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Preface

This thesis is an outcome after spending almost five years at the Institute of Sta-

tistical Mathematics as a student of the Graduate University for Advanced Studies.

Since the author’s main duties are to work for a company named Schlumberger K.K.,

Japan, a subsidiary of Schlumberger Limited that is the oilfield services company

supplying technology and information solutions for customers in the international oil

and gas industry domains, the total amount of time as being a student has been

limited. However, in this inextensible time frame, the author learned various things

and encountered many respectable persons.

In the author’s working domains we deal with data obtained mainly from geo-

physical measurements that are utilized to find evidence of hydrocarbon in the un-

derground. For these data various analysis methods are applied and new processing

techniques are also attempted. This thesis focuses on statistical approaches to mainly

single-well acoustic imaging data for 1) analyzing characteristics of these data and 2)

denoising. Our ultimate goal for single-well acoustic imaging data is to delineate sub-

surface geological structure near a borehole. Although various processing techniques

have been proposed and developed by multiple people, these imaging operations have

not yet fully acknowledged as the standard way to visualize geological layers in the

vicinity of wellbores.

This thesis is composed of the following contents: Chapter 1 is intended to intro-

duce background of single-well acoustic imaging and notations. Chapter 2 attempts

to study PCA (principal component analysis) and its related techniques such as PCA

on-line and local PCA. We analyzed single-well acoustic data by these techniques.

The core methodology of this thesis, local likelihood regression, appears in Chapter 3.
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This chapter deals with a polynomial model whose predictor variable is a scalar and

response variable has a vector shape. This model is also applied on real data from

single-well acoustic logging. In Chapter 4, local approaches are attempted in another

geophysical analysis domain. It is spatial interpolation called kriging. Both local con-

stant and local linear regressions are considered between a scalar predictor variable

and a scalar response variable. Lastly conclusive remarks are stated in Chapter 5.

Most chapters include MATLAB1 codes that are used primary on Matlab6.5.1.

Lately Matlab7 is also used to produce computational results.

1MATLAB is a registered trademark of The MathWorks, Inc.
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Chapter 1

Introduction

In this chapter we introduce our motivation, some background concepts, and nota-

tions, since our data are coming form geophysical domains. Specifically single-well

acoustic imaging techniques are described conceptually so that our data domain can

be intuitively understood.

1.1 Motivation

Imaging near-borehole structure is a processing operation to delineate geological

structural features near a well bore. It uses acoustic full-waveform data acquired

at an array of receivers in an acoustic well logging tool and utilize techniques used

in surface seismic processing techniques (Hornby [7]). Resultant images have finer

resolution because higher frequencies are used in the acoustic well logging when com-

paring with acoustic frequencies used in acquisition for the surface seismic. This

single-well acoustic imaging has been applied for mapping formation boundaries and

fracture/fault shape. In general reflected/refracted signals coming from geological

key features of interest are subtle. Therefore, they are buried in various component

waves together with measurement noises in the acquired full-waveform data.

Our initial motivation is to denoise the acquired data efficiently by utilizing sta-

tistical features that the original data retain. First we studied PCA and local PCA,

then we extended our study to localized likelihood approach with adaptive band-width

1
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Cylinder shape typically 3.625 in. [9.2 cm] in diameter

Variable length spacer
Typically 10 ft [304.8 cm] in lengthThe elements are spaced 6 in. [15.2 cm] apart.

An array of hydrophone receivers Sonic transducer
Source

Figure 1.1: Schematic sonic logging tool: There exist one or more transmitters and
an array of hydrophone receivers.

selection.

Another interest is to seek for some local approaches in the geophysical data

processing domain. This aims at proposing equivalent or better processing approaches

by making use of local information that may be available in the original data. For

this sake we studied spatial interpolation techniques named kriging and find an area

where local regression may be applicable for the computational simplicity.

1.2 Single-well Acoustic Imaging

In order to grasp subsurface geological features near a borehole, both acquisition and

processing techniques have been developed as single-well acoustic imaging (Esmersoy

et al. [4]) using an acoustic source and an array of hydrophone receivers deployed in

a single well.

1.2.1 Sonic Logging Tool

A typical acquisition hardware is depicted in Figure 1.1 and we call this hardware

sonic logging tool. The sonic logging tool has 1) one or more transmitters whose

driving frequency range is approximately 5 to 15 kHz; and 2) an array of hydrophone

receivers.

Our primary concern is to delineate major bed boundaries in the vicinity of well-

bores with using reflected signals as shown in Figure 1.2. The single-well acoustic

imaging may be used to fracture/fault identifications. In principle data acquisition is
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Bed boundary

Reflected signal

Borehole signalsBorehole Transmitter
Array of receivers

Figure 1.2: Sonic imaging principle: Acoustic impedance contrasts, such as bed
boundaries, reflect sonic waves back to the borehole where they are detected by the
receiver array.

composed of the following steps:

1. At a given tool position the transmitter fires and then the receivers acquire

data. Both borehole and reflected signals are recorded in the data.

2. The tool moves to a next tool position. Offset length from the previous tool

position is matched with the inter-receiver spacing.

3. Go to Step 1 to acquire another set of data.

This single-well acoustic imaging fills a resolution gap that lies in between seismic

methods and borehole logs. This means that the frequency range used in single-well

acoustic imaging is higher than that from surface seismic, thereby image resolution

gets improved. However the depth of investigation gets shorter but longer than that

from borehole logs. These features are illustrated in Figure 1.3. By combining and

integrating these seismic, single-well acoustic imaging, and borehole logs, it is possible

to capture a shape of geological features of interest accurately.
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1.2.2 Software Processing

Processing techniques applied to single-well acoustic imaging are analogous to a 2D

surface seismic survey with frequencies scaled up and acquisition geometry scaled by

two to three orders of magnitude. Basically they consist of the following processing

components:

1. Preprocessing or filtering to eliminate unwanted signals such as borehole signals.

2. Migration to place reflector signal events at right positions around a well while

taking formation velocity (or its reciprocal called slowness) into account.

3. Presentation to map and display migrated data along the well-trajectory.

In this thesis we focus the preprocessing stage and apply various statistical approaches

on common-offset data that have a two-dimensional, (space, time), shape.

Tang and Cheng [14] gives a broadband perspective for acoustic well-logging and

its applications including single-well acoustic imaging.

1.2.3 Key Technical Terms

Key terms are briefly described in this section.

• Borehole is a wellbore, including the openhole or uncased portion of a well.

• Openhole is the uncased section of a well. In a cased section, steel pipes are

lowered and cemented in place to protect the well.

• Log is the measurement versus depth or time, or both, of one or more physical

quantities in or around a well. Borehole is the wellbore or uncased portion of

the well.

• Logging tool is the downhole hardware used to make a log. Tools are typically

cylinders from 1.5 to 5 in. [3.8 to 12.7 cm] in diameter.

• Trace is a single waveform recorded by a single receiver in the sonic logging

tool.
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• Common-offset: Pertaining to traces that have the same offset in between trans-

mitter and receiver. Figure 1.4 illustrates a common-offset gather made from

the fixed offset length of Tx-R1, where Tx and R1 denote the transmitter and

the 1st receiver in the receiver array.

• Variable-density log (VDL) is a presentation of the acoustic waveform at a

receiver of sonic measurements, in which the amplitude is presented in color or

the shades of a gray scale. Figure 1.5 illustrates two types of acoustic waveform

for the same data set. Figure 1.5(a) shows wiggle format that has a collection

of traces. In this example a single trace is repeated to form the collection. In

Figure 1.5(b) corresponding VDL is presented with a gray scale. In this VDL,

the higher the amplitude value is, the darker assigned color becomes.

• Seismic: Pertaining to waves of elastic energy, such as that transmitted by P-

and S-waves, in the frequency range of approximately 1 to 100 Hz.
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Figure 1.5: Waveform presentation: (a) Wiggle and (b) VDL.
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1.3 Notation and Abbreviations

1.3.1 List of Symbols

Symbol : Description

‖·‖ : norm in a general vector space

AT : transposition of matrix A

C(h) : covariance at distance h

D : number of depth samples

E : statistical expectation operator

d : discrete space index

γ(h) : semi-variogram at distance h

nd : noise vector at depth d

R : sample covariance matrix

Rd : sample covariance matrix (ydy
T
d ) at depth d

T : number of time samples

t : discrete time index

Wd : matrix whose columns are the p eigenvectors of Rd

(if its dimension is T-by-p)

wα : linearly associated weights

xd : waveform component vector at depth d

Y : data table or common-offset gather

yd : observation vector at depth d

λi : the ith ordered eigenvalue

φi : the ith ordered eigenvector

(u·v) : a scalar product of the vectors u and v

x̄ : an average (of x in this case)

x̃ : an estimate (of x in this case)

diag(V) : when V is a vector with N components, diag(V) is

a square matrix of order N with the element V on the main diagonal.

if a matrix, diagonal elements of matrix V.

Z(x) : intrinsic random function at position x
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1.3.2 List of Abbreviations

APEX : adaptive principal components extraction

CV : cross validation

EDF : effective degree of freedom

LSQ : least-squares

MATLAB : The Mathworks product for numerical computation and visualization

MSE : mean square error

PCA : principal component analysis

UTM : universal transverse mercator

VDL : variable-density log



Chapter 2

Principal Component Analysis

This chapter investigates PCA as an inference tool for a 2-d data model. For vari-

ous PCA techniques, Matlab codes have been implemented. These codes are studied

on both synthetic and real sonic logging data. This chapter is organized as follows.

In the first section, we introduce normal PCA process (so called PCA bulk). Next,

we attempt to apply PCA on-line process that has been studied in Neural Network

domains. Our investigation reaches to local PCA, in which a weight function is intro-

duced to narrow down an examination area, in the following section. The background

reason for this localization is coming from the fact that: Hsu [8] applied normal PCA

process to separate wave components and to extract features in acoustic well-logging

data; however (1) this approach had to endure massive computation depending on a

processing region and (2) inference results were averaged over the processing region.

2.1 Formulation

Let xd be a T-by-1 random vector representing a wave component of acoustic well-

logging data at depth d, where T is the number of time samples in the wave train.

Here we assume that wave components such as compressional, shear, and Stoneley

are embedded in xd as a realization of a random vector. Then observed data yd can

be formed as

12
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yd = xd + nd, (d = 1, · · · , D) (2.1)

where nd represents measurement noises whose dimension is same as one in yd. Our

data table or common-offset gather is defined as

Y =
[
y1 y2 · · ·yD

]
, {Y | 1 ≤ t ≤ T, 1 ≤ d ≤ D} (2.2)

where T and D are the number of time and space samples, respectively.

General objectives in inference are to estimate characteristics of x from observed

data y with use of a covariance matrix generated from the observation data. The

sample covariance matrix R is

R =
1

D

D∑
d=1

(yd − ȳ)(yd − ȳ)T (2.3)

where

ȳ =
1

D

D∑
d=1

yd. (2.4)

In the following section, we focus on PCA as an inference tool for the data model

defined in (2.2).

2.2 PCA Process

2.2.1 Algorithm

Using the sample covariance matrix R whose size is T-by-T and eigenvector analyzing

algorithm, x can be reconstructed from eigenvectors. To perform the reconstruction

first solve

Rφi = λiφi, (i = 1, · · · , T ) (2.5)
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where φi is an eigenvector and λi is an eigenvalue. If ‖φi‖ = 1, λi is calculated as

λi = φi
TRφi, (i = 1, · · · , T ). (2.6)

Then reconstruction x̃ is defined as

x̃d[p] =

p∑
i=1

((yd − ȳ)T φi)φi + ȳ, (p ≤ T ) (2.7)

where φi is ordered so that associated eigenvalues are aligned to have largest first,

smallest last.

2.2.2 Matlab Codes

In this section implemented Matlab codes are listed. They are pcaBulk, pcaSort, and

pcaBulkRestore; and are summarized in Table 2.1.

Name Descriptions
pcaBulk computes PCA for bulk data.
pcaSort sorts eigenvectors and associated eigenvalues in a decreasing order.
pcaBulkRestore reconstructs original images.

Table 2.1: Matlab functions to perform PCA and reconstruction.

pcaBulk

function [v, c] = pcaBulk( x )
%
% function [v, c] = pcaBulk( x )
% computes PCA for bulk data
%
% Input:
% x - sample waveform matrix whose
% dimension is (t,d) where
% t is a number of time steps and
% d is a number of space (depth) steps.
%
% Output:
% v - a matrix whose columns, [v1 v2 ... vt], are
% eigenvectors.
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% c - a diagonal matrix of eigenvalues.
%
% Remark:
%
% Use pcaSort() to sort out v and c in a manner that
% the eigenvalues in c are ordered largest first,
% smallest last.

[t, d] = size(x);
u = (sum(x,2)/d) * ones(1,d); % mean vector;
s = (x-u) * (x-u)’ / d;

[v,c] = eig(s);

pcaSort

function [vs, cs] = pcaSort (v, c)
%
% function [vs, cs] = pcaSort( v, c )
% sorts v and c in a decreasing order of diag(c).
%
% Input:
% v - a matrix whose columns, [v1 v2 ... vn], are
% eigenvectors.
% c - a diagonal matrix of eigenvalues.
%
% Output:
% vs - a sorted matrix whose columns, [v1 v2 ... vn], are
% reordered so that associated eigenvalues in c are
% ordered largest first, smallest last.
% dc - a sorted matrix whose diagonal components are
% aligned in a decreasing order.
%

[m t] = size(v);
lamda = diag(c);
[y I] = sort(lamda);
cs = diag(flipud(y)); % sorted diagonal matrix

% in a decreasing order
I = flipud(I);
for j = 1:t,

vs(:,j) = v(:,I(j,1));
end

pcaBulkRestore

function yr = pcaBulkRestore (vs, y, order)
%
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% function yr = pcaBulkRestore (vs, y, order)
% reconstructs the original image from given eigenvectors
% ’vs’ and a given ’order’ number.
%
% Input:
% vs - a matrix whose columns, [v1 v2 ... vt], are
% eigenvectors. These eigenvectors must be aligned
% such that corresponding eigenvalues are sorted
% in a decreasing order.
% y - an observation matrix whose dimension must be
% (t,d) where t is a number of time steps and
% d is a number of depth steps.
% order - a positive integer number to indicate that
% to which order’s reconstruction is made.
% order = 1 ... uses the first eigenvector,
% order = i ... uses the i-th eigenvector.
% (order <= t)
%
% Output:
% yr - a reconstructed matrix whose dimension must be
% (t,d);
%

[t, d] = size(y);
u = (sum(y,2)/d) * ones(1,d); % mean vector
yr = zeros(t,d);
for s=1:d,

yr(:,s) = ( (y(:,s) - u(:,s))’ * ...
vs(:,order) .* vs(:,order)) + u(:,s);

end

2.2.3 Synthetic Data Example

To ensure the work of generated Matlab codes a 2-d section whose dimension is 3-by-

250 is synthetically generated with the following conditions

yd ∼ N

([
1 2 3

]T

, diag
([

5 3 1
]))

, (d = 1, · · · , 250) (2.8)

where N(a, b) represents the normal distribution with the mean and variance val-

ues are a and b, respectively. Figure 2.1(a) presents the original 2-d section that is

synthetically generated from (2.8). Reconstructed images from an individual eigen-

vector, the 1st, 2nd, and 3rd, are shown in Figures 2.1(b), (c), and (d), respectively. In



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS 17

Figure 2.1(e) all reconstructed images are overlaid to restore the original shape with

three eigenvectors and their associated eigenvalues. Eigenvectors and eigenvalues are

computed as shown in Table 2.2.

Symbol Eigenvector Eigenvalue
φ1 [−0.9904 0.1313 − 0.0441]T 5.1610

φ2 [−0.1326 − 0.9908 0.0282]T 3.0548

φ3 [−0.0399 0.0337 0.9986]T 1.0816

Table 2.2: Eigenvectors and associated eigenvalues computed from 2-d synthetic data
shown in Figure 2.1(a).

2.2.4 Openhole Sonic Data Example

In this section a common-offset gather obtained from single-well acoustic logging

data is dealt. As an input to the PCA bulk analysis a 2-d section whose dimension

is 200-by-263 is prepared. This input data set is taken from Yamamoto et al. [18].

Specifically, a part of the 2-d section is extracted as (30:80,1:250) (i.e.,51-by-250 ) and

it is used for reconstruction of compressional components.

Reconstruction of Compressional Components

Figure 2.2 presents both input data, which mainly contain compressional waves (51-

by-250 ), and reconstructed images. In Figure 2.3 detailed looking on the 100th trace

is made. Primary eigenvectors are selectively presented in Figure 2.4. The orthogo-

nality among primary eigenvectors is examined by taking the scalar product of (φ1 ·φi)

where i varies from 2 to 5. The order of any product value is less than 10−16 in the

absolute sense.

Reconstruction of Reflection Events

Similarly the original section whose dimension is 200-by-263 is examined. Figures 2.5,

2.6, and 2.7 present processed results. In Figure 2.8 a detailed looking is made for the
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Figure 2.1: Reconstruction of synthetic data by PCA. (a) The original 2-d section is
synthetically generated from (2.8). Reconstructed images from an individual eigen-
vector, the 1st, 2nd, and 3rd, are shown in (b), (c), and (d), respectively. In (e) all
reconstructed images are overlaid to recover the original shape.
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Figure 2.2: Reconstruction of common-offset gather data by PCA bulk. Input data
have only 51 time samples per trace. The original image (band-passed) is shown in
(a). This image is reconstructed from the 1st eigenvector (b), both the 1st and 2nd

eigenvectors (c), and the initial three eigenvectors (d). Sample mean data are imaged
and plotted in (e) and (f), respectively.
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Figure 2.3: (a) A reconstructed compressional wave from the three primary eigenvec-
tors. (b) Individual reconstruction only from the 1st eigenvector. (c) Same as (b) but
for the 2nd eigenvector. In (d) eigenvalues are plotted in a cumulative manner. The
original waveform is extracted from the trace number 100 at Figure 2.2(a).
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Figure 2.4: Primary five eigenvectors from φ1 to φ5 extracted from Figure 2.2(a).

same 100th trace and comparison is made in between the original and reconstructed

wavetrains. The orthogonality among primary eigenvectors is examined by taking the

scalar product of (φ1 · φi) where i varies from 2 to 5. The order of any product value

is less than 10−16 in the absolute sense.
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Figure 2.5: (a) Original common-offset gather consisting of 200-by-263 samples. On
this data PCA bulk is performed. A rectangular encloses reflection signals coming
from a reflector near the borehole. (b) Reconstructed data from the 1st eigenvector.
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Figure 2.6: (a) Reconstructed data from the 2nd eigenvector for the common-offset
gather shown in Figures 2.5(a). (b) Same as (a) but for the 3rd eigenvector.
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Figure 2.7: (a) Mean vector from the common-offset gather shown in Figures 2.5(a).
(b) Reconstructed data with use of three primary eigenvectors and the mean vector.
A rectangular encloses reconstructed reflection signals.
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2.3 PCA On-line Process

PCA on-line process is to perform PCA by self-organizing rules. This is an un-

supervised mechanism. We study three algorithms – two of them use feedforward

connection and the rest utilizes both feedforward and feedback connections. These

algorithms are implemented and applied on both synthetic data and single-well acous-

tic logging data.

2.3.1 Algorithm with Feedforward

For each sample covariance matrix Rd we compute a matrix Wd whose dimension is

T-by-p (p ≤ T ) and columns are the p (p ≤ T ) eigenvectors of Rd. Let the ith column

of Wd be Wi
d, then the PCA on-line process ALG-1 which is due to Oja et al. found

in Chatterjee et al. [3] is defined as

Wd+1
i = Wd

i + ηd

(
RdWd

i − Wd
iWd

iTRdWd
i

− γ
i−1∑
j=1

Wd
jWd

jT
RdWd

i

)
, (i = 1, · · · , p) (2.9)

where {ηd} is a sequence of scalar gains and γ is a parameter which is greater than

or equal to one. When p = 1, the first eigenvector is recursively obtained by

Wd+1 = Wd + ηdWd
Tyd

(
yd − Wd

TydWd

)
(2.10)

where Wd
Tyd is a scalar.

Similarly ALG-2 which is based on Xu and et al. (see Chatterjee et al. [3]) is

formed as

Wd+1
i = Wd

i + ηd

(
2RdWd

i − Wd
iWd

iTRdWd
i − γ

i−1∑
j=1

Wd
jWd

jT
RdWd

i

− RdWd
iWd

iTWd
i − γ

i−1∑
j=1

RdWd
jWd

jT
Wd

i

)
, (i = 1, · · · , p) . (2.11)
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In case of p = 1, the first eigenvector is recursively obtained by

Wd+1 = Wd + ηdWd
Tyd

(
2yd − Wd

TydWd − ydWd
TWd

)
(2.12)

where Wd
Tyd and Wd

TWd are scalar values.

2.3.2 Algorithm with Feedforward and Feedback

Another attempts are made to make use of the adaptive principal components ex-

traction (APEX), which uses both feedforward and feedback connections (Kung and

Diamantaras [9]; Section 8.7 in Haykin [6]). In the APEX algorithm the first eigen-

vectors are computed with (2.10) and then, by re-using these vectors, the second

eigenvectors are readily computed. Here consideration is only made up to the second

eigenvectors.

The APEX algorithm can be summarized as follows:

1. Initialize the feedforward weight vector Wd and the feedback weight vector Ad

to small random values at depth d = 1.

2. For i = 1 compute (2.10) to obtain the first eigenvector.

3. For i = 2, and d = 1, 2, · · · , compute:

Zd
i−1 = [Zd

1 Zd
2 · · ·Zd

i−1]
T

(2.13)

Zd
i = Wd

iTYd + Ad
iTZd

i−1 (2.14)

Wd+1
i = Wd

i + ηd[Zd
iYd − Zd

i2Wd
i] (2.15)

Ad+1
i = Ad

i − ηd[Zd
iZd

i−1 + Zd
i2Ad

i] (2.16)

2.3.3 Matlab Codes

In this section implemented Matlab codes to perform ALG-1, ALG-2, and APEX are

presented. To switch the algorithm, ALG-1 or ALG-2, an argument named algorithm

is used in pcaSelfOrganize.
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Name Descriptions
pcaSelfOrganize computes PCA with self-organizing rules (ALG-1 or ALG-2).
pcaAPEX computes PCA with the APEX algorithm.

Table 2.3: Matlab functions to perform PCA on-line.

pcaSelfOrganize

function [wk1, ex1] = pcaSelfOrganize ( wk0, x, d, p, ex0, ...
alpha, beta, sgp, gamma, algorithm )
%
% function [wk1, ex1] =
% pcaSelfOrganize( wk0, x, d, p, ex,
% alpha, beta, sgp,
% gamma, algorithm )
% computes PCA with the self-orgamizing rule.
%
% Input:
% wk0 - a matrix whose columns,
% [v1 v2 ... vn], are eigenvectors.
% x - a sample vector (n-by-1) observed at depth d.
% d - a natural number to indicate d-th step.
% this number is used to produce a sequence of
% scalar gains. See Remark for the sequence applied.
% p - a number of eigenvectors (p =< n) used. The first
% p columns are only used as the principal eigenvector
% matrix of wk0.
% ex0 - a mean vector of previous samples of x. ex0 should
% have the same dimension of x.
% In case of d=1, ex0 can be an arbitrary
% (or zero) vector.
% alpha - a parameter to form a scalar gain. See Remark.
% beta - a parameter to form a scalar gain. See Remark.
% sgp - a number of power value for the scalar gain.
% (1/(alpha*d + beta))^(sgp) is set in the equation.
% gamma - a scalar (g >= 1)
% algorithm - 0.......... Oja et al. Refer to (1) in
% Chatterjee et al. [3].
% non zero... Xu et al. Refer to (2) in
% Chatterjee et al. [3].
% Notice that if no input is given, then
% algorithm is regarded as 0 (i.e., Oja et al.).
%
% Output:
% wk1 - a matrix whose columns, [v1 v2 ... vn], are
% eigenvectors.
% ex1 - an updated mean vector. This vector will be
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% an input for the next calling time as ex0.
%
% Remark:
% As a sequence of scalar gain:
% (1/(alpha*d + beta))^(sgp) is used.
%

if nargin < 10, algorithm = 0; end

[m,n] = size(wk0);
wk1 = zeros(size(wk0)); % an output
S0 = zeros(m,1); % a work matrix

if (d == 1)
ex1 = x;

else
ex1 = ((d-1)*ex0 + x) ./ d; % update the mean vector
x = x - ex1;

end

ak = x * x’;

if ( algorithm == 0 ) % Algorithm - Oja et al.

for i=1:p, % over only principal columns
S = S0; % clear S matrix

for j=1:(i-1),
S = S + wk0(:,j)*wk0(:,j)’*ak*wk0(:,i);

end
A = ak*wk0(:,i)-wk0(:,i)*wk0(:,i)’*ak*wk0(:,i)-gamma*S;
wk1(:,i) = wk0(:,i) + (1/(alpha*d + beta))^(sgp) * A;

end

else % Algorithm - Xu et al.

R0 = zeros(m,1); % a work matrix

for i=1:p, % over only principal columns
S = S0; % clear S matrix
R = R0; % clear R matrix

for j=1:(i-1),
S = S + wk0(:,j)*wk0(:,j)’*ak*wk0(:,i);
R = R + ak*wk0(:,j)*wk0(:,j)’*wk0(:,i);

end
A = 2*ak*wk0(:,i)-wk0(:,i)*wk0(:,i)’*ak*wk0(:,i)-gamma*S ...

-ak*wk0(:,i)*wk0(:,i)’*wk0(:,i)-gamma*R;
wk1(:,i) = wk0(:,i) + (1/(alpha*d + beta))^(sgp) * A;

end

end
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pcaAPEX

function [wk1, ak1, ex1] =
pcaAPEX ( wk0, ak0, x, d, p, ex0, alpha, beta, sgp)

%
% function [wk1, ak1, ex1] =
% pcaAPEX( wk0, ak0, x, d, p, ex, alpha, beta, sgp )
% computes the addaptive principal components extraction (APEX).
%
% Input:
% wk0 - a matrix whose columns,
% [v1 v2 ... vn], are eigenvectors.
% ak0 - a scalar parameter for feedback weight
% x - a sample vector (n-by-1) observed at depth d.
% d - a natural number to indicate d-th step.
% this number is used to produce a sequence of
% scalar gains. See Remark for the sequence applied.
% p - a number of eigenvectors (p =< n) used. The first
% p columns are only used as the principal eigenvector
% matrix of wk0.
% ex0 - a mean vector of previous samples of x. ex0 should
% have the same dimension of x.
% In case of d=1, ex0 can be an arbitrary
% (or zero) vector.
% alpha - a parameter to form a scalar gain. See Remark.
% beta - a parameter to form a scalar gain. See Remark.
% sgp - a number of power value for the scalar gain.
% (1/(alpha*d + beta))^(sgp) is set in the equation.
%
% Output:
% wk1 - a matrix whose columns, [v1 v2 ... vn], are
% eigenvectors.
% ak1 - an updated feed-back weight (scalar)
% ex1 - an updated mean vector. This vector will be
% an input for the next calling time as ex0.
%
% Remark:
% As a sequence of scalar gain:
% (1/(alpha*d + beta))^(sgp) is used.
%
% References:
%
% Haykin [6]
%

[m,n] = size(wk0);
wk1 = zeros(size(wk0)); % an output

if (d == 1)
ex1 = x;

else
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Figure 2.9: 2-d synthetic data applied for PCA on-line. The data are derived from
(2.8) and consist of 3-by-250 points.

ex1 = ((d-1)*ex0 + x) ./ d; % update the mean vector
x = x - ex1;

end

ak = x * x’;

S = wk0(:,p)’*x + ak0*wk0(:,p-1)’*x;
A = S*x - S*S’*wk0(:,p);
B = (S*(wk0(:,p-1)’*x))’ + S*S*ak0;

wk1(:,p) = wk0(:,p) + (1/(alpha*d + beta))^(sgp) * A;
ak1 = ak0 - (1/(alpha*d + beta))^(sgp) * B;

2.3.4 Synthetic Data Example I

To validate the algorithm implemented in Section 2.3.3 the synthetic 2-d section

derived from (2.8) is reused. Figure 2.9 shows the generated images whose dimension

is 3-by-250. For this data three eigenvectors are recursively calculated over the entire

depth samples (i.e., 250 steps).

As for initial eigenvectors an arbitrary orthogonal matrix whose components are

W1 =




1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0 2/
√

6


 (2.17)

is chosen and totally 249 iterations are performed.

Figure 2.10 shows the ALG-1’s iteration of the three principal eigenvectors for
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choices of γ = 1.2 and ηd = 1/(13.5 + d). At the end of iterations the process yields

the following eigenvectors:

W250 =




1.0031 −0.0949 0.0372

0.0664 0.9918 −0.0013

−0.0345 −0.0442 0.9910


 (2.18)

which consist of almost three orthogonal vectors. From Figure 2.10 it is observed that

the estimates of three eigenvectors are converging to the true vectors as proceeding

the iterations.

Figure 2.11 shows the ALG-2’s iteration which has also the same choices of γ = 1.2

and ηd = 1/(13.5 + d). Resultant eigenvectors from ALG-2 are

W250 =




1.0002 −0.1309 0.0608

0.0656 0.9856 −0.0049

−0.0345 −0.0409 0.9937


 . (2.19)

Notice that in Figures 2.10 and 2.11 the y-axis is taken to indicate direction cosine

for the true vector and a computed eigenvector.

2.3.5 Synthetic Data Example II

In this section a more practical dimension whose size is 51-by-1000 is considered. A

data set generated is made by the following equation:

yd ∼ N
(
µT , diag ([5 3 1 0.5 0.1 0.01 · · · 0.01])

)
, (d = 1, · · · , 1000) (2.20)

where µ is a mean vector whose dimension is 1-by-51 and element values are depicted

in Figure 2.12. First three eigenvectors are recursively computed over 1000 depth

samples. Results from ALG-1 and ALG-2 cases are presented in Figures 2.13 and

2.14, respectively. Note that initial eigenvectors used for both ALG-1 and 2 are

computed from PCA described in Section 2.2.

In both algorithm cases it is observed that each of three primary eigenvectors is

getting closer to the true vector because direction cosine value for the true vector and
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Figure 2.10: A PCA on-line process by ALG-1 over 250 depth samples for the
synthetic data generated from (2.8). Processing parameters are taken as (γ, ηd) =
(1.2, 1/(13.5 + d)).
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Figure 2.11: A PCA on-line process by ALG-2 over 250 depth samples for the
synthetic data generated from (2.8). Processing parameters are taken as (γ, ηd) =
(1.2, 1/(13.5 + d)).
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Figure 2.12: Element values for the mean vector. This vector consists of 1-by-51
elements.

the computed eigenvector is approaching to one.

2.3.6 Openhole Sonic Data Examples

A real data set to be applied is identical with the data used in Figure 2.2(a). In

this case 250 traces are processed in a trace-by-trace manner. Basic parameters are

(γ, ηd) where in the Matlab code γ is represented as a gamma parameter and {ηd} is

a sequence of scalar gain factors depending on the depth index.

In the PCA on-line process both the 1st and 2nd eigenvectors are recursively com-

puted. For each eigenvector both ALG-1 and 2 are attempted. Initial eigenvectors

used for both ALG-1 and 2 are computed from PCA described in Section 2.2. Fig-

ures 2.15 and 2.16 are processing results for the 1st and 2nd eigenvector, respectively.

Each of these cases adopts (γ, ηd) = (1.2, 1/(10 + 6d)).

APEX processing results for the 2nd eigenvector with (ηd) = (1/(100 + 2d)

Figure 2.17 presents computation results from the APEX algorithm with the 2nd

eigenvector (i = 2). In this try the computation is repeated three times over the
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Figure 2.13: A PCA on-line process by ALG-1 over 1000 depth samples for the
synthetic data generated from (2.20). Processing parameters are taken as (γ, ηd) =
(1.2, 1/(10 + 0.2d)).

entire depth region of the common-offset gather data shown in Figure 2.2(a). It is

observed that directional cosine values get higher at the early stage (at around the

60th iteration) when comparing with ALG-1 and 2 results as shown in Figure 2.16.

However fluctuation in directional cosine values appears.
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Figure 2.14: A PCA on-line process by ALG-2 over 1000 depth samples for the
synthetic data generated from (2.20). Processing parameters are taken as (γ, ηd) =
(1.2, 1/(10 + 0.2d)).
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Figure 2.15: PCA on-line processing results from ALG-1 and ALG-2 for the 1st eigen-
vector with (γ, ηd) = (1.2, 1/(10 + 6d)). The input data is taken from Figure 2.2(a).
The 1st principal component is computed over successive 250 trace data.
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Figure 2.16: PCA on-line processing results from ALG-1 and ALG-2 for the 2nd eigen-
vector with (γ, ηd) = (1.2, 1/(10 + 6d)). The input data is taken from Figure 2.2(a).
The 2nd principal component is computed over three iterations of successive 250 trace
data. The computed eigenvector in a previous iteration is fed into a new iteration as
the initial value.
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Figure 2.17: PCA on-line processing results from APEX for the 2nd eigenvector (Wd
2)

with ηd = 1/(100+2d). The input data is taken from Figure 2.2(a). The 2nd principal
component is computed over three times of successive 250 trace data (i.e., repeating
on-line process three times).
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2.4 Localized Analysis of PCA

PCA is a standard method for extracting informative data of lower dimension from an

original data set in the paradigm of unsupervised learning. In acoustic well-logging

data, various wave components are presented together with noises over an acquired

depth region. The noises are spatially distributed beyond the Gaussian distribution

with constant variance. Therefore it is essential to examine the data locally instead

of handling globally so that local features can be extracted effectively. The key is to

assess a localized sample variance matrix using a kernel function. This section briefly

reviews a localized version of PCA.

2.4.1 Algorithm

The localized version of (2.3) can be formed as

R∗(d) =
1

D

D∑
d′=1

Kh(d − d′)(yd′ − y∗(d))(yd′ − y∗(d))T (2.21)

where Kh is a localized weight function

Kh(x − d) = exp{− 1

2h2
(x − d)2} (2.22)

and

y∗(d) =

∑D
d′=1 yd′Kh(d − d′)∑D

d′=1 Kh(d − d′)
. (2.23)

We may adopt the use of (2.5) to our present situation by writing

R∗(d)φi
∗(d) = λi

∗(d)φi
∗(d), (i = 1, · · · , T ) (2.24)

where φi
∗(d) and λi

∗(d) are an eigenvector and eigenvalue at depth d, respectively. If

‖φi
∗(d)‖ = 1, λi

∗(d) is calculated as

λi
∗(d) = φi

∗TR∗(d)φi
∗(d), (i = 1, · · · , T ). (2.25)
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Then reconstruction x̃d is defined as

x̃d[p] =

p∑
i=1

x̃i + y∗(d), (p ≤ T ) (2.26)

where x̃i is

x̃i = (yd − y∗(d))T φi
∗(d)φi

∗(d) (2.27)

and φi
∗(d) is ordered so that associated eigenvalues are aligned to have largest first,

smallest last.

2.4.2 Matlab Codes

In this section implemented Matlab codes are listed. They are pcaLocal, kh, and

pcaLocalRestore; and are summarized in Table 2.4.

Name Descriptions
pcaLocal computes local PCA.
kh computes weight values to be used in pcaLocal.
pcaLocalRestore reconstructs original images.

Table 2.4: Matlab functions to perform local PCA and reconstruction.

pcaLocal

function [vd, cd, yud] = pcaLocal( x, d, ld, h )
%
% function [vd, cd, yud] = pcaLocal( x, d, ld, h )
% computes local PCA at depth of ’d’
%
% Input:
% x - sample waveform matrix whose
% dimension is (nt,nd) where
% nt is a number of time steps and
% nd is a number of space (depth) steps.
% d - a depth index at which local PCA is
% performed.
% ld - a processing window width.
% 0 < ld <= 2*nd
% h - a scalar to specify the shape of
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% the localized weight.
%
% Output:
% vd - a matrix whose columns, [v1 v2 ... vnt], are
% eigenvectors at depth ’d’.
% cd - a diagonal matrix of eigenvalues at depth ’d’.
% yud - a localized mean vector
%
%
% Remark:
%
% pcaSort() is performed in this function
%

[nt, nd] = size(x);
hd = round((ld-1)/2);

prs = max([d-hd 1]); % processing start position
pre = min([d+hd nd]); % processing end position
pld = pre - prs + 1;

xo = x(:,prs:pre);
khv = kh(prs-d:pre-d, h); % Weighting matrix
sul = sum(khv);
khw = diag(khv);

yud = (sum(xo*khw,2)/sul);
u_l = yud*ones(1,pld);

s_l = zeros(nt, nt);
for k = 1:pld

s_l = s_l + khw(k,k)*(xo(:,k) - ...
u_l(:,k))*(xo(:,k) - u_l(:,k))’;

end
s_l = s_l / pld;

[vo,co] = eig(s_l);

[vd,cd] = pcaSort( vo, co );

kh

function w = kh(delta, h)
%
% function w = kh(delta, h)
% computes weight values to be used in pcaLocal.
% Input
% delta: a scalar or a vector containing
% delta length from the center
% reference point.
% if zero, then w must be 1.
% h: A factor to define kurtosis of the weighting function.
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%
% Output
% w: a scalar or a vector of weighting

w = exp( -delta.^2 / (2 * h^2 ) );

Figure 2.18 presents computational results for a few h cases (h=15, 30, and 60).

As a processing window (delta in the code) [-128:128] is set to compute 257 weight

values for each h.
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Figure 2.18: Kh curves for h=15, 30, and 60. The processing window is set to have
[-128:128].

pcaLocalRestore

function ykr = pcaLocalRestore (vs, y, k, yuk,order)
%
% function ykr = pcaLocalRestore (vs, y, k, yuk, order)
% reconstructs the original image from given eigenvectors
% ’vs’ and a given ’order’ number at depth k.
%
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% Input:
% vs - a matrix whose columns, [v1 v2 ... vt], are
% eigenvectors. These eigenvectors must be aligned
% such that corresponding eigenvalues are sorted
% in a decreasing order.
% y - an observation matrix whose dimension must be
% (t,d) where t is a number of time steps and
% d is a number of depth steps.
% k - depth index
% yuk - a localized mean vector
% order - a positive integer number or a vector to
% indicate that to which order’s reconstruction
% is made.
% order = 1 ... uses the first eigenvector,
% order = i ... uses the i-th eigenvector.
% order = [1 2 4] ... uses 1st, 2nd, and 4th
% eigenvectors with the mean vector.
% (order <= t)
%
% Output:
% ykr - a reconstructed vector at depth k
% whose dimension must be (t,1);

[t, d] = size(y);
no = length(order);
ykr = zeros([t,1]);

if no == 1
if ((0 < order) & (order <= t))

ykr = ( (y(:,k) - yuk)’ * vs(:,order) .* vs(:,order));
end

else
for i=1:no

if ((0 < order(i)) & (order(i) <= t))
ykr = ykr + ( (y(:,k) - yuk)’ * ...

vs(:,order(i)) .* vs(:,order(i)));
end

end
ykr = ykr + yuk;

end

2.4.3 Synthetic Data Example I

Two contiguous sections are synthetically generated from (2.28) and (2.29) and they

are spliced as presented in Figure 2.19(a). In this plot contribution from various

variance parts are not well visualized.
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yd ∼ N (5 × ones(51, 1), diag ([0.01 · · · 0.01 0.05 0.1 0.2 0.4])) , (d = 1, · · · , 250)

(2.28)

yd ∼ N (1 × ones(51, 1), diag ([0.4 0.2 0.1 0.05 0.01 · · · 0.01])) , (d = 251, · · · , 500)

(2.29)

On this image local PCA is performed for the 1st eigenvector with different weighting

shapes as shown in Figure 2.19.

2.4.4 Synthetic Data Example II

Another synthetic data are made from (2.20) but for d = 1,..., 500. The three primary

eigenvectors are considered on this data. In Figure 2.20 computational results made

from local PCA analysis for h = 30 are presented. In this try it is observed that all

the three eigenvectors basically attain high direction cosine over the entire processing

region.

2.4.5 Openhole Sonic Data Examples

In this section we reconsider the same data processed in Section 2.2.4 with use of

localized PCA techniques.

Reconstruction of Reflection Events

Local PCA results corresponding to Figures 2.5, 2.6, and 2.7 are presented in Fig-

ures 2.21, 2.22, and 2.23, respectively. Eigenvector images from local PCA consist of

depth-dependent components due to locality. It should be remarked that the localized

mean vectors shown in Figure 2.23(a) preserve depth-dependent waveform features

clearly when comparing to Figure 2.7(a).

The three major eigenvalues are examined over the depth axis as depicted in

Figure 2.24(a). These eigenvalues are accumulated and their contribution from the

three major components is plotted in Figure 2.24(b). It is found that the reconstructed
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Figure 2.19: Synthetic images (a) and its local PCA analysis with different h values;
h = 15 (b), h = 30 (c), and h = 60 (d). A processing window is set to have 121
weighting factors.
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Figure 2.20: Local PCA analysis for synthetic data from (2.20) but for d=1,...,500.
The three primary eigenvectors are computed and compared with true eigenvectors.
A parameter h is set to have 30 in the localized weighting function in (2.22).
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Figure 2.21: (a) Original common-offset gather. For this data local PCA is performed
with the selection of h = 15, which is used in the localized weighting function of (2.22).
A rectangular encloses reflection signals coming from a reflector near the borehole.
(b) Reconstructed data traces from the 1st eigenvector.
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(b) 3rd eigenvector
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Figure 2.22: (a) Reconstructed data traces from the 2nd eigenvector. (b) Recon-
structed data traces from the 3rd eigenvector.
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(a) Localized meanvectors
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(b) Reconstructed from 1st, 2nd, and 3rd eigenvectors
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Figure 2.23: (a) Mean data traces computed from local PCA with h = 15. (b)
Reconstructed data traces made from three primary eigenvectors and the localized
mean traces. A rectangular encloses reconstructed reflection signals.
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Figure 2.24: (a) The three primary eigenvalues over the depth steps. (b) Cumulative
eigenvalues from the three primary eigenvalues.

images from the 1st, 2nd, and 3rd eigenvectors hold about a half of information from

the original images in Figure 2.21(a).

In order to verify directionality of three major eigenvectors over the depth axis,

directional cosine values are continuously computed with referencing to a previous

eigenvector. Figure 2.25 presents the computational results. It is found that basi-

cally each eigenvector preserves the same direction except for selective regions. This

reinforces the necessity to introduce localization operations to capture local features.

It is observed that, when comparing to Figure 2.7(b), Figure 2.23(b) shows better

images in a sense that the reflector shape is much closer to the original. Table 2.5

shows MSE values for three vector cases – the sample mean vector (2.4), the localized

mean vector (2.23), and the reconstructed vector (2.26) with p = 3. It can be con-

cluded that MSE from the reconstructed vector with p = 3 in local PCA case attains

the minimum among three estimators on this data set.
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Figure 2.25: Directional cosine values with referencing to a previous eigenvector. The
three primary eigenvectors are considered.

Local PCA Effects on Migrated Image

In order to see effects of local PCA on migrated images we have applied localized

PCA on a migrated section which is conventionally processed as pre-stack migration.

Figure 2.26 shows the original migrated image in which a solid line represents a well

trajectory. The migrated image is presented down to 35 ft below the trajectory. This

migrated image is generated from eight-receiver data (Yamamoto et al. [18]).

In Figure 2.27 a corresponding image that has local PCA operations with a weight-

ing parameter of h = 10 is presented. While reconstructing the image three primary

eigenvectors are taken into account. The imaging quality of the major reflector in

Figure 2.27 is similar to one in Figure 2.26. However it is observed that subtle criss-

cross like marks caused from migration operations are suppressed and relatively less

noisy image is generated.

As a future experiment it is worth trying that local PCA is to be performed on

raw data (i.e., original eight-receiver data) and then resultant data are migrated.
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Figure 2.26: A conventional migrated image. A solid line represents the well trajec-
tory, and migrated images are mirrored on either side of this line.
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Figure 2.27: Migrated images with local PCA operation. Three primary eigenimages
are used to reconstruct the image. A solid line represents the well trajectory, and
migrated images are mirrored on either side of this line.
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Error from Equation MSE

Sample mean vector (2.4) 1
D

∑D
d=1 (yd − ȳ)T (yd − ȳ) 40.79

Localized mean vector (2.23) 1
D

∑D
d=1 (yd − y∗(d))T (yd − y∗(d)) 20.75

Reconstructed vector (2.26) with p = 3 1
D

∑D
d=1 (yd − x̃d[3])T (yd − x̃d[3]) 11.88

Table 2.5: MSE: errors from different reconstructed methods.



Chapter 3

Local Likelihood Regression

This chapter deals with a regression model in a two-dimensional (2-d) domain and

a local likelihood approach for estimating parameters in the model. The localization

is realized by introducing a kernel function. Cross validation (CV) estimates give an

insight into obtaining optimal bandwidth for the localization. We apply the method

to acoustic well-logging data and demonstrate noise reduction with the optimal band-

width selection on a 2-d (space, time) domain. The method is generic enough to apply

to various other types of data without restriction to geophysical data.

3.1 Introduction

As an application of acoustic well-logging, a sonic imaging technique was proposed

and applied (Hornby [7]; Esmersoy et al. [4]) to delineate subsurface bedding bound-

aries. Then experiments were conducted to delineate acoustic reflectors near the

borehole with a special imaging tool and with processing software similar to that

used in surface seismic processing (Watanabe et al. [17]; Yamamoto et al. [18]). To

get clear subsurface migrated images, it is essential to perform (1) removal of head

waves and multiples; and (2) noise reduction on acoustic well-logging image data

before migration operations. For the former, techniques such as wave separation,

predictive deconvolution, frequency-wavenumber (f-k) filters, and mean/median fil-

ters were applied; however, for the latter, no practical attempt except for high-cut

57
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filters was made to suppress noise that blurs reflected signals.

There are methods that have been applied for the feature extraction or the sup-

pression of unwanted signals in geophysical data processing domains. Wavelet denois-

ing methods have been widely applied. Lately a 2-d seismic wavelet from the physical

wavelet frame (Zhang and Ulrych [20]) has been applied to seismic data. PCA and the

closely related Karhunen-Loève (K-L) transform have also been extensively used for

various purposes including noise suppression in the acoustic measurement domain.

Yilmaz [19] demonstrated the K-L use in attenuating multiples and also rejecting

random noise for seismic data by simply eliminating the corresponding eigenimages.

Hsu [8] applied the K-L for separating compressional, shear, and Stoneley waves from

noise and reflected converted waves in acoustic well-logging waveforms. PCA is pow-

erful to extract features over a processing region depending on selected eigenvectors

and corresponding eigenvalues, however in case for processing a large data or focus-

ing a specific region one will introduce a processing window. Then it comes down to

a question: What’s an optimal window size? Localization of analysis is one of the

essential keys to both making the computational burden light and leading to more

accurate features in the focused window. It is also desired to have some rationale

when selecting the window size.

We propose a new approach to reconstructing 2-d images by introducing a re-

gression model in a localized sense. In this chapter, we intend to (1) formulate our

model and estimation methods and to (2) present their applicability to real acoustic

well-logging image data. Therefore, we first formulate the local regression model in

the 2-d (space, time) domain and deal with an optimal parameter selection. In order

to measure the performance of model fitting we introduce the leave-one-out cross val-

idation (CV) criteria (Section 2.4 in Loader [10]). Then we apply the local regression

model to real acoustic well-logging data and present estimated results. The use of

CV is attempted and an optimal parameter, that defines the degree of locality in the

selected model, is obtained from a CV plot. This single bandwidth selection is then

extended to multiple bandwidth selection that takes into account the variant locality

over the time domain. Our results demonstrate that the applied method successfully

achieved: (1) identification of continuous reflectors, and (2) suppression of random
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noise in the acquired acoustic data.

3.2 Formulation

3.2.1 Single Bandwidth Selection

Suppose that we observe sound pressure yt from a wave component of acoustic well-

logging data at time t with a depth at d. Let y = (y1, · · · , yT )T with components

yt over time. We would like to extract an intrinsic relationship of d and y, deleting

apparent noise. In general, the objective of regression analysis is to estimate the

conditional expectation of the response variable given the covariate data. In our con-

text, response variables form vector y and the covariate is a function of the observed

depth d, so that the regression function to be estimated is m(d) = E(Y|D = d).

The standard regression is formulated to have a univariate response variable, while

our analysis has to employ the vector case y. However, we will see that an almost

standard formulation is easily applicable to our vector case.

We assume a kth order polynomial model p(d,B) for the regression function m(d)

by

p(d,B) = Bx(d) = b0 + db1 + · · · + dkbk, (3.1)

where B = (b0,b1, · · · ,bk) is a T × (k + 1) matrix of regression coefficients and

x(d) = (1, d, · · · , dk)T is a (k + 1) vector of k-polynomial covariates. Therefore we

get a regression model

yi = p(di,B) + ni, (i = 1, · · · , I) (3.2)

where ni is an error vector. The usual least-squares estimator is obtained by mini-

mizing the sum of squares. However, good fitting of the model to a real dataset can

not be expected unless the model sufficiently reflects the random variability of the

dataset. In practice our dataset has a complex structure consisting of various wave

components such as compressional, shear, and Stoneley waves. Therefore, it would

be very difficult to suggest a parametric approach appropriate for our dataset.
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Recently nonparametric methodology in the statistical community has been ex-

tensively developed. A basic assumption is that the regression function m(d) is a

smooth vector function of d without imposing any parametric form such as (3.1). Let

us take an approach by local likelihood as one of the most promising methods. The

key idea is to connect the parametric and nonparametric methods by using a kernel

function K(·, d; h), which is designed to be decreased smoothly while moving away

from the depth d. In fact, we select the kernel function by

K(d̃, d; h) = exp

{
−(d − d̃)2

2h2

}
. (3.3)

We note that for a large bandwidth h the kernel function K(d̃, d; h) almost gives a

constant weight 1 for all d̃ while for a small h it gives near-zero weight for d̃ away

from d.

The local likelihood method leads to the kernel-weighted sum of squares

Ld(B; h) =
1

2

I∑
i=1

K(d, di; h)‖yi − p(di,B)‖2. (3.4)

For the target depth d, the ith observation (di,yi) is weighted by the kernel function.

Hence the more remote the depth di is from d, the less weight yi is assigned. In fact

the original proposal doesn’t use the Gaussian kernel defined in (3.3) (Tibshirani and

Hastie [15]) but a uniform kernel that is one if d− h ≤ d̃ ≤ d + h and zero otherwise.

Then Ld(B; h) is the sum of squares based only on the subdataset with the depth

di in the interval (d − h, d + h). For k = 0 it is called the scatterplot smoother. If

the bandwidth h is properly selected, we can expect that Ld(B; h) with the Gaussian

kernel includes the local information around the target depth d, smoothly balanced

with the global information.

The local likelihood estimator for B is defined by the minimizer of Ld(B; h) over
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B, say B̂(d, h). In practice it is explicitly given by

B̂(d, h) =

(
I∑

i=1

K(d, di; h)yix(di)
T

) (
I∑

j=1

K(d, dj; h)x(dj)x(dj)
T

)−1

. (3.5)

We therefore obtain the estimate of m(d) by m̂h(d) = p(d, B̂(d, h)). This estimator is

a linear estimator of yi with coefficients depending on d and h. In fact we can express

m̂h(d) by

m̂h(d) =
I∑

i=1

�i(d, h)yi, (3.6)

where

�i(d, h) = K(d, di; h)x(di)
T

(
I∑

j=1

K(d, dj; h)x(dj)x(dj)
T

)−1

x(di). (3.7)

The simplest case of k = 0 gives a scatterplot smoother

�i(d, h) =
K(d, di; h)∑
j K(d, dj; h)

.

We have formulated our method using the idea of local likelihood. The role of

bandwidth h is the central idea of localizing the likelihood function by the kernel

weighting. Thus the bandwidth, h, controls the degree of localization. For a smaller

h, the resulting regression vector gives larger variance; for larger h, it gives larger

bias.

To find a reasonable locality of the model adaptability, we consider the cross

validation defined by

CV(h) =
1

I

I∑
i=1

‖yi − m̂
(−i)
h (di)‖2, (3.8)

where m̂
(−i)
h (di) denotes a local likelihood estimate of m(d) based on the leave-di-out

dataset. Noting that

m̂
(−i)
h (d) = p(d, B̂

(−i)
d,h )
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with the leave-di-out estimate B̂
(−i)
d,h for B, we can, by straightforward calculus on

matrix algebra, express

CV(h) =
1

I

I∑
i=1

‖yi − m̂h(di)‖2

{1 − �i(di, h)}2
. (3.9)

This formula is easily obtained by the result of Henderson’s theorem (Section 2.5 in

Loader, 1999). See Appendix for a self-contained proof. From this we observe that

the empirical error

Error(h) =
1

I

I∑
i=1

‖yi − m̂h(di)‖2 (3.10)

is simply adjusted by a scalar function {1−�i(di, h)}2. We select an optimal h defined

by

ĥopt = argmin
h>0

CV(h).

As a post analysis, we investigate the fitness of our modeling to the dataset. For this

the effective degree of freedom (EDF),

EDF(k) =
I∑

i=1

�i(di, hopt), (3.11)

is useful for the assessment. Figure 3.1 summarizes processing steps and key functions

described in this section. It should be noted that influence functions and EDF are

used to evaluate the validity for applied models.

3.2.2 Multiple Bandwidth Selection

Our main proposal is to extend the single bandwidth h method to a multiple case.

This is implemented by separating the vector regression model, (3.2), into independent

component regression model

yti = pt(di,b
∗
t ) + nti
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Polynomial Model
in localized sense

Kernel Function
K(-,d;h)
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Parametric
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 Model order selection {k | 0,1,2}

A measure
indicating the
sensitivity of the
estimation to the
individual data.

Estimate of
m(d)

Figure 3.1: Processing steps and key functions for localized regression methods.

for t = 1, · · · , T and i = 1, · · · , I, where pt(di,b
∗
t ) = x(di)

Tb∗
t and b∗

t is the tth

row vector of B with the matrix B of regression coefficients defined in (3.2). Let

h = (h1, · · · , hT )T be a vector of bandwidths and let

L∗
d(B;h) =

1

2

I∑
i=1

T∑
t=1

K(d, di; ht){yti − pt(di,b
∗
t )}2. (3.12)

If the vector h equals (h, · · · , h)T then (3.12) reduces to (3.4). The minimization of

(3.12) over B is easily obtained by separating into those of

L̃d(b̃; ht) =
1

2

I∑
i=1

K(d, di; ht){yti − pt(di,b
∗
t )}2. (3.13)

Hence the estimator is B̂(d,h) = (b̂∗
1, · · · , b̂∗

T )T , where

b̂∗
t (d, ht) =

(
I∑

i=1

K(d, di; ht)ytix(di)
T

) (
I∑

j=1

K(d, dj; ht)x(dj)x(dj)
T

)−1

. (3.14)
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By an argument similar to the derivation of (3.9) we get an interpretable expression

of the cross-validated sum of squares by

CV(h) =
1

I

I∑
i=1

T∑
t=1

{yti − m̂(di, ht)}2

{1 − �i(di, ht)}2
(3.15)

where m̂t(d, ht) = pt(d, b̂∗
t (d, ht)). The effective degree of freedom is given by

EDF(k) =
1

T

I∑
i=1

T∑
t=1

�i(di, htopt). (3.16)

We must pay attention to some effects of overfitting in the vector bandwidth case,

as described above. To relax the overfitness, let us divide the time range into N -sub

intervals, T1, · · · , TN , with length τ . Thus we proposed the revised version for (3.12)

as

L∗
d(B;h∗) =

1

2

I∑
i=1

T∑
t=1

N∑
j=1

K(d, di; hj)1(t, Tj){yti − pt(di,b
∗
t )}2, (3.17)

where h∗ = (h∗
1, · · · , h∗

N)T and 1(t, T ) is an indicator function of T . Figure 3.2

illustrates single and multiple bandwidth selections.

This revised version reflects that image data at the present time t would be in-

fluenced by those at both past and future points near t. In Section 3.3 we will apply

our method to real data.

3.2.3 Matlab Codes

In this section implemented Matlab codes are listed. They are regLocal, regInfl, and

lrCV ; and are summarized in Table 3.1.

regLocal

function [yud] = regLocal( x, d, ld, h, order )
%
% function [yud] = regLocal( x, d, ld, h, order )
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Figure 3.2: Single and multiple bandwidth selections. In (a) single selection, constant
depth range is used with the kernel weight. In case for (b) multiple bandwidth
selection, time-variant depth range is applied.

Name Descriptions
regLocal computes localized regression vector.
regInfl computes influence values.
lrCV computes leave-one-out estimation for cross-validation.

Table 3.1: Matlab functions to perform localized regression methods.

% computes localized regression vector at ’d’
%
% Input:
% x - sample waveform matrix whose
% dimension is (nt,nd) where
% nt is a number of time steps and
% nd is a number of space (depth) steps.
% d - a depth index at which localized regression is
% performed.
% ld - a processing window width.
% 0 < ld <= 2*nd
% h - a scalar to specify the shape of
% the localized weight.
% order - regression order {order|0,1,2,3}
%
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% Output:
% yud - a localized regression vector
%
% Remark:
%
% kh() is used for the kernel function.
%

[nt, nd] = size(x);
hd = round((ld-1)/2);

prs = max([d-hd 1]); % processing start position
pre = min([d+hd nd]); % processing end position
pld = pre - prs + 1;

xo = x(:,prs:pre);
khv = kh(prs-d:pre-d, h); % Weighting matrix
sul = sum(khv);
khw = diag(khv);

if order == 0 % regression order = 0

yud = (sum(xo*khw,2)/sul);

elseif order ==1 % regression order = 1

dp = [prs:pre];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;

alpha = (A*C-B*D) / (C^2 - B*E);
beta = (A*E-C*D) / (B*E - C^2);

yud = alpha*d + beta;

elseif order == 2 % regression order = 2

dp = [1:pld];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;
F = sum(xo*diag(diag((dp .^2)’*khv)),2);
G = (dp .^3) * khv’;
H = (dp .^4) * khv’;

X = [B C E; C E G; E G H];
IX = inv(X);

alpha = IX(3,1) * A + IX(3,2) * D + IX(3,3) * F;
beta = IX(2,1) * A + IX(2,2) * D + IX(2,3) * F;
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gamma = IX(1,1) * A + IX(1,2) * D + IX(1,3) * F;

yud = alpha*(d-prs+1)^2 + beta*(d-prs+1) + gamma;

elseif order == 3 % regression order = 3

dp = [1:pld];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;
F = sum(xo*diag(diag((dp .^2)’*khv)),2);
G = (dp .^3) * khv’;
H = (dp .^4) * khv’;
I = (dp .^5) * khv’;
J = sum(xo*diag(diag((dp .^3)’*khv)),2);
K = (dp .^6) * khv’;

X = [B C E G; C E G H; E G H I; G H I K];
IX = inv(X);

alpha = IX(4,1) * A + IX(4,2) * D + IX(4,3) * F + IX(4,4) * J;
beta = IX(3,1) * A + IX(3,2) * D + IX(3,3) * F + IX(3,4) * J;
gamma = IX(2,1) * A + IX(2,2) * D + IX(2,3) * F + IX(2,4) * J;
delta = IX(1,1) * A + IX(1,2) * D + IX(1,3) * F + IX(1,4) * J;

yud = alpha*(d-prs+1)^3 + beta*(d-prs+1)^2 + ...
gamma*(d-prs+1) + delta;

end

regInfl

function [infl] = regInfl( x, d, ld, h, order )
%
% function [infl] = regInfl( x, d, ld, h, order )
% computes influence values.
%
% See regLocal for descriptions of input parameters.
%
% S. Watanabe
%
% May 16, 2001 Initial coding.

[nt, nd] = size(x);
hd = round((ld-1)/2);

prs = max([d-hd 1]); % processing start position
pre = min([d+hd nd]); % processing end position
pld = pre - prs + 1;
ppd = d - prs + 1;
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khv = kh(prs-d:pre-d, h); % Weighting matrix
sul = sum(khv);
khw = diag(khv);

if order == 0 % regression order = 0

infl = khv(ppd)/sul;

elseif order == 1 % regression order = 1

x = [1 d]’;

S = zeros(2,2);
for k=1:pld

dj = prs+k-1;
S = S + khv(k)*[1 dj]’*[1 dj];

end

infl = khv(ppd)*x’*inv(S)*x;

elseif order == 2 % regression order = 2

x = [1 d d^2]’;

Q = zeros(3,3);
for k=1:pld

dj = prs+k-1;
Q = Q + khv(k)*[1 dj dj^2 ]’*[1 dj dj^2];

end

infl = khv(ppd)*x’*inv(Q)*x;

elseif order == 3 % regression order = 3

x = [1 d d^2 d^3]’;

R = zeros(4,4);
for k=1:pld

dj = prs+k-1;
R = R + khv(k)*[1 dj dj^2 dj^3]’*[1 dj dj^2 dj^3];

end

infl = khv(ppd)*x’*inv(R)*x;

end

lrCV

function [yud] = lrCV( x, d, ld, h ,order)
%
% function [yud] = lrCV( x, d, ld, h ,order)
% computes leave-one-out estimation at depth ’d’.
%
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% Input:
% x - sample waveform matrix whose
% dimension is (nt,nd) where
% nt is a number of time steps and
% nd is a number of space (depth) steps.
% d - a depth index at which locarized regression is
% performed.
% ld - a processing window width.
% 0 < ld <= 2*nd
% h - a scalar to specify the shape of
% the localized weight.
% order - regression order
% 0: a
% 1: a*d +b
% 2: a*d^2+b*d+c
% 3: a*d^3+b*d^2+c*d+e
%
% Output:
% yud - estimated mean vector
%
% S. Watanabe
%

[nt, nd] = size(x);
hd = round((ld-1)/2);

prs = max([d-hd 1]); % processing start position
pre = min([d+hd nd]); % processing end position
pld = pre - prs + 1;

xo = x(:,prs:pre);
khv = kh(prs-d:pre-d, h); % weighting matrix
khv(find(khv == 1)) = 0; % zero out for the weight

% at position ’d’
sul = sum(khv);
khw = diag(khv);

if(order == 0) % regression order = 0;

yud = (sum(xo*khw,2)/sul);

elseif (order == 1) % regression order = 1;

dp = [prs:pre];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;

alpha = (A*C-B*D) / (C^2 - B*E);
beta = (A*E-C*D) / (B*E - C^2);

yud = alpha*d + beta;
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elseif (order == 2) % regression order = 2;

dp = [1:pld];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;
F = sum(xo*diag(diag((dp .^2)’*khv)),2);
G = (dp .^3) * khv’;
H = (dp .^4) * khv’;

X = [B C E; C E G; E G H];
IX = inv(X);

alpha = IX(3,1) * A + IX(3,2) * D + IX(3,3) * F;
beta = IX(2,1) * A + IX(2,2) * D + IX(2,3) * F;
gamma = IX(1,1) * A + IX(1,2) * D + IX(1,3) * F;

yud = alpha*(d-prs+1)^2 + beta*(d-prs+1) + gamma;

elseif (order == 3) % regression_order = 3;

dp = [1:pld];
A = sum(xo*khw,2);
B = sul;
C = dp * khv’;
D = sum(xo*diag(diag(dp’*khv)),2);
E = (dp .^2) * khv’;
F = sum(xo*diag(diag((dp .^2)’*khv)),2);
G = (dp .^3) * khv’;
H = (dp .^4) * khv’;
I = (dp .^5) * khv’;
J = sum(xo*diag(diag((dp .^3)’*khv)),2);
K = (dp .^6) * khv’;

X = [B C E G; C E G H; E G H I; G H I K];
IX = inv(X);

alpha = IX(4,1) * A + IX(4,2) * D + IX(4,3) * F + IX(4,4) * J;
beta = IX(3,1) * A + IX(3,2) * D + IX(3,3) * F + IX(3,4) * J;
gamma = IX(2,1) * A + IX(2,2) * D + IX(2,3) * F + IX(2,4) * J;
delta = IX(1,1) * A + IX(1,2) * D + IX(1,3) * F + IX(1,4) * J;

yud = alpha*(d-prs+1)^3 + beta*(d-prs+1)^2 + ...
gamma*(d-prs+1) + delta;

end
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3.3 Real Data Examples

We consider real acoustic well-logging data (Yamamoto et al. [18]) in this section.

Figure 3.3(a) shows single-receiver waveforms or a common-offset gather from a

transmitter-receiver (T-R) spacing of 45 ft (13.72 m). There are 263 traces in a

certain horizontal well, appearing at every 0.5 ft (0.15 m). In each waveform, the

initial 200 time samples are extracted from the entire 512 time samples with a sam-

pling rate of 20 µs. In this time region, compressional head waves arrive at about

the 70th time step. Between the 140th and 145th time step, reflected waves from a

certain reflector appear. Shear head waves are trimmed away from this gather. We

observe a lot of crisscross-like events that blur the image, and these events eventually

degrade the imaging quality after migration. For this data, we apply the polyno-

mial model and get optimal parameters by using the local likelihood method. Then

we create reconstructed images using optimal parameters obtained so that only the

major waveform components remain in the reconstructed images.

In the case of h = 6, a local regression fit to the original data is computed for orders

0, 1, and 2. They are respectively local constant, local linear, and local quadratic

fits shown in Figures 3.3(b), 3.3(c), and 3.3(d). The higher the order, the closer the

fitted images are to the original. Empirical error values are presented to indicate the

degree of fitting. It is confirmed here that fitting with a high-order polynomial leads

to an estimate with less bias.

In Figure 3.4, local quadratic fits for the same data shown in Figure 3.3(a) are

presented with four different h parameters, which are 2, 10, 20, and 50. They are

respectively plotted in Figures 3.4(a), 3.4(b), 3.4(c), and 3.4(d). Clearly, the fit

produced by the smallest h = 2 produces a much noisier fit than the largest h = 50.

It also appears that h = 50 has over smoothed, since the events start to appear as

straight horizontal lines.

In order to define an optimal h for the model selection, the CV estimates are

computed for polynomial orders of 0, 1, and 2. Figures 3.5 and 3.6 present cross

validation plots for {h|0 ≤ h ≤ 200} and {h|0 ≤ h ≤ 20} cases, respectively. In

Figure 3.5 we can see that the higher the polinomial order becomes, the smaller CV
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(a) Original Data
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(b) Localized regression (order=0)
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(c) Localized regression (order=1)
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(d) Localized regression (order=2)
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Figure 3.3: Acoustic well-logging data and reconstructed images from the localized
regression model with the bandwidth h = 6. (a) Original single-receiver waveforms
from a T-R spacing of 45 ft (13.72 m). (b) Image reconstruction from local constant
fitting. (c) The same as (b) but for local linear fitting. (d) The same as (b) but for
local quadratic fitting.
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(a) Localized regression (order=2)
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(b) Localized regression (order=2)
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(c) Localized regression (order=2)
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(d) Localized regression (order=2)
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Figure 3.4: Reconstructed images from the localized regression on the acoustic well-
logging data shown in Figure 3.3(a). Four different h parameters, (a) h = 2, (b) h =
10, (c) h = 20, and (d) h = 50, are used while preserving the fixed polynomial order
of 2 (local quadratic fitting).
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Figure 3.5: Cross validation plots with polynomial orders of 0 (squares), 1 (crosses),
2 (circles), and 3 (diamond) for the acoustic well-logging data shown in Figure 3.3(a).

values are for large h values. From Figure 3.6 we can identify optimal h values as

h = 4 for orders 0 and 1, h = 6 for order=2, and h = 7 for order=3. This gives

a practical insight into bandwidth selection when attempting local regression fits.

Figure 3.7 presents reconstructed images from the localized regression model for the

orders of 0,1,and 3. For the case of order = 2, see Figure 3.3(d).

In Figure 3.8 influence functions, �i(di, h), are plotted for the local constant, local

linear, local quadratic, and local cubic fits. Optimal h values for these cases are 4

for both the local constant and linear fits, 6 for the local quadratic fit, and 7 for

the local cubic fit. The influence values are generally about 0.1, indicating that Yi

constitutes about 10% of the fitted value. But at both edges an abrupt increase
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Figure 3.6: Close looks at around attaining local minima of cross validation plots
(see Figure 3.5) with polynomial orders of 0 (squares), 1 (crosses), 2 (circles), and 3
(diamond) for the acoustic well-logging data shown in Figure 3.3(a).
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(a) Localized regression (order=0)

Depth steps

T
im

e 
st

ep
s

h = 4
MSE = 14.8313

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(b) Localized regression (order=1)
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(c) Localized regression (order=3)
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Figure 3.7: Reconstructed images from the localized regression on the acoustic well-
logging data shown in Figure 3.3(a). Three different h parameter sets, (a) order = 0
and h = 4, (b) order = 1 and h = 4, and (c) order = 3 and h = 7, are used. These
parameter sets are obtained as minima for orders 0, 1, and 3 in Figure 3.6.
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(c) Local Quadratic (order=2, hopt=6)
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(d) Local Cubic (order=3, hopt=7)
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Figure 3.8: Influence functions for (a) local constant, (b) local linear, (c) local
quadratic, and (d) local cubic fits to the acoustic well-logging data. Optimal h values
are 4 for (a) and (b), 6 for (c), and 7 for (d).

is observed. This indicates the difficulty in polynomial fitting at these edges. The

degrees of freedom defined using (3.11) are 26.7, 27.6, 27.8, and 25.1 for orders 0, 1, 2,

and 3, respectively. These similar values suggest that any optimal bandwidth found

by the cross validation technique is reasonable regardless of the polynomial order.

Multiple bandwidth selection is applied for the same data shown in Figure 3.3(a).

We divide the entire time region into 10 segments and for each segment we compute an

optimal h value. Then these optimal h values are smoothed by the local quadratic fit.

In Figure 3.9(a), smoothed optimal h values are plotted in a solid line, and a dashed

line indicates the constant optimal h value used in Figure 3.3(d). We observe two
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sections centered at t = 50 and t = 140, where the corresponding optimal bandwidth

is relatively smaller than neighbor time zones. The first part corresponds to low-

frequency head waves, and the second to the reflected waves of interest. Thus we

successfully give more effective degrees of freedom to these two important sections.

In Figure 3.9(b) reconstructed images made from this multiple bandwidth selection

are presented.

Based on the optimal order and bandwidth selection, a preliminary evaluation is

performed to confirm the effects of local likelihood regression operations on migrated

images. Figure 2.26 shows the migrated image from the same data shown in Fig-

ure 3.3, but in this case 906 depth traces are considered. In the migrated image,

a solid line represents the well trajectory and migrated images are mirrored on ei-

ther side of this line. It should be noted that both up and down coming signals are

recorded with a set of hydrophones in the borehole, so that the mirroring operation

can be performed. For this data, local likelihood regression is performed on eight

different common-offset gathers. The regression order and the bandwidth used are

2 and 6, respectively. For the eight reconstructed data sections, the migration is

conducted to generate the single image presented in Figure 3.10. It is observed that

in Figure 2.26 subtle crisscross-like patterns exist due to background noise. These

patterns are effectively smoothed on the migrated images in Figure 3.10.

3.4 Discussion and conclusions

In Section 3.2 we propose a new approach to reconstructing 2-d images by introducing

a regression model in a localized sense. The model can be represented as a kth

order polynomial form onto a 2-d (space, time) domain in acoustic well-logging data.

Knowing that no real generic model exists, we propose to introduce a kernel function

for localization. This kernel function must be continuous, symmetric, peaked at the

center, and supported on a certain depth region. The local likelihood method with

use of the kernel leads us to an estimate that is a linear estimator of a waveform at

a given depth point, and which takes into account the nearby waveform data. By

iterating the local likelihood estimate over the entire depth region, we will get an
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Figure 3.9: (a) Optimal h plot (solid-line) over the time axis for the acoustic well-
logging data shown in Figure 3.3(a), and (b) reconstructed images from the localized
regression with the independent component model. The local quadratic fit is used.
Optimal h values are obtained over 10 contiguous segments along the time axis and
then they are interpolated with a factor of 10. A dashed line in (a) indicates the
constant optimal value corresponding to Figure 3.3(d).
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Figure 3.10: Migrated images with localized regression operations. The regression
order and the bandwidth are 2 and 6, respectively. A solid line represents the well
trajectory, and migrated images are mirrored on either side of this line. In Figure 2.26
migrated images without localized regression operations are presented.
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estimated 2-d section on which miscellaneous random features are eliminated.

We focus on the selection of the polynomial order and kernel bandwidth. For the

former it is practically sufficient to consider local linear and local quadratic functions

(Loader [10]). For the latter, the cross validation method is introduced. This method

can be a graphical aid in choosing a parameter that determines the optimal window

size for local regression fits. Therefore CV derives a key for the question paused in

Section 3.1: What’s an optimal window size?

For acoustic well-logging data, static correction is practically unattainable because

the acquisition is made in the borehole. Residual static correction may be performed

statistically. Under this circumstance it is desired to have a robust method to suppress

noise over the entire processing region with a light-computation cost. It is emphasized

that the local likelihood regression takes into account the characteristics of sonic

data in both time and space domains in conjunction with the appropriate bandwidth

selection obtained by the CV criteria.

In summary, we have formulated localized regression fits by introducing the kernel

function for a single common-offset gather from acoustic well-logging data. Using this

method, we successfully obtain fits by considering two components: the polynomial

order and the bandwidth selection. Practically speaking, it is efficient to use a low-

order polynomial and to obtain the optimal h value by utilizing the cross validation

(CV) plot. Our method demonstrated in this chapter can be applied in other domains

where image reconstructions are necessary, mainly to preserve continuous events in a

2-d section and to suppress random noise appearing in that section.



Chapter 4

Local Regression for Kriging

4.1 Introduction

In geophysical domains it is common to make spatial interpolation from sparse datasets.

Kriging is widely used for this purpose. Georges Matheron (1930–2000) named this

method after D. G. Krige (Riplay [12]; Agterberg [1]). Among other kriging meth-

ods, we focus on ordinary kriging and review its methodology by following Wacker-

nagel [16]. Then we apply this method for real porosity data obtained from different

16 wells. For this data set kriging using the Gaussian variogram model is made. Here

computational difficulties lie in 1) selecting an appropriate semi-variogram model

and 2) obtaining optimal parameters from nonlinear model fitting for the selected

model. Our proposal is to make use of a local regression model on a variogram cloud

and to apply results from the local regression analysis to a process for identifying

semi-variogram features, although examination for this proposal is immature.

4.2 Methodology

Suppose that we estimate a value at x0 using data values from n neighboring sample

points xα and linearly associated weights wα

82
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,
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Figure 4.1: A domain containing sparsely sampled data and a point of interest.

Ẑ(x0) =
n∑

α=1

wαZ(xα). (4.1)

Figure 4.1 schematically shows a domain containing sparsely sampled data and a point

of interest. Here we assume that sparsely sampled data are characterized by intrinsic

random function Z(x) with a semi-variogram γ(h) where h is the distance between two

samples. The relationship between the semi-variogram and the covariance function is

γ(h) = C(0) − C(h). (4.2)

The weighting coefficients wα can be determined based on the minimum estimation

variance criterion:

σ2
E = E[(Z(x0) − Ẑ(x0))

2]

= −γ(x0 − x0) −
n∑

α=1

n∑
β=1

wαwβγ(xα − xβ)

+ 2
n∑

α=1

wαγ(xα − x0)

(4.3)

subject to the unbiasedness condition

n∑
α=1

wα = 1. (4.4)
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Weights wα can be obtained by minimizing (4.3) with constraint of (4.4). Having

performed the Lagrange method the estimation variance of ordinary kriging is

σ2
0 = µ − γ(x0 − x0) +

n∑
α=1

w∗
αγ(xα − x0) (4.5)

where µ is the Lagrange parameter and w∗
α are obtained weighting coefficients.

For each node in a regular grid, an estimated value is computed from neighbor

sample data together with their associated weights w∗
α.

4.2.1 Matlab Codes

In this section implemented Matlab codes are presented. They are summarized in

Table 4.1. For regKrig we studied davis function found in Gratton and Lafleur [5].

Name Descriptions
regLocal1 computes a local regression estimate.
regKrig performs kriging based on empirical semi-variogram.

Table 4.1: Matlab functions to perform local regression and kriging for spatial data.

regLocal1

function yu = regLocal1( sv, x, h, order, sill_flag )

% function yu = regLocal1( sv, x, h, order, sill_flag )
% computes a local regression estimate for
% a predictor variable x.
%
% Input:
% sv - m pairs of observations in
% a matrix whose dimension is m-by-2.
% The 1st/2nd column is for ’x’/’y’ component.
% x - a point of interest where a local regression
% estimate is computed. For multiple x points
% a vecotr form can be specified.
% h - a positive bandwidth to make
% a smoothing window (x-h,x+h)
% order - a regression polinomial order
% 0: Local Constant
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% 1: Local Linear
% sill_flag - 0: use local regression estimate
% at everywhere (default)
% 1: set the maximum semi-variogram value
% for sill part.
% Output:
% yu - a local regresiion estimate at a given
% predictor point x. In case that x is a vector,
% corresponding estimate values are returned
% as a vector.
%
% Remark:
% As a weight function the tricube weight function
% that is defined as w(u)= (1-|u|^3)^3.
%
% S. watanabe

if nargin == 4
sill_flag = 0;

end

[m,k] = size(sv);
mx = max(size(x));
x = reshape(x,mx,1);
w = [];
for i=1:mx

lm = abs(sv(:,1) - x(i));
for j=1:m

if lm(j) > abs(h)
lm(j) = 1.0;

else
lm(j) = lm(j)/abs(h);

end
end
w = [w (ones(m,1) - lm.^3).^3];

end

if order == 0
yu = w’*sv(:,2)./ sum(w)’;

elseif order == 1
xw = w’*sv(:,1)./ sum(w)’;
xz1 = zeros(mx,1);
xz2 = zeros(mx,1);
for i=1:mx

xz1(i) = w(:,i)’* diag((sv(:,1) - xw(i)) * sv(:,2)’);
xz2(i) = w(:,i)’* (sv(:,1) - xw(i)).^2;

end
yu = w’*sv(:,2)./ sum(w)’ + (x - xw) .* (xz1 ./ xz2);

end

if sill_flag == 1
sweep_x = linspace(sv(1,1),sv(m,1));
yyu = regLocal1( sv, sweep_x, h, order, 0);
sill_value = max(yyu);
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sill_start = min(find(yu > 0.99*sill_value));
yu(sill_start+1:max(size(yu))) = sill_value;

end

regKrig

function [Zp,Sp] = regKrig(sv, data, x0, h, order)

% [Zp,Sp] = regKrig(sv, data, x0, h, order)
%
% performs kriging based on empirical semi-variogram
% generated from local regression fit.
%
% Input:
% sv - empirical semi-variogram values m-by-2
% data - orignal samples matrix [x y z] n-by-3
% x0 - a lis of points at which estimates are computed
% h - a positive bandwidth to make
% a smoothing window (x-h,x+h)
% order - a regression polinomial order
% 0: Local Constant
% 1: Local Linear
%
% Output:
% Zp - kriged estimate matrix
% Sp - variance matrix
%
% Remark:
% reglocal1() is called inside as sill_flag = 1
%
% Reference:
%
% This program was modified from davis.m in:
% MATLAB Kriging Toolbox, Version 4.0, July 2001
% Yves Gratton and Caroline Lafleur
%

n = length(data);
x = data(:,1);
y = data(:,2);
z = data(:,3);
sill_flag = 1;

% Evaluation of matrix A

for i = 1:n
for j = 1:n

dx = x(i) - x(j);
dy = y(i) - y(j);
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r = sqrt (dx*dx + dy*dy);

A(j,i) = regLocal1( sv, r, h, order, sill_flag );
end

end

A(n+1,:) = ones(1,n);
A(:,n+1) = [ones(n,1); 0];

% Evaluation of vectors Y and then X

np = length(x0)

for k = 1:np
disp([’Doing ’ int2str(k) ’ out of ’ int2str(np)])

% interpolation position
xp = x0(k,1);
yp = x0(k,2);

for i = 1:n
% vector Y
dxp = x(i) - xp;
dyp = y(i) - yp;
rp = sqrt ( dxp*dxp + dyp*dyp);

Y(i,1) = regLocal1( sv, rp, h, order, sill_flag );
end

Y(n+1,1) = 1;

% vector X
X = inv(A) * Y;

% weight vector: vector X with the last line missing
W = X(1:length(X)-1,1);

% interpolation at p
Zp(k,1) = W’ * z;

% variance estimation
Sp(k,1) = X’ * Y;

end

4.3 Real Data Examples

We consider a scalar measurement made at spatially different locations. Table 4.2 lists

porosity measurements over different 16 wells that have UTM (universal transverse
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mercator) coordinates in meters (Russel [13]). Porosity indicates the percentage of

pore volume or void space, or that volume within rock which can contain fluids (see

Figure 4.2).

Well ID X (m) Y (m) Porosity (%)
1 2280 890 4.0
2 1240 1210 1.5
3 1651 1290 5.7
4 2169 1230 2.9
5 2059 1690 10.4
6 1722 1630 16.1
7 891 1820 1.9
8 1385 2060 7.7
9 1682 2020 15.2

10 1885 2050 7.6
11 1991 2310 11.9
12 1694 2420 15.8
13 1023 2310 6.1
14 1305 2750 4.5
15 1705 2620 12.7
16 2301 2000 12.4

Table 4.2: Porosity samples from 16 wells.

Solid Grain

Pore

Figure 4.2: A schematic diagram to represent pore that is a discrete void within a
rock. Pore space can contain air, water, hydrocarbons or other fluids.

In Figure 4.3 a map of the porosity samples taken from 16 wells is plotted in a

1600 m × 2000 m region. From these data a semi-variogram cloud is generated from

every combination of pairs and is presented in Figure 4.4. We see that the semi-

variogram cloud is sparsely distributed in the 2-d space and it is hard to identify

relations between two variables, the spatial distance h and the semi-variogram γ.
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In order to find relations between them, bins are introduced over the distance axis.

Each bin has a fixed width over the distance axis and semi-variogram values fall into

this bin are averaged to yield a representative value in this bin. For this porosity
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Figure 4.3: Spatially distributed porosity samples from 16 wells.

data we introduce 13 bins and in each bin an average value is computed. Then the

Gaussian variogram model is selected and a least-squares fitting is made as depicted

in Figure 4.5. These averaged values are plotted with circles and the dotted line

represents LSQ fit from these points. When we eliminate one circle located at around

the relative distance of 0.96, the solid line is obtained from twelve pluses. This

Gaussian variogrammodel can be formulated as:

γ(h) = C0(1 − exp{−(h/L)2}) + Y0 (4.6)

where h is the distance, C0 is an offset between the sill and the nugget-effect, L is

the length scale, and Y0 is the nugget-effect. In Figure 4.6 this model is schematically

presented.
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Figure 4.4: Empirical semi-variogram plot or a semi-variogram cloud from a combi-
nation of 136 different pairs.

4.4 Observations

As we see from Figures 4.7 and 4.8 local regression operations work well in each case.

In order to form a stable sill shape, local regression results are compensated to have

flat features starting at a distance position where local regression curves attain the

maximum value. From our experiments following points are found:

• As the bandwidth gets wider estimated values have smoothed shape.

• Local linear yields less nugget-effect.

Figures 4.9 and 4.10 present kriged images for two bin cases (13 and 23) with

wider bandwidth setting (h=0.3 in relative distance or h=630.02 m). These kriging

results suggest that we must study further on this subject to propose efficient means

of defining semi-variogram curves with using the local approaches.
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Figure 4.7: Histograms of bin samples (left) and local regression fit of the porosity
data. Five different bin sets (n = 8, 13, 18, 23, and 28) are considered with both
local constant (middle) and linear (right) cases. Crosses are empirical semi-variogram
points computed from each bin. Solid lines show computational results and dashed
lines are proposed sill shape. The bandwidth is selected as h = 0.15.
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Figure 4.8: Histograms of bin samples (left) and local regression fit of the porosity
data. Five different bin sets (n = 8, 13, 18, 23, and 28) are considered with both
local constant (middle) and linear (right) cases. Crosses are empirical semi-variogram
points computed from each bin. Solid lines show computational results and dashed
lines are proposed sill shape. The bandwidth is selected as h = 0.30.
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Figure 4.9: Kriging 16 porosity data with local constant fit from two bin cases: (a)
13 and (b) 23 bins. The bandwidth selected is corresponding to 0.3 in Figure 4.8.
Middle plots show estimations and right plots indicate variances.
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Figure 4.10: Kriging 16 porosity data with local linear fit from two bin cases: (a)
13 and (b) 23 bins. The bandwidth selected is corresponding to 0.3 in Figure 4.8.
Middle plots show estimations and right plots indicate variances.



Chapter 5

Concluding Remarks

5.1 Contributions

This thesis investigates a few geophysical data domains on which we can make use of

local approaches for selective statistical techniques.

In Chapter 2 we studied PCA and local PCA on the single-well acoustic data.

With local PCA operations on the migrated images, crisscross like patterns or noises

are effectively removed.

In Chapter 3 we use local regression approaches for the 2-d data domain and

formulate localized regression fits by introducing the kernel function. we successfully

obtain fits by considering two key parameters that are the polynomial order and

bandwidth selection. For obtaining the optimal h value, cross validation (CV) plot is

utilized. Lastly we proposed this CV use for the time axis so that waveform locality

over the time axis can be taken into account adaptively.

Single-well acoustic imaging is still emerging technology. On this technical field

what we have contributed are re-phrased as follows:

• Local analysis of PCA is found to be effective to remove crisscross like patterns

on migrated images from single-well acoustic imaging.

• Local regression approach is introduced on the single-well acoustic data mainly

for denoising.
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• The vector-valued response variable is considered for the scalar predictor in the

local regression approach.

• Visualization of local regression results is made.

• The bandwidth selection is made along the depth axis.

• The cross validation is used for selecting an optimal bandwidth.

• Multiple bandwidth selection is proposed by additionally taking account for the

time axis.

Chapter 4 concentrates on the semi-variogram cloud from the porosity data with

local regression approaches. This cloud indicates the dissimilarities against the spatial

separation of sample pairs and is important when determining a sequence of average

dissimilarities over the lateral direction. Normally this sequence is fitted with a

theoretical curve, however this process may be practically difficult because a wrong

model selection falls away from key features embraced by the original data. This

local regression approach facilitates easy computation for forming an appropriate

sequence of average dissimilarities with no worry about selecting an optimal model

from theoretical models such as exponential, Gaussian, spherical and so on. In this

local regression approach we consider simple cases that are local constant and local

regression fits. For each fit our local regression model has a single predictor variable

and a single response variable. This local regression use may be practically useful but

this is not proved yet.

5.2 Suggestions for further research

Further studies are desired to examine capabilities for extracting reflector signals from

single-well acoustic imaging data by means of localized regression approaches.

In Chapter 4 local regression is utilized to form semi-variogram models. Then

generated models are referenced when making kriging operations. Finally kriged val-

ues over lattice points are fed into contour function to make contour plots. The
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mathematical spline function can also be used in spatial interpolation from sparse

data. Wackernagel [16] briefly introduces the equivalence between splines and krig-

ing in Chapter 39. Further study is required to identify the equivalence or to find

dissimilarities when local regression is introduced in kriging.



Appendix A

Derivation of Equation 3.9

In this appendix we derive the cross validation formula of (3.9).

We prepare a simple formula that

(A − aaT )−1a =
1

1 − aTA−1a
A−1a (A.1)

for a nonsingular matrix A and vector a. See, for example, 2.3 in Rao [11]. For

simplicity, let x(di) be xi. Then it follows from (A.1) that

(∑
j �=i

K(d, dj; h)xjx
T
j

)−1

xi =

(∑
j K(d, dj; h)xjx

T
j

)−1

xi

1 − K(d, di; h)xi
T

(∑
j K(d, dj; h)xjxT

j

)−1

xi

. (A.2)

Hence we can write that

m̂(−i)(di) =

{∑
k �=i

K(di, dk; h)ykx
T
k

} (∑
j K(di, dj; h)xjx

T
j

)−1

xi

1 − xi
T

(∑
j K(di, dj; h)xjxT

j

)−1

xi

=

{∑
k

K(di, dk; h)ykx
T
k − yix

T
i

} (∑
j K(di, dj; h)xjx

T
j

)−1

xi

1 − xi
T

(∑
j K(di, dj; h)xjxT

j

)−1

xi

=
m̂(di) − �i(di, h)yi

1 − �i(di, h)
, (A.3)
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where �i(d, h) is defined using (3.7). Therefore we get

CV(h) =
1

I

I∑
i=1

‖yi − m̂
(−i)
h (di)‖2 =

1

I

I∑
i=1

‖yi − m̂h(di)‖2

{1 − �i(di, h)}2
, (A.4)

which completes the exercise.
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