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Chapter 1

Introduction and Overview

1.1 Motivation and Background

Issues of financial and economic time series

This thesis deals with the Markov switching models and their empirical analysis in economic and financial
time series. Economic and financial time series display typical nonlinear characteristics. One of their
important features is the existence of regimes within which the observations, and the corresponding
processes show different dynamic behaviors. In the statistical analysis of economic and financial time
series, in some cases, to capture the reality of the time series, it is more appropriate to divide and classify
the whole period into parts as “regime”, and to apply different statistical models or processes to each
regime. In addition, approximation of time series by discrete regimes of stochastic process may be useful
for several real decision making problems, including economic and monetary policy, financial investment
and risk management. On the other hand, many observed economic indicators, such as stock prices and
foreign exchange rates, are considered as proxy variables of some economic activities, economic conditions,
investor’s behaviours and several other factors. Therefore, it is difficult if not impossible to know perfectly
in advance the determinative regime in economic and financial time series. It may be more practical to
statistically identify the probability of the regime.

We can see some examples of such a regime dependent dynamic behavior. The following examples

illustrate that regime switching is relevant for real economic and financial time series.

13



14 CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.1: Example 1 — Tokyo Stock Price Index (TOPIX)
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Figure 1.2: Example 2 — Logarithmic return of Japan/U.S. exchange rate
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Figure 1.3: Example 3 — Japanese industrial production and business cycles
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Figure 1.4: Example 4 — U.S. and Germany industrial production
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16 CHAPTER 1. INTRODUCTION AND OVERVIEW
Example 1. Trend identification

Figure 1.1 plots the weekly Tokyo stock price index (TOPIX) from 1986 to 2001. We may find some
piecewise linear movements of TOPIX. In the traditional technical analysis of financial markets, the
chartist identifies “¢trend” by empirical methods. However, these approaches are not necessarily scientif-
ically reproducible. In the framework of time series analysis, some models to estimate the trend of time
series are proposed. West and Harrison (1997) and Kitagawa and Gersch (1996) summarize in detail with

polynomial trend models and state space trend models.

Ezample 2. Volatility of asset price returns

Figure 1.2 plots the logarithmic return of Japanese/U.S. exchange rates. Obviously, this level of volatility
differs in the periods of 1998 and others. From this figure, we may find the presence of some heteroscedas-
ticity and its persistence in the time series. Estimating and forecasting volatility of asset price returns
are important matters in risk management, derivative pricing and hedging, portfolio selection and many
other financial activities. There is now an enormous body of research on volatility models: for example,

ARCH, GARCH, stochastic volatility models and their derivatives.

Ezample 3. Business cycles analysis

Figure 1.2 plots Japanese industrial products, the shadowed bars showing recession periods deﬁned by the
Japanese Cabinet Office. Industrial production is an important factor in identifying business cycles with
expansions and recessions. This time series seems to have upward and downward trend regimes. One
regime corresponds to the expansion and the other to the contraction of production. It is important to
estimate and forecast business cycle turning points because such turning points allow us to make economic
and business policy decisions more flexibly and rapidly. Komaki (2001) and Honda and Matsuoka (2001)
review some methods of estimating and forecasting the business cycle furning points: for example, the

diffusion index (DI), Neftci model, Probit model, Stock-Watson model and so on.

Ezample 4. Transmission of time series properties

Figure 1.3 plots U.S. and German industrial production. Both time series display common upward and
downward trend regimes, but also a period when they move in different directions. It is possible to
consider that there is some unobserved relationships between these regimes in both time series. At the
present time, the globalization of the economy seems to emphasize the linkage of business cycles and
financial markets between counties. Vector autoregressive (VAR) and multivariate ARCH-type models

are methods to analyze relations of cause and effect in a multivariate linear time series.
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Markov switching approach

The available regime-switching models differ in the way the regime evolves over time. Two main classes of
models can be distinguished. The models in the first class assume that the regimes can be characterized by
an observable variable. Consequently, the regimes that have occurred in the past and present are known
with certainty. The models in the second class assume that the regime cannot actually be observed but is
determined by an underlying unobservable stochastic process. This implies that one can never be certain
that a particular regime has occurred at a particular point in time, but can only assign probabilities to
the occurrence of the different regimes.

In this thesis, we focus on situations in which the regime shifts are unknown and the regime processes
are stochastic and recursive. In recent years several time series models have been proposed that formalize
the idea of the existence of different regimes generated by the stochastic process. One stochastic model
that deals with the nonlinear time series including the stochastic regimes is the Markov switching model.
The purpose of this Markov switching approach to modeling economic and financial time series seems
to be to identify different regimes and their changing points, and to allow for the possibility that the
dynamic behavior of economic variables depends on the regime that occurs at any unknown point in time.

The primary purpose of this thesis is to modify and extend the ordinary Markov switch-
ing models in order to capture the regime-switching and non-linear characteristics of real
economic and financial time series. The secondary purpose is to examine the empirical
analysis by using the proposed Markov switching models.

We consistently use the Markov switching models in the empirical analysis of economic and financial
time series (in the Chapter 4) through this thesis. It seems reasonable to suppose that the approximation
of time series by discrete regimes and corresponding stochastic process is one of useful approaches to
capture economic and financial dynamic behaviors. Because economic and financial time series are not
necessarily generated under the common condition and by the common mechanism over time, differently
from physical observations or simulation data. The industrial index of prbducts provides an example.
Industrial companies as the economic agent seem to take different action for their management strategy
(e.g., business investment and marketing strategy), depending on regimes of economic expansion and
contraction. In addition, the government adopts different economic policy, which has different effects
on the industrial index of products. Financial asset price is another illustration of the same point.
Market participants, trading volume and investors’ risk tolerance seem to differ according to volatility
levels (e.g., low and high volatility levels) and price directions (e.g., upward and downward trends).

In financial markets, the monetary policy and market inventory by authorities cannot be said to be
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symmetric obviously. In the empirical analysis of the Chapter 4, we compare some Markov switching

models with their alternative continuous-type stochastic models and ordinary analytical methods.

1.2 Review of Literature

Markov switching model

Goldfred and Quandt (1973), Lindgren (1978), Tyssedal and Tjostheim (1998) and Komaki (1993) pro-
posed the switching models with some regime processes depending on the finite Markov chain. Hamilton
(1989) generalized the existing Markov switching autoregressive models, and applied it to the U.S. busi-
ness cycle analysis using GNP data. Many modifications and extensions of Hamilton’s Markov switching
model have been proposed in the business cycle analysis: Birchenhall et al. (1999), Filardo (1994, 1998),
Kaufmann (2000), Kim (1994), Lahiri (1994), Lam (1990) and Luginbuhl (1999). Applications for foreign
exchange rates were by Dacco et al. (1999), Engel and Hamilton (1990), Engel and Kim (1999), Kamin-
sky (1993) and Fruhwirth (2001); those for interest rates, monetary policies and inflation were Bidarkota
(2001), Garcia and Perron (1996), Hall et al. (1999) and Kim (1993). While there are several studies on
stock markets using Markov switching models with regime shifts in mean, variance and autoregressive
terms, some alternative models were proposed for stock market volatility, as shown below. Franses and
Dijk (2000), Hamilton (1994), and Kim and Nelson (1999) summarized the Markov switching models and
their empirical applications in economic and financial time series.

To caf)ture the property of volatility in the economic and financial time series, ARCH models with
Markov switching structures were proposed by Hamilton and Susmel (1994) and Cai (1994). Fong (1997)
applied Hamilton and Susmel’s (1994) SWARCH model to the Japanese stock market. Hamilton and Lin
(1996) and Susmel (200) extended the univariate SWARCH model to the bivariate versions to capture
international volatility transmission in stock markets. Other Markov switching models for heteroscedas-
ticity were given by Dueker (1997) and So et al. (1998).

Shumway and Stoffer (1991) and Kim (1993, 1994) represented the dynamic switching and Markov
switching models in the state space form, respectively, and their models are considered as extensions of
the Multi process model by Harrison and Stevens (1976). Filardo (1994) and Filardo and Gordon (1998)
allowed an update of the transition probability with not only past regimes but also exogenous variables.
The semi-Markov chain is another regime transition mechanism, and Durland and McCurdy (1994),
Maheu and McCurdy (2000) and Xianping and Smyth (2000) used the duration-dependent transitions

and semi-Markov chain.
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Phillips (1991) extended the univariate Markov switching model to the bivariate version with several
types of transition mechanism, and applied it to the international business cycle transmission; Kim and
Yoo (1995), Kontolemis (2001) and Krolzig (1997) studied business cycle analysis by using the multivariate
Markov switching model with simultaneous transition probability. In the analysis of volatility, there are
also some bivariate Markov switching models (Hamilton and Lin 1996, Susmel 2000).

The self-organizing state space model was first introduced by Kitagawa (1996). The implementation
of the self-organizing state space model is achieved by the Monte Carlo filter algorithm (Kitagawa 1996).
Kitagawa and Hakamata (2001) and Higuchi (2001) incorporated the Markov and semi-Markov switching
models into the self-organizing model, while Hakamata and Kitagawa (2002) proposed its modifications

and extensions.

Other approaches for latent regime and change point detection

There are many studies for latent regime and change point analysis in statistics and engineering (Basseville
and Nikiforov 1993, Lai 1995), while the CUSUM algorithm is a well-known classical method (Page
1954). Some models allowing the capture of a piecewise linear property of time series ére proposed; e.g.,
piecewise regression (Hawkins 1976, Gustafsson 1996), segmented regression (Lerman 1980) and multi-
phase regression (Hinkley 1971). In a Bayesian framework, Broemeling and Tsurumi (1987), Smith and
Cook (1980) and Stephens (1994) deal with such a problem.

Stochastic models with Poisson white noise (Kontorovich and Lyandres 1996, Snyder and Miller 1991)
attempt to approximate the low-frequency probability of regime changes or shifts, which resemble the
sound of a gunshot or a sudden noise. A variety of applications to analyze volatility of some financial asset
price returns have recently been proposed. Ball and Torous (1985), Jorion (1988) and Ball and Roma
(1993) examine empirical analysis by using models with independent jump and diffusion components.
Bates (1996, 2000), Iino and Ozaki (1999) and Ozaki and Iino (2001) have pointed out problems of
ordinary modeling and have proposed new models. It can be said that this Poisson jump-type approach
is more effective to modeling economic and financial time series including very large and rare outliers like
financial market crashes and economic events: e. g., the September 11 synchronized terrorist attack, Enron
bankruptcy and European monetary union. On the other hand, the Markov switching model wields its
power in the case of where regime shifts occur relatively slowly or gradually, or where it would be difficult
to identify changing points due to several unstable noises. We can see easily such a phenomenon in real
economy and financial markets: e.g., business cycle and trend change of financial asset prices.

The duration-dependent Markov switching model (Durland and McCurdy 1994, Maheu and McCurdy
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2000, Lam 1997) or semi-Markov switching model (Kitagawa and Hakamata 2001) is one of the statistical
models for regime changes. In this model, the probability of regime shift depends on both the previous
regime and its duration time. Thus, the Markov switching model is regarded as a special case of the
semi-Markov switching mode. We consider semi-Markov switching model as one of the subjects of our
future works. Univariate and multivariate semi-Markov switching models are described briefly in the

Chapter 5.

1.3 Contributions of this Thesis

This thesis, which covers 1) empirical analysis in economics and financial markets by using newly proposed
Markov switching models, and 2) descriptions for extensions of the ordinary Markov switching models
concerning model specification and time-varying parameterization, proposes two contributions.

The first contribution is to undertake empirical economic and financial time series analysis. To
capture the characteristics of complex time series processes in economic and financial markets, We apply
the ordinary and newly modified and extended Markov switching models to the empirical economic and
financial time series data in Chapter 4. A notable feature of this application is the novelty in scbpe, object
and method of economic and financial analysis. The empirical analysis covers the following subjects and

issues:
(1) Trend identification and trading strategy.
(2) Time-series and cross-sectional volatility analysis.
(3) Japanese business cycle analysis.
(4) Japan premium and Japanese banks’ stock volatility.
(5) Transmission of volatility.
(6) Foreign exchange volatility and intervention.
(7) International business cycle transmission.

The second contribution is the suggested extension of some of the Markov switching models used
in the empirical analysis in Chapter 5. Those that include constant parameters are generalizations of
Markov switching ARCH model, Markov switching slope change and ARCH model, and semi-Markov

switching models. In addition, We introduce the self-organizing Markov switching model (Kitagawa and
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Hakamata, 2001). This model is obtained by incorporatihg the conventional Markov switching model

with constant parameters into a self-organizing state space model (Kitagawa 1998).



Chapter 2

Markov Switching Model

2.1 Markov Chain

The concept of the Markov chain plays a central role in the Markov switching model. In this section,
we briefly review the theory of Markov chains. Kijima (1997) studied the general theory of the Markov

processes, and Hamilton (1994) discussed the Markov chain for the Markov switching model.

Discrete-time Markov Chain

The Markov property asserts that the distribution of the sequence of stochastic processes {sn} depends
only on the state s,—1 = in—1 at time n — 1, not on the whole history. Formally, for each n and every
G0y .-,in_1 and j € S, the process {s,} with state space S is called Markov process, if the following

equality holds

Pr(sn = j|80 = io, cey8p—_1 = in—l) = PI‘(Sn = j|sn_1 = in—l)- (21)

Given the history {so = 40,.-.,8n—1 = in—1}, the Markov property in equation (2.1) suggests that the
current state s, = j is enough to determine all distributions of the future. We refer to a Markov process as
a Markov chain for a discrete-time case (n = 1,2,...,N), when the state space is finite S € {1,2,...,m}.
The conditional probability in the right-hand side of the Markov property in equation (2.1) is called the
one-step transition probability from state i to state j at time n.

If the one-step transition probability in equation (2.1) is independent of time n, the transition proba-

bility is stationary, and the Markov chain {s,} is said to be time-homogeneous. Thus, we can define the

23
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transition probability in equation (2.1) as follows:

Dij = Pr(sn = jlsn—1 = in-1), n=0,1,...,N. (2.2)

It is often convenient to express the transition probabilities p;; in an (m x m) matrix P known as the

transition matriz:

DPuu P21 -t Pml
P12 P22 " DPm2
P= i (2.3)
Pim P2m ' DPmm
where
m
Osz] S 17 Zpij = 1, 'l,] € {172,"'am}' (24)
j=1 :

In this expression, the (%, j) element of P is the transition probability p;;; i.e., the probability that state

¢ will be followed by state j. More generally, the [-step transition probability at time n is defined by
N
t . , -1
) = Pr(snpt = jlsn = i) = Zpg-k i, (2.5)
k=1
and the corresponding I-step transition matrix at time n becomes
PO = P!, (2.6)
which is independent of time n.
When the transition probability in equation (2.1) is not stationary (nonstationary), the definition of
equation (2.2) is replaced by
Dn,ij = Pr(sn = jlsn_l = Z) (27)

and the corresponding I-step transition matrix at time n,

PV =P, Poyy - Popi1, (2.8)
can be represented by the product of I time-varying transition matrices P,, ..., Pn4i—1, which is a gen-

eralization of the result of the stationary transition probability such as equation (2.6).

Reducibility and Irreducibility

As an example, we consider a two-state Markov chain with the transition matrix

P 1-
p= 11 P22 . (2.9)

1~pn P22
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Suppose that p;; = 1, so that the matrix P is upper triangular. Then, once the process enters state 1,
there is no possibility of ever returning to state 2. In such a case we would say that state 1is an absorbing
state and that the Markov chain is reducible.

In general, an m-state Markov chain is said to be reducible if there exists a way to label the states
(that is, a way to choose which state to call state 1, which to call state 2, and so on) such that the
transition matrix can be written in the form

P= B¢ , (2.10)
0 D
where B denotes a (k x k) matrix for some 1 < k < m. If P is upper block-triangular matrix, then so is
P! for any I. Hence, once such a process enters a state j such that j < k, there is no possibility of ever
returning to one of the states k + 1,k +2,...,m.
On the other hand, a Markov chain that is not reducible is said to be irreducible. For example, a

two-state chain is irreducible, if p1; < 1 and po2 < 1.

Periodicity and Aperiodicity

A Markov chain is said to be periodic with d, if d < 2 is the greatest common divisor of all integers > 1
for which pg-lj) > 0. If there is no such d < 2, then a Markov chain is aperiodic. Such chains have the

property that the states can be classified into d distinct classes.

Ergodic Markov Chain and Stationary Distribution

A Markov chain is called ergodic if it is irreducible and aperiodic. Consider an m-state ergodic Markov
chain with transition matrix P. Suppose that one of the eigenvalues of P is unity and that all other
eigenvalues of P are inside the unit circle. The (m x 1) vector of stationary distribution or ergodic
probability for an ergodic Markov chain is denoted by 7. This vector 7 is defined as the eigenvector of P

associated with the unit eigenvalue; that is, the vector of stationary distribution 7 satisfies

Py =m. (2.11)

The eigenvector 7 is normalized so that its elements sum to unity (1T7 = 1, where 1 denotes an (m x 1)

vector of 1s). It can be shown that if P is the transition matrix for an ergodic Markov chain,

lim P™ =q1T. (2.12)

m—ro0
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Calculating Stationary Distribution

For a general ergodic m-state process, the vector of unconditional probabilities represents a vector n with

the properties that Pnp =7 and 177 = 1. We thus seek a vector 7 satisfying

An =eny1- (2.13)

where e, 1, denotes the (m + 1)th column of I,,,; and the ((m + 1) x m) matrix A is defined by
I,—-P :
A= . : (2.14)
].T

Such a solution can be found by premultiplying equatibn (2.13) by (ATA)~1AT:
7= (ATA) AT e 1. (2.15)

In other words, % is the (m + 1)th column of the matrix (ATA)~1A7T.

Expected Duration of a State

The expected duration of each state can easily be obtained from the diagonal elements of the transition
probability; that is, the self-loop transition probability. When d is defined as the number of time-steps
spent in state j, the probability distribution D;(t4) of the duration time t4 of the system in state j is

given by
Dj(ta = d) = p; (1 - pjj). (2.16)

The Markov chain constrains the state-duration distributions to be geometric in form. Figure 2.1 plots
their illustrative example.

Then, the expected duration of regime j can be derived as
E(d) =Y _dD;(ts = d)
d=1

=1x (1=pj;) + 2 x pj;(1 = pjz) + 3 x pLi(1 —pj) + -+
1
1-pj;

Semi-Markov Chain

This subsection discusses a semi-Markov chain as the modification of the standard Markov chain (Xian-
ping and Padhraic 2000). The process {s,} is called semi-Markov chain if it has the following generative

description:
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Figure 2.1: Duration distribution of Markov chain.
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(1) On entering state i, a duration time t4 is drawn from an arbitrary probability distribution D;(t4).

Note that ¢4 is constrained to take only integer values.
(2) The process remains in state j for time t4.

(3) At time t4 the process transitions to another state according to a transition matrix P, and the .

process repeats.

Here, D;(tg), 1 < i < m, can be modeled using parametric distributions (such as log-normal, Gamma,
negative binomial etc) or non-parametrical by mixtures, kernel densities, etc. If ¢4 is constrained to
take only integer values we get a discrete-time semi-Markov process. The semi-Markov chain can be
represented by a non-stationary Markov model where the transition probabilities are a deterministic
function of the probability distribution D;(¢4) of the duration time t4. Figure 2.2 illustrates an example

of the duration probability of a semi-Markov chain with negative binomial distribution.

2.2 Ordinary Markov Switching Model

2.2.1 Markov Switching Stochastic Trend Model

We consider a first-order stochastic trend process in which the means and variances of innovation terms can
change as the result of a regime-shift. Let y,,(n = 1,2,...,N) be a first-order difference (or logarithmic
difference) of a univariate observed variable. The univariate Markov switching stochastic trend model is

given by

Yn ~ N(/Lsn,Ufn), (217)

where y,, follows a normal white noise whose distribution changes according to the regime. The regime
itself will be described as the outcome of a latent discrete Markov chain s, € {1,2,...,m}. y, depends

on s, over time as follows:
ifs,=1, yn~N(u1,a'f)

if s, =2, Yn NN(/"Q:U%)

if s, =m, Yn ~ N(ﬂm’arzn)

First, the joint conditional distribution of y,, s, and s,_; on ¥,_; is obtained by

f(yru Sp = ja Sp—1 = 'LI\Pn—l) = f(yn|3n = ja Sp—1 =1, 1I’n—l) PI‘(Sn = j; Sp-1 = ilq’n—l); (218)
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where ¥,,_; denotes the information available up to time n — 1. Heré, the density of y, conditional on

Sn, 81 =t and ¥,_; taking on the value j is

. . 1 (Yn — .u")z
f@nlsn =, 8n-1=1%,¥p_1) = ———exp { -t ), (2.19)
V2mo; 20?

forall j = 1,2,...,m. According to the property of the first-order Markov chain, the transition probability

of s, in the Markov switching model is given by
Pr(s, = j|sn—1 = 1) = psj, (2.20)
with

S Pr(sp=jlsp1=i)=1 j=12,...,m (2.21)

Thus, the conditional probability of s, and s,_; in equation (2.18) can be updated via the transition

probability in equation (2.20) as follows

Pr(sn = j,8n—1 = i|¥n-1) = Pr(sn = jlsn—1 = 1) Pr(sn-1 = i|¥n_1), (2.22)

and the predictive probability of s, is given by

m

Pr(sn = j|¥p-1) = ZPr(sn =7, 8n-1=i|¥p_1)
=1
= Pt(sn = jlsn-1 = 1) Pr(sn_1 = i|¥n-1). _ (2.23)
i=1

Summarizing equations (2.18) to (2.23), the joint conditional distribution of y,, s, is given by

f(yna Sn = j, Sp—1 = ii\I’n—l)

= Pr(sn = jlsn-1 = §) Pr(sn_1 = i[¥n_1) exp { _m =) } (2.24)

1
Vano;

and that of s,_; on ¥,,_1, and that of y,, on ¥,,_; is given by

an‘I’n 1) = 2
>

j=14

> is =j1\11n_1)\/2_+mjexp { as ) } . (2.25)

(yn, Sp = j7 Sp—1 = 'Lllpn—l)

Ms nMs

, . . 1 ;
Pr(s, = jlsn—1 = 1) Pr(sn—1 = z]\I’n_l)m exp { —ar
J 7

i
1\

i
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The log likelihood for the observed data of the Markov switching model can be calculated from equation

(5.17) as
N
L©) = log f(yalTns)

n=1
N [ m m

= Z log Z Z fWn,8n = J 8021 = il\I’n—l) J
n=1 L j=1 i=1
N [ m m

. ] . 1 (Yn — /"j)z

=) log Pr(sn, = jlsn—1 =) Pr(sn—1 = i|¥p_1) ——exp { —_
2| %2 Vi, 7
N [ m

- 1 (yn - /J‘J')2

= = 1) — —— 2.2

nzzjllog - ;Pr(sn i%n 1)mo_j exp { 207 (2.26)

where 6 denotes the unknown parameters. The maximum likelihood estimation of @ is obtained by
maximizing equation (2.26).

By the non-Gaussian filter (Kitagawa 1987), the filtering probability of s,
f(Yn,8n = J[¥n_1)

Pr(s, =j|¥,) =

F(yn|¥n-1)
— f(ynlsn = i’ \Iln—l) Pr(sn = il‘Iln—l)
f(ynl\Iln—l)
_ 2izy Pr(sn = jlsn—1 = 9) Pr(sn-1 = i|¥n-1)f (Ynlsn = 4, ¥n—1) (2.27)
f(ynlq’n——l) ’
and the predictive probability
Pr(spi1 = k|¥s) =D Pr(sns1 =k, s = j|¥y)
Jj=1
=Y Pr(snt1 = klsn = §) Pr(sn = jI ), (2.28)
j=1

are recursively obtained.

Two illustrative examples for the two-regime Markov switching model (m = 2) can be found in Figures
2.3 (example 1) and 2.4 (example 2). The joint distribution f(yn,sn = i),i € {1,2}, is obtained as 7;
times a N(u;,07) density. The unconditional distribution f(y,) for the observed variable is the sum of
two magnitudes, f(yn,sn, = 1) and f(yn, s» = 2). Figure 2.3 shows the case of Gaussian mixtures with
the Markov switching variance, allowing skew or kurtosis of variable y,. Figure 2.4 shows the case of

Gaussian mixtures with the Markov switching mean.

2.2.2 Multivariate Markov Switching Statistic Trend Model

We extend the Markov switching process for the univariate time series mentioned in the previous section
to the multivariate time series. Let yn = (¥1,n,¥%2,n,---»Ykn) > » = 1,2,..., N, be the k-dimensional

first-order difference (or logarithmic difference) of time series at time n. The k-dimensional first-order
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Figure 2.3: Example 1 — Joint distributions a: f(yn,sn = 1) and b: f(yn,sn = 1), and unconditional

distribution c: f(yn).
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stochastic trend model (random walk model) with m-state first-order Markov switching drift and variance

is given by

Yn ~ N{(u,X) n=1,2,...,N, (2.29)

where y, is assumed to be a k-dimensional Gaussian noise sequence with (k x 1) mean vector and (k x k)

variance-covariance matrix as follows

y’lysl,n U%,sl,,. 0 T 0
l’t27 n 0 02 i 0

w= =, == _ B _ : (2.30)
ukysk,n 0 0 Tt Uzask,n

Here, the elements of u and the diagonal elements of ¥ depend upon a k-dimensional m-state and first-

order Markov chain vector

sa=| |, n=12..N, (2.31)

where s € {1,2,...,k}.
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Figure 2.4: Example 2 — Joint distributions a: f(yn,s, = 1) and b: f(yn,s» = 1), and unconditional

distribution ¢: f(y,).
04 r

03 r
03 r
0.2 r
Slxp,19)
0.2

01

01 r

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
xl,n

The number of possible states for the k-dimensional first-order stochastic trend model with m-state
and first-order Markov switching mean and variance in equation (2.29) is m*. While these states are

described by the (k x 1) Markov chain s,, they can easily be indicated by the newly defined label

sy €{1,2,...,m* — 1,m*} as follows:
sy =1, if sin=1,...,8n=1,
sk =2, if s1,=2,... .80 =1,
st =mkF -1, if sipn=m,...,8kn=m—1,
* __ k if — =
sk =mk, if s1pn=m,... 8, =m.

Thus, depending on the new label s}, u and ¥ in equation (2.30) are represented as follows:

if sp =1, p= (g1, pk1)T and 0 = (011,...,0%1)7
if st =2 = ( Y and o= (01,1,...,011)T
n ) =015 Hid L,1y+--r Ok,
if S; =mr - 1, B = (I‘Ll,mka- .. 7/1'k,m’“—1)T and 0 = (Ul,mka' . ,Uk,mk—l)T

k

if 8% = mF, B= (1 mks s k)T and 0 = (07 ks, Op i) T
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we can replace the density of y, conditional on s,, s,—1 and ¥,_; in equation (2.19) for the univariate

version by

. ) 1
FWals® =% 8nc =%, Upy) = (21) " F|T| T exp { —iy-nTE_ly_n } (2.32)

for all j* = 1,2,...,m* Note that the (k x 1) vector §n = (y» — p). The joint conditional distribution of
Yn, Sy, and s _, on ¥,_, is given by

Fyns 85, = 3%, 5521 = ©'{¥n_1) =Pr(sy, = j|s5_y = i") Pr(syoy = 7| ¥n-)

1
><(27r)_"5‘|2|_% exp { —§y'nTE_1y'n } . (2.33)
and the conditional density of y, can be obtained via summation of equation (5.21) over all possible
states:
m.k mk
fWnl¥n-1)= Z Z FQyn,sn =13, 85_1 =1%)
j*=li*=1
mk mk
=3 Y Pr(s} = j*|sn1 = i*) Pr(s}_;|¥n-1)
j*=1li*=1

1
x(2m) "% |Z| % exp { —59"27'g }

=Y Pr(sh = j|¥n1)(2m) S| P exp { —%yTz-ly } : (2.34)

=1

The log likelihood of the multivariate Markov switching model is given by
N
L(8) = ) 10g f(yn|¥n-1)

n=1

N m* mF
=3 log [ 33 flumish =755 = i*l%—n}
n=1

j*=1li*=1

N m* m* ’
= log [ > > Pr(sy = §*|spoy = i) Pr(shoy = i*[¥n-1)
n=1

jr=1li*=1

x(2m)~# (2|7 exp { —%.17""2“17 }]

N m*
=D log [ 3 Pr(sh = 5*|¥n_1)(2m) "5 |Z| 7% exp { —-;-gTz-ly H : (2.35)

n=1 j*=

where 6 denotes the unknown parameters. The maximum likelihood estimation of @ is obtained by

maximizing equation (2.35).

2.2.3 Transition Probability

In the multivariate Markov switching model, the type of regime transitions can be classified into three

categories depending on their transition probabilities — general (unrestricted), independent, and simul-
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taneous transitions. The last two are restricted versions of the first. Each type of transition probability

can characterize the relationship among observed time series and their corresponding process.

General Transition Probability

In an unrestricted multivariate Markov switching model, the property of (k x 1) Markov chain vector

—_— T . .
Sn = (81,n,82,n, .-+, Sk,n)” is given by

Pr(S, = J|Suy =11, Sn_2 = I%,...) = Pr(S, = J|Sp_y = I), (2.36)

2 ;2

where the (k x 1) state are given by J = (ji,ja,...,45%) T, I = (i,4},...,i0)T, ' = (3,43,...,i9)T

€ {1,2,...,m}. s1,n, { =1,2,...,k, is dependent on not only the previous state s;,—; for itself, but all
the previous state Sp_1 = (51,n—1,52,n—1,- -, 8k,n-1)7 fOF Un = (Y1,n,Y2,1, - - - »Yk,n) - Since the (k x 1)

transition probability in equation (2.36) is independent of time n, the transition probability of the Markov

chain vector S, is to be stationary, and is defined by

Diyiggroegn = Pr(sl,n = jl, cees Sk = jklsl,n—l = il, ey Skn—1 = ’ik), (237)
with
m m
E ce z Diy i gi-de — 1, (238)
n=1 =1
for all iy,4s,...,% = 1,2,...,m. Therefore, we may consider the k-dimensional and m-state Markov
chain s;,,1 =1,2,...,k as the univariate and m*-state Markov chain s as follows
sy =1, if sin=L1Lsn=1...,8%n=1,
sy =2, if s1n=2,8n=1...,8%.,=1,
st =mk -1, if sin=m,S2,=m,...,84p=m—1,
* k if — — _
sk =m", if sin=m,s0n=m,...,8,=m,

Since this newly indicated Markov chain s}, follows the first-order and m*-state Markov process, the

transition between regimes can be defined with transition probability

Pisje = Pr(sy, = j*|s;_y =14%), i*,5* =1,2,...,mF. (2.39)
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This transition probability p}.;. is represented by the following (mF x mF) transition matrix form

P P e ankl
p* p* . e p:’l
P= o o (2.40)
pImk p;m" e p:nkm"

where the (i, j) element shows the transition probability from state j to i. The diagonal elements indicate
the self-loop transition probabilities. We can easily see the relationships and transmission among the
states with the transition diagram below.

As an example, see the bivariate and two-state Markov chain s;,, € {1,2},! = 1,2 with the general

transition probability. This can be re-defined as the univariate four-state Markov chain s, € {1,2,3,4}

as follows
st =1, ifs1,=1and s, =1,
sk =2, if s1,=2and s3, =2,
sk =3, if sip,=1and sy, =2,
sk =4, ifs1,=2and sy, =1.

From equations (2.39) and (2.40), the transition matrix P with the transition probability pj. ;. is given
by '
Pl P Pa Pu
Pe Pl2 P2 P32 Pl ' ‘(2.41)
Pls P33 P33 Pis
Pls Pis D3y P
Figure 2.5 easily and visually illustrates the relationships and transition mechanism among regimes. In

this Figure 2.5, circles denote four regimes for s}, € {1,2,3,4}, and arrows denote the transitions between
g n

two regimes, including the self-loop transitions.

Independent Transition Probability

Next we consider the multivariate Markov switching model with independent transition probability. This
model is a restricted version of the original multivariate Markov switching model described in the previous
subsection. The state of the observation vector ¥, = (¥1,n:¥2,n>- - - ,Ykn)T depends on the Markov chain
vector sn = (S1.n,52.ms- -+ »Skm) " as well as the original unrestricted model. The difference between these

two multivariate Markov switching models is in the structure of the transition probability. In the Markov
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Figure 2.5: Tlustration of general transition probabilities (bivariate two-state case)
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switching model with independent transition probability, the transition probability can be written by
multiplying together those for the independent Markov chains governing $1 n,82,n," " Sk,n- Therefore,

the transition probability in equation (2.37) is replaced by
ik, 1o Jk sz]’ (2.42)
where
Py = Pr(sin = jilsin1 =4),  1=1,2,... .k (2.43)

This transition probability can be written as the (m* x mF¥) transition probability matrix (a Kronecker

product of independent transition probability matrices for { =1,2,..., k)
P=P'@P’®..-@ P*1 @ P* (2.44)
Phi Py Pm ph Py - P
1 1 1 k k k
p p .. p p p ..o p
_ %2 ?2 'r-n2 2 ® Tz ?2 rfzz ’ (2.45)
p%m p%m e p}nm pllcm p,2cm 0 Pmm
k k—1 k
JJ Pt | oy P Il D1
k-1 k-1
_ Hz Y- | i .171111”2“2 R | I?inlpm2 . (2.46)
k k-1 k
| P =1 P o | P

The top (b) of Figure 2.6 illustrates relationship and transition for a bivariate and two-state Markov
chain s;,, € {1,2},! = 1,2 with independent transition probability. Note that the definitions of Markov

chains are the same as those in the general one.

Simultaneous Transition Probability

Finally, we consider another restricted multivariate Markov switching model, which includes a simulta-

neous transition probability. This restriction of simultaneity of state shifts is defined by

S81;n =8San="""= Skons (2'47)
and the transition probability is denoted as follows
pij = Pr(sn = jlsn—1 = 1)

=Pr(sin=53n="""=5kn =J|S1,n-1 = 82,n-1 =" = Skn-1 = i), (2.48)
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Figure 2.6: Illustration of independent (b) and simultaneous (c) transition probabilities (bivariate two-
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b: Independent transition probability

“ P
P >

¢: Simultaneous transition probability

©



2.2, ORDINARY MARKOV SWITCHING MODEL 39

where s, = 51, foralll=1,2,...,k, and
> opii=1, (2.49)
j=1

for all i = 1,2,...,m. This simultaneous transition probability can be written as the (m x m) transition

probability matrix

Puin P21 o Pmi
Diz2 P22 - DPm2

P = ) ) . . (2.50)
Pim P2m °*°° DPmm

In this multivariate Markov switching model with simultaneous transition probability, all the observed
time series shift among the same state over time. The bottom (c) in Figure 2.6 illustrates relationship and
transition for a bivariate and two-state Markov chain s;, € {1,2},] = 1,2 with simultaneous transition
probability. Note that the definitions of Markov chains are the same as those in the general one. In
simultaneous transition probability, we consider only two regimes, according to equationa (2.47) and

(2.48).

2.2.4 Exogenous Time-varying Transition Probabilities

In both the univariate and multivariate Markov switching state space models described in the previous
subsections, we assume that the transition probabilities are time-homogeneous over time. We extend
the time-homogeneity transition probability of Markov switching to exogenous time-varying transition
probability of Markov switching. That is, the transition probability changes depending on exogenous

variables. The time-homogeneous transition probability from s,_; = to s, = j is defined by
Dij :Pr(sﬂ =j|8n—1 =1/)7 7‘7.7 = 112,"'am7 (251)

and the time-homogeneous transition probability matrix is given by

P P - Pm
P12 P22 " DPm2

P= _ . . . (2.52)
Pim szm *t Dmm

To extend the transition probability from time-homogeneity to exogenous time-varying, we can replace

equation (2.51) by

Dij(zn) = Pr(sn = j|sn—1 =1, 2a), i,j=1,2,...,m, (2.53)
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where in the case of the univariate Markov switching model z,, = {z1 n, 22.n, - - -, 2i,n } IS the l-dimensional
exogenous time series governing the transition probability. The transition probability matrix in equation

(2.52) is replaced by

pll(zn) D21 (zn) r Pmi (zn)
P(z,,) _ D12 (zn) D22 (zn) .t pm2.(zn) . (2'54)
plm(zn) Do2m (zn) ** Pmm (zn)

The exogenous time-varying transition probabilities may have the following logistic form

exp(ay; + 22:1 Bh,ij2k,n) (2.55)
1+ 37  exp(auj + Ykes Broijzen)

Dij(Zn) = Pr(sn = jlsn-1 = i,2,) =

foralli=1,2,...,mand j=1,2,...,m —1, and

m-—1
Pim(2n) = Pr(s, =m|sp—1 =4,2,) =1 — Z Dii (zn), (2.56)
=1
fori=1,2,...,m. Note that o;; and B ;; are unknown variables which determine the effects of exogenous

variables on the transition probability.

The conditional joint density-distribution of y,,, s, and s,_;
f(yna 8n = J,8n_1 = il\Iln——la zn) = Pr(sn = jlsn—l =1, zn) Pr(sn—l = 7JI‘I’n—l, zn—l)

Xf(Wn|Sn = J, Sn—1 =1, ¥p_1), (2.57)
summarizes the information in the data and explicitly links the transition probabilities to the estimation

method. The conditional density is

f(yn]‘I’n—lazn) = Z Zf(ynasn = ja Spn—1 = il\pn—lazn)

7j=11i=1
=2 fnlsn = G,8n-1 = 6, ¥0_1) Pr(sn = jlsn—1 = i, 20)
Jj=1i=1
Pr(sn_l = ilqln—l,zn-l) (258)

and the log-likelihood function is

N
L(0) = _log f (yn|¥n-1, 2s)

n=1

m m
- Zlog l:zz.f ynysn :j) Sp-1 = 7:I‘I'n—lyzn)

j=11i=1

—Zlog [sz(ynisn—y,sn L=, W 1) Pr(sn = jlsn_y = i, 20)

j=1 i=1

n=1

X Pr(sp—1 = i|%¥p_1,2n-1) ] . (2.59)
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The inferred probability of the state at time n can be calculated by integrating out the effects of the past

states in the joint density-distribution as follows

Pr(sn = j|¥n,2.) = ZPr(sn =7, 8n_1 =1|¥n, 2n)
i=1
3 f(y"’sn = j’ Sn—1 = il\I’n—lazn)
- : 2.60
=1 f(y"|‘Iln—1; zn) ( )

Time-varying transition probabilities also imply time-varying expected duration of a regime. A closely
related issue in the business cycle literature is duration dependence, or whether the probability of a
transition between regimes depends on the length of time the economy has been in a recession or boom.
It is a special form of time-varying transition probabilities in a regime-switching model of the business
cycle, in which z,_; is replaced by length to date of the current regime (boom or recession). Durland
and McCurdy (1994), for example, examine the nature of business cycle duration dependence within
Hamilton’s (1989) univariate Markov switching model of the business cycle. Kim and Nelson (1998)
provide a Bayesian analysis of business cycle duration dependence based on a dynamic factor model with

Markov switching.

2.2.5 Switching ARCH Model

By incorporating the Markov switching structure into the autoregressive conditionally heteroskedastic
(ARCH) model, Hamilton and Susmel (1994) propose a new ARCH model, the switching ARCH or
SWARCH model. This model is superior to some simple ARCH and GARCH models and their modifi-
cations because it captures more realistically the economic and financial time series properties (mainly
volatility), including dramatic structural change.

Let yn» be the first-order difference (or logarithmic difference) of observed time series. We consider

the univariate two-state SWARCH process for y,, as follows

Yn = [+ En, en|Pn-1 ~ N(0,hy), (2.61)
hn . 2.

=op+ Y a;——=, 2.62
Gsn 0 ; Gsn_i ( )

where g is a scale parameter that captures the change in regime, and determines depending on regime
if s, =1, g1 =1,

if s, = 2, go takes a constant variable.

Here, the unobserved variable s,, takes a value of 1 or 2, and its evolution depends on the first-order and
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two-state Markov switching process as follows
Pr(sp = 1|sp—1 = 1) = p11,
Pr(sn = 2|sn_1 = 1) = p1a,
Pr(sp = 1|sp—1 = 2) = pa1,
Pr(sn = 2|sn—1 = 2) = pa2,
where p;; is the transition probability that the process switches at time n from state i to state j. The

log likelihood for the observed data of the SWARCH model can be calculated as follows

N
L(B) = Z logf(yn'q’n-—l)'

n=1
N m
:Zk’g [Zpr(yﬂ75n =j7 Sp—1 :zl‘I’n—l) ]
n=1 j=1
N m m
= Z lOg [ Z PI'(S,. = jlsn—l = 7') Pr(sn-—l = il‘I’n—l)
n=1 j=1 =1 .

1 (yn — p)? |
_n - ) 2.
Sk P { o, (2.63)

where 6 denotes the unknown parameters. The maximum likelihood estimation of 8 is obtained by maxi-

mizing equation (2.63). Here, since the Markov chain s,, is not observed, we can obtain the Pr(s,,_1|®,_1)
in equation (2.63) by using the method of equations (2.27) and (2.28) of the univariate Markov switching

stochastic trend model.

2.3 State Space Representation of the Markov Switching Model

State space models have a wide range of potential applications in econometrics to deal with dynamic
time series models. The univariate and multivariate Markov switching models also can be represented by
the state space form. In this section, we briefly review linear Gaussian sum, nonlinear and general state
space modeling for the Markov switching model.

Note that the state space representations for the modified and extended Markov switching models

described in the previous sections are discussed in detail in Chapter 4.

2.3.1 Linear Gaussian State Space Modeling

Shumway and Stoffer (1991) and Kim (1993) incorporated a Markov switching model into the state space
model. In this subsection, we briefly review their Markov switching state space model. Let y, be the

[-dimensional observed time series at time n. The ordinary Gaussian state space representation of a
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Markov switching model is given by:

Tn = sy, + Foy . Tn1 + Gy, (2.64)
Yn = Hzp + vn, (2.65)
and
Wy, 0 R, ., 0 ' .
=N , ’ , (2.66)
En 0 0 Qs

where z, and y,, , are the m-dimensional state and drift vectors at time n, respectively. wvn is a k-
dimensional system noise or state noise with zero mean and variance-covariance matrix Q,_ . wy is a
I-dimensional observation noise with zero mean and variance-covariance matrix R,, . Fj,,,G and H
are m x m, m x k and | x m matrices, respectively. Also for convenience, we assume that E(wn,vm) =0,
for all n and m. Equations (2.64) and (2.65) are the system and observation models, respectively.

Here, F,, ,,H,R,,, and @Q,,, are all dependent on discrete-valued k-state Markov chains

$1,my82,m, 53,0 and San € {1,2,3,...,k}, respectively. The elements of F, ., H and values of R,

and @,,, can be specified as

f;gf,’f) = fl(a’b)31,1,n +- 4 f,g“’b)sl,k,n, (2.67)
h(s‘;fg) = h*sp 10+ + ™ 52 40ms (2.68)
Tg:::) =r{®sg 10+ + 183 4m, (2.69)
qs(sj,’:) = qga’a)34,1,n +-o Q£a’a)34,k,n- (2.70)

where f,ga’b),hgf’b),ria’a) and q,(ca’a) are the elements of matrices Fy, ., H,R,,, and Q, ,, respectively.

Sk, k= 1,2,3,4 takes the value 1 when s, is equal to k and 0 otherwise. $; 5, 82,n,83,» and s4 5, follow

k-state and first-order Markov processes.

2.3.2 Nonlinear Non-Gaussian State Space Modeling

The Markov switching model can be represented by using a nonlinear non-Gaussian state space model
(Kitagawa 1987) as follows
In = fsl,n (xn——ly 'Un) (271)

Yn = hsy . (Tn, Wh), (2.72)
where z,, is an unknown state vector, and v, and w, are the system noise and the observation noise,
respectively. Equations (2.71) and (2.72) are called the system model and the observation model, respec-

tively. The initial state Zo is assumed to be distributed according to the density po(z). fs, . (z,v) and

hs, . (x,w) are possibly nonlinear functions of the state and the noise inputs with different functions and
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moments, depending on the k-state and first-order Markov chains s; , and s1.» € {1,2,...,k}, respec-
tively. Also, densities g, ,(v) and r,, ,(w) of v, and w, are dependent on the k-state and first-order

Markov chains s3,, and sqn € {1,2,...,k}, respectively.

2.3.3 General State Space Modeling

As a generalization, we consider a general state space model (Kitagawa 1996) for the Markov switching
model as follows
Ty~ Q(Tp|Tn-1) (2.73)
Yn ~ 1(ynlTn), (2.74)
where y,, is the observed time series and z,, is the unknown state vector. g and r are conditional
distributions of z, given z,-; and of y, given z.,, respectively. The initial state vector zg is distributed
according to the distribution p(zg|Ys). Markov switching models can be expressed in this general state

space model for (Kitagawa 1996) as follows
Ty ~ q(wna 3n|zn—1, S'n—-l) (275)

Yn ~ T(Yn|ZTn, 8n)- ' o (2.76)
Here, ¢(2n, Sn|Tn-1,5n—1) is the conditional distribution, and r(y,|T,, s,) is the conditional density of

the observation given the state.



Chapter 3

State Estimation and Model

Identification

3.1 Non-Gaussian Filter and Smoother

For the standard linear-Gaussian state space model, predictive, filter and smoother densities can be
expressed by Gaussian densities and their mean vectors and the variance-covariance matrices by using
the well-known Kalman filter algorithm (Kalman 1960). However, for the nonlinear and non-Gaussian
state space models including Markov switching structure, the predictive, filter and smoother distribu-
tions cannot be completely specified by the mean vectors and the variance-covariance matrices, since
the conditional distributions become non-Gaussian. Here, the filter and smoother of the nonlinear and
non-Gaussian state space model with Markov switching (Kitagawa 1994, Kitagawa and Hakamta 2001)

are respectively represented as follows:

[Non-Gaussian One-step-ahead Prediction]

m
p(-’L’n,Sn = jl‘I’n—l) = Z /p(xn——lysn-—l = 'Ll‘IJn—l) Pr(sn = jlsn—l = l)
j=1

m .
= Z /p(zn|xn—1a3n = j,8n-1 = 1)
j=1

Xp(il,‘n_l, Sp—1 = ’i|‘I’n_1) PI‘(Sn = len_l)dCEn_l. (31)

[Non-Gaussian Filter]

45
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P(iIIn, Sn = ],‘Iln) = p(xn, Sp = len: 'I’n—l)
_ P(Yn|Tn, \I’n—l)p(mn, Sn = jlq’n—l)

— (3.2)
P(Yn|¥n-1)
where the predictive distribution of y, is evaluated by
P4nl¥nes) = [ Plunlzn)p(nl T-1)dzn. (33)
[Non-Gaussian Smoother]
Using the results of the non-Gaussian filter, the smoothed density p(z,|¥x) is obtained by
P@ns 30 =180) = 3 [ pon,5ns1,50 = Jy$ni1 = HEN)Ens
Jj=1
= Z/P(zn+1>3n+1 = kl‘I’N)p(a:nlzn+1,sn =J,8n+1 =k, ‘I'N)
i=1 '
X PI‘(S".H = k|sn = j)d.’l)n+1
= p(Tn, S0 = J|¥n) Z / P(Tnt1, Snt1 = kl‘I’N)p(zn+1|znasn+l =k, 80 =j)
prt P(Znt1;8nt1 = k[ ¥n)
X PI‘(Sn.H = k]sn = j)d$n+1. (34)

The recursive filter and smoother for the two dimensional state space model can be implemented
by using numerical integration based on step function approximation of the related distribution. The
marginal conditional distributions of z, and s, are obtained by integrating p(z,|¥:) = p(Zn, sn = | ¥1),

ie.,

P@nl®) = Y [ plan,50 = slW)don, (3.5)
j=1

plon = 4100 = / Py 50 = §¥1)dan. (3.6)

The complete implementation of the nonlinear and non-Gaussian filter needs miassive computational
power. Kitagawa (1987) and Kramer and Sorenson (1988) proposed approximating the densities numer-
ically by a piecewise linear function. In the multi-dimensional case, however, even if we use such an

approximation, the computational burden becomes an impediment to applying empirical data analysis.

3.2 Gaussian Sum Filter

Some approximating methods to mitigate this computational burden of the nonlinear and non-Gaussian
case are proposed by Gelb (1974), Jazwinski (1996), and Anderson and Moore (1979). For the Markov
switching model, the application of a Gaussian-sum filter (Sorenson and Alspach 1971, Alspach and

Sorenson 1972, Harrison and Stevens 1976, Anderson and Moore 1979) is one of the most practical
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ways. Harrison and Stevens (1976) show the filter algorithm for a mixtured model. Shumway and Stofler
(1992) introduce the state space dynamic switching model. Kim (1994) extend Hamilton’s (1989) Markov
switching model to the standard state-space form, and propose the recursive filter and the modified
smoother. First, we describe this recursive filter algorithm for the state vector z, and the discrete-valued

unobserved variable s,, as follows:

Step 1: Filter for the state vector z,

[One step ahead prediction]

299 =y 4 Fg®

nin—1 n—1|n-1°

WD =l FT +GQGT,

njn—1 n—1jn—-1
where

(59)

mn|n—1

= E(xnl‘l’n—l,sn = ja Sp—1 = 1)7

'U,(.,Jiil)_l = E[(mn - m'n‘n—l)(x’n - wnln—-l)Tl‘Iln—la Sp = J,8n—1 = i]a

and ¥,,_,; is an information available at time n — 1.
[Filtering]

KD =00 HT(HWG)_ H" +R)7,

nln—1
0 =)+ K- HGE),
,U(ji) =(I- KT(Lji)H)v(ﬁ)

nin njn—1’

where

mfffrz = Elzn|¥n, 85 = J, Sn-1 =i},

'U,(ljl,ln) = E[(xn - mnln—l)(mn - xn|n—1)T|\I’n7 Sn = J>Sn-1= l]

Step 2: Filter for the unobserved variable s,

It is possible to represent the filter for the unobserved variable s, as the special discrete version of the
non-Gaussian filter (Kitagawa 1987, 1994). Hamilton (1989) introduced it into estimations of the Markov
switching model, and this is well-known as the Hamilton’s filter.

[One step ahead prediction]

Pri(sn = j|¥n-1)= ZPr(sn =5,8n—1 = 1|¥p-1)
j=1

= Pr(sn = j|sn—1 = §) Pr(sn—1 = i|¥n_1),
—~
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[Filtering]
Pr(sp = j|¥p_1) = ZPr(sn =7, 80-1=1¥p_1)
=1

_ i FWnlsn = j,8n-1 =14, Up1) Pr(sn = j, Sp—1 = | ¥p_1)
.f(ynl‘IJn—l)

i=1

Note that f(yn|s$n = J,8n—1 =1, ¥n_1) and f(yn|¥,-1) denote the following:

f(yn|sn = ja Sp—-1 = ia ‘I’n—l)
1 (n — Hzl)_ )T (yn — H2G))_))
T

— T €
(2m)% (ry, 2ry,

with r,, = vajil)_lH:{ + 7@, and

f(ynlqln—l) = Z Z f(yn|sn =J,8n-1 =1, \I"n—l) Pr(sn = 4,801 = 7:I‘I’n——l)-

j=1i=1
Step 3: Collapsing
To avoid an explosion in the number of Gaussian components, the approximation techniques, proposed
by Harrison and Stevens (1976), Hamilton (1989), Kitagawa (1994) and Kim (1994), are used:

G) _ 2oie1 Pr(sn_1=1,80 = ]|\Iln):c1(:|2
29 =

= 3.7
nin Pr(S, = j|¥,) ’ @)
5 TRy Pr(sno =i = %) { 040 + @), - 29D D, - 2YN7T } ie

Unin = Pr(s, = j|¥,) ' (38)

To avoid an explosion in the number of Gaussian components, we re-approximate the densities by a
reduced number of Gaussian components at each time step, (Harrison and Stevens 1976). The re-
approximation is motivated by the observation that a relatively small number of Gaussian densities can
reasonably approximate a large class of distributions and by the expectation that the complexity of the
density will not increase very significantly with the evolution of the time step.

Harrison and Stevens (1976) and K‘itagawa (1994) proposed a precise measurement to evaluation
approximation by using the KullBack-Leibler information number. General representation of collapsing
method in equations (3.7) and (3.8) to approximate the filtering densities by a fixed number of components

at each step of the recursion is given by:
L
f(@nl®) — S Pr( - 2N (a),09) . (3.9)
=1

In principle, this collapsing should be realized by finding the minimizer of a criterion for the dissimilarity

of the true and approximated densities. They exploit the Kullback-Leibler information number as follows

157 = [10g 28 f(a)aa, (3.10)
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with f(z) and f*(z) the true and the approximated densities, respectively. If I(f*) = 0, this approximated
densities are completely in consistency with the true ones. Closer to zero I(f*) is, more precise this
approximation is.

Kitagawa (1994) shows illustrative examples of this Gaussian sum approximation for the Gaussian
mixture model and its evaluation by the Kullback=Leibler information. In addition, Kim (1994) show
that enough efficient approximation can be obtained by using these collapsing methods concerning the

Markov switching model and the mixtured model, respectively.

Step 4: Iterate step 1 to 3 forn=1,2,...,N

As a by-product of iterating these filter algorithms from set 1 to set 3, we can easily obtain the approximate

log likelihood function for unknown parameter vector 6 = { Lk,05 Mk, 1> Thy ks P00, P113 6 = 1,2, ., K } by:

N
L) =) 108 f (yn|¥n-1)

n=1
N [(m m

=Zlog Zz.f(ynasn =J,8n-1 =7:|‘I’n—-1)
n=1 _i=1 7j=1

N m m
= Zlog Z Z fWn|sn = J,8n-1 =1, ¥p1) Pr(sn = J,8n-1 = 8| ¥n-1) | -
n=1

i=1 j=1
3.3 Gaussian Sum Smoother

3.3.1 Kitagawa’s two-filter Formula and Gaussian Sum Smoother

In the Gaussian sum smoothing algorithm using the two-filter formula proposed by Kitagawa (1994), the

smoothed density p(z,|¥N) can be expressed by

P(Zn|¥N) = P(@a|Uno1) (¥ |20)p(T" [ Tnr) " (3.11)

Here ™ is the information from present and future observations. From (6.21), obtaining the smoothed

density requires p(¥"|z,,). This term is evaluated by the indicated backward filtering operation.
[Initialization)]
p(¥N|zn) = plynlen). (3.12)

[Backward Filtering]

e

p(THz,) = / DT |21 (T [0) i, (3.13)

hude ]

p(T™zn) = p(T" 20 )p(ynln).- ’ (3.14)
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If we assume that p(a:nl\Iln 1) and p(¥™|z,) are expressed by

P(Tn|¥ny) ZPr n = §)0;(Tn]Tn1), (3.15)
M V .

P(Ezn) = Y Pr(sns1 = k)or(Ten), (3.16)
k=1

where @;(z,|¥,—1) = N 9 _ ,Vj _.) and @ (¥nlz,) = N(2F the Gaussian-sum smoother
J nin—1? " n|n—1 (k)

n|n? nln

is obtained by

P(2n|¥n) < p(U"|20)p(Tn | ¥n—1)

M M
=3 D Pr(sn = b, swan = HEN) (T )i (@0 2"
k=1 j=1
M M
=Y "> " Pr(sn = j, Sn41 = k|UN)pr(2n] Tn). (3.17)
k=1 j=1
Here ¢ (z,|Py) is the Gaussian density with mean xfﬁj\} and covariance Vrflklf}) as follows:
9 =V + U 19
o) =2+ I =5, ), 519
k
ViR = - I . (3.20)

3.3.2 Kim’s Smoother

Kim (1994) proposed another smoothing algorithm for a Gaussian sum approximation of the Markov

switching model. In this subsection, we briefly review Kim’s smoother.

Step 1: Smoothing for the state vector z,:

AGR) = v(]l’k)FT S;]+k1)]nl’ (3.21)
z(m) = z(a] k) 4 4GP ( (J’k)uv _ ngl)ln) , (3.22)
U(:“r;) *”(]i k) 4 4G ( <J,k1)w iﬁ'?]n) AGRT (3.23)
and
ToN = i f: Pr(sn = j,snt1 = KTN)aY), (3.24)
j=1k=1
where
E'Ijk) = E(2a|¥N, Spp1 = k, 50 = j), (3.25)

vffl’]’f,) =E [(zn — Lo )(Tn — zn|N)T|\IIN,sn+1 =k,5n =j]. (3.26)
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Step 2: Smoothing for the unobserved variable sy:

Pr(snt1 = k) Pr(sn+1 = K|sa = J)
27
Pr(sny1 = k|¥5) (8.27)

Pr(s, = j, 8n4+1 = k|¥nN) = Pr(s, = j|¥,)

and

Pr{spt1 = k|¥N) Pr(snt1 = klsn =
Pr ( = ]l‘I’N) Pr(sn = ]l‘Iln) Z = P1|‘(3N3.1 ( kl-i;[’l ) | J) (3'28)
k=1 nrl T

where j,k=1,2,...,m and ¥n = {y1,92,-.-, YN}

3.4 Monte Carlo Filter and Smoother

Some filtering methods based on the sequential Monte Carlo approach (for example, Gordon et al. 1993,
Carlin et al., Carter and Kohn 1994, Kitagawa 1996) have recently been proposed for nonlinear and
non-Gaussian models. The filtering and smoothing formula for the Markov switching model can easily be
implemented by the sequential Monte Carlo method (Kitagawa 1996). In this method, we approximate
each distribution by many “particles”, which can be considered as realizations from that distribution.

Specifically, assume that each distribution is expressed by using m “particles” as follows:

{v 1(113, 'Slm)} ~  plvn) System noise
PO, oM™}~ p@alVao1) : - Predictor
(O, L)~ plalYa) Filter
{5£L1|)N’ vsflrrp)z} ~  plza|YN) Smoother

That is, we approximate the distributions with the empirical distributions determined by the m particles.
Then it can be shown that a set of realizations expressing the one step ahead predictor p(zn, Sn|Yn-1,2n)

and the filter p(z,, Sn|Yn, 2,) can be obtained recursively as follows:

[The Monte Carlo Filter]

1. Approximate the initial distribution by fj; @ po(z)forj=1,...,m.

2. Repeat the following steps forn=1,...,N.

(a) Generate system noise v(J) ~ p(vo) and v(J) p(vy) forj=1,...,m.
(b) Generate a latent Markov chain s e {0,1} given S,—; and z,, for j=1,...,m

(¢) Approximate the predictive distribution by p(J ) = =Q( - | f,(f_) 1) and sy ), forj=1,...,m

D = R(yalpt) for j=1,...,m

(d) Compute the Bayes importance weight by ax
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Filter for the previous state
System noise

|

O O O O O O O Predictor
!

:

:
|

v v v

o
Z .\ Filter

v v v v
ONOIGICIONNG) o0 O Filter (after resample)
Figure 3.1: One cycle of the Monte Carlo filter (m = 9).
(e) Approximate the filter distribution, generating f(] ), j = 1,...,m by the re-sampling of
p%,...,p"™ with weight proportional to o), j =1,.

Figure 3.1 illustrates one cycle of the Monte Carlo filtering with m = 9 for simplicity. The. particle
approximating the predictor is generated from a pair of particles approximating the previous filtered state
and the system noise. Then the predictive distribution is approximated by the empirical distribution
m™ YT (x,pSf )). In the filtering step, the filter distribution is obtained by changing these equal
weights to ones proportional to a(’ ), Finally, by re-sampling (sampling with replacement), the filter
distribution is re-approximated by using the particles f(] ) with equal weights, 1/m.

An algorithm for smoothing (Kitagawa 1996) is obtained by replacing Step 2 (e) of the filtering

algorithm by

(e-L) For fixed L, generate {(s) ... ¥ = sO\T 5—1 . m} by the re-sampling of {(sY hod L|n 1

n—L|n’ » S 1|n? n|

,sff)lln 1,p$f)) j=1,...,m} with f¥) = (J|)n

This is equivalent to applying the L-lag fixed lag smoother. Increasing the lag, L, will improve the
accuracy of the p(z,, S, |Yn+ L) as an approximation to p(z,, Sn|Yn), however it is very likely to decrease
the accuracy of {sn| NS N} as representatives of p(Tn,Sn|YniL). Because p(zn, Sp|Yn+r) usually

converges rather quickly to p(z,, Sn|Yn) as L increases, it is recommended to use a smaller L.
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The conditional density can be approximated by

1
P(nlYno1,20i6) & — > i, (3:29)
—

where o) is the importance weight of the j-th particle obtained in the Monte Carlo filter. In this case,
because the likelihood contains the sampling error due to the approximation, it is difficult to obtain
precise maximum likelihood estimates of the parameters. This problem will be considered later in the

next section.

3.5 Parameter Estimation

The Markov switching models described in the previous sections contain unknown parameters. The
vector that consists of such unknown parameters is denoted by 8. The likelihood of the Markov switching
models specified by the parameter vector 4 is obtained by

N
L(6) = f(u1,92,---,un10) = [ f(Wn|¥n-1,6), (3.30)

n=1

where f(yn|®,_1,0) is the conditional density of y, given ¥,_;. As a by—produét of the filter, we get

this conditional density. Then the approximate log likelihood function is given by
N
LL(6) = log [f(y1, 12, -, w)] = D log [ (un¥n-1)]. (3.31)
n=1

To estimate the parameters of the model, we use a nonlinear optimizatin procedure (in GAUSS and
FORTRAN) to maximize the approximate log likelihood function with respect to the underlying unknown
parameters.

Many recent papers propose other estimating techniques of Markov switching model: Expection
maximization (EM) algorithm and Markov Chain Monte Carko (MCMC). EM algorithm (Dempster
et al. 1977) has been widely used to estimate parameters for Hidden Markov models (HMMs) in the
engineering field. The well-known Baum-Welch algorithm (Baum et al. 1970) is the relevant version of
the EM algorithm. Hamilton (1989, 1990, 1994) applies it to a Markov switching model in econometric
fields. Applications of MCMC methods to inference of Markov switching models are given by Albert and
Chib (1993) and Chib (1996). Applications of MCMC to a Markov switching state space model appear in
Engel and Kim (1996). Fruhwirth-Schnatter (1998) argued problems of ordinary MCMC methods, and

proposed a new MCMC method called permutation sampling.
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3.6 Model Selection by AIC

3.6.1 Akaike Information Criterion

The maximum log-likelihood method can be used to estimate the values of parameters. However, it
cannot be used to compare different models without some corrections. Using N ‘1l(é) as the estimation

of Ey log f(Y'|d), the expectation value of bias is

N

C=E { Bylogf(vIh) - 3> log (v 1) } (332
n=1

K N

~ (3.33)

Here, an approximate correction of the bias is reflected in the definition of the Akaike information criterion
(AIC) given below.
AIC(m) = —2(maximized log likelihood of the model)

+2(number of estimated parameters in the model)
N

= =2 10g fru (Ynlm) + 210.ml, (3.34)

n=1

where |0,,| denotes the dimension of the vector f,,,.

3.6.2 AIC for Model Selection of the Markov Switching Model

Identifying an adequate Markov switching model for a given dataset involves selecting many parameters.
The most difficult problem may be the specification of the number of regimes. The available methods of

model selection and identification for Markov switching models are primarily:

(1) Information criteria such as AIC and BIC as in Leroux (1992) and Ryden (1995);

(2) Hypothesis testing based on comparisons of likelihood of the competing models, e.g., Hansen (1992,
1996), Gong and Mariano (1995), and Hamilton (1996).

This section describes the application of the AIC to the univariate and multivariate Markov switching

models. Let the univariate Markov switching model be defined by

Yn ~ N(ps,, 02 ). (3.35)

Sn is the k-state Markov chain with state space S € {1,2,...,k}. us, and ofn take k different values

according to s,,, respectively. The conditional joint probability density function for this model is

N
F@is-- - ynlsn = 5) =n; [ £(ynl0)

n=1
N

=TI (=) : )’ (3.36)
=i\ ) o _%g—'(yn—p's" , :

n=1
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where 6 = {1, p2, ..., 4k, 0%,0%,...,0%,P11,P12, - - -, P1k—1, - - -  Pk—1} is the unknown parameter vector,
and 7; is the unconditional probability of the state s, = j. Note that m = 3k + k? — k + 1 is the number

of unknown parameters. The corresponding log-likelihood function is

N
Li(lsn =3)=Y_log f(ynlf, sn = 5)

n=1
N
_ N 2 1 2
—742m%%+%ééﬂ—%im %)ﬂ- (337)

Given the unknown parameter vector 6, the AIC of a k-state Markov switching model is

k
AIC(m) = 3" nj{Zlog L;(6)sn = j)} 423k + k2 — k+1). (3.38)

3.7 Numerical Examples

In this section, we provide numerical examples to evaluate how precisely the Markov switching model
can capture the unknown regime shifts and corresponding stochastic process. We apply three types of
stochastic models with Gaussian, Gaussian mixture and Markov switching Gaussian distributions to some
synthesized data set time series with regime shifts for two-regimes (€ {0,1}), according to a first-order

Markov chain. For the simulation studies, we consider the data generated from the following model:
if s, =0, y,~N(0,1), ' ' ' : (3.39)
if sp,=1, yn~N(uo?), (3.40)

and transition probabilities are defined as follows,
Poo = P11 = Pr(sn = ilsn—l = ’t), 1= 0, 1, ’ (341)

where the sample size N € {1,2,...,N} is 10,000 and the initial regime so = 0. To evaluate the goodness
of fit of each model, we use the log likelihood value (LL), the Akaike information criterion (AIC) and
the Quadratic Probability Score (QPS) by Brier (1950). Here QPS is a measure for the accuracy of the
probability closeness on average to the realization of the regime by a zero-one dummy variable. Note

that QPS is denoted by
1 &
— § _ 2 .
QPS =g n:lz(P" ) (342)

where P, is the smoothed probability of regime s, = 1 1. QPS ranges from 0 to 2. If QPS= 0, it

represents perfect accuracy.

!In general, the predictive probability is often described as P
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Tables 3.1 to 3.4 summarize statistics for model comparisons and estimated parameters of simulation
studies. Tables 3.1 and 3.2 provide data with Markov switching means, and Tables 3.3 and 3.4 provide

data with Markov switching variances.
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Table 3.1: Simulation Results 1 — Statistics —
Case 1: u=2.0and 0 =1.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Doo = P11 LL AIC LL AIC LL AIC QPS  Pr(s,=1)
0.95 17576.96 35157.91 | 17477.16 34964.31 | 15535.65 31083.29 0.0520 0.4825
0.90 17542.05 35088.10 | 17457.96 34925.92 | 16182.54 32377.07 0.0994 0.4858
0.80 17614.12 35232.24 | 17524.81 35059.63 | 16903.97 33819.94 0.1658 0.4780
0.70 17839.13 35682.26 | 17731.36 35472.73 | 17453.37 34918.74 0.1925 0.4979
0.60 17714.60 35433.20 | 17583.79 35177.57 | 17526.92 35065.85 0.2116 0.4983
Case2: p=10and 6 =1.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Poo = P11 LL AIC LL AIC LL AIC QPS Pr(s,=1)
0.95 15292.08 30588.17 | 15288.36 30586.73 | 14871.67 29755.33 0.1646 0.4878
0.90 15189.72 30383.43 | 15185.56 30381.11 | 14968.51 29949.02 0.2688 0.4979
0.80 15277.49 30558.98 | 15275.62 30561.23 | 15184.18 30380.37 0.3320 0.4813
0.70 15385.09 30774.18 | 15383.85 30777.69 | 15333.56 30679.11 0.3703 0.4944
0.60 15236.25 30476.49 | 15233.11 30476.21 | 15230.60 30473.20 0.4818 0.5019
Case3: u=05and 0 =1.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Doo = P11 LL AIC LL AIC LL AIC QPS  Pr(sp, =1)
0.95 14401.19 28806.38 | 14397.64 28805.29 | 14341.36 28694.73 0.3406 0.5072
0.90 14545.20 29094.40 | 14542.66 29095.31 | 14516.16 29044.32 0.3902 0.5073
0.80 14466.94 28937.89 | 14466.94 28943.88 | 14456.97 28925.94 0.4699 0.5061
0.70 14496.33 28996.66 | 14495.68 20001.36 | 14488.44 28988.87 0.4778 0.5004
0.60 14542.10 29088.19 | 14539.56 29089.13 | 14537.62 29087.23 0.5955 0.5026
Case 4: pu=0.25and o =1.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Poo = P11 LL AIC LL AIC LL AIC QPS Pr(s,=1)
0.95 14361.64 28727.29 | 14360.91 28731.82 | 14349.98 28711.95 0.6004 0.4707
0.90 14245.62 28495.25 | 14244.89 28499.77 | 14244.48 28500.96 0.5409 0.4959
0.80 14213.29 28430.57 | 14212.62 28435.25 | 14208.86 28429.73 0.5099 0.4863
0.70 14311.54 28627.07 | 14311.53 28633.07 | 14311.54 28635.07 0.5000 0.4993
0.60 14305.81 28615.61 | 14305.08 28620.15 | 14303.19 28618.37 0.6829 0.4958
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Table 3.2: Simulation Results 1 — Estimated Parameters of Markov 'switching Gaussian

Case 1: py=2.0and 0 = 1.0

Tran Prob Hi M2 oy o2 DPoo P11
0.95 0.0077 1.9902 1.0009 0.9863 0.9486 0.9444
0.90 0.0051 1.9677 0.9911 1.0019 0.8955 0.8904
0.80 0.0219 1.9989 1.0105 0.9979 0.8086 0.7878
0.70 0.0197 2.0651 1.0332 0.9954 0.7170 0.6922
0.60 -0.0837 1.9878 0.9647 0.9863 0.5757 0.6029
Case 2: p=1.0and 6 = 1.0
Tran Prob o 773 o1 o2 Poo P11
0.95 -0.0072 1.0033 0.9942 0.9972 09446 0.9442
0.90 0.0424 1.0127 1.0066 0.9786 0.8955 0.8881
0.80 0.0816 0.9725 1.0237 1.0226 0.8587 0.8248
0.70 -0.0259 1.0189 1.0080 0.9893 0.7053 0.7080
0.60 0.3047 1.4608 1.0422 0.9499 0.8752 0.3757
Case 3: p=0.5and o =1.0
Tran Prob | 1 ™ o1 o2 Poo P
0.95 -0.0678 0.4440 0.9874 0.9925 0.9430 0.9642
0.90 -0.0398 0.5184 0.9891 1.0060 0.8721 0.8837
0.80 -0.0295 0.4449 0.9906 1.0089 0.8094 0.8824
0.70 0.0111 0.5778 1.0068 0.9726 0.7736 0.6936
0.66 0.1650 '0.3055 1.0004 1.0448 0.9496 0.9728
Case4: 4 =0.25and 0 = 1.0
Tran Prob I U2 o1 o2 Poo rm
0.95 0.0404 0.3743 1.0205 0.9619 0.9857 - 0.9490
0.90 0.0114 0.1876 0.9441 1.0303 0.8694 0.9340
0.80 -0.1495 0.4983 0.9642 0.9303 0.6673 0.5809
0.70 0.1257 0.1259 1.0123 1.0123 0.9523 0.9523
0.60 0.1073 0.1749 1.0206 1.0153 0.9523 0.9526
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Table 3.3: Simulation Results 2 — Statistics —
Case 1: p=0.0and 0 =3.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Poo = P11 LL AIC LL AIC LL AIC QPS Pr(s,=1)
0.95 22290.66 44585.32 | 21685.98 43381.95 |-20800.43 41612.86 0.1099 0.5205
0.90 22452.73  44909.46 | 21716.55 43443.11 | 21136.60 42285.19 0.1819 0.5124
0.80 22010.14 44024.28 | 21352.73 42715.46 | 21126.19 42264.39 0.2666 0.4842
0.70 22178.51 44361.02 | 21491.42 42992.84 | 21403.47 42818.93 0.3101 0.4963
0.60 22221.85 44447.70 | 21538.53 43087.06 | 21516.63 43045.26 0.3387 0.5054
Case 2: p=0.0 and 0 =2.0
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
DPoo = P11 LL AIC LL AIC LL AIC QPS Pr(s,=1)
0.95 18660.88 37325.77 | 18474.11 36958.23 | 18164.43 36340.87 0.1840 0.4888
0.90 18747.85 37499.71 | 18548.95 37107.90 | 18418.71 36849.41 0.2705 0.4923
0.80 18799.72 37603.44 | 18604.26 37218.52 | 18531.75 37075.49 = 0.3653 0.4883
0.70 18820.10 37644.21 | 18598.77 37207.54 | 18576.46 37164.92 0.3971 0.5066
0.60 18792.21 37588.43 | 18629.27 37268.53 | 18622.05 37256.11 0.4186 0.5104
Case 3: p=00and 0 =1.5
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Poo = P11 LL AIC LL AIC LL AIC QPS  Pr(s, =1)
0.95 16628.53 33261.05 | 16608.43 33226.86 | 16553.39 33118.78 0.3239 0.5134
0.90 16593.26 33190.51 | 16565.61 33141.22 | 16541.21 33094.42 0.4268 0.5219
0.80 16615.60 33235.20 | 16582.28 33174.55 | 16571.09 33154.17 0.4772 0.4783
0.70 16524.16  33052.31 | 16480.29 32970.59 | 16478.72 32969.44 0.4935 0.4989
0.60 16618.81 33241.62 | 16596.48 33202.96 | 16594.98 33201.96 - 0.5047 0.4852
Case 4: u=0.0and 0 =1.25
Tran Prob Gaussian Gaussian mixture Markov switching Gaussian
Poo = P11 LL AIC LL AIC ‘LL AIC QPS  Pr(s,=1)
0.95 15513.30 31030.60 | 15509.70 31029.40 | 15497.90 31007.80 0.4434 0.5220
0.90 15440.95 30885.90 | 15434.45 30878.90 | 15427.22 30866.45 0.6656 0.5005
0.80 15284.24 30572.48 | 15276.39 30562.78 | 15275.72 305663.43 0.8089 0.4807
0.70 15501.16 31006.31 | 15493.51 30997.03 | 15492.27 30996.54 0.6124 0.4919
0.60 15434.41 30872.82 | 15433.84 30877.67 | 15429.53 30871.05 0.6700 0.5015
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Case 1: pu=2.0and 0 =1.0

Tran Prob H1 173 o o2 Poo P11
0.95 0.0124 0.0081 1.0023 2.9552 0.9519 0.9564
0.90 0.0001 -0.0318 0.9911 = 3.0668 0.9025 0.9038
0.80 0.0085 -0.0308 0.9790 2.9159° 0.8027 0.8076
0.70 0.0084 -0.0002 0.9699 2.9540 0.6998 0.7161
0.60 0.0372 -0.0112 0.9863 2.9772 0.6000 0.6134
Case 2: uy=1.0and 0 =1.0
Tran Prob H1 o o1 o2 Poo P11
0.95 -0.0122 -0.0054 0.9952 1.9784 0.9522 0.9517
0.90 -0.0146 -0.0196 1.0013 1.9962 0.8835 0.8827
0.80 0.0053 0.0365 0.9551 1.9798 0.7867 0.8128
0.70 0.0238 -0.0114 0.9596 2.0111 0.6747 0.6916
0.60 0.0050 -0.0205 1.0439 2.0064 0.6361 0.6120
Case 3: p=0.5and 0 =1.0
Tran Prob I I o1 o2 pdo P11
0.95 -0.0143 -0.0200 1.0257 1.4917 0.9485 0.9466
0.90 0.0090 -0.0212 0.9767 1.4166 0.9263 0.9567
0.80 -0.0085 -0.0493 1.0890 1.5871 0.8882 0.7717
0.70 0.0286 -0.0020 1.0403 1.5764 0.7316 0.5339
0.60 0.0926 -0.0404 0.9616 1.4279 0.5536 0.7325
Case 4: p=05and o = 1.0
Tran Prob M1 H2 o1 a2 Poo pu
0.95 -0.0022 0.0013 1.0284 1.2895 0.9620 0.9444
0.90 0.0172  0.0089 0.8090 1.1918 0.8341 0.9642
0.80 0.1422 -0.0191 0.6962 1.1581 0.5852 0.9457
0.70 0.1085 ;0.0190 0.8826 1.2153 0.6924 0.8931
0.60 0.0722 -0.2795 1.1093 1.1669 0.9671 0.8905




Chapter 4

Empirical Analysis

4.1 Trend Identification and Trading Strategy

— Trend identification and financial trading strategy using a stochastic trend model with

a Markov switching slope change and ARCH

4.1.1 Introduction

In real—§v0r1d financial markéts, some practitioners, including dealers and money managers of foreign ex-
change rates, stocks, commodities, etc., regard “traditional technical analysis” as an important analytical
tool. Taylor (1992) reported that more than 90 percent of foreign exchange dealers surveyed in London
used some form of technical analysis to formulate their trading decisions. One of the most important
principles in technical analysis is that “asset prices move in trends.” In other words, the unobserved
trends of asset prices tend to remain in motion unless acted upon by another force. The “trend” in the
framework of traditional technical analysis is obtained by connecting the lowest or highest values of the
asset’s price with a straight line. The “slope” of the trend plays an important role in a practical trading
strategy. When it is positive (negative), the practitioner continues to take a long (short) position despite
any impulsive fluctuations in the asset’s prices. Traditional technical analysis offers various methods of
identifying this unobserved trend, but every method requires not only scientific skill, but also artistic
sensitivity based on long experience in financial markets. Therefore, not everyone can identify the useful
trend and slope for a practical trading strategy. The traditional technical analysis is briefly reviewed in
Murphy (1986).

This section has two purposes. The first is to identify the unobserved trend and slope of real financial
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time series using a nonlinear stochastic approach — the stochastic trend model with Markov switching
slope changes and ARCH (MS-SC/ARCH). The second purpose is to examine whether the trend and
slope obtained by the MS-SC/ARCH model are useful in a practical trading strategy, and to analyze the

profit profile of this strategy.

Several studies have analyzed economic and financial time series with linear and nonlinear dynamic
systems. Harrison and Stevens (1976) and Harvey and Todd (1983) proposed time series models consisting
of trend and slope-changing components described by random walk processes. Kitagawa and Gersch
(1996) performed simulations with various types of stochastic trend models, involving Gaussian and non-
Gaussian distributions. Hamilton (1989) introduced the Markov switching model into the econometric
analysis to capture the time series, including some unknown structural changes. Kim (1993, 1994)
extended Hamilton’s model to a general state-space model. Cai (1994) and Hamilton and Susmel (1994)
examined the heteroskedasticity of financial data using Markov switching models. Finally, Kim and Nelson
(1999) reviewed the several types of Markov switching models with economic and financial applications.

This section is organized as follows. Subsection 2 describes the MS-SC/ARCH model. Subsection
3 shows the trading strategy based on the MS-SC/ARCH model. Subsection 4 presents an empirical
analysis including estimations and evaluations of a trading strategy based on the MS-SC/ARCH model.

Conclusions are presented in Subsection 5.

4.1.2 Markov Switching Slope Change and ARCH Model
Model Specification

In this section, we describe the stochastic trend model with simultaneous Markov switching slope changes
and ARCH (MS-SC/ARCH). Let y,,, n = 1,2,..., N, be the observed financial asset price — for example,

stock prices, exchange rates and commodity prices. The observation model of the MS-SC/ARCH model

is given by
Yn =1tn + Eny E'nl\I’n—l ~ N(O, hn), (41)
hn =71~ 8p) + 7180 + aei_l, 4.2)

where Psi,_1 denots the information up to time n — 1, and v > v > 0, and @ > 0, and ¢, is a trend
component. &, is a fluctuation around the trend component #, defined by the ARCH process with a
Markov switching structure. s, is an unobserved Markov chain, and takes the value of zero or one as

determined by a first-order two-regime Markov process. When s, = 0, the system is in a low volatility
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regime. When s, = 1, it is in a high volatility regime. The system models are given by
tp =tn_1 + Aty + U, vp ~ N(0,7%), ‘ (4.3)
At, = At + wy, wy, ~ N(0,5,02), (4.4)
where v; > vy > 0. Here t, follows the random walk process with a drift At, and an innovation term
Un. At, is interpreted as the permanent change in the slope, and w, produces a permanent shift in the
level with a subsequent undisturbed growth. When s, =0, At, takes the value of the previous At,_;,
and t, follows the random walk with the same slope or drift At,. When s,=1, At,, follows a random
walk process with a normal distribution w, with zero mean and variance o?; that is, s, = 0 represents
the regime of slope changes.
We assume that in the MS-SC/ARCH model changes in slope and increases in volatility occur simul-
taneously depending on s,. The unobserved Markov chain s,, is updated via the transition probability

as follows:

Pij = Pr(sn = jlsn—1 = 1), 3,7 =0,1, (4.5)

where 2;20 pij = 1 for i = 0,1. This transition probability p;; is assumed to be homogeneous, and it
can be written as the following matrix:
Poo P10 Poo l—pn :
P= = . (4.6)
Po1 P11 1-poo P

The log-likelihood function of the MS-SC/ARCH model is given by:
N
L) =Y log f (ya|¥n-1),

n=1

N m m
= 2 log I: Z Z FWalsn = J, ¥n1) Pr(sn = jl‘I’n—l) ] ’ 4.7)

n=1 j=1i=1

where 6 denotes the unknown parameters and
. 1 (yn — 1)?

|8 =, ¥n_1) = ——e —_ . 4.8
f(ynlsn =7, ¥n-1) T O { T (4.8)

Here Pr(s, = j|¥,_1) in equation (4.7) can be obtained recursively by using a non-Gaussian filter

(Kitagawa 1987, Hamilton 1989) as follows:
1

Pr(sp = j|¥n_1) = > Pr(sp = jlsn_1 = i) Pr(sp-1]¥n-1), (4.9)
=0 .
(ynlsn =7, ‘I’n—l) PI‘(Sn = jl‘I’n—l)
f(ynl‘l’n—l)

Several methods for estimating the unknown parameters have been proposed, for example, the EM

Pr(sn = j|n) = 1

. (4.10)

(expectation maximization) algorithm (Hamilton 1990,1994) and the Gibbs sampler (Albert and Chib

1992). For the purpose of this section, the quasi-maximum likelihood method (Kim 1994) is preferred

owing to its computational ease.
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Estimations of States and Parameters

Let z, = (tn, Atn,en)T be a (3 x 1) state vector. Given the Markov chain S, equations (4.1) to (4.4)
are represented in the state space form as follows:
Ty =Fz,_1 + Guw,, (4.11)
Yn=Hz,. (4.12)

Here when ¥,,_, is information available up to time n — 1, Equation (4.11) representing the system noise

is

0 72 0 0
wal¥ar~N|1 0|, 0 v28, 0 : (4.13)
0 0 0 A,

F, G and H are respectively defined as follows:

110 110
F=10 10|, G=|010], H=[101]- (4.14)
000 0 0 1

Once the MS-SC/ARCH model is represented in the state space form, we can obtain estimations of
the states and parameters by using the Kalman filter algorithm. Kim (1994) proposes the filter for the
state space model with the Markov switching structures. Harvey, Ruiz and Sentana (1992) propose the
filter for the state-space model with ARCH disturbances. We combine both filters and apply it to the
MS-SC/ARCH model. The filter algorithms for the state vector z,, and the unobserved variable s,, are

described as follows:

Filter for the state vector z,

[Prediction]
fb‘ff,’,’;)_l =F ZS)-un-p (4.15)
wsr;)—l = er(:zlln—lFT + GQU)GT: (416)
where
o) | = E[2al¥n1, 50 = §, Sum1 =1, (4.17)
w,(:{i)_l =FE [(xn - xnln—l)(xn - xn]n—l)TllIJn—ly Sn = jy Sn—l = 'L] 3 (418)

QY = Elw,, wI|¥,_4]. (4.19)
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[Filter]
K9 =o) BT (B HT) ™, (4.20)
20l =alD 4 KD (g — Hall) ), (4.21)
Wi = = K{D Bl (4.22)
where
22 = B@nl¥n, Sn = j, Sn-1 = ], (4.23)
""S]ﬁ) =E [(#n — Tnjn)(@n — -’En|n)T|‘I’n, Sn = j,Sn-1=1]. (4.24)

However, to process equation (4.20), we need to calculate h, = s, + ag?_,;, which is a function of the
square of past unobserved shock &2 _,. Thus, the above Kalman filter is not operable. Harvey, Ruiz and

Sentana (1992) solve the problem of the unobserved £2_; by replacing it with its conditional expectation:
B =0(1 = 50) +11Sn + @B [eh,*1¥nrs |, | (4.25)
Under this specification, the calculation of the terms E [e2_; |¥,,_1] is straightforward. Because we know
ent = Blehoa[¥not] + (521 = B e ¥an]), (4.26)
it is easy to show that
B ey = Blenoslans] + B[(61m1 - Blena[¥ani)) ], (427)

where E[en_ll\lln_l] is obtained from the last two elements of z,_;j,_1 and its mean squared errors
El(en-1 - E(en-1|%,-1))?] is obtained from the last two diagonal elements of w,_1jn—1. From a by-
product of the filtering algorithm for the state space z,,, we can obtain the conditional distribution y,

on $,,S,-1 and ¥, _; as follows

f(ynlsn = jv Sp_1= ia‘I’n—l) =

1
\2mr,

2r,

ij 2
exp { - (30~ Azl } (4.28)

with r, = Hw'% ) HT 4+ RY from the predictive distribution in equation (4.20).

njn—1

Filter for the unobserved variable s,

[Prediction)
1
Pr(Sn = j|¥n_1) =Y _Pr(Sn =4,Sn 1 = i|¥n_1) (4.29)
1=0
1
=Y Pr(Sn = j,Sn-1 = i) Pr(Sn-1 = i|¥n-1). (4.30)

=0




66 CHAPTER 4. EMPIRICAL ANALYSIS

[Filter]
Pr(S, = j|¥,) ZPr = 5,801 = i|¥n_1,un) (4.31)
_ 3 nlSn = 5 Suy = 6 o) Pe(Sn =y Sy = il m), (432)
i—0 FWn|¥n-1)
where
1
FWnl®n1) =" f(WnlSn = 4, ¥ne1) Pr(Sn = j|¥n_y) (4.33)
7=0
1 1
= Z ¥nlSn = 4, Sn-1 =i, ¥n_1) Pr(Sn = 5, Sn—1 = i|¥n_1). (4.34)

Z-_—
To avoid an explosion of the number of Gaussian components, the approximation technique that is

proposed by Harrison and Stevens {1976) is used:
Yico Pr(Sn-1 =i, Sn = j|¥,)al?

29 — nin 4.35
n|n PI‘( R =.7|'I’n) ) ( . )
6 TioPr(Sacs =i,8, = j1%) [o57) + @), - D)D), - 57| 139
Unln = Pr(S, _Jl\I, ) (4.

Kim (1994) and Kitagawa (1994) report that such an approximation has only small biased estimations,
and is an effective method. In addition, nonlinear filter (Kitagawa 1987) and MCMC (Markov chain
Monte Carlo) methods (Albert and Chib 1993) can provide precise estimates.

By running this filter algorifhm, the approximate log-likelihood is obtained as its by-product. The

approximate log-likelihood function for the unknown parameter vector 8 is given by

N
L(6) =) log f(yn|¥n-1)

n=1
N 1 1
:Z lZZIng yny —], n— 1—Z|\I/n 1)
= 3=0 i=0
N 1 1
"X [ 3 D108 F(UnlSn = Snct = i ¥nt) Pr(Sn = s S = il ncr) (457
n=1 =0 i=0

Several methods for estimating the unknown parameters have been proposed, including the EM algorithm
(Hamilton 1990,1994) and the Gibbs sampler (Albert and Chib 1992). For the purpose of this section,

the maximum likelihood method is preferred due to its computational ease.

4.1.3 Trading Strategy

We consider a trading strategy based on the MS-SC/ARCH model. The investment position is taken
depending on the buy and sell signals generated by the MS-SC/ARCH model. When buy (sell) is signaled

at time n by the MS-SC/ARCH model, a long (short) position on a financial asset is taken. The same




4.1. TREND IDENTIFICATION AND TRADING STRATEGY 67
investment position remains until the opposite case of sell (buy) is signaled. When buy (sell) is signaled,
the investor closes the previous long (short) position, and takes the short (long) position. The trading

signal 1., at time n is defined depending on a one-step-ahead prediction of the slope component Atnyin

of the MS-SC/ARCH model as follows:

1 Atpiijn >0
¥ —_-{ i (4.38)
—1 Atn-}-l]‘n < 0.
where Aty 1, is drawn from
11
Tniijn = Z Z Pr(Sn+1 =k,S5, = ]lwn)zg.;_kl)ln
k=0 j=0
11 ‘
=53 Pr(Sns1 = k|Sn = §) Pr(Sn = j|¥n)Fall),. (4.39)
k=0 j=0

This MS-SC/ARCH trading strategy is based on the general idea of “trend following” in the framework
of traditional technical analysis. Therefore, identification of the unobserved slope and removal of some
fluctuations around the trend are important for success in generating profits.

The cumulative sum of return to measure the performance for the MS-SC/ARCH trading strategy
is given by Zﬁ;ll YnTnt1, Where 7y = log(¥ns1) — 10g(yn) is the logarithmic return of the original

financial asset price from n to n + 1.

4.1.4 Application and Comparison of Trading Performance
Data and Estimations

The sample data used in this study are the weekly Tokyo Stock Price Index (TOPIX) over the period
from 1986/1 to 2000/12. The number of observations is 835. Figure 4.41 shows plots of the original
series of the TOPIX. Figure 4.42 plots the logarithmic return series of the TOPIX. For the parameter
estimation below, the logarithmic transformation of the TOPIX multiplied by 100 is used.

Figure 4.43 shows the plot of the filtered trend slope A,|,. We find that the trend with a positive or
negative slope has some persistence. Table 4.1 shows the estimation results of MS-SC/ARCH model for
the TOPIX (1986/1-2000/12). Note that the unknown parameters 6 = {7,0, P00, P11} are estimated by
the maximum likelihood method given a variance of w, = 2.00 in equation (4.4). The trend component
t,, follows a random walk process with a time-varying drift At,, with normal white noise N(0,2.314). The
fluctuation ¢,, around the trend follows the ARCH process with constant terms 0.039 (s, = 0) and 4.167
(sn = 1), and common ARCH coefficient 0.895. From these estimations in the ARCH process, it can be

said that s, = 0 and s, = 1 represent the regimes for “no-slope change and low volatility” and for “slope
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change and high volatility”, respectively. The self-loop transition probabilities pgo and py1 are 0.993 and
0.796, respectively. s, = 0 tends to be more persistent than s,, = 1. This is clear from Figure 4.44, which
plots the filtered regime probability of s,, = 1. While the amplitude of the slope changes frequently with
an increase in volatility in the first half of the sample period, slope changes are relatively stable in the
second half.

Next, we test whether regime shifts occur according to a Markov process in the MS-SC/ARCH model.
Under the null hypothesis (75 = 71,0 = 0), pgo and p;; can be identified and the asymptotic distribution
of likelihood ratio statistics does not follow the standard chi-square distribution. To deal with such a
problem, Garcia (1998) and Hansen (1992, 1996) propose hypothesis test methods based on a grid search.
Since these methods need computational burden, we use the hypothesis test of Engel and Hamilton (1990)

as follows

Ho: po=1-pun, w#m o1 #0. (4.40)

Null hypothesis Hy corresponds to the model in which the time series process follows a simple mixed
distribution, and regime shifts do not follow the Markov process. Under this null hypothesis Hy, all the
parameters can be identified, and the asymptotic distribution of likelihood ratio statistics does not follow
the standard chi-square distribution with one-degree-of-freedom. Table 4.1 includes estimated parameters
and corresponding statistics on the null hypothesis Hy model. The LR (Likelihood Ratio) statistic for
the hypothesis Hy is 3.87, and the null hypothesis Hy can be rejected at a five percent critical level. In
addition, the MS-SC/ARCH model is selected as the best AIC model.

Profitability of the Trading Strategy

To evaluate the profitability of the MS-SC/ARCH trading strategy, we estimate the unknown parame-
ters § = {12, 02,p00,p11} using the first 313 observations from January 1986 to December 1991 as the
formation period. Using these parameter estimations, the trading strategy can be constructed based
on a one-step-ahead slope forecast At,.y, by the MS-SC/ARCH model in the subsequent simulation
period from January 1987 to December 2000. According to the trading strategy described in the previous
section, we take a long (buy TOPIX) or short (sell TOPIX) investment position.

Table 4.2 summarizes the trading performance of the trading strategies based on the MS-SC/ARCH

model and three alternative models as follows
e Model 1. Constant volatility,

¢ Model 2. No-switching and simple ARCH volatility,
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e Model 3. Random walk trend slope.

The cumulative sum of the trading return of the MS-SC/ARCH trading strategy is 95.704 percent (av-
erage: 0.183 percent). It is larger than the trading returns for the three alternative models, which were:
57.728 percent (average: 0.111 percent) for Model 1; 70.266 percent (average: 0.135 percent) for Model
2: and 64.069 percent (average: 0.123 percent) for Model 3. In addition, a comparison of the 1 and 5
percentage points of the trading return distributions shows that those of the MS-SC/ARCH model are no
smaller than for the other models. This implies that in alternative trading strategies there is a possibility
of suffering a loss that is larger than in the MS-SC/ARCH trading strategy.

Figure 4.46 compares the average trading returns under the MS-SC/ARCH trading strategy and some
traditional moving average trading strategies with different moving average periods. In this case, when
2, and m define TOPIX at time n and the moving average period respectively, the trading signal at time

n of m period moving average trading strategy is given by

m—1
1 p DR o
¥ = mt
1 < Z_=gnﬁ"; (4.42)

From the comparisons of the average trading returns in Figure 4.46, it is evident that the performance
of moving average trading strategies is sensitive to how the moving average period is set. Regardless
of out-of-sample simulation, the average trading return of the MS-SC/ARCH trading strategy, which is
indicated by a crossbar in Figure 4.46, can be said to obtain a relatively higher performance.

Table 4.3 shows the trading returns and trading frequencies according to year. The MS-SC/ARCH
trading strategy obtains stable performance over the sample period, excluding 2000. The cumulative sum
of the trading returns of the MS-SC/ARCH trading strategy in Figure 4.7 seems to be on the upside. We
can say that this strategy succeeds in remaining stable with a positive performance over time. In regard
to the trading frequency, the average position-holding period is 7.46 weeks. Unlike a random walk model,

the MS-SC/ARCH model avoids excessive position changes.

4.1.5 Conclusions

In this section, we propose an MS-SC/ARCH model in thch the slope of the trend and the ARCH
process for the movement around the trend changes simultaneously as described by a first-order and
two-regime Markov process. Our MS-SC/ARCH model is useful for estimating the unobserved trend and
its slope for the time series, which has some piecewise linearity. In the empirical analysis, we applied

the model to the TOPIX. We found sufficient statistical evidence that the trading strategy based on the




70 CHAPTER 4. EMPIRICAL ANALYSIS

estimated trend and its slope makes an excess profit over alternative strategies.
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Table 4.1: Estimated results of MS-SC/ARCH model.

MS-SC/ARCH Hp :poo =1-pu

Estimation (Standard error) | Estimation (Standard error)
T 2.314 (0.125) 2.237 (0.101)
Yo 0.039 (0.055) 0.046 (0.050)
" 4.167 (3.909) 16.975 (14.366)
o 0.895 (0.115) 0.919 (0.076)
Poo 0.993 (0.005) 0.987 (0.009)
P11 0.796 (0.125) 0.013
Log likelihood -1999.81 -2001.75
LR statistics 3.87
p-value 0.049
AIC 4011.63 4013.50

Table 4.2: Basic statistical summary of the trading returns.

Model.2 Model.3

MS-SC/ARCH Model.1
Cumulative sum 95.704 57.728
Average 0.183 0.111
Standard deviation 2.681 2.685
Skewness -0.092 -0.321
Kurtosis 0.924 0.947
Downside 1% point -6.311 -7.289
Downside 5% point -4.043 -4.323

70.266 64.069
0.135 0.123
2.684 2.684

-0.049 -0.074
0.905 0.908

-6.311 -6.311

-4.254 -4.323

71
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Table 4.3: Performance evaluation of the MS-SC/ARCH trading strategy.

Year | Cumulative sum Trading
of trading returns frequency
1992 28.57 5
1993 20.16 5
1994 -2.04 6
1995 23.13 5
1996 -1.16 5
1997 15.18 10
1998 -3.14 10
1999 16.69 7
2000 -17.49 11
2001 15.79 6
Total 95.70 70
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Figure 4.1: Weekly TOPIX: 1986/1 — 2001/12.
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Figure 4.2: Logarithmic return of weekly TOPIX: 1986/1 — 2001/12.
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Figure 4.3: Filtered slope At,: 1986/1 — 2001/12.
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Figure 4.4: Filtered regime probability for slope change and high volatility: 1986/1 — 2001 /12.
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5

Figure 4.5: Filtered slope At,: 1992/1 - 2001/12.
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Figure 4.6: Average trading returns of m period moving average trading strategies: 1992/1 - 2001/12.
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Figure 4.7: Cumulative sums of profits for MS-SC/ARCH trading strategy: 1992/1 — 2001/12.
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4.2 Time-series and Cross-sectional Volatility Analysis

— Time-series Stock Market Volatility and Cross-sectional Distribution of Individual

Stock Returns: Empirical Analysis in the Japanese Stock Market

4.2.1 Introduction

The time series volatility of the stock market index return has long been used as a measure of risk in
the stock market. This derives from modeling the time series distribution and dynamic characteristics
of stock market index returns. On the other hand, the information in cross-sectional distributions of
individual stock returns is also important for capturing stock market volatility on a given day; that is,
variance, skewness, and kurtosis (MacDonald and Shawky 1995).

Our primary purpose in this section is to propose Markov switching models for evaluating exogenous
leverage effects on time series volatility. A secondary purpose is to analyze empirically whether the
cross-sectional distribution of individual stock returns affected the dynamic behavior and the process of

time-series volatility in the Japanese stock market from 1999 to 2001.

A widely used class of time series models for conditional volatility is the autoregressive conditionally
heteroskedastic (ARCH) class of models introduced by Engle (1982), and extended by Bollerslev (1986),
Engle et al. (1987), Nelson (1991), an(i Glosten et al. (1993), among others. Bollerslev et al. (1992,
1994) summarizes this family of models. Another approach to capturing time-series volatility is to use
the Markov switching heteroskedasticity model, which was first introduced into the study of economics
and finance by Hamilton (1989). Hamilton and Susmel (1994) and Cai (1994) proposed a new ARCH
model with Markov switching structures. Engel and Kim (1999) used the Markov switching variance
model in state-space form. These Markov switching models more realistically capture the time series
properties of dramatic economic events, such as stock market crashes. In these models, volatility tends to
depend on past news and the state of the economy. Kim (1999) suggests differences between ARCH-type
heteroskedasticity and Markov switching-type heteroskedasticity.

Most of the volatility characteristics outlined above are univariate, and relate the volatility of a time
series only to the information contained in the history of that particular series. Of course, it is not credible
that financial asset prices evolve independently of the associated market, and so we expect that other
variables may contain relevant information about the volatility of a series. Such evidence has been found

by Bollerslev and Melvin (1994), Engle and Mezrich (1996), and Engle et al. (1990 a, b). Apart from the

possibility that other assets affect the volatility of a series, it is also possible that deterministic events




78 CHAPTER 4. EMPIRICAL ANALYSIS

have an impact. For example, scheduled company announcements, macroeconomic announcements, and
even deterministic time-of-day effects may influence the volatility process. Andersen and Bollerslev (1998)
found that the volatility of the Deutschmark-U.S. Dollar exchange rate increases markedly around the
times when U.S. macroeconomic data, such as the Employment Report, the Producer Price Index, and
quarterly GDP figures, are released. Glosten et al. (1993) found that indicator variables for October and

January help to explain some of the dynamics of the conditional volatility of equity returns.

The section is organized as follows. Subsection 2 shows both the time-series and cross-sectional sta-
tistical properties of the Japanese stock market using the Tokyo Stock Exchange 500 Index (TOPIX500)
index and its component parts. Subsection 3 describes the model speciﬁcétions used to capture the
time-series volatility and to evaluate the influence of the cross-sectional distributions of individual stock
returns. Subsection 4 presents the empirical analysis, including estimation and model comparisons. Con-

cluding remarks are given in Subsection 5.

4.2.2 Time-series and Cross-sectional Properties of the Japanese Stock Mar-

ket

In this section, we use the index return series of the TOPIX500 and the individual stock return series
included in the TOPIX500 index. Daily logarithmic returns are calculated for the period from January
1999 to December 2001, and the sample size is 738. The TOPIX500 index comprises the 500 stocks that
are the most liquid and have the largest market capitalization of those on the Tokyo stock exchange (first
section), and have been listed for a period of at least six months. It covers 90 percent of the market
capitalization of the Tokyo stock exchange. Note that, because the composition of the TOPIX500 index
has changed during the sample period owing to factors such as absorptions and bankruptcies, for each
monthly observation, for simplicity, we use only those stocks that are included for the entire month.
Figures 4.8 and 4.9 plot the TOPIX500 index and its logarithmic return x100. The TOPIX500 index
exhibits both upward and downward movements, and there seems to be some heteroskedasticity in the
logarithmic return series during the sample period. Table 4.4 presents statistical summary measures of
the index returns of the TOPIX500. As is conventional, we calculate cross-sectional moments at the
market level using all the components of individual stock returns in the same sample period. ri* denotes

the m-th stock return at time n. That is, the empirical cross-sectional mean, variance, skewness, and
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kurtosis are defined as:

Mean: fesn = E[rn'], (4.43)
Variance: 020 m = Enl(r7 — presn)’]s (4.44)
m o 3
Skewness: Skesn = En(ry — p §s’") ], (4.45)
’ (0%,n)2
m __ 4
Kurtosis: Kuwespn = Enl(ry’ = pesin) ] (4.46)
’ (0&,0)

Figures 4.9, 4.10, 4.11, and 4.12 plot histories of the cross-sectional mean, standard deviation, skewness,
and kurtosis for all components of the TOPIX500 index. Note that in calculating these statistics, we
exclude outliers (classified as observations that are more than three cross-sectional standard deviations
away from the mean). Figure 4.10 suggests that the cross-sectional standard deviation is time varying.
Figures 4.11 and 4.12 show that throughout the sample period, the cross-sectional distributions of the
components of the TOPIX500 index tend to be skewed to the left (i.e., positively skewed) and fat-tailed

(i-e., have negative kurtosis).

4.2.3 Markov Switching Models for Volatility
Models Specification

Markov Switching Heteroskedasticity Model
The first model is the Markov switching heteroskedasticity (MSH) model, which is a special case of the
model introduced by Engel and Hamilton (1990) and Kim (1994). Let y,,n =1,2,..., N, be the observed

logarithmic return series. The MSH model is given by:

Yn = b+ En, £n ~ N(0,02 ), (4.47)
where

if s, =0, 0s, = 00, (4.48)

if s,=1, s, = 01, o1 >0 > 0. » (449)

Here s, is a latent variable indicating the volatility regime that takes a value of zero or one. When
sn =0, y, follows a normal distribution with mean p and variance c3. When s, = 1, y,, follows a normal
distribution with mean p and variance o?. Since o9 < 01, s, = 0 indicates a low volatility regime and
8n = 1 indicates a high volatility regime. We assume that the latent variable s, shifts between zero and

one according to a first-order Markov process with a constant transition probability as follows:

pij = Pr(sn = jlsn—1 =1), i, =0,1, (4.50)
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where E;zo pi; = 1 for i = 0, 1. This transition probability p;; is assumed to be homogeneous over time,

and can be written in the form of the following transition probability matrix:

1-—
p= Doo Pro _ DPoo b . (4'51)

Por  Pu 1-poo pu

Markov Switching ARCH Model
The second model is the Markov switching ARCH (MS-ARCH) model. Similar models have been proposed
by Hamilton and Susmel (1994) and Cai (1994). Our MS-ARCH model has Markov switching structures

in both the ARCH constant terms and the ARCH coefficients, and is given by:
Yn = P+ En, 5n|\I’n—1 ~ N(0, hn), (4'52)

K
hp =7, + Zafﬂei_l, k=12,...,K, (4.53)
k=1

where 7, >0, afn > 0. ¥,,_; denotes the information up to time n — 1.
if 8,=0, v,=7% and af =qaf, (4.54)
if s,=1, Yo, =71 and afn =at. (4.55)
s, is the ARCH constant term, and o is the k-th ARCH coefficient. Both 'ys,; and af have Markov
switching structures given by equations (4.54) and (4.55), and shift between different parameter values

depending on the unobserved latent variable s,. Since 9 > v, is assumed, s, =0 and s, = 1 represent

low and high volatility regimes, respectively.

Markov Switching Models with an Ezogenous Leverage Effect

The third model is the Markov switching model with an exogenous leverage effect. We propose the
Markov switching heteroskedasticity model with an exogenous leverage effect (MSH-L) and the Markov
switching ARCH model with an exogenous leverage effect (MSARCH-L). Let z,, be the exogenous variable

that is observable at time n. Equations (4.47) and (4.53) respectively can be replaced by:

Ospn = Vs, + f()‘a Zn—l)a f()‘lzn—l) > 07 (456)
and

K
hn =Ye. + 0¥ &2 1 + f(N2zao1), FA|zn—1) > 0, (4.57)
k=1
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where f(-) denotes the arbitrary function with the constant unknown parameter A. Note that f(-) is
assumed to take non-negative values over time. The order of ARCH coeflicients in MS-ARCH and

MSARCH-L models is selected by the Akaike Information Criterion (AIC).

Estimations of States and Parameters

The MSH, MS-ARCH, MSH-L, and MSARCH-L models described in the previous subsection can be
written in the state-space form as follows:
Tp=Fz,_ 1+ Gu,, (4.58)
Yn =Hzyn + wy, (4.59)

where y,, is the observation variable of the logarithmic index return; w, is an observation noise, which
is assumed to be zero in the MSH, MS-ARCH, MSH-L, and MSARCH-L models; z,, = (in,&.)7 is a

(2 x 1) state vector; and v, = (0,&,)7 is an (2 x 1) system noise vector in which

en|¥n-1 ~ N(0,hy), (4.60)
and

0 T 0 0
Elv,|¥,1] = , Ev,v, |¥n_1] = , (4.61)
0 0

where ¥,,_; refers to information available up to time n — 1, and F, G, and H are given by:

10 10

F= , G= , H=[1 0]. (4.62)
01 01

Kim (1994) proposes the filter algorithm for the state-space model with Markov switching structures.

Harvey, Ruiz and Sentana (1992) propose the filter algorithm for the state-space model with ARCH

disturbances. We can combine these filter algorithms and apply the newly developed filter algorithm to

the MSH, MS-ARCH, MSH-L, and MSARCH-L models. The filter algorithms for the state vector z,

and the unobserved variable s,, respectively are described as follows:

Filter for the state vector z,,

[Prediction]
m:h];)—l = wamiz-lln—l’ (4.63)
”fj|i)—1 = FvsluanT +GQYE", (4.64)
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where
Sfrje) 1 = E2n|¥n-1,80 = J, 801 = 1], (4.65)
SI";:)— =E [(ZL'n - $n|n_1)($n - mnln—l)TI\I'n—la Sp = j’ Sp—1 = 7/] ) (466)
. 0 0 '
QY) = Elonog |¥p-1] = : (4.67)
0 h,
[Filter]
K9 =vid  HT(H vfﬁ’i’ H)™ (4.68)
("* ) (zv ) (ly 1,7
o) = - K$OH )vf,”’ (4.70)
where
1(r:|’rjz) Elzn|¥n,sn = j;8n-1 =1, (4.71)
1(':|’i) =E [(‘Tn - X'nln)(xﬂ - zn|n)T|\Ilna 8n = j, Spn—1 = 'L] . (472)

However, to apply equations (4.68), we need to calculate h, = vs_, + Ele aL‘" g2_,, which is a function
of the square of past unobserved shocks €2_,, k = 1,2,..., K. Thus, the Kalman filter cannot be used.
Harvey, Ruiz and Sentana (1992) solve the problem of the unobserved €2_, by replacing them with their

conditional expectations:

B 7,9,,+Za E[e?_ k|\1:n_ ]. (4.73)
k=1

Given this specification, calculation of the terms E [€2_,|¥,_1] is straightforward. Since we know that

En—k = E [En—qu’n—k] + (En—k —-E [En—kl\I’n—k])a (474)

it is easy to show that

E[€2_y|%i] = Elen—i|¥n_i]® + E[(en—k — Elen—i|¥n-s))?], (4.75)

where E[en—|¥,—x] is obtained from the last two elements of z, 1,1, and its mean squared error
E[(en_k - E(sn_k|\Iln_k))2] is obtained from the last two diagonal elements of v,_1j,_1. As a by-
product of the filtering algorithm for the state-space z,, we can obtain the conditional distribution y,

on 8n,8n—1 and ¥,,_; as follows:

f(ynlsn = ja sn—liy\I’n—l) =

G \?
exp { —( I:::li‘ ) }, (4.76)

1
Venrry,

with r, = H vffli)_lHZ from the predictive distribution in equations (4.65) and (4.66).
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Filter for the unobserved variable s,

[Prediction]
1
Pr(sn = j|¥n_1) =Y Pr(sn = j,8n-1 = i|¥n_1) (4.77)
=0
1
= ZPr(sn = j,8n—1 = 1) Pr(sp—1 = |¥n_1)- L (478)
3220
[Filter]
1
Pr(sn =j|¥) =Y Pr(sn = j,8n-1 = i[¥n_1,¥n) (4.79)
1
= Z F(WUn|sn = J,8n—1 =1, ¥ny )Pr(sn = J,$n-1 = Zl‘I’n_l) (4.80)
i=0 (ynl‘yn—l)
where
1
FYn|¥n-1) = Z F@Wnlsn =5, ¥n_1) Pr(sn = 31¥n_1) (4.81)
=0
101
=33 F(wnlsn = dsn-1 =i, ¥n1) Pr(sn = j, sn-1 = i[¥n_1). (4.82)
i=0 j=0 '
[Smoother]
1
Pr(spi1 = k|¥nN) Pr(sn_,_l = kl|sn, = ])
Pr(s, = = j|¥,) + 4.

To avoid an explosion in the number of Gaussian components, the approximation techniques proposed

by Harrison and Stevens (1976) are used:
(J) z:.—_o Pr(sp-1 =i,8p = j|‘I’n)£BS|’7]l)
Foln = Pr(en = 510) !
D Ez— Pr(sp_1 =i, 5, = |¥,) [,U(m) +( (Jl) (1|,TJ;))(I("Jl)n _xslyi))T]
Unln = Pr(s, = j|¥,) )

(4.84)

(4.85)

The approximate log-likelihood is obtained as a by-product of running these filter algorithms. The

approximate log—likelihood function for the unknown parameter vector § is given by:

L(6) = Zlogf (Yn|Tn—1)

n=1

N 11
=2 [Zzlogf Yn>Sn = Sp—1 = i|¥n_1)
n=1 L j=0 i=0

N 1 1
Z [ Z Zlog f(yTl‘S h .77 -1 = i, ‘I’n—l) PI'(Sn = j, S‘n—l = 'LI\IJn_l) (486)
n=1 L j=0 i=0

Several methods of estimating the unknown parameters are proposed, including the EM algorithm (Hamil-

ton 1990) and the Gibbs sampler (Albert and Chib 1992). In this section, the quasi-maximum likelihood
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method is preferred because of its computational ease. In addition, the Akaike Information Criterion
(AIC) for selecting the model, the order of the ARCH coefficients, and the number of regimes, is defined
by:
N
AIC = -2) "log f(yn|¥n-1,6) + 2/6), (4.87)
n=1
where |0] denotes the dimension of the vector 8 (Kitagawa and Gersch 1996). Leroux and Puterman
(1992) and Ryden (1995) discuss the method of model selection and identification for Markov switching

models in detail.

4.2.4 Application and Model Comparison
Estimations of Markov Switching Models

First, we estimate and compare the models that do not include an exogenous leverage effect (MSH and
MS-ARCH). Table 4.5 reports the estimated parameters and corresponding statistics. The orders of the
ARCH coefficients are selected to minimize the AIC. ARCH coefficients in the MS-ARCH model are close
to zero for both volatility regimes s,, = 0 and s, = 1. Since there is no ARCH effect in the Markov
switching structure, the MS-ARCH model is equivalent to the MSH model. Therefore, other estimated
parameters and log-likelihood values are almost the same, and the MSH model can be selected as the
best model by the AIC because of a reduction in the number of unknown parameters. In the MSH
model, vo = 1.352 and -y; = 4.090 represent variances of the low and high volatility regimes, respectively.
Both volatility regimes have some persistence with self-loop transition probabilities pgg = 0.980 and
p11 = 0.928 that the process does not change regime. Figure 4.13 plots the smoothed regime probability
history for s, = 1. Figure 4.13 indicates some persistence in both the low and high volatility regimes.
The unconditional or stationary regime probabilities, Pr(s,), are 0.781 and 0.219 for the low volatility
regime, s, = 0, and the high volatility regime, s, = 1, respectively.

Secondly, we evaluate the exogenous leverage effects for the cross-sectional distribution of individual
stock returns by using the Markov switching models with an exogenous leverage effect proposed in the
previous subsection. We focus on the MSH-L model, since it is selected as the best model by the AIC. We
examine three moments of the cross-section distribution; that is, the standard deviation, skewness, and
kurtosis. The functions f(-) for the exogenous leverage effects in equations (4.56) and (4.57) are defined

by:

F(Mzn-1) = Max(Azn_1,0). (4.88)
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Here f(-) = Azn—; when Az,_; > 0. Otherwise, f(-) = 0. Table 4.6 shows the estimated parameters
and corresponding statistics for the MSH-L models. The AIC of the MSH-Lg p., which has the cross-
sectional standard deviation as the exogenous leverage factor, is less than that of the ordinary MSH
model. Therefore, we can say that the cross-sectional standard deviation affects the time-series volatility
dynamics with a positive correlation with A = 0.175. In the low volatility regime, s, = 0, of the MSH-
Ls.p. model, the constant variance term 7y, = 0.613 is smaller than the corresponding v = 1.352 of the
MSH model. This implies that the major parts of the process in the low volatility regime can be controlled
by the cross-sectional standard deviation of the previous period in the MSH-Ls p. model. Figure 4.14 plots
the smoothed regime probability history for s, = 1 of the MSH-Lg p.. While the low volatility regime
$p, = 0 with the self-loop transition probability pgo = 0.986 has almost the same persistence as the MSH
model, persistence of the high volatility regime s, = 1 with the self-loop transition probability p1; = 0.857
decreases in the MSH-Lg.p. model. The unconditional or stationary regime probabilities, Pr(s,), change
to 0.911 and 0.089 for the low and high volatility regimes, s, = 0 and s, = 1, respectively. Figure
4.13 confirms the characteristics of regime persistence. On the other hand, the MSH-Lg; model with
cross-sectional skewness as the exogenous leverage factor hardly improves on the AIC of the MSH model
with no exogenous leverage effect. In addition, the estimated A = -3.143 is not statistically significant
given a t-value of 1.456. The last MSH-L,, model with cross-sectional kurtosis as the exogenous leverage
factor does not have a higher log-likelihood value than that of the MSH model with no exogenous leverage
effect. It can be said that the skewness and kurtosis of the cross-sectional distribution of the TOPIX500

index returns do not particularly influence the time-series volatility process.

Model Comparisons with No-switching ARCH-type Models

Finally, we compare the Markov switching models with no-switching ARCH-type models. Table 4.7
shows the log likelihood, the number of parameters, and the AIC of the alternative models; GARCH,
GARCH with ¢ distribution of the noise term (GARCH-t), exponential GARCH (EGARCH) by Nelson
(1991), threshold GARCH (TGARCH) by Zakuian (1990) and GARCH in mean (GARCH-M) by Engle,
Lilien and Robine (1987). The order of all ARCH and GARCH coefficients is the same for simplicity.
Here, GARCH-t is selected as the best AIC model among these alternative models without the Markov
switching structure. The AIC of GARCH-t is closely similar to that of the HMS model. It can be said
that both models capture the characteristics of volatility — fat-tailed distribution and persistence —

with different specifications, respectively.
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4.2.5 Conclusions

This section introduced the Markov switching heteroskedasticity and ARCH models with exogenous
leverage effects (MSH-L and MSARCH-L), which were used to describe the time-series volatility of stock
market index returns and to evaluate the 1e§erage effect of moments of the cross-sectional distribution.
In the empirical analysis, we applied some standard models to the daily TOPIX500 index return series.
The Markov switching heteroskedasticity model (MSH), which was selected as the best model by the
AIC, was compared with MSH-L models that included either the standard deviation, the skewness or the
kurtosis of the individual stock return distributions as an exogenous leverage factor. We found that the
cross-sectional standard deviation affected the time-series volatility dynamics, while the higher moments

(skewness and kurtosis) did not have significant impacts.
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Table 4.4: Basic statistical summary of the TOPIX500 index returns.

Statistics Overall 1999 2000 2001

Mean -0.00028 0.19861 -0.10753 -0.08942

Std Deviation | 1.40043 1.21023 1.40372  1.54965

Skewness -0.14081  -0.17672 -0.28888  0.09637
Kurtosis 1.63498 0.90875 1.74587 1.63708
Sample Size 738 244 248 246

Table 4.5: Estimated parameters and statistics of models with no exogenous leverage effect.

MSH MSARCH(1)

Estimation (Standard error) | Estimation (Standard error)
© -0.003 (0.000) -0.003 (0.000)
Y
Yo 1.352 (0.123) 1.352 (0.123)
m 4.090 (0.802) 4.089 (0.803)
a
o 0.000 (0.000)
o 0.000 (0.000)
5 .
Poo 0.980 (0.011) 0.980 (0.011)
Pt 0.928 (0.041) 0.928 (0.041)
LL -1273.47 -1273.47
AIC 2556.94 2560.94
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Table 4.6: Estimated parameters and statistics of MSH-L models.
MSH-Ls.p. MSH-Ls#w MSH-Ligcyre

Estimation (Standard error) | Estimation (Standard error) | Estimation (Standard error)

7 -0.017 (0.045) -0.008 (0.031) -0.003 (0.038)

Yo 0613 (0.280) 1.303 (0.113) 1.352 (0.123)

0%l 4.485 (2.350) 4.173 (0.832) 4.089 (0.801)

A 0.175 (0.059) -3.143 (2.158) 0.000 (0.058)

Poo 0.986 (0.011) 0.981 (0.010) 0.980 (0.011)

P11 0.857 (0.132) 0.923 (0.041) 0.928 (0.041)
LL -1269.50 -1272.15 -1273.47
AIC 2551.01 2556.29 2558.94

Note: The AIC of the MSH model with no exogenous leverage effect is 2556.94.

Table 4.7: Log likelihood, number of parameters and AIC of no-switching models.

Models Log likelihood = # of parameters AIC

ARCH -1297.40 3 2600.80
GARCH -1283.85 4 2575.71
GARCH-t -1274.19 4 2556.38
EGARCH -1284.32 4 2576.64
TGARCH -1280.73 5 2571.46
GARCH-M -1282.63 5 2575.26
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Figure 4.8: TOPIX500 index: 1999/1 — 2001/12.
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Figure 4.9: Logarithmic return of daily TOPIX500 index: 1999/ 1-2001/12.
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Figure 4.10: Cross-sectional standard deviation of TOPIX500.
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Fighre 4.11: Cross-sectional skewness of TOPIX500.
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Figure 4.12: Cross-sectional kurtosis of TOPIX500.
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Figure 4.13: Smoothed regime probability of S, =1 (high volatility régime) of MSH model.
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Figure 4.14: Smoothed regime probability of $,, = 1 (high volatility regime) of MSH-Lg p. model.
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4.3 Analysis of Japanese Business Cycles

— Analysis of Japanese Business Cycles Using the Multivariate Stochastic Trend Model

with Simultaneous Markov Switching Drift

4.3.1 Introduction

The Japanese government releases official business cycle reference dates — the turning points between .
expansion and contraction of the business cycle. These dates are determined by the objective criterion
of the historical diffusion indez (Bry and Boschan 1971). To calculate this index, economic time series
that represent widely differing activities or sectors of the Japanese economy are chosen to fit its business
cycle chronology. The coincident indicators for the historical diffusion index are listed in Table 1 and
plotted in Figure 4.15. These series were last revised in June 1996. The crucial drawback of this historical
diffusion index method is that it generally takes a long time — about one year or more — to determine
the turning point dates. For example, it was not until April 2000 that the Japanese government could
determine “April 1999” as the end of the last economic expansion period beginning in April 1997.

Recently, types of stochastic approaches have been proposed to estimate and forecast the business
cycle. The Markov switching model is one of the most popular tools used to analyze business cycles
using a univariate economic model. Hamilton (1989) first proposed an autoregressive Markov switching
model and applied it to U.S. quarterly GNP data. Variants of Hamilton’s model are used to capture the
characteristics of business cycles and other non-linear economic time series. Filardo (1994) introduced
time-varying transition probabilities into Hamilton’s model, and applied it to the U.S. monthly index of
industrial production. Phillips (1991) and Kontolemis (2001) extended the univariate Markov switching
model to the multivariate version, and applied it to four given time series from the U.S. composite index
of coincident indicators — industrial production, real personal income, real manufacturing and trade
sales, and total employee-hours in non-agricultural establishments. Also popular is Stock and Watson’s
(1991) dynamic factor model, which estimates co-movement by obtaining an unobserved single common
factor from a set of economic time series using the Kalman filter technique. Kim and Nelson (1998) and
Kim and Yoo (1995) generalize the dynamic factor model with a Markov switching structure (DFMS
model). While several recent studies of the U.S. business cycle have used multivariate stochastic models,
1

few have focused on the Japanese business cycle.

In this section, we adopt the Burns and Mitchell (1946) definition of business cycles. Two key features

1Kaufman (2000) applies the DFMS model to Japanese quarterly business cycle analysis. However, the model seems to

estimate business cycle phases poorly.
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of this definition are co-movement among economic time series and division into the separate phases of
expansion and contraction. The DFMS model captures these two characteristics of business cycles simul-
taneously with a Markov switching unobserved common index. In this section, we apply the multivariate
Markov switching stochastic trend model with Markov switching drift (MSST) to multivariate economic
time series in order to estimate the Japanese business cycle phases. Our multivariate MSST model is
a restricted spesial case of the DFMS model. The main difference between the DFMS model and the
multivariate MSST model derives from this restriction. Our multivariate MSST model assumes that all
the stochastic trends of economic time series shift simultaneously between probability distributions with
high and low means. This simultaneous shift depends on a common transition probability mechanism.
We view the point in time of this shift as the turning point of the business cycle. The multivariate MSST
model focuses on estimating and forecasting the business cycle phases, while the DFMS model is used to
estimate an unobserved common trend among economic time series with a Markov switching structure.
When the amplitudes of time series clearly differ (as in Figure 4.15), it is not appropriate to use the

DFMS model to estimate and forecast business cycles.

The purpose of this section is to evaluate the out-of-sample estimating accuracy of the monthly
Japanese business cycle phases obtained by using the multivariate MSST model, and to compare this
performance with that of the univariate MSST model. The subset of observed variables for the mul-
tivariate MSST model is selected to minimize the quadratic probability score (QPS) in the in-sample
period.

The section is organized as follows. Subsection 2 describes the model specification and the state and
parameter estima‘sion methods for the multivariate MSST model. Subsection 3 presents the measure
used to evaluate the accuracy of estimates of business cycle phases, and describes the variable selection
method. In subsection 4, we determine the best multivariate MSST model for the in-sample period, and
compare the multivariate MSST model with the univariate model according to estimating performance

in the out-of-sample period. Concluding remarks are given in subsection 5.

4.3.2 Multivariate Stochastic Trend Model with Simultaneous Markov
Switching Drift

Model specification

In this subsection, we describe a state-space specification of the multivariate stochastic trend model with

simultaneous Markov switching drift (MSST model). Let 4, = (Y1,n,Y2,ns-- s W,N) ., n =1,2,---, N, be
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a [-dimensional observed variable at time n. The observation model is given by:

Yn = tn + Un, vn ~ N(0,3), - (4.89)

where t, = (tin,t2n,---,t,~)7 represents the I-dimensional stochastic trend component, and v, is
the observation noise, which is identically and independently distributed with zero mean and a (I x )
variance-covariance matrix ¥ = diag(o?,02,--,0%). The system model for generating the l-dimensional

stochastic trend component t,, is given by:

tn = b+ tpo1 + Wn, wy, ~ N(0,Q), (4.90)

where w,, is the system noise, which is identically and independently distributed with zero mean and
a (k x k) variance-covariance matrix = diag(rZ,72,---,77). Here, a k-dimensional Markov switching

drift p is dehoted as follows:

Ko,1 W Hi
Ho,2 H1,2
uw=(1-3,) ] + 8, ) , Ho,m > P1,m, m=1,2,...,1, (4.91)
| Moy | | M1

where s, represents the unobserved Markov chain according to a discrete first-order two-regime Markov
process, and takes a value of 0 or 1. s,; indiéates the business cyde phases of the unobserved regime:
8y, = 0 for an expansionary regime and s,, = 1 for a contractionary regime. t, is updated by the Markov
switching drift 4 which is dependent on s,. t, follows an upward trend with a positive drift in s, =0
for the expansionary regime, and follows a downward trend with a negative drift in s, = 1 for the

contractionary regime. The transition probability of s, is assumed to be time-homogeneous and is given

by:

pij = Pr(sn = jlsn—1 = 1), (4.92)

with Z;=0 pi; = 1 for all i = 0,1. It is convenient to represent the transition probabilities in a (2 x2)

transition probability matrix:

Poo P10 poo 1—pn
P = =
Por Pul 1-poo pu
We assume that the observed variables y; ., ¢ = 1,...,l, shift between the two regimes (sn = 0 and

$n = 1) simultaneously. This assumption allows us to extract the unobserved co-movement among the

observed variables y; , as binomial values of 0 and 1.
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Estimations of States and Parameters

To evaluate how closely the multivariate MSST model can track the official business cycle phase, we must
estimate the filtered regime probability Pr(s, = j|¥,,), which is the probability that the observed variable
Yn TEmains in regime s, = j at time n given that the information ¥, is known up to time n. The filter
algorithm for a Markov switching state-space model was proposed by Kim (1994).. Kim’s filter algorithm
has been derived from a Gaussian-sum filter (Sorenson and Alspach 1971) and from a non-Gaussian filter

(Kitagawa, 1987).

[Prediction]

=0

1 .
Pr(sp = j[¥n1) =) Pr(sn = j,8n-1 = i|¥p_;)

1
= Pr(sy = jlsn—1 = i) Pr(sn—1 = i|¥n_1)
=0

1
= Zpij Pr(sn—l = il‘I"n—l)- (493)

=0

[Filter]

Pr(sn = j|¥s) = Pr(s, = j|¥n_1,¥n)

P(Z/n|3n = ja \I’n——l) Pr(sn = jl‘Iln—l) : 7
= , 4.94
p(ynlq—’n—l) ( )
where:
. 1 (Yn — tn)Tz—l(yn —tn)
nl$n =5, ¥p_1)= ——F—— € - , 4.95
P(ynl J 1) TSR] Xp{ 5 (4.95)
1
PYnl¥n_1) =Y p(Unlsn = §, ¥n1) Pr(sn = j|¥n_r). (4.96)
j=0

As a by-product of running the above filter algorithm, we can easily obtain the log-likelihood function as

follows:
N
1(8) = log p(yn|¥n-1), (4.97)
n=1

where an unknown parameter vector 6 is defined by:

4 E{ UO,1,~--,M0,l,u1,1,---,u1,z,01,---,Ul,T1,-~-,Tt,P00,P11 } .

Several methods of estimating the unknown parameters have been proposed, such as the EM algorithm
(Hamilton 1990) and the Gibbs sampler (Albert and Chib 1993). In this section, the maximum likelihood

method is preferred because of its computational ease.
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4.3.3 Variable Selection

Evaluating the accuracy of estimation

In this subsection, we describe the measure used to evaluate the accuracy with which business cycle phases
are estimated. An important issue that needs to be defined clearly is “true business cycle reference dates”.
Although the Japanese government releases the official business cycle reference date, it is not necessarily
“true” in a statistical sense. However, the evaluation and comparison of different models requires a true
value as a benchmark. In this section, we assume, as previous studies have, that the official business cycle
reference dates published by the Japanese government are provisionally true. While this issue could be
considered further, to do so is beyond the scope of the present section.

To evaluate the accuracy with which the MSST model estimates business cycle phases, we consider
the quadratic probability score (QPS) proposed by Brier (1950) as follows:

1 & 1 & )

QPS = ; Q=% ; 2(P, — R,)%. (4.98)
Suppose that we have a time series of N probabilities {P.}N_,, where P, is the filtered regime probability
Pr(sn|¥,) in equation (4.94), which is the probability of remaining in s, =1 (the contractionary phase)
at time n. Similarly, let {R,}Y_; be the corresponding time series of realizations released officially by
the Japanese government — that is, R,, equals one if the business cycle phase is in contraction at time
n and equalé zero otherwise. In this section, we do not focus on forecasting, but on estimation of the
business cycle phase. Therefore, when we know the information ¥, at time n, we calculate and evaluate
the filtered regime probability Pr(s,|¥,) at time n. The QPS ranges in value from zero to two. A score
of zero indicates that the model estimates the business cycle phases perfectly. The larger the score, the

larger the estimating errors.

Search method

Exhaustive search is the only technique that is certain to find the variable subset with the best evaluation
criteria. However, the problem is that exhaustive search is a computationally intractable technique.
Since we use thirteen time series as candidates for a set of observed variables in this empirical analysis,
evaluation criteria would have to be calculated for over 8,000 possible subsets. Clearly, it is not practical
to conduct an exhaustive search for a subset for the best model. To cope with this computational
problem, we use a forward-backward stepwise selection algorithm (Efroymson 1960, 1966), which saves
much computation time.

We show step-by-step how to use the procedure for a forward-backward stepwise selection algorithm
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for selecting the subset of m variables from M time series to minimize the QPS. Here, the variable

dimension m is unknown.

(1) For an initial small mg (= 1,2 or 3), compute the QPSs of all possible mq-variable MSST models.

Note that the number of models is p/Cp,,. Select L sets of models with the smallest QPSs.

(2) Compute the QPSs of L x (M — m) sets of the (m + 1)-variable MSST models by adding a new
variable to each of the L sets of the m-variable models with the smallest QPSs. If the QPS of the
best (m + 1)-variable MSST model is larger than that of the best m-variable MSST model, stop

the iteration. Otherwise, go to (3) below.

(3) Compute the QPSs of L x (m+1) sets of the m-variable MSST models by deleting one variable from
each of the L sets of the (m + 1)-variable models selected in (2). Select L sets of the m-variable
models with the smallest QPSs. If the QPS of the best m-variable MSST model is smaller than
that of the best (m + 1)-variable MSST model obtained in (2), use L sets of the m-variable models
as the current models and go to (2). Otherwise, use L sets of the (m + 1)-variable models as the

current models, set m = m + 1 and go back to (2).

4.3.4 Application and Model Comparison
Data description

The set of observed variables to be used in this empirical analysis of the Japanese business cycle are
thirteen monthly time series from the composite indices of coincident indicators. These are listed in
Table 4.8 and plotted in Figure 4.15. The sample period is from January 1973 to December 2000, and
the sample size for each time series is 336. These historical data are available from the website of the
Economic and Social Research Institute in the Cabinet Office (http://www.esri.cao.go.jp/index-e.htmi).
In the parameter estimation, each time series is first standardized by subtracting the sample mean from

each observation and dividing by the standard deviation, and is then multiplied by 100.

In-sample variable selection and estimation

Since the latest revisions to the group of economic time series used to calculate the historical diffusion
index were made by the Japanese government in June 1996, we chose the period from January 1973 to
June 1996 for in-sample variable selection and estimation. Economic time series are selected in order to
fit the past business cycle chronology. For the in-sample period, we searched among the thirteen time

series to find the subset of variables for the multivariate MSST model that minimizes the QPS by using
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the forward-backward stepwise selection algorithm. The initial number of variables was set at mo = 2.
The five-variable MSST model for LIPC, INSWH, SDS, ISWT, and ISSMSE1 was selected as the best
MSST model, with a QPS=0.180. This QPS is smaller than any QPS among the univariate MSST models
(0.281 — 0.806), which are listed in the second-last column of Table 4.8. Table 4.9 shows the variables,
estimated parameters, and associated statistics for this QPS-minimizing five-variable MSST model in the
in-sample period. Figure 4.16 shows the filtered regime probability of contraction implied by this five-
variable MSST model, and its shaded areas represent contractions of the official business cycle. Figure
4.16 shows that the five-variable MSST model is successful in tracking the official business cycle reference
dates, except for the period from April 1981 to March 1982.

Next, we discuss some implications of the estimated parameters for the five-variable MSST model. The
drifts of the stochastic trend components are g > 0 and p; & < 0 for all five variables (k = 1,2,.. ., 5).
This implies that the five time series shift simultaneously between the stochastic trend process regimes
with negative drifts (contractions) and those with positive drifts (expansions), according to the first-order
Markov process. Recall that regimes s, = 0 and s, = 1 indicate the business cycle expansionary and
contractionary phases, respectively. The estimated transition probabilities poo and pi1 are 0.954 and
0.916, respectively. The expected durations of an expansion and a contraction are 21.70 months and
11.95 months, respectively. 2 The fact that both transition probabilities exceed 0.90 suggests that both
business cycle phases exhibit persistence during the sample period. The fact that the former transition

probability exceeds the latter implies that expansions tend to continue longer than contractions.

Implication of identification errors

On the other hand, as Figure 4.15 shows, business cycles identified by the multivariate Markov switching
model differ from those of the Cabinet Office in some periods. In particular, our model fails to identify
business cycles with probabilities of more 50 percent, in a period that continues for eight months from
1981/6 to 1982/1 (indicating this period by drawing a circle in Figure 4.15). Here, we consider under
what economic conditions such a difference between our statistical models and the Cabinet Office occurs.
The period from 1981/6 to 1982/1 is included in the period of synchronized global economic slowdown.
Within this period, where our model did not demonstrate goodness of fit, the second oil shock occurred

due to the OPEC oil price rises. As a result, the global recession deepened, and there was little sign of an

2The expected duration of regime j can be derived as:

E@d) =) jPrd=j)=

i=1

1-pj;
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economic recovery on the horizon. It can be said that our multivariate Markov switching model identified
the period of temporal economic expansion as one independent business cycle. It is not appropriate to
conclude that such an identification error is due to inadequate modelling of business cycles. Paradoxically,
it is possible to see that this error implies the failures of the Cabinet Office’s identification of business

cycles.

Out-of-sample estimation performance

In this subsection, we compare the out-of-sample estimating performance of the multivariate MSST model
with that of the univariate MSST model. To evaluate the out-of-sample estimating performance of the
MSST models, we calculate the out-of-sample QPSs for both the multivariate and univariate MSST
models with given subsets of variables and estimated parameters in the in-sample period.

The final columns of Table 4.8 show the in-sample and out-of-sample QPSs for each economic time
series for the univariate MSST model. A smaller QPS indicates a more accurate estimating performance
by the univariate MSST models for the corresponding variable. A * denotes any QPS that is greater
than the unconditional QPSy = 0.497, which is given by:

1 & 1 Y
QPSy = ~ ; Qno = N Z 2(Po — R,)?, (4.99)

n=1

where Py = 0.463 is the experience probability, or the unconditional probability, which is the ordinary
probability of contraction for all sample periods. A model with a QPS that is smaller than QPSg improves
estimation performance. The final columns of Table 4.9 show the in-sample and out-of-sample QPSs of
the five-variable MSST model, which is selected to minimize the in-sample QPS: This out-of-sample
QPS=0.171 is smaller than the minimum QPS=0.208 of the univariate MSST model for ICRM. The
business cycle phases in the out-of-sample period can be estimated more accurately with the five-variable
MSST model than with the univariate models. Therefore, it can be said that our multivariate Markov
switching model with the variable selection process is a more accurate method of estimating business cycle
phases. Figure 4.17 plots the filtered regime probability of a contraction in the out-of-sample period from
this five-variable MSST model. While the five-variable MSST model successfully tracks the business cycle
reference date overall, Figure 4.17 also reveals estimating errors (1997/4—7, 1999/3—4) with regard to
contractions from April 1997 to April 1999 in the out-of-sample period. One way of increasing out-of-
sample estimating accuracy may be to expand the population of observed variables. However, further
investigation is beyond the scope of this section, since we focus on comparisons between univariate and

multivariate models.
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4.3.5 Conclusions

This study estimated Japanese business cycle phases (expansion and contraction) using the multivariate
stochastic trend model with Markov switching drift (MMST model). The multivariate MSST model
can capture the co-movement of some economic time series. For all the time series, the common two-
regime and first-order Markov chain governs the shift of each time series between stochastic processes
with two different drifts. The five-variable MSST model for the time series LIPC, INSWH, SDS, ISWT,
and ISSMSE1 minimizes the in-sample quadratic probability écore. . Some identification errors with
this model paradoxically imply the failure of business cycle detection by the Cabinet Office. In the out-
of-sample period, this five-variable model performs better in estimating the business cycle than do the

univariate MSST models.




Variable Name Symbol Remarks QPSl QPS2
1. Index of Industries Production (Mining and Manufacturing) P 1995=100 *0.476 0.342
2. Index of Consumption of Raw Matenals (Manufacturing) ICRM 1995=100 0.248 0.208
3: Large Industrial Power Consumption LIPC million kwh 0.281 0.293
4: Index of Capacity Utilization Ratio (Manufacturing) ICUR 1995=100 *0.683 *0.819
5. Index of Non-Scheduled Worked Hours INSWH 1985=100 0.331 0.374
6. Index of Producer's Shipment of Investment Goods IPSIG 1995=100 0.470 0.241
7. Sales at Department Stores SDS percent change 0.454 0.499
8. Index of Salesin Wholesale Trade ISWT percent change *0.671 *0.792
9. Operating Profits (All Industries) OP 100 million yen *0.718 *(.888
10: Index of Salesin Small and Medium Sized Enterprises (Manufacturing) ISSMSE1 0.379 0.357
11 Index of Shipment in Small and Medium Sized Enterprises ISSMSE2 1985=100 *0.583 *0.607
12: Index of Wholesale Price in Small and Medium Sized Enterprises TWPSMSE | 1995=100 *0.806 *0.889
13:  Effective Job Offer Rate (Excluding New School Graduates) EJOR times ¥0.542 *0.833
Note:
1. QPS1 is the quadratic probability score for in-sample period (1973/1 to 1996/6).
2. QPS2 is the quadranc probability score for out-sample period (1996/7 to 2000/12).
3. The unconditional QPSly and QPS%y are 0.476 and 0.481, respectively.
4., A*marks any QPS thatis greater than the unconditional QP Sy
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Symbol T Byl Ty Oy P Pu LL QPS!  Qpg?
LIPC 3.01 (0.40) -2.25 (0.54)| 4.83 (0.56)  5.23 (0.44)] 0.854 (0.018) | 0.916 (0.031) -5753.85| 0.180 0.171
INSWH 3.83 (0.62) -7.32 (0.87)| 7.65 (0.34)  0.01 (0.00)
sDS 131 (0.93) 4.83 (1.23)| 1046 (145 37.55 (1.76)

ISWT 434 (1.59) -9.91 (2.06)| 1970 (1.83) 15.63 (1.60)
ISSMSE1 2.87 (0.40)  -1.79 (0.54)| 4.88 (044)  3.79 (0.37)
Note:

1. QPS!isthe quadratic probability score for in-sample period (1973/1 to 1996/6).
2. QP3%isthe quadratic probability score for out-sample period (1996/7 to 2000/12).
3. The unconditional QPSy and QPS%; are 0.476 and 0.481, respectively.
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Figure 4.15: Coincident indicators.
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Figure 4.16: Filtered regime probability of contractions in the in-sample period.
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Note: shadowed periods denote economic recessions by the Cabinet Office.

Figure 4.17: Filtered regime probability of contractions in the out-of-sample period.
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4.4 Japan Premium and Japanese Banks’ Stock Volatility

— The Japan Premium and Japanese Banks’ Stock Volatility: A Bivariate Markov

Switching Approach

4.4.1 Introduction

In the second half of the 1990s, Japanese banks faced a serious and embarrassing situation in two financial
markets, the international money market and the domestic stock mafket. The first phenomenon was the
so-called “Japan premium” in the international money market. The Japan premium is defined as the
difference between the Eurodollar interbank borrowing rate of interest for Japanese banks and that for
Western banks. When this difference expands more widely than usual regardless of the respective credit
ratings (for example, ratings by Moodys and Standard & Poor’s), it is highlighted as the Japan premium.
The second phenomenon was the increase in the volatility of Japanese banks’ stock on the Tokyo Stock
Exchange. Although Japanese financial institutions had stabilized their stock prices via share cross-
holdings over a period of years, resolving this share cross-holding through the second half of the 1990s
was one of the factors that caused Japanese banks’ stocks to become more volatile. Furthermore, the
huge amount of short-selling and speculative investments by hedge funds amplified this problem. These
undesirable phenomena in the financial markets set off a vicious cycle in which the increased cost of
capital procurement and the destabilization of capital adequacy further weakened the Japanese banks’
management bases. From an economic and political viewpoint, these problems stemmed from: 1) the vast
amount of non-performing loans due to the bursting of asset bubbles in the first half of the 1990s; 2) the
incomplete disclosure of bank balance sheet conditions; and 3) the lack of a Japanese government scheme
to deal with near-insolvent banks. Peek and Rosengren (2000) examined the factors most responsible for
movements in the Japan premium. Ito and Harada (2000) investigated how financial troubles among the

Japanese banks were viewed by the international money market and by the domestic stock market.

We now turn to the relationship between the Japan premium and the increase in the volatility of
Japanese banks’ stock. The international money market and the domestic stock market operate with
different systems and roles. There are very few mutual market participants. While international money
markets are inter-bank markets, stock markets are open markets. However, recent huge capital move-
ments and the development of financial information technologies have contributed to strengthening link-

ages among several financial markets. Given financial globalization, it is sensible to assume that the

Japan premium and the increase in Japanese banks’ stock volatility do not occur independently, but are




4.4. JAPAN PREMIUM AND JAPANESE BANKS’ STOCK VOLATILITY 107
correlated to some degree.

The purpose of this section is to analyze the relationship between the Japan premium and the increase
in Japanese banks’ stock volatility in the second half of the 1990s using the bivariate Markov switching
model. The two variables used are the spread of the Eurodollar borrowing rate of interest between
Japanese banks and Western banks in the London Inter-Bank Offer Rates (the LIBOR spread), and the
‘banks’ stock return in the Tokyo stock exchange (the TSEBK return).

The Markov switching approach was introduced by Hamilton (1989) in the econometrics literature
to capture some characteristics of nonlinear time series. Kim (1993, 1994) extended Hamilton’s Markov
switching model to a general state-space model. Engel and Hamilton (1990) applied the stochastic
trend model with a Markov switching mean and variance to the quarterly exchange rates of developed
countries. With regard to the bivariate Markov switching model, Phillips (1991) extended a univariate
Markov switching model to the bivariate version, and investigated the inter-country transmission of the
business cycle. Hamilton and Lin (1996) studied the relationship between stock market volatility and the
business cycle. The bivariate Markov switching model used in this section is a modification of Phillips’s
(1991) model.

The section is orga.nized‘as follows. Subsection 2 describes the analytical method within the framework
of the bivariate Markov switching model. Subsection 3 presents the empirical results, including model
comparisons, estimates, and the implications for the Japan premium and Japanese banks’ stock volatility.

Concluding remarks are presented in subsection 4.

4.4.2 The Bivariate Markov Switching Model

We describe the bivariate correlated Markov switching (BCMS) model in this subsection. We attempt
to capture the mean shift effect of the LIBOR spread and the variance shift effect (heteroskedasticity)
of the TSEBK return using the BCMS model. Let y1,, be the LIBOR spread, and y2,, be the TSEBK

return. We assume that the observed variables ¥ ,, and ys 5 are distributed as follows:

Yim ~ 51,aN(41,0,0%0) + (1= s1,0)N(p1,1,07 1), B1,0 < P11, (4.100)

Yom ~ 82a.N(0,03,) +(1—52,)N(O, 031), G20 < 021, (4.101)

where s1,, and sz, are the discrete unobserved variables for the LIBOR spread and the TSEBK return,
respectively. s;, and sg, follow the first-order and two-regime Markov switching processes taking a
value of zero or one.

The unobserved variables s1 , and sz, indicate respectively the “regime” that y1 and ys ., are in
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at time n. For the LIBOR spread, s;,, = 0 and sl',n = 1 indicate the narrow and wide spread regimes,
respectively. The LIBOR spread follows the normal distribution NV (Ml,o,ﬂf,o) in the narrow spread
regime, and follows the normal distribution N(u,1,07,) in the wide spread regime. For the TSEBK
return, s2., = 0 and 53, = 1 indicate the low and high volatility regimes, respectively. The TSEBK
return follows the normal distribution N (0,03 ;) in the low volatility regime, and follows the normal
distribution N (0,03 ;) in the high volatility regime. We can consider four possible regimes for both the

LIBOR spread and the TSEBK return. They are summarized in Table 4.10 as follows:

Table 4.10: Regime Definitions

Y1,n: LIBOR spread y2,n: TSEBK return
Regime 1 (51, =0, 82, = 0) Narrow spread Low volatility
Regime 2 (81, =1, 52, = 1) . Wide spread High volatility
Regime 3 (81, =0, 52, = 1) Narrow spread High volatility
Regime 4 (s1,, =1, 83, = 0) Wide spread Low volatility

The relationship between the LIBOR spread and the TSEBK return is characterized by the time-
varying correlation among s; ., S2,n, S1,n—1 and $s,—;. Thus, the transition probability is defined as

follows:

Piit jjt = Pr(s1,n = 74,80 = §'|S1,n-1 =1, 82.n—1 = 1), i,5,4,5 =0,1, (4.102)

and

11
Z Z Piir 50 = 1. (4.103)

7=0 j'=0

for all 4,i' = 0,1. It can be written as a (4 x 4) transition matrix:

Doo,00 Pi1,00 Poi0o P10,00

Poo,11  P11,11 Poi,i1 P1o,11

P= (4.104)

Poo,01 P11,01 Po10t  P1o,01
Poo,i0 P11,10 Por,10  P10,10
The BCMS model allows for various types of transition between regimes, including stationary, leading,
lagging, and simultaneous regime transitions.
We now briefly describe the filter, smoother, and parameter estimation methods. Hamilton (1989)

proposed the filter algorithm for the Markov switching model. As a by-product of this filter, we can easily
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obtain an approximate log-likelihood function for the unknown parameter vector 8, which is given by

N
10ly) =) _log f(yn|¥n_1), | (4.105)

n=1

where
11 1 1

F@alTa-1) =YY" fWn,s1n = o820 =55 81,n-1 = 6, 82,n-1 = 1| ¥n1)
i=0 i'=0 j=0 j'=0
111

1
=3 330N Fnlsin = b 52,0 = 551,01 = 4 82,01 = 8, ¥ny)

=0 i/ =0 =0 j'=
XPr(sin=34,82mn =3 ,81,n-1 = 1,82,n-1 =% |¥n_1). (4.106)

Note that ¥,,_; denotes all the information available at time n — 1. The smoother algorithm is also
proposed by Hamilton (1989). Kim (1994) presented the filter and the smoother for the state-space
model. Several methods for estimating the unknown parameters have been proposed: for example, an
Expectation maximization (EM) algorithm (Hamilton 1989) and a Gibbs sampler (Albert and Chib
1992). For the purposes of this section, the quasi-maximum likelihood method is preferred because of its

computational ease.

4.4.3 Application and Model Comparison
Data description

In the empirical analysis, for the observed variable on the LIBOR spread, we use the daily average éprea,d
of the three-month U.S. dollar LIBOR between two Japanese banks (Tokyo-Mitsubishi and Fuji bank) and
two Western banks (Citibank and Berkeleys Capital Group). For the observed variable on the TSEBK
return, we have to remove the biases against other industrial sectors, the free-float and cross-holdings,
from the daily logarithmic return of the TOPIX Bank Sector Index. Fedenia et al. (1994) discussed the
bias against the cross-holdings. To deal with these problems, we construct the TSEBK return used in

the empirical analysis as follows:

TSEBK return = t,, fp, — (Un — tnwn) (4.107)

where t, is the TOPIX Bank Sector Index return; f. is the free-float adjustment factor; u, is the
S&P/TOPIX 150 Index return, 3 which is adjusted for free-float due to government ownership, strategic

holders, corporate cross-holdings, and foreign investment restrictions; and wy is the index weight of the

3The S&P/TOPIX 150 Index includes 150 highly liquid securities selected from each major sector of the Tokyo market,
and represents approximately 70% of the market value of the Japanese equity market. Each stock’s weighting, or percentage,

in the index is based on its market capitalization. The market value of each stock is adjusted to exclude the value of shares

held by large shareholders.




110 CHAPTER 4. EMPIRICAL ANALYSIS .

bank stocks in the S&P/TOPIX 150 Index. Note that f, is a constant 0.4 according to the calculation

method of Standard & Poor’s, and that w,, is assumed unchanged for one month.

Now, we must draw attention to the problem that the observed times for the TSEBK return and the
LIBOR spread are not fully contemporaneous. While the observed time for the TSEBK return is 3:00
p.m. Tokyo time, the observed time for the LIBOR spread is 11:00 a.m. London time. Thus, on a given
date, the TSEBK return is 6bserved five hours earlier than the LIBOR spread. In our empirical analysis,
we regard the TSEBK return and the LIBOR spread observed for a given date as quasi-contemporaneous
observations. The financial innovations during the observed time-lag between the TSEBK return and the
LIBOR spread seem to have a relatively small impact on the international money markets. This may
be because this five hour time-lag does not overlap with the operating hours of the New York financial
market, which seems to have a significant impact on the rest of the world. The daily data are provided
by Bloomberg and Standard & Poor’s. The sample period is from January 1995 to December 2000.
The estimated statistics are calculated using indices obtained by multiplying the observations by 100.
Figures 4.18 and 4.19 plot the LIBOR spread and the TSEBK return, respectively. It is likely that the
LIBOR spread includes some structural changes in the mean, and that the TSEBK return has some

heteroskedasticity.

Check for Stationarity of the Observations

To analyze the relationship of cause and effect for the multivariate stationary time series, the vector
autoregressive model (VAR model) and the corresponding spectrum analysis are widely used. Ito and
Harada (2000) applies the VAR, model with different specification of the LIBOR spread and the TSEBK
return, including news event effects. However, when the time series are not stationary, we cannot apply
these approaches in a straightforward manner (Baek and Brock, 1992). As preliminary analysis, we check
stationarity of the observed time series, the LIBOR spread and the TSEBK return. Figure 4.20 and
4.21 show the sample autoregressive functions of the LIBOR spread and the TSEBK return, respectively.
While the TSEBK in Figure 4.21 seems to be stationary, the LIBOR spread in Figure 4.20 apparently
includes a trend component and can be said to be non-stationary. Therefore, in the following part of this
subsection we try to analyze the transmission mechanism between the LIBOR spread and the TSEBK

return by using bivariate Markov switching models.
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Model Comparison with Alternative Markov Switching Models

In this subsection, we compare the BCMS model using two null hypotheses — the bivariate “simulta-
neous” Markov switching (BSMS) model, and the bivariate “independent” Markov switching (BIMS)

model. The null models include the different restricted transition probability forms described below.

Bivariate Simultaneous Markov Switching Model

In the null hypothesis of the BSMS model, the narrow (wide) spread regime for the LIBOR spread
and the low (high) volatility regime for the TSEBK return are assumed to occur simultaneously or
in synchronization. Thus, this simultaneous regime transition follows the common first-order Markov

switching process across two observed variables as follows:

S1,n = S2,n, (4108)
Dij = Pr(sl,n = j|31,n—1 = ’L) = Pr(32,n = j|32,n—1 = 'L), 7’7.7 =0,1, (4109)
and
1
> opii=1, (4.110)
‘=0
foralli=0,1.

Bivariate Independent Markov Switching Model
In the null hypothesis of the BIMS model, since s; ,, and s2 ,, are independent, the regime transitions of the
LIBOR spread and the TSEBK return are assumed to occur independently according to the independent

first-order Markov switching processes as follows:
P1,ij = Pr(s1,n = j|s1,n-1 = 1), i,j =0,1, (4.111)

D25 = PI‘(Sz,n = j’ISQ,n_l = i’), ’i',jl = 0, 1, (4.112)

and

1 1 11

> pi=1, > prwi =1, S prigpaey =1, ; (4.113)
=0 j'=0 Jj=0j'=0

for all 4,7’ =0, 1.

Table 4.11 shows the log-likelihood values, the Akaike information criterion (AIC) (Akaike 1973),

the log-likelihood (LR) statistics, and the corresponding p-values. In this model comparison, the BCMS
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model is selected to minimize the AIC. In addition, we obtain consistent results by using the AIC model
selection criterion, and by testing the BCMS model on the basis of the LR statistics. Both null hypotheses

of the BSMS and BIMS models can be strongly rejected against the BCMS model at the one percent

significance level. It follows from this model comparison that sy ,, S2.n, S1,n~1 and sz ,-—1 are time-

variance correlated across both the LIBOR spread and the TSEBK return. In other words, the transition
among regimes of the LIBOR spread and the TSEBK return is neither synchronized nor independent,

but is time-variance correlated.

Estimation Results

Table 4.12 shows the estimated parameters and corresponding standard errors of the BCMS model.
Figures 4.22 to 4.25 plot the smoothed regime probability of the BCMS model. |

First, the LIBOR spread follows the normal distribution N (4.80,4.13%) in the narrow spread regime,
and follows the normal distribution N(38.21,19.03%) in the wide spread regime. The Japan premium
emerges as a serious issue for Japanese banks in those periods when the observations are in regimes 2
or 4 (Figures 4.23 and 4.25), and is normally distributed around a mean of 38.21 with a variance of
19.03. * Figure 4.26 plots two joint deﬁsity functions f(y1,n,51,r), Which are obtained by integrating the
conditional density functions f(y1,»|s1,») and the unconditional regime probabilities Pr(s;,, = 0) = 0.759
- and Pr(s1,, = 1) = 0.241. We can see the bimodal appearance of the LIBOR spread, and can confirm its
mean shift effect schematically.

Secondly, the TSEBK return follows the normal distribution N(0,0.592) in the low volatility regime,
and follows the normal distribution N(0,1.292) in the high volatility regime. Figures 4.23 and 4.24 show
the probabilities of periods when the volatility of the TSEBK return increases. In the same way as the
LIBOR spread, the joint density functions f(y2,5, s2,») for the TSEBK return in Figure 4.27 are given by
F(Y2,n,82,n) = f(y2,nl52,n) Pr(s2,n); note that Pr(s, ,, = 0) = 0.620 and Pr(sz , = 1) = 0.380. These take
the form of a fat-tail distribution and suggest the variance shift effect (heteroskedasticity) of the TSEBK
return.

Thirdly, we consider relationships among regimes of the LIBOR spread and the TSEBK return. Prop-

erties of the regime transition of the LIBOR spread and the TSEBK return can be obtained from the

4The AIC value to determine the best fitting BRMS model is given by
N

AIC = —2') " 10g f (y1,n,Y2,n | ¥n-1,6) +2/6),

n=1
where § is the number of unknown parameters. Note that @ takes a value of eight, ten or eighteen for the BSMS, BIMS or

BCMS model, respectively.
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transition probability structure. The estimated transition probability matrix 3 of the BCMS model is:

0.98  0.000 0.001 0.019
(0.004) (0.000) (0.002) (0.007)
0.000 0964 0.000 0.005
p_ | (0000) (0042) (0.000) (0.006) @14
0.001 0.000 0.999  0.000
(0.001) (0.000) (0.002) (0.000)
0.010 0.036 0.00 0.976
= = =) (=)

It is difficult to capture the relationships among four regimes from the above estimated transition proba-
bility matrix only. The diagram in Figure 4.28 helps to illustrate the relationships. In this diagram, the
circles represent the regimes defined in the previous subsection. The heavy recursive arrows represent the
transition towards the same regime as the previous one. The real arrows connecting two different circles
represent the transition where the regimes of the LIBOR spread lead those of the TSEBK return. The
dotted arrows connecting two different circles represent the transition where the regimes of the TSEBK
return lead those of the LIBOR spread.

Finally, the empirical results in this subsection suggest the following characteristics of the relationships

and transitions among the four regimes.

1. The smoothed probability for regime 2, in which the LIBOR spread is in the wide spread regime
and the TSEBK return is in the high volatility regime, is successively greater than 50 percent
from 4th September to 6th November 1998, as shown by Figure 4.22. These episodes appear to be
related to the period during which the world economy faced severe financial crises, including the
Russian financial crisis and the collapse of Long Term Capital Management. Also, the volatility of

the TSEBK return tends to increase from September 1998, as shown by Figures 4.23 and 4.24.

2. The transition probabilities for which the regimes remain unchanged are all more than 0.95, as shown
by the diagonal elements of the estimated transition probability matrix. Once the observations enter
into any regime, they tend to stay in the same regime for some time. This implies that all regimes

are highly persistent.

3. The regime transition with the positive correlation has never occurred simultaneously in the LIBOR

spread and the TSEBK return. As shown by Figure 4.28, there is no arrow connecting regimes 1

5Standard errors are in parentheses.
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and 2 directly. In the sample period, the observations always connect regime 1 to 2 (or regime 2 to
1) through regime 4, which represents the wide spread regime of the LIBOR spread and the high

volatility regime of the TSEBK return.

4.4.4 Conclusions

In this section, we have investigated the relationship between the Japan premium and the volatility of
Japanese banks’ stock, using the bivariate Markov switching approach. Qur BCMS model comprises the
narrow and wide spread regimes for the LIBOR, spread and the low and high volatility regimes for the
TSEBK return. In this model, the relationships among regimes of the LIBOR spread and the TSEBK
return are characterized by the time-varying correlation of the unobserved variables s1,, and s2.5.

In comparisons between three variants of the Markov switching model (the BCMS, BSMS, and BIMS
models), the BCMS model is selected as the best model by the AIC and by the LR test. This result
suggests that the regime transition of the LIBOR spread and the TSEBK return is neither synchronized
nor independent, but is time-variance correlated across the LIBOR spread and the TSEBK return. The
BCMS model succeeded in capturing the characteristics of two effects: namely, the mean shift effect of
the LIBOR spread, and the variance shift effect (heteroskedasticity) of the TSEBK return. The Japan
premium presents problems for Japanese banks, particularly when the LIBOR spread follows the normal
distribution N(38.21,19.032) in the wide spread regime. In addition, we identified some properties of
the relationships and transitions among regimes of the LIBOR spread and the TSEBK return from the

smoothed regime probability and the estimated transition probability.
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Table 4.11: Model comparison.

BCMS BIMS

BSMS

Number of parameters

Log-likelihood value

AIC

Testing for the BCMS model
LR statistics

Degree of freedom

18 10

-6584.82 -6604.03 -6762.07

8

13205.63 13228.07 13540.14

38.44

0.000

354.51
10
0.000

p-value

Table 4.12: Estimated parameters and corresponding standard errors

BCMS

Estimation (Stdard error)

(LIBOR spread)
H1,0
M1
J1,0
01,1
(TSEBK return)

02,0

02,1

4.80 (0.13)
38.21 (0.95)
413 (0.09)
19.03 (0.65)
0.59 (0.01)

1.29 (0.05)
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Figure 4.18: LIBOR spread.
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Figure 4.19: TSEBK return.
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Figure 4.20: Sample autocorrelation function of the LIBOR spread.
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Figure 4.21: Sample autocorrelation function of the TSEBK return.
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Figure 4.22: Smoothed regime probability of regime 1.
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Figure 4.23: Smoothed regime probability of regime 2.
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Figure 4.24: Smoothed regime probability of regime 3.
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Figure 4.25: Smoothed regime probability of regime 4.
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Note: Regime 1 denotes the narrow spread regime of the LIBOR spread and the low volatility regime of
the TSEBK return. Regime 2 denotes the wide spread regime of the LIBOR spread and the high
volatility regime of the TSEBK return. Regime 3 denotes the narrow spread regime of the LIBOR
spread, the high volatility regime of the TSEBK return. Regime 4 denotes the wide spread regime of
the LIBOR spread, the low volatility regime of the TSEBK return.
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Figure 4.26: Two joint density functions for the LIBOR spread.
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Note: f(Yn,51.n) = f(¥nls1,n) Pr(s1,). a) is for the narrow spread regime; f(yn|s1,» = 0)
~ N(4.80,4.13) and Pr(s;,,, = 0) = 0.759. b) is for the wide spread regime; f(yn|s1,n = 1)
~ N(38.21,19.03) and Pr(sy , = 1) = 0.241.
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Figure 4.27: Two joint density functions for the TSEBK return.

a)

1)

b)

Note: f(yn,81,n) = f(Yn]s1,n) Pr(s1,n). a) is for the narrow spread regime; f(y,|s1,» = 0)
~ N(0.00,0.59) and Pr(s;,, = 0) = 0.620. b) is for the wide spread regime; f(yn|51,» = 1)
~ N(0.00,1.29) and Pr(s; » = 1) = 0.380.
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Figure 4.28: Relationship among regimes of the LIBOR spread and those of the TSEBK return.
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Note: Regime 1 has a narrow LIBOR spread, and low volatility of the TSEBK return. Regime 2 has a

wide LIBOR spread, and high volatility of the TSEBK return. Regime 3 has a narrow LIBOR spread,

and high volatility of the TSEBK return. Regime 4 has a wide LIBOR spread, and low volatility of the
TSEBK return.
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4.5 Transmission of Volatility

— The Transmission of Volatility between Japanese Foreign Exchange and Stock Markets:

the Bivariate Markov Switching ARCH Model

4.5.1 Introduction

Foreign exchange movements tend to affect the earnings of many Japanese industrial companies. These
companies have foreign exchange exposure thaf should be managed in order to maximize their inter-
national competitiveness and performance. Increased volatility in foreign exchange generates some un-
certainty about company valuation in the stock market. In addition, advances in financial information
technology have enabled rapid and global flows of large amounts of money. For example, it is said that
some hedge funds take cross-asset and cross-national arbitrage positions, and execute short-term alloca-
tion changes to their asset portfolios. In these circumstances, it seems reasonable to assume that volatility

of the Japanese foreign exchange and stock markets has some relevance.

However, Japanese foreign exchange and stock markets operate with different systems and roles. Each
market also seems to be affected by several other factors, such as innovations in techniques, national trade
balances, the political situation, and so on. Therefore, market relevance may not necessarily exhibit a
constant pattern over time. It seems more reasonable to assume that the relationship between, and the
transmission of, volatility in the Japanese foreign exchange and stock markets are time-varying.

The purpose of this section is to analyze the relationship between, and transmission of, volatility in
Japan’s foreign exchange and stock markets. In the empirical analysis, we focus on a period from the
second half of the 1990s to the present, when the Japanese economy faced financial instability following
the failure of Hokkaido Takushoku Bank and Yama-Ichi Securities. In this period, Japanese financial
institutions suffered from having a large number of non-performing loans, the Japan premium in the
international money market, and so on. To analyze this period, we propose a bivariate Markov switching
ARCH model (BMSARCH), which is an extension of the univariate ARCH model with Markov switching
structures proposed by Hamilton and Susmel (1994) and Cai (1994). We apply this BMSARCH model
to the daily Japanese/U.S. exchange rate (JPY) and the Tokyo Stock Price Index (TOPIX) from 1996
to 2000. We also examine some diagnostic tests of model specification.

Several types of models have been proposed for capturing the time-varying variance and heteroskedas-
ticity in financial time series. The Markov switching approach has been widely used since Hamilton (1989)

first applied it to U.S. business cycle analysis. For example, foreign exchange rates (Engel and Hamilton
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1990; Kaminsky 1993; Engel and Kim 1999), stock prices (Kim, Nelson and Startz 1998), and interest
rates (Garcia and Perron 1996) have all been examined. However, these studies are based on a univariate
framework. An alternative approach is based on the ARCH and GARCH methods introduced by Engle
(1982) and Bollerslev (1986). The univariate ARCH and GARCH models have been extended to multi-
variate versions (Bollerslev et al. 1988; Engle et al. 1990; Bollerslev 1990). The difficulty in dealing with
the multivariate ARCH and GARCH models is because of the increased number of unknown parameters
that relate to the lagged conditional variance and covariance matrices. To reduce the number of param-
eters, several models impose restrictions on the variance and covariance matrices. These multivariate
ARCH methods are summarized in Bollerslev (1994). In addition, Hamilton and Susmel (1994) and Cai
(1994) have proposed ARCH models that include Markov switching structures, and have applied these
models to the analysis of stock price volatility.

This section is organized as follows. Subsection 2 describes the bivariate Markov switching ARCH
models. Subsection 3 presents the empirical analysis and some diagnostic tests. Concluding remarks are

given in subsection 4.

4.5.2 The Bivariate Markov Switching ARCH Model
Model Specification

Let Zp, = (21n,T2,,)7 be the (2 x 1) logarithmic return vector of the JPY (k = 1) and TOPIX (k = 2),
respectively. The BMSARCH model is given by

Tp =i+ En, ' (4.115)

C En|Pho1 = UnV/ Sy, un ~ N(0, I), (4.116)

where ¥,,_; denotes the information available up to time n — 1, and &, = (sl,n,sz,,.,)T is the (2 x 2)

stochastic process, I is the (2 x 2) identity matrix, and the time-varying (2 x 2) covariance matrix {2, is

with diagonal elements:

M
Bl =Yk + P ChimEa s k=12, (4.117)
m=1
where
Y = Yr,0{1 = Sk,n) + Vk,18k,n5 Yi,00 Vit > 0, (4.118)
Qk,m = Qk,m,0(1 = Sk,n) + Qk,m,15k,m; (4.119)
He = Il'k:,O(]- — Sk,n) + Uk, 18k,n. (4120)

7% and i, represent the constant intercept in ARCH, and the ARCH coefficient, respectively. py is the

element of the (2 x 1) drift vector g = (u1, p2)T. sk,n denotes the unobserved Markov chain indicating
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the regime or state that zx , is in at time n, and takes a value of zero or one. vk, k,m and p; are all
dependent on sz .

Here €, will be covariance stationary if

M
Umg <O and ) agmy, <1, (4.121)

m=1

for all jx = 0,1. If e ,, is covariance stationary, the conditional variance and the unconditional variance

respectively are given by

. Yk,j
E(ei nlstn = jix) = 2 , (4.122)
’ 1= N, Cim : |
E(e%,nlix = 0) < B(e} lik = 1), (4.123)
and

1 .

. i Pr(sk.n = ji|¥n-
E(ef,n) = Lm0 Voo PHOkn = l¥ns) (4.124)

M 1
1- Zmzl Ejk=0 Qk,m g

where Pr(s;n = jz) is the unconditional probability of the unobserved Markov chain Sk,n = jr. Thus
if jx = 0 (or jx = 1), Tk,n is in the low (or high) volatility process regime. The unobserved Markov
chain sy , is assumed to follow a first-order and two-regime Markov process with the time-homogeneous

transition probability as follows:

Diringije = PI(81,n = J1,82)n = J2|S1,n—1 = %1, S2,n—1 = 12), (4.125)

where

1 1 .
Y Phiniia =1, (4.126)

51=0 j2=0

for all 43,42 = 0,1. The transition probabilities of the BMSARCH model can be rewritten as a (4 x 4)

transition matrix as follows:

Doo,00 Pi11,00 Po1,00 P10,00
Doo,11  Pi1,11 Po1,11 Pio1i

P= ’ ’ . (4.127)
Poo,01  Pi11,01 Po1,01  P1o,01

Poo,10 P11,10 Poi,10 Pio,10

Here, we can redefine the four regimes of the bivariate MS-ARCH model with the latent regime indicator
R, as listed in Table 4.13. The bivariate MS-ARCH model permits many varied transmissions of volatility

processes to occur. The transmissions can be classified broadly into four categories in Table 4.13:
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Table 4.13: Regime definitions of the bivariate MS-ARCH model.
Regime Tim: JPY Zon: TOPIX

R,=1(81,=0,5,=0) Low volatility = Low volatility

R,=2(s1n=18,=1) High volatility High volatility
R,=3(51,=0, 89n=1) Low volatility High volatility

Ro=4(s1n=1,52,=0) High volatility Low volatility

1. Self-loop 2. Simultaneous
DPoo,00 - - - ‘ - P11,00 - -
P = - P11,11 - - . P= Poo,11 - - - ,
- - Po1,01 - - - - DPio,01
- - - P10,10 - - Po1,10 -
3. Lead-relation 4. Lag-relation
- - Do1,00 - - - - D1o,00
P = - - - D1o,11 , Py= - - Do1,11 -
- DP11,01 - - ’ Doo,01 - - -
Poo,10 - - - - P11,10 - -

Filter, Smoother and Parameter Estimation

From the non-Gaussian filter and smoother (Kitaga,wa 1989), we obtain the predictive distribution, filter
and smoother of the unobserved Markov chains for the Markov switching model. Those of the latent
regime indicator R, for our bivariate MS-ARCH model can be easily implemented by the state-space
model with ARCH-type conditional heteroskedasticity by Harvey et al. (1992), and the state-space model
with Markov switching heteroskedasticity by Kim (1993). The details of these filtering and smoothing

algorithms are summarized in Kim (1999).

[Prediction]

4
Pr(R, = j*|¥n_1)= Y Pr(Rn=j*,Rn1 = i*|¥p1)

i*=1

. _
=Y Pr(Ry =j*|Rn_1 = ") Pr(Rn-1 = i*|¥n_1)

i*=1

4
= Z Pijr Pr(Ry—1 = 1*{¥p_1). _ (4.128)

i*=1

where ¥, denotes the information available up to time m, and ¢* and j* take values of 1, 2, 3 and 4.
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[Filter]

Pr(Rn = j*|¥n) = Pr(Rp = j*|Tn, Un1)
— f(anRn = j*v \I’n—l) Pr(Rn = j*I‘I’n—l)

F@n ) (4.129)
where
AV ot —_
f@n|Rn = 3%, Wpy) = il;mnl%exp { _(enzp) %" (@n = 1) } (4.130)
4
F(@al¥n1) = > f(@n|Rn =%, Un_1) Pr(Ry = 5*[¥n_1). (4.131)
=1
[Smoother]
4 _ 1% Lk %
F (B =37 188) = f(B = ) 3 L2 = K1) PriBnis = Ao = 57) (4.132)

f(Rnt1 = k*|zn)

As a by-product of the filter algorithm above, we can easily obtain the approximate log likelihood function

k*=1

as follows:
N
L(o) = ZAIOg f(ynllpn—l)
n=1
N 4 4
= [ Z Zlogf(ynaRn =j* Rn1 =i*'wn—l)]
n=1 L j*=1i*=1

N 4 4
=> { > > 108 f(UnlRn = %, Rucy = 1%, Un1) Pr(Bn = §°, Rny = i*[¥nct) | (4.133)

j*=1i*=1

where an unknown parameter vector 8 is defined by

— M M *
0 —_—{ HPk,05 Bk, 7Y:,05 V5,15 {ak,m,O}m=1a {ak,m,l}m=17 P } .

Note that P* includes (k? — k) unknown parameters for the transition probability. Several methods
for estimating the unknown parameters are proposed, including the Expectation maximization (EM)
algorithm (Hamilton 1990 1994) and the Gibbs sampler (Albert and Chib 1992). For the purpose of this
section, the maximum likelihood method is preferred because of its computational ease.

The Akaike information criterion (AIC) for the model selections, including the order of the ARCH

coefficients and the number of regimes, is defined by
N
AIC = =2 " log f(2n|¥n-1) + 28], (4.134)

n=1
where |0 denotes the dimension of the vector 6 (Kitagawa and Gersch 1996). Leroux and Puterman
(1992) and Ryden (1995) discuss the method of model selection and identification for Markov switching

model in details.
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4.5.3 Application and Model Comparison
Data Description

We use the daily JPY at 5:00 p.m. in Tokyo and the TOPIX closing price at 3:00 p.m. in Tokyo.
Although the JPY and the TOPIX are not fully contemporaneous, these series are the most appropriate
daily data officially available. For the observed time series, we use the indices obtained by multiplying
the logarithmic returns of the JPY and the TOPIX by 100. The sample period is from January 1996 to
December 2000; each series has 1,232 sample data points. Figures 4.29 and 4.30 plot the original time
series for the JPY and the TOPIX, respectively. Figures 4.31 and 4.32 plot the logarithmic return series
for the JPY and the TOPIX, respectively.

Estimation Results

The first column of Tablé 4.14 shows the estimated parameters and corresponding statistics of the BM-
SARCH model. Since the expectations of the conditional variances are E(e} ,|sk,n = 0) < E(e} ,lskm =
1) for both time series in Table 4.15, we can identify the regime si,» = 0 as a low volatility process,
and regime s, = 1 as a high volatility process. Both time series exhibit ARCH effects only in the high
volatility process regimes; there are no ARCH effects in the low volatility process regimes. The curves a)
and b) in Figures 4.33 and 4.34 show the joint density functions p(2,, s,») for the JPY and the TOPIX,

respectively. Note that the joint density function is given by

D(Tkns Sk = J) = P(Tk,nlSk,n = k) Pr(sk,n = i), (4.135)

where p(2p|skn = ji) is the conditional density of sk, and Pr(sk,n = ji) is the unconditional regime
probability or the stationary distribution of sj,,. The unconditional density p(Zr,n) is a weighted sum
of these two joint densities. The unconditional densities p(z1,,) for the JPY and p(z2.,) for the TOPIX
are represented by the curves c) in Figure 4.33 and 4.34, respectively. They seem to produce fat-tailed
unimodal densities. Thus, Figures 4.33 and 4.34 suggest that the BMSARCH model captures skewness
rather than the characteristics bf the “long swing” effect, i.e., regime shift in the conditional mean of

returns (Engel and Hamilton, 1991).
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The estimated transition probability matrix of Table 4.15 is summarized as follows:

0.945 0.127 0014  0.046
(0.034) (0.183) (0.009) (0.029)
0.031 0.821 0.044 0.034
(0.028) (0.085) (0.027) (0.084)
0.011 0000 0.920 0.006

: (4.136)

(0.011) (0.000) (0.050) (0.011)
0012 0.052 0022 0914
) ¢) ) )

where standard errors are in parentheses. The estimated unconditional regime probabilities or the sta-

tionary distributions of R,, are:

Pr(R, = 1) 0.553
P =2 1
(Ba=2) | _| 0156 | (4.137)
Pr(R, = 3) 0.094
Pr(R, = 4) 0.198

Figures 4.35 to 4.38 plot the smoothed regime probabilities Pr(R, = j*|¥n), j* = 1,2,3,4, of the
BMSARCH model. The relationships between, and the transmission of, volatility processes among the
four regimes, which are defined in Table 4.13 with R,, = 1,2,3,4, are easily understood from Figure
4.39. In this diagram, the circles represent the regimes defined in Table 4.13. The heavy recursive arrows
represent the self-loop; that is, the transition towards the same regime as the previous one. The real
arrows connecting two different circles represent the transition where the regimes of the JPY lead those of
the TOPIX. The broken arrows connecting two different circles represent the transition where the regimes
of the TOPIX lead those of the JPY. The dotted arrows connecting two different circles represent the
simultaneous transition in the same or a different direction. This diagram suggest three explanations of

the regime transition among the four regimes as follows.

(1) All the self-loop transition probabilities for which the regimes remain unchanged are greater than
or close to 0.9. This implies that all the regimes (R, = 1,2, 3,4) have some persistence. That is,
once the observations (JPY and TOPIX) enter into any regime, they tend to remain in the same

regime for some time.

(2) There is not enough evidence to conclude that the JPY always tends to lead the TOPIX, or that
the TOPIX always tends to lead the JPY. Thus, in the volatility processes of the observations, lead

or lag relations between the JPY and the TOPIX are mixed.



4.5. TRANSMISSION OF VOLATILITY 129
(3) The regime shift from the high-high volatility process regime (R, = 1) 6 to the low-low volatility
process regime (R,, = 1) 7 occurs with a relatively high transition probability in the sample period.

This phenomenon means that there is a simultaneous transmission of volatility on the JPY and

TOPIX.

Japanese financial crisis

From Figure 4.36 for the high-high volatility process regime (R, = 2), we identify an interesting charac-
teristic of volatility processes. The episodes of the high-high volatility process regime (R, = 2) appear
to have some relation to the instability of the Japanese financial system in the second half of the 1990s.
However, it is difficult to evaluate and identify the periods when the Japanese financial system experi-
enced crises. To deal with this problem, we consider the “Japan premium” as a proxy variable. The
Japan premium is defined as the difference between the Eurodollar interbank borrowing rate of interest
for Japanese banks and that for Western banks. In the second half of the 1990s, Japanese banks had to
pay an extra funding cost compared to leading U.S. and European banks owing to a decline in their cred-
itworthiness in international money markets. It is possible to regard an increase in the Japan premium
as evidence of increased instability in the Japanese banking and financial system. Figure 4.40 plots the
daily average spread of the three-month U.S. dollar LIBOR (London Interbank Offered Rate) between
two Japanese banks (Tokyo-Mitsubishi and Fuji Bank) and two Western banks (Citibank and Berkeley’s
Capital Group). The shaded bars in Figures 4.36 and 4.40 show the periods when this spread is more
than 40 basis points (0.004). The episodes of the high-high volatility process regime (R, = 2) appear to
be related to those of an increase in the Japan premium in the second half of the 1990s — that is, the

periods of increased instability in the Japanese financial and banking system.

Diagnostic Tests for Independence and Simultaneity of Markov Switching

First, we check whether regime shifts occur independently and simultaneously across the JPY and the

TOPIX. The null hypothesis of independence of Markov switching is given by

H) @ piyjy = Pr(si,n = jils1n-1 = 11), Piyjs = Pr(82.n = j2|82,n-1 = i2), (4.138)

6The high-high volatility process regime (Rn = 2) represents a regime where the JPY is in the high volatility process

regime and the TOPIX is in the high volatility regime
7The low-low volatility process regime (Rn = 1) represents the regime where the JPY is in the low volatility process

regime and the TOPIX is in the low volatility regime.
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where E}Fo Piyjn =1 and E;Fo Pigj, = 1 for all 41,4 = 0,1. The transition probability matrix can be
represented by using the Kronecker product as follows:

ptl)o 1- pil ® pgo 1- P%1

P=Plgp?= (4.139)

1 - pgo P 1-po h
Here regime shifts of the JPY and the TOPIX occur independently without reference to the previous
regime of another observation. Secondly, the null hypothesis of simultaneity of Markov switching is given

by

H3 : 810 = S3n = n, (4.140)
and the transition probability is dénoted as follows:

pij = Pr(s, = jlsn—1 = 1), (4.141)

where Z;zo pi; = 1 for all ¢ = 0,1. This transition probability can be written as the (2 x 2) transition

probability matrix

1- :
p= Poo Pio _ Poo pu ' (4.142)

Por Ppu l-peo pi1

Here all the regime shifts are perfectly correlated under this simultaneous hypothesis.

The second and third columns of Tables 4.14 to 4.16 show the estimated parameters and correspoﬁd-
ing statistics for the null hypotheses. Most values of the estimated parameters — the means of returns,
ARCH intercepts and coefficients — are similar to those of the original BMSARCH model. The esti-
mated transition probabilities imply that both low-low and high-high volatility process regimes have some
tendency to remain where they were in the previous period.

It is straightforward to test for simultaneity of Markov switching using the likelihood ratio (LR) test
and the AIC. The null hypotheses of independence and simultaneity include eight and ten restricted
parameters in the transition probabilities, respectively. Both the LR statistics are distributed x2(8) and
x*(10). The LR statistic of independence is 2 x (3931.01 — 3920.21) = 21.60, and the corresponding x2(8)
p-value is 0.006. That of simultaneity is 2 x (3955.50 — 3920.21) = 70.58, and the corresponding x?(10)
p-value is 0.000. Both the null hypotheses of independence and simultaneity of Markov switching can be
rejected af the one percent significance level. In addition, the AIC of the original BMSARCH model is
smaller than for the null models. Therefore, we find highly significant evidence that the regime shift of
volatility processes does not necessarily occur independently or simultaneously across the JPY and the

TOPIX, and that the transmission of volatility processes have some relevance to each other.



4.5. TRANSMISSION OF VOLATILITY 131

Model Comparison with No-switching Models

In this part, we compare the BMSARCH model with some bivariate ARCH-type no-switching models.
Table 4.17 shows the log likelihood, the number of parameters and AICs for alternative models, including
a diagonal VECH model (Bollerslev, Engle and Woldridge 1988), BEKK model (Engle and Kroner 1995),
Matrix diagonal model (Ding 1994, Bollerslev, Engle and Nelson 1995), vector diagonal model, scalar
diagonal model, and conditional constant correlation model (Bollerslev 1987). All the parameters are
estimated using the S-Plus program with S+GARCH module. The diagonal VECH model is selected as
the best AIC model among alternative no-switching ARCH-type models. However, the AIC of BMSARCH

model is even smaller than that of the diagonal VECH model.

4.5.4 Conclusions

In this section, we examined the transmission of volatility processes between the Japanese foreign exchange
and stock markets. In order to capture the time-varying transmission structure of the two financial time
series, we extended the univariate Markov switching ARCH model to the bivariate case. Our bivariate
Markov switching ARCH model (BMSARCH) assumes that observations shift among some regimes not
just simultaneously but also with a time-varying transmission structure.

In the empirical analysis, we analyzed the daily Japanese/U.S. exchange rate (JPY) and the Tokyo
Stock Exchange Price Index (TOPIX) in the period of the second half of the 1990s, when the Japanese
economy faced secular stagnation and financial turmoil. We identified the following properties in relation
to the transmission of volatility processes between the JPY and the TOPIX: 1) all regimes have some
persistence; 2) lead-lag relations are mixed; and 3) a direct regime shift from the high-high volatility
process regime (R, = 1) to the low-low volatility process regime (R, = 2) occurs with relatively high
probability. We also found that a characteristic of volatility process regimes is that the episodes of
the high-high volatility process regime correspond to periods of increased instability in the Japanese
financial and banking system. For the specification tests and the AIC model selections, the hypotheses

of independent and simultaneous regime shifts across the JPY and the TOPIX were both rejected.
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Table 4.14: Estimated parameters and corresponding statistics.
BMSARCH Independent switching Simultaneous switching

Estimation (Stand. error) Estimation (Stand. error) Estimation (Stand. error)
M1,0 0.065 (0.042) 0.062 (0.018) 0.065 (0.019)
12,0 -0.018 (0.091) -0.022 (0.034) -0.033 (0.041)
H1,1 -0.074 (0.000) -0.091 (0.069) -0.085 (0.062)
H2,1 0.002 (0.146) 0.009 (0.000) 0.042 (0.095)
151 |
L2
71,0 0.244 (0.029) 0.262 (0.022) 0.248 (0.018)
V2,0 0.804 (0.053) 0.727 (0.049) 0.809 (0.053)
Y1 1.138 (0.311) 1.256 (0.165) 1.176 (0.127)
Yo,1 3.581 (0.713) 2.732 (0.305) 2.569 (0.300)
01,0 0.000 (0.000) 0.000 (0.000) 0.018 (0.015)
Q2,0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
01,1 0.165 (0.073) 0.158 (0.063) 0.204 (0.075)
02,1 0.044 (0.253) - 0.100 (0.06'3) ' 0.186 (0.100)
16| 24 16 14
LL -3920.21 -3931.01 -3955.50
AIC 7888.41 7894.01 £ 7939.01
LR statistics 21.60 70.58
p—value 0.006 0.000
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Table 4.15: Estimated transition probability.

BMSARCH Independent switching Simultaneous switching
Estimation (Stand. error) Estimation (Stand. error) Estimation (Stand. error)
00,00 0.945 (0.034)
Po1,00 0.031 (0.028)
P10,00 0.011 (0.011)
P11,00 0.012 _
Poo,01 0.127 (0.183)
Po101 | - 0.821 (0.085)
P10,01 0.000 (0.000)
pi1,01 0.052 -
P00,10 0.014 (0.009)
Po1,10 0.044 (0.027)
P10,10 0.920 (0.050)
D11,10 0.022 -
Poo,11 0.046 (0.029)
Po1,11 0.034 (0.084)
P10,11 0.006 (0.011)
P 0.914 -
Poo 0.907 (0.233)
pu 0.808 (0.296)
P1,00 0.955 (0.011)
P 0.899 (0.033)
P2,00 0.981 (0.009)
D2,11 0.948 (0.020)
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Table 4.16: Estimated parameters and corresponding statistics.

BMSARCH Independent switching Simultaneous switching

E(ef als1,n = 0)
E(e3 ,|s2,n = 0)
E(ef als1,n = 1)
E(3 4ls2,n = 1)
E(1,,)
E(e3 )

0.237
0.865
1.242
3.618
0.567
1.539

0.250
0.856
1.321
3.000
0.565
1.493

0.235
0.871
1.213
3.616
0.571
1.535

Table 4.17: Log likelihood, number of parameters and AIC of no-switching models.

Models Log likelihood  # of parameters AIC

Diagonal VECH GARCH -3956.77 11 7935.53
BEKKH GARCH -3963.43 13 7952.86
Matrix diagonal GARCH -3978.58 11 7979.17
Vector diagonal GARCH -3968.86 9 7955.71
Scalar diagonal GARCH -3969.15 7 7952.29
Conditional constant correlation GARCH -3986.01 8 7988.01
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Figure 4.29: Daily Japan/U.S. exchange rate: 1996/1 - 2000/12.
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Figure 4.30: Daily TOPIX: 1996/1 - 2000/12.
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Figure 4.31: Logarithmic return of the daily Japanese/U.S. exchange rate: 1996/1 — 2000/12.
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Figure 4.32: Logarithmic return of the daily TOPIX: 1996/1 — 2000/12.
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Figure 4.33: Two joint densities and the unconditional density for the JPY.
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Note: p(1.n,81,n) = P(T1,n|51,n) Pr(s1,n): a) is for the low volatility process regime;

p(€1,n]81,n = 0) ~ N(0.065,0.494) and Pr(s1» = 0) = 0.646, b) is for the high volatility process regime;
p(z1n|s1,n = 1) ~ N(—0.074,1.168) and Pr(s1 n, = 1) = 0.354. f(z1,n): c) is a weighted sum of a) and
b).
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Figure 4.34: Two joint densities and the unconditional density for TOPIX.
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Note: p(21,n,51,n) = P(T1,n]81,n) Pr(s1,,): a) is for the low volatility process regime;

p(Z2,n|52,n = 0) ~ N(—0.018,0.897) and Pr(s;,, = 0) = 0.751, b) is for the high volatility process
regime; p(r2,n|s2n = 1) ~ N(0.002,1.935).and Pr(s; , = 1) = 0.250. p(z;1 ,): c) is a weighted sum of a)
and b).
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Figure 4.39: Transmission of volatility process between the JPY and the TOPIX.
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Note: Regime 1 (R,, = 1) is for the low-low volatility process. Regime 2 (R,, = 2) is for the high-high
volatility process. Regime 3 (R,, = 3) is for the low volatility process of the JPY and the high volatility
process of the TOPIX. Regime 4 (R,, = 4) is for the high volatility process of the JPY and the low

volatility process of the TOPIX.
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Figure 4.35: Smoothed probability of regime R,, = 1.
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Figure 4.36: Smoothed probability of regime R, = 2.
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Figure 4.37: Smoothed probability of regime R, = 3.
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Figure 4.38: Smoothed probability of regime R, = 4.
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Note: Regime 1 (R, = 1) is for the low-low volatility process. Regime 2 (R, = 2) is for the high-high
volatility process. Regime 3 (R, =3) is for the low volatility process of the JPY and the high volatility
process of the TOPIX. Regime 4 (R,, = 4) is for the high volatility process of the JPY and the low

volatility process of the TOPIX.
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Figure 4.40: Japan Premium.
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Note: Shadowed bars show the periods when Japan premium is more than 40 basis points.
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4.6 Self-organizing Markov Switching State Space Model

— Self-organizing Markov Switching State Space Model with Time-varying Transition
Probability

— International Transmission of Business Cycles: a Self-organizing Markov-switching

State Space Model

4.6.1 Introduction

Although many important problems in time series analysis can be solved using an ordinary state space
model, more complex systems such as a Markov-switching model are sometimes required in general
nonlinear or non-Gaussian situations (Kitagawa 1987). Recent improvements in computing power and
the development of Monte Carlo-based algorithms (Kitagawa 1996) have made the use of nonlinear and
non-Gaussian time series models feasible. Kitagawa (1998) proposed the self-organizing state space model
to deal with the model identification problem associated with the use of the recursive Monte Carlo method.
In this approach, the state vector is augmented by the unknown parameters of the model and the state
and the parameters are estimated simultaneously by the recursive filter and smoother. In the method
used in this section, accurate apprbximations of the marginal posterior densities of the state and the
parameters are obtained by the Monte Carlo filter (Kitagawa 1996).

The Markov-switching model is a useful tool for capturing the dynamic structures of time series
that change under the unknown discrete Markov chain regimes. Hamilton (1989) first applied a Markov-
switching autoregressive model to the analysis of the U.S. business cycle using quarterly data. Hamilton’s
(1989) model assumes that GNP data shifts between low and high growth states or regimes according
to a first-order Markov proceés. Variants of Hamilton’s (1989) model have been used in single country
analyses of the business cycle. Kim and Yoo (1995) and Kontolemis (2001) extended the univariate
Markov-switching model to a multivariate version to capture the co-movement of some economic indica-
tors. Filardo (1994) and Filardo et al. (1998) presented a Markov switching model with time-varying
transition probabilities. Filardo’s model changes the transition probability between states depending on
the exogenous variables.

In this section, we propose a self-organizing Markov switching state space (SOMS) model, which
incorporates the ordinaryl Markov switching model with the self-organizing state space model. Two

types of SOMS models — a model with time-varying transition probability and a bivariate model — are

described. These models are applied firstly to volatility analysis of the Japan/U.S. foreign exchange rate
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and its relationship with interventions by the Bank of Japan, and secondly, to the transmission of the
business cycle between the U.S. and Germany.

This section is organized as follows. In subsection 2 and 3 respectively, we present the self-organizing
Markov switching state space modeling for time-varying transition probability and the bivariate version.
An analysis of the Japan/U.S. exchange rate and the Bank of Japan interventions is presented in sub-
section 4, and an analysis of the international transmission of the business cycle is shown in subsection

5. Subsection 6 contains the conclusion.

4.6.2 The Self-organizing Markov Switching State Space Model with Time-

varying Transition Probability

We introduce the self-organizing Markov switching state space model (SOMS) by incorporating the self-
organizing method into the ordinary Markov switching model. In this section, we deal with two types
of SOMS models — first, SOMS stochastic trend models with constant transition probability (Kitagawa
and Hakamata 2001) and second, with exogenous time-varying transition probability (Kitagawa and
Hakamata 2002)'.' Let y., n =1,2,...,N, be the observed time series. The two-state first-order Markov

switching state space model in the linear state space form is given by
Ty =Zp—1+ Un (System model), (4.143)
Yn =Tp + Wy (Observation model), (4.144)
where x,, is the k-dimensional state vector. w,, is the one-dimensional observation noise according to the
density function r(w), which does not necessarily follow a Gaussian distribution. The system noise v, is

the I-dimensional system noise according to the mixture density function including a Markov switching

structure as follows:

q(v) = go(v)(1 — 85) + g1 (v)sn, (4.145)

where qo(+) and g; (+) are arbitrary density functions; for example, Gaussian, Student, Cauchy and others.
Here s,, is a latent two-state first-order Markov chain taking values of zero or one. s, is updated via the

self-loop transition probability as follows:

[Constant transition probability]

exp(a) for i=0,1, (4.146)

Diin = Pr(sn =i|sp_1 =1,2,) = T+exp(a)’

where o take a constant value over time,
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[Exogenous time-varying transition probability]

exp [9(zn)]

—_— for i=0,1, 4.147
T+ exp [9(zn)] (4147

Diijn = Pr(sn = ilsn—l = 7:7 zn) =

where 2z, is the exogenous information available up to n, and g(-) denotes an arbitrary linear or non-
linear function. Equation (4.147) guarantees that p;; , varies from zero to one. The transition probability
matrix of the state s, = (¢ = 0,1) can be expressed by using the self-loop transition probabilities as

follows:
po=| Pom 1TPue ) (4.148)
1—poo,n Pi1,n
Under the assumptions above, the joint conditional distribution of z, and s,, given the previous values
ZTp—1 and s,_; is obtained by
D(ZTny Sn|Tn—1,8n-1,2n) = D(Sn|Tn-1, Sn—1, 2n)D(Tn|Sn; Tn-1,5n—1, Zn),
=Pr(sn|sn-1, 20)P(Zn|Tn-1), (4.149)
where the two terms on the right-hand side of the above equation are specified by equations (4.143) and
(4.147), respectively. Therefore, our SOMS models in equations (4.143) to (4.149) can be expressed in
the general state space model form (Kitagawa 1996) as: |
Tp~Q( - |Tn=1,8n-1) (System model), (4.150)
Yn~ R( |z, 8n) (Observation model), (4.151)
Here, Q(zy, SnlTn—1,5n—1) is equivalent to the conditional distribution defined in equation (6), and
R(yn|2n, s5) is the conditional density of the observation given the state.
We introduce the self-organizing state space formula (Kitagawa 1998) into the Markov switching
model, and consider the self-organizing SOMS models for simultaneous estimation of the state and the

parameters. For this purpose, we define an augmented state vector as follows:

*

), = (Tn, $n,0n)", (4.152)

where z,, is the original state vector, s, is the latent Markov chain and 6, is the parameter vector defined

in section 3. We assume a (vector) random walk model

Or = Op_1 + Un, (4.153)

where u, is a Gaussian white noise process with mean zero and covariance diag{e1,...cx}. Here, all of
the structural parameters are assumed to be time-varying. The SOMS model for this augmented state
vector z;, in the general state space model form is immediately given by

T, ~Q*( - |zne), (4.154)

Yn~R*( - |z7,), (4.155)
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where Q*(z%|z%_,) is the conditional density of the augmented state given the previous ome, and
R*(yX|z:) is that of the observation given the augmented state. By applying the Monte Carlo filter
to this self-organizing state space model, we can estimate the state vector and pa,raméters simultaneously
(Kitagawa 1998). The SOMS model has no need to estimate the parameter  with a maximum likelihood

method.

4.6.3 The Bivariate Self-organizing Markov Switching State Space Model

In this section, we extend the univariate SOMS model to a multivariate version (Hakamata and Kitagawa

2002). For simplicity, we consider a bivariate model for the time series yx n,

Yk = th,n + Wion, (k=1,2) (4.156)

where 5, is an unknown individual trend component, wy,, is Gaussian observation noise with zero mean
and variance aﬁ for each time series. For simplicity, we assume that the trend component ¢4, follows the

first-order stochastic trend model with individual drift as follows

ten = tkn—1 + Vk,n, ' (4.157)

where vy, is Gaussian system noise depending on a {0,1}-valued Markov chain si,»; that is,

N([Lk’o,T,?), if jk = 07
p(tk,nltk,'n—l, Sk, = ]k) = (4158)
N(/‘Lk,laTI?)a if Je =
The Markov chain sy, indicates the “regime” of economic activity. If j, = 0, the economy of the k-th

country is expanding. If j; = 1, it is contracting. The transition probability of s; n is given by

Dirig.jrie = PI(81,n = J1, S2,n = J2|S1,n—1 = %1,82,n—1 = f2) (4.159)

with Z;Fo Z}Fo Diyig,jrj, = 1 for all 41,i3 = 0,1. This can be rewritten in transition matrix form as
follows

Doo,o0 P11,00 DPoi,oo P10,00

Doo,11 P11,11 Poriil Pio,11
P = . (4.160)

Poo,or. P11,01 Poi,01 Pio,01

Doo,10 Pi1,10 Poi,10 Pio,10

The Markov switching model allows for several types of transmission of the business cycle between two

countries, such as precedent, positive, and negative simultaneous regime shifts. Given the assumption
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of this model specification, the joint conditional distribution of ¢4, and sk . given the previous values

tk,;n—1, S1,n—1 and sy ,_1 is given by

P(t1,n,t2,m5 81,m5 S2,n]t1,n—1, t2,n—1, 51,n—1, 82,n—1)

= Pr(sl,n; 52,n|31,n-1, 32,n—1)p(t1,n|t1,n—la Sl,n)p(tZ,n|t2,n—1a 52,n)a (4161)
The terms on the right-hand side of the above equation are specified by equations (4.158) and (4.159),
respectively.

Then, by defining the state vector z, as

In = (tl,nat2,n751,na32,n)Ta (4162)

our bivariate Markov-switching model can be expressed in terms of the general state space model. In
addition, we can use the self-organizing state space model for simultaneous estimation of the state and the
parameters. Here, we obtain the SOMS model by incorporating the self-organizing state space form into
the Markov switching model. For that purpose, we define an augmented state vector by 2, = (zI,61)T
where z,, is the original state vector defined in equation (4.162) and 6 is the parameter vector defined in

the previous section. We assume a (vector) random walk model

6,=0,_1+ Un, (4163)

* where u,, is Gaussian white noise with zero mean and covariance diag{¢i,...,&20}. All of the structural
parameters, oz, T2, fk,0, k1 a0d Dijiy jij, (i1,42,51 € {0,1},42 = 0) are assumed to be time-varying,

and the parameter vector is defined by

(2 2 T
b, = (Uk,n’Tk,n’y‘k',O,n,l‘lk,l,n,pilig,jljz,n) . (4.164)

4.6.4 Application I: Foreign Exchange Volatility and Intervention
Data Description

The Bank of Japan has continued to intervene in foreign exchange markets. One of its goals is to reduce
the increasing exchange rate volatility. There are several reasons why the Bank of Japan wants to reduce
exchange rate volatility (Bonser-Neal 1996). First, volatility may impede international investment flows.
Second, it may adversely affect international trade. Third, volatility could spread throughout domestic
financial markets. Figure 4.41 shows the daily Japan/U.S. exchange rate, the logarithmic returns and the
Bank of Japan’s interventions, respectively. From Figure 4.42 it is difficult to see significant evidence of

a relationship between the Japan/U.S. foreign exchange volatility and the Bank of Japan’s interventions.
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We apply the SOMS model with exogenous time-varying transition probability to the daily Japan/U.S.
exchange rate. Intervention in the Japan/U.S. exchange rate market by the Bank of Japan is used for

the exogenous variable. Each sample size is 985, using data from January 1997 to December 2000.

Model Specification and Estimation Results

To identify the periods when the Japan/U.S. exchange rate is in a high volatility state, and to investigate
the influence of intervention on foreign exchange volatility, we use the first-order stochastic trend model

(random walk model) with Markov switching mean and variance in the trend components as follows:

T =P+ Ty +Un vy ~ N(0,7%), _ (4.165)

Yn = Tp + Wn, w,, ~ N(0,0?), (4.166)
where

p=po(1 — 8n) + p18n, (4.167)

T =1o(1 = 8n) + T18n, o < 71 (4.168)

Here s,, is the latent first-order two-state Markov chain taking values of zero or one. Since it is assumed
that 79 < 71, s» = 0 and s, = 1 can be identified as the low and high volatility states, respectively. g(-)

in equation (5) is defined by

9(zn) = i + Bizn, for i=0,1, (4.169)

where 2z, is the absolute value of the intervention. A greater amount of intervention enhances the volatility

state persistence for both low and high volatility states. The parameter vector is defined by

T
en = { log T0,ny IOg T1,n, IOg Ony Ho,ns H1,ny &0,ny Cl,n, ﬂO,na ,31 ,n} . (4170)

Figure 4.45 shows the results of the proposed model with &1 = --- = &9 = 0.0L. The top three plots show
the marginal posterior means of the probability of the state s, = 0. The second and third plots show
the evolution of the nine parameters. From the top they are 71, 70, fo and p; in the second plot; and
o, o1, B1, o and By in the third plot, respectively. It can be seen that even though it was assumed that
these parameters were time-varying, they are rather stable and satisfy the assumption of 79 < 11 over
time. Because B, < 0 in the low volatility state of s, =0, and 8;, > 0 in the high volatility state of

sn = 1, it can be concluded that the Bank of Japan’s interventions tend to increase the volatility of the

Japan/U.S. exchange rate.
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4.6.5 Application II: International Business Cycle Transmission
Data Description

In this section, we apply the SOMS model to analyze transmission of the business cycle between the U.S.
and Germany. Because each country’s business cycle is not observed, we must use the observable economic
indicators as proxy variables. We use monthly industrial production indices (seasonally adjusted, and
equal to 100 in the base yeér, 1995) for the U.S. and Germany from January 1961 to December 2000.

The indices are provided by the OECD and Figure 4.47 shows the original time series.

Estimation Results

Before moving on to the results of the SOMS model, it is desirable to describe the maximum likelihood esti-
mate (MLE) of the Markov switching model in equations (4.156) and (4.157) with fixed-value parameters.
Figure 4.48 illustrates the estimated transition probabilities between the four regimes. These approximate
MLE are obtained by Hamilton’s filter (Hamilton 1989) and the maximum likelihood method.

We then turn to an application of the SOMS model. Because the computational difficulties increase
as the dimension of the model becomes higher, we attempt to self-turn the parameters with the SOMS
model. Figure 4.49 shows the smoothed joint probabilities Pr(s1,n = j1,52,n = jo) for ji,j2 = O, 1 from
the SOMS model with & = --- = £p = 0.01. The shadowed bars (in Figure 4.49) denote those from
Kim’s smoothing (Kim 1994) algorithm given the approximate MLE above. Note that the number of
particles is m = 20,000, and the initial mean values of the parameter vector are 0, = 0.03,03, =
0.75, 714 = 0.45%,73 ¢ = 0.60%, 113 ,0,0 = 0.30, p2,0,0 = 0.30, p1,1,0 = —0.50, p12 1,0 = —0.50 and
0.97 001 001 0.01

001 097 001 001
Py = . (4.171)

0.01 001 097 0.01

Although we set the initial distributions of the parameter vector in equation (4.164) approximately, the
smoothed joint probabilities from the SOMS model are quite similar to the results from the approximate
MLE. We obtained the results from a single run of the Monte Carlo filter and smoother. From Figure
4.49, it is apparent that all regimes are highly persistent, and that the SOMS model succeeds in classifying
the whole period into four regimes.

Therefore, it can be said that the SOMS model allows the estimate of the unobserved regimes of the

business cycles between two countries without an MLE, and captures the international transmission and
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relationships of business cycles.

4.6.6 Conclusions

In this section, we proposed a self-organizing Markov-switching state space (SOMS) model to evaluate
the international transmission of the business cycle. Our SOMS model is an effective analytical tool
in understanding complex systems. Although the application of the Monte Carlo filter to the Markov-
switching model may make parameter estimation difficult, we dealt with this by incorporating a self-
organizing state space model into the Markov-switching model. In the SOMS model, the state and
unknown parameters are estimated simultaneously. We applied our model to an analysis of business
cycles in the U.S. and Germany, and successfully captured the characteristics of the transmission of, and

relationship between, business cycles in different countries.
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Figure 4.41: Japan/U.S. exchange rate.
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Figure 4.42: Logarithmic return of the Japan/U.S. exchange rate.
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Figure 4.43: Amount of intervention (100 billion yen) by the Bank of Japan.
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Note: Japanese Yen purchases by the Bank of Japan are denoted as positive values, and Japanese Yen

sales are denoted as negative values.
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Figure 4.44: Filtered probability of high volatility regime.
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Note: Shadowed bars show the filtered probability of a high volatility regime based on a maximum

likelihood estimate.

Figure 4.45: Time-varying parameter: 71, 7, #o and g (from top to bottom).

1.6 r

1997 1998 1999 2000




4.6. .SELF-ORGANIZING MARKOV SWITCHING STATE SPACE MODEL

Figure 4.46: Time-varying parameter: ag, a1, 51, ¢ and f; (from top to bottom).
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Figure 4.47: Industrial production indices for the U.S. and Germany.
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Figure 4.48: Transition probabilities of the approximate maximum likelihood estimate.
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Figure 4.49: Smoothed joint probabilities of the SOMS model.
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Note: a is for Pr(s;,, = 0,82, =0), b is for Pr(s1, = 1,82, = 1), cis for Pr(s;, =0,82, = 1), d is for

Pr(s1,, = 1,85, = 0). The shadowed bars denote the smoothed joint probabilities of the approximate

maximum likelihood estimate.




Chapter 5

Summary of Extended Markov

Switching Models

We describe some extended Markov switching models used in the empirical analysis of chapter 4, by the

gross. The new models proposed in this thesis are based on modified ordinary Markov switching models.

In addition, we briefly discuss the specifications of semi-Markov switching models, which we intend to

study in future. Table 5.1 lists the empirical analysis topics corresponding with the extended Markov

switching models described in this chapter.

Table 5.1: Corresponding Empirical Analysis Topics.

Extended Markov Switching Model

Empirical Analysis Topics in the Chapter 4

5.1 The modified Markov switching ARCH model

5.2 The modified multivariate Markov switching
ARCH model

5.3 The Markov switching slope change and
ARCH model

5.4 The Markov switching models with exogenous
leverage effects

5.5 The self-organizing Markov switching
state-space modeling

5.6 The semi-Markov switching model

4.5 Volatility transmission

4.5 Volatility transmission

4.1 Trend identification and trading strategy

4.2 Time-series and cross-sectional volatility

4.6 Foreign exchange volatility and International

business cycle transmission

157
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5.1 Modified Markov Switching ARCH Model

In this section, we modify the SWARCH model (Hamilton and Susmel 1994, Cai 1994) and the switching-
regime ARCH model (Cai 1994), and introduce a modified Markov switching autoregressive heteroskedas-
ticity (MS-ARCH) model. Let y,, be an observation, such as the logarithmic returns of stock price, foreign

exchange and so on. The univariate MS-ARCH model is given by

Un =+ En,, €n|¥n_1 ~ N(0, hs, »), (5.1)

where ¥,,_; is the information up to time n—1, and p is a drift term, &, is a stochastic process according

to the time-varying variance h,,_ given by
K

hsnyn = ’st + Z akysnE‘Iz'L—k’ (5'2)
k=1

where 7, and ag,, represent the constant intercept in ARCH, and the k-lagged ARCH coefficient,
respectively. Both v,, and ag,s, change depending on the m-state latent discrete Markov chain s, €
{1,2,...,m}.

Our specification of the ARCH process with Markov switching structure is a general case of the prior
studies (Hamilton and Susmel, 1994 Cai 1994). In the SWARCH model of Hamilton and Susmel (1994),
the magnitude of the regime shift in the constant intercept in ARCH and the ARCH coefficients are the
same through the common scale parameter g . In the regime-switching ARCH model of Cai (1994), only
the constant intercept in ARCH has a Markov switching process. On the other hand, our MS-ARCH
model allows for the Markov switching shifts of «y,, and oy s, without common scale parameters.

The unobserved Markov chain s,, is assumed to follow a first-order and m-state Markov process with

a time-homogeneous transition probability as follows:

Pii =Pr(sn = jlsa1 =),  6,5=1,2...,m, (5.3)
where

Yopy=1 forall i=12,...,m. (5.4)

Jj=1
The density of y,,, conditional on s, taking the value j, is

: 1 (yn — p)?
nlSn =5, ¥y 1) = ——ex — S 5.5
f(ynl 1) o p { 2, (5.5)

To determine the log likelihood function, we first consider the joint density of y, and s,, which is the

product of the conditional and marginal densities

f(ynasn = j“I’n—l) = f(yn[s'n = j) ‘Iln~1)Pr(3n = jllI,n—l)v (56)
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where U, refers to information up to time ¢ — 1. Then, to obtain the marginal density of y,, we

integrate s, out of the above joint density by summing all possible values of s,

f(ynl‘I’n—l) = Z f(yna $n = jl\IIn-—l)
i=1

m

Z (ynls'n _]a n—1 )PI‘(ST,, '_—jl‘I’n—l)

Jj=1

XM: exp { %—:'u_)z' } Pr(s, = il¥n-1), , (5.7)

J=l

where Pr(s, = j|¥,_1) can be obtained recursively by using a non-Gaussian filter (Kitagawa 1987) as

follows
- f(Wnlsn =3, n_l)Pr(sn = ]l\I’n_l) ,
Pr(sn = 3[%n) = 5.8
( "! ) (ynl\I'n—l) ( )
and
Pr(s'n, = jl‘pn—l) = Z Pr(sn = j|3n—1 = 1:) Pr(sn_l = il‘pn—-l)- (5.9)
=1

The log likelihood function is then given by

N
L(©®) = log f(yn|¥n_).

n=1

N m
= Z 10g [ Z f(ynasn =J,8n—1= 7:I‘I’n—l) ]

n=1 j=1 ’
- Z log [ 3> Pr(sn = jlsa-1 = ) Pr(sa—1 = i|¥n1)

n=1 j=1 é=1

1 ) (yn - “)2
« _m =) L} 5.10
T { i | (5.10)

Here, for €, to be variance stationary, we need to have ARCH constants and coefficients in equation

(5.2) as follows

Yoo >0, ;20 and Y ox; <1, (5.11)

forall j =1,2,...,m, and k = 1,2,...,k. If &, is variance stationary, the conditional variance and the

unconditional variance respectively are given by

E(amsr»:]): '.——]g———’ ]=172:"'am7 (512)
and
Pr(s, = j|¥,~
E(€%) — Z] =177 ( J| 1) (513)

1—Ek 12 =1 ®k,j
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5.2 Modified Multivariate Markov Switching ARCH Model

In this subsection, we extend the univariate MS-ARCH model described in the previous subsection to a
multivariate version. This multivariate MS-ARCH model is a modification of the multivariate SWARCH
model by Hamilton and Lin (1996) and Susmel (2000). Let ¥ = (Y1,n,Y2,n;- - -+ Yk,n)T be the (k x 1)
observation vector. The multivariate Markov switching autoregressive conditional heteroskedasticity

(MS-ARCH) model is given by

Yn =+ En,, 6nl‘:[’n—l ~ N(07 an,n); (514)

where ¥,,_, is the information up to time n — 1, and the (k x 1) drift vector is

151
H2
w=| |, (5.15)
Bk
and the time-varying (k x k) variance-covariance matrix is
L
h1 (Slv") ’Ylysn + El:l al,l,snain_[
ha(s2,n) Voyom + Lteet ¥,2,00 €5,
I B T B R (5.16)
L 2
hi(Sk,n) o\ Dkyen 20101 QkysnEknt

The first and second terms of the right-hand side of equation (5.16), 7is.,--,7k,s., and,
Ql1,s,,--->0Lk,s,, Iepresent the constant intercepts in ARCH, and the ARCH coefficients, respectively.
In the same manner as the multivariate Markov switching stochastic trend model, k-dimensional and

m-state Markov switching s;,, I = 1,2,...,k, can be re-defined with the univariate m*-dimensional

Markov chain s, € {1,2,...,m*}. Depending on s, s, . can also be replaced by Q;: as follows -
if S:L = 1’ I,n = dla‘g(hl(l)ah2(1))7hk(1))Ta
if ) =2, tn = diag(hi (1), ha(2), ..., he(1) 7,
if st =mF-1, 1 n = diag(hi(m), ha(m),. .., he(m — 1))T,
if 5% =m", Q3 ,, = diag(hy (m), ha(m), . .., i (m)) .

With the newly defined Markov chain s}, the joint conditional distribution of y,, sf and s_; on ¥,
is given by ‘
f(yni'S:z = j*as:—l = .*I\I’Tl-l) = f(yn’s: = j*as;—l = i*v \I’n—l)

- %

x Pr(st = j*, 5% = i*|¥n_y), (5.17)
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where ¥,,_; denotes the information available up to time n — 1. The first and second terms of the

right-hand side of equation (5.17) are expressed respectively by

f(y;lﬁ = 5" 8y =%, Uny) = (21) 5|0z T exp { T Qo } (5.18)
and

Pr(s;, = §*, 851 = i"|¥n1) = Pr(s, = j*|s;_y = 1) Pr(s},_y = ©*|¥n-1), (5.19)

where s}, follows the first-order m¥-state Markov chain with the transition probability Pr(s} = j*|s}_, =
i*) in a general case. Note that it is possible to consider several types of transitions (general, independent
and simultaneous) as Pr(s}, = j*|s}_; = i*).

The conditional density of ¥» can be obtained over all possible states:

ynlq’n— 2 Z f Yns Sy = 3" 73:_1 =i*|‘1’n—1)

j*=li*=1
m mk
=" ) Pr(s; =j"|sh_y =i*) Pr(s}_, = ") (5.20)
j*=1li*=1 i
x(27r)_%|98;|’% exp { ——yTQs* 7 } ) (5.21)

The log likelihood of the multivariate MS-ARCH model is given by

Zlogf(ynlwn_ )

n=1

_Zlog[z Z Fyn, st = j*, 80 _1 =1*|¥pe 1)]

sp=1s;

—Zlog [ $ § Brlop = 65 =) Pr(sis = 100

*=]¢*=1

x(21)" 5|9y, o]~ F exp { —-yTQ— j H

= Zlog [ Z Pr(s _j*|\11n*1)(27r)‘!2°'|ﬂsmn|‘% exp { —-—yTQs* ¥ H . (5.22) .

j*=1
where 6 denotes the unknown parameters.

For &, = diag(€1,n,E2,n, - - -,Ek,n) . to be variance stationary,

Viene oYk >0, Quiens Ak 20,

and

L L
E Qpis%," " E QL k,s2 <1,
=1 =1
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foralll=1,2,...,L and s =1,2,...,mF. If £, is variance stationary, the conditional variance and the
unconditional variance respectively are given by

Y1,s*
1“21:1 “1,83

2,8

L
E(elenst =57 = | TRman | 1L, (5.23)

8

Tk,s*
z )
1_21=1 DL k,sq

and
mk x * %
/ Eja=1 71,.3; Pr(s"=] |‘I’n—l)

1 L mk
—El=1 z,’*=1 AL1,5%
k

;-':. =1 V2,s% Pr(s: =j*¥n-1)

mk

E(eTe,) = -y S e ® 1. (5.24)

mk * o
z]-*=1 'Yk,a; Pr(sn=_1 I\Iln—l)

Y S k)
5.3 Markov Switching Slope Change and ARCH Model

By incorporating the structure of slope changes into the Markov switching ARCH model, we introduced
the Markov Switching Slope change and ARCH model (MS-SC-ARCH). In this model, two components of
the system simultaneously shift between discrete-valued states. Let y,, n = 1,2,..., N, be the observed
time series. The Markov switching slope change and ARCH model is given by

Yn = to +n, Enl¥us ~ N(O, o)y (5.25)

Rsuin = 10(1 = 8n) + 7180 + agl_3, (5.26)
where y; > v > 0, a > 0. t, is an unobserved trend component. &, shows the fluctuation around the
trend component and follows the ARCH process. Latent variable s, € {0,1} follows the first-order and
two-state Markov process. Depending on this Markov chain s,, the time series process shifts between
two different states. When s,, = 0, the time series process is in a low volatility state with ARCH constant
Y. When s, = 1, it is in a high volatility state with ARCH constant vy, . Further, the system model of
MS-SC/ARCH model is given by

tn =tn—1 + At, + vy, vp ~ N(O, 7'2), (5.27)

At, = At,_1 + wy, wy, ~ N(0,v%s,). . (5.28)
The unobserved trend component t,, follows a random walk process with a drift term At,, and Gaussian
white noise v,. At, can be considered the slope component of the unobserved trend component #,. In

addition, depending on the Markov chain s,, the process of this slope component shifts between two
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different states. s, = 0 shows the state where there is no slope change in the trend component, and
follows a random walk process with a Gaussian white noise w,. s, = 1 shows the state where slope
changes occur. In the MS-SC/ARCH model, the state shifts of volatility and trend slope are assumed to

occur simultaneously according to the following common Markov chain s, and its transition probability

pij = Pr(s’n = jlsn—l = 7:)’ zyj = 0, ]-7 (5.29)
where
1
> pi=1, forall i=0,1, (5.30)
j=0

This transition probability p;; is constant over time. It can be written as the following transition proba-

bility matrix.

1_
p= Poo Do _ Poo pu ' (5-31)

Por Ppu1 1-po0 p11

The density of y,, conditional on s, taking on the value j, is

. 1 Yn _tn n— )2
f(ynlsn =];‘I’n—1) = —i;}L_eXP { —g—ﬁ—‘——l‘— } . (532)

where ¥,,_; refers to information up to time ¢ — 1. To determine the log likelihood function, we first
consider the joint density of y, and s,, which is the product of the conditional and marginal densities

given by

FYn,8n = jl‘I’n—l) = f(ynlsn =7, U, 1) Pr(s, = jl‘I’n—l)a (5'33)

Then, to obtain the marginal density of y,, we integrate s, out of the above joint density by summing

all possible values of s,

fYnl¥n-1) Z FWYns 80 = §|¥n-1)
=Zf y‘nlsn _]a n—l)Pr(sn =j|\Iln—1)T

___M }Pr(sn = jI‘I’n——l)- (5.34)

_ - (yn
= ; __’n exp { T
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The log likelihood function is then given by
N
L(6) = log f(yn)
n=1

N m
= Zlog [Zf(ymsn = J,8n-1 =")]
n=1 j=1

N m m 1
= Zlog [ Pr(sn = j|sn—1 = i) Pr(sn—1 = i|¥p_1) —=

j=1i=1 27rhj’n

X exp { -L@:ﬁ)ﬁ H : (5.35)

where 8 denotes the unknown parameters. The maximum likelihood estimation of 8 is obtained by max-

n=]

imizing equation (5.35). Here, since the Markov chain s, is not observed, we can obtain Pr(s,—1|®,-1)
in equation (5.35) by using the same method as for equations (2.27) and (2.28) of the univariate Markov

switching stochastic trend model.

5.4 Markov Switching Models with Exogenous Leverage Effects

We expect that other variables may contain relevant information for the volatility of a series. Such
evidence has been found by Bollerslev and Melvin (1994), Engle and Mezrich (1996) and Engle et al.
(1990a, b). In this subsection, we describe the Markov switching model with an exogenous leverage
effect. We introduce the Markov switching heteroskedasticity model with an exogenous leverage effect
(MSH-L) and the Markov switching ARCH model with an exogenous leverage effect (MSARCH-L). Let
Yn, n =.1,2,..., N, be the observed time series, such as, for example, stock, foreign exchange rate and

bound price returns.

5.4.1 Markov switching heteroskedasticity model with an exogenous leverage

effect

First, the MSH-L model is given by

Yn = U+ En, en ~ N(0,02), (5.36)
where

if Sn = 0’ Os, = Yo + f(Aazn—l)y f()"zn—l) > Oa (537)

if s,=1, Os, =71 + f(\ za1), F(A zp—1) >0, (5.38)

where 0 < ¢ < 1. Note that f(-) denotes an arbitrary function with the constant unknown parameter

A, and z, is the exogenous variable that is observable at time n. Note that f(-) is assumed to take
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non-negative values over time.

Here s, is a latent variable indicating the volatility regime that takes a value of zero or one. When
sn = 0, y, follows a normal distribution with mean u and variance o2. When s, = 1, y,, follows a normal
distribution with mean p and variance o2. Since o < 01, 8, = 0 indicates a low volatility regime and
sn = 1 indicates a high volatility regime. We assume that the latent variable s, shifts between zero and

one according to a first-order Markov process with constant transition probability as follows:

p’ij = Pr(sn = jls"-l = 7’)’ 1‘:.7 = 0) 17 (539)
where
1
Y opiy=1, forall i=0,1, (5.40)
—

This transition probability p;; is assumed to be homogeneous over time, and can be written in the form

of the following transition probability matrix:

P Poo Pio | _ Doo 1-pnn . , (5.41)

Por  Pu 1—poo P11

The density of y,, conditional on s,, taking on the value j, is

exp { )’ } . (5.42)

2
207

f(ynlsn =4,¥ 1) =

1
V2mo?,

where ¥, refers to information up to time ¢t — 1. To determine the log likelihood function, we first

consider the joint density of y, and s,, which is the product of the conditional and marginal densities

f(yna Sn = jl‘I’n—l) = f(yn|sn = jv \Iln—l) PI’(Sn = jl‘I’n——l)> (543)

Then, to obtain the marginal density of y,, we integrate s, out of the above joint density by summing

all possible values of s,

1
f(yn!‘:[’n—l) = Zf(ynysn = ]l‘l’n—l)

=0

1
=Y fnlsn = §, ¥n—1) Pr(sn = j|¥n-1)

j=0
1 N2
= Z — &P { _(:'/%2_&)__ } Pr(sn = j|¥n-1)- (5.44)
i=0 /270 Ojin
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The log likelihood function is then given by

N
L) =Y log £ (yn).

n=1
N 1
=) log [Zf(yn,sn = j,8n-1 =i)]
n=1 7=0
N 1 1
=) log [ > Pr(sp = jlsn—1 =) Pr(sp-1 = i|¥n_1)
n=1 F=0 i=0
ERPRY
«— L exp { —(yLii‘-)— }] . (5.45)
202, 2050

where 6 denotes the unknown parameters. The maximum likelihood estimation of 8 is obtained by max-
imizing equation (5.45). Here, since the Markov chain s,, is not observed, we can obtain Pr(s,_1|®,_1)

in equation (5.45) by using the same method as for equations (2.27) and (2.28) of the univariate Markov

'switching stochastic trend model.

5.4.2 Markov switching ARCH model with an exogenous leverage effect

Second, the MSARCH-L model is given by

Yn = P+ En, en|Tn-1 ~ N(O, hs, ), (5.46)
K

Rown = Yan + 9\ 2nm1) + Y af €2, (5.47)
k=1

where 75, >0, a¥ >0, g(A, zn—1) > 0, and

if s, =0, Yoo =7 and of =af, k=1,2,...,K, } (5.48)

if s,=1, Ys, =71 and aﬁn = of, (5.49)

where ¥,,_; is the information up to time n — 1, and g(-) denotes an arbitrary function with the constant

unknown parameter A. Note that g(-) is assumed to take non-negative values over time. =, is the ARCH

constant term, and ¥ is the k-th ARCH coefficient. Both v,, and a¥ shift between different parameter

values depending on the unobserved latent variable s,. Since vo > 7 is assumed, s, = 0 and s, = 1
represent low and high volatility regimes, respectively.

K
Ropn =Yan + 9\ 2n1) + Y o €2 4, g\ zn_1) >0, (5.50)

k=1

The density of y,,, conditional on s, taking on the value 7, is

. 1 (yn - #)2
nlsn =4,V ) = ——= —— . 5.51
R e { - (55)
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where U,,_; refers to information up to time ¢t — 1. To determine the log likelihood function, we first

consider the joint density of ¥, and s,, which is the product of the conditional and marginal densities

F(Yn,8n = jl‘I’n—l) = f(ynlsn =5,%,1)Pr(sn = jl\I’n—l)a (5.52)

Then, to obtain the marginal density of y,, we integrate s, out of the above joint density by summing

all possible values of s,

1
FWnlTn1) = f(Un;8n = j|¥n-1)

=0

1
=Y fWnlsn = 4, ¥n-1) Pr(sn = j|¥n-1)

j—'O

Z \/___exp { _(y;_h—j:)j } Pr(sp = j|¥n_1). (5.53)

The log likelihood function is then given by

N
L(®) =) _ log f(yn)-

n=1
N 1
= Zlog [Zf(ynysn = jasn—l = 74)]
_ j—
1 1
= Z log [ 3> Pr(sn =jlsn-1 = i) Pr(sn1 = i|¥n-1)
j=0 i=0 . .
1 _ (yn — 1)*
X——27rh]-,n exp { TN . (5.54)

where 8 denotes the unknown parameters. The maximum likelihood estimation of 6 is obtained by max-
imizing equation (5.54). Here, since the Markov chain s, is not observed, we can obtain Pr(s,—1|®n-1)
in equation (5.54) by using the same method as for equations (2.27) and (2.28) of the univariate Markov

switching stochastic trend model.

5.5 = Self-organizing Markov Switching State-Space Modeling

In this section, we introduce the self-organizing state-space formula (Kitagawa 1998) into the Markov
switching model, and describe the self-organizing Markov switching model (Kitagawa and Hakamata
2001, Higuchi 2001, Hakamata and Kitagawa 2002). Let y, be an observation variable. We first consider

the univariate Markov switching stochastic trend model as follows

th=p+tn_1 +Vn, v, ~ N(O, %), (5.55)

Yn =t + Wn, wn ~ N(0,0%), (5.56)
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where £, is the trend component according to a first-order random walk process, and p is a drift term

p= po(l — sn) + p8n. (5.57)

Here, s, denotes a two-state and first-order Markov chain taking a value of zero or one. The transition

probability of s, is given by
Dis = PI‘(Sn = j'sn—l = Z)a ’L,] =0,1, (558)

where Z;=0 pij = 1 for all ¢ = 0,1. Under the above assumptions, the joint conditional distribution of

t, and s, given the previous values ¢,,_; and s,_, is obtained by

Pltn, sn = jltn—l’sn—-l =1i) = Pr(sp, = jlsn = i)p(tnltn—la 8n = J)- (5.59)

In the ordinary Markov switching modeling, the state vector z, is given by

Tn = (tna sn)T’ (5'60)

and its general state-space form (Kitagawa and Gersch 1996) can be expressed as follows
Zn ~ Q(zn|Tn-1), (5.61)

Yn ~ R(yn|zn)- (5.62)

The unknown parameter 6 is obtained by the maximum likelihood method via the Kalman filter algorithm
described in section 4.

For simultaneous estimation of the state z, and the unknown parameter #, we consider Bayesian

estimation by augmenting the state vector as follows:
* T
T, = (tna Sn, 9") ) (563)

where t, is the original state vector, s, is the Markov chain and 8, is the parameter vector. Here, we

assume a random walk model

On = 0p_1 +En, (5.64)

where €, is a Gaussian white noise process with zero mean and covariance diago{e?,€Z,...,€2}. All the
structural parameters are assumed to be time-varying. The self-organizing Markov switching model for

this augmented state vector z}, in the general state-space form is immediately given by
Ty, ~ Q" (zh|z7 1), (5.65)

Yn ~ R*(yn|zr).- (5.66)
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where Q*(z*|z*_,) in the conditional density of the augmented state given the previous one, and
R*(yn|z?) is that of the observation given the augmented state. By applying the Monte Carlo filter
to this self-organizing state-space model, we can estimate the state vector and parameters simultaneously
(Kitagawa 1998). Using this self-organizing Markov switching model there is no need to estimate the

parameter § with a maximum likelihood method.

5.6 Semi-Markov Switching Model

5.6.1 Univariate Semi-Markov Switching Stochastic Trend Model

Durland and McCurdy (1994) extended Hamilton’s (1989) Markov switching model to allow the transition
to be duration dependent. Hamilton’s model specification can be said to be a particular parameterization
of a semi-Markov process. Xianping and Padhraic (2000) and Kitagawa and Hakamata (2001) used a
semi-Markov chain as the unobserved variable governing the process shifts. In this subsection, we consider
the first-order stochastic trend model with semi-Markov switching structure. Let y, be an observed time

series at time n. The observation model of the semi-Markov switching stochastic trend model is given by

Yn =Yn-1+En,  En~ N(u,,,05), o ' (5.67)
where ¢, is the innovation term depending on the latent discrete semi-Markov chain s, € {1,2,...,m}
as follows

it s =1, €n ~ N(m,0})

it s, =2, en ~ N(p2,03)

if s,=M, €n ~ N(tim,02).

The Markov switching model presented in the previous section can be extended to a semi-Markov switch-
ing model where the switching (transition) occurs according to a probability distribution Py (Ross, 1996).
Here d is the duration of the new regime. If d is the realization of the distribution Py at time n, then we

have s, = Spy1 = '+ = Sp—q and

pij =Pr(sn = jlsp-1 ="+ = 8,4 =1)

=Pr(sn = j|sn-1 =i, Dn_1 =d), (5.68)
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where D,, denotes the time that the semi-Markov chain has remained in the current regime since the

previous switching. The transition of D,, is given by

0 with probability B Pp, 11 (5.69)
Dn= Dp_1+1 with probability — 1—8"'Pp,_, 41 (5.70)
where
B = i P;. (5.71)
j=Dn_1+1

As a parametric model for the duration probability, we shall use the negative binomial distribution,
d+e—-1

Piel(e,p) = ; p*(1-p)*. (5.72)

Note that Py(l,p) = 0 for £k = 0,...,l. In the ordinary Markov switching model, the probability of
duration time k is given by p¥(1 — p;;) if s, = i. Therefore, the probability of duration is a monotone
decreasing function of time k. By contrast, the duration time of the semi-Markov process with the
negative binomial distribution attains its maximum at k = P, * (I — 1). The Markov switching model can
be further extended by using a different duration probability for a different state, P,Sl), 1=1,2,....m. In
this case, we need to assume that the self-loop transition probability p;; = 0, ¢ = j, in order to avoid

redundancy of the parameters. This means that when the duration time has passed, the probability of

‘switching occurring is one.

In particular, this parameterization of the conditional probabilities ensures that they lie in the interval
(0,1), sum to 1, and, if d = 0 for all 4, the Pr(s, = j|s,—1 =4, D,_; = d) = Pr(s, = j|s,—1 = i) and the
process collapses to a first-order Markov process identical to that assumed by Hamilton (1989).

The conditional joint density of y,,, s, and D,,_, is given by

f(ynas'n = j, D, ;= dl‘I’n-1) = f(ynlsn =7, D, ;= d; ‘Iln—l)Pr(sn = jv D, ;= dl‘Iln—l)- (573)

Here, the density of y,,, conditional on s,, and D,,_,, is

exp { _Gn ) } (5.74)

3
2aj

JWnlsn =J, Dp1 = dj¥p,_) =
2702

for all j =1,2,...,m. Since the semi-Markov chain s,, is not observed, we can calculate it recursively as

follows
f(ynasn = ja Dn—l = dI‘I’n—l)
f(n|¥n-1)
_ J(Wnl|sn = j, Dn = d, V,1)Pr(sn =j,Dp = dl'I'n—l)
v F(Yn|¥n_1) ’

PI‘(Sn =J,Dp_y = dI‘Iln—l) =

(5.75)
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where
m n—1
Pr(sp=§,Dn=d|¥p_1) = > ¥ Pr(sp = jlsn—1 =i,Dn1 = d) Pr(sn-1 = i, Dn-y = d|¥n_y). (5.76)
i=1 d=1

The conditional density of y,, is given by

m m n-1

f(ynl\Fn—l) = Z Z Z f(yn; 8n=15,8n-1 = J, Dy = dl‘I’n—l)a
i=1 j=1d=1

m m n-1

=333 Pr(sn = j,$n-a =i, Do = d|¥n-1)

i=1 j=1 d=1

1 (yn — /1‘.1')2
X € - 5.77
ana; 0 { 207 (5.77)

from which the log-likelihood function is formed as
N

L(B) = Z log f(ynlq’n—-l)

m m n—l1

Zlog [ZZZf(ymsn = jysn-1 =, Dy = d[¥no)

=1 j=1d=1
N m m n-—1
= Zlog [ Z Z Z Pr(sp = j,8n—1 =%, Dn1 = d|¥n-1)
n i=1 j=1 d=1
. Y
X ! exp { —(y—"—f’—J) }], (5.78)
2702 207

where 6 denotes the unknown parameters.

5.6.2 Multivariate Semi-Markov Switching Slope Change Model

Let y& . be the K-dimensional time series. We consider the multivariate semi-Markov switching slope

change model (SMS-SC) for ys,,, as follows

Ykn = tk,n + W,n, Wk, ~ N(O, 2), (579)

where tp ., is a K-dimensional unobserved trend component, and wg, is a K-dimensional Gaussian
observation noise with zero mean and variance-covariance matrix ¥. Note that the diagonal elements of

T are {0%,...,0%}. The trend component in equation (5.79) assumes that

thn = ten—1 + Al (5.80)

The k-dimensional distribution of the slope Aty , depends on its previous value Aty -1 and a semi-
Markov chain s, € {1,2, 3,4} as follows
N(Atp—1,9Q) if j=1
(Atn|Atn_1,8, = j) = { Unif(—c,0) if j=2 (5.81)
Unif{c, 0) if j=3
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Here N(v,Q) and Unif(a, b) denote the Gaussian distribution with mean v and k-dimensional variance-
covariance matrix @ = diag{r?,...,7%} and the uniform distribution over (a,b), respectively. The
uniform distributions in equation (5.81) can be replaced by other distributions such as Gaussian dis-

tributions, N(p2,£2) and N(u2,£3). The transition probability of the semi-Markov chain s, is given

by
pij =Pr(sp =jlsn_1 =+ =84_g=1) (5.82)
=Pr(sp = j|sn—1 =1, Dp-1 = d), (5.83)
where
P23 =Pr(sn = 3|sn-1=2) =0 and ps; =Pr(s, =2|sp—1 =3) =0, (5.84)

where D,, denotes the function of the duration time d, and the transition of D, is given in equation
(5.70). We assume that the regime— shifts occur in all the trend components of £, for k = 1,2,..., K
simultaneously.
In the multiva;iate SMS-SC model, the joint conditional distribution of tx ., Atg,, and s, given the
previous values ¢y ,—1, Atk!n_l and s,—; is obtained by
F(thn, Atkny 8n = Jltkn—1, Atk n—1,8n—1 = 1)
= f(sn = jltk,n—1, Atgn—1,5n—1 = 0) [(Alk,n|Sn = J,Sn-1= i,tk,n—l,étk,n71)
X f(te,nlsn = J,8n—1 = &, te,ne1, Atk n1)
= Pr(sn = jlsn—1 = 1) f(tr,n| Aty ns th,n-1), (5.85)

where the two terms on the right-hand side are specified by equations (5.80) and (5.81), respectively.



Chapter 6

Conclusions

In this thesis, we focused on the Markov switching approach, and applied the ordinary and newly extended

Markov switching models to the empirical analysis of economic and financial time series as follows:
(1) Trend identification and trading strategy,
(2) Time-series and cross-sectional volatility analysis,
(3) Japanese business cycle analysis,
(4) Japan premium and Japanese banks’ stock volatility,
(5) Transmission of volatility,
(6) Foreign exchange volatility and intervention,
(7) International business cycle transmission.

Our applications concentrated on the unique issues and scope of economic and financial markets. In these
empirical analysis, we proposed five main extended Markov switching models with constant parameters:
the univariate and multivariate modified Markov switching ARCH models, the Markov switching slope
change and ARCH model, the Markov switching models with exogenous leverage effects, and the semi-
Markov switching models. In addition, we introduced the self-organizing state space Markov switching
model, which does not need to obtain the maximum likelihood estimate of parameters. VTherefore, it is
more useful in the high dimensional situation. To evaluate our extended Markov switching models, we

compared them with the ordinary stochastic models and analytical methods.
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