3 given in egnation (5.73) for the store A data and on Model

4 given in equation (5.74) for data from store B. The best price functions determined in

the above is used for the store A data and the ones determined in Chapter 4 was used for

the store B data,

Model 3 (trend + explanatory variable effect)

y{n) =t{n) + x(n) + win) (5.73)

Model 4 (trend + day-of-the-weck effect 4+ explanatory variable effect)

yln) =tn) +d(n)+ x(n)+ w(n). (5.74)

Tables 5.18 and 5.20 summarizes the values of the log-likelihood, AIC, and the
number of parameters on Model 3 for store A data and on Model 4 for store B data,
respectively, with constant explanatory variable parameter (2 = 0) in equation 2.28.
Here, the letter of T, W, X denotes the existence of bascline component, day-of-the-
week component, and explanatory variable component. “Backward” variable selection
was performed with the reducion order of a variable that yields the smallest AIC when
it was removed from the full model. The process is continmed until the AIC happens to
increase. Then, the variable is returned to the subset, the variable of the next order is
removed, and the calenlation of AIC is performed. The procedure is continned nntil the
last regression parameter is removed.

Among the subset models, the model with the smallest AIC value, model M12 for
store A data and model M2 for store B data, was chosen. The next step was “forward”

variable sclection by adding a variable that vields the smallest AIC when it was added
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to the chosen subset. However, for data sets of store A or store B, no variable was
added becanse the addition of any variable to the subset did not deercase the AIC value,
althongh the addition of a certain variable slightly improved the log-likelihood for store
B data (Model M+12).

The best selected constant regression parameter models reflect how each explanatory
variable of price function affects each sales of brands as scen in Tables 5.19 and 5.21. The
variables having the number in a parenthesis were included in the best selected model.
Table 5.19 shows the results on store A data. Except Ad, price reduction for each brand
contribute to increase the own sales, which corresponds to the results when price function
was determined. The sales of private brand A3 were negatively influenced by the price
euts of competitor, Al, to a very large extent. The sales of national brand, Al, were
negatively affected by price cuts of competitor, Ad. The sales of low-fat-type, A2, those
of A4, and the ones of the others total of 24 brands were not affected at all by either
of price cuts of competitive 4 brands. Table 5.21 shows the result on store B data that
price reduction for each brand contribute to increase at least the own sales. The sales of
private brand B1 were negatively influenced by the price ents of competitors, B2 and B4,
the sales of national brand, B2, by the price cut of competitor’s brand, B4. The sales of
low fat type brand B3, those of B4, and the sales of the others total of 42 brands were

not affected at all by either of price euts of competitive 4 brands.

5.4 Comparison of Constant and Time-varying Regression Co-
efficient Estimates

Time-varying Parameter model was established by specifying of # 0, in the sclected con-
stant parameter model (Model M12 for store A and Model M2 for store B). A comparison
was mmade between the constant parameter models and the time-varying parameter mod-
els in Tables 5.22 and 5.23 where the letter of T, W, X are the same as before and the
suffix C and M denotes constant parameters and time-varying parameters. The results

show the models with time-varying parameters was selected as the best model.
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Table 5.18: Log-likelihood and AIC for Model 3 on Store A Data

Model (T, X) | log-likelihood  AIC No. of Parameters
Model (T, ) -1997.3 4024.7 ' 25
Model Full -1979.3 4088.6 65
Model M10 -1975.2 4078.4 G4
Model M17 -1971.0 4064.1 61
Model M4 -19G6.9 4049.7 58
Model M9 -1959.2 4032.3 a7
Model M5 -1959.2 4026.3 o4
Model M20 -1955.4 4012.8 al
Model M14 -1951.8 4003.5 ol
Model M6 -1950.7 3999.3 49
Model M18 -1950.1 3002.2 46
Model M15 -1949.3 3088.0 45
Model M13 -1946.1 3980.3 44
Model M8 -1943.6 39734 43
Model M2 -1942.4 3964.8 40
Model MI11 -1940.9 3959.9 39
Model M12 -1038.7 3953.5 1 38
Model M16G -1940.8 3931.6 30
Model M3 -1051.8 3967.7 32
Model M1 -1966.8 3991.7 29
Model M19 -1966.3 J984.7 26
Maodel M7 -1997.3 4024.7 25

Table 5.19: Sales vs. Price function for Store A data

Sales | Price  function
U U Uaz Uas
i
Y | 2 (7) 12 17
Vi | (3) 8 13 18
Ve | 4 9 14 (19)
Yor | & 10 15 20
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Table 5.20: Log-likelihood and AIC on Constant Parameter Model for Store B data

Model (T, W, X) | log-likeliliood  AIC Parameters
Model (T,W, ) | -19507.0 39134.0 G0
Model Full -18293.2 36800.4 110
Model M4, 9,14 | -18276.0 36758.0 103
Model M8 -18270.9 36739.8 99
Maodel M20 -18267.8 J6727.6 96
Model M18 -18260.9 36707.8 93
Model M12 -18260.0 36704.0 92
Model M11 -18253.8 36689.6 91
Model M5 -18251.4 36680.8 89
Model M10 -18248.8 36667.6 85
Model M15 -18246.4 36660.8 84
Model M3 -18240.3 J6644.6 82
Model M2 -18237.6 36635.2 f 80
Model M17 -18308.2 36770.4 77
Model M16 -18308.2 36704.4 74
Model M6 -18340.0 36820.0 70
Model M1 -18451.6 37039.2 68
Model M7 -18808.8 37745.6 64
Model M13 -19262.2 38650.4 63
Model M19 -19507.0 39134.0 G0
Model M+12 -18237.0 J6636.0 81

Table 5.21; Sales vs. Price funetion for Store B data

Sales | Price  function
L) _ _"-5':.'52 Ly Upi
m | (1) (6) 11 (16)
Y 2 (%) 12 (17)
Yes | 3 8 (13) 18
Y 4 9 14 (19)
Yoip: | 8 10 15 20
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The inclusion of just one common parameter of in system noise variance given in
equation (2.28) could improve the results for the data sets from the both store. Moreover,
smooth moevements of regression parameters were achieved by the weights of systemn noise
variance in bascline component, otherwise over-fitting could have easily oceurred for the
data with sharp pulse-like spikes.

Figure 53.14 (store A) and Figure 5.15 (store B} show the movements of time-varying
parameters of the baseline component (left) and the ones of incremental component (right)
influenced by the own price funetion except A3, which is influenced by the competitors
price function. The both lines in the left and the right of Figure 5.14 and Figure 5.15
show roughly reversing images in its movements for each brands, except the movements
for Al in Figure 5.14 and the ones for B2 in Figure 5.15. This is the most interesting
finding in the analysis that baseline component and incremental component are often
aftected by environmeutal factor very similarly, but sometimes differently. The parameter
movements of B2 in baseline component appeared to reflect maily seasonality, while those
in ineremental component, competitive relations. On the other hand, the reverse can
be seen in Al. This may indicate that when strong competitive movement is dominant,
background movements of scasonality becomes difficult to be visible, For brand A3, the
movements of time-varying parameter is the one influenced by the competitors’ price
rednction, so that the sign is opposite to other brands. The extent of parameter variation
is large in the order of A3 (private brand) or Al((national brand), and then A2 (low-fat
type), and A4 for store A, and B1 (private brand), B2 (national brand), B3 (low-fat type),
and B4 for store B.

The top to the bottom of Figure 3.16, Figure 5.17 and the right-handside of Fig-
ure 5.18 show the observations, the fitted trend, trend 4+ day-of-the-weck effect, trend +
day-of-the-week effeet + explanatory variable effect, and residual component for store B
data, respectively. It can be easily scen that the ways of parameter changes are differ-

ent among brands. The results gave a clear contrast among brands in terms of whether



the parameters in bascline or in incremental are prone to environmental changes such as
scasonality or brand competition. The parameters in bascline and in incremental moves
fairly well for the private brand of B1 whose sales are affected by two competitors’ price
disconnts. This can be easily seen in Figure 5.18, which compares fixed parameter model
both in basecline and incremental (left-handside) with the best fitted time-varying param-
eter model (right-handside) on store B, for private brands, B1. For store A data, the same
comparisons were made on brand Al in Figure 5.19. The bottom of the Figures show the
seasonality remains in residunal component for a constant parameter model. This means
that, for private brands, a time-varying regression parameter model is more appropriate
than a constant regression parameter model (or OLS procedure). An importance should
be placed on finding what kinds of brands show large movements in the parameter to
determine whether time-varying parameter model is required or not.

The aceumulation of these kinds of resalts by detailed data analysis by vector state
space model may provide a basis to give a solution conceruing the dispute over the condi-
tion that naive time series model give better results than the constant regression parameter
models for market share forecasting ( Brodie and de Kluyver (1987)) or visa versa (IKumar

and Heatl (1990)).



Table 5.22: Log-likelihood and AIC for Constant and time-varying Parameter Model for
store A data

Model (T, X) log-likelihvod  AIC No. of Parameters
Model (T, ) -2024.5 41351 20
Model (Tyy, ) -1997.3 4024.7 25
Model M12 (T¢, X¢') 19548 3959.7 25
Model M12 (T, Xe) -1938.7 3037.4 30
Model M12 (T, Xar) -1933.9 3959.8 1 31

Table 5.23: Log-likelihood and AIC for Constant and Time-varying Parameter Model for
store B data

Model (T, W, X) log-likelihood  AIC No. of Parameters
Model (T, ,) -19747.1 39034.2 20
Maodel (Tyy, ,) -19653.0 39356.0 25
Model (T, We,) -19637.9 J9385.8 95
Model (Typ, W) -19507.01 39134.0 G0
Model M2 (T¢, We, X¢) -18458.9 37041.8 62
Model M2 (T, Wy, X¢) -18237.6 J6609.2 G7
Maodel M2 {T.'u, H‘:\f, };”} -18224.5 TT J6585.1 068

Finally, a comparisou between the second plots of the right-handside in Figure 5.12
on Model 2 and the third plots in Figure 5.16 (right) on Model 4 shows that the explana-
tory variable effect was included in the day-of-the-week effect on Model 2. This means
that the price promotion appeared to be carried out on particular days within a week, e.g.
on week-ends, and the price promotional effeets on the particular days are connted as the
day-of-the-week effect. Therefore, if a two-step model fitting procedure were conducted,
the day-of-the-week effect wonld be over-evaluated as in Model 2 and would not give
appropriate results. On Model 4, the day-of-the-week effect and the price promotional

cffects are separated.
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Chapter 6

6 Price Promotion Effect Decomposition into Brand
Substitution Effect and Category Expansion Ef-
fect

Retail managers know from their past experiences that price promotion is often effective to
canse high incremental sales of a promoted brand during the promotion period. Although
they are interested in how mmch ineremental sales are due to brand switching and how
much incremental sales are due to category expansion (including store switching), there
has been no means so far to decompose a price promotion effect into the one due to brand
switching and that due to category expansion.

The purpose of this chapter is to demonstrate a method for decomposing an ex-
planatory variable effect of a price promotion iuto the component due to brand switching
and that due to category expansion, together with sales decomposition into long-term
compounent of baseline sales (trend) and eyelical day-of-the-week effect. Our approach for
this decomposition is to regress simultancously brand sales and category sales on explana-
tory variables, by ntilizing a Bayesian vector state space model, a unified model of time
series analysis and regression analysis (INondo and INitagawa (1998)).

The idea to use brand sales data and category sales data is not new, as scen from
cited articles (Neslin and Shoecmaker(1983b); (Pindyck and Rubinfeld, 1981, Ch.11)) in
Blattberg and Neslin (p.187, 1990). However, none of the two articles positively report
on merits such as gains in estimation efficiency nor its usefulness of the scheme.

Our motivation to use brand sales data and category sales data comes from a ue-
cessity to decompose a price promotion effect into brand substitution effect and cate-
gory expansion effect. In addition, this approach guarantees the results of category sales
model are consistent with those of brand sales model, so that results are always compa-

rable among brand sales and the category sales total, Therefore, our model can avoid a
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dilemma to decide which shoud believe between brand model and category model under
a possible contradiction existing between them if separate model fittings on brand model
and category model were conducted as questioned by Haussens et al. (p. ,1990).

Multiple Exogeneous Effect Decomposition

The data used here are the same data from store A and store B in Chapter 5. The
decomposition was conducted by using the best model obtained in Chapter 5.

The model 1 given in equation (6) was fitted to weckly data from store A. The
modlel 2 that considers also day-of-the-week component given in equation (6) was applied
to daily basis data from store B.

Model 1 {baseline + brand substitution + category expansion)

y(n)=t{u)+ x(n) + w(n)

x(n)= g(n) + s(n)

Model 2 (baseline + day-of-the-week-effect + brand substitution + category expan-
slon )

y(n)= t{u)+ d(n) + x(n) + w(n)

x(u)= g(n) + s(u)

The values of the log-likelilood, AIC, and the nnmber of parameters on the analysis
of Model 1 were sunnnarized in Table 6.24 where i denotes trend order and j denotes as-
sumed period, X denotes explanatory variable component, G denotes brand substitution,
and S denotes category expansion.

The results in Table 6.24 on store B data showed larger(?) log-likelihood on multiple
exogencous decomposition model. The attached tables exibits clear decomposition for
cach brand. The low fat type brand, B3, has rather independent movements and the
incremental component contribute mostly to the category expansion. On other hand,
for the private brand, B1, the incremental sales by the own price reduction did not take

sales from competitors very much, but be taken by the competitors. The incremental
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sales could somewhat contribute to the category expansion. For national brand, B2, the
incremental sales by the own price reduction could contribute to both the inerements
of the brand sales and the category expansion. The reduction in sales due to brand
substitution effect by competitors was also recognized. The ineremental sales by the own
price reduction for brand bd also could contribute to both the increments of the brand
sales and the category expausion. This brand have not experience the reduction in sales

due to brand substitution effect by competitors.

Table 6.24: Log-likelihood and AIC for model for store B data (T, W, S, G)

Model (T, W) log-likelihood  AIC [ No. of Parameters
Model (T, W) 19512 ' 60
Model (T,W,X) | -18259.8997 81
Model (T,W,S,G) | -18246.3383 {1 91
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Chapter 7

7 Simultation Study

Simmlaton was performed for the purpose of evalnationg trend, day-of-the-week cffect,

and explanatory variable effeet with the following model:

yin) =tn)+dn)+ax(n)+ win), (7.75)

where t(n), d(n), r(n) and w(n) represent long-terin bascline sales component, cyclical
day-of-the-week effect compounent, short-term explanatory variable component, and ob-
servation noise, as specifed in equation 2.1. The number of brands are set to three and
sample size as 300,

The observation noise w(n) obeys the following normal distribution:

gt 0
win) ~ N(0 ,E,), Zp= {:F:f,ﬂ F (7.76)
0 o=

Possible alternative observation uoise is non-Gaussian.
Baseline component
t{n) = (ty(n),...,t3(n))" is represented by the following 1st th order stochastic
difference ecquation:
t(n) —t{n — 1) = w(n), (7.77)
where the system noise vy, (n) = (ni(n),... co(n))T obeys the following Gaussian white

LOLSe

n(n)~ N0 L), I, = ; (7.78)

Cyclical Day-of-the-week Component
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fi
S d(n — j) = va(n), (7.79)
o

where the system noise vy(n) = (vy(n),...,rs(n))" obeys the following Ganssian white

noise and corresponds to the change of the day-of-the-week pattern:

ol 0
vg(n) ~ N(O ,Zy), Zy= Ty : (7.80)
0 os
Explanatory Variable component
g(n) = B(nju?(n). (7.81)

where u?(n) is defined in the below as a price function for explanatory variable component
and use actually the analyzed price fuention. B(n) represents time-varying cocfficients of
u¥(n). The number of explanatory variables is set to 3

The source for time-variation is unmerous as Cooley (1981) states. In our resnlts
in Chapter 5, we often saw the same (reversing) patterns between parameter in baseline

L

component and incremental component in Figure 5.47 and Figure 5.57 . Therefore, we

focus on the aspect that incremental component for a brand has usually a similar patern
to bascline component and sometimes a different pattern. We set up two scenarios as

follows:

1) similar patern

2) similar patern + innovative patern

The time-varying parameter is expressed as

‘!'.I'j{”} = bu{{}} + f:;'t,'{'ﬂj + ﬂi'[:"}: {TBE}

34



where the value of constant competitive parameter was set at,

0.6 —0.5 0
Boy=[ o 07 o0 ]. (7.83)
00 04

and 0 < ¢; < 1 expresses a constant parameter as a ratio of baseline component and a;(n)

is the following innovative patteru,

ai(n) = fdn) for buln),bia(n),bu(n) (7.84)

a;(n) = 0 for bgln). (7.85)
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Chapter 8

8 Summary and Conclusions
8.1 analysis 1

We propose a new methodology as a unified time series and cconometric analysis with
state space model to decompose category sales into component of local polynomial trend,
the day-of-the-week effect, and explanatory variable effect. Like the Box-Jenkins ARIMA
procedure, our approach allows a rescarcher to hypothesize possible models. However,
a fundamental difference is in the process of model identification, parameter estimation,
and diagnosis. Our approach uses AIC to seleet the best of alternative parametric models
within and between model elasses. The formula of AIC includes two essential components
of mazimized log likelihood of the model and number of estimated parameters in the model
as bias correction. Therefore, necessary information to select the best model is already
included in AIC. A researcher only has to set up possible alternative models and search
for the model with the minimum value of AIC. In this senuse, ours is essentially a semi-
antomatic extensive model alternative procedure,

On the other hand, Box-Jenkins approach requires extensive expert hnman interven-
tion to achieve satisfactory modeling as follows: First, data is transformed to stationary
time series data for example, by differencing, and integrating order is determined. After
getting stationary data, the order of ARMA(p.q) model is determined to sclect several
adequate models by using antocorrclation function (sometimes, extended antocorrelation
function) and partial autocorrelation function. Thirdly, the parameters in the identified
models are estimated by maximizing the (log) likelihood. Then, diagnostic checking and
forecast follow.

Two example store level scauner data sets were analyzed to show the Hexibility of
our approach as a unified time series and econometric analysis. One involved only time

series mwodels with component of trend and eyclical day-of-the-week effect. The second
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included models of tiine series plus regression analysis ou price deals. The both analysis
gave the result that the inclusion of the day-of-the-week effect yielded a better model,
accomplishing the purpose of a decomposition into the component of trend and day-of-
the-week effect. On the second data set, the inclusion of explanatory component into time
series model gave the best result. Here, several examples of linear or non-linear regression

analyses were carried out.
8.2 analysis 2

This paper presents time-varying resgression cocfficieut estimates based on Bayesin vee-
tor state space model with Kalmau filter. Kalman filter provides a simple and efficient
algorithm to estimate and update time-varying parameters. The variances of the system
noises in the stochastic process for random parameter is estimated by using Akaike’s AIC
criterion to determine the best parametric model among alternatives. Together with Mal-
low’s Cp eriterion, the AIC was demonstrated by Shibata (1980) to have an asymptotic
minumum mean square one-step-ahead prediction error propertity, which are not the case
in the consistent estimator schemes of Schwarz and Hannan and Quinn. The vector state
space model has a great advantage for market response model, Since it is a unified model
of time series analysis and regression analysis, there is no need for separate estimations
of category total and brand share. The time series of cach brand are always added up to
that of the category total, which is a logically favourable point.

Three data sets of scauner sales were analyzed. The state estimates of time-varying
regression cocfficients were larger in all cases than the constant parameter cases. Together
with our previous findings in Kondo and Kitagawa (1998), the cffectiveness to derive
incremental sales of its brand declines over time, the results poses serious doubt over the
use of constant estimates for the analysis on longitudinal data of scanner sales, Further,
results has shown that the extent of time-variation was large for private brands and the
second large for national brands, both of which were affected by the price disconnt of

competitive brands, making time-varying parameter models more appropriate than the

a7



constant ones, Ou the other hand, QLS estimation procedure wonld provide a reasonable

estimates for brands which are not prone to seasonality or the influence of competitors

price discounts.

88



Chapter 9

9 APPENDIX — For Future Research
9.1 Temporal Substitution Component Model

Temporal substitution compouent model deseribes a component which has large variaces
for each period, but vanishes if all elemeuts of the component are summed within a range
of periods that temporal substitution effects remain. Therefore, it is characterised as
“zero-sum effect”™ in the direction of period.

&

A temporal substitution component so(n) = 37, s;(n) is defined as a category total

component and is assnmed to be expressed by an ARMA model,
A kg
s.(n) = Z Uy Sel1l — m) + Z Zc,-{:a — Pui(n —j); (9.86)
=l i=1 j=0
where w*(n) = (u(n)....,ul(n))" is a price function for temporal substitution in the
below, and a,, ¢;(n), M, and g are the coefficient of autoregression, moving average, and

the order, respectively.
The temporal substitution component is also expressed by

fuln) = ih.j-u."{n - 1), (9.87)

=0
where hj = (hji(n),..., h(n)).

The structure of temporal substitution ean be expressed by the restriction on the

impulse response function,

Y hj=0, (9.88)
i=

which is a nescessary constraint of the equation (9.806).
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[n practice, the effect of temporal substitution is assnimed to remain not very long,
so that temporal substitution may be simply expressed by a MA model. A stockpile effect
is considered to be an effect which yields a large pulsive incremental sales followed by a
negative response which cause a reduetion in sales from the baseline sales. (Blattherg and
Neslin (1990), pp.191). Specifically, for a stockpile effect with an e-lagged MA model, the
equation (9.86) and (9.88) reduces to

kg
se(n) =3 ciln—jlai(n—j), i=1,...,k (9.89)
r=1 j=0
L]
S edn=-3)=0, c(n—43)=0 for j=1,...,e (9.90)
=0

where e = ¢ — 1 is the number of lagged periods before negative responses appear due to
stockpile effect. During the occurance of negative responses, the inputs of new price cuts
are assumed to be not effective and, the sales, not responsive to the inputs. The lagged
periods may be determined by multiplying the interpurchase time by the ratio of average
extra purchses to baseline sales. If double guantity is purchased on average as a result of
stockpile offect, the ratio is one, so that the length of the lagged periods equals to mean
interpurchase time.

From the aforemeutioned past rescarches, temporal substitution is expected not to
ocenr 50 often. There is a risk for a consumer to make a stockpile of rather unfavoured
brands within a household, temporal substitution would not occur so often (Blattberg et
al.(1981)). Ouly in the case that consumers think not to loose the oppurtunity, temporal
substitution occurs. In addition, if a consnmer who nsnally purchases a category at a
different store in the next purchasing occasion, his or her purchasing a double quantity is
accounted for a store substitution. From this point of view, a price cut to canse temporal
substitution must be substantial, for example, a half of the regular price.

The price function of temporal substitution effect, u*(n) = (uj(n),...,ui(n))7, is

defined as follows:
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w'ln) = u(n) if a(n)+Th <0
=10 otherwise,

(9.91)

where Th* > 0 determines a threshold level to canse temporal substitution.

If an ARMA model is nsed to achicve a parsimony of parameters, how to place a

necessary constraint for temporal substitntion model is an arca to need further research.

9.2 Constraint Condition for Stockpile Effect Component
si{n) y _ efn) 0 ui(n) N\ _ { ei(n) 0 wi{n)
I"( s:ﬂn:] ) - F( 0 euln) ) ( ui[n} ) = ( cr{n) caln) ) ( n:.*lf{n} ) (9.92)

cin—1—-e)ul(n—1—-e}j+eci(n)ul{n-1—¢e)=0, 1=1,2, (9.93)

where € = ¢ — 1 is the uumber of lagged periods to appear a negative lagged responses

after a large pulsive incremental sales.

(1)

r sin) Y _ [ aln) ofn—1—-¢) 0 0 uffn —1—e)
sa(n) |~ \an) eln—1—e) cln) cln—1-¢) uj(n)
wi{n —1 — e}

(9.94)

9.3 System Model for Stockpile Effect with e — lagged MA
model for e = 2

The system model can be written as follows:

{ ei(n) \] /1 N/ oeln— 1)\
ciin—1) | ey —2)
c{n—2) 1 ey (n—3)
ei{n—3 1 erln —4) "
)= eolm) : . 1 f'-._;En -1) (9:55)
co(n — 1) 1 ealn — 2)
caln — 2) 1 epln—3)
\ -3/ \ 1)\ exn—4) )

o1



0 0 wiln—23) . 9.96
T:i 00 -u’:‘{n-.'}} uy(n) 0 0 u;[n—ﬂ]) (9.90)

cr(nyui(n) + ¢ (n — uiln — 3) ) :
P Haein) = ( ei(m)ui(n) +e(n = 3pujln — 3) + co(n)ulln) + ca(n — 3)ui(n — 3)
(9.97)
with
ciln — 3ui(n = 3) + ci(n)ujin =3)=0, i=12 (9.98)
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